From 8f977c84779ae180e5b586b7ef50b70c3f588695 Mon Sep 17 00:00:00 2001 From: daniel Date: Thu, 21 Sep 2017 18:19:22 -0500 Subject: [PATCH 01/11] New files --- BackgroundPrediction_Kinematic_Split.c | 356 ++----- BackgroundPrediction_Kinematic_Split_MMR.c | 304 ++---- ...ndPrediction_Kinematic_Split_MMR_blinded.c | 887 ++++++++++++++++ ...groundPrediction_Kinematic_Split_blinded.c | 974 ++++++++++++++++++ DisplayJetProperties.cc | 231 +++++ DisplayKinFitReg.cc | 416 ++++++++ Display_SignalFits.cc | 2 +- Display_SignalFits_LMR.cc | 4 +- Display_SignalFits_LMR_bias.cc | 25 +- Display_SignalFits_bias.cc | 40 +- Display_SignalKinFitReg.cc | 142 +++ DisplaymHmX.cc | 227 ++++ DrawLimitPlot.cc | 71 +- DrawLimitPlot_All.cc | 626 +++++++++++ DrawLimitPlot_Combined.cc | 547 ++++++++++ InterpolateSignal.C | 282 +++-- PDFSyst.py | 6 +- PDFs/trig.log | 3 +- .../CMS_HH4b_260_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_260_13TeV_asymptoticCLs.out | 42 + .../datacard_260_gaus_exp_250_330.txt | 27 + .../CMS_HH4b_265_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_265_13TeV_asymptoticCLs.out | 40 + .../datacard_265_gaus_exp_250_330.txt | 27 + .../.nfs000000300a163622000004a4 | 2 + .../CMS_HH4b_270_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_270_13TeV_asymptoticCLs.out | 39 + .../datacard_270_gaus_exp_250_330.txt | 27 + .../datacard_270_novo_285_625.txt | 27 + .../CMS_HH4b_275_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_275_13TeV_asymptoticCLs.out | 39 + .../datacard_275_gaus_exp_250_330.txt | 27 + .../datacard_275_novo_285_625.txt | 27 + .../CMS_HH4b_280_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_280_13TeV_asymptoticCLs.out | 41 + .../datacard_280_gaus_exp_250_330.txt | 27 + .../datacard_280_novo_285_625.txt | 27 + .../CMS_HH4b_285_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_285_13TeV_asymptoticCLs.out | 39 + .../datacard_285_gaus_exp_250_330.txt | 27 + .../datacard_285_novo_285_625.txt | 27 + .../CMS_HH4b_290_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_290_13TeV_asymptoticCLs.out | 38 + .../datacard_290_gaus_exp_250_330.txt | 27 + .../CMS_HH4b_290_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_290_13TeV_asymptoticCLs.out | 39 + .../datacard_290_novo_285_625.txt | 27 + .../CMS_HH4b_295_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_295_13TeV_asymptoticCLs.out | 39 + .../datacard_295_gaus_exp_250_330.txt | 27 + .../CMS_HH4b_295_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_295_13TeV_asymptoticCLs.out | 40 + .../datacard_295_novo_285_625.txt | 27 + .../CMS_HH4b_300_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_300_13TeV_asymptoticCLs.out | 42 + .../datacard_300_gaus_exp_250_330.txt | 27 + .../CMS_HH4b_300_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_300_13TeV_asymptoticCLs.out | 41 + .../datacard_300_novo_285_625.txt | 27 + .../CMS_HH4b_310_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_310_13TeV_asymptoticCLs.out | 39 + .../datacard_310_gaus_exp_250_330.txt | 27 + .../CMS_HH4b_310_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_310_13TeV_asymptoticCLs.out | 40 + .../datacard_310_novo_285_625.txt | 27 + .../CMS_HH4b_320_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_320_13TeV_asymptoticCLs.out | 41 + .../datacard_320_gaus_exp_250_330.txt | 27 + .../CMS_HH4b_320_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_320_13TeV_asymptoticCLs.out | 41 + .../datacard_320_novo_285_625.txt | 27 + .../CMS_HH4b_330_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_330_13TeV_asymptoticCLs.out | 42 + .../datacard_330_novo_285_625.txt | 27 + .../CMS_HH4b_340_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_340_13TeV_asymptoticCLs.out | 42 + .../datacard_340_novo_285_625.txt | 27 + .../datacard_350_gaus_exp_250_330.txt | 27 + .../CMS_HH4b_350_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_350_13TeV_asymptoticCLs.out | 41 + .../datacard_350_novo_285_625.txt | 27 + .../CMS_HH4b_360_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_360_13TeV_asymptoticCLs.out | 41 + .../datacard_360_novo_285_625.txt | 27 + .../CMS_HH4b_370_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_370_13TeV_asymptoticCLs.out | 40 + .../datacard_370_novo_285_625.txt | 27 + .../CMS_HH4b_380_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_380_13TeV_asymptoticCLs.out | 42 + .../datacard_380_novo_285_625.txt | 27 + .../CMS_HH4b_390_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_390_13TeV_asymptoticCLs.out | 42 + .../datacard_390_novo_285_625.txt | 27 + .../CMS_HH4b_400_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_400_13TeV_asymptoticCLs.out | 42 + .../datacard_400_novo_285_625.txt | 27 + .../CMS_HH4b_410_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_410_13TeV_asymptoticCLs.out | 42 + .../datacard_410_novo_285_625.txt | 27 + .../CMS_HH4b_420_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_420_13TeV_asymptoticCLs.out | 42 + .../datacard_420_novo_285_625.txt | 27 + .../CMS_HH4b_430_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_430_13TeV_asymptoticCLs.out | 42 + .../datacard_430_novo_285_625.txt | 27 + .../CMS_HH4b_440_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_440_13TeV_asymptoticCLs.out | 42 + .../datacard_440_novo_285_625.txt | 27 + .../CMS_HH4b_450_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_450_13TeV_asymptoticCLs.out | 41 + .../datacard_450_novo_285_625.txt | 27 + .../CMS_HH4b_460_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_460_13TeV_asymptoticCLs.out | 41 + .../datacard_460_novo_285_625.txt | 27 + .../CMS_HH4b_470_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_470_13TeV_asymptoticCLs.out | 41 + .../datacard_470_novo_285_625.txt | 27 + .../CMS_HH4b_480_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_480_13TeV_asymptoticCLs.out | 41 + .../datacard_480_novo_285_625.txt | 27 + .../CMS_HH4b_490_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_490_13TeV_asymptoticCLs.out | 42 + .../datacard_490_novo_285_625.txt | 27 + .../CMS_HH4b_500_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_500_13TeV_asymptoticCLs.out | 42 + .../datacard_500_novo_285_625.txt | 27 + .../CMS_HH4b_510_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_510_13TeV_asymptoticCLs.out | 42 + .../datacard_510_novo_285_625.txt | 27 + .../CMS_HH4b_520_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_520_13TeV_asymptoticCLs.out | 42 + .../datacard_520_novo_285_625.txt | 27 + .../CMS_HH4b_530_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_530_13TeV_asymptoticCLs.out | 42 + .../datacard_530_novo_285_625.txt | 27 + .../CMS_HH4b_540_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_540_13TeV_asymptoticCLs.out | 42 + .../datacard_540_novo_285_625.txt | 27 + .../CMS_HH4b_550_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_550_13TeV_asymptoticCLs.out | 42 + .../datacard_550_novo_285_625.txt | 27 + .../CMS_HH4b_560_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_560_13TeV_asymptoticCLs.out | 42 + .../datacard_560_novo_285_625.txt | 27 + .../CMS_HH4b_570_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_570_13TeV_asymptoticCLs.out | 41 + .../datacard_570_novo_285_625.txt | 27 + .../CMS_HH4b_580_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_580_13TeV_asymptoticCLs.out | 42 + .../datacard_580_novo_285_625.txt | 27 + .../CMS_HH4b_590_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_590_13TeV_asymptoticCLs.out | 43 + .../datacard_590_novo_285_625.txt | 27 + .../CMS_HH4b_600_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_600_13TeV_asymptoticCLs.out | 42 + .../datacard_600_novo_285_625.txt | 27 + .../CMS_HH4b_610_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_610_13TeV_asymptoticCLs.out | 42 + .../datacard_610_novo_285_625.txt | 27 + .../CMS_HH4b_620_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_620_13TeV_asymptoticCLs.out | 42 + .../datacard_620_novo_285_625.txt | 27 + .../datacard_650_novo_285_625.txt | 27 + .../CMS_HH4b_1000_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_1000_13TeV_asymptoticCLs.out | 41 + .../datacard_1000_novo_550_1200.txt | 27 + .../CMS_HH4b_1050_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_1050_13TeV_asymptoticCLs.out | 40 + .../datacard_1050_novo_550_1200.txt | 27 + .../CMS_HH4b_1100_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_1100_13TeV_asymptoticCLs.out | 39 + .../datacard_1100_novo_550_1200.txt | 27 + .../CMS_HH4b_1150_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_1150_13TeV_asymptoticCLs.out | 38 + .../datacard_1150_novo_550_1200.txt | 27 + .../CMS_HH4b_1200_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_1200_13TeV_asymptoticCLs.out | 39 + .../datacard_1200_novo_550_1200.txt | 27 + .../CMS_HH4b_550_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_550_13TeV_asymptoticCLs.out | 40 + .../datacard_550_novo_550_1200.txt | 27 + .../CMS_HH4b_570_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_570_13TeV_asymptoticCLs.out | 39 + .../datacard_570_novo_550_1200.txt | 27 + .../CMS_HH4b_600_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_600_13TeV_asymptoticCLs.out | 42 + .../datacard_600_novo_550_1200.txt | 27 + .../CMS_HH4b_620_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_620_13TeV_asymptoticCLs.out | 39 + .../datacard_620_novo_550_1200.txt | 27 + .../CMS_HH4b_650_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_650_13TeV_asymptoticCLs.out | 41 + .../datacard_650_novo_550_1200.txt | 27 + .../CMS_HH4b_670_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_670_13TeV_asymptoticCLs.out | 40 + .../datacard_670_novo_550_1200.txt | 27 + .../CMS_HH4b_700_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_700_13TeV_asymptoticCLs.out | 40 + .../datacard_700_novo_550_1200.txt | 27 + .../CMS_HH4b_720_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_720_13TeV_asymptoticCLs.out | 39 + .../datacard_720_novo_550_1200.txt | 27 + .../CMS_HH4b_750_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_750_13TeV_asymptoticCLs.out | 38 + .../datacard_750_novo_550_1200.txt | 27 + .../CMS_HH4b_770_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_770_13TeV_asymptoticCLs.out | 38 + .../datacard_770_novo_550_1200.txt | 27 + .../CMS_HH4b_800_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_800_13TeV_asymptoticCLs.out | 39 + .../datacard_800_novo_550_1200.txt | 27 + .../CMS_HH4b_820_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_820_13TeV_asymptoticCLs.out | 39 + .../datacard_820_novo_550_1200.txt | 27 + .../CMS_HH4b_840_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_840_13TeV_asymptoticCLs.out | 41 + .../datacard_840_novo_550_1200.txt | 27 + .../CMS_HH4b_860_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_860_13TeV_asymptoticCLs.out | 39 + .../datacard_860_novo_550_1200.txt | 27 + .../CMS_HH4b_880_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_880_13TeV_asymptoticCLs.out | 40 + .../datacard_880_novo_550_1200.txt | 27 + .../CMS_HH4b_900_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_900_13TeV_asymptoticCLs.out | 39 + .../datacard_900_novo_550_1200.txt | 27 + .../CMS_HH4b_920_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_920_13TeV_asymptoticCLs.out | 39 + .../datacard_920_novo_550_1200.txt | 27 + .../CMS_HH4b_940_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_940_13TeV_asymptoticCLs.out | 38 + .../datacard_940_novo_550_1200.txt | 27 + .../CMS_HH4b_960_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_960_13TeV_asymptoticCLs.out | 39 + .../datacard_960_novo_550_1200.txt | 27 + .../CMS_HH4b_980_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_980_13TeV_asymptoticCLs.out | 38 + .../datacard_980_novo_550_1200.txt | 27 + .../CMS_HH4b_260_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_260_13TeV_asymptoticCLs.out | 40 + .../datacard_260_gaus_exp_250_330.txt | 27 + .../CMS_HH4b_265_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_265_13TeV_asymptoticCLs.out | 40 + .../datacard_265_gaus_exp_250_330.txt | 27 + .../CMS_HH4b_270_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_270_13TeV_asymptoticCLs.out | 40 + .../datacard_270_gaus_exp_250_330.txt | 27 + .../datacard_270_novo_285_625.txt | 27 + .../CMS_HH4b_275_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_275_13TeV_asymptoticCLs.out | 39 + .../datacard_275_gaus_exp_250_330.txt | 27 + .../datacard_275_novo_285_625.txt | 27 + .../CMS_HH4b_280_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_280_13TeV_asymptoticCLs.out | 41 + .../datacard_280_gaus_exp_250_330.txt | 27 + .../datacard_280_novo_285_625.txt | 27 + .../CMS_HH4b_285_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_285_13TeV_asymptoticCLs.out | 39 + .../datacard_285_gaus_exp_250_330.txt | 27 + .../datacard_285_novo_285_625.txt | 27 + .../CMS_HH4b_290_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_290_13TeV_asymptoticCLs.out | 39 + .../datacard_290_gaus_exp_250_330.txt | 27 + .../CMS_HH4b_290_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_290_13TeV_asymptoticCLs.out | 39 + .../datacard_290_novo_285_625.txt | 27 + .../CMS_HH4b_295_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_295_13TeV_asymptoticCLs.out | 39 + .../datacard_295_gaus_exp_250_330.txt | 27 + .../CMS_HH4b_295_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_295_13TeV_asymptoticCLs.out | 40 + .../datacard_295_novo_285_625.txt | 27 + .../CMS_HH4b_300_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_300_13TeV_asymptoticCLs.out | 42 + .../datacard_300_gaus_exp_250_330.txt | 27 + .../CMS_HH4b_300_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_300_13TeV_asymptoticCLs.out | 41 + .../datacard_300_novo_285_625.txt | 27 + .../CMS_HH4b_310_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_310_13TeV_asymptoticCLs.out | 40 + .../datacard_310_gaus_exp_250_330.txt | 27 + .../CMS_HH4b_310_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_310_13TeV_asymptoticCLs.out | 40 + .../datacard_310_novo_285_625.txt | 27 + .../CMS_HH4b_320_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_320_13TeV_asymptoticCLs.out | 41 + .../datacard_320_gaus_exp_250_330.txt | 27 + .../CMS_HH4b_320_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_320_13TeV_asymptoticCLs.out | 40 + .../datacard_320_novo_285_625.txt | 27 + .../CMS_HH4b_330_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_330_13TeV_asymptoticCLs.out | 40 + .../datacard_330_novo_285_625.txt | 27 + .../CMS_HH4b_340_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_340_13TeV_asymptoticCLs.out | 41 + .../datacard_340_novo_285_625.txt | 27 + .../datacard_350_gaus_exp_250_330.txt | 27 + .../CMS_HH4b_350_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_350_13TeV_asymptoticCLs.out | 41 + .../datacard_350_novo_285_625.txt | 27 + .../CMS_HH4b_360_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_360_13TeV_asymptoticCLs.out | 41 + .../datacard_360_novo_285_625.txt | 27 + .../CMS_HH4b_370_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_370_13TeV_asymptoticCLs.out | 41 + .../datacard_370_novo_285_625.txt | 27 + .../CMS_HH4b_380_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_380_13TeV_asymptoticCLs.out | 41 + .../datacard_380_novo_285_625.txt | 27 + .../CMS_HH4b_390_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_390_13TeV_asymptoticCLs.out | 41 + .../datacard_390_novo_285_625.txt | 27 + .../CMS_HH4b_400_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_400_13TeV_asymptoticCLs.out | 41 + .../datacard_400_novo_285_625.txt | 27 + .../CMS_HH4b_410_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_410_13TeV_asymptoticCLs.out | 41 + .../datacard_410_novo_285_625.txt | 27 + .../CMS_HH4b_420_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_420_13TeV_asymptoticCLs.out | 42 + .../datacard_420_novo_285_625.txt | 27 + .../CMS_HH4b_430_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_430_13TeV_asymptoticCLs.out | 42 + .../datacard_430_novo_285_625.txt | 27 + .../CMS_HH4b_440_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_440_13TeV_asymptoticCLs.out | 41 + .../datacard_440_novo_285_625.txt | 27 + .../CMS_HH4b_450_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_450_13TeV_asymptoticCLs.out | 41 + .../datacard_450_novo_285_625.txt | 27 + .../CMS_HH4b_460_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_460_13TeV_asymptoticCLs.out | 40 + .../datacard_460_novo_285_625.txt | 27 + .../CMS_HH4b_470_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_470_13TeV_asymptoticCLs.out | 41 + .../datacard_470_novo_285_625.txt | 27 + .../CMS_HH4b_480_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_480_13TeV_asymptoticCLs.out | 41 + .../datacard_480_novo_285_625.txt | 27 + .../CMS_HH4b_490_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_490_13TeV_asymptoticCLs.out | 42 + .../datacard_490_novo_285_625.txt | 27 + .../CMS_HH4b_500_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_500_13TeV_asymptoticCLs.out | 41 + .../datacard_500_novo_285_625.txt | 27 + .../CMS_HH4b_510_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_510_13TeV_asymptoticCLs.out | 42 + .../datacard_510_novo_285_625.txt | 27 + .../CMS_HH4b_520_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_520_13TeV_asymptoticCLs.out | 42 + .../datacard_520_novo_285_625.txt | 27 + .../CMS_HH4b_530_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_530_13TeV_asymptoticCLs.out | 42 + .../datacard_530_novo_285_625.txt | 27 + .../CMS_HH4b_540_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_540_13TeV_asymptoticCLs.out | 42 + .../datacard_540_novo_285_625.txt | 27 + .../CMS_HH4b_550_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_550_13TeV_asymptoticCLs.out | 42 + .../datacard_550_novo_285_625.txt | 27 + .../CMS_HH4b_560_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_560_13TeV_asymptoticCLs.out | 43 + .../datacard_560_novo_285_625.txt | 27 + .../CMS_HH4b_570_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_570_13TeV_asymptoticCLs.out | 43 + .../datacard_570_novo_285_625.txt | 27 + .../CMS_HH4b_580_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_580_13TeV_asymptoticCLs.out | 41 + .../datacard_580_novo_285_625.txt | 27 + .../CMS_HH4b_590_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_590_13TeV_asymptoticCLs.out | 42 + .../datacard_590_novo_285_625.txt | 27 + .../CMS_HH4b_600_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_600_13TeV_asymptoticCLs.out | 41 + .../datacard_600_novo_285_625.txt | 27 + .../CMS_HH4b_610_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_610_13TeV_asymptoticCLs.out | 43 + .../datacard_610_novo_285_625.txt | 27 + .../CMS_HH4b_620_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_620_13TeV_asymptoticCLs.out | 42 + .../datacard_620_novo_285_625.txt | 27 + .../datacard_650_novo_285_625.txt | 27 + .../CMS_HH4b_1000_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_1000_13TeV_asymptoticCLs.out | 41 + .../datacard_1000_novo_550_1200.txt | 27 + .../CMS_HH4b_1050_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_1050_13TeV_asymptoticCLs.out | 40 + .../datacard_1050_novo_550_1200.txt | 27 + .../CMS_HH4b_1100_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_1100_13TeV_asymptoticCLs.out | 40 + .../datacard_1100_novo_550_1200.txt | 27 + .../CMS_HH4b_1150_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_1150_13TeV_asymptoticCLs.out | 39 + .../datacard_1150_novo_550_1200.txt | 27 + .../CMS_HH4b_1200_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_1200_13TeV_asymptoticCLs.out | 39 + .../datacard_1200_novo_550_1200.txt | 27 + .../CMS_HH4b_550_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_550_13TeV_asymptoticCLs.out | 40 + .../datacard_550_novo_550_1200.txt | 27 + .../CMS_HH4b_570_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_570_13TeV_asymptoticCLs.out | 38 + .../datacard_570_novo_550_1200.txt | 27 + .../CMS_HH4b_600_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_600_13TeV_asymptoticCLs.out | 42 + .../datacard_600_novo_550_1200.txt | 27 + .../CMS_HH4b_620_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_620_13TeV_asymptoticCLs.out | 39 + .../datacard_620_novo_550_1200.txt | 27 + .../CMS_HH4b_650_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_650_13TeV_asymptoticCLs.out | 41 + .../datacard_650_novo_550_1200.txt | 27 + .../CMS_HH4b_670_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_670_13TeV_asymptoticCLs.out | 41 + .../datacard_670_novo_550_1200.txt | 27 + .../CMS_HH4b_700_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_700_13TeV_asymptoticCLs.out | 40 + .../datacard_700_novo_550_1200.txt | 27 + .../CMS_HH4b_720_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_720_13TeV_asymptoticCLs.out | 39 + .../datacard_720_novo_550_1200.txt | 27 + .../CMS_HH4b_750_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_750_13TeV_asymptoticCLs.out | 38 + .../datacard_750_novo_550_1200.txt | 27 + .../CMS_HH4b_770_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_770_13TeV_asymptoticCLs.out | 39 + .../datacard_770_novo_550_1200.txt | 27 + .../CMS_HH4b_800_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_800_13TeV_asymptoticCLs.out | 39 + .../datacard_800_novo_550_1200.txt | 27 + .../CMS_HH4b_820_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_820_13TeV_asymptoticCLs.out | 39 + .../datacard_820_novo_550_1200.txt | 27 + .../CMS_HH4b_840_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_840_13TeV_asymptoticCLs.out | 41 + .../datacard_840_novo_550_1200.txt | 27 + .../CMS_HH4b_860_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_860_13TeV_asymptoticCLs.out | 39 + .../datacard_860_novo_550_1200.txt | 27 + .../CMS_HH4b_880_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_880_13TeV_asymptoticCLs.out | 39 + .../datacard_880_novo_550_1200.txt | 27 + .../CMS_HH4b_900_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_900_13TeV_asymptoticCLs.out | 39 + .../datacard_900_novo_550_1200.txt | 27 + .../CMS_HH4b_920_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_920_13TeV_asymptoticCLs.out | 39 + .../datacard_920_novo_550_1200.txt | 27 + .../CMS_HH4b_940_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_940_13TeV_asymptoticCLs.out | 39 + .../datacard_940_novo_550_1200.txt | 27 + .../CMS_HH4b_960_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_960_13TeV_asymptoticCLs.out | 39 + .../datacard_960_novo_550_1200.txt | 27 + .../CMS_HH4b_980_13TeV_MaxLikelihood.out | 19 + .../CMS_HH4b_980_13TeV_asymptoticCLs.out | 37 + .../datacard_980_novo_550_1200.txt | 27 + changename.sh | 70 ++ doBuildInputsLMR_bias.sh | 2 +- doBuildInputs_bias.sh | 2 +- doDatacards.sh | 2 +- doDatacardsLMR.sh | 3 +- doDatacardsLMR_bias.sh | 12 +- doDatacards_bias.sh | 12 +- doLimits.sh | 4 +- doLimits_bias.sh | 4 +- drawLimits_All.c | 7 + drawLimits_Combined.c | 9 + drawLimits_LMR.c | 2 - drawLimits_LMR_interpolated.c | 6 +- drawLimits_MMR.c | 1 - drawLimits_MMR_interpolated.c | 3 +- launchBias.sh | 13 +- launchBias_LMR.sh | 12 +- launchBias_MMR.sh | 10 +- launchDatacard.sh | 8 +- launchDatacard_bias.sh | 1 + launchInterpolation.sh | 28 +- launchInterpolation_bias.sh | 66 ++ launchLimits.sh | 16 +- launchLimits_bias.sh | 5 +- launchSyst.sh | 48 +- runLimits_Interpolation.sh | 16 +- runLimits_Interpolation_bias.sh | 77 ++ 484 files changed, 17357 insertions(+), 829 deletions(-) create mode 100644 BackgroundPrediction_Kinematic_Split_MMR_blinded.c create mode 100644 BackgroundPrediction_Kinematic_Split_blinded.c create mode 100644 DisplayJetProperties.cc create mode 100644 DisplayKinFitReg.cc create mode 100644 Display_SignalKinFitReg.cc create mode 100644 DisplaymHmX.cc create mode 100644 DrawLimitPlot_All.cc create mode 100644 DrawLimitPlot_Combined.cc create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_260_gaus_exp_250_330/CMS_HH4b_260_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_260_gaus_exp_250_330/CMS_HH4b_260_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_260_gaus_exp_250_330/datacard_260_gaus_exp_250_330.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_265_gaus_exp_250_330/CMS_HH4b_265_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_265_gaus_exp_250_330/CMS_HH4b_265_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_265_gaus_exp_250_330/datacard_265_gaus_exp_250_330.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_270_gaus_exp_250_330/.nfs000000300a163622000004a4 create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_270_gaus_exp_250_330/CMS_HH4b_270_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_270_gaus_exp_250_330/CMS_HH4b_270_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_270_gaus_exp_250_330/datacard_270_gaus_exp_250_330.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_270_novo_285_625/datacard_270_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_275_gaus_exp_250_330/CMS_HH4b_275_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_275_gaus_exp_250_330/CMS_HH4b_275_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_275_gaus_exp_250_330/datacard_275_gaus_exp_250_330.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_275_novo_285_625/datacard_275_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_280_gaus_exp_250_330/CMS_HH4b_280_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_280_gaus_exp_250_330/CMS_HH4b_280_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_280_gaus_exp_250_330/datacard_280_gaus_exp_250_330.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_280_novo_285_625/datacard_280_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_285_gaus_exp_250_330/CMS_HH4b_285_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_285_gaus_exp_250_330/CMS_HH4b_285_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_285_gaus_exp_250_330/datacard_285_gaus_exp_250_330.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_285_novo_285_625/datacard_285_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_290_gaus_exp_250_330/CMS_HH4b_290_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_290_gaus_exp_250_330/CMS_HH4b_290_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_290_gaus_exp_250_330/datacard_290_gaus_exp_250_330.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_290_novo_285_625/CMS_HH4b_290_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_290_novo_285_625/CMS_HH4b_290_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_290_novo_285_625/datacard_290_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_295_gaus_exp_250_330/CMS_HH4b_295_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_295_gaus_exp_250_330/CMS_HH4b_295_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_295_gaus_exp_250_330/datacard_295_gaus_exp_250_330.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_295_novo_285_625/CMS_HH4b_295_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_295_novo_285_625/CMS_HH4b_295_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_295_novo_285_625/datacard_295_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_300_gaus_exp_250_330/CMS_HH4b_300_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_300_gaus_exp_250_330/CMS_HH4b_300_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_300_gaus_exp_250_330/datacard_300_gaus_exp_250_330.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_300_novo_285_625/CMS_HH4b_300_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_300_novo_285_625/CMS_HH4b_300_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_300_novo_285_625/datacard_300_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_310_gaus_exp_250_330/CMS_HH4b_310_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_310_gaus_exp_250_330/CMS_HH4b_310_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_310_gaus_exp_250_330/datacard_310_gaus_exp_250_330.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_310_novo_285_625/CMS_HH4b_310_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_310_novo_285_625/CMS_HH4b_310_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_310_novo_285_625/datacard_310_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_320_gaus_exp_250_330/CMS_HH4b_320_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_320_gaus_exp_250_330/CMS_HH4b_320_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_320_gaus_exp_250_330/datacard_320_gaus_exp_250_330.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_320_novo_285_625/CMS_HH4b_320_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_320_novo_285_625/CMS_HH4b_320_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_320_novo_285_625/datacard_320_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_330_novo_285_625/CMS_HH4b_330_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_330_novo_285_625/CMS_HH4b_330_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_330_novo_285_625/datacard_330_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_340_novo_285_625/CMS_HH4b_340_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_340_novo_285_625/CMS_HH4b_340_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_340_novo_285_625/datacard_340_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_350_gaus_exp_250_330/datacard_350_gaus_exp_250_330.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_350_novo_285_625/CMS_HH4b_350_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_350_novo_285_625/CMS_HH4b_350_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_350_novo_285_625/datacard_350_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_360_novo_285_625/CMS_HH4b_360_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_360_novo_285_625/CMS_HH4b_360_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_360_novo_285_625/datacard_360_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_370_novo_285_625/CMS_HH4b_370_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_370_novo_285_625/CMS_HH4b_370_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_370_novo_285_625/datacard_370_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_380_novo_285_625/CMS_HH4b_380_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_380_novo_285_625/CMS_HH4b_380_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_380_novo_285_625/datacard_380_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_390_novo_285_625/CMS_HH4b_390_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_390_novo_285_625/CMS_HH4b_390_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_390_novo_285_625/datacard_390_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_400_novo_285_625/CMS_HH4b_400_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_400_novo_285_625/CMS_HH4b_400_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_400_novo_285_625/datacard_400_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_410_novo_285_625/CMS_HH4b_410_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_410_novo_285_625/CMS_HH4b_410_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_410_novo_285_625/datacard_410_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_420_novo_285_625/CMS_HH4b_420_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_420_novo_285_625/CMS_HH4b_420_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_420_novo_285_625/datacard_420_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_430_novo_285_625/CMS_HH4b_430_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_430_novo_285_625/CMS_HH4b_430_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_430_novo_285_625/datacard_430_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_440_novo_285_625/CMS_HH4b_440_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_440_novo_285_625/CMS_HH4b_440_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_440_novo_285_625/datacard_440_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_450_novo_285_625/CMS_HH4b_450_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_450_novo_285_625/CMS_HH4b_450_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_450_novo_285_625/datacard_450_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_460_novo_285_625/CMS_HH4b_460_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_460_novo_285_625/CMS_HH4b_460_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_460_novo_285_625/datacard_460_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_470_novo_285_625/CMS_HH4b_470_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_470_novo_285_625/CMS_HH4b_470_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_470_novo_285_625/datacard_470_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_480_novo_285_625/CMS_HH4b_480_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_480_novo_285_625/CMS_HH4b_480_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_480_novo_285_625/datacard_480_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_490_novo_285_625/CMS_HH4b_490_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_490_novo_285_625/CMS_HH4b_490_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_490_novo_285_625/datacard_490_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_500_novo_285_625/CMS_HH4b_500_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_500_novo_285_625/CMS_HH4b_500_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_500_novo_285_625/datacard_500_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_510_novo_285_625/CMS_HH4b_510_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_510_novo_285_625/CMS_HH4b_510_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_510_novo_285_625/datacard_510_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_520_novo_285_625/CMS_HH4b_520_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_520_novo_285_625/CMS_HH4b_520_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_520_novo_285_625/datacard_520_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_530_novo_285_625/CMS_HH4b_530_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_530_novo_285_625/CMS_HH4b_530_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_530_novo_285_625/datacard_530_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_540_novo_285_625/CMS_HH4b_540_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_540_novo_285_625/CMS_HH4b_540_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_540_novo_285_625/datacard_540_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_550_novo_285_625/CMS_HH4b_550_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_550_novo_285_625/CMS_HH4b_550_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_550_novo_285_625/datacard_550_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_560_novo_285_625/CMS_HH4b_560_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_560_novo_285_625/CMS_HH4b_560_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_560_novo_285_625/datacard_560_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_570_novo_285_625/CMS_HH4b_570_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_570_novo_285_625/CMS_HH4b_570_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_570_novo_285_625/datacard_570_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_580_novo_285_625/CMS_HH4b_580_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_580_novo_285_625/CMS_HH4b_580_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_580_novo_285_625/datacard_580_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_590_novo_285_625/CMS_HH4b_590_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_590_novo_285_625/CMS_HH4b_590_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_590_novo_285_625/datacard_590_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_600_novo_285_625/CMS_HH4b_600_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_600_novo_285_625/CMS_HH4b_600_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_600_novo_285_625/datacard_600_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_610_novo_285_625/CMS_HH4b_610_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_610_novo_285_625/CMS_HH4b_610_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_610_novo_285_625/datacard_610_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_620_novo_285_625/CMS_HH4b_620_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_620_novo_285_625/CMS_HH4b_620_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_620_novo_285_625/datacard_620_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_650_novo_285_625/datacard_650_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1000_novo_550_1200/CMS_HH4b_1000_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1000_novo_550_1200/CMS_HH4b_1000_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1000_novo_550_1200/datacard_1000_novo_550_1200.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1050_novo_550_1200/CMS_HH4b_1050_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1050_novo_550_1200/CMS_HH4b_1050_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1050_novo_550_1200/datacard_1050_novo_550_1200.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1100_novo_550_1200/CMS_HH4b_1100_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1100_novo_550_1200/CMS_HH4b_1100_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1100_novo_550_1200/datacard_1100_novo_550_1200.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1150_novo_550_1200/CMS_HH4b_1150_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1150_novo_550_1200/CMS_HH4b_1150_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1150_novo_550_1200/datacard_1150_novo_550_1200.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1200_novo_550_1200/CMS_HH4b_1200_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1200_novo_550_1200/CMS_HH4b_1200_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1200_novo_550_1200/datacard_1200_novo_550_1200.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_550_novo_550_1200/CMS_HH4b_550_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_550_novo_550_1200/CMS_HH4b_550_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_550_novo_550_1200/datacard_550_novo_550_1200.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_570_novo_550_1200/CMS_HH4b_570_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_570_novo_550_1200/CMS_HH4b_570_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_570_novo_550_1200/datacard_570_novo_550_1200.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_600_novo_550_1200/CMS_HH4b_600_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_600_novo_550_1200/CMS_HH4b_600_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_600_novo_550_1200/datacard_600_novo_550_1200.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_620_novo_550_1200/CMS_HH4b_620_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_620_novo_550_1200/CMS_HH4b_620_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_620_novo_550_1200/datacard_620_novo_550_1200.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_650_novo_550_1200/CMS_HH4b_650_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_650_novo_550_1200/CMS_HH4b_650_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_650_novo_550_1200/datacard_650_novo_550_1200.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_670_novo_550_1200/CMS_HH4b_670_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_670_novo_550_1200/CMS_HH4b_670_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_670_novo_550_1200/datacard_670_novo_550_1200.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_700_novo_550_1200/CMS_HH4b_700_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_700_novo_550_1200/CMS_HH4b_700_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_700_novo_550_1200/datacard_700_novo_550_1200.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_720_novo_550_1200/CMS_HH4b_720_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_720_novo_550_1200/CMS_HH4b_720_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_720_novo_550_1200/datacard_720_novo_550_1200.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_750_novo_550_1200/CMS_HH4b_750_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_750_novo_550_1200/CMS_HH4b_750_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_750_novo_550_1200/datacard_750_novo_550_1200.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_770_novo_550_1200/CMS_HH4b_770_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_770_novo_550_1200/CMS_HH4b_770_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_770_novo_550_1200/datacard_770_novo_550_1200.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_800_novo_550_1200/CMS_HH4b_800_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_800_novo_550_1200/CMS_HH4b_800_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_800_novo_550_1200/datacard_800_novo_550_1200.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_820_novo_550_1200/CMS_HH4b_820_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_820_novo_550_1200/CMS_HH4b_820_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_820_novo_550_1200/datacard_820_novo_550_1200.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_840_novo_550_1200/CMS_HH4b_840_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_840_novo_550_1200/CMS_HH4b_840_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_840_novo_550_1200/datacard_840_novo_550_1200.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_860_novo_550_1200/CMS_HH4b_860_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_860_novo_550_1200/CMS_HH4b_860_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_860_novo_550_1200/datacard_860_novo_550_1200.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_880_novo_550_1200/CMS_HH4b_880_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_880_novo_550_1200/CMS_HH4b_880_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_880_novo_550_1200/datacard_880_novo_550_1200.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_900_novo_550_1200/CMS_HH4b_900_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_900_novo_550_1200/CMS_HH4b_900_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_900_novo_550_1200/datacard_900_novo_550_1200.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_920_novo_550_1200/CMS_HH4b_920_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_920_novo_550_1200/CMS_HH4b_920_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_920_novo_550_1200/datacard_920_novo_550_1200.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_940_novo_550_1200/CMS_HH4b_940_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_940_novo_550_1200/CMS_HH4b_940_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_940_novo_550_1200/datacard_940_novo_550_1200.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_960_novo_550_1200/CMS_HH4b_960_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_960_novo_550_1200/CMS_HH4b_960_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_960_novo_550_1200/datacard_960_novo_550_1200.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_980_novo_550_1200/CMS_HH4b_980_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_980_novo_550_1200/CMS_HH4b_980_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_980_novo_550_1200/datacard_980_novo_550_1200.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_260_gaus_exp_250_330/CMS_HH4b_260_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_260_gaus_exp_250_330/CMS_HH4b_260_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_260_gaus_exp_250_330/datacard_260_gaus_exp_250_330.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_265_gaus_exp_250_330/CMS_HH4b_265_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_265_gaus_exp_250_330/CMS_HH4b_265_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_265_gaus_exp_250_330/datacard_265_gaus_exp_250_330.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_270_gaus_exp_250_330/CMS_HH4b_270_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_270_gaus_exp_250_330/CMS_HH4b_270_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_270_gaus_exp_250_330/datacard_270_gaus_exp_250_330.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_270_novo_285_625/datacard_270_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_275_gaus_exp_250_330/CMS_HH4b_275_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_275_gaus_exp_250_330/CMS_HH4b_275_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_275_gaus_exp_250_330/datacard_275_gaus_exp_250_330.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_275_novo_285_625/datacard_275_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_280_gaus_exp_250_330/CMS_HH4b_280_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_280_gaus_exp_250_330/CMS_HH4b_280_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_280_gaus_exp_250_330/datacard_280_gaus_exp_250_330.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_280_novo_285_625/datacard_280_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_285_gaus_exp_250_330/CMS_HH4b_285_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_285_gaus_exp_250_330/CMS_HH4b_285_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_285_gaus_exp_250_330/datacard_285_gaus_exp_250_330.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_285_novo_285_625/datacard_285_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_290_gaus_exp_250_330/CMS_HH4b_290_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_290_gaus_exp_250_330/CMS_HH4b_290_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_290_gaus_exp_250_330/datacard_290_gaus_exp_250_330.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_290_novo_285_625/CMS_HH4b_290_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_290_novo_285_625/CMS_HH4b_290_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_290_novo_285_625/datacard_290_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_295_gaus_exp_250_330/CMS_HH4b_295_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_295_gaus_exp_250_330/CMS_HH4b_295_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_295_gaus_exp_250_330/datacard_295_gaus_exp_250_330.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_295_novo_285_625/CMS_HH4b_295_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_295_novo_285_625/CMS_HH4b_295_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_295_novo_285_625/datacard_295_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_300_gaus_exp_250_330/CMS_HH4b_300_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_300_gaus_exp_250_330/CMS_HH4b_300_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_300_gaus_exp_250_330/datacard_300_gaus_exp_250_330.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_300_novo_285_625/CMS_HH4b_300_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_300_novo_285_625/CMS_HH4b_300_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_300_novo_285_625/datacard_300_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_310_gaus_exp_250_330/CMS_HH4b_310_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_310_gaus_exp_250_330/CMS_HH4b_310_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_310_gaus_exp_250_330/datacard_310_gaus_exp_250_330.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_310_novo_285_625/CMS_HH4b_310_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_310_novo_285_625/CMS_HH4b_310_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_310_novo_285_625/datacard_310_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_320_gaus_exp_250_330/CMS_HH4b_320_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_320_gaus_exp_250_330/CMS_HH4b_320_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_320_gaus_exp_250_330/datacard_320_gaus_exp_250_330.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_320_novo_285_625/CMS_HH4b_320_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_320_novo_285_625/CMS_HH4b_320_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_320_novo_285_625/datacard_320_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_330_novo_285_625/CMS_HH4b_330_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_330_novo_285_625/CMS_HH4b_330_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_330_novo_285_625/datacard_330_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_340_novo_285_625/CMS_HH4b_340_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_340_novo_285_625/CMS_HH4b_340_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_340_novo_285_625/datacard_340_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_350_gaus_exp_250_330/datacard_350_gaus_exp_250_330.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_350_novo_285_625/CMS_HH4b_350_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_350_novo_285_625/CMS_HH4b_350_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_350_novo_285_625/datacard_350_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_360_novo_285_625/CMS_HH4b_360_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_360_novo_285_625/CMS_HH4b_360_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_360_novo_285_625/datacard_360_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_370_novo_285_625/CMS_HH4b_370_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_370_novo_285_625/CMS_HH4b_370_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_370_novo_285_625/datacard_370_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_380_novo_285_625/CMS_HH4b_380_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_380_novo_285_625/CMS_HH4b_380_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_380_novo_285_625/datacard_380_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_390_novo_285_625/CMS_HH4b_390_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_390_novo_285_625/CMS_HH4b_390_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_390_novo_285_625/datacard_390_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_400_novo_285_625/CMS_HH4b_400_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_400_novo_285_625/CMS_HH4b_400_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_400_novo_285_625/datacard_400_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_410_novo_285_625/CMS_HH4b_410_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_410_novo_285_625/CMS_HH4b_410_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_410_novo_285_625/datacard_410_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_420_novo_285_625/CMS_HH4b_420_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_420_novo_285_625/CMS_HH4b_420_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_420_novo_285_625/datacard_420_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_430_novo_285_625/CMS_HH4b_430_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_430_novo_285_625/CMS_HH4b_430_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_430_novo_285_625/datacard_430_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_440_novo_285_625/CMS_HH4b_440_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_440_novo_285_625/CMS_HH4b_440_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_440_novo_285_625/datacard_440_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_450_novo_285_625/CMS_HH4b_450_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_450_novo_285_625/CMS_HH4b_450_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_450_novo_285_625/datacard_450_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_460_novo_285_625/CMS_HH4b_460_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_460_novo_285_625/CMS_HH4b_460_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_460_novo_285_625/datacard_460_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_470_novo_285_625/CMS_HH4b_470_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_470_novo_285_625/CMS_HH4b_470_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_470_novo_285_625/datacard_470_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_480_novo_285_625/CMS_HH4b_480_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_480_novo_285_625/CMS_HH4b_480_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_480_novo_285_625/datacard_480_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_490_novo_285_625/CMS_HH4b_490_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_490_novo_285_625/CMS_HH4b_490_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_490_novo_285_625/datacard_490_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_500_novo_285_625/CMS_HH4b_500_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_500_novo_285_625/CMS_HH4b_500_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_500_novo_285_625/datacard_500_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_510_novo_285_625/CMS_HH4b_510_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_510_novo_285_625/CMS_HH4b_510_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_510_novo_285_625/datacard_510_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_520_novo_285_625/CMS_HH4b_520_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_520_novo_285_625/CMS_HH4b_520_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_520_novo_285_625/datacard_520_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_530_novo_285_625/CMS_HH4b_530_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_530_novo_285_625/CMS_HH4b_530_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_530_novo_285_625/datacard_530_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_540_novo_285_625/CMS_HH4b_540_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_540_novo_285_625/CMS_HH4b_540_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_540_novo_285_625/datacard_540_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_550_novo_285_625/CMS_HH4b_550_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_550_novo_285_625/CMS_HH4b_550_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_550_novo_285_625/datacard_550_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_560_novo_285_625/CMS_HH4b_560_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_560_novo_285_625/CMS_HH4b_560_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_560_novo_285_625/datacard_560_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_570_novo_285_625/CMS_HH4b_570_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_570_novo_285_625/CMS_HH4b_570_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_570_novo_285_625/datacard_570_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_580_novo_285_625/CMS_HH4b_580_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_580_novo_285_625/CMS_HH4b_580_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_580_novo_285_625/datacard_580_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_590_novo_285_625/CMS_HH4b_590_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_590_novo_285_625/CMS_HH4b_590_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_590_novo_285_625/datacard_590_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_600_novo_285_625/CMS_HH4b_600_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_600_novo_285_625/CMS_HH4b_600_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_600_novo_285_625/datacard_600_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_610_novo_285_625/CMS_HH4b_610_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_610_novo_285_625/CMS_HH4b_610_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_610_novo_285_625/datacard_610_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_620_novo_285_625/CMS_HH4b_620_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_620_novo_285_625/CMS_HH4b_620_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_620_novo_285_625/datacard_620_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_650_novo_285_625/datacard_650_novo_285_625.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1000_novo_550_1200/CMS_HH4b_1000_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1000_novo_550_1200/CMS_HH4b_1000_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1000_novo_550_1200/datacard_1000_novo_550_1200.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1050_novo_550_1200/CMS_HH4b_1050_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1050_novo_550_1200/CMS_HH4b_1050_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1050_novo_550_1200/datacard_1050_novo_550_1200.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1100_novo_550_1200/CMS_HH4b_1100_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1100_novo_550_1200/CMS_HH4b_1100_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1100_novo_550_1200/datacard_1100_novo_550_1200.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1150_novo_550_1200/CMS_HH4b_1150_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1150_novo_550_1200/CMS_HH4b_1150_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1150_novo_550_1200/datacard_1150_novo_550_1200.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1200_novo_550_1200/CMS_HH4b_1200_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1200_novo_550_1200/CMS_HH4b_1200_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1200_novo_550_1200/datacard_1200_novo_550_1200.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_550_novo_550_1200/CMS_HH4b_550_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_550_novo_550_1200/CMS_HH4b_550_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_550_novo_550_1200/datacard_550_novo_550_1200.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_570_novo_550_1200/CMS_HH4b_570_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_570_novo_550_1200/CMS_HH4b_570_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_570_novo_550_1200/datacard_570_novo_550_1200.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_600_novo_550_1200/CMS_HH4b_600_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_600_novo_550_1200/CMS_HH4b_600_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_600_novo_550_1200/datacard_600_novo_550_1200.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_620_novo_550_1200/CMS_HH4b_620_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_620_novo_550_1200/CMS_HH4b_620_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_620_novo_550_1200/datacard_620_novo_550_1200.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_650_novo_550_1200/CMS_HH4b_650_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_650_novo_550_1200/CMS_HH4b_650_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_650_novo_550_1200/datacard_650_novo_550_1200.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_670_novo_550_1200/CMS_HH4b_670_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_670_novo_550_1200/CMS_HH4b_670_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_670_novo_550_1200/datacard_670_novo_550_1200.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_700_novo_550_1200/CMS_HH4b_700_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_700_novo_550_1200/CMS_HH4b_700_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_700_novo_550_1200/datacard_700_novo_550_1200.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_720_novo_550_1200/CMS_HH4b_720_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_720_novo_550_1200/CMS_HH4b_720_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_720_novo_550_1200/datacard_720_novo_550_1200.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_750_novo_550_1200/CMS_HH4b_750_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_750_novo_550_1200/CMS_HH4b_750_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_750_novo_550_1200/datacard_750_novo_550_1200.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_770_novo_550_1200/CMS_HH4b_770_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_770_novo_550_1200/CMS_HH4b_770_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_770_novo_550_1200/datacard_770_novo_550_1200.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_800_novo_550_1200/CMS_HH4b_800_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_800_novo_550_1200/CMS_HH4b_800_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_800_novo_550_1200/datacard_800_novo_550_1200.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_820_novo_550_1200/CMS_HH4b_820_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_820_novo_550_1200/CMS_HH4b_820_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_820_novo_550_1200/datacard_820_novo_550_1200.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_840_novo_550_1200/CMS_HH4b_840_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_840_novo_550_1200/CMS_HH4b_840_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_840_novo_550_1200/datacard_840_novo_550_1200.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_860_novo_550_1200/CMS_HH4b_860_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_860_novo_550_1200/CMS_HH4b_860_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_860_novo_550_1200/datacard_860_novo_550_1200.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_880_novo_550_1200/CMS_HH4b_880_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_880_novo_550_1200/CMS_HH4b_880_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_880_novo_550_1200/datacard_880_novo_550_1200.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_900_novo_550_1200/CMS_HH4b_900_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_900_novo_550_1200/CMS_HH4b_900_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_900_novo_550_1200/datacard_900_novo_550_1200.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_920_novo_550_1200/CMS_HH4b_920_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_920_novo_550_1200/CMS_HH4b_920_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_920_novo_550_1200/datacard_920_novo_550_1200.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_940_novo_550_1200/CMS_HH4b_940_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_940_novo_550_1200/CMS_HH4b_940_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_940_novo_550_1200/datacard_940_novo_550_1200.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_960_novo_550_1200/CMS_HH4b_960_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_960_novo_550_1200/CMS_HH4b_960_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_960_novo_550_1200/datacard_960_novo_550_1200.txt create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_980_novo_550_1200/CMS_HH4b_980_13TeV_MaxLikelihood.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_980_novo_550_1200/CMS_HH4b_980_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_980_novo_550_1200/datacard_980_novo_550_1200.txt create mode 100755 changename.sh create mode 100644 drawLimits_All.c create mode 100644 drawLimits_Combined.c create mode 100755 launchInterpolation_bias.sh create mode 100755 runLimits_Interpolation_bias.sh diff --git a/BackgroundPrediction_Kinematic_Split.c b/BackgroundPrediction_Kinematic_Split.c index 4c7ace0..010b6a7 100644 --- a/BackgroundPrediction_Kinematic_Split.c +++ b/BackgroundPrediction_Kinematic_Split.c @@ -232,11 +232,11 @@ void BackgroundPrediction_Kinematic_Split(int range_lo_1, int range_hi_1, double TFile *f_data=new TFile((dest_dir+"/"+filename).c_str()); TH1F *h_mX_SR; if (hist.substr(0,7)=="h_mX_SB") { - h_mX_SR=(TH1F*)h_SR_AntiTag->Clone("h_mX_SR_kinFit"); + h_mX_SR=(TH1F*)h_SR_AntiTag->Clone("h_mX_SR_kinFit"); } else{ h_mX_SR=(TH1F*)f_data->Get(hist.c_str()); - h_mX_SR->Rebin(rebin); + h_mX_SR->Rebin(rebin); } new TCanvas; h_mX_SR->Draw(); @@ -250,10 +250,10 @@ void BackgroundPrediction_Kinematic_Split(int range_lo_1, int range_hi_1, double string type; - RooRealVar par_crystal_0("par_crystal_0", "par_crystal_0", 0.01, 5.1); - RooRealVar par_crystal_1("par_crystal_1", "par_crystal_1", 0.01, 5.1); + RooRealVar par_crystal_0("par_crystal_0", "par_crystal_0", 0.01, 9.1); + RooRealVar par_crystal_1("par_crystal_1", "par_crystal_1", 0.01, 9.1); RooRealVar par_crystal_2("par_crystal_2", "par_crystal_2", 240, 280); - RooRealVar par_crystal_3("par_crystal_3", "par_crystal_3", 3, 30); + RooRealVar par_crystal_3("par_crystal_3", "par_crystal_3", 3, 40); RevCrystalBall f_crystal("f_crystal","f_crystal", *x_1, par_crystal_0, par_crystal_1, par_crystal_2, par_crystal_3); RooFitResult *r_crystal=f_crystal.fitTo(pred_1, RooFit::Range(range_lo_1, range_hi_1), RooFit::Save()); @@ -293,9 +293,9 @@ void BackgroundPrediction_Kinematic_Split(int range_lo_1, int range_hi_1, double type= "SB_crystal_"+to_string(range_lo_1)+"_"+to_string(range_hi_1); c_crystal->SaveAs((dest_dir+"/"+"BackgroundFit_"+type+".png").c_str()); - RooRealVar par_gaus_exp_0("par_gaus_exp_0", "par_gaus_exp_0", 260, 300); - RooRealVar par_gaus_exp_1("par_gaus_exp_1", "par_gaus_exp_1", 9, 40); - RooRealVar par_gaus_exp_2("par_gaus_exp_2", "par_gaus_exp_2", 0.05, 3.1); + RooRealVar par_gaus_exp_0("par_gaus_exp_0", "par_gaus_exp_0", 250, 330); + RooRealVar par_gaus_exp_1("par_gaus_exp_1", "par_gaus_exp_1", 0.1, 15.7); + RooRealVar par_gaus_exp_2("par_gaus_exp_2", "par_gaus_exp_2", 0.01, 7.5); GaussExp f_gaus_exp("f_gaus_exp", "Background Prediction PDF", *x_1, par_gaus_exp_0, par_gaus_exp_1, par_gaus_exp_2); RooFitResult *r_gaus_exp=f_gaus_exp.fitTo(pred_1, RooFit::Range(range_lo_1, range_hi_1), RooFit::Save()); @@ -331,10 +331,9 @@ void BackgroundPrediction_Kinematic_Split(int range_lo_1, int range_hi_1, double c_gaus_exp->SaveAs((dest_dir+"/"+"BackgroundFit_"+type+".png").c_str()); - - RooRealVar par_novo_0("par_novo_0", "par_novo_0", 250, 301); - RooRealVar par_novo_1("par_novo_1", "par_novo_1", 0, 54); - RooRealVar par_novo_2("par_novo_2", "par_novo_2", -100, 100); + RooRealVar par_novo_0("par_novo_0", "par_novo_0", 150, 160); + RooRealVar par_novo_1("par_novo_1", "par_novo_1", 0.01, 150); + RooRealVar par_novo_2("par_novo_2", "par_novo_2", -10, 1); RooNovosibirsk f_novo("f_novo", "Background Prediction PDF", *x_2, par_novo_0, par_novo_1, par_novo_2); RooFitResult *r_novo=f_novo.fitTo(pred_2, RooFit::Range(range_lo_2, range_hi_2), RooFit::Save()); @@ -415,207 +414,7 @@ void BackgroundPrediction_Kinematic_Split(int range_lo_1, int range_hi_1, double pave_crystal_1->Draw(); type= "SB_crystal_1_"+to_string(range_lo_2)+"_"+to_string(range_hi_2); c_crystal_1->SaveAs((dest_dir+"/"+"BackgroundFit_"+type+".png").c_str()); - - -/* - RooRealVar par_gaus_bern_0("par_gaus_bern_0", "par_gaus_bern_0", 0.); - par_gaus_bern_0.setConstant(1); - RooRealVar par_gaus_bern_1("par_gaus_bern_1", "par_gaus_bern_1", 10, 1. , 100.); - RooRealVar par_gaus_bern_2("par_gaus_bern_2", "par_gaus_bern_2", 260, 160., 600. ); - RooRealVar *par_gaus_bern_3, *par_gaus_bern_4, *par_gaus_bern_5, *par_gaus_bern_6, *par_gaus_bern_7, *bpar_gaus_bern_8; - par_gaus_bern_3=new RooRealVar("par_gaus_bern_3", "par_gaus_bern_3", 5.); - par_gaus_bern_3->setConstant(1); - par_gaus_bern_4=new RooRealVar("par_gaus_bern_4", "par_gaus_bern_4", 3, -10., 10.); - par_gaus_bern_5=new RooRealVar("par_gaus_bern_5", "par_gaus_bern_5", 1, -10., 10.); - par_gaus_bern_6=new RooRealVar("par_gaus_bern_6", "par_gaus_bern_6", -10., 10.); - par_gaus_bern_7=new RooRealVar("par_gaus_bern_7", "par_gaus_bern_7", -10., 10.); - par_gaus_bern_8=new RooRealVar("par_gaus_bern_8", "par_gaus_bern_8", -10., 5.); - - - RooGaussStepBernstein f_gaus_bern("f_gaus_bern","f_gaus_bern",*x_2, par_gaus_bern_0, par_gaus_bern_1, par_gaus_bern_2, RooArgList(*par_gaus_bern_3, *par_gaus_bern_4, *par_gaus_bern_5)); //, *par_gaus_bern_6)); - RooFitResult *r_gaus_bern=f_gaus_bern.fitTo(pred_2, RooFit::Range(range_lo_2, range_hi_2), RooFit::Save()); - - RooPlot *frame_gaus_bern=x_2->frame(); - pred_2.plotOn(frame_gaus_bern, RooFit::LineColor(kBlack), RooFit::MarkerColor(kBlack)); - f_gaus_bern.plotOn(frame_gaus_bern, RooFit::VisualizeError(*r_gaus_bern, 1), RooFit::FillColor(kGray+1), RooFit::FillStyle(3001)); - f_gaus_bern.plotOn(frame_gaus_bern, RooFit::LineColor(kBlue+1)); - double fitChi2_gaus_bern=frame_gaus_bern->chiSquare(); - RooAbsReal* chi2_gaus_bern = f_gaus_bern.createChi2(pred_2); - double pvalue_gaus_bern=TMath::Prob(chi2_gaus_bern->getVal(),int((range_hi_2-range_lo_2)/rebin)-3); - - TCanvas *c_gaus_bern=new TCanvas("c_gaus_bern", "c_gaus_bern", 700, 700); - frame_gaus_bern->Draw(); - - TPaveText *pave_gaus_bern = new TPaveText(0.55,0.7,0.82,0.9,"NDC"); - pave_gaus_bern->SetBorderSize(0); - pave_gaus_bern->SetTextSize(0.03); - pave_gaus_bern->SetLineColor(1); - pave_gaus_bern->SetLineStyle(1); - pave_gaus_bern->SetLineWidth(2); - pave_gaus_bern->SetFillColor(0); - pave_gaus_bern->SetFillStyle(0); - pave_gaus_bern->AddText("Gaus_bern"); - sprintf(value,"par_gaus_bern_0= %2.3f +- %2.3f",par_gaus_bern_0.getVal(),par_gaus_bern_0.getError()); - pave_gaus_bern->AddText(value); - sprintf(value,"par_gaus_bern_1= %2.3f +- %2.3f",par_gaus_bern_1.getVal(),par_gaus_bern_1.getError()); - pave_gaus_bern->AddText(value); - sprintf(value,"par_gaus_bern_2= %2.3f +- %2.3f",par_gaus_bern_2.getVal(),par_gaus_bern_2.getError()); - pave_gaus_bern->AddText(value); - sprintf(value,"par_gaus_bern_3= %2.3f +- %2.3f",par_gaus_bern_3->getVal(),par_gaus_bern_3->getError()); - pave_gaus_bern->AddText(value); - sprintf(value,"par_gaus_bern_4= %2.3f +- %2.3f",par_gaus_bern_4->getVal(),par_gaus_bern_4->getError()); - pave_gaus_bern->AddText(value); - sprintf(value,"par_gaus_bern_5= %2.3f +- %2.3f",par_gaus_bern_5->getVal(),par_gaus_bern_5->getError()); - pave_gaus_bern->AddText(value); - sprintf(value,"par_gaus_bern_6= %2.3f +- %2.3f",par_gaus_bern_6->getVal(),par_gaus_bern_6->getError()); - pave_gaus_bern->AddText(value); - sprintf(value,"range [%d,%d]",range_lo_2,range_hi_2); - pave_gaus_bern->AddText(value); - sprintf(value,"chi^2 %2.1f",fitChi2_gaus_bern); - pave_gaus_bern->AddText(value); - pave_gaus_bern->Draw(); - type= "SB_gaus_bern_"+to_string(range_lo_2)+"_"+to_string(range_hi_2); - c_gaus_bern->SaveAs((dest_dir+"/"+"BackgroundFit_"+type+".png").c_str()); - - - - - RooRealVar par_landau_0("par_landau_0","par_landau_0",2.54e+02,2.5e+02,2.8e+02) ; - RooRealVar par_landau_1("par_landau_1","par_landau_1",2.5e+01,18,30) ; - RooLandau f_landau("f_landau","f_landau",*x_2, par_landau_0, par_landau_1); - RooFitResult *r_landau=f_landau.fitTo(pred_2, RooFit::Range(range_lo_2, range_hi_2), RooFit::Save()); - - RooPlot *frame_landau=x_2->frame(); - pred_2.plotOn(frame_landau, RooFit::LineColor(kBlack), RooFit::MarkerColor(kBlack)); - f_landau.plotOn(frame_landau, RooFit::VisualizeError(*r_landau, 1), RooFit::FillColor(kGray+1), RooFit::FillStyle(3001)); - f_landau.plotOn(frame_landau, RooFit::LineColor(kBlue+1)); - double fitChi2_landau=frame_landau->chiSquare(); - RooAbsReal* chi2_landau = f_landau.createChi2(pred_2); - double pvalue_landau=TMath::Prob(chi2_landau->getVal(),int((range_hi_2-range_lo_2)/rebin)-3); - - TCanvas *c_landau=new TCanvas("c_landau", "c_landau", 700, 700); - frame_landau->Draw(); - - TPaveText *pave_landau = new TPaveText(0.55,0.7,0.82,0.9,"NDC"); - pave_landau->SetBorderSize(0); - pave_landau->SetTextSize(0.03); - pave_landau->SetLineColor(1); - pave_landau->SetLineStyle(1); - pave_landau->SetLineWidth(2); - pave_landau->SetFillColor(0); - pave_landau->SetFillStyle(0); - pave_landau->AddText("Landau"); - sprintf(value,"par_landau_0= %2.3f +- %2.3f",par_landau_0.getVal(),par_landau_0.getError()); - pave_landau->AddText(value); - sprintf(value,"par_landau_1= %2.3f +- %2.3f",par_landau_1.getVal(),par_landau_1.getError()); - pave_landau->AddText(value); - sprintf(value,"range [%d,%d]",range_lo_2,range_hi_2); - pave_landau->AddText(value); - sprintf(value,"chi^2 %2.1f",fitChi2_landau); - pave_landau->AddText(value); - pave_landau->Draw(); - type= "SB_landau_"+to_string(range_lo_2)+"_"+to_string(range_hi_2); - c_landau->SaveAs((dest_dir+"/"+"BackgroundFit_"+type+".png").c_str()); - - - RooRealVar par_logistic_0("par_logistic_0","par_logistic_0", 251); - RooRealVar par_logistic_1("par_logistic_1","par_logistic_1", 502); - RooRealVar par_logistic_2("par_logistic_2","par_logistic_2", 241., 281.); - RooRealVar par_logistic_3("par_logistic_3","par_logistic_3", 0.01, 1.); - RooRealVar par_logistic_4("par_logistic_4","par_logistic_4", -.1, 0.9); - par_logistic_4.setConstant(1); - RooRealVar par_logistic_5("par_logistic_5","par_logistic_5", -.1, 0.9); - RooRealVar par_logistic_6("par_logistic_6","par_logistic_6", -.1, 0.9); - RooRealVar par_logistic_7("par_logistic_7","par_logistic_7", -.1, 0.9); - LogisticXChebychev3 f_logistic("f_logistic","f_logistic",*x_2, par_logistic_0, par_logistic_1, par_logistic_2, par_logistic_3, par_logistic_4, par_logistic_5, par_logistic_6, par_logistic_7); - RooFitResult *r_logistic=f_logistic.fitTo(pred_2, RooFit::Range(range_lo_2, range_hi_2), RooFit::Save()); - - RooPlot *frame_logistic=x_2->frame(); - pred_2.plotOn(frame_logistic, RooFit::LineColor(kBlack), RooFit::MarkerColor(kBlack)); - f_logistic.plotOn(frame_logistic, RooFit::VisualizeError(*r_logistic, 1), RooFit::FillColor(kGray+1), RooFit::FillStyle(3001)); - f_logistic.plotOn(frame_logistic, RooFit::LineColor(kBlue+1)); - double fitChi2_logistic=frame_logistic->chiSquare(); - RooAbsReal* chi2_logistic = f_logistic.createChi2(pred_2); - double pvalue_logistic=TMath::Prob(chi2_logistic->getVal(),int((range_hi_2-range_lo_2)/rebin)-3); - - TCanvas *c_logistic=new TCanvas("c_logistic", "c_logistic", 700, 700); - frame_logistic->Draw(); - - TPaveText *pave_logistic = new TPaveText(0.55,0.7,0.82,0.9,"NDC"); - pave_logistic->SetBorderSize(0); - pave_logistic->SetTextSize(0.03); - pave_logistic->SetLineColor(1); - pave_logistic->SetLineStyle(1); - pave_logistic->SetLineWidth(2); - pave_logistic->SetFillColor(0); - pave_logistic->SetFillStyle(0); - pave_logistic->AddText("LogisticXChebychev3"); - sprintf(value,"par_logistic_0= %2.3f +- %2.3f",par_logistic_0.getVal(),par_logistic_0.getError()); - pave_logistic->AddText(value); - sprintf(value,"par_logistic_1= %2.3f +- %2.3f",par_logistic_1.getVal(),par_logistic_1.getError()); - pave_logistic->AddText(value); - sprintf(value,"par_logistic_2= %2.3f +- %2.3f",par_logistic_2.getVal(),par_logistic_2.getError()); - pave_logistic->AddText(value); - sprintf(value,"par_logistic_3= %2.3f +- %2.3f",par_logistic_3.getVal(),par_logistic_3.getError()); - pave_logistic->AddText(value); - sprintf(value,"par_logistic_4= %2.3f +- %2.3f",par_logistic_4.getVal(),par_logistic_4.getError()); - pave_logistic->AddText(value); - sprintf(value,"par_logistic_5= %2.3f +- %2.3f",par_logistic_5.getVal(),par_logistic_5.getError()); - pave_logistic->AddText(value); - sprintf(value,"par_logistic_6= %2.3f +- %2.3f",par_logistic_6.getVal(),par_logistic_6.getError()); - pave_logistic->AddText(value); - sprintf(value,"par_logistic_7= %2.3f +- %2.3f",par_logistic_7.getVal(),par_logistic_7.getError()); - pave_logistic->AddText(value); - sprintf(value,"range [%d,%d]",range_lo_2,range_hi_2); - pave_logistic->AddText(value); - sprintf(value,"chi^2 %2.1f",fitChi2_logistic); - pave_logistic->AddText(value); - pave_logistic->Draw(); - type= "SB_logistic_"+to_string(range_lo_2)+"_"+to_string(range_hi_2); - c_logistic->SaveAs((dest_dir+"/"+"BackgroundFit_"+type+".png").c_str()); -*/ - - - TH1* hh_pdf = f_gaus_exp.createHistogram("hh", *x_1, RooFit::Binning(1000,range_hi_1, range_hi_1)) ; - TH1* hh_pdf_11 = f_crystal.createHistogram("hh1", *x_1, RooFit::Binning(1000,range_hi_1, range_hi_1)) ; - //TH1* hh_pdf_11 = f_novo.createHistogram("hh1", *x_1, RooFit::Binning(1000,range_hi_1, range_hi_1)) ; - TH1* hh_pdf_2 = f_gaus_exp.createHistogram("difference_1", *x_1, RooFit::Binning(1000,range_hi_1, range_hi_1)) ; - TH1* hh_pdf_4 = f_gaus_exp.createHistogram("sum", *x_1, RooFit::Binning(1000,range_hi_1, range_hi_1)) ; - TH1* hh_pdf_5 = f_gaus_exp.createHistogram("ratio", *x_1, RooFit::Binning(1000,range_hi_1, range_hi_1)) ; - hh_pdf_5->SetLineColor(kRed); - hh_pdf_2->Add(hh_pdf_11,-1); - hh_pdf_4->Add(hh_pdf_11,1); - hh_pdf_4->Scale(0.5); - hh_pdf_5->Add(hh_pdf,-1); - hh_pdf_5->Add(hh_pdf_2,1); - hh_pdf_5->Divide(hh_pdf_4); - hh_pdf_5->GetYaxis()->SetRangeUser(-1,1); - new TCanvas; hh_pdf_5->Draw(); - - - - TH1* hh_pdf_1 = f_novo.createHistogram("hh_1", *x_2, RooFit::Binning(1000,range_hi_2, range_hi_2)) ; - TH1* hh_pdf_1_1 = f_crystal_1.createHistogram("hh1_1", *x_2, RooFit::Binning(1000,range_hi_2, range_hi_2)) ; - //TH1* hh_pdf_1_1 = f_gaus_bern.createHistogram("hh1_1", *x_2, RooFit::Binning(1000,range_hi_2, range_hi_2)) ; - //TH1* hh_pdf_1_1 = f_gaus_exp.createHistogram("hh1_1", *x_2, RooFit::Binning(1000,range_hi_2, range_hi_2)) ; - //TH1* hh_pdf_1_1 = f_landau.createHistogram("hh1_1", *x_2, RooFit::Binning(1000,range_hi_2, range_hi_2)) ; - TH1* hh_pdf_2_1 = f_novo.createHistogram("difference_1_1", *x_2, RooFit::Binning(1000,range_hi_2, range_hi_2)) ; - TH1* hh_pdf_4_1 = f_novo.createHistogram("sum_1", *x_2, RooFit::Binning(1000,range_hi_2, range_hi_2)) ; - TH1* hh_pdf_5_1 = f_novo.createHistogram("ratio_1", *x_2, RooFit::Binning(1000,range_hi_2, range_hi_2)) ; - hh_pdf_5_1->SetLineColor(kRed); - hh_pdf_2_1->Add(hh_pdf_1_1,-1); - hh_pdf_4_1->Add(hh_pdf_1_1,1); - hh_pdf_4_1->Scale(0.5); - hh_pdf_5_1->Add(hh_pdf_1,-1); - hh_pdf_5_1->Add(hh_pdf_2_1,1); - hh_pdf_5_1->Divide(hh_pdf_4_1); - hh_pdf_5_1->GetYaxis()->SetRangeUser(-1,1); - new TCanvas; hh_pdf_5_1->Draw(); - - - - - + double xPad = 0.3; TCanvas *c_gaus_exp_1=new TCanvas("c_gaus_exp_1", "c_gaus_exp_1", 700*(1.-xPad), 700); @@ -643,12 +442,10 @@ void BackgroundPrediction_Kinematic_Split(int range_lo_1, int range_hi_1, double RooPlot *frame_gaus_exp_1=x_1->frame(); pred_1.plotOn(frame_gaus_exp_1, RooFit::LineColor(kBlack), RooFit::MarkerColor(kBlack)); - f_gaus_exp.plotOn(frame_gaus_exp_1, RooFit::VisualizeError(*r_gaus_exp, 1), RooFit::FillColor(kBlack), RooFit::FillStyle(3004)); - //f_logistic.plotOn(frame_gaus_exp_1, RooFit::VisualizeError(*r_logistic, 1), RooFit::FillColor(kRed+1), RooFit::FillStyle(3001)); - f_crystal.plotOn(frame_gaus_exp_1, RooFit::VisualizeError(*r_crystal, 1), RooFit::FillColor(kRed+1), RooFit::FillStyle(3001)); - f_gaus_exp.plotOn(frame_gaus_exp_1, RooFit::LineColor(kBlack), RooFit::LineWidth(6)); - f_crystal.plotOn(frame_gaus_exp_1, RooFit::LineColor(kRed), RooFit::LineWidth(3), RooFit::LineStyle(kDashed) ); - //f_logistic.plotOn(frame_gaus_exp_1, RooFit::LineColor(kRed), RooFit::LineWidth(4), RooFit::LineStyle(kDashed) ); + f_gaus_exp.plotOn(frame_gaus_exp_1, RooFit::VisualizeError(*r_gaus_exp, 1), RooFit::FillColor(kBlue), RooFit::FillStyle(3004)); + //f_crystal.plotOn(frame_gaus_exp_1, RooFit::VisualizeError(*r_crystal, 1), RooFit::FillColor(kRed+1), RooFit::FillStyle(3001)); + f_gaus_exp.plotOn(frame_gaus_exp_1, RooFit::LineColor(kBlue), RooFit::LineWidth(3)); + //f_crystal.plotOn(frame_gaus_exp_1, RooFit::LineColor(kRed), RooFit::LineWidth(3), RooFit::LineStyle(kDashed) ); if (log=="log") frame_gaus_exp_1->GetYaxis()->SetRangeUser(1e-4, h_mX_SR->GetMaximum()*5.); @@ -672,19 +469,19 @@ void BackgroundPrediction_Kinematic_Split(int range_lo_1, int range_hi_1, double char name[1000]; char name1[1000]; if (hist.substr(0,7)=="h_mX_SB") { - sprintf(name,"SB_gaus_exp #chi^{2}/n = %.2f",fitChi2_gaus_exp); - sprintf(name1,"p-value_gaus_exp = %.2f",pvalue_gaus_exp); + sprintf(name,"#chi^{2}/n = %.2f",fitChi2_gaus_exp); + // sprintf(name1,"p-value_gaus_exp = %.2f",pvalue_gaus_exp); } - else sprintf(name,"SR_gaus_exp #chi^{2}/n = %.2f",fitChi2_gaus_exp); + else sprintf(name,"#chi^{2}/n = %.2f",fitChi2_gaus_exp); pave->AddText(name); - pave->AddText(name1); - if (hist.substr(0,7)=="h_mX_SB") { + //pave->AddText(name1); + /*if (hist.substr(0,7)=="h_mX_SB") { sprintf(name,"SB_crystal #chi^{2}/n = %.2f",fitChi2_crystal); sprintf(name1,"p-value_crystal = %.2f",pvalue_crystal); } - else sprintf(name,"SR_crystal #chi^{2}/n = %.2f",fitChi2_crystal); - pave->AddText(name); - pave->AddText(name1); + else sprintf(name,"SR_crystal #chi^{2}/n = %.2f",fitChi2_crystal);*/ + //pave->AddText(name); + //pave->AddText(name1); pave->Draw(); TLatex * tPrel = new TLatex(); @@ -708,11 +505,11 @@ void BackgroundPrediction_Kinematic_Split(int range_lo_1, int range_hi_1, double } else leg->AddEntry(h_mX_SR, "Data in SR", "ep"); - TH1F * temp = new TH1F("temp", "temp", 100, 0,1); temp->SetLineWidth(2); temp->SetLineColor(kBlack); + TH1F * temp = new TH1F("temp", "temp", 100, 0,1); temp->SetLineWidth(2); temp->SetLineColor(kBlue); leg->AddEntry(temp, "GaussExp fit", "l"); - TH1F * temp1 = new TH1F("temp1", "temp1", 100, 0,1); temp1->SetLineWidth(2); - temp1->SetLineColor(kRed); - leg->AddEntry(temp1, "CrystalBall fit", "l"); + //TH1F * temp1 = new TH1F("temp1", "temp1", 100, 0,1); temp1->SetLineWidth(2); + //temp1->SetLineColor(kRed); + //leg->AddEntry(temp1, "CrystalBall fit", "l"); leg->Draw(); CMS_lumi( p_1, iPeriod, iPos ); @@ -721,17 +518,17 @@ void BackgroundPrediction_Kinematic_Split(int range_lo_1, int range_hi_1, double RooHist *hpull, *hpull1; hpull = frame_gaus_exp->pullHist(); hpull->SetLineWidth(2); - hpull1 = frame_crystal->pullHist(); + //hpull1 = frame_crystal->pullHist(); //hpull1 = frame_logistic->pullHist(); - hpull1->SetMarkerColor(kRed); - hpull1->SetLineStyle(kDashed); - hpull1->SetMarkerSize(0.6); - hpull1->SetLineColor(kRed); + //hpull1->SetMarkerColor(kRed); + //hpull1->SetLineStyle(kDashed); + //hpull1->SetMarkerSize(0.6); + //hpull1->SetLineColor(kRed); RooPlot* frameP = x_1->frame() ; frameP->SetTitle("; m_{X} (GeV); Pull"); frameP->addPlotable(hpull,"P"); - frameP->addPlotable(hpull1,"P same"); + //frameP->addPlotable(hpull1,"P same"); frameP->GetYaxis()->SetTitleSize(0.07); frameP->GetYaxis()->SetTitleOffset(0.5); frameP->GetXaxis()->SetTitleSize(0.09); @@ -777,10 +574,10 @@ void BackgroundPrediction_Kinematic_Split(int range_lo_1, int range_hi_1, double RooPlot *frame_novo_1=x_2->frame(); pred_2.plotOn(frame_novo_1, RooFit::LineColor(kBlack), RooFit::MarkerColor(kBlack)); - f_crystal_1.plotOn(frame_novo_1, RooFit::VisualizeError(*r_crystal_1, 1), RooFit::FillColor(kBlack), RooFit::FillStyle(3001)); - f_novo.plotOn(frame_novo_1, RooFit::VisualizeError(*r_novo, 1), RooFit::FillColor(kRed+1), RooFit::FillStyle(3004)); - f_crystal_1.plotOn(frame_novo_1, RooFit::LineColor(kBlack), RooFit::LineWidth(6)); - f_novo.plotOn(frame_novo_1, RooFit::LineColor(kRed), RooFit::LineWidth(3), RooFit::LineStyle(kDashed) ); + //f_crystal_1.plotOn(frame_novo_1, RooFit::VisualizeError(*r_crystal_1, 1), RooFit::FillColor(kBlack), RooFit::FillStyle(3001)); + f_novo.plotOn(frame_novo_1, RooFit::VisualizeError(*r_novo, 1), RooFit::FillColor(kBlue), RooFit::FillStyle(3004)); + //f_crystal_1.plotOn(frame_novo_1, RooFit::LineColor(kBlack), RooFit::LineWidth(6)); + f_novo.plotOn(frame_novo_1, RooFit::LineColor(kBlue), RooFit::LineWidth(3), RooFit::LineStyle(kDashed) ); if (log=="log") frame_novo_1->GetYaxis()->SetRangeUser(1e-4, h_mX_SR->GetMaximum()*5); @@ -803,20 +600,20 @@ void BackgroundPrediction_Kinematic_Split(int range_lo_1, int range_hi_1, double pave_1->SetFillStyle(0); char name_1[1000]; char name_11[1000]; - if (hist.substr(0,7)=="h_mX_SB") { + /*if (hist.substr(0,7)=="h_mX_SB") { sprintf(name_1,"SB_crystal #chi^{2}/n = %.2f",fitChi2_crystal_1); sprintf(name_11,"p-value_crystal = %.2f",pvalue_crystal_1); } else sprintf(name_1,"SR_crystal #chi^{2}/n = %.2f",fitChi2_crystal_1); pave_1->AddText(name_1); - pave_1->AddText(name_11); + pave_1->AddText(name_11);*/ if (hist.substr(0,7)=="h_mX_SB") { - sprintf(name_1,"SB_novo #chi^{2}/n = %.2f",fitChi2_Novo); - sprintf(name_11,"p-value_novo = %.2f",pvalue_novo); + sprintf(name_1,"#chi^{2}/n = %.2f",fitChi2_Novo); + //sprintf(name_11,"p-value_novo = %.2f",pvalue_novo); } - else sprintf(name_1,"SR_novo #chi^{2}/n = %.2f",fitChi2_Novo); + else sprintf(name_1,"#chi^{2}/n = %.2f",fitChi2_Novo); pave_1->AddText(name_1); - pave_1->AddText(name_11); + //pave_1->AddText(name_11); pave_1->Draw(); TLatex * tPrel_1 = new TLatex(); @@ -840,10 +637,10 @@ void BackgroundPrediction_Kinematic_Split(int range_lo_1, int range_hi_1, double } else leg_1->AddEntry(h_mX_SR, "Data in SR", "ep"); - TH1F* temp_1 = new TH1F("temp_1", "temp_1", 100, 0,1); temp_1->SetLineWidth(2); temp_1->SetLineColor(kRed); - TH1F* temp_11 = new TH1F("temp_11", "temp_11", 100, 0,1); temp_11->SetLineWidth(2); - temp_11->SetLineColor(kBlack); - leg_1->AddEntry(temp_11, "CrystalBall fit", "l"); + TH1F* temp_1 = new TH1F("temp_1", "temp_1", 100, 0,1); temp_1->SetLineWidth(2); temp_1->SetLineColor(kBlue); + //TH1F* temp_11 = new TH1F("temp_11", "temp_11", 100, 0,1); temp_11->SetLineWidth(2); + //temp_11->SetLineColor(kBlack); + //leg_1->AddEntry(temp_11, "CrystalBall fit", "l"); leg_1->AddEntry(temp_1, "Novorsibisk fit", "l"); leg_1->Draw(); @@ -853,16 +650,16 @@ void BackgroundPrediction_Kinematic_Split(int range_lo_1, int range_hi_1, double RooHist *hpull_1, *hpull_11; hpull_1 = frame_novo->pullHist(); hpull_1->SetLineWidth(2); - hpull_11 = frame_crystal_1->pullHist(); - hpull_11->SetLineStyle(kDashed); - hpull_11->SetLineColor(kRed); - hpull_11->SetMarkerSize(0.6); - hpull_11->SetMarkerColor(kRed); + //hpull_11 = frame_crystal_1->pullHist(); + //hpull_11->SetLineStyle(kDashed); + //hpull_11->SetLineColor(kRed); + //hpull_11->SetMarkerSize(0.6); + //hpull_11->SetMarkerColor(kRed); RooPlot* frameP_1 = x_2->frame() ; frameP_1->SetTitle("; m_{X} (GeV); Pull"); frameP_1->addPlotable(hpull_1,"P"); - frameP_1->addPlotable(hpull_11,"P same"); + //frameP_1->addPlotable(hpull_11,"P same"); frameP_1->GetYaxis()->SetTitleSize(0.07); frameP_1->GetYaxis()->SetTitleOffset(0.5); frameP_1->GetXaxis()->SetTitleSize(0.09); @@ -878,14 +675,7 @@ void BackgroundPrediction_Kinematic_Split(int range_lo_1, int range_hi_1, double c_novo_1->SaveAs((dest_dir+"/"+"BackgroundFit_"+tag+"_Split_2.png").c_str()); c_novo_1->SaveAs((dest_dir+"/"+"BackgroundFit_"+tag+"_Split_2.pdf").c_str()); - - - - - - - - + TH1F *h_mX_SR_fakeData=(TH1F*)h_mX_SR->Clone("h_mX_SR_fakeData"); h_mX_SR_fakeData->Scale(nEventsSR/h_mX_SR_fakeData->GetSumOfWeights()); @@ -894,60 +684,40 @@ void BackgroundPrediction_Kinematic_Split(int range_lo_1, int range_hi_1, double RooDataHist data_obs_gaus_exp(Form("data_obs_gaus_exp_%d_%d",range_lo_1, range_hi_1), "Data", RooArgList(*x_1), h_mX_SR_fakeData); RooDataHist data_obs_novo(Form("data_obs_novo_%d_%d",range_lo_2, range_hi_2), "Data", RooArgList(*x_2), h_mX_SR_fakeData); RooDataHist data_obs_crystal_1(Form("data_obs_crystal_1_%d_%d",range_lo_2, range_hi_2), "Data", RooArgList(*x_2), h_mX_SR_fakeData); - //RooDataHist data_obs_gaus_bern(Form("data_obs_gaus_bern_%d_%d",range_lo_2, range_hi_2), "Data", RooArgList(*x_2), h_mX_SR_fakeData); - //RooDataHist data_obs_landau(Form("data_obs_landau_%d_%d",range_lo_2, range_hi_2), "Data", RooArgList(*x_2), h_mX_SR_fakeData); - RooRealVar f_crystal_norm("f_crystal_norm","f_crystal_norm",h_mX_SR_fakeData->Integral(h_mX_SR_fakeData->FindBin(range_lo_1),h_mX_SR_fakeData->FindBin(range_hi_1))); RooWorkspace *w_background_crystal=new RooWorkspace("HbbHbb"); w_background_crystal->import(data_obs_crystal); w_background_crystal->import(f_crystal); - //w_background_crystal->import(f_crystal_norm); w_background_crystal->SaveAs((dest_dir+"/"+Form("w_background_crystal_%d_%d.root",range_lo_1,range_hi_1)).c_str()); - RooRealVar f_gaus_exp_norm("f_gaus_exp_norm","f_gaus_exp_norm",h_mX_SR_fakeData->Integral(h_mX_SR_fakeData->FindBin(range_lo_1),h_mX_SR_fakeData->FindBin(range_hi_1))); RooWorkspace *w_background_gaus_exp=new RooWorkspace("HbbHbb"); w_background_gaus_exp->import(data_obs_gaus_exp); w_background_gaus_exp->import(f_gaus_exp); - //w_background_gaus_exp->import(f_gaus_exp_norm); w_background_gaus_exp->SaveAs((dest_dir+"/"+Form("w_background_gaus_exp_%d_%d.root",range_lo_1,range_hi_1)).c_str()); - - RooRealVar f_novo_norm("f_novo_norm","f_novo_norm",h_mX_SR_fakeData->Integral(h_mX_SR_fakeData->FindBin(range_lo_2),h_mX_SR_fakeData->FindBin(range_hi_2))); RooWorkspace *w_background_novo=new RooWorkspace("HbbHbb"); w_background_novo->import(data_obs_novo); w_background_novo->import(f_novo); - //w_background_novo->import(f_novo_norm); w_background_novo->SaveAs((dest_dir+"/"+Form("w_background_novo_%d_%d.root",range_lo_2,range_hi_2)).c_str()); - RooRealVar f_crystal_1_norm("f_crystal_1_norm","f_crystal_1_norm",h_mX_SR_fakeData->Integral(h_mX_SR_fakeData->FindBin(range_lo_2),h_mX_SR_fakeData->FindBin(range_hi_2))); RooWorkspace *w_background_crystal_1=new RooWorkspace("HbbHbb"); w_background_crystal_1->import(data_obs_crystal_1); w_background_crystal_1->import(f_crystal_1); - //w_background_crystal_1->import(f_crystal_1_norm); w_background_crystal_1->SaveAs((dest_dir+"/"+Form("w_background_crystal_1_%d_%d.root",range_lo_2,range_hi_2)).c_str()); - -/* - RooWorkspace *w_background_gaus_bern=new RooWorkspace("HbbHbb"); - w_background_gaus_bern->import(data_obs_gaus_bern); - w_background_gaus_bern->import(f_gaus_bern); - w_background_gaus_bern->SaveAs((dest_dir+"/"+Form("w_background_gaus_bern_%d_%d.root",range_lo_2,range_hi_2)).c_str()); - - - RooWorkspace *w_background_landau=new RooWorkspace("HbbHbb"); - w_background_landau->import(data_obs_landau); - w_background_landau->import(f_landau); - w_background_landau->SaveAs((dest_dir+"/"+Form("w_background_landau_%d_%d.root",range_lo_2,range_hi_2)).c_str()); -*/ - - std::cout<<" === RooFit data fit result to be entered in datacard === "<Get(hist.c_str()); + TH1F *h_mX_SR=(TH1F*)f_data->Get(hist.c_str()); h_mX_SR->Rebin(rebin); - TH1F *h_SR=(TH1F*)f_data->Get("h_mX_SR_kinFit"); - double nEventsSR= h_SR->Integral(); + TFile *f_norm=new TFile("PreselectedWithRegressionDeepCSV/MMRSelection_chi2/Histograms_MMR_BTagTotal.root"); + TH1F *h_SR=(TH1F*)f_norm->Get("h_mX_SR_kinFit"); + double nEventsSR= h_SR->Integral(); char value[1000]; @@ -222,6 +223,7 @@ void BackgroundPrediction_Kinematic_Split_MMR(int range_lo_1, int range_hi_1, do string type; + //Crystal ball fit RooRealVar par_crystal_0("par_crystal_0", "par_crystal_0", 0.01, 5.1); RooRealVar par_crystal_1("par_crystal_1", "par_crystal_1", 0.01, 5.1); RooRealVar par_crystal_2("par_crystal_2", "par_crystal_2", 400, 600); @@ -265,6 +267,7 @@ void BackgroundPrediction_Kinematic_Split_MMR(int range_lo_1, int range_hi_1, do type= "SB_crystal_"+to_string(range_lo_1)+"_"+to_string(range_hi_1); c_crystal->SaveAs((dest_dir+"/"+"BackgroundFit_"+type+".png").c_str()); + //Gausexp fit RooRealVar par_gaus_exp_0("par_gaus_exp_0", "par_gaus_exp_0", 400, 700); RooRealVar par_gaus_exp_1("par_gaus_exp_1", "par_gaus_exp_1", 9, 100); RooRealVar par_gaus_exp_2("par_gaus_exp_2", "par_gaus_exp_2", 0.05, 3.1); @@ -303,10 +306,10 @@ void BackgroundPrediction_Kinematic_Split_MMR(int range_lo_1, int range_hi_1, do c_gaus_exp->SaveAs((dest_dir+"/"+"BackgroundFit_"+type+".png").c_str()); - - RooRealVar par_novo_0("par_novo_0", "par_novo_0", 500, 650); - RooRealVar par_novo_1("par_novo_1", "par_novo_1", 0, 200); - RooRealVar par_novo_2("par_novo_2", "par_novo_2", -100, 100); + //Novosibirsk fit + RooRealVar par_novo_0("par_novo_0", "par_novo_0", 300, 445); + RooRealVar par_novo_1("par_novo_1", "par_novo_1", 0.01, 300); + RooRealVar par_novo_2("par_novo_2", "par_novo_2", -10, 1); RooNovosibirsk f_novo("f_novo", "Background Prediction PDF", *x_2, par_novo_0, par_novo_1, par_novo_2); RooFitResult *r_novo=f_novo.fitTo(pred_2, RooFit::Range(range_lo_2, range_hi_2), RooFit::Save()); @@ -344,11 +347,12 @@ void BackgroundPrediction_Kinematic_Split_MMR(int range_lo_1, int range_hi_1, do type= "SB_novo_"+to_string(range_lo_2)+"_"+to_string(range_hi_2); c_novo->SaveAs((dest_dir+"/"+"BackgroundFit_"+type+".png").c_str()); - - RooRealVar par_crystal_1_0("par_crystal_1_0", "par_crystal_1_0", 0.01, 5.1); - RooRealVar par_crystal_1_1("par_crystal_1_1", "par_crystal_1_1", 0.01, 5.1); - RooRealVar par_crystal_1_2("par_crystal_1_2", "par_crystal_1_2", 400, 700); - RooRealVar par_crystal_1_3("par_crystal_1_3", "par_crystal_1_3", 9, 200); + + //Crystalball fit + RooRealVar par_crystal_1_0("par_crystal_1_0", "par_crystal_1_0", 0.01, 9.1); + RooRealVar par_crystal_1_1("par_crystal_1_1", "par_crystal_1_1", 0.01, 9.1); + RooRealVar par_crystal_1_2("par_crystal_1_2", "par_crystal_1_2", 400, 549); + RooRealVar par_crystal_1_3("par_crystal_1_3", "par_crystal_1_3", 10, 200); RevCrystalBall f_crystal_1("f_crystal_1","f_crystal_1", *x_2, par_crystal_1_0, par_crystal_1_1, par_crystal_1_2, par_crystal_1_3); RooFitResult *r_crystal_1=f_crystal_1.fitTo(pred_2, RooFit::Range(range_lo_2, range_hi_2), RooFit::Save()); @@ -387,153 +391,9 @@ void BackgroundPrediction_Kinematic_Split_MMR(int range_lo_1, int range_hi_1, do pave_crystal_1->Draw(); type= "SB_crystal_1_"+to_string(range_lo_2)+"_"+to_string(range_hi_2); c_crystal_1->SaveAs((dest_dir+"/"+"BackgroundFit_"+type+".png").c_str()); - - -/* - RooRealVar par_gaus_bern_0("par_gaus_bern_0", "par_gaus_bern_0", 0.); - par_gaus_bern_0.setConstant(1); - RooRealVar par_gaus_bern_1("par_gaus_bern_1", "par_gaus_bern_1", 10, 1. , 100.); - RooRealVar par_gaus_bern_2("par_gaus_bern_2", "par_gaus_bern_2", 260, 160., 600. ); - RooRealVar *par_gaus_bern_3, *par_gaus_bern_4, *par_gaus_bern_5, *par_gaus_bern_6, *par_gaus_bern_7, *bpar_gaus_bern_8; - par_gaus_bern_3=new RooRealVar("par_gaus_bern_3", "par_gaus_bern_3", 5.); - par_gaus_bern_3->setConstant(1); - par_gaus_bern_4=new RooRealVar("par_gaus_bern_4", "par_gaus_bern_4", 3, -10., 10.); - par_gaus_bern_5=new RooRealVar("par_gaus_bern_5", "par_gaus_bern_5", 1, -10., 10.); - par_gaus_bern_6=new RooRealVar("par_gaus_bern_6", "par_gaus_bern_6", -10., 10.); - par_gaus_bern_7=new RooRealVar("par_gaus_bern_7", "par_gaus_bern_7", -10., 10.); - par_gaus_bern_8=new RooRealVar("par_gaus_bern_8", "par_gaus_bern_8", -10., 5.); - - - RooGaussStepBernstein f_gaus_bern("f_gaus_bern","f_gaus_bern",*x_2, par_gaus_bern_0, par_gaus_bern_1, par_gaus_bern_2, RooArgList(*par_gaus_bern_3, *par_gaus_bern_4, *par_gaus_bern_5)); //, *par_gaus_bern_6)); - RooFitResult *r_gaus_bern=f_gaus_bern.fitTo(pred_2, RooFit::Range(range_lo_2, range_hi_2), RooFit::Save()); - - RooPlot *frame_gaus_bern=x_2->frame(); - pred_2.plotOn(frame_gaus_bern, RooFit::LineColor(kBlack), RooFit::MarkerColor(kBlack)); - f_gaus_bern.plotOn(frame_gaus_bern, RooFit::VisualizeError(*r_gaus_bern, 1), RooFit::FillColor(kGray+1), RooFit::FillStyle(3001)); - f_gaus_bern.plotOn(frame_gaus_bern, RooFit::LineColor(kBlue+1)); - double fitChi2_gaus_bern=frame_gaus_bern->chiSquare(); - RooAbsReal* chi2_gaus_bern = f_gaus_bern.createChi2(pred_2); - double pvalue_gaus_bern=TMath::Prob(chi2_gaus_bern->getVal(),int((range_hi_2-range_lo_2)/rebin)-3); - - TCanvas *c_gaus_bern=new TCanvas("c_gaus_bern", "c_gaus_bern", 700, 700); - frame_gaus_bern->Draw(); - - TPaveText *pave_gaus_bern = new TPaveText(0.55,0.7,0.82,0.9,"NDC"); - pave_gaus_bern->SetBorderSize(0); - pave_gaus_bern->SetTextSize(0.03); - pave_gaus_bern->SetLineColor(1); - pave_gaus_bern->SetLineStyle(1); - pave_gaus_bern->SetLineWidth(2); - pave_gaus_bern->SetFillColor(0); - pave_gaus_bern->SetFillStyle(0); - pave_gaus_bern->AddText("Gaus_bern"); - sprintf(value,"par_gaus_bern_0= %2.3f +- %2.3f",par_gaus_bern_0.getVal(),par_gaus_bern_0.getError()); - pave_gaus_bern->AddText(value); - sprintf(value,"par_gaus_bern_1= %2.3f +- %2.3f",par_gaus_bern_1.getVal(),par_gaus_bern_1.getError()); - pave_gaus_bern->AddText(value); - sprintf(value,"par_gaus_bern_2= %2.3f +- %2.3f",par_gaus_bern_2.getVal(),par_gaus_bern_2.getError()); - pave_gaus_bern->AddText(value); - sprintf(value,"par_gaus_bern_3= %2.3f +- %2.3f",par_gaus_bern_3->getVal(),par_gaus_bern_3->getError()); - pave_gaus_bern->AddText(value); - sprintf(value,"par_gaus_bern_4= %2.3f +- %2.3f",par_gaus_bern_4->getVal(),par_gaus_bern_4->getError()); - pave_gaus_bern->AddText(value); - sprintf(value,"par_gaus_bern_5= %2.3f +- %2.3f",par_gaus_bern_5->getVal(),par_gaus_bern_5->getError()); - pave_gaus_bern->AddText(value); - sprintf(value,"par_gaus_bern_6= %2.3f +- %2.3f",par_gaus_bern_6->getVal(),par_gaus_bern_6->getError()); - pave_gaus_bern->AddText(value); - sprintf(value,"range [%d,%d]",range_lo_2,range_hi_2); - pave_gaus_bern->AddText(value); - sprintf(value,"chi^2 %2.1f",fitChi2_gaus_bern); - pave_gaus_bern->AddText(value); - pave_gaus_bern->Draw(); - type= "SB_gaus_bern_"+to_string(range_lo_2)+"_"+to_string(range_hi_2); - c_gaus_bern->SaveAs((dest_dir+"/"+"BackgroundFit_"+type+".png").c_str()); - - - - - RooRealVar par_landau_0("par_landau_0","par_landau_0",5.54e+02,4.5e+02,6e+02) ; - RooRealVar par_landau_1("par_landau_1","par_landau_1",2.5e+01,18,30) ; - RooLandau f_landau("f_landau","f_landau",*x_2, par_landau_0, par_landau_1); - RooFitResult *r_landau=f_landau.fitTo(pred_2, RooFit::Range(range_lo_2, range_hi_2), RooFit::Save()); - - RooPlot *frame_landau=x_2->frame(); - pred_2.plotOn(frame_landau, RooFit::LineColor(kBlack), RooFit::MarkerColor(kBlack)); - f_landau.plotOn(frame_landau, RooFit::VisualizeError(*r_landau, 1), RooFit::FillColor(kGray+1), RooFit::FillStyle(3001)); - f_landau.plotOn(frame_landau, RooFit::LineColor(kBlue+1)); - double fitChi2_landau=frame_landau->chiSquare(); - RooAbsReal* chi2_landau = f_landau.createChi2(pred_2); - double pvalue_landau=TMath::Prob(chi2_landau->getVal(),int((range_hi_2-range_lo_2)/rebin)-3); - TCanvas *c_landau=new TCanvas("c_landau", "c_landau", 700, 700); - frame_landau->Draw(); - TPaveText *pave_landau = new TPaveText(0.55,0.7,0.82,0.9,"NDC"); - pave_landau->SetBorderSize(0); - pave_landau->SetTextSize(0.03); - pave_landau->SetLineColor(1); - pave_landau->SetLineStyle(1); - pave_landau->SetLineWidth(2); - pave_landau->SetFillColor(0); - pave_landau->SetFillStyle(0); - pave_landau->AddText("Landau"); - sprintf(value,"par_landau_0= %2.3f +- %2.3f",par_landau_0.getVal(),par_landau_0.getError()); - pave_landau->AddText(value); - sprintf(value,"par_landau_1= %2.3f +- %2.3f",par_landau_1.getVal(),par_landau_1.getError()); - pave_landau->AddText(value); - sprintf(value,"range [%d,%d]",range_lo_2,range_hi_2); - pave_landau->AddText(value); - sprintf(value,"chi^2 %2.1f",fitChi2_landau); - pave_landau->AddText(value); - pave_landau->Draw(); - type= "SB_landau_"+to_string(range_lo_2)+"_"+to_string(range_hi_2); - c_landau->SaveAs((dest_dir+"/"+"BackgroundFit_"+type+".png").c_str()); - - -*/ - - - TH1* hh_pdf = f_gaus_exp.createHistogram("hh", *x_1, RooFit::Binning(1000,range_hi_1, range_hi_1)) ; - TH1* hh_pdf_11 = f_crystal.createHistogram("hh1", *x_1, RooFit::Binning(1000,range_hi_1, range_hi_1)) ; - //TH1* hh_pdf_11 = f_novo.createHistogram("hh1", *x_1, RooFit::Binning(1000,range_hi_1, range_hi_1)) ; - TH1* hh_pdf_2 = f_gaus_exp.createHistogram("difference_1", *x_1, RooFit::Binning(1000,range_hi_1, range_hi_1)) ; - TH1* hh_pdf_4 = f_gaus_exp.createHistogram("sum", *x_1, RooFit::Binning(1000,range_hi_1, range_hi_1)) ; - TH1* hh_pdf_5 = f_gaus_exp.createHistogram("ratio", *x_1, RooFit::Binning(1000,range_hi_1, range_hi_1)) ; - hh_pdf_5->SetLineColor(kRed); - hh_pdf_2->Add(hh_pdf_11,-1); - hh_pdf_4->Add(hh_pdf_11,1); - hh_pdf_4->Scale(0.5); - hh_pdf_5->Add(hh_pdf,-1); - hh_pdf_5->Add(hh_pdf_2,1); - hh_pdf_5->Divide(hh_pdf_4); - hh_pdf_5->GetYaxis()->SetRangeUser(-1,1); - new TCanvas; hh_pdf_5->Draw(); - - - - TH1* hh_pdf_1 = f_novo.createHistogram("hh_1", *x_2, RooFit::Binning(1000,range_hi_2, range_hi_2)) ; - TH1* hh_pdf_1_1 = f_crystal_1.createHistogram("hh1_1", *x_2, RooFit::Binning(1000,range_hi_2, range_hi_2)) ; - //TH1* hh_pdf_1_1 = f_gaus_bern.createHistogram("hh1_1", *x_2, RooFit::Binning(1000,range_hi_2, range_hi_2)) ; - //TH1* hh_pdf_1_1 = f_gaus_exp.createHistogram("hh1_1", *x_2, RooFit::Binning(1000,range_hi_2, range_hi_2)) ; - //TH1* hh_pdf_1_1 = f_landau.createHistogram("hh1_1", *x_2, RooFit::Binning(1000,range_hi_2, range_hi_2)) ; - TH1* hh_pdf_2_1 = f_novo.createHistogram("difference_1_1", *x_2, RooFit::Binning(1000,range_hi_2, range_hi_2)) ; - TH1* hh_pdf_4_1 = f_novo.createHistogram("sum_1", *x_2, RooFit::Binning(1000,range_hi_2, range_hi_2)) ; - TH1* hh_pdf_5_1 = f_novo.createHistogram("ratio_1", *x_2, RooFit::Binning(1000,range_hi_2, range_hi_2)) ; - hh_pdf_5_1->SetLineColor(kRed); - hh_pdf_2_1->Add(hh_pdf_1_1,-1); - hh_pdf_4_1->Add(hh_pdf_1_1,1); - hh_pdf_4_1->Scale(0.5); - hh_pdf_5_1->Add(hh_pdf_1,-1); - hh_pdf_5_1->Add(hh_pdf_2_1,1); - hh_pdf_5_1->Divide(hh_pdf_4_1); - hh_pdf_5_1->GetYaxis()->SetRangeUser(-1,1); - new TCanvas; hh_pdf_5_1->Draw(); - - - - - - + //LMR 1 gauss exp only double xPad = 0.3; TCanvas *c_gaus_exp_1=new TCanvas("c_gaus_exp_1", "c_gaus_exp_1", 700*(1.-xPad), 700); c_gaus_exp_1->SetFillStyle(4000); @@ -559,11 +419,11 @@ void BackgroundPrediction_Kinematic_Split_MMR(int range_lo_1, int range_hi_1, do RooPlot *frame_gaus_exp_1=x_1->frame(); - pred_1.plotOn(frame_gaus_exp_1, RooFit::LineColor(kBlack), RooFit::MarkerColor(kBlack)); - f_gaus_exp.plotOn(frame_gaus_exp_1, RooFit::VisualizeError(*r_gaus_exp, 1), RooFit::FillColor(kBlack), RooFit::FillStyle(3004)); - f_crystal.plotOn(frame_gaus_exp_1, RooFit::VisualizeError(*r_crystal, 1), RooFit::FillColor(kRed+1), RooFit::FillStyle(3001)); - f_gaus_exp.plotOn(frame_gaus_exp_1, RooFit::LineColor(kBlack), RooFit::LineWidth(6)); - f_crystal.plotOn(frame_gaus_exp_1, RooFit::LineColor(kRed), RooFit::LineWidth(3), RooFit::LineStyle(kDashed) ); + pred_1.plotOn(frame_gaus_exp_1, RooFit::LineColor(kRed), RooFit::MarkerColor(kBlack)); + f_gaus_exp.plotOn(frame_gaus_exp_1, RooFit::VisualizeError(*r_gaus_exp, 1), RooFit::FillColor(kRed), RooFit::FillStyle(3004)); + //f_crystal.plotOn(frame_gaus_exp_1, RooFit::VisualizeError(*r_crystal, 1), RooFit::FillColor(kRed+1), RooFit::FillStyle(3001)); + f_gaus_exp.plotOn(frame_gaus_exp_1, RooFit::LineColor(kRed), RooFit::LineWidth(6)); + //f_crystal.plotOn(frame_gaus_exp_1, RooFit::LineColor(kRed), RooFit::LineWidth(3), RooFit::LineStyle(kDashed) ); if (log=="log") frame_gaus_exp_1->GetYaxis()->SetRangeUser(1e-4, h_mX_SR->GetMaximum()*5.); @@ -593,13 +453,14 @@ void BackgroundPrediction_Kinematic_Split_MMR(int range_lo_1, int range_hi_1, do else sprintf(name,"SR_gaus_exp #chi^{2}/n = %.2f",fitChi2_gaus_exp); pave->AddText(name); pave->AddText(name1); - if (hist.substr(0,7)=="h_mX_SB") { + /* if (hist.substr(0,7)=="h_mX_SB") { sprintf(name,"SB_crystal #chi^{2}/n = %.2f",fitChi2_crystal); sprintf(name1,"p-value_crystal = %.2f",pvalue_crystal); } else sprintf(name,"SR_crystal #chi^{2}/n = %.2f",fitChi2_crystal); pave->AddText(name); pave->AddText(name1); + */ pave->Draw(); TLatex * tPrel = new TLatex(); @@ -623,11 +484,11 @@ void BackgroundPrediction_Kinematic_Split_MMR(int range_lo_1, int range_hi_1, do } else leg->AddEntry(h_mX_SR, "Data in SR", "ep"); - TH1F * temp = new TH1F("temp", "temp", 100, 0,1); temp->SetLineWidth(2); temp->SetLineColor(kBlack); + TH1F * temp = new TH1F("temp", "temp", 100, 0,1); temp->SetLineWidth(2); temp->SetLineColor(kBlue); leg->AddEntry(temp, "GaussExp fit", "l"); - TH1F * temp1 = new TH1F("temp1", "temp1", 100, 0,1); temp1->SetLineWidth(2); - temp1->SetLineColor(kRed); - leg->AddEntry(temp1, "CrystalBall fit", "l"); + //TH1F * temp1 = new TH1F("temp1", "temp1", 100, 0,1); temp1->SetLineWidth(2); + //temp1->SetLineColor(kRed); + //leg->AddEntry(temp1, "CrystalBall fit", "l"); leg->Draw(); CMS_lumi( p_1, iPeriod, iPos ); @@ -636,16 +497,16 @@ void BackgroundPrediction_Kinematic_Split_MMR(int range_lo_1, int range_hi_1, do RooHist *hpull, *hpull1; hpull = frame_gaus_exp->pullHist(); hpull->SetLineWidth(2); - hpull1 = frame_crystal->pullHist(); - hpull1->SetMarkerColor(kRed); - hpull1->SetLineStyle(kDashed); - hpull1->SetMarkerSize(0.6); - hpull1->SetLineColor(kRed); + //hpull1 = frame_crystal->pullHist(); + //hpull1->SetMarkerColor(kRed); + //hpull1->SetLineStyle(kDashed); + //hpull1->SetMarkerSize(0.6); + //hpull1->SetLineColor(kRed); RooPlot* frameP = x_1->frame() ; frameP->SetTitle("; m_{X} (GeV); Pull"); frameP->addPlotable(hpull,"P"); - frameP->addPlotable(hpull1,"P same"); + //frameP->addPlotable(hpull1,"P same"); frameP->GetYaxis()->SetTitleSize(0.07); frameP->GetYaxis()->SetTitleOffset(0.5); frameP->GetXaxis()->SetTitleSize(0.09); @@ -665,7 +526,8 @@ void BackgroundPrediction_Kinematic_Split_MMR(int range_lo_1, int range_hi_1, do c_gaus_exp_1->SaveAs((dest_dir+"/"+"BackgroundFit_"+tag+"_Split_1.png").c_str()); c_gaus_exp_1->SaveAs((dest_dir+"/"+"BackgroundFit_"+tag+"_Split_1.pdf").c_str()); - + + //LMR2 unblind TCanvas *c_novo_1=new TCanvas("c_novo_1", "c_novo_1", 700*(1.-xPad), 700); c_novo_1->SetFillStyle(4000); c_novo_1->SetFrameFillColor(0); @@ -691,10 +553,10 @@ void BackgroundPrediction_Kinematic_Split_MMR(int range_lo_1, int range_hi_1, do RooPlot *frame_novo_1=x_2->frame(); pred_2.plotOn(frame_novo_1, RooFit::LineColor(kBlack), RooFit::MarkerColor(kBlack)); - f_crystal_1.plotOn(frame_novo_1, RooFit::VisualizeError(*r_crystal_1, 1), RooFit::FillColor(kBlack), RooFit::FillStyle(3001)); - f_novo.plotOn(frame_novo_1, RooFit::VisualizeError(*r_novo, 1), RooFit::FillColor(kRed+1), RooFit::FillStyle(3004)); - f_crystal_1.plotOn(frame_novo_1, RooFit::LineColor(kBlack), RooFit::LineWidth(6)); - f_novo.plotOn(frame_novo_1, RooFit::LineColor(kRed), RooFit::LineWidth(3), RooFit::LineStyle(kDashed) ); + //f_crystal_1.plotOn(frame_novo_1, RooFit::VisualizeError(*r_crystal_1, 1), RooFit::FillColor(kBlack), RooFit::FillStyle(3001)); + f_novo.plotOn(frame_novo_1, RooFit::VisualizeError(*r_novo, 1), RooFit::FillColor(kBlue), RooFit::FillStyle(3004)); + //f_crystal_1.plotOn(frame_novo_1, RooFit::LineColor(kBlack), RooFit::LineWidth(6)); + f_novo.plotOn(frame_novo_1, RooFit::LineColor(kBlue), RooFit::LineWidth(3), RooFit::LineStyle(kDashed) ); if (log=="log") frame_novo_1->GetYaxis()->SetRangeUser(1e-4, h_mX_SR->GetMaximum()*5); @@ -712,25 +574,26 @@ void BackgroundPrediction_Kinematic_Split_MMR(int range_lo_1, int range_hi_1, do pave_1->SetTextSize(0.03); pave_1->SetLineColor(1); pave_1->SetLineStyle(1); - pave_1->SetLineWidth(2); + pave_1->SetLineWidth(1); pave_1->SetFillColor(0); pave_1->SetFillStyle(0); char name_1[1000]; char name_11[1000]; - if (hist.substr(0,7)=="h_mX_SB") { + /*if (hist.substr(0,7)=="h_mX_SB") { sprintf(name_1,"SB_crystal #chi^{2}/n = %.2f",fitChi2_crystal_1); sprintf(name_11,"p-value_crystal = %.2f",pvalue_crystal_1); } else sprintf(name_1,"SR_crystal #chi^{2}/n = %.2f",fitChi2_crystal_1); pave_1->AddText(name_1); pave_1->AddText(name_11); + */ if (hist.substr(0,7)=="h_mX_SB") { - sprintf(name_1,"SB_novo #chi^{2}/n = %.2f",fitChi2_Novo); - sprintf(name_11,"p-value_novo = %.2f",pvalue_novo); + sprintf(name_1,"#chi^{2}/n = %.2f",fitChi2_Novo); +// sprintf(name_11,"p-value_novo = %.2f",pvalue_novo); } - else sprintf(name_1,"SR_novo #chi^{2}/n = %.2f",fitChi2_Novo); + else sprintf(name_1,"#chi^{2}/n = %.2f",fitChi2_Novo); pave_1->AddText(name_1); - pave_1->AddText(name_11); + //pave_1->AddText(name_11); pave_1->Draw(); TLatex * tPrel_1 = new TLatex(); @@ -754,10 +617,10 @@ void BackgroundPrediction_Kinematic_Split_MMR(int range_lo_1, int range_hi_1, do } else leg_1->AddEntry(h_mX_SR, "Data in SR", "ep"); - TH1F* temp_1 = new TH1F("temp_1", "temp_1", 100, 0,1); temp_1->SetLineWidth(2); temp_1->SetLineColor(kRed); + TH1F* temp_1 = new TH1F("temp_1", "temp_1", 100, 0,1); temp_1->SetLineWidth(2); temp_1->SetLineColor(kBlue); TH1F* temp_11 = new TH1F("temp_11", "temp_11", 100, 0,1); temp_11->SetLineWidth(2); temp_11->SetLineColor(kBlack); - leg_1->AddEntry(temp_11, "CrystalBall fit", "l"); + //leg_1->AddEntry(temp_11, "CrystalBall fit", "l"); leg_1->AddEntry(temp_1, "Novorsibisk fit", "l"); leg_1->Draw(); @@ -767,16 +630,16 @@ void BackgroundPrediction_Kinematic_Split_MMR(int range_lo_1, int range_hi_1, do RooHist *hpull_1, *hpull_11; hpull_1 = frame_novo->pullHist(); hpull_1->SetLineWidth(2); - hpull_11 = frame_crystal_1->pullHist(); - hpull_11->SetLineStyle(kDashed); - hpull_11->SetLineColor(kRed); - hpull_11->SetMarkerSize(0.6); - hpull_11->SetMarkerColor(kRed); + //hpull_11 = frame_crystal_1->pullHist(); + //hpull_11->SetLineStyle(kDashed); + //hpull_11->SetLineColor(kRed); + //hpull_11->SetMarkerSize(0.6); + //hpull_11->SetMarkerColor(kRed); RooPlot* frameP_1 = x_2->frame() ; frameP_1->SetTitle("; m_{X} (GeV); Pull"); frameP_1->addPlotable(hpull_1,"P"); - frameP_1->addPlotable(hpull_11,"P same"); + //frameP_1->addPlotable(hpull_11,"P same"); frameP_1->GetYaxis()->SetTitleSize(0.07); frameP_1->GetYaxis()->SetTitleOffset(0.5); frameP_1->GetXaxis()->SetTitleSize(0.09); @@ -794,82 +657,55 @@ void BackgroundPrediction_Kinematic_Split_MMR(int range_lo_1, int range_hi_1, do c_novo_1->SaveAs((dest_dir+"/"+"BackgroundFit_"+tag+"_Split_2.pdf").c_str()); - - - - - - - - TH1F *h_mX_SR_fakeData=(TH1F*)h_mX_SR->Clone("h_mX_SR_fakeData"); + TH1F *h_mX_SR_fakeData=(TH1F*)h_mX_SR->Clone("h_mX_SR_fakeData"); h_mX_SR_fakeData->Scale(nEventsSR/h_mX_SR_fakeData->GetSumOfWeights()); + RooDataHist data_obs_crystal(Form("data_obs_crystal_%d_%d",range_lo_1, range_hi_1), "Data", RooArgList(*x_1), h_mX_SR_fakeData); RooDataHist data_obs_gaus_exp(Form("data_obs_gaus_exp_%d_%d",range_lo_1, range_hi_1), "Data", RooArgList(*x_1), h_mX_SR_fakeData); RooDataHist data_obs_novo(Form("data_obs_novo_%d_%d",range_lo_2, range_hi_2), "Data", RooArgList(*x_2), h_mX_SR_fakeData); RooDataHist data_obs_crystal_1(Form("data_obs_crystal_1_%d_%d",range_lo_2, range_hi_2), "Data", RooArgList(*x_2), h_mX_SR_fakeData); - //RooDataHist data_obs_gaus_bern(Form("data_obs_gaus_bern_%d_%d",range_lo_2, range_hi_2), "Data", RooArgList(*x_2), h_mX_SR_fakeData); - //RooDataHist data_obs_landau(Form("data_obs_landau_%d_%d",range_lo_2, range_hi_2), "Data", RooArgList(*x_2), h_mX_SR_fakeData); - - RooRealVar f_crystal_norm("f_crystal_norm","f_crystal_norm",h_mX_SR_fakeData->Integral(h_mX_SR_fakeData->FindBin(range_lo_1),h_mX_SR_fakeData->FindBin(range_hi_1))); + RooWorkspace *w_background_crystal=new RooWorkspace("HbbHbb"); w_background_crystal->import(data_obs_crystal); w_background_crystal->import(f_crystal); - //w_background_crystal->import(f_crystal_norm); w_background_crystal->SaveAs((dest_dir+"/"+Form("w_background_crystal_%d_%d.root",range_lo_1,range_hi_1)).c_str()); - - RooRealVar f_gaus_exp_norm("f_gaus_exp_norm","f_gaus_exp_norm",h_mX_SR_fakeData->Integral(h_mX_SR_fakeData->FindBin(range_lo_1),h_mX_SR_fakeData->FindBin(range_hi_1))); + RooWorkspace *w_background_gaus_exp=new RooWorkspace("HbbHbb"); w_background_gaus_exp->import(data_obs_gaus_exp); w_background_gaus_exp->import(f_gaus_exp); - //w_background_gaus_exp->import(f_gaus_exp_norm); w_background_gaus_exp->SaveAs((dest_dir+"/"+Form("w_background_gaus_exp_%d_%d.root",range_lo_1,range_hi_1)).c_str()); - - RooRealVar f_novo_norm("f_novo_norm","f_novo_norm",h_mX_SR_fakeData->Integral(h_mX_SR_fakeData->FindBin(range_lo_2),h_mX_SR_fakeData->FindBin(range_hi_2))); RooWorkspace *w_background_novo=new RooWorkspace("HbbHbb"); w_background_novo->import(data_obs_novo); w_background_novo->import(f_novo); - //w_background_novo->import(f_novo_norm); w_background_novo->SaveAs((dest_dir+"/"+Form("w_background_novo_%d_%d.root",range_lo_2,range_hi_2)).c_str()); - - RooRealVar f_crystal_1_norm("f_crystal_1_norm","f_crystal_1_norm",h_mX_SR_fakeData->Integral(h_mX_SR_fakeData->FindBin(range_lo_2),h_mX_SR_fakeData->FindBin(range_hi_2))); + RooWorkspace *w_background_crystal_1=new RooWorkspace("HbbHbb"); w_background_crystal_1->import(data_obs_crystal_1); w_background_crystal_1->import(f_crystal_1); - //w_background_crystal_1->import(f_crystal_1_norm); w_background_crystal_1->SaveAs((dest_dir+"/"+Form("w_background_crystal_1_%d_%d.root",range_lo_2,range_hi_2)).c_str()); - -/* - RooWorkspace *w_background_gaus_bern=new RooWorkspace("HbbHbb"); - w_background_gaus_bern->import(data_obs_gaus_bern); - w_background_gaus_bern->import(f_gaus_bern); - w_background_gaus_bern->SaveAs((dest_dir+"/"+Form("w_background_gaus_bern_%d_%d.root",range_lo_2,range_hi_2)).c_str()); - - - RooWorkspace *w_background_landau=new RooWorkspace("HbbHbb"); - w_background_landau->import(data_obs_landau); - w_background_landau->import(f_landau); - w_background_landau->SaveAs((dest_dir+"/"+Form("w_background_landau_%d_%d.root",range_lo_2,range_hi_2)).c_str()); -*/ - - - + + //Right normalization for background std::cout<<" === RooFit data fit result to be entered in datacard === "< +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +int iPeriod = 4; +int iPos = 11; + +#include "CMS_lumi.h" +#include + +void +CMS_lumi( TPad* pad, int iPeriod, int iPosX ) +{ + bool outOfFrame = false; + if( iPosX/10==0 ) + { + outOfFrame = true; + } + int alignY_=3; + int alignX_=2; + if( iPosX/10==0 ) alignX_=1; + if( iPosX==0 ) alignX_=1; + if( iPosX==0 ) alignY_=1; + if( iPosX/10==1 ) alignX_=1; + if( iPosX/10==2 ) alignX_=2; + if( iPosX/10==3 ) alignX_=3; + if( iPosX == 0 ) relPosX = 0.14; + int align_ = 10*alignX_ + alignY_; + + float H = pad->GetWh(); + float W = pad->GetWw(); + float l = pad->GetLeftMargin(); + float t = pad->GetTopMargin(); + float r = pad->GetRightMargin(); + float b = pad->GetBottomMargin(); + + pad->cd(); + + TString lumiText; + if( iPeriod==1 ) + { + lumiText += lumi_7TeV; + lumiText += " (7 TeV)"; + } + else if ( iPeriod==2 ) + { + lumiText += lumi_8TeV; + lumiText += " (8 TeV)"; + } + else if( iPeriod==3 ) + { + lumiText = lumi_8TeV; + lumiText += " (8 TeV)"; + lumiText += " + "; + lumiText += lumi_7TeV; + lumiText += " (7 TeV)"; + } + else if ( iPeriod==4 ) + { + lumiText += lumi_13TeV; + lumiText += " (13 TeV)"; + } + else if ( iPeriod==7 ) + { + if( outOfFrame ) lumiText += "#scale[0.85]{"; + lumiText += lumi_13TeV; + lumiText += " (13 TeV)"; + lumiText += " + "; + lumiText += lumi_8TeV; + lumiText += " (8 TeV)"; + lumiText += " + "; + lumiText += lumi_7TeV; + lumiText += " (7 TeV)"; + if( outOfFrame) lumiText += "}"; + } + else if ( iPeriod==12 ) + { + lumiText += "8 TeV"; + } + else if ( iPeriod==0 ) + { + lumiText += lumi_sqrtS; + } + + std::cout << lumiText << endl; + + TLatex latex; + latex.SetNDC(); + latex.SetTextAngle(0); + latex.SetTextColor(kBlack); + + float extraTextSize = extraOverCmsTextSize*cmsTextSize; + + latex.SetTextFont(42); + latex.SetTextAlign(31); + latex.SetTextSize(lumiTextSize*t); + latex.DrawLatex(1-r,1-t+lumiTextOffset*t,lumiText); + + if( outOfFrame ) + { + latex.SetTextFont(cmsTextFont); + latex.SetTextAlign(11); + latex.SetTextSize(cmsTextSize*t); + latex.DrawLatex(l,1-t+lumiTextOffset*t,cmsText); + } + + pad->cd(); + + float posX_=0; + if( iPosX%10<=1 ) + { + posX_ = l + relPosX*(1-l-r); + } + else if( iPosX%10==2 ) + { + posX_ = l + 0.5*(1-l-r); + } + else if( iPosX%10==3 ) + { + posX_ = 1-r - relPosX*(1-l-r); + } + float posY_ = 1-t - relPosY*(1-t-b); + if( !outOfFrame ) + { + if( drawLogo ) + { + posX_ = l + 0.045*(1-l-r)*W/H; + posY_ = 1-t - 0.045*(1-t-b); + float xl_0 = posX_; + float yl_0 = posY_ - 0.15; + float xl_1 = posX_ + 0.15*H/W; + float yl_1 = posY_; + TASImage* CMS_logo = new TASImage("CMS-BW-label.png"); + TPad* pad_logo = new TPad("logo","logo", xl_0, yl_0, xl_1, yl_1 ); + pad_logo->Draw(); + pad_logo->cd(); + CMS_logo->Draw("X"); + pad_logo->Modified(); + pad->cd(); + } + else + { + latex.SetTextFont(cmsTextFont); + latex.SetTextSize(cmsTextSize*t); + latex.SetTextAlign(align_); + latex.DrawLatex(posX_, posY_, cmsText); + if( writeExtraText ) + { + latex.SetTextFont(extraTextFont); + latex.SetTextAlign(align_); + latex.SetTextSize(extraTextSize*t); + latex.DrawLatex(posX_, posY_- relExtraDY*cmsTextSize*t, extraText); + } + } + } + else if( writeExtraText ) + { + if( iPosX==0) + { + posX_ = l + relPosX*(1-l-r); + posY_ = 1-t+lumiTextOffset*t; + } + latex.SetTextFont(extraTextFont); + latex.SetTextSize(extraTextSize*t); + latex.SetTextAlign(align_); + latex.DrawLatex(posX_, posY_, extraText); + } + return; +} + + +std::string itoa(int i) +{ + char res[10]; + sprintf(res, "%d", i); + std::string ret(res); + return ret; +} + +void BackgroundPrediction_Kinematic_Split_MMR(int range_lo_1, int range_hi_1, double rebin, + int range_lo_2, int range_hi_2, + std::string hist="h_mX_SB_kinFit", + std::string log="lin", + std::string filename="Histograms_MMR_BTagTotal.root", + std::string dest_dir="") +{ + gROOT->SetStyle("Plain"); + gStyle->SetPadGridX(0); + gStyle->SetPadGridY(0); + gStyle->SetOptStat(0000); + writeExtraText = true; + extraText = "Preliminary"; + lumi_13TeV = "35.9 fb^{-1}"; + + + TFile *f_data=new TFile((dest_dir+"/"+filename).c_str()); + TH1F *h_mX_SR=(TH1F*)f_data->Get(hist.c_str()); + h_mX_SR->Rebin(rebin); + TH1F *h_SR=(TH1F*)f_data->Get("h_mX_SR_kinFit"); + double nEventsSR= h_SR->Integral(); + + + char value[1000]; + + RooRealVar *x_1 = new RooRealVar("x", "m_{X} (GeV)", range_lo_1, range_hi_1); + RooRealVar *x_2 = new RooRealVar("x", "m_{X} (GeV)", range_lo_2, range_hi_2); + RooDataHist pred_1("pred_1", "Data", RooArgList(*x_1), h_mX_SR); + RooDataHist pred_2("pred_2", "Data", RooArgList(*x_2), h_mX_SR); + + string type; + + RooRealVar par_crystal_0("par_crystal_0", "par_crystal_0", 0.01, 5.1); + RooRealVar par_crystal_1("par_crystal_1", "par_crystal_1", 0.01, 5.1); + RooRealVar par_crystal_2("par_crystal_2", "par_crystal_2", 400, 600); + RooRealVar par_crystal_3("par_crystal_3", "par_crystal_3", 10, 200); + RevCrystalBall f_crystal("f_crystal","f_crystal", *x_1, par_crystal_0, par_crystal_1, par_crystal_2, par_crystal_3); + RooFitResult *r_crystal=f_crystal.fitTo(pred_1, RooFit::Range(range_lo_1, range_hi_1), RooFit::Save()); + + RooPlot *frame_crystal=x_1->frame(); + pred_1.plotOn(frame_crystal, RooFit::LineColor(kBlack), RooFit::MarkerColor(kBlack)); + f_crystal.plotOn(frame_crystal, RooFit::VisualizeError(*r_crystal, 1.), RooFit::FillColor(kGray+1), RooFit::FillStyle(3001)); + f_crystal.plotOn(frame_crystal, RooFit::LineColor(kBlue+1)); + double fitChi2_crystal=frame_crystal->chiSquare(); + RooAbsReal* chi2_crystal = f_crystal.createChi2(pred_1); + double pvalue_crystal=TMath::Prob(chi2_crystal->getVal(),int((range_hi_1-range_lo_1)/rebin)-3); + + TCanvas *c_crystal=new TCanvas("c_crystal", "c_crystal", 700, 700); + frame_crystal->Draw(); + + TPaveText *pave_crystal = new TPaveText(0.55,0.7,0.82,0.9,"NDC"); + pave_crystal->SetBorderSize(0); + pave_crystal->SetTextSize(0.03); + pave_crystal->SetLineColor(1); + pave_crystal->SetLineStyle(1); + pave_crystal->SetLineWidth(2); + pave_crystal->SetFillColor(0); + pave_crystal->SetFillStyle(0); + pave_crystal->AddText("RevCrystal"); + sprintf(value,"par_crystal_0 = %2.3f +- %2.3f",par_crystal_0.getVal(),par_crystal_0.getError()); + pave_crystal->AddText(value); + sprintf(value,"par_crystal_1 = %2.3f +- %2.3f",par_crystal_1.getVal(),par_crystal_1.getError()); + pave_crystal->AddText(value); + sprintf(value,"par_crystal_2 = %2.3f +- %2.3f",par_crystal_2.getVal(),par_crystal_2.getError()); + pave_crystal->AddText(value); + sprintf(value,"par_crystal_3 = %2.3f +- %2.3f",par_crystal_3.getVal(),par_crystal_3.getError()); + pave_crystal->AddText(value); + sprintf(value,"range [%d,%d]",range_lo_1,range_hi_1); + pave_crystal->AddText(value); + sprintf(value,"chi^2 %2.1f",fitChi2_crystal); + pave_crystal->AddText(value); + pave_crystal->Draw(); + type= "SB_crystal_"+to_string(range_lo_1)+"_"+to_string(range_hi_1); + c_crystal->SaveAs((dest_dir+"/"+"BackgroundFit_"+type+".png").c_str()); + + RooRealVar par_gaus_exp_0("par_gaus_exp_0", "par_gaus_exp_0", 400, 700); + RooRealVar par_gaus_exp_1("par_gaus_exp_1", "par_gaus_exp_1", 9, 100); + RooRealVar par_gaus_exp_2("par_gaus_exp_2", "par_gaus_exp_2", 0.05, 3.1); + GaussExp f_gaus_exp("f_gaus_exp", "Background Prediction PDF", *x_1, par_gaus_exp_0, par_gaus_exp_1, par_gaus_exp_2); + RooFitResult *r_gaus_exp=f_gaus_exp.fitTo(pred_1, RooFit::Range(range_lo_1, range_hi_1), RooFit::Save()); + + RooPlot *frame_gaus_exp=x_1->frame(); + pred_1.plotOn(frame_gaus_exp, RooFit::LineColor(kBlack), RooFit::MarkerColor(kBlack)); + f_gaus_exp.plotOn(frame_gaus_exp, RooFit::VisualizeError(*r_gaus_exp, 1), RooFit::FillColor(kGray+1), RooFit::FillStyle(3001)); + f_gaus_exp.plotOn(frame_gaus_exp, RooFit::LineColor(kBlue+1)); + double fitChi2_gaus_exp=frame_gaus_exp->chiSquare(); + RooAbsReal* chi2_gaus_exp = f_gaus_exp.createChi2(pred_1); + double pvalue_gaus_exp=TMath::Prob(chi2_gaus_exp->getVal(),int((range_hi_1-range_lo_1)/rebin)-3); + TCanvas *c_gaus_exp=new TCanvas("c_gaus_exp", "c_gaus_exp", 700, 700); + frame_gaus_exp->Draw(); + + TPaveText *pave_gaus_exp = new TPaveText(0.55,0.7,0.82,0.9,"NDC"); + pave_gaus_exp->SetBorderSize(0); + pave_gaus_exp->SetTextSize(0.03); + pave_gaus_exp->SetLineColor(1); + pave_gaus_exp->SetLineStyle(1); + pave_gaus_exp->SetLineWidth(2); + pave_gaus_exp->SetFillColor(0); + pave_gaus_exp->SetFillStyle(0); + pave_gaus_exp->AddText("Gaus_Exp"); + sprintf(value,"par_gaus_exp_0= %2.3f +- %2.3f",par_gaus_exp_0.getVal(),par_gaus_exp_0.getError()); + pave_gaus_exp->AddText(value); + sprintf(value,"par_gaus_exp_1= %2.3f +- %2.3f",par_gaus_exp_1.getVal(),par_gaus_exp_1.getError()); + pave_gaus_exp->AddText(value); + sprintf(value,"par_gaus_exp_2= %2.3f +- %2.3f",par_gaus_exp_2.getVal(),par_gaus_exp_2.getError()); + pave_gaus_exp->AddText(value); + sprintf(value,"chi^2 %2.1f",fitChi2_gaus_exp); + pave_gaus_exp->AddText(value); + pave_gaus_exp->Draw(); + type= "SB_gaus_exp_"+to_string(range_lo_1)+"_"+to_string(range_hi_1); + c_gaus_exp->SaveAs((dest_dir+"/"+"BackgroundFit_"+type+".png").c_str()); + + + + RooRealVar par_novo_0("par_novo_0", "par_novo_0", 300, 445); + RooRealVar par_novo_1("par_novo_1", "par_novo_1", 0.01, 300); + RooRealVar par_novo_2("par_novo_2", "par_novo_2", -10, 1); + RooNovosibirsk f_novo("f_novo", "Background Prediction PDF", *x_2, par_novo_0, par_novo_1, par_novo_2); + RooFitResult *r_novo=f_novo.fitTo(pred_2, RooFit::Range(range_lo_2, range_hi_2), RooFit::Save()); + + RooPlot *frame_novo=x_2->frame(); + pred_2.plotOn(frame_novo, RooFit::LineColor(kBlack), RooFit::MarkerColor(kBlack)); + f_novo.plotOn(frame_novo, RooFit::VisualizeError(*r_novo, 1), RooFit::FillColor(kGray+1), RooFit::FillStyle(3001)); + f_novo.plotOn(frame_novo, RooFit::LineColor(kBlue+1)); + double fitChi2_Novo=frame_novo->chiSquare(); + RooAbsReal* chi2_novo = f_novo.createChi2(pred_2); + double pvalue_novo=TMath::Prob(chi2_novo->getVal(),int((range_hi_2-range_lo_2)/rebin)-3); + + TCanvas *c_novo=new TCanvas("c_novo", "c_novo", 700, 700); + frame_novo->Draw(); + + TPaveText *pave_novo = new TPaveText(0.55,0.7,0.82,0.9,"NDC"); + pave_novo->SetBorderSize(0); + pave_novo->SetTextSize(0.03); + pave_novo->SetLineColor(1); + pave_novo->SetLineStyle(1); + pave_novo->SetLineWidth(2); + pave_novo->SetFillColor(0); + pave_novo->SetFillStyle(0); + pave_novo->AddText("Novo"); + sprintf(value,"par_novo_0= %2.3f +- %2.3f",par_novo_0.getVal(),par_novo_0.getError()); + pave_novo->AddText(value); + sprintf(value,"par_novo_1= %2.3f +- %2.3f",par_novo_1.getVal(),par_novo_1.getError()); + pave_novo->AddText(value); + sprintf(value,"par_novo_2= %2.3f +- %2.3f",par_novo_2.getVal(),par_novo_2.getError()); + pave_novo->AddText(value); + sprintf(value,"range [%d,%d]",range_lo_2,range_hi_2); + pave_novo->AddText(value); + sprintf(value,"chi^2 %2.1f",fitChi2_Novo); + pave_novo->AddText(value); + pave_novo->Draw(); + type= "SB_novo_"+to_string(range_lo_2)+"_"+to_string(range_hi_2); + c_novo->SaveAs((dest_dir+"/"+"BackgroundFit_"+type+".png").c_str()); + + + RooRealVar par_crystal_1_0("par_crystal_1_0", "par_crystal_1_0", 0.01, 9.1); + RooRealVar par_crystal_1_1("par_crystal_1_1", "par_crystal_1_1", 0.01, 9.1); + RooRealVar par_crystal_1_2("par_crystal_1_2", "par_crystal_1_2", 400, 549); + RooRealVar par_crystal_1_3("par_crystal_1_3", "par_crystal_1_3", 10, 200); + RevCrystalBall f_crystal_1("f_crystal_1","f_crystal_1", *x_2, par_crystal_1_0, par_crystal_1_1, par_crystal_1_2, par_crystal_1_3); + RooFitResult *r_crystal_1=f_crystal_1.fitTo(pred_2, RooFit::Range(range_lo_2, range_hi_2), RooFit::Save()); + + RooPlot *frame_crystal_1=x_2->frame(); + pred_2.plotOn(frame_crystal_1, RooFit::LineColor(kBlack), RooFit::MarkerColor(kBlack)); + f_crystal_1.plotOn(frame_crystal_1, RooFit::VisualizeError(*r_crystal_1, 1), RooFit::FillColor(kGray+1), RooFit::FillStyle(3001)); + f_crystal_1.plotOn(frame_crystal_1, RooFit::LineColor(kBlue+1)); + double fitChi2_crystal_1=frame_crystal_1->chiSquare(); + RooAbsReal* chi2_crystal_1 = f_crystal_1.createChi2(pred_2); + double pvalue_crystal_1=TMath::Prob(chi2_crystal_1->getVal(),int((range_hi_2-range_lo_2)/rebin)-3); + + TCanvas *c_crystal_1=new TCanvas("c_crystal_1", "c_crystal_1", 700, 700); + frame_crystal_1->Draw(); + + TPaveText *pave_crystal_1 = new TPaveText(0.55,0.7,0.82,0.9,"NDC"); + pave_crystal_1->SetBorderSize(0); + pave_crystal_1->SetTextSize(0.03); + pave_crystal_1->SetLineColor(1); + pave_crystal_1->SetLineStyle(1); + pave_crystal_1->SetLineWidth(2); + pave_crystal_1->SetFillColor(0); + pave_crystal_1->SetFillStyle(0); + pave_crystal_1->AddText("Revcrystal_1"); + sprintf(value,"par_crystal_1_0= %2.3f +- %2.3f",par_crystal_1_0.getVal(),par_crystal_1_0.getError()); + pave_crystal_1->AddText(value); + sprintf(value,"par_crystal_1_1= %2.3f +- %2.3f",par_crystal_1_1.getVal(),par_crystal_1_1.getError()); + pave_crystal_1->AddText(value); + sprintf(value,"par_crystal_1_2= %2.3f +- %2.3f",par_crystal_1_2.getVal(),par_crystal_1_2.getError()); + pave_crystal_1->AddText(value); + sprintf(value,"par_crystal_1_3= %2.3f +- %2.3f",par_crystal_1_3.getVal(),par_crystal_1_3.getError()); + pave_crystal_1->AddText(value); + sprintf(value,"range [%d,%d]",range_lo_2,range_hi_2); + pave_crystal_1->AddText(value); + sprintf(value,"chi^2 %2.1f",fitChi2_crystal_1); + pave_crystal_1->AddText(value); + pave_crystal_1->Draw(); + type= "SB_crystal_1_"+to_string(range_lo_2)+"_"+to_string(range_hi_2); + c_crystal_1->SaveAs((dest_dir+"/"+"BackgroundFit_"+type+".png").c_str()); + + +/* + RooRealVar par_gaus_bern_0("par_gaus_bern_0", "par_gaus_bern_0", 0.); + par_gaus_bern_0.setConstant(1); + RooRealVar par_gaus_bern_1("par_gaus_bern_1", "par_gaus_bern_1", 10, 1. , 100.); + RooRealVar par_gaus_bern_2("par_gaus_bern_2", "par_gaus_bern_2", 260, 160., 600. ); + RooRealVar *par_gaus_bern_3, *par_gaus_bern_4, *par_gaus_bern_5, *par_gaus_bern_6, *par_gaus_bern_7, *bpar_gaus_bern_8; + par_gaus_bern_3=new RooRealVar("par_gaus_bern_3", "par_gaus_bern_3", 5.); + par_gaus_bern_3->setConstant(1); + par_gaus_bern_4=new RooRealVar("par_gaus_bern_4", "par_gaus_bern_4", 3, -10., 10.); + par_gaus_bern_5=new RooRealVar("par_gaus_bern_5", "par_gaus_bern_5", 1, -10., 10.); + par_gaus_bern_6=new RooRealVar("par_gaus_bern_6", "par_gaus_bern_6", -10., 10.); + par_gaus_bern_7=new RooRealVar("par_gaus_bern_7", "par_gaus_bern_7", -10., 10.); + par_gaus_bern_8=new RooRealVar("par_gaus_bern_8", "par_gaus_bern_8", -10., 5.); + + + RooGaussStepBernstein f_gaus_bern("f_gaus_bern","f_gaus_bern",*x_2, par_gaus_bern_0, par_gaus_bern_1, par_gaus_bern_2, RooArgList(*par_gaus_bern_3, *par_gaus_bern_4, *par_gaus_bern_5)); //, *par_gaus_bern_6)); + RooFitResult *r_gaus_bern=f_gaus_bern.fitTo(pred_2, RooFit::Range(range_lo_2, range_hi_2), RooFit::Save()); + + RooPlot *frame_gaus_bern=x_2->frame(); + pred_2.plotOn(frame_gaus_bern, RooFit::LineColor(kBlack), RooFit::MarkerColor(kBlack)); + f_gaus_bern.plotOn(frame_gaus_bern, RooFit::VisualizeError(*r_gaus_bern, 1), RooFit::FillColor(kGray+1), RooFit::FillStyle(3001)); + f_gaus_bern.plotOn(frame_gaus_bern, RooFit::LineColor(kBlue+1)); + double fitChi2_gaus_bern=frame_gaus_bern->chiSquare(); + RooAbsReal* chi2_gaus_bern = f_gaus_bern.createChi2(pred_2); + double pvalue_gaus_bern=TMath::Prob(chi2_gaus_bern->getVal(),int((range_hi_2-range_lo_2)/rebin)-3); + + TCanvas *c_gaus_bern=new TCanvas("c_gaus_bern", "c_gaus_bern", 700, 700); + frame_gaus_bern->Draw(); + + TPaveText *pave_gaus_bern = new TPaveText(0.55,0.7,0.82,0.9,"NDC"); + pave_gaus_bern->SetBorderSize(0); + pave_gaus_bern->SetTextSize(0.03); + pave_gaus_bern->SetLineColor(1); + pave_gaus_bern->SetLineStyle(1); + pave_gaus_bern->SetLineWidth(2); + pave_gaus_bern->SetFillColor(0); + pave_gaus_bern->SetFillStyle(0); + pave_gaus_bern->AddText("Gaus_bern"); + sprintf(value,"par_gaus_bern_0= %2.3f +- %2.3f",par_gaus_bern_0.getVal(),par_gaus_bern_0.getError()); + pave_gaus_bern->AddText(value); + sprintf(value,"par_gaus_bern_1= %2.3f +- %2.3f",par_gaus_bern_1.getVal(),par_gaus_bern_1.getError()); + pave_gaus_bern->AddText(value); + sprintf(value,"par_gaus_bern_2= %2.3f +- %2.3f",par_gaus_bern_2.getVal(),par_gaus_bern_2.getError()); + pave_gaus_bern->AddText(value); + sprintf(value,"par_gaus_bern_3= %2.3f +- %2.3f",par_gaus_bern_3->getVal(),par_gaus_bern_3->getError()); + pave_gaus_bern->AddText(value); + sprintf(value,"par_gaus_bern_4= %2.3f +- %2.3f",par_gaus_bern_4->getVal(),par_gaus_bern_4->getError()); + pave_gaus_bern->AddText(value); + sprintf(value,"par_gaus_bern_5= %2.3f +- %2.3f",par_gaus_bern_5->getVal(),par_gaus_bern_5->getError()); + pave_gaus_bern->AddText(value); + sprintf(value,"par_gaus_bern_6= %2.3f +- %2.3f",par_gaus_bern_6->getVal(),par_gaus_bern_6->getError()); + pave_gaus_bern->AddText(value); + sprintf(value,"range [%d,%d]",range_lo_2,range_hi_2); + pave_gaus_bern->AddText(value); + sprintf(value,"chi^2 %2.1f",fitChi2_gaus_bern); + pave_gaus_bern->AddText(value); + pave_gaus_bern->Draw(); + type= "SB_gaus_bern_"+to_string(range_lo_2)+"_"+to_string(range_hi_2); + c_gaus_bern->SaveAs((dest_dir+"/"+"BackgroundFit_"+type+".png").c_str()); + + + + + RooRealVar par_landau_0("par_landau_0","par_landau_0",5.54e+02,4.5e+02,6e+02) ; + RooRealVar par_landau_1("par_landau_1","par_landau_1",2.5e+01,18,30) ; + RooLandau f_landau("f_landau","f_landau",*x_2, par_landau_0, par_landau_1); + RooFitResult *r_landau=f_landau.fitTo(pred_2, RooFit::Range(range_lo_2, range_hi_2), RooFit::Save()); + + RooPlot *frame_landau=x_2->frame(); + pred_2.plotOn(frame_landau, RooFit::LineColor(kBlack), RooFit::MarkerColor(kBlack)); + f_landau.plotOn(frame_landau, RooFit::VisualizeError(*r_landau, 1), RooFit::FillColor(kGray+1), RooFit::FillStyle(3001)); + f_landau.plotOn(frame_landau, RooFit::LineColor(kBlue+1)); + double fitChi2_landau=frame_landau->chiSquare(); + RooAbsReal* chi2_landau = f_landau.createChi2(pred_2); + double pvalue_landau=TMath::Prob(chi2_landau->getVal(),int((range_hi_2-range_lo_2)/rebin)-3); + + TCanvas *c_landau=new TCanvas("c_landau", "c_landau", 700, 700); + frame_landau->Draw(); + + TPaveText *pave_landau = new TPaveText(0.55,0.7,0.82,0.9,"NDC"); + pave_landau->SetBorderSize(0); + pave_landau->SetTextSize(0.03); + pave_landau->SetLineColor(1); + pave_landau->SetLineStyle(1); + pave_landau->SetLineWidth(2); + pave_landau->SetFillColor(0); + pave_landau->SetFillStyle(0); + pave_landau->AddText("Landau"); + sprintf(value,"par_landau_0= %2.3f +- %2.3f",par_landau_0.getVal(),par_landau_0.getError()); + pave_landau->AddText(value); + sprintf(value,"par_landau_1= %2.3f +- %2.3f",par_landau_1.getVal(),par_landau_1.getError()); + pave_landau->AddText(value); + sprintf(value,"range [%d,%d]",range_lo_2,range_hi_2); + pave_landau->AddText(value); + sprintf(value,"chi^2 %2.1f",fitChi2_landau); + pave_landau->AddText(value); + pave_landau->Draw(); + type= "SB_landau_"+to_string(range_lo_2)+"_"+to_string(range_hi_2); + c_landau->SaveAs((dest_dir+"/"+"BackgroundFit_"+type+".png").c_str()); + + +*/ + + + TH1* hh_pdf = f_gaus_exp.createHistogram("hh", *x_1, RooFit::Binning(1000,range_hi_1, range_hi_1)) ; + TH1* hh_pdf_11 = f_crystal.createHistogram("hh1", *x_1, RooFit::Binning(1000,range_hi_1, range_hi_1)) ; + //TH1* hh_pdf_11 = f_novo.createHistogram("hh1", *x_1, RooFit::Binning(1000,range_hi_1, range_hi_1)) ; + TH1* hh_pdf_2 = f_gaus_exp.createHistogram("difference_1", *x_1, RooFit::Binning(1000,range_hi_1, range_hi_1)) ; + TH1* hh_pdf_4 = f_gaus_exp.createHistogram("sum", *x_1, RooFit::Binning(1000,range_hi_1, range_hi_1)) ; + TH1* hh_pdf_5 = f_gaus_exp.createHistogram("ratio", *x_1, RooFit::Binning(1000,range_hi_1, range_hi_1)) ; + hh_pdf_5->SetLineColor(kRed); + hh_pdf_2->Add(hh_pdf_11,-1); + hh_pdf_4->Add(hh_pdf_11,1); + hh_pdf_4->Scale(0.5); + hh_pdf_5->Add(hh_pdf,-1); + hh_pdf_5->Add(hh_pdf_2,1); + hh_pdf_5->Divide(hh_pdf_4); + hh_pdf_5->GetYaxis()->SetRangeUser(-1,1); + new TCanvas; hh_pdf_5->Draw(); + + + + TH1* hh_pdf_1 = f_novo.createHistogram("hh_1", *x_2, RooFit::Binning(1000,range_hi_2, range_hi_2)) ; + TH1* hh_pdf_1_1 = f_crystal_1.createHistogram("hh1_1", *x_2, RooFit::Binning(1000,range_hi_2, range_hi_2)) ; + //TH1* hh_pdf_1_1 = f_gaus_bern.createHistogram("hh1_1", *x_2, RooFit::Binning(1000,range_hi_2, range_hi_2)) ; + //TH1* hh_pdf_1_1 = f_gaus_exp.createHistogram("hh1_1", *x_2, RooFit::Binning(1000,range_hi_2, range_hi_2)) ; + //TH1* hh_pdf_1_1 = f_landau.createHistogram("hh1_1", *x_2, RooFit::Binning(1000,range_hi_2, range_hi_2)) ; + TH1* hh_pdf_2_1 = f_novo.createHistogram("difference_1_1", *x_2, RooFit::Binning(1000,range_hi_2, range_hi_2)) ; + TH1* hh_pdf_4_1 = f_novo.createHistogram("sum_1", *x_2, RooFit::Binning(1000,range_hi_2, range_hi_2)) ; + TH1* hh_pdf_5_1 = f_novo.createHistogram("ratio_1", *x_2, RooFit::Binning(1000,range_hi_2, range_hi_2)) ; + hh_pdf_5_1->SetLineColor(kRed); + hh_pdf_2_1->Add(hh_pdf_1_1,-1); + hh_pdf_4_1->Add(hh_pdf_1_1,1); + hh_pdf_4_1->Scale(0.5); + hh_pdf_5_1->Add(hh_pdf_1,-1); + hh_pdf_5_1->Add(hh_pdf_2_1,1); + hh_pdf_5_1->Divide(hh_pdf_4_1); + hh_pdf_5_1->GetYaxis()->SetRangeUser(-1,1); + new TCanvas; hh_pdf_5_1->Draw(); + + + + + + + double xPad = 0.3; + TCanvas *c_gaus_exp_1=new TCanvas("c_gaus_exp_1", "c_gaus_exp_1", 700*(1.-xPad), 700); + c_gaus_exp_1->SetFillStyle(4000); + c_gaus_exp_1->SetFrameFillColor(0); + + TPad *p_1=new TPad("p_1", "p_1", 0, xPad, 1, 1); + p_1->SetFillStyle(4000); + p_1->SetFrameFillColor(0); + p_1->SetBottomMargin(0.02); + + TPad* p_2 = new TPad("p_2", "p_2",0,0,1,xPad); + p_2->SetBottomMargin((1.-xPad)/xPad*0.13); + p_2->SetTopMargin(0.03); + p_2->SetFillColor(0); + p_2->SetBorderMode(0); + p_2->SetBorderSize(2); + p_2->SetFrameBorderMode(0); + p_2->SetFrameBorderMode(0); + + p_1->Draw(); + p_2->Draw(); + p_1->cd(); + + + RooPlot *frame_gaus_exp_1=x_1->frame(); + pred_1.plotOn(frame_gaus_exp_1, RooFit::LineColor(kBlack), RooFit::MarkerColor(kBlack)); + f_gaus_exp.plotOn(frame_gaus_exp_1, RooFit::VisualizeError(*r_gaus_exp, 1), RooFit::FillColor(kBlack), RooFit::FillStyle(3004)); + f_crystal.plotOn(frame_gaus_exp_1, RooFit::VisualizeError(*r_crystal, 1), RooFit::FillColor(kRed+1), RooFit::FillStyle(3001)); + f_gaus_exp.plotOn(frame_gaus_exp_1, RooFit::LineColor(kBlack), RooFit::LineWidth(6)); + f_crystal.plotOn(frame_gaus_exp_1, RooFit::LineColor(kRed), RooFit::LineWidth(3), RooFit::LineStyle(kDashed) ); + + + if (log=="log") frame_gaus_exp_1->GetYaxis()->SetRangeUser(1e-4, h_mX_SR->GetMaximum()*5.); + else frame_gaus_exp_1->GetYaxis()->SetRangeUser(0, h_mX_SR->GetMaximum()*1.2); + frame_gaus_exp_1->GetXaxis()->SetLabelOffset(0.03); + frame_gaus_exp_1->GetYaxis()->SetLabelFont(42); + frame_gaus_exp_1->GetYaxis()->SetTitleFont(42); + frame_gaus_exp_1->GetYaxis()->SetTitleOffset(1.25); + frame_gaus_exp_1->Draw("same"); + frame_gaus_exp_1->SetTitle(("; m_{X} (GeV); Events / "+itoa(h_mX_SR->GetBinWidth(1))+" GeV").c_str()); + if (log=="log") p_1->SetLogy(); + + TPaveText *pave = new TPaveText(0.65,0.57,0.83,0.72,"NDC"); + pave->SetBorderSize(0); + pave->SetTextSize(0.03); + pave->SetLineColor(1); + pave->SetLineStyle(1); + pave->SetLineWidth(2); + pave->SetFillColor(0); + pave->SetFillStyle(0); + char name[1000]; + char name1[1000]; + if (hist.substr(0,7)=="h_mX_SB") { + sprintf(name,"SB_gaus_exp #chi^{2}/n = %.2f",fitChi2_gaus_exp); + sprintf(name1,"p-value_gaus_exp = %.2f",pvalue_gaus_exp); + } + else sprintf(name,"SR_gaus_exp #chi^{2}/n = %.2f",fitChi2_gaus_exp); + pave->AddText(name); + pave->AddText(name1); + if (hist.substr(0,7)=="h_mX_SB") { + sprintf(name,"SB_crystal #chi^{2}/n = %.2f",fitChi2_crystal); + sprintf(name1,"p-value_crystal = %.2f",pvalue_crystal); + } + else sprintf(name,"SR_crystal #chi^{2}/n = %.2f",fitChi2_crystal); + pave->AddText(name); + pave->AddText(name1); + pave->Draw(); + + TLatex * tPrel = new TLatex(); + tPrel->SetNDC(); + tPrel->SetTextColor(kBlack); + tPrel->SetTextSize(0.04); + + TLegend *leg = new TLegend(0.61, 0.72,0.75,0.89,NULL,"brNDC"); + leg->SetBorderSize(0); + leg->SetTextSize(0.035); + leg->SetLineColor(1); + leg->SetLineStyle(1); + leg->SetLineWidth(2); + leg->SetFillColor(0); + leg->SetFillStyle(0); + h_mX_SR->SetMarkerStyle(20); + if (hist.substr(0,7)=="h_mX_SB"){ + h_mX_SR->SetLineColor(kBlack); + h_mX_SR->SetMarkerColor(kBlack); + leg->AddEntry(h_mX_SR, "Data in SB", "ep"); + + } + else leg->AddEntry(h_mX_SR, "Data in SR", "ep"); + TH1F * temp = new TH1F("temp", "temp", 100, 0,1); temp->SetLineWidth(2); temp->SetLineColor(kBlack); + leg->AddEntry(temp, "GaussExp fit", "l"); + TH1F * temp1 = new TH1F("temp1", "temp1", 100, 0,1); temp1->SetLineWidth(2); + temp1->SetLineColor(kRed); + leg->AddEntry(temp1, "CrystalBall fit", "l"); + leg->Draw(); + + CMS_lumi( p_1, iPeriod, iPos ); + + p_2->cd(); + RooHist *hpull, *hpull1; + hpull = frame_gaus_exp->pullHist(); + hpull->SetLineWidth(2); + hpull1 = frame_crystal->pullHist(); + hpull1->SetMarkerColor(kRed); + hpull1->SetLineStyle(kDashed); + hpull1->SetMarkerSize(0.6); + hpull1->SetLineColor(kRed); + RooPlot* frameP = x_1->frame() ; + + frameP->SetTitle("; m_{X} (GeV); Pull"); + frameP->addPlotable(hpull,"P"); + frameP->addPlotable(hpull1,"P same"); + frameP->GetYaxis()->SetTitleSize(0.07); + frameP->GetYaxis()->SetTitleOffset(0.5); + frameP->GetXaxis()->SetTitleSize(0.09); + frameP->GetXaxis()->SetTitleOffset(1.0); + frameP->GetXaxis()->SetLabelSize(0.07); + frameP->GetYaxis()->SetLabelSize(0.06); + frameP->Draw(); + + + TLine *line=new TLine(range_lo_1, 0, range_hi_1, 0); + line->SetLineWidth(2); + line->Draw(); + + string tag; + if (hist.substr(0,7)=="h_mX_SB") tag="SB"; + else tag="SR"; + c_gaus_exp_1->SaveAs((dest_dir+"/"+"BackgroundFit_"+tag+"_Split_1.png").c_str()); + c_gaus_exp_1->SaveAs((dest_dir+"/"+"BackgroundFit_"+tag+"_Split_1.pdf").c_str()); + + + TCanvas *c_novo_1=new TCanvas("c_novo_1", "c_novo_1", 700*(1.-xPad), 700); + c_novo_1->SetFillStyle(4000); + c_novo_1->SetFrameFillColor(0); + + TPad *p_3=new TPad("p_3", "p_3", 0, xPad, 1, 1); + p_3->SetFillStyle(4000); + p_3->SetFrameFillColor(0); + p_3->SetBottomMargin(0.02); + + TPad* p_4 = new TPad("p_4", "p_4",0,0,1,xPad); + p_4->SetBottomMargin((1.-xPad)/xPad*0.13); + p_4->SetTopMargin(0.03); + p_4->SetFillColor(0); + p_4->SetBorderMode(0); + p_4->SetBorderSize(2); + p_4->SetFrameBorderMode(0); + p_4->SetFrameBorderMode(0); + + p_3->Draw(); + p_4->Draw(); + p_3->cd(); + + + RooPlot *frame_novo_1=x_2->frame(); + pred_2.plotOn(frame_novo_1, RooFit::LineColor(kBlack), RooFit::MarkerColor(kBlack)); + f_crystal_1.plotOn(frame_novo_1, RooFit::VisualizeError(*r_crystal_1, 1), RooFit::FillColor(kBlack), RooFit::FillStyle(3001)); + f_novo.plotOn(frame_novo_1, RooFit::VisualizeError(*r_novo, 1), RooFit::FillColor(kRed+1), RooFit::FillStyle(3004)); + f_crystal_1.plotOn(frame_novo_1, RooFit::LineColor(kBlack), RooFit::LineWidth(6)); + f_novo.plotOn(frame_novo_1, RooFit::LineColor(kRed), RooFit::LineWidth(3), RooFit::LineStyle(kDashed) ); + + + if (log=="log") frame_novo_1->GetYaxis()->SetRangeUser(1e-4, h_mX_SR->GetMaximum()*5); + else frame_novo_1->GetYaxis()->SetRangeUser(0, h_mX_SR->GetMaximum()*1.2); + frame_novo_1->GetXaxis()->SetLabelOffset(0.03); + frame_novo_1->GetYaxis()->SetLabelFont(42); + frame_novo_1->GetYaxis()->SetTitleFont(42); + frame_novo_1->GetYaxis()->SetTitleOffset(1.25); + frame_novo_1->Draw("same"); + frame_novo_1->SetTitle(("; m_{X} (GeV); Events / "+itoa(h_mX_SR->GetBinWidth(1))+" GeV").c_str()); + if (log=="log") p_3->SetLogy(); + + TPaveText *pave_1 = new TPaveText(0.65,0.57,0.85,0.72,"NDC"); + pave_1->SetBorderSize(0); + pave_1->SetTextSize(0.03); + pave_1->SetLineColor(1); + pave_1->SetLineStyle(1); + pave_1->SetLineWidth(2); + pave_1->SetFillColor(0); + pave_1->SetFillStyle(0); + char name_1[1000]; + char name_11[1000]; + if (hist.substr(0,7)=="h_mX_SB") { + sprintf(name_1,"SB_crystal #chi^{2}/n = %.2f",fitChi2_crystal_1); + sprintf(name_11,"p-value_crystal = %.2f",pvalue_crystal_1); + } + else sprintf(name_1,"SR_crystal #chi^{2}/n = %.2f",fitChi2_crystal_1); + pave_1->AddText(name_1); + pave_1->AddText(name_11); + if (hist.substr(0,7)=="h_mX_SB") { + sprintf(name_1,"SB_novo #chi^{2}/n = %.2f",fitChi2_Novo); + sprintf(name_11,"p-value_novo = %.2f",pvalue_novo); + } + else sprintf(name_1,"SR_novo #chi^{2}/n = %.2f",fitChi2_Novo); + pave_1->AddText(name_1); + pave_1->AddText(name_11); + pave_1->Draw(); + + TLatex * tPrel_1 = new TLatex(); + tPrel_1->SetNDC(); + tPrel_1->SetTextColor(kBlack); + tPrel_1->SetTextSize(0.04); + + TLegend *leg_1 = new TLegend(0.61, 0.72,0.75,0.89,NULL,"brNDC"); + leg_1->SetBorderSize(0); + leg_1->SetTextSize(0.035); + leg_1->SetLineColor(1); + leg_1->SetLineStyle(1); + leg_1->SetLineWidth(2); + leg_1->SetFillColor(0); + leg_1->SetFillStyle(0); + h_mX_SR->SetMarkerStyle(20); + if (hist.substr(0,7)=="h_mX_SB"){ + h_mX_SR->SetLineColor(kBlack); + h_mX_SR->SetMarkerColor(kBlack); + leg_1->AddEntry(h_mX_SR, "Data in SB", "ep"); + + } + else leg_1->AddEntry(h_mX_SR, "Data in SR", "ep"); + TH1F* temp_1 = new TH1F("temp_1", "temp_1", 100, 0,1); temp_1->SetLineWidth(2); temp_1->SetLineColor(kRed); + TH1F* temp_11 = new TH1F("temp_11", "temp_11", 100, 0,1); temp_11->SetLineWidth(2); + temp_11->SetLineColor(kBlack); + leg_1->AddEntry(temp_11, "CrystalBall fit", "l"); + leg_1->AddEntry(temp_1, "Novorsibisk fit", "l"); + leg_1->Draw(); + + CMS_lumi( p_3, iPeriod, iPos ); + + p_4->cd(); + RooHist *hpull_1, *hpull_11; + hpull_1 = frame_novo->pullHist(); + hpull_1->SetLineWidth(2); + hpull_11 = frame_crystal_1->pullHist(); + hpull_11->SetLineStyle(kDashed); + hpull_11->SetLineColor(kRed); + hpull_11->SetMarkerSize(0.6); + hpull_11->SetMarkerColor(kRed); + RooPlot* frameP_1 = x_2->frame() ; + + frameP_1->SetTitle("; m_{X} (GeV); Pull"); + frameP_1->addPlotable(hpull_1,"P"); + frameP_1->addPlotable(hpull_11,"P same"); + frameP_1->GetYaxis()->SetTitleSize(0.07); + frameP_1->GetYaxis()->SetTitleOffset(0.5); + frameP_1->GetXaxis()->SetTitleSize(0.09); + frameP_1->GetXaxis()->SetTitleOffset(1.0); + frameP_1->GetXaxis()->SetLabelSize(0.07); + frameP_1->GetYaxis()->SetLabelSize(0.06); + frameP_1->Draw(); + + + TLine *line_1=new TLine(range_lo_2, 0, range_hi_2, 0); + line_1->SetLineWidth(2); + line_1->Draw(); + + c_novo_1->SaveAs((dest_dir+"/"+"BackgroundFit_"+tag+"_Split_2.png").c_str()); + c_novo_1->SaveAs((dest_dir+"/"+"BackgroundFit_"+tag+"_Split_2.pdf").c_str()); + + + + + + + + + + TH1F *h_mX_SR_fakeData=(TH1F*)h_mX_SR->Clone("h_mX_SR_fakeData"); + h_mX_SR_fakeData->Scale(nEventsSR/h_mX_SR_fakeData->GetSumOfWeights()); + + RooDataHist data_obs_crystal(Form("data_obs_crystal_%d_%d",range_lo_1, range_hi_1), "Data", RooArgList(*x_1), h_mX_SR_fakeData); + RooDataHist data_obs_gaus_exp(Form("data_obs_gaus_exp_%d_%d",range_lo_1, range_hi_1), "Data", RooArgList(*x_1), h_mX_SR_fakeData); + RooDataHist data_obs_novo(Form("data_obs_novo_%d_%d",range_lo_2, range_hi_2), "Data", RooArgList(*x_2), h_mX_SR_fakeData); + RooDataHist data_obs_crystal_1(Form("data_obs_crystal_1_%d_%d",range_lo_2, range_hi_2), "Data", RooArgList(*x_2), h_mX_SR_fakeData); + //RooDataHist data_obs_gaus_bern(Form("data_obs_gaus_bern_%d_%d",range_lo_2, range_hi_2), "Data", RooArgList(*x_2), h_mX_SR_fakeData); + //RooDataHist data_obs_landau(Form("data_obs_landau_%d_%d",range_lo_2, range_hi_2), "Data", RooArgList(*x_2), h_mX_SR_fakeData); + + RooRealVar f_crystal_norm("f_crystal_norm","f_crystal_norm",h_mX_SR_fakeData->Integral(h_mX_SR_fakeData->FindBin(range_lo_1),h_mX_SR_fakeData->FindBin(range_hi_1))); + RooWorkspace *w_background_crystal=new RooWorkspace("HbbHbb"); + w_background_crystal->import(data_obs_crystal); + w_background_crystal->import(f_crystal); + //w_background_crystal->import(f_crystal_norm); + w_background_crystal->SaveAs((dest_dir+"/"+Form("w_background_crystal_%d_%d.root",range_lo_1,range_hi_1)).c_str()); + + RooRealVar f_gaus_exp_norm("f_gaus_exp_norm","f_gaus_exp_norm",h_mX_SR_fakeData->Integral(h_mX_SR_fakeData->FindBin(range_lo_1),h_mX_SR_fakeData->FindBin(range_hi_1))); + RooWorkspace *w_background_gaus_exp=new RooWorkspace("HbbHbb"); + w_background_gaus_exp->import(data_obs_gaus_exp); + w_background_gaus_exp->import(f_gaus_exp); + //w_background_gaus_exp->import(f_gaus_exp_norm); + w_background_gaus_exp->SaveAs((dest_dir+"/"+Form("w_background_gaus_exp_%d_%d.root",range_lo_1,range_hi_1)).c_str()); + + + RooRealVar f_novo_norm("f_novo_norm","f_novo_norm",h_mX_SR_fakeData->Integral(h_mX_SR_fakeData->FindBin(range_lo_2),h_mX_SR_fakeData->FindBin(range_hi_2))); + RooWorkspace *w_background_novo=new RooWorkspace("HbbHbb"); + w_background_novo->import(data_obs_novo); + w_background_novo->import(f_novo); + //w_background_novo->import(f_novo_norm); + w_background_novo->SaveAs((dest_dir+"/"+Form("w_background_novo_%d_%d.root",range_lo_2,range_hi_2)).c_str()); + + RooRealVar f_crystal_1_norm("f_crystal_1_norm","f_crystal_1_norm",h_mX_SR_fakeData->Integral(h_mX_SR_fakeData->FindBin(range_lo_2),h_mX_SR_fakeData->FindBin(range_hi_2))); + RooWorkspace *w_background_crystal_1=new RooWorkspace("HbbHbb"); + w_background_crystal_1->import(data_obs_crystal_1); + w_background_crystal_1->import(f_crystal_1); + //w_background_crystal_1->import(f_crystal_1_norm); + w_background_crystal_1->SaveAs((dest_dir+"/"+Form("w_background_crystal_1_%d_%d.root",range_lo_2,range_hi_2)).c_str()); + +/* + RooWorkspace *w_background_gaus_bern=new RooWorkspace("HbbHbb"); + w_background_gaus_bern->import(data_obs_gaus_bern); + w_background_gaus_bern->import(f_gaus_bern); + w_background_gaus_bern->SaveAs((dest_dir+"/"+Form("w_background_gaus_bern_%d_%d.root",range_lo_2,range_hi_2)).c_str()); + + + RooWorkspace *w_background_landau=new RooWorkspace("HbbHbb"); + w_background_landau->import(data_obs_landau); + w_background_landau->import(f_landau); + w_background_landau->SaveAs((dest_dir+"/"+Form("w_background_landau_%d_%d.root",range_lo_2,range_hi_2)).c_str()); +*/ + + + + std::cout<<" === RooFit data fit result to be entered in datacard === "< +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +int iPeriod = 4; +int iPos = 11; + +#include "CMS_lumi.h" +#include + +void +CMS_lumi( TPad* pad, int iPeriod, int iPosX ) +{ + bool outOfFrame = false; + if( iPosX/10==0 ) + { + outOfFrame = true; + } + int alignY_=3; + int alignX_=2; + if( iPosX/10==0 ) alignX_=1; + if( iPosX==0 ) alignX_=1; + if( iPosX==0 ) alignY_=1; + if( iPosX/10==1 ) alignX_=1; + if( iPosX/10==2 ) alignX_=2; + if( iPosX/10==3 ) alignX_=3; + if( iPosX == 0 ) relPosX = 0.14; + int align_ = 10*alignX_ + alignY_; + + float H = pad->GetWh(); + float W = pad->GetWw(); + float l = pad->GetLeftMargin(); + float t = pad->GetTopMargin(); + float r = pad->GetRightMargin(); + float b = pad->GetBottomMargin(); + + pad->cd(); + + TString lumiText; + if( iPeriod==1 ) + { + lumiText += lumi_7TeV; + lumiText += " (7 TeV)"; + } + else if ( iPeriod==2 ) + { + lumiText += lumi_8TeV; + lumiText += " (8 TeV)"; + } + else if( iPeriod==3 ) + { + lumiText = lumi_8TeV; + lumiText += " (8 TeV)"; + lumiText += " + "; + lumiText += lumi_7TeV; + lumiText += " (7 TeV)"; + } + else if ( iPeriod==4 ) + { + lumiText += lumi_13TeV; + lumiText += " (13 TeV)"; + } + else if ( iPeriod==7 ) + { + if( outOfFrame ) lumiText += "#scale[0.85]{"; + lumiText += lumi_13TeV; + lumiText += " (13 TeV)"; + lumiText += " + "; + lumiText += lumi_8TeV; + lumiText += " (8 TeV)"; + lumiText += " + "; + lumiText += lumi_7TeV; + lumiText += " (7 TeV)"; + if( outOfFrame) lumiText += "}"; + } + else if ( iPeriod==12 ) + { + lumiText += "8 TeV"; + } + else if ( iPeriod==0 ) + { + lumiText += lumi_sqrtS; + } + + std::cout << lumiText << endl; + + TLatex latex; + latex.SetNDC(); + latex.SetTextAngle(0); + latex.SetTextColor(kBlack); + + float extraTextSize = extraOverCmsTextSize*cmsTextSize; + + latex.SetTextFont(42); + latex.SetTextAlign(31); + latex.SetTextSize(lumiTextSize*t); + latex.DrawLatex(1-r,1-t+lumiTextOffset*t,lumiText); + + if( outOfFrame ) + { + latex.SetTextFont(cmsTextFont); + latex.SetTextAlign(11); + latex.SetTextSize(cmsTextSize*t); + latex.DrawLatex(l,1-t+lumiTextOffset*t,cmsText); + } + + pad->cd(); + + float posX_=0; + if( iPosX%10<=1 ) + { + posX_ = l + relPosX*(1-l-r); + } + else if( iPosX%10==2 ) + { + posX_ = l + 0.5*(1-l-r); + } + else if( iPosX%10==3 ) + { + posX_ = 1-r - relPosX*(1-l-r); + } + float posY_ = 1-t - relPosY*(1-t-b); + if( !outOfFrame ) + { + if( drawLogo ) + { + posX_ = l + 0.045*(1-l-r)*W/H; + posY_ = 1-t - 0.045*(1-t-b); + float xl_0 = posX_; + float yl_0 = posY_ - 0.15; + float xl_1 = posX_ + 0.15*H/W; + float yl_1 = posY_; + TASImage* CMS_logo = new TASImage("CMS-BW-label.png"); + TPad* pad_logo = new TPad("logo","logo", xl_0, yl_0, xl_1, yl_1 ); + pad_logo->Draw(); + pad_logo->cd(); + CMS_logo->Draw("X"); + pad_logo->Modified(); + pad->cd(); + } + else + { + latex.SetTextFont(cmsTextFont); + latex.SetTextSize(cmsTextSize*t); + latex.SetTextAlign(align_); + latex.DrawLatex(posX_, posY_, cmsText); + if( writeExtraText ) + { + latex.SetTextFont(extraTextFont); + latex.SetTextAlign(align_); + latex.SetTextSize(extraTextSize*t); + latex.DrawLatex(posX_, posY_- relExtraDY*cmsTextSize*t, extraText); + } + } + } + else if( writeExtraText ) + { + if( iPosX==0) + { + posX_ = l + relPosX*(1-l-r); + posY_ = 1-t+lumiTextOffset*t; + } + latex.SetTextFont(extraTextFont); + latex.SetTextSize(extraTextSize*t); + latex.SetTextAlign(align_); + latex.DrawLatex(posX_, posY_, extraText); + } + return; +} + + +std::string itoa(int i) +{ + char res[10]; + sprintf(res, "%d", i); + std::string ret(res); + return ret; +} + +void BackgroundPrediction_Kinematic_Split(int range_lo_1, int range_hi_1, double rebin, + int range_lo_2, int range_hi_2, + std::string hist="h_mX_SB_kinFit", + std::string log="lin", + std::string filename="Histograms_LMR_BTagTotal.root", + std::string dest_dir="") +{ + gROOT->SetStyle("Plain"); + gStyle->SetPadGridX(0); + gStyle->SetPadGridY(0); + gStyle->SetOptStat(0000); + writeExtraText = true; + extraText = "Preliminary"; + lumi_13TeV = "35.9 fb^{-1}"; + + + + TFile *f_AntiTag=new TFile("PreselectedWithRegressionDeepCSV/LMRSelection_chi2_AntiTag/Histograms_LMR_AntiTag_BTagTotal.root"); + TH1F *h_SR_AntiTag=(TH1F*)f_AntiTag->Get("h_mX_SR_kinFit"); + h_SR_AntiTag->Rebin(rebin); + + TH1F *h_SB_AntiTag=(TH1F*)f_AntiTag->Get("h_mX_SB_kinFit"); + h_SB_AntiTag->Rebin(rebin); + + TFile *f_Tag=new TFile("PreselectedWithRegressionDeepCSV/LMRSelection_chi2/Histograms_LMR_BTagTotal.root"); + TH1F *h_SB=(TH1F*)f_Tag->Get("h_mX_SB_kinFit"); + h_SB->Rebin(rebin); + + TH1F *h_SR=(TH1F*)f_Tag->Get("h_mX_SR_kinFit"); + double nEventsSR= h_SR->Integral(); + + h_SR_AntiTag->Scale(1./h_SR_AntiTag->Integral()); + h_SB_AntiTag->Scale(1./h_SB_AntiTag->Integral()); + h_SB->Scale(1./h_SB->Integral()); + + h_SR_AntiTag->Divide(h_SB_AntiTag); + h_SR_AntiTag->Multiply(h_SB); +// + h_SR_AntiTag->Scale(nEventsSR); + + TFile *f_data=new TFile((dest_dir+"/"+filename).c_str()); + TH1F *h_mX_SR; + if (hist.substr(0,7)=="h_mX_SB") { + h_mX_SR=(TH1F*)h_SR_AntiTag->Clone("h_mX_SR_kinFit"); + } + else{ + h_mX_SR=(TH1F*)f_data->Get(hist.c_str()); + h_mX_SR->Rebin(rebin); + } + new TCanvas; h_mX_SR->Draw(); + + + char value[1000]; + + RooRealVar *x_1 = new RooRealVar("x", "m_{X} (GeV)", range_lo_1, range_hi_1); + RooRealVar *x_2 = new RooRealVar("x", "m_{X} (GeV)", range_lo_2, range_hi_2); + RooDataHist pred_1("pred_1", "Data", RooArgList(*x_1), h_mX_SR); + RooDataHist pred_2("pred_2", "Data", RooArgList(*x_2), h_mX_SR); + + string type; + + RooRealVar par_crystal_0("par_crystal_0", "par_crystal_0", 0.01, 9.1); + RooRealVar par_crystal_1("par_crystal_1", "par_crystal_1", 0.01, 9.1); + RooRealVar par_crystal_2("par_crystal_2", "par_crystal_2", 240, 280); + RooRealVar par_crystal_3("par_crystal_3", "par_crystal_3", 3, 40); + RevCrystalBall f_crystal("f_crystal","f_crystal", *x_1, par_crystal_0, par_crystal_1, par_crystal_2, par_crystal_3); + RooFitResult *r_crystal=f_crystal.fitTo(pred_1, RooFit::Range(range_lo_1, range_hi_1), RooFit::Save()); + + RooPlot *frame_crystal=x_1->frame(); + pred_1.plotOn(frame_crystal, RooFit::LineColor(kBlack), RooFit::MarkerColor(kBlack)); + f_crystal.plotOn(frame_crystal, RooFit::VisualizeError(*r_crystal, 1.), RooFit::FillColor(kGray+1), RooFit::FillStyle(3001)); + f_crystal.plotOn(frame_crystal, RooFit::LineColor(kBlue+1)); + double fitChi2_crystal=frame_crystal->chiSquare(); + RooAbsReal* chi2_crystal = f_crystal.createChi2(pred_1); + double pvalue_crystal=TMath::Prob(chi2_crystal->getVal(),int((range_hi_1-range_lo_1)/rebin)-3); + + TCanvas *c_crystal=new TCanvas("c_crystal", "c_crystal", 700, 700); + frame_crystal->Draw(); + + TPaveText *pave_crystal = new TPaveText(0.55,0.7,0.82,0.9,"NDC"); + pave_crystal->SetBorderSize(0); + pave_crystal->SetTextSize(0.03); + pave_crystal->SetLineColor(1); + pave_crystal->SetLineStyle(1); + pave_crystal->SetLineWidth(2); + pave_crystal->SetFillColor(0); + pave_crystal->SetFillStyle(0); + pave_crystal->AddText("RevCrystal"); + sprintf(value,"par_crystal_0 = %2.3f +- %2.3f",par_crystal_0.getVal(),par_crystal_0.getError()); + pave_crystal->AddText(value); + sprintf(value,"par_crystal_1 = %2.3f +- %2.3f",par_crystal_1.getVal(),par_crystal_1.getError()); + pave_crystal->AddText(value); + sprintf(value,"par_crystal_2 = %2.3f +- %2.3f",par_crystal_2.getVal(),par_crystal_2.getError()); + pave_crystal->AddText(value); + sprintf(value,"par_crystal_3 = %2.3f +- %2.3f",par_crystal_3.getVal(),par_crystal_3.getError()); + pave_crystal->AddText(value); + sprintf(value,"range [%d,%d]",range_lo_1,range_hi_1); + pave_crystal->AddText(value); + sprintf(value,"chi^2 %2.1f",fitChi2_crystal); + pave_crystal->AddText(value); + pave_crystal->Draw(); + type= "SB_crystal_"+to_string(range_lo_1)+"_"+to_string(range_hi_1); + c_crystal->SaveAs((dest_dir+"/"+"BackgroundFit_"+type+".png").c_str()); + + RooRealVar par_gaus_exp_0("par_gaus_exp_0", "par_gaus_exp_0", 250, 330); + RooRealVar par_gaus_exp_1("par_gaus_exp_1", "par_gaus_exp_1", 0.1, 15.7); + RooRealVar par_gaus_exp_2("par_gaus_exp_2", "par_gaus_exp_2", 0.01, 7.5); + GaussExp f_gaus_exp("f_gaus_exp", "Background Prediction PDF", *x_1, par_gaus_exp_0, par_gaus_exp_1, par_gaus_exp_2); + RooFitResult *r_gaus_exp=f_gaus_exp.fitTo(pred_1, RooFit::Range(range_lo_1, range_hi_1), RooFit::Save()); + + RooPlot *frame_gaus_exp=x_1->frame(); + pred_1.plotOn(frame_gaus_exp, RooFit::LineColor(kBlack), RooFit::MarkerColor(kBlack)); + f_gaus_exp.plotOn(frame_gaus_exp, RooFit::VisualizeError(*r_gaus_exp, 1), RooFit::FillColor(kGray+1), RooFit::FillStyle(3001)); + f_gaus_exp.plotOn(frame_gaus_exp, RooFit::LineColor(kBlue+1)); + double fitChi2_gaus_exp=frame_gaus_exp->chiSquare(); + RooAbsReal* chi2_gaus_exp = f_gaus_exp.createChi2(pred_1); + double pvalue_gaus_exp=TMath::Prob(chi2_gaus_exp->getVal(),int((range_hi_1-range_lo_1)/rebin)-3); + TCanvas *c_gaus_exp=new TCanvas("c_gaus_exp", "c_gaus_exp", 700, 700); + frame_gaus_exp->Draw(); + + TPaveText *pave_gaus_exp = new TPaveText(0.55,0.7,0.82,0.9,"NDC"); + pave_gaus_exp->SetBorderSize(0); + pave_gaus_exp->SetTextSize(0.03); + pave_gaus_exp->SetLineColor(1); + pave_gaus_exp->SetLineStyle(1); + pave_gaus_exp->SetLineWidth(2); + pave_gaus_exp->SetFillColor(0); + pave_gaus_exp->SetFillStyle(0); + pave_gaus_exp->AddText("Gaus_Exp"); + sprintf(value,"par_gaus_exp_0= %2.3f +- %2.3f",par_gaus_exp_0.getVal(),par_gaus_exp_0.getError()); + pave_gaus_exp->AddText(value); + sprintf(value,"par_gaus_exp_1= %2.3f +- %2.3f",par_gaus_exp_1.getVal(),par_gaus_exp_1.getError()); + pave_gaus_exp->AddText(value); + sprintf(value,"par_gaus_exp_2= %2.3f +- %2.3f",par_gaus_exp_2.getVal(),par_gaus_exp_2.getError()); + pave_gaus_exp->AddText(value); + sprintf(value,"chi^2 %2.1f",fitChi2_gaus_exp); + pave_gaus_exp->AddText(value); + pave_gaus_exp->Draw(); + type= "SB_gaus_exp_"+to_string(range_lo_1)+"_"+to_string(range_hi_1); + c_gaus_exp->SaveAs((dest_dir+"/"+"BackgroundFit_"+type+".png").c_str()); + + + + RooRealVar par_novo_0("par_novo_0", "par_novo_0", 150, 160); + RooRealVar par_novo_1("par_novo_1", "par_novo_1", 0.01, 150); + RooRealVar par_novo_2("par_novo_2", "par_novo_2", -10, 1); + RooNovosibirsk f_novo("f_novo", "Background Prediction PDF", *x_2, par_novo_0, par_novo_1, par_novo_2); + RooFitResult *r_novo=f_novo.fitTo(pred_2, RooFit::Range(range_lo_2, range_hi_2), RooFit::Save()); + + RooPlot *frame_novo=x_2->frame(); + pred_2.plotOn(frame_novo, RooFit::LineColor(kBlack), RooFit::MarkerColor(kBlack)); + f_novo.plotOn(frame_novo, RooFit::VisualizeError(*r_novo, 1), RooFit::FillColor(kGray+1), RooFit::FillStyle(3001)); + f_novo.plotOn(frame_novo, RooFit::LineColor(kBlue+1)); + double fitChi2_Novo=frame_novo->chiSquare(); + RooAbsReal* chi2_novo = f_novo.createChi2(pred_2); + double pvalue_novo=TMath::Prob(chi2_novo->getVal(),int((range_hi_2-range_lo_2)/rebin)-3); + + TCanvas *c_novo=new TCanvas("c_novo", "c_novo", 700, 700); + frame_novo->Draw(); + + TPaveText *pave_novo = new TPaveText(0.55,0.7,0.82,0.9,"NDC"); + pave_novo->SetBorderSize(0); + pave_novo->SetTextSize(0.03); + pave_novo->SetLineColor(1); + pave_novo->SetLineStyle(1); + pave_novo->SetLineWidth(2); + pave_novo->SetFillColor(0); + pave_novo->SetFillStyle(0); + pave_novo->AddText("Novo"); + sprintf(value,"par_novo_0= %2.3f +- %2.3f",par_novo_0.getVal(),par_novo_0.getError()); + pave_novo->AddText(value); + sprintf(value,"par_novo_1= %2.3f +- %2.3f",par_novo_1.getVal(),par_novo_1.getError()); + pave_novo->AddText(value); + sprintf(value,"par_novo_2= %2.3f +- %2.3f",par_novo_2.getVal(),par_novo_2.getError()); + pave_novo->AddText(value); + sprintf(value,"range [%d,%d]",range_lo_2,range_hi_2); + pave_novo->AddText(value); + sprintf(value,"chi^2 %2.1f",fitChi2_Novo); + pave_novo->AddText(value); + pave_novo->Draw(); + type= "SB_novo_"+to_string(range_lo_2)+"_"+to_string(range_hi_2); + c_novo->SaveAs((dest_dir+"/"+"BackgroundFit_"+type+".png").c_str()); + + + RooRealVar par_crystal_1_0("par_crystal_1_0", "par_crystal_1_0", 0.01, 5.1); + RooRealVar par_crystal_1_1("par_crystal_1_1", "par_crystal_1_1", 0.01, 5.1); + RooRealVar par_crystal_1_2("par_crystal_1_2", "par_crystal_1_2", 240, 280); + RooRealVar par_crystal_1_3("par_crystal_1_3", "par_crystal_1_3", 3, 30); + RevCrystalBall f_crystal_1("f_crystal_1","f_crystal_1", *x_2, par_crystal_1_0, par_crystal_1_1, par_crystal_1_2, par_crystal_1_3); + RooFitResult *r_crystal_1=f_crystal_1.fitTo(pred_2, RooFit::Range(range_lo_2, range_hi_2), RooFit::Save()); + + RooPlot *frame_crystal_1=x_2->frame(); + pred_2.plotOn(frame_crystal_1, RooFit::LineColor(kBlack), RooFit::MarkerColor(kBlack)); + f_crystal_1.plotOn(frame_crystal_1, RooFit::VisualizeError(*r_crystal_1, 1), RooFit::FillColor(kGray+1), RooFit::FillStyle(3001)); + f_crystal_1.plotOn(frame_crystal_1, RooFit::LineColor(kBlue+1)); + double fitChi2_crystal_1=frame_crystal_1->chiSquare(); + RooAbsReal* chi2_crystal_1 = f_crystal_1.createChi2(pred_2); + double pvalue_crystal_1=TMath::Prob(chi2_crystal_1->getVal(),int((range_hi_2-range_lo_2)/rebin)-3); + + TCanvas *c_crystal_1=new TCanvas("c_crystal_1", "c_crystal_1", 700, 700); + frame_crystal_1->Draw(); + + TPaveText *pave_crystal_1 = new TPaveText(0.55,0.7,0.82,0.9,"NDC"); + pave_crystal_1->SetBorderSize(0); + pave_crystal_1->SetTextSize(0.03); + pave_crystal_1->SetLineColor(1); + pave_crystal_1->SetLineStyle(1); + pave_crystal_1->SetLineWidth(2); + pave_crystal_1->SetFillColor(0); + pave_crystal_1->SetFillStyle(0); + pave_crystal_1->AddText("Revcrystal_1"); + sprintf(value,"par_crystal_1_0= %2.3f +- %2.3f",par_crystal_1_0.getVal(),par_crystal_1_0.getError()); + pave_crystal_1->AddText(value); + sprintf(value,"par_crystal_1_1= %2.3f +- %2.3f",par_crystal_1_1.getVal(),par_crystal_1_1.getError()); + pave_crystal_1->AddText(value); + sprintf(value,"par_crystal_1_2= %2.3f +- %2.3f",par_crystal_1_2.getVal(),par_crystal_1_2.getError()); + pave_crystal_1->AddText(value); + sprintf(value,"par_crystal_1_3= %2.3f +- %2.3f",par_crystal_1_3.getVal(),par_crystal_1_3.getError()); + pave_crystal_1->AddText(value); + sprintf(value,"range [%d,%d]",range_lo_2,range_hi_2); + pave_crystal_1->AddText(value); + sprintf(value,"chi^2 %2.1f",fitChi2_crystal_1); + pave_crystal_1->AddText(value); + pave_crystal_1->Draw(); + type= "SB_crystal_1_"+to_string(range_lo_2)+"_"+to_string(range_hi_2); + c_crystal_1->SaveAs((dest_dir+"/"+"BackgroundFit_"+type+".png").c_str()); + + +/* + RooRealVar par_gaus_bern_0("par_gaus_bern_0", "par_gaus_bern_0", 0.); + par_gaus_bern_0.setConstant(1); + RooRealVar par_gaus_bern_1("par_gaus_bern_1", "par_gaus_bern_1", 10, 1. , 100.); + RooRealVar par_gaus_bern_2("par_gaus_bern_2", "par_gaus_bern_2", 260, 160., 600. ); + RooRealVar *par_gaus_bern_3, *par_gaus_bern_4, *par_gaus_bern_5, *par_gaus_bern_6, *par_gaus_bern_7, *bpar_gaus_bern_8; + par_gaus_bern_3=new RooRealVar("par_gaus_bern_3", "par_gaus_bern_3", 5.); + par_gaus_bern_3->setConstant(1); + par_gaus_bern_4=new RooRealVar("par_gaus_bern_4", "par_gaus_bern_4", 3, -10., 10.); + par_gaus_bern_5=new RooRealVar("par_gaus_bern_5", "par_gaus_bern_5", 1, -10., 10.); + par_gaus_bern_6=new RooRealVar("par_gaus_bern_6", "par_gaus_bern_6", -10., 10.); + par_gaus_bern_7=new RooRealVar("par_gaus_bern_7", "par_gaus_bern_7", -10., 10.); + par_gaus_bern_8=new RooRealVar("par_gaus_bern_8", "par_gaus_bern_8", -10., 5.); + + + RooGaussStepBernstein f_gaus_bern("f_gaus_bern","f_gaus_bern",*x_2, par_gaus_bern_0, par_gaus_bern_1, par_gaus_bern_2, RooArgList(*par_gaus_bern_3, *par_gaus_bern_4, *par_gaus_bern_5)); //, *par_gaus_bern_6)); + RooFitResult *r_gaus_bern=f_gaus_bern.fitTo(pred_2, RooFit::Range(range_lo_2, range_hi_2), RooFit::Save()); + + RooPlot *frame_gaus_bern=x_2->frame(); + pred_2.plotOn(frame_gaus_bern, RooFit::LineColor(kBlack), RooFit::MarkerColor(kBlack)); + f_gaus_bern.plotOn(frame_gaus_bern, RooFit::VisualizeError(*r_gaus_bern, 1), RooFit::FillColor(kGray+1), RooFit::FillStyle(3001)); + f_gaus_bern.plotOn(frame_gaus_bern, RooFit::LineColor(kBlue+1)); + double fitChi2_gaus_bern=frame_gaus_bern->chiSquare(); + RooAbsReal* chi2_gaus_bern = f_gaus_bern.createChi2(pred_2); + double pvalue_gaus_bern=TMath::Prob(chi2_gaus_bern->getVal(),int((range_hi_2-range_lo_2)/rebin)-3); + + TCanvas *c_gaus_bern=new TCanvas("c_gaus_bern", "c_gaus_bern", 700, 700); + frame_gaus_bern->Draw(); + + TPaveText *pave_gaus_bern = new TPaveText(0.55,0.7,0.82,0.9,"NDC"); + pave_gaus_bern->SetBorderSize(0); + pave_gaus_bern->SetTextSize(0.03); + pave_gaus_bern->SetLineColor(1); + pave_gaus_bern->SetLineStyle(1); + pave_gaus_bern->SetLineWidth(2); + pave_gaus_bern->SetFillColor(0); + pave_gaus_bern->SetFillStyle(0); + pave_gaus_bern->AddText("Gaus_bern"); + sprintf(value,"par_gaus_bern_0= %2.3f +- %2.3f",par_gaus_bern_0.getVal(),par_gaus_bern_0.getError()); + pave_gaus_bern->AddText(value); + sprintf(value,"par_gaus_bern_1= %2.3f +- %2.3f",par_gaus_bern_1.getVal(),par_gaus_bern_1.getError()); + pave_gaus_bern->AddText(value); + sprintf(value,"par_gaus_bern_2= %2.3f +- %2.3f",par_gaus_bern_2.getVal(),par_gaus_bern_2.getError()); + pave_gaus_bern->AddText(value); + sprintf(value,"par_gaus_bern_3= %2.3f +- %2.3f",par_gaus_bern_3->getVal(),par_gaus_bern_3->getError()); + pave_gaus_bern->AddText(value); + sprintf(value,"par_gaus_bern_4= %2.3f +- %2.3f",par_gaus_bern_4->getVal(),par_gaus_bern_4->getError()); + pave_gaus_bern->AddText(value); + sprintf(value,"par_gaus_bern_5= %2.3f +- %2.3f",par_gaus_bern_5->getVal(),par_gaus_bern_5->getError()); + pave_gaus_bern->AddText(value); + sprintf(value,"par_gaus_bern_6= %2.3f +- %2.3f",par_gaus_bern_6->getVal(),par_gaus_bern_6->getError()); + pave_gaus_bern->AddText(value); + sprintf(value,"range [%d,%d]",range_lo_2,range_hi_2); + pave_gaus_bern->AddText(value); + sprintf(value,"chi^2 %2.1f",fitChi2_gaus_bern); + pave_gaus_bern->AddText(value); + pave_gaus_bern->Draw(); + type= "SB_gaus_bern_"+to_string(range_lo_2)+"_"+to_string(range_hi_2); + c_gaus_bern->SaveAs((dest_dir+"/"+"BackgroundFit_"+type+".png").c_str()); + + + + + RooRealVar par_landau_0("par_landau_0","par_landau_0",2.54e+02,2.5e+02,2.8e+02) ; + RooRealVar par_landau_1("par_landau_1","par_landau_1",2.5e+01,18,30) ; + RooLandau f_landau("f_landau","f_landau",*x_2, par_landau_0, par_landau_1); + RooFitResult *r_landau=f_landau.fitTo(pred_2, RooFit::Range(range_lo_2, range_hi_2), RooFit::Save()); + + RooPlot *frame_landau=x_2->frame(); + pred_2.plotOn(frame_landau, RooFit::LineColor(kBlack), RooFit::MarkerColor(kBlack)); + f_landau.plotOn(frame_landau, RooFit::VisualizeError(*r_landau, 1), RooFit::FillColor(kGray+1), RooFit::FillStyle(3001)); + f_landau.plotOn(frame_landau, RooFit::LineColor(kBlue+1)); + double fitChi2_landau=frame_landau->chiSquare(); + RooAbsReal* chi2_landau = f_landau.createChi2(pred_2); + double pvalue_landau=TMath::Prob(chi2_landau->getVal(),int((range_hi_2-range_lo_2)/rebin)-3); + + TCanvas *c_landau=new TCanvas("c_landau", "c_landau", 700, 700); + frame_landau->Draw(); + + TPaveText *pave_landau = new TPaveText(0.55,0.7,0.82,0.9,"NDC"); + pave_landau->SetBorderSize(0); + pave_landau->SetTextSize(0.03); + pave_landau->SetLineColor(1); + pave_landau->SetLineStyle(1); + pave_landau->SetLineWidth(2); + pave_landau->SetFillColor(0); + pave_landau->SetFillStyle(0); + pave_landau->AddText("Landau"); + sprintf(value,"par_landau_0= %2.3f +- %2.3f",par_landau_0.getVal(),par_landau_0.getError()); + pave_landau->AddText(value); + sprintf(value,"par_landau_1= %2.3f +- %2.3f",par_landau_1.getVal(),par_landau_1.getError()); + pave_landau->AddText(value); + sprintf(value,"range [%d,%d]",range_lo_2,range_hi_2); + pave_landau->AddText(value); + sprintf(value,"chi^2 %2.1f",fitChi2_landau); + pave_landau->AddText(value); + pave_landau->Draw(); + type= "SB_landau_"+to_string(range_lo_2)+"_"+to_string(range_hi_2); + c_landau->SaveAs((dest_dir+"/"+"BackgroundFit_"+type+".png").c_str()); + + + RooRealVar par_logistic_0("par_logistic_0","par_logistic_0", 251); + RooRealVar par_logistic_1("par_logistic_1","par_logistic_1", 502); + RooRealVar par_logistic_2("par_logistic_2","par_logistic_2", 241., 281.); + RooRealVar par_logistic_3("par_logistic_3","par_logistic_3", 0.01, 1.); + RooRealVar par_logistic_4("par_logistic_4","par_logistic_4", -.1, 0.9); + par_logistic_4.setConstant(1); + RooRealVar par_logistic_5("par_logistic_5","par_logistic_5", -.1, 0.9); + RooRealVar par_logistic_6("par_logistic_6","par_logistic_6", -.1, 0.9); + RooRealVar par_logistic_7("par_logistic_7","par_logistic_7", -.1, 0.9); + LogisticXChebychev3 f_logistic("f_logistic","f_logistic",*x_2, par_logistic_0, par_logistic_1, par_logistic_2, par_logistic_3, par_logistic_4, par_logistic_5, par_logistic_6, par_logistic_7); + RooFitResult *r_logistic=f_logistic.fitTo(pred_2, RooFit::Range(range_lo_2, range_hi_2), RooFit::Save()); + + RooPlot *frame_logistic=x_2->frame(); + pred_2.plotOn(frame_logistic, RooFit::LineColor(kBlack), RooFit::MarkerColor(kBlack)); + f_logistic.plotOn(frame_logistic, RooFit::VisualizeError(*r_logistic, 1), RooFit::FillColor(kGray+1), RooFit::FillStyle(3001)); + f_logistic.plotOn(frame_logistic, RooFit::LineColor(kBlue+1)); + double fitChi2_logistic=frame_logistic->chiSquare(); + RooAbsReal* chi2_logistic = f_logistic.createChi2(pred_2); + double pvalue_logistic=TMath::Prob(chi2_logistic->getVal(),int((range_hi_2-range_lo_2)/rebin)-3); + + TCanvas *c_logistic=new TCanvas("c_logistic", "c_logistic", 700, 700); + frame_logistic->Draw(); + + TPaveText *pave_logistic = new TPaveText(0.55,0.7,0.82,0.9,"NDC"); + pave_logistic->SetBorderSize(0); + pave_logistic->SetTextSize(0.03); + pave_logistic->SetLineColor(1); + pave_logistic->SetLineStyle(1); + pave_logistic->SetLineWidth(2); + pave_logistic->SetFillColor(0); + pave_logistic->SetFillStyle(0); + pave_logistic->AddText("LogisticXChebychev3"); + sprintf(value,"par_logistic_0= %2.3f +- %2.3f",par_logistic_0.getVal(),par_logistic_0.getError()); + pave_logistic->AddText(value); + sprintf(value,"par_logistic_1= %2.3f +- %2.3f",par_logistic_1.getVal(),par_logistic_1.getError()); + pave_logistic->AddText(value); + sprintf(value,"par_logistic_2= %2.3f +- %2.3f",par_logistic_2.getVal(),par_logistic_2.getError()); + pave_logistic->AddText(value); + sprintf(value,"par_logistic_3= %2.3f +- %2.3f",par_logistic_3.getVal(),par_logistic_3.getError()); + pave_logistic->AddText(value); + sprintf(value,"par_logistic_4= %2.3f +- %2.3f",par_logistic_4.getVal(),par_logistic_4.getError()); + pave_logistic->AddText(value); + sprintf(value,"par_logistic_5= %2.3f +- %2.3f",par_logistic_5.getVal(),par_logistic_5.getError()); + pave_logistic->AddText(value); + sprintf(value,"par_logistic_6= %2.3f +- %2.3f",par_logistic_6.getVal(),par_logistic_6.getError()); + pave_logistic->AddText(value); + sprintf(value,"par_logistic_7= %2.3f +- %2.3f",par_logistic_7.getVal(),par_logistic_7.getError()); + pave_logistic->AddText(value); + sprintf(value,"range [%d,%d]",range_lo_2,range_hi_2); + pave_logistic->AddText(value); + sprintf(value,"chi^2 %2.1f",fitChi2_logistic); + pave_logistic->AddText(value); + pave_logistic->Draw(); + type= "SB_logistic_"+to_string(range_lo_2)+"_"+to_string(range_hi_2); + c_logistic->SaveAs((dest_dir+"/"+"BackgroundFit_"+type+".png").c_str()); +*/ + + + TH1* hh_pdf = f_gaus_exp.createHistogram("hh", *x_1, RooFit::Binning(1000,range_hi_1, range_hi_1)) ; + TH1* hh_pdf_11 = f_crystal.createHistogram("hh1", *x_1, RooFit::Binning(1000,range_hi_1, range_hi_1)) ; + //TH1* hh_pdf_11 = f_novo.createHistogram("hh1", *x_1, RooFit::Binning(1000,range_hi_1, range_hi_1)) ; + TH1* hh_pdf_2 = f_gaus_exp.createHistogram("difference_1", *x_1, RooFit::Binning(1000,range_hi_1, range_hi_1)) ; + TH1* hh_pdf_4 = f_gaus_exp.createHistogram("sum", *x_1, RooFit::Binning(1000,range_hi_1, range_hi_1)) ; + TH1* hh_pdf_5 = f_gaus_exp.createHistogram("ratio", *x_1, RooFit::Binning(1000,range_hi_1, range_hi_1)) ; + hh_pdf_5->SetLineColor(kRed); + hh_pdf_2->Add(hh_pdf_11,-1); + hh_pdf_4->Add(hh_pdf_11,1); + hh_pdf_4->Scale(0.5); + hh_pdf_5->Add(hh_pdf,-1); + hh_pdf_5->Add(hh_pdf_2,1); + hh_pdf_5->Divide(hh_pdf_4); + hh_pdf_5->GetYaxis()->SetRangeUser(-1,1); + new TCanvas; hh_pdf_5->Draw(); + + + + TH1* hh_pdf_1 = f_novo.createHistogram("hh_1", *x_2, RooFit::Binning(1000,range_hi_2, range_hi_2)) ; + TH1* hh_pdf_1_1 = f_crystal_1.createHistogram("hh1_1", *x_2, RooFit::Binning(1000,range_hi_2, range_hi_2)) ; + //TH1* hh_pdf_1_1 = f_gaus_bern.createHistogram("hh1_1", *x_2, RooFit::Binning(1000,range_hi_2, range_hi_2)) ; + //TH1* hh_pdf_1_1 = f_gaus_exp.createHistogram("hh1_1", *x_2, RooFit::Binning(1000,range_hi_2, range_hi_2)) ; + //TH1* hh_pdf_1_1 = f_landau.createHistogram("hh1_1", *x_2, RooFit::Binning(1000,range_hi_2, range_hi_2)) ; + TH1* hh_pdf_2_1 = f_novo.createHistogram("difference_1_1", *x_2, RooFit::Binning(1000,range_hi_2, range_hi_2)) ; + TH1* hh_pdf_4_1 = f_novo.createHistogram("sum_1", *x_2, RooFit::Binning(1000,range_hi_2, range_hi_2)) ; + TH1* hh_pdf_5_1 = f_novo.createHistogram("ratio_1", *x_2, RooFit::Binning(1000,range_hi_2, range_hi_2)) ; + hh_pdf_5_1->SetLineColor(kRed); + hh_pdf_2_1->Add(hh_pdf_1_1,-1); + hh_pdf_4_1->Add(hh_pdf_1_1,1); + hh_pdf_4_1->Scale(0.5); + hh_pdf_5_1->Add(hh_pdf_1,-1); + hh_pdf_5_1->Add(hh_pdf_2_1,1); + hh_pdf_5_1->Divide(hh_pdf_4_1); + hh_pdf_5_1->GetYaxis()->SetRangeUser(-1,1); + new TCanvas; hh_pdf_5_1->Draw(); + + + + + + + double xPad = 0.3; + TCanvas *c_gaus_exp_1=new TCanvas("c_gaus_exp_1", "c_gaus_exp_1", 700*(1.-xPad), 700); + c_gaus_exp_1->SetFillStyle(4000); + c_gaus_exp_1->SetFrameFillColor(0); + + TPad *p_1=new TPad("p_1", "p_1", 0, xPad, 1, 1); + p_1->SetFillStyle(4000); + p_1->SetFrameFillColor(0); + p_1->SetBottomMargin(0.02); + + TPad* p_2 = new TPad("p_2", "p_2",0,0,1,xPad); + p_2->SetBottomMargin((1.-xPad)/xPad*0.13); + p_2->SetTopMargin(0.03); + p_2->SetFillColor(0); + p_2->SetBorderMode(0); + p_2->SetBorderSize(2); + p_2->SetFrameBorderMode(0); + p_2->SetFrameBorderMode(0); + + p_1->Draw(); + p_2->Draw(); + p_1->cd(); + + + RooPlot *frame_gaus_exp_1=x_1->frame(); + pred_1.plotOn(frame_gaus_exp_1, RooFit::LineColor(kBlack), RooFit::MarkerColor(kBlack)); + f_gaus_exp.plotOn(frame_gaus_exp_1, RooFit::VisualizeError(*r_gaus_exp, 1), RooFit::FillColor(kBlack), RooFit::FillStyle(3004)); + //f_logistic.plotOn(frame_gaus_exp_1, RooFit::VisualizeError(*r_logistic, 1), RooFit::FillColor(kRed+1), RooFit::FillStyle(3001)); + f_crystal.plotOn(frame_gaus_exp_1, RooFit::VisualizeError(*r_crystal, 1), RooFit::FillColor(kRed+1), RooFit::FillStyle(3001)); + f_gaus_exp.plotOn(frame_gaus_exp_1, RooFit::LineColor(kBlack), RooFit::LineWidth(6)); + f_crystal.plotOn(frame_gaus_exp_1, RooFit::LineColor(kRed), RooFit::LineWidth(3), RooFit::LineStyle(kDashed) ); + //f_logistic.plotOn(frame_gaus_exp_1, RooFit::LineColor(kRed), RooFit::LineWidth(4), RooFit::LineStyle(kDashed) ); + + + if (log=="log") frame_gaus_exp_1->GetYaxis()->SetRangeUser(1e-4, h_mX_SR->GetMaximum()*5.); + else frame_gaus_exp_1->GetYaxis()->SetRangeUser(0, h_mX_SR->GetMaximum()*1.2); + frame_gaus_exp_1->GetXaxis()->SetLabelOffset(0.03); + frame_gaus_exp_1->GetYaxis()->SetLabelFont(42); + frame_gaus_exp_1->GetYaxis()->SetTitleFont(42); + frame_gaus_exp_1->GetYaxis()->SetTitleOffset(1.25); + frame_gaus_exp_1->Draw("same"); + frame_gaus_exp_1->SetTitle(("; m_{X} (GeV); Events / "+itoa(h_mX_SR->GetBinWidth(1))+" GeV").c_str()); + if (log=="log") p_1->SetLogy(); + + TPaveText *pave = new TPaveText(0.65,0.57,0.83,0.72,"NDC"); + pave->SetBorderSize(0); + pave->SetTextSize(0.03); + pave->SetLineColor(1); + pave->SetLineStyle(1); + pave->SetLineWidth(2); + pave->SetFillColor(0); + pave->SetFillStyle(0); + char name[1000]; + char name1[1000]; + if (hist.substr(0,7)=="h_mX_SB") { + sprintf(name,"SB_gaus_exp #chi^{2}/n = %.2f",fitChi2_gaus_exp); + sprintf(name1,"p-value_gaus_exp = %.2f",pvalue_gaus_exp); + } + else sprintf(name,"SR_gaus_exp #chi^{2}/n = %.2f",fitChi2_gaus_exp); + pave->AddText(name); + pave->AddText(name1); + if (hist.substr(0,7)=="h_mX_SB") { + sprintf(name,"SB_crystal #chi^{2}/n = %.2f",fitChi2_crystal); + sprintf(name1,"p-value_crystal = %.2f",pvalue_crystal); + } + else sprintf(name,"SR_crystal #chi^{2}/n = %.2f",fitChi2_crystal); + pave->AddText(name); + pave->AddText(name1); + pave->Draw(); + + TLatex * tPrel = new TLatex(); + tPrel->SetNDC(); + tPrel->SetTextColor(kBlack); + tPrel->SetTextSize(0.04); + + TLegend *leg = new TLegend(0.61, 0.72,0.75,0.89,NULL,"brNDC"); + leg->SetBorderSize(0); + leg->SetTextSize(0.035); + leg->SetLineColor(1); + leg->SetLineStyle(1); + leg->SetLineWidth(2); + leg->SetFillColor(0); + leg->SetFillStyle(0); + h_mX_SR->SetMarkerStyle(20); + if (hist.substr(0,7)=="h_mX_SB"){ + h_mX_SR->SetLineColor(kBlack); + h_mX_SR->SetMarkerColor(kBlack); + leg->AddEntry(h_mX_SR, "Data of ABCD-SR", "ep"); + + } + else leg->AddEntry(h_mX_SR, "Data in SR", "ep"); + TH1F * temp = new TH1F("temp", "temp", 100, 0,1); temp->SetLineWidth(2); temp->SetLineColor(kBlack); + leg->AddEntry(temp, "GaussExp fit", "l"); + TH1F * temp1 = new TH1F("temp1", "temp1", 100, 0,1); temp1->SetLineWidth(2); + temp1->SetLineColor(kRed); + leg->AddEntry(temp1, "CrystalBall fit", "l"); + leg->Draw(); + + CMS_lumi( p_1, iPeriod, iPos ); + + p_2->cd(); + RooHist *hpull, *hpull1; + hpull = frame_gaus_exp->pullHist(); + hpull->SetLineWidth(2); + hpull1 = frame_crystal->pullHist(); + //hpull1 = frame_logistic->pullHist(); + hpull1->SetMarkerColor(kRed); + hpull1->SetLineStyle(kDashed); + hpull1->SetMarkerSize(0.6); + hpull1->SetLineColor(kRed); + RooPlot* frameP = x_1->frame() ; + + frameP->SetTitle("; m_{X} (GeV); Pull"); + frameP->addPlotable(hpull,"P"); + frameP->addPlotable(hpull1,"P same"); + frameP->GetYaxis()->SetTitleSize(0.07); + frameP->GetYaxis()->SetTitleOffset(0.5); + frameP->GetXaxis()->SetTitleSize(0.09); + frameP->GetXaxis()->SetTitleOffset(1.0); + frameP->GetXaxis()->SetLabelSize(0.07); + frameP->GetYaxis()->SetLabelSize(0.06); + frameP->Draw(); + + + TLine *line=new TLine(range_lo_1, 0, range_hi_1, 0); + line->SetLineWidth(2); + line->Draw(); + + string tag; + if (hist.substr(0,7)=="h_mX_SB") tag="SB"; + else tag="SR"; + c_gaus_exp_1->SaveAs((dest_dir+"/"+"BackgroundFit_"+tag+"_Split_1.png").c_str()); + c_gaus_exp_1->SaveAs((dest_dir+"/"+"BackgroundFit_"+tag+"_Split_1.pdf").c_str()); + + + TCanvas *c_novo_1=new TCanvas("c_novo_1", "c_novo_1", 700*(1.-xPad), 700); + c_novo_1->SetFillStyle(4000); + c_novo_1->SetFrameFillColor(0); + + TPad *p_3=new TPad("p_3", "p_3", 0, xPad, 1, 1); + p_3->SetFillStyle(4000); + p_3->SetFrameFillColor(0); + p_3->SetBottomMargin(0.02); + + TPad* p_4 = new TPad("p_4", "p_4",0,0,1,xPad); + p_4->SetBottomMargin((1.-xPad)/xPad*0.13); + p_4->SetTopMargin(0.03); + p_4->SetFillColor(0); + p_4->SetBorderMode(0); + p_4->SetBorderSize(2); + p_4->SetFrameBorderMode(0); + p_4->SetFrameBorderMode(0); + + p_3->Draw(); + p_4->Draw(); + p_3->cd(); + + + RooPlot *frame_novo_1=x_2->frame(); + pred_2.plotOn(frame_novo_1, RooFit::LineColor(kBlack), RooFit::MarkerColor(kBlack)); + f_crystal_1.plotOn(frame_novo_1, RooFit::VisualizeError(*r_crystal_1, 1), RooFit::FillColor(kBlack), RooFit::FillStyle(3001)); + f_novo.plotOn(frame_novo_1, RooFit::VisualizeError(*r_novo, 1), RooFit::FillColor(kRed+1), RooFit::FillStyle(3004)); + f_crystal_1.plotOn(frame_novo_1, RooFit::LineColor(kBlack), RooFit::LineWidth(6)); + f_novo.plotOn(frame_novo_1, RooFit::LineColor(kRed), RooFit::LineWidth(3), RooFit::LineStyle(kDashed) ); + + + if (log=="log") frame_novo_1->GetYaxis()->SetRangeUser(1e-4, h_mX_SR->GetMaximum()*5); + else frame_novo_1->GetYaxis()->SetRangeUser(0, h_mX_SR->GetMaximum()*1.2); + frame_novo_1->GetXaxis()->SetLabelOffset(0.03); + frame_novo_1->GetYaxis()->SetLabelFont(42); + frame_novo_1->GetYaxis()->SetTitleFont(42); + frame_novo_1->GetYaxis()->SetTitleOffset(1.25); + frame_novo_1->Draw("same"); + frame_novo_1->SetTitle(("; m_{X} (GeV); Events / "+itoa(h_mX_SR->GetBinWidth(1))+" GeV").c_str()); + if (log=="log") p_3->SetLogy(); + + TPaveText *pave_1 = new TPaveText(0.65,0.57,0.85,0.72,"NDC"); + pave_1->SetBorderSize(0); + pave_1->SetTextSize(0.03); + pave_1->SetLineColor(1); + pave_1->SetLineStyle(1); + pave_1->SetLineWidth(2); + pave_1->SetFillColor(0); + pave_1->SetFillStyle(0); + char name_1[1000]; + char name_11[1000]; + if (hist.substr(0,7)=="h_mX_SB") { + sprintf(name_1,"SB_crystal #chi^{2}/n = %.2f",fitChi2_crystal_1); + sprintf(name_11,"p-value_crystal = %.2f",pvalue_crystal_1); + } + else sprintf(name_1,"SR_crystal #chi^{2}/n = %.2f",fitChi2_crystal_1); + pave_1->AddText(name_1); + pave_1->AddText(name_11); + if (hist.substr(0,7)=="h_mX_SB") { + sprintf(name_1,"SB_novo #chi^{2}/n = %.2f",fitChi2_Novo); + sprintf(name_11,"p-value_novo = %.2f",pvalue_novo); + } + else sprintf(name_1,"SR_novo #chi^{2}/n = %.2f",fitChi2_Novo); + pave_1->AddText(name_1); + pave_1->AddText(name_11); + pave_1->Draw(); + + TLatex * tPrel_1 = new TLatex(); + tPrel_1->SetNDC(); + tPrel_1->SetTextColor(kBlack); + tPrel_1->SetTextSize(0.04); + + TLegend *leg_1 = new TLegend(0.61, 0.72,0.75,0.89,NULL,"brNDC"); + leg_1->SetBorderSize(0); + leg_1->SetTextSize(0.035); + leg_1->SetLineColor(1); + leg_1->SetLineStyle(1); + leg_1->SetLineWidth(2); + leg_1->SetFillColor(0); + leg_1->SetFillStyle(0); + h_mX_SR->SetMarkerStyle(20); + if (hist.substr(0,7)=="h_mX_SB"){ + h_mX_SR->SetLineColor(kBlack); + h_mX_SR->SetMarkerColor(kBlack); + leg_1->AddEntry(h_mX_SR, "Data of ABCD-SR", "ep"); + + } + else leg_1->AddEntry(h_mX_SR, "Data in SR", "ep"); + TH1F* temp_1 = new TH1F("temp_1", "temp_1", 100, 0,1); temp_1->SetLineWidth(2); temp_1->SetLineColor(kRed); + TH1F* temp_11 = new TH1F("temp_11", "temp_11", 100, 0,1); temp_11->SetLineWidth(2); + temp_11->SetLineColor(kBlack); + leg_1->AddEntry(temp_11, "CrystalBall fit", "l"); + leg_1->AddEntry(temp_1, "Novorsibisk fit", "l"); + leg_1->Draw(); + + CMS_lumi( p_3, iPeriod, iPos ); + + p_4->cd(); + RooHist *hpull_1, *hpull_11; + hpull_1 = frame_novo->pullHist(); + hpull_1->SetLineWidth(2); + hpull_11 = frame_crystal_1->pullHist(); + hpull_11->SetLineStyle(kDashed); + hpull_11->SetLineColor(kRed); + hpull_11->SetMarkerSize(0.6); + hpull_11->SetMarkerColor(kRed); + RooPlot* frameP_1 = x_2->frame() ; + + frameP_1->SetTitle("; m_{X} (GeV); Pull"); + frameP_1->addPlotable(hpull_1,"P"); + frameP_1->addPlotable(hpull_11,"P same"); + frameP_1->GetYaxis()->SetTitleSize(0.07); + frameP_1->GetYaxis()->SetTitleOffset(0.5); + frameP_1->GetXaxis()->SetTitleSize(0.09); + frameP_1->GetXaxis()->SetTitleOffset(1.0); + frameP_1->GetXaxis()->SetLabelSize(0.07); + frameP_1->GetYaxis()->SetLabelSize(0.06); + frameP_1->Draw(); + + + TLine *line_1=new TLine(range_lo_2, 0, range_hi_2, 0); + line_1->SetLineWidth(2); + line_1->Draw(); + + c_novo_1->SaveAs((dest_dir+"/"+"BackgroundFit_"+tag+"_Split_2.png").c_str()); + c_novo_1->SaveAs((dest_dir+"/"+"BackgroundFit_"+tag+"_Split_2.pdf").c_str()); + + + + + + + + + + TH1F *h_mX_SR_fakeData=(TH1F*)h_mX_SR->Clone("h_mX_SR_fakeData"); + h_mX_SR_fakeData->Scale(nEventsSR/h_mX_SR_fakeData->GetSumOfWeights()); + + RooDataHist data_obs_crystal(Form("data_obs_crystal_%d_%d",range_lo_1, range_hi_1), "Data", RooArgList(*x_1), h_mX_SR_fakeData); + RooDataHist data_obs_gaus_exp(Form("data_obs_gaus_exp_%d_%d",range_lo_1, range_hi_1), "Data", RooArgList(*x_1), h_mX_SR_fakeData); + RooDataHist data_obs_novo(Form("data_obs_novo_%d_%d",range_lo_2, range_hi_2), "Data", RooArgList(*x_2), h_mX_SR_fakeData); + RooDataHist data_obs_crystal_1(Form("data_obs_crystal_1_%d_%d",range_lo_2, range_hi_2), "Data", RooArgList(*x_2), h_mX_SR_fakeData); + //RooDataHist data_obs_gaus_bern(Form("data_obs_gaus_bern_%d_%d",range_lo_2, range_hi_2), "Data", RooArgList(*x_2), h_mX_SR_fakeData); + //RooDataHist data_obs_landau(Form("data_obs_landau_%d_%d",range_lo_2, range_hi_2), "Data", RooArgList(*x_2), h_mX_SR_fakeData); + + RooRealVar f_crystal_norm("f_crystal_norm","f_crystal_norm",h_mX_SR_fakeData->Integral(h_mX_SR_fakeData->FindBin(range_lo_1),h_mX_SR_fakeData->FindBin(range_hi_1))); + RooWorkspace *w_background_crystal=new RooWorkspace("HbbHbb"); + w_background_crystal->import(data_obs_crystal); + w_background_crystal->import(f_crystal); + //w_background_crystal->import(f_crystal_norm); + w_background_crystal->SaveAs((dest_dir+"/"+Form("w_background_crystal_%d_%d.root",range_lo_1,range_hi_1)).c_str()); + + RooRealVar f_gaus_exp_norm("f_gaus_exp_norm","f_gaus_exp_norm",h_mX_SR_fakeData->Integral(h_mX_SR_fakeData->FindBin(range_lo_1),h_mX_SR_fakeData->FindBin(range_hi_1))); + RooWorkspace *w_background_gaus_exp=new RooWorkspace("HbbHbb"); + w_background_gaus_exp->import(data_obs_gaus_exp); + w_background_gaus_exp->import(f_gaus_exp); + //w_background_gaus_exp->import(f_gaus_exp_norm); + w_background_gaus_exp->SaveAs((dest_dir+"/"+Form("w_background_gaus_exp_%d_%d.root",range_lo_1,range_hi_1)).c_str()); + + + RooRealVar f_novo_norm("f_novo_norm","f_novo_norm",h_mX_SR_fakeData->Integral(h_mX_SR_fakeData->FindBin(range_lo_2),h_mX_SR_fakeData->FindBin(range_hi_2))); + RooWorkspace *w_background_novo=new RooWorkspace("HbbHbb"); + w_background_novo->import(data_obs_novo); + w_background_novo->import(f_novo); + //w_background_novo->import(f_novo_norm); + w_background_novo->SaveAs((dest_dir+"/"+Form("w_background_novo_%d_%d.root",range_lo_2,range_hi_2)).c_str()); + + RooRealVar f_crystal_1_norm("f_crystal_1_norm","f_crystal_1_norm",h_mX_SR_fakeData->Integral(h_mX_SR_fakeData->FindBin(range_lo_2),h_mX_SR_fakeData->FindBin(range_hi_2))); + RooWorkspace *w_background_crystal_1=new RooWorkspace("HbbHbb"); + w_background_crystal_1->import(data_obs_crystal_1); + w_background_crystal_1->import(f_crystal_1); + //w_background_crystal_1->import(f_crystal_1_norm); + w_background_crystal_1->SaveAs((dest_dir+"/"+Form("w_background_crystal_1_%d_%d.root",range_lo_2,range_hi_2)).c_str()); + +/* + RooWorkspace *w_background_gaus_bern=new RooWorkspace("HbbHbb"); + w_background_gaus_bern->import(data_obs_gaus_bern); + w_background_gaus_bern->import(f_gaus_bern); + w_background_gaus_bern->SaveAs((dest_dir+"/"+Form("w_background_gaus_bern_%d_%d.root",range_lo_2,range_hi_2)).c_str()); + + + RooWorkspace *w_background_landau=new RooWorkspace("HbbHbb"); + w_background_landau->import(data_obs_landau); + w_background_landau->import(f_landau); + w_background_landau->SaveAs((dest_dir+"/"+Form("w_background_landau_%d_%d.root",range_lo_2,range_hi_2)).c_str()); +*/ + + + + std::cout<<" === RooFit data fit result to be entered in datacard === "< +#include +#include +#include +#include +#include +#include + +#include + +#include "TDRStyle.h" + +bool first; + +std::string itoa(int i) +{ + char res[4]; + sprintf(res, "%d", i); + std::string ret(res); + return ret; +} + +// Display histogram for file +TH1* DisplayHistogram_forFile(TFile *file, std::string histogramName, int color) +{ + TH1F *h=(TH1F*)file->Get(histogramName.c_str()); + + h->Scale(1./h->GetSumOfWeights()); + h->SetLineColor(color); + h->SetLineWidth(2); + if (first) + { + h->SetMaximum(h->GetMaximum()*1.5); + h->GetYaxis()->SetTitleOffset(1.6); + //h->SetLineStyle(2); + h->Draw("P"); + + first=false; + } + h->Draw("hist same"); + + return h; +} + +void DisplayJetProperties() +{ + std::vector v_files; + v_files.push_back(new TFile("PreselectedWithRegressionDeepCSV/Histograms_Preselected_GluGluToBulkGravitonToHHTo4B_M-300_narrow_13TeV-madgraph.root")); + v_files.push_back(new TFile("PreselectedWithRegressionDeepCSV/Histograms_Preselected_GluGluToBulkGravitonToHHTo4B_M-400_narrow_13TeV-madgraph.root")); + v_files.push_back(new TFile("PreselectedWithRegressionDeepCSV/Histograms_Preselected_GluGluToBulkGravitonToHHTo4B_M-500_narrow_13TeV-madgraph.root")); + v_files.push_back(new TFile("PreselectedWithRegressionDeepCSV/Histograms_Preselected_GluGluToBulkGravitonToHHTo4B_M-600_narrow_13TeV-madgraph.root")); + v_files.push_back(new TFile("PreselectedWithRegressionDeepCSV/Histograms_Preselected_GluGluToBulkGravitonToHHTo4B_M-800_narrow_13TeV-madgraph.root")); + v_files.push_back(new TFile("PreselectedWithRegressionDeepCSV/Histograms_Preselected_GluGluToBulkGravitonToHHTo4B_M-900_narrow_13TeV-madgraph.root")); + TFile *f_data=new TFile("PreselectedWithRegressionDeepCSV/Histograms_Preselected_BTagTotal.root"); + std::vector mean_gen={300, 400, 500, 600, 800, 900}; + std::vector v_colors = {kAzure+1, kAzure+3, kRed+1, kPink+1, kPink+3, kGreen+2, kGreen+3, kBlue+1, kGray+2, kCyan, kCyan+2, kRed-4, kRed-7, kYellow-4, kGreen-4, kGreen }; + + gROOT->SetStyle("Plain"); + TStyle *myStyle=setTDRStyle(); + myStyle->cd(); + myStyle->SetOptTitle(0); + myStyle->SetOptStat(0); + + + TLegend *leg=new TLegend(0.55, 0.5, 0.84, 0.89); + leg->AddEntry(f_data->Get("h_pTreg_JetpT_1"), "13 TeV Data"); + for (unsigned int i=0; iAddEntry(v_files.at(i)->Get("h_pTreg_JetpT_1"), ("Signal m_{X} = "+itoa(mean_gen.at(i))+" GeV").c_str()); + } + + TLegend *leg2=new TLegend(0.6, 0.5, 0.89, 0.89); + for (unsigned int i=0; iAddEntry(v_files.at(i)->Get("h_pTreg_JetpT_1"), ("Signal m_{X} = "+itoa(mean_gen.at(i))+" GeV").c_str()); + } + + // Plot the 1st highest pT jets with |eta| < 2.5 + first=true; + TCanvas *c_pTreg_JetpT_1=new TCanvas("c_pTreg_JetpT_1", "c_pTreg_JetpT_1", 700, 700); + DisplayHistogram_forFile(f_data, "h_pTreg_JetpT_1", kBlack); + for (unsigned int i=0; iDraw(); + TArrow *line=new TArrow(30., 0.14, 30., 0); line->SetLineWidth(3); + line->Draw(); + c_pTreg_JetpT_1->SaveAs("c_pTreg_JetpT_1.pdf"); + + // Plot the 2nd highest pT jets with |eta| < 2.5 + first=true; + TCanvas *c_pTreg_JetpT_2=new TCanvas("c_pTreg_JetpT_2", "c_pTreg_JetpT_2", 700, 700); + DisplayHistogram_forFile(f_data, "h_pTreg_JetpT_2", kBlack); + for (unsigned int i=0; iDraw(); + line->Draw(); + c_pTreg_JetpT_2->SaveAs("c_pTreg_JetpT_2.pdf"); + + // Plot the 3rd highest pT jets with |eta| < 2.5 + first=true; + TCanvas *c_pTreg_JetpT_3=new TCanvas("c_pTreg_JetpT_3", "c_pTreg_JetpT_3", 700, 700); + DisplayHistogram_forFile(f_data, "h_pTreg_JetpT_3", kBlack); + for (unsigned int i=0; iDraw(); + line->Draw(); + c_pTreg_JetpT_3->SaveAs("c_pTreg_JetpT_3.pdf"); + + // Plot the 4th highest pT jets with |eta| < 2.5 + first=true; + TCanvas *c_pTreg_JetpT_4=new TCanvas("c_pTreg_JetpT_4", "c_pTreg_JetpT_4", 700, 700); + DisplayHistogram_forFile(f_data, "h_pTreg_JetpT_4", kBlack); + for (unsigned int i=0; iDraw(); + line->Draw(); + c_pTreg_JetpT_4->SaveAs("c_pTreg_JetpT_4.pdf"); + + // Plot the 5th highest pT jets with |eta| < 2.5 + first=true; + TCanvas *c_pTreg_JetpT_5=new TCanvas("c_pTreg_JetpT_5", "c_pTreg_JetpT_5", 700, 700); + DisplayHistogram_forFile(f_data, "h_pTreg_JetpT_5", kBlack); + for (unsigned int i=0; iDraw(); + c_pTreg_JetpT_5->SaveAs("c_pTreg_JetpT_5.pdf"); + + + // Plot the 1st highest CSV jets with |eta| < 2.5, pT > 40 GeV + first=true; + TCanvas *c_CMVAOrder_JetCMVA_1=new TCanvas("c_CMVAOrder_JetCMVA_1", "c_CMVAOrder_JetCMVA_1", 700, 700); + DisplayHistogram_forFile(f_data, "h_CMVAOrder_JetCMVA_1", kBlack); + for (unsigned int i=0; iDraw(); + line=new TArrow(0.6324, 0.6, 0.6324, 0); line->SetLineWidth(3); + line->Draw(); + c_CMVAOrder_JetCMVA_1->SaveAs("c_CMVAOrder_JetCMVA_1.pdf"); + + // Plot the 2nd highest CSV jets with |eta| < 2.5, pT > 40 GeV + first=true; + TCanvas *c_CMVAOrder_JetCMVA_2=new TCanvas("c_CMVAOrder_JetCMVA_2", "c_CMVAOrder_JetCMVA_2", 700, 700); + DisplayHistogram_forFile(f_data, "h_CMVAOrder_JetCMVA_2", kBlack); + for (unsigned int i=0; iDraw(); + line=new TArrow(0.6324, 0.4, 0.6324, 0); line->SetLineWidth(3); + line->Draw(); + c_CMVAOrder_JetCMVA_2->SaveAs("c_CMVAOrder_JetCMVA_2.pdf"); + + // Plot the 3rd highest CSV jets with |eta| < 2.5, pT > 40 GeV + first=true; + TCanvas *c_CMVAOrder_JetCMVA_3=new TCanvas("c_CMVAOrder_JetCMVA_3", "c_CMVAOrder_JetCMVA_3", 700, 700); + DisplayHistogram_forFile(f_data, "h_CMVAOrder_JetCMVA_3", kBlack); + for (unsigned int i=0; iDraw(); + line=new TArrow(0.6324, 0.1, 0.6324, 0); line->SetLineWidth(3); + line->Draw(); + c_CMVAOrder_JetCMVA_3->SaveAs("c_CMVAOrder_JetCMVA_3.pdf"); + + // Plot the 4th highest CSV jets with |eta| < 2.5, pT > 40 GeV + first=true; + TCanvas *c_CMVAOrder_JetCMVA_4=new TCanvas("c_CMVAOrder_JetCMVA_4", "c_CMVAOrder_JetCMVA_4", 700, 700); + DisplayHistogram_forFile(f_data, "h_CMVAOrder_JetCMVA_4", kBlack); + for (unsigned int i=0; iDraw(); + line=new TArrow(0.6324, 0.1, 0.6324, 0); line->SetLineWidth(3); + line->Draw(); + c_CMVAOrder_JetCMVA_4->SaveAs("c_CMVAOrder_JetCMVA_4.pdf"); + + + // Plot the nCbJets distribution + first=true; + TCanvas *c_nCbJets=new TCanvas("c_nCbJets", "c_nCbJets", 700, 700); + DisplayHistogram_forFile(f_data, "h_nCbJets", kBlack); + for (unsigned int i=0; iDraw(); + line=new TArrow(5, 0.5, 5, 0); line->SetLineWidth(3); + line->Draw(); + c_nCbJets->SaveAs("c_nCbJets.pdf"); + + + // Plot the dR distribution between gen b quarks from a Higgs + first=true; + TCanvas *c_dR_genHbb=new TCanvas("c_dR_genHbb", "c_dR_genHbb", 700, 700); + for (int i=v_files.size()-1; i>=0; --i) + { + ((TH1F*)(v_files.at(i)->Get("h_dR_genHbb")))->Rebin(4); + ((TH1F*)(v_files.at(i)->Get("h_dR_genHbb")))->GetXaxis()->SetRangeUser(0, 4.); + DisplayHistogram_forFile(v_files.at(i), "h_dR_genHbb", v_colors.at(i)); + int binx0=((TH1F*)(v_files.at(i)->Get("h_dR_genHbb")))->FindBin(0.); + int binx1=((TH1F*)(v_files.at(i)->Get("h_dR_genHbb")))->FindBin(0.4); + int binx2=((TH1F*)(v_files.at(i)->Get("h_dR_genHbb")))->FindBin(2.0); + double integral1 = ((TH1F*)(v_files.at(i)->Get("h_dR_genHbb")))->Integral(binx0, binx2); + double integral2 = ((TH1F*)(v_files.at(i)->Get("h_dR_genHbb")))->Integral(binx1, binx2); + std::cout<<"mX = "< 0.4 = "<Draw(); + line=new TArrow(1.5, 0.02, 1.5, 0); line->SetLineWidth(3); + line->Draw(); + c_dR_genHbb->SaveAs("c_dR_genHbb.pdf"); + +} + + + + + diff --git a/DisplayKinFitReg.cc b/DisplayKinFitReg.cc new file mode 100644 index 0000000..8d638ef --- /dev/null +++ b/DisplayKinFitReg.cc @@ -0,0 +1,416 @@ +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include + +#include "TDRStyle.h" + +bool first=true; + +std::string itoa(int i) +{ + char res[4]; + sprintf(res, "%d", i); + std::string ret(res); + return ret; +} + +std::string ftoa(double i) +{ + char res[10]; + sprintf(res, "%2.1f", i); + std::string ret(res); + return ret; +} + +void Display_mH1_ForFile(TFile *f, TFile *fR, double &mean_H1, double &sigma_H1) +{ + TH1F *h_H1_mass=(TH1F*)f->Get("h_H1_mass"); + TH1F *h_H1_mass_reg=(TH1F*)fR->Get("h_H1_mass"); + + TF1 *f_H1_mass=new TF1("f_H1_mass", "gaus", h_H1_mass->GetMean()-1*h_H1_mass->GetRMS(), h_H1_mass->GetMean()+1*h_H1_mass->GetRMS()); + TF1 *f_H1_mass_reg=new TF1("f_H1_mass_reg", "gaus", h_H1_mass_reg->GetMean()-1*h_H1_mass_reg->GetRMS(), h_H1_mass_reg->GetMean()+1*h_H1_mass_reg->GetRMS()); + + h_H1_mass->Rebin(2); + h_H1_mass_reg->Rebin(2); + + h_H1_mass->GetXaxis()->SetRangeUser(50, 200); + h_H1_mass_reg->GetXaxis()->SetRangeUser(50, 200); + + h_H1_mass->Fit(f_H1_mass, "R"); + h_H1_mass_reg->Fit(f_H1_mass_reg, "R"); + + h_H1_mass->SetLineColor(kBlue); + f_H1_mass->SetLineColor(kBlue); + h_H1_mass_reg->SetLineColor(kRed); + f_H1_mass_reg->SetLineColor(kRed); + + h_H1_mass->Draw(""); + h_H1_mass_reg->Draw("same"); + + TLegend *leg=new TLegend(0.57, 0.89, 0.89, 0.75); + leg->AddEntry(h_H1_mass, ("Nominal #bar{x}="+ftoa(f_H1_mass->GetParameter(1))+", #sigma="+ftoa(f_H1_mass->GetParameter(2))).c_str()); + leg->AddEntry(h_H1_mass_reg, ("Reg. Corr. #bar{x}="+ftoa(f_H1_mass_reg->GetParameter(1))+", #sigma="+ftoa(f_H1_mass_reg->GetParameter(2))).c_str()); + leg->SetLineColor(0); + leg->Draw(); + + mean_H1=f_H1_mass->GetParameter(1); + sigma_H1=f_H1_mass->GetParameter(2); +} + +void Display_mH2_ForFile(TFile *f,TFile *fR, double &mean_H2, double &sigma_H2) +{ + TH1F *h_H2_mass=(TH1F*)f->Get("h_H2_mass"); + TH1F *h_H2_mass_biasCorrected=(TH1F*)f->Get("h_H2_mass_biasCorrected"); + + TF1 *f_H2_mass=new TF1("f_H2_mass", "gaus", h_H2_mass->GetMean()-1*h_H2_mass->GetRMS(), h_H2_mass->GetMean()+1*h_H2_mass->GetRMS()); + TF1 *f_H2_mass_biasCorrected=new TF1("f_H2_mass_biasCorrected", "gaus", h_H2_mass_biasCorrected->GetMean()-1*h_H2_mass_biasCorrected->GetRMS(), h_H2_mass_biasCorrected->GetMean()+1*h_H2_mass_biasCorrected->GetRMS()); + + h_H2_mass->Rebin(2); + h_H2_mass_biasCorrected->Rebin(2); + + h_H2_mass->GetXaxis()->SetRangeUser(50, 200); + h_H2_mass_biasCorrected->GetXaxis()->SetRangeUser(50, 200); + + h_H2_mass->Fit(f_H2_mass, "R"); + h_H2_mass_biasCorrected->Fit(f_H2_mass_biasCorrected, "R"); + + h_H2_mass->SetLineColor(kBlue); + f_H2_mass->SetLineColor(kBlue); + h_H2_mass_biasCorrected->SetLineColor(kRed); + f_H2_mass_biasCorrected->SetLineColor(kRed); + + h_H2_mass->Draw(""); + h_H2_mass_biasCorrected->Draw("same"); + + TLegend *leg=new TLegend(0.57, 0.89, 0.89, 0.75); + leg->AddEntry(h_H2_mass, ("Nominal #bar{x}="+ftoa(f_H2_mass->GetParameter(1))+", #sigma="+ftoa(f_H2_mass->GetParameter(2))).c_str()); + leg->AddEntry(h_H2_mass_biasCorrected, ("Bias Corr. #bar{x}="+ftoa(f_H2_mass_biasCorrected->GetParameter(1))+", #sigma="+ftoa(f_H2_mass_biasCorrected->GetParameter(2))).c_str()); + leg->SetLineColor(0); + leg->Draw(); + + mean_H2=f_H2_mass->GetParameter(1); + sigma_H2=f_H2_mass->GetParameter(2); +} + +void DisplayXpT_ForFile(TFile *f, TFile *fR ) +{ + TH1F *h_HH_balance=(TH1F*)f->Get("h_HH_balance"); + TH1F *h_HH_balance_reg=(TH1F*)fR->Get("h_HH_balance")->Clone("h_HH_balance_reg"); + TH1F *h_HH_balance_kinFit=(TH1F*)fR->Get("h_HH_balance_kinFit"); + + h_HH_balance->SetLineColor(kBlue); + h_HH_balance_reg->SetLineColor(kGreen+1); + h_HH_balance_kinFit->SetLineColor(kRed); + + h_HH_balance_kinFit->Rebin(5); + h_HH_balance->Rebin(5); + h_HH_balance_reg->Rebin(5); + + h_HH_balance->GetXaxis()->SetRangeUser(0, 100); + h_HH_balance_reg->GetXaxis()->SetRangeUser(0, 100); + h_HH_balance_kinFit->GetXaxis()->SetRangeUser(0, 100); + + h_HH_balance_kinFit->SetMaximum(h_HH_balance_kinFit->GetMaximum()*1.2); + h_HH_balance_kinFit->Draw("hist"); + h_HH_balance->Draw("hist same"); + h_HH_balance_reg->Draw("hist same"); + h_HH_balance_kinFit->Draw("hist same"); + + TLegend *leg=new TLegend(0.4, 0.89, 0.89, 0.7); + leg->AddEntry(h_HH_balance, ("Nominal balance, #bar{x} = "+ftoa(h_HH_balance->GetMean())+", #sigma = "+ftoa(h_HH_balance->GetRMS())).c_str()); + leg->AddEntry(h_HH_balance_kinFit, ("Kinematic fit balance, #bar{x} = "+ftoa(h_HH_balance_kinFit->GetMean())+", #sigma = "+ftoa(h_HH_balance_kinFit->GetRMS())).c_str()); + leg->SetLineColor(0); + leg->Draw(); +} + + +// Display histogram for file +TH1* DisplayHistogram_forFile(TFile *file, std::string histogramName, int color, bool reg = false) +{ + TH1F *h=(TH1F*)file->Get(histogramName.c_str()); + h->Scale(1./h->GetSumOfWeights()); + h->SetLineColor(color); + h->SetLineWidth(2); + if( reg ) h->SetLineStyle(2); + if (first) + { + h->SetMaximum(h->GetMaximum()*1.5); + h->GetYaxis()->SetTitleOffset(1.6); + h->Draw("P"); + first=false; + } + h->Draw("hist same"); + return h; +} + + +void DisplayKinFitReg() +{ + std::vector v_files; + +v_files.push_back(new TFile("PreselectedWithoutRegressionDeepCSV/LMRSelection_chi2/Histograms_LMR_GluGluToBulkGravitonToHHTo4B_M-300_narrow_13TeV-madgraph.root")); +v_files.push_back(new TFile("PreselectedWithoutRegressionDeepCSV/LMRSelection_chi2/Histograms_LMR_GluGluToBulkGravitonToHHTo4B_M-450_narrow_13TeV-madgraph.root")); +v_files.push_back(new TFile("PreselectedWithoutRegressionDeepCSV/MMRSelection_chi2/Histograms_MMR_GluGluToBulkGravitonToHHTo4B_M-600_narrow_13TeV-madgraph.root")); +v_files.push_back(new TFile("PreselectedWithoutRegressionDeepCSV/MMRSelection_chi2/Histograms_MMR_GluGluToBulkGravitonToHHTo4B_M-750_narrow_13TeV-madgraph.root")); +v_files.push_back(new TFile("PreselectedWithoutRegressionDeepCSV/MMRSelection_chi2/Histograms_MMR_GluGluToBulkGravitonToHHTo4B_M-900_narrow_13TeV-madgraph.root")); + + +std::vector v_files_reg; +v_files_reg.push_back(new TFile("PreselectedWithRegressionDeepCSV/LMRSelection_chi2/Histograms_LMR_GluGluToBulkGravitonToHHTo4B_M-300_narrow_13TeV-madgraph.root")); +v_files_reg.push_back(new TFile("PreselectedWithRegressionDeepCSV/LMRSelection_chi2/Histograms_LMR_GluGluToBulkGravitonToHHTo4B_M-450_narrow_13TeV-madgraph.root")); +v_files_reg.push_back(new TFile("PreselectedWithRegressionDeepCSV/MMRSelection_chi2/Histograms_MMR_GluGluToBulkGravitonToHHTo4B_M-600_narrow_13TeV-madgraph.root")); +v_files_reg.push_back(new TFile("PreselectedWithRegressionDeepCSV/MMRSelection_chi2/Histograms_MMR_GluGluToBulkGravitonToHHTo4B_M-750_narrow_13TeV-madgraph.root")); +v_files_reg.push_back(new TFile("PreselectedWithRegressionDeepCSV/MMRSelection_chi2/Histograms_MMR_GluGluToBulkGravitonToHHTo4B_M-900_narrow_13TeV-madgraph.root")); + +TFile *f_data_reg=new TFile("PreselectedWithRegressionDeepCSV/Histograms_Preselected_BTagTotal.root"); +std::vector mean_gen={300, 450, 600, 750, 900 }; + + + gROOT->SetStyle("Plain"); + TStyle *myStyle=setTDRStyle(); + myStyle->cd(); + myStyle->SetOptTitle(0); + myStyle->SetOptStat(0); + + std::vector mean, meanDiff_biasCorrected, meanDiff_kinFit, sigma, sigma_biasCorrected, sigma_kinFit; + int dontwant=3; + std::cout<<"Fitting peaks"<Get("h_mX_SR"); + TH1F *h_mX_SR_kf=(TH1F*)v_files.at(i)->Get("h_mX_SR_kinFit"); + TH1F *h_mX_SR_kf_reg=(TH1F*)v_files_reg.at(i)->Get("h_mX_SR_kinFit"); + + h_mX_SR->Rebin(10); + h_mX_SR_kf->Rebin(10); + h_mX_SR_kf_reg->Rebin(10); + + TF1 *f_mX_SR=new TF1("f_mX_SR", "gaus", h_mX_SR->GetMean()-(1.5*h_mX_SR->GetRMS()), h_mX_SR->GetMean()+(1.5*h_mX_SR->GetRMS())); + f_mX_SR->SetParLimits(1, h_mX_SR->GetMean()-(3*h_mX_SR->GetRMS()), h_mX_SR->GetMean()+(3*h_mX_SR->GetRMS())); + f_mX_SR->SetParLimits(2, 0, 3*h_mX_SR->GetRMS()); + std::cout<<"Fitting: "<Fit(f_mX_SR, "R"); + std::cout<<"=== ==="<GetMean()-(1.5*h_mX_SR_kf->GetRMS()), h_mX_SR_kf->GetMean()+(1.5*h_mX_SR_kf->GetRMS())); + f_mX_SR_biasCorrected->SetParLimits(1, h_mX_SR_kf->GetMean()-(3*h_mX_SR_kf->GetRMS()), h_mX_SR_kf->GetMean()+(3*h_mX_SR_kf->GetRMS())); + f_mX_SR_biasCorrected->SetParLimits(2, 0, 3*h_mX_SR_kf->GetRMS()); + std::cout<<"Fitting: "<Fit(f_mX_SR_biasCorrected, "R"); + std::cout<<"=== ==="<GetMean()-(1.5*h_mX_SR_kf_reg->GetRMS()), h_mX_SR_kf_reg->GetMean()+(1.5*h_mX_SR_kf_reg->GetRMS())); + f_mX_SR_kinFit->SetParLimits(1, h_mX_SR_kf_reg->GetMean()-(3*h_mX_SR_kf_reg->GetRMS()), h_mX_SR_kf_reg->GetMean()+(3*h_mX_SR_kf_reg->GetRMS())); + f_mX_SR_kinFit->SetParLimits(2, 0, 3*h_mX_SR_kf_reg->GetRMS()); + std::cout<<"Fitting: "<Fit(f_mX_SR_kinFit, "R"); + std::cout<<"=== ==="<Divide(3,1); + c_Canvas->cd(1); + h_mX_SR->Draw(); + c_Canvas->cd(2); + h_mX_SR_kf->Draw(); + c_Canvas->cd(3); + h_mX_SR_kf_reg->Draw(); + c_Canvas->SaveAs(("c_Fit_"+itoa(mean_gen.at(i))+".png").c_str()); + delete c_Canvas; + + mean.push_back(f_mX_SR->GetParameter(1) - mean_gen.at(i)); + meanDiff_biasCorrected.push_back(f_mX_SR_biasCorrected->GetParameter(1) - mean_gen.at(i)); + meanDiff_kinFit.push_back(f_mX_SR_kinFit->GetParameter(1) - mean_gen.at(i)); + + sigma.push_back(f_mX_SR->GetParameter(2)/mean_gen.at(i)); + sigma_biasCorrected.push_back(f_mX_SR_biasCorrected->GetParameter(2)/mean_gen.at(i)); + sigma_kinFit.push_back(f_mX_SR_kinFit->GetParameter(2)/mean_gen.at(i)); + + delete h_mX_SR; + delete h_mX_SR_kf; + delete h_mX_SR_kf_reg; + } + + std::vector v_mean_H1, v_sigma_H1; + std::vector v_mean_H2, v_sigma_H2; + for (unsigned int i=dontwant; iSaveAs(("c_mH1_"+itoa(mean_gen.at(i))+".png").c_str()); + delete c_mH1; + v_mean_H1.push_back(mean_H1); + v_sigma_H1.push_back(sigma_H1); + + TCanvas *c_mH2=new TCanvas("c_mH2", "c_mH2", 700, 700); + double mean_H2, sigma_H2; + Display_mH2_ForFile(v_files.at(i), v_files_reg.at(i), mean_H2, sigma_H2); + c_mH2->SaveAs(("c_mH2_"+itoa(mean_gen.at(i))+".png").c_str()); + delete c_mH2; + v_mean_H2.push_back(mean_H2); + v_sigma_H2.push_back(sigma_H2); + } + TGraph *g_mean_H1=new TGraph(v_files.size()-dontwant, &(mean_gen.at(dontwant)), &(v_mean_H1.at(0))); + TGraph *g_sigma_H1=new TGraph(v_files.size()-dontwant, &(mean_gen.at(dontwant)), &(v_sigma_H1.at(0))); + TGraph *g_mean_H2=new TGraph(v_files.size()-dontwant, &(mean_gen.at(dontwant)), &(v_mean_H2.at(0))); + TGraph *g_sigma_H2=new TGraph(v_files.size()-dontwant, &(mean_gen.at(dontwant)), &(v_sigma_H2.at(0))); + g_mean_H1->SetTitle("; m_{X}^{gen} (GeV); "); + g_sigma_H1->SetTitle("; m_{X}^{gen} (GeV); #sigma(m_{H1})"); + g_mean_H2->SetTitle("; m_{X}^{gen} (GeV); "); + g_sigma_H2->SetTitle("; m_{X}^{gen} (GeV); #sigma(m_{H1})"); + TF1 *f_mean_H1=new TF1("f_mean_H1", "pol0", 400, 1200); + TF1 *f_sigma_H1=new TF1("f_sigma_H1", "pol0", 400, 1200); + TF1 *f_mean_H2=new TF1("f_mean_H2", "pol0", 400, 1200); + TF1 *f_sigma_H2=new TF1("f_sigma_H2", "pol0", 400, 1200); + g_mean_H1->Fit(f_mean_H1, "R"); + g_sigma_H1->Fit(f_sigma_H1, "R"); + g_mean_H2->Fit(f_mean_H2, "R"); + g_sigma_H2->Fit(f_sigma_H2, "R"); + TCanvas *c_H1H2_meanSigma=new TCanvas("c_H1H2_meanSigma", "c_H1H2_meanSigma", 700, 700); + c_H1H2_meanSigma->Divide(2,2); + c_H1H2_meanSigma->cd(1); + g_mean_H1->Draw("A*"); + c_H1H2_meanSigma->cd(2); + g_sigma_H1->Draw("A*"); + c_H1H2_meanSigma->cd(3); + g_mean_H2->Draw("A*"); + c_H1H2_meanSigma->cd(4); + g_sigma_H2->Draw("A*"); + c_H1H2_meanSigma->SaveAs("c_H1H2_meanSigma.pdf"); + + TGraph *g_mean=new TGraph(v_files.size()-dontwant, &(mean_gen.at(dontwant)), &(mean.at(0))); + g_mean->GetYaxis()->SetRangeUser(-100, 100); + g_mean->GetXaxis()->SetLimits(300, 1300); + g_mean->SetTitle("; m_{X}^{gen} (GeV); m_{X}^{KinFit} - m_{X} (GeV)"); + g_mean->SetMarkerColor(kBlue); + TGraph *g_meanDiff_biasCorrected = new TGraph(v_files.size()-dontwant, &(mean_gen.at(dontwant)), &(meanDiff_biasCorrected.at(0))); + g_meanDiff_biasCorrected->SetMarkerColor(kGreen); + TGraph *g_meanDiff_kinFit = new TGraph(v_files.size()-dontwant, &(mean_gen.at(dontwant)), &(meanDiff_kinFit.at(0))); + g_meanDiff_kinFit->SetMarkerColor(kRed+1); + TCanvas *c_meanDiff=new TCanvas("c_meanDiff", "c_meanDiff", 700, 700); + g_mean->Draw("A*"); + g_meanDiff_biasCorrected->Draw("SAME*"); + g_meanDiff_kinFit->Draw("SAME*"); + TF1 *f_meanDiff_kinFit=new TF1("f_meanDiff_kinFit", "pol0", 400, 1200); + f_meanDiff_kinFit->SetLineColor(kRed); f_meanDiff_kinFit->SetLineWidth(1); f_meanDiff_kinFit->SetLineStyle(7); + g_meanDiff_kinFit->Fit(f_meanDiff_kinFit, "R"); + TLegend *leg=new TLegend(0.5, 0.7, 0.89, 0.89); + leg->SetLineColor(0); + leg->SetFillColor(0); + leg->AddEntry(g_mean, "m_{X}^{reco} - m_{X}^{gen}", "p"); + leg->AddEntry(g_meanDiff_biasCorrected, "m_{X}^{biasCorr} - m_{X}^{gen}", "p"); + leg->AddEntry(g_meanDiff_kinFit, "m_{X}^{kinFit} - m_{X}^{gen}", "p"); + leg->Draw(); + c_meanDiff->SaveAs("c_meanDiff.pdf"); + + TGraph *g_sigma=new TGraph(v_files.size()-dontwant, &(mean_gen.at(dontwant)), &(sigma.at(0))); + g_sigma->SetTitle("; m_{X}^{gen} (GeV); #sigma(m_{X})/m_{X}"); + g_sigma->GetYaxis()->SetRangeUser(0., 0.08); + g_sigma->GetXaxis()->SetLimits(300, 1300); + TGraph *g_sigma_biasCorrected=new TGraph(v_files.size()-dontwant, &(mean_gen.at(dontwant)), &(sigma_biasCorrected.at(0))); + TGraph *g_sigma_kinFit=new TGraph(v_files.size()-dontwant, &(mean_gen.at(dontwant)), &(sigma_kinFit.at(0))); + TCanvas *c_sigma=new TCanvas("c_sigma", "c_sigma", 700, 700); + g_sigma->SetMarkerColor(kBlue); + g_sigma_biasCorrected->SetMarkerColor(kGreen); + g_sigma_kinFit->SetMarkerColor(kRed); + g_sigma->Draw("A*"); + g_sigma_biasCorrected->Draw("SAME*"); + g_sigma_kinFit->Draw("SAME*"); + leg=new TLegend(0.5, 0.7, 0.89, 0.89); + leg->SetLineColor(0); + leg->SetFillColor(0); + leg->AddEntry(g_sigma, "nominal resolution", "p"); + leg->AddEntry(g_sigma_biasCorrected, "bias reconstructed resolution", "p"); + leg->AddEntry(g_sigma_kinFit, "kinematic fitted resolution", "p"); + leg->Draw(); + c_sigma->SaveAs("c_sigma.pdf"); + + // Display jet pT balance + for (unsigned int i=2; iSaveAs(("c_HH_balance_"+itoa(mean_gen.at(i))+".png").c_str()); + delete c_HH_balance; + } + + + std::vector v_files_reg1; + v_files_reg1.push_back(new TFile("PreselectedWithRegressionDeepCSV/Histograms_GluGluToBulkGravitonToHHTo4B_M-300_narrow_13TeV-madgraph.root")); + v_files_reg1.push_back(new TFile("PreselectedWithRegressionDeepCSV/Histograms_GluGluToBulkGravitonToHHTo4B_M-450_narrow_13TeV-madgraph.root")); + v_files_reg1.push_back(new TFile("PreselectedWithRegressionDeepCSV/Histograms_GluGluToBulkGravitonToHHTo4B_M-600_narrow_13TeV-madgraph.root")); + v_files_reg1.push_back(new TFile("PreselectedWithRegressionDeepCSV/Histograms_GluGluToBulkGravitonToHHTo4B_M-750_narrow_13TeV-madgraph.root")); + v_files_reg1.push_back(new TFile("PreselectedWithRegressionDeepCSV/Histograms_GluGluToBulkGravitonToHHTo4B_M-900_narrow_13TeV-madgraph.root")); + + std::vector v_colors = {kAzure+1, kAzure+3, kRed+1, kPink+1, kPink+3, kGreen+2, kGreen+3, kBlue+1, kGray+2, kCyan, kCyan+2, kRed-4, kRed-7, kYellow-4, kGreen-4, kGreen }; + leg=new TLegend(0.6, 0.5, 0.89, 0.89); + // Plot the 1st highest pT jets with |eta| < 2.5 + first=true; + TCanvas *c_pTOrder_JetpT_1=new TCanvas("c_pTOrder_JetpT_1", "c_pTOrder_JetpT_1", 700, 700); + for (unsigned int i=0; iAddEntry(h, ("Signal m_{X} = "+itoa(mean_gen.at(i))+" GeV").c_str()); + + } + DisplayHistogram_forFile(f_data_reg, "h_pTOrder_JetpT_1", kBlack); + DisplayHistogram_forFile(f_data_reg, "h_pTreg_JetpT_1", kBlack, true); + leg->AddEntry(f_data_reg->Get("h_pTOrder_JetpT_1"), "13 TeV Data"); + leg->Draw(); + TArrow *line=new TArrow(30., 0.14, 30., 0); line->SetLineWidth(3); + line->Draw(); + c_pTOrder_JetpT_1->SaveAs("c_reg_JetpT_1.pdf"); + + first=true; + DisplayHistogram_forFile(f_data_reg, "h_pTOrder_JetpT_2", kBlack); + DisplayHistogram_forFile(f_data_reg, "h_pTreg_JetpT_2", kBlack, true); + for (unsigned int i=0; iDraw(); + line->Draw(); + c_pTOrder_JetpT_1->SaveAs("c_reg_JetpT_2.pdf"); + + first=true; + DisplayHistogram_forFile(f_data_reg, "h_pTOrder_JetpT_3", kBlack); + DisplayHistogram_forFile(f_data_reg, "h_pTreg_JetpT_3", kBlack, true); + for (unsigned int i=0; iDraw(); + line->Draw(); + c_pTOrder_JetpT_1->SaveAs("c_reg_JetpT_3.pdf"); + + first=true; + DisplayHistogram_forFile(f_data_reg, "h_pTOrder_JetpT_4", kBlack); + DisplayHistogram_forFile(f_data_reg, "h_pTreg_JetpT_4", kBlack, true); + for (unsigned int i=0; iDraw(); + line->Draw(); + c_pTOrder_JetpT_1->SaveAs("c_reg_JetpT_4.pdf"); + +} diff --git a/Display_SignalFits.cc b/Display_SignalFits.cc index 07b6ab1..cdc128c 100644 --- a/Display_SignalFits.cc +++ b/Display_SignalFits.cc @@ -1049,7 +1049,7 @@ int Display_SignalFits(std::string dir_preselection="PreselectedWithRegressionDe p_2->cd(); RooHist* hpull; hpull = plot_KinFit->pullHist(); - RooRealVar* x=new RooRealVar("x", "m_{X} (GeV)", 0, 1200); + RooRealVar* x=new RooRealVar("x", "m_{X} (GeV)", 0, 1350); RooPlot* frameP = x->frame() ; frameP->SetTitle(""); diff --git a/Display_SignalFits_LMR.cc b/Display_SignalFits_LMR.cc index 7b16dde..f5aa7f8 100644 --- a/Display_SignalFits_LMR.cc +++ b/Display_SignalFits_LMR.cc @@ -388,7 +388,7 @@ RooPlot* fitSignal(TH1F *h, std::string mass, int color, TLegend *leg, Params &p else { rangeLo=500., rangeHi=700.; - sg_p0=new RooRealVar("sg_p0", "sg_p0", 560., 650.); + sg_p0=new RooRealVar("sg_p0", "sg_p0", 560., 750.); sg_p1=new RooRealVar("sg_p1", "sg_p1", 7., 40.); sg_p2=new RooRealVar("sg_p2", "sg_p2", 500., 650.); sg_p3=new RooRealVar("sg_p3", "sg_p3", 10., 130.); @@ -970,7 +970,7 @@ cout << "test"<< endl; p_2->cd(); RooHist* hpull; hpull = plot_KinFit->pullHist(); - RooRealVar* x=new RooRealVar("x", "m_{X} (GeV)", 0, 1200); + RooRealVar* x=new RooRealVar("x", "m_{X} (GeV)", 0, 1350); RooPlot* frameP = x->frame() ; frameP->SetTitle(""); diff --git a/Display_SignalFits_LMR_bias.cc b/Display_SignalFits_LMR_bias.cc index 3e1cd15..87207f5 100644 --- a/Display_SignalFits_LMR_bias.cc +++ b/Display_SignalFits_LMR_bias.cc @@ -388,7 +388,7 @@ RooPlot* fitSignal(TH1F *h, std::string mass, int color, TLegend *leg, Params &p else { rangeLo=500., rangeHi=700.; - sg_p0=new RooRealVar("sg_p0", "sg_p0", 560., 650.); + sg_p0=new RooRealVar("sg_p0", "sg_p0", 560., 750.); sg_p1=new RooRealVar("sg_p1", "sg_p1", 7., 40.); sg_p2=new RooRealVar("sg_p2", "sg_p2", 500., 650.); sg_p3=new RooRealVar("sg_p3", "sg_p3", 10., 130.); @@ -439,7 +439,7 @@ RooPlot* fitSignal(TH1F *h, std::string mass, int color, TLegend *leg, Params &p RooRealVar signal_p1_1("signal_p1_1", "signal_p1_1", sg_p1->getVal()); RooRealVar signal_p2_1("signal_p2_1", "signal_p2_1", sg_p2->getVal()); RooRealVar signal_p3_1("signal_p3_1", "signal_p3_1", sg_p3->getVal()); - RooRealVar signal_p4_1("signal_p4_1", "signal_p4v", sg_p4->getVal()); + RooRealVar signal_p4_1("signal_p4_1", "signal_p4_1", sg_p4->getVal()); RooGaussian signalCore_fixed_1("signalCore_fixed_1", "Signal Prediction", *x, signal_p0_1, signal_p1_1); RooGaussian signalComb_fixed_1("signalComb_fixed_1", "Combinatoric", *x, signal_p2_1, signal_p3_1); RooAddPdf signal_bkg("signal_bkg", "signal", RooArgList(signalCore_fixed_1, signalComb_fixed_1), signal_p4_1); @@ -693,21 +693,21 @@ int Display_SignalFits_LMR_bias(std::string dir_preselection="PreselectedWithReg double bias; if(range==1){ switch(_mass){ - case 260: bias=-0.06; break; - case 270: bias=-0.110; break; - case 300: bias=-0.192; break; + case 260: bias=-0.033; break; + case 270: bias=-0.071; break; + case 300: bias=-0.049; break; default: break; } } else{ switch(_mass){ - case 300: bias=0.036; break; - case 350: bias=-0.069; break; - case 400: bias=0.014; break; - case 450: bias=0.029; break; + case 300: bias=0.038; break; + case 350: bias=0.005; break; + case 400: bias=0.0001; break; + case 450: bias=-0.003; break; case 500: bias=-0.002; break; - case 550: bias=-0.010; break; - case 600: bias=-0.019; break; + case 550: bias=-0.003; break; + case 600: bias=0.002; break; default: break; } } @@ -1002,7 +1002,7 @@ int Display_SignalFits_LMR_bias(std::string dir_preselection="PreselectedWithReg p_2->cd(); RooHist* hpull; hpull = plot_KinFit->pullHist(); - RooRealVar* x=new RooRealVar("x", "m_{X} (GeV)", 0, 1200); + RooRealVar* x=new RooRealVar("x", "m_{X} (GeV)", 0, 1350); RooPlot* frameP = x->frame() ; frameP->SetTitle(""); @@ -1097,3 +1097,4 @@ int Display_SignalFits_LMR_bias(std::string dir_preselection="PreselectedWithReg return 0; } + diff --git a/Display_SignalFits_bias.cc b/Display_SignalFits_bias.cc index 74582cd..384084b 100644 --- a/Display_SignalFits_bias.cc +++ b/Display_SignalFits_bias.cc @@ -524,7 +524,7 @@ RooPlot* fitSignal(TH1F *h, std::string mass, int color, TLegend *leg, Params &p RooRealVar signal_p2_1("signal_p2_1", "signal_p2_1", sg_p2->getVal()); RooRealVar signal_p3_1("signal_p3_1", "signal_p3_1", sg_p3->getVal()); ExpGaussExp signal_bkg("signal_bkg", "Signal Prediction Fixed", *x, signal_p0_1, signal_p1_1, signal_p2_1, signal_p3_1); - RooRealVar *signal_bkg_norm= new RooRealVar("signal_bkg_norm","signal_bkg_norm", 0., -bias, bias,""); + RooRealVar *signal_bkg_norm= new RooRealVar("signal_bkg_norm","signal_bkg_norm", 0., -abs(bias), abs(bias),""); RooWorkspace *w=new RooWorkspace("HbbHbb"); w->import(signal_fixed); w->import(signal_bkg); @@ -773,25 +773,27 @@ int Display_SignalFits_bias(std::string dir_preselection="PreselectedWithRegress double bias; if(range==1){ switch(_mass){ - case 550: bias=-0.00039; break; - case 600: bias=0.00045; break; - case 650: bias=-0.00014; break; - case 750: bias=-0.00042; break; - case 800: bias=-0.00054; break; - case 900: bias=-0.00049; break; - case 1000: bias=0.00015; break; - default: break; + case 550: bias=0.170; break; + case 600: bias=0.053; break; + case 650: bias=-0.062; break; + case 750: bias=-0.190; break; + case 800: bias=-0.119; break; + case 900: bias=-0.033; break; + case 1000: bias=0.061; break; + case 1200: bias=0.094; break; + default: break; } } else{ switch(_mass){ - case 550: bias=-0.00039; break; - case 600: bias=0.00045; break; - case 650: bias=-0.00014; break; - case 750: bias=-0.00042; break; - case 800: bias=-0.00054; break; - case 900: bias=-0.00049; break; - case 1000: bias=0.00015; break; + case 550: bias=0.170; break; + case 600: bias=0.053; break; + case 650: bias=-0.062; break; + case 750: bias=-0.190; break; + case 800: bias=-0.119; break; + case 900: bias=-0.033; break; + case 1000: bias=0.061; break; + case 1200: bias=0.094; break; default: break; } } @@ -950,8 +952,7 @@ int Display_SignalFits_bias(std::string dir_preselection="PreselectedWithRegress plot->Draw("same"); leg->SetFillColor(0); leg->Draw(); - c_mX_SR->SaveAs((dest_dir+"/"+"SignalFits"+reg+"/c_mX_SR_"+masses.at(i)+".png").c_str()); - + c_mX_SR->SaveAs((dest_dir+"/"+"SignalFits"+reg+"/c_mX_SR_"+masses.at(i)+".png").c_str()); double xPad = 0.3; @@ -1084,7 +1085,7 @@ int Display_SignalFits_bias(std::string dir_preselection="PreselectedWithRegress p_2->cd(); RooHist* hpull; hpull = plot_KinFit->pullHist(); - RooRealVar* x=new RooRealVar("x", "m_{X} (GeV)", 0, 1200); + RooRealVar* x=new RooRealVar("x", "m_{X} (GeV)", 0, 1350); RooPlot* frameP = x->frame() ; frameP->SetTitle(""); @@ -1168,3 +1169,4 @@ int Display_SignalFits_bias(std::string dir_preselection="PreselectedWithRegress return 0; } + diff --git a/Display_SignalKinFitReg.cc b/Display_SignalKinFitReg.cc new file mode 100644 index 0000000..2e10a87 --- /dev/null +++ b/Display_SignalKinFitReg.cc @@ -0,0 +1,142 @@ +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include "TDRStyle.h" +#include "CMS_lumi.c" +int iPeriod = 4; +int iPos = 11; + + +bool first=true; + +std::string itoa(int i) +{ + char res[4]; + sprintf(res, "%d", i); + std::string ret(res); + return ret; +} + +std::string ftoa(double i) +{ + char res[10]; + sprintf(res, "%2.1f", i); + std::string ret(res); + return ret; +} + +void DisplayKinFitForFile(TFile *file, TFile *fileR, double xLine) +{ + TH1F *h_mX_SR=(TH1F*)file->Get("h_mX_SR"); + TH1F *h_mX_SR_kf=(TH1F*)file->Get("h_mX_SR_kinFit")->Clone("h_mX_SR_kf"); + TH1F *h_mX_SR_kf_reg=(TH1F*)fileR->Get("h_mX_SR_kinFit")->Clone("h_mX_SR_kf_reg"); + + + h_mX_SR->Rebin(8); + h_mX_SR_kf->Rebin(8); + h_mX_SR_kf_reg->Rebin(8); + h_mX_SR->GetXaxis()->SetRangeUser(200, 1400 ); + h_mX_SR_kf->GetXaxis()->SetRangeUser(200, 1400 ); + h_mX_SR_kf_reg->GetXaxis()->SetRangeUser(200, 1400 ); + h_mX_SR->Smooth(12,"R"); + h_mX_SR_kf->Smooth(12,"R"); + h_mX_SR_kf_reg->Smooth(12,"R"); + + + h_mX_SR->SetLineWidth(3); + h_mX_SR_kf->SetLineWidth(3); + h_mX_SR_kf_reg->SetLineWidth(3); + + h_mX_SR->SetLineColor(kGray+1); + h_mX_SR->SetLineStyle(7); + h_mX_SR_kf->SetLineColor(kAzure+1); + h_mX_SR_kf->SetLineStyle(5); + h_mX_SR_kf_reg->SetLineColor(kRed+1); + + if (first) + { + h_mX_SR_kf_reg->GetYaxis()->SetTitle("Normalized Units"); + h_mX_SR_kf_reg->GetYaxis()->SetTitleOffset(1.4); + TH1* tmp = h_mX_SR_kf_reg->DrawNormalized("histo C"); + tmp->SetMaximum(0.25); + h_mX_SR_kf_reg->SetMaximum(h_mX_SR_kf_reg->GetMaximum()*1.4); + TLegend *leg=new TLegend(0.4, 0.75, 0.89, 0.89); + leg->SetLineColor(0); + leg->SetFillColor(0); + leg->AddEntry(h_mX_SR, "m_{X} Signal Peak"); + leg->AddEntry(h_mX_SR_kf, "m_{X} w/ Kinematic Fit"); + leg->AddEntry(h_mX_SR_kf_reg, "m_{X} w/ Kinematic Fit + Reg."); + leg->Draw(); + first=false; + } + else h_mX_SR_kf_reg->DrawNormalized("histo same C"); + h_mX_SR_kf->DrawNormalized("histo same C"); + h_mX_SR->DrawNormalized("histo same C"); + + TLine *line=new TLine(xLine, 0, xLine, 0.20); + line->Draw(); + +} + +void Display_SignalKinFitReg() +{ + std::vector v_files; + v_files.push_back(new TFile("PreselectedWithoutRegressionDeepCSV/LMRSelection_chi2/Histograms_LMR_GluGluToBulkGravitonToHHTo4B_M-300_narrow_13TeV-madgraph.root")); + v_files.push_back(new TFile("PreselectedWithoutRegressionDeepCSV/LMRSelection_chi2/Histograms_LMR_GluGluToBulkGravitonToHHTo4B_M-450_narrow_13TeV-madgraph.root")); + v_files.push_back(new TFile("PreselectedWithoutRegressionDeepCSV/MMRSelection_chi2/Histograms_MMR_GluGluToBulkGravitonToHHTo4B_M-600_narrow_13TeV-madgraph.root")); + v_files.push_back(new TFile("PreselectedWithoutRegressionDeepCSV/MMRSelection_chi2/Histograms_MMR_GluGluToBulkGravitonToHHTo4B_M-800_narrow_13TeV-madgraph.root")); + v_files.push_back(new TFile("PreselectedWithoutRegressionDeepCSV/MMRSelection_chi2/Histograms_MMR_BulkGravTohhTohbbhbb_narrow_M-1000_13TeV-madgraph.root")); + v_files.push_back(new TFile("PreselectedWithoutRegressionDeepCSV/MMRSelection_chi2/Histograms_MMR_BulkGravTohhTohbbhbb_narrow_M-1200_13TeV-madgraph.root")); + + std::vector v_files_reg; + v_files_reg.push_back(new TFile("PreselectedWithRegressionDeepCSV/LMRSelection_chi2/Histograms_LMR_GluGluToBulkGravitonToHHTo4B_M-300_narrow_13TeV-madgraph.root")); + v_files_reg.push_back(new TFile("PreselectedWithRegressionDeepCSV/LMRSelection_chi2/Histograms_LMR_GluGluToBulkGravitonToHHTo4B_M-450_narrow_13TeV-madgraph.root")); + v_files_reg.push_back(new TFile("PreselectedWithRegressionDeepCSV/MMRSelection_chi2/Histograms_MMR_GluGluToBulkGravitonToHHTo4B_M-600_narrow_13TeV-madgraph.root")); + v_files_reg.push_back(new TFile("PreselectedWithRegressionDeepCSV/MMRSelection_chi2/Histograms_MMR_GluGluToBulkGravitonToHHTo4B_M-800_narrow_13TeV-madgraph.root")); + v_files_reg.push_back(new TFile("PreselectedWithRegressionDeepCSV/MMRSelection_chi2/Histograms_MMR_BulkGravTohhTohbbhbb_narrow_M-1000_13TeV-madgraph.root")); + v_files_reg.push_back(new TFile("PreselectedWithRegressionDeepCSV/MMRSelection_chi2/Histograms_MMR_BulkGravTohhTohbbhbb_narrow_M-1200_13TeV-madgraph.root")); + TFile *f_data_reg=new TFile("PreselectedWithRegressionDeepCSV/Histograms_Preselected_BTagTotal.root"); + std::vector mean_gen={300, 450, 600, 800, 1000, 1200}; + + gROOT->SetStyle("Plain"); + TStyle *myStyle=setTDRStyle(); + myStyle->cd(); + myStyle->SetOptTitle(0); + myStyle->SetOptStat(0); + + //PAS plot + TCanvas *c_KinFit=new TCanvas("c_KinFit", "c_KinFit", 1400, 1000); + TPad *p_1=new TPad("p_1", "p_1", 0, 0, 1, 1); + p_1->SetFillStyle(4000); + p_1->SetFrameFillColor(0); + p_1->SetBottomMargin(0.10); + p_1->SetLeftMargin(0.15); + p_1->Draw(); + p_1->cd(); + writeExtraText = true; + extraText = "Simulation"; + lumi_13TeV = ""; + + std::vector choice = { 0, 1, 2, 3, 4, 5}; + for (unsigned int i=0; iSaveAs("c_KinFit.pdf"); + c_KinFit->SaveAs("c_KinFit.png"); +} + + diff --git a/DisplaymHmX.cc b/DisplaymHmX.cc new file mode 100644 index 0000000..b2ca61c --- /dev/null +++ b/DisplaymHmX.cc @@ -0,0 +1,227 @@ +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include "TDRStyle.h" + +#include "CMS_lumi.c" + +double chi_1=1; +double chi_2=2; + +double marg=19; + +bool signalpoints=true; +bool data=false; +bool ttbar=false; +bool blind=false; //!!! + +bool first; + +std::string itoa(int i) +{ + char res[4]; + sprintf(res, "%d", i); + std::string ret(res); + return ret; +} + +// Display histogram for file +void DisplayHistogram_mH_forFile(TFile *file, std::string histogramName, int color) +{ + TH1F *h=(TH1F*)file->Get(histogramName.c_str()); + h->Scale(1./h->GetSumOfWeights()); + h->SetLineColor(color); + h->SetLineWidth(2); + h->Rebin(2); + h->GetXaxis()->SetRangeUser(50, 200); + if (first) + { + h->SetMaximum(h->GetMaximum()*1.2); + h->GetYaxis()->SetTitleOffset(1.6); + h->Draw("hist"); + first=false; + } + h->Draw("hist same"); +} + +void Plot_Purity_forFile(TFile *file, TString smass = "600", int mass = 600 ) +{ + std::vector v_colors = {kRed+1, kRed+3, kGreen+2, kOrange+2, kAzure+1, kAzure+3, kPink+2};//, kGray+2,kBlue+1}; + std::vector v_leg = { "Purity = 4", "Purity = 3", "Purity = 2", "Purity = 1", "Purity = 0", "Purity = -1" }; + TCanvas c( "c", "c"+smass ); c.cd(); + c.SetLogy(); + std::vector histogramNames = { "h_mX_SR_purity4", "h_mX_SR_purity3", "h_mX_SR_purity2", "h_mX_SR_purity1", "h_mX_SR_purity0", "h_mX_SR_purity5" }; + TH1 *h; + TLegend *leg=new TLegend(0.6, 0.7, 0.89, 0.89); + bool _first = true; + for( int i = 0; i < 6; i++ ) + { + h=(TH1F*)file->Get( histogramNames.at(i) ); + //h->Scale(1./h->GetSumOfWeights()); + h->SetLineColor( v_colors.at(i) ); + h->SetLineWidth(2); + h->Rebin(10); + h->GetXaxis()->SetRangeUser( mass - 250, mass + 250 ); + leg->AddEntry( h, v_leg.at(i) ); + if (_first) + { + h->SetMaximum(h->GetMaximum()*5); + h->GetYaxis()->SetTitleOffset(1.6); + h->Draw("hist"); + _first=false; + } + h->Draw("hist same"); + } + leg->Draw(); + c.SaveAs( "c_pur_mx"+smass+".pdf" ); +} + + +void drawRegion(bool isData=false, double mean_H1_mass=125, double sigma_H1_mass=20, double mean_H2_mass=125, double sigma_H2_mass=20) +{ + TEllipse *circle1=new TEllipse(mean_H1_mass, mean_H2_mass, sigma_H1_mass*chi_1, sigma_H2_mass*chi_1); + circle1->SetLineWidth(3); + circle1->SetLineColor(kBlack); + circle1->SetFillColor(kRed); + circle1->SetFillStyle(0); + if( isData&&blind ) circle1->SetFillStyle(1); + circle1->Draw(); + + TEllipse *circle2=new TEllipse(mean_H1_mass, mean_H2_mass, sigma_H1_mass*chi_2, sigma_H2_mass*chi_2, 90., 180.); circle2->SetLineWidth(3); circle2->SetNoEdges(); circle2->SetLineColor(kBlack); circle2->SetFillStyle(0); circle2->Draw(); + TEllipse *circle3=new TEllipse(mean_H1_mass, mean_H2_mass, sigma_H1_mass*chi_2, sigma_H2_mass*chi_2, 270., 360.); circle3->SetLineWidth(3); circle3->SetNoEdges(); circle3->SetLineColor(kBlack); circle3->SetFillStyle(0); circle3->Draw(); + TLine *line1=new TLine(mean_H1_mass-sigma_H1_mass*chi_2, mean_H2_mass, mean_H1_mass-sigma_H1_mass*chi_1, mean_H2_mass); line1->SetLineWidth(3); line1->SetLineColor(kBlack); line1->Draw(); + TLine *line2=new TLine(mean_H1_mass+sigma_H1_mass*chi_2, mean_H2_mass, mean_H1_mass+sigma_H1_mass*chi_1, mean_H2_mass); line2->SetLineWidth(3); line2->SetLineColor(kBlack); line2->Draw(); + TLine *line3=new TLine(mean_H1_mass, mean_H2_mass-sigma_H2_mass*chi_2, mean_H1_mass, mean_H2_mass-sigma_H2_mass*chi_1); line3->SetLineWidth(3); line3->SetLineColor(kBlack); line3->Draw(); + TLine *line4=new TLine(mean_H1_mass, mean_H2_mass+sigma_H2_mass*chi_2, mean_H1_mass, mean_H2_mass+sigma_H2_mass*chi_1); line4->SetLineWidth(3); line4->SetLineColor(kBlack); line4->Draw(); + + TArrow *arrow1=new TArrow(mean_H1_mass, mean_H2_mass+sigma_H2_mass*chi_2*3., mean_H1_mass, mean_H2_mass, 0.02); arrow1->SetLineWidth(3); arrow1->SetLineColor(kBlack); arrow1->Draw(); + TPaveText *mod1=new TPaveText(mean_H1_mass-marg, mean_H2_mass+sigma_H2_mass*chi_2*3.-marg, mean_H1_mass+marg, mean_H2_mass+sigma_H2_mass*chi_2*3+marg); + mod1->SetBorderSize(0); mod1->SetFillColor(0); mod1->AddText("SR"); mod1->SetLineColor(kBlack); mod1->Draw("ARC"); + TArrow *arrow2_1=new TArrow(mean_H1_mass+sigma_H1_mass*chi_2*2.5, mean_H2_mass, mean_H1_mass-sigma_H1_mass*chi_2/2., mean_H2_mass+sigma_H2_mass*chi_2/2., 0.02); arrow2_1->SetLineWidth(3); arrow2_1->SetLineColor(kBlack); + TArrow *arrow2_2=new TArrow(mean_H1_mass+sigma_H1_mass*chi_2*2.5, mean_H2_mass, mean_H1_mass+sigma_H1_mass*chi_2/2., mean_H2_mass-sigma_H2_mass*chi_2/2., 0.02); arrow2_2->SetLineWidth(3); arrow2_2->SetLineColor(kBlack); + TLine *arrow2_3=new TLine(mean_H1_mass+sigma_H1_mass*chi_2*2.5, mean_H2_mass, mean_H1_mass+sigma_H1_mass*chi_2*3., mean_H2_mass); arrow2_3->SetLineWidth(3); arrow2_3->SetLineColor(kBlack); + arrow2_1->Draw(); arrow2_2->Draw(); arrow2_3->Draw(); + TPaveText *mod2=new TPaveText(mean_H1_mass+sigma_H1_mass*chi_2*3.-marg, mean_H2_mass+marg, mean_H1_mass+sigma_H1_mass*chi_2*3.+marg, mean_H2_mass-marg); + + mod2->SetBorderSize(0); mod2->SetFillColor(0); mod2->AddText("SB"); mod2->SetLineColor(kBlack); mod2->Draw("ARC"); + +} + +void DisplaymH1vsmH2_ForFile(TFile *file, bool isData=false, double mean_H1_mass=125, double sigma_H1_mass=20, double mean_H2_mass=125, double sigma_H2_mass=20) +{ + TH2F *h_mH1_mH2_asym=(TH2F*)file->Get("h_mH1_mH2_asym"); + h_mH1_mH2_asym->RebinX(4); + h_mH1_mH2_asym->RebinY(4); + h_mH1_mH2_asym->GetYaxis()->SetTitleOffset(1.5); + h_mH1_mH2_asym->Draw("box"); + + drawRegion(isData, mean_H1_mass, sigma_H1_mass, mean_H1_mass, sigma_H1_mass); +} + +void DisplaymHmX(std::vector files, std::vector mean_gen, double mean_H1_mass, double sigma_H1_mass, double mean_H2_mass, double sigma_H2_mass) +{ + std::vector v_files; + for (unsigned int i=0; i v_colors = {kRed+1, kRed+3, kGreen+2, kOrange+2, kAzure+1, kAzure+3, kPink+2};//, kGray+2,kBlue+1}; + + gROOT->SetStyle("Plain"); + TStyle *myStyle=setTDRStyle(); + myStyle->cd(); + myStyle->SetOptTitle(0); + myStyle->SetOptStat(0); + + TLegend *leg=new TLegend(0.6, 0.7, 0.89, 0.89); + for (unsigned int i=0; iGet("h_pTOrder_JetpT_1"); + h_pTOrder_JetpT_1->SetLineColor(v_colors.at(i)); + h_pTOrder_JetpT_1->SetLineWidth(2); + leg->AddEntry(h_pTOrder_JetpT_1, ("Signal m_{X} = "+itoa(mean_gen.at(i))+" GeV").c_str()); + } + h_pTOrder_JetpT_1=(TH1F*)f_data->Get("h_pTOrder_JetpT_1"); + h_pTOrder_JetpT_1->SetLineColor(kBlack); + h_pTOrder_JetpT_1->SetLineWidth(2); + leg->AddEntry(h_pTOrder_JetpT_1, "13 TeV Data"); + /*h_pTOrder_JetpT_1=(TH1F*)f_ttbar->Get("h_pTOrder_JetpT_1"); + h_pTOrder_JetpT_1->SetLineColor(kRed); + h_pTOrder_JetpT_1->SetLineWidth(2); + leg->AddEntry(h_pTOrder_JetpT_1, "t#bar{t}");*/ + + // Plot mH1 + first=true; + TCanvas *c_H1_mass=new TCanvas("c_H1_mass", "c_H1_mass", 700, 700); + + for (int i=v_files.size()-1; i>=0; --i) + { + // std::cout<<" here "<Draw(); + c_H1_mass->SaveAs("c_H1_mass.png"); + delete c_H1_mass; + // std::cout<<" here "<=0; --i) + { + DisplayHistogram_mH_forFile(v_files.at(i), "h_H2_mass", v_colors.at(i)); + } + // DisplayHistogram_mH_forFile(f_data, "h_H2_mass", kBlack); + //DisplayHistogram_mH_forFile(f_ttbar, "h_H2_mass", kRed); + leg->Draw(); + c_H2_mass->SaveAs("c_H2_mass.png"); + delete c_H2_mass; + + // Plot mH1 + + for (int i=v_files.size()-1; i>=0; --i) + { + // std::cout<<" here "<SaveAs(("c_mH1_mH2_asym_"+files.at(i)+".png").c_str()); + delete c_mH1_mH2_asym; + } + TCanvas *c_mH1_mH2_asym_Data=new TCanvas("c_mH1_mH2_asym_Data", "c_mH1_mH2_asym_Data", 700, 700); + DisplaymH1vsmH2_ForFile(f_data, true, mean_H1_mass, sigma_H1_mass, mean_H2_mass, sigma_H2_mass); + CMS_lumi(c_mH1_mH2_asym_Data, 4, 11); + c_mH1_mH2_asym_Data->SaveAs("c_mH1_mH2_asym_Data.png"); + c_mH1_mH2_asym_Data->SaveAs("c_mH1_mH2_asym_Data.pdf"); + delete c_mH1_mH2_asym_Data; + +} + + diff --git a/DrawLimitPlot.cc b/DrawLimitPlot.cc index 0c09268..362a63a 100644 --- a/DrawLimitPlot.cc +++ b/DrawLimitPlot.cc @@ -1,4 +1,5 @@ #include +#include "TSystem.h" #include #include #include @@ -256,8 +257,6 @@ void DrawLimitPlot(std::vector mass, double ymin, double ymax, std::stri double xsec[nPoints], xsecNeg1[nPoints], xsecPos1[nPoints], xsecNeg2[nPoints], xsecPos2[nPoints]; double obs[nPoints]; double expNeg2[nPoints], expNeg1[nPoints], expPos1[nPoints], expPos2[nPoints]; - // double mass[nPoints]={400, 600, 800, 1000, 1200}; - // double mass[nPoints]={400, 450, 500, 550, 600, 650, 700, 800, 900, 1000, 1100}; for (unsigned int i=0; i mass, double ymin, double ymax, std::stri std::ifstream file(filename.c_str(), ios::in); std::cout<<"Opened file "<AccessPathName(filename.c_str())) { + + getline(file, line); + + std::size_t pos = line.find("-- Asymptotic --"); + + if (pos!=std::string::npos){ + + found=true; + + } + + } + getline(file, line); obs[i]=atof(line.substr(line.find("<")+1).c_str())*norm; getline(file, line); xsecNeg2[i]=atof(line.substr(line.find("<")+1).c_str())*norm; @@ -286,8 +298,9 @@ void DrawLimitPlot(std::vector mass, double ymin, double ymax, std::stri expPos2[i]=xsecPos2[i]-xsec[i]; // std::cout<<"obs="< br_hh={//32.552,593.385,959.755,573.531,308.096,162.880,89.1 0.00464996849485267, 0.004672514523079795 }; + + // Radion curve + std::vector masses_radion={ + 260, + 300, + 400, + 500, + 600, + 700, + 750, + 800, + 900, + 1000, + 1500}; + + std::vector x_radion{ + 10.314910442540885, + 7.20114376233762, + 3.369927115848731, + 1.962250361817225, + 1.235987766884442, + 0.8043402650432466, + 0.6557538821852814, + 0.5434525134607641, + 0.3735615328391298, + 0.2618915924170746, + 0.054417137017588976}; + // Multiply graviton x-sec with appropriate Br(G->HH)*Br(H->bb)^2 * (k'/k)^2 for(int i=0; i>SetOptStat(000000000); -TStyle *tdrStyle=setTDRStyle(); -//tdrStyle->cd(); + TGraphErrors *g_xsec=new TGraphErrors(nPoints, &(mass[0]), xsec); g_xsec->SetTitle("; m_{X} (GeV); #sigma(pp#rightarrowX) #times Br(X#rightarrowH(b#bar{b}) H(b#bar{b})) (fb)"); @@ -436,6 +481,7 @@ g_xsec->Draw("L"); g_obs->SetMarkerStyle(20); //g_obs->Draw("LP SAME"); g_graviton->Draw("C same"); +//g_radion->Draw("C same"); TLegend *leg=new TLegend(0.45, 0.65, 0.9, 0.85); // TLegend *leg=new TLegend(0.45, 0.5, 0.9, 0.7); leg->SetFillStyle(1); leg->SetFillColor(kWhite); @@ -444,6 +490,7 @@ leg->AddEntry(g_xsec_1sigma, "Expected #pm 1 #sigma", "F"); leg->AddEntry(g_xsec_2sigma, "Expected #pm 2 #sigma", "F"); //leg->AddEntry(g_obs, "Observed Upper Limit", "LP"); leg->AddEntry(g_graviton,"Bulk Graviton k=0.1","L"); +//leg->AddEntry(g_radion,"Bulk Radion #lambda= 1 TeV, kl=35","L"); leg->SetFillColor(kWhite); leg->SetFillStyle(0); leg->SetTextSize(0.03); diff --git a/DrawLimitPlot_All.cc b/DrawLimitPlot_All.cc new file mode 100644 index 0000000..76b7828 --- /dev/null +++ b/DrawLimitPlot_All.cc @@ -0,0 +1,626 @@ +#include +#include "TSystem.h" +#include +#include +#include +#include +#include "TGraphAsymmErrors.h" +#include "TGraphErrors.h" +#include "TCanvas.h" +#include "TLegend.h" +#include "TFile.h" +#include "TAxis.h" +#include "TLatex.h" +#include "../../TDRStyle.h" +#include "../../CMS_lumi.h" +#include +int iPeriod = 4; // 1=7TeV, 2=8TeV, 3=7+8TeV, 7=7+8+13TeV +int iPos = 11; + +void +CMS_lumi( TPad* pad, int iPeriod, int iPosX ) +{ + bool outOfFrame = false; + if( iPosX/10==0 ) + { + outOfFrame = true; + } + int alignY_=3; + int alignX_=2; + if( iPosX/10==0 ) alignX_=1; + if( iPosX==0 ) alignX_=1; + if( iPosX==0 ) alignY_=1; + if( iPosX/10==1 ) alignX_=1; + if( iPosX/10==2 ) alignX_=2; + if( iPosX/10==3 ) alignX_=3; + if( iPosX == 0 ) relPosX = 0.14; + int align_ = 10*alignX_ + alignY_; + + float H = pad->GetWh(); + float W = pad->GetWw(); + float l = pad->GetLeftMargin(); + float t = pad->GetTopMargin(); + float r = pad->GetRightMargin(); + float b = pad->GetBottomMargin(); + + pad->cd(); + + TString lumiText; + if( iPeriod==1 ) + { + lumiText += lumi_7TeV; + lumiText += " (7 TeV)"; + } + else if ( iPeriod==2 ) + { + lumiText += lumi_8TeV; + lumiText += " (8 TeV)"; + } + else if( iPeriod==3 ) + { + lumiText = lumi_8TeV; + lumiText += " (8 TeV)"; + lumiText += " + "; + lumiText += lumi_7TeV; + lumiText += " (7 TeV)"; + } + else if ( iPeriod==4 ) + { + lumiText += lumi_13TeV; + lumiText += " (13 TeV)"; + } + else if ( iPeriod==7 ) + { + if( outOfFrame ) lumiText += "#scale[0.85]{"; + lumiText += lumi_13TeV; + lumiText += " (13 TeV)"; + lumiText += " + "; + lumiText += lumi_8TeV; + lumiText += " (8 TeV)"; + lumiText += " + "; + lumiText += lumi_7TeV; + lumiText += " (7 TeV)"; + if( outOfFrame) lumiText += "}"; + } + else if ( iPeriod==12 ) + { + lumiText += "8 TeV"; + } + else if ( iPeriod==0 ) + { + lumiText += lumi_sqrtS; + } + + std::cout << lumiText << endl; + + TLatex latex; + latex.SetNDC(); + latex.SetTextAngle(0); + latex.SetTextColor(kBlack); + + float extraTextSize = extraOverCmsTextSize*cmsTextSize; + + latex.SetTextFont(42); + latex.SetTextAlign(31); + latex.SetTextSize(lumiTextSize*t); + latex.DrawLatex(1-r,1-t+lumiTextOffset*t,lumiText); + + if( outOfFrame ) + { + latex.SetTextFont(cmsTextFont); + latex.SetTextAlign(11); + latex.SetTextSize(cmsTextSize*t); + latex.DrawLatex(l,1-t+lumiTextOffset*t,cmsText); + } + + pad->cd(); + + float posX_=0; + if( iPosX%10<=1 ) + { + posX_ = l + relPosX*(1-l-r); + } + else if( iPosX%10==2 ) + { + posX_ = l + 0.5*(1-l-r); + } + else if( iPosX%10==3 ) + { + posX_ = 1-r - relPosX*(1-l-r); + } + float posY_ = 1-t - relPosY*(1-t-b); + if( !outOfFrame ) + { + if( drawLogo ) + { + posX_ = l + 0.045*(1-l-r)*W/H; + posY_ = 1-t - 0.045*(1-t-b); + float xl_0 = posX_; + float yl_0 = posY_ - 0.15; + float xl_1 = posX_ + 0.15*H/W; + float yl_1 = posY_; + TASImage* CMS_logo = new TASImage("CMS-BW-label.png"); + TPad* pad_logo = new TPad("logo","logo", xl_0, yl_0, xl_1, yl_1 ); + pad_logo->Draw(); + pad_logo->cd(); + CMS_logo->Draw("X"); + pad_logo->Modified(); + pad->cd(); + } + else + { + latex.SetTextFont(cmsTextFont); + latex.SetTextSize(cmsTextSize*t); + latex.SetTextAlign(align_); + latex.DrawLatex(posX_, posY_, cmsText); + if( writeExtraText ) + { + latex.SetTextFont(extraTextFont); + latex.SetTextAlign(align_); + latex.SetTextSize(extraTextSize*t); + latex.DrawLatex(posX_, posY_- relExtraDY*cmsTextSize*t, extraText); + } + } + } + else if( writeExtraText ) + { + if( iPosX==0) + { + posX_ = l + relPosX*(1-l-r); + posY_ = 1-t+lumiTextOffset*t; + } + latex.SetTextFont(extraTextFont); + latex.SetTextSize(extraTextSize*t); + latex.SetTextAlign(align_); + latex.DrawLatex(posX_, posY_, extraText); + } + return; +} + + +std::string itoa(int i) +{ + char res[4]; + sprintf(res, "%d", i); + std::string ret(res); + return ret; +} + +void DrawLimitPlot_All(std::vector mass_1, + std::vector mass_2, + std::vector mass_3, + double ymin, double ymax, + std::string background_1, + std::string background_2, + std::string background_3){ + gStyle->SetTitleOffset(1.2,"Y"); + gStyle->SetPadLeftMargin(0.18); + gStyle->SetPadBottomMargin(0.15); + gStyle->SetPadTopMargin(0.08); + gStyle->SetPadRightMargin(0.05); + gStyle->SetMarkerSize(0.5); + gStyle->SetHistLineWidth(1); + gStyle->SetStatFontSize(0.020); + gStyle->SetTitleSize(0.06, "XYZ"); + gStyle->SetLabelSize(0.05, "XYZ"); + gStyle->SetNdivisions(510, "XYZ"); + gStyle->SetLegendBorderSize(0); + gStyle->SetPadBorderMode(0); + gStyle->SetFrameBorderMode(0); + gStyle->SetPadBottomMargin(0.12); + gStyle->SetPadLeftMargin(0.12); + gStyle->SetCanvasColor(kWhite); + gStyle->SetCanvasDefH(600); + gStyle->SetCanvasDefW(600); + gStyle->SetCanvasDefX(0); + gStyle->SetCanvasDefY(0); + + gStyle->SetPadTopMargin(0.05); + gStyle->SetPadBottomMargin(0.15); + gStyle->SetPadLeftMargin(0.15); + gStyle->SetPadRightMargin(0.05); + + gStyle->SetPadBorderMode(0); + gStyle->SetPadColor(kWhite); + gStyle->SetGridColor(0); + gStyle->SetGridStyle(3); + gStyle->SetGridWidth(1); + + gStyle->SetFrameBorderMode(0); + gStyle->SetFrameBorderSize(1); + gStyle->SetFrameFillColor(0); + gStyle->SetFrameFillStyle(0); + gStyle->SetFrameLineColor(1); + gStyle->SetFrameLineStyle(1); + gStyle->SetFrameLineWidth(1); + + gStyle->SetTitleColor(1, "XYZ"); + gStyle->SetTitleFont(42, "XYZ"); + gStyle->SetTitleSize(0.05, "XYZ"); + gStyle->SetTitleXOffset(1.15); + gStyle->SetTitleYOffset(1.3) ; + gStyle->SetLabelColor(1, "XYZ"); + gStyle->SetLabelFont(42, "XYZ"); + gStyle->SetLabelOffset(0.007, "XYZ"); + gStyle->SetLabelSize(0.045, "XYZ"); + + gStyle->SetPadBorderMode(0); + gStyle->SetFrameBorderMode(0); + gStyle->SetTitleTextColor(1); + gStyle->SetTitleFillColor(10); + gStyle->SetTitleFontSize(0.05); + + writeExtraText = true; + extraText = "Preliminary"; + lumi_13TeV = "35.9 fb^{-1}"; + + // LMR1 definitions + const unsigned int nPoints_1=mass_1.size(); + double xsec_1[nPoints_1], xsecNeg1_1[nPoints_1], xsecPos1_1[nPoints_1], xsecNeg2_1[nPoints_1], xsecPos2_1[nPoints_1]; + double obs_1[nPoints_1]; + double expNeg2_1[nPoints_1], expNeg1_1[nPoints_1], expPos1_1[nPoints_1], expPos2_1[nPoints_1]; + double norm_1=1000; + // LMR2 definitions + const unsigned int nPoints_2=mass_2.size(); + double xsec_2[nPoints_2], xsecNeg1_2[nPoints_2], xsecPos1_2[nPoints_2], xsecNeg2_2[nPoints_2], xsecPos2_2[nPoints_2]; + double obs_2[nPoints_2]; + double expNeg2_2[nPoints_2], expNeg1_2[nPoints_2], expPos1_2[nPoints_2], expPos2_2[nPoints_2]; + double norm_2=1000; + // MMR1 definitions + const unsigned int nPoints_3=mass_3.size(); + double xsec_3[nPoints_3], xsecNeg1_3[nPoints_3], xsecPos1_3[nPoints_3], xsecNeg2_3[nPoints_3], xsecPos2_3[nPoints_3]; + double obs_3[nPoints_3]; + double expNeg2_3[nPoints_3], expNeg1_3[nPoints_3], expPos1_3[nPoints_3], expPos2_3[nPoints_3]; + double norm_3=2; + + // LMR1 LOOP + for (unsigned int i=0; iAccessPathName(filename_1.c_str())) { + getline(file_1, line_1); + std::size_t pos = line_1.find("-- Asymptotic --"); + if (pos!=std::string::npos){ + found_1=true; + } + } + getline(file_1, line_1); obs_1[i]=atof(line_1.substr(line_1.find("<")+1).c_str())*norm_1; + getline(file_1, line_1); xsecNeg2_1[i]=atof(line_1.substr(line_1.find("<")+1).c_str())*norm_1; + getline(file_1, line_1); xsecNeg1_1[i]=atof(line_1.substr(line_1.find("<")+1).c_str())*norm_1; + getline(file_1, line_1); xsec_1[i]=atof(line_1.substr(line_1.find("<")+1).c_str())*norm_1; + getline(file_1, line_1); xsecPos1_1[i]=atof(line_1.substr(line_1.find("<")+1).c_str())*norm_1; + getline(file_1, line_1); xsecPos2_1[i]=atof(line_1.substr(line_1.find("<")+1).c_str())*norm_1; + expNeg2_1[i]=xsec_1[i]-xsecNeg2_1[i]; + expNeg1_1[i]=xsec_1[i]-xsecNeg1_1[i]; + expPos1_1[i]=xsecPos1_1[i]-xsec_1[i]; + expPos2_1[i]=xsecPos2_1[i]-xsec_1[i]; + cout<AccessPathName(filename_2.c_str())) { + getline(file_2, line_2); + std::size_t pos = line_2.find("-- Asymptotic --"); + if (pos!=std::string::npos){ + found_2=true; + } + } + getline(file_2, line_2); obs_2[i]=atof(line_2.substr(line_2.find("<")+1).c_str())*norm_2; + getline(file_2, line_2); xsecNeg2_2[i]=atof(line_2.substr(line_2.find("<")+1).c_str())*norm_2; + getline(file_2, line_2); xsecNeg1_2[i]=atof(line_2.substr(line_2.find("<")+1).c_str())*norm_2; + getline(file_2, line_2); xsec_2[i]=atof(line_2.substr(line_2.find("<")+1).c_str())*norm_2; + getline(file_2, line_2); xsecPos1_2[i]=atof(line_2.substr(line_2.find("<")+1).c_str())*norm_2; + getline(file_2, line_2); xsecPos2_2[i]=atof(line_2.substr(line_2.find("<")+1).c_str())*norm_2; + expNeg2_2[i]=xsec_2[i]-xsecNeg2_2[i]; + expNeg1_2[i]=xsec_2[i]-xsecNeg1_2[i]; + expPos1_2[i]=xsecPos1_2[i]-xsec_2[i]; + expPos2_2[i]=xsecPos2_2[i]-xsec_2[i]; + cout<AccessPathName(filename_3.c_str())) { + getline(file_3, line_3); + std::size_t pos = line_3.find("-- Asymptotic --"); + if (pos!=std::string::npos){ + found_3=true; + } + } + getline(file_3, line_3); obs_3[i]=atof(line_3.substr(line_3.find("<")+1).c_str())*norm_3; + getline(file_3, line_3); xsecNeg2_3[i]=atof(line_3.substr(line_3.find("<")+1).c_str())*norm_3; + getline(file_3, line_3); xsecNeg1_3[i]=atof(line_3.substr(line_3.find("<")+1).c_str())*norm_3; + getline(file_3, line_3); xsec_3[i]=atof(line_3.substr(line_3.find("<")+1).c_str())*norm_3; + getline(file_3, line_3); xsecPos1_3[i]=atof(line_3.substr(line_3.find("<")+1).c_str())*norm_3; + getline(file_3, line_3); xsecPos2_3[i]=atof(line_3.substr(line_3.find("<")+1).c_str())*norm_3; + expNeg2_3[i]=xsec_3[i]-xsecNeg2_3[i]; + expNeg1_3[i]=xsec_3[i]-xsecNeg1_3[i]; + expPos1_3[i]=xsecPos1_3[i]-xsec_3[i]; + expPos2_3[i]=xsecPos2_3[i]-xsec_3[i]; + cout< masses_graviton={ + 260, + 300, + 350, + 400, + 450, + 500, + 550, + 600, + 650, + 700, + 750, + 800, + 850, + 900, + 950, + 1000, + 1050, + 1100, + 1150, + 1200, + 1250, + 1300, + 1350, + 1400, + 1450, + 1500}; + +std::vector x_graviton{ + 13189.5110556213, + 7213.724953, + 3724.152306612245, + 2074.118283562500, + 1220.908845777777, + 756.0527086799999, + 484.2628197024792, + 321.127891575, + 219.297103860355, + 152.2164810122449, + 108.4982254720000, + 78.4962635203125 , + 57.88419000415223, + 43.08418917777778, + 32.69710000221605, + 24.96632111100000, + 19.26116379591836, + 15.04592709917355, + 11.87132725293005, + 9.391763225, + 7.510401695231998, + 6.032381149171598, + 4.878695042469133, + 3.980540729387755, + 3.259530744827586, + 2.6789518692 +}; + +std::vector br_hh={ +7.875333606243001e-6, + 0.0002609363907507743, + 0.0008527793007645482 , + 0.0014748453016228675, + 0.00202120813640487, + 0.0024744221679741125, + 0.002843812476091045, + 0.003144265384982541, + 0.0033897489806557304, + 0.0035917787224510177, + 0.003759423688146881, + 0.0038997130095539006, + 0.004018077826392619, + 0.004118727164348574, + 0.004204942476367313, + 0.00427930100894505, + 0.004343843097937954, + 0.004400197131035117, + 0.004449673107888205, + 0.0044933330427632395, + 0.00453204428524029 , + 0.004566520194709918, + 0.004597351400961763, + 0.004625030011213332, + 0.00464996849485267, + 0.004672514523079795 + }; + + // Radion curve + std::vector masses_radion={ + 260, + 300, + 400, + 500, + 600, + 700, + 750, + 800, + 900, + 1000, + 1500}; + + std::vector x_radion{ + 10.314910442540885, + 7.20114376233762, + 3.369927115848731, + 1.962250361817225, + 1.235987766884442, + 0.8043402650432466, + 0.6557538821852814, + 0.5434525134607641, + 0.3735615328391298, + 0.2618915924170746, + 0.054417137017588976}; + +/* +// Multiply graviton x-sec with appropriate Br(G->HH)*Br(H->bb)^2 * (k'/k)^2 +for(int i=0; iHH)*Br(H->bb)^2 * (k'/k)^2 +for(int i=0; i masses_graviton_new={260, 300, 400, 500, 600, 700, 750, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500}; +std::vector x_graviton_new={0.2748, 5.44, 9.28, 4.92, 2.29, 1.14, 0.08, 0.6, 0.33, 0.19, 0.12, 0.08, 0.05, 0.03, 0.02}; +//Radion curve from github reference +std::vector masses_radion_new={260, 300, 400, 500, 600, 700, 750, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500}; +std::vector x_radion_new={7.64e+03, 7.13e+03, 2.92e+03, 1.50e+03, 9.08e+02, 5.84e+02, 4.74e+02, 3.93e+02, 2.70e+02, 1.90e+02, 1.38e+02, 1.01e+02, 7.38e+01, 5.39e+01, 3.93e+01}; +//Radion curve divided by 9 from github reference +std::vector masses_radion_new2={260, 300, 400, 500, 600, 700, 750, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500}; +std::vector x_radion_new2={848.88, 792.22, 324.44, 166.66, 100.88, 64.88, 52.66, 43.66, 30.0, 21.11, 15.33, 11.22, 8.20, 5.98, 4.36}; + +TGraph *g_graviton=new TGraph(masses_graviton_new.size(), &(masses_graviton_new[0]), &(x_graviton_new[0])); g_graviton->SetLineWidth(2); g_graviton->SetLineColor(kBlue+1); g_graviton->SetFillColor(kWhite); +TGraph *g_radion=new TGraph(masses_radion_new.size(), &(masses_radion_new[0]), &(x_radion_new[0])); g_radion->SetLineWidth(2); g_radion->SetLineColor(kBlue+1); g_radion->SetFillColor(kWhite); +TGraph *g_radion2=new TGraph(masses_radion_new2.size(), &(masses_radion_new2[0]), &(x_radion_new2[0])); g_radion2->SetLineWidth(2); g_radion2->SetLineColor(kBlue+1); g_radion->SetFillColor(kWhite); +TStyle *tdrStyle=setTDRStyle(); +gROOT->SetStyle("Plain"); + +// LMR1 flag +TGraphErrors *g_xsec_1=new TGraphErrors(nPoints_1, &(mass_1[0]), xsec_1); +g_xsec_1->SetTitle("; m_{X} (GeV); #sigma(pp#rightarrowX) #times Br(X#rightarrowH(b#bar{b}) H(b#bar{b})) (fb)"); +g_xsec_1->SetLineWidth(2); +g_xsec_1->SetLineStyle(2); +TGraphAsymmErrors *g_xsec_1sigma_1=new TGraphAsymmErrors(nPoints_1, &(mass_1[0]), xsec_1, 0, 0, expNeg1_1, expPos1_1); +g_xsec_1sigma_1->SetLineColorAlpha(kGreen,0.5); +g_xsec_1sigma_1->SetFillColorAlpha(kGreen,0.5); +TGraphAsymmErrors *g_xsec_2sigma_1=new TGraphAsymmErrors(nPoints_1, &(mass_1[0]), xsec_1, 0, 0, expNeg2_1, expPos2_1); +g_xsec_2sigma_1->SetLineColorAlpha(kYellow,0.5); +g_xsec_2sigma_1->SetFillColorAlpha(kYellow,0.5); +TGraph *g_obs_1=new TGraph(nPoints_1, &(mass_1[0]), obs_1); +g_obs_1->SetLineWidth(2); +g_obs_1->SetLineStyle(1); + +// LMR2 flag +TGraphErrors *g_xsec_2=new TGraphErrors(nPoints_2, &(mass_2[0]), xsec_2); +g_xsec_2->SetTitle("; m_{X} (GeV); #sigma(pp#rightarrowX) #times Br(X#rightarrowH(b#bar{b}) H(b#bar{b})) (fb)"); +g_xsec_2->SetLineWidth(2); +g_xsec_2->SetLineStyle(2); +TGraphAsymmErrors *g_xsec_1sigma_2=new TGraphAsymmErrors(nPoints_2, &(mass_2[0]), xsec_2, 0, 0, expNeg1_2, expPos1_2); +g_xsec_1sigma_2->SetLineColorAlpha(kGreen, 0.5); +g_xsec_1sigma_2->SetFillColorAlpha(kGreen, 0.5); +TGraphAsymmErrors *g_xsec_2sigma_2=new TGraphAsymmErrors(nPoints_2, &(mass_2[0]), xsec_2, 0, 0, expNeg2_2, expPos2_2); +g_xsec_2sigma_2->SetLineColorAlpha(kYellow, 0.5); +g_xsec_2sigma_2->SetFillColorAlpha(kYellow, 0.5); +TGraph *g_obs_2=new TGraph(nPoints_2, &(mass_2[0]), obs_2); +g_obs_2->SetLineWidth(2); +g_obs_2->SetLineStyle(1); + +// MMR flag +TGraphErrors *g_xsec_3=new TGraphErrors(nPoints_3, &(mass_3[0]), xsec_3); +g_xsec_3->SetTitle("; m_{X} (GeV); #sigma(pp#rightarrowX) #times Br(X#rightarrowH(b#bar{b}) H(b#bar{b})) (fb)"); +g_xsec_3->SetLineWidth(2); +g_xsec_3->SetLineStyle(2); +TGraphAsymmErrors *g_xsec_1sigma_3=new TGraphAsymmErrors(nPoints_3, &(mass_3[0]), xsec_3, 0, 0, expNeg1_3, expPos1_3); +g_xsec_1sigma_3->SetLineColorAlpha(kGreen, 0.5); +g_xsec_1sigma_3->SetFillColorAlpha(kGreen, 0.5); +TGraphAsymmErrors *g_xsec_2sigma_3=new TGraphAsymmErrors(nPoints_3, &(mass_3[0]), xsec_3, 0, 0, expNeg2_3, expPos2_3); +g_xsec_2sigma_3->SetLineColorAlpha(kYellow, 0.5); +g_xsec_2sigma_3->SetFillColorAlpha(kYellow, 0.5); +TGraph *g_obs_3=new TGraph(nPoints_3, &(mass_3[0]), obs_3); +g_obs_3->SetLineWidth(2); +g_obs_3->SetLineStyle(1); + +TCanvas *c_xsec=new TCanvas("c_xsec", "c_xsec", 1000, 700); +c_xsec->SetLogy(); +//c_xsec->SetGridx(1); +//c_xsec->SetGridy(1); +g_xsec_2->SetMaximum(ymax); g_xsec_2->SetMinimum(ymin); +g_xsec_2->Draw("AL"); +g_xsec_2sigma_2->Draw("3"); +g_xsec_1sigma_2->Draw("3"); +g_xsec_2->GetXaxis()->SetLimits(260,1200); +g_xsec_2->Draw("L"); +g_xsec_1->DrawClone("L same"); +g_xsec_2sigma_1->DrawClone("3 same"); +g_xsec_1sigma_1->DrawClone("3 same"); +g_xsec_1->DrawClone("L same"); +g_xsec_3->DrawClone("L same"); +g_xsec_2sigma_3->DrawClone("3same"); +g_xsec_1sigma_3->DrawClone("3same"); +g_xsec_3->Draw("L same"); +g_graviton->Draw("C same"); +//g_radion->Draw("C same"); +//g_radion2->Draw("C same"); + +g_obs_1->SetMarkerStyle(20); +g_obs_1->SetMarkerColor(kBlack); +g_obs_1->Draw("CP SAME"); +g_obs_2->SetMarkerStyle(20); +g_obs_2->SetMarkerColor(kRed); +g_obs_2->Draw("CP SAME"); +g_obs_3->SetMarkerStyle(20); +g_obs_3->SetMarkerColor(kBlue); +g_obs_3->Draw("CP SAME"); +c_xsec->Update(); + +TLegend *leg=new TLegend(0.45, 0.55, 0.90, 0.85); +leg->SetFillStyle(1); leg->SetFillColor(kWhite); +leg->AddEntry(g_xsec_1, "Expected Upper Limit", "L"); +leg->AddEntry(g_xsec_1sigma_1, "Expected #pm 1 #sigma (LMR [250,330] GeV)", "F"); +leg->AddEntry(g_xsec_2sigma_1, "Expected #pm 2 #sigma (LMR [250,330] GeV)", "F"); +leg->AddEntry(g_xsec_1sigma_2, "Expected #pm 1 #sigma (LMR [285,625] GeV)", "F"); +leg->AddEntry(g_xsec_2sigma_2, "Expected #pm 2 #sigma (LMR [285,625] GeV)", "F"); +leg->AddEntry(g_xsec_1sigma_3, "Expected #pm 1 #sigma (MMR [550,1200] GeV)", "F"); +leg->AddEntry(g_xsec_2sigma_3, "Expected #pm 2 #sigma (MMR [550,1200] GeV)", "F"); +leg->AddEntry(g_obs_1, "Observed Upper Limit", "LP"); +leg->AddEntry(g_graviton,"Bulk Graviton k=0.1","L"); +//leg->AddEntry(g_radion,"Bulk Radion #lambda= 1 TeV, kl=35","L"); +//leg->AddEntry(g_radion2,"Bulk Radion #lambda= 3 TeV, kl=35","L"); +leg->SetFillColor(kWhite); +leg->SetFillStyle(0); +leg->SetTextSize(0.03); +leg->SetTextFont(42); +leg->SetBorderSize(0); +leg->Draw(); +CMS_lumi( c_xsec, iPeriod, iPos ); +c_xsec->Update(); +c_xsec->SaveAs("UpperLimit_all.png"); +c_xsec->SaveAs("UpperLimit_all.pdf"); +c_xsec->SaveAs("UpperLimit_all.root"); + +TFile *file=new TFile("UpperLimits_xsec_all.root", "RECREATE"); +g_obs_1->Write("g_obs_1"); +g_obs_2->Write("g_obs_2"); +g_obs_3->Write("g_obs_3"); +g_xsec_1->Write("g_xsec_1"); +g_xsec_1sigma_1->Write("g_xsec_1sigma_1"); +g_xsec_2sigma_1->Write("g_xsec_2sigma_1"); +g_xsec_2->Write("g_xsec_2"); +g_xsec_1sigma_2->Write("g_xsec_1sigma_2"); +g_xsec_2sigma_2->Write("g_xsec_2sigma_2"); +g_xsec_3->Write("g_xsec_3"); +g_xsec_1sigma_3->Write("g_xsec_1sigma_3"); +g_xsec_2sigma_3->Write("g_xsec_2sigma_3"); +file->Close(); +} diff --git a/DrawLimitPlot_Combined.cc b/DrawLimitPlot_Combined.cc new file mode 100644 index 0000000..25e0d68 --- /dev/null +++ b/DrawLimitPlot_Combined.cc @@ -0,0 +1,547 @@ +#include +#include "TSystem.h" +#include +#include +#include +#include +#include "TGraphAsymmErrors.h" +#include "TGraphErrors.h" +#include "TCanvas.h" +#include "TLegend.h" +#include "TFile.h" +#include "TAxis.h" +#include "TLatex.h" +#include "../../TDRStyle.h" +#include "../../CMS_lumi.h" +#include +int iPeriod = 4; // 1=7TeV, 2=8TeV, 3=7+8TeV, 7=7+8+13TeV +int iPos = 11; + +void +CMS_lumi( TPad* pad, int iPeriod, int iPosX ) +{ + bool outOfFrame = false; + if( iPosX/10==0 ) + { + outOfFrame = true; + } + int alignY_=3; + int alignX_=2; + if( iPosX/10==0 ) alignX_=1; + if( iPosX==0 ) alignX_=1; + if( iPosX==0 ) alignY_=1; + if( iPosX/10==1 ) alignX_=1; + if( iPosX/10==2 ) alignX_=2; + if( iPosX/10==3 ) alignX_=3; + if( iPosX == 0 ) relPosX = 0.14; + int align_ = 10*alignX_ + alignY_; + + float H = pad->GetWh(); + float W = pad->GetWw(); + float l = pad->GetLeftMargin(); + float t = pad->GetTopMargin(); + float r = pad->GetRightMargin(); + float b = pad->GetBottomMargin(); + + pad->cd(); + + TString lumiText; + if( iPeriod==1 ) + { + lumiText += lumi_7TeV; + lumiText += " (7 TeV)"; + } + else if ( iPeriod==2 ) + { + lumiText += lumi_8TeV; + lumiText += " (8 TeV)"; + } + else if( iPeriod==3 ) + { + lumiText = lumi_8TeV; + lumiText += " (8 TeV)"; + lumiText += " + "; + lumiText += lumi_7TeV; + lumiText += " (7 TeV)"; + } + else if ( iPeriod==4 ) + { + lumiText += lumi_13TeV; + lumiText += " (13 TeV)"; + } + else if ( iPeriod==7 ) + { + if( outOfFrame ) lumiText += "#scale[0.85]{"; + lumiText += lumi_13TeV; + lumiText += " (13 TeV)"; + lumiText += " + "; + lumiText += lumi_8TeV; + lumiText += " (8 TeV)"; + lumiText += " + "; + lumiText += lumi_7TeV; + lumiText += " (7 TeV)"; + if( outOfFrame) lumiText += "}"; + } + else if ( iPeriod==12 ) + { + lumiText += "8 TeV"; + } + else if ( iPeriod==0 ) + { + lumiText += lumi_sqrtS; + } + + std::cout << lumiText << endl; + + TLatex latex; + latex.SetNDC(); + latex.SetTextAngle(0); + latex.SetTextColor(kBlack); + + float extraTextSize = extraOverCmsTextSize*cmsTextSize; + + latex.SetTextFont(42); + latex.SetTextAlign(31); + latex.SetTextSize(lumiTextSize*t); + latex.DrawLatex(1-r,1-t+lumiTextOffset*t,lumiText); + + if( outOfFrame ) + { + latex.SetTextFont(cmsTextFont); + latex.SetTextAlign(11); + latex.SetTextSize(cmsTextSize*t); + latex.DrawLatex(l,1-t+lumiTextOffset*t,cmsText); + } + + pad->cd(); + + float posX_=0; + if( iPosX%10<=1 ) + { + posX_ = l + relPosX*(1-l-r); + } + else if( iPosX%10==2 ) + { + posX_ = l + 0.5*(1-l-r); + } + else if( iPosX%10==3 ) + { + posX_ = 1-r - relPosX*(1-l-r); + } + float posY_ = 1-t - relPosY*(1-t-b); + if( !outOfFrame ) + { + if( drawLogo ) + { + posX_ = l + 0.045*(1-l-r)*W/H; + posY_ = 1-t - 0.045*(1-t-b); + float xl_0 = posX_; + float yl_0 = posY_ - 0.15; + float xl_1 = posX_ + 0.15*H/W; + float yl_1 = posY_; + TASImage* CMS_logo = new TASImage("CMS-BW-label.png"); + TPad* pad_logo = new TPad("logo","logo", xl_0, yl_0, xl_1, yl_1 ); + pad_logo->Draw(); + pad_logo->cd(); + CMS_logo->Draw("X"); + pad_logo->Modified(); + pad->cd(); + } + else + { + latex.SetTextFont(cmsTextFont); + latex.SetTextSize(cmsTextSize*t); + latex.SetTextAlign(align_); + latex.DrawLatex(posX_, posY_, cmsText); + if( writeExtraText ) + { + latex.SetTextFont(extraTextFont); + latex.SetTextAlign(align_); + latex.SetTextSize(extraTextSize*t); + latex.DrawLatex(posX_, posY_- relExtraDY*cmsTextSize*t, extraText); + } + } + } + else if( writeExtraText ) + { + if( iPosX==0) + { + posX_ = l + relPosX*(1-l-r); + posY_ = 1-t+lumiTextOffset*t; + } + latex.SetTextFont(extraTextFont); + latex.SetTextSize(extraTextSize*t); + latex.SetTextAlign(align_); + latex.DrawLatex(posX_, posY_, extraText); + } + return; +} + + +std::string itoa(int i) +{ + char res[4]; + sprintf(res, "%d", i); + std::string ret(res); + return ret; +} + +void DrawLimitPlot_Combined(std::vector mass_1, + std::vector mass_2, + std::vector mass_3, std::vector mass_c, + double ymin, double ymax, + std::string background_1, + std::string background_2, + std::string background_3){ + /* + gStyle->SetTitleOffset(1.2,"Y"); + gStyle->SetPadLeftMargin(0.18); + gStyle->SetPadBottomMargin(0.15); + gStyle->SetPadTopMargin(0.08); + gStyle->SetPadRightMargin(0.05); + gStyle->SetMarkerSize(0.5); + gStyle->SetHistLineWidth(1); + gStyle->SetStatFontSize(0.020); + gStyle->SetTitleSize(0.06, "XYZ"); + gStyle->SetLabelSize(0.05, "XYZ"); + gStyle->SetNdivisions(510, "XYZ"); + gStyle->SetLegendBorderSize(0); + gStyle->SetPadBorderMode(0); + gStyle->SetFrameBorderMode(0); + gStyle->SetPadBottomMargin(0.12); + gStyle->SetPadLeftMargin(0.12); + gStyle->SetCanvasColor(kWhite); + gStyle->SetCanvasDefH(600); + gStyle->SetCanvasDefW(600); + gStyle->SetCanvasDefX(0); + gStyle->SetCanvasDefY(0); + + gStyle->SetPadTopMargin(0.05); + gStyle->SetPadBottomMargin(0.15); + gStyle->SetPadLeftMargin(0.15); + gStyle->SetPadRightMargin(0.05); + + gStyle->SetPadBorderMode(0); + gStyle->SetPadColor(kWhite); + gStyle->SetGridColor(0); + gStyle->SetGridStyle(3); + gStyle->SetGridWidth(1); + + gStyle->SetFrameBorderMode(0); + gStyle->SetFrameBorderSize(1); + gStyle->SetFrameFillColor(0); + gStyle->SetFrameFillStyle(0); + gStyle->SetFrameLineColor(1); + gStyle->SetFrameLineStyle(1); + gStyle->SetFrameLineWidth(1); + + gStyle->SetTitleColor(1, "XYZ"); + gStyle->SetTitleFont(42, "XYZ"); + gStyle->SetTitleSize(0.05, "XYZ"); + gStyle->SetTitleXOffset(1.15); + gStyle->SetTitleYOffset(1.3) ; + gStyle->SetLabelColor(1, "XYZ"); + gStyle->SetLabelFont(42, "XYZ"); + gStyle->SetLabelOffset(0.007, "XYZ"); + gStyle->SetLabelSize(0.045, "XYZ"); + + gStyle->SetPadBorderMode(0); + gStyle->SetFrameBorderMode(0); + gStyle->SetTitleTextColor(1); + gStyle->SetTitleFillColor(10); + gStyle->SetTitleFontSize(0.05); +*/ + writeExtraText = true; + extraText = "Preliminary"; + lumi_13TeV = "35.9 fb^{-1}"; + + // LMR1 definitions + const unsigned int nPoints_1=mass_1.size(); + double norm_1=1000; + // LMR2 definitions + const unsigned int nPoints_2=mass_2.size(); + double norm_2=1000; + // MMR1 definitions + const unsigned int nPoints_3=mass_3.size(); + double norm_3=2; + // All definitions + const unsigned int nPoints_c=nPoints_1 + nPoints_2 + nPoints_3; + double xsec_c[nPoints_c], xsecNeg1_c[nPoints_c], xsecPos1_c[nPoints_c], xsecNeg2_c[nPoints_c], xsecPos2_c[nPoints_c]; + double obs_c[nPoints_c]; + double expNeg2_c[nPoints_c], expNeg1_c[nPoints_c], expPos1_c[nPoints_c], expPos2_c[nPoints_c]; + + // All LOOP + for (unsigned int i=0; iAccessPathName(filename_1.c_str())) { + getline(file_1, line_1); + std::size_t pos = line_1.find("-- Asymptotic --"); + if (pos!=std::string::npos){ + found_1=true; + } + } + getline(file_1, line_1); obs_c[i]=atof(line_1.substr(line_1.find("<")+1).c_str())*norm_1; + getline(file_1, line_1); xsecNeg2_c[i]=atof(line_1.substr(line_1.find("<")+1).c_str())*norm_1; + getline(file_1, line_1); xsecNeg1_c[i]=atof(line_1.substr(line_1.find("<")+1).c_str())*norm_1; + getline(file_1, line_1); xsec_c[i]=atof(line_1.substr(line_1.find("<")+1).c_str())*norm_1; + getline(file_1, line_1); xsecPos1_c[i]=atof(line_1.substr(line_1.find("<")+1).c_str())*norm_1; + getline(file_1, line_1); xsecPos2_c[i]=atof(line_1.substr(line_1.find("<")+1).c_str())*norm_1; + expNeg2_c[i]=xsec_c[i]-xsecNeg2_c[i]; + expNeg1_c[i]=xsec_c[i]-xsecNeg1_c[i]; + expPos1_c[i]=xsecPos1_c[i]-xsec_c[i]; + expPos2_c[i]=xsecPos2_c[i]-xsec_c[i]; + cout<AccessPathName(filename_2.c_str())) { + getline(file_2, line_2); + std::size_t pos = line_2.find("-- Asymptotic --"); + if (pos!=std::string::npos){ + found_2=true; + } + } + getline(file_2, line_2); obs_c[i+nPoints_1]=atof(line_2.substr(line_2.find("<")+1).c_str())*norm_2; + getline(file_2, line_2); xsecNeg2_c[i+nPoints_1]=atof(line_2.substr(line_2.find("<")+1).c_str())*norm_2; + getline(file_2, line_2); xsecNeg1_c[i+nPoints_1]=atof(line_2.substr(line_2.find("<")+1).c_str())*norm_2; + getline(file_2, line_2); xsec_c[i+nPoints_1]=atof(line_2.substr(line_2.find("<")+1).c_str())*norm_2; + getline(file_2, line_2); xsecPos1_c[i+nPoints_1]=atof(line_2.substr(line_2.find("<")+1).c_str())*norm_2; + getline(file_2, line_2); xsecPos2_c[i+nPoints_1]=atof(line_2.substr(line_2.find("<")+1).c_str())*norm_2; + expNeg2_c[i+nPoints_1]=xsec_c[i+nPoints_1]-xsecNeg2_c[i+nPoints_1]; + expNeg1_c[i+nPoints_1]=xsec_c[i+nPoints_1]-xsecNeg1_c[i+nPoints_1]; + expPos1_c[i+nPoints_1]=xsecPos1_c[i+nPoints_1]-xsec_c[i+nPoints_1]; + expPos2_c[i+nPoints_1]=xsecPos2_c[i+nPoints_1]-xsec_c[i+nPoints_1]; + cout<AccessPathName(filename_3.c_str())) { + getline(file_3, line_3); + std::size_t pos = line_3.find("-- Asymptotic --"); + if (pos!=std::string::npos){ + found_3=true; + } + } + getline(file_3, line_3); obs_c[i+nPoints_2+nPoints_1]=atof(line_3.substr(line_3.find("<")+1).c_str())*norm_3; + getline(file_3, line_3); xsecNeg2_c[i+nPoints_2+nPoints_1]=atof(line_3.substr(line_3.find("<")+1).c_str())*norm_3; + getline(file_3, line_3); xsecNeg1_c[i+nPoints_2+nPoints_1]=atof(line_3.substr(line_3.find("<")+1).c_str())*norm_3; + getline(file_3, line_3); xsec_c[i+nPoints_2+nPoints_1]=atof(line_3.substr(line_3.find("<")+1).c_str())*norm_3; + getline(file_3, line_3); xsecPos1_c[i+nPoints_2+nPoints_1]=atof(line_3.substr(line_3.find("<")+1).c_str())*norm_3; + getline(file_3, line_3); xsecPos2_c[i+nPoints_2+nPoints_1]=atof(line_3.substr(line_3.find("<")+1).c_str())*norm_3; + expNeg2_c[i+nPoints_2+nPoints_1]=xsec_c[i+nPoints_2+nPoints_1]-xsecNeg2_c[i+nPoints_2+nPoints_1]; + expNeg1_c[i+nPoints_2+nPoints_1]=xsec_c[i+nPoints_2+nPoints_1]-xsecNeg1_c[i+nPoints_2+nPoints_1]; + expPos1_c[i+nPoints_2+nPoints_1]=xsecPos1_c[i+nPoints_2+nPoints_1]-xsec_c[i+nPoints_2+nPoints_1]; + expPos2_c[i+nPoints_2+nPoints_1]=xsecPos2_c[i+nPoints_2+nPoints_1]-xsec_c[i+nPoints_2+nPoints_1]; + cout< masses_graviton={ + 260, + 300, + 350, + 400, + 450, + 500, + 550, + 600, + 650, + 700, + 750, + 800, + 850, + 900, + 950, + 1000, + 1050, + 1100, + 1150, + 1200, + 1250, + 1300, + 1350, + 1400, + 1450, + 1500}; + +std::vector x_graviton{ + 13189.5110556213, + 7213.724953, + 3724.152306612245, + 2074.118283562500, + 1220.908845777777, + 756.0527086799999, + 484.2628197024792, + 321.127891575, + 219.297103860355, + 152.2164810122449, + 108.4982254720000, + 78.4962635203125 , + 57.88419000415223, + 43.08418917777778, + 32.69710000221605, + 24.96632111100000, + 19.26116379591836, + 15.04592709917355, + 11.87132725293005, + 9.391763225, + 7.510401695231998, + 6.032381149171598, + 4.878695042469133, + 3.980540729387755, + 3.259530744827586, + 2.6789518692 +}; + +std::vector br_hh={ +7.875333606243001e-6, + 0.0002609363907507743, + 0.0008527793007645482 , + 0.0014748453016228675, + 0.00202120813640487, + 0.0024744221679741125, + 0.002843812476091045, + 0.003144265384982541, + 0.0033897489806557304, + 0.0035917787224510177, + 0.003759423688146881, + 0.0038997130095539006, + 0.004018077826392619, + 0.004118727164348574, + 0.004204942476367313, + 0.00427930100894505, + 0.004343843097937954, + 0.004400197131035117, + 0.004449673107888205, + 0.0044933330427632395, + 0.00453204428524029 , + 0.004566520194709918, + 0.004597351400961763, + 0.004625030011213332, + 0.00464996849485267, + 0.004672514523079795 + }; + + // Radion curve + std::vector masses_radion={ + 260, + 300, + 400, + 500, + 600, + 700, + 750, + 800, + 900, + 1000, + 1500}; + + std::vector x_radion{ + 10.314910442540885, + 7.20114376233762, + 3.369927115848731, + 1.962250361817225, + 1.235987766884442, + 0.8043402650432466, + 0.6557538821852814, + 0.5434525134607641, + 0.3735615328391298, + 0.2618915924170746, + 0.054417137017588976}; + +// Graviton curve K=0.1 from github reference (scale from 0.5 to 0.1) +std::vector masses_graviton_new={260, 300, 400, 500, 600, 700, 750, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500}; +std::vector x_graviton_new={0.2748, 5.44, 9.28, 4.92, 2.29, 1.14, 0.08, 0.6, 0.33, 0.19, 0.12, 0.08, 0.05, 0.03, 0.02}; +//Radion curve from github reference +std::vector masses_radion_new={260, 300, 400, 500, 600, 700, 750, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500}; +std::vector x_radion_new={7.64e+03, 7.13e+03, 2.92e+03, 1.50e+03, 9.08e+02, 5.84e+02, 4.74e+02, 3.93e+02, 2.70e+02, 1.90e+02, 1.38e+02, 1.01e+02, 7.38e+01, 5.39e+01, 3.93e+01}; +//Radion curve divided by 9 from github reference +std::vector masses_radion_new2={260, 300, 400, 500, 600, 700, 750, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500}; +std::vector x_radion_new2={848.88, 792.22, 324.44, 166.66, 100.88, 64.88, 52.66, 43.66, 30.0, 21.11, 15.33, 11.22, 8.20, 5.98, 4.36}; + +TGraph *g_graviton=new TGraph(masses_graviton_new.size(), &(masses_graviton_new[0]), &(x_graviton_new[0])); g_graviton->SetLineWidth(2); g_graviton->SetLineColor(kBlue+1); g_graviton->SetFillColor(kWhite); +TGraph *g_radion=new TGraph(masses_radion_new.size(), &(masses_radion_new[0]), &(x_radion_new[0])); g_radion->SetLineWidth(2); g_radion->SetLineColor(kBlue+1); g_radion->SetFillColor(kWhite); +TGraph *g_radion2=new TGraph(masses_radion_new2.size(), &(masses_radion_new2[0]), &(x_radion_new2[0])); g_radion2->SetLineWidth(2); g_radion2->SetLineColor(kBlue+1); g_radion->SetFillColor(kWhite); +TStyle *tdrStyle=setTDRStyle(); +gROOT->SetStyle("Plain"); + +// Big flag +TGraphErrors *g_xsec_c=new TGraphErrors(nPoints_c, &(mass_c[0]), xsec_c); +g_xsec_c->SetTitle("; m_{X} (GeV); #sigma(pp#rightarrowX) #times Br(X#rightarrowH(b#bar{b}) H(b#bar{b})) (fb)"); +g_xsec_c->SetLineWidth(2); +g_xsec_c->SetLineStyle(2); +TGraphAsymmErrors *g_xsec_1sigma_c=new TGraphAsymmErrors(nPoints_c, &(mass_c[0]), xsec_c, 0, 0, expNeg1_c, expPos1_c); +g_xsec_1sigma_c->SetLineColor(kGreen); +g_xsec_1sigma_c->SetFillColor(kGreen); +TGraphAsymmErrors *g_xsec_2sigma_c=new TGraphAsymmErrors(nPoints_c, &(mass_c[0]), xsec_c, 0, 0, expNeg2_c, expPos2_c); +g_xsec_2sigma_c->SetLineColor(kYellow); +g_xsec_2sigma_c->SetFillColor(kYellow); +TGraph *g_obs_c=new TGraph(nPoints_c, &(mass_c[0]), obs_c); +g_obs_c->SetLineWidth(2); +g_obs_c->SetLineStyle(1); + + +TCanvas *c_xsec=new TCanvas("c_xsec", "c_xsec", 1000, 700); +c_xsec->SetLogy(); +g_xsec_c->SetMaximum(ymax); +g_xsec_c->SetMinimum(ymin); +g_xsec_c->Draw("AL"); +g_xsec_2sigma_c->Draw("3"); +g_xsec_1sigma_c->Draw("3"); +g_xsec_c->GetXaxis()->SetLimits(260,1200); +g_xsec_c->Draw("L"); +g_graviton->Draw("C same"); +//g_radion->Draw("C same"); +//g_radion2->Draw("C same"); + +g_obs_c->SetMarkerStyle(20); +g_obs_c->SetMarkerColor(kBlack); +g_obs_c->Draw("CP SAME"); + +c_xsec->Update(); + +TLegend *leg=new TLegend(0.45, 0.55, 0.90, 0.85); +leg->SetFillStyle(1); leg->SetFillColor(kWhite); +leg->AddEntry(g_xsec_c, "Expected Upper Limit", "L"); +leg->AddEntry(g_xsec_1sigma_c, "Expected #pm 1 #sigma", "F"); +leg->AddEntry(g_xsec_2sigma_c, "Expected #pm 2 #sigma", "F"); +leg->AddEntry(g_obs_c, "Observed Upper Limit", "LP"); +leg->AddEntry(g_graviton,"Bulk Graviton k=0.1","L"); +//leg->AddEntry(g_radion,"Bulk Radion #lambda= 1 TeV, kl=35","L"); +//leg->AddEntry(g_radion2,"Bulk Radion #lambda= 3 TeV, kl=35","L"); +leg->SetFillColor(kWhite); +leg->SetFillStyle(0); +leg->SetTextSize(0.03); +leg->SetTextFont(42); +leg->SetBorderSize(0); +leg->Draw(); +CMS_lumi( c_xsec, iPeriod, iPos ); +c_xsec->Update(); +c_xsec->SaveAs("UpperLimit_combined.png"); +c_xsec->SaveAs("UpperLimit_combined.pdf"); + +} \ No newline at end of file diff --git a/InterpolateSignal.C b/InterpolateSignal.C index d739bc2..014b563 100644 --- a/InterpolateSignal.C +++ b/InterpolateSignal.C @@ -83,7 +83,7 @@ void interpolation_normalization(bool, std::string, std::string, int); bool flag_crystal = 1; //1 for CrystalBall 0 for ExpGaussExp const int NumOfSyst=5; -void Interpolation(std::string function, std::string name_range, int range, bool flag_MMR) { +void InterpolateSignal(std::string function, std::string name_range, int range, bool flag_MMR) { gSystem->Load("../../../PDFs/ExpGaussExp_cxx.so"); interpolation_normalization(flag_MMR, function, name_range, range); @@ -93,7 +93,7 @@ void Interpolation(std::string function, std::string name_range, int range, bool // Observable RooRealVar *X; if(flag_MMR){ - X= new RooRealVar("x","x",400,1200); + X= new RooRealVar("x","x",400,1400); } else{ if (range==1){X= new RooRealVar("x","x",230,400);} @@ -106,8 +106,8 @@ void Interpolation(std::string function, std::string name_range, int range, bool if (flag_MMR) { dir = "MMR"; std::vector masses_temp; - if (range==1){masses_temp= {550, 600, 650, 750, 800, 900, 1000};} - else{masses_temp= {550, 600, 650, 750, 800, 900, 1000};} + if (range==1){masses_temp= {550, 600, 650, 750, 800, 900, 1000, 1200};} + else{masses_temp= {550, 600, 650, 750, 800, 900, 1000, 1200};} for (unsigned int i = 0 ; i< masses_temp.size(); i++) { masses.push_back(masses_temp[i]); } @@ -141,7 +141,7 @@ void Interpolation(std::string function, std::string name_range, int range, bool return; } } - + RooWorkspace* w_test= new RooWorkspace("w_test"); for (unsigned int i = 0; i!=nMCpoints; ++i ) { RooWorkspace w("w"); @@ -169,11 +169,14 @@ void Interpolation(std::string function, std::string name_range, int range, bool } cout<<"test_9" << endl; w_test->Print(); + + for (unsigned int i = 0; i!=nMCpoints; ++i ) { cout<<"test_10" << endl; PDF_mass[i]->Print("t"); } + // C r e a t e i n t e r p o l a t i n g p d f // ----------------------------------------------- @@ -209,7 +212,7 @@ void Interpolation(std::string function, std::string name_range, int range, bool int nPoints = int((masses[iPoint+1]-masses[iPoint])/step); for (int i=0; i<=nPoints; i++) { - + if (std::find(masses.begin(), masses.end(), int(masses[iPoint]+i*step)) != masses.end()){continue; } alpha.setVal(double(i)/double(nPoints)) ; cout<< " Interpolate mass : " << int(masses[iPoint]+i*step) << endl; lmorph.plotOn(frame1[iPoint],LineColor(kRed)) ; @@ -217,7 +220,7 @@ void Interpolation(std::string function, std::string name_range, int range, bool TH1D* hist; if(flag_MMR){ - hist= (TH1D*)lmorph.createHistogram("m_X (GeV)",*X,Binning(1000,400,1200)); + hist= (TH1D*)lmorph.createHistogram("m_X (GeV)",*X,Binning(1000,400,1400)); } else{ hist= (TH1D*)lmorph.createHistogram("m_X (GeV)",*X,Binning(1000,0,1000)); @@ -231,14 +234,17 @@ void Interpolation(std::string function, std::string name_range, int range, bool RooRealVar *x, *sg_p0, *sg_p1, *sg_p2, *sg_p3,*sg_p4; double m=masses[iPoint]+i*step; - + + //create workspace for signal if (flag_MMR) { - double rangeHi = 0.9*m + 160; - double rangeLo = 0.7*m + 80; + double rangeHi = 1.1584*m -5.84; + double rangeLo = 0.72*m + 98; + double sg_p1_up; if (rangeLo<250) rangeLo=250; - sg_p0=new RooRealVar("sg_p0", "sg_p0", 0.9*m+20, m+30); - sg_p1=new RooRealVar("sg_p1", "sg_p1", 5., 35.); - sg_p2=new RooRealVar("sg_p2", "sg_p2", 0., 0.5); + if (m<600){sg_p1_up=10;} else{sg_p1_up=25;} + sg_p0=new RooRealVar("sg_p0", "sg_p0", 0.90208*m+47.792, 1.09712*m-32.712); + sg_p1=new RooRealVar("sg_p1", "sg_p1", 5.,sg_p1_up); + sg_p2=new RooRealVar("sg_p2", "sg_p2", 0.,5.); sg_p3=new RooRealVar("sg_p3", "sg_p3", 0.,7.); x=new RooRealVar("x", "m_{X} (GeV)", rangeLo-100., rangeHi+100.); ExpGaussExp signal("signal", "Signal Prediction", *x, *sg_p0, *sg_p1, *sg_p2, *sg_p3); @@ -273,6 +279,7 @@ void Interpolation(std::string function, std::string name_range, int range, bool RooAddPdf signal("signal", "signal", RooArgList(signalCore, signalComb), *sg_p4); RooDataHist signalHistogram("signalHistogram", "Signal Histogram", RooArgList(*x), hist); signal.fitTo(signalHistogram, RooFit::Range(rangeLo-50, rangeHi), RooFit::Save()); + RooRealVar signal_p0("signal_p0", "signal_p0", sg_p0->getVal()); RooRealVar signal_p1("signal_p1", "signal_p1", sg_p1->getVal()); RooRealVar signal_p2("signal_p2", "signal_p2", sg_p2->getVal()); @@ -286,20 +293,22 @@ void Interpolation(std::string function, std::string name_range, int range, bool w->import(signal_fixed); w->SaveAs(Form("%s_%d_%s/w_signal_%d.root", dir.c_str(), int(masses[iPoint]+i*step), background.c_str(), int(masses[iPoint]+i*step))); } + } c[iPoint] = new TCanvas(Form("linearmorph_%d",iPoint),Form("linearmorph_%d",iPoint),700,700) ; frame1[iPoint]->Draw(); - c[iPoint]->SaveAs(Form("fig/linearmorph_%d_%d.png",int(masses[iPoint]), int(masses[iPoint+1]))); - c[iPoint]->SaveAs(Form("fig/linearmorph_%d_%d.pdf",int(masses[iPoint]), int(masses[iPoint+1]))); - c[iPoint]->SaveAs(Form("fig/linearmorph_%d_%d.root",int(masses[iPoint]), int(masses[iPoint+1]))); + c[iPoint]->SaveAs(Form("fig/linearmorph_%d_%d_%d.png",int(masses[iPoint]), int(masses[iPoint+1]),range)); + c[iPoint]->SaveAs(Form("fig/linearmorph_%d_%d_%d.pdf",int(masses[iPoint]), int(masses[iPoint+1]),range)); + c[iPoint]->SaveAs(Form("fig/linearmorph_%d_%d_%d.root",int(masses[iPoint]), int(masses[iPoint+1]),range)); } c_tot = new TCanvas("linearmorph_tot","linearmorph_tot",700,700) ; frame_tot->Draw(); - c_tot->SaveAs("fig/linearmorph_tot.png"); - c_tot->SaveAs("fig/linearmorph_tot.pdf"); - c_tot->SaveAs("fig/linearmorph_tot.root"); + c_tot->SaveAs(Form("fig/linearmorph_tot_%d.png",range)); + c_tot->SaveAs(Form("fig/linearmorph_tot_%d.pdf",range)); + c_tot->SaveAs(Form("fig/linearmorph_tot_%d.root",range)); return ; + } /********************************* @@ -316,10 +325,10 @@ void interpolation_normalization(bool flag_MMR, std::string function, std::strin if (flag_MMR) { dir = "MMR"; std::vector mass_0_temp,mass_temp; - if (range==1){mass_0_temp= {550, 600, 650, 750, 800, 900, 1000};} - else{mass_0_temp= {550, 600, 650, 750, 800, 900, 1000};} - if (range==1){mass_temp= {550, 570, 600, 620, 650, 670, 700, 720, 750, 770, 800, 820, 840, 860, 880, 900, 920, 940, 960, 980, 1000};} - else{mass_temp= {550, 570, 600, 620, 650, 670, 700, 720, 750, 770, 800, 820, 840, 860, 880, 900, 920, 940, 960, 980, 1000};} + if (range==1){mass_0_temp= {550, 600, 650, 750, 800, 900, 1000, 1200};} + else{mass_0_temp= {550, 600, 650, 750, 800, 900, 1000, 1200};} + if (range==1){mass_temp= {550, 570, 600, 620, 650, 670, 700, 720, 750, 770, 800, 820, 840, 860, 880, 900, 920, 940, 960, 980, 1000, 1050, 1100, 1150, 1200};} + else{mass_temp= {550, 570, 600, 620, 650, 670, 700, 720, 750, 770, 800, 820, 840, 860, 880, 900, 920, 940, 960, 980, 1000, 1050, 1100, 1150, 1200};} for (unsigned int i = 0 ; i< mass_0_temp.size(); i++) { mass_0.push_back(mass_0_temp[i]); } @@ -334,7 +343,7 @@ void interpolation_normalization(bool flag_MMR, std::string function, std::strin if (range==1){mass_0_temp= {260, 270, 300, 350};} else{mass_0_temp= {270, 300, 350, 400, 450, 500, 550, 600, 650};} if (range==1){mass_temp= {260, 265, 270, 275, 280, 285, 290, 295, 300, 310, 320, 350};} - else{mass_temp= {270, 275, 280, 285, 290, 295, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, 600, 610, 620};} + else{mass_temp= {270, 275, 280, 285, 290, 295, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, 600, 610, 620, 650};} for (unsigned int i = 0 ; i< mass_0_temp.size(); i++) { mass_0.push_back(mass_0_temp[i]); } @@ -383,65 +392,34 @@ void interpolation_normalization(bool flag_MMR, std::string function, std::strin gSystem->Exec(Form("cp -r %s_%d_%s/datacard_%d_%s.txt %s_%d_%s/datacard_%d_%s.txt", dir.c_str(), int(mass_0[lMarker]), background.c_str(), int(mass_0[lMarker]), background.c_str(), dir.c_str(), int(mass[i]), background.c_str(), int(mass[i]), background.c_str())); gSystem->Exec(Form("cp -r %s_%d_%s/signal%d_sig.log %s_%d_%s/signal%d_sig.log", dir.c_str(), int(mass_0[lMarker]), background.c_str(), int(mass_0[lMarker]), dir.c_str(), int(mass[i]), background.c_str(), int(mass[i]))); gSystem->Exec(Form("cp -r %s_%d_%s/w_background_%s.root %s_%d_%s/w_background_%s.root", dir.c_str(), int(mass_0[lMarker]), background.c_str(), background.c_str(), dir.c_str(), int(mass[i]), background.c_str(), background.c_str())); - gSystem->Exec(Form("sed -i 's/%d./%d./g' %s_%d_%s/datacard_%d_%s.txt", int(mass_0[lMarker]), int(mass[i]), dir.c_str(), int(mass[i]), background.c_str(), int(mass[i]), background.c_str())); + if(mass_0[lMarker] == 1200){gSystem->Exec(Form("sed -i 's/.signal_%d./_signal_%d./g' %s_%d_%s/datacard_%d_%s.txt", int(mass_0[lMarker]), int(mass[i]), dir.c_str(), int(mass[i]), background.c_str(), int(mass[i]), background.c_str())); } + else{gSystem->Exec(Form("sed -i 's/%d./%d./g' %s_%d_%s/datacard_%d_%s.txt", int(mass_0[lMarker]), int(mass[i]), dir.c_str(), int(mass[i]), background.c_str(), int(mass[i]), background.c_str()));} } - - for (unsigned i = 0; iSetFillStyle(4000); p_1->SetFrameFillColor(0); p_1->SetBottomMargin(0.035); - TPad* p_2 = new TPad("p_2", "p_2",0,0,1,xPad); p_2->SetBottomMargin(0.2); p_2->SetTopMargin(0.02); @@ -487,10 +466,10 @@ void interpolation_normalization(bool flag_MMR, std::string function, std::strin hr_1->SetTitle("Linear interpolation of yield in MMR"); } else { if (range==1){hr_1 = c1->DrawFrame(250,0,370,600);} - else{hr_1 = c1->DrawFrame(250,0,550,1600);} + else{hr_1 = c1->DrawFrame(250,0,650,2000);} hr_1->SetTitle("Linear interpolation of yield in LMR"); } - hr_1->SetXTitle("m_X (GeV)"); + hr_1->SetXTitle("m_{X} (GeV)"); hr_1->GetYaxis()->SetTitleOffset(1.2); hr_1->SetYTitle("Normalization"); c1->GetFrame()->SetBorderSize(12); @@ -500,9 +479,9 @@ void interpolation_normalization(bool flag_MMR, std::string function, std::strin else{hr_2 = c1->DrawFrame(400,-0.07,1200,0.07);} } else { if (range==1){hr_2 = c1->DrawFrame(250,-0.04,370,0.04);} - else{hr_2 = c1->DrawFrame(250,-0.04,550,0.04);} + else{hr_2 = c1->DrawFrame(250,-0.04,650,0.04);} } - hr_2->SetXTitle("m_X (GeV)"); + hr_2->SetXTitle("m_{X} (GeV)"); hr_2->GetXaxis()->SetTitleOffset(0.6); hr_2->GetXaxis()->SetTitleSize(0.08); hr_2->GetYaxis()->SetTitleOffset(0.5); @@ -511,69 +490,32 @@ void interpolation_normalization(bool flag_MMR, std::string function, std::strin hr_2->SetYTitle("Relative errors"); c1->GetFrame()->SetBorderSize(12); p_1->cd(); - - - - TGraphErrors* g_signal = new TGraphErrors(nPoints, &(mass[0]), signal); - g_signal->SetMarkerColor(kBlue-7); - g_signal->SetMarkerStyle(20); - g_signal->SetLineColor(0); - //g_signal->Draw("P"); - + TGraphErrors* g_signal_0 = new TGraphErrors(nPoints_0, &(mass_0[0]), signal_0); g_signal_0->SetMarkerColor(kRed); g_signal_0->SetMarkerStyle(21); g_signal_0->SetLineColor(0); g_signal_0->Draw("P"); - TF1 *fit_lin = new TF1("fit_lin",straight_line,100,1000,2); - fit_lin->SetParameter(0, 1000.); - fit_lin->SetParameter(1, 5.); - fit_lin->SetParName(0, "q"); - fit_lin->SetParName(1, "m"); - if (flag_MMR) { - g_signal_0->Fit(fit_lin,"","",400,1000); - } - else{ - if (range==1){g_signal_0->Fit(fit_lin,"","",260,250);} - else{g_signal_0->Fit(fit_lin,"","",270,550);} - } - - for (unsigned i = 0; iGetParameter(1)*mass[i]+fit_lin->GetParameter(0); - } - TGraphErrors* g_signal_1 = new TGraphErrors(nPoints, &(mass[0]), lin); - g_signal_1->SetMarkerColor(8); - g_signal_1->SetMarkerStyle(22); - g_signal_1->SetLineColor(0); - - - - - + j=0; for (unsigned i = 0; i mass[i]){ - break; - } - lMarker++; - } + else{int lMarker=0; + for (auto pVal : mass_0){ if (pVal > mass[i]){break;}lMarker++;} interpol[i] =( (signal_0[lMarker]-signal_0[lMarker-1])*(mass[i]-mass_0[lMarker-1])/(mass_0[lMarker]-mass_0[lMarker-1])+signal_0[lMarker-1]); } } + TGraphErrors* g_signal_2 = new TGraphErrors(nPoints, &(mass[0]), interpol); g_signal_2->SetMarkerColor(kBlue); g_signal_2->SetMarkerStyle(20); g_signal_2->SetLineColor(0); g_signal_2->Draw("P"); g_signal_0->Draw("P"); - - + TF1 *fit_pol = new TF1("fit_pol",pol_line,100,1000,4); fit_pol->SetParameter(0, 1500.); fit_pol->SetParameter(1, -13.); @@ -584,14 +526,30 @@ void interpolation_normalization(bool flag_MMR, std::string function, std::strin fit_pol->SetParName(2, "x_2"); fit_pol->SetParName(3, "x_3"); if (flag_MMR) { - g_signal_0->Fit(fit_pol,"","", 400,1000); + g_signal_0->Fit(fit_pol,"","", 550,1200); } else{ if (range==1){ - g_signal_0->Fit(fit_pol,"","",250,400);} - else{g_signal_0->Fit(fit_pol,"","",260,550);} + g_signal_0->Fit(fit_pol,"","",260,400);} + else{g_signal_0->Fit(fit_pol,"","",260,650);} } + + TGraphErrors* g_pull = new TGraphErrors(nPoints); + g_pull->SetMarkerStyle(7); + g_pull->SetMarkerSize(0.4); + for (unsigned i = 0; iEval(mass[i]))/fit_pol->Eval(mass[i]); + g_pull->SetPoint(i, mass[i],temp); + } + } TLegend *leg=new TLegend(0.2, 0.65, 0.65, 0.85); leg->SetFillStyle(1); leg->SetFillColor(kWhite); @@ -604,12 +562,11 @@ void interpolation_normalization(bool flag_MMR, std::string function, std::strin leg->SetBorderSize(0); leg->Draw(); - - p_2->cd(); TLine* line; + g_pull->Draw("P"); if (flag_MMR) { - line= new TLine(350, 0, 1200, 0); + line= new TLine(350, 0, 1300, 0); } else{ line= new TLine(250, 0, 550, 0); @@ -617,16 +574,14 @@ void interpolation_normalization(bool flag_MMR, std::string function, std::strin line->SetLineStyle(2); line->SetLineWidth(1); line->Draw(); - - if (flag_MMR) { - c1->SaveAs("interpolation_MMR.pdf"); - c1->SaveAs("interpolation_MMR.png"); + c1->SaveAs("interpolation_yield_MMR.pdf"); + c1->SaveAs("interpolation_yield_MMR.png"); } else { - c1->SaveAs("interpolation_LMR.pdf"); - c1->SaveAs("interpolation_LMR.png"); + c1->SaveAs(Form("interpolation_yield_LMR_%d.pdf",range)); + c1->SaveAs(Form("interpolation_yield_LMR_%d.png",range)); } for (unsigned i = 0; icd(); if (flag_MMR) { if (range==1){ - h_syst_1[syst_num] = c2[syst_num]->DrawFrame(500,1,1050,1.10); + h_syst_1[syst_num] = c2[syst_num]->DrawFrame(500,1,1250,1.10); } else{ - h_syst_1[syst_num] = c2[syst_num]->DrawFrame(500,1,1050,1.10); + h_syst_1[syst_num] = c2[syst_num]->DrawFrame(500,1,1250,1.10); } h_syst_1[syst_num]->SetTitle(Form("Interpolation of %s in MMR",name_syst[syst_num].c_str())); } else { if (range==1){ switch (syst_num) { - case 0: h_syst_1[syst_num] = c2[syst_num]->DrawFrame(250,1.065,370,1.10); break; - case 1: h_syst_1[syst_num] = c2[syst_num]->DrawFrame(250,1.005,370,1.10); break; - case 2: h_syst_1[syst_num] = c2[syst_num]->DrawFrame(250,1,370,1.10); break; - case 3: h_syst_1[syst_num] = c2[syst_num]->DrawFrame(250,1,370,1.10); break; - case 4: h_syst_1[syst_num] = c2[syst_num]->DrawFrame(250,1,370,1.10); break; + case 0: h_syst_1[syst_num] = c2[syst_num]->DrawFrame(250,1.0,370,1.30); break; + case 1: h_syst_1[syst_num] = c2[syst_num]->DrawFrame(250,0.97,370,1.07); break; + case 2: h_syst_1[syst_num] = c2[syst_num]->DrawFrame(250,0.95,370,1.05); break; + case 3: h_syst_1[syst_num] = c2[syst_num]->DrawFrame(250,1.0,370,1.05); break; + case 4: h_syst_1[syst_num] = c2[syst_num]->DrawFrame(250,1.05,370,1.15); break; } } else{ switch (syst_num) { - case 0: h_syst_1[syst_num] = c2[syst_num]->DrawFrame(250,1.065,600,1.10); break; - case 1: h_syst_1[syst_num] = c2[syst_num]->DrawFrame(250,1.005,600,1.10); break; - case 2: h_syst_1[syst_num] = c2[syst_num]->DrawFrame(250,1,600,1.10); break; - case 3: h_syst_1[syst_num] = c2[syst_num]->DrawFrame(250,1,600,1.10); break; - case 4: h_syst_1[syst_num] = c2[syst_num]->DrawFrame(250,1,600,1.10); break; + case 0: h_syst_1[syst_num] = c2[syst_num]->DrawFrame(250,1.0,650,1.30); break; + case 1: h_syst_1[syst_num] = c2[syst_num]->DrawFrame(250,0.97,650,1.07); break; + case 2: h_syst_1[syst_num] = c2[syst_num]->DrawFrame(250,0.95,650,1.05); break; + case 3: h_syst_1[syst_num] = c2[syst_num]->DrawFrame(250,1,650,1.05); break; + case 4: h_syst_1[syst_num] = c2[syst_num]->DrawFrame(250,1.05,650,1.15); break; } - //h_syst_1[syst_num] = c2[syst_num]->DrawFrame(250,1,600,1.10); - } h_syst_1[syst_num]->SetTitle(Form("Interpolation of %s in LMR",name_syst[syst_num].c_str())); } - h_syst_1[syst_num]->SetXTitle("m_X (GeV)"); + h_syst_1[syst_num]->SetXTitle("m_{X} (GeV)"); h_syst_1[syst_num]->GetYaxis()->SetTitleOffset(1.2); h_syst_1[syst_num]->SetYTitle(Form("%s",name_syst[syst_num].c_str())); p_syst2[syst_num]->cd(); if (flag_MMR) { - if (range==1){h_syst_2[syst_num] = c2[syst_num]->DrawFrame(500,-0.07,1100,0.07);} - else{h_syst_2[syst_num] = c2[syst_num]->DrawFrame(500,-0.07,1100,0.07);} + if (range==1){h_syst_2[syst_num] = c2[syst_num]->DrawFrame(500,-0.07,1250,0.07);} + else{h_syst_2[syst_num] = c2[syst_num]->DrawFrame(500,-0.07,1250,0.07);} } else { if (range==1){ switch (syst_num) { @@ -747,16 +700,16 @@ void interpolation_normalization(bool flag_MMR, std::string function, std::strin } } else{ - h_syst_2[syst_num] = c2[syst_num]->DrawFrame(250,-0.002,600,0.002); + h_syst_2[syst_num] = c2[syst_num]->DrawFrame(250,-0.002,650,0.002); } } - h_syst_2[syst_num]->SetXTitle("m_X (GeV)"); + h_syst_2[syst_num]->SetXTitle("m_{X} (GeV)"); h_syst_2[syst_num]->GetXaxis()->SetTitleOffset(0.6); h_syst_2[syst_num]->GetXaxis()->SetTitleSize(0.08); h_syst_2[syst_num]->GetYaxis()->SetTitleOffset(0.5); h_syst_2[syst_num]->GetYaxis()->SetTitleSize(0.08); h_syst_2[syst_num]->SetLabelSize(0.06,"xy"); - h_syst_2[syst_num]->SetYTitle("Relative errors"); + h_syst_2[syst_num]->SetYTitle("Relative errors (Pol. fit)"); g_syst_0[syst_num] = new TGraphErrors(nPoints_0, &(mass_0[0]), syst_0[syst_num]); g_syst_0[syst_num]->SetMarkerColor(kRed); @@ -765,18 +718,30 @@ void interpolation_normalization(bool flag_MMR, std::string function, std::strin c2[syst_num]->cd(); p_syst1[syst_num]->cd(); g_syst_0[syst_num]->Draw("P"); - //j=0; + //Code for Spline for (unsigned i = 0; iSetLineColor(kGreen+2); + j=0; for (unsigned i = 0; iEval(mass[i]); + if (std::find(mass_0.begin(), mass_0.end(), mass[i]) != mass_0.end()){ + interpol_syst_0[syst_num][i]=syst_0[syst_num][j]; + cout<<"This is the mc: "<Eval(mass[i]); + cout<<"This is the interpolation: "<SetMarkerColor(kBlue); g_syst_1[syst_num]->SetMarkerStyle(20); @@ -784,7 +749,7 @@ void interpolation_normalization(bool flag_MMR, std::string function, std::strin g_syst_1[syst_num]->Draw("P"); g_syst_0[syst_num]->Draw("P"); - fit_pol_syst[syst_num] = new TF1(Form("fit_pol_syst_%d", syst_num),Form("pol%d",nPoints_0-1),100,1000); + fit_pol_syst[syst_num] = new TF1(Form("fit_pol_syst_%d", syst_num),Form("pol%d",nPoints_0-1),100,1250); fit_pol_syst[syst_num]->SetParameter(0, 1.); fit_pol_syst[syst_num]->SetParameter(1, -13.); fit_pol_syst[syst_num]->SetParameter(2, 0.07 ); @@ -794,10 +759,10 @@ void interpolation_normalization(bool flag_MMR, std::string function, std::strin fit_pol_syst[syst_num]->SetParName(2, "x_2"); fit_pol_syst[syst_num]->SetParName(3, "x_3"); sp_syst[syst_num]->Draw("lsame"); - if (flag_MMR) {g_syst_0[syst_num]->Fit(fit_pol_syst[syst_num],"","", 540,1010);} + if (flag_MMR) {g_syst_0[syst_num]->Fit(fit_pol_syst[syst_num],"","", 550,1250);} else{ - if (range==1){g_syst_0[syst_num]->Fit(fit_pol_syst[syst_num],"","",259,351);} - else{g_syst_0[syst_num]->Fit(fit_pol_syst[syst_num],"","",260,600);} + if (range==1){g_syst_0[syst_num]->Fit(fit_pol_syst[syst_num],"","",260,350);} + else{g_syst_0[syst_num]->Fit(fit_pol_syst[syst_num],"","",260,650);} } //Pull for interpolated errors @@ -830,10 +795,10 @@ void interpolation_normalization(bool flag_MMR, std::string function, std::strin g_pull_syst[syst_num]->Draw("P"); if (flag_MMR) { if (range==1){ - line= new TLine(350, 0, 1200, 0); + line= new TLine(350, 0, 1250, 0); } else{ - line= new TLine(350, 0, 1200, 0); + line= new TLine(350, 0, 1250, 0); } } else{ @@ -841,7 +806,7 @@ void interpolation_normalization(bool flag_MMR, std::string function, std::strin line= new TLine(250, 0, 370, 0); } else{ - line= new TLine(250, 0, 600, 0); + line= new TLine(250, 0, 650, 0); } } @@ -870,9 +835,6 @@ void interpolation_normalization(bool flag_MMR, std::string function, std::strin } - - - //================================================================================ Double_t straight_line(Double_t *x, Double_t *par) diff --git a/PDFSyst.py b/PDFSyst.py index ad769d6..d0d7751 100644 --- a/PDFSyst.py +++ b/PDFSyst.py @@ -6,7 +6,7 @@ def PDFsyst(mass, location): if location==0: print("fnal") - path="/eos/uscms/store/user/lpchbb/HeppyNtuples/V25/" + path="/eos/uscms/store/user/guerrero/HeppyNtuples/V25/" elif location==1: print("pisa") path="/scratch/malara/WorkingArea/IO_file/output_file/DeepCSV_final/MC/Original/" @@ -17,6 +17,10 @@ def PDFsyst(mass, location): if(mass==1000) : print("1000") _file0 = ROOT.TFile.Open(path+"BulkGravTohhTohbbhbb_narrow_M-"+str(mass)+"_13TeV-madgraph.root") + if(mass==1200) : + print("1200") + _file0 = ROOT.TFile.Open(path+"BulkGravTohhTohbbhbb_narrow_M-"+str(mass)+"_13TeV-madgraph.root") + tree = _file0.Get("tree") CountWeighted = _file0.Get("CountWeighted") CountWeightedLHEWeightPdf = _file0.Get("CountWeightedLHEWeightPdf") diff --git a/PDFs/trig.log b/PDFs/trig.log index 894fe57..5fa3760 100644 --- a/PDFs/trig.log +++ b/PDFs/trig.log @@ -6,9 +6,10 @@ trig400 1.0943615895 trig450 1.0861090745 trig500 1.0733235575 trig550 1.0697740714 -trig600 1.0697740714 +trig600 1.06723 trig650 1.0648885684 trig750 1.0624078267 trig800 1.0573539334 trig900 1.0573539334 trig1000 1.0573539334 +trig1200 1.0573539334 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_260_gaus_exp_250_330/CMS_HH4b_260_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_260_gaus_exp_250_330/CMS_HH4b_260_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..ec3992e --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_260_gaus_exp_250_330/CMS_HH4b_260_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-jl2Bsm.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.020 + + + --- MaxLikelihoodFit --- +Best fit r: 1.10459e-10 -1.10459e-10/+0.411704 (68% CL) +nll S+B -> -0.0161918 nll B -> -0.0161918 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_260_gaus_exp_250_330/CMS_HH4b_260_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_260_gaus_exp_250_330/CMS_HH4b_260_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..ba4e864 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_260_gaus_exp_250_330/CMS_HH4b_260_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.871094 +Sigma for expected limits: 0.444444 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -5.71368 (r = 1.91825e-07) + +Make global fit of asimov data +NLL at global minimum of asimov: -13.4967 (r = 2.09248e-06) +At r = 7.211415: q_mu = 97.95010 q_A = 97.76285 CLsb = 0.00000 CLb = 0.49622 CLs = 0.00000 +At r = 3.605707: q_mu = 40.86396 q_A = 40.75859 CLsb = 0.00000 CLb = 0.49671 CLs = 0.00000 +At r = 1.802854: q_mu = 14.00070 q_A = 13.94548 CLsb = 0.00009 CLb = 0.49705 CLs = 0.00018 +At r = 0.901427: q_mu = 4.14144 q_A = 4.11451 CLsb = 0.02092 CLb = 0.49735 CLs = 0.04207 +At r = 0.450714: q_mu = 1.16596 q_A = 1.15296 CLsb = 0.14011 CLb = 0.49759 CLs = 0.28159 +At r = 0.676070: q_mu = 2.44896 q_A = 2.42907 CLsb = 0.05880 CLb = 0.49745 CLs = 0.11820 +At r = 0.826209: q_mu = 3.53411 q_A = 3.50954 CLsb = 0.03006 CLb = 0.49738 CLs = 0.06043 +At r = 0.857689: q_mu = 3.78331 q_A = 3.75775 CLsb = 0.02588 CLb = 0.49737 CLs = 0.05204 +At r = 0.873010: q_mu = 3.90720 q_A = 3.88116 CLsb = 0.02404 CLb = 0.49736 CLs = 0.04833 +At r = 0.864320: q_mu = 3.83671 q_A = 3.81095 CLsb = 0.02507 CLb = 0.49737 CLs = 0.05041 +At r = 0.867396: q_mu = 3.86160 q_A = 3.83574 CLsb = 0.02470 CLb = 0.49737 CLs = 0.04966 +At r = 0.865661: q_mu = 3.84755 q_A = 3.82174 CLsb = 0.02491 CLb = 0.49737 CLs = 0.05008 + + -- Asymptotic -- +Observed Limit: r < 0.8657 +Expected 2.5%: r < 0.4458 +Expected 16.0%: r < 0.6069 +Expected 50.0%: r < 0.8711 +Expected 84.0%: r < 1.2496 +Expected 97.5%: r < 1.7360 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_260_gaus_exp_250_330/datacard_260_gaus_exp_250_330.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_260_gaus_exp_250_330/datacard_260_gaus_exp_250_330.txt new file mode 100644 index 0000000..c3f83cd --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_260_gaus_exp_250_330/datacard_260_gaus_exp_250_330.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_260.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_260.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_gaus_exp_250_330.root HbbHbb:f_gaus_exp +shapes data_obs HbbHbb w_background_gaus_exp_250_330.root HbbHbb:data_obs_gaus_exp_250_330 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 191.924 15384 191.924 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.06823 - - +JER lnN 1.02103 - - +JEC lnN 1.01807 - - +trigger lnN 1.0899073597 - - +PDF lnN 1.01504940545 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.033 +par_gaus_exp_0 param 266.499 0.453027 +par_gaus_exp_1 param 11.9408 0.531579 +par_gaus_exp_2 param 0.13851 0.00812008 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_265_gaus_exp_250_330/CMS_HH4b_265_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_265_gaus_exp_250_330/CMS_HH4b_265_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..60c99be --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_265_gaus_exp_250_330/CMS_HH4b_265_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-YDqiE7.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 5.5924e-09 -5.5924e-09/+0.0974413 (68% CL) +nll S+B -> -0.0326825 nll B -> -0.0326825 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_265_gaus_exp_250_330/CMS_HH4b_265_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_265_gaus_exp_250_330/CMS_HH4b_265_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..120f061 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_265_gaus_exp_250_330/CMS_HH4b_265_13TeV_asymptoticCLs.out @@ -0,0 +1,40 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.855469 +Sigma for expected limits: 0.436472 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -13.6439 (r = 1.37555e-08) + +Make global fit of asimov data +NLL at global minimum of asimov: -12.5786 (r = 1.18461e-12) +At r = 1.200000: q_mu = 16.67565 q_A = 6.98851 CLsb = 0.00000 CLb = 0.03346 CLs = 0.00011 +At r = 0.600000: q_mu = 7.24584 q_A = 2.05539 CLsb = 0.00059 CLb = 0.03513 CLs = 0.01678 +At r = 0.300000: q_mu = 3.29063 q_A = 0.62600 CLsb = 0.00666 CLb = 0.04610 CLs = 0.14446 +At r = 0.478289: q_mu = 5.56866 q_A = 1.38297 CLsb = 0.00156 CLb = 0.03757 CLs = 0.04153 +At r = 0.421391: q_mu = 4.81768 q_A = 1.11135 CLsb = 0.00246 CLb = 0.03938 CLs = 0.06249 +At r = 0.446230: q_mu = 5.14283 q_A = 1.22651 CLsb = 0.00202 CLb = 0.03852 CLs = 0.05234 +At r = 0.457717: q_mu = 5.29463 q_A = 1.28157 CLsb = 0.00184 CLb = 0.03816 CLs = 0.04819 +At r = 0.451327: q_mu = 5.21008 q_A = 1.25080 CLsb = 0.00194 CLb = 0.03836 CLs = 0.05046 +At r = 0.453630: q_mu = 5.24051 q_A = 1.26185 CLsb = 0.00190 CLb = 0.03829 CLs = 0.04963 +At r = 0.452352: q_mu = 5.22363 q_A = 1.25572 CLsb = 0.00192 CLb = 0.03833 CLs = 0.05009 + + -- Asymptotic -- +Observed Limit: r < 0.4524 +Expected 2.5%: r < 0.4261 +Expected 16.0%: r < 0.5921 +Expected 50.0%: r < 0.8555 +Expected 84.0%: r < 1.2408 +Expected 97.5%: r < 1.7244 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_265_gaus_exp_250_330/datacard_265_gaus_exp_250_330.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_265_gaus_exp_250_330/datacard_265_gaus_exp_250_330.txt new file mode 100644 index 0000000..42d2a81 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_265_gaus_exp_250_330/datacard_265_gaus_exp_250_330.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_265.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_265.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_gaus_exp_250_330.root HbbHbb:f_gaus_exp +shapes data_obs HbbHbb w_background_gaus_exp_250_330.root HbbHbb:data_obs_gaus_exp_250_330 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 202.486000 15384.000000 202.486000 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.068235 - - +JER lnN 1.018845 - - +JEC lnN 1.015113 - - +trigger lnN 1.082168 - - +PDF lnN 1.015115 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.054241 +par_gaus_exp_0 param 266.499 0.453027 +par_gaus_exp_1 param 11.9408 0.531579 +par_gaus_exp_2 param 0.13851 0.00812008 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_270_gaus_exp_250_330/.nfs000000300a163622000004a4 b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_270_gaus_exp_250_330/.nfs000000300a163622000004a4 new file mode 100644 index 0000000..ef5c6ed --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_270_gaus_exp_250_330/.nfs000000300a163622000004a4 @@ -0,0 +1,2 @@ + +Processing test.c... diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_270_gaus_exp_250_330/CMS_HH4b_270_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_270_gaus_exp_250_330/CMS_HH4b_270_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..f28f57d --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_270_gaus_exp_250_330/CMS_HH4b_270_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-XpWmuv.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 5.68288e-10 -5.68288e-10/+0.102253 (68% CL) +nll S+B -> -0.0459894 nll B -> -0.0459894 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_270_gaus_exp_250_330/CMS_HH4b_270_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_270_gaus_exp_250_330/CMS_HH4b_270_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..673fce7 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_270_gaus_exp_250_330/CMS_HH4b_270_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.839844 +Sigma for expected limits: 0.4285 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -12.6488 (r = 6.18841e-09) + +Make global fit of asimov data +NLL at global minimum of asimov: -12.1318 (r = 1.34226e-11) +At r = 1.200000: q_mu = 16.16637 q_A = 7.15059 CLsb = 0.00001 CLb = 0.04592 CLs = 0.00014 +At r = 0.600000: q_mu = 6.95634 q_A = 2.15902 CLsb = 0.00096 CLb = 0.05129 CLs = 0.01875 +At r = 0.300000: q_mu = 3.14183 q_A = 0.68667 CLsb = 0.01044 CLb = 0.06925 CLs = 0.15079 +At r = 0.450000: q_mu = 4.97169 q_A = 1.32853 CLsb = 0.00314 CLb = 0.05701 CLs = 0.05504 +At r = 0.490708: q_mu = 5.49557 q_A = 1.53566 CLsb = 0.00228 CLb = 0.05505 CLs = 0.04137 +At r = 0.469098: q_mu = 5.21606 q_A = 1.42399 CLsb = 0.00270 CLb = 0.05604 CLs = 0.04817 +At r = 0.461008: q_mu = 5.11224 q_A = 1.38318 CLsb = 0.00288 CLb = 0.05644 CLs = 0.05098 +At r = 0.464838: q_mu = 5.16133 q_A = 1.40243 CLsb = 0.00279 CLb = 0.05625 CLs = 0.04963 +At r = 0.463222: q_mu = 5.14061 q_A = 1.39429 CLsb = 0.00283 CLb = 0.05633 CLs = 0.05019 + + -- Asymptotic -- +Observed Limit: r < 0.4632 +Expected 2.5%: r < 0.4084 +Expected 16.0%: r < 0.5753 +Expected 50.0%: r < 0.8398 +Expected 84.0%: r < 1.2248 +Expected 97.5%: r < 1.7076 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_270_gaus_exp_250_330/datacard_270_gaus_exp_250_330.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_270_gaus_exp_250_330/datacard_270_gaus_exp_250_330.txt new file mode 100644 index 0000000..4a15dd9 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_270_gaus_exp_250_330/datacard_270_gaus_exp_250_330.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_270.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_270.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_gaus_exp_250_330.root HbbHbb:f_gaus_exp +shapes data_obs HbbHbb w_background_gaus_exp_250_330.root HbbHbb:data_obs_gaus_exp_250_330 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 213.048 15384 213.048 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.06825 - - +JER lnN 1.01721 - - +JEC lnN 1.01241 - - +trigger lnN 1.0760638829 - - +PDF lnN 1.01516984881 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.071 +par_gaus_exp_0 param 266.499 0.453027 +par_gaus_exp_1 param 11.9408 0.531579 +par_gaus_exp_2 param 0.13851 0.00812008 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_270_novo_285_625/datacard_270_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_270_novo_285_625/datacard_270_novo_285_625.txt new file mode 100644 index 0000000..80510b1 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_270_novo_285_625/datacard_270_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_270.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_270.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 213.048 21478 213.048 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.06825 - - +JER lnN 1.01721 - - +JEC lnN 1.01241 - - +trigger lnN 1.0760638829 - - +PDF lnN 1.01516984881 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_275_gaus_exp_250_330/CMS_HH4b_275_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_275_gaus_exp_250_330/CMS_HH4b_275_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..0bc7699 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_275_gaus_exp_250_330/CMS_HH4b_275_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-qTMGNQ.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 6.62065e-08 -6.62065e-08/+0.173051 (68% CL) +nll S+B -> -0.0662849 nll B -> -0.0662845 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_275_gaus_exp_250_330/CMS_HH4b_275_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_275_gaus_exp_250_330/CMS_HH4b_275_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..1f14072 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_275_gaus_exp_250_330/CMS_HH4b_275_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.751953 +Sigma for expected limits: 0.383657 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -10.9295 (r = 3.00826e-08) + +Make global fit of asimov data +NLL at global minimum of asimov: -14.6376 (r = 1.53547e-10) +At r = 1.200000: q_mu = 12.78379 q_A = 8.67252 CLsb = 0.00013 CLb = 0.24258 CLs = 0.00056 +At r = 0.600000: q_mu = 4.78282 q_A = 2.60377 CLsb = 0.01104 CLb = 0.24977 CLs = 0.04422 +At r = 0.300000: q_mu = 1.92347 q_A = 0.81394 CLsb = 0.06462 CLb = 0.26931 CLs = 0.23995 +At r = 0.450000: q_mu = 3.24357 q_A = 1.59230 CLsb = 0.02767 CLb = 0.25646 CLs = 0.10790 +At r = 0.553472: q_mu = 4.28293 q_A = 2.26592 CLsb = 0.01481 CLb = 0.25144 CLs = 0.05888 +At r = 0.574724: q_mu = 4.50881 q_A = 2.41760 CLsb = 0.01296 CLb = 0.25064 CLs = 0.05172 +At r = 0.584138: q_mu = 4.61019 q_A = 2.48621 CLsb = 0.01222 CLb = 0.25031 CLs = 0.04880 +At r = 0.579105: q_mu = 4.55588 q_A = 2.44941 CLsb = 0.01261 CLb = 0.25048 CLs = 0.05034 +At r = 0.580992: q_mu = 4.57622 q_A = 2.46318 CLsb = 0.01246 CLb = 0.25042 CLs = 0.04976 + + -- Asymptotic -- +Observed Limit: r < 0.5810 +Expected 2.5%: r < 0.3657 +Expected 16.0%: r < 0.5151 +Expected 50.0%: r < 0.7520 +Expected 84.0%: r < 1.0966 +Expected 97.5%: r < 1.5289 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_275_gaus_exp_250_330/datacard_275_gaus_exp_250_330.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_275_gaus_exp_250_330/datacard_275_gaus_exp_250_330.txt new file mode 100644 index 0000000..dafee99 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_275_gaus_exp_250_330/datacard_275_gaus_exp_250_330.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_275.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_275.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_gaus_exp_250_330.root HbbHbb:f_gaus_exp +shapes data_obs HbbHbb w_background_gaus_exp_250_330.root HbbHbb:data_obs_gaus_exp_250_330 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 228.227667 15384.000000 228.227667 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.068281 - - +JER lnN 1.016540 - - +JEC lnN 1.010165 - - +trigger lnN 1.072849 - - +PDF lnN 1.015208 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.079832 +par_gaus_exp_0 param 266.499 0.453027 +par_gaus_exp_1 param 11.9408 0.531579 +par_gaus_exp_2 param 0.13851 0.00812008 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_275_novo_285_625/datacard_275_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_275_novo_285_625/datacard_275_novo_285_625.txt new file mode 100644 index 0000000..e27cbb3 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_275_novo_285_625/datacard_275_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_275.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_275.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 228.227667 21478.000000 228.227667 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.068313 - - +JER lnN 1.018186 - - +JEC lnN 1.010741 - - +trigger lnN 1.077232 - - +PDF lnN 1.015202 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.008399 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_280_gaus_exp_250_330/CMS_HH4b_280_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_280_gaus_exp_250_330/CMS_HH4b_280_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..a307b15 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_280_gaus_exp_250_330/CMS_HH4b_280_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-MjNcd0.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 1.59316e-07 -1.59316e-07/+0.362827 (68% CL) +nll S+B -> -0.0524873 nll B -> -0.0524869 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_280_gaus_exp_250_330/CMS_HH4b_280_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_280_gaus_exp_250_330/CMS_HH4b_280_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..b32b129 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_280_gaus_exp_250_330/CMS_HH4b_280_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.732422 +Sigma for expected limits: 0.373692 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -6.80886 (r = 8.60386e-09) + +Make global fit of asimov data +NLL at global minimum of asimov: -14.619 (r = 1.16866e-09) +At r = 5.511343: q_mu = 89.67971 q_A = 90.53908 CLsb = 0.00000 CLb = 0.51805 CLs = 0.00000 +At r = 2.755671: q_mu = 34.37855 q_A = 35.04466 CLsb = 0.00000 CLb = 0.52254 CLs = 0.00000 +At r = 1.377836: q_mu = 10.84684 q_A = 11.49441 CLsb = 0.00049 CLb = 0.53859 CLs = 0.00092 +At r = 0.688918: q_mu = 3.16899 q_A = 3.43798 CLsb = 0.03752 CLb = 0.52950 CLs = 0.07087 +At r = 1.033377: q_mu = 6.61856 q_A = 6.99415 CLsb = 0.00505 CLb = 0.52869 CLs = 0.00954 +At r = 0.861147: q_mu = 4.75962 q_A = 5.08419 CLsb = 0.01457 CLb = 0.52916 CLs = 0.02753 +At r = 0.774189: q_mu = 3.92121 q_A = 4.21832 CLsb = 0.02384 CLb = 0.52936 CLs = 0.04504 +At r = 0.741402: q_mu = 3.62360 q_A = 3.91003 CLsb = 0.02848 CLb = 0.52942 CLs = 0.05380 +At r = 0.758766: q_mu = 3.77993 q_A = 4.07202 CLsb = 0.02594 CLb = 0.52938 CLs = 0.04899 +At r = 0.752270: q_mu = 3.72111 q_A = 4.01109 CLsb = 0.02686 CLb = 0.52940 CLs = 0.05075 +At r = 0.755756: q_mu = 3.75262 q_A = 4.04373 CLsb = 0.02636 CLb = 0.52939 CLs = 0.04980 + + -- Asymptotic -- +Observed Limit: r < 0.7558 +Expected 2.5%: r < 0.3619 +Expected 16.0%: r < 0.5052 +Expected 50.0%: r < 0.7324 +Expected 84.0%: r < 1.0682 +Expected 97.5%: r < 1.4892 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_280_gaus_exp_250_330/datacard_280_gaus_exp_250_330.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_280_gaus_exp_250_330/datacard_280_gaus_exp_250_330.txt new file mode 100644 index 0000000..992a62e --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_280_gaus_exp_250_330/datacard_280_gaus_exp_250_330.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_280.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_280.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_gaus_exp_250_330.root HbbHbb:f_gaus_exp +shapes data_obs HbbHbb w_background_gaus_exp_250_330.root HbbHbb:data_obs_gaus_exp_250_330 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 243.407333 15384.000000 243.407333 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.068322 - - +JER lnN 1.016702 - - +JEC lnN 1.008382 - - +trigger lnN 1.072250 - - +PDF lnN 1.015233 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.081429 +par_gaus_exp_0 param 266.499 0.453027 +par_gaus_exp_1 param 11.9408 0.531579 +par_gaus_exp_2 param 0.13851 0.00812008 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_280_novo_285_625/datacard_280_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_280_novo_285_625/datacard_280_novo_285_625.txt new file mode 100644 index 0000000..761e45f --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_280_novo_285_625/datacard_280_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_280.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_280.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 243.407333 21478.000000 243.407333 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.068369 - - +JER lnN 1.019083 - - +JEC lnN 1.009146 - - +trigger lnN 1.078395 - - +PDF lnN 1.015233 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.016444 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_285_gaus_exp_250_330/CMS_HH4b_285_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_285_gaus_exp_250_330/CMS_HH4b_285_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..4176bbc --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_285_gaus_exp_250_330/CMS_HH4b_285_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-YrZRkF.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 0.163068 -0.163068/+0.336964 (68% CL) +nll S+B -> -0.147408 nll B -> -0.0270481 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_285_gaus_exp_250_330/CMS_HH4b_285_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_285_gaus_exp_250_330/CMS_HH4b_285_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..1d77e3a --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_285_gaus_exp_250_330/CMS_HH4b_285_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.630859 +Sigma for expected limits: 0.321873 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -7.65443 (r = 0.163322) + +Make global fit of asimov data +NLL at global minimum of asimov: -18.6964 (r = 1.46827e-06) +At r = 1.363322: q_mu = 10.74596 q_A = 14.96952 CLsb = 0.00052 CLb = 0.72272 CLs = 0.00072 +At r = 0.763322: q_mu = 3.03043 q_A = 5.42906 CLsb = 0.04086 CLb = 0.72214 CLs = 0.05658 +At r = 1.063322: q_mu = 6.49019 q_A = 9.76696 CLsb = 0.00542 CLb = 0.71824 CLs = 0.00755 +At r = 0.913322: q_mu = 4.62415 q_A = 7.47467 CLsb = 0.01576 CLb = 0.72026 CLs = 0.02188 +At r = 0.808939: q_mu = 3.48437 q_A = 6.02311 CLsb = 0.03098 CLb = 0.72158 CLs = 0.04293 +At r = 0.788782: q_mu = 3.28036 q_A = 5.75749 CLsb = 0.03506 CLb = 0.72183 CLs = 0.04857 +At r = 0.779809: q_mu = 3.19129 q_A = 5.64083 CLsb = 0.03702 CLb = 0.72194 CLs = 0.05127 +At r = 0.784931: q_mu = 3.24199 q_A = 5.70729 CLsb = 0.03589 CLb = 0.72188 CLs = 0.04971 +At r = 0.783142: q_mu = 3.22424 q_A = 5.68404 CLsb = 0.03628 CLb = 0.72190 CLs = 0.05025 + + -- Asymptotic -- +Observed Limit: r < 0.7831 +Expected 2.5%: r < 0.3191 +Expected 16.0%: r < 0.4385 +Expected 50.0%: r < 0.6309 +Expected 84.0%: r < 0.9100 +Expected 97.5%: r < 1.2605 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_285_gaus_exp_250_330/datacard_285_gaus_exp_250_330.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_285_gaus_exp_250_330/datacard_285_gaus_exp_250_330.txt new file mode 100644 index 0000000..317abfe --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_285_gaus_exp_250_330/datacard_285_gaus_exp_250_330.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_285.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_285.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_gaus_exp_250_330.root HbbHbb:f_gaus_exp +shapes data_obs HbbHbb w_background_gaus_exp_250_330.root HbbHbb:data_obs_gaus_exp_250_330 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 258.587000 15384.000000 258.587000 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.068362 - - +JER lnN 1.017427 - - +JEC lnN 1.007016 - - +trigger lnN 1.073612 - - +PDF lnN 1.015252 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.077517 +par_gaus_exp_0 param 266.499 0.453027 +par_gaus_exp_1 param 11.9408 0.531579 +par_gaus_exp_2 param 0.13851 0.00812008 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_285_novo_285_625/datacard_285_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_285_novo_285_625/datacard_285_novo_285_625.txt new file mode 100644 index 0000000..18c48b6 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_285_novo_285_625/datacard_285_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_285.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_285.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 258.587000 21478.000000 258.587000 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.068410 - - +JER lnN 1.019821 - - +JEC lnN 1.007697 - - +trigger lnN 1.079550 - - +PDF lnN 1.015262 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.023781 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_290_gaus_exp_250_330/CMS_HH4b_290_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_290_gaus_exp_250_330/CMS_HH4b_290_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..a09b865 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_290_gaus_exp_250_330/CMS_HH4b_290_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-cFmRAv.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 0.197491 -0.197491/+0.331546 (68% CL) +nll S+B -> -0.205794 nll B -> -0.0224545 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_290_gaus_exp_250_330/CMS_HH4b_290_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_290_gaus_exp_250_330/CMS_HH4b_290_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..da8a083 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_290_gaus_exp_250_330/CMS_HH4b_290_13TeV_asymptoticCLs.out @@ -0,0 +1,38 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.619141 +Sigma for expected limits: 0.315894 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -7.73267 (r = 0.197359) + +Make global fit of asimov data +NLL at global minimum of asimov: -19.5942 (r = 1.96868e-06) +At r = 1.397359: q_mu = 11.16321 q_A = 16.07932 CLsb = 0.00042 CLb = 0.74818 CLs = 0.00056 +At r = 0.797359: q_mu = 3.11650 q_A = 6.07211 CLsb = 0.03875 CLb = 0.75766 CLs = 0.05115 +At r = 1.097359: q_mu = 6.65666 q_A = 10.65430 CLsb = 0.00494 CLb = 0.75303 CLs = 0.00656 +At r = 0.947359: q_mu = 4.74936 q_A = 8.24197 CLsb = 0.01465 CLb = 0.75540 CLs = 0.01940 +At r = 0.830164: q_mu = 3.44841 q_A = 6.52423 CLsb = 0.03166 CLb = 0.75718 CLs = 0.04181 +At r = 0.806870: q_mu = 3.21123 q_A = 6.20185 CLsb = 0.03657 CLb = 0.75752 CLs = 0.04827 +At r = 0.802243: q_mu = 3.16499 q_A = 6.13859 CLsb = 0.03762 CLb = 0.75759 CLs = 0.04965 +At r = 0.800347: q_mu = 3.14613 q_A = 6.11275 CLsb = 0.03805 CLb = 0.75762 CLs = 0.05023 + + -- Asymptotic -- +Observed Limit: r < 0.8003 +Expected 2.5%: r < 0.3132 +Expected 16.0%: r < 0.4291 +Expected 50.0%: r < 0.6191 +Expected 84.0%: r < 0.8931 +Expected 97.5%: r < 1.2371 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_290_gaus_exp_250_330/datacard_290_gaus_exp_250_330.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_290_gaus_exp_250_330/datacard_290_gaus_exp_250_330.txt new file mode 100644 index 0000000..b46a479 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_290_gaus_exp_250_330/datacard_290_gaus_exp_250_330.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_290.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_290.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_gaus_exp_250_330.root HbbHbb:f_gaus_exp +shapes data_obs HbbHbb w_background_gaus_exp_250_330.root HbbHbb:data_obs_gaus_exp_250_330 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 273.766667 15384.000000 273.766667 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.068390 - - +JER lnN 1.018447 - - +JEC lnN 1.006021 - - +trigger lnN 1.076281 - - +PDF lnN 1.015270 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.069824 +par_gaus_exp_0 param 266.499 0.453027 +par_gaus_exp_1 param 11.9408 0.531579 +par_gaus_exp_2 param 0.13851 0.00812008 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_290_novo_285_625/CMS_HH4b_290_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_290_novo_285_625/CMS_HH4b_290_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..52ccebc --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_290_novo_285_625/CMS_HH4b_290_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-wih5Ws.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 0.407119 -0.31841/+0.329461 (68% CL) +nll S+B -> -0.817792 nll B -> -0.00741769 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_290_novo_285_625/CMS_HH4b_290_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_290_novo_285_625/CMS_HH4b_290_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..0382ca1 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_290_novo_285_625/CMS_HH4b_290_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +WARNING: Best fit of asimov dataset is at r = 0.100425 (0.005021 times rMax), while it should be at zero +Median for expected limits: 0.748047 +Sigma for expected limits: 0.381664 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -18.8862 (r = 0.407114) + +Make global fit of asimov data +NLL at global minimum of asimov: -23.954 (r = 0.10165) +At r = 1.607114: q_mu = 11.01311 q_A = 17.52181 CLsb = 0.00045 CLb = 0.80711 CLs = 0.00056 +At r = 1.007114: q_mu = 3.12526 q_A = 7.16620 CLsb = 0.03854 CLb = 0.81836 CLs = 0.04710 +At r = 0.707114: q_mu = 0.82387 q_A = 3.37384 CLsb = 0.18203 CLb = 0.82359 CLs = 0.22101 +At r = 0.857114: q_mu = 1.80755 q_A = 5.12516 CLsb = 0.08940 CLb = 0.82106 CLs = 0.10888 +At r = 0.968555: q_mu = 2.75671 q_A = 6.61596 CLsb = 0.04842 CLb = 0.81907 CLs = 0.05912 +At r = 0.991291: q_mu = 2.97181 q_A = 6.93852 CLsb = 0.04236 CLb = 0.81864 CLs = 0.05175 +At r = 0.999077: q_mu = 3.04680 q_A = 7.05040 CLsb = 0.04045 CLb = 0.81852 CLs = 0.04942 +At r = 0.995933: q_mu = 3.01635 q_A = 7.00511 CLsb = 0.04121 CLb = 0.81858 CLs = 0.05035 + + -- Asymptotic -- +Observed Limit: r < 0.9959 +Expected 2.5%: r < 0.4456 +Expected 16.0%: r < 0.5614 +Expected 50.0%: r < 0.7480 +Expected 84.0%: r < 1.0253 +Expected 97.5%: r < 1.3718 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_290_novo_285_625/datacard_290_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_290_novo_285_625/datacard_290_novo_285_625.txt new file mode 100644 index 0000000..2e8d52d --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_290_novo_285_625/datacard_290_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_290.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_290.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 273.766667 21478.000000 273.766667 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.068428 - - +JER lnN 1.020321 - - +JEC lnN 1.006467 - - +trigger lnN 1.080691 - - +PDF lnN 1.015289 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.030055 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_295_gaus_exp_250_330/CMS_HH4b_295_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_295_gaus_exp_250_330/CMS_HH4b_295_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..0db2c42 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_295_gaus_exp_250_330/CMS_HH4b_295_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-aYpxm1.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.000 + + + --- MaxLikelihoodFit --- +Best fit r: 0.0804128 -0.0804128/+0.294376 (68% CL) +nll S+B -> -0.0615219 nll B -> -0.0234669 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_295_gaus_exp_250_330/CMS_HH4b_295_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_295_gaus_exp_250_330/CMS_HH4b_295_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..3be6fdf --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_295_gaus_exp_250_330/CMS_HH4b_295_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.572266 +Sigma for expected limits: 0.291978 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -14.0202 (r = 0.0805799) + +Make global fit of asimov data +NLL at global minimum of asimov: -24.2504 (r = 1.16607e-09) +At r = 1.280580: q_mu = 13.78809 q_A = 16.15586 CLsb = 0.00010 CLb = 0.62028 CLs = 0.00016 +At r = 0.680580: q_mu = 3.91798 q_A = 5.29244 CLsb = 0.02389 CLb = 0.62595 CLs = 0.03816 +At r = 0.380580: q_mu = 1.02757 q_A = 1.79812 CLsb = 0.15537 CLb = 0.62826 CLs = 0.24729 +At r = 0.530580: q_mu = 2.26158 q_A = 3.34277 CLsb = 0.06631 CLb = 0.62721 CLs = 0.10572 +At r = 0.618757: q_mu = 3.18727 q_A = 4.44303 CLsb = 0.03711 CLb = 0.62648 CLs = 0.05923 +At r = 0.650179: q_mu = 3.55054 q_A = 4.86701 CLsb = 0.02976 CLb = 0.62621 CLs = 0.04753 +At r = 0.638105: q_mu = 3.40894 q_A = 4.70218 CLsb = 0.03242 CLb = 0.62632 CLs = 0.05177 +At r = 0.644446: q_mu = 3.48299 q_A = 4.78844 CLsb = 0.03100 CLb = 0.62626 CLs = 0.04950 +At r = 0.642042: q_mu = 3.45484 q_A = 4.75567 CLsb = 0.03153 CLb = 0.62629 CLs = 0.05035 + + -- Asymptotic -- +Observed Limit: r < 0.6420 +Expected 2.5%: r < 0.2962 +Expected 16.0%: r < 0.4030 +Expected 50.0%: r < 0.5723 +Expected 84.0%: r < 0.8209 +Expected 97.5%: r < 1.1333 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_295_gaus_exp_250_330/datacard_295_gaus_exp_250_330.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_295_gaus_exp_250_330/datacard_295_gaus_exp_250_330.txt new file mode 100644 index 0000000..68b13cd --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_295_gaus_exp_250_330/datacard_295_gaus_exp_250_330.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_295.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_295.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_gaus_exp_250_330.root HbbHbb:f_gaus_exp +shapes data_obs HbbHbb w_background_gaus_exp_250_330.root HbbHbb:data_obs_gaus_exp_250_330 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 288.946333 15384.000000 288.946333 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.068396 - - +JER lnN 1.019490 - - +JEC lnN 1.005350 - - +trigger lnN 1.079600 - - +PDF lnN 1.015295 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.060076 +par_gaus_exp_0 param 266.499 0.453027 +par_gaus_exp_1 param 11.9408 0.531579 +par_gaus_exp_2 param 0.13851 0.00812008 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_295_novo_285_625/CMS_HH4b_295_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_295_novo_285_625/CMS_HH4b_295_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..1bb241e --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_295_novo_285_625/CMS_HH4b_295_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-VOKSxi.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 0.161158 -0.161158/+0.338759 (68% CL) +nll S+B -> -0.116996 nll B -> -0.00141711 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_295_novo_285_625/CMS_HH4b_295_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_295_novo_285_625/CMS_HH4b_295_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..1c3a66a --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_295_novo_285_625/CMS_HH4b_295_13TeV_asymptoticCLs.out @@ -0,0 +1,40 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +WARNING: Best fit of asimov dataset is at r = 0.115600 (0.005780 times rMax), while it should be at zero +Median for expected limits: 0.792969 +Sigma for expected limits: 0.404583 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -23.3539 (r = 0.162239) + +Make global fit of asimov data +NLL at global minimum of asimov: -24.1944 (r = 0.11385) +At r = 1.362239: q_mu = 10.77852 q_A = 11.65330 CLsb = 0.00051 CLb = 0.55196 CLs = 0.00093 +At r = 0.762239: q_mu = 3.00579 q_A = 3.49051 CLsb = 0.04148 CLb = 0.55352 CLs = 0.07494 +At r = 1.062239: q_mu = 6.42381 q_A = 7.11445 CLsb = 0.00563 CLb = 0.55281 CLs = 0.01018 +At r = 0.912239: q_mu = 4.58174 q_A = 5.17213 CLsb = 0.01616 CLb = 0.55319 CLs = 0.02921 +At r = 0.843778: q_mu = 3.82746 q_A = 4.37028 CLsb = 0.02521 CLb = 0.55335 CLs = 0.04556 +At r = 0.815278: q_mu = 3.53054 q_A = 4.05323 CLsb = 0.03012 CLb = 0.55341 CLs = 0.05443 +At r = 0.831860: q_mu = 3.70215 q_A = 4.23657 CLsb = 0.02717 CLb = 0.55338 CLs = 0.04910 +At r = 0.826209: q_mu = 3.64324 q_A = 4.17367 CLsb = 0.02815 CLb = 0.55339 CLs = 0.05087 +At r = 0.829537: q_mu = 3.67787 q_A = 4.21065 CLsb = 0.02757 CLb = 0.55338 CLs = 0.04982 + + -- Asymptotic -- +Observed Limit: r < 0.8295 +Expected 2.5%: r < 0.4755 +Expected 16.0%: r < 0.5995 +Expected 50.0%: r < 0.7930 +Expected 84.0%: r < 1.0806 +Expected 97.5%: r < 1.4497 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_295_novo_285_625/datacard_295_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_295_novo_285_625/datacard_295_novo_285_625.txt new file mode 100644 index 0000000..8475bb4 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_295_novo_285_625/datacard_295_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_295.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_295.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 288.946333 21478.000000 288.946333 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.068418 - - +JER lnN 1.020504 - - +JEC lnN 1.005531 - - +trigger lnN 1.081814 - - +PDF lnN 1.015313 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.034913 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_300_gaus_exp_250_330/CMS_HH4b_300_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_300_gaus_exp_250_330/CMS_HH4b_300_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..b9ede3a --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_300_gaus_exp_250_330/CMS_HH4b_300_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-C3bVVm.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 0.0054416 -0.0054416/+0.290957 (68% CL) +nll S+B -> -0.0196293 nll B -> -0.019464 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_300_gaus_exp_250_330/CMS_HH4b_300_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_300_gaus_exp_250_330/CMS_HH4b_300_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..a97521f --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_300_gaus_exp_250_330/CMS_HH4b_300_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.572266 +Sigma for expected limits: 0.291978 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -16.2356 (r = 0.00580876) + +Make global fit of asimov data +NLL at global minimum of asimov: -24.9223 (r = 3.70035e-06) +At r = 7.176043: q_mu = 158.95838 q_A = 160.13167 CLsb = 0.00000 CLb = 0.51852 CLs = 0.00000 +At r = 3.590926: q_mu = 72.80760 q_A = 73.66780 CLsb = 0.00000 CLb = 0.52004 CLs = 0.00000 +At r = 1.798367: q_mu = 27.37847 q_A = 27.95084 CLsb = 0.00000 CLb = 0.52170 CLs = 0.00000 +At r = 0.902088: q_mu = 8.46405 q_A = 8.80013 CLsb = 0.00181 CLb = 0.52281 CLs = 0.00346 +At r = 0.453948: q_mu = 2.30134 q_A = 2.48104 CLsb = 0.06463 CLb = 0.52317 CLs = 0.12354 +At r = 0.678018: q_mu = 4.98250 q_A = 5.24383 CLsb = 0.01280 CLb = 0.52304 CLs = 0.02448 +At r = 0.554108: q_mu = 3.38967 q_A = 3.60666 CLsb = 0.03280 CLb = 0.52313 CLs = 0.06271 +At r = 0.602749: q_mu = 3.98386 q_A = 4.21850 CLsb = 0.02297 CLb = 0.52310 CLs = 0.04391 +At r = 0.578836: q_mu = 3.68656 q_A = 3.91256 CLsb = 0.02743 CLb = 0.52312 CLs = 0.05243 +At r = 0.588735: q_mu = 3.80844 q_A = 4.03803 CLsb = 0.02550 CLb = 0.52311 CLs = 0.04874 +At r = 0.583988: q_mu = 3.74977 q_A = 3.97764 CLsb = 0.02641 CLb = 0.52311 CLs = 0.05048 +At r = 0.585975: q_mu = 3.77428 q_A = 4.00287 CLsb = 0.02602 CLb = 0.52311 CLs = 0.04975 + + -- Asymptotic -- +Observed Limit: r < 0.5860 +Expected 2.5%: r < 0.2995 +Expected 16.0%: r < 0.4050 +Expected 50.0%: r < 0.5723 +Expected 84.0%: r < 0.8209 +Expected 97.5%: r < 1.1333 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_300_gaus_exp_250_330/datacard_300_gaus_exp_250_330.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_300_gaus_exp_250_330/datacard_300_gaus_exp_250_330.txt new file mode 100644 index 0000000..b6c8c2c --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_300_gaus_exp_250_330/datacard_300_gaus_exp_250_330.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_300.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_300.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_gaus_exp_250_330.root HbbHbb:f_gaus_exp +shapes data_obs HbbHbb w_background_gaus_exp_250_330.root HbbHbb:data_obs_gaus_exp_250_330 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 304.126 15384 304.126 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.06837 - - +JER lnN 1.02029 - - +JEC lnN 1.00496 - - +trigger lnN 1.0829156197 - - +PDF lnN 1.01533148611 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.050 +par_gaus_exp_0 param 266.499 0.453027 +par_gaus_exp_1 param 11.9408 0.531579 +par_gaus_exp_2 param 0.13851 0.00812008 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_300_novo_285_625/CMS_HH4b_300_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_300_novo_285_625/CMS_HH4b_300_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..bb30d1d --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_300_novo_285_625/CMS_HH4b_300_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-pnV833.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 1.66769e-10 -1.66769e-10/+0.27595 (68% CL) +nll S+B -> -0.000293675 nll B -> -0.000293675 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_300_novo_285_625/CMS_HH4b_300_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_300_novo_285_625/CMS_HH4b_300_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..51aa2c3 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_300_novo_285_625/CMS_HH4b_300_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +WARNING: Best fit of asimov dataset is at r = 0.044017 (0.002201 times rMax), while it should be at zero +Median for expected limits: 0.685547 +Sigma for expected limits: 0.349775 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -28.0617 (r = 1.37607e-06) + +Make global fit of asimov data +NLL at global minimum of asimov: -26.5644 (r = 0.0433246) +At r = 3.384321: q_mu = 62.51617 q_A = 59.08998 CLsb = 0.00000 CLb = 0.41182 CLs = 0.00000 +At r = 1.692161: q_mu = 22.97001 q_A = 20.67733 CLsb = 0.00000 CLb = 0.40048 CLs = 0.00000 +At r = 0.846081: q_mu = 7.16993 q_A = 5.83130 CLsb = 0.00355 CLb = 0.39082 CLs = 0.00909 +At r = 0.423041: q_mu = 2.09306 q_A = 1.38764 CLsb = 0.06978 CLb = 0.38231 CLs = 0.18253 +At r = 0.634561: q_mu = 4.30952 q_A = 3.27385 CLsb = 0.01806 CLb = 0.38736 CLs = 0.04662 +At r = 0.528801: q_mu = 3.11380 q_A = 2.23997 CLsb = 0.03684 CLb = 0.38517 CLs = 0.09565 +At r = 0.605175: q_mu = 3.96053 q_A = 2.96914 CLsb = 0.02217 CLb = 0.38680 CLs = 0.05733 +At r = 0.620729: q_mu = 4.14375 q_A = 3.12886 CLsb = 0.01990 CLb = 0.38710 CLs = 0.05142 +At r = 0.626656: q_mu = 4.21453 q_A = 3.19072 CLsb = 0.01909 CLb = 0.38722 CLs = 0.04931 +At r = 0.623897: q_mu = 4.18150 q_A = 3.16183 CLsb = 0.01947 CLb = 0.38716 CLs = 0.05028 + + -- Asymptotic -- +Observed Limit: r < 0.6239 +Expected 2.5%: r < 0.3843 +Expected 16.0%: r < 0.4996 +Expected 50.0%: r < 0.6855 +Expected 84.0%: r < 0.9561 +Expected 97.5%: r < 1.3043 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_300_novo_285_625/datacard_300_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_300_novo_285_625/datacard_300_novo_285_625.txt new file mode 100644 index 0000000..4b56cc7 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_300_novo_285_625/datacard_300_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_300.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_300.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 304.126 21478 304.126 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.06837 - - +JER lnN 1.02029 - - +JEC lnN 1.00496 - - +trigger lnN 1.0829156197 - - +PDF lnN 1.01533148611 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.038 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_310_gaus_exp_250_330/CMS_HH4b_310_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_310_gaus_exp_250_330/CMS_HH4b_310_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..d003afe --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_310_gaus_exp_250_330/CMS_HH4b_310_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-F1aTxL.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 7.57052e-08 -7.57052e-08/+0.179785 (68% CL) +nll S+B -> -0.0488205 nll B -> -0.0488205 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_310_gaus_exp_250_330/CMS_HH4b_310_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_310_gaus_exp_250_330/CMS_HH4b_310_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..c2e32af --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_310_gaus_exp_250_330/CMS_HH4b_310_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.525391 +Sigma for expected limits: 0.268061 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -34.5718 (r = 4.60208e-09) + +Make global fit of asimov data +NLL at global minimum of asimov: -40.46 (r = 0.0135793) +At r = 1.200000: q_mu = 20.49123 q_A = 17.38444 CLsb = 0.00000 CLb = 0.35474 CLs = 0.00001 +At r = 0.600000: q_mu = 6.74007 q_A = 4.97375 CLsb = 0.00432 CLb = 0.34605 CLs = 0.01248 +At r = 0.300000: q_mu = 2.18023 q_A = 1.25575 CLsb = 0.06263 CLb = 0.33999 CLs = 0.18420 +At r = 0.450000: q_mu = 4.20139 q_A = 2.84220 CLsb = 0.01835 CLb = 0.34343 CLs = 0.05344 +At r = 0.525000: q_mu = 5.41135 q_A = 3.84493 CLsb = 0.00913 CLb = 0.34479 CLs = 0.02648 +At r = 0.470691: q_mu = 4.52271 q_A = 3.10565 CLsb = 0.01522 CLb = 0.34382 CLs = 0.04426 +At r = 0.459988: q_mu = 4.35529 q_A = 2.96810 CLsb = 0.01678 CLb = 0.34362 CLs = 0.04882 +At r = 0.455883: q_mu = 4.29176 q_A = 2.91606 CLsb = 0.01741 CLb = 0.34355 CLs = 0.05068 +At r = 0.457887: q_mu = 4.32273 q_A = 2.94141 CLsb = 0.01710 CLb = 0.34358 CLs = 0.04976 + + -- Asymptotic -- +Observed Limit: r < 0.4579 +Expected 2.5%: r < 0.2842 +Expected 16.0%: r < 0.3775 +Expected 50.0%: r < 0.5254 +Expected 84.0%: r < 0.7411 +Expected 97.5%: r < 1.0188 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_310_gaus_exp_250_330/datacard_310_gaus_exp_250_330.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_310_gaus_exp_250_330/datacard_310_gaus_exp_250_330.txt new file mode 100644 index 0000000..e1eb7f3 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_310_gaus_exp_250_330/datacard_310_gaus_exp_250_330.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_310.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_310.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_gaus_exp_250_330.root HbbHbb:f_gaus_exp +shapes data_obs HbbHbb w_background_gaus_exp_250_330.root HbbHbb:data_obs_gaus_exp_250_330 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 351.517600 15384.000000 351.517600 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.068199 - - +JER lnN 1.020507 - - +JEC lnN 1.004865 - - +trigger lnN 1.087877 - - +PDF lnN 1.015458 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.033284 +par_gaus_exp_0 param 266.499 0.453027 +par_gaus_exp_1 param 11.9408 0.531579 +par_gaus_exp_2 param 0.13851 0.00812008 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_310_novo_285_625/CMS_HH4b_310_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_310_novo_285_625/CMS_HH4b_310_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..b778a48 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_310_novo_285_625/CMS_HH4b_310_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-CPOZgG.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 9.42304e-09 -9.42304e-09/+0.093114 (68% CL) +nll S+B -> -0.0161166 nll B -> -0.0161166 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_310_novo_285_625/CMS_HH4b_310_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_310_novo_285_625/CMS_HH4b_310_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..ce1b5a7 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_310_novo_285_625/CMS_HH4b_310_13TeV_asymptoticCLs.out @@ -0,0 +1,40 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.525391 +Sigma for expected limits: 0.268061 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -46.3547 (r = 3.33401e-07) + +Make global fit of asimov data +NLL at global minimum of asimov: -37.2592 (r = 0.0149878) +At r = 1.200000: q_mu = 26.78275 q_A = 17.43018 CLsb = 0.00000 CLb = 0.13134 CLs = 0.00000 +At r = 0.600000: q_mu = 10.30674 q_A = 4.95405 CLsb = 0.00030 CLb = 0.11460 CLs = 0.00265 +At r = 0.300000: q_mu = 4.06280 q_A = 1.24226 CLsb = 0.00866 CLb = 0.10288 CLs = 0.08417 +At r = 0.450000: q_mu = 6.95453 q_A = 2.82354 CLsb = 0.00181 CLb = 0.10950 CLs = 0.01653 +At r = 0.368393: q_mu = 5.31862 q_A = 1.89016 CLsb = 0.00437 CLb = 0.10622 CLs = 0.04118 +At r = 0.339866: q_mu = 4.78159 q_A = 1.60467 CLsb = 0.00586 CLb = 0.10493 CLs = 0.05581 +At r = 0.353825: q_mu = 5.04200 q_A = 1.74162 CLsb = 0.00508 CLb = 0.10557 CLs = 0.04815 +At r = 0.348177: q_mu = 4.93609 q_A = 1.68557 CLsb = 0.00538 CLb = 0.10531 CLs = 0.05112 +At r = 0.350981: q_mu = 4.98857 q_A = 1.71329 CLsb = 0.00523 CLb = 0.10544 CLs = 0.04963 +At r = 0.349854: q_mu = 4.96745 q_A = 1.70212 CLsb = 0.00529 CLb = 0.10539 CLs = 0.05022 + + -- Asymptotic -- +Observed Limit: r < 0.3499 +Expected 2.5%: r < 0.2863 +Expected 16.0%: r < 0.3778 +Expected 50.0%: r < 0.5254 +Expected 84.0%: r < 0.7411 +Expected 97.5%: r < 1.0188 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_310_novo_285_625/datacard_310_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_310_novo_285_625/datacard_310_novo_285_625.txt new file mode 100644 index 0000000..b24ae83 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_310_novo_285_625/datacard_310_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_310.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_310.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 351.517600 21478.000000 351.517600 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.068153 - - +JER lnN 1.018596 - - +JEC lnN 1.005006 - - +trigger lnN 1.085035 - - +PDF lnN 1.015363 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.038337 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_320_gaus_exp_250_330/CMS_HH4b_320_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_320_gaus_exp_250_330/CMS_HH4b_320_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..41bbede --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_320_gaus_exp_250_330/CMS_HH4b_320_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-9MRW3O.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 2.91721e-08 -2.91721e-08/+0.0935048 (68% CL) +nll S+B -> -0.0462268 nll B -> -0.0462268 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_320_gaus_exp_250_330/CMS_HH4b_320_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_320_gaus_exp_250_330/CMS_HH4b_320_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..7e76c59 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_320_gaus_exp_250_330/CMS_HH4b_320_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +WARNING: Best fit of asimov dataset is at r = 0.084260 (0.004213 times rMax), while it should be at zero +Median for expected limits: 0.533203 +Sigma for expected limits: 0.272047 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -61.2312 (r = 1.01319e-07) + +Make global fit of asimov data +NLL at global minimum of asimov: -59.9342 (r = 0.0844177) +At r = 1.200000: q_mu = 30.23854 q_A = 19.14578 CLsb = 0.00000 CLb = 0.10248 CLs = 0.00000 +At r = 0.600000: q_mu = 11.42589 q_A = 4.95020 CLsb = 0.00012 CLb = 0.07280 CLs = 0.00160 +At r = 0.300000: q_mu = 4.32087 q_A = 0.92864 CLsb = 0.00323 CLb = 0.03920 CLs = 0.08234 +At r = 0.450000: q_mu = 7.59008 q_A = 2.58745 CLsb = 0.00078 CLb = 0.05997 CLs = 0.01299 +At r = 0.375000: q_mu = 5.87644 q_A = 1.66248 CLsb = 0.00173 CLb = 0.05112 CLs = 0.03386 +At r = 0.333677: q_mu = 4.99873 q_A = 1.23359 CLsb = 0.00251 CLb = 0.04504 CLs = 0.05575 +At r = 0.349152: q_mu = 5.32165 q_A = 1.38726 CLsb = 0.00220 CLb = 0.04744 CLs = 0.04637 +At r = 0.340987: q_mu = 5.15037 q_A = 1.30512 CLsb = 0.00236 CLb = 0.04619 CLs = 0.05112 +At r = 0.344102: q_mu = 5.21548 q_A = 1.33618 CLsb = 0.00230 CLb = 0.04667 CLs = 0.04926 +At r = 0.342473: q_mu = 5.18140 q_A = 1.31989 CLsb = 0.00233 CLb = 0.04642 CLs = 0.05022 + + -- Asymptotic -- +Observed Limit: r < 0.3425 +Expected 2.5%: r < 0.3228 +Expected 16.0%: r < 0.4034 +Expected 50.0%: r < 0.5332 +Expected 84.0%: r < 0.7266 +Expected 97.5%: r < 0.9748 + +Done in 0.00 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_320_gaus_exp_250_330/datacard_320_gaus_exp_250_330.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_320_gaus_exp_250_330/datacard_320_gaus_exp_250_330.txt new file mode 100644 index 0000000..521f18d --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_320_gaus_exp_250_330/datacard_320_gaus_exp_250_330.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_320.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_320.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_gaus_exp_250_330.root HbbHbb:f_gaus_exp +shapes data_obs HbbHbb w_background_gaus_exp_250_330.root HbbHbb:data_obs_gaus_exp_250_330 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 398.909200 15384.000000 398.909200 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.067891 - - +JER lnN 1.019080 - - +JEC lnN 1.005519 - - +trigger lnN 1.090731 - - +PDF lnN 1.015645 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.021045 +par_gaus_exp_0 param 266.499 0.453027 +par_gaus_exp_1 param 11.9408 0.531579 +par_gaus_exp_2 param 0.13851 0.00812008 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_320_novo_285_625/CMS_HH4b_320_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_320_novo_285_625/CMS_HH4b_320_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..1099488 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_320_novo_285_625/CMS_HH4b_320_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-rgxMDX.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 0 -0/+0.0379882 (68% CL) +nll S+B -> -0.0876085 nll B -> -0.0876085 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_320_novo_285_625/CMS_HH4b_320_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_320_novo_285_625/CMS_HH4b_320_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..9184658 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_320_novo_285_625/CMS_HH4b_320_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.435547 +Sigma for expected limits: 0.222222 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -72.7331 (r = 5.80011e-09) + +Make global fit of asimov data +NLL at global minimum of asimov: -49.0019 (r = 0.00935973) +At r = 1.200000: q_mu = 46.22218 q_A = 23.61288 CLsb = 0.00000 CLb = 0.01000 CLs = 0.00000 +At r = 0.600000: q_mu = 20.56848 q_A = 7.07948 CLsb = 0.00000 CLb = 0.00563 CLs = 0.00002 +At r = 0.300000: q_mu = 9.15678 q_A = 1.85024 CLsb = 0.00003 CLb = 0.00362 CLs = 0.00720 +At r = 0.150000: q_mu = 4.21425 q_A = 0.44514 CLsb = 0.00024 CLb = 0.00237 CLs = 0.10135 +At r = 0.225000: q_mu = 6.60529 q_A = 1.03337 CLsb = 0.00009 CLb = 0.00307 CLs = 0.02802 +At r = 0.182977: q_mu = 5.24442 q_A = 0.67473 CLsb = 0.00016 CLb = 0.00270 CLs = 0.05815 +At r = 0.198336: q_mu = 5.73573 q_A = 0.79734 CLsb = 0.00013 CLb = 0.00284 CLs = 0.04466 +At r = 0.190005: q_mu = 5.46833 q_A = 0.72960 CLsb = 0.00014 CLb = 0.00277 CLs = 0.05155 +At r = 0.193092: q_mu = 5.56716 q_A = 0.75436 CLsb = 0.00014 CLb = 0.00280 CLs = 0.04889 +At r = 0.191429: q_mu = 5.51388 q_A = 0.74097 CLsb = 0.00014 CLb = 0.00278 CLs = 0.05031 +At r = 0.192047: q_mu = 5.53366 q_A = 0.74593 CLsb = 0.00014 CLb = 0.00279 CLs = 0.04978 + + -- Asymptotic -- +Observed Limit: r < 0.1920 +Expected 2.5%: r < 0.2356 +Expected 16.0%: r < 0.3114 +Expected 50.0%: r < 0.4355 +Expected 84.0%: r < 0.6144 +Expected 97.5%: r < 0.8446 + +Done in 0.00 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_320_novo_285_625/datacard_320_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_320_novo_285_625/datacard_320_novo_285_625.txt new file mode 100644 index 0000000..79f3b30 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_320_novo_285_625/datacard_320_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_320.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_320.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 398.909200 21478.000000 398.909200 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.067807 - - +JER lnN 1.015812 - - +JEC lnN 1.006176 - - +trigger lnN 1.087022 - - +PDF lnN 1.015431 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.032690 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_330_novo_285_625/CMS_HH4b_330_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_330_novo_285_625/CMS_HH4b_330_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..d464376 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_330_novo_285_625/CMS_HH4b_330_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-iUCOS8.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 1.66533e-16 -1.66533e-16/+0.0242148 (68% CL) +nll S+B -> -0.114596 nll B -> -0.114596 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_330_novo_285_625/CMS_HH4b_330_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_330_novo_285_625/CMS_HH4b_330_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..1e43656 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_330_novo_285_625/CMS_HH4b_330_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.366211 +Sigma for expected limits: 0.186846 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -99.8417 (r = 9.96425e-12) + +Make global fit of asimov data +NLL at global minimum of asimov: -63.0911 (r = 0.00500345) +At r = 1.200000: q_mu = 63.42786 q_A = 30.60526 CLsb = 0.00000 CLb = 0.00151 CLs = 0.00000 +At r = 0.600000: q_mu = 29.92973 q_A = 9.64956 CLsb = 0.00000 CLb = 0.00055 CLs = 0.00000 +At r = 0.300000: q_mu = 13.88150 q_A = 2.61458 CLsb = 0.00000 CLb = 0.00025 CLs = 0.00068 +At r = 0.150000: q_mu = 6.54077 q_A = 0.65167 CLsb = 0.00000 CLb = 0.00013 CLs = 0.03171 +At r = 0.075000: q_mu = 3.15109 q_A = 0.15284 CLsb = 0.00001 CLb = 0.00006 CLs = 0.18952 +At r = 0.112500: q_mu = 4.81873 q_A = 0.35994 CLsb = 0.00001 CLb = 0.00010 CLs = 0.07852 +At r = 0.134935: q_mu = 5.84288 q_A = 0.52435 CLsb = 0.00001 CLb = 0.00012 CLs = 0.04578 +At r = 0.127514: q_mu = 5.50198 q_A = 0.46660 CLsb = 0.00001 CLb = 0.00011 CLs = 0.05478 +At r = 0.130533: q_mu = 5.64040 q_A = 0.48970 CLsb = 0.00001 CLb = 0.00012 CLs = 0.05093 +At r = 0.132021: q_mu = 5.70873 q_A = 0.50128 CLsb = 0.00001 CLb = 0.00012 CLs = 0.04913 +At r = 0.131141: q_mu = 5.66830 q_A = 0.49442 CLsb = 0.00001 CLb = 0.00012 CLs = 0.05018 +At r = 0.131439: q_mu = 5.68198 q_A = 0.49674 CLsb = 0.00001 CLb = 0.00012 CLs = 0.04982 + + -- Asymptotic -- +Observed Limit: r < 0.1314 +Expected 2.5%: r < 0.1967 +Expected 16.0%: r < 0.2623 +Expected 50.0%: r < 0.3662 +Expected 84.0%: r < 0.5195 +Expected 97.5%: r < 0.7121 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_330_novo_285_625/datacard_330_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_330_novo_285_625/datacard_330_novo_285_625.txt new file mode 100644 index 0000000..12068b7 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_330_novo_285_625/datacard_330_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_330.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_330.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 446.300800 21478.000000 446.300800 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.067382 - - +JER lnN 1.012751 - - +JEC lnN 1.007837 - - +trigger lnN 1.088849 - - +PDF lnN 1.015592 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.023575 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_340_novo_285_625/CMS_HH4b_340_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_340_novo_285_625/CMS_HH4b_340_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..30282dd --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_340_novo_285_625/CMS_HH4b_340_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-uaNN5o.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 3.98336e-11 -3.98336e-11/+0.0267204 (68% CL) +nll S+B -> -0.029992 nll B -> -0.0299911 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_340_novo_285_625/CMS_HH4b_340_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_340_novo_285_625/CMS_HH4b_340_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..951e251 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_340_novo_285_625/CMS_HH4b_340_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.313477 +Sigma for expected limits: 0.15994 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -112.292 (r = 8.31446e-12) + +Make global fit of asimov data +NLL at global minimum of asimov: -79.5082 (r = 0.00295354) +At r = 1.200000: q_mu = 66.10513 q_A = 38.15151 CLsb = 0.00000 CLb = 0.01182 CLs = 0.00000 +At r = 0.600000: q_mu = 30.30873 q_A = 12.60857 CLsb = 0.00000 CLb = 0.00634 CLs = 0.00000 +At r = 0.300000: q_mu = 13.52539 q_A = 3.53264 CLsb = 0.00000 CLb = 0.00393 CLs = 0.00072 +At r = 0.150000: q_mu = 6.16046 q_A = 0.90434 CLsb = 0.00010 CLb = 0.00286 CLs = 0.03561 +At r = 0.075000: q_mu = 2.90119 q_A = 0.22039 CLsb = 0.00044 CLb = 0.00215 CLs = 0.20583 +At r = 0.112500: q_mu = 4.48968 q_A = 0.50598 CLsb = 0.00022 CLb = 0.00255 CLs = 0.08724 +At r = 0.131135: q_mu = 5.31028 q_A = 0.69023 CLsb = 0.00015 CLb = 0.00271 CLs = 0.05613 +At r = 0.138745: q_mu = 5.65099 q_A = 0.77343 CLsb = 0.00013 CLb = 0.00278 CLs = 0.04676 +At r = 0.134992: q_mu = 5.48253 q_A = 0.73181 CLsb = 0.00014 CLb = 0.00275 CLs = 0.05118 +At r = 0.136520: q_mu = 5.55098 q_A = 0.74859 CLsb = 0.00014 CLb = 0.00276 CLs = 0.04934 +At r = 0.135770: q_mu = 5.51737 q_A = 0.74016 CLsb = 0.00014 CLb = 0.00275 CLs = 0.05024 +At r = 0.136077: q_mu = 5.53113 q_A = 0.74353 CLsb = 0.00014 CLb = 0.00275 CLs = 0.04987 + + -- Asymptotic -- +Observed Limit: r < 0.1361 +Expected 2.5%: r < 0.1678 +Expected 16.0%: r < 0.2241 +Expected 50.0%: r < 0.3135 +Expected 84.0%: r < 0.4447 +Expected 97.5%: r < 0.6135 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_340_novo_285_625/datacard_340_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_340_novo_285_625/datacard_340_novo_285_625.txt new file mode 100644 index 0000000..ea5f571 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_340_novo_285_625/datacard_340_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_340.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_340.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 493.692400 21478.000000 493.692400 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.066927 - - +JER lnN 1.010226 - - +JEC lnN 1.009356 - - +trigger lnN 1.090488 - - +PDF lnN 1.015903 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.013507 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_350_gaus_exp_250_330/datacard_350_gaus_exp_250_330.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_350_gaus_exp_250_330/datacard_350_gaus_exp_250_330.txt new file mode 100644 index 0000000..fc70987 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_350_gaus_exp_250_330/datacard_350_gaus_exp_250_330.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_350.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_350.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_gaus_exp_250_330.root HbbHbb:f_gaus_exp +shapes data_obs HbbHbb w_background_gaus_exp_250_330.root HbbHbb:data_obs_gaus_exp_250_330 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 541.084 15384 541.084 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.06649 - - +JER lnN 1.00905 - - +JEC lnN 1.0101 - - +trigger lnN 1.0919145030 - - +PDF lnN 1.0164211668 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 +par_gaus_exp_0 param 266.499 0.453027 +par_gaus_exp_1 param 11.9408 0.531579 +par_gaus_exp_2 param 0.13851 0.00812008 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_350_novo_285_625/CMS_HH4b_350_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_350_novo_285_625/CMS_HH4b_350_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..9b92da9 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_350_novo_285_625/CMS_HH4b_350_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-Wwcaqn.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 5.48136e-10 -5.48136e-10/+0.0433973 (68% CL) +nll S+B -> -0.00146606 nll B -> -0.00146575 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_350_novo_285_625/CMS_HH4b_350_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_350_novo_285_625/CMS_HH4b_350_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..822e585 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_350_novo_285_625/CMS_HH4b_350_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.276367 +Sigma for expected limits: 0.141006 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -116.33 (r = 1.27829e-10) + +Make global fit of asimov data +NLL at global minimum of asimov: -96.9561 (r = 0.00152179) +At r = 1.200000: q_mu = 60.86842 q_A = 45.17119 CLsb = 0.00000 CLb = 0.12145 CLs = 0.00000 +At r = 0.600000: q_mu = 25.60759 q_A = 15.52494 CLsb = 0.00000 CLb = 0.10037 CLs = 0.00000 +At r = 0.300000: q_mu = 10.21176 q_A = 4.47542 CLsb = 0.00026 CLb = 0.08759 CLs = 0.00296 +At r = 0.150000: q_mu = 4.18630 q_A = 1.16808 CLsb = 0.00662 CLb = 0.08131 CLs = 0.08145 +At r = 0.225000: q_mu = 7.00579 q_A = 2.58332 CLsb = 0.00143 CLb = 0.08445 CLs = 0.01690 +At r = 0.183616: q_mu = 5.39751 q_A = 1.73930 CLsb = 0.00341 CLb = 0.08273 CLs = 0.04119 +At r = 0.169246: q_mu = 4.86903 q_A = 1.48239 CLsb = 0.00455 CLb = 0.08215 CLs = 0.05538 +At r = 0.176089: q_mu = 5.11865 q_A = 1.60230 CLsb = 0.00397 CLb = 0.08242 CLs = 0.04814 +At r = 0.173241: q_mu = 5.01430 q_A = 1.55184 CLsb = 0.00420 CLb = 0.08231 CLs = 0.05104 +At r = 0.174615: q_mu = 5.06455 q_A = 1.57608 CLsb = 0.00409 CLb = 0.08236 CLs = 0.04962 +At r = 0.174047: q_mu = 5.04373 q_A = 1.56603 CLsb = 0.00413 CLb = 0.08234 CLs = 0.05021 + + -- Asymptotic -- +Observed Limit: r < 0.1740 +Expected 2.5%: r < 0.1474 +Expected 16.0%: r < 0.1972 +Expected 50.0%: r < 0.2764 +Expected 84.0%: r < 0.3942 +Expected 97.5%: r < 0.5424 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_350_novo_285_625/datacard_350_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_350_novo_285_625/datacard_350_novo_285_625.txt new file mode 100644 index 0000000..19696b0 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_350_novo_285_625/datacard_350_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_350.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_350.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 541.084 21478 541.084 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.06649 - - +JER lnN 1.00905 - - +JEC lnN 1.0101 - - +trigger lnN 1.0919145030 - - +PDF lnN 1.0164211668 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.005 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_360_novo_285_625/CMS_HH4b_360_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_360_novo_285_625/CMS_HH4b_360_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..4d61177 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_360_novo_285_625/CMS_HH4b_360_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-5WAJjc.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 3.51594e-11 -3.51594e-11/+0.0559538 (68% CL) +nll S+B -> -0.000144548 nll B -> -0.000143836 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_360_novo_285_625/CMS_HH4b_360_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_360_novo_285_625/CMS_HH4b_360_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..6978bdf --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_360_novo_285_625/CMS_HH4b_360_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.237305 +Sigma for expected limits: 0.121076 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -130.711 (r = 1.14513e-09) + +Make global fit of asimov data +NLL at global minimum of asimov: -125.766 (r = 0.00042722) +At r = 1.200000: q_mu = 65.00100 q_A = 55.20787 CLsb = 0.00000 CLb = 0.25495 CLs = 0.00000 +At r = 0.600000: q_mu = 26.38681 q_A = 19.92713 CLsb = 0.00000 CLb = 0.23468 CLs = 0.00000 +At r = 0.300000: q_mu = 9.72066 q_A = 5.96493 CLsb = 0.00066 CLb = 0.22098 CLs = 0.00299 +At r = 0.150000: q_mu = 3.58928 q_A = 1.59351 CLsb = 0.02004 CLb = 0.21462 CLs = 0.09339 +At r = 0.225000: q_mu = 6.39187 q_A = 3.48066 CLsb = 0.00407 CLb = 0.21763 CLs = 0.01872 +At r = 0.188325: q_mu = 4.94872 q_A = 2.47666 CLsb = 0.00916 CLb = 0.21611 CLs = 0.04238 +At r = 0.174243: q_mu = 4.43080 q_A = 2.13174 CLsb = 0.01231 CLb = 0.21555 CLs = 0.05710 +At r = 0.182077: q_mu = 4.71646 q_A = 2.32087 CLsb = 0.01045 CLb = 0.21586 CLs = 0.04842 +At r = 0.179293: q_mu = 4.61415 q_A = 2.25278 CLsb = 0.01108 CLb = 0.21575 CLs = 0.05136 +At r = 0.180866: q_mu = 4.67186 q_A = 2.29114 CLsb = 0.01072 CLb = 0.21581 CLs = 0.04968 +At r = 0.180311: q_mu = 4.65146 q_A = 2.27756 CLsb = 0.01085 CLb = 0.21579 CLs = 0.05027 + + -- Asymptotic -- +Observed Limit: r < 0.1803 +Expected 2.5%: r < 0.1256 +Expected 16.0%: r < 0.1688 +Expected 50.0%: r < 0.2373 +Expected 84.0%: r < 0.3385 +Expected 97.5%: r < 0.4657 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_360_novo_285_625/datacard_360_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_360_novo_285_625/datacard_360_novo_285_625.txt new file mode 100644 index 0000000..f352865 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_360_novo_285_625/datacard_360_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_360.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_360.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 590.997400 21478.000000 590.997400 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.066112 - - +JER lnN 1.009776 - - +JEC lnN 1.009627 - - +trigger lnN 1.093096 - - +PDF lnN 1.017170 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.000020 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_370_novo_285_625/CMS_HH4b_370_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_370_novo_285_625/CMS_HH4b_370_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..fb1a78b --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_370_novo_285_625/CMS_HH4b_370_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-AlRpRg.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.020 + + + --- MaxLikelihoodFit --- +Best fit r: 9.62563e-14 -9.62563e-14/+0.0432139 (68% CL) +nll S+B -> -0.000221641 nll B -> -0.000221641 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_370_novo_285_625/CMS_HH4b_370_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_370_novo_285_625/CMS_HH4b_370_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..41c19a3 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_370_novo_285_625/CMS_HH4b_370_13TeV_asymptoticCLs.out @@ -0,0 +1,40 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.208008 +Sigma for expected limits: 0.106128 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -167.078 (r = 5.85482e-10) + +Make global fit of asimov data +NLL at global minimum of asimov: -157.802 (r = 0.000225297) +At r = 1.200000: q_mu = 77.39288 q_A = 64.95501 CLsb = 0.00000 CLb = 0.22017 CLs = 0.00000 +At r = 0.600000: q_mu = 32.87397 q_A = 24.44918 CLsb = 0.00000 CLb = 0.19713 CLs = 0.00000 +At r = 0.300000: q_mu = 12.60094 q_A = 7.57518 CLsb = 0.00012 CLb = 0.18062 CLs = 0.00068 +At r = 0.150000: q_mu = 4.77741 q_A = 2.06551 CLsb = 0.00864 CLb = 0.17272 CLs = 0.05003 +At r = 0.225000: q_mu = 8.39045 q_A = 4.46437 CLsb = 0.00118 CLb = 0.17643 CLs = 0.00666 +At r = 0.187500: q_mu = 6.49920 q_A = 3.16611 CLsb = 0.00330 CLb = 0.17448 CLs = 0.01894 +At r = 0.157517: q_mu = 5.10797 q_A = 2.26935 CLsb = 0.00717 CLb = 0.17305 CLs = 0.04144 +At r = 0.151521: q_mu = 4.84378 q_A = 2.10615 CLsb = 0.00832 CLb = 0.17279 CLs = 0.04817 +At r = 0.150322: q_mu = 4.79153 q_A = 2.07419 CLsb = 0.00857 CLb = 0.17274 CLs = 0.04963 +At r = 0.150082: q_mu = 4.78101 q_A = 2.06772 CLsb = 0.00862 CLb = 0.17272 CLs = 0.04992 + + -- Asymptotic -- +Observed Limit: r < 0.1501 +Expected 2.5%: r < 0.1101 +Expected 16.0%: r < 0.1472 +Expected 50.0%: r < 0.2080 +Expected 84.0%: r < 0.2967 +Expected 97.5%: r < 0.4082 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_370_novo_285_625/datacard_370_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_370_novo_285_625/datacard_370_novo_285_625.txt new file mode 100644 index 0000000..507c710 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_370_novo_285_625/datacard_370_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_370.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_370.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 640.910800 21478.000000 640.910800 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.065799 - - +JER lnN 1.011912 - - +JEC lnN 1.008254 - - +trigger lnN 1.093984 - - +PDF lnN 1.018041 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.001991 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_380_novo_285_625/CMS_HH4b_380_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_380_novo_285_625/CMS_HH4b_380_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..eb2c04e --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_380_novo_285_625/CMS_HH4b_380_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-wzTvE4.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 3.55001e-11 -3.55001e-11/+0.0355679 (68% CL) +nll S+B -> -0.000246624 nll B -> -0.000246628 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_380_novo_285_625/CMS_HH4b_380_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_380_novo_285_625/CMS_HH4b_380_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..b67d9e9 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_380_novo_285_625/CMS_HH4b_380_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.182617 +Sigma for expected limits: 0.0931738 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -208.304 (r = 2.47185e-08) + +Make global fit of asimov data +NLL at global minimum of asimov: -196.96 (r = 1.48835e-06) +At r = 1.200000: q_mu = 89.48698 q_A = 75.58484 CLsb = 0.00000 CLb = 0.21199 CLs = 0.00000 +At r = 0.600000: q_mu = 39.35061 q_A = 29.61836 CLsb = 0.00000 CLb = 0.18562 CLs = 0.00000 +At r = 0.300000: q_mu = 15.51017 q_A = 9.50655 CLsb = 0.00002 CLb = 0.16513 CLs = 0.00015 +At r = 0.150000: q_mu = 5.96094 q_A = 2.64716 CLsb = 0.00408 CLb = 0.15425 CLs = 0.02645 +At r = 0.075000: q_mu = 2.41316 q_A = 0.69219 CLsb = 0.03100 CLb = 0.15051 CLs = 0.20600 +At r = 0.112500: q_mu = 4.05985 q_A = 1.52323 CLsb = 0.01185 CLb = 0.15206 CLs = 0.07796 +At r = 0.132327: q_mu = 5.03524 q_A = 2.08268 CLsb = 0.00683 CLb = 0.15316 CLs = 0.04459 +At r = 0.125110: q_mu = 4.67242 q_A = 1.86999 CLsb = 0.00838 CLb = 0.15276 CLs = 0.05483 +At r = 0.129127: q_mu = 4.87324 q_A = 1.98705 CLsb = 0.00748 CLb = 0.15298 CLs = 0.04889 +At r = 0.127695: q_mu = 4.80132 q_A = 1.94493 CLsb = 0.00779 CLb = 0.15290 CLs = 0.05094 +At r = 0.128501: q_mu = 4.84174 q_A = 1.96858 CLsb = 0.00761 CLb = 0.15294 CLs = 0.04978 +At r = 0.128215: q_mu = 4.82738 q_A = 1.96017 CLsb = 0.00767 CLb = 0.15293 CLs = 0.05019 + + -- Asymptotic -- +Observed Limit: r < 0.1282 +Expected 2.5%: r < 0.0967 +Expected 16.0%: r < 0.1296 +Expected 50.0%: r < 0.1826 +Expected 84.0%: r < 0.2605 +Expected 97.5%: r < 0.3607 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_380_novo_285_625/datacard_380_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_380_novo_285_625/datacard_380_novo_285_625.txt new file mode 100644 index 0000000..5874cbe --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_380_novo_285_625/datacard_380_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_380.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_380.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 690.824200 21478.000000 690.824200 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.065550 - - +JER lnN 1.014705 - - +JEC lnN 1.006489 - - +trigger lnN 1.094526 - - +PDF lnN 1.018894 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.001942 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_390_novo_285_625/CMS_HH4b_390_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_390_novo_285_625/CMS_HH4b_390_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..4fa7fb8 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_390_novo_285_625/CMS_HH4b_390_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-AAMSG5.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 1.25641e-10 -1.25641e-10/+0.0540842 (68% CL) +nll S+B -> -0.000162606 nll B -> -0.00016254 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_390_novo_285_625/CMS_HH4b_390_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_390_novo_285_625/CMS_HH4b_390_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..0a6dfea --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_390_novo_285_625/CMS_HH4b_390_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.160645 +Sigma for expected limits: 0.081963 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -245.915 (r = 7.34585e-09) + +Make global fit of asimov data +NLL at global minimum of asimov: -244.15 (r = 9.65223e-07) +At r = 1.200000: q_mu = 93.00380 q_A = 87.18885 CLsb = 0.00000 CLb = 0.37776 CLs = 0.00000 +At r = 0.600000: q_mu = 39.56333 q_A = 35.49591 CLsb = 0.00000 CLb = 0.36642 CLs = 0.00000 +At r = 0.300000: q_mu = 14.32042 q_A = 11.80751 CLsb = 0.00007 CLb = 0.35731 CLs = 0.00020 +At r = 0.150000: q_mu = 4.74521 q_A = 3.36098 CLsb = 0.01352 CLb = 0.35289 CLs = 0.03832 +At r = 0.075000: q_mu = 1.60342 q_A = 0.88814 CLsb = 0.09310 CLb = 0.35216 CLs = 0.26437 +At r = 0.112500: q_mu = 3.00170 q_A = 1.94420 CLsb = 0.03807 CLb = 0.35227 CLs = 0.10807 +At r = 0.134804: q_mu = 3.99986 q_A = 2.74601 CLsb = 0.02090 CLb = 0.35260 CLs = 0.05929 +At r = 0.142589: q_mu = 4.37559 q_A = 3.05461 CLsb = 0.01677 CLb = 0.35275 CLs = 0.04753 +At r = 0.139604: q_mu = 4.22986 q_A = 2.93453 CLsb = 0.01826 CLb = 0.35269 CLs = 0.05177 +At r = 0.141173: q_mu = 4.30619 q_A = 2.99736 CLsb = 0.01746 CLb = 0.35272 CLs = 0.04950 +At r = 0.140579: q_mu = 4.27720 q_A = 2.97348 CLsb = 0.01776 CLb = 0.35271 CLs = 0.05035 +At r = 0.140893: q_mu = 4.29251 q_A = 2.98608 CLsb = 0.01760 CLb = 0.35271 CLs = 0.04990 + + -- Asymptotic -- +Observed Limit: r < 0.1409 +Expected 2.5%: r < 0.0850 +Expected 16.0%: r < 0.1143 +Expected 50.0%: r < 0.1606 +Expected 84.0%: r < 0.2304 +Expected 97.5%: r < 0.3181 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_390_novo_285_625/datacard_390_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_390_novo_285_625/datacard_390_novo_285_625.txt new file mode 100644 index 0000000..971c686 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_390_novo_285_625/datacard_390_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_390.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_390.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 740.737600 21478.000000 740.737600 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.065361 - - +JER lnN 1.017402 - - +JEC lnN 1.004839 - - +trigger lnN 1.094669 - - +PDF lnN 1.019586 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.000902 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_400_novo_285_625/CMS_HH4b_400_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_400_novo_285_625/CMS_HH4b_400_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..3664432 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_400_novo_285_625/CMS_HH4b_400_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-3nirYf.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 5.90054e-10 -5.90054e-10/+0.053751 (68% CL) +nll S+B -> -0.000144876 nll B -> -0.000144117 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_400_novo_285_625/CMS_HH4b_400_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_400_novo_285_625/CMS_HH4b_400_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..dd3629e --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_400_novo_285_625/CMS_HH4b_400_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.143066 +Sigma for expected limits: 0.0729944 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -304.594 (r = 1.34117e-05) + +Make global fit of asimov data +NLL at global minimum of asimov: -297.818 (r = 1.12204e-06) +At r = 1.200013: q_mu = 103.36235 q_A = 99.32219 CLsb = 0.00000 CLb = 0.41969 CLs = 0.00000 +At r = 0.600013: q_mu = 44.75210 q_A = 41.82977 CLsb = 0.00000 CLb = 0.41063 CLs = 0.00000 +At r = 0.300013: q_mu = 16.26399 q_A = 14.39062 CLsb = 0.00003 CLb = 0.40249 CLs = 0.00007 +At r = 0.150013: q_mu = 5.24944 q_A = 4.18765 CLsb = 0.01056 CLb = 0.39765 CLs = 0.02656 +At r = 0.075013: q_mu = 1.67481 q_A = 1.11783 CLsb = 0.09330 CLb = 0.39612 CLs = 0.23555 +At r = 0.112513: q_mu = 3.25257 q_A = 2.43516 CLsb = 0.03420 CLb = 0.39670 CLs = 0.08620 +At r = 0.133892: q_mu = 4.34355 q_A = 3.38475 CLsb = 0.01785 CLb = 0.39721 CLs = 0.04494 +At r = 0.126813: q_mu = 3.96813 q_A = 3.05555 CLsb = 0.02227 CLb = 0.39703 CLs = 0.05608 +At r = 0.129747: q_mu = 4.12197 q_A = 3.19017 CLsb = 0.02033 CLb = 0.39710 CLs = 0.05120 +At r = 0.131178: q_mu = 4.19793 q_A = 3.25678 CLsb = 0.01944 CLb = 0.39714 CLs = 0.04896 +At r = 0.130353: q_mu = 4.15403 q_A = 3.21827 CLsb = 0.01995 CLb = 0.39712 CLs = 0.05024 +At r = 0.130640: q_mu = 4.16926 q_A = 3.23162 CLsb = 0.01977 CLb = 0.39713 CLs = 0.04979 + + -- Asymptotic -- +Observed Limit: r < 0.1306 +Expected 2.5%: r < 0.0754 +Expected 16.0%: r < 0.1016 +Expected 50.0%: r < 0.1431 +Expected 84.0%: r < 0.2052 +Expected 97.5%: r < 0.2833 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_400_novo_285_625/datacard_400_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_400_novo_285_625/datacard_400_novo_285_625.txt new file mode 100644 index 0000000..23f33ed --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_400_novo_285_625/datacard_400_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_400.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_400.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 790.651 21478 790.651 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.06523 - - +JER lnN 1.01925 - - +JEC lnN 1.00381 - - +trigger lnN 1.0943615895 - - +PDF lnN 1.0199774927 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.0001 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_410_novo_285_625/CMS_HH4b_410_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_410_novo_285_625/CMS_HH4b_410_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..78e9e78 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_410_novo_285_625/CMS_HH4b_410_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-SSbYoV.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 3.34096e-11 -3.34096e-11/+0.0465809 (68% CL) +nll S+B -> -0.000145757 nll B -> -0.000145193 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_410_novo_285_625/CMS_HH4b_410_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_410_novo_285_625/CMS_HH4b_410_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..544d03e --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_410_novo_285_625/CMS_HH4b_410_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.131348 +Sigma for expected limits: 0.0670153 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -356.321 (r = 4.59474e-07) + +Make global fit of asimov data +NLL at global minimum of asimov: -348.03 (r = 2.25453e-08) +At r = 1.200000: q_mu = 114.87828 q_A = 109.88733 CLsb = 0.00000 CLb = 0.40592 CLs = 0.00000 +At r = 0.600000: q_mu = 51.06473 q_A = 47.39782 CLsb = 0.00000 CLb = 0.39500 CLs = 0.00000 +At r = 0.300000: q_mu = 19.10913 q_A = 16.71465 CLsb = 0.00001 CLb = 0.38482 CLs = 0.00002 +At r = 0.150000: q_mu = 6.32566 q_A = 4.94789 CLsb = 0.00564 CLb = 0.37840 CLs = 0.01490 +At r = 0.075000: q_mu = 2.05931 q_A = 1.33104 CLsb = 0.07087 CLb = 0.37614 CLs = 0.18842 +At r = 0.112500: q_mu = 3.95403 q_A = 2.88911 CLsb = 0.02206 CLb = 0.37704 CLs = 0.05850 +At r = 0.131250: q_mu = 5.08523 q_A = 3.86081 CLsb = 0.01141 CLb = 0.37768 CLs = 0.03021 +At r = 0.119814: q_mu = 4.38163 q_A = 3.25377 CLsb = 0.01715 CLb = 0.37728 CLs = 0.04547 +At r = 0.116145: q_mu = 4.16493 q_A = 3.06854 CLsb = 0.01948 CLb = 0.37716 CLs = 0.05164 +At r = 0.117623: q_mu = 4.25168 q_A = 3.14258 CLsb = 0.01851 CLb = 0.37721 CLs = 0.04907 +At r = 0.116893: q_mu = 4.20872 q_A = 3.10589 CLsb = 0.01898 CLb = 0.37718 CLs = 0.05033 +At r = 0.117189: q_mu = 4.22613 q_A = 3.12075 CLsb = 0.01879 CLb = 0.37719 CLs = 0.04981 + + -- Asymptotic -- +Observed Limit: r < 0.1172 +Expected 2.5%: r < 0.0690 +Expected 16.0%: r < 0.0929 +Expected 50.0%: r < 0.1313 +Expected 84.0%: r < 0.1874 +Expected 97.5%: r < 0.2594 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_410_novo_285_625/datacard_410_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_410_novo_285_625/datacard_410_novo_285_625.txt new file mode 100644 index 0000000..8617742 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_410_novo_285_625/datacard_410_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_410.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_410.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 849.172800 21478.000000 849.172800 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.065153 - - +JER lnN 1.019703 - - +JEC lnN 1.003763 - - +trigger lnN 1.093565 - - +PDF lnN 1.019974 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.000264 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_420_novo_285_625/CMS_HH4b_420_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_420_novo_285_625/CMS_HH4b_420_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..609872b --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_420_novo_285_625/CMS_HH4b_420_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-09pyP9.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.020 + + + --- MaxLikelihoodFit --- +Best fit r: 6.49142e-11 -6.49142e-11/+0.0412727 (68% CL) +nll S+B -> -0.000144142 nll B -> -0.000144149 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_420_novo_285_625/CMS_HH4b_420_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_420_novo_285_625/CMS_HH4b_420_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..709a44c --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_420_novo_285_625/CMS_HH4b_420_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.120605 +Sigma for expected limits: 0.0615345 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -403.385 (r = 1.57706e-09) + +Make global fit of asimov data +NLL at global minimum of asimov: -402.028 (r = 2.59699e-06) +At r = 1.200000: q_mu = 126.66018 q_A = 120.96622 CLsb = 0.00000 CLb = 0.39787 CLs = 0.00000 +At r = 0.600000: q_mu = 57.50089 q_A = 53.25451 CLsb = 0.00000 CLb = 0.38555 CLs = 0.00000 +At r = 0.300000: q_mu = 22.02092 q_A = 19.19675 CLsb = 0.00000 CLb = 0.37362 CLs = 0.00000 +At r = 0.150000: q_mu = 7.42568 q_A = 5.77428 CLsb = 0.00301 CLb = 0.36557 CLs = 0.00824 +At r = 0.075000: q_mu = 2.44582 q_A = 1.56494 CLsb = 0.05446 CLb = 0.36239 CLs = 0.15028 +At r = 0.112500: q_mu = 4.66734 q_A = 3.38502 CLsb = 0.01432 CLb = 0.36374 CLs = 0.03938 +At r = 0.093750: q_mu = 3.48313 q_A = 2.39761 CLsb = 0.02879 CLb = 0.36297 CLs = 0.07931 +At r = 0.103633: q_mu = 4.08981 q_A = 2.89955 CLsb = 0.02007 CLb = 0.36336 CLs = 0.05523 +At r = 0.107493: q_mu = 4.33756 q_A = 3.10699 CLsb = 0.01735 CLb = 0.36352 CLs = 0.04774 +At r = 0.105742: q_mu = 4.22441 q_A = 3.01208 CLsb = 0.01854 CLb = 0.36344 CLs = 0.05102 +At r = 0.106519: q_mu = 4.27444 q_A = 3.05401 CLsb = 0.01801 CLb = 0.36348 CLs = 0.04954 +At r = 0.106169: q_mu = 4.25191 q_A = 3.03512 CLsb = 0.01825 CLb = 0.36346 CLs = 0.05020 + + -- Asymptotic -- +Observed Limit: r < 0.1062 +Expected 2.5%: r < 0.0636 +Expected 16.0%: r < 0.0854 +Expected 50.0%: r < 0.1206 +Expected 84.0%: r < 0.1720 +Expected 97.5%: r < 0.2382 + +Done in 0.00 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_420_novo_285_625/datacard_420_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_420_novo_285_625/datacard_420_novo_285_625.txt new file mode 100644 index 0000000..eb63428 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_420_novo_285_625/datacard_420_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_420.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_420.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 907.694600 21478.000000 907.694600 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.065115 - - +JER lnN 1.019040 - - +JEC lnN 1.004469 - - +trigger lnN 1.092303 - - +PDF lnN 1.019675 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.000301 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_430_novo_285_625/CMS_HH4b_430_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_430_novo_285_625/CMS_HH4b_430_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..eda7360 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_430_novo_285_625/CMS_HH4b_430_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-tsx6rO.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 7.54625e-09 -7.54625e-09/+0.0408437 (68% CL) +nll S+B -> -0.00043624 nll B -> -0.00043554 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_430_novo_285_625/CMS_HH4b_430_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_430_novo_285_625/CMS_HH4b_430_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..66842d1 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_430_novo_285_625/CMS_HH4b_430_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.11084 +Sigma for expected limits: 0.056552 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -457.954 (r = 4.5373e-10) + +Make global fit of asimov data +NLL at global minimum of asimov: -459.693 (r = 4.62772e-06) +At r = 1.200000: q_mu = 136.97118 q_A = 132.58188 CLsb = 0.00000 CLb = 0.42442 CLs = 0.00000 +At r = 0.600000: q_mu = 62.77840 q_A = 59.40345 CLsb = 0.00000 CLb = 0.41335 CLs = 0.00000 +At r = 0.300000: q_mu = 24.15535 q_A = 21.83427 CLsb = 0.00000 CLb = 0.40193 CLs = 0.00000 +At r = 0.150000: q_mu = 8.06241 q_A = 6.66575 CLsb = 0.00217 CLb = 0.39340 CLs = 0.00552 +At r = 0.075000: q_mu = 2.57752 q_A = 1.81931 CLsb = 0.05156 CLb = 0.38933 CLs = 0.13244 +At r = 0.112500: q_mu = 5.01631 q_A = 3.92234 CLsb = 0.01201 CLb = 0.39120 CLs = 0.03071 +At r = 0.094995: q_mu = 3.79472 q_A = 2.85339 CLsb = 0.02454 CLb = 0.39026 CLs = 0.06289 +At r = 0.102977: q_mu = 4.33482 q_A = 3.32300 CLsb = 0.01785 CLb = 0.39069 CLs = 0.04568 +At r = 0.099575: q_mu = 4.10092 q_A = 3.11896 CLsb = 0.02047 CLb = 0.39050 CLs = 0.05243 +At r = 0.101192: q_mu = 4.21138 q_A = 3.21519 CLsb = 0.01918 CLb = 0.39059 CLs = 0.04912 +At r = 0.100515: q_mu = 4.16502 q_A = 3.17477 CLsb = 0.01972 CLb = 0.39055 CLs = 0.05048 +At r = 0.100840: q_mu = 4.18721 q_A = 3.19411 CLsb = 0.01946 CLb = 0.39057 CLs = 0.04982 + + -- Asymptotic -- +Observed Limit: r < 0.1008 +Expected 2.5%: r < 0.0585 +Expected 16.0%: r < 0.0785 +Expected 50.0%: r < 0.1108 +Expected 84.0%: r < 0.1590 +Expected 97.5%: r < 0.2195 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_430_novo_285_625/datacard_430_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_430_novo_285_625/datacard_430_novo_285_625.txt new file mode 100644 index 0000000..97d3528 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_430_novo_285_625/datacard_430_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_430.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_430.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 966.216400 21478.000000 966.216400 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.065100 - - +JER lnN 1.017746 - - +JEC lnN 1.005548 - - +trigger lnN 1.090614 - - +PDF lnN 1.019227 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.001258 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_440_novo_285_625/CMS_HH4b_440_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_440_novo_285_625/CMS_HH4b_440_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..41eec6c --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_440_novo_285_625/CMS_HH4b_440_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-2Zie7m.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 0.0141763 -0.0141763/+0.0520379 (68% CL) +nll S+B -> -0.0398275 nll B -> -0.0016366 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_440_novo_285_625/CMS_HH4b_440_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_440_novo_285_625/CMS_HH4b_440_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..27f5ff2 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_440_novo_285_625/CMS_HH4b_440_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.103027 +Sigma for expected limits: 0.0525659 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -505.286 (r = 0.0142003) + +Make global fit of asimov data +NLL at global minimum of asimov: -523.684 (r = 9.37967e-08) +At r = 1.214200: q_mu = 141.40172 q_A = 147.14392 CLsb = 0.00000 CLb = 0.59446 CLs = 0.00000 +At r = 0.614200: q_mu = 63.98582 q_A = 68.18214 CLsb = 0.00000 CLb = 0.60185 CLs = 0.00000 +At r = 0.314200: q_mu = 23.84676 q_A = 26.63549 CLsb = 0.00000 CLb = 0.60936 CLs = 0.00000 +At r = 0.164200: q_mu = 7.36732 q_A = 9.02667 CLsb = 0.00332 CLb = 0.61415 CLs = 0.00541 +At r = 0.089200: q_mu = 2.01240 q_A = 2.93523 CLsb = 0.07801 CLb = 0.61587 CLs = 0.12666 +At r = 0.126700: q_mu = 4.34425 q_A = 5.65054 CLsb = 0.01857 CLb = 0.61516 CLs = 0.03018 +At r = 0.108642: q_mu = 3.12589 q_A = 4.25119 CLsb = 0.03853 CLb = 0.61555 CLs = 0.06259 +At r = 0.116703: q_mu = 3.64910 q_A = 4.85604 CLsb = 0.02805 CLb = 0.61538 CLs = 0.04558 +At r = 0.113209: q_mu = 3.41804 q_A = 4.58976 CLsb = 0.03224 CLb = 0.61546 CLs = 0.05239 +At r = 0.114845: q_mu = 3.52542 q_A = 4.71367 CLsb = 0.03022 CLb = 0.61543 CLs = 0.04910 +At r = 0.114151: q_mu = 3.47969 q_A = 4.66094 CLsb = 0.03106 CLb = 0.61544 CLs = 0.05047 +At r = 0.114480: q_mu = 3.50129 q_A = 4.68585 CLsb = 0.03066 CLb = 0.61543 CLs = 0.04982 + + -- Asymptotic -- +Observed Limit: r < 0.1145 +Expected 2.5%: r < 0.0543 +Expected 16.0%: r < 0.0730 +Expected 50.0%: r < 0.1030 +Expected 84.0%: r < 0.1470 +Expected 97.5%: r < 0.2035 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_440_novo_285_625/datacard_440_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_440_novo_285_625/datacard_440_novo_285_625.txt new file mode 100644 index 0000000..39449df --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_440_novo_285_625/datacard_440_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_440.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_440.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 1024.738200 21478.000000 1024.738200 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.065091 - - +JER lnN 1.016308 - - +JEC lnN 1.006625 - - +trigger lnN 1.088536 - - +PDF lnN 1.018776 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.002270 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_450_novo_285_625/CMS_HH4b_450_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_450_novo_285_625/CMS_HH4b_450_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..19b62d7 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_450_novo_285_625/CMS_HH4b_450_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-CoqV0V.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 0.0685848 -0.0479094/+0.0502249 (68% CL) +nll S+B -> -1.02606 nll B -> -0.00390929 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_450_novo_285_625/CMS_HH4b_450_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_450_novo_285_625/CMS_HH4b_450_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..d2fff02 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_450_novo_285_625/CMS_HH4b_450_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.0961914 +Sigma for expected limits: 0.0490782 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -540.808 (r = 0.0685438) + +Make global fit of asimov data +NLL at global minimum of asimov: -590.194 (r = 3.90263e-08) +At r = 1.268544: q_mu = 142.08334 q_A = 167.49090 CLsb = 0.00000 CLb = 0.84660 CLs = 0.00000 +At r = 0.668544: q_mu = 64.11550 q_A = 83.52988 CLsb = 0.00000 CLb = 0.87124 CLs = 0.00000 +At r = 0.368544: q_mu = 24.12540 q_A = 37.89762 CLsb = 0.00000 CLb = 0.89331 CLs = 0.00000 +At r = 0.218544: q_mu = 7.62097 q_A = 16.74862 CLsb = 0.00288 CLb = 0.90855 CLs = 0.00318 +At r = 0.143544: q_mu = 2.13060 q_A = 8.08080 CLsb = 0.07219 CLb = 0.91667 CLs = 0.07875 +At r = 0.181044: q_mu = 4.54034 q_A = 12.16686 CLsb = 0.01655 CLb = 0.91266 CLs = 0.01814 +At r = 0.160326: q_mu = 3.11577 q_A = 9.83888 CLsb = 0.03877 CLb = 0.91490 CLs = 0.04238 +At r = 0.153385: q_mu = 2.68911 q_A = 9.09710 CLsb = 0.05052 CLb = 0.91563 CLs = 0.05517 +At r = 0.156845: q_mu = 2.89841 q_A = 9.46427 CLsb = 0.04433 CLb = 0.91527 CLs = 0.04844 +At r = 0.155478: q_mu = 2.81491 q_A = 9.31859 CLsb = 0.04670 CLb = 0.91541 CLs = 0.05101 +At r = 0.156174: q_mu = 2.85731 q_A = 9.39268 CLsb = 0.04548 CLb = 0.91534 CLs = 0.04969 + + -- Asymptotic -- +Observed Limit: r < 0.1562 +Expected 2.5%: r < 0.0507 +Expected 16.0%: r < 0.0681 +Expected 50.0%: r < 0.0962 +Expected 84.0%: r < 0.1365 +Expected 97.5%: r < 0.1883 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_450_novo_285_625/datacard_450_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_450_novo_285_625/datacard_450_novo_285_625.txt new file mode 100644 index 0000000..439508c --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_450_novo_285_625/datacard_450_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_450.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_450.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 1083.26 21478 1083.26 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.06507 - - +JER lnN 1.01521 - - +JEC lnN 1.00732 - - +trigger lnN 1.0861090745 - - +PDF lnN 1.01846991095 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.003 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_460_novo_285_625/CMS_HH4b_460_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_460_novo_285_625/CMS_HH4b_460_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..8bc276a --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_460_novo_285_625/CMS_HH4b_460_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-me8RG8.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 0.112742 -0.0461402/+0.049296 (68% CL) +nll S+B -> -3.09911 nll B -> -0.00591043 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_460_novo_285_625/CMS_HH4b_460_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_460_novo_285_625/CMS_HH4b_460_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..516618b --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_460_novo_285_625/CMS_HH4b_460_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.090332 +Sigma for expected limits: 0.0460886 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -572.005 (r = 0.112719) + +Make global fit of asimov data +NLL at global minimum of asimov: -647.67 (r = 2.18632e-06) +At r = 1.312719: q_mu = 142.94218 q_A = 185.61220 CLsb = 0.00000 CLb = 0.95235 CLs = 0.00000 +At r = 0.712719: q_mu = 64.12353 q_A = 97.46317 CLsb = 0.00000 CLb = 0.96888 CLs = 0.00000 +At r = 0.412719: q_mu = 24.19617 q_A = 48.59291 CLsb = 0.00000 CLb = 0.97991 CLs = 0.00000 +At r = 0.262719: q_mu = 7.73397 q_A = 24.84320 CLsb = 0.00271 CLb = 0.98621 CLs = 0.00275 +At r = 0.187719: q_mu = 2.19412 q_A = 14.29589 CLsb = 0.06927 CLb = 0.98927 CLs = 0.07002 +At r = 0.225219: q_mu = 4.63635 q_A = 19.38732 CLsb = 0.01565 CLb = 0.98777 CLs = 0.01584 +At r = 0.202017: q_mu = 3.03756 q_A = 16.18656 CLsb = 0.04068 CLb = 0.98871 CLs = 0.04114 +At r = 0.194964: q_mu = 2.60715 q_A = 15.24543 CLsb = 0.05319 CLb = 0.98899 CLs = 0.05378 +At r = 0.197911: q_mu = 2.78363 q_A = 15.63670 CLsb = 0.04762 CLb = 0.98887 CLs = 0.04815 +At r = 0.196519: q_mu = 2.69965 q_A = 15.45150 CLsb = 0.05019 CLb = 0.98892 CLs = 0.05075 +At r = 0.197112: q_mu = 2.73529 q_A = 15.53033 CLsb = 0.04908 CLb = 0.98890 CLs = 0.04963 + + -- Asymptotic -- +Observed Limit: r < 0.1971 +Expected 2.5%: r < 0.0476 +Expected 16.0%: r < 0.0640 +Expected 50.0%: r < 0.0903 +Expected 84.0%: r < 0.1296 +Expected 97.5%: r < 0.1778 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_460_novo_285_625/datacard_460_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_460_novo_285_625/datacard_460_novo_285_625.txt new file mode 100644 index 0000000..ea85815 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_460_novo_285_625/datacard_460_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_460.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_460.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 1130.532000 21478.000000 1130.532000 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.065027 - - +JER lnN 1.014819 - - +JEC lnN 1.007350 - - +trigger lnN 1.083397 - - +PDF lnN 1.018420 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.003201 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_470_novo_285_625/CMS_HH4b_470_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_470_novo_285_625/CMS_HH4b_470_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..ce0c83e --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_470_novo_285_625/CMS_HH4b_470_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-0hWb1g.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.020 + + + --- MaxLikelihoodFit --- +Best fit r: 0.110303 -0.0435183/+0.046517 (68% CL) +nll S+B -> -3.34626 nll B -> -0.006571 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_470_novo_285_625/CMS_HH4b_470_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_470_novo_285_625/CMS_HH4b_470_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..4d9e9e5 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_470_novo_285_625/CMS_HH4b_470_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.0854492 +Sigma for expected limits: 0.0435973 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -634.141 (r = 0.110322) + +Make global fit of asimov data +NLL at global minimum of asimov: -713.177 (r = 1.55498e-05) +At r = 1.310322: q_mu = 153.93803 q_A = 199.43785 CLsb = 0.00000 CLb = 0.95683 CLs = 0.00000 +At r = 0.710322: q_mu = 69.74057 q_A = 105.23990 CLsb = 0.00000 CLb = 0.97178 CLs = 0.00000 +At r = 0.410322: q_mu = 26.59429 q_A = 52.72711 CLsb = 0.00000 CLb = 0.98233 CLs = 0.00000 +At r = 0.260322: q_mu = 8.58051 q_A = 26.99374 CLsb = 0.00170 CLb = 0.98828 CLs = 0.00172 +At r = 0.185322: q_mu = 2.45019 q_A = 15.49773 CLsb = 0.05876 CLb = 0.99114 CLs = 0.05928 +At r = 0.222822: q_mu = 5.15963 q_A = 21.05282 CLsb = 0.01156 CLb = 0.98974 CLs = 0.01168 +At r = 0.204072: q_mu = 3.70445 q_A = 18.21874 CLsb = 0.02713 CLb = 0.99045 CLs = 0.02740 +At r = 0.192381: q_mu = 2.89707 q_A = 16.50754 CLsb = 0.04437 CLb = 0.99088 CLs = 0.04478 +At r = 0.188749: q_mu = 2.66323 q_A = 15.98571 CLsb = 0.05135 CLb = 0.99102 CLs = 0.05181 +At r = 0.190184: q_mu = 2.75464 q_A = 16.19135 CLsb = 0.04849 CLb = 0.99096 CLs = 0.04893 +At r = 0.189463: q_mu = 2.70852 q_A = 16.08787 CLsb = 0.04991 CLb = 0.99099 CLs = 0.05036 + + -- Asymptotic -- +Observed Limit: r < 0.1895 +Expected 2.5%: r < 0.0451 +Expected 16.0%: r < 0.0605 +Expected 50.0%: r < 0.0854 +Expected 84.0%: r < 0.1219 +Expected 97.5%: r < 0.1677 + +Done in 0.00 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_470_novo_285_625/datacard_470_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_470_novo_285_625/datacard_470_novo_285_625.txt new file mode 100644 index 0000000..cfbe3b4 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_470_novo_285_625/datacard_470_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_470.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_470.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 1177.804000 21478.000000 1177.804000 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.064975 - - +JER lnN 1.015022 - - +JEC lnN 1.006800 - - +trigger lnN 1.080568 - - +PDF lnN 1.018604 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.002993 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_480_novo_285_625/CMS_HH4b_480_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_480_novo_285_625/CMS_HH4b_480_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..d042ac8 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_480_novo_285_625/CMS_HH4b_480_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-rkjXnu.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 0.0672092 -0.0405124/+0.0425184 (68% CL) +nll S+B -> -1.38712 nll B -> -0.0059778 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_480_novo_285_625/CMS_HH4b_480_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_480_novo_285_625/CMS_HH4b_480_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..862bc54 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_480_novo_285_625/CMS_HH4b_480_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.0805664 +Sigma for expected limits: 0.0411061 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -723.346 (r = 0.0671984) + +Make global fit of asimov data +NLL at global minimum of asimov: -783.216 (r = 6.60604e-06) +At r = 1.267198: q_mu = 175.33525 q_A = 207.71948 CLsb = 0.00000 CLb = 0.87921 CLs = 0.00000 +At r = 0.667198: q_mu = 81.27298 q_A = 105.90561 CLsb = 0.00000 CLb = 0.89900 CLs = 0.00000 +At r = 0.367198: q_mu = 31.55144 q_A = 49.35093 CLsb = 0.00000 CLb = 0.92043 CLs = 0.00000 +At r = 0.217198: q_mu = 10.25360 q_A = 22.26918 CLsb = 0.00068 CLb = 0.93535 CLs = 0.00073 +At r = 0.142198: q_mu = 2.92203 q_A = 10.85075 CLsb = 0.04369 CLb = 0.94348 CLs = 0.04631 +At r = 0.104698: q_mu = 0.77463 q_A = 6.24573 CLsb = 0.18939 CLb = 0.94728 CLs = 0.19994 +At r = 0.123448: q_mu = 1.69398 q_A = 8.43105 CLsb = 0.09654 CLb = 0.94543 CLs = 0.10211 +At r = 0.136993: q_mu = 2.55190 q_A = 10.15720 CLsb = 0.05508 CLb = 0.94403 CLs = 0.05835 +At r = 0.139774: q_mu = 2.74681 q_A = 10.52569 CLsb = 0.04872 CLb = 0.94374 CLs = 0.05163 +At r = 0.140831: q_mu = 2.82242 q_A = 10.66679 CLsb = 0.04648 CLb = 0.94363 CLs = 0.04925 +At r = 0.140350: q_mu = 2.78787 q_A = 10.60247 CLsb = 0.04749 CLb = 0.94368 CLs = 0.05032 + + -- Asymptotic -- +Observed Limit: r < 0.1403 +Expected 2.5%: r < 0.0425 +Expected 16.0%: r < 0.0571 +Expected 50.0%: r < 0.0806 +Expected 84.0%: r < 0.1149 +Expected 97.5%: r < 0.1581 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_480_novo_285_625/datacard_480_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_480_novo_285_625/datacard_480_novo_285_625.txt new file mode 100644 index 0000000..a8b0ce0 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_480_novo_285_625/datacard_480_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_480.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_480.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 1225.076000 21478.000000 1225.076000 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.064934 - - +JER lnN 1.015585 - - +JEC lnN 1.005851 - - +trigger lnN 1.077816 - - +PDF lnN 1.018963 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.002583 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_490_novo_285_625/CMS_HH4b_490_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_490_novo_285_625/CMS_HH4b_490_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..0da9bd0 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_490_novo_285_625/CMS_HH4b_490_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-5c3ZEi.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 0.0156338 -0.0156338/+0.0389274 (68% CL) +nll S+B -> -0.0884479 nll B -> -0.00513749 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_490_novo_285_625/CMS_HH4b_490_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_490_novo_285_625/CMS_HH4b_490_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..388eb09 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_490_novo_285_625/CMS_HH4b_490_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.0766602 +Sigma for expected limits: 0.039113 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -829.008 (r = 0.0156335) + +Make global fit of asimov data +NLL at global minimum of asimov: -856.768 (r = 1.57784e-07) +At r = 1.215634: q_mu = 203.08451 q_A = 213.25274 CLsb = 0.00000 CLb = 0.63773 CLs = 0.00000 +At r = 0.615634: q_mu = 96.43604 q_A = 103.88015 CLsb = 0.00000 CLb = 0.64504 CLs = 0.00000 +At r = 0.315634: q_mu = 38.17933 q_A = 43.28478 CLsb = 0.00000 CLb = 0.65549 CLs = 0.00000 +At r = 0.165634: q_mu = 12.44591 q_A = 15.58715 CLsb = 0.00021 CLb = 0.66282 CLs = 0.00032 +At r = 0.090634: q_mu = 3.50928 q_A = 5.29656 CLsb = 0.03051 CLb = 0.66572 CLs = 0.04583 +At r = 0.053134: q_mu = 0.91960 q_A = 1.92664 CLsb = 0.16879 CLb = 0.66607 CLs = 0.25341 +At r = 0.071884: q_mu = 2.02392 q_A = 3.42875 CLsb = 0.07742 CLb = 0.66605 CLs = 0.11624 +At r = 0.085481: q_mu = 3.06537 q_A = 4.74938 CLsb = 0.03999 CLb = 0.66585 CLs = 0.06006 +At r = 0.088276: q_mu = 3.30283 q_A = 5.04316 CLsb = 0.03458 CLb = 0.66579 CLs = 0.05194 +At r = 0.089322: q_mu = 3.39359 q_A = 5.15489 CLsb = 0.03273 CLb = 0.66577 CLs = 0.04915 +At r = 0.088854: q_mu = 3.35279 q_A = 5.10472 CLsb = 0.03355 CLb = 0.66578 CLs = 0.05039 +At r = 0.089063: q_mu = 3.37103 q_A = 5.12717 CLsb = 0.03318 CLb = 0.66578 CLs = 0.04983 + + -- Asymptotic -- +Observed Limit: r < 0.0891 +Expected 2.5%: r < 0.0404 +Expected 16.0%: r < 0.0543 +Expected 50.0%: r < 0.0767 +Expected 84.0%: r < 0.1087 +Expected 97.5%: r < 0.1500 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_490_novo_285_625/datacard_490_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_490_novo_285_625/datacard_490_novo_285_625.txt new file mode 100644 index 0000000..6eee800 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_490_novo_285_625/datacard_490_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_490.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_490.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 1272.348000 21478.000000 1272.348000 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.064923 - - +JER lnN 1.016275 - - +JEC lnN 1.004681 - - +trigger lnN 1.075337 - - +PDF lnN 1.019440 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.002183 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_500_novo_285_625/CMS_HH4b_500_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_500_novo_285_625/CMS_HH4b_500_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..8d36f52 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_500_novo_285_625/CMS_HH4b_500_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-1Z9C40.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 3.98959e-09 -3.98959e-09/+0.0219288 (68% CL) +nll S+B -> -0.00507158 nll B -> -0.0050717 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_500_novo_285_625/CMS_HH4b_500_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_500_novo_285_625/CMS_HH4b_500_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..c169316 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_500_novo_285_625/CMS_HH4b_500_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.0737305 +Sigma for expected limits: 0.0376183 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -911.172 (r = 6.40898e-11) + +Make global fit of asimov data +NLL at global minimum of asimov: -906.139 (r = 2.6656e-06) +At r = 1.200000: q_mu = 228.44603 q_A = 218.71829 CLsb = 0.00000 CLb = 0.37112 CLs = 0.00000 +At r = 0.600000: q_mu = 112.98935 q_A = 105.21156 CLsb = 0.00000 CLb = 0.35229 CLs = 0.00000 +At r = 0.300000: q_mu = 47.77111 q_A = 42.16905 CLsb = 0.00000 CLb = 0.33311 CLs = 0.00000 +At r = 0.150000: q_mu = 17.40358 q_A = 13.85385 CLsb = 0.00001 CLb = 0.31673 CLs = 0.00004 +At r = 0.075000: q_mu = 5.92138 q_A = 3.92595 CLsb = 0.00648 CLb = 0.30729 CLs = 0.02108 +At r = 0.037500: q_mu = 2.08584 q_A = 1.04002 CLsb = 0.06269 CLb = 0.30406 CLs = 0.20618 +At r = 0.056250: q_mu = 3.80663 q_A = 2.27206 CLsb = 0.02188 CLb = 0.30536 CLs = 0.07165 +At r = 0.064412: q_mu = 4.68135 q_A = 2.94258 CLsb = 0.01313 CLb = 0.30614 CLs = 0.04290 +At r = 0.060831: q_mu = 4.28855 q_A = 2.63869 CLsb = 0.01649 CLb = 0.30579 CLs = 0.05394 +At r = 0.062496: q_mu = 4.46947 q_A = 2.77814 CLsb = 0.01485 CLb = 0.30595 CLs = 0.04853 +At r = 0.061787: q_mu = 4.39200 q_A = 2.71832 CLsb = 0.01553 CLb = 0.30588 CLs = 0.05077 +At r = 0.062121: q_mu = 4.42845 q_A = 2.74644 CLsb = 0.01520 CLb = 0.30591 CLs = 0.04970 + + -- Asymptotic -- +Observed Limit: r < 0.0621 +Expected 2.5%: r < 0.0392 +Expected 16.0%: r < 0.0524 +Expected 50.0%: r < 0.0737 +Expected 84.0%: r < 0.1058 +Expected 97.5%: r < 0.1451 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_500_novo_285_625/datacard_500_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_500_novo_285_625/datacard_500_novo_285_625.txt new file mode 100644 index 0000000..26d00f1 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_500_novo_285_625/datacard_500_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_500.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_500.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 1319.62 21478 1319.62 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.06496 - - +JER lnN 1.01686 - - +JEC lnN 1.00347 - - +trigger lnN 1.0733235575 - - +PDF lnN 1.01997778164 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.002 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_510_novo_285_625/CMS_HH4b_510_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_510_novo_285_625/CMS_HH4b_510_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..6be8829 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_510_novo_285_625/CMS_HH4b_510_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-S02wnJ.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 4.41802e-10 -4.41802e-10/+0.0133732 (68% CL) +nll S+B -> -0.00722918 nll B -> -0.00722919 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_510_novo_285_625/CMS_HH4b_510_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_510_novo_285_625/CMS_HH4b_510_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..a05f444 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_510_novo_285_625/CMS_HH4b_510_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.0698242 +Sigma for expected limits: 0.0356253 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -1011.99 (r = 4.0599e-08) + +Make global fit of asimov data +NLL at global minimum of asimov: -985.723 (r = 1.80281e-06) +At r = 1.200000: q_mu = 253.75697 q_A = 231.49147 CLsb = 0.00000 CLb = 0.23217 CLs = 0.00000 +At r = 0.600000: q_mu = 129.88354 q_A = 112.71816 CLsb = 0.00000 CLb = 0.20943 CLs = 0.00000 +At r = 0.300000: q_mu = 58.08778 q_A = 45.81617 CLsb = 0.00000 CLb = 0.18234 CLs = 0.00000 +At r = 0.150000: q_mu = 23.00369 q_A = 15.25101 CLsb = 0.00000 CLb = 0.16045 CLs = 0.00000 +At r = 0.075000: q_mu = 8.71072 q_A = 4.35498 CLsb = 0.00087 CLb = 0.14833 CLs = 0.00588 +At r = 0.037500: q_mu = 3.43792 q_A = 1.15613 CLsb = 0.01633 CLb = 0.14433 CLs = 0.11313 +At r = 0.056250: q_mu = 5.87294 q_A = 2.52365 CLsb = 0.00411 CLb = 0.14590 CLs = 0.02818 +At r = 0.046312: q_mu = 4.52862 q_A = 1.73798 CLsb = 0.00873 CLb = 0.14493 CLs = 0.06026 +At r = 0.050252: q_mu = 5.04738 q_A = 2.03325 CLsb = 0.00652 CLb = 0.14528 CLs = 0.04486 +At r = 0.048305: q_mu = 4.78870 q_A = 1.88466 CLsb = 0.00754 CLb = 0.14510 CLs = 0.05196 +At r = 0.049101: q_mu = 4.89394 q_A = 1.94479 CLsb = 0.00710 CLb = 0.14517 CLs = 0.04894 +At r = 0.048714: q_mu = 4.84260 q_A = 1.91539 CLsb = 0.00731 CLb = 0.14513 CLs = 0.05039 + + -- Asymptotic -- +Observed Limit: r < 0.0487 +Expected 2.5%: r < 0.0368 +Expected 16.0%: r < 0.0500 +Expected 50.0%: r < 0.0698 +Expected 84.0%: r < 0.1002 +Expected 97.5%: r < 0.1374 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_510_novo_285_625/datacard_510_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_510_novo_285_625/datacard_510_novo_285_625.txt new file mode 100644 index 0000000..ed426d0 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_510_novo_285_625/datacard_510_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_510.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_510.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 1349.854000 21478.000000 1349.854000 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.065060 - - +JER lnN 1.017160 - - +JEC lnN 1.002374 - - +trigger lnN 1.071913 - - +PDF lnN 1.020524 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.002175 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_520_novo_285_625/CMS_HH4b_520_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_520_novo_285_625/CMS_HH4b_520_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..07733bf --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_520_novo_285_625/CMS_HH4b_520_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-2PipOj.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 4.72122e-13 -4.72122e-13/+0.0109511 (68% CL) +nll S+B -> -0.011939 nll B -> -0.0119391 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_520_novo_285_625/CMS_HH4b_520_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_520_novo_285_625/CMS_HH4b_520_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..ed368a2 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_520_novo_285_625/CMS_HH4b_520_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.0678711 +Sigma for expected limits: 0.0346287 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -1084.59 (r = 1.39161e-10) + +Make global fit of asimov data +NLL at global minimum of asimov: -1046.73 (r = 3.73166e-06) +At r = 1.200000: q_mu = 269.07739 q_A = 240.62333 CLsb = 0.00000 CLb = 0.17953 CLs = 0.00000 +At r = 0.600000: q_mu = 139.60422 q_A = 118.01977 CLsb = 0.00000 CLb = 0.16025 CLs = 0.00000 +At r = 0.300000: q_mu = 63.92342 q_A = 48.44762 CLsb = 0.00000 CLb = 0.13313 CLs = 0.00000 +At r = 0.150000: q_mu = 26.10989 q_A = 16.27957 CLsb = 0.00000 CLb = 0.11158 CLs = 0.00000 +At r = 0.075000: q_mu = 10.22690 q_A = 4.67456 CLsb = 0.00028 CLb = 0.09957 CLs = 0.00286 +At r = 0.037500: q_mu = 4.16051 q_A = 1.24271 CLsb = 0.00769 CLb = 0.09532 CLs = 0.08064 +At r = 0.056250: q_mu = 6.98765 q_A = 2.71155 CLsb = 0.00161 CLb = 0.09707 CLs = 0.01663 +At r = 0.045791: q_mu = 5.35564 q_A = 1.82752 CLsb = 0.00394 CLb = 0.09596 CLs = 0.04111 +At r = 0.042205: q_mu = 4.82768 q_A = 1.56172 CLsb = 0.00529 CLb = 0.09566 CLs = 0.05528 +At r = 0.043895: q_mu = 5.07436 q_A = 1.68453 CLsb = 0.00461 CLb = 0.09579 CLs = 0.04812 +At r = 0.043184: q_mu = 4.97013 q_A = 1.63232 CLsb = 0.00488 CLb = 0.09573 CLs = 0.05103 +At r = 0.043523: q_mu = 5.01980 q_A = 1.65714 CLsb = 0.00475 CLb = 0.09576 CLs = 0.04962 + + -- Asymptotic -- +Observed Limit: r < 0.0435 +Expected 2.5%: r < 0.0358 +Expected 16.0%: r < 0.0481 +Expected 50.0%: r < 0.0679 +Expected 84.0%: r < 0.0963 +Expected 97.5%: r < 0.1320 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_520_novo_285_625/datacard_520_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_520_novo_285_625/datacard_520_novo_285_625.txt new file mode 100644 index 0000000..3b1abfc --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_520_novo_285_625/datacard_520_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_520.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_520.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 1380.088000 21478.000000 1380.088000 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.065214 - - +JER lnN 1.017210 - - +JEC lnN 1.001458 - - +trigger lnN 1.071008 - - +PDF lnN 1.021050 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.002570 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_530_novo_285_625/CMS_HH4b_530_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_530_novo_285_625/CMS_HH4b_530_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..01f352e --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_530_novo_285_625/CMS_HH4b_530_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-WOfIeE.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 2.11216e-11 -2.11216e-11/+0.00962403 (68% CL) +nll S+B -> -0.01893 nll B -> -0.01893 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_530_novo_285_625/CMS_HH4b_530_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_530_novo_285_625/CMS_HH4b_530_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..81858f7 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_530_novo_285_625/CMS_HH4b_530_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.0649414 +Sigma for expected limits: 0.033134 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -1159.76 (r = 4.66294e-13) + +Make global fit of asimov data +NLL at global minimum of asimov: -1110.16 (r = 4.08504e-06) +At r = 1.200000: q_mu = 283.73452 q_A = 249.46338 CLsb = 0.00000 CLb = 0.13898 CLs = 0.00000 +At r = 0.600000: q_mu = 148.55383 q_A = 123.15580 CLsb = 0.00000 CLb = 0.12625 CLs = 0.00000 +At r = 0.300000: q_mu = 69.20048 q_A = 51.07121 CLsb = 0.00000 CLb = 0.10232 CLs = 0.00000 +At r = 0.150000: q_mu = 28.81604 q_A = 17.33047 CLsb = 0.00000 CLb = 0.08387 CLs = 0.00000 +At r = 0.075000: q_mu = 11.48154 q_A = 5.00595 CLsb = 0.00011 CLb = 0.07393 CLs = 0.00155 +At r = 0.037500: q_mu = 4.72991 q_A = 1.33298 CLsb = 0.00432 CLb = 0.07063 CLs = 0.06122 +At r = 0.056250: q_mu = 7.89039 q_A = 2.90700 CLsb = 0.00077 CLb = 0.07195 CLs = 0.01073 +At r = 0.046875: q_mu = 6.25161 q_A = 2.05022 CLsb = 0.00187 CLb = 0.07117 CLs = 0.02630 +At r = 0.041172: q_mu = 5.31170 q_A = 1.59713 CLsb = 0.00313 CLb = 0.07083 CLs = 0.04425 +At r = 0.039332: q_mu = 5.01762 q_A = 1.46179 CLsb = 0.00369 CLb = 0.07071 CLs = 0.05213 +At r = 0.040074: q_mu = 5.13557 q_A = 1.51558 CLsb = 0.00345 CLb = 0.07075 CLs = 0.04881 +At r = 0.039708: q_mu = 5.07730 q_A = 1.48892 CLsb = 0.00357 CLb = 0.07073 CLs = 0.05042 + + -- Asymptotic -- +Observed Limit: r < 0.0397 +Expected 2.5%: r < 0.0342 +Expected 16.0%: r < 0.0462 +Expected 50.0%: r < 0.0649 +Expected 84.0%: r < 0.0926 +Expected 97.5%: r < 0.1274 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_530_novo_285_625/datacard_530_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_530_novo_285_625/datacard_530_novo_285_625.txt new file mode 100644 index 0000000..cf5be95 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_530_novo_285_625/datacard_530_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_530.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_530.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 1410.322000 21478.000000 1410.322000 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.065406 - - +JER lnN 1.017099 - - +JEC lnN 1.000762 - - +trigger lnN 1.070453 - - +PDF lnN 1.021536 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.002978 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_540_novo_285_625/CMS_HH4b_540_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_540_novo_285_625/CMS_HH4b_540_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..ff3ef66 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_540_novo_285_625/CMS_HH4b_540_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-JUSUfS.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.020 + + + --- MaxLikelihoodFit --- +Best fit r: 3.52378e-11 -3.52378e-11/+0.00774481 (68% CL) +nll S+B -> -0.025308 nll B -> -0.0253079 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_540_novo_285_625/CMS_HH4b_540_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_540_novo_285_625/CMS_HH4b_540_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..dd9b460 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_540_novo_285_625/CMS_HH4b_540_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.0629883 +Sigma for expected limits: 0.0321375 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -1239.31 (r = 2.25578e-10) + +Make global fit of asimov data +NLL at global minimum of asimov: -1176.17 (r = 3.52923e-06) +At r = 1.200000: q_mu = 301.67404 q_A = 258.04014 CLsb = 0.00000 CLb = 0.08721 CLs = 0.00000 +At r = 0.600000: q_mu = 159.98470 q_A = 128.09808 CLsb = 0.00000 CLb = 0.07947 CLs = 0.00000 +At r = 0.300000: q_mu = 76.50399 q_A = 53.64744 CLsb = 0.00000 CLb = 0.05935 CLs = 0.00000 +At r = 0.150000: q_mu = 32.94684 q_A = 18.38196 CLsb = 0.00000 CLb = 0.04470 CLs = 0.00000 +At r = 0.075000: q_mu = 13.59647 q_A = 5.34155 CLsb = 0.00002 CLb = 0.03706 CLs = 0.00056 +At r = 0.037500: q_mu = 5.76783 q_A = 1.42472 CLsb = 0.00129 CLb = 0.03443 CLs = 0.03757 +At r = 0.018750: q_mu = 2.58330 q_A = 0.37042 CLsb = 0.00762 CLb = 0.03454 CLs = 0.22067 +At r = 0.028125: q_mu = 4.10567 q_A = 0.81524 CLsb = 0.00321 CLb = 0.03422 CLs = 0.09395 +At r = 0.033287: q_mu = 5.00421 q_A = 1.13090 CLsb = 0.00196 CLb = 0.03429 CLs = 0.05715 +At r = 0.035203: q_mu = 5.34835 q_A = 1.26064 CLsb = 0.00162 CLb = 0.03435 CLs = 0.04729 +At r = 0.034369: q_mu = 5.19778 q_A = 1.20331 CLsb = 0.00176 CLb = 0.03433 CLs = 0.05137 +At r = 0.034754: q_mu = 5.26711 q_A = 1.22960 CLsb = 0.00170 CLb = 0.03434 CLs = 0.04945 + + -- Asymptotic -- +Observed Limit: r < 0.0348 +Expected 2.5%: r < 0.0330 +Expected 16.0%: r < 0.0447 +Expected 50.0%: r < 0.0630 +Expected 84.0%: r < 0.0894 +Expected 97.5%: r < 0.1233 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_540_novo_285_625/datacard_540_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_540_novo_285_625/datacard_540_novo_285_625.txt new file mode 100644 index 0000000..380c7e4 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_540_novo_285_625/datacard_540_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_540.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_540.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 1440.556000 21478.000000 1440.556000 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.065623 - - +JER lnN 1.016916 - - +JEC lnN 1.000329 - - +trigger lnN 1.070093 - - +PDF lnN 1.021959 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.003190 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_550_novo_285_625/CMS_HH4b_550_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_550_novo_285_625/CMS_HH4b_550_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..d8692da --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_550_novo_285_625/CMS_HH4b_550_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-wnEtZE.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 5.12257e-12 -5.12257e-12/+0.00614845 (68% CL) +nll S+B -> -0.0256249 nll B -> -0.0256248 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_550_novo_285_625/CMS_HH4b_550_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_550_novo_285_625/CMS_HH4b_550_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..95c7ae8 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_550_novo_285_625/CMS_HH4b_550_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.0610352 +Sigma for expected limits: 0.031141 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -1307.91 (r = 1.90479e-10) + +Make global fit of asimov data +NLL at global minimum of asimov: -1235.66 (r = 5.33407e-07) +At r = 1.200000: q_mu = 318.34318 q_A = 265.27849 CLsb = 0.00000 CLb = 0.05166 CLs = 0.00000 +At r = 0.600000: q_mu = 170.99904 q_A = 132.20672 CLsb = 0.00000 CLb = 0.04581 CLs = 0.00000 +At r = 0.300000: q_mu = 83.97501 q_A = 55.81014 CLsb = 0.00000 CLb = 0.02971 CLs = 0.00000 +At r = 0.150000: q_mu = 37.48589 q_A = 19.27459 CLsb = 0.00000 CLb = 0.01904 CLs = 0.00000 +At r = 0.075000: q_mu = 16.08621 q_A = 5.62862 CLsb = 0.00000 CLb = 0.01376 CLs = 0.00017 +At r = 0.037500: q_mu = 7.05328 q_A = 1.50326 CLsb = 0.00024 CLb = 0.01181 CLs = 0.02050 +At r = 0.018750: q_mu = 3.23165 q_A = 0.39035 CLsb = 0.00187 CLb = 0.01149 CLs = 0.16313 +At r = 0.028125: q_mu = 5.07469 q_A = 0.85997 CLsb = 0.00069 CLb = 0.01153 CLs = 0.05964 +At r = 0.031238: q_mu = 5.71748 q_A = 1.05500 CLsb = 0.00049 CLb = 0.01161 CLs = 0.04210 +At r = 0.029386: q_mu = 5.33318 q_A = 0.93658 CLsb = 0.00060 CLb = 0.01156 CLs = 0.05184 +At r = 0.030014: q_mu = 5.46281 q_A = 0.97592 CLsb = 0.00056 CLb = 0.01158 CLs = 0.04832 +At r = 0.029644: q_mu = 5.38644 q_A = 0.95267 CLsb = 0.00058 CLb = 0.01157 CLs = 0.05036 + + -- Asymptotic -- +Observed Limit: r < 0.0296 +Expected 2.5%: r < 0.0319 +Expected 16.0%: r < 0.0433 +Expected 50.0%: r < 0.0610 +Expected 84.0%: r < 0.0868 +Expected 97.5%: r < 0.1196 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_550_novo_285_625/datacard_550_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_550_novo_285_625/datacard_550_novo_285_625.txt new file mode 100644 index 0000000..e78ed16 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_550_novo_285_625/datacard_550_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_550.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_550.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 1470.79 21478 1470.79 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.06585 - - +JER lnN 1.01675 - - +JEC lnN 1.0002 - - +trigger lnN 1.0697740714 - - +PDF lnN 1.02229693932 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.003 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_560_novo_285_625/CMS_HH4b_560_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_560_novo_285_625/CMS_HH4b_560_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..5b53e16 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_560_novo_285_625/CMS_HH4b_560_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-Oz2giW.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 2.69984e-12 -2.69984e-12/+0.00542085 (68% CL) +nll S+B -> -0.0177246 nll B -> -0.0177247 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_560_novo_285_625/CMS_HH4b_560_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_560_novo_285_625/CMS_HH4b_560_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..ebcd5d6 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_560_novo_285_625/CMS_HH4b_560_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.0581055 +Sigma for expected limits: 0.0296462 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -1412.69 (r = 2.30364e-10) + +Make global fit of asimov data +NLL at global minimum of asimov: -1337.55 (r = 6.5538e-07) +At r = 1.200000: q_mu = 337.97816 q_A = 279.80817 CLsb = 0.00000 CLb = 0.04104 CLs = 0.00000 +At r = 0.600000: q_mu = 182.44382 q_A = 140.28663 CLsb = 0.00000 CLb = 0.03757 CLs = 0.00000 +At r = 0.300000: q_mu = 91.07932 q_A = 60.12155 CLsb = 0.00000 CLb = 0.02295 CLs = 0.00000 +At r = 0.150000: q_mu = 41.37452 q_A = 21.08670 CLsb = 0.00000 CLb = 0.01359 CLs = 0.00000 +At r = 0.075000: q_mu = 18.00755 q_A = 6.22094 CLsb = 0.00000 CLb = 0.00907 CLs = 0.00007 +At r = 0.037500: q_mu = 7.96595 q_A = 1.66702 CLsb = 0.00010 CLb = 0.00736 CLs = 0.01299 +At r = 0.018750: q_mu = 3.66765 q_A = 0.43220 CLsb = 0.00091 CLb = 0.00693 CLs = 0.13126 +At r = 0.028125: q_mu = 5.74511 q_A = 0.95352 CLsb = 0.00030 CLb = 0.00707 CLs = 0.04267 +At r = 0.025191: q_mu = 5.07926 q_A = 0.76929 CLsb = 0.00043 CLb = 0.00701 CLs = 0.06108 +At r = 0.026501: q_mu = 5.37462 q_A = 0.84925 CLsb = 0.00037 CLb = 0.00704 CLs = 0.05209 +At r = 0.027092: q_mu = 5.50894 q_A = 0.88664 CLsb = 0.00034 CLb = 0.00705 CLs = 0.04845 +At r = 0.026768: q_mu = 5.43523 q_A = 0.86604 CLsb = 0.00036 CLb = 0.00705 CLs = 0.05041 + + -- Asymptotic -- +Observed Limit: r < 0.0268 +Expected 2.5%: r < 0.0304 +Expected 16.0%: r < 0.0412 +Expected 50.0%: r < 0.0581 +Expected 84.0%: r < 0.0827 +Expected 97.5%: r < 0.1131 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_560_novo_285_625/datacard_560_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_560_novo_285_625/datacard_560_novo_285_625.txt new file mode 100644 index 0000000..d4678d4 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_560_novo_285_625/datacard_560_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_560.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_560.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 1519.230000 21478.000000 1519.230000 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.066076 - - +JER lnN 1.016666 - - +JEC lnN 1.000394 - - +trigger lnN 1.069371 - - +PDF lnN 1.022536 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.002274 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_570_novo_285_625/CMS_HH4b_570_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_570_novo_285_625/CMS_HH4b_570_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..d961681 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_570_novo_285_625/CMS_HH4b_570_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-3q6Ft6.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 4.04277e-12 -4.04277e-12/+0.00583139 (68% CL) +nll S+B -> -0.00585726 nll B -> -0.00585739 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_570_novo_285_625/CMS_HH4b_570_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_570_novo_285_625/CMS_HH4b_570_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..0e35a17 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_570_novo_285_625/CMS_HH4b_570_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.0551758 +Sigma for expected limits: 0.0281514 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -1513.13 (r = 7.95351e-09) + +Make global fit of asimov data +NLL at global minimum of asimov: -1443.32 (r = 1.6636e-06) +At r = 1.200000: q_mu = 349.15414 q_A = 295.26224 CLsb = 0.00000 CLb = 0.05842 CLs = 0.00000 +At r = 0.600000: q_mu = 187.02376 q_A = 148.60825 CLsb = 0.00000 CLb = 0.05756 CLs = 0.00000 +At r = 0.300000: q_mu = 92.89482 q_A = 64.59979 CLsb = 0.00000 CLb = 0.03919 CLs = 0.00000 +At r = 0.150000: q_mu = 41.62093 q_A = 22.99341 CLsb = 0.00000 CLb = 0.02605 CLs = 0.00000 +At r = 0.075000: q_mu = 17.70895 q_A = 6.84938 CLsb = 0.00000 CLb = 0.01901 CLs = 0.00007 +At r = 0.037500: q_mu = 7.64810 q_A = 1.83969 CLsb = 0.00023 CLb = 0.01613 CLs = 0.01456 +At r = 0.018750: q_mu = 3.45738 q_A = 0.47517 CLsb = 0.00217 CLb = 0.01527 CLs = 0.14209 +At r = 0.028125: q_mu = 5.46932 q_A = 1.05137 CLsb = 0.00074 CLb = 0.01561 CLs = 0.04723 +At r = 0.025862: q_mu = 4.96804 q_A = 0.89274 CLsb = 0.00096 CLb = 0.01552 CLs = 0.06205 +At r = 0.027295: q_mu = 5.28413 q_A = 0.99162 CLsb = 0.00081 CLb = 0.01557 CLs = 0.05224 +At r = 0.027749: q_mu = 5.38536 q_A = 1.02413 CLsb = 0.00077 CLb = 0.01559 CLs = 0.04944 + + -- Asymptotic -- +Observed Limit: r < 0.0277 +Expected 2.5%: r < 0.0289 +Expected 16.0%: r < 0.0392 +Expected 50.0%: r < 0.0552 +Expected 84.0%: r < 0.0785 +Expected 97.5%: r < 0.1074 + +Done in 0.00 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_570_novo_285_625/datacard_570_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_570_novo_285_625/datacard_570_novo_285_625.txt new file mode 100644 index 0000000..f7b3f04 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_570_novo_285_625/datacard_570_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_570.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_570.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 1567.670000 21478.000000 1567.670000 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.066308 - - +JER lnN 1.016631 - - +JEC lnN 1.000839 - - +trigger lnN 1.068883 - - +PDF lnN 1.022695 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.001174 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_580_novo_285_625/CMS_HH4b_580_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_580_novo_285_625/CMS_HH4b_580_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..49d6317 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_580_novo_285_625/CMS_HH4b_580_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-ZWDOKc.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 1.88696e-11 -1.88696e-11/+0.00742071 (68% CL) +nll S+B -> -0.000151946 nll B -> -0.00015145 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_580_novo_285_625/CMS_HH4b_580_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_580_novo_285_625/CMS_HH4b_580_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..d0ab98a --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_580_novo_285_625/CMS_HH4b_580_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.0512695 +Sigma for expected limits: 0.0261584 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -1633.85 (r = 4.49786e-08) + +Make global fit of asimov data +NLL at global minimum of asimov: -1568.78 (r = 7.01707e-05) +At r = 1.200000: q_mu = 358.05515 q_A = 316.11919 CLsb = 0.00000 CLb = 0.11914 CLs = 0.00000 +At r = 0.600000: q_mu = 188.60644 q_A = 159.45804 CLsb = 0.00000 CLb = 0.12422 CLs = 0.00000 +At r = 0.300000: q_mu = 91.98416 q_A = 70.50728 CLsb = 0.00000 CLb = 0.10047 CLs = 0.00000 +At r = 0.150000: q_mu = 39.71867 q_A = 25.54593 CLsb = 0.00000 CLb = 0.08045 CLs = 0.00000 +At r = 0.075000: q_mu = 15.97041 q_A = 7.69701 CLsb = 0.00001 CLb = 0.06797 CLs = 0.00015 +At r = 0.037500: q_mu = 6.48895 q_A = 2.06962 CLsb = 0.00147 CLb = 0.06227 CLs = 0.02356 +At r = 0.018750: q_mu = 2.79407 q_A = 0.52979 CLsb = 0.01121 CLb = 0.05992 CLs = 0.18702 +At r = 0.028125: q_mu = 4.53828 q_A = 1.17987 CLsb = 0.00424 CLb = 0.06106 CLs = 0.06948 +At r = 0.032281: q_mu = 5.37876 q_A = 1.54564 CLsb = 0.00268 CLb = 0.06159 CLs = 0.04348 +At r = 0.030459: q_mu = 5.00559 q_A = 1.37981 CLsb = 0.00328 CLb = 0.06137 CLs = 0.05351 +At r = 0.031300: q_mu = 5.17676 q_A = 1.45512 CLsb = 0.00299 CLb = 0.06146 CLs = 0.04864 +At r = 0.030938: q_mu = 5.10280 q_A = 1.42241 CLsb = 0.00311 CLb = 0.06142 CLs = 0.05069 + + -- Asymptotic -- +Observed Limit: r < 0.0309 +Expected 2.5%: r < 0.0276 +Expected 16.0%: r < 0.0369 +Expected 50.0%: r < 0.0513 +Expected 84.0%: r < 0.0737 +Expected 97.5%: r < 0.1010 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_580_novo_285_625/datacard_580_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_580_novo_285_625/datacard_580_novo_285_625.txt new file mode 100644 index 0000000..172575a --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_580_novo_285_625/datacard_580_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_580.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_580.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 1616.110000 21478.000000 1616.110000 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.066556 - - +JER lnN 1.016590 - - +JEC lnN 1.001442 - - +trigger lnN 1.068343 - - +PDF lnN 1.022800 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.000062 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_590_novo_285_625/CMS_HH4b_590_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_590_novo_285_625/CMS_HH4b_590_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..e003eaa --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_590_novo_285_625/CMS_HH4b_590_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-qQs2Li.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 1.46156e-11 -1.46156e-11/+0.00875272 (68% CL) +nll S+B -> -0.00184131 nll B -> -0.00184132 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_590_novo_285_625/CMS_HH4b_590_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_590_novo_285_625/CMS_HH4b_590_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..6060042 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_590_novo_285_625/CMS_HH4b_590_13TeV_asymptoticCLs.out @@ -0,0 +1,43 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.0473633 +Sigma for expected limits: 0.0241654 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -1788.75 (r = 1.29573e-07) + +Make global fit of asimov data +NLL at global minimum of asimov: -1732.84 (r = 0.000380108) +At r = 1.200000: q_mu = 384.16187 q_A = 350.37609 CLsb = 0.00000 CLb = 0.18340 CLs = 0.00000 +At r = 0.600000: q_mu = 199.54444 q_A = 176.76417 CLsb = 0.00000 CLb = 0.19580 CLs = 0.00000 +At r = 0.300000: q_mu = 97.05287 q_A = 80.20967 CLsb = 0.00000 CLb = 0.17352 CLs = 0.00000 +At r = 0.150000: q_mu = 41.12239 q_A = 29.89517 CLsb = 0.00000 CLb = 0.15228 CLs = 0.00000 +At r = 0.075000: q_mu = 15.80497 q_A = 9.19108 CLsb = 0.00002 CLb = 0.13768 CLs = 0.00014 +At r = 0.037500: q_mu = 6.02933 q_A = 2.48367 CLsb = 0.00346 CLb = 0.13031 CLs = 0.02653 +At r = 0.018750: q_mu = 2.44633 q_A = 0.62966 CLsb = 0.02630 CLb = 0.12616 CLs = 0.20844 +At r = 0.028125: q_mu = 4.10785 q_A = 1.41273 CLsb = 0.01011 CLb = 0.12845 CLs = 0.07869 +At r = 0.033129: q_mu = 5.10269 q_A = 1.94985 CLsb = 0.00578 CLb = 0.12946 CLs = 0.04464 +At r = 0.031328: q_mu = 4.73636 q_A = 1.74761 CLsb = 0.00710 CLb = 0.12915 CLs = 0.05494 +At r = 0.032342: q_mu = 4.94170 q_A = 1.86016 CLsb = 0.00632 CLb = 0.12930 CLs = 0.04890 +At r = 0.031985: q_mu = 4.86894 q_A = 1.82007 CLsb = 0.00659 CLb = 0.12924 CLs = 0.05096 +At r = 0.032188: q_mu = 4.91029 q_A = 1.84283 CLsb = 0.00644 CLb = 0.12928 CLs = 0.04978 + + -- Asymptotic -- +Observed Limit: r < 0.0322 +Expected 2.5%: r < 0.0248 +Expected 16.0%: r < 0.0336 +Expected 50.0%: r < 0.0474 +Expected 84.0%: r < 0.0666 +Expected 97.5%: r < 0.0911 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_590_novo_285_625/datacard_590_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_590_novo_285_625/datacard_590_novo_285_625.txt new file mode 100644 index 0000000..637da8e --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_590_novo_285_625/datacard_590_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_590.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_590.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 1664.550000 21478.000000 1664.550000 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.066830 - - +JER lnN 1.016485 - - +JEC lnN 1.002111 - - +trigger lnN 1.067782 - - +PDF lnN 1.022875 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.001199 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_600_novo_285_625/CMS_HH4b_600_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_600_novo_285_625/CMS_HH4b_600_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..5eda36a --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_600_novo_285_625/CMS_HH4b_600_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-RMkSP7.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.020 + + + --- MaxLikelihoodFit --- +Best fit r: 3.2469e-12 -3.2469e-12/+0.00879363 (68% CL) +nll S+B -> -0.00433203 nll B -> -0.00433212 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_600_novo_285_625/CMS_HH4b_600_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_600_novo_285_625/CMS_HH4b_600_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..2a25920 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_600_novo_285_625/CMS_HH4b_600_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.0405273 +Sigma for expected limits: 0.0206776 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -1980.12 (r = 3.52987e-09) + +Make global fit of asimov data +NLL at global minimum of asimov: -1930.47 (r = 0.000443992) +At r = 1.200000: q_mu = 431.54010 q_A = 401.36090 CLsb = 0.00000 CLb = 0.22566 CLs = 0.00000 +At r = 0.600000: q_mu = 222.52345 q_A = 202.32560 CLsb = 0.00000 CLb = 0.23886 CLs = 0.00000 +At r = 0.300000: q_mu = 109.87098 q_A = 94.99571 CLsb = 0.00000 CLb = 0.22270 CLs = 0.00000 +At r = 0.150000: q_mu = 47.09773 q_A = 36.94170 CLsb = 0.00000 CLb = 0.20172 CLs = 0.00000 +At r = 0.075000: q_mu = 17.90354 q_A = 11.77390 CLsb = 0.00001 CLb = 0.18588 CLs = 0.00004 +At r = 0.037500: q_mu = 6.57543 q_A = 3.23999 CLsb = 0.00320 CLb = 0.17709 CLs = 0.01807 +At r = 0.018750: q_mu = 2.54256 q_A = 0.82346 CLsb = 0.03182 CLb = 0.17176 CLs = 0.18527 +At r = 0.028125: q_mu = 4.39130 q_A = 1.84775 CLsb = 0.01087 CLb = 0.17474 CLs = 0.06220 +At r = 0.031325: q_mu = 5.10107 q_A = 2.28333 CLsb = 0.00727 CLb = 0.17557 CLs = 0.04143 +At r = 0.029501: q_mu = 4.69170 q_A = 2.02981 CLsb = 0.00916 CLb = 0.17510 CLs = 0.05234 +At r = 0.030151: q_mu = 4.83626 q_A = 2.11868 CLsb = 0.00845 CLb = 0.17528 CLs = 0.04818 +At r = 0.029788: q_mu = 4.75537 q_A = 2.06885 CLsb = 0.00884 CLb = 0.17518 CLs = 0.05046 + + -- Asymptotic -- +Observed Limit: r < 0.0298 +Expected 2.5%: r < 0.0218 +Expected 16.0%: r < 0.0291 +Expected 50.0%: r < 0.0405 +Expected 84.0%: r < 0.0583 +Expected 97.5%: r < 0.0799 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_600_novo_285_625/datacard_600_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_600_novo_285_625/datacard_600_novo_285_625.txt new file mode 100644 index 0000000..41d9f2f --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_600_novo_285_625/datacard_600_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_600.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_600.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 1712.99 21478 1712.99 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.06714 - - +JER lnN 1.01626 - - +JEC lnN 1.00275 - - +trigger lnN 1.06723 - - +PDF lnN 1.0229477477 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.002 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_610_novo_285_625/CMS_HH4b_610_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_610_novo_285_625/CMS_HH4b_610_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..9368e8a --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_610_novo_285_625/CMS_HH4b_610_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-e3GiPn.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.020 + + + --- MaxLikelihoodFit --- +Best fit r: 4.46143e-13 -4.46143e-13/+0.00757318 (68% CL) +nll S+B -> -0.0075776 nll B -> -0.00757764 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_610_novo_285_625/CMS_HH4b_610_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_610_novo_285_625/CMS_HH4b_610_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..e2869dc --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_610_novo_285_625/CMS_HH4b_610_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.034668 +Sigma for expected limits: 0.0176881 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -2146.05 (r = 1.7886e-09) + +Make global fit of asimov data +NLL at global minimum of asimov: -2100.07 (r = 0.000278787) +At r = 1.200000: q_mu = 489.06886 q_A = 459.38126 CLsb = 0.00000 CLb = 0.24429 CLs = 0.00000 +At r = 0.600000: q_mu = 249.73992 q_A = 230.36330 CLsb = 0.00000 CLb = 0.26163 CLs = 0.00000 +At r = 0.300000: q_mu = 127.54527 q_A = 112.52347 CLsb = 0.00000 CLb = 0.23945 CLs = 0.00000 +At r = 0.150000: q_mu = 56.57569 q_A = 45.95345 CLsb = 0.00000 CLb = 0.21667 CLs = 0.00000 +At r = 0.075000: q_mu = 22.04618 q_A = 15.38028 CLsb = 0.00000 CLb = 0.19770 CLs = 0.00000 +At r = 0.037500: q_mu = 8.12069 q_A = 4.38445 CLsb = 0.00141 CLb = 0.18615 CLs = 0.00759 +At r = 0.018750: q_mu = 3.09751 q_A = 1.14139 CLsb = 0.02364 CLb = 0.17997 CLs = 0.13134 +At r = 0.028125: q_mu = 5.39921 q_A = 2.52724 CLsb = 0.00633 CLb = 0.18319 CLs = 0.03457 +At r = 0.024177: q_mu = 4.37502 q_A = 1.88275 CLsb = 0.01129 CLb = 0.18189 CLs = 0.06210 +At r = 0.026135: q_mu = 4.87337 q_A = 2.19166 CLsb = 0.00851 CLb = 0.18254 CLs = 0.04664 +At r = 0.025362: q_mu = 4.67451 q_A = 2.06730 CLsb = 0.00953 CLb = 0.18229 CLs = 0.05226 +At r = 0.025757: q_mu = 4.77568 q_A = 2.13038 CLsb = 0.00900 CLb = 0.18242 CLs = 0.04932 + + -- Asymptotic -- +Observed Limit: r < 0.0258 +Expected 2.5%: r < 0.0187 +Expected 16.0%: r < 0.0252 +Expected 50.0%: r < 0.0347 +Expected 84.0%: r < 0.0499 +Expected 97.5%: r < 0.0685 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_610_novo_285_625/datacard_610_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_610_novo_285_625/datacard_610_novo_285_625.txt new file mode 100644 index 0000000..2c3f55e --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_610_novo_285_625/datacard_610_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_610.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_610.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 1742.314000 21478.000000 1742.314000 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.067494 - - +JER lnN 1.015874 - - +JEC lnN 1.003287 - - +trigger lnN 1.066713 - - +PDF lnN 1.023038 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.002287 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_620_novo_285_625/CMS_HH4b_620_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_620_novo_285_625/CMS_HH4b_620_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..277724f --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_620_novo_285_625/CMS_HH4b_620_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-12qsHX.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 8.57647e-14 -8.57647e-14/+0.0060579 (68% CL) +nll S+B -> -0.0107287 nll B -> -0.0107287 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_620_novo_285_625/CMS_HH4b_620_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_620_novo_285_625/CMS_HH4b_620_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..2b8ca9d --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_620_novo_285_625/CMS_HH4b_620_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.0297852 +Sigma for expected limits: 0.0151968 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -2314.88 (r = 2.0707e-09) + +Make global fit of asimov data +NLL at global minimum of asimov: -2271.76 (r = 2.80838e-08) +At r = 1.200000: q_mu = 554.15482 q_A = 524.06003 CLsb = 0.00000 CLb = 0.25549 CLs = 0.00000 +At r = 0.600000: q_mu = 283.46162 q_A = 262.52164 CLsb = 0.00000 CLb = 0.25908 CLs = 0.00000 +At r = 0.300000: q_mu = 148.84709 q_A = 132.87084 CLsb = 0.00000 CLb = 0.24416 CLs = 0.00000 +At r = 0.150000: q_mu = 68.83873 q_A = 57.11430 CLsb = 0.00000 CLb = 0.21897 CLs = 0.00000 +At r = 0.075000: q_mu = 27.92795 q_A = 20.23739 CLsb = 0.00000 CLb = 0.19634 CLs = 0.00000 +At r = 0.037500: q_mu = 10.53896 q_A = 6.05964 CLsb = 0.00037 CLb = 0.18146 CLs = 0.00206 +At r = 0.018750: q_mu = 4.04454 q_A = 1.64431 CLsb = 0.01327 CLb = 0.17466 CLs = 0.07598 +At r = 0.028125: q_mu = 7.03696 q_A = 3.55410 CLsb = 0.00249 CLb = 0.17782 CLs = 0.01398 +At r = 0.023438: q_mu = 5.47073 q_A = 2.51846 CLsb = 0.00592 CLb = 0.17614 CLs = 0.03359 +At r = 0.020672: q_mu = 4.61154 q_A = 1.98240 CLsb = 0.00960 CLb = 0.17524 CLs = 0.05478 +At r = 0.021638: q_mu = 4.90612 q_A = 2.16322 CLsb = 0.00813 CLb = 0.17555 CLs = 0.04628 +At r = 0.021091: q_mu = 4.73840 q_A = 2.05987 CLsb = 0.00893 CLb = 0.17537 CLs = 0.05094 + + -- Asymptotic -- +Observed Limit: r < 0.0211 +Expected 2.5%: r < 0.0154 +Expected 16.0%: r < 0.0208 +Expected 50.0%: r < 0.0298 +Expected 84.0%: r < 0.0417 +Expected 97.5%: r < 0.0581 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_620_novo_285_625/datacard_620_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_620_novo_285_625/datacard_620_novo_285_625.txt new file mode 100644 index 0000000..6a8f00e --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_620_novo_285_625/datacard_620_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_620.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_620.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 1771.638000 21478.000000 1771.638000 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.067885 - - +JER lnN 1.015346 - - +JEC lnN 1.003726 - - +trigger lnN 1.066228 - - +PDF lnN 1.023147 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.002116 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_650_novo_285_625/datacard_650_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_650_novo_285_625/datacard_650_novo_285_625.txt new file mode 100644 index 0000000..5f97a8f --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/LMR/LMR_650_novo_285_625/datacard_650_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_650.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_650.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 1859.61 21478 1859.61 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.06919 - - +JER lnN 1.01327 - - +JEC lnN 1.0047 - - +trigger lnN 1.0648885684 - - +PDF lnN 1.02353914841 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1000_novo_550_1200/CMS_HH4b_1000_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1000_novo_550_1200/CMS_HH4b_1000_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..f52675d --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1000_novo_550_1200/CMS_HH4b_1000_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-xN4W5d.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 0.126102 -0.126102/+2.83469 (68% CL) +nll S+B -> -0.00136914 nll B -> -0.000318579 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1000_novo_550_1200/CMS_HH4b_1000_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1000_novo_550_1200/CMS_HH4b_1000_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..78b89ad --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1000_novo_550_1200/CMS_HH4b_1000_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 5.89062 +Sigma for expected limits: 3.00548 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -0.306981 (r = 0.121879) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.330482 (r = 4.93472e-05) +At r = 39.962318: q_mu = 75.80425 q_A = 74.74510 CLsb = 0.00000 CLb = 0.47558 CLs = 0.00000 +At r = 20.042098: q_mu = 30.18384 q_A = 29.80061 CLsb = 0.00000 CLb = 0.48600 CLs = 0.00000 +At r = 10.081988: q_mu = 10.01207 q_A = 9.96915 CLsb = 0.00078 CLb = 0.49729 CLs = 0.00156 +At r = 5.101934: q_mu = 2.88326 q_A = 2.93778 CLsb = 0.04475 CLb = 0.50637 CLs = 0.08838 +At r = 7.591961: q_mu = 6.05332 q_A = 6.07134 CLsb = 0.00694 CLb = 0.50146 CLs = 0.01384 +At r = 6.346947: q_mu = 4.35454 q_A = 4.39465 CLsb = 0.01846 CLb = 0.50382 CLs = 0.03663 +At r = 5.746076: q_mu = 3.61436 q_A = 3.66256 CLsb = 0.02864 CLb = 0.50504 CLs = 0.05671 +At r = 6.004759: q_mu = 3.92618 q_A = 3.97110 CLsb = 0.02377 CLb = 0.50451 CLs = 0.04711 +At r = 5.886674: q_mu = 3.78246 q_A = 3.82889 CLsb = 0.02590 CLb = 0.50475 CLs = 0.05131 +At r = 5.938865: q_mu = 3.84563 q_A = 3.89138 CLsb = 0.02494 CLb = 0.50464 CLs = 0.04942 +At r = 5.915371: q_mu = 3.81706 q_A = 3.86310 CLsb = 0.02537 CLb = 0.50469 CLs = 0.05026 + + -- Asymptotic -- +Observed Limit: r < 5.9154 +Expected 2.5%: r < 3.0834 +Expected 16.0%: r < 4.1580 +Expected 50.0%: r < 5.8906 +Expected 84.0%: r < 8.4969 +Expected 97.5%: r < 11.8439 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1000_novo_550_1200/datacard_1000_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1000_novo_550_1200/datacard_1000_novo_550_1200.txt new file mode 100644 index 0000000..33bec67 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1000_novo_550_1200/datacard_1000_novo_550_1200.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_1000.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_1000.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 4.694 1443 4.694 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.08278 - - +JER lnN 1.01204 - - +JEC lnN 1.00468 - - +trigger lnN 1.0573539334 - - +PDF lnN 1.02645918657 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.061 +par_novo_0 param 300.004 77.2331 +par_novo_1 param 228.272 200.342 +par_novo_2 param -0.351207 1.11678 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1050_novo_550_1200/CMS_HH4b_1050_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1050_novo_550_1200/CMS_HH4b_1050_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..cd48722 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1050_novo_550_1200/CMS_HH4b_1050_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-knfVtR.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 8.87507e-09 -8.87507e-09/+1.09336 (68% CL) +nll S+B -> -0.000954903 nll B -> -0.000954888 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1050_novo_550_1200/CMS_HH4b_1050_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1050_novo_550_1200/CMS_HH4b_1050_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..c10c878 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1050_novo_550_1200/CMS_HH4b_1050_13TeV_asymptoticCLs.out @@ -0,0 +1,40 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 6.21875 +Sigma for expected limits: 3.17289 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -1.10418 (r = 3.74902e-07) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.355836 (r = 9.4531e-06) +At r = 3.670872: q_mu = 4.14572 q_A = 1.43620 CLsb = 0.00993 CLb = 0.12914 CLs = 0.07691 +At r = 7.341743: q_mu = 10.13323 q_A = 5.18263 CLsb = 0.00038 CLb = 0.13845 CLs = 0.00278 +At r = 3.670872: q_mu = 4.14573 q_A = 1.43620 CLsb = 0.00993 CLb = 0.12914 CLs = 0.07691 +At r = 5.506308: q_mu = 6.96063 q_A = 3.07347 CLsb = 0.00211 CLb = 0.13379 CLs = 0.01574 +At r = 4.436619: q_mu = 5.27070 q_A = 2.05550 CLsb = 0.00531 CLb = 0.13108 CLs = 0.04051 +At r = 4.082287: q_mu = 4.74131 q_A = 1.75766 CLsb = 0.00712 CLb = 0.13024 CLs = 0.05469 +At r = 4.237770: q_mu = 4.97151 q_A = 1.88567 CLsb = 0.00627 CLb = 0.13059 CLs = 0.04798 +At r = 4.167502: q_mu = 4.86706 q_A = 1.82723 CLsb = 0.00664 CLb = 0.13042 CLs = 0.05091 +At r = 4.198730: q_mu = 4.91338 q_A = 1.85304 CLsb = 0.00647 CLb = 0.13049 CLs = 0.04959 +At r = 4.184713: q_mu = 4.89256 q_A = 1.84142 CLsb = 0.00655 CLb = 0.13046 CLs = 0.05018 + + -- Asymptotic -- +Observed Limit: r < 4.1847 +Expected 2.5%: r < 3.2430 +Expected 16.0%: r < 4.3705 +Expected 50.0%: r < 6.2188 +Expected 84.0%: r < 8.9950 +Expected 97.5%: r < 12.5971 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1050_novo_550_1200/datacard_1050_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1050_novo_550_1200/datacard_1050_novo_550_1200.txt new file mode 100644 index 0000000..06c8316 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1050_novo_550_1200/datacard_1050_novo_550_1200.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_1050.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_1050.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 4.357080 1443.000000 4.357080 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.083901 - - +JER lnN 1.012146 - - +JEC lnN 1.003780 - - +trigger lnN 1.057102 - - +PDF lnN 1.028044 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.089678 +par_novo_0 param 300.004 77.2331 +par_novo_1 param 228.272 200.342 +par_novo_2 param -0.351207 1.11678 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1100_novo_550_1200/CMS_HH4b_1100_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1100_novo_550_1200/CMS_HH4b_1100_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..f21ea22 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1100_novo_550_1200/CMS_HH4b_1100_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-B7D6GG.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.020 + + + --- MaxLikelihoodFit --- +Best fit r: 2.56911e-09 -2.56911e-09/+1.52141 (68% CL) +nll S+B -> -0.000676864 nll B -> -0.000676842 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1100_novo_550_1200/CMS_HH4b_1100_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1100_novo_550_1200/CMS_HH4b_1100_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..1157641 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1100_novo_550_1200/CMS_HH4b_1100_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 6.95312 +Sigma for expected limits: 3.54758 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -0.868114 (r = 8.42799e-06) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.375002 (r = 8.1962e-05) +At r = 5.201996: q_mu = 4.66136 q_A = 2.25008 CLsb = 0.01062 CLb = 0.21077 CLs = 0.05038 +At r = 10.403991: q_mu = 12.01496 q_A = 7.88679 CLsb = 0.00020 CLb = 0.23117 CLs = 0.00085 +At r = 5.202000: q_mu = 4.66137 q_A = 2.25009 CLsb = 0.01062 CLb = 0.21077 CLs = 0.05038 +At r = 7.802995: q_mu = 8.09233 q_A = 4.74640 CLsb = 0.00161 CLb = 0.22127 CLs = 0.00726 +At r = 6.502498: q_mu = 6.30560 q_A = 3.40627 CLsb = 0.00426 CLb = 0.21609 CLs = 0.01969 +At r = 5.470379: q_mu = 4.98794 q_A = 2.47240 CLsb = 0.00884 CLb = 0.21188 CLs = 0.04172 +At r = 5.264184: q_mu = 4.73711 q_A = 2.30157 CLsb = 0.01018 CLb = 0.21107 CLs = 0.04821 +At r = 5.222904: q_mu = 4.68655 q_A = 2.26708 CLsb = 0.01047 CLb = 0.21086 CLs = 0.04965 +At r = 5.210568: q_mu = 4.67169 q_A = 2.25705 CLsb = 0.01056 CLb = 0.21081 CLs = 0.05007 + + -- Asymptotic -- +Observed Limit: r < 5.2106 +Expected 2.5%: r < 3.6259 +Expected 16.0%: r < 4.8866 +Expected 50.0%: r < 6.9531 +Expected 84.0%: r < 10.0295 +Expected 97.5%: r < 14.0670 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1100_novo_550_1200/datacard_1100_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1100_novo_550_1200/datacard_1100_novo_550_1200.txt new file mode 100644 index 0000000..884b241 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1100_novo_550_1200/datacard_1100_novo_550_1200.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_1100.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_1100.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 4.020160 1443.000000 4.020160 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.084904 - - +JER lnN 1.012157 - - +JEC lnN 1.004427 - - +trigger lnN 1.057066 - - +PDF lnN 1.030113 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.100846 +par_novo_0 param 300.004 77.2331 +par_novo_1 param 228.272 200.342 +par_novo_2 param -0.351207 1.11678 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1150_novo_550_1200/CMS_HH4b_1150_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1150_novo_550_1200/CMS_HH4b_1150_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..982e1bc --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1150_novo_550_1200/CMS_HH4b_1150_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-Thr4St.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 3 -2.28715/+5.33929e-07 (68% CL) +nll S+B -> -0.775062 nll B -> -0.00127039 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1150_novo_550_1200/CMS_HH4b_1150_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1150_novo_550_1200/CMS_HH4b_1150_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..532dad1 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1150_novo_550_1200/CMS_HH4b_1150_13TeV_asymptoticCLs.out @@ -0,0 +1,38 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 6.53125 +Sigma for expected limits: 3.33233 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -0.491704 (r = 3.82992) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.44047 (r = 0.0557444) +At r = 13.083317: q_mu = 6.87455 q_A = 13.08884 CLsb = 0.00437 CLb = 0.84035 CLs = 0.00520 +At r = 8.456618: q_mu = 1.95426 q_A = 6.17759 CLsb = 0.08106 CLb = 0.86160 CLs = 0.09409 +At r = 10.769968: q_mu = 4.12571 q_A = 9.43232 CLsb = 0.02112 CLb = 0.85084 CLs = 0.02482 +At r = 9.797290: q_mu = 3.13378 q_A = 8.00821 CLsb = 0.03834 CLb = 0.85534 CLs = 0.04483 +At r = 9.371175: q_mu = 2.73413 q_A = 7.40883 CLsb = 0.04911 CLb = 0.85733 CLs = 0.05729 +At r = 9.560261: q_mu = 2.90928 q_A = 7.67326 CLsb = 0.04404 CLb = 0.85643 CLs = 0.05142 +At r = 9.646323: q_mu = 2.98966 q_A = 7.79496 CLsb = 0.04190 CLb = 0.85608 CLs = 0.04894 +At r = 9.599281: q_mu = 2.94537 q_A = 7.72831 CLsb = 0.04306 CLb = 0.85628 CLs = 0.05029 + + -- Asymptotic -- +Observed Limit: r < 9.5993 +Expected 2.5%: r < 3.4315 +Expected 16.0%: r < 4.6060 +Expected 50.0%: r < 6.5312 +Expected 84.0%: r < 9.3689 +Expected 97.5%: r < 13.0984 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1150_novo_550_1200/datacard_1150_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1150_novo_550_1200/datacard_1150_novo_550_1200.txt new file mode 100644 index 0000000..f7325ee --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1150_novo_550_1200/datacard_1150_novo_550_1200.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_1150.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_1150.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 3.683240 1443.000000 3.683240 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.085827 - - +JER lnN 1.012104 - - +JEC lnN 1.006106 - - +trigger lnN 1.057174 - - +PDF lnN 1.032505 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.100341 +par_novo_0 param 300.004 77.2331 +par_novo_1 param 228.272 200.342 +par_novo_2 param -0.351207 1.11678 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1200_novo_550_1200/CMS_HH4b_1200_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1200_novo_550_1200/CMS_HH4b_1200_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..759b1ef --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1200_novo_550_1200/CMS_HH4b_1200_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-PiGY7p.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 1.78553 -1.78553/+1.21447 (68% CL) +nll S+B -> -0.223129 nll B -> -0.000605522 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1200_novo_550_1200/CMS_HH4b_1200_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1200_novo_550_1200/CMS_HH4b_1200_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..fefad24 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1200_novo_550_1200/CMS_HH4b_1200_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 5.42188 +Sigma for expected limits: 2.76631 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -0.263761 (r = 1.78414) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.523063 (r = 0.0149269) +At r = 9.879654: q_mu = 6.58853 q_A = 10.71622 CLsb = 0.00513 CLb = 0.76014 CLs = 0.00675 +At r = 5.831897: q_mu = 1.89778 q_A = 4.37418 CLsb = 0.08416 CLb = 0.76234 CLs = 0.11040 +At r = 7.855776: q_mu = 3.97839 q_A = 7.32822 CLsb = 0.02304 CLb = 0.76192 CLs = 0.03024 +At r = 6.822384: q_mu = 2.84053 q_A = 5.75647 CLsb = 0.04596 CLb = 0.76235 CLs = 0.06028 +At r = 7.253236: q_mu = 3.29697 q_A = 6.39688 CLsb = 0.03470 CLb = 0.76222 CLs = 0.04553 +At r = 7.052066: q_mu = 3.08114 q_A = 6.09553 CLsb = 0.03960 CLb = 0.76226 CLs = 0.05195 +At r = 7.139045: q_mu = 3.17355 q_A = 6.22509 CLsb = 0.03742 CLb = 0.76225 CLs = 0.04909 +At r = 7.099128: q_mu = 3.13095 q_A = 6.16548 CLsb = 0.03841 CLb = 0.76226 CLs = 0.05039 +At r = 7.116593: q_mu = 3.14954 q_A = 6.19153 CLsb = 0.03797 CLb = 0.76226 CLs = 0.04982 + + -- Asymptotic -- +Observed Limit: r < 7.1166 +Expected 2.5%: r < 2.8062 +Expected 16.0%: r < 3.7973 +Expected 50.0%: r < 5.4219 +Expected 84.0%: r < 7.9072 +Expected 97.5%: r < 11.1582 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1200_novo_550_1200/datacard_1200_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1200_novo_550_1200/datacard_1200_novo_550_1200.txt new file mode 100644 index 0000000..88e6d18 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_1200_novo_550_1200/datacard_1200_novo_550_1200.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_1200.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_1200.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 3.34632 1443 3.34632 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.08671 - - +JER lnN 1.01202 - - +JEC lnN 1.0083 - - +trigger lnN 1.0573539334 - - +PDF lnN 1.03505815889 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.094 +par_novo_0 param 300.004 77.2331 +par_novo_1 param 228.272 200.342 +par_novo_2 param -0.351207 1.11678 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_550_novo_550_1200/CMS_HH4b_550_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_550_novo_550_1200/CMS_HH4b_550_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..c755850 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_550_novo_550_1200/CMS_HH4b_550_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-ufjKPR.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.020 + + + --- MaxLikelihoodFit --- +Best fit r: 2.60933 -2.60933/+0.390668 (68% CL) +nll S+B -> -0.0587001 nll B -> -0.000347132 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_550_novo_550_1200/CMS_HH4b_550_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_550_novo_550_1200/CMS_HH4b_550_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..87c582d --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_550_novo_550_1200/CMS_HH4b_550_13TeV_asymptoticCLs.out @@ -0,0 +1,40 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +WARNING: Best fit of asimov dataset is at r = 0.676879 (0.033844 times rMax), while it should be at zero +Median for expected limits: 16.0625 +Sigma for expected limits: 8.1953 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -0.0978673 (r = 2.61195) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.179176 (r = 0.687894) +At r = 23.576533: q_mu = 6.63403 q_A = 8.08372 CLsb = 0.00500 CLb = 0.60547 CLs = 0.00826 +At r = 13.094243: q_mu = 1.79300 q_A = 2.57114 CLsb = 0.09028 CLb = 0.60428 CLs = 0.14940 +At r = 18.335388: q_mu = 3.89109 q_A = 5.01396 CLsb = 0.02427 CLb = 0.60511 CLs = 0.04011 +At r = 16.584466: q_mu = 3.11234 q_A = 4.12181 CLsb = 0.03885 CLb = 0.60490 CLs = 0.06423 +At r = 17.329494: q_mu = 3.43462 q_A = 4.49257 CLsb = 0.03192 CLb = 0.60499 CLs = 0.05276 +At r = 17.688570: q_mu = 3.59495 q_A = 4.67615 CLsb = 0.02898 CLb = 0.60504 CLs = 0.04789 +At r = 17.489099: q_mu = 3.50548 q_A = 4.57376 CLsb = 0.03058 CLb = 0.60501 CLs = 0.05055 +At r = 17.561319: q_mu = 3.53773 q_A = 4.61070 CLsb = 0.02999 CLb = 0.60502 CLs = 0.04957 +At r = 17.521528: q_mu = 3.51993 q_A = 4.59033 CLsb = 0.03032 CLb = 0.60502 CLs = 0.05011 + + -- Asymptotic -- +Observed Limit: r < 17.5215 +Expected 2.5%: r < 8.8156 +Expected 16.0%: r < 11.5898 +Expected 50.0%: r < 16.0625 +Expected 84.0%: r < 22.5291 +Expected 97.5%: r < 30.6496 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_550_novo_550_1200/datacard_550_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_550_novo_550_1200/datacard_550_novo_550_1200.txt new file mode 100644 index 0000000..8173774 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_550_novo_550_1200/datacard_550_novo_550_1200.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_550.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_550.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 2.47576 1443 2.47576 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.06518 - - +JER lnN 1.01484 - - +JEC lnN 1.02905 - - +trigger lnN 1.0697740714 - - +PDF lnN 1.02229693932 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.170 +par_novo_0 param 300.004 77.2331 +par_novo_1 param 228.272 200.342 +par_novo_2 param -0.351207 1.11678 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_570_novo_550_1200/CMS_HH4b_570_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_570_novo_550_1200/CMS_HH4b_570_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..b6550f1 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_570_novo_550_1200/CMS_HH4b_570_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-if3tmY.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 3 -3/+2.32656e-06 (68% CL) +nll S+B -> -0.375263 nll B -> -0.000484971 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_570_novo_550_1200/CMS_HH4b_570_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_570_novo_550_1200/CMS_HH4b_570_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..8c09a7f --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_570_novo_550_1200/CMS_HH4b_570_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +WARNING: Best fit of asimov dataset is at r = 0.217878 (0.010894 times rMax), while it should be at zero +Median for expected limits: 16.9375 +Sigma for expected limits: 8.64174 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -0.3179 (r = 9.66702) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.196502 (r = 0.327943) +At r = 34.307469: q_mu = 7.36075 q_A = 13.99118 CLsb = 0.00333 CLb = 0.84789 CLs = 0.00393 +At r = 21.987246: q_mu = 2.04213 q_A = 6.29372 CLsb = 0.07650 CLb = 0.85986 CLs = 0.08897 +At r = 28.147357: q_mu = 4.36843 q_A = 9.88047 CLsb = 0.01831 CLb = 0.85389 CLs = 0.02144 +At r = 25.214693: q_mu = 3.16881 q_A = 8.09937 CLsb = 0.03753 CLb = 0.85675 CLs = 0.04380 +At r = 24.087051: q_mu = 2.75105 q_A = 7.44913 CLsb = 0.04860 CLb = 0.85784 CLs = 0.05665 +At r = 24.750526: q_mu = 2.99422 q_A = 7.82963 CLsb = 0.04178 CLb = 0.85719 CLs = 0.04874 +At r = 24.527853: q_mu = 2.91156 q_A = 7.70107 CLsb = 0.04397 CLb = 0.85741 CLs = 0.05129 +At r = 24.661315: q_mu = 2.96095 q_A = 7.77799 CLsb = 0.04265 CLb = 0.85728 CLs = 0.04975 + + -- Asymptotic -- +Observed Limit: r < 24.6613 +Expected 2.5%: r < 9.0973 +Expected 16.0%: r < 12.1292 +Expected 50.0%: r < 16.9375 +Expected 84.0%: r < 24.0264 +Expected 97.5%: r < 32.9353 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_570_novo_550_1200/datacard_570_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_570_novo_550_1200/datacard_570_novo_550_1200.txt new file mode 100644 index 0000000..70d1b75 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_570_novo_550_1200/datacard_570_novo_550_1200.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_570.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_570.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 2.691840 1443.000000 2.691840 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.065891 - - +JER lnN 1.014267 - - +JEC lnN 1.029145 - - +trigger lnN 1.068784 - - +PDF lnN 1.022540 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.123068 +par_novo_0 param 300.004 77.2331 +par_novo_1 param 228.272 200.342 +par_novo_2 param -0.351207 1.11678 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_600_novo_550_1200/CMS_HH4b_600_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_600_novo_550_1200/CMS_HH4b_600_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..0edf527 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_600_novo_550_1200/CMS_HH4b_600_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-gyJz09.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 1.01073e-08 -1.01073e-08/+3 (68% CL) +nll S+B -> -0.000318925 nll B -> -0.000318854 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_600_novo_550_1200/CMS_HH4b_600_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_600_novo_550_1200/CMS_HH4b_600_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..e2fdc1d --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_600_novo_550_1200/CMS_HH4b_600_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +WARNING: Best fit of asimov dataset is at r = 0.093465 (0.004673 times rMax), while it should be at zero +Median for expected limits: 14.6875 +Sigma for expected limits: 7.49376 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -0.247526 (r = 3.32732e-05) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.164158 (r = 0.122343) +At r = 79.459005: q_mu = 60.92950 q_A = 60.46277 CLsb = 0.00000 CLb = 0.48803 CLs = 0.00000 +At r = 39.729519: q_mu = 22.74922 q_A = 22.04264 CLsb = 0.00000 CLb = 0.47001 CLs = 0.00000 +At r = 19.864776: q_mu = 7.33392 q_A = 6.71684 CLsb = 0.00336 CLb = 0.45262 CLs = 0.00742 +At r = 9.932405: q_mu = 2.22187 q_A = 1.81572 CLsb = 0.06704 CLb = 0.44010 CLs = 0.15233 +At r = 14.898590: q_mu = 4.47675 q_A = 3.94486 CLsb = 0.01700 CLb = 0.44674 CLs = 0.03805 +At r = 12.415498: q_mu = 3.26650 q_A = 2.79185 CLsb = 0.03492 CLb = 0.44353 CLs = 0.07874 +At r = 13.656088: q_mu = 3.85141 q_A = 3.34683 CLsb = 0.02457 CLb = 0.44516 CLs = 0.05520 +At r = 14.168936: q_mu = 4.10511 q_A = 3.58893 CLsb = 0.02114 CLb = 0.44582 CLs = 0.04743 +At r = 13.923510: q_mu = 3.98279 q_A = 3.47211 CLsb = 0.02273 CLb = 0.44550 CLs = 0.05102 +At r = 14.026836: q_mu = 4.03408 q_A = 3.52107 CLsb = 0.02205 CLb = 0.44564 CLs = 0.04948 +At r = 13.977911: q_mu = 4.00976 q_A = 3.49785 CLsb = 0.02237 CLb = 0.44557 CLs = 0.05020 + + -- Asymptotic -- +Observed Limit: r < 13.9779 +Expected 2.5%: r < 7.7740 +Expected 16.0%: r < 10.4476 +Expected 50.0%: r < 14.6875 +Expected 84.0%: r < 20.9518 +Expected 97.5%: r < 29.0098 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_600_novo_550_1200/datacard_600_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_600_novo_550_1200/datacard_600_novo_550_1200.txt new file mode 100644 index 0000000..fdcd83f --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_600_novo_550_1200/datacard_600_novo_550_1200.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_600.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_600.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 3.01596 1443 3.01596 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.06702 - - +JER lnN 1.01328 - - +JEC lnN 1.02779 - - +trigger lnN 1.06723 - - +PDF lnN 1.0229477477 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.053 +par_novo_0 param 300.004 77.2331 +par_novo_1 param 228.272 200.342 +par_novo_2 param -0.351207 1.11678 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_620_novo_550_1200/CMS_HH4b_620_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_620_novo_550_1200/CMS_HH4b_620_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..7936954 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_620_novo_550_1200/CMS_HH4b_620_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-MCENtw.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 2.23012 -2.23012/+0.769876 (68% CL) +nll S+B -> -0.0667896 nll B -> -0.000318166 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_620_novo_550_1200/CMS_HH4b_620_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_620_novo_550_1200/CMS_HH4b_620_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..e16a8a0 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_620_novo_550_1200/CMS_HH4b_620_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +WARNING: Best fit of asimov dataset is at r = 0.032860 (0.001643 times rMax), while it should be at zero +Median for expected limits: 12.8125 +Sigma for expected limits: 6.53711 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -0.0328461 (r = 2.21884) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.148222 (r = 0.0223934) +At r = 18.850043: q_mu = 6.12695 q_A = 7.72669 CLsb = 0.00666 CLb = 0.61960 CLs = 0.01074 +At r = 10.534443: q_mu = 1.68081 q_A = 2.63984 CLsb = 0.09741 CLb = 0.62866 CLs = 0.15495 +At r = 14.692243: q_mu = 3.61623 q_A = 4.91789 CLsb = 0.02861 CLb = 0.62400 CLs = 0.04585 +At r = 12.613343: q_mu = 2.56950 q_A = 3.70576 CLsb = 0.05447 CLb = 0.62630 CLs = 0.08697 +At r = 14.051293: q_mu = 3.27820 q_A = 4.53006 CLsb = 0.03510 CLb = 0.62469 CLs = 0.05619 +At r = 14.345582: q_mu = 3.43132 q_A = 4.70619 CLsb = 0.03199 CLb = 0.62438 CLs = 0.05123 +At r = 14.475564: q_mu = 3.50018 q_A = 4.78514 CLsb = 0.03068 CLb = 0.62423 CLs = 0.04915 +At r = 14.406511: q_mu = 3.46353 q_A = 4.74314 CLsb = 0.03137 CLb = 0.62431 CLs = 0.05024 + + -- Asymptotic -- +Observed Limit: r < 14.4065 +Expected 2.5%: r < 6.7816 +Expected 16.0%: r < 9.1139 +Expected 50.0%: r < 12.8125 +Expected 84.0%: r < 18.3793 +Expected 97.5%: r < 25.5346 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_620_novo_550_1200/datacard_620_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_620_novo_550_1200/datacard_620_novo_550_1200.txt new file mode 100644 index 0000000..3b8fb61 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_620_novo_550_1200/datacard_620_novo_550_1200.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_620.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_620.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 3.188416 1443.000000 3.188416 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.067850 - - +JER lnN 1.012513 - - +JEC lnN 1.025219 - - +trigger lnN 1.066147 - - +PDF lnN 1.023254 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.006706 +par_novo_0 param 300.004 77.2331 +par_novo_1 param 228.272 200.342 +par_novo_2 param -0.351207 1.11678 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_650_novo_550_1200/CMS_HH4b_650_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_650_novo_550_1200/CMS_HH4b_650_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..516d6f0 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_650_novo_550_1200/CMS_HH4b_650_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-l3ZD4G.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 7.38771e-11 -7.38771e-11/+1.69318 (68% CL) +nll S+B -> -0.000418202 nll B -> -0.000417911 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_650_novo_550_1200/CMS_HH4b_650_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_650_novo_550_1200/CMS_HH4b_650_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..ac36daf --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_650_novo_550_1200/CMS_HH4b_650_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +WARNING: Best fit of asimov dataset is at r = 0.036911 (0.001846 times rMax), while it should be at zero +Median for expected limits: 11.2188 +Sigma for expected limits: 5.72396 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 7.13525 (r = 8.38602e-08) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.139447 (r = 0.007078) +At r = 5.544822: q_mu = 3.82966 q_A = 1.00163 CLsb = 0.00790 CLb = 0.07885 CLs = 0.10014 +At r = 11.089643: q_mu = 9.10509 q_A = 3.76819 CLsb = 0.00046 CLb = 0.08462 CLs = 0.00540 +At r = 5.544822: q_mu = 3.83012 q_A = 1.00164 CLsb = 0.00789 CLb = 0.07882 CLs = 0.10012 +At r = 8.317232: q_mu = 6.31446 q_A = 2.19025 CLsb = 0.00203 CLb = 0.08176 CLs = 0.02484 +At r = 7.204215: q_mu = 5.27726 q_A = 1.66317 CLsb = 0.00356 CLb = 0.08058 CLs = 0.04423 +At r = 6.672977: q_mu = 4.80059 q_A = 1.43478 CLsb = 0.00462 CLb = 0.08002 CLs = 0.05778 +At r = 6.902908: q_mu = 5.00539 q_A = 1.53175 CLsb = 0.00413 CLb = 0.08026 CLs = 0.05150 +At r = 7.009992: q_mu = 5.10155 q_A = 1.57789 CLsb = 0.00392 CLb = 0.08037 CLs = 0.04880 +At r = 6.949906: q_mu = 5.04751 q_A = 1.55192 CLsb = 0.00404 CLb = 0.08031 CLs = 0.05030 +At r = 6.971368: q_mu = 5.06679 q_A = 1.56117 CLsb = 0.00400 CLb = 0.08033 CLs = 0.04976 + + -- Asymptotic -- +Observed Limit: r < 6.9714 +Expected 2.5%: r < 5.8942 +Expected 16.0%: r < 7.9325 +Expected 50.0%: r < 11.2188 +Expected 84.0%: r < 16.0931 +Expected 97.5%: r < 22.2176 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_650_novo_550_1200/datacard_650_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_650_novo_550_1200/datacard_650_novo_550_1200.txt new file mode 100644 index 0000000..1b3d4dc --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_650_novo_550_1200/datacard_650_novo_550_1200.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_650.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_650.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 3.4471 1443 3.4471 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.06923 - - +JER lnN 1.01174 - - +JEC lnN 1.021 - - +trigger lnN 1.0648885684 - - +PDF lnN 1.02353914841 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.062 +par_novo_0 param 300.004 77.2331 +par_novo_1 param 228.272 200.342 +par_novo_2 param -0.351207 1.11678 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_670_novo_550_1200/CMS_HH4b_670_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_670_novo_550_1200/CMS_HH4b_670_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..e2bbc5e --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_670_novo_550_1200/CMS_HH4b_670_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-7AWopO.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.020 + + + --- MaxLikelihoodFit --- +Best fit r: 0 -0/+0.943078 (68% CL) +nll S+B -> -0.000480345 nll B -> -0.000480778 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_670_novo_550_1200/CMS_HH4b_670_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_670_novo_550_1200/CMS_HH4b_670_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..32efca1 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_670_novo_550_1200/CMS_HH4b_670_13TeV_asymptoticCLs.out @@ -0,0 +1,40 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 10.5938 +Sigma for expected limits: 5.40507 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 6.55348 (r = 7.73786e-09) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.140859 (r = 0.000895212) +At r = 2.668819: q_mu = 2.92081 q_A = 0.26995 CLsb = 0.00107 CLb = 0.00537 CLs = 0.19890 +At r = 5.337638: q_mu = 6.18428 q_A = 1.04442 CLsb = 0.00020 CLb = 0.00596 CLs = 0.03401 +At r = 2.668819: q_mu = 2.92081 q_A = 0.26995 CLsb = 0.00107 CLb = 0.00537 CLs = 0.19890 +At r = 4.003229: q_mu = 4.51431 q_A = 0.59728 CLsb = 0.00047 CLb = 0.00564 CLs = 0.08366 +At r = 4.613778: q_mu = 5.26881 q_A = 0.78762 CLsb = 0.00032 CLb = 0.00579 CLs = 0.05566 +At r = 4.884563: q_mu = 5.60881 q_A = 0.88000 CLsb = 0.00027 CLb = 0.00586 CLs = 0.04634 +At r = 4.740494: q_mu = 5.42752 q_A = 0.83018 CLsb = 0.00030 CLb = 0.00582 CLs = 0.05109 +At r = 4.794828: q_mu = 5.49579 q_A = 0.84877 CLsb = 0.00029 CLb = 0.00583 CLs = 0.04925 +At r = 4.766054: q_mu = 5.45962 q_A = 0.83888 CLsb = 0.00029 CLb = 0.00583 CLs = 0.05022 +At r = 4.776933: q_mu = 5.47329 q_A = 0.84261 CLsb = 0.00029 CLb = 0.00583 CLs = 0.04985 + + -- Asymptotic -- +Observed Limit: r < 4.7769 +Expected 2.5%: r < 5.5659 +Expected 16.0%: r < 7.4710 +Expected 50.0%: r < 10.5938 +Expected 84.0%: r < 15.1965 +Expected 97.5%: r < 21.1128 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_670_novo_550_1200/datacard_670_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_670_novo_550_1200/datacard_670_novo_550_1200.txt new file mode 100644 index 0000000..887a76e --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_670_novo_550_1200/datacard_670_novo_550_1200.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_670.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_670.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 3.583696 1443.000000 3.583696 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.070235 - - +JER lnN 1.011821 - - +JEC lnN 1.019524 - - +trigger lnN 1.064548 - - +PDF lnN 1.023480 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.106542 +par_novo_0 param 300.004 77.2331 +par_novo_1 param 228.272 200.342 +par_novo_2 param -0.351207 1.11678 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_700_novo_550_1200/CMS_HH4b_700_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_700_novo_550_1200/CMS_HH4b_700_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..52d83b7 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_700_novo_550_1200/CMS_HH4b_700_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-l7FCcQ.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 1.11662e-11 -1.11662e-11/+2.05691 (68% CL) +nll S+B -> -0.00102852 nll B -> -0.00102852 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_700_novo_550_1200/CMS_HH4b_700_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_700_novo_550_1200/CMS_HH4b_700_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..6cf1469 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_700_novo_550_1200/CMS_HH4b_700_13TeV_asymptoticCLs.out @@ -0,0 +1,40 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 9.90625 +Sigma for expected limits: 5.0543 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 7.37286 (r = 1.62154e-05) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.150395 (r = 1.95994e-05) +At r = 5.271680: q_mu = 3.15862 q_A = 1.16982 CLsb = 0.02270 CLb = 0.17894 CLs = 0.12684 +At r = 10.543361: q_mu = 8.06608 q_A = 4.31544 CLsb = 0.00144 CLb = 0.18333 CLs = 0.00786 +At r = 5.271689: q_mu = 3.15863 q_A = 1.16982 CLsb = 0.02270 CLb = 0.17894 CLs = 0.12684 +At r = 7.907525: q_mu = 5.42801 q_A = 2.52793 CLsb = 0.00618 CLb = 0.18088 CLs = 0.03414 +At r = 6.767369: q_mu = 4.39724 q_A = 1.88395 CLsb = 0.01107 CLb = 0.17995 CLs = 0.06149 +At r = 7.316085: q_mu = 4.88498 q_A = 2.18415 CLsb = 0.00839 CLb = 0.18042 CLs = 0.04648 +At r = 7.091924: q_mu = 4.68353 q_A = 2.05897 CLsb = 0.00940 CLb = 0.18022 CLs = 0.05216 +At r = 7.202632: q_mu = 4.78263 q_A = 2.12033 CLsb = 0.00889 CLb = 0.18031 CLs = 0.04928 +At r = 7.158009: q_mu = 4.74258 q_A = 2.09548 CLsb = 0.00909 CLb = 0.18027 CLs = 0.05043 +At r = 7.180199: q_mu = 4.76246 q_A = 2.10781 CLsb = 0.00899 CLb = 0.18029 CLs = 0.04986 + + -- Asymptotic -- +Observed Limit: r < 7.1802 +Expected 2.5%: r < 5.1660 +Expected 16.0%: r < 6.9991 +Expected 50.0%: r < 9.9062 +Expected 84.0%: r < 14.2103 +Expected 97.5%: r < 19.7426 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_700_novo_550_1200/datacard_700_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_700_novo_550_1200/datacard_700_novo_550_1200.txt new file mode 100644 index 0000000..5397b47 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_700_novo_550_1200/datacard_700_novo_550_1200.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_700.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_700.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 3.788590 1443.000000 3.788590 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.071790 - - +JER lnN 1.012558 - - +JEC lnN 1.018856 - - +trigger lnN 1.064349 - - +PDF lnN 1.023240 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.162675 +par_novo_0 param 300.004 77.2331 +par_novo_1 param 228.272 200.342 +par_novo_2 param -0.351207 1.11678 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_720_novo_550_1200/CMS_HH4b_720_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_720_novo_550_1200/CMS_HH4b_720_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..ae31cda --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_720_novo_550_1200/CMS_HH4b_720_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-IxGPO1.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 2.27483 -2.27483/+0.725173 (68% CL) +nll S+B -> -0.12689 nll B -> -0.00196883 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_720_novo_550_1200/CMS_HH4b_720_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_720_novo_550_1200/CMS_HH4b_720_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..ff1328e --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_720_novo_550_1200/CMS_HH4b_720_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 9.53125 +Sigma for expected limits: 4.86297 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 7.96628 (r = 2.27446) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.158676 (r = 0.00281509) +At r = 15.598229: q_mu = 6.85311 q_A = 9.33954 CLsb = 0.00442 CLb = 0.66939 CLs = 0.00661 +At r = 8.936344: q_mu = 1.91004 q_A = 3.41892 CLsb = 0.08348 CLb = 0.67975 CLs = 0.12281 +At r = 12.267286: q_mu = 4.07462 q_A = 6.10472 CLsb = 0.02177 CLb = 0.67444 CLs = 0.03227 +At r = 10.728145: q_mu = 2.98984 q_A = 4.78766 CLsb = 0.04189 CLb = 0.67687 CLs = 0.06189 +At r = 11.439483: q_mu = 3.47408 q_A = 5.38102 CLsb = 0.03117 CLb = 0.67574 CLs = 0.04613 +At r = 11.141124: q_mu = 3.26762 q_A = 5.12912 CLsb = 0.03533 CLb = 0.67620 CLs = 0.05225 +At r = 11.285011: q_mu = 3.36645 q_A = 5.24994 CLsb = 0.03327 CLb = 0.67598 CLs = 0.04922 +At r = 11.225778: q_mu = 3.32559 q_A = 5.20005 CLsb = 0.03410 CLb = 0.67607 CLs = 0.05045 +At r = 11.254646: q_mu = 3.34547 q_A = 5.22434 CLsb = 0.03370 CLb = 0.67603 CLs = 0.04984 + + -- Asymptotic -- +Observed Limit: r < 11.2546 +Expected 2.5%: r < 4.9704 +Expected 16.0%: r < 6.7163 +Expected 50.0%: r < 9.5312 +Expected 84.0%: r < 13.6724 +Expected 97.5%: r < 18.9953 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_720_novo_550_1200/datacard_720_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_720_novo_550_1200/datacard_720_novo_550_1200.txt new file mode 100644 index 0000000..7406f77 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_720_novo_550_1200/datacard_720_novo_550_1200.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_720.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_720.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 3.925186 1443.000000 3.925186 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.072800 - - +JER lnN 1.013124 - - +JEC lnN 1.018544 - - +trigger lnN 1.063997 - - +PDF lnN 1.023199 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.186371 +par_novo_0 param 300.004 77.2331 +par_novo_1 param 228.272 200.342 +par_novo_2 param -0.351207 1.11678 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_750_novo_550_1200/CMS_HH4b_750_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_750_novo_550_1200/CMS_HH4b_750_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..b0a2a83 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_750_novo_550_1200/CMS_HH4b_750_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-4YZWI7.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 3 -2.68253/+5.94575e-10 (68% CL) +nll S+B -> -0.582019 nll B -> -0.00321461 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_750_novo_550_1200/CMS_HH4b_750_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_750_novo_550_1200/CMS_HH4b_750_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..4c8d809 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_750_novo_550_1200/CMS_HH4b_750_13TeV_asymptoticCLs.out @@ -0,0 +1,38 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 8.96875 +Sigma for expected limits: 4.57598 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 7.71563 (r = 5.27332) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.169492 (r = 0.00944538) +At r = 18.889224: q_mu = 7.05923 q_A = 14.35939 CLsb = 0.00394 CLb = 0.87128 CLs = 0.00453 +At r = 12.081272: q_mu = 1.98294 q_A = 6.61555 CLsb = 0.07954 CLb = 0.87777 CLs = 0.09062 +At r = 15.485248: q_mu = 4.21196 q_A = 10.24511 CLsb = 0.02007 CLb = 0.87462 CLs = 0.02295 +At r = 13.941030: q_mu = 3.11557 q_A = 8.53056 CLsb = 0.03877 CLb = 0.87608 CLs = 0.04426 +At r = 13.315815: q_mu = 2.71083 q_A = 7.86749 CLsb = 0.04983 CLb = 0.87666 CLs = 0.05685 +At r = 13.572237: q_mu = 2.87431 q_A = 8.13740 CLsb = 0.04500 CLb = 0.87641 CLs = 0.05135 +At r = 13.698811: q_mu = 2.95598 q_A = 8.27197 CLsb = 0.04278 CLb = 0.87632 CLs = 0.04882 +At r = 13.625541: q_mu = 2.90843 q_A = 8.19394 CLsb = 0.04406 CLb = 0.87638 CLs = 0.05027 + + -- Asymptotic -- +Observed Limit: r < 13.6255 +Expected 2.5%: r < 4.7121 +Expected 16.0%: r < 6.3250 +Expected 50.0%: r < 8.9688 +Expected 84.0%: r < 12.8655 +Expected 97.5%: r < 17.8742 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_750_novo_550_1200/datacard_750_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_750_novo_550_1200/datacard_750_novo_550_1200.txt new file mode 100644 index 0000000..50b1d19 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_750_novo_550_1200/datacard_750_novo_550_1200.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_750.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_750.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 4.13008 1443 4.13008 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.07417 - - +JER lnN 1.01351 - - +JEC lnN 1.01674 - - +trigger lnN 1.0624078267 - - +PDF lnN 1.0236949058 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.190 +par_novo_0 param 300.004 77.2331 +par_novo_1 param 228.272 200.342 +par_novo_2 param -0.351207 1.11678 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_770_novo_550_1200/CMS_HH4b_770_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_770_novo_550_1200/CMS_HH4b_770_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..394d5de --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_770_novo_550_1200/CMS_HH4b_770_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-XwpooA.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 3 -2.12822/+3.25227e-10 (68% CL) +nll S+B -> -0.779633 nll B -> -0.00309164 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_770_novo_550_1200/CMS_HH4b_770_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_770_novo_550_1200/CMS_HH4b_770_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..2eec501 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_770_novo_550_1200/CMS_HH4b_770_13TeV_asymptoticCLs.out @@ -0,0 +1,38 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 8.5625 +Sigma for expected limits: 4.3687 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 7.49637 (r = 6.05382) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.157625 (r = 0.000477728) +At r = 19.108166: q_mu = 7.05540 q_A = 15.80761 CLsb = 0.00395 CLb = 0.90653 CLs = 0.00436 +At r = 12.580991: q_mu = 1.98678 q_A = 7.72038 CLsb = 0.07934 CLb = 0.91450 CLs = 0.08676 +At r = 15.844578: q_mu = 4.21380 q_A = 11.53837 CLsb = 0.02005 CLb = 0.91054 CLs = 0.02202 +At r = 14.282970: q_mu = 3.06273 q_A = 9.64755 CLsb = 0.04005 CLb = 0.91245 CLs = 0.04390 +At r = 13.682389: q_mu = 2.66074 q_A = 8.95066 CLsb = 0.05143 CLb = 0.91318 CLs = 0.05632 +At r = 14.031909: q_mu = 2.89245 q_A = 9.35454 CLsb = 0.04450 CLb = 0.91274 CLs = 0.04875 +At r = 13.913005: q_mu = 2.81257 q_A = 9.21635 CLsb = 0.04676 CLb = 0.91289 CLs = 0.05123 +At r = 13.983351: q_mu = 2.85968 q_A = 9.29799 CLsb = 0.04541 CLb = 0.91280 CLs = 0.04975 + + -- Asymptotic -- +Observed Limit: r < 13.9834 +Expected 2.5%: r < 4.4987 +Expected 16.0%: r < 6.0385 +Expected 50.0%: r < 8.5625 +Expected 84.0%: r < 12.2827 +Expected 97.5%: r < 17.0646 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_770_novo_550_1200/datacard_770_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_770_novo_550_1200/datacard_770_novo_550_1200.txt new file mode 100644 index 0000000..31096e8 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_770_novo_550_1200/datacard_770_novo_550_1200.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_770.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_770.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 4.215600 1443.000000 4.215600 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.074947 - - +JER lnN 1.013212 - - +JEC lnN 1.014052 - - +trigger lnN 1.060398 - - +PDF lnN 1.024524 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.167467 +par_novo_0 param 300.004 77.2331 +par_novo_1 param 228.272 200.342 +par_novo_2 param -0.351207 1.11678 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_800_novo_550_1200/CMS_HH4b_800_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_800_novo_550_1200/CMS_HH4b_800_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..d912fa9 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_800_novo_550_1200/CMS_HH4b_800_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-QbD0Le.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 3 -3/+1.23996e-06 (68% CL) +nll S+B -> -0.397862 nll B -> -0.00178438 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_800_novo_550_1200/CMS_HH4b_800_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_800_novo_550_1200/CMS_HH4b_800_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..0b71cce --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_800_novo_550_1200/CMS_HH4b_800_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 8.03125 +Sigma for expected limits: 4.09765 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 7.87384 (r = 3.54103) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.173959 (r = 0.00361293) +At r = 15.439401: q_mu = 7.08306 q_A = 12.37403 CLsb = 0.00389 CLb = 0.80408 CLs = 0.00484 +At r = 9.490215: q_mu = 1.97617 q_A = 5.23321 CLsb = 0.07990 CLb = 0.81107 CLs = 0.09851 +At r = 12.464808: q_mu = 4.21384 q_A = 8.53838 CLsb = 0.02005 CLb = 0.80765 CLs = 0.02482 +At r = 11.255831: q_mu = 3.22019 q_A = 7.12345 CLsb = 0.03637 CLb = 0.80907 CLs = 0.04495 +At r = 10.711016: q_mu = 2.80899 q_A = 6.51681 CLsb = 0.04687 CLb = 0.80970 CLs = 0.05788 +At r = 10.963356: q_mu = 2.99687 q_A = 6.79559 CLsb = 0.04171 CLb = 0.80940 CLs = 0.05154 +At r = 11.073615: q_mu = 3.08004 q_A = 6.91893 CLsb = 0.03963 CLb = 0.80932 CLs = 0.04897 +At r = 11.015529: q_mu = 3.03594 q_A = 6.85381 CLsb = 0.04072 CLb = 0.80937 CLs = 0.05031 +At r = 11.037761: q_mu = 3.05278 q_A = 6.87868 CLsb = 0.04030 CLb = 0.80935 CLs = 0.04979 + + -- Asymptotic -- +Observed Limit: r < 11.0378 +Expected 2.5%: r < 4.2195 +Expected 16.0%: r < 5.6638 +Expected 50.0%: r < 8.0312 +Expected 84.0%: r < 11.5207 +Expected 97.5%: r < 15.9050 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_800_novo_550_1200/datacard_800_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_800_novo_550_1200/datacard_800_novo_550_1200.txt new file mode 100644 index 0000000..ff6e1c4 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_800_novo_550_1200/datacard_800_novo_550_1200.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_800.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_800.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 4.34388 1443 4.34388 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.07603 - - +JER lnN 1.01239 - - +JEC lnN 1.00978 - - +trigger lnN 1.0573539334 - - +PDF lnN 1.02582057265 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.119 +par_novo_0 param 300.004 77.2331 +par_novo_1 param 228.272 200.342 +par_novo_2 param -0.351207 1.11678 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_820_novo_550_1200/CMS_HH4b_820_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_820_novo_550_1200/CMS_HH4b_820_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..186b00e --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_820_novo_550_1200/CMS_HH4b_820_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-VaDU6B.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 0.82506 -0.82506/+2.17494 (68% CL) +nll S+B -> -0.0256214 nll B -> -0.00112232 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_820_novo_550_1200/CMS_HH4b_820_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_820_novo_550_1200/CMS_HH4b_820_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..952f70d --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_820_novo_550_1200/CMS_HH4b_820_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 7.59375 +Sigma for expected limits: 3.87443 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 7.90507 (r = 0.822466) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.190281 (r = 0.00085352) +At r = 12.960312: q_mu = 8.48282 q_A = 10.03026 CLsb = 0.00179 CLb = 0.60046 CLs = 0.00299 +At r = 6.891389: q_mu = 2.38010 q_A = 3.20651 CLsb = 0.06144 CLb = 0.59790 CLs = 0.10277 +At r = 9.925851: q_mu = 5.06323 q_A = 6.26063 CLsb = 0.01222 CLb = 0.59947 CLs = 0.02038 +At r = 8.579381: q_mu = 3.77086 q_A = 4.80595 CLsb = 0.02608 CLb = 0.59885 CLs = 0.04354 +At r = 8.024366: q_mu = 3.28403 q_A = 4.25110 CLsb = 0.03498 CLb = 0.59856 CLs = 0.05844 +At r = 8.259716: q_mu = 3.48738 q_A = 4.48334 CLsb = 0.03092 CLb = 0.59868 CLs = 0.05165 +At r = 8.372175: q_mu = 3.58586 q_A = 4.59626 CLsb = 0.02914 CLb = 0.59880 CLs = 0.04866 +At r = 8.308605: q_mu = 3.52988 q_A = 4.53225 CLsb = 0.03014 CLb = 0.59875 CLs = 0.05033 +At r = 8.331263: q_mu = 3.54978 q_A = 4.55464 CLsb = 0.02978 CLb = 0.59873 CLs = 0.04973 + + -- Asymptotic -- +Observed Limit: r < 8.3313 +Expected 2.5%: r < 3.9749 +Expected 16.0%: r < 5.3743 +Expected 50.0%: r < 7.5938 +Expected 84.0%: r < 10.8931 +Expected 97.5%: r < 15.1339 + +Done in 0.00 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_820_novo_550_1200/datacard_820_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_820_novo_550_1200/datacard_820_novo_550_1200.txt new file mode 100644 index 0000000..0a89bc9 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_820_novo_550_1200/datacard_820_novo_550_1200.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_820.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_820.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 4.403416 1443.000000 4.403416 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.076790 - - +JER lnN 1.011977 - - +JEC lnN 1.008256 - - +trigger lnN 1.056303 - - +PDF lnN 1.026222 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.093336 +par_novo_0 param 300.004 77.2331 +par_novo_1 param 228.272 200.342 +par_novo_2 param -0.351207 1.11678 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_840_novo_550_1200/CMS_HH4b_840_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_840_novo_550_1200/CMS_HH4b_840_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..a03350e --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_840_novo_550_1200/CMS_HH4b_840_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-h805SN.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 9.53106e-09 -9.53106e-09/+2.91267 (68% CL) +nll S+B -> -0.000766987 nll B -> -0.000766988 +Done in 0.01 min (cpu), 0.02 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_840_novo_550_1200/CMS_HH4b_840_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_840_novo_550_1200/CMS_HH4b_840_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..3853765 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_840_novo_550_1200/CMS_HH4b_840_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 7.21875 +Sigma for expected limits: 3.6831 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 7.68322 (r = 1.52936e-06) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.205901 (r = 2.23069e-05) +At r = 41.062590: q_mu = 64.23709 q_A = 62.44540 CLsb = 0.00000 CLb = 0.45487 CLs = 0.00000 +At r = 20.531296: q_mu = 24.62647 q_A = 23.26193 CLsb = 0.00000 CLb = 0.44375 CLs = 0.00000 +At r = 10.265649: q_mu = 8.17041 q_A = 7.28403 CLsb = 0.00210 CLb = 0.43478 CLs = 0.00482 +At r = 5.132825: q_mu = 2.53782 q_A = 2.03141 CLsb = 0.05447 CLb = 0.42950 CLs = 0.12683 +At r = 7.699237: q_mu = 5.04213 q_A = 4.33081 CLsb = 0.01216 CLb = 0.43215 CLs = 0.02814 +At r = 6.402239: q_mu = 3.68953 q_A = 3.07782 CLsb = 0.02688 CLb = 0.43080 CLs = 0.06240 +At r = 6.950389: q_mu = 4.24058 q_A = 3.58581 CLsb = 0.01939 CLb = 0.43137 CLs = 0.04495 +At r = 6.698442: q_mu = 3.98381 q_A = 3.34865 CLsb = 0.02256 CLb = 0.43111 CLs = 0.05234 +At r = 6.809342: q_mu = 4.09594 q_A = 3.45211 CLsb = 0.02112 CLb = 0.43122 CLs = 0.04897 +At r = 6.759304: q_mu = 4.04516 q_A = 3.40524 CLsb = 0.02176 CLb = 0.43117 CLs = 0.05046 +At r = 6.781559: q_mu = 4.06770 q_A = 3.42605 CLsb = 0.02147 CLb = 0.43120 CLs = 0.04979 + + -- Asymptotic -- +Observed Limit: r < 6.7816 +Expected 2.5%: r < 3.7645 +Expected 16.0%: r < 5.1003 +Expected 50.0%: r < 7.2188 +Expected 84.0%: r < 10.3551 +Expected 97.5%: r < 14.3866 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_840_novo_550_1200/datacard_840_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_840_novo_550_1200/datacard_840_novo_550_1200.txt new file mode 100644 index 0000000..4f38062 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_840_novo_550_1200/datacard_840_novo_550_1200.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_840.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_840.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 4.462952 1443.000000 4.462952 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.077582 - - +JER lnN 1.011732 - - +JEC lnN 1.007791 - - +trigger lnN 1.056045 - - +PDF lnN 1.026252 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.074586 +par_novo_0 param 300.004 77.2331 +par_novo_1 param 228.272 200.342 +par_novo_2 param -0.351207 1.11678 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_860_novo_550_1200/CMS_HH4b_860_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_860_novo_550_1200/CMS_HH4b_860_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..da28161 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_860_novo_550_1200/CMS_HH4b_860_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-MOacNM.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 3.61261e-12 -3.61261e-12/+2.30328 (68% CL) +nll S+B -> -0.000569129 nll B -> -0.000569129 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_860_novo_550_1200/CMS_HH4b_860_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_860_novo_550_1200/CMS_HH4b_860_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..3bb61de --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_860_novo_550_1200/CMS_HH4b_860_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 6.90625 +Sigma for expected limits: 3.52366 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 7.55 (r = 1.38844e-05) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.22096 (r = 3.84225e-05) +At r = 10.895350: q_mu = 10.72975 q_A = 8.73884 CLsb = 0.00050 CLb = 0.36816 CLs = 0.00135 +At r = 5.447682: q_mu = 3.60806 q_A = 2.47373 CLsb = 0.02659 CLb = 0.35920 CLs = 0.07403 +At r = 8.171516: q_mu = 6.83027 q_A = 5.23605 CLsb = 0.00419 CLb = 0.36379 CLs = 0.01151 +At r = 6.809599: q_mu = 5.12287 q_A = 3.75014 CLsb = 0.01098 CLb = 0.36151 CLs = 0.03038 +At r = 6.200170: q_mu = 4.41973 q_A = 3.15152 CLsb = 0.01649 CLb = 0.36048 CLs = 0.04573 +At r = 5.938170: q_mu = 4.13018 q_A = 2.90800 CLsb = 0.01953 CLb = 0.36004 CLs = 0.05423 +At r = 6.090478: q_mu = 4.29749 q_A = 3.04847 CLsb = 0.01770 CLb = 0.36029 CLs = 0.04914 +At r = 6.038521: q_mu = 4.24009 q_A = 3.00020 CLsb = 0.01831 CLb = 0.36020 CLs = 0.05083 +At r = 6.069072: q_mu = 4.27380 q_A = 3.02854 CLsb = 0.01795 CLb = 0.36025 CLs = 0.04983 + + -- Asymptotic -- +Observed Limit: r < 6.0691 +Expected 2.5%: r < 3.6015 +Expected 16.0%: r < 4.8795 +Expected 50.0%: r < 6.9062 +Expected 84.0%: r < 9.9069 +Expected 97.5%: r < 13.7638 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_860_novo_550_1200/datacard_860_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_860_novo_550_1200/datacard_860_novo_550_1200.txt new file mode 100644 index 0000000..c95df46 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_860_novo_550_1200/datacard_860_novo_550_1200.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_860.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_860.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 4.522488 1443.000000 4.522488 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.078381 - - +JER lnN 1.011618 - - +JEC lnN 1.007967 - - +trigger lnN 1.056312 - - +PDF lnN 1.026049 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.060068 +par_novo_0 param 300.004 77.2331 +par_novo_1 param 228.272 200.342 +par_novo_2 param -0.351207 1.11678 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_880_novo_550_1200/CMS_HH4b_880_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_880_novo_550_1200/CMS_HH4b_880_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..291046f --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_880_novo_550_1200/CMS_HH4b_880_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-M6sI3K.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 5.09176e-12 -5.09176e-12/+2.28839 (68% CL) +nll S+B -> -0.000448735 nll B -> -0.000448736 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_880_novo_550_1200/CMS_HH4b_880_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_880_novo_550_1200/CMS_HH4b_880_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..2c818d8 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_880_novo_550_1200/CMS_HH4b_880_13TeV_asymptoticCLs.out @@ -0,0 +1,40 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 6.53125 +Sigma for expected limits: 3.33233 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 7.54841 (r = 4.17385e-06) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.24256 (r = 4.52721e-06) +At r = 12.669265: q_mu = 14.48470 q_A = 12.34968 CLsb = 0.00007 CLb = 0.38065 CLs = 0.00018 +At r = 6.334635: q_mu = 4.82908 q_A = 3.62033 CLsb = 0.01320 CLb = 0.37538 CLs = 0.03516 +At r = 3.167319: q_mu = 1.61558 q_A = 0.97640 CLsb = 0.09483 CLb = 0.37319 CLs = 0.25412 +At r = 4.750977: q_mu = 3.04905 q_A = 2.11579 CLsb = 0.03792 CLb = 0.37418 CLs = 0.10134 +At r = 5.596407: q_mu = 3.95947 q_A = 2.87682 CLsb = 0.02194 CLb = 0.37480 CLs = 0.05853 +At r = 5.926586: q_mu = 4.34056 q_A = 3.20102 CLsb = 0.01753 CLb = 0.37507 CLs = 0.04675 +At r = 5.781487: q_mu = 4.17130 q_A = 3.05665 CLsb = 0.01936 CLb = 0.37495 CLs = 0.05164 +At r = 5.848124: q_mu = 4.24867 q_A = 3.12258 CLsb = 0.01850 CLb = 0.37500 CLs = 0.04934 +At r = 5.819230: q_mu = 4.21505 q_A = 3.09392 CLsb = 0.01887 CLb = 0.37498 CLs = 0.05033 +At r = 5.832583: q_mu = 4.23057 q_A = 3.10714 CLsb = 0.01870 CLb = 0.37499 CLs = 0.04987 + + -- Asymptotic -- +Observed Limit: r < 5.8326 +Expected 2.5%: r < 3.4187 +Expected 16.0%: r < 4.6224 +Expected 50.0%: r < 6.5312 +Expected 84.0%: r < 9.4210 +Expected 97.5%: r < 13.1319 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_880_novo_550_1200/datacard_880_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_880_novo_550_1200/datacard_880_novo_550_1200.txt new file mode 100644 index 0000000..8ba635b --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_880_novo_550_1200/datacard_880_novo_550_1200.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_880.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_880.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 4.582024 1443.000000 4.582024 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.079162 - - +JER lnN 1.011599 - - +JEC lnN 1.008366 - - +trigger lnN 1.056838 - - +PDF lnN 1.025749 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.047099 +par_novo_0 param 300.004 77.2331 +par_novo_1 param 228.272 200.342 +par_novo_2 param -0.351207 1.11678 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_900_novo_550_1200/CMS_HH4b_900_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_900_novo_550_1200/CMS_HH4b_900_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..e43e4bc --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_900_novo_550_1200/CMS_HH4b_900_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-spplHc.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 5.28971e-10 -5.28971e-10/+2.07159 (68% CL) +nll S+B -> -0.000353145 nll B -> -0.000353143 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_900_novo_550_1200/CMS_HH4b_900_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_900_novo_550_1200/CMS_HH4b_900_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..a3f0522 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_900_novo_550_1200/CMS_HH4b_900_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 6.40625 +Sigma for expected limits: 3.26856 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 7.48272 (r = 1.43736e-06) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.250818 (r = 1.55245e-06) +At r = 10.357689: q_mu = 11.43257 q_A = 9.02530 CLsb = 0.00033 CLb = 0.34434 CLs = 0.00096 +At r = 5.178845: q_mu = 3.88106 q_A = 2.56960 CLsb = 0.02211 CLb = 0.34125 CLs = 0.06478 +At r = 7.768267: q_mu = 7.31134 q_A = 5.42290 CLsb = 0.00313 CLb = 0.34257 CLs = 0.00913 +At r = 6.473556: q_mu = 5.49697 q_A = 3.88966 CLsb = 0.00866 CLb = 0.34182 CLs = 0.02534 +At r = 5.723640: q_mu = 4.53503 q_A = 3.09729 CLsb = 0.01506 CLb = 0.34147 CLs = 0.04412 +At r = 5.472696: q_mu = 4.22912 q_A = 2.84924 CLsb = 0.01801 CLb = 0.34137 CLs = 0.05276 +At r = 5.583154: q_mu = 4.36271 q_A = 2.95730 CLsb = 0.01666 CLb = 0.34141 CLs = 0.04879 +At r = 5.533310: q_mu = 4.30222 q_A = 2.90831 CLsb = 0.01726 CLb = 0.34139 CLs = 0.05054 +At r = 5.555472: q_mu = 4.32907 q_A = 2.93005 CLsb = 0.01699 CLb = 0.34140 CLs = 0.04976 + + -- Asymptotic -- +Observed Limit: r < 5.5555 +Expected 2.5%: r < 3.3658 +Expected 16.0%: r < 4.5416 +Expected 50.0%: r < 6.4062 +Expected 84.0%: r < 9.2407 +Expected 97.5%: r < 12.8806 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_900_novo_550_1200/datacard_900_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_900_novo_550_1200/datacard_900_novo_550_1200.txt new file mode 100644 index 0000000..6e8013d --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_900_novo_550_1200/datacard_900_novo_550_1200.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_900.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_900.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 4.64156 1443 4.64156 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.0799 - - +JER lnN 1.01164 - - +JEC lnN 1.00857 - - +trigger lnN 1.0573539334 - - +PDF lnN 1.02549102587 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.033 +par_novo_0 param 300.004 77.2331 +par_novo_1 param 228.272 200.342 +par_novo_2 param -0.351207 1.11678 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_920_novo_550_1200/CMS_HH4b_920_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_920_novo_550_1200/CMS_HH4b_920_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..aa5197e --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_920_novo_550_1200/CMS_HH4b_920_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-1xjmZo.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 4.85086e-07 -4.85086e-07/+1.76529 (68% CL) +nll S+B -> -0.000297801 nll B -> -0.000297692 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_920_novo_550_1200/CMS_HH4b_920_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_920_novo_550_1200/CMS_HH4b_920_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..2a111c1 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_920_novo_550_1200/CMS_HH4b_920_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 6.10938 +Sigma for expected limits: 3.11709 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 7.36944 (r = 2.39866e-06) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.275525 (r = 0.000533625) +At r = 7.680703: q_mu = 8.15052 q_A = 5.83501 CLsb = 0.00190 CLb = 0.31587 CLs = 0.00600 +At r = 3.840353: q_mu = 2.91062 q_A = 1.62117 CLsb = 0.03757 CLb = 0.30630 CLs = 0.12266 +At r = 5.760528: q_mu = 5.29586 q_A = 3.46264 CLsb = 0.00930 CLb = 0.31115 CLs = 0.02989 +At r = 4.816771: q_mu = 4.05830 q_A = 2.48426 CLsb = 0.01897 CLb = 0.30877 CLs = 0.06144 +At r = 5.221439: q_mu = 4.57461 q_A = 2.88759 CLsb = 0.01406 CLb = 0.30981 CLs = 0.04537 +At r = 5.036822: q_mu = 4.33617 q_A = 2.70033 CLsb = 0.01614 CLb = 0.30933 CLs = 0.05217 +At r = 5.118647: q_mu = 4.44125 q_A = 2.78265 CLsb = 0.01518 CLb = 0.30954 CLs = 0.04905 +At r = 5.081907: q_mu = 4.39395 q_A = 2.74556 CLsb = 0.01561 CLb = 0.30945 CLs = 0.05043 +At r = 5.098309: q_mu = 4.41504 q_A = 2.76209 CLsb = 0.01542 CLb = 0.30949 CLs = 0.04981 + + -- Asymptotic -- +Observed Limit: r < 5.0983 +Expected 2.5%: r < 3.1859 +Expected 16.0%: r < 4.2937 +Expected 50.0%: r < 6.1094 +Expected 84.0%: r < 8.8125 +Expected 97.5%: r < 12.2837 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_920_novo_550_1200/datacard_920_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_920_novo_550_1200/datacard_920_novo_550_1200.txt new file mode 100644 index 0000000..6f47a15 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_920_novo_550_1200/datacard_920_novo_550_1200.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_920.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_920.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 4.652048 1443.000000 4.652048 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.080577 - - +JER lnN 1.011708 - - +JEC lnN 1.008263 - - +trigger lnN 1.057649 - - +PDF lnN 1.025387 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.015787 +par_novo_0 param 300.004 77.2331 +par_novo_1 param 228.272 200.342 +par_novo_2 param -0.351207 1.11678 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_940_novo_550_1200/CMS_HH4b_940_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_940_novo_550_1200/CMS_HH4b_940_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..5cdae7b --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_940_novo_550_1200/CMS_HH4b_940_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-ZeDAL6.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 2.1965e-10 -2.1965e-10/+1.97888 (68% CL) +nll S+B -> -0.00031826 nll B -> -0.000318212 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_940_novo_550_1200/CMS_HH4b_940_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_940_novo_550_1200/CMS_HH4b_940_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..b23cbbf --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_940_novo_550_1200/CMS_HH4b_940_13TeV_asymptoticCLs.out @@ -0,0 +1,38 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 5.95312 +Sigma for expected limits: 3.03736 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -0.551612 (r = 3.56507e-08) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.292808 (r = 0.000622116) +At r = 10.391315: q_mu = 12.31834 q_A = 10.26497 CLsb = 0.00021 CLb = 0.37431 CLs = 0.00057 +At r = 5.195658: q_mu = 4.20774 q_A = 3.00083 CLsb = 0.01873 CLb = 0.36379 CLs = 0.05149 +At r = 7.793487: q_mu = 7.91167 q_A = 6.24406 CLsb = 0.00231 CLb = 0.36931 CLs = 0.00625 +At r = 6.494572: q_mu = 5.95710 q_A = 4.50943 CLsb = 0.00686 CLb = 0.36660 CLs = 0.01872 +At r = 5.485691: q_mu = 4.57884 q_A = 3.31626 CLsb = 0.01509 CLb = 0.36442 CLs = 0.04141 +At r = 5.285018: q_mu = 4.32086 q_A = 3.09668 CLsb = 0.01753 CLb = 0.36398 CLs = 0.04817 +At r = 5.245112: q_mu = 4.27023 q_A = 3.05375 CLsb = 0.01806 CLb = 0.36390 CLs = 0.04963 +At r = 5.227273: q_mu = 4.24767 q_A = 3.03464 CLsb = 0.01830 CLb = 0.36386 CLs = 0.05030 + + -- Asymptotic -- +Observed Limit: r < 5.2273 +Expected 2.5%: r < 3.0812 +Expected 16.0%: r < 4.1694 +Expected 50.0%: r < 5.9531 +Expected 84.0%: r < 8.5871 +Expected 97.5%: r < 12.0439 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_940_novo_550_1200/datacard_940_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_940_novo_550_1200/datacard_940_novo_550_1200.txt new file mode 100644 index 0000000..8b0e8fd --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_940_novo_550_1200/datacard_940_novo_550_1200.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_940.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_940.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 4.662536 1443.000000 4.662536 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.081195 - - +JER lnN 1.011791 - - +JEC lnN 1.007532 - - +trigger lnN 1.057732 - - +PDF lnN 1.025447 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.003730 +par_novo_0 param 300.004 77.2331 +par_novo_1 param 228.272 200.342 +par_novo_2 param -0.351207 1.11678 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_960_novo_550_1200/CMS_HH4b_960_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_960_novo_550_1200/CMS_HH4b_960_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..ee27b1b --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_960_novo_550_1200/CMS_HH4b_960_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-GQuYPf.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.000 + + + --- MaxLikelihoodFit --- +Best fit r: 0.49657 -0.49657/+2.50343 (68% CL) +nll S+B -> -0.0168804 nll B -> -0.000319344 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_960_novo_550_1200/CMS_HH4b_960_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_960_novo_550_1200/CMS_HH4b_960_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..7c515a1 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_960_novo_550_1200/CMS_HH4b_960_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 5.82812 +Sigma for expected limits: 2.97359 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -0.204404 (r = 0.491632) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.310173 (r = 0.00238276) +At r = 9.144900: q_mu = 7.70409 q_A = 8.48835 CLsb = 0.00275 CLb = 0.55482 CLs = 0.00497 +At r = 4.818266: q_mu = 2.19876 q_A = 2.69649 CLsb = 0.06906 CLb = 0.56328 CLs = 0.12261 +At r = 6.981583: q_mu = 4.63367 q_A = 5.29253 CLsb = 0.01568 CLb = 0.55881 CLs = 0.02805 +At r = 5.870720: q_mu = 3.29329 q_A = 3.87446 CLsb = 0.03478 CLb = 0.56105 CLs = 0.06199 +At r = 6.333853: q_mu = 3.83026 q_A = 4.44504 CLsb = 0.02517 CLb = 0.56010 CLs = 0.04493 +At r = 6.118248: q_mu = 3.57626 q_A = 4.17561 CLsb = 0.02931 CLb = 0.56054 CLs = 0.05228 +At r = 6.212178: q_mu = 3.68606 q_A = 4.29218 CLsb = 0.02743 CLb = 0.56035 CLs = 0.04896 +At r = 6.169325: q_mu = 3.63580 q_A = 4.23883 CLsb = 0.02827 CLb = 0.56043 CLs = 0.05045 +At r = 6.188168: q_mu = 3.65786 q_A = 4.26226 CLsb = 0.02790 CLb = 0.56039 CLs = 0.04979 + + -- Asymptotic -- +Observed Limit: r < 6.1882 +Expected 2.5%: r < 3.0393 +Expected 16.0%: r < 4.0960 +Expected 50.0%: r < 5.8281 +Expected 84.0%: r < 8.4532 +Expected 97.5%: r < 11.8206 + +Done in 0.00 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_960_novo_550_1200/datacard_960_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_960_novo_550_1200/datacard_960_novo_550_1200.txt new file mode 100644 index 0000000..250c216 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_960_novo_550_1200/datacard_960_novo_550_1200.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_960.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_960.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 4.673024 1443.000000 4.673024 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.081763 - - +JER lnN 1.011880 - - +JEC lnN 1.006565 - - +trigger lnN 1.057667 - - +PDF lnN 1.025655 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.024039 +par_novo_0 param 300.004 77.2331 +par_novo_1 param 228.272 200.342 +par_novo_2 param -0.351207 1.11678 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_980_novo_550_1200/CMS_HH4b_980_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_980_novo_550_1200/CMS_HH4b_980_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..be98927 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_980_novo_550_1200/CMS_HH4b_980_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-hIxBkP.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 0.773882 -0.773882/+2.22612 (68% CL) +nll S+B -> -0.0409509 nll B -> -0.000328799 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_980_novo_550_1200/CMS_HH4b_980_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_980_novo_550_1200/CMS_HH4b_980_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..60d6896 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_980_novo_550_1200/CMS_HH4b_980_13TeV_asymptoticCLs.out @@ -0,0 +1,38 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 5.8125 +Sigma for expected limits: 2.96562 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -0.169059 (r = 0.768863) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.323341 (r = 0.00286036) +At r = 8.000155: q_mu = 5.64868 q_A = 6.80562 CLsb = 0.00873 CLb = 0.59176 CLs = 0.01476 +At r = 4.384509: q_mu = 1.57402 q_A = 2.28292 CLsb = 0.10481 CLb = 0.60115 CLs = 0.17435 +At r = 6.192332: q_mu = 3.35784 q_A = 4.31065 CLsb = 0.03344 CLb = 0.59630 CLs = 0.05608 +At r = 7.096244: q_mu = 4.44653 q_A = 5.50599 CLsb = 0.01749 CLb = 0.59398 CLs = 0.02944 +At r = 6.501949: q_mu = 3.71717 q_A = 4.70760 CLsb = 0.02693 CLb = 0.59550 CLs = 0.04522 +At r = 6.324421: q_mu = 3.50936 q_A = 4.47837 CLsb = 0.03051 CLb = 0.59595 CLs = 0.05120 +At r = 6.387004: q_mu = 3.58206 q_A = 4.55867 CLsb = 0.02920 CLb = 0.59579 CLs = 0.04902 +At r = 6.351638: q_mu = 3.54089 q_A = 4.51321 CLsb = 0.02994 CLb = 0.59588 CLs = 0.05024 + + -- Asymptotic -- +Observed Limit: r < 6.3516 +Expected 2.5%: r < 3.0311 +Expected 16.0%: r < 4.0850 +Expected 50.0%: r < 5.8125 +Expected 84.0%: r < 8.3842 +Expected 97.5%: r < 11.7594 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_980_novo_550_1200/datacard_980_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_980_novo_550_1200/datacard_980_novo_550_1200.txt new file mode 100644 index 0000000..64c5fff --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_graviton/MMR/MMR_980_novo_550_1200/datacard_980_novo_550_1200.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_980.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_980.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 4.683512 1443.000000 4.683512 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.082288 - - +JER lnN 1.011966 - - +JEC lnN 1.005552 - - +trigger lnN 1.057520 - - +PDF lnN 1.025998 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.043632 +par_novo_0 param 300.004 77.2331 +par_novo_1 param 228.272 200.342 +par_novo_2 param -0.351207 1.11678 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_260_gaus_exp_250_330/CMS_HH4b_260_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_260_gaus_exp_250_330/CMS_HH4b_260_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..5309084 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_260_gaus_exp_250_330/CMS_HH4b_260_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-8Uih34.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.020 + + + --- MaxLikelihoodFit --- +Best fit r: 7.2279e-08 -7.2279e-08/+0.418245 (68% CL) +nll S+B -> -0.0151476 nll B -> -0.0151476 +Done in 0.02 min (cpu), 0.02 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_260_gaus_exp_250_330/CMS_HH4b_260_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_260_gaus_exp_250_330/CMS_HH4b_260_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..bac0459 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_260_gaus_exp_250_330/CMS_HH4b_260_13TeV_asymptoticCLs.out @@ -0,0 +1,40 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.941406 +Sigma for expected limits: 0.480318 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -3.98144 (r = 1.01987e-07) + +Make global fit of asimov data +NLL at global minimum of asimov: -11.5356 (r = 1.63924e-06) +At r = 3.815762: q_mu = 40.41295 q_A = 39.63963 CLsb = 0.00000 CLb = 0.47551 CLs = 0.00000 +At r = 1.907881: q_mu = 13.92126 q_A = 13.44666 CLsb = 0.00010 CLb = 0.47420 CLs = 0.00020 +At r = 0.953940: q_mu = 4.21011 q_A = 3.94994 CLsb = 0.02004 CLb = 0.47391 CLs = 0.04229 +At r = 0.476970: q_mu = 1.24105 q_A = 1.10706 CLsb = 0.13224 CLb = 0.47461 CLs = 0.27864 +At r = 0.715455: q_mu = 2.52945 q_A = 2.33101 CLsb = 0.05572 CLb = 0.47409 CLs = 0.11753 +At r = 0.874982: q_mu = 3.61309 q_A = 3.37302 CLsb = 0.02859 CLb = 0.47394 CLs = 0.06032 +At r = 0.908362: q_mu = 3.86076 q_A = 3.61215 CLsb = 0.02465 CLb = 0.47393 CLs = 0.05201 +At r = 0.924435: q_mu = 3.98250 q_A = 3.72980 CLsb = 0.02293 CLb = 0.47392 CLs = 0.04838 +At r = 0.915378: q_mu = 3.91370 q_A = 3.66331 CLsb = 0.02389 CLb = 0.47392 CLs = 0.05040 +At r = 0.918606: q_mu = 3.93815 q_A = 3.68694 CLsb = 0.02354 CLb = 0.47392 CLs = 0.04967 + + -- Asymptotic -- +Observed Limit: r < 0.9186 +Expected 2.5%: r < 0.4836 +Expected 16.0%: r < 0.6570 +Expected 50.0%: r < 0.9414 +Expected 84.0%: r < 1.3504 +Expected 97.5%: r < 1.8762 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_260_gaus_exp_250_330/datacard_260_gaus_exp_250_330.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_260_gaus_exp_250_330/datacard_260_gaus_exp_250_330.txt new file mode 100644 index 0000000..c8916b8 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_260_gaus_exp_250_330/datacard_260_gaus_exp_250_330.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_260.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_260.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_gaus_exp_250_330.root HbbHbb:f_gaus_exp +shapes data_obs HbbHbb w_background_gaus_exp_250_330.root HbbHbb:data_obs_gaus_exp_250_330 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 180.858 15384 180.858 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.06772 - - +JER lnN 1.01516 - - +JEC lnN 1.01886 - - +trigger lnN 1.0899073597 - - +PDF lnN 1.01498468665 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.035 +par_gaus_exp_0 param 266.499 0.453027 +par_gaus_exp_1 param 11.9408 0.531579 +par_gaus_exp_2 param 0.13851 0.00812008 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_265_gaus_exp_250_330/CMS_HH4b_265_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_265_gaus_exp_250_330/CMS_HH4b_265_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..092c5d0 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_265_gaus_exp_250_330/CMS_HH4b_265_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-X36iBI.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 1.81972e-09 -1.81972e-09/+0.107857 (68% CL) +nll S+B -> -0.0321337 nll B -> -0.0321337 +Done in 0.02 min (cpu), 0.02 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_265_gaus_exp_250_330/CMS_HH4b_265_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_265_gaus_exp_250_330/CMS_HH4b_265_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..2a0ef36 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_265_gaus_exp_250_330/CMS_HH4b_265_13TeV_asymptoticCLs.out @@ -0,0 +1,40 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.949219 +Sigma for expected limits: 0.484304 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -10.5756 (r = 2.44211e-09) + +Make global fit of asimov data +NLL at global minimum of asimov: -10.3454 (r = 2.4003e-12) +At r = 1.200000: q_mu = 14.74283 q_A = 5.85419 CLsb = 0.00001 CLb = 0.03312 CLs = 0.00031 +At r = 0.600000: q_mu = 6.43905 q_A = 1.71955 CLsb = 0.00093 CLb = 0.03597 CLs = 0.02593 +At r = 0.300000: q_mu = 2.94263 q_A = 0.52843 CLsb = 0.00848 CLb = 0.04840 CLs = 0.17524 +At r = 0.450000: q_mu = 4.62700 q_A = 1.04405 CLsb = 0.00276 CLb = 0.03978 CLs = 0.06937 +At r = 0.519940: q_mu = 5.45670 q_A = 1.33956 CLsb = 0.00166 CLb = 0.03765 CLs = 0.04415 +At r = 0.490546: q_mu = 5.10468 q_A = 1.21118 CLsb = 0.00206 CLb = 0.03845 CLs = 0.05346 +At r = 0.504654: q_mu = 5.27305 q_A = 1.27204 CLsb = 0.00186 CLb = 0.03805 CLs = 0.04878 +At r = 0.498800: q_mu = 5.20305 q_A = 1.24661 CLsb = 0.00194 CLb = 0.03822 CLs = 0.05068 +At r = 0.501627: q_mu = 5.23682 q_A = 1.25886 CLsb = 0.00190 CLb = 0.03814 CLs = 0.04976 +At r = 0.500457: q_mu = 5.22284 q_A = 1.25378 CLsb = 0.00191 CLb = 0.03817 CLs = 0.05013 + + -- Asymptotic -- +Observed Limit: r < 0.5005 +Expected 2.5%: r < 0.4728 +Expected 16.0%: r < 0.6533 +Expected 50.0%: r < 0.9492 +Expected 84.0%: r < 1.3692 +Expected 97.5%: r < 1.9085 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_265_gaus_exp_250_330/datacard_265_gaus_exp_250_330.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_265_gaus_exp_250_330/datacard_265_gaus_exp_250_330.txt new file mode 100644 index 0000000..1771737 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_265_gaus_exp_250_330/datacard_265_gaus_exp_250_330.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_265.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_265.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_gaus_exp_250_330.root HbbHbb:f_gaus_exp +shapes data_obs HbbHbb w_background_gaus_exp_250_330.root HbbHbb:data_obs_gaus_exp_250_330 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 184.270500 15384.000000 184.270500 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.068119 - - +JER lnN 1.016953 - - +JEC lnN 1.015310 - - +trigger lnN 1.082168 - - +PDF lnN 1.014765 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.060229 +par_gaus_exp_0 param 266.499 0.453027 +par_gaus_exp_1 param 11.9408 0.531579 +par_gaus_exp_2 param 0.13851 0.00812008 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_270_gaus_exp_250_330/CMS_HH4b_270_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_270_gaus_exp_250_330/CMS_HH4b_270_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..7c47840 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_270_gaus_exp_250_330/CMS_HH4b_270_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-qM75vQ.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.000 + + + --- MaxLikelihoodFit --- +Best fit r: 1.30017e-09 -1.30017e-09/+0.115945 (68% CL) +nll S+B -> -0.0426799 nll B -> -0.0426799 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_270_gaus_exp_250_330/CMS_HH4b_270_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_270_gaus_exp_250_330/CMS_HH4b_270_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..9321f7c --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_270_gaus_exp_250_330/CMS_HH4b_270_13TeV_asymptoticCLs.out @@ -0,0 +1,40 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.957031 +Sigma for expected limits: 0.48829 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -8.95873 (r = 3.63878e-08) + +Make global fit of asimov data +NLL at global minimum of asimov: -9.40166 (r = 3.46667e-11) +At r = 1.200000: q_mu = 13.80277 q_A = 5.70187 CLsb = 0.00002 CLb = 0.04492 CLs = 0.00049 +At r = 0.600000: q_mu = 5.99297 q_A = 1.72496 CLsb = 0.00165 CLb = 0.05210 CLs = 0.03168 +At r = 0.300000: q_mu = 2.73229 q_A = 0.55612 CLsb = 0.01373 CLb = 0.07227 CLs = 0.19003 +At r = 0.450000: q_mu = 4.30106 q_A = 1.06642 CLsb = 0.00468 CLb = 0.05866 CLs = 0.07974 +At r = 0.510679: q_mu = 4.97118 q_A = 1.31530 CLsb = 0.00307 CLb = 0.05548 CLs = 0.05524 +At r = 0.541362: q_mu = 5.31752 q_A = 1.45026 CLsb = 0.00248 CLb = 0.05418 CLs = 0.04574 +At r = 0.523640: q_mu = 5.11688 q_A = 1.37157 CLsb = 0.00280 CLb = 0.05491 CLs = 0.05102 +At r = 0.529806: q_mu = 5.18649 q_A = 1.39871 CLsb = 0.00268 CLb = 0.05465 CLs = 0.04912 +At r = 0.526268: q_mu = 5.14652 q_A = 1.38310 CLsb = 0.00275 CLb = 0.05480 CLs = 0.05020 +At r = 0.527502: q_mu = 5.16045 q_A = 1.38854 CLsb = 0.00273 CLb = 0.05475 CLs = 0.04982 + + -- Asymptotic -- +Observed Limit: r < 0.5275 +Expected 2.5%: r < 0.4654 +Expected 16.0%: r < 0.6555 +Expected 50.0%: r < 0.9570 +Expected 84.0%: r < 1.3957 +Expected 97.5%: r < 1.9459 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_270_gaus_exp_250_330/datacard_270_gaus_exp_250_330.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_270_gaus_exp_250_330/datacard_270_gaus_exp_250_330.txt new file mode 100644 index 0000000..fb19ec6 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_270_gaus_exp_250_330/datacard_270_gaus_exp_250_330.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_270.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_270.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_gaus_exp_250_330.root HbbHbb:f_gaus_exp +shapes data_obs HbbHbb w_background_gaus_exp_250_330.root HbbHbb:data_obs_gaus_exp_250_330 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 187.683 15384 187.683 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.06842 - - +JER lnN 1.01813 - - +JEC lnN 1.01225 - - +trigger lnN 1.0760638829 - - +PDF lnN 1.01461887818 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.080 +par_gaus_exp_0 param 266.499 0.453027 +par_gaus_exp_1 param 11.9408 0.531579 +par_gaus_exp_2 param 0.13851 0.00812008 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_270_novo_285_625/datacard_270_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_270_novo_285_625/datacard_270_novo_285_625.txt new file mode 100644 index 0000000..7768503 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_270_novo_285_625/datacard_270_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_270.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_270.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 187.683 21478 187.683 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.06842 - - +JER lnN 1.01813 - - +JEC lnN 1.01225 - - +trigger lnN 1.0760638829 - - +PDF lnN 1.01461887818 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_275_gaus_exp_250_330/CMS_HH4b_275_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_275_gaus_exp_250_330/CMS_HH4b_275_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..db27bc1 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_275_gaus_exp_250_330/CMS_HH4b_275_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-5UpEtv.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 3.39585e-08 -3.39585e-08/+0.200631 (68% CL) +nll S+B -> -0.0624136 nll B -> -0.0624131 +Done in 0.01 min (cpu), 0.02 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_275_gaus_exp_250_330/CMS_HH4b_275_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_275_gaus_exp_250_330/CMS_HH4b_275_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..2aba9f9 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_275_gaus_exp_250_330/CMS_HH4b_275_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.847656 +Sigma for expected limits: 0.432486 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -7.28357 (r = 9.4083e-08) + +Make global fit of asimov data +NLL at global minimum of asimov: -11.6216 (r = 2.5402e-10) +At r = 1.200000: q_mu = 10.61601 q_A = 7.08703 CLsb = 0.00044 CLb = 0.25373 CLs = 0.00174 +At r = 0.600000: q_mu = 3.97623 q_A = 2.12344 CLsb = 0.01818 CLb = 0.26247 CLs = 0.06925 +At r = 0.900000: q_mu = 7.01163 q_A = 4.29266 CLsb = 0.00319 CLb = 0.25586 CLs = 0.01245 +At r = 0.750000: q_mu = 5.41646 q_A = 3.12399 CLsb = 0.00785 CLb = 0.25833 CLs = 0.03037 +At r = 0.677427: q_mu = 4.69954 q_A = 2.61822 CLsb = 0.01187 CLb = 0.26007 CLs = 0.04565 +At r = 0.648419: q_mu = 4.42342 q_A = 2.42734 CLsb = 0.01395 CLb = 0.26089 CLs = 0.05348 +At r = 0.664093: q_mu = 4.57185 q_A = 2.52966 CLsb = 0.01279 CLb = 0.26044 CLs = 0.04911 +At r = 0.658330: q_mu = 4.51706 q_A = 2.49181 CLsb = 0.01321 CLb = 0.26060 CLs = 0.05068 +At r = 0.661472: q_mu = 4.54691 q_A = 2.51242 CLsb = 0.01298 CLb = 0.26051 CLs = 0.04982 + + -- Asymptotic -- +Observed Limit: r < 0.6615 +Expected 2.5%: r < 0.4122 +Expected 16.0%: r < 0.5806 +Expected 50.0%: r < 0.8477 +Expected 84.0%: r < 1.2295 +Expected 97.5%: r < 1.7192 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_275_gaus_exp_250_330/datacard_275_gaus_exp_250_330.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_275_gaus_exp_250_330/datacard_275_gaus_exp_250_330.txt new file mode 100644 index 0000000..b6aae1d --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_275_gaus_exp_250_330/datacard_275_gaus_exp_250_330.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_275.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_275.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_gaus_exp_250_330.root HbbHbb:f_gaus_exp +shapes data_obs HbbHbb w_background_gaus_exp_250_330.root HbbHbb:data_obs_gaus_exp_250_330 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 202.212667 15384.000000 202.212667 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.068547 - - +JER lnN 1.018227 - - +JEC lnN 1.010057 - - +trigger lnN 1.072849 - - +PDF lnN 1.014604 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.090120 +par_gaus_exp_0 param 266.499 0.453027 +par_gaus_exp_1 param 11.9408 0.531579 +par_gaus_exp_2 param 0.13851 0.00812008 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_275_novo_285_625/datacard_275_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_275_novo_285_625/datacard_275_novo_285_625.txt new file mode 100644 index 0000000..07b78eb --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_275_novo_285_625/datacard_275_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_275.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_275.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 202.212667 21478.000000 202.212667 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.068282 - - +JER lnN 1.016492 - - +JEC lnN 1.011421 - - +trigger lnN 1.077232 - - +PDF lnN 1.014798 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.007019 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_280_gaus_exp_250_330/CMS_HH4b_280_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_280_gaus_exp_250_330/CMS_HH4b_280_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..cfdce3c --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_280_gaus_exp_250_330/CMS_HH4b_280_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-X4f1Z6.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.020 + + + --- MaxLikelihoodFit --- +Best fit r: 0.017969 -0.017969/+0.410022 (68% CL) +nll S+B -> -0.0442087 nll B -> -0.043239 +Done in 0.02 min (cpu), 0.02 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_280_gaus_exp_250_330/CMS_HH4b_280_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_280_gaus_exp_250_330/CMS_HH4b_280_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..b73ee20 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_280_gaus_exp_250_330/CMS_HH4b_280_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.759766 +Sigma for expected limits: 0.387643 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -4.82875 (r = 0.0183068) + +Make global fit of asimov data +NLL at global minimum of asimov: -13.3071 (r = 8.92511e-07) +At r = 5.417510: q_mu = 83.02110 q_A = 85.73804 CLsb = 0.00000 CLb = 0.55879 CLs = 0.00000 +At r = 2.717909: q_mu = 31.07922 q_A = 32.96097 CLsb = 0.00000 CLb = 0.56604 CLs = 0.00000 +At r = 1.368108: q_mu = 9.64842 q_A = 10.72410 CLsb = 0.00095 CLb = 0.56694 CLs = 0.00167 +At r = 0.693207: q_mu = 2.62177 q_A = 3.26497 CLsb = 0.05270 CLb = 0.57446 CLs = 0.09174 +At r = 1.030657: q_mu = 5.67839 q_A = 6.59770 CLsb = 0.00859 CLb = 0.57364 CLs = 0.01497 +At r = 0.861932: q_mu = 4.02342 q_A = 4.80823 CLsb = 0.02244 CLb = 0.57414 CLs = 0.03908 +At r = 0.789208: q_mu = 3.38676 q_A = 4.11139 CLsb = 0.03286 CLb = 0.57430 CLs = 0.05722 +At r = 0.824329: q_mu = 3.68821 q_A = 4.44207 CLsb = 0.02740 CLb = 0.57423 CLs = 0.04771 +At r = 0.810068: q_mu = 3.56444 q_A = 4.30647 CLsb = 0.02951 CLb = 0.57426 CLs = 0.05140 +At r = 0.817147: q_mu = 3.62565 q_A = 4.37356 CLsb = 0.02845 CLb = 0.57424 CLs = 0.04954 +At r = 0.814307: q_mu = 3.60103 q_A = 4.34658 CLsb = 0.02887 CLb = 0.57425 CLs = 0.05028 + + -- Asymptotic -- +Observed Limit: r < 0.8143 +Expected 2.5%: r < 0.3784 +Expected 16.0%: r < 0.5259 +Expected 50.0%: r < 0.7598 +Expected 84.0%: r < 1.1020 +Expected 97.5%: r < 1.5315 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_280_gaus_exp_250_330/datacard_280_gaus_exp_250_330.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_280_gaus_exp_250_330/datacard_280_gaus_exp_250_330.txt new file mode 100644 index 0000000..8b10f2a --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_280_gaus_exp_250_330/datacard_280_gaus_exp_250_330.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_280.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_280.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_gaus_exp_250_330.root HbbHbb:f_gaus_exp +shapes data_obs HbbHbb w_background_gaus_exp_250_330.root HbbHbb:data_obs_gaus_exp_250_330 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 216.742333 15384.000000 216.742333 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.068517 - - +JER lnN 1.017390 - - +JEC lnN 1.008658 - - +trigger lnN 1.072250 - - +PDF lnN 1.014709 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.091467 +par_gaus_exp_0 param 266.499 0.453027 +par_gaus_exp_1 param 11.9408 0.531579 +par_gaus_exp_2 param 0.13851 0.00812008 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_280_novo_285_625/datacard_280_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_280_novo_285_625/datacard_280_novo_285_625.txt new file mode 100644 index 0000000..facba26 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_280_novo_285_625/datacard_280_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_280.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_280.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 216.742333 21478.000000 216.742333 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.068145 - - +JER lnN 1.014921 - - +JEC lnN 1.010594 - - +trigger lnN 1.078395 - - +PDF lnN 1.014981 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.013749 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_285_gaus_exp_250_330/CMS_HH4b_285_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_285_gaus_exp_250_330/CMS_HH4b_285_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..ec7bf2d --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_285_gaus_exp_250_330/CMS_HH4b_285_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-eYxONe.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.000 + + + --- MaxLikelihoodFit --- +Best fit r: 0.189037 -0.189037/+0.41497 (68% CL) +nll S+B -> -0.136597 nll B -> -0.0304309 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_285_gaus_exp_250_330/CMS_HH4b_285_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_285_gaus_exp_250_330/CMS_HH4b_285_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..28847f0 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_285_gaus_exp_250_330/CMS_HH4b_285_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.767578 +Sigma for expected limits: 0.391629 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -2.58834 (r = 0.188998) + +Make global fit of asimov data +NLL at global minimum of asimov: -12.9769 (r = 3.76e-07) +At r = 1.388998: q_mu = 7.35806 q_A = 10.96599 CLsb = 0.00334 CLb = 0.72539 CLs = 0.00460 +At r = 0.788998: q_mu = 2.03048 q_A = 4.04634 CLsb = 0.07709 CLb = 0.72126 CLs = 0.10688 +At r = 1.088998: q_mu = 4.41094 q_A = 7.17140 CLsb = 0.01785 CLb = 0.71827 CLs = 0.02486 +At r = 0.913999: q_mu = 2.92396 q_A = 5.25823 CLsb = 0.04364 CLb = 0.72010 CLs = 0.06060 +At r = 0.979202: q_mu = 3.44696 q_A = 5.94272 CLsb = 0.03168 CLb = 0.71944 CLs = 0.04404 +At r = 0.945419: q_mu = 3.17124 q_A = 5.58373 CLsb = 0.03747 CLb = 0.71978 CLs = 0.05206 +At r = 0.958701: q_mu = 3.27844 q_A = 5.72377 CLsb = 0.03510 CLb = 0.71965 CLs = 0.04877 +At r = 0.951993: q_mu = 3.22411 q_A = 5.65287 CLsb = 0.03628 CLb = 0.71972 CLs = 0.05041 +At r = 0.954660: q_mu = 3.24566 q_A = 5.68101 CLsb = 0.03581 CLb = 0.71969 CLs = 0.04975 + + -- Asymptotic -- +Observed Limit: r < 0.9547 +Expected 2.5%: r < 0.3823 +Expected 16.0%: r < 0.5313 +Expected 50.0%: r < 0.7676 +Expected 84.0%: r < 1.1072 +Expected 97.5%: r < 1.5433 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_285_gaus_exp_250_330/datacard_285_gaus_exp_250_330.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_285_gaus_exp_250_330/datacard_285_gaus_exp_250_330.txt new file mode 100644 index 0000000..f9d8e74 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_285_gaus_exp_250_330/datacard_285_gaus_exp_250_330.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_285.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_285.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_gaus_exp_250_330.root HbbHbb:f_gaus_exp +shapes data_obs HbbHbb w_background_gaus_exp_250_330.root HbbHbb:data_obs_gaus_exp_250_330 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 231.272000 15384.000000 231.272000 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.068371 - - +JER lnN 1.015919 - - +JEC lnN 1.007872 - - +trigger lnN 1.073612 - - +PDF lnN 1.014909 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.086184 +par_gaus_exp_0 param 266.499 0.453027 +par_gaus_exp_1 param 11.9408 0.531579 +par_gaus_exp_2 param 0.13851 0.00812008 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_285_novo_285_625/datacard_285_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_285_novo_285_625/datacard_285_novo_285_625.txt new file mode 100644 index 0000000..cd8e027 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_285_novo_285_625/datacard_285_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_285.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_285.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 231.272000 21478.000000 231.272000 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.068010 - - +JER lnN 1.013487 - - +JEC lnN 1.009770 - - +trigger lnN 1.079550 - - +PDF lnN 1.015169 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.019901 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_290_gaus_exp_250_330/CMS_HH4b_290_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_290_gaus_exp_250_330/CMS_HH4b_290_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..1efed11 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_290_gaus_exp_250_330/CMS_HH4b_290_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-kImubq.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 0.187178 -0.187178/+0.346594 (68% CL) +nll S+B -> -0.16925 nll B -> -0.0188187 +Done in 0.01 min (cpu), 0.02 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_290_gaus_exp_250_330/CMS_HH4b_290_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_290_gaus_exp_250_330/CMS_HH4b_290_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..273f69b --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_290_gaus_exp_250_330/CMS_HH4b_290_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.662109 +Sigma for expected limits: 0.337817 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -6.19863 (r = 0.187474) + +Make global fit of asimov data +NLL at global minimum of asimov: -17.4402 (r = 3.94981e-08) +At r = 1.387474: q_mu = 10.32627 q_A = 14.38328 CLsb = 0.00066 CLb = 0.71873 CLs = 0.00091 +At r = 0.787474: q_mu = 2.86660 q_A = 5.28113 CLsb = 0.04522 CLb = 0.72740 CLs = 0.06216 +At r = 1.087474: q_mu = 6.13869 q_A = 9.42394 CLsb = 0.00661 CLb = 0.72314 CLs = 0.00914 +At r = 0.937474: q_mu = 4.37368 q_A = 7.23627 CLsb = 0.01825 CLb = 0.72531 CLs = 0.02516 +At r = 0.846363: q_mu = 3.42559 q_A = 6.01905 CLsb = 0.03210 CLb = 0.72659 CLs = 0.04417 +At r = 0.817502: q_mu = 3.14619 q_A = 5.65245 CLsb = 0.03805 CLb = 0.72699 CLs = 0.05234 +At r = 0.829504: q_mu = 3.26112 q_A = 5.80376 CLsb = 0.03547 CLb = 0.72683 CLs = 0.04880 +At r = 0.823778: q_mu = 3.20606 q_A = 5.73136 CLsb = 0.03668 CLb = 0.72690 CLs = 0.05046 +At r = 0.826187: q_mu = 3.22918 q_A = 5.76178 CLsb = 0.03617 CLb = 0.72687 CLs = 0.04976 + + -- Asymptotic -- +Observed Limit: r < 0.8262 +Expected 2.5%: r < 0.3401 +Expected 16.0%: r < 0.4646 +Expected 50.0%: r < 0.6621 +Expected 84.0%: r < 0.9498 +Expected 97.5%: r < 1.3112 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_290_gaus_exp_250_330/datacard_290_gaus_exp_250_330.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_290_gaus_exp_250_330/datacard_290_gaus_exp_250_330.txt new file mode 100644 index 0000000..9f4fbb6 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_290_gaus_exp_250_330/datacard_290_gaus_exp_250_330.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_290.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_290.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_gaus_exp_250_330.root HbbHbb:f_gaus_exp +shapes data_obs HbbHbb w_background_gaus_exp_250_330.root HbbHbb:data_obs_gaus_exp_250_330 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 245.801667 15384.000000 245.801667 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.068150 - - +JER lnN 1.014111 - - +JEC lnN 1.007512 - - +trigger lnN 1.076281 - - +PDF lnN 1.015175 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.076416 +par_gaus_exp_0 param 266.499 0.453027 +par_gaus_exp_1 param 11.9408 0.531579 +par_gaus_exp_2 param 0.13851 0.00812008 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_290_novo_285_625/CMS_HH4b_290_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_290_novo_285_625/CMS_HH4b_290_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..e1aa816 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_290_novo_285_625/CMS_HH4b_290_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-HXeloH.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 0.44987 -0.370717/+0.382873 (68% CL) +nll S+B -> -0.73295 nll B -> -0.00351837 +Done in 0.01 min (cpu), 0.02 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_290_novo_285_625/CMS_HH4b_290_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_290_novo_285_625/CMS_HH4b_290_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..9045391 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_290_novo_285_625/CMS_HH4b_290_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +WARNING: Best fit of asimov dataset is at r = 0.245821 (0.012291 times rMax), while it should be at zero +Median for expected limits: 1.01172 +Sigma for expected limits: 0.516193 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -15.3678 (r = 0.449863) + +Make global fit of asimov data +NLL at global minimum of asimov: -17.7081 (r = 0.246236) +At r = 1.649863: q_mu = 8.49510 q_A = 11.64275 CLsb = 0.00178 CLb = 0.69059 CLs = 0.00258 +At r = 1.049863: q_mu = 2.35366 q_A = 4.22174 CLsb = 0.06249 CLb = 0.69865 CLs = 0.08945 +At r = 1.349863: q_mu = 5.04161 q_A = 7.58638 CLsb = 0.01237 CLb = 0.69462 CLs = 0.01781 +At r = 1.196367: q_mu = 3.55943 q_A = 5.76752 CLsb = 0.02960 CLb = 0.69670 CLs = 0.04249 +At r = 1.141447: q_mu = 3.08233 q_A = 5.16511 CLsb = 0.03957 CLb = 0.69743 CLs = 0.05674 +At r = 1.171647: q_mu = 3.34106 q_A = 5.49333 CLsb = 0.03379 CLb = 0.69705 CLs = 0.04847 +At r = 1.160840: q_mu = 3.24749 q_A = 5.37487 CLsb = 0.03577 CLb = 0.69718 CLs = 0.05130 +At r = 1.166915: q_mu = 3.29993 q_A = 5.44130 CLsb = 0.03464 CLb = 0.69710 CLs = 0.04969 + + -- Asymptotic -- +Observed Limit: r < 1.1669 +Expected 2.5%: r < 0.6501 +Expected 16.0%: r < 0.7885 +Expected 50.0%: r < 1.0117 +Expected 84.0%: r < 1.3384 +Expected 97.5%: r < 1.7525 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_290_novo_285_625/datacard_290_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_290_novo_285_625/datacard_290_novo_285_625.txt new file mode 100644 index 0000000..b7b1128 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_290_novo_285_625/datacard_290_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_290.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_290.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 245.801667 21478.000000 245.801667 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.067881 - - +JER lnN 1.012256 - - +JEC lnN 1.008952 - - +trigger lnN 1.080691 - - +PDF lnN 1.015367 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.025186 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_295_gaus_exp_250_330/CMS_HH4b_295_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_295_gaus_exp_250_330/CMS_HH4b_295_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..f5c4b9c --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_295_gaus_exp_250_330/CMS_HH4b_295_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-893jCd.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 0.132093 -0.132093/+0.331057 (68% CL) +nll S+B -> -0.103062 nll B -> -0.0217605 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_295_gaus_exp_250_330/CMS_HH4b_295_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_295_gaus_exp_250_330/CMS_HH4b_295_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..0350775 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_295_gaus_exp_250_330/CMS_HH4b_295_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.634766 +Sigma for expected limits: 0.323866 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -8.84584 (r = 0.131915) + +Make global fit of asimov data +NLL at global minimum of asimov: -19.6726 (r = 2.61659e-06) +At r = 1.331915: q_mu = 11.21539 q_A = 14.39851 CLsb = 0.00041 CLb = 0.67206 CLs = 0.00060 +At r = 0.731915: q_mu = 3.12763 q_A = 4.98601 CLsb = 0.03849 CLb = 0.67883 CLs = 0.05670 +At r = 1.031915: q_mu = 6.68558 q_A = 9.24710 CLsb = 0.00486 CLb = 0.67554 CLs = 0.00719 +At r = 0.881915: q_mu = 4.76841 q_A = 6.98880 CLsb = 0.01449 CLb = 0.67723 CLs = 0.02140 +At r = 0.777397: q_mu = 3.59386 q_A = 5.56421 CLsb = 0.02900 CLb = 0.67836 CLs = 0.04275 +At r = 0.757204: q_mu = 3.38339 q_A = 5.30426 CLsb = 0.03293 CLb = 0.67857 CLs = 0.04853 +At r = 0.748256: q_mu = 3.29190 q_A = 5.19072 CLsb = 0.03481 CLb = 0.67866 CLs = 0.05129 +At r = 0.753343: q_mu = 3.34378 q_A = 5.25514 CLsb = 0.03373 CLb = 0.67861 CLs = 0.04970 +At r = 0.751559: q_mu = 3.32554 q_A = 5.23251 CLsb = 0.03411 CLb = 0.67863 CLs = 0.05026 + + -- Asymptotic -- +Observed Limit: r < 0.7516 +Expected 2.5%: r < 0.3261 +Expected 16.0%: r < 0.4454 +Expected 50.0%: r < 0.6348 +Expected 84.0%: r < 0.9106 +Expected 97.5%: r < 1.2571 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_295_gaus_exp_250_330/datacard_295_gaus_exp_250_330.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_295_gaus_exp_250_330/datacard_295_gaus_exp_250_330.txt new file mode 100644 index 0000000..d660c8f --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_295_gaus_exp_250_330/datacard_295_gaus_exp_250_330.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_295.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_295.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_gaus_exp_250_330.root HbbHbb:f_gaus_exp +shapes data_obs HbbHbb w_background_gaus_exp_250_330.root HbbHbb:data_obs_gaus_exp_250_330 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 260.331333 15384.000000 260.331333 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.067892 - - +JER lnN 1.012265 - - +JEC lnN 1.007396 - - +trigger lnN 1.079600 - - +PDF lnN 1.015481 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.064306 +par_gaus_exp_0 param 266.499 0.453027 +par_gaus_exp_1 param 11.9408 0.531579 +par_gaus_exp_2 param 0.13851 0.00812008 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_295_novo_285_625/CMS_HH4b_295_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_295_novo_285_625/CMS_HH4b_295_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..3a86fc9 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_295_novo_285_625/CMS_HH4b_295_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-0sIVSG.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.020 + + + --- MaxLikelihoodFit --- +Best fit r: 0.102276 -0.102276/+0.374638 (68% CL) +nll S+B -> -0.0382524 nll B -> -0.000381767 +Done in 0.01 min (cpu), 0.02 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_295_novo_285_625/CMS_HH4b_295_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_295_novo_285_625/CMS_HH4b_295_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..2ee49e0 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_295_novo_285_625/CMS_HH4b_295_13TeV_asymptoticCLs.out @@ -0,0 +1,40 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +WARNING: Best fit of asimov dataset is at r = 0.111784 (0.005589 times rMax), while it should be at zero +Median for expected limits: 0.863281 +Sigma for expected limits: 0.440458 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -19.4435 (r = 0.102152) + +Make global fit of asimov data +NLL at global minimum of asimov: -19.44 (r = 0.111726) +At r = 1.302152: q_mu = 9.07614 q_A = 8.94814 CLsb = 0.00129 CLb = 0.49146 CLs = 0.00263 +At r = 0.702152: q_mu = 2.47630 q_A = 2.40327 CLsb = 0.05777 CLb = 0.49060 CLs = 0.11775 +At r = 1.002152: q_mu = 5.35251 q_A = 5.24986 CLsb = 0.01034 CLb = 0.49106 CLs = 0.02106 +At r = 0.881594: q_mu = 4.08405 q_A = 3.99275 CLsb = 0.02164 CLb = 0.49089 CLs = 0.04408 +At r = 0.827293: q_mu = 3.56072 q_A = 3.47477 CLsb = 0.02957 CLb = 0.49080 CLs = 0.06025 +At r = 0.853217: q_mu = 3.80690 q_A = 3.71837 CLsb = 0.02551 CLb = 0.49084 CLs = 0.05198 +At r = 0.864236: q_mu = 3.91340 q_A = 3.82379 CLsb = 0.02394 CLb = 0.49086 CLs = 0.04878 +At r = 0.858601: q_mu = 3.85869 q_A = 3.76964 CLsb = 0.02474 CLb = 0.49085 CLs = 0.05040 +At r = 0.860818: q_mu = 3.88017 q_A = 3.79090 CLsb = 0.02442 CLb = 0.49086 CLs = 0.04975 + + -- Asymptotic -- +Observed Limit: r < 0.8608 +Expected 2.5%: r < 0.5126 +Expected 16.0%: r < 0.6468 +Expected 50.0%: r < 0.8633 +Expected 84.0%: r < 1.1833 +Expected 97.5%: r < 1.5832 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_295_novo_285_625/datacard_295_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_295_novo_285_625/datacard_295_novo_285_625.txt new file mode 100644 index 0000000..1e87a3f --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_295_novo_285_625/datacard_295_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_295.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_295.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 260.331333 21478.000000 260.331333 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.067757 - - +JER lnN 1.011298 - - +JEC lnN 1.008142 - - +trigger lnN 1.081814 - - +PDF lnN 1.015576 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.029315 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_300_gaus_exp_250_330/CMS_HH4b_300_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_300_gaus_exp_250_330/CMS_HH4b_300_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..a7f69f9 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_300_gaus_exp_250_330/CMS_HH4b_300_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-a3aY7Y.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 1.09952e-07 -1.09952e-07/+0.306157 (68% CL) +nll S+B -> -0.0184476 nll B -> -0.0184476 +Done in 0.01 min (cpu), 0.02 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_300_gaus_exp_250_330/CMS_HH4b_300_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_300_gaus_exp_250_330/CMS_HH4b_300_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..b723a09 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_300_gaus_exp_250_330/CMS_HH4b_300_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.630859 +Sigma for expected limits: 0.321873 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -12.6307 (r = 1.27551e-05) + +Make global fit of asimov data +NLL at global minimum of asimov: -20.8714 (r = 1.04983e-07) +At r = 9.410069: q_mu = 192.47908 q_A = 192.65150 CLsb = 0.00000 CLb = 0.50248 CLs = 0.00000 +At r = 4.705041: q_mu = 92.39414 q_A = 92.03090 CLsb = 0.00000 CLb = 0.49245 CLs = 0.00000 +At r = 2.352527: q_mu = 36.70961 q_A = 36.51249 CLsb = 0.00000 CLb = 0.49349 CLs = 0.00000 +At r = 1.176270: q_mu = 11.92018 q_A = 11.87942 CLsb = 0.00028 CLb = 0.49764 CLs = 0.00056 +At r = 0.588141: q_mu = 3.38696 q_A = 3.36206 CLsb = 0.03286 CLb = 0.49729 CLs = 0.06607 +At r = 0.882206: q_mu = 7.15155 q_A = 7.11776 CLsb = 0.00374 CLb = 0.49747 CLs = 0.00753 +At r = 0.735173: q_mu = 5.12581 q_A = 5.09621 CLsb = 0.01179 CLb = 0.49738 CLs = 0.02370 +At r = 0.649517: q_mu = 4.07554 q_A = 4.04861 CLsb = 0.02175 CLb = 0.49733 CLs = 0.04374 +At r = 0.621320: q_mu = 3.75235 q_A = 3.72634 CLsb = 0.02637 CLb = 0.49731 CLs = 0.05302 +At r = 0.633831: q_mu = 3.89433 q_A = 3.86792 CLsb = 0.02422 CLb = 0.49732 CLs = 0.04871 +At r = 0.628239: q_mu = 3.83059 q_A = 3.80436 CLsb = 0.02516 CLb = 0.49732 CLs = 0.05060 +At r = 0.630751: q_mu = 3.85917 q_A = 3.83285 CLsb = 0.02474 CLb = 0.49732 CLs = 0.04974 + + -- Asymptotic -- +Observed Limit: r < 0.6308 +Expected 2.5%: r < 0.3314 +Expected 16.0%: r < 0.4472 +Expected 50.0%: r < 0.6309 +Expected 84.0%: r < 0.8999 +Expected 97.5%: r < 1.2460 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_300_gaus_exp_250_330/datacard_300_gaus_exp_250_330.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_300_gaus_exp_250_330/datacard_300_gaus_exp_250_330.txt new file mode 100644 index 0000000..9135e4f --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_300_gaus_exp_250_330/datacard_300_gaus_exp_250_330.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_300.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_300.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_gaus_exp_250_330.root HbbHbb:f_gaus_exp +shapes data_obs HbbHbb w_background_gaus_exp_250_330.root HbbHbb:data_obs_gaus_exp_250_330 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 274.861 15384 274.861 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.06764 - - +JER lnN 1.01068 - - +JEC lnN 1.00734 - - +trigger lnN 1.0829156197 - - +PDF lnN 1.01580080477 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.052 +par_gaus_exp_0 param 266.499 0.453027 +par_gaus_exp_1 param 11.9408 0.531579 +par_gaus_exp_2 param 0.13851 0.00812008 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_300_novo_285_625/CMS_HH4b_300_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_300_novo_285_625/CMS_HH4b_300_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..1b80bd6 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_300_novo_285_625/CMS_HH4b_300_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-QawHyb.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 2.02104e-08 -2.02104e-08/+0.242066 (68% CL) +nll S+B -> -0.000739163 nll B -> -0.000739182 +Done in 0.01 min (cpu), 0.02 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_300_novo_285_625/CMS_HH4b_300_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_300_novo_285_625/CMS_HH4b_300_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..1ac7530 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_300_novo_285_625/CMS_HH4b_300_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +WARNING: Best fit of asimov dataset is at r = 0.035630 (0.001782 times rMax), while it should be at zero +Median for expected limits: 0.742188 +Sigma for expected limits: 0.378674 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -24.0533 (r = 9.77444e-08) + +Make global fit of asimov data +NLL at global minimum of asimov: -21.5981 (r = 0.035511) +At r = 1.368222: q_mu = 15.47843 q_A = 12.30575 CLsb = 0.00004 CLb = 0.32556 CLs = 0.00012 +At r = 0.684111: q_mu = 5.01714 q_A = 3.26236 CLsb = 0.01095 CLb = 0.31357 CLs = 0.03493 +At r = 0.342056: q_mu = 1.66225 q_A = 0.75672 CLsb = 0.08221 CLb = 0.30137 CLs = 0.27278 +At r = 0.513083: q_mu = 3.14697 q_A = 1.80620 CLsb = 0.03268 CLb = 0.30896 CLs = 0.10578 +At r = 0.605622: q_mu = 4.11377 q_A = 2.54617 CLsb = 0.01845 CLb = 0.31164 CLs = 0.05920 +At r = 0.641427: q_mu = 4.51667 q_A = 2.86328 CLsb = 0.01460 CLb = 0.31258 CLs = 0.04672 +At r = 0.626058: q_mu = 4.34185 q_A = 2.72506 CLsb = 0.01616 CLb = 0.31217 CLs = 0.05176 +At r = 0.633283: q_mu = 4.42367 q_A = 2.78963 CLsb = 0.01541 CLb = 0.31236 CLs = 0.04933 +At r = 0.630224: q_mu = 4.38894 q_A = 2.76220 CLsb = 0.01572 CLb = 0.31228 CLs = 0.05035 +At r = 0.631671: q_mu = 4.40536 q_A = 2.77516 CLsb = 0.01557 CLb = 0.31232 CLs = 0.04987 + + -- Asymptotic -- +Observed Limit: r < 0.6317 +Expected 2.5%: r < 0.4102 +Expected 16.0%: r < 0.5373 +Expected 50.0%: r < 0.7422 +Expected 84.0%: r < 1.0410 +Expected 97.5%: r < 1.4162 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_300_novo_285_625/datacard_300_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_300_novo_285_625/datacard_300_novo_285_625.txt new file mode 100644 index 0000000..ca5dad1 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_300_novo_285_625/datacard_300_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_300.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_300.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 274.861 21478 274.861 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.06764 - - +JER lnN 1.01068 - - +JEC lnN 1.00734 - - +trigger lnN 1.0829156197 - - +PDF lnN 1.01580080477 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.032 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_310_gaus_exp_250_330/CMS_HH4b_310_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_310_gaus_exp_250_330/CMS_HH4b_310_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..11f1cf0 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_310_gaus_exp_250_330/CMS_HH4b_310_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-I0YyFn.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.020 + + + --- MaxLikelihoodFit --- +Best fit r: 1.09112e-07 -1.09112e-07/+0.212911 (68% CL) +nll S+B -> -0.036277 nll B -> -0.036277 +Done in 0.01 min (cpu), 0.02 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_310_gaus_exp_250_330/CMS_HH4b_310_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_310_gaus_exp_250_330/CMS_HH4b_310_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..414df0f --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_310_gaus_exp_250_330/CMS_HH4b_310_13TeV_asymptoticCLs.out @@ -0,0 +1,40 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.580078 +Sigma for expected limits: 0.295964 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -26.2623 (r = 2.30515e-07) + +Make global fit of asimov data +NLL at global minimum of asimov: -32.8506 (r = 1.23577e-05) +At r = 1.201614: q_mu = 17.03244 q_A = 14.68663 CLsb = 0.00002 CLb = 0.37978 CLs = 0.00005 +At r = 0.600807: q_mu = 5.42239 q_A = 4.11668 CLsb = 0.00937 CLb = 0.37381 CLs = 0.02506 +At r = 0.300404: q_mu = 1.71126 q_A = 1.03408 CLsb = 0.08853 CLb = 0.36958 CLs = 0.23954 +At r = 0.450605: q_mu = 3.34348 q_A = 2.34388 CLsb = 0.03162 CLb = 0.37204 CLs = 0.08500 +At r = 0.532855: q_mu = 4.43041 q_A = 3.26098 CLsb = 0.01660 CLb = 0.37305 CLs = 0.04450 +At r = 0.504563: q_mu = 4.04202 q_A = 2.93043 CLsb = 0.02085 CLb = 0.37271 CLs = 0.05594 +At r = 0.521328: q_mu = 4.27037 q_A = 3.12444 CLsb = 0.01823 CLb = 0.37291 CLs = 0.04889 +At r = 0.515732: q_mu = 4.19356 q_A = 3.05907 CLsb = 0.01907 CLb = 0.37285 CLs = 0.05115 +At r = 0.517978: q_mu = 4.22432 q_A = 3.08523 CLsb = 0.01873 CLb = 0.37287 CLs = 0.05023 +At r = 0.519100: q_mu = 4.23972 q_A = 3.09834 CLsb = 0.01856 CLb = 0.37289 CLs = 0.04978 + + -- Asymptotic -- +Observed Limit: r < 0.5191 +Expected 2.5%: r < 0.3138 +Expected 16.0%: r < 0.4168 +Expected 50.0%: r < 0.5801 +Expected 84.0%: r < 0.8182 +Expected 97.5%: r < 1.1248 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_310_gaus_exp_250_330/datacard_310_gaus_exp_250_330.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_310_gaus_exp_250_330/datacard_310_gaus_exp_250_330.txt new file mode 100644 index 0000000..874f2d2 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_310_gaus_exp_250_330/datacard_310_gaus_exp_250_330.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_310.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_310.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_gaus_exp_250_330.root HbbHbb:f_gaus_exp +shapes data_obs HbbHbb w_background_gaus_exp_250_330.root HbbHbb:data_obs_gaus_exp_250_330 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 311.649000 15384.000000 311.649000 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.067251 - - +JER lnN 1.009014 - - +JEC lnN 1.006932 - - +trigger lnN 1.087877 - - +PDF lnN 1.016409 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.032254 +par_gaus_exp_0 param 266.499 0.453027 +par_gaus_exp_1 param 11.9408 0.531579 +par_gaus_exp_2 param 0.13851 0.00812008 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_310_novo_285_625/CMS_HH4b_310_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_310_novo_285_625/CMS_HH4b_310_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..ac6dd76 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_310_novo_285_625/CMS_HH4b_310_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-lLSKtf.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 9.1324e-10 -9.1324e-10/+0.100971 (68% CL) +nll S+B -> -0.0100567 nll B -> -0.0100567 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_310_novo_285_625/CMS_HH4b_310_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_310_novo_285_625/CMS_HH4b_310_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..ff5ab3b --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_310_novo_285_625/CMS_HH4b_310_13TeV_asymptoticCLs.out @@ -0,0 +1,40 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.587891 +Sigma for expected limits: 0.29995 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -37.736 (r = 1.43291e-08) + +Make global fit of asimov data +NLL at global minimum of asimov: -29.227 (r = 0.0161568) +At r = 1.200000: q_mu = 23.36431 q_A = 14.38713 CLsb = 0.00000 CLb = 0.11833 CLs = 0.00000 +At r = 0.600000: q_mu = 9.02474 q_A = 3.98638 CLsb = 0.00056 CLb = 0.10352 CLs = 0.00541 +At r = 0.300000: q_mu = 3.61578 q_A = 0.98556 CLsb = 0.01024 CLb = 0.09263 CLs = 0.11053 +At r = 0.450000: q_mu = 6.12596 q_A = 2.25680 CLsb = 0.00264 CLb = 0.09891 CLs = 0.02664 +At r = 0.366904: q_mu = 4.68341 q_A = 1.49255 CLsb = 0.00574 CLb = 0.09579 CLs = 0.05994 +At r = 0.398391: q_mu = 5.21541 q_A = 1.76509 CLsb = 0.00431 CLb = 0.09706 CLs = 0.04437 +At r = 0.382088: q_mu = 4.93763 q_A = 1.62130 CLsb = 0.00500 CLb = 0.09641 CLs = 0.05190 +At r = 0.388450: q_mu = 5.04544 q_A = 1.67672 CLsb = 0.00472 CLb = 0.09667 CLs = 0.04883 +At r = 0.385203: q_mu = 4.99032 q_A = 1.64833 CLsb = 0.00486 CLb = 0.09654 CLs = 0.05038 +At r = 0.386478: q_mu = 5.01194 q_A = 1.65945 CLsb = 0.00481 CLb = 0.09659 CLs = 0.04976 + + -- Asymptotic -- +Observed Limit: r < 0.3865 +Expected 2.5%: r < 0.3204 +Expected 16.0%: r < 0.4228 +Expected 50.0%: r < 0.5879 +Expected 84.0%: r < 0.8293 +Expected 97.5%: r < 1.1400 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_310_novo_285_625/datacard_310_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_310_novo_285_625/datacard_310_novo_285_625.txt new file mode 100644 index 0000000..7d76bb2 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_310_novo_285_625/datacard_310_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_310.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_310.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 311.649000 21478.000000 311.649000 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.067431 - - +JER lnN 1.010557 - - +JEC lnN 1.005788 - - +trigger lnN 1.085035 - - +PDF lnN 1.016298 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.032601 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_320_gaus_exp_250_330/CMS_HH4b_320_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_320_gaus_exp_250_330/CMS_HH4b_320_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..c246665 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_320_gaus_exp_250_330/CMS_HH4b_320_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-o5BviE.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 1.69119e-10 -1.69119e-10/+0.113803 (68% CL) +nll S+B -> -0.0277482 nll B -> -0.0277482 +Done in 0.01 min (cpu), 0.02 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_320_gaus_exp_250_330/CMS_HH4b_320_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_320_gaus_exp_250_330/CMS_HH4b_320_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..425b948 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_320_gaus_exp_250_330/CMS_HH4b_320_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +WARNING: Best fit of asimov dataset is at r = 0.096329 (0.004816 times rMax), while it should be at zero +Median for expected limits: 0.607422 +Sigma for expected limits: 0.309915 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -45.7327 (r = 2.45878e-07) + +Make global fit of asimov data +NLL at global minimum of asimov: -46.0935 (r = 0.0963707) +At r = 1.200000: q_mu = 24.70663 q_A = 15.20701 CLsb = 0.00000 CLb = 0.11161 CLs = 0.00000 +At r = 0.600000: q_mu = 9.10965 q_A = 3.71334 CLsb = 0.00044 CLb = 0.08073 CLs = 0.00543 +At r = 0.300000: q_mu = 3.41803 q_A = 0.64220 CLsb = 0.00565 CLb = 0.04164 CLs = 0.13567 +At r = 0.450000: q_mu = 6.02196 q_A = 1.88875 CLsb = 0.00200 CLb = 0.06633 CLs = 0.03017 +At r = 0.379669: q_mu = 4.73540 q_A = 1.22756 CLsb = 0.00356 CLb = 0.05671 CLs = 0.06282 +At r = 0.411238: q_mu = 5.29915 q_A = 1.50809 CLsb = 0.00279 CLb = 0.06135 CLs = 0.04546 +At r = 0.397495: q_mu = 5.05092 q_A = 1.38266 CLsb = 0.00311 CLb = 0.05940 CLs = 0.05240 +At r = 0.403873: q_mu = 5.16558 q_A = 1.44024 CLsb = 0.00296 CLb = 0.06032 CLs = 0.04907 +At r = 0.401137: q_mu = 5.11628 q_A = 1.41541 CLsb = 0.00302 CLb = 0.05993 CLs = 0.05047 +At r = 0.402415: q_mu = 5.13929 q_A = 1.42698 CLsb = 0.00299 CLb = 0.06011 CLs = 0.04981 + + -- Asymptotic -- +Observed Limit: r < 0.4024 +Expected 2.5%: r < 0.3690 +Expected 16.0%: r < 0.4602 +Expected 50.0%: r < 0.6074 +Expected 84.0%: r < 0.8278 +Expected 97.5%: r < 1.1025 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_320_gaus_exp_250_330/datacard_320_gaus_exp_250_330.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_320_gaus_exp_250_330/datacard_320_gaus_exp_250_330.txt new file mode 100644 index 0000000..cbbd5f9 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_320_gaus_exp_250_330/datacard_320_gaus_exp_250_330.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_320.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_320.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_gaus_exp_250_330.root HbbHbb:f_gaus_exp +shapes data_obs HbbHbb w_background_gaus_exp_250_330.root HbbHbb:data_obs_gaus_exp_250_330 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 348.437000 15384.000000 348.437000 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.067007 - - +JER lnN 1.009139 - - +JEC lnN 1.006127 - - +trigger lnN 1.090731 - - +PDF lnN 1.016974 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.018739 +par_gaus_exp_0 param 266.499 0.453027 +par_gaus_exp_1 param 11.9408 0.531579 +par_gaus_exp_2 param 0.13851 0.00812008 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_320_novo_285_625/CMS_HH4b_320_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_320_novo_285_625/CMS_HH4b_320_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..3105f08 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_320_novo_285_625/CMS_HH4b_320_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-Eckg5p.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 0 -0/+0.0434158 (68% CL) +nll S+B -> -0.0497511 nll B -> -0.0497507 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_320_novo_285_625/CMS_HH4b_320_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_320_novo_285_625/CMS_HH4b_320_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..121700f --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_320_novo_285_625/CMS_HH4b_320_13TeV_asymptoticCLs.out @@ -0,0 +1,40 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.494141 +Sigma for expected limits: 0.252117 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -58.2794 (r = 1.04048e-09) + +Make global fit of asimov data +NLL at global minimum of asimov: -37.344 (r = 0.0105995) +At r = 1.200000: q_mu = 39.76224 q_A = 19.07139 CLsb = 0.00000 CLb = 0.00892 CLs = 0.00000 +At r = 0.600000: q_mu = 17.59875 q_A = 5.53509 CLsb = 0.00000 CLb = 0.00518 CLs = 0.00009 +At r = 0.300000: q_mu = 7.86888 q_A = 1.42036 CLsb = 0.00005 CLb = 0.00341 CLs = 0.01426 +At r = 0.150000: q_mu = 3.64541 q_A = 0.33705 CLsb = 0.00030 CLb = 0.00219 CLs = 0.13783 +At r = 0.225000: q_mu = 5.69216 q_A = 0.78888 CLsb = 0.00013 CLb = 0.00289 CLs = 0.04568 +At r = 0.205091: q_mu = 5.13557 q_A = 0.65107 CLsb = 0.00017 CLb = 0.00273 CLs = 0.06161 +At r = 0.216208: q_mu = 5.44522 q_A = 0.72644 CLsb = 0.00015 CLb = 0.00282 CLs = 0.05216 +At r = 0.220210: q_mu = 5.55738 q_A = 0.75455 CLsb = 0.00014 CLb = 0.00285 CLs = 0.04911 +At r = 0.218455: q_mu = 5.50816 q_A = 0.74216 CLsb = 0.00014 CLb = 0.00284 CLs = 0.05043 +At r = 0.219256: q_mu = 5.53062 q_A = 0.74780 CLsb = 0.00014 CLb = 0.00284 CLs = 0.04982 + + -- Asymptotic -- +Observed Limit: r < 0.2193 +Expected 2.5%: r < 0.2673 +Expected 16.0%: r < 0.3550 +Expected 50.0%: r < 0.4941 +Expected 84.0%: r < 0.7010 +Expected 97.5%: r < 0.9609 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_320_novo_285_625/datacard_320_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_320_novo_285_625/datacard_320_novo_285_625.txt new file mode 100644 index 0000000..9f74d64 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_320_novo_285_625/datacard_320_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_320.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_320.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 348.437000 21478.000000 348.437000 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.067248 - - +JER lnN 1.011536 - - +JEC lnN 1.004396 - - +trigger lnN 1.087022 - - +PDF lnN 1.016843 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.028284 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_330_novo_285_625/CMS_HH4b_330_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_330_novo_285_625/CMS_HH4b_330_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..b7ebe9f --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_330_novo_285_625/CMS_HH4b_330_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-fukyG6.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.020 + + + --- MaxLikelihoodFit --- +Best fit r: 1.66533e-16 -1.66533e-16/+0.0278631 (68% CL) +nll S+B -> -0.0687204 nll B -> -0.0687196 +Done in 0.02 min (cpu), 0.02 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_330_novo_285_625/CMS_HH4b_330_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_330_novo_285_625/CMS_HH4b_330_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..ac1903d --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_330_novo_285_625/CMS_HH4b_330_13TeV_asymptoticCLs.out @@ -0,0 +1,40 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.419922 +Sigma for expected limits: 0.21425 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -79.8452 (r = 2.47933e-09) + +Make global fit of asimov data +NLL at global minimum of asimov: -47.5701 (r = 0.00601811) +At r = 1.200000: q_mu = 54.62698 q_A = 24.55742 CLsb = 0.00000 CLb = 0.00121 CLs = 0.00000 +At r = 0.600000: q_mu = 25.59468 q_A = 7.46459 CLsb = 0.00000 CLb = 0.00045 CLs = 0.00000 +At r = 0.300000: q_mu = 11.89230 q_A = 1.98118 CLsb = 0.00000 CLb = 0.00022 CLs = 0.00193 +At r = 0.150000: q_mu = 5.63088 q_A = 0.48831 CLsb = 0.00001 CLb = 0.00012 CLs = 0.05118 +At r = 0.225000: q_mu = 8.69550 q_A = 1.11574 CLsb = 0.00000 CLb = 0.00017 CLs = 0.01024 +At r = 0.187500: q_mu = 7.14499 q_A = 0.77141 CLsb = 0.00000 CLb = 0.00014 CLs = 0.02309 +At r = 0.158379: q_mu = 5.96593 q_A = 0.54613 CLsb = 0.00001 CLb = 0.00012 CLs = 0.04291 +At r = 0.152563: q_mu = 5.73316 q_A = 0.50567 CLsb = 0.00001 CLb = 0.00012 CLs = 0.04850 +At r = 0.151401: q_mu = 5.68677 q_A = 0.49777 CLsb = 0.00001 CLb = 0.00012 CLs = 0.04970 +At r = 0.150889: q_mu = 5.66633 q_A = 0.49430 CLsb = 0.00001 CLb = 0.00012 CLs = 0.05023 + + -- Asymptotic -- +Observed Limit: r < 0.1509 +Expected 2.5%: r < 0.2272 +Expected 16.0%: r < 0.3017 +Expected 50.0%: r < 0.4199 +Expected 84.0%: r < 0.5990 +Expected 97.5%: r < 0.8188 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_330_novo_285_625/datacard_330_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_330_novo_285_625/datacard_330_novo_285_625.txt new file mode 100644 index 0000000..bc5ce8c --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_330_novo_285_625/datacard_330_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_330.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_330.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 385.225000 21478.000000 385.225000 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.067084 - - +JER lnN 1.013087 - - +JEC lnN 1.003277 - - +trigger lnN 1.088849 - - +PDF lnN 1.017410 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.021067 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_340_novo_285_625/CMS_HH4b_340_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_340_novo_285_625/CMS_HH4b_340_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..f91f7c5 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_340_novo_285_625/CMS_HH4b_340_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-NOFIHa.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 4.75533e-11 -4.75533e-11/+0.0311762 (68% CL) +nll S+B -> -0.0202984 nll B -> -0.0202981 +Done in 0.01 min (cpu), 0.02 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_340_novo_285_625/CMS_HH4b_340_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_340_novo_285_625/CMS_HH4b_340_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..9beb90e --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_340_novo_285_625/CMS_HH4b_340_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.364258 +Sigma for expected limits: 0.185849 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -87.8895 (r = 5.91378e-10) + +Make global fit of asimov data +NLL at global minimum of asimov: -59.449 (r = 0.00330012) +At r = 1.200000: q_mu = 55.85633 q_A = 30.40871 CLsb = 0.00000 CLb = 0.01052 CLs = 0.00000 +At r = 0.600000: q_mu = 25.34046 q_A = 9.64979 CLsb = 0.00000 CLb = 0.00578 CLs = 0.00000 +At r = 0.300000: q_mu = 11.32796 q_A = 2.63856 CLsb = 0.00001 CLb = 0.00374 CLs = 0.00229 +At r = 0.150000: q_mu = 5.19721 q_A = 0.66798 CLsb = 0.00017 CLb = 0.00280 CLs = 0.05957 +At r = 0.225000: q_mu = 8.16398 q_A = 1.50162 CLsb = 0.00004 CLb = 0.00328 CLs = 0.01223 +At r = 0.187500: q_mu = 6.65374 q_A = 1.04527 CLsb = 0.00008 CLb = 0.00305 CLs = 0.02732 +At r = 0.164237: q_mu = 5.74371 q_A = 0.80189 CLsb = 0.00013 CLb = 0.00290 CLs = 0.04444 +At r = 0.156804: q_mu = 5.45753 q_A = 0.73071 CLsb = 0.00015 CLb = 0.00285 CLs = 0.05180 +At r = 0.159662: q_mu = 5.56727 q_A = 0.75767 CLsb = 0.00014 CLb = 0.00287 CLs = 0.04884 +At r = 0.158179: q_mu = 5.51024 q_A = 0.74339 CLsb = 0.00014 CLb = 0.00285 CLs = 0.05036 +At r = 0.158753: q_mu = 5.53229 q_A = 0.74882 CLsb = 0.00014 CLb = 0.00286 CLs = 0.04977 + + -- Asymptotic -- +Observed Limit: r < 0.1588 +Expected 2.5%: r < 0.1956 +Expected 16.0%: r < 0.2609 +Expected 50.0%: r < 0.3643 +Expected 84.0%: r < 0.5196 +Expected 97.5%: r < 0.7149 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_340_novo_285_625/datacard_340_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_340_novo_285_625/datacard_340_novo_285_625.txt new file mode 100644 index 0000000..748334a --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_340_novo_285_625/datacard_340_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_340.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_340.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 422.013000 21478.000000 422.013000 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.066931 - - +JER lnN 1.014678 - - +JEC lnN 1.002547 - - +trigger lnN 1.090488 - - +PDF lnN 1.017975 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.012967 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_350_gaus_exp_250_330/datacard_350_gaus_exp_250_330.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_350_gaus_exp_250_330/datacard_350_gaus_exp_250_330.txt new file mode 100644 index 0000000..3d76d98 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_350_gaus_exp_250_330/datacard_350_gaus_exp_250_330.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_350.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_350.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_gaus_exp_250_330.root HbbHbb:f_gaus_exp +shapes data_obs HbbHbb w_background_gaus_exp_250_330.root HbbHbb:data_obs_gaus_exp_250_330 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 458.801 15384 458.801 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.06678 - - +JER lnN 1.01578 - - +JEC lnN 1.00232 - - +trigger lnN 1.0919145030 - - +PDF lnN 1.01851212214 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 +par_gaus_exp_0 param 266.499 0.453027 +par_gaus_exp_1 param 11.9408 0.531579 +par_gaus_exp_2 param 0.13851 0.00812008 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_350_novo_285_625/CMS_HH4b_350_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_350_novo_285_625/CMS_HH4b_350_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..672cafd --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_350_novo_285_625/CMS_HH4b_350_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-C8dITT.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.000 + + + --- MaxLikelihoodFit --- +Best fit r: 8.80129e-13 -8.80129e-13/+0.0511586 (68% CL) +nll S+B -> -0.00150495 nll B -> -0.00150466 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_350_novo_285_625/CMS_HH4b_350_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_350_novo_285_625/CMS_HH4b_350_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..d682416 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_350_novo_285_625/CMS_HH4b_350_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.321289 +Sigma for expected limits: 0.163926 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -89.6741 (r = 1.01015e-07) + +Make global fit of asimov data +NLL at global minimum of asimov: -73.1303 (r = 0.00149266) +At r = 1.200000: q_mu = 50.49185 q_A = 36.36571 CLsb = 0.00000 CLb = 0.12075 CLs = 0.00000 +At r = 0.600000: q_mu = 20.83083 q_A = 11.99770 CLsb = 0.00000 CLb = 0.10114 CLs = 0.00001 +At r = 0.300000: q_mu = 8.29081 q_A = 3.36908 CLsb = 0.00075 CLb = 0.09001 CLs = 0.00829 +At r = 0.150000: q_mu = 3.43370 q_A = 0.86969 CLsb = 0.01052 CLb = 0.08461 CLs = 0.12433 +At r = 0.225000: q_mu = 5.70771 q_A = 1.93320 CLsb = 0.00300 CLb = 0.08733 CLs = 0.03435 +At r = 0.192493: q_mu = 4.68132 q_A = 1.42418 CLsb = 0.00526 CLb = 0.08618 CLs = 0.06107 +At r = 0.208035: q_mu = 5.16474 q_A = 1.65879 CLsb = 0.00404 CLb = 0.08675 CLs = 0.04653 +At r = 0.201639: q_mu = 4.96406 q_A = 1.56018 CLsb = 0.00451 CLb = 0.08651 CLs = 0.05208 +At r = 0.204770: q_mu = 5.06198 q_A = 1.60808 CLsb = 0.00427 CLb = 0.08662 CLs = 0.04929 +At r = 0.203496: q_mu = 5.02205 q_A = 1.58850 CLsb = 0.00436 CLb = 0.08658 CLs = 0.05041 +At r = 0.204123: q_mu = 5.04168 q_A = 1.59812 CLsb = 0.00432 CLb = 0.08660 CLs = 0.04986 + + -- Asymptotic -- +Observed Limit: r < 0.2041 +Expected 2.5%: r < 0.1713 +Expected 16.0%: r < 0.2293 +Expected 50.0%: r < 0.3213 +Expected 84.0%: r < 0.4583 +Expected 97.5%: r < 0.6305 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_350_novo_285_625/datacard_350_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_350_novo_285_625/datacard_350_novo_285_625.txt new file mode 100644 index 0000000..4be6f43 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_350_novo_285_625/datacard_350_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_350.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_350.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 458.801 21478 458.801 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.06678 - - +JER lnN 1.01578 - - +JEC lnN 1.00232 - - +trigger lnN 1.0919145030 - - +PDF lnN 1.01851212214 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.006 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_360_novo_285_625/CMS_HH4b_360_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_360_novo_285_625/CMS_HH4b_360_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..6ff5ae6 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_360_novo_285_625/CMS_HH4b_360_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-2PLJF3.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 6.9721e-10 -6.9721e-10/+0.0671663 (68% CL) +nll S+B -> -0.000191857 nll B -> -0.000191325 +Done in 0.02 min (cpu), 0.02 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_360_novo_285_625/CMS_HH4b_360_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_360_novo_285_625/CMS_HH4b_360_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..f4c31f8 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_360_novo_285_625/CMS_HH4b_360_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.280273 +Sigma for expected limits: 0.142999 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -102.644 (r = 3.80654e-08) + +Make global fit of asimov data +NLL at global minimum of asimov: -91.8739 (r = 0.000267643) +At r = 1.200000: q_mu = 52.36044 q_A = 43.63679 CLsb = 0.00000 CLb = 0.25453 CLs = 0.00000 +At r = 0.600000: q_mu = 20.59971 q_A = 15.01402 CLsb = 0.00000 CLb = 0.23552 CLs = 0.00001 +At r = 0.300000: q_mu = 7.50998 q_A = 4.34457 CLsb = 0.00223 CLb = 0.22383 CLs = 0.00996 +At r = 0.150000: q_mu = 2.80374 q_A = 1.14346 CLsb = 0.03247 CLb = 0.21878 CLs = 0.14842 +At r = 0.225000: q_mu = 4.95157 q_A = 2.51474 CLsb = 0.00928 CLb = 0.22115 CLs = 0.04198 +At r = 0.201692: q_mu = 4.23690 q_A = 2.03653 CLsb = 0.01397 CLb = 0.22037 CLs = 0.06341 +At r = 0.212433: q_mu = 4.56132 q_A = 2.25143 CLsb = 0.01160 CLb = 0.22073 CLs = 0.05254 +At r = 0.217168: q_mu = 4.70715 q_A = 2.34901 CLsb = 0.01067 CLb = 0.22086 CLs = 0.04831 +At r = 0.214669: q_mu = 4.62994 q_A = 2.29720 CLsb = 0.01115 CLb = 0.22078 CLs = 0.05050 +At r = 0.215620: q_mu = 4.65906 q_A = 2.31685 CLsb = 0.01097 CLb = 0.22083 CLs = 0.04966 +At r = 0.215123: q_mu = 4.64375 q_A = 2.30657 CLsb = 0.01106 CLb = 0.22081 CLs = 0.05010 + + -- Asymptotic -- +Observed Limit: r < 0.2151 +Expected 2.5%: r < 0.1494 +Expected 16.0%: r < 0.2000 +Expected 50.0%: r < 0.2803 +Expected 84.0%: r < 0.3998 +Expected 97.5%: r < 0.5536 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_360_novo_285_625/datacard_360_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_360_novo_285_625/datacard_360_novo_285_625.txt new file mode 100644 index 0000000..b1dff8c --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_360_novo_285_625/datacard_360_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_360.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_360.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 493.845000 21478.000000 493.845000 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.066625 - - +JER lnN 1.016001 - - +JEC lnN 1.002656 - - +trigger lnN 1.093096 - - +PDF lnN 1.019000 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.001714 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_370_novo_285_625/CMS_HH4b_370_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_370_novo_285_625/CMS_HH4b_370_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..8ccf8f0 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_370_novo_285_625/CMS_HH4b_370_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-51Xrs5.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 2.95394e-09 -2.95394e-09/+0.0563317 (68% CL) +nll S+B -> -0.000142026 nll B -> -0.000142027 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_370_novo_285_625/CMS_HH4b_370_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_370_novo_285_625/CMS_HH4b_370_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..9e99848 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_370_novo_285_625/CMS_HH4b_370_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.249023 +Sigma for expected limits: 0.127055 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -117.832 (r = 5.76617e-10) + +Make global fit of asimov data +NLL at global minimum of asimov: -112.761 (r = 0.000153911) +At r = 1.200000: q_mu = 60.97427 q_A = 50.88470 CLsb = 0.00000 CLb = 0.23972 CLs = 0.00000 +At r = 0.600000: q_mu = 24.77193 q_A = 18.16292 CLsb = 0.00000 CLb = 0.21906 CLs = 0.00000 +At r = 0.300000: q_mu = 9.22140 q_A = 5.40243 CLsb = 0.00083 CLb = 0.20567 CLs = 0.00403 +At r = 0.150000: q_mu = 3.46837 q_A = 1.44512 CLsb = 0.02049 CLb = 0.20003 CLs = 0.10245 +At r = 0.225000: q_mu = 6.10660 q_A = 3.15117 CLsb = 0.00456 CLb = 0.20258 CLs = 0.02250 +At r = 0.193399: q_mu = 4.93131 q_A = 2.36062 CLsb = 0.00882 CLb = 0.20142 CLs = 0.04380 +At r = 0.179310: q_mu = 4.43649 q_A = 2.04116 CLsb = 0.01170 CLb = 0.20093 CLs = 0.05821 +At r = 0.185333: q_mu = 4.64580 q_A = 2.17525 CLsb = 0.01038 CLb = 0.20114 CLs = 0.05159 +At r = 0.188181: q_mu = 4.74599 q_A = 2.24002 CLsb = 0.00980 CLb = 0.20124 CLs = 0.04871 +At r = 0.186574: q_mu = 4.68933 q_A = 2.20334 CLsb = 0.01012 CLb = 0.20119 CLs = 0.05032 +At r = 0.187145: q_mu = 4.70942 q_A = 2.21633 CLsb = 0.01001 CLb = 0.20121 CLs = 0.04974 + + -- Asymptotic -- +Observed Limit: r < 0.1871 +Expected 2.5%: r < 0.1323 +Expected 16.0%: r < 0.1774 +Expected 50.0%: r < 0.2490 +Expected 84.0%: r < 0.3572 +Expected 97.5%: r < 0.4932 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_370_novo_285_625/datacard_370_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_370_novo_285_625/datacard_370_novo_285_625.txt new file mode 100644 index 0000000..1a56fbd --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_370_novo_285_625/datacard_370_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_370.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_370.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 528.889000 21478.000000 528.889000 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.066464 - - +JER lnN 1.015508 - - +JEC lnN 1.003387 - - +trigger lnN 1.093984 - - +PDF lnN 1.019426 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.000219 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_380_novo_285_625/CMS_HH4b_380_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_380_novo_285_625/CMS_HH4b_380_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..93f7eda --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_380_novo_285_625/CMS_HH4b_380_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-KQMUaG.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 1.71198e-10 -1.71198e-10/+0.0456377 (68% CL) +nll S+B -> -0.000141132 nll B -> -0.000141138 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_380_novo_285_625/CMS_HH4b_380_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_380_novo_285_625/CMS_HH4b_380_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..4e7979d --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_380_novo_285_625/CMS_HH4b_380_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.22168 +Sigma for expected limits: 0.113104 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -145.743 (r = 4.01762e-09) + +Make global fit of asimov data +NLL at global minimum of asimov: -138.591 (r = 2.89604e-06) +At r = 1.200000: q_mu = 70.83484 q_A = 59.06539 CLsb = 0.00000 CLb = 0.22193 CLs = 0.00000 +At r = 0.600000: q_mu = 29.83174 q_A = 21.85826 CLsb = 0.00000 CLb = 0.19691 CLs = 0.00000 +At r = 0.300000: q_mu = 11.44171 q_A = 6.68948 CLsb = 0.00023 CLb = 0.17913 CLs = 0.00127 +At r = 0.150000: q_mu = 4.38402 q_A = 1.81799 CLsb = 0.01073 CLb = 0.17066 CLs = 0.06286 +At r = 0.225000: q_mu = 7.64527 q_A = 3.93267 CLsb = 0.00175 CLb = 0.17462 CLs = 0.01005 +At r = 0.187500: q_mu = 5.93950 q_A = 2.78696 CLsb = 0.00448 CLb = 0.17253 CLs = 0.02596 +At r = 0.165264: q_mu = 4.99794 q_A = 2.19005 CLsb = 0.00758 CLb = 0.17139 CLs = 0.04422 +At r = 0.157947: q_mu = 4.70038 q_A = 2.00791 CLsb = 0.00896 CLb = 0.17104 CLs = 0.05241 +At r = 0.161035: q_mu = 4.82515 q_A = 2.08386 CLsb = 0.00835 CLb = 0.17119 CLs = 0.04880 +At r = 0.159579: q_mu = 4.76618 q_A = 2.04788 CLsb = 0.00864 CLb = 0.17112 CLs = 0.05048 +At r = 0.160198: q_mu = 4.79123 q_A = 2.06314 CLsb = 0.00852 CLb = 0.17115 CLs = 0.04976 + + -- Asymptotic -- +Observed Limit: r < 0.1602 +Expected 2.5%: r < 0.1173 +Expected 16.0%: r < 0.1577 +Expected 50.0%: r < 0.2217 +Expected 84.0%: r < 0.3180 +Expected 97.5%: r < 0.4390 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_380_novo_285_625/datacard_380_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_380_novo_285_625/datacard_380_novo_285_625.txt new file mode 100644 index 0000000..db36c29 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_380_novo_285_625/datacard_380_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_380.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_380.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 563.933000 21478.000000 563.933000 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.066300 - - +JER lnN 1.014604 - - +JEC lnN 1.004291 - - +trigger lnN 1.094526 - - +PDF lnN 1.019782 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.000600 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_390_novo_285_625/CMS_HH4b_390_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_390_novo_285_625/CMS_HH4b_390_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..ffb1d47 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_390_novo_285_625/CMS_HH4b_390_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-PiHAXj.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.020 + + + --- MaxLikelihoodFit --- +Best fit r: 5.30889e-10 -5.30889e-10/+0.0688383 (68% CL) +nll S+B -> -0.000140363 nll B -> -0.00014037 +Done in 0.02 min (cpu), 0.02 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_390_novo_285_625/CMS_HH4b_390_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_390_novo_285_625/CMS_HH4b_390_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..d005a9a --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_390_novo_285_625/CMS_HH4b_390_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.200195 +Sigma for expected limits: 0.102142 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -166.986 (r = 4.92073e-08) + +Make global fit of asimov data +NLL at global minimum of asimov: -167.548 (r = 5.49299e-10) +At r = 1.200000: q_mu = 72.42116 q_A = 67.53374 CLsb = 0.00000 CLb = 0.38309 CLs = 0.00000 +At r = 0.600000: q_mu = 29.11274 q_A = 25.81792 CLsb = 0.00000 CLb = 0.37289 CLs = 0.00000 +At r = 0.300000: q_mu = 10.07471 q_A = 8.11894 CLsb = 0.00071 CLb = 0.36573 CLs = 0.00193 +At r = 0.150000: q_mu = 3.28941 q_A = 2.24010 CLsb = 0.03236 CLb = 0.36297 CLs = 0.08914 +At r = 0.225000: q_mu = 6.33390 q_A = 4.80967 CLsb = 0.00553 CLb = 0.36411 CLs = 0.01520 +At r = 0.184610: q_mu = 4.59638 q_A = 3.32268 CLsb = 0.01492 CLb = 0.36340 CLs = 0.04106 +At r = 0.170651: q_mu = 4.04788 q_A = 2.86364 CLsb = 0.02057 CLb = 0.36321 CLs = 0.05663 +At r = 0.177768: q_mu = 4.32412 q_A = 3.09411 CLsb = 0.01749 CLb = 0.36331 CLs = 0.04813 +At r = 0.175013: q_mu = 4.21629 q_A = 3.00395 CLsb = 0.01863 CLb = 0.36327 CLs = 0.05128 +At r = 0.176444: q_mu = 4.27218 q_A = 3.05065 CLsb = 0.01803 CLb = 0.36329 CLs = 0.04962 +At r = 0.175895: q_mu = 4.25070 q_A = 3.03269 CLsb = 0.01826 CLb = 0.36328 CLs = 0.05025 + + -- Asymptotic -- +Observed Limit: r < 0.1759 +Expected 2.5%: r < 0.1052 +Expected 16.0%: r < 0.1412 +Expected 50.0%: r < 0.2002 +Expected 84.0%: r < 0.2856 +Expected 97.5%: r < 0.3954 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_390_novo_285_625/datacard_390_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_390_novo_285_625/datacard_390_novo_285_625.txt new file mode 100644 index 0000000..24d88a4 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_390_novo_285_625/datacard_390_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_390.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_390.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 598.977000 21478.000000 598.977000 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.066131 - - +JER lnN 1.013597 - - +JEC lnN 1.005147 - - +trigger lnN 1.094669 - - +PDF lnN 1.020058 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.000228 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_400_novo_285_625/CMS_HH4b_400_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_400_novo_285_625/CMS_HH4b_400_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..3a7d2a9 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_400_novo_285_625/CMS_HH4b_400_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-xMgQK8.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.020 + + + --- MaxLikelihoodFit --- +Best fit r: 9.42728e-09 -9.42728e-09/+0.0670633 (68% CL) +nll S+B -> -0.000144847 nll B -> -0.00014415 +Done in 0.01 min (cpu), 0.02 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_400_novo_285_625/CMS_HH4b_400_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_400_novo_285_625/CMS_HH4b_400_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..0415d5f --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_400_novo_285_625/CMS_HH4b_400_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.179199 +Sigma for expected limits: 0.0914299 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -207.083 (r = 1.91734e-06) + +Make global fit of asimov data +NLL at global minimum of asimov: -201.376 (r = 1.8615e-07) +At r = 1.200002: q_mu = 80.54293 q_A = 76.78408 CLsb = 0.00000 CLb = 0.41509 CLs = 0.00000 +At r = 0.600002: q_mu = 32.88373 q_A = 30.26584 CLsb = 0.00000 CLb = 0.40597 CLs = 0.00000 +At r = 0.300002: q_mu = 11.38356 q_A = 9.77805 CLsb = 0.00036 CLb = 0.39870 CLs = 0.00090 +At r = 0.150002: q_mu = 3.62056 q_A = 2.73981 CLsb = 0.02735 CLb = 0.39510 CLs = 0.06922 +At r = 0.225002: q_mu = 7.10306 q_A = 5.83819 CLsb = 0.00370 CLb = 0.39676 CLs = 0.00933 +At r = 0.187502: q_mu = 5.24737 q_A = 4.16909 CLsb = 0.01056 CLb = 0.39587 CLs = 0.02667 +At r = 0.167733: q_mu = 4.35929 q_A = 3.38378 CLsb = 0.01766 CLb = 0.39545 CLs = 0.04466 +At r = 0.160530: q_mu = 4.05255 q_A = 3.11525 CLsb = 0.02115 CLb = 0.39530 CLs = 0.05351 +At r = 0.164132: q_mu = 4.20474 q_A = 3.24829 CLsb = 0.01934 CLb = 0.39537 CLs = 0.04891 +At r = 0.162703: q_mu = 4.14409 q_A = 3.19522 CLsb = 0.02004 CLb = 0.39534 CLs = 0.05069 +At r = 0.163426: q_mu = 4.17473 q_A = 3.22202 CLsb = 0.01968 CLb = 0.39536 CLs = 0.04978 + + -- Asymptotic -- +Observed Limit: r < 0.1634 +Expected 2.5%: r < 0.0948 +Expected 16.0%: r < 0.1275 +Expected 50.0%: r < 0.1792 +Expected 84.0%: r < 0.2571 +Expected 97.5%: r < 0.3549 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_400_novo_285_625/datacard_400_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_400_novo_285_625/datacard_400_novo_285_625.txt new file mode 100644 index 0000000..d636890 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_400_novo_285_625/datacard_400_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_400.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_400.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 634.021 21478 634.021 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.06596 - - +JER lnN 1.01279 - - +JEC lnN 1.00573 - - +trigger lnN 1.0943615895 - - +PDF lnN 1.02024557782 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.0001 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_410_novo_285_625/CMS_HH4b_410_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_410_novo_285_625/CMS_HH4b_410_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..ac19ae5 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_410_novo_285_625/CMS_HH4b_410_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-8Idrne.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.020 + + + --- MaxLikelihoodFit --- +Best fit r: 2.64476e-09 -2.64476e-09/+0.0588167 (68% CL) +nll S+B -> -0.000140109 nll B -> -0.000140151 +Done in 0.01 min (cpu), 0.02 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_410_novo_285_625/CMS_HH4b_410_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_410_novo_285_625/CMS_HH4b_410_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..56191e8 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_410_novo_285_625/CMS_HH4b_410_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.166504 +Sigma for expected limits: 0.0849525 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -229.835 (r = 7.13638e-06) + +Make global fit of asimov data +NLL at global minimum of asimov: -230.895 (r = 7.80281e-07) +At r = 1.200007: q_mu = 88.89151 q_A = 84.25707 CLsb = 0.00000 CLb = 0.40035 CLs = 0.00000 +At r = 0.600007: q_mu = 37.17670 q_A = 33.89531 CLsb = 0.00000 CLb = 0.38904 CLs = 0.00000 +At r = 0.300007: q_mu = 13.20563 q_A = 11.15823 CLsb = 0.00013 CLb = 0.37963 CLs = 0.00035 +At r = 0.150007: q_mu = 4.29866 q_A = 3.16195 CLsb = 0.01796 CLb = 0.37463 CLs = 0.04794 +At r = 0.075007: q_mu = 1.42799 q_A = 0.83716 CLsb = 0.10789 CLb = 0.37340 CLs = 0.28894 +At r = 0.112507: q_mu = 2.69999 q_A = 1.82923 CLsb = 0.04703 CLb = 0.37376 CLs = 0.12582 +At r = 0.141201: q_mu = 3.89591 q_A = 2.82032 CLsb = 0.02277 CLb = 0.37439 CLs = 0.06082 +At r = 0.147002: q_mu = 4.15951 q_A = 3.04356 CLsb = 0.01949 CLb = 0.37455 CLs = 0.05203 +At r = 0.148774: q_mu = 4.24145 q_A = 3.11325 CLsb = 0.01857 CLb = 0.37460 CLs = 0.04958 +At r = 0.148173: q_mu = 4.21359 q_A = 3.08954 CLsb = 0.01888 CLb = 0.37458 CLs = 0.05040 +At r = 0.148528: q_mu = 4.23003 q_A = 3.10353 CLsb = 0.01870 CLb = 0.37459 CLs = 0.04992 + + -- Asymptotic -- +Observed Limit: r < 0.1485 +Expected 2.5%: r < 0.0875 +Expected 16.0%: r < 0.1180 +Expected 50.0%: r < 0.1665 +Expected 84.0%: r < 0.2375 +Expected 97.5%: r < 0.3289 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_410_novo_285_625/datacard_410_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_410_novo_285_625/datacard_410_novo_285_625.txt new file mode 100644 index 0000000..9c1f82c --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_410_novo_285_625/datacard_410_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_410.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_410.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 676.487800 21478.000000 676.487800 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.065786 - - +JER lnN 1.012424 - - +JEC lnN 1.005870 - - +trigger lnN 1.093565 - - +PDF lnN 1.020341 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.000233 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_420_novo_285_625/CMS_HH4b_420_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_420_novo_285_625/CMS_HH4b_420_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..7fd14bc --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_420_novo_285_625/CMS_HH4b_420_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-4WQ7rG.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 1.44252e-09 -1.44252e-09/+0.0505777 (68% CL) +nll S+B -> -0.000226186 nll B -> -0.000226068 +Done in 0.01 min (cpu), 0.02 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_420_novo_285_625/CMS_HH4b_420_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_420_novo_285_625/CMS_HH4b_420_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..d73824f --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_420_novo_285_625/CMS_HH4b_420_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.154785 +Sigma for expected limits: 0.0789735 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -263.144 (r = 9.0639e-06) + +Make global fit of asimov data +NLL at global minimum of asimov: -262.287 (r = 3.58348e-06) +At r = 1.200009: q_mu = 97.90505 q_A = 91.94993 CLsb = 0.00000 CLb = 0.37808 CLs = 0.00000 +At r = 0.600009: q_mu = 41.93057 q_A = 37.66006 CLsb = 0.00000 CLb = 0.36394 CLs = 0.00000 +At r = 0.300009: q_mu = 15.31527 q_A = 12.61193 CLsb = 0.00004 CLb = 0.35175 CLs = 0.00012 +At r = 0.150009: q_mu = 5.12948 q_A = 3.61213 CLsb = 0.01073 CLb = 0.34488 CLs = 0.03112 +At r = 0.075009: q_mu = 1.75360 q_A = 0.96072 CLsb = 0.08308 CLb = 0.34294 CLs = 0.24227 +At r = 0.112509: q_mu = 3.26030 q_A = 2.09472 CLsb = 0.03216 CLb = 0.34360 CLs = 0.09359 +At r = 0.129588: q_mu = 4.06947 q_A = 2.74097 CLsb = 0.01985 CLb = 0.34413 CLs = 0.05769 +At r = 0.137458: q_mu = 4.46658 q_A = 3.06452 CLsb = 0.01574 CLb = 0.34441 CLs = 0.04569 +At r = 0.133451: q_mu = 4.26249 q_A = 2.89776 CLsb = 0.01773 CLb = 0.34426 CLs = 0.05149 +At r = 0.135041: q_mu = 4.34302 q_A = 2.96344 CLsb = 0.01691 CLb = 0.34432 CLs = 0.04912 +At r = 0.134243: q_mu = 4.30253 q_A = 2.93039 CLsb = 0.01732 CLb = 0.34429 CLs = 0.05030 +At r = 0.134562: q_mu = 4.31868 q_A = 2.94357 CLsb = 0.01715 CLb = 0.34430 CLs = 0.04982 + + -- Asymptotic -- +Observed Limit: r < 0.1346 +Expected 2.5%: r < 0.0816 +Expected 16.0%: r < 0.1099 +Expected 50.0%: r < 0.1548 +Expected 84.0%: r < 0.2220 +Expected 97.5%: r < 0.3065 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_420_novo_285_625/datacard_420_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_420_novo_285_625/datacard_420_novo_285_625.txt new file mode 100644 index 0000000..c3c039f --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_420_novo_285_625/datacard_420_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_420.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_420.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 718.954600 21478.000000 718.954600 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.065610 - - +JER lnN 1.012475 - - +JEC lnN 1.005602 - - +trigger lnN 1.092303 - - +PDF lnN 1.020370 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.001110 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_430_novo_285_625/CMS_HH4b_430_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_430_novo_285_625/CMS_HH4b_430_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..d57bde1 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_430_novo_285_625/CMS_HH4b_430_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-ELM3Sn.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.020 + + + --- MaxLikelihoodFit --- +Best fit r: 1.53247e-10 -1.53247e-10/+0.0508553 (68% CL) +nll S+B -> -0.000740574 nll B -> -0.000740575 +Done in 0.02 min (cpu), 0.02 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_430_novo_285_625/CMS_HH4b_430_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_430_novo_285_625/CMS_HH4b_430_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..c3e4f11 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_430_novo_285_625/CMS_HH4b_430_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.144043 +Sigma for expected limits: 0.0734927 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -296.988 (r = 9.86049e-06) + +Make global fit of asimov data +NLL at global minimum of asimov: -298.466 (r = 1.25089e-06) +At r = 1.200010: q_mu = 105.28521 q_A = 100.60718 CLsb = 0.00000 CLb = 0.40781 CLs = 0.00000 +At r = 0.600010: q_mu = 45.38003 q_A = 41.93349 CLsb = 0.00000 CLb = 0.39507 CLs = 0.00000 +At r = 0.300010: q_mu = 16.52944 q_A = 14.28676 CLsb = 0.00002 CLb = 0.38336 CLs = 0.00006 +At r = 0.150010: q_mu = 5.42226 q_A = 4.13691 CLsb = 0.00939 CLb = 0.37601 CLs = 0.02497 +At r = 0.075010: q_mu = 1.78461 q_A = 1.10518 CLsb = 0.08466 CLb = 0.37329 CLs = 0.22678 +At r = 0.112510: q_mu = 3.39800 q_A = 2.40493 CLsb = 0.03067 CLb = 0.37441 CLs = 0.08193 +At r = 0.132478: q_mu = 4.42839 q_A = 3.27695 CLsb = 0.01666 CLb = 0.37523 CLs = 0.04439 +At r = 0.125383: q_mu = 4.04962 q_A = 2.95374 CLsb = 0.02080 CLb = 0.37493 CLs = 0.05548 +At r = 0.129450: q_mu = 4.26501 q_A = 3.13719 CLsb = 0.01833 CLb = 0.37510 CLs = 0.04886 +At r = 0.128046: q_mu = 4.19014 q_A = 3.07331 CLsb = 0.01915 CLb = 0.37504 CLs = 0.05106 +At r = 0.128863: q_mu = 4.23361 q_A = 3.11038 CLsb = 0.01867 CLb = 0.37507 CLs = 0.04977 +At r = 0.128583: q_mu = 4.21867 q_A = 3.09764 CLsb = 0.01883 CLb = 0.37506 CLs = 0.05021 + + -- Asymptotic -- +Observed Limit: r < 0.1286 +Expected 2.5%: r < 0.0757 +Expected 16.0%: r < 0.1021 +Expected 50.0%: r < 0.1440 +Expected 84.0%: r < 0.2066 +Expected 97.5%: r < 0.2853 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_430_novo_285_625/datacard_430_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_430_novo_285_625/datacard_430_novo_285_625.txt new file mode 100644 index 0000000..e2b523d --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_430_novo_285_625/datacard_430_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_430.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_430.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 761.421400 21478.000000 761.421400 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.065432 - - +JER lnN 1.012857 - - +JEC lnN 1.005012 - - +trigger lnN 1.090614 - - +PDF lnN 1.020362 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.002230 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_440_novo_285_625/CMS_HH4b_440_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_440_novo_285_625/CMS_HH4b_440_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..f1f4bb5 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_440_novo_285_625/CMS_HH4b_440_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-H98qsp.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 0.0199901 -0.0199901/+0.0681595 (68% CL) +nll S+B -> -0.046308 nll B -> -0.00207248 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_440_novo_285_625/CMS_HH4b_440_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_440_novo_285_625/CMS_HH4b_440_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..5c78ae0 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_440_novo_285_625/CMS_HH4b_440_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.134277 +Sigma for expected limits: 0.0685101 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -320.259 (r = 0.0208992) + +Make global fit of asimov data +NLL at global minimum of asimov: -336.621 (r = 3.0859e-05) +At r = 1.220899: q_mu = 106.22323 q_A = 111.65328 CLsb = 0.00000 CLb = 0.60262 CLs = 0.00000 +At r = 0.620899: q_mu = 44.73804 q_A = 48.60498 CLsb = 0.00000 CLb = 0.61144 CLs = 0.00000 +At r = 0.320899: q_mu = 15.46765 q_A = 17.93735 CLsb = 0.00004 CLb = 0.61881 CLs = 0.00007 +At r = 0.170899: q_mu = 4.53881 q_A = 5.96931 CLsb = 0.01657 CLb = 0.62277 CLs = 0.02660 +At r = 0.095899: q_mu = 1.22005 q_A = 2.01786 CLsb = 0.13468 CLb = 0.62398 CLs = 0.21583 +At r = 0.133399: q_mu = 2.64797 q_A = 3.77114 CLsb = 0.05184 CLb = 0.62350 CLs = 0.08315 +At r = 0.154287: q_mu = 3.64837 q_A = 4.94508 CLsb = 0.02806 CLb = 0.62312 CLs = 0.04503 +At r = 0.147259: q_mu = 3.29655 q_A = 4.53551 CLsb = 0.03471 CLb = 0.62325 CLs = 0.05570 +At r = 0.150114: q_mu = 3.43760 q_A = 4.70010 CLsb = 0.03186 CLb = 0.62320 CLs = 0.05113 +At r = 0.151537: q_mu = 3.50883 q_A = 4.78301 CLsb = 0.03052 CLb = 0.62317 CLs = 0.04898 +At r = 0.150705: q_mu = 3.46713 q_A = 4.73448 CLsb = 0.03130 CLb = 0.62319 CLs = 0.05023 + + -- Asymptotic -- +Observed Limit: r < 0.1507 +Expected 2.5%: r < 0.0711 +Expected 16.0%: r < 0.0953 +Expected 50.0%: r < 0.1343 +Expected 84.0%: r < 0.1926 +Expected 97.5%: r < 0.2659 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_440_novo_285_625/datacard_440_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_440_novo_285_625/datacard_440_novo_285_625.txt new file mode 100644 index 0000000..b88d57b --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_440_novo_285_625/datacard_440_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_440.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_440.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 803.888200 21478.000000 803.888200 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.065252 - - +JER lnN 1.013481 - - +JEC lnN 1.004186 - - +trigger lnN 1.088536 - - +PDF lnN 1.020350 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.003294 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_450_novo_285_625/CMS_HH4b_450_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_450_novo_285_625/CMS_HH4b_450_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..f8f57ba --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_450_novo_285_625/CMS_HH4b_450_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-4QAekW.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 0.0937448 -0.0636101/+0.066714 (68% CL) +nll S+B -> -1.08844 nll B -> -0.0041431 +Done in 0.02 min (cpu), 0.02 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_450_novo_285_625/CMS_HH4b_450_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_450_novo_285_625/CMS_HH4b_450_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..f202936 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_450_novo_285_625/CMS_HH4b_450_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.127441 +Sigma for expected limits: 0.0650223 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -332.031 (r = 0.0938078) + +Make global fit of asimov data +NLL at global minimum of asimov: -373.842 (r = 1.28426e-07) +At r = 1.293808: q_mu = 104.59995 q_A = 128.10838 CLsb = 0.00000 CLb = 0.86238 CLs = 0.00000 +At r = 0.693808: q_mu = 43.93206 q_A = 61.42836 CLsb = 0.00000 CLb = 0.88676 CLs = 0.00000 +At r = 0.393808: q_mu = 15.33356 q_A = 27.39402 CLsb = 0.00005 CLb = 0.90627 CLs = 0.00005 +At r = 0.243808: q_mu = 4.57631 q_A = 12.48067 CLsb = 0.01621 CLb = 0.91828 CLs = 0.01765 +At r = 0.168808: q_mu = 1.24160 q_A = 6.49281 CLsb = 0.13258 CLb = 0.92419 CLs = 0.14346 +At r = 0.198991: q_mu = 2.36559 q_A = 8.73707 CLsb = 0.06202 CLb = 0.92188 CLs = 0.06727 +At r = 0.215906: q_mu = 3.12909 q_A = 10.09708 CLsb = 0.03845 CLb = 0.92053 CLs = 0.04177 +At r = 0.207418: q_mu = 2.73472 q_A = 9.40613 CLsb = 0.04909 CLb = 0.92121 CLs = 0.05329 +At r = 0.210894: q_mu = 2.89348 q_A = 9.68703 CLsb = 0.04447 CLb = 0.92093 CLs = 0.04829 +At r = 0.209216: q_mu = 2.81636 q_A = 9.55108 CLsb = 0.04665 CLb = 0.92107 CLs = 0.05065 +At r = 0.209916: q_mu = 2.84839 q_A = 9.60766 CLsb = 0.04573 CLb = 0.92101 CLs = 0.04965 + + -- Asymptotic -- +Observed Limit: r < 0.2099 +Expected 2.5%: r < 0.0672 +Expected 16.0%: r < 0.0903 +Expected 50.0%: r < 0.1274 +Expected 84.0%: r < 0.1818 +Expected 97.5%: r < 0.2501 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_450_novo_285_625/datacard_450_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_450_novo_285_625/datacard_450_novo_285_625.txt new file mode 100644 index 0000000..7e45c33 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_450_novo_285_625/datacard_450_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_450.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_450.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 846.355 21478 846.355 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.06507 - - +JER lnN 1.01426 - - +JEC lnN 1.00321 - - +trigger lnN 1.0861090745 - - +PDF lnN 1.02036477335 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.004 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_460_novo_285_625/CMS_HH4b_460_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_460_novo_285_625/CMS_HH4b_460_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..0b167cf --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_460_novo_285_625/CMS_HH4b_460_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-GLnnYi.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 0.147015 -0.0600369/+0.0641575 (68% CL) +nll S+B -> -3.11167 nll B -> -0.00605359 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_460_novo_285_625/CMS_HH4b_460_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_460_novo_285_625/CMS_HH4b_460_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..00ef186 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_460_novo_285_625/CMS_HH4b_460_13TeV_asymptoticCLs.out @@ -0,0 +1,40 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.117676 +Sigma for expected limits: 0.0600398 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -361.01 (r = 0.147056) + +Make global fit of asimov data +NLL at global minimum of asimov: -424.724 (r = 3.25833e-06) +At r = 1.347056: q_mu = 107.33076 q_A = 146.57085 CLsb = 0.00000 CLb = 0.95965 CLs = 0.00000 +At r = 0.747056: q_mu = 45.22995 q_A = 75.05046 CLsb = 0.00000 CLb = 0.97368 CLs = 0.00000 +At r = 0.447056: q_mu = 15.97184 q_A = 37.36948 CLsb = 0.00003 CLb = 0.98285 CLs = 0.00003 +At r = 0.297056: q_mu = 4.84858 q_A = 19.80510 CLsb = 0.01383 CLb = 0.98772 CLs = 0.01401 +At r = 0.222056: q_mu = 1.33503 q_A = 12.12212 CLsb = 0.12396 CLb = 0.99000 CLs = 0.12521 +At r = 0.259556: q_mu = 2.86366 q_A = 15.83042 CLsb = 0.04530 CLb = 0.98889 CLs = 0.04581 +At r = 0.249445: q_mu = 2.40318 q_A = 14.80169 CLsb = 0.06054 CLb = 0.98919 CLs = 0.06121 +At r = 0.255090: q_mu = 2.65608 q_A = 15.37359 CLsb = 0.05158 CLb = 0.98902 CLs = 0.05215 +At r = 0.257144: q_mu = 2.75071 q_A = 15.58317 CLsb = 0.04861 CLb = 0.98896 CLs = 0.04915 +At r = 0.256257: q_mu = 2.70967 q_A = 15.49255 CLsb = 0.04987 CLb = 0.98899 CLs = 0.05043 + + -- Asymptotic -- +Observed Limit: r < 0.2563 +Expected 2.5%: r < 0.0621 +Expected 16.0%: r < 0.0833 +Expected 50.0%: r < 0.1177 +Expected 84.0%: r < 0.1679 +Expected 97.5%: r < 0.2324 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_460_novo_285_625/datacard_460_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_460_novo_285_625/datacard_460_novo_285_625.txt new file mode 100644 index 0000000..bd231c8 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_460_novo_285_625/datacard_460_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_460.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_460.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 887.682000 21478.000000 887.682000 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.064889 - - +JER lnN 1.015107 - - +JEC lnN 1.002185 - - +trigger lnN 1.083397 - - +PDF lnN 1.020431 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.004139 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_470_novo_285_625/CMS_HH4b_470_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_470_novo_285_625/CMS_HH4b_470_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..38928de --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_470_novo_285_625/CMS_HH4b_470_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-ju130r.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 0.139603 -0.0560708/+0.0598685 (68% CL) +nll S+B -> -3.22174 nll B -> -0.00681387 +Done in 0.02 min (cpu), 0.02 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_470_novo_285_625/CMS_HH4b_470_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_470_novo_285_625/CMS_HH4b_470_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..764f469 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_470_novo_285_625/CMS_HH4b_470_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.109863 +Sigma for expected limits: 0.0560537 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -410.229 (r = 0.13955) + +Make global fit of asimov data +NLL at global minimum of asimov: -476.552 (r = 1.18402e-06) +At r = 1.339550: q_mu = 117.51015 q_A = 158.56189 CLsb = 0.00000 CLb = 0.96011 CLs = 0.00000 +At r = 0.739550: q_mu = 50.16165 q_A = 81.50445 CLsb = 0.00000 CLb = 0.97414 CLs = 0.00000 +At r = 0.439550: q_mu = 17.93846 q_A = 40.53451 CLsb = 0.00001 CLb = 0.98347 CLs = 0.00001 +At r = 0.289550: q_mu = 5.49533 q_A = 21.30199 CLsb = 0.00953 CLb = 0.98843 CLs = 0.00965 +At r = 0.214550: q_mu = 1.51954 q_A = 12.87434 CLsb = 0.10884 CLb = 0.99075 CLs = 0.10986 +At r = 0.252050: q_mu = 3.25322 q_A = 16.94145 CLsb = 0.03564 CLb = 0.98962 CLs = 0.03602 +At r = 0.235725: q_mu = 2.43026 q_A = 15.13025 CLsb = 0.05951 CLb = 0.99012 CLs = 0.06010 +At r = 0.243682: q_mu = 2.81889 q_A = 16.00575 CLsb = 0.04658 CLb = 0.98988 CLs = 0.04706 +At r = 0.240512: q_mu = 2.66114 q_A = 15.65525 CLsb = 0.05141 CLb = 0.98997 CLs = 0.05193 +At r = 0.242122: q_mu = 2.74077 q_A = 15.83298 CLsb = 0.04891 CLb = 0.98992 CLs = 0.04941 +At r = 0.241492: q_mu = 2.70948 q_A = 15.76334 CLsb = 0.04988 CLb = 0.98994 CLs = 0.05038 + + -- Asymptotic -- +Observed Limit: r < 0.2415 +Expected 2.5%: r < 0.0579 +Expected 16.0%: r < 0.0778 +Expected 50.0%: r < 0.1099 +Expected 84.0%: r < 0.1576 +Expected 97.5%: r < 0.2162 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_470_novo_285_625/datacard_470_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_470_novo_285_625/datacard_470_novo_285_625.txt new file mode 100644 index 0000000..03c2765 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_470_novo_285_625/datacard_470_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_470.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_470.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 929.009000 21478.000000 929.009000 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.064726 - - +JER lnN 1.015948 - - +JEC lnN 1.001268 - - +trigger lnN 1.080568 - - +PDF lnN 1.020545 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.003865 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_480_novo_285_625/CMS_HH4b_480_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_480_novo_285_625/CMS_HH4b_480_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..53e9257 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_480_novo_285_625/CMS_HH4b_480_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-F5KSfY.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.020 + + + --- MaxLikelihoodFit --- +Best fit r: 0.0818373 -0.0518879/+0.0543797 (68% CL) +nll S+B -> -1.25174 nll B -> -0.00657582 +Done in 0.01 min (cpu), 0.02 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_480_novo_285_625/CMS_HH4b_480_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_480_novo_285_625/CMS_HH4b_480_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..e0469e5 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_480_novo_285_625/CMS_HH4b_480_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.103027 +Sigma for expected limits: 0.0525659 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -481.248 (r = 0.0818097) + +Make global fit of asimov data +NLL at global minimum of asimov: -530.713 (r = 1.09456e-05) +At r = 1.281810: q_mu = 136.19541 q_A = 164.08707 CLsb = 0.00000 CLb = 0.87273 CLs = 0.00000 +At r = 0.681810: q_mu = 59.50953 q_A = 80.58416 CLsb = 0.00000 CLb = 0.89664 CLs = 0.00000 +At r = 0.381810: q_mu = 21.62998 q_A = 36.41596 CLsb = 0.00000 CLb = 0.91678 CLs = 0.00000 +At r = 0.231810: q_mu = 6.65429 q_A = 16.43048 CLsb = 0.00495 CLb = 0.92974 CLs = 0.00532 +At r = 0.156810: q_mu = 1.83465 q_A = 8.28935 CLsb = 0.08779 CLb = 0.93632 CLs = 0.09376 +At r = 0.194310: q_mu = 3.93592 q_A = 12.13232 CLsb = 0.02363 CLb = 0.93309 CLs = 0.02533 +At r = 0.178720: q_mu = 2.98021 q_A = 10.47295 CLsb = 0.04214 CLb = 0.93446 CLs = 0.04510 +At r = 0.171868: q_mu = 2.59616 q_A = 9.77049 CLsb = 0.05356 CLb = 0.93505 CLs = 0.05728 +At r = 0.174985: q_mu = 2.76803 q_A = 10.08791 CLsb = 0.04808 CLb = 0.93478 CLs = 0.05144 +At r = 0.176376: q_mu = 2.84625 q_A = 10.23070 CLsb = 0.04579 CLb = 0.93466 CLs = 0.04899 +At r = 0.175633: q_mu = 2.80435 q_A = 10.15435 CLsb = 0.04700 CLb = 0.93473 CLs = 0.05029 + + -- Asymptotic -- +Observed Limit: r < 0.1756 +Expected 2.5%: r < 0.0543 +Expected 16.0%: r < 0.0737 +Expected 50.0%: r < 0.1030 +Expected 84.0%: r < 0.1478 +Expected 97.5%: r < 0.2027 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_480_novo_285_625/datacard_480_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_480_novo_285_625/datacard_480_novo_285_625.txt new file mode 100644 index 0000000..ed338fe --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_480_novo_285_625/datacard_480_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_480.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_480.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 970.336000 21478.000000 970.336000 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.064602 - - +JER lnN 1.016709 - - +JEC lnN 1.000631 - - +trigger lnN 1.077816 - - +PDF lnN 1.020700 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.003422 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_490_novo_285_625/CMS_HH4b_490_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_490_novo_285_625/CMS_HH4b_490_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..2533106 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_490_novo_285_625/CMS_HH4b_490_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-6xGIx1.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.020 + + + --- MaxLikelihoodFit --- +Best fit r: 0.0155087 -0.0155087/+0.0494883 (68% CL) +nll S+B -> -0.0567275 nll B -> -0.00633549 +Done in 0.02 min (cpu), 0.02 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_490_novo_285_625/CMS_HH4b_490_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_490_novo_285_625/CMS_HH4b_490_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..50d88b0 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_490_novo_285_625/CMS_HH4b_490_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.097168 +Sigma for expected limits: 0.0495764 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -566.492 (r = 0.0155785) + +Make global fit of asimov data +NLL at global minimum of asimov: -587.977 (r = 9.3546e-06) +At r = 1.215579: q_mu = 160.08055 q_A = 167.47760 CLsb = 0.00000 CLb = 0.61372 CLs = 0.00000 +At r = 0.615579: q_mu = 71.83815 q_A = 77.18490 CLsb = 0.00000 CLb = 0.62163 CLs = 0.00000 +At r = 0.315579: q_mu = 26.54255 q_A = 30.03555 CLsb = 0.00000 CLb = 0.62874 CLs = 0.00000 +At r = 0.165579: q_mu = 8.15378 q_A = 10.20203 CLsb = 0.00215 CLb = 0.63254 CLs = 0.00340 +At r = 0.090579: q_mu = 2.22399 q_A = 3.35446 CLsb = 0.06794 CLb = 0.63315 CLs = 0.10731 +At r = 0.128079: q_mu = 4.80277 q_A = 6.40849 CLsb = 0.01421 CLb = 0.63306 CLs = 0.02244 +At r = 0.112720: q_mu = 3.64408 q_A = 5.05896 CLsb = 0.02813 CLb = 0.63317 CLs = 0.04443 +At r = 0.105920: q_mu = 3.17530 q_A = 4.50404 CLsb = 0.03738 CLb = 0.63320 CLs = 0.05903 +At r = 0.109100: q_mu = 3.39098 q_A = 4.76020 CLsb = 0.03278 CLb = 0.63320 CLs = 0.05176 +At r = 0.110482: q_mu = 3.48661 q_A = 4.87334 CLsb = 0.03093 CLb = 0.63319 CLs = 0.04885 +At r = 0.109762: q_mu = 3.43666 q_A = 4.81429 CLsb = 0.03188 CLb = 0.63319 CLs = 0.05035 +At r = 0.110040: q_mu = 3.45588 q_A = 4.83702 CLsb = 0.03151 CLb = 0.63319 CLs = 0.04977 + + -- Asymptotic -- +Observed Limit: r < 0.1100 +Expected 2.5%: r < 0.0512 +Expected 16.0%: r < 0.0688 +Expected 50.0%: r < 0.0972 +Expected 84.0%: r < 0.1386 +Expected 97.5%: r < 0.1907 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_490_novo_285_625/datacard_490_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_490_novo_285_625/datacard_490_novo_285_625.txt new file mode 100644 index 0000000..72d41d8 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_490_novo_285_625/datacard_490_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_490.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_490.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 1011.663000 21478.000000 1011.663000 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.064537 - - +JER lnN 1.017318 - - +JEC lnN 1.000444 - - +trigger lnN 1.075337 - - +PDF lnN 1.020886 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.003052 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_500_novo_285_625/CMS_HH4b_500_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_500_novo_285_625/CMS_HH4b_500_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..1806622 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_500_novo_285_625/CMS_HH4b_500_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-nlEOzC.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.020 + + + --- MaxLikelihoodFit --- +Best fit r: 7.31309e-10 -7.31309e-10/+0.0255814 (68% CL) +nll S+B -> -0.00722762 nll B -> -0.0072276 +Done in 0.02 min (cpu), 0.02 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_500_novo_285_625/CMS_HH4b_500_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_500_novo_285_625/CMS_HH4b_500_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..a9088de --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_500_novo_285_625/CMS_HH4b_500_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.0942383 +Sigma for expected limits: 0.0480816 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -634.228 (r = 7.54527e-08) + +Make global fit of asimov data +NLL at global minimum of asimov: -627.559 (r = 2.62826e-06) +At r = 1.200000: q_mu = 183.98544 q_A = 172.94250 CLsb = 0.00000 CLb = 0.33729 CLs = 0.00000 +At r = 0.600000: q_mu = 87.02337 q_A = 78.61215 CLsb = 0.00000 CLb = 0.31763 CLs = 0.00000 +At r = 0.300000: q_mu = 35.18055 q_A = 29.39345 CLsb = 0.00000 CLb = 0.29677 CLs = 0.00000 +At r = 0.150000: q_mu = 12.59340 q_A = 9.09924 CLsb = 0.00016 CLb = 0.28124 CLs = 0.00058 +At r = 0.075000: q_mu = 4.40097 q_A = 2.49889 CLsb = 0.01454 CLb = 0.27371 CLs = 0.05312 +At r = 0.112500: q_mu = 8.11387 q_A = 5.37325 CLsb = 0.00181 CLb = 0.27721 CLs = 0.00654 +At r = 0.093750: q_mu = 6.15035 q_A = 3.81838 CLsb = 0.00537 CLb = 0.27536 CLs = 0.01952 +At r = 0.079657: q_mu = 4.81413 q_A = 2.80332 CLsb = 0.01146 CLb = 0.27409 CLs = 0.04181 +At r = 0.076873: q_mu = 4.56541 q_A = 2.61945 CLsb = 0.01322 CLb = 0.27386 CLs = 0.04828 +At r = 0.075949: q_mu = 4.48399 q_A = 2.55965 CLsb = 0.01386 CLb = 0.27379 CLs = 0.05062 +At r = 0.076325: q_mu = 4.51705 q_A = 2.58390 CLsb = 0.01360 CLb = 0.27382 CLs = 0.04965 + + -- Asymptotic -- +Observed Limit: r < 0.0763 +Expected 2.5%: r < 0.0497 +Expected 16.0%: r < 0.0667 +Expected 50.0%: r < 0.0942 +Expected 84.0%: r < 0.1337 +Expected 97.5%: r < 0.1844 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_500_novo_285_625/datacard_500_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_500_novo_285_625/datacard_500_novo_285_625.txt new file mode 100644 index 0000000..f20822b --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_500_novo_285_625/datacard_500_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_500.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_500.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 1052.99 21478 1052.99 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.06455 - - +JER lnN 1.0177 - - +JEC lnN 1.00088 - - +trigger lnN 1.0733235575 - - +PDF lnN 1.02109510112 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.003 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_510_novo_285_625/CMS_HH4b_510_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_510_novo_285_625/CMS_HH4b_510_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..75f85dd --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_510_novo_285_625/CMS_HH4b_510_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-wfybWD.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 1.35981e-08 -1.35981e-08/+0.0160236 (68% CL) +nll S+B -> -0.0114837 nll B -> -0.0114837 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_510_novo_285_625/CMS_HH4b_510_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_510_novo_285_625/CMS_HH4b_510_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..fa0c19d --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_510_novo_285_625/CMS_HH4b_510_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.0883789 +Sigma for expected limits: 0.0450921 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -718.322 (r = 6.65587e-07) + +Make global fit of asimov data +NLL at global minimum of asimov: -694.317 (r = 7.67502e-07) +At r = 1.200001: q_mu = 207.26985 q_A = 185.37901 CLsb = 0.00000 CLb = 0.21073 CLs = 0.00000 +At r = 0.600001: q_mu = 101.99467 q_A = 85.40118 CLsb = 0.00000 CLb = 0.18465 CLs = 0.00000 +At r = 0.300001: q_mu = 43.86608 q_A = 32.45423 CLsb = 0.00000 CLb = 0.15827 CLs = 0.00000 +At r = 0.150001: q_mu = 17.09070 q_A = 10.17976 CLsb = 0.00001 CLb = 0.13940 CLs = 0.00007 +At r = 0.075001: q_mu = 6.58559 q_A = 2.81326 CLsb = 0.00254 CLb = 0.13039 CLs = 0.01949 +At r = 0.037501: q_mu = 2.69045 q_A = 0.73933 CLsb = 0.02305 CLb = 0.12828 CLs = 0.17971 +At r = 0.056251: q_mu = 4.50114 q_A = 1.62013 CLsb = 0.00810 CLb = 0.12888 CLs = 0.06282 +At r = 0.062925: q_mu = 5.21337 q_A = 2.01043 CLsb = 0.00543 CLb = 0.12935 CLs = 0.04196 +At r = 0.059270: q_mu = 4.81909 q_A = 1.79185 CLsb = 0.00677 CLb = 0.12908 CLs = 0.05243 +At r = 0.060624: q_mu = 4.96395 q_A = 1.87144 CLsb = 0.00624 CLb = 0.12917 CLs = 0.04830 +At r = 0.059897: q_mu = 4.88600 q_A = 1.82849 CLsb = 0.00652 CLb = 0.12912 CLs = 0.05048 +At r = 0.060169: q_mu = 4.91508 q_A = 1.84449 CLsb = 0.00641 CLb = 0.12914 CLs = 0.04966 + + -- Asymptotic -- +Observed Limit: r < 0.0602 +Expected 2.5%: r < 0.0466 +Expected 16.0%: r < 0.0626 +Expected 50.0%: r < 0.0884 +Expected 84.0%: r < 0.1261 +Expected 97.5%: r < 0.1734 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_510_novo_285_625/datacard_510_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_510_novo_285_625/datacard_510_novo_285_625.txt new file mode 100644 index 0000000..f9c5436 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_510_novo_285_625/datacard_510_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_510.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_510.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 1083.866000 21478.000000 1083.866000 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.064655 - - +JER lnN 1.017809 - - +JEC lnN 1.002022 - - +trigger lnN 1.071913 - - +PDF lnN 1.021317 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.003422 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_520_novo_285_625/CMS_HH4b_520_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_520_novo_285_625/CMS_HH4b_520_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..efacbea --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_520_novo_285_625/CMS_HH4b_520_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-NNeJBk.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.020 + + + --- MaxLikelihoodFit --- +Best fit r: 4.86278e-14 -4.86278e-14/+0.0130441 (68% CL) +nll S+B -> -0.0198862 nll B -> -0.0198862 +Done in 0.01 min (cpu), 0.02 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_520_novo_285_625/CMS_HH4b_520_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_520_novo_285_625/CMS_HH4b_520_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..e61a16c --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_520_novo_285_625/CMS_HH4b_520_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.0844727 +Sigma for expected limits: 0.0430991 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -780.666 (r = 2.7558e-11) + +Make global fit of asimov data +NLL at global minimum of asimov: -746.405 (r = 8.47981e-06) +At r = 1.200000: q_mu = 221.47819 q_A = 194.10562 CLsb = 0.00000 CLb = 0.16296 CLs = 0.00000 +At r = 0.600000: q_mu = 111.05624 q_A = 90.16450 CLsb = 0.00000 CLb = 0.13565 CLs = 0.00000 +At r = 0.300000: q_mu = 49.07584 q_A = 34.64828 CLsb = 0.00000 CLb = 0.11019 CLs = 0.00000 +At r = 0.150000: q_mu = 19.75842 q_A = 10.96852 CLsb = 0.00000 CLb = 0.09225 CLs = 0.00002 +At r = 0.075000: q_mu = 7.86534 q_A = 3.04461 CLsb = 0.00089 CLb = 0.08358 CLs = 0.01059 +At r = 0.037500: q_mu = 3.29998 q_A = 0.80046 CLsb = 0.01097 CLb = 0.08123 CLs = 0.13500 +At r = 0.056250: q_mu = 5.44066 q_A = 1.75434 CLsb = 0.00330 CLb = 0.08203 CLs = 0.04027 +At r = 0.049816: q_mu = 4.67249 q_A = 1.38785 CLsb = 0.00505 CLb = 0.08165 CLs = 0.06189 +At r = 0.053658: q_mu = 5.12704 q_A = 1.60181 CLsb = 0.00393 CLb = 0.08186 CLs = 0.04797 +At r = 0.052389: q_mu = 4.97561 q_A = 1.52956 CLsb = 0.00427 CLb = 0.08178 CLs = 0.05221 +At r = 0.052908: q_mu = 5.03733 q_A = 1.55890 CLsb = 0.00413 CLb = 0.08181 CLs = 0.05044 +At r = 0.053162: q_mu = 5.06771 q_A = 1.57339 CLsb = 0.00406 CLb = 0.08183 CLs = 0.04959 + + -- Asymptotic -- +Observed Limit: r < 0.0532 +Expected 2.5%: r < 0.0445 +Expected 16.0%: r < 0.0605 +Expected 50.0%: r < 0.0845 +Expected 84.0%: r < 0.1205 +Expected 97.5%: r < 0.1658 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_520_novo_285_625/datacard_520_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_520_novo_285_625/datacard_520_novo_285_625.txt new file mode 100644 index 0000000..1bfd4da --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_520_novo_285_625/datacard_520_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_520.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_520.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 1114.742000 21478.000000 1114.742000 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.064837 - - +JER lnN 1.017696 - - +JEC lnN 1.003601 - - +trigger lnN 1.071008 - - +PDF lnN 1.021543 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.004119 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_530_novo_285_625/CMS_HH4b_530_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_530_novo_285_625/CMS_HH4b_530_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..bd0e9f6 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_530_novo_285_625/CMS_HH4b_530_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-35COWJ.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.020 + + + --- MaxLikelihoodFit --- +Best fit r: 2.77778e-13 -2.77778e-13/+0.0112088 (68% CL) +nll S+B -> -0.032176 nll B -> -0.0321759 +Done in 0.01 min (cpu), 0.02 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_530_novo_285_625/CMS_HH4b_530_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_530_novo_285_625/CMS_HH4b_530_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..fb31597 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_530_novo_285_625/CMS_HH4b_530_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.081543 +Sigma for expected limits: 0.0416043 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -846.011 (r = 3.84703e-11) + +Make global fit of asimov data +NLL at global minimum of asimov: -800.733 (r = 5.41362e-06) +At r = 1.200000: q_mu = 234.94974 q_A = 202.11615 CLsb = 0.00000 CLb = 0.12410 CLs = 0.00000 +At r = 0.600000: q_mu = 119.78155 q_A = 94.82583 CLsb = 0.00000 CLb = 0.10003 CLs = 0.00000 +At r = 0.300000: q_mu = 54.06491 q_A = 36.86317 CLsb = 0.00000 CLb = 0.07830 CLs = 0.00000 +At r = 0.150000: q_mu = 22.26226 q_A = 11.78450 CLsb = 0.00000 CLb = 0.06349 CLs = 0.00001 +At r = 0.075000: q_mu = 9.03162 q_A = 3.28702 CLsb = 0.00034 CLb = 0.05657 CLs = 0.00602 +At r = 0.037500: q_mu = 3.84074 q_A = 0.86476 CLsb = 0.00570 CLb = 0.05479 CLs = 0.10409 +At r = 0.056250: q_mu = 6.28664 q_A = 1.89531 CLsb = 0.00148 CLb = 0.05537 CLs = 0.02675 +At r = 0.045595: q_mu = 4.85756 q_A = 1.26337 CLsb = 0.00324 CLb = 0.05493 CLs = 0.05892 +At r = 0.049498: q_mu = 5.36946 q_A = 1.48104 CLsb = 0.00244 CLb = 0.05507 CLs = 0.04435 +At r = 0.047399: q_mu = 5.09244 q_A = 1.36194 CLsb = 0.00284 CLb = 0.05499 CLs = 0.05171 +At r = 0.048186: q_mu = 5.19585 q_A = 1.40604 CLsb = 0.00269 CLb = 0.05502 CLs = 0.04883 +At r = 0.047768: q_mu = 5.14081 q_A = 1.38251 CLsb = 0.00277 CLb = 0.05500 CLs = 0.05034 + + -- Asymptotic -- +Observed Limit: r < 0.0478 +Expected 2.5%: r < 0.0430 +Expected 16.0%: r < 0.0578 +Expected 50.0%: r < 0.0815 +Expected 84.0%: r < 0.1157 +Expected 97.5%: r < 0.1596 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_530_novo_285_625/datacard_530_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_530_novo_285_625/datacard_530_novo_285_625.txt new file mode 100644 index 0000000..d61d0a5 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_530_novo_285_625/datacard_530_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_530.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_530.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 1145.618000 21478.000000 1145.618000 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.065074 - - +JER lnN 1.017438 - - +JEC lnN 1.005259 - - +trigger lnN 1.070453 - - +PDF lnN 1.021762 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.004805 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_540_novo_285_625/CMS_HH4b_540_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_540_novo_285_625/CMS_HH4b_540_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..91f054d --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_540_novo_285_625/CMS_HH4b_540_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-i8fROh.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 1.62074e-11 -1.62074e-11/+0.00898897 (68% CL) +nll S+B -> -0.0441381 nll B -> -0.0441377 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_540_novo_285_625/CMS_HH4b_540_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_540_novo_285_625/CMS_HH4b_540_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..21ebfe5 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_540_novo_285_625/CMS_HH4b_540_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.0786133 +Sigma for expected limits: 0.0401096 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -917.167 (r = 5.43947e-09) + +Make global fit of asimov data +NLL at global minimum of asimov: -859.059 (r = 1.62209e-06) +At r = 1.200000: q_mu = 250.73251 q_A = 210.63783 CLsb = 0.00000 CLb = 0.08359 CLs = 0.00000 +At r = 0.600000: q_mu = 130.74554 q_A = 99.52974 CLsb = 0.00000 CLb = 0.05885 CLs = 0.00000 +At r = 0.300000: q_mu = 60.79075 q_A = 39.14702 CLsb = 0.00000 CLb = 0.04185 CLs = 0.00000 +At r = 0.150000: q_mu = 25.91910 q_A = 12.64162 CLsb = 0.00000 CLb = 0.03094 CLs = 0.00000 +At r = 0.075000: q_mu = 10.86331 q_A = 3.54426 CLsb = 0.00006 CLb = 0.02596 CLs = 0.00250 +At r = 0.037500: q_mu = 4.73508 q_A = 0.93317 CLsb = 0.00167 CLb = 0.02454 CLs = 0.06820 +At r = 0.056250: q_mu = 7.64788 q_A = 2.04515 CLsb = 0.00035 CLb = 0.02506 CLs = 0.01400 +At r = 0.046875: q_mu = 6.15079 q_A = 1.43850 CLsb = 0.00078 CLb = 0.02474 CLs = 0.03147 +At r = 0.042386: q_mu = 5.46253 q_A = 1.18385 CLsb = 0.00113 CLb = 0.02464 CLs = 0.04579 +At r = 0.040545: q_mu = 5.18565 q_A = 1.08595 CLsb = 0.00131 CLb = 0.02459 CLs = 0.05327 +At r = 0.041530: q_mu = 5.33330 q_A = 1.13772 CLsb = 0.00121 CLb = 0.02461 CLs = 0.04914 +At r = 0.041164: q_mu = 5.27829 q_A = 1.11833 CLsb = 0.00125 CLb = 0.02460 CLs = 0.05064 + + -- Asymptotic -- +Observed Limit: r < 0.0412 +Expected 2.5%: r < 0.0415 +Expected 16.0%: r < 0.0557 +Expected 50.0%: r < 0.0786 +Expected 84.0%: r < 0.1115 +Expected 97.5%: r < 0.1529 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_540_novo_285_625/datacard_540_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_540_novo_285_625/datacard_540_novo_285_625.txt new file mode 100644 index 0000000..4095460 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_540_novo_285_625/datacard_540_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_540.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_540.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 1176.494000 21478.000000 1176.494000 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.065342 - - +JER lnN 1.017114 - - +JEC lnN 1.006642 - - +trigger lnN 1.070093 - - +PDF lnN 1.021965 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.005194 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_550_novo_285_625/CMS_HH4b_550_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_550_novo_285_625/CMS_HH4b_550_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..00d0c7b --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_550_novo_285_625/CMS_HH4b_550_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-XrVP5E.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 3.69704e-14 -3.69704e-14/+0.00728769 (68% CL) +nll S+B -> -0.0469109 nll B -> -0.0469103 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_550_novo_285_625/CMS_HH4b_550_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_550_novo_285_625/CMS_HH4b_550_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..627ea1c --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_550_novo_285_625/CMS_HH4b_550_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.0766602 +Sigma for expected limits: 0.039113 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -973.711 (r = 2.66296e-10) + +Make global fit of asimov data +NLL at global minimum of asimov: -906.62 (r = 5.13703e-06) +At r = 1.200000: q_mu = 264.08924 q_A = 215.80957 CLsb = 0.00000 CLb = 0.05017 CLs = 0.00000 +At r = 0.600000: q_mu = 140.24329 q_A = 102.80588 CLsb = 0.00000 CLb = 0.03244 CLs = 0.00000 +At r = 0.300000: q_mu = 67.00564 q_A = 40.74597 CLsb = 0.00000 CLb = 0.01985 CLs = 0.00000 +At r = 0.150000: q_mu = 29.55781 q_A = 13.24517 CLsb = 0.00000 CLb = 0.01251 CLs = 0.00000 +At r = 0.075000: q_mu = 12.81014 q_A = 3.72558 CLsb = 0.00001 CLb = 0.00930 CLs = 0.00099 +At r = 0.037500: q_mu = 5.72977 q_A = 0.98109 CLsb = 0.00035 CLb = 0.00826 CLs = 0.04267 +At r = 0.018750: q_mu = 2.67097 q_A = 0.25442 CLsb = 0.00187 CLb = 0.00830 CLs = 0.22490 +At r = 0.028125: q_mu = 4.15500 q_A = 0.56033 CLsb = 0.00082 CLb = 0.00817 CLs = 0.10001 +At r = 0.034228: q_mu = 5.17029 q_A = 0.82144 CLsb = 0.00047 CLb = 0.00822 CLs = 0.05770 +At r = 0.036124: q_mu = 5.49332 q_A = 0.91237 CLsb = 0.00040 CLb = 0.00824 CLs = 0.04846 +At r = 0.035474: q_mu = 5.38205 q_A = 0.88065 CLsb = 0.00042 CLb = 0.00823 CLs = 0.05146 +At r = 0.035854: q_mu = 5.44698 q_A = 0.89910 CLsb = 0.00041 CLb = 0.00824 CLs = 0.04969 + + -- Asymptotic -- +Observed Limit: r < 0.0359 +Expected 2.5%: r < 0.0404 +Expected 16.0%: r < 0.0543 +Expected 50.0%: r < 0.0767 +Expected 84.0%: r < 0.1087 +Expected 97.5%: r < 0.1491 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_550_novo_285_625/datacard_550_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_550_novo_285_625/datacard_550_novo_285_625.txt new file mode 100644 index 0000000..3788a5c --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_550_novo_285_625/datacard_550_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_550.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_550.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 1207.37 21478 1207.37 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.06562 - - +JER lnN 1.0168 - - +JEC lnN 1.00739 - - +trigger lnN 1.0697740714 - - +PDF lnN 1.02213999321 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.005 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_560_novo_285_625/CMS_HH4b_560_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_560_novo_285_625/CMS_HH4b_560_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..abb0508 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_560_novo_285_625/CMS_HH4b_560_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-jrfaFR.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 3.82511e-12 -3.82511e-12/+0.00648579 (68% CL) +nll S+B -> -0.0365182 nll B -> -0.0365178 +Done in 0.01 min (cpu), 0.02 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_560_novo_285_625/CMS_HH4b_560_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_560_novo_285_625/CMS_HH4b_560_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..f3b8b20 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_560_novo_285_625/CMS_HH4b_560_13TeV_asymptoticCLs.out @@ -0,0 +1,43 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.0727539 +Sigma for expected limits: 0.03712 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -1049.74 (r = 2.2462e-11) + +Make global fit of asimov data +NLL at global minimum of asimov: -980.155 (r = 1.17817e-06) +At r = 1.200000: q_mu = 278.62015 q_A = 225.93398 CLsb = 0.00000 CLb = 0.03984 CLs = 0.00000 +At r = 0.600000: q_mu = 149.56193 q_A = 109.12676 CLsb = 0.00000 CLb = 0.02647 CLs = 0.00000 +At r = 0.300000: q_mu = 72.59142 q_A = 43.88819 CLsb = 0.00000 CLb = 0.01514 CLs = 0.00000 +At r = 0.150000: q_mu = 32.52218 q_A = 14.45793 CLsb = 0.00000 CLb = 0.00876 CLs = 0.00000 +At r = 0.075000: q_mu = 14.25784 q_A = 4.09642 CLsb = 0.00000 CLb = 0.00603 CLs = 0.00048 +At r = 0.037500: q_mu = 6.42114 q_A = 1.08016 CLsb = 0.00015 CLb = 0.00509 CLs = 0.03020 +At r = 0.018750: q_mu = 3.00434 q_A = 0.27928 CLsb = 0.00095 CLb = 0.00496 CLs = 0.19050 +At r = 0.028125: q_mu = 4.66486 q_A = 0.61645 CLsb = 0.00039 CLb = 0.00497 CLs = 0.07754 +At r = 0.033490: q_mu = 5.65871 q_A = 0.86663 CLsb = 0.00023 CLb = 0.00503 CLs = 0.04544 +At r = 0.031649: q_mu = 5.31430 q_A = 0.77625 CLsb = 0.00027 CLb = 0.00501 CLs = 0.05467 +At r = 0.032728: q_mu = 5.51571 q_A = 0.82863 CLsb = 0.00025 CLb = 0.00502 CLs = 0.04906 +At r = 0.032361: q_mu = 5.44710 q_A = 0.81063 CLsb = 0.00026 CLb = 0.00501 CLs = 0.05090 +At r = 0.032578: q_mu = 5.48752 q_A = 0.82120 CLsb = 0.00025 CLb = 0.00502 CLs = 0.04981 + + -- Asymptotic -- +Observed Limit: r < 0.0326 +Expected 2.5%: r < 0.0384 +Expected 16.0%: r < 0.0515 +Expected 50.0%: r < 0.0728 +Expected 84.0%: r < 0.1032 +Expected 97.5%: r < 0.1415 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_560_novo_285_625/datacard_560_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_560_novo_285_625/datacard_560_novo_285_625.txt new file mode 100644 index 0000000..a565120 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_560_novo_285_625/datacard_560_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_560.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_560.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 1239.830000 21478.000000 1239.830000 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.065890 - - +JER lnN 1.016559 - - +JEC lnN 1.007259 - - +trigger lnN 1.069371 - - +PDF lnN 1.022281 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.004038 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_570_novo_285_625/CMS_HH4b_570_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_570_novo_285_625/CMS_HH4b_570_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..fbebec4 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_570_novo_285_625/CMS_HH4b_570_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-0MgZZi.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 6.18672e-13 -6.18672e-13/+0.00692426 (68% CL) +nll S+B -> -0.0173488 nll B -> -0.0173488 +Done in 0.02 min (cpu), 0.02 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_570_novo_285_625/CMS_HH4b_570_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_570_novo_285_625/CMS_HH4b_570_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..4fdd47c --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_570_novo_285_625/CMS_HH4b_570_13TeV_asymptoticCLs.out @@ -0,0 +1,43 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.0698242 +Sigma for expected limits: 0.0356253 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -1115.65 (r = 3.31342e-09) + +Make global fit of asimov data +NLL at global minimum of asimov: -1051.34 (r = 4.23388e-06) +At r = 1.200000: q_mu = 285.14763 q_A = 235.91970 CLsb = 0.00000 CLb = 0.05452 CLs = 0.00000 +At r = 0.600000: q_mu = 152.38726 q_A = 115.11763 CLsb = 0.00000 CLb = 0.04121 CLs = 0.00000 +At r = 0.300000: q_mu = 73.42168 q_A = 46.87270 CLsb = 0.00000 CLb = 0.02626 CLs = 0.00000 +At r = 0.150000: q_mu = 32.39242 q_A = 15.61560 CLsb = 0.00000 CLb = 0.01689 CLs = 0.00000 +At r = 0.075000: q_mu = 13.90828 q_A = 4.44947 CLsb = 0.00001 CLb = 0.01248 CLs = 0.00054 +At r = 0.037500: q_mu = 6.14541 q_A = 1.17253 CLsb = 0.00036 CLb = 0.01083 CLs = 0.03358 +At r = 0.018750: q_mu = 2.83743 q_A = 0.30126 CLsb = 0.00212 CLb = 0.01043 CLs = 0.20350 +At r = 0.028125: q_mu = 4.43670 q_A = 0.66791 CLsb = 0.00090 CLb = 0.01056 CLs = 0.08474 +At r = 0.032399: q_mu = 5.20260 q_A = 0.88116 CLsb = 0.00060 CLb = 0.01067 CLs = 0.05590 +At r = 0.034312: q_mu = 5.55263 q_A = 0.98590 CLsb = 0.00050 CLb = 0.01073 CLs = 0.04624 +At r = 0.033299: q_mu = 5.36669 q_A = 0.92970 CLsb = 0.00055 CLb = 0.01070 CLs = 0.05114 +At r = 0.033683: q_mu = 5.43705 q_A = 0.95080 CLsb = 0.00053 CLb = 0.01071 CLs = 0.04923 +At r = 0.033481: q_mu = 5.39999 q_A = 0.93966 CLsb = 0.00054 CLb = 0.01071 CLs = 0.05023 + + -- Asymptotic -- +Observed Limit: r < 0.0335 +Expected 2.5%: r < 0.0368 +Expected 16.0%: r < 0.0495 +Expected 50.0%: r < 0.0698 +Expected 84.0%: r < 0.0985 +Expected 97.5%: r < 0.1354 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_570_novo_285_625/datacard_570_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_570_novo_285_625/datacard_570_novo_285_625.txt new file mode 100644 index 0000000..1c4bf6b --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_570_novo_285_625/datacard_570_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_570.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_570.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 1272.290000 21478.000000 1272.290000 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.066152 - - +JER lnN 1.016393 - - +JEC lnN 1.006447 - - +trigger lnN 1.068883 - - +PDF lnN 1.022394 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.002531 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_580_novo_285_625/CMS_HH4b_580_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_580_novo_285_625/CMS_HH4b_580_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..8b2df1f --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_580_novo_285_625/CMS_HH4b_580_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-mKe3sI.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.020 + + + --- MaxLikelihoodFit --- +Best fit r: 1.43552e-13 -1.43552e-13/+0.00869819 (68% CL) +nll S+B -> -0.00225494 nll B -> -0.00225498 +Done in 0.02 min (cpu), 0.02 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_580_novo_285_625/CMS_HH4b_580_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_580_novo_285_625/CMS_HH4b_580_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..fd4b191 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_580_novo_285_625/CMS_HH4b_580_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.065918 +Sigma for expected limits: 0.0336322 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -1188.38 (r = 4.761e-10) + +Make global fit of asimov data +NLL at global minimum of asimov: -1136.12 (r = 8.6642e-05) +At r = 1.200000: q_mu = 289.21107 q_A = 250.25258 CLsb = 0.00000 CLb = 0.10910 CLs = 0.00000 +At r = 0.600000: q_mu = 152.35748 q_A = 123.47695 CLsb = 0.00000 CLb = 0.09688 CLs = 0.00000 +At r = 0.300000: q_mu = 71.69991 q_A = 51.10543 CLsb = 0.00000 CLb = 0.07488 CLs = 0.00000 +At r = 0.150000: q_mu = 30.32460 q_A = 17.28453 CLsb = 0.00000 CLb = 0.05841 CLs = 0.00000 +At r = 0.075000: q_mu = 12.31370 q_A = 4.96098 CLsb = 0.00005 CLb = 0.04941 CLs = 0.00107 +At r = 0.037500: q_mu = 5.16262 q_A = 1.30415 CLsb = 0.00232 CLb = 0.04558 CLs = 0.05085 +At r = 0.056250: q_mu = 8.52787 q_A = 2.86864 CLsb = 0.00038 CLb = 0.04739 CLs = 0.00809 +At r = 0.046875: q_mu = 6.78790 q_A = 2.01625 CLsb = 0.00097 CLb = 0.04646 CLs = 0.02082 +At r = 0.039517: q_mu = 5.50209 q_A = 1.44510 CLsb = 0.00193 CLb = 0.04576 CLs = 0.04215 +At r = 0.038049: q_mu = 5.25456 q_A = 1.34193 CLsb = 0.00221 CLb = 0.04563 CLs = 0.04833 +At r = 0.037755: q_mu = 5.20545 q_A = 1.32178 CLsb = 0.00226 CLb = 0.04561 CLs = 0.04966 + + -- Asymptotic -- +Observed Limit: r < 0.0378 +Expected 2.5%: r < 0.0348 +Expected 16.0%: r < 0.0469 +Expected 50.0%: r < 0.0659 +Expected 84.0%: r < 0.0930 +Expected 97.5%: r < 0.1278 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_580_novo_285_625/datacard_580_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_580_novo_285_625/datacard_580_novo_285_625.txt new file mode 100644 index 0000000..736a965 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_580_novo_285_625/datacard_580_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_580.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_580.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 1304.750000 21478.000000 1304.750000 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.066413 - - +JER lnN 1.016291 - - +JEC lnN 1.005265 - - +trigger lnN 1.068343 - - +PDF lnN 1.022485 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.000806 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_590_novo_285_625/CMS_HH4b_590_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_590_novo_285_625/CMS_HH4b_590_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..3940761 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_590_novo_285_625/CMS_HH4b_590_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-ZQnrGa.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 4.63811e-10 -4.63811e-10/+0.0108147 (68% CL) +nll S+B -> -0.000664601 nll B -> -0.000664615 +Done in 0.01 min (cpu), 0.02 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_590_novo_285_625/CMS_HH4b_590_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_590_novo_285_625/CMS_HH4b_590_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..ca716d3 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_590_novo_285_625/CMS_HH4b_590_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.0600586 +Sigma for expected limits: 0.0306427 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -1301.16 (r = 1.3578e-09) + +Make global fit of asimov data +NLL at global minimum of asimov: -1251.93 (r = 0.00038971) +At r = 1.200000: q_mu = 304.62073 q_A = 274.72218 CLsb = 0.00000 CLb = 0.18355 CLs = 0.00000 +At r = 0.600000: q_mu = 158.79616 q_A = 137.32520 CLsb = 0.00000 CLb = 0.17981 CLs = 0.00000 +At r = 0.300000: q_mu = 73.75133 q_A = 58.35062 CLsb = 0.00000 CLb = 0.15671 CLs = 0.00000 +At r = 0.150000: q_mu = 30.08174 q_A = 20.24877 CLsb = 0.00000 CLb = 0.13729 CLs = 0.00000 +At r = 0.075000: q_mu = 11.47250 q_A = 5.89742 CLsb = 0.00017 CLb = 0.12551 CLs = 0.00139 +At r = 0.037500: q_mu = 4.47819 q_A = 1.55014 CLsb = 0.00774 CLb = 0.11982 CLs = 0.06460 +At r = 0.056250: q_mu = 7.71014 q_A = 3.41579 CLsb = 0.00131 CLb = 0.12266 CLs = 0.01065 +At r = 0.046875: q_mu = 6.02163 q_A = 2.40029 CLsb = 0.00328 CLb = 0.12126 CLs = 0.02708 +At r = 0.041585: q_mu = 5.13211 q_A = 1.89957 CLsb = 0.00537 CLb = 0.12046 CLs = 0.04459 +At r = 0.039759: q_mu = 4.83634 q_A = 1.73949 CLsb = 0.00633 CLb = 0.12019 CLs = 0.05271 +At r = 0.040585: q_mu = 4.96931 q_A = 1.81101 CLsb = 0.00588 CLb = 0.12031 CLs = 0.04889 +At r = 0.040222: q_mu = 4.91067 q_A = 1.77937 CLsb = 0.00608 CLb = 0.12025 CLs = 0.05053 + + -- Asymptotic -- +Observed Limit: r < 0.0402 +Expected 2.5%: r < 0.0324 +Expected 16.0%: r < 0.0423 +Expected 50.0%: r < 0.0601 +Expected 84.0%: r < 0.0845 +Expected 97.5%: r < 0.1163 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_590_novo_285_625/datacard_590_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_590_novo_285_625/datacard_590_novo_285_625.txt new file mode 100644 index 0000000..670604a --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_590_novo_285_625/datacard_590_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_590.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_590.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 1337.210000 21478.000000 1337.210000 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.066677 - - +JER lnN 1.016240 - - +JEC lnN 1.004023 - - +trigger lnN 1.067782 - - +PDF lnN 1.022564 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.000813 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_600_novo_285_625/CMS_HH4b_600_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_600_novo_285_625/CMS_HH4b_600_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..43f6e02 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_600_novo_285_625/CMS_HH4b_600_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-7J6MSn.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.020 + + + --- MaxLikelihoodFit --- +Best fit r: 1.2445e-11 -1.2445e-11/+0.0108999 (68% CL) +nll S+B -> -0.00293027 nll B -> -0.00293031 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_600_novo_285_625/CMS_HH4b_600_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_600_novo_285_625/CMS_HH4b_600_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..21aa86b --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_600_novo_285_625/CMS_HH4b_600_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.0522461 +Sigma for expected limits: 0.0266567 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -1441.21 (r = 3.04823e-11) + +Make global fit of asimov data +NLL at global minimum of asimov: -1396.69 (r = 0.00053395) +At r = 1.200000: q_mu = 339.65190 q_A = 312.57086 CLsb = 0.00000 CLb = 0.22187 CLs = 0.00000 +At r = 0.600000: q_mu = 177.00774 q_A = 158.15833 CLsb = 0.00000 CLb = 0.22680 CLs = 0.00000 +At r = 0.300000: q_mu = 83.61558 q_A = 69.84555 CLsb = 0.00000 CLb = 0.20502 CLs = 0.00000 +At r = 0.150000: q_mu = 34.26860 q_A = 25.26589 CLsb = 0.00000 CLb = 0.18525 CLs = 0.00000 +At r = 0.075000: q_mu = 12.79232 q_A = 7.58198 CLsb = 0.00011 CLb = 0.17204 CLs = 0.00063 +At r = 0.037500: q_mu = 4.78123 q_A = 2.01564 CLsb = 0.00834 CLb = 0.16503 CLs = 0.05053 +At r = 0.056250: q_mu = 8.45729 q_A = 4.42149 CLsb = 0.00110 CLb = 0.16861 CLs = 0.00651 +At r = 0.046875: q_mu = 6.52767 q_A = 3.11544 CLsb = 0.00315 CLb = 0.16687 CLs = 0.01888 +At r = 0.039456: q_mu = 5.12946 q_A = 2.22717 CLsb = 0.00686 CLb = 0.16543 CLs = 0.04144 +At r = 0.037975: q_mu = 4.86507 q_A = 2.06624 CLsb = 0.00795 CLb = 0.16514 CLs = 0.04817 +At r = 0.037679: q_mu = 4.81289 q_A = 2.03460 CLsb = 0.00819 CLb = 0.16506 CLs = 0.04963 + + -- Asymptotic -- +Observed Limit: r < 0.0377 +Expected 2.5%: r < 0.0282 +Expected 16.0%: r < 0.0376 +Expected 50.0%: r < 0.0522 +Expected 84.0%: r < 0.0743 +Expected 97.5%: r < 0.1017 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_600_novo_285_625/datacard_600_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_600_novo_285_625/datacard_600_novo_285_625.txt new file mode 100644 index 0000000..076763b --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_600_novo_285_625/datacard_600_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_600.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_600.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 1369.67 21478 1369.67 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.06695 - - +JER lnN 1.01623 - - +JEC lnN 1.00303 - - +trigger lnN 1.06723 - - +PDF lnN 1.02263746575 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.002 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_610_novo_285_625/CMS_HH4b_610_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_610_novo_285_625/CMS_HH4b_610_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..fc8bfc1 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_610_novo_285_625/CMS_HH4b_610_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-njhj0I.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 4.06338e-11 -4.06338e-11/+0.00943798 (68% CL) +nll S+B -> -0.00602164 nll B -> -0.00602167 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_610_novo_285_625/CMS_HH4b_610_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_610_novo_285_625/CMS_HH4b_610_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..6bebef2 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_610_novo_285_625/CMS_HH4b_610_13TeV_asymptoticCLs.out @@ -0,0 +1,43 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.0444336 +Sigma for expected limits: 0.0226706 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -1565.84 (r = 1.88326e-08) + +Make global fit of asimov data +NLL at global minimum of asimov: -1524.35 (r = 0.000269459) +At r = 1.200000: q_mu = 383.27504 q_A = 356.28194 CLsb = 0.00000 CLb = 0.23729 CLs = 0.00000 +At r = 0.600000: q_mu = 200.48912 q_A = 181.83795 CLsb = 0.00000 CLb = 0.24460 CLs = 0.00000 +At r = 0.300000: q_mu = 97.70625 q_A = 83.72163 CLsb = 0.00000 CLb = 0.22238 CLs = 0.00000 +At r = 0.150000: q_mu = 41.31857 q_A = 31.82998 CLsb = 0.00000 CLb = 0.20020 CLs = 0.00000 +At r = 0.075000: q_mu = 15.68304 q_A = 9.98690 CLsb = 0.00002 CLb = 0.18373 CLs = 0.00013 +At r = 0.037500: q_mu = 5.83477 q_A = 2.73748 CLsb = 0.00479 CLb = 0.17464 CLs = 0.02744 +At r = 0.018750: q_mu = 2.29913 q_A = 0.69945 CLsb = 0.03651 CLb = 0.16944 CLs = 0.21547 +At r = 0.028125: q_mu = 3.92679 q_A = 1.56312 CLsb = 0.01406 CLb = 0.17226 CLs = 0.08164 +At r = 0.033372: q_mu = 4.96206 q_A = 2.18385 CLsb = 0.00781 CLb = 0.17361 CLs = 0.04497 +At r = 0.031577: q_mu = 4.59850 q_A = 1.96105 CLsb = 0.00959 CLb = 0.17317 CLs = 0.05537 +At r = 0.032640: q_mu = 4.81265 q_A = 2.09163 CLsb = 0.00849 CLb = 0.17343 CLs = 0.04898 +At r = 0.032284: q_mu = 4.74055 q_A = 2.04747 CLsb = 0.00885 CLb = 0.17334 CLs = 0.05104 +At r = 0.032498: q_mu = 4.78371 q_A = 2.07389 CLsb = 0.00863 CLb = 0.17339 CLs = 0.04980 + + -- Asymptotic -- +Observed Limit: r < 0.0325 +Expected 2.5%: r < 0.0240 +Expected 16.0%: r < 0.0320 +Expected 50.0%: r < 0.0444 +Expected 84.0%: r < 0.0639 +Expected 97.5%: r < 0.0876 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_610_novo_285_625/datacard_610_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_610_novo_285_625/datacard_610_novo_285_625.txt new file mode 100644 index 0000000..cedad6f --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_610_novo_285_625/datacard_610_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_610.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_610.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 1384.608000 21478.000000 1384.608000 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.067236 - - +JER lnN 1.016249 - - +JEC lnN 1.002526 - - +trigger lnN 1.066713 - - +PDF lnN 1.022713 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.002509 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_620_novo_285_625/CMS_HH4b_620_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_620_novo_285_625/CMS_HH4b_620_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..34c77ee --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_620_novo_285_625/CMS_HH4b_620_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-Yob3gR.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.030 + + + --- MaxLikelihoodFit --- +Best fit r: 1.75177e-12 -1.75177e-12/+0.0077258 (68% CL) +nll S+B -> -0.00862239 nll B -> -0.00862241 +Done in 0.02 min (cpu), 0.02 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_620_novo_285_625/CMS_HH4b_620_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_620_novo_285_625/CMS_HH4b_620_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..e2c9aa1 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_620_novo_285_625/CMS_HH4b_620_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.0375977 +Sigma for expected limits: 0.0191828 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -1698.04 (r = 2.122e-09) + +Make global fit of asimov data +NLL at global minimum of asimov: -1659.35 (r = 8.39057e-07) +At r = 1.200000: q_mu = 433.83080 q_A = 406.31160 CLsb = 0.00000 CLb = 0.24742 CLs = 0.00000 +At r = 0.600000: q_mu = 228.17097 q_A = 208.81302 CLsb = 0.00000 CLb = 0.25149 CLs = 0.00000 +At r = 0.300000: q_mu = 114.70582 q_A = 100.02242 CLsb = 0.00000 CLb = 0.23145 CLs = 0.00000 +At r = 0.150000: q_mu = 50.45336 q_A = 40.09117 CLsb = 0.00000 CLb = 0.20660 CLs = 0.00000 +At r = 0.075000: q_mu = 19.76042 q_A = 13.27036 CLsb = 0.00000 CLb = 0.18652 CLs = 0.00002 +At r = 0.037500: q_mu = 7.44283 q_A = 3.79955 CLsb = 0.00196 CLb = 0.17501 CLs = 0.01123 +At r = 0.018750: q_mu = 2.92646 q_A = 1.01165 CLsb = 0.02513 CLb = 0.17058 CLs = 0.14734 +At r = 0.028125: q_mu = 5.01016 q_A = 2.20541 CLsb = 0.00756 CLb = 0.17250 CLs = 0.04384 +At r = 0.025436: q_mu = 4.37474 q_A = 1.82006 CLsb = 0.01084 CLb = 0.17187 CLs = 0.06308 +At r = 0.026810: q_mu = 4.69581 q_A = 2.01288 CLsb = 0.00903 CLb = 0.17220 CLs = 0.05246 +At r = 0.027354: q_mu = 4.82521 q_A = 2.09177 CLsb = 0.00840 CLb = 0.17233 CLs = 0.04871 +At r = 0.027092: q_mu = 4.76268 q_A = 2.05355 CLsb = 0.00870 CLb = 0.17227 CLs = 0.05049 + + -- Asymptotic -- +Observed Limit: r < 0.0271 +Expected 2.5%: r < 0.0197 +Expected 16.0%: r < 0.0267 +Expected 50.0%: r < 0.0376 +Expected 84.0%: r < 0.0541 +Expected 97.5%: r < 0.0743 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_620_novo_285_625/datacard_620_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_620_novo_285_625/datacard_620_novo_285_625.txt new file mode 100644 index 0000000..56f0a91 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_620_novo_285_625/datacard_620_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_620.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_620.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 1399.546000 21478.000000 1399.546000 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.067535 - - +JER lnN 1.016289 - - +JEC lnN 1.002471 - - +trigger lnN 1.066228 - - +PDF lnN 1.022791 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.002412 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_650_novo_285_625/datacard_650_novo_285_625.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_650_novo_285_625/datacard_650_novo_285_625.txt new file mode 100644 index 0000000..2f7c449 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/LMR/LMR_650_novo_285_625/datacard_650_novo_285_625.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_650.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_650.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_285_625.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_285_625.root HbbHbb:data_obs_novo_285_625 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 1444.36 21478 1444.36 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.06847 - - +JER lnN 1.01649 - - +JEC lnN 1.00387 - - +trigger lnN 1.0648885684 - - +PDF lnN 1.02303488549 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 +par_novo_0 param 150.156 5.29728 +par_novo_1 param 28.8835 4.43805 +par_novo_2 param -1.27624 0.0948088 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1000_novo_550_1200/CMS_HH4b_1000_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1000_novo_550_1200/CMS_HH4b_1000_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..e9c5251 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1000_novo_550_1200/CMS_HH4b_1000_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-YE0Xhr.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 0.147503 -0.147503/+2.8525 (68% CL) +nll S+B -> -0.00131631 nll B -> -0.000318429 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1000_novo_550_1200/CMS_HH4b_1000_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1000_novo_550_1200/CMS_HH4b_1000_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..96905d7 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1000_novo_550_1200/CMS_HH4b_1000_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 7.09375 +Sigma for expected limits: 3.61933 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -0.210642 (r = 0.139019) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.230908 (r = 0.00714918) +At r = 41.734895: q_mu = 63.05196 q_A = 62.18544 CLsb = 0.00000 CLb = 0.47809 CLs = 0.00000 +At r = 20.936957: q_mu = 24.26738 q_A = 23.98776 CLsb = 0.00000 CLb = 0.48861 CLs = 0.00000 +At r = 10.537988: q_mu = 7.80862 q_A = 7.80020 CLsb = 0.00260 CLb = 0.49940 CLs = 0.00521 +At r = 5.338503: q_mu = 2.20503 q_A = 2.26213 CLsb = 0.06878 CLb = 0.50762 CLs = 0.13550 +At r = 7.938245: q_mu = 4.67631 q_A = 4.71128 CLsb = 0.01529 CLb = 0.50322 CLs = 0.03039 +At r = 6.725412: q_mu = 3.43071 q_A = 3.47923 CLsb = 0.03200 CLb = 0.50521 CLs = 0.06333 +At r = 7.280294: q_mu = 3.98157 q_A = 4.02449 CLsb = 0.02300 CLb = 0.50428 CLs = 0.04561 +At r = 7.045072: q_mu = 3.74400 q_A = 3.78942 CLsb = 0.02650 CLb = 0.50467 CLs = 0.05251 +At r = 7.157499: q_mu = 3.85682 q_A = 3.90107 CLsb = 0.02477 CLb = 0.50448 CLs = 0.04910 +At r = 7.110742: q_mu = 3.80973 q_A = 3.85447 CLsb = 0.02548 CLb = 0.50456 CLs = 0.05050 +At r = 7.133290: q_mu = 3.83241 q_A = 3.87691 CLsb = 0.02514 CLb = 0.50452 CLs = 0.04982 + + -- Asymptotic -- +Observed Limit: r < 7.1333 +Expected 2.5%: r < 3.6993 +Expected 16.0%: r < 5.0120 +Expected 50.0%: r < 7.0938 +Expected 84.0%: r < 10.2324 +Expected 97.5%: r < 14.2629 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1000_novo_550_1200/datacard_1000_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1000_novo_550_1200/datacard_1000_novo_550_1200.txt new file mode 100644 index 0000000..1d5f772 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1000_novo_550_1200/datacard_1000_novo_550_1200.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_1000.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_1000.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 3.85006 1443 3.85006 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.08075 - - +JER lnN 1.00831 - - +JEC lnN 1.00454 - - +trigger lnN 1.0573539334 - - +PDF lnN 1.03835416871 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.063 +par_novo_0 param 300.004 77.2331 +par_novo_1 param 228.272 200.342 +par_novo_2 param -0.351207 1.11678 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1050_novo_550_1200/CMS_HH4b_1050_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1050_novo_550_1200/CMS_HH4b_1050_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..6af1852 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1050_novo_550_1200/CMS_HH4b_1050_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-sxzJVt.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 1.95149e-07 -1.95149e-07/+1.25477 (68% CL) +nll S+B -> -0.000932278 nll B -> -0.000932345 +Done in 0.01 min (cpu), 0.02 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1050_novo_550_1200/CMS_HH4b_1050_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1050_novo_550_1200/CMS_HH4b_1050_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..f97f215 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1050_novo_550_1200/CMS_HH4b_1050_13TeV_asymptoticCLs.out @@ -0,0 +1,40 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 7.28125 +Sigma for expected limits: 3.71499 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -0.923115 (r = 5.70768e-07) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.260797 (r = 9.28604e-06) +At r = 4.166657: q_mu = 4.05042 q_A = 1.34698 CLsb = 0.01003 CLb = 0.12207 CLs = 0.08215 +At r = 8.333314: q_mu = 9.82967 q_A = 4.87999 CLsb = 0.00044 CLb = 0.13129 CLs = 0.00331 +At r = 4.166657: q_mu = 4.05043 q_A = 1.34698 CLsb = 0.01003 CLb = 0.12207 CLs = 0.08215 +At r = 6.249985: q_mu = 6.77122 q_A = 2.88843 CLsb = 0.00224 CLb = 0.12666 CLs = 0.01771 +At r = 5.122572: q_mu = 5.25147 q_A = 1.99251 CLsb = 0.00514 CLb = 0.12417 CLs = 0.04143 +At r = 4.721405: q_mu = 4.73759 q_A = 1.70891 CLsb = 0.00684 CLb = 0.12335 CLs = 0.05544 +At r = 4.915404: q_mu = 4.98412 q_A = 1.84349 CLsb = 0.00596 CLb = 0.12373 CLs = 0.04820 +At r = 4.835882: q_mu = 4.88260 q_A = 1.78768 CLsb = 0.00631 CLb = 0.12356 CLs = 0.05105 +At r = 4.874834: q_mu = 4.93224 q_A = 1.81490 CLsb = 0.00614 CLb = 0.12364 CLs = 0.04964 +At r = 4.858967: q_mu = 4.91199 q_A = 1.80377 CLsb = 0.00621 CLb = 0.12360 CLs = 0.05021 + + -- Asymptotic -- +Observed Limit: r < 4.8590 +Expected 2.5%: r < 3.7971 +Expected 16.0%: r < 5.1445 +Expected 50.0%: r < 7.2812 +Expected 84.0%: r < 10.5609 +Expected 97.5%: r < 14.7678 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1050_novo_550_1200/datacard_1050_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1050_novo_550_1200/datacard_1050_novo_550_1200.txt new file mode 100644 index 0000000..3e28fac --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1050_novo_550_1200/datacard_1050_novo_550_1200.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_1050.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_1050.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 3.629505 1443.000000 3.629505 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.082060 - - +JER lnN 1.007739 - - +JEC lnN 1.003494 - - +trigger lnN 1.057102 - - +PDF lnN 1.039471 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.100397 +par_novo_0 param 300.004 77.2331 +par_novo_1 param 228.272 200.342 +par_novo_2 param -0.351207 1.11678 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1100_novo_550_1200/CMS_HH4b_1100_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1100_novo_550_1200/CMS_HH4b_1100_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..8a9dc24 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1100_novo_550_1200/CMS_HH4b_1100_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-oCxMkH.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 1.49725e-07 -1.49725e-07/+1.80033 (68% CL) +nll S+B -> -0.0006222 nll B -> -0.000622291 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1100_novo_550_1200/CMS_HH4b_1100_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1100_novo_550_1200/CMS_HH4b_1100_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..ce37002 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1100_novo_550_1200/CMS_HH4b_1100_13TeV_asymptoticCLs.out @@ -0,0 +1,40 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +WARNING: Best fit of asimov dataset is at r = 0.046226 (0.002311 times rMax), while it should be at zero +Median for expected limits: 7.96875 +Sigma for expected limits: 4.06576 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -0.699386 (r = 4.785e-06) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.282978 (r = 0.000126511) +At r = 6.305859: q_mu = 4.91496 q_A = 2.48968 CLsb = 0.00948 CLb = 0.22109 CLs = 0.04287 +At r = 3.152932: q_mu = 1.97023 q_A = 0.65776 CLsb = 0.05260 CLb = 0.20921 CLs = 0.25141 +At r = 4.729396: q_mu = 3.33806 q_A = 1.44455 CLsb = 0.02332 CLb = 0.21543 CLs = 0.10823 +At r = 5.781037: q_mu = 4.36872 q_A = 2.11515 CLsb = 0.01290 CLb = 0.21924 CLs = 0.05885 +At r = 5.997030: q_mu = 4.59164 q_A = 2.26677 CLsb = 0.01137 CLb = 0.22003 CLs = 0.05169 +At r = 6.102670: q_mu = 4.70108 q_A = 2.34166 CLsb = 0.01069 CLb = 0.22037 CLs = 0.04851 +At r = 6.041295: q_mu = 4.63713 q_A = 2.29776 CLsb = 0.01108 CLb = 0.22016 CLs = 0.05034 +At r = 6.062658: q_mu = 4.65934 q_A = 2.31298 CLsb = 0.01095 CLb = 0.22024 CLs = 0.04970 +At r = 6.050399: q_mu = 4.64658 q_A = 2.30423 CLsb = 0.01102 CLb = 0.22019 CLs = 0.05007 + + -- Asymptotic -- +Observed Limit: r < 6.0504 +Expected 2.5%: r < 4.1556 +Expected 16.0%: r < 5.6004 +Expected 50.0%: r < 7.9688 +Expected 84.0%: r < 11.5581 +Expected 97.5%: r < 16.1622 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1100_novo_550_1200/datacard_1100_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1100_novo_550_1200/datacard_1100_novo_550_1200.txt new file mode 100644 index 0000000..f693aef --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1100_novo_550_1200/datacard_1100_novo_550_1200.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_1100.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_1100.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 3.408950 1443.000000 3.408950 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.083083 - - +JER lnN 1.008962 - - +JEC lnN 1.005448 - - +trigger lnN 1.057066 - - +PDF lnN 1.036784 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.112168 +par_novo_0 param 300.004 77.2331 +par_novo_1 param 228.272 200.342 +par_novo_2 param -0.351207 1.11678 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1150_novo_550_1200/CMS_HH4b_1150_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1150_novo_550_1200/CMS_HH4b_1150_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..1586b1f --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1150_novo_550_1200/CMS_HH4b_1150_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-9jw0zk.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 3 -2.10277/+1.48375e-07 (68% CL) +nll S+B -> -0.84585 nll B -> -0.00141303 +Done in 0.02 min (cpu), 0.02 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1150_novo_550_1200/CMS_HH4b_1150_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1150_novo_550_1200/CMS_HH4b_1150_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..d7ec204 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1150_novo_550_1200/CMS_HH4b_1150_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +WARNING: Best fit of asimov dataset is at r = 0.046073 (0.002304 times rMax), while it should be at zero +Median for expected limits: 7.03125 +Sigma for expected limits: 3.58744 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -0.524391 (r = 4.4283) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.359387 (r = 0.0580577) +At r = 14.484961: q_mu = 6.85388 q_A = 13.53639 CLsb = 0.00442 CLb = 0.85570 CLs = 0.00517 +At r = 9.456628: q_mu = 1.95839 q_A = 6.53765 CLsb = 0.08084 CLb = 0.87646 CLs = 0.09224 +At r = 11.970794: q_mu = 4.12206 q_A = 9.84446 CLsb = 0.02116 CLb = 0.86592 CLs = 0.02444 +At r = 10.886819: q_mu = 3.11086 q_A = 8.36497 CLsb = 0.03889 CLb = 0.87044 CLs = 0.04467 +At r = 10.423028: q_mu = 2.71332 q_A = 7.75594 CLsb = 0.04976 CLb = 0.87238 CLs = 0.05704 +At r = 10.622991: q_mu = 2.88247 q_A = 8.01700 CLsb = 0.04477 CLb = 0.87153 CLs = 0.05137 +At r = 10.716709: q_mu = 2.96250 q_A = 8.14059 CLsb = 0.04261 CLb = 0.87118 CLs = 0.04891 +At r = 10.664322: q_mu = 2.91745 q_A = 8.07138 CLsb = 0.04381 CLb = 0.87138 CLs = 0.05028 + + -- Asymptotic -- +Observed Limit: r < 10.6643 +Expected 2.5%: r < 3.6942 +Expected 16.0%: r < 4.9847 +Expected 50.0%: r < 7.0312 +Expected 84.0%: r < 10.1422 +Expected 97.5%: r < 14.2251 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1150_novo_550_1200/datacard_1150_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1150_novo_550_1200/datacard_1150_novo_550_1200.txt new file mode 100644 index 0000000..ae79455 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1150_novo_550_1200/datacard_1150_novo_550_1200.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_1150.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_1150.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 3.188395 1443.000000 3.188395 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.083914 - - +JER lnN 1.011382 - - +JEC lnN 1.009404 - - +trigger lnN 1.057174 - - +PDF lnN 1.031559 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.106855 +par_novo_0 param 300.004 77.2331 +par_novo_1 param 228.272 200.342 +par_novo_2 param -0.351207 1.11678 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1200_novo_550_1200/CMS_HH4b_1200_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1200_novo_550_1200/CMS_HH4b_1200_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..24f14ef --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1200_novo_550_1200/CMS_HH4b_1200_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-1O39Xj.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 1.94672 -1.94672/+1.05328 (68% CL) +nll S+B -> -0.250449 nll B -> -0.000618092 +Done in 0.01 min (cpu), 0.02 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1200_novo_550_1200/CMS_HH4b_1200_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1200_novo_550_1200/CMS_HH4b_1200_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..861aaf3 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1200_novo_550_1200/CMS_HH4b_1200_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 5.54688 +Sigma for expected limits: 2.83009 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -0.219765 (r = 1.94582) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.472313 (r = 0.0146962) +At r = 10.114858: q_mu = 6.32488 q_A = 10.70003 CLsb = 0.00595 CLb = 0.77522 CLs = 0.00768 +At r = 6.030339: q_mu = 1.81889 q_A = 4.44885 CLsb = 0.08872 CLb = 0.77654 CLs = 0.11425 +At r = 8.072599: q_mu = 3.81543 q_A = 7.36517 CLsb = 0.02539 CLb = 0.77654 CLs = 0.03270 +At r = 7.109518: q_mu = 2.80147 q_A = 5.92936 CLsb = 0.04709 CLb = 0.77675 CLs = 0.06062 +At r = 7.542558: q_mu = 3.24240 q_A = 6.56261 CLsb = 0.03588 CLb = 0.77670 CLs = 0.04619 +At r = 7.355017: q_mu = 3.04878 q_A = 6.28610 CLsb = 0.04040 CLb = 0.77671 CLs = 0.05201 +At r = 7.442421: q_mu = 3.13836 q_A = 6.41443 CLsb = 0.03824 CLb = 0.77671 CLs = 0.04923 +At r = 7.405154: q_mu = 3.09998 q_A = 6.35957 CLsb = 0.03915 CLb = 0.77671 CLs = 0.05040 +At r = 7.422703: q_mu = 3.11800 q_A = 6.38536 CLsb = 0.03872 CLb = 0.77671 CLs = 0.04985 + + -- Asymptotic -- +Observed Limit: r < 7.4227 +Expected 2.5%: r < 2.8709 +Expected 16.0%: r < 3.8849 +Expected 50.0%: r < 5.5469 +Expected 84.0%: r < 8.0895 +Expected 97.5%: r < 11.4840 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1200_novo_550_1200/datacard_1200_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1200_novo_550_1200/datacard_1200_novo_550_1200.txt new file mode 100644 index 0000000..b43b801 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_1200_novo_550_1200/datacard_1200_novo_550_1200.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_1200.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_1200.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 2.96784 1443 2.96784 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.08465 - - +JER lnN 1.0144 - - +JEC lnN 1.01436 - - +trigger lnN 1.0573539334 - - +PDF lnN 1.02506688669 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.093 +par_novo_0 param 300.004 77.2331 +par_novo_1 param 228.272 200.342 +par_novo_2 param -0.351207 1.11678 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_550_novo_550_1200/CMS_HH4b_550_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_550_novo_550_1200/CMS_HH4b_550_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..63540be --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_550_novo_550_1200/CMS_HH4b_550_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-CObeUn.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 2.99999 -2.99999/+9.14357e-06 (68% CL) +nll S+B -> -0.0535203 nll B -> -0.000325304 +Done in 0.01 min (cpu), 0.02 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_550_novo_550_1200/CMS_HH4b_550_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_550_novo_550_1200/CMS_HH4b_550_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..5ce278a --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_550_novo_550_1200/CMS_HH4b_550_13TeV_asymptoticCLs.out @@ -0,0 +1,40 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +WARNING: Best fit of asimov dataset is at r = 0.852289 (0.042614 times rMax), while it should be at zero +Median for expected limits: 22.3125 +Sigma for expected limits: 11.3841 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -0.0998613 (r = 3.47038) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.172665 (r = 1.1436) +At r = 32.533466: q_mu = 6.67046 q_A = 7.96513 CLsb = 0.00490 CLb = 0.59465 CLs = 0.00824 +At r = 18.001925: q_mu = 1.80784 q_A = 2.49579 CLsb = 0.08938 CLb = 0.59299 CLs = 0.15073 +At r = 25.267696: q_mu = 3.91778 q_A = 4.91660 CLsb = 0.02389 CLb = 0.59406 CLs = 0.04021 +At r = 21.634810: q_mu = 2.77455 q_A = 3.61951 CLsb = 0.04789 CLb = 0.59360 CLs = 0.08067 +At r = 23.631785: q_mu = 3.38215 q_A = 4.31214 CLsb = 0.03295 CLb = 0.59387 CLs = 0.05549 +At r = 24.382324: q_mu = 3.62411 q_A = 4.58576 CLsb = 0.02847 CLb = 0.59395 CLs = 0.04794 +At r = 24.059442: q_mu = 3.51909 q_A = 4.46713 CLsb = 0.03033 CLb = 0.59392 CLs = 0.05107 +At r = 24.210619: q_mu = 3.56805 q_A = 4.52247 CLsb = 0.02945 CLb = 0.59394 CLs = 0.04959 +At r = 24.146316: q_mu = 3.54717 q_A = 4.49887 CLsb = 0.02982 CLb = 0.59393 CLs = 0.05021 + + -- Asymptotic -- +Observed Limit: r < 24.1463 +Expected 2.5%: r < 12.3329 +Expected 16.0%: r < 16.1532 +Expected 50.0%: r < 22.3125 +Expected 84.0%: r < 31.2953 +Expected 97.5%: r < 42.8611 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_550_novo_550_1200/datacard_550_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_550_novo_550_1200/datacard_550_novo_550_1200.txt new file mode 100644 index 0000000..22b36b3 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_550_novo_550_1200/datacard_550_novo_550_1200.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_550.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_550.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 1.76851 1443 1.76851 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.06501 - - +JER lnN 1.01835 - - +JEC lnN 1.03168 - - +trigger lnN 1.0697740714 - - +PDF lnN 1.02213999321 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.121 +par_novo_0 param 300.004 77.2331 +par_novo_1 param 228.272 200.342 +par_novo_2 param -0.351207 1.11678 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_570_novo_550_1200/CMS_HH4b_570_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_570_novo_550_1200/CMS_HH4b_570_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..51bef2e --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_570_novo_550_1200/CMS_HH4b_570_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-DCxWcy.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 3 -3/+6.08127e-08 (68% CL) +nll S+B -> -0.274933 nll B -> -0.00037626 +Done in 0.02 min (cpu), 0.02 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_570_novo_550_1200/CMS_HH4b_570_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_570_novo_550_1200/CMS_HH4b_570_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..c261550 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_570_novo_550_1200/CMS_HH4b_570_13TeV_asymptoticCLs.out @@ -0,0 +1,38 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 22.6875 +Sigma for expected limits: 11.5755 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -0.29609 (r = 12.9224) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.213106 (r = 0.0013257) +At r = 47.390711: q_mu = 7.53506 q_A = 14.34208 CLsb = 0.00303 CLb = 0.85131 CLs = 0.00355 +At r = 30.156558: q_mu = 2.09384 q_A = 6.46977 CLsb = 0.07395 CLb = 0.86358 CLs = 0.08563 +At r = 38.773635: q_mu = 4.47571 q_A = 10.14138 CLsb = 0.01719 CLb = 0.85746 CLs = 0.02005 +At r = 34.434354: q_mu = 3.18197 q_A = 8.21768 CLsb = 0.03723 CLb = 0.86056 CLs = 0.04326 +At r = 32.853022: q_mu = 2.75701 q_A = 7.55340 CLsb = 0.04841 CLb = 0.86169 CLs = 0.05619 +At r = 33.733696: q_mu = 2.99087 q_A = 7.92113 CLsb = 0.04187 CLb = 0.86105 CLs = 0.04862 +At r = 33.421561: q_mu = 2.90698 q_A = 7.78999 CLsb = 0.04410 CLb = 0.86128 CLs = 0.05120 +At r = 33.598777: q_mu = 2.95444 q_A = 7.86431 CLsb = 0.04282 CLb = 0.86115 CLs = 0.04973 + + -- Asymptotic -- +Observed Limit: r < 33.5988 +Expected 2.5%: r < 11.9198 +Expected 16.0%: r < 16.0839 +Expected 50.0%: r < 22.6875 +Expected 84.0%: r < 32.5447 +Expected 97.5%: r < 44.9302 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_570_novo_550_1200/datacard_570_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_570_novo_550_1200/datacard_570_novo_550_1200.txt new file mode 100644 index 0000000..31dbca1 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_570_novo_550_1200/datacard_570_novo_550_1200.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_570.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_570.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 1.944130 1443.000000 1.944130 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.065792 - - +JER lnN 1.018356 - - +JEC lnN 1.029523 - - +trigger lnN 1.068784 - - +PDF lnN 1.022346 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.103873 +par_novo_0 param 300.004 77.2331 +par_novo_1 param 228.272 200.342 +par_novo_2 param -0.351207 1.11678 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_600_novo_550_1200/CMS_HH4b_600_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_600_novo_550_1200/CMS_HH4b_600_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..588f6df --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_600_novo_550_1200/CMS_HH4b_600_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-HAK6XO.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 7.01913e-06 -7.01913e-06/+2.99999 (68% CL) +nll S+B -> -0.000320582 nll B -> -0.000320695 +Done in 0.02 min (cpu), 0.02 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_600_novo_550_1200/CMS_HH4b_600_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_600_novo_550_1200/CMS_HH4b_600_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..be83b2a --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_600_novo_550_1200/CMS_HH4b_600_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +WARNING: Best fit of asimov dataset is at r = 0.222329 (0.011116 times rMax), while it should be at zero +Median for expected limits: 19.8125 +Sigma for expected limits: 10.1086 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -0.32986 (r = 4.41047e-06) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.160612 (r = 0.248848) +At r = 92.474877: q_mu = 52.06770 q_A = 49.66826 CLsb = 0.00000 CLb = 0.43241 CLs = 0.00000 +At r = 46.237440: q_mu = 19.37494 q_A = 17.43241 CLsb = 0.00001 CLb = 0.40803 CLs = 0.00001 +At r = 23.118722: q_mu = 6.45664 q_A = 5.15450 CLsb = 0.00528 CLb = 0.38714 CLs = 0.01363 +At r = 11.559363: q_mu = 2.12025 q_A = 1.36351 CLsb = 0.06789 CLb = 0.37296 CLs = 0.18202 +At r = 17.339043: q_mu = 4.05205 q_A = 2.99851 CLsb = 0.02088 CLb = 0.38049 CLs = 0.05489 +At r = 20.228883: q_mu = 5.20025 q_A = 4.01679 CLsb = 0.01074 CLb = 0.38390 CLs = 0.02798 +At r = 18.236939: q_mu = 4.39663 q_A = 3.30146 CLsb = 0.01707 CLb = 0.38157 CLs = 0.04474 +At r = 17.846438: q_mu = 4.24546 q_A = 3.16826 CLsb = 0.01865 CLb = 0.38110 CLs = 0.04893 +At r = 17.668347: q_mu = 4.17727 q_A = 3.10834 CLsb = 0.01940 CLb = 0.38089 CLs = 0.05095 +At r = 17.770015: q_mu = 4.21613 q_A = 3.14247 CLsb = 0.01897 CLb = 0.38101 CLs = 0.04979 +At r = 17.734484: q_mu = 4.20253 q_A = 3.13052 CLsb = 0.01912 CLb = 0.38097 CLs = 0.05019 + + -- Asymptotic -- +Observed Limit: r < 17.7345 +Expected 2.5%: r < 10.4867 +Expected 16.0%: r < 14.0567 +Expected 50.0%: r < 19.8125 +Expected 84.0%: r < 28.2627 +Expected 97.5%: r < 38.8824 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_600_novo_550_1200/datacard_600_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_600_novo_550_1200/datacard_600_novo_550_1200.txt new file mode 100644 index 0000000..32226a7 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_600_novo_550_1200/datacard_600_novo_550_1200.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_600.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_600.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 2.20756 1443 2.20756 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.06685 - - +JER lnN 1.01758 - - +JEC lnN 1.0267 - - +trigger lnN 1.06723 - - +PDF lnN 1.02263746575 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.065 +par_novo_0 param 300.004 77.2331 +par_novo_1 param 228.272 200.342 +par_novo_2 param -0.351207 1.11678 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_620_novo_550_1200/CMS_HH4b_620_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_620_novo_550_1200/CMS_HH4b_620_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..f649a95 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_620_novo_550_1200/CMS_HH4b_620_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-hZTAMI.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.020 + + + --- MaxLikelihoodFit --- +Best fit r: 3 -3/+1.07146e-07 (68% CL) +nll S+B -> -0.0840843 nll B -> -0.000318754 +Done in 0.02 min (cpu), 0.02 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_620_novo_550_1200/CMS_HH4b_620_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_620_novo_550_1200/CMS_HH4b_620_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..5d91a18 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_620_novo_550_1200/CMS_HH4b_620_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +WARNING: Best fit of asimov dataset is at r = 0.064542 (0.003227 times rMax), while it should be at zero +Median for expected limits: 17.5625 +Sigma for expected limits: 8.96062 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -0.0273718 (r = 3.4271) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.14862 (r = 0.0426501) +At r = 26.289981: q_mu = 6.20546 q_A = 8.03397 CLsb = 0.00637 CLb = 0.63433 CLs = 0.01004 +At r = 14.858539: q_mu = 1.70807 q_A = 2.81092 CLsb = 0.09562 CLb = 0.64418 CLs = 0.14843 +At r = 20.574260: q_mu = 3.66798 q_A = 5.15876 CLsb = 0.02773 CLb = 0.63911 CLs = 0.04339 +At r = 18.904242: q_mu = 3.03096 q_A = 4.41383 CLsb = 0.04084 CLb = 0.64056 CLs = 0.06376 +At r = 19.748363: q_mu = 3.34648 q_A = 4.78445 CLsb = 0.03367 CLb = 0.63983 CLs = 0.05263 +At r = 20.089084: q_mu = 3.47760 q_A = 4.93749 CLsb = 0.03110 CLb = 0.63953 CLs = 0.04863 +At r = 19.925283: q_mu = 3.41429 q_A = 4.86367 CLsb = 0.03232 CLb = 0.63968 CLs = 0.05052 +At r = 19.993705: q_mu = 3.44068 q_A = 4.89445 CLsb = 0.03180 CLb = 0.63962 CLs = 0.04972 + + -- Asymptotic -- +Observed Limit: r < 19.9937 +Expected 2.5%: r < 9.2272 +Expected 16.0%: r < 12.4506 +Expected 50.0%: r < 17.5625 +Expected 84.0%: r < 25.1930 +Expected 97.5%: r < 34.7807 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_620_novo_550_1200/datacard_620_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_620_novo_550_1200/datacard_620_novo_550_1200.txt new file mode 100644 index 0000000..670c57a --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_620_novo_550_1200/datacard_620_novo_550_1200.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_620.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_620.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 2.333008 1443.000000 2.333008 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.067433 - - +JER lnN 1.016197 - - +JEC lnN 1.025353 - - +trigger lnN 1.066147 - - +PDF lnN 1.022809 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.023567 +par_novo_0 param 300.004 77.2331 +par_novo_1 param 228.272 200.342 +par_novo_2 param -0.351207 1.11678 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_650_novo_550_1200/CMS_HH4b_650_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_650_novo_550_1200/CMS_HH4b_650_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..7c700fc --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_650_novo_550_1200/CMS_HH4b_650_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-hjnGS5.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 1.66779e-08 -1.66779e-08/+2.32183 (68% CL) +nll S+B -> -0.000362701 nll B -> -0.00036261 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_650_novo_550_1200/CMS_HH4b_650_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_650_novo_550_1200/CMS_HH4b_650_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..e0bb95b --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_650_novo_550_1200/CMS_HH4b_650_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +WARNING: Best fit of asimov dataset is at r = 0.067475 (0.003374 times rMax), while it should be at zero +Median for expected limits: 15.4375 +Sigma for expected limits: 7.87642 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 7.13315 (r = 1.9983e-07) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.137323 (r = 0.0149591) +At r = 7.585524: q_mu = 3.80936 q_A = 0.98082 CLsb = 0.00779 CLb = 0.07664 CLs = 0.10170 +At r = 15.171048: q_mu = 9.03712 q_A = 3.69742 CLsb = 0.00046 CLb = 0.08250 CLs = 0.00563 +At r = 7.585524: q_mu = 3.80925 q_A = 0.98083 CLsb = 0.00780 CLb = 0.07665 CLs = 0.10171 +At r = 11.378286: q_mu = 6.27308 q_A = 2.14739 CLsb = 0.00203 CLb = 0.07961 CLs = 0.02553 +At r = 9.144168: q_mu = 4.78200 q_A = 1.41036 CLsb = 0.00457 CLb = 0.07787 CLs = 0.05863 +At r = 9.933166: q_mu = 5.29600 q_A = 1.65472 CLsb = 0.00345 CLb = 0.07848 CLs = 0.04395 +At r = 9.492809: q_mu = 5.00739 q_A = 1.51616 CLsb = 0.00404 CLb = 0.07814 CLs = 0.05166 +At r = 9.651915: q_mu = 5.11116 q_A = 1.56558 CLsb = 0.00381 CLb = 0.07827 CLs = 0.04874 +At r = 9.564116: q_mu = 5.05382 q_A = 1.53821 CLsb = 0.00394 CLb = 0.07820 CLs = 0.05033 +At r = 9.595997: q_mu = 5.07462 q_A = 1.54812 CLsb = 0.00389 CLb = 0.07822 CLs = 0.04975 + + -- Asymptotic -- +Observed Limit: r < 9.5960 +Expected 2.5%: r < 8.1710 +Expected 16.0%: r < 10.9811 +Expected 50.0%: r < 15.4375 +Expected 84.0%: r < 22.1448 +Expected 97.5%: r < 30.7661 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_650_novo_550_1200/datacard_650_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_650_novo_550_1200/datacard_650_novo_550_1200.txt new file mode 100644 index 0000000..1cee687 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_650_novo_550_1200/datacard_650_novo_550_1200.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_650.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_650.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 2.52118 1443 2.52118 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.06833 - - +JER lnN 1.01405 - - +JEC lnN 1.02443 - - +trigger lnN 1.0648885684 - - +PDF lnN 1.02303488549 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.053 +par_novo_0 param 300.004 77.2331 +par_novo_1 param 228.272 200.342 +par_novo_2 param -0.351207 1.11678 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_670_novo_550_1200/CMS_HH4b_670_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_670_novo_550_1200/CMS_HH4b_670_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..487efca --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_670_novo_550_1200/CMS_HH4b_670_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-SaR9oZ.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 5.20049e-11 -5.20049e-11/+1.28503 (68% CL) +nll S+B -> -0.000397475 nll B -> -0.000396747 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_670_novo_550_1200/CMS_HH4b_670_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_670_novo_550_1200/CMS_HH4b_670_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..5220a11 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_670_novo_550_1200/CMS_HH4b_670_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +WARNING: Best fit of asimov dataset is at r = 0.020142 (0.001007 times rMax), while it should be at zero +Median for expected limits: 14.3125 +Sigma for expected limits: 7.30243 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 6.56595 (r = 3.0721e-07) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.139688 (r = 0.00417938) +At r = 3.645501: q_mu = 2.93068 q_A = 0.27478 CLsb = 0.00112 CLb = 0.00565 CLs = 0.19753 +At r = 7.291001: q_mu = 6.21226 q_A = 1.06500 CLsb = 0.00021 CLb = 0.00632 CLs = 0.03341 +At r = 3.645501: q_mu = 2.93068 q_A = 0.27478 CLsb = 0.00112 CLb = 0.00565 CLs = 0.19753 +At r = 5.468251: q_mu = 4.53238 q_A = 0.60875 CLsb = 0.00049 CLb = 0.00596 CLs = 0.08265 +At r = 6.277316: q_mu = 5.26826 q_A = 0.79680 CLsb = 0.00034 CLb = 0.00613 CLs = 0.05552 +At r = 6.647338: q_mu = 5.61023 q_A = 0.89077 CLsb = 0.00029 CLb = 0.00621 CLs = 0.04618 +At r = 6.445590: q_mu = 5.42338 q_A = 0.83886 CLsb = 0.00031 CLb = 0.00616 CLs = 0.05107 +At r = 6.519842: q_mu = 5.49204 q_A = 0.85775 CLsb = 0.00030 CLb = 0.00618 CLs = 0.04921 +At r = 6.479547: q_mu = 5.45476 q_A = 0.84745 CLsb = 0.00031 CLb = 0.00617 CLs = 0.05021 +At r = 6.494414: q_mu = 5.46851 q_A = 0.85124 CLsb = 0.00031 CLb = 0.00617 CLs = 0.04984 + + -- Asymptotic -- +Observed Limit: r < 6.4944 +Expected 2.5%: r < 7.5197 +Expected 16.0%: r < 10.1466 +Expected 50.0%: r < 14.3125 +Expected 84.0%: r < 20.5310 +Expected 97.5%: r < 28.5240 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_670_novo_550_1200/datacard_670_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_670_novo_550_1200/datacard_670_novo_550_1200.txt new file mode 100644 index 0000000..5433ea2 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_670_novo_550_1200/datacard_670_novo_550_1200.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_670.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_670.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 2.668268 1443.000000 2.668268 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.069092 - - +JER lnN 1.013467 - - +JEC lnN 1.024585 - - +trigger lnN 1.064548 - - +PDF lnN 1.023176 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.104617 +par_novo_0 param 300.004 77.2331 +par_novo_1 param 228.272 200.342 +par_novo_2 param -0.351207 1.11678 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_700_novo_550_1200/CMS_HH4b_700_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_700_novo_550_1200/CMS_HH4b_700_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..5cf5c7f --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_700_novo_550_1200/CMS_HH4b_700_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-xZeslC.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.020 + + + --- MaxLikelihoodFit --- +Best fit r: 3.8356e-12 -3.8356e-12/+2.85436 (68% CL) +nll S+B -> -0.000721358 nll B -> -0.00072136 +Done in 0.02 min (cpu), 0.02 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_700_novo_550_1200/CMS_HH4b_700_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_700_novo_550_1200/CMS_HH4b_700_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..6c6e5e5 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_700_novo_550_1200/CMS_HH4b_700_13TeV_asymptoticCLs.out @@ -0,0 +1,40 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 13.0625 +Sigma for expected limits: 6.66466 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 7.40867 (r = 4.94184e-05) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.147155 (r = 4.57929e-05) +At r = 7.391949: q_mu = 3.27417 q_A = 1.30873 CLsb = 0.02259 CLb = 0.19516 CLs = 0.11574 +At r = 14.783898: q_mu = 8.51241 q_A = 4.81702 CLsb = 0.00120 CLb = 0.19993 CLs = 0.00598 +At r = 7.391974: q_mu = 3.27418 q_A = 1.30874 CLsb = 0.02259 CLb = 0.19516 CLs = 0.11574 +At r = 11.087936: q_mu = 5.68885 q_A = 2.82685 CLsb = 0.00566 CLb = 0.19735 CLs = 0.02870 +At r = 9.171532: q_mu = 4.38077 q_A = 1.97583 CLsb = 0.01188 CLb = 0.19615 CLs = 0.06055 +At r = 9.947877: q_mu = 4.89744 q_A = 2.30530 CLsb = 0.00885 CLb = 0.19666 CLs = 0.04499 +At r = 9.571786: q_mu = 4.64451 q_A = 2.14270 CLsb = 0.01021 CLb = 0.19640 CLs = 0.05201 +At r = 9.728823: q_mu = 4.74951 q_A = 2.20990 CLsb = 0.00962 CLb = 0.19650 CLs = 0.04897 +At r = 9.653977: q_mu = 4.69935 q_A = 2.17774 CLsb = 0.00990 CLb = 0.19645 CLs = 0.05040 +At r = 9.685465: q_mu = 4.72042 q_A = 2.19123 CLsb = 0.00978 CLb = 0.19647 CLs = 0.04979 + + -- Asymptotic -- +Observed Limit: r < 9.6855 +Expected 2.5%: r < 6.8629 +Expected 16.0%: r < 9.2120 +Expected 50.0%: r < 13.0625 +Expected 84.0%: r < 18.7379 +Expected 97.5%: r < 26.0328 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_700_novo_550_1200/datacard_700_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_700_novo_550_1200/datacard_700_novo_550_1200.txt new file mode 100644 index 0000000..570f116 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_700_novo_550_1200/datacard_700_novo_550_1200.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_700.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_700.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 2.888900 1443.000000 2.888900 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.070435 - - +JER lnN 1.013638 - - +JEC lnN 1.025033 - - +trigger lnN 1.064349 - - +PDF lnN 1.023441 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.169204 +par_novo_0 param 300.004 77.2331 +par_novo_1 param 228.272 200.342 +par_novo_2 param -0.351207 1.11678 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_720_novo_550_1200/CMS_HH4b_720_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_720_novo_550_1200/CMS_HH4b_720_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..bc150d8 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_720_novo_550_1200/CMS_HH4b_720_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-SN3WLq.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 3 -3/+2.51133e-06 (68% CL) +nll S+B -> -0.151238 nll B -> -0.00134837 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_720_novo_550_1200/CMS_HH4b_720_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_720_novo_550_1200/CMS_HH4b_720_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..70f7481 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_720_novo_550_1200/CMS_HH4b_720_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 12.2812 +Sigma for expected limits: 6.26606 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 7.96854 (r = 3.23053) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.155656 (r = 0.00394496) +At r = 20.804360: q_mu = 7.05885 q_A = 9.85528 CLsb = 0.00394 CLb = 0.68526 CLs = 0.00576 +At r = 12.017446: q_mu = 1.97316 q_A = 3.67759 CLsb = 0.08006 CLb = 0.69603 CLs = 0.11502 +At r = 16.410903: q_mu = 4.20310 q_A = 6.48958 CLsb = 0.02018 CLb = 0.69052 CLs = 0.02922 +At r = 14.154190: q_mu = 2.97045 q_A = 4.96755 CLsb = 0.04240 CLb = 0.69333 CLs = 0.06115 +At r = 15.097703: q_mu = 3.46452 q_A = 5.58501 CLsb = 0.03135 CLb = 0.69215 CLs = 0.04529 +At r = 14.660426: q_mu = 3.23163 q_A = 5.29569 CLsb = 0.03611 CLb = 0.69272 CLs = 0.05213 +At r = 14.851834: q_mu = 3.33285 q_A = 5.42151 CLsb = 0.03395 CLb = 0.69245 CLs = 0.04904 +At r = 14.764880: q_mu = 3.28668 q_A = 5.36419 CLsb = 0.03492 CLb = 0.69257 CLs = 0.05042 +At r = 14.803297: q_mu = 3.30704 q_A = 5.38948 CLsb = 0.03449 CLb = 0.69252 CLs = 0.04981 + + -- Asymptotic -- +Observed Limit: r < 14.8033 +Expected 2.5%: r < 6.4525 +Expected 16.0%: r < 8.6838 +Expected 50.0%: r < 12.2812 +Expected 84.0%: r < 17.7151 +Expected 97.5%: r < 24.5397 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_720_novo_550_1200/datacard_720_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_720_novo_550_1200/datacard_720_novo_550_1200.txt new file mode 100644 index 0000000..966266d --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_720_novo_550_1200/datacard_720_novo_550_1200.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_720.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_720.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 3.035988 1443.000000 3.035988 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.071378 - - +JER lnN 1.013968 - - +JEC lnN 1.024727 - - +trigger lnN 1.063997 - - +PDF lnN 1.023706 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.196071 +par_novo_0 param 300.004 77.2331 +par_novo_1 param 228.272 200.342 +par_novo_2 param -0.351207 1.11678 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_750_novo_550_1200/CMS_HH4b_750_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_750_novo_550_1200/CMS_HH4b_750_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..cf68f05 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_750_novo_550_1200/CMS_HH4b_750_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-dxHtQF.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 3 -2.88132/+4.63975e-09 (68% CL) +nll S+B -> -0.523075 nll B -> -0.00218838 +Done in 0.02 min (cpu), 0.02 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_750_novo_550_1200/CMS_HH4b_750_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_750_novo_550_1200/CMS_HH4b_750_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..34949f3 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_750_novo_550_1200/CMS_HH4b_750_13TeV_asymptoticCLs.out @@ -0,0 +1,38 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 11.3438 +Sigma for expected limits: 5.78773 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 7.68855 (r = 6.94254) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.165843 (r = 0.003173) +At r = 24.248580: q_mu = 7.06852 q_A = 14.65866 CLsb = 0.00392 CLb = 0.87900 CLs = 0.00446 +At r = 15.595559: q_mu = 1.98736 q_A = 6.83311 CLsb = 0.07931 CLb = 0.88576 CLs = 0.08954 +At r = 19.922070: q_mu = 4.21907 q_A = 10.50681 CLsb = 0.01999 CLb = 0.88246 CLs = 0.02265 +At r = 17.927932: q_mu = 3.10503 q_A = 8.74622 CLsb = 0.03903 CLb = 0.88401 CLs = 0.04415 +At r = 17.132876: q_mu = 2.70052 q_A = 8.07539 CLsb = 0.05016 CLb = 0.88462 CLs = 0.05670 +At r = 17.452444: q_mu = 2.86060 q_A = 8.34301 CLsb = 0.04539 CLb = 0.88437 CLs = 0.05132 +At r = 17.613422: q_mu = 2.94221 q_A = 8.47913 CLsb = 0.04315 CLb = 0.88427 CLs = 0.04879 +At r = 17.518942: q_mu = 2.89404 q_A = 8.39911 CLsb = 0.04445 CLb = 0.88433 CLs = 0.05027 + + -- Asymptotic -- +Observed Limit: r < 17.5189 +Expected 2.5%: r < 5.9599 +Expected 16.0%: r < 8.0419 +Expected 50.0%: r < 11.3438 +Expected 84.0%: r < 16.3628 +Expected 97.5%: r < 22.6665 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_750_novo_550_1200/datacard_750_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_750_novo_550_1200/datacard_750_novo_550_1200.txt new file mode 100644 index 0000000..203fd58 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_750_novo_550_1200/datacard_750_novo_550_1200.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_750.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_750.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 3.25662 1443 3.25662 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.07272 - - +JER lnN 1.01396 - - +JEC lnN 1.02208 - - +trigger lnN 1.0624078267 - - +PDF lnN 1.02432019608 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.199 +par_novo_0 param 300.004 77.2331 +par_novo_1 param 228.272 200.342 +par_novo_2 param -0.351207 1.11678 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_770_novo_550_1200/CMS_HH4b_770_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_770_novo_550_1200/CMS_HH4b_770_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..5eb1b81 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_770_novo_550_1200/CMS_HH4b_770_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-WgrGIE.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 3 -2.30171/+1.35991e-07 (68% CL) +nll S+B -> -0.687721 nll B -> -0.00207933 +Done in 0.01 min (cpu), 0.02 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_770_novo_550_1200/CMS_HH4b_770_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_770_novo_550_1200/CMS_HH4b_770_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..58cb08d --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_770_novo_550_1200/CMS_HH4b_770_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +WARNING: Best fit of asimov dataset is at r = 0.025041 (0.001252 times rMax), while it should be at zero +Median for expected limits: 10.7188 +Sigma for expected limits: 5.46885 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 7.48978 (r = 7.7411) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.169853 (r = 0.00378125) +At r = 24.134142: q_mu = 7.11427 q_A = 16.12564 CLsb = 0.00382 CLb = 0.91124 CLs = 0.00420 +At r = 15.937621: q_mu = 2.00459 q_A = 7.92401 CLsb = 0.07841 CLb = 0.91911 CLs = 0.08531 +At r = 20.035882: q_mu = 4.25017 q_A = 11.79955 CLsb = 0.01962 CLb = 0.91519 CLs = 0.02144 +At r = 18.025749: q_mu = 3.06250 q_A = 9.83459 CLsb = 0.04006 CLb = 0.91713 CLs = 0.04368 +At r = 17.270860: q_mu = 2.65833 q_A = 9.12761 CLsb = 0.05150 CLb = 0.91785 CLs = 0.05611 +At r = 17.699937: q_mu = 2.88574 q_A = 9.52772 CLsb = 0.04468 CLb = 0.91742 CLs = 0.04871 +At r = 17.550528: q_mu = 2.80552 q_A = 9.38763 CLsb = 0.04697 CLb = 0.91758 CLs = 0.05119 +At r = 17.636899: q_mu = 2.85174 q_A = 9.46850 CLsb = 0.04564 CLb = 0.91749 CLs = 0.04974 + + -- Asymptotic -- +Observed Limit: r < 17.6369 +Expected 2.5%: r < 5.5897 +Expected 16.0%: r < 7.5531 +Expected 50.0%: r < 10.7188 +Expected 84.0%: r < 15.3758 +Expected 97.5%: r < 21.2274 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_770_novo_550_1200/datacard_770_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_770_novo_550_1200/datacard_770_novo_550_1200.txt new file mode 100644 index 0000000..d32016d --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_770_novo_550_1200/datacard_770_novo_550_1200.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_770.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_770.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 3.370148 1443.000000 3.370148 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.073494 - - +JER lnN 1.013282 - - +JEC lnN 1.018450 - - +trigger lnN 1.060398 - - +PDF lnN 1.024888 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.172079 +par_novo_0 param 300.004 77.2331 +par_novo_1 param 228.272 200.342 +par_novo_2 param -0.351207 1.11678 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_800_novo_550_1200/CMS_HH4b_800_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_800_novo_550_1200/CMS_HH4b_800_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..1727afa --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_800_novo_550_1200/CMS_HH4b_800_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-hVS8oQ.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 3 -3/+1.38947e-07 (68% CL) +nll S+B -> -0.390829 nll B -> -0.00118109 +Done in 0.01 min (cpu), 0.02 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_800_novo_550_1200/CMS_HH4b_800_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_800_novo_550_1200/CMS_HH4b_800_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..c9995e2 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_800_novo_550_1200/CMS_HH4b_800_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 9.90625 +Sigma for expected limits: 5.0543 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 7.86048 (r = 4.54466) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.16756 (r = 0.000753632) +At r = 19.113986: q_mu = 6.99479 q_A = 12.48890 CLsb = 0.00409 CLb = 0.81305 CLs = 0.00503 +At r = 11.829324: q_mu = 1.94808 q_A = 5.34524 CLsb = 0.08140 CLb = 0.82023 CLs = 0.09924 +At r = 15.471655: q_mu = 4.15768 q_A = 8.65511 CLsb = 0.02072 CLb = 0.81672 CLs = 0.02537 +At r = 13.293924: q_mu = 2.75223 q_A = 6.60474 CLsb = 0.04856 CLb = 0.81885 CLs = 0.05930 +At r = 14.079618: q_mu = 3.23161 q_A = 7.32118 CLsb = 0.03611 CLb = 0.81809 CLs = 0.04415 +At r = 13.657273: q_mu = 2.97057 q_A = 6.93320 CLsb = 0.04240 CLb = 0.81847 CLs = 0.05180 +At r = 13.816441: q_mu = 3.06769 q_A = 7.07836 CLsb = 0.03993 CLb = 0.81833 CLs = 0.04880 +At r = 13.732639: q_mu = 3.01634 q_A = 7.00175 CLsb = 0.04121 CLb = 0.81841 CLs = 0.05036 +At r = 13.764627: q_mu = 3.03588 q_A = 7.03094 CLsb = 0.04072 CLb = 0.81838 CLs = 0.04976 + + -- Asymptotic -- +Observed Limit: r < 13.7646 +Expected 2.5%: r < 5.2047 +Expected 16.0%: r < 6.9861 +Expected 50.0%: r < 9.9062 +Expected 84.0%: r < 14.2103 +Expected 97.5%: r < 19.6183 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_800_novo_550_1200/datacard_800_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_800_novo_550_1200/datacard_800_novo_550_1200.txt new file mode 100644 index 0000000..07dfe6d --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_800_novo_550_1200/datacard_800_novo_550_1200.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_800.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_800.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 3.54044 1443 3.54044 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.0745 - - +JER lnN 1.01211 - - +JEC lnN 1.0129 - - +trigger lnN 1.0573539334 - - +PDF lnN 1.02563135345 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.118 +par_novo_0 param 300.004 77.2331 +par_novo_1 param 228.272 200.342 +par_novo_2 param -0.351207 1.11678 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_820_novo_550_1200/CMS_HH4b_820_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_820_novo_550_1200/CMS_HH4b_820_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..8f036da --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_820_novo_550_1200/CMS_HH4b_820_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-czMtsS.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.000 + + + --- MaxLikelihoodFit --- +Best fit r: 1.13062 -1.13062/+1.86938 (68% CL) +nll S+B -> -0.0307151 nll B -> -0.000773809 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_820_novo_550_1200/CMS_HH4b_820_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_820_novo_550_1200/CMS_HH4b_820_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..3c67090 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_820_novo_550_1200/CMS_HH4b_820_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 9.40625 +Sigma for expected limits: 4.7992 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 7.92843 (r = 1.1312) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.16515 (r = 0.000830782) +At r = 14.272387: q_mu = 6.69158 q_A = 8.19180 CLsb = 0.00484 CLb = 0.60847 CLs = 0.00796 +At r = 7.701796: q_mu = 1.84678 q_A = 2.65107 CLsb = 0.08708 CLb = 0.60613 CLs = 0.14366 +At r = 10.987092: q_mu = 3.96037 q_A = 5.12112 CLsb = 0.02329 CLb = 0.60754 CLs = 0.03834 +At r = 9.801635: q_mu = 3.11980 q_A = 4.15367 CLsb = 0.03867 CLb = 0.60710 CLs = 0.06370 +At r = 10.491054: q_mu = 3.59853 q_A = 4.70645 CLsb = 0.02892 CLb = 0.60736 CLs = 0.04761 +At r = 10.260323: q_mu = 3.43534 q_A = 4.51854 CLsb = 0.03191 CLb = 0.60727 CLs = 0.05254 +At r = 10.353154: q_mu = 3.50056 q_A = 4.59372 CLsb = 0.03067 CLb = 0.60731 CLs = 0.05051 +At r = 10.399588: q_mu = 3.53341 q_A = 4.63154 CLsb = 0.03007 CLb = 0.60733 CLs = 0.04952 +At r = 10.372064: q_mu = 3.51392 q_A = 4.60911 CLsb = 0.03043 CLb = 0.60732 CLs = 0.05010 + + -- Asymptotic -- +Observed Limit: r < 10.3721 +Expected 2.5%: r < 4.9052 +Expected 16.0%: r < 6.6458 +Expected 50.0%: r < 9.4062 +Expected 84.0%: r < 13.4931 +Expected 97.5%: r < 18.7461 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_820_novo_550_1200/datacard_820_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_820_novo_550_1200/datacard_820_novo_550_1200.txt new file mode 100644 index 0000000..af64d0b --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_820_novo_550_1200/datacard_820_novo_550_1200.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_820.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_820.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 3.566236 1443.000000 3.566236 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.075108 - - +JER lnN 1.011879 - - +JEC lnN 1.011019 - - +trigger lnN 1.056303 - - +PDF lnN 1.025845 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.093739 +par_novo_0 param 300.004 77.2331 +par_novo_1 param 228.272 200.342 +par_novo_2 param -0.351207 1.11678 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_840_novo_550_1200/CMS_HH4b_840_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_840_novo_550_1200/CMS_HH4b_840_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..045ec40 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_840_novo_550_1200/CMS_HH4b_840_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-MuxWTr.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 4.06259e-10 -4.06259e-10/+3 (68% CL) +nll S+B -> -0.000603749 nll B -> -0.00060375 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_840_novo_550_1200/CMS_HH4b_840_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_840_novo_550_1200/CMS_HH4b_840_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..6e250bc --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_840_novo_550_1200/CMS_HH4b_840_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 9.03125 +Sigma for expected limits: 4.60787 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 7.74727 (r = 3.43821e-05) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.162599 (r = 1.2571e-05) +At r = 47.448815: q_mu = 58.19374 q_A = 56.65642 CLsb = 0.00000 CLb = 0.45933 CLs = 0.00000 +At r = 23.724425: q_mu = 21.76524 q_A = 20.59805 CLsb = 0.00000 CLb = 0.44884 CLs = 0.00000 +At r = 11.862230: q_mu = 7.07970 q_A = 6.32809 CLsb = 0.00385 CLb = 0.44062 CLs = 0.00874 +At r = 5.931132: q_mu = 2.17289 q_A = 1.74626 CLsb = 0.06905 CLb = 0.43588 CLs = 0.15842 +At r = 8.896681: q_mu = 4.34369 q_A = 3.74244 CLsb = 0.01831 CLb = 0.43825 CLs = 0.04178 +At r = 7.413906: q_mu = 3.18043 q_A = 2.66332 CLsb = 0.03669 CLb = 0.43706 CLs = 0.08396 +At r = 8.294956: q_mu = 3.85380 q_A = 3.28595 CLsb = 0.02446 CLb = 0.43777 CLs = 0.05587 +At r = 8.599161: q_mu = 4.09884 q_A = 3.51398 CLsb = 0.02115 CLb = 0.43802 CLs = 0.04829 +At r = 8.480090: q_mu = 4.00211 q_A = 3.42387 CLsb = 0.02240 CLb = 0.43792 CLs = 0.05114 +At r = 8.541288: q_mu = 4.05168 q_A = 3.47004 CLsb = 0.02175 CLb = 0.43797 CLs = 0.04966 +At r = 8.517553: q_mu = 4.03242 q_A = 3.45209 CLsb = 0.02200 CLb = 0.43795 CLs = 0.05023 + + -- Asymptotic -- +Observed Limit: r < 8.5176 +Expected 2.5%: r < 4.7273 +Expected 16.0%: r < 6.3581 +Expected 50.0%: r < 9.0312 +Expected 84.0%: r < 12.9551 +Expected 97.5%: r < 17.9988 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_840_novo_550_1200/datacard_840_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_840_novo_550_1200/datacard_840_novo_550_1200.txt new file mode 100644 index 0000000..debbf26 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_840_novo_550_1200/datacard_840_novo_550_1200.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_840.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_840.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 3.592032 1443.000000 3.592032 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.075690 - - +JER lnN 1.012045 - - +JEC lnN 1.010536 - - +trigger lnN 1.056045 - - +PDF lnN 1.025964 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.079892 +par_novo_0 param 300.004 77.2331 +par_novo_1 param 228.272 200.342 +par_novo_2 param -0.351207 1.11678 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_860_novo_550_1200/CMS_HH4b_860_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_860_novo_550_1200/CMS_HH4b_860_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..244772d --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_860_novo_550_1200/CMS_HH4b_860_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-NDu87o.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 1.16573e-15 -1.16573e-15/+2.92651 (68% CL) +nll S+B -> -0.00053301 nll B -> -0.00053301 +Done in 0.01 min (cpu), 0.02 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_860_novo_550_1200/CMS_HH4b_860_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_860_novo_550_1200/CMS_HH4b_860_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..96372ca --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_860_novo_550_1200/CMS_HH4b_860_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 8.65625 +Sigma for expected limits: 4.41654 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 7.67989 (r = 1.4786e-05) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.14063 (r = 2.88228e-05) +At r = 13.314270: q_mu = 10.20713 q_A = 8.31580 CLsb = 0.00066 CLb = 0.37148 CLs = 0.00178 +At r = 6.657142: q_mu = 3.41607 q_A = 2.34136 CLsb = 0.02996 CLb = 0.36273 CLs = 0.08261 +At r = 9.985706: q_mu = 6.48186 q_A = 4.96935 CLsb = 0.00511 CLb = 0.36721 CLs = 0.01391 +At r = 8.321424: q_mu = 4.85578 q_A = 3.55430 CLsb = 0.01286 CLb = 0.36498 CLs = 0.03523 +At r = 7.441569: q_mu = 4.06997 q_A = 2.88636 CLsb = 0.02032 CLb = 0.36379 CLs = 0.05584 +At r = 7.786463: q_mu = 4.37195 q_A = 3.14161 CLsb = 0.01702 CLb = 0.36427 CLs = 0.04673 +At r = 7.612781: q_mu = 4.21873 q_A = 3.01183 CLsb = 0.01862 CLb = 0.36403 CLs = 0.05114 +At r = 7.682335: q_mu = 4.27980 q_A = 3.06350 CLsb = 0.01796 CLb = 0.36412 CLs = 0.04933 +At r = 7.647720: q_mu = 4.24936 q_A = 3.03773 CLsb = 0.01829 CLb = 0.36408 CLs = 0.05023 + + -- Asymptotic -- +Observed Limit: r < 7.6477 +Expected 2.5%: r < 4.5479 +Expected 16.0%: r < 6.1367 +Expected 50.0%: r < 8.6562 +Expected 84.0%: r < 12.4862 +Expected 97.5%: r < 17.2964 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_860_novo_550_1200/datacard_860_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_860_novo_550_1200/datacard_860_novo_550_1200.txt new file mode 100644 index 0000000..bf07e2e --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_860_novo_550_1200/datacard_860_novo_550_1200.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_860.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_860.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 3.617828 1443.000000 3.617828 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.076264 - - +JER lnN 1.012376 - - +JEC lnN 1.010854 - - +trigger lnN 1.056312 - - +PDF lnN 1.026204 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.071776 +par_novo_0 param 300.004 77.2331 +par_novo_1 param 228.272 200.342 +par_novo_2 param -0.351207 1.11678 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_880_novo_550_1200/CMS_HH4b_880_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_880_novo_550_1200/CMS_HH4b_880_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..51e8bcc --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_880_novo_550_1200/CMS_HH4b_880_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-FrFUJd.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 6.91114e-14 -6.91114e-14/+2.80552 (68% CL) +nll S+B -> -0.000495945 nll B -> -0.000495836 +Done in 0.01 min (cpu), 0.02 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_880_novo_550_1200/CMS_HH4b_880_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_880_novo_550_1200/CMS_HH4b_880_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..77320d5 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_880_novo_550_1200/CMS_HH4b_880_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 8.34375 +Sigma for expected limits: 4.25709 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 7.66222 (r = 5.26868e-06) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.158146 (r = 2.1183e-05) +At r = 13.728106: q_mu = 11.38179 q_A = 9.35243 CLsb = 0.00035 CLb = 0.37002 CLs = 0.00094 +At r = 6.864056: q_mu = 3.83187 q_A = 2.69958 CLsb = 0.02343 CLb = 0.36521 CLs = 0.06415 +At r = 10.296081: q_mu = 7.25828 q_A = 5.64925 CLsb = 0.00331 CLb = 0.36750 CLs = 0.00901 +At r = 8.580068: q_mu = 5.44492 q_A = 4.06684 CLsb = 0.00918 CLb = 0.36630 CLs = 0.02506 +At r = 7.571166: q_mu = 4.47046 q_A = 3.23504 CLsb = 0.01609 CLb = 0.36564 CLs = 0.04402 +At r = 7.238331: q_mu = 4.16541 q_A = 2.97823 CLsb = 0.01924 CLb = 0.36544 CLs = 0.05265 +At r = 7.381642: q_mu = 4.29567 q_A = 3.08765 CLsb = 0.01782 CLb = 0.36552 CLs = 0.04876 +At r = 7.315538: q_mu = 4.23538 q_A = 3.03695 CLsb = 0.01847 CLb = 0.36548 CLs = 0.05052 +At r = 7.344297: q_mu = 4.26156 q_A = 3.05896 CLsb = 0.01818 CLb = 0.36550 CLs = 0.04975 + + -- Asymptotic -- +Observed Limit: r < 7.3443 +Expected 2.5%: r < 4.3185 +Expected 16.0%: r < 5.8437 +Expected 50.0%: r < 8.3438 +Expected 84.0%: r < 12.0354 +Expected 97.5%: r < 16.7762 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_880_novo_550_1200/datacard_880_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_880_novo_550_1200/datacard_880_novo_550_1200.txt new file mode 100644 index 0000000..bc18f81 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_880_novo_550_1200/datacard_880_novo_550_1200.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_880.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_880.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 3.643624 1443.000000 3.643624 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.076848 - - +JER lnN 1.012635 - - +JEC lnN 1.011374 - - +trigger lnN 1.056838 - - +PDF lnN 1.026782 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.064707 +par_novo_0 param 300.004 77.2331 +par_novo_1 param 228.272 200.342 +par_novo_2 param -0.351207 1.11678 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_900_novo_550_1200/CMS_HH4b_900_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_900_novo_550_1200/CMS_HH4b_900_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..5897465 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_900_novo_550_1200/CMS_HH4b_900_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-oI871n.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 7.80542e-13 -7.80542e-13/+2.62544 (68% CL) +nll S+B -> -0.000438322 nll B -> -0.000438323 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_900_novo_550_1200/CMS_HH4b_900_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_900_novo_550_1200/CMS_HH4b_900_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..4b1a3f7 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_900_novo_550_1200/CMS_HH4b_900_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 8.15625 +Sigma for expected limits: 4.16143 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 7.62909 (r = 1.41678e-06) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.158128 (r = 0.000345797) +At r = 12.755578: q_mu = 10.90467 q_A = 8.53565 CLsb = 0.00044 CLb = 0.34258 CLs = 0.00128 +At r = 6.377790: q_mu = 3.70331 q_A = 2.41707 CLsb = 0.02451 CLb = 0.33956 CLs = 0.07219 +At r = 9.566684: q_mu = 6.97031 q_A = 5.11512 CLsb = 0.00377 CLb = 0.34085 CLs = 0.01107 +At r = 7.972237: q_mu = 5.24154 q_A = 3.66388 CLsb = 0.01000 CLb = 0.34013 CLs = 0.02941 +At r = 7.218408: q_mu = 4.48897 q_A = 3.04737 CLsb = 0.01544 CLb = 0.33984 CLs = 0.04544 +At r = 6.911306: q_mu = 4.19538 q_A = 2.81011 CLsb = 0.01833 CLb = 0.33974 CLs = 0.05395 +At r = 7.081585: q_mu = 4.35718 q_A = 2.94061 CLsb = 0.01667 CLb = 0.33979 CLs = 0.04907 +At r = 7.020643: q_mu = 4.29899 q_A = 2.89360 CLsb = 0.01725 CLb = 0.33977 CLs = 0.05077 +At r = 7.054795: q_mu = 4.33156 q_A = 2.91991 CLsb = 0.01693 CLb = 0.33978 CLs = 0.04981 + + -- Asymptotic -- +Observed Limit: r < 7.0548 +Expected 2.5%: r < 4.2852 +Expected 16.0%: r < 5.7822 +Expected 50.0%: r < 8.1562 +Expected 84.0%: r < 11.7650 +Expected 97.5%: r < 16.3992 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_900_novo_550_1200/datacard_900_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_900_novo_550_1200/datacard_900_novo_550_1200.txt new file mode 100644 index 0000000..28a6cc3 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_900_novo_550_1200/datacard_900_novo_550_1200.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_900.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_900.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 3.66942 1443 3.66942 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.07746 - - +JER lnN 1.01259 - - +JEC lnN 1.0115 - - +trigger lnN 1.0573539334 - - +PDF lnN 1.02791393996 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.054 +par_novo_0 param 300.004 77.2331 +par_novo_1 param 228.272 200.342 +par_novo_2 param -0.351207 1.11678 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_920_novo_550_1200/CMS_HH4b_920_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_920_novo_550_1200/CMS_HH4b_920_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..0ba8ebd --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_920_novo_550_1200/CMS_HH4b_920_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-lT5WP7.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 3.15274e-11 -3.15274e-11/+2.19708 (68% CL) +nll S+B -> -0.000353093 nll B -> -0.000352994 +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_920_novo_550_1200/CMS_HH4b_920_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_920_novo_550_1200/CMS_HH4b_920_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..23d986e --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_920_novo_550_1200/CMS_HH4b_920_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 7.65625 +Sigma for expected limits: 3.90632 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 7.53049 (r = 5.97681e-06) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.177356 (r = 0.000701154) +At r = 9.180727: q_mu = 7.58792 q_A = 5.30645 CLsb = 0.00256 CLb = 0.31023 CLs = 0.00827 +At r = 4.590367: q_mu = 2.72793 q_A = 1.46549 CLsb = 0.04164 CLb = 0.30104 CLs = 0.13831 +At r = 6.885547: q_mu = 4.93994 q_A = 3.13927 CLsb = 0.01131 CLb = 0.30567 CLs = 0.03699 +At r = 6.006793: q_mu = 4.03655 q_A = 2.43487 CLsb = 0.01906 CLb = 0.30390 CLs = 0.06271 +At r = 6.484084: q_mu = 4.51928 q_A = 2.80848 CLsb = 0.01440 CLb = 0.30488 CLs = 0.04722 +At r = 6.311725: q_mu = 4.34260 q_A = 2.67090 CLsb = 0.01595 CLb = 0.30452 CLs = 0.05237 +At r = 6.407914: q_mu = 4.44086 q_A = 2.74730 CLsb = 0.01506 CLb = 0.30472 CLs = 0.04944 +At r = 6.373594: q_mu = 4.40571 q_A = 2.71993 CLsb = 0.01537 CLb = 0.30465 CLs = 0.05047 +At r = 6.392861: q_mu = 4.42543 q_A = 2.73528 CLsb = 0.01520 CLb = 0.30469 CLs = 0.04989 + + -- Asymptotic -- +Observed Limit: r < 6.3929 +Expected 2.5%: r < 4.0076 +Expected 16.0%: r < 5.4186 +Expected 50.0%: r < 7.6562 +Expected 84.0%: r < 11.1048 +Expected 97.5%: r < 15.4333 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_920_novo_550_1200/datacard_920_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_920_novo_550_1200/datacard_920_novo_550_1200.txt new file mode 100644 index 0000000..28049cc --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_920_novo_550_1200/datacard_920_novo_550_1200.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_920.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_920.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 3.705548 1443.000000 3.705548 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.078112 - - +JER lnN 1.012075 - - +JEC lnN 1.010787 - - +trigger lnN 1.057649 - - +PDF lnN 1.029727 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.036212 +par_novo_0 param 300.004 77.2331 +par_novo_1 param 228.272 200.342 +par_novo_2 param -0.351207 1.11678 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_940_novo_550_1200/CMS_HH4b_940_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_940_novo_550_1200/CMS_HH4b_940_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..a943a85 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_940_novo_550_1200/CMS_HH4b_940_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-3bZTK4.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.000 + + + --- MaxLikelihoodFit --- +Best fit r: 4.71585e-06 -4.71585e-06/+2.4311 (68% CL) +nll S+B -> -0.000305637 nll B -> -0.000305577 +Done in 0.01 min (cpu), 0.02 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_940_novo_550_1200/CMS_HH4b_940_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_940_novo_550_1200/CMS_HH4b_940_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..d255cfb --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_940_novo_550_1200/CMS_HH4b_940_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 7.40625 +Sigma for expected limits: 3.77877 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 7.58918 (r = 3.43176e-07) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.191463 (r = 0.00107556) +At r = 12.394837: q_mu = 11.60633 q_A = 9.52188 CLsb = 0.00031 CLb = 0.36777 CLs = 0.00084 +At r = 6.197419: q_mu = 3.97825 q_A = 2.76217 CLsb = 0.02129 CLb = 0.35724 CLs = 0.05959 +At r = 9.296128: q_mu = 7.45812 q_A = 5.77116 CLsb = 0.00295 CLb = 0.36275 CLs = 0.00813 +At r = 7.746773: q_mu = 5.62129 q_A = 4.15964 CLsb = 0.00825 CLb = 0.36005 CLs = 0.02290 +At r = 6.734770: q_mu = 4.52473 q_A = 3.22111 CLsb = 0.01547 CLb = 0.35824 CLs = 0.04318 +At r = 6.431539: q_mu = 4.21291 q_A = 2.95835 CLsb = 0.01855 CLb = 0.35767 CLs = 0.05186 +At r = 6.540542: q_mu = 4.32389 q_A = 3.05158 CLsb = 0.01738 CLb = 0.35787 CLs = 0.04858 +At r = 6.480255: q_mu = 4.26238 q_A = 2.99987 CLsb = 0.01802 CLb = 0.35776 CLs = 0.05037 +At r = 6.502115: q_mu = 4.28464 q_A = 3.01858 CLsb = 0.01779 CLb = 0.35780 CLs = 0.04971 + + -- Asymptotic -- +Observed Limit: r < 6.5021 +Expected 2.5%: r < 3.8622 +Expected 16.0%: r < 5.2051 +Expected 50.0%: r < 7.4062 +Expected 84.0%: r < 10.7422 +Expected 97.5%: r < 15.0213 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_940_novo_550_1200/datacard_940_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_940_novo_550_1200/datacard_940_novo_550_1200.txt new file mode 100644 index 0000000..4af474e --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_940_novo_550_1200/datacard_940_novo_550_1200.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_940.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_940.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 3.741676 1443.000000 3.741676 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.078788 - - +JER lnN 1.011205 - - +JEC lnN 1.009408 - - +trigger lnN 1.057732 - - +PDF lnN 1.031994 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 -0.012861 +par_novo_0 param 300.004 77.2331 +par_novo_1 param 228.272 200.342 +par_novo_2 param -0.351207 1.11678 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_960_novo_550_1200/CMS_HH4b_960_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_960_novo_550_1200/CMS_HH4b_960_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..ebd0bd7 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_960_novo_550_1200/CMS_HH4b_960_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-TVM4ZF.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.020 + + + --- MaxLikelihoodFit --- +Best fit r: 0.659342 -0.659342/+2.34066 (68% CL) +nll S+B -> -0.0196628 nll B -> -0.000318379 +Done in 0.02 min (cpu), 0.02 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_960_novo_550_1200/CMS_HH4b_960_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_960_novo_550_1200/CMS_HH4b_960_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..e8f9402 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_960_novo_550_1200/CMS_HH4b_960_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 7.21875 +Sigma for expected limits: 3.6831 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -0.11739 (r = 0.654975) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.205737 (r = 0.00487269) +At r = 10.590660: q_mu = 6.83695 q_A = 7.63259 CLsb = 0.00446 CLb = 0.55881 CLs = 0.00799 +At r = 5.622818: q_mu = 1.93521 q_A = 2.43652 CLsb = 0.08209 CLb = 0.56742 CLs = 0.14468 +At r = 8.106739: q_mu = 4.09596 q_A = 4.76182 CLsb = 0.02149 CLb = 0.56289 CLs = 0.03818 +At r = 7.207739: q_mu = 3.23898 q_A = 3.84968 CLsb = 0.03595 CLb = 0.56448 CLs = 0.06369 +At r = 7.727735: q_mu = 3.72493 q_A = 4.36810 CLsb = 0.02680 CLb = 0.56356 CLs = 0.04756 +At r = 7.552481: q_mu = 3.55812 q_A = 4.19052 CLsb = 0.02963 CLb = 0.56387 CLs = 0.05254 +At r = 7.657345: q_mu = 3.65755 q_A = 4.29641 CLsb = 0.02791 CLb = 0.56368 CLs = 0.04951 +At r = 7.622482: q_mu = 3.62435 q_A = 4.26107 CLsb = 0.02847 CLb = 0.56374 CLs = 0.05050 +At r = 7.636524: q_mu = 3.63768 q_A = 4.27527 CLsb = 0.02824 CLb = 0.56372 CLs = 0.05010 + + -- Asymptotic -- +Observed Limit: r < 7.6365 +Expected 2.5%: r < 3.7363 +Expected 16.0%: r < 5.0558 +Expected 50.0%: r < 7.2188 +Expected 84.0%: r < 10.4127 +Expected 97.5%: r < 14.6044 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_960_novo_550_1200/datacard_960_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_960_novo_550_1200/datacard_960_novo_550_1200.txt new file mode 100644 index 0000000..13bbcc7 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_960_novo_550_1200/datacard_960_novo_550_1200.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_960.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_960.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 3.777804 1443.000000 3.777804 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.079468 - - +JER lnN 1.010165 - - +JEC lnN 1.007689 - - +trigger lnN 1.057667 - - +PDF lnN 1.034399 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.013297 +par_novo_0 param 300.004 77.2331 +par_novo_1 param 228.272 200.342 +par_novo_2 param -0.351207 1.11678 diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_980_novo_550_1200/CMS_HH4b_980_13TeV_MaxLikelihood.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_980_novo_550_1200/CMS_HH4b_980_13TeV_MaxLikelihood.out new file mode 100644 index 0000000..4f71470 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_980_novo_550_1200/CMS_HH4b_980_13TeV_MaxLikelihood.out @@ -0,0 +1,19 @@ +>>> including systematics +>>> method used to compute upper limit is MaxLikelihoodFit +>>> random number generator seed is 123456 +[?1034hMissing background ModelConfig 'ModelConfig_bonly' in workspace 'w' in file roostats-6Em1RB.root +Will make one from the signal ModelConfig 'ModelConfig' setting signal strenth 'r' to zero +Computing limit starting from observation +Created Branches +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Running Minos for POI +Real time 0:00:00, CP time 0.010 + + + --- MaxLikelihoodFit --- +Best fit r: 1.09748 -1.09748/+1.90252 (68% CL) +nll S+B -> -0.0574817 nll B -> -0.000326762 +Done in 0.02 min (cpu), 0.02 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_980_novo_550_1200/CMS_HH4b_980_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_980_novo_550_1200/CMS_HH4b_980_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..7111b0b --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_980_novo_550_1200/CMS_HH4b_980_13TeV_asymptoticCLs.out @@ -0,0 +1,37 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 7.03125 +Sigma for expected limits: 3.58744 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -0.0869877 (r = 1.09416) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.22384 (r = 0.0102098) +At r = 10.049581: q_mu = 5.89935 q_A = 7.23946 CLsb = 0.00757 CLb = 0.60325 CLs = 0.01255 +At r = 5.571871: q_mu = 1.65914 q_A = 2.50191 CLsb = 0.09886 CLb = 0.61549 CLs = 0.16062 +At r = 7.810726: q_mu = 3.52195 q_A = 4.63810 CLsb = 0.03028 CLb = 0.60909 CLs = 0.04971 +At r = 6.691298: q_mu = 2.51871 q_A = 3.50497 CLsb = 0.05625 CLb = 0.61222 CLs = 0.09188 +At r = 7.578499: q_mu = 3.30278 q_A = 4.39302 CLsb = 0.03458 CLb = 0.60972 CLs = 0.05672 +At r = 7.756214: q_mu = 3.47000 q_A = 4.58010 CLsb = 0.03125 CLb = 0.60923 CLs = 0.05129 +At r = 7.791809: q_mu = 3.50389 q_A = 4.61792 CLsb = 0.03061 CLb = 0.60913 CLs = 0.05026 + + -- Asymptotic -- +Observed Limit: r < 7.7918 +Expected 2.5%: r < 3.6667 +Expected 16.0%: r < 4.9415 +Expected 50.0%: r < 7.0312 +Expected 84.0%: r < 10.1983 +Expected 97.5%: r < 14.2608 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_980_novo_550_1200/datacard_980_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_980_novo_550_1200/datacard_980_novo_550_1200.txt new file mode 100644 index 0000000..d959cb6 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/limits_bias_radion/MMR/MMR_980_novo_550_1200/datacard_980_novo_550_1200.txt @@ -0,0 +1,27 @@ +imax 1 number of channels +jmax * number of backgrounds +kmax * number of systematic uncertainty sources +---------- +shapes signal HbbHbb w_signal_980.root HbbHbb:signal_fixed +shapes signal_bkg HbbHbb w_signal_980.root HbbHbb:signal_bkg +shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo +shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 +---------- +## Observation +bin HbbHbb +observation -1 +---------- +bin HbbHbb HbbHbb HbbHbb +process signal background signal_bkg +process 0 1 2 +rate 3.813932 1443.000000 3.813932 +lumi_13TeV lnN 1.026 - - +bTag lnN 1.080129 - - +JER lnN 1.009138 - - +JEC lnN 1.005958 - - +trigger lnN 1.057520 - - +PDF lnN 1.036624 - - +shapeBkg_signal_bkg_HbbHbb__norm param 0.0 0.039503 +par_novo_0 param 300.004 77.2331 +par_novo_1 param 228.272 200.342 +par_novo_2 param -0.351207 1.11678 diff --git a/changename.sh b/changename.sh new file mode 100755 index 0000000..489b636 --- /dev/null +++ b/changename.sh @@ -0,0 +1,70 @@ +#!/bin/bash +tag=$1 +dest_dir="PreselectedWithRegression" + +cd ${dest_dir}${tag} +mv Histograms_Preselected_GluGluToRadionToHHTo4B_M-260_narrow_13TeV-madgraph.root Histograms_Preselected_GluGluToBulkGravitonToHHTo4B_M-260_narrow_13TeV-madgraph.root +mv Histograms_Preselected_GluGluToRadionToHHTo4B_M-270_narrow_13TeV-madgraph.root Histograms_Preselected_GluGluToBulkGravitonToHHTo4B_M-270_narrow_13TeV-madgraph.root +mv Histograms_Preselected_GluGluToRadionToHHTo4B_M-300_narrow_13TeV-madgraph.root Histograms_Preselected_GluGluToBulkGravitonToHHTo4B_M-300_narrow_13TeV-madgraph.root +mv Histograms_Preselected_GluGluToRadionToHHTo4B_M-350_narrow_13TeV-madgraph.root Histograms_Preselected_GluGluToBulkGravitonToHHTo4B_M-350_narrow_13TeV-madgraph.root +mv Histograms_Preselected_GluGluToRadionToHHTo4B_M-400_narrow_13TeV-madgraph.root Histograms_Preselected_GluGluToBulkGravitonToHHTo4B_M-400_narrow_13TeV-madgraph.root +mv Histograms_Preselected_GluGluToRadionToHHTo4B_M-450_narrow_13TeV-madgraph.root Histograms_Preselected_GluGluToBulkGravitonToHHTo4B_M-450_narrow_13TeV-madgraph.root +mv Histograms_Preselected_GluGluToRadionToHHTo4B_M-500_narrow_13TeV-madgraph.root Histograms_Preselected_GluGluToBulkGravitonToHHTo4B_M-500_narrow_13TeV-madgraph.root +mv Histograms_Preselected_GluGluToRadionToHHTo4B_M-550_narrow_13TeV-madgraph.root Histograms_Preselected_GluGluToBulkGravitonToHHTo4B_M-550_narrow_13TeV-madgraph.root +mv Histograms_Preselected_GluGluToRadionToHHTo4B_M-600_narrow_13TeV-madgraph.root Histograms_Preselected_GluGluToBulkGravitonToHHTo4B_M-600_narrow_13TeV-madgraph.root +mv Histograms_Preselected_GluGluToRadionToHHTo4B_M-650_narrow_13TeV-madgraph.root Histograms_Preselected_GluGluToBulkGravitonToHHTo4B_M-650_narrow_13TeV-madgraph.root +mv Histograms_Preselected_GluGluToRadionToHHTo4B_M-750_narrow_13TeV-madgraph.root Histograms_Preselected_GluGluToBulkGravitonToHHTo4B_M-750_narrow_13TeV-madgraph.root +mv Histograms_Preselected_GluGluToRadionToHHTo4B_M-800_narrow_13TeV-madgraph.root Histograms_Preselected_GluGluToBulkGravitonToHHTo4B_M-800_narrow_13TeV-madgraph.root +mv Histograms_Preselected_GluGluToRadionToHHTo4B_M-900_narrow_13TeV-madgraph.root Histograms_Preselected_GluGluToBulkGravitonToHHTo4B_M-900_narrow_13TeV-madgraph.root +mv Histograms_Preselected_RadionTohhTohbbhbb_narrow_M-1000_13TeV-madgraph.root Histograms_Preselected_BulkGravTohhTohbbhbb_narrow_M-1000_13TeV-madgraph.root +mv Histograms_Preselected_RadionTohhTohbbhbb_narrow_M-1200_13TeV-madgraph.root Histograms_Preselected_BulkGravTohhTohbbhbb_narrow_M-1200_13TeV-madgraph.root +mv PreSelected_GluGluToRadionToHHTo4B_M-260_narrow_13TeV-madgraph.root PreSelected_GluGluToBulkGravitonToHHTo4B_M-260_narrow_13TeV-madgraph.root +mv PreSelected_GluGluToRadionToHHTo4B_M-270_narrow_13TeV-madgraph.root PreSelected_GluGluToBulkGravitonToHHTo4B_M-270_narrow_13TeV-madgraph.root +mv PreSelected_GluGluToRadionToHHTo4B_M-300_narrow_13TeV-madgraph.root PreSelected_GluGluToBulkGravitonToHHTo4B_M-300_narrow_13TeV-madgraph.root +mv PreSelected_GluGluToRadionToHHTo4B_M-350_narrow_13TeV-madgraph.root PreSelected_GluGluToBulkGravitonToHHTo4B_M-350_narrow_13TeV-madgraph.root +mv PreSelected_GluGluToRadionToHHTo4B_M-400_narrow_13TeV-madgraph.root PreSelected_GluGluToBulkGravitonToHHTo4B_M-400_narrow_13TeV-madgraph.root +mv PreSelected_GluGluToRadionToHHTo4B_M-450_narrow_13TeV-madgraph.root PreSelected_GluGluToBulkGravitonToHHTo4B_M-450_narrow_13TeV-madgraph.root +mv PreSelected_GluGluToRadionToHHTo4B_M-500_narrow_13TeV-madgraph.root PreSelected_GluGluToBulkGravitonToHHTo4B_M-500_narrow_13TeV-madgraph.root +mv PreSelected_GluGluToRadionToHHTo4B_M-550_narrow_13TeV-madgraph.root PreSelected_GluGluToBulkGravitonToHHTo4B_M-550_narrow_13TeV-madgraph.root +mv PreSelected_GluGluToRadionToHHTo4B_M-600_narrow_13TeV-madgraph.root PreSelected_GluGluToBulkGravitonToHHTo4B_M-600_narrow_13TeV-madgraph.root +mv PreSelected_GluGluToRadionToHHTo4B_M-650_narrow_13TeV-madgraph.root PreSelected_GluGluToBulkGravitonToHHTo4B_M-650_narrow_13TeV-madgraph.root +mv PreSelected_GluGluToRadionToHHTo4B_M-750_narrow_13TeV-madgraph.root PreSelected_GluGluToBulkGravitonToHHTo4B_M-750_narrow_13TeV-madgraph.root +mv PreSelected_GluGluToRadionToHHTo4B_M-800_narrow_13TeV-madgraph.root PreSelected_GluGluToBulkGravitonToHHTo4B_M-800_narrow_13TeV-madgraph.root +mv PreSelected_GluGluToRadionToHHTo4B_M-900_narrow_13TeV-madgraph.root PreSelected_GluGluToBulkGravitonToHHTo4B_M-900_narrow_13TeV-madgraph.root +mv PreSelected_RadionTohhTohbbhbb_narrow_M-1000_13TeV-madgraph.root PreSelected_BulkGravTohhTohbbhbb_narrow_M-1000_13TeV-madgraph.root +mv PreSelected_RadionTohhTohbbhbb_narrow_M-1200_13TeV-madgraph.root PreSelected_BulkGravTohhTohbbhbb_narrow_M-1200_13TeV-madgraph.root +cd LMRSelection_chi2 +mv Histograms_LMR_GluGluToRadionToHHTo4B_M-260_narrow_13TeV-madgraph.root Histograms_LMR_GluGluToBulkGravitonToHHTo4B_M-260_narrow_13TeV-madgraph.root +mv Histograms_LMR_GluGluToRadionToHHTo4B_M-270_narrow_13TeV-madgraph.root Histograms_LMR_GluGluToBulkGravitonToHHTo4B_M-270_narrow_13TeV-madgraph.root +mv Histograms_LMR_GluGluToRadionToHHTo4B_M-300_narrow_13TeV-madgraph.root Histograms_LMR_GluGluToBulkGravitonToHHTo4B_M-300_narrow_13TeV-madgraph.root +mv Histograms_LMR_GluGluToRadionToHHTo4B_M-350_narrow_13TeV-madgraph.root Histograms_LMR_GluGluToBulkGravitonToHHTo4B_M-350_narrow_13TeV-madgraph.root +mv Histograms_LMR_GluGluToRadionToHHTo4B_M-400_narrow_13TeV-madgraph.root Histograms_LMR_GluGluToBulkGravitonToHHTo4B_M-400_narrow_13TeV-madgraph.root +mv Histograms_LMR_GluGluToRadionToHHTo4B_M-450_narrow_13TeV-madgraph.root Histograms_LMR_GluGluToBulkGravitonToHHTo4B_M-450_narrow_13TeV-madgraph.root +mv Histograms_LMR_GluGluToRadionToHHTo4B_M-500_narrow_13TeV-madgraph.root Histograms_LMR_GluGluToBulkGravitonToHHTo4B_M-500_narrow_13TeV-madgraph.root +mv Histograms_LMR_GluGluToRadionToHHTo4B_M-550_narrow_13TeV-madgraph.root Histograms_LMR_GluGluToBulkGravitonToHHTo4B_M-550_narrow_13TeV-madgraph.root +mv Histograms_LMR_GluGluToRadionToHHTo4B_M-600_narrow_13TeV-madgraph.root Histograms_LMR_GluGluToBulkGravitonToHHTo4B_M-600_narrow_13TeV-madgraph.root +mv Histograms_LMR_GluGluToRadionToHHTo4B_M-650_narrow_13TeV-madgraph.root Histograms_LMR_GluGluToBulkGravitonToHHTo4B_M-650_narrow_13TeV-madgraph.root +mv Histograms_LMR_GluGluToRadionToHHTo4B_M-750_narrow_13TeV-madgraph.root Histograms_LMR_GluGluToBulkGravitonToHHTo4B_M-750_narrow_13TeV-madgraph.root +mv Histograms_LMR_GluGluToRadionToHHTo4B_M-800_narrow_13TeV-madgraph.root Histograms_LMR_GluGluToBulkGravitonToHHTo4B_M-800_narrow_13TeV-madgraph.root +mv Histograms_LMR_GluGluToRadionToHHTo4B_M-900_narrow_13TeV-madgraph.root Histograms_LMR_GluGluToBulkGravitonToHHTo4B_M-900_narrow_13TeV-madgraph.root +mv Histograms_LMR_RadionTohhTohbbhbb_narrow_M-1000_13TeV-madgraph.root Histograms_LMR_BulkGravTohhTohbbhbb_narrow_M-1000_13TeV-madgraph.root +mv Histograms_LMR_RadionTohhTohbbhbb_narrow_M-1200_13TeV-madgraph.root Histograms_LMR_BulkGravTohhTohbbhbb_narrow_M-1200_13TeV-madgraph.root +cd .. +cd MMRSelection_chi2 +mv Histograms_MMR_GluGluToRadionToHHTo4B_M-260_narrow_13TeV-madgraph.root Histograms_MMR_GluGluToBulkGravitonToHHTo4B_M-260_narrow_13TeV-madgraph.root +mv Histograms_MMR_GluGluToRadionToHHTo4B_M-270_narrow_13TeV-madgraph.root Histograms_MMR_GluGluToBulkGravitonToHHTo4B_M-270_narrow_13TeV-madgraph.root +mv Histograms_MMR_GluGluToRadionToHHTo4B_M-300_narrow_13TeV-madgraph.root Histograms_MMR_GluGluToBulkGravitonToHHTo4B_M-300_narrow_13TeV-madgraph.root +mv Histograms_MMR_GluGluToRadionToHHTo4B_M-350_narrow_13TeV-madgraph.root Histograms_MMR_GluGluToBulkGravitonToHHTo4B_M-350_narrow_13TeV-madgraph.root +mv Histograms_MMR_GluGluToRadionToHHTo4B_M-400_narrow_13TeV-madgraph.root Histograms_MMR_GluGluToBulkGravitonToHHTo4B_M-400_narrow_13TeV-madgraph.root +mv Histograms_MMR_GluGluToRadionToHHTo4B_M-450_narrow_13TeV-madgraph.root Histograms_MMR_GluGluToBulkGravitonToHHTo4B_M-450_narrow_13TeV-madgraph.root +mv Histograms_MMR_GluGluToRadionToHHTo4B_M-500_narrow_13TeV-madgraph.root Histograms_MMR_GluGluToBulkGravitonToHHTo4B_M-500_narrow_13TeV-madgraph.root +mv Histograms_MMR_GluGluToRadionToHHTo4B_M-550_narrow_13TeV-madgraph.root Histograms_MMR_GluGluToBulkGravitonToHHTo4B_M-550_narrow_13TeV-madgraph.root +mv Histograms_MMR_GluGluToRadionToHHTo4B_M-600_narrow_13TeV-madgraph.root Histograms_MMR_GluGluToBulkGravitonToHHTo4B_M-600_narrow_13TeV-madgraph.root +mv Histograms_MMR_GluGluToRadionToHHTo4B_M-650_narrow_13TeV-madgraph.root Histograms_MMR_GluGluToBulkGravitonToHHTo4B_M-650_narrow_13TeV-madgraph.root +mv Histograms_MMR_GluGluToRadionToHHTo4B_M-750_narrow_13TeV-madgraph.root Histograms_MMR_GluGluToBulkGravitonToHHTo4B_M-750_narrow_13TeV-madgraph.root +mv Histograms_MMR_GluGluToRadionToHHTo4B_M-800_narrow_13TeV-madgraph.root Histograms_MMR_GluGluToBulkGravitonToHHTo4B_M-800_narrow_13TeV-madgraph.root +mv Histograms_MMR_GluGluToRadionToHHTo4B_M-900_narrow_13TeV-madgraph.root Histograms_MMR_GluGluToBulkGravitonToHHTo4B_M-900_narrow_13TeV-madgraph.root +mv Histograms_MMR_RadionTohhTohbbhbb_narrow_M-1000_13TeV-madgraph.root Histograms_MMR_BulkGravTohhTohbbhbb_narrow_M-1000_13TeV-madgraph.root +mv Histograms_MMR_RadionTohhTohbbhbb_narrow_M-1200_13TeV-madgraph.root Histograms_MMR_BulkGravTohhTohbbhbb_narrow_M-1200_13TeV-madgraph.root +cd .. +cd .. \ No newline at end of file diff --git a/doBuildInputsLMR_bias.sh b/doBuildInputsLMR_bias.sh index e9b6bc0..1da2fe9 100644 --- a/doBuildInputsLMR_bias.sh +++ b/doBuildInputsLMR_bias.sh @@ -41,7 +41,7 @@ echo "PDF" python PDFSyst.py --mass $1 --location $4> $folder/pdf.log mv $dest_dir/w_background$background.root $folder/ mv $dest_dir/*BackgroundFit_*${background}*.png* $folder/ -mv $dest_dir/BackgroundFit_SB_Split* $folder/ +mv $dest_dir/BackgroundFit_SR_Split* $folder/ rm -fr $dest_dir/Background* rm -fr $dest_dir/w_background* echo "end" diff --git a/doBuildInputs_bias.sh b/doBuildInputs_bias.sh index 599a427..b3808a3 100644 --- a/doBuildInputs_bias.sh +++ b/doBuildInputs_bias.sh @@ -38,7 +38,7 @@ echo "PDF" python PDFSyst.py --mass $1 --location $4> $folder/pdf.log mv $dest_dir/w_background$background.root $folder/ mv $dest_dir/*BackgroundFit_*${background}*.png* $folder/ -mv $dest_dir/BackgroundFit_SB_Split* $folder/ +mv $dest_dir/BackgroundFit_SR_Split* $folder/ rm -fr $dest_dir/Background* rm -fr $dest_dir/w_background* echo "end" diff --git a/doDatacards.sh b/doDatacards.sh index 58aa5c1..0241d24 100755 --- a/doDatacards.sh +++ b/doDatacards.sh @@ -13,6 +13,7 @@ pdfLogName="pdf.log" sigLogName="signal"${mass}"_sig.log" trgLogName="PDFs/trig.log" + sig_norm=`grep 'norm =' ${dirName}/${sigLogName}| awk '{print $3/50}'` jec_norm=`grep 'JEC lnN' ${dirName}/${sigLogName} | awk '{print $3}'` jer_norm=`grep 'JER lnN' ${dirName}/${sigLogName} | awk '{print $3}'` @@ -56,7 +57,6 @@ PDF lnN ${pdf_norm} - EOF #now add the systematics to the card -#grep 'sg_' ${dirName}/${sigLogName} | grep ' param ' >> ${dirName}/${dcardName} grep 'par_'${function}'_' ${dirName}/${bgLogName} | grep ' param ' >> ${dirName}/${dcardName} cards+="${dirName}/${dcardName} " diff --git a/doDatacardsLMR.sh b/doDatacardsLMR.sh index 0206823..81f2a7f 100755 --- a/doDatacardsLMR.sh +++ b/doDatacardsLMR.sh @@ -13,6 +13,7 @@ pdfLogName="pdf.log" sigLogName="signal"${mass}"_sig.log" trgLogName="PDFs/trig.log" + sig_norm=`grep 'norm =' ${dirName}/${sigLogName}| awk '{print $3}'` jec_norm=`grep 'JEC lnN' ${dirName}/${sigLogName} | awk '{print $3}'` jer_norm=`grep 'JER lnN' ${dirName}/${sigLogName} | awk '{print $3}'` @@ -58,7 +59,7 @@ EOF #bkg_norm rateParam HbbHbb 1 ${bkg_norm} #now add the systematics to the card -#grep 'sg_' ${dirName}/${sigLogName} | grep ' param ' >> ${dirName}/${dcardName} + grep 'par_'${function}'_' ${dirName}/${bgLogName} | grep ' param ' >> ${dirName}/${dcardName} cards+="${dirName}/${dcardName} " diff --git a/doDatacardsLMR_bias.sh b/doDatacardsLMR_bias.sh index 166529f..c8ea9dc 100644 --- a/doDatacardsLMR_bias.sh +++ b/doDatacardsLMR_bias.sh @@ -10,11 +10,13 @@ Type="Split" datacardtype="f_${function}" data_file="w_background_${function}_${range}.root" pdfLogName="pdf.log" -sigLogName="signal"${mass}"_sig.log" +sigLogName="signal"${mass}"_sig.log" +trgLogName="PDFs/trig.log" sig_norm=`grep 'norm =' ${dirName}/${sigLogName}| awk '{print $3}'` jec_norm=`grep 'JEC lnN' ${dirName}/${sigLogName} | awk '{print $3}'` jer_norm=`grep 'JER lnN' ${dirName}/${sigLogName} | awk '{print $3}'` +trigger_norm=`grep 'trig'${mass}' ' ${trgLogName} | awk '{print $2}'` btag_norm=`grep 'btag lnN' ${dirName}/${sigLogName} | awk '{print $3}'` pdf_norm=`grep 'PDF lnN' ${dirName}/${pdfLogName} | awk '{print $3}'` bkg_norm=`grep ' Background number of '${function}_${range}' = ' ${dirName}/${bgLogName} | awk '{print $6}'` @@ -22,11 +24,11 @@ bkg_norm=`grep ' Background number of '${function}_${range}' = ' ${dirName}/${bg if [ $4 -eq 1 ]; then case "$mass" in - 260) bias=-0.060;; 270) bias=-0.110;; 300) bias=-0.192;; + 260) bias=-0.033;; 270) bias=-0.071;; 300) bias=-0.050;; esac else case "$mass" in - 300) bias=-0.036;; 350) bias=-0.069;; 400) bias=-0.014;; 450) bias=-0.029;; 500) bias=-0.002;; 550) bias=-0.010;; 600) bias=-0.019;; + 300) bias=0.038;; 350) bias=0.005;; 400) bias=0.0001;; 450) bias=-0.003;; 500) bias=-0.002;; 550) bias=-0.003;; 600) bias=0.002;; esac fi @@ -34,6 +36,7 @@ echo "bias" ${bias} echo sig_norm ${sig_norm} echo JEC ${jec_norm} echo JER ${jer_norm} +echo trigger ${trigger_norm} echo bTag ${btag_norm} echo PDF ${pdf_norm} echo bkg_norm ${bkg_norm} @@ -61,7 +64,7 @@ lumi_13TeV lnN 1.026 - - bTag lnN ${btag_norm} - - JER lnN ${jer_norm} - - JEC lnN ${jec_norm} - - -trigger lnN 1.10 - - +trigger lnN ${trigger_norm} - - PDF lnN ${pdf_norm} - - shapeBkg_signal_bkg_HbbHbb__norm param 0.0 ${bias} EOF @@ -69,7 +72,6 @@ EOF #now add the systematics to the card -grep 'sg_' ${dirName}/${sigLogName} | grep ' param ' >> ${dirName}/${dcardName} grep 'par_'${function}'_' ${dirName}/${bgLogName} | grep ' param ' >> ${dirName}/${dcardName} cards+="${dirName}/${dcardName} " diff --git a/doDatacards_bias.sh b/doDatacards_bias.sh index 94b6ad6..b0c0a9b 100644 --- a/doDatacards_bias.sh +++ b/doDatacards_bias.sh @@ -11,6 +11,7 @@ datacardtype="f_${function}" data_file="w_background_${function}_${range}.root" pdfLogName="pdf.log" sigLogName="signal"${mass}"_sig.log" +trgLogName="PDFs/trig.log" sig_norm=`grep 'norm =' ${dirName}/${sigLogName}| awk '{print $3/50}'` jec_norm=`grep 'JEC lnN' ${dirName}/${sigLogName} | awk '{print $3}'` @@ -18,15 +19,16 @@ jer_norm=`grep 'JER lnN' ${dirName}/${sigLogName} | awk '{print $3}'` btag_norm=`grep 'btag lnN' ${dirName}/${sigLogName} | awk '{print $3}'` pdf_norm=`grep 'PDF lnN' ${dirName}/${pdfLogName} | awk '{print $3}'` bkg_norm=`grep ' Background number of '${function}_${range}' = ' ${dirName}/${bgLogName} | awk '{print $6}'` +trigger_norm=`grep 'trig'${mass}' ' ${trgLogName} | awk '{print $2}'` if [ $4 -eq 1 ]; then case "$mass" in - 550) bias=-0.00039;; 600) bias=0.00045;; 650) bias=0.00014;; 750) bias=-0.00042;; 800) bias=-0.00054;; 900) bias=-0.00049;; 1000) bias=0.00015;; + 550) bias=0.170;; 600) bias=0.053;; 650) bias=-0.062;; 750) bias=-0.190;; 800) bias=-0.119;; 900) bias=-0.033;; 1000) bias=0.061;; 1200) bias=0.094;; esac else case "$mass" in - 550) bias=-0.00039;; 600) bias=0.00045;; 650) bias=0.00014;; 750) bias=-0.00042;; 800) bias=-0.00054;; 900) bias=-0.00049;; 1000) bias=0.00015;; + 550) bias=0.170;; 600) bias=0.053;; 650) bias=-0.062;; 750) bias=-0.190;; 800) bias=-0.119;; 900) bias=-0.033;; 1000) bias=0.061;; 1200) bias=0.094;; esac fi @@ -34,10 +36,12 @@ echo "bias" ${bias} echo sig_norm ${sig_norm} echo JEC ${jec_norm} echo JER ${jer_norm} +echo trigger ${trigger_norm} echo bTag ${btag_norm} echo PDF ${pdf_norm} echo bkg_norm ${bkg_norm} + #let's build a datacard! cat > ${dirName}/${dcardName} <> ${dirName}/${dcardName} grep 'par_'${function}'_' ${dirName}/${bgLogName} | grep ' param ' >> ${dirName}/${dcardName} cards+="${dirName}/${dcardName} " diff --git a/doLimits.sh b/doLimits.sh index 6f45ec8..75d416a 100644 --- a/doLimits.sh +++ b/doLimits.sh @@ -49,8 +49,8 @@ done if [ $5 -eq 1 ]; then - massesMMR=(550 600 650 750 800 900 1000) - else massesMMR=() #550 600 650 750 800 900 1000) + massesMMR=(1200) #550 600 650 750 800 900 1000 1200) + else massesMMR=() fi cleanUp=0 diff --git a/doLimits_bias.sh b/doLimits_bias.sh index 33df715..c320a5a 100644 --- a/doLimits_bias.sh +++ b/doLimits_bias.sh @@ -52,8 +52,8 @@ done if [ $range_num_MMR -eq 1 ]; then - massesMMR=(550 600 650 750 800 900 1000) - else massesMMR=() #550 600 650 750 800 900 1000) + massesMMR=(550 600 650 750 800 900 1000 1200) + else massesMMR=() fi cleanUp=0 diff --git a/drawLimits_All.c b/drawLimits_All.c new file mode 100644 index 0000000..e251778 --- /dev/null +++ b/drawLimits_All.c @@ -0,0 +1,7 @@ +{ + std::vector masses_LMR1={260, 265, 270, 275, 280, 285, 290, 295, 300, 310, 320}; + std::vector masses_LMR2={290, 295, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, 600, 610, 620}; + std::vector masses_MMR={550, 570, 600, 620, 650, 670, 700, 720, 750, 770, 800, 820, 840, 860, 880, 900, 920, 940, 960, 980, 1000, 1050, 1100, 1150, 1200}; + gROOT->LoadMacro("DrawLimitPlot_All.cc++"); + DrawLimitPlot_All(masses_LMR1,masses_LMR2,masses_MMR, 1, 1e4,"gaus_exp_250_330","novo_285_625","novo_550_1200"); +} diff --git a/drawLimits_Combined.c b/drawLimits_Combined.c new file mode 100644 index 0000000..85e1b18 --- /dev/null +++ b/drawLimits_Combined.c @@ -0,0 +1,9 @@ +{ + std::vector masses_LMR1={260, 265, 270, 275, 280, 285, 290, 295, 300, 310}; + std::vector masses_LMR2={320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540}; + std::vector masses_MMR={550, 570, 600, 620, 650, 670, 700, 720, 750, 770, 800, 820, 840, 860, 880, 900, 920, 940, 960, 980, 1000, 1050, 1100, 1150, 1200}; + std::vector masses_C={260, 265, 270, 275, 280, 285, 290, 295, 300, 310,320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540,550, 570, 600, 620, 650, 670, 700, 720, 750, 770, 800, 820, 840, 860, 880, 900, 920, 940, 960, 980, 1000, 1050, 1100, 1150, 1200}; + gROOT->LoadMacro("DrawLimitPlot_Combined.cc++"); + + DrawLimitPlot_Combined(masses_LMR1, masses_LMR2, masses_MMR, masses_C, 1, 1e4,"gaus_exp_250_330","novo_285_625","novo_550_1200"); +} diff --git a/drawLimits_LMR.c b/drawLimits_LMR.c index a1e0f62..ce00433 100644 --- a/drawLimits_LMR.c +++ b/drawLimits_LMR.c @@ -1,8 +1,6 @@ { std::vector masses_1={260, 270, 300}; std::vector masses_2={300, 350, 400, 450, 500, 550, 600}; - //std::vector masses_1={260, 265, 270, 275, 280, 285, 290, 295, 300, 310, 320}; - //std::vector masses_2={290, 295, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, 600}; gROOT->LoadMacro("DrawLimitPlot.cc++"); DrawLimitPlot(masses_1, 10, 1e5, "gaus_exp_250_330", 0); DrawLimitPlot(masses_2, 10, 1e5, "novo_285_625", 0); diff --git a/drawLimits_LMR_interpolated.c b/drawLimits_LMR_interpolated.c index a1e0f62..0c19ff9 100644 --- a/drawLimits_LMR_interpolated.c +++ b/drawLimits_LMR_interpolated.c @@ -1,8 +1,6 @@ { - std::vector masses_1={260, 270, 300}; - std::vector masses_2={300, 350, 400, 450, 500, 550, 600}; - //std::vector masses_1={260, 265, 270, 275, 280, 285, 290, 295, 300, 310, 320}; - //std::vector masses_2={290, 295, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, 600}; + std::vector masses_1={260, 265, 270, 275, 280, 285, 290, 295, 300, 310, 320}; + std::vector masses_2={290, 295, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, 600, 610, 620}; gROOT->LoadMacro("DrawLimitPlot.cc++"); DrawLimitPlot(masses_1, 10, 1e5, "gaus_exp_250_330", 0); DrawLimitPlot(masses_2, 10, 1e5, "novo_285_625", 0); diff --git a/drawLimits_MMR.c b/drawLimits_MMR.c index 144e7a0..ec9b7e6 100644 --- a/drawLimits_MMR.c +++ b/drawLimits_MMR.c @@ -1,6 +1,5 @@ { std::vector masses={550, 600, 650, 750, 800, 900, 1000}; - //std::vector masses={550, 570, 600, 620, 650, 670, 700, 720, 750, 770, 800, 820, 840, 860, 880, 900, 920, 940, 960, 980, 1000}; gROOT->LoadMacro("DrawLimitPlot.cc++"); DrawLimitPlot(masses, 1, 1e4, "novo_550_1200", 1); } diff --git a/drawLimits_MMR_interpolated.c b/drawLimits_MMR_interpolated.c index 144e7a0..334b990 100644 --- a/drawLimits_MMR_interpolated.c +++ b/drawLimits_MMR_interpolated.c @@ -1,6 +1,5 @@ { - std::vector masses={550, 600, 650, 750, 800, 900, 1000}; - //std::vector masses={550, 570, 600, 620, 650, 670, 700, 720, 750, 770, 800, 820, 840, 860, 880, 900, 920, 940, 960, 980, 1000}; + std::vector masses={550, 570, 600, 620, 650, 670, 700, 720, 750, 770, 800, 820, 840, 860, 880, 900, 920, 940, 960, 980, 1000, 1050, 1100, 1150, 1200}; gROOT->LoadMacro("DrawLimitPlot.cc++"); DrawLimitPlot(masses, 1, 1e4, "novo_550_1200", 1); } diff --git a/launchBias.sh b/launchBias.sh index 3217825..cdc618a 100644 --- a/launchBias.sh +++ b/launchBias.sh @@ -1,15 +1,16 @@ source launchBias_LMR.sh gaus_exp 250_330 gaus_exp 250_330 1 &> /dev/null & source launchBias_LMR.sh crystal 250_330 gaus_exp 250_330 1 &> /dev/null & -#source launchBias_LMR.sh crystal 250_330 crystal 250_330 1 &> /dev/null & -#source launchBias_LMR.sh gaus_exp 250_330 crystal 250_330 1 &> /dev/null & +source launchBias_LMR.sh crystal 250_330 crystal 250_330 1 &> /dev/null & +source launchBias_LMR.sh gaus_exp 250_330 crystal 250_330 1 &> /dev/null & source launchBias_LMR.sh novo 285_625 novo 285_625 2 &> /dev/null & source launchBias_LMR.sh crystal_1 285_625 novo 285_625 2 &> /dev/null & -#source launchBias_LMR.sh crystal_1 285_625 crystal_1 285_625 2 &> /dev/null & -#source launchBias_LMR.sh novo 285_625 crystal_1 285_625 2 &> /dev/null & +source launchBias_LMR.sh crystal_1 285_625 crystal_1 285_625 2 &> /dev/null & +source launchBias_LMR.sh novo 285_625 crystal_1 285_625 2 &> /dev/null & source launchBias_MMR.sh novo 550_1200 novo 550_1200 1 &> /dev/null & source launchBias_MMR.sh crystal_1 550_1200 novo 550_1200 1 &> /dev/null & -#source launchBias_MMR.sh crystal_1 550_1200 crystal_1 550_1200 1 &> /dev/null & -#source launchBias_MMR.sh novo 550_1200 crystal_1 550_1200 1 &> /dev/null & +source launchBias_MMR.sh crystal_1 550_1200 crystal_1 550_1200 1 &> /dev/null & +source launchBias_MMR.sh novo 550_1200 crystal_1 550_1200 1 &> /dev/null & + diff --git a/launchBias_LMR.sh b/launchBias_LMR.sh index 405680f..b238a68 100644 --- a/launchBias_LMR.sh +++ b/launchBias_LMR.sh @@ -12,10 +12,10 @@ background_LMR_2="_${function_LMR_2}_${range_LMR_2}" if [ $5 -eq 1 ]; then - masses_LMR=(260 270 300) #300) #260 270) # 300 350) - strenght_LMR=(0.0 0.5 1.0) #0.0 0.5 1.0) - else masses_LMR=(270 300 350 450 500 550 600 650) #300) #450 500 550 600 650) - strenght_LMR=(0.0 0.1 0.2 0.3 0.6) #0.6) # 0.0 0.1 0.2 0.3 1.0) + masses_LMR=(260 270 300) + strenght_LMR=(0.0 0.6 1.0) + else masses_LMR=(270 300 350 400 450 500 550 600) + strenght_LMR=(0.0 0.1 0.2 0.3 0.6) fi source_dir_LMR="PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/" @@ -47,8 +47,8 @@ cp ../../../../${source_dir_LMR}LMR_${i}${background_LMR_1}/datacard*txt . cp ../../../../${source_dir_LMR}LMR_${i}${background_LMR_2}/w_*.root . cp ../../../../${source_dir_LMR}LMR_${i}${background_LMR_2}/datacard*txt . - #combine datacard_${i}${background_LMR_1}.txt -M GenerateOnly -m $i -t ${n_toys} --saveToys -s ${seed} --expectSignal=$signal_strenght -n ${name} --toysNoSystematic - #combine datacard_${i}${background_LMR_2}.txt -M MaxLikelihoodFit -m $i --expectSignal=$signal_strenght --rMin=-10 --rMax=10 -t ${n_toys} --toysFile=higgsCombine${name}.GenerateOnly.mH$i.${seed}.root -s ${seed} -n ${name}_${i} --robustFit=1 #--saveNormalizations --plot --out out + combine datacard_${i}${background_LMR_1}.txt -M GenerateOnly -m $i -t ${n_toys} --saveToys -s ${seed} --expectSignal=$signal_strenght -n ${name} --toysNoSystematic + combine datacard_${i}${background_LMR_2}.txt -M MaxLikelihoodFit -m $i --expectSignal=$signal_strenght --rMin=-10 --rMax=10 -t ${n_toys} --toysFile=higgsCombine${name}.GenerateOnly.mH$i.${seed}.root -s ${seed} -n ${name}_${i} --robustFit=1 #--saveNormalizations --plot --out out done root -l -b -q drawBias_LMR.C\($signal_strenght,\"$name\",\"$background_LMR_1\",\"$background_LMR_2\"\) done diff --git a/launchBias_MMR.sh b/launchBias_MMR.sh index 263a703..8124ad8 100644 --- a/launchBias_MMR.sh +++ b/launchBias_MMR.sh @@ -12,10 +12,10 @@ background_MMR_2="_${function_MMR_2}_${range_MMR_2}" if [ $5 -eq 1 ]; then - masses_MMR=(550 600 650 750 800 900 1000) #650 750 800 900 1000) #550 600) #750 800 900 1000) - strenght_MMR=(0.0 0.1 0.2 0.3) - else masses_MMR=(550 600 650 750 800 900 1000) + masses_MMR=(550 600 650 750 800 900 1000 1200) strenght_MMR=(0.0 0.1 0.2 0.3) + else masses_MMR=() + strenght_MMR=() fi source_dir_MMR="PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/" @@ -47,8 +47,8 @@ cp ../../../../${source_dir_MMR}/MMR_${i}${background_MMR_1}/datacard*txt . cp ../../../../${source_dir_MMR}/MMR_${i}${background_MMR_2}/w_*.root . cp ../../../../${source_dir_MMR}/MMR_${i}${background_MMR_2}/datacard*txt . - #combine datacard_${i}${background_MMR_1}.txt -M GenerateOnly -m $i -t ${n_toys} --saveToys -s ${seed} --expectSignal=$signal_strenght -n ${name} --toysNoSystematic - #combine datacard_${i}${background_MMR_2}.txt -M MaxLikelihoodFit -m $i --expectSignal=$signal_strenght --rMin=-10 --rMax=10 -t ${n_toys} --toysFile=higgsCombine${name}.GenerateOnly.mH$i.${seed}.root -s ${seed} -n ${name}_${i} --robustFit=1 #--saveNormalizations --plot --out out + combine datacard_${i}${background_MMR_1}.txt -M GenerateOnly -m $i -t ${n_toys} --saveToys -s ${seed} --expectSignal=$signal_strenght -n ${name} --toysNoSystematic + combine datacard_${i}${background_MMR_2}.txt -M MaxLikelihoodFit -m $i --expectSignal=$signal_strenght --rMin=-10 --rMax=10 -t ${n_toys} --toysFile=higgsCombine${name}.GenerateOnly.mH$i.${seed}.root -s ${seed} -n ${name}_${i} --robustFit=1 #--saveNormalizations --plot --out out done root -l -b -q drawBias_MMR.C\($signal_strenght,\"$name\",\"$background_MMR_1\",\"$background_MMR_2\"\) done diff --git a/launchDatacard.sh b/launchDatacard.sh index 84f6dce..fb82db4 100644 --- a/launchDatacard.sh +++ b/launchDatacard.sh @@ -1,6 +1,4 @@ source doLimits.sh gaus_exp 250_330 novo 550_1200 1 1 $1 -#source doLimits.sh crystal 250_330 crystal_1 550_1200 1 1 $1 -#source doLimits.sh novo 285_625 novo 550_1200 2 2 $1 -#source doLimits.sh crystal_1 285_625 crystal_1 550_1200 2 2 $1 - - +source doLimits.sh crystal 250_330 crystal_1 550_1200 1 1 $1 +source doLimits.sh novo 285_625 novo 550_1200 2 2 $1 +source doLimits.sh crystal_1 285_625 crystal_1 550_1200 2 2 $1 diff --git a/launchDatacard_bias.sh b/launchDatacard_bias.sh index a002067..f9e083b 100644 --- a/launchDatacard_bias.sh +++ b/launchDatacard_bias.sh @@ -4,3 +4,4 @@ source doLimits_bias.sh novo 285_625 novo 550_1200 2 2 $1 source doLimits_bias.sh crystal_1 285_625 crystal_1 550_1200 2 2 $1 + diff --git a/launchInterpolation.sh b/launchInterpolation.sh index d1826b0..e040e9a 100644 --- a/launchInterpolation.sh +++ b/launchInterpolation.sh @@ -1,30 +1,28 @@ -echo "LMR 1" +echo "LMR 1 interpolation" cp InterpolateSignal.C PreselectedWithRegressionDeepCSV/limits/LMR/ cd PreselectedWithRegressionDeepCSV/limits/LMR/ root -l -b -q "InterpolateSignal.C(\"gaus_exp\", \"250_330\",1, 0)" rm InterpolateSignal.C cd - - -echo "LMR 2" +echo "LMR 2 interpolation" cp InterpolateSignal.C PreselectedWithRegressionDeepCSV/limits/LMR/ cd PreselectedWithRegressionDeepCSV/limits/LMR/ root -l -b -q "InterpolateSignal.C(\"novo\", \"285_625\",2, 0)" rm InterpolateSignal.C cd - -echo "MMR 1" +echo "MMR 1 interpolation" cp InterpolateSignal.C PreselectedWithRegressionDeepCSV/limits/MMR/ cd PreselectedWithRegressionDeepCSV/limits/MMR/ root -l -b -q "InterpolateSignal.C(\"novo\", \"550_1200\",1, 1)" rm InterpolateSignal.C cd - -source runLimits_Interpolation.sh gaus_exp 250_330 novo 550_1200 1 -source runLimits_Interpolation.sh novo 285_625 novo 550_1200 2 - +./runLimits_Interpolation.sh gaus_exp 250_330 novo 550_1200 1 +./runLimits_Interpolation.sh novo 285_625 novo 550_1200 2 -echo "LMR" +echo "LMR limits plot" cp drawLimits_LMR_interpolated.c PreselectedWithRegressionDeepCSV/limits/LMR/ cp DrawLimitPlot.cc PreselectedWithRegressionDeepCSV/limits/LMR/ cd PreselectedWithRegressionDeepCSV/limits/LMR/ @@ -33,7 +31,7 @@ rm -fr drawLimits_LMR_interpolated.c rm -fr DrawLimitPlot.cc cd - -echo "MMR" +echo "MMR limits plot" cp drawLimits_MMR_interpolated.c PreselectedWithRegressionDeepCSV/limits/MMR/ cp DrawLimitPlot.cc PreselectedWithRegressionDeepCSV/limits/MMR/ cd PreselectedWithRegressionDeepCSV/limits/MMR/ @@ -42,3 +40,15 @@ rm -fr drawLimits_MMR_interpolated.c rm -fr DrawLimitPlot.cc cd - +#Here the brazilian plot is performed with overlapping and taking information from limits folder + +cp drawLimits_All.c PreselectedWithRegressionDeepCSV/limits/ +cp DrawLimitPlot_All.cc PreselectedWithRegressionDeepCSV/limits/ +cd PreselectedWithRegressionDeepCSV/limits/ +root -l -b -q drawLimits_All.c +rm -fr drawLimits_All.c +rm -fr DrawLimitPlot.cc +cd - + + + diff --git a/launchInterpolation_bias.sh b/launchInterpolation_bias.sh new file mode 100755 index 0000000..3e759e9 --- /dev/null +++ b/launchInterpolation_bias.sh @@ -0,0 +1,66 @@ +echo "LMR 1 interpolation" +cp InterpolateSignal_bias.C PreselectedWithRegressionDeepCSV/limits_bias/LMR/ +cd PreselectedWithRegressionDeepCSV/limits_bias/LMR/ +root -l -b -q "InterpolateSignal_bias.C(\"gaus_exp\", \"250_330\",1, 0)" +rm InterpolateSignal_bias.C +cd - + +echo "LMR 2 interpolation" +cp InterpolateSignal_bias.C PreselectedWithRegressionDeepCSV/limits_bias/LMR/ +cd PreselectedWithRegressionDeepCSV/limits_bias/LMR/ +root -l -b -q "InterpolateSignal_bias.C(\"novo\", \"285_625\",2, 0)" +rm InterpolateSignal_bias.C +cd - + +echo "MMR 1 interpolation" +cp InterpolateSignal_bias.C PreselectedWithRegressionDeepCSV/limits_bias/MMR/ +cd PreselectedWithRegressionDeepCSV/limits_bias/MMR/ +root -l -b -q "InterpolateSignal_bias.C(\"novo\", \"550_1200\",1, 1)" +rm InterpolateSignal_bias.C +cd - + +./runLimits_Interpolation_bias.sh gaus_exp 250_330 novo 550_1200 1 +./runLimits_Interpolation_bias.sh novo 285_625 novo 550_1200 2 + +echo "LMR limits plot" +cp drawLimits_LMR_interpolated.c PreselectedWithRegressionDeepCSV/limits_bias/LMR/ +cp DrawLimitPlot.cc PreselectedWithRegressionDeepCSV/limits_bias/LMR/ +cd PreselectedWithRegressionDeepCSV/limits_bias/LMR/ +root -l -b -q drawLimits_LMR_interpolated.c +rm -fr drawLimits_LMR_interpolated.c +rm -fr DrawLimitPlot* +cd - + +echo "MMR limits plot" +cp drawLimits_MMR_interpolated.c PreselectedWithRegressionDeepCSV/limits_bias/MMR/ +cp DrawLimitPlot.cc PreselectedWithRegressionDeepCSV/limits_bias/MMR/ +cd PreselectedWithRegressionDeepCSV/limits_bias/MMR/ +root -l -b -q drawLimits_MMR_interpolated.c +rm -fr drawLimits_MMR_interpolated.c +rm -fr DrawLimitPlot* +cd - + +#Here the brazilian plot is performed with overlapping and taking information from limits_bias folder + +cp drawLimits_All.c PreselectedWithRegressionDeepCSV/limits_bias/ +cp DrawLimitPlot_All.cc PreselectedWithRegressionDeepCSV/limits_bias/ +cd PreselectedWithRegressionDeepCSV/limits_bias/ +root -l -b -q drawLimits_All.c +mv UpperLimit_all.png UpperLimit_combined_bias.png +mv UpperLimit_all.pdf UpperLimit_combined_bias.pdf +rm -fr drawLimits_All.c +rm -fr DrawLimitPlot_All* +cd - + +#Here the brazilian plot is performed combining the three regions and taking information from limits_bias folder (limits_bias_graviton and limits_bias_radion in github) + +cp drawLimits_Combined.c PreselectedWithRegressionDeepCSV/limits_bias/ +cp DrawLimitPlot_Combined.cc PreselectedWithRegressionDeepCSV/limits_bias/ +cd PreselectedWithRegressionDeepCSV/limits_bias/ +root -l -b -q drawLimits_Combined.c +mv UpperLimit_combined.png UpperLimit_combined_bias.png +mv UpperLimit_combined.pdf UpperLimit_combined_bias.pdf +rm -fr drawLimits_Combined.c +rm -fr DrawLimitPlot_Combined* +cd - + diff --git a/launchLimits.sh b/launchLimits.sh index 00729ab..1d33c9f 100644 --- a/launchLimits.sh +++ b/launchLimits.sh @@ -1,19 +1,19 @@ -#source runLimits.sh gaus_exp 250_330 novo 550_1200 1 -#source runLimits.sh novo 285_625 novo 550_1200 2 +source runLimits.sh gaus_exp 250_330 novo 550_1200 1 +source runLimits.sh novo 285_625 novo 550_1200 2 echo "LMR" -cp drawLimits_LMR.c PreselectedWithRegressionDeepCSV/limits/LMR/ -cp DrawLimitPlot.cc PreselectedWithRegressionDeepCSV/limits/LMR/ -cd PreselectedWithRegressionDeepCSV/limits/LMR/ +cp drawLimits_LMR.c PreselectedWithRegressionDeepCSV/limits_no/LMR/ +cp DrawLimitPlot.cc PreselectedWithRegressionDeepCSV/limits_no/LMR/ +cd PreselectedWithRegressionDeepCSV/limits_no/LMR/ root -l -b -q drawLimits_LMR.c rm -fr drawLimits_LMR.c rm -fr DrawLimitPlot.cc cd - echo "MMR" -cp drawLimits_MMR.c PreselectedWithRegressionDeepCSV/limits/MMR/ -cp DrawLimitPlot.cc PreselectedWithRegressionDeepCSV/limits/MMR/ -cd PreselectedWithRegressionDeepCSV/limits/MMR/ +cp drawLimits_MMR.c PreselectedWithRegressionDeepCSV/limits_no/MMR/ +cp DrawLimitPlot.cc PreselectedWithRegressionDeepCSV/limits_no/MMR/ +cd PreselectedWithRegressionDeepCSV/limits_no/MMR/ root -l -b -q drawLimits_MMR.c rm -fr drawLimits_MMR.c rm -fr DrawLimitPlot.cc diff --git a/launchLimits_bias.sh b/launchLimits_bias.sh index 4b002d8..a527250 100644 --- a/launchLimits_bias.sh +++ b/launchLimits_bias.sh @@ -1,5 +1,6 @@ -#source runLimits_bias.sh gaus_exp 250_330 novo 550_1200 1 -#source runLimits_bias.sh novo 285_625 novo 550_1200 2 + +./runLimits_bias.sh gaus_exp 250_330 novo 550_1200 1 +./runLimits_bias.sh novo 285_625 novo 550_1200 2 echo "LMR" cp drawLimits_LMR.c PreselectedWithRegressionDeepCSV/limits_bias/LMR/ diff --git a/launchSyst.sh b/launchSyst.sh index b6df2c0..d4e2a06 100644 --- a/launchSyst.sh +++ b/launchSyst.sh @@ -1,64 +1,76 @@ location=$1 +cd PreselectedWithRegressionDeepCSV +./processPreSelection_Graviton.sh ${location} +cd LMRSelection_chi2 +./processLMRSelection.sh +cd ../MMRSelection_chi2 +./processMMRSelection.sh +cd ../../ + cd PreselectedWithRegressionDeepCSV_JECm1 echo "JEC +" -source processPreSelection_Graviton.sh ${location} +./processPreSelection_Graviton.sh ${location} echo "JEC LMR" cd LMRSelection_chi2 -source processLMRSelection.sh +./processLMRSelection.sh echo "JEC MMR" cd ../MMRSelection_chi2 -source processMMRSelection.sh +./processMMRSelection.sh cd ../../ + cd PreselectedWithRegressionDeepCSV_JECp1 echo "JEC -" -source processPreSelection_Graviton.sh +./processPreSelection_Graviton.sh ${location} cd LMRSelection_chi2 echo "JEC LMR" -source processLMRSelection.sh +./processLMRSelection.sh cd ../MMRSelection_chi2 echo "JEC MMR" -source processMMRSelection.sh +./processMMRSelection.sh cd ../../ + echo "JER -" cd PreselectedWithRegressionDeepCSV_JERm1 -source processPreSelection_Graviton.sh ${location} +./processPreSelection_Graviton.sh ${location} echo "JER LMR" cd LMRSelection_chi2 -source processLMRSelection.sh +./processLMRSelection.sh echo "JER MMR" cd ../MMRSelection_chi2 -source processMMRSelection.sh +./processMMRSelection.sh cd ../../ + echo "JER +" cd PreselectedWithRegressionDeepCSV_JERp1 -source processPreSelection_Graviton.sh ${location} +./processPreSelection_Graviton.sh ${location} cd LMRSelection_chi2 echo "JER LMR" -source processLMRSelection.sh +./processLMRSelection.sh cd ../MMRSelection_chi2 echo "JER MMR" -source processMMRSelection.sh +./processMMRSelection.sh cd ../../ echo "bTag -" cd PreselectedWithRegressionDeepCSV_bTagm1 -source processPreSelection_Graviton.sh ${location} +./processPreSelection_Graviton.sh ${location} echo "bTag LMR" cd LMRSelection_chi2 -source processLMRSelection.sh +./processLMRSelection.sh echo "bTag MMR" cd ../MMRSelection_chi2 -source processMMRSelection.sh +./processMMRSelection.sh cd ../../ + echo "bTag +" cd PreselectedWithRegressionDeepCSV_bTagp1 -source processPreSelection_Graviton.sh ${location} +./processPreSelection_Graviton.sh ${location} cd LMRSelection_chi2 echo "bTag LMR" -source processLMRSelection.sh +./processLMRSelection.sh cd ../MMRSelection_chi2 echo "bTag MMR" -source processMMRSelection.sh +./processMMRSelection.sh cd ../../ diff --git a/runLimits_Interpolation.sh b/runLimits_Interpolation.sh index da89cd7..0395d66 100644 --- a/runLimits_Interpolation.sh +++ b/runLimits_Interpolation.sh @@ -1,8 +1,8 @@ #!/bin/bash DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" && pwd )" -cd /scratch/malara/WorkingArea/release/CMSSW_7_4_7/src/HiggsAnalysis/CombinedLimit -cmsenv +#cd /scratch/malara/WorkingArea/release/CMSSW_7_4_7/src/HiggsAnalysis/CombinedLimit +#cmsenv cd $DIR function_LMR=$1 @@ -16,13 +16,13 @@ background_MMR="_${function_MMR}_${range_MMR}" if [ $5 -eq 1 ]; then masses_LMR=(260 265 270 275 280 285 290 295 300 310 320) - else masses_LMR=(270 275 280 285 290 295 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600 610 620) + else masses_LMR=(290 295 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600 610 620) fi if [ $5 -eq 1 ]; then masses_MMR=(550 570 600 620 650 670 700 720 750 770 800 820 840 860 880 900 920 940 960 980 1000) #550 600 650 750 800 900 1000) - else masses_MMR=() #550 600 650 750 800 900 1000) + else masses_MMR=() fi echo 'MMR' @@ -40,9 +40,9 @@ do fi mkdir out echo "Asymptotic" - combine -M Asymptotic datacard_${i}${background_MMR}.txt -t -1 &> CMS_HH4b_$i\_13TeV_asymptoticCLs.out + combine -M Asymptotic datacard_${i}${background_MMR}.txt -t -1 |& tee CMS_HH4b_$i\_13TeV_asymptoticCLs.out echo "MaxLikelihoodFit" - combine -M MaxLikelihoodFit datacard_${i}${background_MMR}.txt -t -1 --minimizerTolerance=0.001 --rMin=0 --rMax=3 &> CMS_HH4b_$i\_13TeV_MaxLikelihood.out + combine -M MaxLikelihoodFit datacard_${i}${background_MMR}.txt -t -1 --minimizerTolerance=0.001 --rMin=0 --rMax=3 |& tee CMS_HH4b_$i\_13TeV_MaxLikelihood.out echo "Plot" combine -M MaxLikelihoodFit datacard_${i}${background_MMR}.txt -t -1 --minimizerTolerance=0.001 --rMin=0 --rMax=3 --saveNormalizations --plot --out out done @@ -65,9 +65,9 @@ do fi mkdir out echo "Asymptotic" - combine -M Asymptotic datacard_${i}${background_LMR}.txt -t -1 &> CMS_HH4b_$i\_13TeV_asymptoticCLs.out + combine -M Asymptotic datacard_${i}${background_LMR}.txt -t -1 |& tee CMS_HH4b_$i\_13TeV_asymptoticCLs.out echo "MaxLikelihoodFit" - combine -M MaxLikelihoodFit datacard_${i}${background_LMR}.txt -t -1 --minimizerTolerance=0.001 --rMin=0 --rMax=3 &> CMS_HH4b_$i\_13TeV_MaxLikelihood.out + combine -M MaxLikelihoodFit datacard_${i}${background_LMR}.txt -t -1 --minimizerTolerance=0.001 --rMin=0 --rMax=3 |& tee CMS_HH4b_$i\_13TeV_MaxLikelihood.out echo "Plot" combine -M MaxLikelihoodFit datacard_${i}${background_LMR}.txt -t -1 --minimizerTolerance=0.001 --rMin=0 --rMax=3 --saveNormalizations --plot --out out done diff --git a/runLimits_Interpolation_bias.sh b/runLimits_Interpolation_bias.sh new file mode 100755 index 0000000..e63cc8a --- /dev/null +++ b/runLimits_Interpolation_bias.sh @@ -0,0 +1,77 @@ +#!/bin/bash + +DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" && pwd )" + +cd $DIR + +function_LMR=$1 +range_LMR=$2 +background_LMR="_${function_LMR}_${range_LMR}" + +function_MMR=$3 +range_MMR=$4 +background_MMR="_${function_MMR}_${range_MMR}" + +if [ $5 -eq 1 ]; + then + masses_LMR=(260 265 270 275 280 285 290 295 300 310 320) + else masses_LMR=(290 295 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600 610 620) +fi + +if [ $5 -eq 1 ]; + then + masses_MMR=(550 570 600 620 650 670 700 720 750 770 800 820 840 860 880 900 920 940 960 980 1000 1050 1100 1150 1200) + else masses_MMR=() +fi + +#Here -t -1 was removed for the unblinding + +echo 'MMR' +for i in ${masses_MMR[@]} + +do + cd $DIR + folder="PreselectedWithRegressionDeepCSV/limits_bias/MMR/MMR_${i}${background_MMR}" + if [ -d $folder ] + then + cd $folder + else + echo "mass point $i" + continue + fi + mkdir out + echo "Asymptotic" + combine -M Asymptotic datacard_${i}${background_MMR}.txt |& tee CMS_HH4b_$i\_13TeV_asymptoticCLs.out + echo "MaxLikelihoodFit" + combine -M MaxLikelihoodFit datacard_${i}${background_MMR}.txt --minimizerTolerance=0.001 --rMin=0 --rMax=3 |& tee CMS_HH4b_$i\_13TeV_MaxLikelihood.out + echo "Plot" + combine -M MaxLikelihoodFit datacard_${i}${background_MMR}.txt --minimizerTolerance=0.001 --rMin=0 --rMax=3 --saveNormalizations --plot --out out +done + +cd $DIR + +echo 'LMR' + +for i in ${masses_LMR[@]} + +do + cd $DIR + folder="PreselectedWithRegressionDeepCSV/limits_bias/LMR/LMR_${i}${background_LMR}" + if [ -d $folder ] + then + cd $folder + else + echo "mass point $i" + continue + fi + mkdir out + echo "Asymptotic" + combine -M Asymptotic datacard_${i}${background_LMR}.txt |& tee CMS_HH4b_$i\_13TeV_asymptoticCLs.out + echo "MaxLikelihoodFit" + combine -M MaxLikelihoodFit datacard_${i}${background_LMR}.txt --minimizerTolerance=0.001 --rMin=0 --rMax=3 |& tee CMS_HH4b_$i\_13TeV_MaxLikelihood.out + echo "Plot" + combine -M MaxLikelihoodFit datacard_${i}${background_LMR}.txt --minimizerTolerance=0.001 --rMin=0 --rMax=3 --saveNormalizations --plot --out out +done + +cd $DIR + From d626aa463fec77237965a3c923dd7ad9e425d3e7 Mon Sep 17 00:00:00 2001 From: daniel Date: Fri, 22 Sep 2017 07:16:04 -0500 Subject: [PATCH 02/11] New files --- DisplayCutFlow_LMR.cc | 55 ++-- DisplayCutFlow_MMR.cc | 49 +-- PreselectedWithRegressionDeepCSV/ABCD/ABCD.c | 7 + PreselectedWithRegressionDeepCSV/ABCD/ABCD.cc | 292 ++++++++++++++++++ 4 files changed, 333 insertions(+), 70 deletions(-) create mode 100644 PreselectedWithRegressionDeepCSV/ABCD/ABCD.c create mode 100644 PreselectedWithRegressionDeepCSV/ABCD/ABCD.cc diff --git a/DisplayCutFlow_LMR.cc b/DisplayCutFlow_LMR.cc index cc3d017..a15db3d 100644 --- a/DisplayCutFlow_LMR.cc +++ b/DisplayCutFlow_LMR.cc @@ -208,7 +208,7 @@ void pushBackHistograms(Samples &sample, TFile *file, TFile * old, bool MC=true) void signalEff(int npoint) { - int massPtsStd[8]={260, 270, 300, 350, 400, 450, 500, 550}; + int massPtsStd[9]={260, 270, 300, 350, 400, 450, 500, 550, 600}; int massPts[npoint]; for(int i=0; i h_Cut; TH1F *h_Init=new TH1F("h_Init", "h_Init", 154, 260, 1800); @@ -302,13 +289,9 @@ void DisplayCutFlow_LMR() TH1F *h_Events8=(TH1F*)h_Init->Clone("h_Events8"); TH1F *h_Events10=(TH1F*)h_Init->Clone("h_Events10"); TH1F *h_Events16=(TH1F*)h_Init->Clone("h_Events16"); - for (unsigned int i=0; i<6; ++i) -// for (unsigned int i=0; i<9; ++i) + for (unsigned int i=0; i<9; ++i) { h_Init->SetBinContent(h_Init->FindBin(massL[i]), signals.v_CountWithPU.at(i)->GetBinContent(1)); - // std::cout<<"signals.v_CountWithPU.at(i)->GetBinContent(1) = "<<.signals.v_CountWithPU.at(i)->GetBinContent(1)<SetBinContent(i, signals.v_Cuts.at(i)->GetBinContent(2)); - // std::cout<GetBinContent(4)<< " "<GetBinContent(8)<<" "<< signals.v_Cuts.at(i)->GetBinContent(10)<< " "<< signals.v_Cuts.at(i)->GetBinContent(12)<SetBinContent(h_Init->FindBin(massL[i]), signals.v_Cuts.at(i)->GetBinContent(4)); h_Events8->SetBinContent(h_Init->FindBin(massL[i]), signals.v_Cuts.at(i)->GetBinContent(8)); @@ -372,7 +355,5 @@ void DisplayCutFlow_LMR() // g_Ae_2->Draw("AL*"); c_Ae->SaveAs("c_Ae_LMR.pdf"); - c_Ae->SaveAs("c_Ae.root"); - } diff --git a/DisplayCutFlow_MMR.cc b/DisplayCutFlow_MMR.cc index 1cdd6f3..39d4405 100644 --- a/DisplayCutFlow_MMR.cc +++ b/DisplayCutFlow_MMR.cc @@ -207,7 +207,7 @@ void pushBackHistograms(Samples &sample, TFile *file, TFile * old, bool MC=true) void signalEff(int npoint) { - int massPtsStd[10]={450, 500, 550, 650, 700, 750, 800, 900, 1000, 1200};// 350, 450, 500 ,550, 650, 700, 800, 900, 1000, 1200}; + int massPtsStd[8]={550, 600, 650, 750, 800, 900, 1000, 1200}; int massPts[npoint]; @@ -230,7 +230,7 @@ void signalEff(int npoint) void cumEff(int npoint) { - int massPtsStd[10]={450, 500, 550, 650, 700, 750, 800, 900, 1000, 1200};// 350, 450, 550, 650, 700, 800, 900, 1000, 1200}; + int massPtsStd[8]={550, 600, 650, 750, 800, 900, 1000, 1200}; int massPts[npoint]; for(int i=0; iSetStyle("Plain"); gStyle->SetOptStat(0000); writeExtraText = true; // if extra text - extraText = "Preliminary"; // default extra text is "Preliminary" + extraText = "Simulation"; // default extra text is "Preliminary" lumi_13TeV = "(2016)"; // default is "5.1 fb^{-1}" - //int n=10; - int massL[]={400, 500, 550, 600, 650, 750, 800, 900,1000, 1200}; - // int massL[5]={260, 270, 300, 400, 600}; //, 700, 800, 900, 1000, 1100}; - TFile *glugluToX400=new TFile("Histograms_GluGluToBulkGravitonToHHTo4B_M-400_narrow_13TeV-madgraph.root"); - //TFile *glugluToX450=new TFile("Histograms_GluGluToBulkGravitonToHHTo4B_M-450_narrow_13TeV-madgraph.root"); - TFile *glugluToX500=new TFile("Histograms_GluGluToBulkGravitonToHHTo4B_M-500_narrow_13TeV-madgraph.root"); - TFile *glugluToX550=new TFile("Histograms_GluGluToBulkGravitonToHHTo4B_M-550_narrow_13TeV-madgraph.root"); - TFile *glugluToX600=new TFile("Histograms_GluGluToBulkGravitonToHHTo4B_M-600_narrow_13TeV-madgraph.root"); - TFile *glugluToX650=new TFile("Histograms_GluGluToBulkGravitonToHHTo4B_M-650_narrow_13TeV-madgraph.root"); - //TFile *glugluToX700=new TFile("Histograms_GluGluToBulkGravitonToHHTo4B_M-700_narrow_13TeV-madgraph.root"); - TFile *glugluToX750=new TFile("Histograms_GluGluToBulkGravitonToHHTo4B_M-750_narrow_13TeV-madgraph.root"); - - TFile *glugluToX800=new TFile("Histograms_GluGluToBulkGravitonToHHTo4B_M-800_narrow_13TeV-madgraph.root"); - TFile *glugluToX900=new TFile("Histograms_GluGluToBulkGravitonToHHTo4B_M-900_narrow_13TeV-madgraph.root"); - TFile *glugluToX1000=new TFile("Histograms_BulkGravTohhTohbbhbb_narrow_M-1000_13TeV-madgraph.root"); - TFile *glugluToX1200=new TFile("Histograms_BulkGravTohhTohbbhbb_narrow_M-1200_13TeV-madgraph.root"); -// TFile *glugluToX1400=new TFile("Histograms_BulkGravTohhTohbbhbb_narrow_M-1400_13TeV-madgraph.root"); - - pushBackHistograms(signals, glugluToX400, glugluToX400); - // pushBackHistograms(signals, glugluToX450, glugluToX450); - pushBackHistograms(signals, glugluToX500, glugluToX500); + int massL[]={550, 600, 650, 750, 800, 900, 1000, 1200}; + + TFile *glugluToX550=new TFile("PreselectedWithRegressionDeepCSV/MMRSelection_chi2/Histograms_MMR_GluGluToBulkGravitonToHHTo4B_M-550_narrow_13TeV-madgraph.root"); + TFile *glugluToX600=new TFile("PreselectedWithRegressionDeepCSV/MMRSelection_chi2/Histograms_MMR_GluGluToBulkGravitonToHHTo4B_M-600_narrow_13TeV-madgraph.root"); + TFile *glugluToX650=new TFile("PreselectedWithRegressionDeepCSV/MMRSelection_chi2/Histograms_MMR_GluGluToBulkGravitonToHHTo4B_M-650_narrow_13TeV-madgraph.root"); + TFile *glugluToX750=new TFile("PreselectedWithRegressionDeepCSV/MMRSelection_chi2/Histograms_MMR_GluGluToBulkGravitonToHHTo4B_M-750_narrow_13TeV-madgraph.root"); + TFile *glugluToX800=new TFile("PreselectedWithRegressionDeepCSV/MMRSelection_chi2/Histograms_MMR_GluGluToBulkGravitonToHHTo4B_M-800_narrow_13TeV-madgraph.root"); + TFile *glugluToX900=new TFile("PreselectedWithRegressionDeepCSV/MMRSelection_chi2/Histograms_MMR_GluGluToBulkGravitonToHHTo4B_M-900_narrow_13TeV-madgraph.root"); + TFile *glugluToX1000=new TFile("PreselectedWithRegressionDeepCSV/MMRSelection_chi2/Histograms_MMR_BulkGravTohhTohbbhbb_narrow_M-1000_13TeV-madgraph.root"); + TFile *glugluToX1200=new TFile("PreselectedWithRegressionDeepCSV/MMRSelection_chi2/Histograms_MMR_BulkGravTohhTohbbhbb_narrow_M-1200_13TeV-madgraph.root"); + pushBackHistograms(signals, glugluToX550, glugluToX550); pushBackHistograms(signals, glugluToX600, glugluToX600); pushBackHistograms(signals, glugluToX650, glugluToX650); - // pushBackHistograms(signals, glugluToX700, glugluToX700); pushBackHistograms(signals, glugluToX750, glugluToX750); pushBackHistograms(signals, glugluToX800, glugluToX800); pushBackHistograms(signals, glugluToX900, glugluToX900); pushBackHistograms(signals, glugluToX1000, glugluToX1000); pushBackHistograms(signals, glugluToX1200, glugluToX1200); - // pushBackHistograms(signals, glugluToX1400, glugluToX1400); std::vector h_Cut; TH1F *h_Init=new TH1F("h_Init", "h_Init", 154, 260, 1800); @@ -301,8 +289,8 @@ TH1F *h_Events3=(TH1F*)h_Init->Clone("h_Events3"); TH1F *h_Events8=(TH1F*)h_Init->Clone("h_Events8"); TH1F *h_Events10=(TH1F*)h_Init->Clone("h_Events10"); TH1F *h_Events16=(TH1F*)h_Init->Clone("h_Events16"); -// for (unsigned int i=2; i<=8; ++i) -for (unsigned int i=0; i<9; ++i) + +for (unsigned int i=0; i<8; ++i) { h_Init->SetBinContent(h_Init->FindBin(massL[i]), signals.v_CountWithPU.at(i)->GetBinContent(1)); // std::cout<<"signals.v_CountWithPU.at(i)->GetBinContent(1) = "<<.signals.v_CountWithPU.at(i)->GetBinContent(1)<SetMinimum(0.0001); c_Ae->Update(); - -// g_Ae_2->Draw("AL*"); - c_Ae->SaveAs("c_Ae_MMR.pdf"); -c_Ae->SaveAs("c_Ae.root"); - } diff --git a/PreselectedWithRegressionDeepCSV/ABCD/ABCD.c b/PreselectedWithRegressionDeepCSV/ABCD/ABCD.c new file mode 100644 index 0000000..7524295 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/ABCD/ABCD.c @@ -0,0 +1,7 @@ +{ + gROOT->LoadMacro("ABCD.cc"); + //150 + ABCD("Histograms_LMR_150BTagTotal.root","Histograms_LMR_AntiTag_150_BTagTotal.root",285,625,5,"150","h_mX_SB_kinFit","h_mX_SR_kinFit"); + //120 + ABCD("Histograms_LMR_BTagTotal.root","Histograms_LMR_AntiTag_BTagTotal.root",285,625,5,"120","h_mX_SB_kinFit","h_mX_SR_kinFit"); +} diff --git a/PreselectedWithRegressionDeepCSV/ABCD/ABCD.cc b/PreselectedWithRegressionDeepCSV/ABCD/ABCD.cc new file mode 100644 index 0000000..10a5cc2 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/ABCD/ABCD.cc @@ -0,0 +1,292 @@ +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include "../../CMS_lumi.c" + +using namespace RooFit ; + +// Plot cosmetics +int iPeriod = 4; // 1=7TeV, 2=8TeV, 3=7+8TeV, 7=7+8+13TeV +int iPos = 11; + +std::string itoa(int i) +{ + char res[10]; + sprintf(res, "%d", i); + std::string ret(res); + return ret; +} + +void ABCD(std::string filename1,std::string filename2, double plot_lo, + double plot_hi, + double rebin, std::string mass, + std::string hist1="h_mX_SB_kinFit", + std::string hist2="h_mX_SR_kinFit") +{ + + gROOT->SetStyle("Plain"); + gStyle->SetPadGridX(0); + gStyle->SetPadGridY(0); + gStyle->SetOptStat(0000); + writeExtraText = true; // if extra text + extraText = "Preliminary"; // default extra text is "Preliminary" + lumi_13TeV = "35.9 fb^{-1}"; + + //Save the histograms for the fit + + TFile *f_data_tag=new TFile(filename1.c_str()); + TH1F *h_mX_SB_kinFit=(TH1F*)f_data_tag->Get(hist1.c_str()); + TH1F *h_mX_SR_kinFit=(TH1F*)f_data_tag->Get(hist2.c_str()); + TFile *f_data_antitag=new TFile(filename2.c_str()); + TH1F *h_mX_SB_kinFit_antitag=(TH1F*)f_data_antitag->Get(hist1.c_str()); + TH1F *h_mX_SR_kinFit_antitag=(TH1F*)f_data_antitag->Get(hist2.c_str()); + h_mX_SR_kinFit_antitag->Rebin(rebin); + h_mX_SB_kinFit_antitag->Rebin(rebin); + h_mX_SB_kinFit->Rebin(rebin); + h_mX_SR_kinFit->Rebin(rebin); + double nEventsSR= h_mX_SR_kinFit->Integral(); + + //Calculate prediction A + h_mX_SB_kinFit->Scale(1./h_mX_SB_kinFit->Integral()); + h_mX_SB_kinFit_antitag->Scale(1./h_mX_SB_kinFit_antitag->Integral()); + h_mX_SR_kinFit_antitag->Scale(1./h_mX_SR_kinFit_antitag->Integral()); + h_mX_SR_kinFit_antitag->Divide(h_mX_SB_kinFit_antitag); + h_mX_SR_kinFit_antitag->Multiply(h_mX_SB_kinFit); + h_mX_SR_kinFit_antitag->Scale(nEventsSR); + h_mX_SR_kinFit_A=(TH1F*)h_mX_SR_kinFit_antitag->Clone("h_mX_SR_kinFit"); + + //This is without normalization to 1 + RooRealVar *x; + x=new RooRealVar("x", "m_{X} (GeV)", plot_lo, plot_hi); + RooDataHist pred1("pred1", "Data", RooArgList(*x), h_mX_SR_kinFit_A); + RooDataHist pred2("pred2", "Data", RooArgList(*x), h_mX_SR_kinFit); + RooPlot *data_plot1=x->frame(); + pred1.plotOn(data_plot1, RooFit::MarkerColor(kBlue)); + RooPlot *data_plot2=x->frame(); + pred2.plotOn(data_plot2, RooFit::MarkerColor(kBlack)); + + TCanvas *c_Background=new TCanvas("c_Background", "c_Background", 1200, 1200); + c_Background->SetFillStyle(4000); + c_Background->SetFrameFillColor(0); + c_Background->SetRightMargin(0.01); + c_Background->SetLeftMargin(0.15); + + TPad *p_1=new TPad("p_1", "p_1", 0, 0, 1, 1); + p_1->SetFillStyle(4000); + p_1->SetFrameFillColor(0); + p_1->SetBottomMargin(0.10); + p_1->SetLeftMargin(0.15); + p_1->Draw(); + p_1->cd(); + data_plot1->Draw(); + data_plot1->SetMaximum(1700); + data_plot1->GetXaxis()->SetLabelOffset(0.01); + data_plot1->GetXaxis()->SetLabelFont(42); + data_plot1->GetYaxis()->SetLabelFont(42); + data_plot1->GetYaxis()->SetTitleFont(42); + data_plot1->GetXaxis()->SetTitleFont(42); + data_plot2->SetMarkerColor(kBlack); + data_plot2->Draw("same"); + data_plot1->GetYaxis()->SetTitleOffset(1.7); + data_plot1->SetTitle("; m_{X} (GeV); Events / 5 GeV "); + TLegend *leg = new TLegend(0.85625,0.7021654,0.3565625,0.8903839,NULL,"brNDC"); + leg->SetBorderSize(0); + leg->SetTextSize(0.025); + leg->SetHeader("SR Background Estimation"); + leg->SetLineColor(1); + leg->SetLineWidth(3); + leg->SetFillColor(0); + leg->SetFillStyle(0); + h_mX_SR_kinFit_A->SetMarkerColor(kBlue); + h_mX_SR_kinFit_A->SetLineWidth(2); + h_mX_SR_kinFit_A->SetLineColor(kBlue); + h_mX_SR_kinFit->SetMarkerColor(kBlack); + h_mX_SR_kinFit->SetLineWidth(2); + h_mX_SR_kinFit->SetLineColor(kBlack); + leg->AddEntry(h_mX_SR_kinFit_A,Form("Predicted at m_{h}= %s GeV",mass.c_str()) , "lep"); + leg->AddEntry(h_mX_SR_kinFit,Form("Observed at m_{h}= %s GeV",mass.c_str()), "lep"); + leg->Draw(); + + CMS_lumi( p_1, iPeriod, iPos ); + c_Background->SaveAs(Form("Background_SR_%s.png", mass.c_str()) ); + c_Background->SaveAs(Form("Background_SR_%s.pdf", mass.c_str()) ); + + //Normalized to 1 plot + + h_mX_SR_kinFit_A->GetXaxis()->SetRangeUser(plot_lo, plot_hi); + h_mX_SR_kinFit->GetXaxis()->SetRangeUser(plot_lo, plot_hi); + h_mX_SR_kinFit_A->Scale(1. / (h_mX_SR_kinFit_A->Integral())); + h_mX_SR_kinFit->Scale(1. / (h_mX_SR_kinFit->Integral())); + + RooRealVar *x_1; + x_1=new RooRealVar("x_1", "m_{X} (GeV)", plot_lo, plot_hi); + RooDataHist pred1_1("pred1_1", "Data", RooArgList(*x_1), h_mX_SR_kinFit_A); + RooDataHist pred2_1("pred2_1", "Data", RooArgList(*x_1), h_mX_SR_kinFit); + RooPlot *data_plot1_1=x_1->frame(); + pred1_1.plotOn(data_plot1_1, RooFit::MarkerColor(kBlue)); + RooPlot *data_plot2_1=x_1->frame(); + pred2_1.plotOn(data_plot2_1, RooFit::MarkerColor(kBlack)); + + TCanvas *c_Background_1=new TCanvas("c_Background", "c_Background", 1200, 1200); + c_Background_1->SetFillStyle(4000); + c_Background_1->SetFrameFillColor(0); + c_Background_1->SetRightMargin(0.01); + c_Background_1->SetLeftMargin(0.15); + + TPad *p_1_1=new TPad("p_1", "p_1", 0, 0, 1, 1); + p_1_1->SetFillStyle(4000); + p_1_1->SetFrameFillColor(0); + p_1_1->SetBottomMargin(0.10); + p_1_1->SetLeftMargin(0.15); + p_1_1->Draw(); + p_1_1->cd(); + data_plot1_1->Draw(); + data_plot1_1->SetMaximum(0.12); + data_plot1_1->GetXaxis()->SetLabelOffset(0.01); + data_plot1_1->GetXaxis()->SetLabelFont(42); + data_plot1_1->GetYaxis()->SetLabelFont(42); + data_plot1_1->GetYaxis()->SetTitleFont(42); + data_plot1_1->GetXaxis()->SetTitleFont(42); + data_plot2_1->SetMarkerColor(kBlack); + data_plot2_1->Draw("same"); + data_plot1_1->GetYaxis()->SetTitleOffset(1.7); + data_plot1_1->SetTitle("; m_{X} (GeV); Normalized Units "); + TLegend *leg_1 = new TLegend(0.85625,0.7021654,0.3565625,0.8903839,NULL,"brNDC"); + leg_1->SetBorderSize(0); + leg_1->SetTextSize(0.025); + leg_1->SetHeader("SR Background Estimation"); + leg_1->SetLineColor(1); + leg_1->SetLineWidth(3); + leg_1->SetFillColor(0); + leg_1->SetFillStyle(0); + h_mX_SR_kinFit_A->SetMarkerColor(kBlue); + h_mX_SR_kinFit_A->SetLineWidth(2); + h_mX_SR_kinFit_A->SetLineColor(kBlue); + h_mX_SR_kinFit->SetMarkerColor(kBlack); + h_mX_SR_kinFit->SetLineWidth(2); + h_mX_SR_kinFit->SetLineColor(kBlack); + leg_1->AddEntry(h_mX_SR_kinFit_A,Form("Predicted at m_{h}= %s GeV",mass.c_str()) , "lep"); + leg_1->AddEntry(h_mX_SR_kinFit,Form("Observed at m_{h}= %s GeV",mass.c_str()), "lep"); + leg_1->Draw(); + CMS_lumi( p_1_1, iPeriod, iPos ); + c_Background_1->SaveAs(Form("Background_SR_norm1_%s.png", mass.c_str()) ); + c_Background_1->SaveAs(Form("Background_SR_norm1_%s.pdf", mass.c_str()) ); + + //Ratio plot + TH1F *h_mX_SR_ratio=(TH1F*)h_mX_SR_kinFit_A->Clone("h_mX_SR_ratio"); + h_mX_SR_ratio->Divide(h_mX_SR_kinFit); + //Kolmogorov test + double compatibility1 = h_mX_SR_kinFit_A->KolmogorovTest(h_mX_SR_kinFit); + cout<<"The Kolmogorov compatibility is : "<Chi2Test(h_mX_SR_kinFit,"WU"); + cout<<"The Chi2 compatibility is : "<frame(); + pred1_2.plotOn(data_plot1_2, RooFit::MarkerColor(kBlue)); + RooPlot *data_plot2_2=x_2->frame(); + pred2_2.plotOn(data_plot2_2, RooFit::MarkerColor(kBlack)); + //Ratio plot variables + RooDataHist pull_2("pull_2", "Data", RooArgList(*x_2), h_mX_SR_ratio); + RooPlot* frameR = x_2->frame(); + pull_2.plotOn(frameR, RooFit::MarkerColor(kBlack)); + + double xPad = 0.3; +// TCanvas *c_Background_2=new TCanvas("c_Background_2", "c_Background_2", 700*(1.-xPad), 700); + TCanvas *c_Background_2=new TCanvas("c_Background_2", "c_Background_2", 700, 700); + c_Background_2->SetFillStyle(4000); + c_Background_2->SetFrameFillColor(0); + + TPad *p_1_2=new TPad("p_1_2", "p_1_2", 0, xPad, 1, 1); + p_1_2->SetFillStyle(4000); + p_1_2->SetFrameFillColor(0); + p_1_2->SetBottomMargin(0.02); + p_1_2->SetLeftMargin(0.15); + + + TPad* p_2 = new TPad("p_2", "p_2",0,0,1,xPad); + p_2->SetBottomMargin((1.-xPad)/xPad*0.13); + p_2->SetTopMargin(0.03); + p_2->SetLeftMargin(0.15); + p_2->SetFillColor(0); + p_2->SetBorderMode(0); + p_2->SetBorderSize(2); + p_2->SetFrameBorderMode(0); + p_2->SetFrameBorderMode(0); + + p_1_2->Draw(); + p_2->Draw(); + p_1_2->cd(); + + data_plot1_2->Draw(); + data_plot1_2->SetMaximum(0.12); + data_plot1_2->GetXaxis()->SetLabelOffset(0.05); + data_plot1_2->GetXaxis()->SetLabelFont(42); + data_plot1_2->GetYaxis()->SetLabelFont(42); + data_plot1_2->GetYaxis()->SetTitleFont(42); + data_plot1_2->GetXaxis()->SetTitleFont(42); + data_plot2_2->SetMarkerColor(kBlue); + data_plot2_2->Draw("same"); + data_plot1_2->GetYaxis()->SetTitleOffset(1.25); + data_plot1_2->SetTitle("; m_{X} (GeV); Normalized Units "); + TLegend *leg_2 = new TLegend(0.85625,0.7021654,0.3565625,0.8903839,NULL,"brNDC"); + leg_2->SetBorderSize(0); + leg_2->SetTextSize(0.025); + leg_2->SetHeader("SR Background Estimation"); + leg_2->SetLineColor(1); + leg_2->SetLineWidth(3); + leg_2->SetFillColor(0); + leg_2->SetFillStyle(0); + h_mX_SR_kinFit_A->SetMarkerColor(kBlue); + h_mX_SR_kinFit_A->SetLineWidth(2); + h_mX_SR_kinFit_A->SetLineColor(kBlue); + h_mX_SR_kinFit->SetMarkerColor(kBlack); + h_mX_SR_kinFit->SetLineWidth(2); + h_mX_SR_kinFit->SetLineColor(kBlack); + leg_2->AddEntry(h_mX_SR_kinFit,"Data in SR", "lep"); + leg_2->AddEntry(h_mX_SR_kinFit_A,"Predicted from ABCD Method", "lep"); + //leg_2->AddEntry(h_mX_SR_kinFit_A,Form("Predicted at m_{h}= %s GeV",mass.c_str()) , "lep"); + //leg_2->AddEntry(h_mX_SR_kinFit,Form("Observed at m_{h}= %s GeV",mass.c_str()), "lep"); + leg_2->Draw(); + CMS_lumi( p_1_2, iPeriod, iPos ); + + p_2->cd(); + gPad->SetGridy(1); + frameR->Draw(); + frameR->SetTitle("; m_{X} (GeV); Predicted / Observed"); + frameR->SetMaximum(2); + frameR->SetMinimum(0); + frameR->GetXaxis()->SetLabelFont(42); + frameR->GetYaxis()->SetLabelFont(42); + frameR->GetYaxis()->SetTitleFont(42); + frameR->GetXaxis()->SetTitleFont(42); + frameR->GetYaxis()->SetTitleSize(0.07); + frameR->GetYaxis()->SetTitleOffset(0.5); + frameR->GetXaxis()->SetTitleSize(0.09); + frameR->GetXaxis()->SetTitleOffset(1.0); + frameR->GetXaxis()->SetLabelSize(0.07); + frameR->GetYaxis()->SetLabelSize(0.06); + frameR->Draw(); + p_1_2->cd(); + + c_Background_2->SaveAs(Form("Background_SR_norm1_ratio_%s.png", mass.c_str()) ); + c_Background_2->SaveAs(Form("Background_SR_norm1_ratio_%s.pdf", mass.c_str()) ); + +} + + From 0c87086c4fc9edbe3759be1c7b74d9a9644a5d77 Mon Sep 17 00:00:00 2001 From: daniel Date: Fri, 22 Sep 2017 11:09:46 -0500 Subject: [PATCH 03/11] New files --- .../CMS_HH4b_1000_13TeV_asymptoticCLs.out | 41 ++++++++++++++++++ .../CMS_HH4b_1050_13TeV_asymptoticCLs.out | 40 ++++++++++++++++++ .../CMS_HH4b_1100_13TeV_asymptoticCLs.out | 40 ++++++++++++++++++ .../CMS_HH4b_1150_13TeV_asymptoticCLs.out | 39 +++++++++++++++++ .../CMS_HH4b_1200_13TeV_asymptoticCLs.out | 39 +++++++++++++++++ .../CMS_HH4b_260_13TeV_asymptoticCLs.out | 40 ++++++++++++++++++ .../CMS_HH4b_265_13TeV_asymptoticCLs.out | 40 ++++++++++++++++++ .../CMS_HH4b_270_13TeV_asymptoticCLs.out | 40 ++++++++++++++++++ .../CMS_HH4b_275_13TeV_asymptoticCLs.out | 39 +++++++++++++++++ .../CMS_HH4b_280_13TeV_asymptoticCLs.out | 41 ++++++++++++++++++ .../CMS_HH4b_285_13TeV_asymptoticCLs.out | 39 +++++++++++++++++ .../CMS_HH4b_290_13TeV_asymptoticCLs.out | 39 +++++++++++++++++ .../CMS_HH4b_295_13TeV_asymptoticCLs.out | 39 +++++++++++++++++ .../CMS_HH4b_300_13TeV_asymptoticCLs.out | 42 +++++++++++++++++++ .../CMS_HH4b_310_13TeV_asymptoticCLs.out | 40 ++++++++++++++++++ .../CMS_HH4b_320_13TeV_asymptoticCLs.out | 40 ++++++++++++++++++ .../CMS_HH4b_330_13TeV_asymptoticCLs.out | 40 ++++++++++++++++++ .../CMS_HH4b_340_13TeV_asymptoticCLs.out | 41 ++++++++++++++++++ .../CMS_HH4b_350_13TeV_asymptoticCLs.out | 41 ++++++++++++++++++ .../CMS_HH4b_360_13TeV_asymptoticCLs.out | 41 ++++++++++++++++++ .../CMS_HH4b_370_13TeV_asymptoticCLs.out | 41 ++++++++++++++++++ .../CMS_HH4b_380_13TeV_asymptoticCLs.out | 41 ++++++++++++++++++ .../CMS_HH4b_390_13TeV_asymptoticCLs.out | 41 ++++++++++++++++++ .../CMS_HH4b_400_13TeV_asymptoticCLs.out | 41 ++++++++++++++++++ .../CMS_HH4b_410_13TeV_asymptoticCLs.out | 41 ++++++++++++++++++ .../CMS_HH4b_420_13TeV_asymptoticCLs.out | 42 +++++++++++++++++++ .../CMS_HH4b_430_13TeV_asymptoticCLs.out | 42 +++++++++++++++++++ .../CMS_HH4b_440_13TeV_asymptoticCLs.out | 41 ++++++++++++++++++ .../CMS_HH4b_450_13TeV_asymptoticCLs.out | 41 ++++++++++++++++++ .../CMS_HH4b_460_13TeV_asymptoticCLs.out | 40 ++++++++++++++++++ .../CMS_HH4b_470_13TeV_asymptoticCLs.out | 41 ++++++++++++++++++ .../CMS_HH4b_480_13TeV_asymptoticCLs.out | 41 ++++++++++++++++++ .../CMS_HH4b_490_13TeV_asymptoticCLs.out | 42 +++++++++++++++++++ .../CMS_HH4b_500_13TeV_asymptoticCLs.out | 41 ++++++++++++++++++ .../CMS_HH4b_510_13TeV_asymptoticCLs.out | 42 +++++++++++++++++++ .../CMS_HH4b_520_13TeV_asymptoticCLs.out | 42 +++++++++++++++++++ .../CMS_HH4b_530_13TeV_asymptoticCLs.out | 42 +++++++++++++++++++ .../CMS_HH4b_540_13TeV_asymptoticCLs.out | 42 +++++++++++++++++++ .../CMS_HH4b_550_13TeV_asymptoticCLs.out | 40 ++++++++++++++++++ .../CMS_HH4b_570_13TeV_asymptoticCLs.out | 38 +++++++++++++++++ .../CMS_HH4b_600_13TeV_asymptoticCLs.out | 42 +++++++++++++++++++ .../CMS_HH4b_620_13TeV_asymptoticCLs.out | 39 +++++++++++++++++ .../CMS_HH4b_650_13TeV_asymptoticCLs.out | 41 ++++++++++++++++++ .../CMS_HH4b_670_13TeV_asymptoticCLs.out | 41 ++++++++++++++++++ .../CMS_HH4b_700_13TeV_asymptoticCLs.out | 40 ++++++++++++++++++ .../CMS_HH4b_720_13TeV_asymptoticCLs.out | 39 +++++++++++++++++ .../CMS_HH4b_750_13TeV_asymptoticCLs.out | 38 +++++++++++++++++ .../CMS_HH4b_770_13TeV_asymptoticCLs.out | 39 +++++++++++++++++ .../CMS_HH4b_800_13TeV_asymptoticCLs.out | 39 +++++++++++++++++ .../CMS_HH4b_820_13TeV_asymptoticCLs.out | 39 +++++++++++++++++ .../CMS_HH4b_840_13TeV_asymptoticCLs.out | 41 ++++++++++++++++++ .../CMS_HH4b_860_13TeV_asymptoticCLs.out | 39 +++++++++++++++++ .../CMS_HH4b_880_13TeV_asymptoticCLs.out | 39 +++++++++++++++++ .../CMS_HH4b_900_13TeV_asymptoticCLs.out | 39 +++++++++++++++++ .../CMS_HH4b_920_13TeV_asymptoticCLs.out | 39 +++++++++++++++++ .../CMS_HH4b_940_13TeV_asymptoticCLs.out | 39 +++++++++++++++++ .../CMS_HH4b_960_13TeV_asymptoticCLs.out | 39 +++++++++++++++++ .../CMS_HH4b_980_13TeV_asymptoticCLs.out | 37 ++++++++++++++++ .../CMS_HH4b_1000_13TeV_asymptoticCLs.out | 41 ++++++++++++++++++ .../CMS_HH4b_1050_13TeV_asymptoticCLs.out | 40 ++++++++++++++++++ .../CMS_HH4b_1100_13TeV_asymptoticCLs.out | 39 +++++++++++++++++ .../CMS_HH4b_1150_13TeV_asymptoticCLs.out | 38 +++++++++++++++++ .../CMS_HH4b_1200_13TeV_asymptoticCLs.out | 39 +++++++++++++++++ .../CMS_HH4b_260_13TeV_asymptoticCLs.out | 42 +++++++++++++++++++ .../CMS_HH4b_265_13TeV_asymptoticCLs.out | 40 ++++++++++++++++++ .../CMS_HH4b_270_13TeV_asymptoticCLs.out | 39 +++++++++++++++++ .../CMS_HH4b_275_13TeV_asymptoticCLs.out | 39 +++++++++++++++++ .../CMS_HH4b_280_13TeV_asymptoticCLs.out | 41 ++++++++++++++++++ .../CMS_HH4b_285_13TeV_asymptoticCLs.out | 39 +++++++++++++++++ .../CMS_HH4b_290_13TeV_asymptoticCLs.out | 38 +++++++++++++++++ .../CMS_HH4b_295_13TeV_asymptoticCLs.out | 39 +++++++++++++++++ .../CMS_HH4b_300_13TeV_asymptoticCLs.out | 42 +++++++++++++++++++ .../CMS_HH4b_310_13TeV_asymptoticCLs.out | 39 +++++++++++++++++ .../CMS_HH4b_320_13TeV_asymptoticCLs.out | 41 ++++++++++++++++++ .../CMS_HH4b_330_13TeV_asymptoticCLs.out | 42 +++++++++++++++++++ .../CMS_HH4b_340_13TeV_asymptoticCLs.out | 42 +++++++++++++++++++ .../CMS_HH4b_350_13TeV_asymptoticCLs.out | 41 ++++++++++++++++++ .../CMS_HH4b_360_13TeV_asymptoticCLs.out | 41 ++++++++++++++++++ .../CMS_HH4b_370_13TeV_asymptoticCLs.out | 40 ++++++++++++++++++ .../CMS_HH4b_380_13TeV_asymptoticCLs.out | 42 +++++++++++++++++++ .../CMS_HH4b_390_13TeV_asymptoticCLs.out | 42 +++++++++++++++++++ .../CMS_HH4b_400_13TeV_asymptoticCLs.out | 42 +++++++++++++++++++ .../CMS_HH4b_410_13TeV_asymptoticCLs.out | 42 +++++++++++++++++++ .../CMS_HH4b_420_13TeV_asymptoticCLs.out | 42 +++++++++++++++++++ .../CMS_HH4b_430_13TeV_asymptoticCLs.out | 42 +++++++++++++++++++ .../CMS_HH4b_440_13TeV_asymptoticCLs.out | 42 +++++++++++++++++++ .../CMS_HH4b_450_13TeV_asymptoticCLs.out | 41 ++++++++++++++++++ .../CMS_HH4b_460_13TeV_asymptoticCLs.out | 41 ++++++++++++++++++ .../CMS_HH4b_470_13TeV_asymptoticCLs.out | 41 ++++++++++++++++++ .../CMS_HH4b_480_13TeV_asymptoticCLs.out | 41 ++++++++++++++++++ .../CMS_HH4b_490_13TeV_asymptoticCLs.out | 42 +++++++++++++++++++ .../CMS_HH4b_500_13TeV_asymptoticCLs.out | 42 +++++++++++++++++++ .../CMS_HH4b_510_13TeV_asymptoticCLs.out | 42 +++++++++++++++++++ .../CMS_HH4b_520_13TeV_asymptoticCLs.out | 42 +++++++++++++++++++ .../CMS_HH4b_530_13TeV_asymptoticCLs.out | 42 +++++++++++++++++++ .../CMS_HH4b_540_13TeV_asymptoticCLs.out | 42 +++++++++++++++++++ .../CMS_HH4b_550_13TeV_asymptoticCLs.out | 40 ++++++++++++++++++ .../CMS_HH4b_570_13TeV_asymptoticCLs.out | 39 +++++++++++++++++ .../CMS_HH4b_600_13TeV_asymptoticCLs.out | 42 +++++++++++++++++++ .../CMS_HH4b_620_13TeV_asymptoticCLs.out | 39 +++++++++++++++++ .../CMS_HH4b_650_13TeV_asymptoticCLs.out | 41 ++++++++++++++++++ .../CMS_HH4b_670_13TeV_asymptoticCLs.out | 40 ++++++++++++++++++ .../CMS_HH4b_700_13TeV_asymptoticCLs.out | 40 ++++++++++++++++++ .../CMS_HH4b_720_13TeV_asymptoticCLs.out | 39 +++++++++++++++++ .../CMS_HH4b_750_13TeV_asymptoticCLs.out | 38 +++++++++++++++++ .../CMS_HH4b_770_13TeV_asymptoticCLs.out | 38 +++++++++++++++++ .../CMS_HH4b_800_13TeV_asymptoticCLs.out | 39 +++++++++++++++++ .../CMS_HH4b_820_13TeV_asymptoticCLs.out | 39 +++++++++++++++++ .../CMS_HH4b_840_13TeV_asymptoticCLs.out | 41 ++++++++++++++++++ .../CMS_HH4b_860_13TeV_asymptoticCLs.out | 39 +++++++++++++++++ .../CMS_HH4b_880_13TeV_asymptoticCLs.out | 40 ++++++++++++++++++ .../CMS_HH4b_900_13TeV_asymptoticCLs.out | 39 +++++++++++++++++ .../CMS_HH4b_920_13TeV_asymptoticCLs.out | 39 +++++++++++++++++ .../CMS_HH4b_940_13TeV_asymptoticCLs.out | 38 +++++++++++++++++ .../CMS_HH4b_960_13TeV_asymptoticCLs.out | 39 +++++++++++++++++ .../CMS_HH4b_980_13TeV_asymptoticCLs.out | 38 +++++++++++++++++ 116 files changed, 4671 insertions(+) create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_1000_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_1050_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_1100_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_1150_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_1200_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_260_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_265_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_270_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_275_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_280_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_285_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_290_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_295_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_300_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_310_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_320_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_330_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_340_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_350_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_360_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_370_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_380_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_390_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_400_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_410_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_420_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_430_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_440_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_450_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_460_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_470_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_480_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_490_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_500_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_510_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_520_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_530_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_540_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_550_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_570_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_600_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_620_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_650_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_670_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_700_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_720_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_750_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_770_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_800_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_820_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_840_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_860_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_880_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_900_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_920_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_940_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_960_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_980_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_1000_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_1050_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_1100_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_1150_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_1200_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_260_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_265_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_270_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_275_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_280_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_285_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_290_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_295_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_300_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_310_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_320_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_330_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_340_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_350_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_360_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_370_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_380_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_390_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_400_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_410_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_420_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_430_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_440_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_450_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_460_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_470_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_480_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_490_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_500_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_510_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_520_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_530_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_540_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_550_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_570_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_600_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_620_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_650_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_670_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_700_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_720_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_750_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_770_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_800_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_820_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_840_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_860_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_880_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_900_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_920_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_940_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_960_13TeV_asymptoticCLs.out create mode 100644 PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_980_13TeV_asymptoticCLs.out diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_1000_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_1000_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..96905d7 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_1000_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 7.09375 +Sigma for expected limits: 3.61933 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -0.210642 (r = 0.139019) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.230908 (r = 0.00714918) +At r = 41.734895: q_mu = 63.05196 q_A = 62.18544 CLsb = 0.00000 CLb = 0.47809 CLs = 0.00000 +At r = 20.936957: q_mu = 24.26738 q_A = 23.98776 CLsb = 0.00000 CLb = 0.48861 CLs = 0.00000 +At r = 10.537988: q_mu = 7.80862 q_A = 7.80020 CLsb = 0.00260 CLb = 0.49940 CLs = 0.00521 +At r = 5.338503: q_mu = 2.20503 q_A = 2.26213 CLsb = 0.06878 CLb = 0.50762 CLs = 0.13550 +At r = 7.938245: q_mu = 4.67631 q_A = 4.71128 CLsb = 0.01529 CLb = 0.50322 CLs = 0.03039 +At r = 6.725412: q_mu = 3.43071 q_A = 3.47923 CLsb = 0.03200 CLb = 0.50521 CLs = 0.06333 +At r = 7.280294: q_mu = 3.98157 q_A = 4.02449 CLsb = 0.02300 CLb = 0.50428 CLs = 0.04561 +At r = 7.045072: q_mu = 3.74400 q_A = 3.78942 CLsb = 0.02650 CLb = 0.50467 CLs = 0.05251 +At r = 7.157499: q_mu = 3.85682 q_A = 3.90107 CLsb = 0.02477 CLb = 0.50448 CLs = 0.04910 +At r = 7.110742: q_mu = 3.80973 q_A = 3.85447 CLsb = 0.02548 CLb = 0.50456 CLs = 0.05050 +At r = 7.133290: q_mu = 3.83241 q_A = 3.87691 CLsb = 0.02514 CLb = 0.50452 CLs = 0.04982 + + -- Asymptotic -- +Observed Limit: r < 7.1333 +Expected 2.5%: r < 3.6993 +Expected 16.0%: r < 5.0120 +Expected 50.0%: r < 7.0938 +Expected 84.0%: r < 10.2324 +Expected 97.5%: r < 14.2629 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_1050_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_1050_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..f97f215 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_1050_13TeV_asymptoticCLs.out @@ -0,0 +1,40 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 7.28125 +Sigma for expected limits: 3.71499 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -0.923115 (r = 5.70768e-07) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.260797 (r = 9.28604e-06) +At r = 4.166657: q_mu = 4.05042 q_A = 1.34698 CLsb = 0.01003 CLb = 0.12207 CLs = 0.08215 +At r = 8.333314: q_mu = 9.82967 q_A = 4.87999 CLsb = 0.00044 CLb = 0.13129 CLs = 0.00331 +At r = 4.166657: q_mu = 4.05043 q_A = 1.34698 CLsb = 0.01003 CLb = 0.12207 CLs = 0.08215 +At r = 6.249985: q_mu = 6.77122 q_A = 2.88843 CLsb = 0.00224 CLb = 0.12666 CLs = 0.01771 +At r = 5.122572: q_mu = 5.25147 q_A = 1.99251 CLsb = 0.00514 CLb = 0.12417 CLs = 0.04143 +At r = 4.721405: q_mu = 4.73759 q_A = 1.70891 CLsb = 0.00684 CLb = 0.12335 CLs = 0.05544 +At r = 4.915404: q_mu = 4.98412 q_A = 1.84349 CLsb = 0.00596 CLb = 0.12373 CLs = 0.04820 +At r = 4.835882: q_mu = 4.88260 q_A = 1.78768 CLsb = 0.00631 CLb = 0.12356 CLs = 0.05105 +At r = 4.874834: q_mu = 4.93224 q_A = 1.81490 CLsb = 0.00614 CLb = 0.12364 CLs = 0.04964 +At r = 4.858967: q_mu = 4.91199 q_A = 1.80377 CLsb = 0.00621 CLb = 0.12360 CLs = 0.05021 + + -- Asymptotic -- +Observed Limit: r < 4.8590 +Expected 2.5%: r < 3.7971 +Expected 16.0%: r < 5.1445 +Expected 50.0%: r < 7.2812 +Expected 84.0%: r < 10.5609 +Expected 97.5%: r < 14.7678 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_1100_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_1100_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..ce37002 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_1100_13TeV_asymptoticCLs.out @@ -0,0 +1,40 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +WARNING: Best fit of asimov dataset is at r = 0.046226 (0.002311 times rMax), while it should be at zero +Median for expected limits: 7.96875 +Sigma for expected limits: 4.06576 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -0.699386 (r = 4.785e-06) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.282978 (r = 0.000126511) +At r = 6.305859: q_mu = 4.91496 q_A = 2.48968 CLsb = 0.00948 CLb = 0.22109 CLs = 0.04287 +At r = 3.152932: q_mu = 1.97023 q_A = 0.65776 CLsb = 0.05260 CLb = 0.20921 CLs = 0.25141 +At r = 4.729396: q_mu = 3.33806 q_A = 1.44455 CLsb = 0.02332 CLb = 0.21543 CLs = 0.10823 +At r = 5.781037: q_mu = 4.36872 q_A = 2.11515 CLsb = 0.01290 CLb = 0.21924 CLs = 0.05885 +At r = 5.997030: q_mu = 4.59164 q_A = 2.26677 CLsb = 0.01137 CLb = 0.22003 CLs = 0.05169 +At r = 6.102670: q_mu = 4.70108 q_A = 2.34166 CLsb = 0.01069 CLb = 0.22037 CLs = 0.04851 +At r = 6.041295: q_mu = 4.63713 q_A = 2.29776 CLsb = 0.01108 CLb = 0.22016 CLs = 0.05034 +At r = 6.062658: q_mu = 4.65934 q_A = 2.31298 CLsb = 0.01095 CLb = 0.22024 CLs = 0.04970 +At r = 6.050399: q_mu = 4.64658 q_A = 2.30423 CLsb = 0.01102 CLb = 0.22019 CLs = 0.05007 + + -- Asymptotic -- +Observed Limit: r < 6.0504 +Expected 2.5%: r < 4.1556 +Expected 16.0%: r < 5.6004 +Expected 50.0%: r < 7.9688 +Expected 84.0%: r < 11.5581 +Expected 97.5%: r < 16.1622 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_1150_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_1150_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..d7ec204 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_1150_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +WARNING: Best fit of asimov dataset is at r = 0.046073 (0.002304 times rMax), while it should be at zero +Median for expected limits: 7.03125 +Sigma for expected limits: 3.58744 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -0.524391 (r = 4.4283) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.359387 (r = 0.0580577) +At r = 14.484961: q_mu = 6.85388 q_A = 13.53639 CLsb = 0.00442 CLb = 0.85570 CLs = 0.00517 +At r = 9.456628: q_mu = 1.95839 q_A = 6.53765 CLsb = 0.08084 CLb = 0.87646 CLs = 0.09224 +At r = 11.970794: q_mu = 4.12206 q_A = 9.84446 CLsb = 0.02116 CLb = 0.86592 CLs = 0.02444 +At r = 10.886819: q_mu = 3.11086 q_A = 8.36497 CLsb = 0.03889 CLb = 0.87044 CLs = 0.04467 +At r = 10.423028: q_mu = 2.71332 q_A = 7.75594 CLsb = 0.04976 CLb = 0.87238 CLs = 0.05704 +At r = 10.622991: q_mu = 2.88247 q_A = 8.01700 CLsb = 0.04477 CLb = 0.87153 CLs = 0.05137 +At r = 10.716709: q_mu = 2.96250 q_A = 8.14059 CLsb = 0.04261 CLb = 0.87118 CLs = 0.04891 +At r = 10.664322: q_mu = 2.91745 q_A = 8.07138 CLsb = 0.04381 CLb = 0.87138 CLs = 0.05028 + + -- Asymptotic -- +Observed Limit: r < 10.6643 +Expected 2.5%: r < 3.6942 +Expected 16.0%: r < 4.9847 +Expected 50.0%: r < 7.0312 +Expected 84.0%: r < 10.1422 +Expected 97.5%: r < 14.2251 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_1200_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_1200_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..861aaf3 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_1200_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 5.54688 +Sigma for expected limits: 2.83009 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -0.219765 (r = 1.94582) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.472313 (r = 0.0146962) +At r = 10.114858: q_mu = 6.32488 q_A = 10.70003 CLsb = 0.00595 CLb = 0.77522 CLs = 0.00768 +At r = 6.030339: q_mu = 1.81889 q_A = 4.44885 CLsb = 0.08872 CLb = 0.77654 CLs = 0.11425 +At r = 8.072599: q_mu = 3.81543 q_A = 7.36517 CLsb = 0.02539 CLb = 0.77654 CLs = 0.03270 +At r = 7.109518: q_mu = 2.80147 q_A = 5.92936 CLsb = 0.04709 CLb = 0.77675 CLs = 0.06062 +At r = 7.542558: q_mu = 3.24240 q_A = 6.56261 CLsb = 0.03588 CLb = 0.77670 CLs = 0.04619 +At r = 7.355017: q_mu = 3.04878 q_A = 6.28610 CLsb = 0.04040 CLb = 0.77671 CLs = 0.05201 +At r = 7.442421: q_mu = 3.13836 q_A = 6.41443 CLsb = 0.03824 CLb = 0.77671 CLs = 0.04923 +At r = 7.405154: q_mu = 3.09998 q_A = 6.35957 CLsb = 0.03915 CLb = 0.77671 CLs = 0.05040 +At r = 7.422703: q_mu = 3.11800 q_A = 6.38536 CLsb = 0.03872 CLb = 0.77671 CLs = 0.04985 + + -- Asymptotic -- +Observed Limit: r < 7.4227 +Expected 2.5%: r < 2.8709 +Expected 16.0%: r < 3.8849 +Expected 50.0%: r < 5.5469 +Expected 84.0%: r < 8.0895 +Expected 97.5%: r < 11.4840 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_260_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_260_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..bac0459 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_260_13TeV_asymptoticCLs.out @@ -0,0 +1,40 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.941406 +Sigma for expected limits: 0.480318 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -3.98144 (r = 1.01987e-07) + +Make global fit of asimov data +NLL at global minimum of asimov: -11.5356 (r = 1.63924e-06) +At r = 3.815762: q_mu = 40.41295 q_A = 39.63963 CLsb = 0.00000 CLb = 0.47551 CLs = 0.00000 +At r = 1.907881: q_mu = 13.92126 q_A = 13.44666 CLsb = 0.00010 CLb = 0.47420 CLs = 0.00020 +At r = 0.953940: q_mu = 4.21011 q_A = 3.94994 CLsb = 0.02004 CLb = 0.47391 CLs = 0.04229 +At r = 0.476970: q_mu = 1.24105 q_A = 1.10706 CLsb = 0.13224 CLb = 0.47461 CLs = 0.27864 +At r = 0.715455: q_mu = 2.52945 q_A = 2.33101 CLsb = 0.05572 CLb = 0.47409 CLs = 0.11753 +At r = 0.874982: q_mu = 3.61309 q_A = 3.37302 CLsb = 0.02859 CLb = 0.47394 CLs = 0.06032 +At r = 0.908362: q_mu = 3.86076 q_A = 3.61215 CLsb = 0.02465 CLb = 0.47393 CLs = 0.05201 +At r = 0.924435: q_mu = 3.98250 q_A = 3.72980 CLsb = 0.02293 CLb = 0.47392 CLs = 0.04838 +At r = 0.915378: q_mu = 3.91370 q_A = 3.66331 CLsb = 0.02389 CLb = 0.47392 CLs = 0.05040 +At r = 0.918606: q_mu = 3.93815 q_A = 3.68694 CLsb = 0.02354 CLb = 0.47392 CLs = 0.04967 + + -- Asymptotic -- +Observed Limit: r < 0.9186 +Expected 2.5%: r < 0.4836 +Expected 16.0%: r < 0.6570 +Expected 50.0%: r < 0.9414 +Expected 84.0%: r < 1.3504 +Expected 97.5%: r < 1.8762 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_265_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_265_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..2a0ef36 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_265_13TeV_asymptoticCLs.out @@ -0,0 +1,40 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.949219 +Sigma for expected limits: 0.484304 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -10.5756 (r = 2.44211e-09) + +Make global fit of asimov data +NLL at global minimum of asimov: -10.3454 (r = 2.4003e-12) +At r = 1.200000: q_mu = 14.74283 q_A = 5.85419 CLsb = 0.00001 CLb = 0.03312 CLs = 0.00031 +At r = 0.600000: q_mu = 6.43905 q_A = 1.71955 CLsb = 0.00093 CLb = 0.03597 CLs = 0.02593 +At r = 0.300000: q_mu = 2.94263 q_A = 0.52843 CLsb = 0.00848 CLb = 0.04840 CLs = 0.17524 +At r = 0.450000: q_mu = 4.62700 q_A = 1.04405 CLsb = 0.00276 CLb = 0.03978 CLs = 0.06937 +At r = 0.519940: q_mu = 5.45670 q_A = 1.33956 CLsb = 0.00166 CLb = 0.03765 CLs = 0.04415 +At r = 0.490546: q_mu = 5.10468 q_A = 1.21118 CLsb = 0.00206 CLb = 0.03845 CLs = 0.05346 +At r = 0.504654: q_mu = 5.27305 q_A = 1.27204 CLsb = 0.00186 CLb = 0.03805 CLs = 0.04878 +At r = 0.498800: q_mu = 5.20305 q_A = 1.24661 CLsb = 0.00194 CLb = 0.03822 CLs = 0.05068 +At r = 0.501627: q_mu = 5.23682 q_A = 1.25886 CLsb = 0.00190 CLb = 0.03814 CLs = 0.04976 +At r = 0.500457: q_mu = 5.22284 q_A = 1.25378 CLsb = 0.00191 CLb = 0.03817 CLs = 0.05013 + + -- Asymptotic -- +Observed Limit: r < 0.5005 +Expected 2.5%: r < 0.4728 +Expected 16.0%: r < 0.6533 +Expected 50.0%: r < 0.9492 +Expected 84.0%: r < 1.3692 +Expected 97.5%: r < 1.9085 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_270_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_270_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..9321f7c --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_270_13TeV_asymptoticCLs.out @@ -0,0 +1,40 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.957031 +Sigma for expected limits: 0.48829 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -8.95873 (r = 3.63878e-08) + +Make global fit of asimov data +NLL at global minimum of asimov: -9.40166 (r = 3.46667e-11) +At r = 1.200000: q_mu = 13.80277 q_A = 5.70187 CLsb = 0.00002 CLb = 0.04492 CLs = 0.00049 +At r = 0.600000: q_mu = 5.99297 q_A = 1.72496 CLsb = 0.00165 CLb = 0.05210 CLs = 0.03168 +At r = 0.300000: q_mu = 2.73229 q_A = 0.55612 CLsb = 0.01373 CLb = 0.07227 CLs = 0.19003 +At r = 0.450000: q_mu = 4.30106 q_A = 1.06642 CLsb = 0.00468 CLb = 0.05866 CLs = 0.07974 +At r = 0.510679: q_mu = 4.97118 q_A = 1.31530 CLsb = 0.00307 CLb = 0.05548 CLs = 0.05524 +At r = 0.541362: q_mu = 5.31752 q_A = 1.45026 CLsb = 0.00248 CLb = 0.05418 CLs = 0.04574 +At r = 0.523640: q_mu = 5.11688 q_A = 1.37157 CLsb = 0.00280 CLb = 0.05491 CLs = 0.05102 +At r = 0.529806: q_mu = 5.18649 q_A = 1.39871 CLsb = 0.00268 CLb = 0.05465 CLs = 0.04912 +At r = 0.526268: q_mu = 5.14652 q_A = 1.38310 CLsb = 0.00275 CLb = 0.05480 CLs = 0.05020 +At r = 0.527502: q_mu = 5.16045 q_A = 1.38854 CLsb = 0.00273 CLb = 0.05475 CLs = 0.04982 + + -- Asymptotic -- +Observed Limit: r < 0.5275 +Expected 2.5%: r < 0.4654 +Expected 16.0%: r < 0.6555 +Expected 50.0%: r < 0.9570 +Expected 84.0%: r < 1.3957 +Expected 97.5%: r < 1.9459 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_275_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_275_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..2aba9f9 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_275_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.847656 +Sigma for expected limits: 0.432486 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -7.28357 (r = 9.4083e-08) + +Make global fit of asimov data +NLL at global minimum of asimov: -11.6216 (r = 2.5402e-10) +At r = 1.200000: q_mu = 10.61601 q_A = 7.08703 CLsb = 0.00044 CLb = 0.25373 CLs = 0.00174 +At r = 0.600000: q_mu = 3.97623 q_A = 2.12344 CLsb = 0.01818 CLb = 0.26247 CLs = 0.06925 +At r = 0.900000: q_mu = 7.01163 q_A = 4.29266 CLsb = 0.00319 CLb = 0.25586 CLs = 0.01245 +At r = 0.750000: q_mu = 5.41646 q_A = 3.12399 CLsb = 0.00785 CLb = 0.25833 CLs = 0.03037 +At r = 0.677427: q_mu = 4.69954 q_A = 2.61822 CLsb = 0.01187 CLb = 0.26007 CLs = 0.04565 +At r = 0.648419: q_mu = 4.42342 q_A = 2.42734 CLsb = 0.01395 CLb = 0.26089 CLs = 0.05348 +At r = 0.664093: q_mu = 4.57185 q_A = 2.52966 CLsb = 0.01279 CLb = 0.26044 CLs = 0.04911 +At r = 0.658330: q_mu = 4.51706 q_A = 2.49181 CLsb = 0.01321 CLb = 0.26060 CLs = 0.05068 +At r = 0.661472: q_mu = 4.54691 q_A = 2.51242 CLsb = 0.01298 CLb = 0.26051 CLs = 0.04982 + + -- Asymptotic -- +Observed Limit: r < 0.6615 +Expected 2.5%: r < 0.4122 +Expected 16.0%: r < 0.5806 +Expected 50.0%: r < 0.8477 +Expected 84.0%: r < 1.2295 +Expected 97.5%: r < 1.7192 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_280_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_280_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..b73ee20 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_280_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.759766 +Sigma for expected limits: 0.387643 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -4.82875 (r = 0.0183068) + +Make global fit of asimov data +NLL at global minimum of asimov: -13.3071 (r = 8.92511e-07) +At r = 5.417510: q_mu = 83.02110 q_A = 85.73804 CLsb = 0.00000 CLb = 0.55879 CLs = 0.00000 +At r = 2.717909: q_mu = 31.07922 q_A = 32.96097 CLsb = 0.00000 CLb = 0.56604 CLs = 0.00000 +At r = 1.368108: q_mu = 9.64842 q_A = 10.72410 CLsb = 0.00095 CLb = 0.56694 CLs = 0.00167 +At r = 0.693207: q_mu = 2.62177 q_A = 3.26497 CLsb = 0.05270 CLb = 0.57446 CLs = 0.09174 +At r = 1.030657: q_mu = 5.67839 q_A = 6.59770 CLsb = 0.00859 CLb = 0.57364 CLs = 0.01497 +At r = 0.861932: q_mu = 4.02342 q_A = 4.80823 CLsb = 0.02244 CLb = 0.57414 CLs = 0.03908 +At r = 0.789208: q_mu = 3.38676 q_A = 4.11139 CLsb = 0.03286 CLb = 0.57430 CLs = 0.05722 +At r = 0.824329: q_mu = 3.68821 q_A = 4.44207 CLsb = 0.02740 CLb = 0.57423 CLs = 0.04771 +At r = 0.810068: q_mu = 3.56444 q_A = 4.30647 CLsb = 0.02951 CLb = 0.57426 CLs = 0.05140 +At r = 0.817147: q_mu = 3.62565 q_A = 4.37356 CLsb = 0.02845 CLb = 0.57424 CLs = 0.04954 +At r = 0.814307: q_mu = 3.60103 q_A = 4.34658 CLsb = 0.02887 CLb = 0.57425 CLs = 0.05028 + + -- Asymptotic -- +Observed Limit: r < 0.8143 +Expected 2.5%: r < 0.3784 +Expected 16.0%: r < 0.5259 +Expected 50.0%: r < 0.7598 +Expected 84.0%: r < 1.1020 +Expected 97.5%: r < 1.5315 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_285_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_285_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..28847f0 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_285_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.767578 +Sigma for expected limits: 0.391629 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -2.58834 (r = 0.188998) + +Make global fit of asimov data +NLL at global minimum of asimov: -12.9769 (r = 3.76e-07) +At r = 1.388998: q_mu = 7.35806 q_A = 10.96599 CLsb = 0.00334 CLb = 0.72539 CLs = 0.00460 +At r = 0.788998: q_mu = 2.03048 q_A = 4.04634 CLsb = 0.07709 CLb = 0.72126 CLs = 0.10688 +At r = 1.088998: q_mu = 4.41094 q_A = 7.17140 CLsb = 0.01785 CLb = 0.71827 CLs = 0.02486 +At r = 0.913999: q_mu = 2.92396 q_A = 5.25823 CLsb = 0.04364 CLb = 0.72010 CLs = 0.06060 +At r = 0.979202: q_mu = 3.44696 q_A = 5.94272 CLsb = 0.03168 CLb = 0.71944 CLs = 0.04404 +At r = 0.945419: q_mu = 3.17124 q_A = 5.58373 CLsb = 0.03747 CLb = 0.71978 CLs = 0.05206 +At r = 0.958701: q_mu = 3.27844 q_A = 5.72377 CLsb = 0.03510 CLb = 0.71965 CLs = 0.04877 +At r = 0.951993: q_mu = 3.22411 q_A = 5.65287 CLsb = 0.03628 CLb = 0.71972 CLs = 0.05041 +At r = 0.954660: q_mu = 3.24566 q_A = 5.68101 CLsb = 0.03581 CLb = 0.71969 CLs = 0.04975 + + -- Asymptotic -- +Observed Limit: r < 0.9547 +Expected 2.5%: r < 0.3823 +Expected 16.0%: r < 0.5313 +Expected 50.0%: r < 0.7676 +Expected 84.0%: r < 1.1072 +Expected 97.5%: r < 1.5433 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_290_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_290_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..273f69b --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_290_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.662109 +Sigma for expected limits: 0.337817 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -6.19863 (r = 0.187474) + +Make global fit of asimov data +NLL at global minimum of asimov: -17.4402 (r = 3.94981e-08) +At r = 1.387474: q_mu = 10.32627 q_A = 14.38328 CLsb = 0.00066 CLb = 0.71873 CLs = 0.00091 +At r = 0.787474: q_mu = 2.86660 q_A = 5.28113 CLsb = 0.04522 CLb = 0.72740 CLs = 0.06216 +At r = 1.087474: q_mu = 6.13869 q_A = 9.42394 CLsb = 0.00661 CLb = 0.72314 CLs = 0.00914 +At r = 0.937474: q_mu = 4.37368 q_A = 7.23627 CLsb = 0.01825 CLb = 0.72531 CLs = 0.02516 +At r = 0.846363: q_mu = 3.42559 q_A = 6.01905 CLsb = 0.03210 CLb = 0.72659 CLs = 0.04417 +At r = 0.817502: q_mu = 3.14619 q_A = 5.65245 CLsb = 0.03805 CLb = 0.72699 CLs = 0.05234 +At r = 0.829504: q_mu = 3.26112 q_A = 5.80376 CLsb = 0.03547 CLb = 0.72683 CLs = 0.04880 +At r = 0.823778: q_mu = 3.20606 q_A = 5.73136 CLsb = 0.03668 CLb = 0.72690 CLs = 0.05046 +At r = 0.826187: q_mu = 3.22918 q_A = 5.76178 CLsb = 0.03617 CLb = 0.72687 CLs = 0.04976 + + -- Asymptotic -- +Observed Limit: r < 0.8262 +Expected 2.5%: r < 0.3401 +Expected 16.0%: r < 0.4646 +Expected 50.0%: r < 0.6621 +Expected 84.0%: r < 0.9498 +Expected 97.5%: r < 1.3112 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_295_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_295_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..0350775 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_295_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.634766 +Sigma for expected limits: 0.323866 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -8.84584 (r = 0.131915) + +Make global fit of asimov data +NLL at global minimum of asimov: -19.6726 (r = 2.61659e-06) +At r = 1.331915: q_mu = 11.21539 q_A = 14.39851 CLsb = 0.00041 CLb = 0.67206 CLs = 0.00060 +At r = 0.731915: q_mu = 3.12763 q_A = 4.98601 CLsb = 0.03849 CLb = 0.67883 CLs = 0.05670 +At r = 1.031915: q_mu = 6.68558 q_A = 9.24710 CLsb = 0.00486 CLb = 0.67554 CLs = 0.00719 +At r = 0.881915: q_mu = 4.76841 q_A = 6.98880 CLsb = 0.01449 CLb = 0.67723 CLs = 0.02140 +At r = 0.777397: q_mu = 3.59386 q_A = 5.56421 CLsb = 0.02900 CLb = 0.67836 CLs = 0.04275 +At r = 0.757204: q_mu = 3.38339 q_A = 5.30426 CLsb = 0.03293 CLb = 0.67857 CLs = 0.04853 +At r = 0.748256: q_mu = 3.29190 q_A = 5.19072 CLsb = 0.03481 CLb = 0.67866 CLs = 0.05129 +At r = 0.753343: q_mu = 3.34378 q_A = 5.25514 CLsb = 0.03373 CLb = 0.67861 CLs = 0.04970 +At r = 0.751559: q_mu = 3.32554 q_A = 5.23251 CLsb = 0.03411 CLb = 0.67863 CLs = 0.05026 + + -- Asymptotic -- +Observed Limit: r < 0.7516 +Expected 2.5%: r < 0.3261 +Expected 16.0%: r < 0.4454 +Expected 50.0%: r < 0.6348 +Expected 84.0%: r < 0.9106 +Expected 97.5%: r < 1.2571 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_300_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_300_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..b723a09 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_300_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.630859 +Sigma for expected limits: 0.321873 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -12.6307 (r = 1.27551e-05) + +Make global fit of asimov data +NLL at global minimum of asimov: -20.8714 (r = 1.04983e-07) +At r = 9.410069: q_mu = 192.47908 q_A = 192.65150 CLsb = 0.00000 CLb = 0.50248 CLs = 0.00000 +At r = 4.705041: q_mu = 92.39414 q_A = 92.03090 CLsb = 0.00000 CLb = 0.49245 CLs = 0.00000 +At r = 2.352527: q_mu = 36.70961 q_A = 36.51249 CLsb = 0.00000 CLb = 0.49349 CLs = 0.00000 +At r = 1.176270: q_mu = 11.92018 q_A = 11.87942 CLsb = 0.00028 CLb = 0.49764 CLs = 0.00056 +At r = 0.588141: q_mu = 3.38696 q_A = 3.36206 CLsb = 0.03286 CLb = 0.49729 CLs = 0.06607 +At r = 0.882206: q_mu = 7.15155 q_A = 7.11776 CLsb = 0.00374 CLb = 0.49747 CLs = 0.00753 +At r = 0.735173: q_mu = 5.12581 q_A = 5.09621 CLsb = 0.01179 CLb = 0.49738 CLs = 0.02370 +At r = 0.649517: q_mu = 4.07554 q_A = 4.04861 CLsb = 0.02175 CLb = 0.49733 CLs = 0.04374 +At r = 0.621320: q_mu = 3.75235 q_A = 3.72634 CLsb = 0.02637 CLb = 0.49731 CLs = 0.05302 +At r = 0.633831: q_mu = 3.89433 q_A = 3.86792 CLsb = 0.02422 CLb = 0.49732 CLs = 0.04871 +At r = 0.628239: q_mu = 3.83059 q_A = 3.80436 CLsb = 0.02516 CLb = 0.49732 CLs = 0.05060 +At r = 0.630751: q_mu = 3.85917 q_A = 3.83285 CLsb = 0.02474 CLb = 0.49732 CLs = 0.04974 + + -- Asymptotic -- +Observed Limit: r < 0.6308 +Expected 2.5%: r < 0.3314 +Expected 16.0%: r < 0.4472 +Expected 50.0%: r < 0.6309 +Expected 84.0%: r < 0.8999 +Expected 97.5%: r < 1.2460 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_310_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_310_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..414df0f --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_310_13TeV_asymptoticCLs.out @@ -0,0 +1,40 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.580078 +Sigma for expected limits: 0.295964 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -26.2623 (r = 2.30515e-07) + +Make global fit of asimov data +NLL at global minimum of asimov: -32.8506 (r = 1.23577e-05) +At r = 1.201614: q_mu = 17.03244 q_A = 14.68663 CLsb = 0.00002 CLb = 0.37978 CLs = 0.00005 +At r = 0.600807: q_mu = 5.42239 q_A = 4.11668 CLsb = 0.00937 CLb = 0.37381 CLs = 0.02506 +At r = 0.300404: q_mu = 1.71126 q_A = 1.03408 CLsb = 0.08853 CLb = 0.36958 CLs = 0.23954 +At r = 0.450605: q_mu = 3.34348 q_A = 2.34388 CLsb = 0.03162 CLb = 0.37204 CLs = 0.08500 +At r = 0.532855: q_mu = 4.43041 q_A = 3.26098 CLsb = 0.01660 CLb = 0.37305 CLs = 0.04450 +At r = 0.504563: q_mu = 4.04202 q_A = 2.93043 CLsb = 0.02085 CLb = 0.37271 CLs = 0.05594 +At r = 0.521328: q_mu = 4.27037 q_A = 3.12444 CLsb = 0.01823 CLb = 0.37291 CLs = 0.04889 +At r = 0.515732: q_mu = 4.19356 q_A = 3.05907 CLsb = 0.01907 CLb = 0.37285 CLs = 0.05115 +At r = 0.517978: q_mu = 4.22432 q_A = 3.08523 CLsb = 0.01873 CLb = 0.37287 CLs = 0.05023 +At r = 0.519100: q_mu = 4.23972 q_A = 3.09834 CLsb = 0.01856 CLb = 0.37289 CLs = 0.04978 + + -- Asymptotic -- +Observed Limit: r < 0.5191 +Expected 2.5%: r < 0.3138 +Expected 16.0%: r < 0.4168 +Expected 50.0%: r < 0.5801 +Expected 84.0%: r < 0.8182 +Expected 97.5%: r < 1.1248 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_320_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_320_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..121700f --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_320_13TeV_asymptoticCLs.out @@ -0,0 +1,40 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.494141 +Sigma for expected limits: 0.252117 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -58.2794 (r = 1.04048e-09) + +Make global fit of asimov data +NLL at global minimum of asimov: -37.344 (r = 0.0105995) +At r = 1.200000: q_mu = 39.76224 q_A = 19.07139 CLsb = 0.00000 CLb = 0.00892 CLs = 0.00000 +At r = 0.600000: q_mu = 17.59875 q_A = 5.53509 CLsb = 0.00000 CLb = 0.00518 CLs = 0.00009 +At r = 0.300000: q_mu = 7.86888 q_A = 1.42036 CLsb = 0.00005 CLb = 0.00341 CLs = 0.01426 +At r = 0.150000: q_mu = 3.64541 q_A = 0.33705 CLsb = 0.00030 CLb = 0.00219 CLs = 0.13783 +At r = 0.225000: q_mu = 5.69216 q_A = 0.78888 CLsb = 0.00013 CLb = 0.00289 CLs = 0.04568 +At r = 0.205091: q_mu = 5.13557 q_A = 0.65107 CLsb = 0.00017 CLb = 0.00273 CLs = 0.06161 +At r = 0.216208: q_mu = 5.44522 q_A = 0.72644 CLsb = 0.00015 CLb = 0.00282 CLs = 0.05216 +At r = 0.220210: q_mu = 5.55738 q_A = 0.75455 CLsb = 0.00014 CLb = 0.00285 CLs = 0.04911 +At r = 0.218455: q_mu = 5.50816 q_A = 0.74216 CLsb = 0.00014 CLb = 0.00284 CLs = 0.05043 +At r = 0.219256: q_mu = 5.53062 q_A = 0.74780 CLsb = 0.00014 CLb = 0.00284 CLs = 0.04982 + + -- Asymptotic -- +Observed Limit: r < 0.2193 +Expected 2.5%: r < 0.2673 +Expected 16.0%: r < 0.3550 +Expected 50.0%: r < 0.4941 +Expected 84.0%: r < 0.7010 +Expected 97.5%: r < 0.9609 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_330_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_330_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..ac1903d --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_330_13TeV_asymptoticCLs.out @@ -0,0 +1,40 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.419922 +Sigma for expected limits: 0.21425 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -79.8452 (r = 2.47933e-09) + +Make global fit of asimov data +NLL at global minimum of asimov: -47.5701 (r = 0.00601811) +At r = 1.200000: q_mu = 54.62698 q_A = 24.55742 CLsb = 0.00000 CLb = 0.00121 CLs = 0.00000 +At r = 0.600000: q_mu = 25.59468 q_A = 7.46459 CLsb = 0.00000 CLb = 0.00045 CLs = 0.00000 +At r = 0.300000: q_mu = 11.89230 q_A = 1.98118 CLsb = 0.00000 CLb = 0.00022 CLs = 0.00193 +At r = 0.150000: q_mu = 5.63088 q_A = 0.48831 CLsb = 0.00001 CLb = 0.00012 CLs = 0.05118 +At r = 0.225000: q_mu = 8.69550 q_A = 1.11574 CLsb = 0.00000 CLb = 0.00017 CLs = 0.01024 +At r = 0.187500: q_mu = 7.14499 q_A = 0.77141 CLsb = 0.00000 CLb = 0.00014 CLs = 0.02309 +At r = 0.158379: q_mu = 5.96593 q_A = 0.54613 CLsb = 0.00001 CLb = 0.00012 CLs = 0.04291 +At r = 0.152563: q_mu = 5.73316 q_A = 0.50567 CLsb = 0.00001 CLb = 0.00012 CLs = 0.04850 +At r = 0.151401: q_mu = 5.68677 q_A = 0.49777 CLsb = 0.00001 CLb = 0.00012 CLs = 0.04970 +At r = 0.150889: q_mu = 5.66633 q_A = 0.49430 CLsb = 0.00001 CLb = 0.00012 CLs = 0.05023 + + -- Asymptotic -- +Observed Limit: r < 0.1509 +Expected 2.5%: r < 0.2272 +Expected 16.0%: r < 0.3017 +Expected 50.0%: r < 0.4199 +Expected 84.0%: r < 0.5990 +Expected 97.5%: r < 0.8188 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_340_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_340_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..9beb90e --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_340_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.364258 +Sigma for expected limits: 0.185849 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -87.8895 (r = 5.91378e-10) + +Make global fit of asimov data +NLL at global minimum of asimov: -59.449 (r = 0.00330012) +At r = 1.200000: q_mu = 55.85633 q_A = 30.40871 CLsb = 0.00000 CLb = 0.01052 CLs = 0.00000 +At r = 0.600000: q_mu = 25.34046 q_A = 9.64979 CLsb = 0.00000 CLb = 0.00578 CLs = 0.00000 +At r = 0.300000: q_mu = 11.32796 q_A = 2.63856 CLsb = 0.00001 CLb = 0.00374 CLs = 0.00229 +At r = 0.150000: q_mu = 5.19721 q_A = 0.66798 CLsb = 0.00017 CLb = 0.00280 CLs = 0.05957 +At r = 0.225000: q_mu = 8.16398 q_A = 1.50162 CLsb = 0.00004 CLb = 0.00328 CLs = 0.01223 +At r = 0.187500: q_mu = 6.65374 q_A = 1.04527 CLsb = 0.00008 CLb = 0.00305 CLs = 0.02732 +At r = 0.164237: q_mu = 5.74371 q_A = 0.80189 CLsb = 0.00013 CLb = 0.00290 CLs = 0.04444 +At r = 0.156804: q_mu = 5.45753 q_A = 0.73071 CLsb = 0.00015 CLb = 0.00285 CLs = 0.05180 +At r = 0.159662: q_mu = 5.56727 q_A = 0.75767 CLsb = 0.00014 CLb = 0.00287 CLs = 0.04884 +At r = 0.158179: q_mu = 5.51024 q_A = 0.74339 CLsb = 0.00014 CLb = 0.00285 CLs = 0.05036 +At r = 0.158753: q_mu = 5.53229 q_A = 0.74882 CLsb = 0.00014 CLb = 0.00286 CLs = 0.04977 + + -- Asymptotic -- +Observed Limit: r < 0.1588 +Expected 2.5%: r < 0.1956 +Expected 16.0%: r < 0.2609 +Expected 50.0%: r < 0.3643 +Expected 84.0%: r < 0.5196 +Expected 97.5%: r < 0.7149 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_350_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_350_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..d682416 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_350_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.321289 +Sigma for expected limits: 0.163926 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -89.6741 (r = 1.01015e-07) + +Make global fit of asimov data +NLL at global minimum of asimov: -73.1303 (r = 0.00149266) +At r = 1.200000: q_mu = 50.49185 q_A = 36.36571 CLsb = 0.00000 CLb = 0.12075 CLs = 0.00000 +At r = 0.600000: q_mu = 20.83083 q_A = 11.99770 CLsb = 0.00000 CLb = 0.10114 CLs = 0.00001 +At r = 0.300000: q_mu = 8.29081 q_A = 3.36908 CLsb = 0.00075 CLb = 0.09001 CLs = 0.00829 +At r = 0.150000: q_mu = 3.43370 q_A = 0.86969 CLsb = 0.01052 CLb = 0.08461 CLs = 0.12433 +At r = 0.225000: q_mu = 5.70771 q_A = 1.93320 CLsb = 0.00300 CLb = 0.08733 CLs = 0.03435 +At r = 0.192493: q_mu = 4.68132 q_A = 1.42418 CLsb = 0.00526 CLb = 0.08618 CLs = 0.06107 +At r = 0.208035: q_mu = 5.16474 q_A = 1.65879 CLsb = 0.00404 CLb = 0.08675 CLs = 0.04653 +At r = 0.201639: q_mu = 4.96406 q_A = 1.56018 CLsb = 0.00451 CLb = 0.08651 CLs = 0.05208 +At r = 0.204770: q_mu = 5.06198 q_A = 1.60808 CLsb = 0.00427 CLb = 0.08662 CLs = 0.04929 +At r = 0.203496: q_mu = 5.02205 q_A = 1.58850 CLsb = 0.00436 CLb = 0.08658 CLs = 0.05041 +At r = 0.204123: q_mu = 5.04168 q_A = 1.59812 CLsb = 0.00432 CLb = 0.08660 CLs = 0.04986 + + -- Asymptotic -- +Observed Limit: r < 0.2041 +Expected 2.5%: r < 0.1713 +Expected 16.0%: r < 0.2293 +Expected 50.0%: r < 0.3213 +Expected 84.0%: r < 0.4583 +Expected 97.5%: r < 0.6305 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_360_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_360_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..f4c31f8 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_360_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.280273 +Sigma for expected limits: 0.142999 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -102.644 (r = 3.80654e-08) + +Make global fit of asimov data +NLL at global minimum of asimov: -91.8739 (r = 0.000267643) +At r = 1.200000: q_mu = 52.36044 q_A = 43.63679 CLsb = 0.00000 CLb = 0.25453 CLs = 0.00000 +At r = 0.600000: q_mu = 20.59971 q_A = 15.01402 CLsb = 0.00000 CLb = 0.23552 CLs = 0.00001 +At r = 0.300000: q_mu = 7.50998 q_A = 4.34457 CLsb = 0.00223 CLb = 0.22383 CLs = 0.00996 +At r = 0.150000: q_mu = 2.80374 q_A = 1.14346 CLsb = 0.03247 CLb = 0.21878 CLs = 0.14842 +At r = 0.225000: q_mu = 4.95157 q_A = 2.51474 CLsb = 0.00928 CLb = 0.22115 CLs = 0.04198 +At r = 0.201692: q_mu = 4.23690 q_A = 2.03653 CLsb = 0.01397 CLb = 0.22037 CLs = 0.06341 +At r = 0.212433: q_mu = 4.56132 q_A = 2.25143 CLsb = 0.01160 CLb = 0.22073 CLs = 0.05254 +At r = 0.217168: q_mu = 4.70715 q_A = 2.34901 CLsb = 0.01067 CLb = 0.22086 CLs = 0.04831 +At r = 0.214669: q_mu = 4.62994 q_A = 2.29720 CLsb = 0.01115 CLb = 0.22078 CLs = 0.05050 +At r = 0.215620: q_mu = 4.65906 q_A = 2.31685 CLsb = 0.01097 CLb = 0.22083 CLs = 0.04966 +At r = 0.215123: q_mu = 4.64375 q_A = 2.30657 CLsb = 0.01106 CLb = 0.22081 CLs = 0.05010 + + -- Asymptotic -- +Observed Limit: r < 0.2151 +Expected 2.5%: r < 0.1494 +Expected 16.0%: r < 0.2000 +Expected 50.0%: r < 0.2803 +Expected 84.0%: r < 0.3998 +Expected 97.5%: r < 0.5536 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_370_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_370_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..9e99848 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_370_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.249023 +Sigma for expected limits: 0.127055 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -117.832 (r = 5.76617e-10) + +Make global fit of asimov data +NLL at global minimum of asimov: -112.761 (r = 0.000153911) +At r = 1.200000: q_mu = 60.97427 q_A = 50.88470 CLsb = 0.00000 CLb = 0.23972 CLs = 0.00000 +At r = 0.600000: q_mu = 24.77193 q_A = 18.16292 CLsb = 0.00000 CLb = 0.21906 CLs = 0.00000 +At r = 0.300000: q_mu = 9.22140 q_A = 5.40243 CLsb = 0.00083 CLb = 0.20567 CLs = 0.00403 +At r = 0.150000: q_mu = 3.46837 q_A = 1.44512 CLsb = 0.02049 CLb = 0.20003 CLs = 0.10245 +At r = 0.225000: q_mu = 6.10660 q_A = 3.15117 CLsb = 0.00456 CLb = 0.20258 CLs = 0.02250 +At r = 0.193399: q_mu = 4.93131 q_A = 2.36062 CLsb = 0.00882 CLb = 0.20142 CLs = 0.04380 +At r = 0.179310: q_mu = 4.43649 q_A = 2.04116 CLsb = 0.01170 CLb = 0.20093 CLs = 0.05821 +At r = 0.185333: q_mu = 4.64580 q_A = 2.17525 CLsb = 0.01038 CLb = 0.20114 CLs = 0.05159 +At r = 0.188181: q_mu = 4.74599 q_A = 2.24002 CLsb = 0.00980 CLb = 0.20124 CLs = 0.04871 +At r = 0.186574: q_mu = 4.68933 q_A = 2.20334 CLsb = 0.01012 CLb = 0.20119 CLs = 0.05032 +At r = 0.187145: q_mu = 4.70942 q_A = 2.21633 CLsb = 0.01001 CLb = 0.20121 CLs = 0.04974 + + -- Asymptotic -- +Observed Limit: r < 0.1871 +Expected 2.5%: r < 0.1323 +Expected 16.0%: r < 0.1774 +Expected 50.0%: r < 0.2490 +Expected 84.0%: r < 0.3572 +Expected 97.5%: r < 0.4932 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_380_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_380_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..4e7979d --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_380_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.22168 +Sigma for expected limits: 0.113104 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -145.743 (r = 4.01762e-09) + +Make global fit of asimov data +NLL at global minimum of asimov: -138.591 (r = 2.89604e-06) +At r = 1.200000: q_mu = 70.83484 q_A = 59.06539 CLsb = 0.00000 CLb = 0.22193 CLs = 0.00000 +At r = 0.600000: q_mu = 29.83174 q_A = 21.85826 CLsb = 0.00000 CLb = 0.19691 CLs = 0.00000 +At r = 0.300000: q_mu = 11.44171 q_A = 6.68948 CLsb = 0.00023 CLb = 0.17913 CLs = 0.00127 +At r = 0.150000: q_mu = 4.38402 q_A = 1.81799 CLsb = 0.01073 CLb = 0.17066 CLs = 0.06286 +At r = 0.225000: q_mu = 7.64527 q_A = 3.93267 CLsb = 0.00175 CLb = 0.17462 CLs = 0.01005 +At r = 0.187500: q_mu = 5.93950 q_A = 2.78696 CLsb = 0.00448 CLb = 0.17253 CLs = 0.02596 +At r = 0.165264: q_mu = 4.99794 q_A = 2.19005 CLsb = 0.00758 CLb = 0.17139 CLs = 0.04422 +At r = 0.157947: q_mu = 4.70038 q_A = 2.00791 CLsb = 0.00896 CLb = 0.17104 CLs = 0.05241 +At r = 0.161035: q_mu = 4.82515 q_A = 2.08386 CLsb = 0.00835 CLb = 0.17119 CLs = 0.04880 +At r = 0.159579: q_mu = 4.76618 q_A = 2.04788 CLsb = 0.00864 CLb = 0.17112 CLs = 0.05048 +At r = 0.160198: q_mu = 4.79123 q_A = 2.06314 CLsb = 0.00852 CLb = 0.17115 CLs = 0.04976 + + -- Asymptotic -- +Observed Limit: r < 0.1602 +Expected 2.5%: r < 0.1173 +Expected 16.0%: r < 0.1577 +Expected 50.0%: r < 0.2217 +Expected 84.0%: r < 0.3180 +Expected 97.5%: r < 0.4390 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_390_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_390_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..d005a9a --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_390_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.200195 +Sigma for expected limits: 0.102142 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -166.986 (r = 4.92073e-08) + +Make global fit of asimov data +NLL at global minimum of asimov: -167.548 (r = 5.49299e-10) +At r = 1.200000: q_mu = 72.42116 q_A = 67.53374 CLsb = 0.00000 CLb = 0.38309 CLs = 0.00000 +At r = 0.600000: q_mu = 29.11274 q_A = 25.81792 CLsb = 0.00000 CLb = 0.37289 CLs = 0.00000 +At r = 0.300000: q_mu = 10.07471 q_A = 8.11894 CLsb = 0.00071 CLb = 0.36573 CLs = 0.00193 +At r = 0.150000: q_mu = 3.28941 q_A = 2.24010 CLsb = 0.03236 CLb = 0.36297 CLs = 0.08914 +At r = 0.225000: q_mu = 6.33390 q_A = 4.80967 CLsb = 0.00553 CLb = 0.36411 CLs = 0.01520 +At r = 0.184610: q_mu = 4.59638 q_A = 3.32268 CLsb = 0.01492 CLb = 0.36340 CLs = 0.04106 +At r = 0.170651: q_mu = 4.04788 q_A = 2.86364 CLsb = 0.02057 CLb = 0.36321 CLs = 0.05663 +At r = 0.177768: q_mu = 4.32412 q_A = 3.09411 CLsb = 0.01749 CLb = 0.36331 CLs = 0.04813 +At r = 0.175013: q_mu = 4.21629 q_A = 3.00395 CLsb = 0.01863 CLb = 0.36327 CLs = 0.05128 +At r = 0.176444: q_mu = 4.27218 q_A = 3.05065 CLsb = 0.01803 CLb = 0.36329 CLs = 0.04962 +At r = 0.175895: q_mu = 4.25070 q_A = 3.03269 CLsb = 0.01826 CLb = 0.36328 CLs = 0.05025 + + -- Asymptotic -- +Observed Limit: r < 0.1759 +Expected 2.5%: r < 0.1052 +Expected 16.0%: r < 0.1412 +Expected 50.0%: r < 0.2002 +Expected 84.0%: r < 0.2856 +Expected 97.5%: r < 0.3954 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_400_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_400_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..0415d5f --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_400_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.179199 +Sigma for expected limits: 0.0914299 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -207.083 (r = 1.91734e-06) + +Make global fit of asimov data +NLL at global minimum of asimov: -201.376 (r = 1.8615e-07) +At r = 1.200002: q_mu = 80.54293 q_A = 76.78408 CLsb = 0.00000 CLb = 0.41509 CLs = 0.00000 +At r = 0.600002: q_mu = 32.88373 q_A = 30.26584 CLsb = 0.00000 CLb = 0.40597 CLs = 0.00000 +At r = 0.300002: q_mu = 11.38356 q_A = 9.77805 CLsb = 0.00036 CLb = 0.39870 CLs = 0.00090 +At r = 0.150002: q_mu = 3.62056 q_A = 2.73981 CLsb = 0.02735 CLb = 0.39510 CLs = 0.06922 +At r = 0.225002: q_mu = 7.10306 q_A = 5.83819 CLsb = 0.00370 CLb = 0.39676 CLs = 0.00933 +At r = 0.187502: q_mu = 5.24737 q_A = 4.16909 CLsb = 0.01056 CLb = 0.39587 CLs = 0.02667 +At r = 0.167733: q_mu = 4.35929 q_A = 3.38378 CLsb = 0.01766 CLb = 0.39545 CLs = 0.04466 +At r = 0.160530: q_mu = 4.05255 q_A = 3.11525 CLsb = 0.02115 CLb = 0.39530 CLs = 0.05351 +At r = 0.164132: q_mu = 4.20474 q_A = 3.24829 CLsb = 0.01934 CLb = 0.39537 CLs = 0.04891 +At r = 0.162703: q_mu = 4.14409 q_A = 3.19522 CLsb = 0.02004 CLb = 0.39534 CLs = 0.05069 +At r = 0.163426: q_mu = 4.17473 q_A = 3.22202 CLsb = 0.01968 CLb = 0.39536 CLs = 0.04978 + + -- Asymptotic -- +Observed Limit: r < 0.1634 +Expected 2.5%: r < 0.0948 +Expected 16.0%: r < 0.1275 +Expected 50.0%: r < 0.1792 +Expected 84.0%: r < 0.2571 +Expected 97.5%: r < 0.3549 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_410_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_410_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..56191e8 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_410_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.166504 +Sigma for expected limits: 0.0849525 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -229.835 (r = 7.13638e-06) + +Make global fit of asimov data +NLL at global minimum of asimov: -230.895 (r = 7.80281e-07) +At r = 1.200007: q_mu = 88.89151 q_A = 84.25707 CLsb = 0.00000 CLb = 0.40035 CLs = 0.00000 +At r = 0.600007: q_mu = 37.17670 q_A = 33.89531 CLsb = 0.00000 CLb = 0.38904 CLs = 0.00000 +At r = 0.300007: q_mu = 13.20563 q_A = 11.15823 CLsb = 0.00013 CLb = 0.37963 CLs = 0.00035 +At r = 0.150007: q_mu = 4.29866 q_A = 3.16195 CLsb = 0.01796 CLb = 0.37463 CLs = 0.04794 +At r = 0.075007: q_mu = 1.42799 q_A = 0.83716 CLsb = 0.10789 CLb = 0.37340 CLs = 0.28894 +At r = 0.112507: q_mu = 2.69999 q_A = 1.82923 CLsb = 0.04703 CLb = 0.37376 CLs = 0.12582 +At r = 0.141201: q_mu = 3.89591 q_A = 2.82032 CLsb = 0.02277 CLb = 0.37439 CLs = 0.06082 +At r = 0.147002: q_mu = 4.15951 q_A = 3.04356 CLsb = 0.01949 CLb = 0.37455 CLs = 0.05203 +At r = 0.148774: q_mu = 4.24145 q_A = 3.11325 CLsb = 0.01857 CLb = 0.37460 CLs = 0.04958 +At r = 0.148173: q_mu = 4.21359 q_A = 3.08954 CLsb = 0.01888 CLb = 0.37458 CLs = 0.05040 +At r = 0.148528: q_mu = 4.23003 q_A = 3.10353 CLsb = 0.01870 CLb = 0.37459 CLs = 0.04992 + + -- Asymptotic -- +Observed Limit: r < 0.1485 +Expected 2.5%: r < 0.0875 +Expected 16.0%: r < 0.1180 +Expected 50.0%: r < 0.1665 +Expected 84.0%: r < 0.2375 +Expected 97.5%: r < 0.3289 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_420_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_420_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..d73824f --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_420_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.154785 +Sigma for expected limits: 0.0789735 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -263.144 (r = 9.0639e-06) + +Make global fit of asimov data +NLL at global minimum of asimov: -262.287 (r = 3.58348e-06) +At r = 1.200009: q_mu = 97.90505 q_A = 91.94993 CLsb = 0.00000 CLb = 0.37808 CLs = 0.00000 +At r = 0.600009: q_mu = 41.93057 q_A = 37.66006 CLsb = 0.00000 CLb = 0.36394 CLs = 0.00000 +At r = 0.300009: q_mu = 15.31527 q_A = 12.61193 CLsb = 0.00004 CLb = 0.35175 CLs = 0.00012 +At r = 0.150009: q_mu = 5.12948 q_A = 3.61213 CLsb = 0.01073 CLb = 0.34488 CLs = 0.03112 +At r = 0.075009: q_mu = 1.75360 q_A = 0.96072 CLsb = 0.08308 CLb = 0.34294 CLs = 0.24227 +At r = 0.112509: q_mu = 3.26030 q_A = 2.09472 CLsb = 0.03216 CLb = 0.34360 CLs = 0.09359 +At r = 0.129588: q_mu = 4.06947 q_A = 2.74097 CLsb = 0.01985 CLb = 0.34413 CLs = 0.05769 +At r = 0.137458: q_mu = 4.46658 q_A = 3.06452 CLsb = 0.01574 CLb = 0.34441 CLs = 0.04569 +At r = 0.133451: q_mu = 4.26249 q_A = 2.89776 CLsb = 0.01773 CLb = 0.34426 CLs = 0.05149 +At r = 0.135041: q_mu = 4.34302 q_A = 2.96344 CLsb = 0.01691 CLb = 0.34432 CLs = 0.04912 +At r = 0.134243: q_mu = 4.30253 q_A = 2.93039 CLsb = 0.01732 CLb = 0.34429 CLs = 0.05030 +At r = 0.134562: q_mu = 4.31868 q_A = 2.94357 CLsb = 0.01715 CLb = 0.34430 CLs = 0.04982 + + -- Asymptotic -- +Observed Limit: r < 0.1346 +Expected 2.5%: r < 0.0816 +Expected 16.0%: r < 0.1099 +Expected 50.0%: r < 0.1548 +Expected 84.0%: r < 0.2220 +Expected 97.5%: r < 0.3065 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_430_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_430_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..c3e4f11 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_430_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.144043 +Sigma for expected limits: 0.0734927 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -296.988 (r = 9.86049e-06) + +Make global fit of asimov data +NLL at global minimum of asimov: -298.466 (r = 1.25089e-06) +At r = 1.200010: q_mu = 105.28521 q_A = 100.60718 CLsb = 0.00000 CLb = 0.40781 CLs = 0.00000 +At r = 0.600010: q_mu = 45.38003 q_A = 41.93349 CLsb = 0.00000 CLb = 0.39507 CLs = 0.00000 +At r = 0.300010: q_mu = 16.52944 q_A = 14.28676 CLsb = 0.00002 CLb = 0.38336 CLs = 0.00006 +At r = 0.150010: q_mu = 5.42226 q_A = 4.13691 CLsb = 0.00939 CLb = 0.37601 CLs = 0.02497 +At r = 0.075010: q_mu = 1.78461 q_A = 1.10518 CLsb = 0.08466 CLb = 0.37329 CLs = 0.22678 +At r = 0.112510: q_mu = 3.39800 q_A = 2.40493 CLsb = 0.03067 CLb = 0.37441 CLs = 0.08193 +At r = 0.132478: q_mu = 4.42839 q_A = 3.27695 CLsb = 0.01666 CLb = 0.37523 CLs = 0.04439 +At r = 0.125383: q_mu = 4.04962 q_A = 2.95374 CLsb = 0.02080 CLb = 0.37493 CLs = 0.05548 +At r = 0.129450: q_mu = 4.26501 q_A = 3.13719 CLsb = 0.01833 CLb = 0.37510 CLs = 0.04886 +At r = 0.128046: q_mu = 4.19014 q_A = 3.07331 CLsb = 0.01915 CLb = 0.37504 CLs = 0.05106 +At r = 0.128863: q_mu = 4.23361 q_A = 3.11038 CLsb = 0.01867 CLb = 0.37507 CLs = 0.04977 +At r = 0.128583: q_mu = 4.21867 q_A = 3.09764 CLsb = 0.01883 CLb = 0.37506 CLs = 0.05021 + + -- Asymptotic -- +Observed Limit: r < 0.1286 +Expected 2.5%: r < 0.0757 +Expected 16.0%: r < 0.1021 +Expected 50.0%: r < 0.1440 +Expected 84.0%: r < 0.2066 +Expected 97.5%: r < 0.2853 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_440_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_440_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..5c78ae0 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_440_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.134277 +Sigma for expected limits: 0.0685101 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -320.259 (r = 0.0208992) + +Make global fit of asimov data +NLL at global minimum of asimov: -336.621 (r = 3.0859e-05) +At r = 1.220899: q_mu = 106.22323 q_A = 111.65328 CLsb = 0.00000 CLb = 0.60262 CLs = 0.00000 +At r = 0.620899: q_mu = 44.73804 q_A = 48.60498 CLsb = 0.00000 CLb = 0.61144 CLs = 0.00000 +At r = 0.320899: q_mu = 15.46765 q_A = 17.93735 CLsb = 0.00004 CLb = 0.61881 CLs = 0.00007 +At r = 0.170899: q_mu = 4.53881 q_A = 5.96931 CLsb = 0.01657 CLb = 0.62277 CLs = 0.02660 +At r = 0.095899: q_mu = 1.22005 q_A = 2.01786 CLsb = 0.13468 CLb = 0.62398 CLs = 0.21583 +At r = 0.133399: q_mu = 2.64797 q_A = 3.77114 CLsb = 0.05184 CLb = 0.62350 CLs = 0.08315 +At r = 0.154287: q_mu = 3.64837 q_A = 4.94508 CLsb = 0.02806 CLb = 0.62312 CLs = 0.04503 +At r = 0.147259: q_mu = 3.29655 q_A = 4.53551 CLsb = 0.03471 CLb = 0.62325 CLs = 0.05570 +At r = 0.150114: q_mu = 3.43760 q_A = 4.70010 CLsb = 0.03186 CLb = 0.62320 CLs = 0.05113 +At r = 0.151537: q_mu = 3.50883 q_A = 4.78301 CLsb = 0.03052 CLb = 0.62317 CLs = 0.04898 +At r = 0.150705: q_mu = 3.46713 q_A = 4.73448 CLsb = 0.03130 CLb = 0.62319 CLs = 0.05023 + + -- Asymptotic -- +Observed Limit: r < 0.1507 +Expected 2.5%: r < 0.0711 +Expected 16.0%: r < 0.0953 +Expected 50.0%: r < 0.1343 +Expected 84.0%: r < 0.1926 +Expected 97.5%: r < 0.2659 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_450_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_450_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..f202936 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_450_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.127441 +Sigma for expected limits: 0.0650223 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -332.031 (r = 0.0938078) + +Make global fit of asimov data +NLL at global minimum of asimov: -373.842 (r = 1.28426e-07) +At r = 1.293808: q_mu = 104.59995 q_A = 128.10838 CLsb = 0.00000 CLb = 0.86238 CLs = 0.00000 +At r = 0.693808: q_mu = 43.93206 q_A = 61.42836 CLsb = 0.00000 CLb = 0.88676 CLs = 0.00000 +At r = 0.393808: q_mu = 15.33356 q_A = 27.39402 CLsb = 0.00005 CLb = 0.90627 CLs = 0.00005 +At r = 0.243808: q_mu = 4.57631 q_A = 12.48067 CLsb = 0.01621 CLb = 0.91828 CLs = 0.01765 +At r = 0.168808: q_mu = 1.24160 q_A = 6.49281 CLsb = 0.13258 CLb = 0.92419 CLs = 0.14346 +At r = 0.198991: q_mu = 2.36559 q_A = 8.73707 CLsb = 0.06202 CLb = 0.92188 CLs = 0.06727 +At r = 0.215906: q_mu = 3.12909 q_A = 10.09708 CLsb = 0.03845 CLb = 0.92053 CLs = 0.04177 +At r = 0.207418: q_mu = 2.73472 q_A = 9.40613 CLsb = 0.04909 CLb = 0.92121 CLs = 0.05329 +At r = 0.210894: q_mu = 2.89348 q_A = 9.68703 CLsb = 0.04447 CLb = 0.92093 CLs = 0.04829 +At r = 0.209216: q_mu = 2.81636 q_A = 9.55108 CLsb = 0.04665 CLb = 0.92107 CLs = 0.05065 +At r = 0.209916: q_mu = 2.84839 q_A = 9.60766 CLsb = 0.04573 CLb = 0.92101 CLs = 0.04965 + + -- Asymptotic -- +Observed Limit: r < 0.2099 +Expected 2.5%: r < 0.0672 +Expected 16.0%: r < 0.0903 +Expected 50.0%: r < 0.1274 +Expected 84.0%: r < 0.1818 +Expected 97.5%: r < 0.2501 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_460_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_460_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..00ef186 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_460_13TeV_asymptoticCLs.out @@ -0,0 +1,40 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.117676 +Sigma for expected limits: 0.0600398 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -361.01 (r = 0.147056) + +Make global fit of asimov data +NLL at global minimum of asimov: -424.724 (r = 3.25833e-06) +At r = 1.347056: q_mu = 107.33076 q_A = 146.57085 CLsb = 0.00000 CLb = 0.95965 CLs = 0.00000 +At r = 0.747056: q_mu = 45.22995 q_A = 75.05046 CLsb = 0.00000 CLb = 0.97368 CLs = 0.00000 +At r = 0.447056: q_mu = 15.97184 q_A = 37.36948 CLsb = 0.00003 CLb = 0.98285 CLs = 0.00003 +At r = 0.297056: q_mu = 4.84858 q_A = 19.80510 CLsb = 0.01383 CLb = 0.98772 CLs = 0.01401 +At r = 0.222056: q_mu = 1.33503 q_A = 12.12212 CLsb = 0.12396 CLb = 0.99000 CLs = 0.12521 +At r = 0.259556: q_mu = 2.86366 q_A = 15.83042 CLsb = 0.04530 CLb = 0.98889 CLs = 0.04581 +At r = 0.249445: q_mu = 2.40318 q_A = 14.80169 CLsb = 0.06054 CLb = 0.98919 CLs = 0.06121 +At r = 0.255090: q_mu = 2.65608 q_A = 15.37359 CLsb = 0.05158 CLb = 0.98902 CLs = 0.05215 +At r = 0.257144: q_mu = 2.75071 q_A = 15.58317 CLsb = 0.04861 CLb = 0.98896 CLs = 0.04915 +At r = 0.256257: q_mu = 2.70967 q_A = 15.49255 CLsb = 0.04987 CLb = 0.98899 CLs = 0.05043 + + -- Asymptotic -- +Observed Limit: r < 0.2563 +Expected 2.5%: r < 0.0621 +Expected 16.0%: r < 0.0833 +Expected 50.0%: r < 0.1177 +Expected 84.0%: r < 0.1679 +Expected 97.5%: r < 0.2324 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_470_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_470_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..764f469 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_470_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.109863 +Sigma for expected limits: 0.0560537 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -410.229 (r = 0.13955) + +Make global fit of asimov data +NLL at global minimum of asimov: -476.552 (r = 1.18402e-06) +At r = 1.339550: q_mu = 117.51015 q_A = 158.56189 CLsb = 0.00000 CLb = 0.96011 CLs = 0.00000 +At r = 0.739550: q_mu = 50.16165 q_A = 81.50445 CLsb = 0.00000 CLb = 0.97414 CLs = 0.00000 +At r = 0.439550: q_mu = 17.93846 q_A = 40.53451 CLsb = 0.00001 CLb = 0.98347 CLs = 0.00001 +At r = 0.289550: q_mu = 5.49533 q_A = 21.30199 CLsb = 0.00953 CLb = 0.98843 CLs = 0.00965 +At r = 0.214550: q_mu = 1.51954 q_A = 12.87434 CLsb = 0.10884 CLb = 0.99075 CLs = 0.10986 +At r = 0.252050: q_mu = 3.25322 q_A = 16.94145 CLsb = 0.03564 CLb = 0.98962 CLs = 0.03602 +At r = 0.235725: q_mu = 2.43026 q_A = 15.13025 CLsb = 0.05951 CLb = 0.99012 CLs = 0.06010 +At r = 0.243682: q_mu = 2.81889 q_A = 16.00575 CLsb = 0.04658 CLb = 0.98988 CLs = 0.04706 +At r = 0.240512: q_mu = 2.66114 q_A = 15.65525 CLsb = 0.05141 CLb = 0.98997 CLs = 0.05193 +At r = 0.242122: q_mu = 2.74077 q_A = 15.83298 CLsb = 0.04891 CLb = 0.98992 CLs = 0.04941 +At r = 0.241492: q_mu = 2.70948 q_A = 15.76334 CLsb = 0.04988 CLb = 0.98994 CLs = 0.05038 + + -- Asymptotic -- +Observed Limit: r < 0.2415 +Expected 2.5%: r < 0.0579 +Expected 16.0%: r < 0.0778 +Expected 50.0%: r < 0.1099 +Expected 84.0%: r < 0.1576 +Expected 97.5%: r < 0.2162 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_480_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_480_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..e0469e5 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_480_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.103027 +Sigma for expected limits: 0.0525659 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -481.248 (r = 0.0818097) + +Make global fit of asimov data +NLL at global minimum of asimov: -530.713 (r = 1.09456e-05) +At r = 1.281810: q_mu = 136.19541 q_A = 164.08707 CLsb = 0.00000 CLb = 0.87273 CLs = 0.00000 +At r = 0.681810: q_mu = 59.50953 q_A = 80.58416 CLsb = 0.00000 CLb = 0.89664 CLs = 0.00000 +At r = 0.381810: q_mu = 21.62998 q_A = 36.41596 CLsb = 0.00000 CLb = 0.91678 CLs = 0.00000 +At r = 0.231810: q_mu = 6.65429 q_A = 16.43048 CLsb = 0.00495 CLb = 0.92974 CLs = 0.00532 +At r = 0.156810: q_mu = 1.83465 q_A = 8.28935 CLsb = 0.08779 CLb = 0.93632 CLs = 0.09376 +At r = 0.194310: q_mu = 3.93592 q_A = 12.13232 CLsb = 0.02363 CLb = 0.93309 CLs = 0.02533 +At r = 0.178720: q_mu = 2.98021 q_A = 10.47295 CLsb = 0.04214 CLb = 0.93446 CLs = 0.04510 +At r = 0.171868: q_mu = 2.59616 q_A = 9.77049 CLsb = 0.05356 CLb = 0.93505 CLs = 0.05728 +At r = 0.174985: q_mu = 2.76803 q_A = 10.08791 CLsb = 0.04808 CLb = 0.93478 CLs = 0.05144 +At r = 0.176376: q_mu = 2.84625 q_A = 10.23070 CLsb = 0.04579 CLb = 0.93466 CLs = 0.04899 +At r = 0.175633: q_mu = 2.80435 q_A = 10.15435 CLsb = 0.04700 CLb = 0.93473 CLs = 0.05029 + + -- Asymptotic -- +Observed Limit: r < 0.1756 +Expected 2.5%: r < 0.0543 +Expected 16.0%: r < 0.0737 +Expected 50.0%: r < 0.1030 +Expected 84.0%: r < 0.1478 +Expected 97.5%: r < 0.2027 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_490_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_490_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..50d88b0 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_490_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.097168 +Sigma for expected limits: 0.0495764 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -566.492 (r = 0.0155785) + +Make global fit of asimov data +NLL at global minimum of asimov: -587.977 (r = 9.3546e-06) +At r = 1.215579: q_mu = 160.08055 q_A = 167.47760 CLsb = 0.00000 CLb = 0.61372 CLs = 0.00000 +At r = 0.615579: q_mu = 71.83815 q_A = 77.18490 CLsb = 0.00000 CLb = 0.62163 CLs = 0.00000 +At r = 0.315579: q_mu = 26.54255 q_A = 30.03555 CLsb = 0.00000 CLb = 0.62874 CLs = 0.00000 +At r = 0.165579: q_mu = 8.15378 q_A = 10.20203 CLsb = 0.00215 CLb = 0.63254 CLs = 0.00340 +At r = 0.090579: q_mu = 2.22399 q_A = 3.35446 CLsb = 0.06794 CLb = 0.63315 CLs = 0.10731 +At r = 0.128079: q_mu = 4.80277 q_A = 6.40849 CLsb = 0.01421 CLb = 0.63306 CLs = 0.02244 +At r = 0.112720: q_mu = 3.64408 q_A = 5.05896 CLsb = 0.02813 CLb = 0.63317 CLs = 0.04443 +At r = 0.105920: q_mu = 3.17530 q_A = 4.50404 CLsb = 0.03738 CLb = 0.63320 CLs = 0.05903 +At r = 0.109100: q_mu = 3.39098 q_A = 4.76020 CLsb = 0.03278 CLb = 0.63320 CLs = 0.05176 +At r = 0.110482: q_mu = 3.48661 q_A = 4.87334 CLsb = 0.03093 CLb = 0.63319 CLs = 0.04885 +At r = 0.109762: q_mu = 3.43666 q_A = 4.81429 CLsb = 0.03188 CLb = 0.63319 CLs = 0.05035 +At r = 0.110040: q_mu = 3.45588 q_A = 4.83702 CLsb = 0.03151 CLb = 0.63319 CLs = 0.04977 + + -- Asymptotic -- +Observed Limit: r < 0.1100 +Expected 2.5%: r < 0.0512 +Expected 16.0%: r < 0.0688 +Expected 50.0%: r < 0.0972 +Expected 84.0%: r < 0.1386 +Expected 97.5%: r < 0.1907 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_500_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_500_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..a9088de --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_500_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.0942383 +Sigma for expected limits: 0.0480816 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -634.228 (r = 7.54527e-08) + +Make global fit of asimov data +NLL at global minimum of asimov: -627.559 (r = 2.62826e-06) +At r = 1.200000: q_mu = 183.98544 q_A = 172.94250 CLsb = 0.00000 CLb = 0.33729 CLs = 0.00000 +At r = 0.600000: q_mu = 87.02337 q_A = 78.61215 CLsb = 0.00000 CLb = 0.31763 CLs = 0.00000 +At r = 0.300000: q_mu = 35.18055 q_A = 29.39345 CLsb = 0.00000 CLb = 0.29677 CLs = 0.00000 +At r = 0.150000: q_mu = 12.59340 q_A = 9.09924 CLsb = 0.00016 CLb = 0.28124 CLs = 0.00058 +At r = 0.075000: q_mu = 4.40097 q_A = 2.49889 CLsb = 0.01454 CLb = 0.27371 CLs = 0.05312 +At r = 0.112500: q_mu = 8.11387 q_A = 5.37325 CLsb = 0.00181 CLb = 0.27721 CLs = 0.00654 +At r = 0.093750: q_mu = 6.15035 q_A = 3.81838 CLsb = 0.00537 CLb = 0.27536 CLs = 0.01952 +At r = 0.079657: q_mu = 4.81413 q_A = 2.80332 CLsb = 0.01146 CLb = 0.27409 CLs = 0.04181 +At r = 0.076873: q_mu = 4.56541 q_A = 2.61945 CLsb = 0.01322 CLb = 0.27386 CLs = 0.04828 +At r = 0.075949: q_mu = 4.48399 q_A = 2.55965 CLsb = 0.01386 CLb = 0.27379 CLs = 0.05062 +At r = 0.076325: q_mu = 4.51705 q_A = 2.58390 CLsb = 0.01360 CLb = 0.27382 CLs = 0.04965 + + -- Asymptotic -- +Observed Limit: r < 0.0763 +Expected 2.5%: r < 0.0497 +Expected 16.0%: r < 0.0667 +Expected 50.0%: r < 0.0942 +Expected 84.0%: r < 0.1337 +Expected 97.5%: r < 0.1844 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_510_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_510_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..fa0c19d --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_510_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.0883789 +Sigma for expected limits: 0.0450921 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -718.322 (r = 6.65587e-07) + +Make global fit of asimov data +NLL at global minimum of asimov: -694.317 (r = 7.67502e-07) +At r = 1.200001: q_mu = 207.26985 q_A = 185.37901 CLsb = 0.00000 CLb = 0.21073 CLs = 0.00000 +At r = 0.600001: q_mu = 101.99467 q_A = 85.40118 CLsb = 0.00000 CLb = 0.18465 CLs = 0.00000 +At r = 0.300001: q_mu = 43.86608 q_A = 32.45423 CLsb = 0.00000 CLb = 0.15827 CLs = 0.00000 +At r = 0.150001: q_mu = 17.09070 q_A = 10.17976 CLsb = 0.00001 CLb = 0.13940 CLs = 0.00007 +At r = 0.075001: q_mu = 6.58559 q_A = 2.81326 CLsb = 0.00254 CLb = 0.13039 CLs = 0.01949 +At r = 0.037501: q_mu = 2.69045 q_A = 0.73933 CLsb = 0.02305 CLb = 0.12828 CLs = 0.17971 +At r = 0.056251: q_mu = 4.50114 q_A = 1.62013 CLsb = 0.00810 CLb = 0.12888 CLs = 0.06282 +At r = 0.062925: q_mu = 5.21337 q_A = 2.01043 CLsb = 0.00543 CLb = 0.12935 CLs = 0.04196 +At r = 0.059270: q_mu = 4.81909 q_A = 1.79185 CLsb = 0.00677 CLb = 0.12908 CLs = 0.05243 +At r = 0.060624: q_mu = 4.96395 q_A = 1.87144 CLsb = 0.00624 CLb = 0.12917 CLs = 0.04830 +At r = 0.059897: q_mu = 4.88600 q_A = 1.82849 CLsb = 0.00652 CLb = 0.12912 CLs = 0.05048 +At r = 0.060169: q_mu = 4.91508 q_A = 1.84449 CLsb = 0.00641 CLb = 0.12914 CLs = 0.04966 + + -- Asymptotic -- +Observed Limit: r < 0.0602 +Expected 2.5%: r < 0.0466 +Expected 16.0%: r < 0.0626 +Expected 50.0%: r < 0.0884 +Expected 84.0%: r < 0.1261 +Expected 97.5%: r < 0.1734 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_520_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_520_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..e61a16c --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_520_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.0844727 +Sigma for expected limits: 0.0430991 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -780.666 (r = 2.7558e-11) + +Make global fit of asimov data +NLL at global minimum of asimov: -746.405 (r = 8.47981e-06) +At r = 1.200000: q_mu = 221.47819 q_A = 194.10562 CLsb = 0.00000 CLb = 0.16296 CLs = 0.00000 +At r = 0.600000: q_mu = 111.05624 q_A = 90.16450 CLsb = 0.00000 CLb = 0.13565 CLs = 0.00000 +At r = 0.300000: q_mu = 49.07584 q_A = 34.64828 CLsb = 0.00000 CLb = 0.11019 CLs = 0.00000 +At r = 0.150000: q_mu = 19.75842 q_A = 10.96852 CLsb = 0.00000 CLb = 0.09225 CLs = 0.00002 +At r = 0.075000: q_mu = 7.86534 q_A = 3.04461 CLsb = 0.00089 CLb = 0.08358 CLs = 0.01059 +At r = 0.037500: q_mu = 3.29998 q_A = 0.80046 CLsb = 0.01097 CLb = 0.08123 CLs = 0.13500 +At r = 0.056250: q_mu = 5.44066 q_A = 1.75434 CLsb = 0.00330 CLb = 0.08203 CLs = 0.04027 +At r = 0.049816: q_mu = 4.67249 q_A = 1.38785 CLsb = 0.00505 CLb = 0.08165 CLs = 0.06189 +At r = 0.053658: q_mu = 5.12704 q_A = 1.60181 CLsb = 0.00393 CLb = 0.08186 CLs = 0.04797 +At r = 0.052389: q_mu = 4.97561 q_A = 1.52956 CLsb = 0.00427 CLb = 0.08178 CLs = 0.05221 +At r = 0.052908: q_mu = 5.03733 q_A = 1.55890 CLsb = 0.00413 CLb = 0.08181 CLs = 0.05044 +At r = 0.053162: q_mu = 5.06771 q_A = 1.57339 CLsb = 0.00406 CLb = 0.08183 CLs = 0.04959 + + -- Asymptotic -- +Observed Limit: r < 0.0532 +Expected 2.5%: r < 0.0445 +Expected 16.0%: r < 0.0605 +Expected 50.0%: r < 0.0845 +Expected 84.0%: r < 0.1205 +Expected 97.5%: r < 0.1658 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_530_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_530_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..fb31597 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_530_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.081543 +Sigma for expected limits: 0.0416043 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -846.011 (r = 3.84703e-11) + +Make global fit of asimov data +NLL at global minimum of asimov: -800.733 (r = 5.41362e-06) +At r = 1.200000: q_mu = 234.94974 q_A = 202.11615 CLsb = 0.00000 CLb = 0.12410 CLs = 0.00000 +At r = 0.600000: q_mu = 119.78155 q_A = 94.82583 CLsb = 0.00000 CLb = 0.10003 CLs = 0.00000 +At r = 0.300000: q_mu = 54.06491 q_A = 36.86317 CLsb = 0.00000 CLb = 0.07830 CLs = 0.00000 +At r = 0.150000: q_mu = 22.26226 q_A = 11.78450 CLsb = 0.00000 CLb = 0.06349 CLs = 0.00001 +At r = 0.075000: q_mu = 9.03162 q_A = 3.28702 CLsb = 0.00034 CLb = 0.05657 CLs = 0.00602 +At r = 0.037500: q_mu = 3.84074 q_A = 0.86476 CLsb = 0.00570 CLb = 0.05479 CLs = 0.10409 +At r = 0.056250: q_mu = 6.28664 q_A = 1.89531 CLsb = 0.00148 CLb = 0.05537 CLs = 0.02675 +At r = 0.045595: q_mu = 4.85756 q_A = 1.26337 CLsb = 0.00324 CLb = 0.05493 CLs = 0.05892 +At r = 0.049498: q_mu = 5.36946 q_A = 1.48104 CLsb = 0.00244 CLb = 0.05507 CLs = 0.04435 +At r = 0.047399: q_mu = 5.09244 q_A = 1.36194 CLsb = 0.00284 CLb = 0.05499 CLs = 0.05171 +At r = 0.048186: q_mu = 5.19585 q_A = 1.40604 CLsb = 0.00269 CLb = 0.05502 CLs = 0.04883 +At r = 0.047768: q_mu = 5.14081 q_A = 1.38251 CLsb = 0.00277 CLb = 0.05500 CLs = 0.05034 + + -- Asymptotic -- +Observed Limit: r < 0.0478 +Expected 2.5%: r < 0.0430 +Expected 16.0%: r < 0.0578 +Expected 50.0%: r < 0.0815 +Expected 84.0%: r < 0.1157 +Expected 97.5%: r < 0.1596 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_540_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_540_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..21ebfe5 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_540_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.0786133 +Sigma for expected limits: 0.0401096 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -917.167 (r = 5.43947e-09) + +Make global fit of asimov data +NLL at global minimum of asimov: -859.059 (r = 1.62209e-06) +At r = 1.200000: q_mu = 250.73251 q_A = 210.63783 CLsb = 0.00000 CLb = 0.08359 CLs = 0.00000 +At r = 0.600000: q_mu = 130.74554 q_A = 99.52974 CLsb = 0.00000 CLb = 0.05885 CLs = 0.00000 +At r = 0.300000: q_mu = 60.79075 q_A = 39.14702 CLsb = 0.00000 CLb = 0.04185 CLs = 0.00000 +At r = 0.150000: q_mu = 25.91910 q_A = 12.64162 CLsb = 0.00000 CLb = 0.03094 CLs = 0.00000 +At r = 0.075000: q_mu = 10.86331 q_A = 3.54426 CLsb = 0.00006 CLb = 0.02596 CLs = 0.00250 +At r = 0.037500: q_mu = 4.73508 q_A = 0.93317 CLsb = 0.00167 CLb = 0.02454 CLs = 0.06820 +At r = 0.056250: q_mu = 7.64788 q_A = 2.04515 CLsb = 0.00035 CLb = 0.02506 CLs = 0.01400 +At r = 0.046875: q_mu = 6.15079 q_A = 1.43850 CLsb = 0.00078 CLb = 0.02474 CLs = 0.03147 +At r = 0.042386: q_mu = 5.46253 q_A = 1.18385 CLsb = 0.00113 CLb = 0.02464 CLs = 0.04579 +At r = 0.040545: q_mu = 5.18565 q_A = 1.08595 CLsb = 0.00131 CLb = 0.02459 CLs = 0.05327 +At r = 0.041530: q_mu = 5.33330 q_A = 1.13772 CLsb = 0.00121 CLb = 0.02461 CLs = 0.04914 +At r = 0.041164: q_mu = 5.27829 q_A = 1.11833 CLsb = 0.00125 CLb = 0.02460 CLs = 0.05064 + + -- Asymptotic -- +Observed Limit: r < 0.0412 +Expected 2.5%: r < 0.0415 +Expected 16.0%: r < 0.0557 +Expected 50.0%: r < 0.0786 +Expected 84.0%: r < 0.1115 +Expected 97.5%: r < 0.1529 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_550_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_550_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..5ce278a --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_550_13TeV_asymptoticCLs.out @@ -0,0 +1,40 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +WARNING: Best fit of asimov dataset is at r = 0.852289 (0.042614 times rMax), while it should be at zero +Median for expected limits: 22.3125 +Sigma for expected limits: 11.3841 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -0.0998613 (r = 3.47038) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.172665 (r = 1.1436) +At r = 32.533466: q_mu = 6.67046 q_A = 7.96513 CLsb = 0.00490 CLb = 0.59465 CLs = 0.00824 +At r = 18.001925: q_mu = 1.80784 q_A = 2.49579 CLsb = 0.08938 CLb = 0.59299 CLs = 0.15073 +At r = 25.267696: q_mu = 3.91778 q_A = 4.91660 CLsb = 0.02389 CLb = 0.59406 CLs = 0.04021 +At r = 21.634810: q_mu = 2.77455 q_A = 3.61951 CLsb = 0.04789 CLb = 0.59360 CLs = 0.08067 +At r = 23.631785: q_mu = 3.38215 q_A = 4.31214 CLsb = 0.03295 CLb = 0.59387 CLs = 0.05549 +At r = 24.382324: q_mu = 3.62411 q_A = 4.58576 CLsb = 0.02847 CLb = 0.59395 CLs = 0.04794 +At r = 24.059442: q_mu = 3.51909 q_A = 4.46713 CLsb = 0.03033 CLb = 0.59392 CLs = 0.05107 +At r = 24.210619: q_mu = 3.56805 q_A = 4.52247 CLsb = 0.02945 CLb = 0.59394 CLs = 0.04959 +At r = 24.146316: q_mu = 3.54717 q_A = 4.49887 CLsb = 0.02982 CLb = 0.59393 CLs = 0.05021 + + -- Asymptotic -- +Observed Limit: r < 24.1463 +Expected 2.5%: r < 12.3329 +Expected 16.0%: r < 16.1532 +Expected 50.0%: r < 22.3125 +Expected 84.0%: r < 31.2953 +Expected 97.5%: r < 42.8611 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_570_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_570_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..c261550 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_570_13TeV_asymptoticCLs.out @@ -0,0 +1,38 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 22.6875 +Sigma for expected limits: 11.5755 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -0.29609 (r = 12.9224) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.213106 (r = 0.0013257) +At r = 47.390711: q_mu = 7.53506 q_A = 14.34208 CLsb = 0.00303 CLb = 0.85131 CLs = 0.00355 +At r = 30.156558: q_mu = 2.09384 q_A = 6.46977 CLsb = 0.07395 CLb = 0.86358 CLs = 0.08563 +At r = 38.773635: q_mu = 4.47571 q_A = 10.14138 CLsb = 0.01719 CLb = 0.85746 CLs = 0.02005 +At r = 34.434354: q_mu = 3.18197 q_A = 8.21768 CLsb = 0.03723 CLb = 0.86056 CLs = 0.04326 +At r = 32.853022: q_mu = 2.75701 q_A = 7.55340 CLsb = 0.04841 CLb = 0.86169 CLs = 0.05619 +At r = 33.733696: q_mu = 2.99087 q_A = 7.92113 CLsb = 0.04187 CLb = 0.86105 CLs = 0.04862 +At r = 33.421561: q_mu = 2.90698 q_A = 7.78999 CLsb = 0.04410 CLb = 0.86128 CLs = 0.05120 +At r = 33.598777: q_mu = 2.95444 q_A = 7.86431 CLsb = 0.04282 CLb = 0.86115 CLs = 0.04973 + + -- Asymptotic -- +Observed Limit: r < 33.5988 +Expected 2.5%: r < 11.9198 +Expected 16.0%: r < 16.0839 +Expected 50.0%: r < 22.6875 +Expected 84.0%: r < 32.5447 +Expected 97.5%: r < 44.9302 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_600_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_600_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..be83b2a --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_600_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +WARNING: Best fit of asimov dataset is at r = 0.222329 (0.011116 times rMax), while it should be at zero +Median for expected limits: 19.8125 +Sigma for expected limits: 10.1086 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -0.32986 (r = 4.41047e-06) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.160612 (r = 0.248848) +At r = 92.474877: q_mu = 52.06770 q_A = 49.66826 CLsb = 0.00000 CLb = 0.43241 CLs = 0.00000 +At r = 46.237440: q_mu = 19.37494 q_A = 17.43241 CLsb = 0.00001 CLb = 0.40803 CLs = 0.00001 +At r = 23.118722: q_mu = 6.45664 q_A = 5.15450 CLsb = 0.00528 CLb = 0.38714 CLs = 0.01363 +At r = 11.559363: q_mu = 2.12025 q_A = 1.36351 CLsb = 0.06789 CLb = 0.37296 CLs = 0.18202 +At r = 17.339043: q_mu = 4.05205 q_A = 2.99851 CLsb = 0.02088 CLb = 0.38049 CLs = 0.05489 +At r = 20.228883: q_mu = 5.20025 q_A = 4.01679 CLsb = 0.01074 CLb = 0.38390 CLs = 0.02798 +At r = 18.236939: q_mu = 4.39663 q_A = 3.30146 CLsb = 0.01707 CLb = 0.38157 CLs = 0.04474 +At r = 17.846438: q_mu = 4.24546 q_A = 3.16826 CLsb = 0.01865 CLb = 0.38110 CLs = 0.04893 +At r = 17.668347: q_mu = 4.17727 q_A = 3.10834 CLsb = 0.01940 CLb = 0.38089 CLs = 0.05095 +At r = 17.770015: q_mu = 4.21613 q_A = 3.14247 CLsb = 0.01897 CLb = 0.38101 CLs = 0.04979 +At r = 17.734484: q_mu = 4.20253 q_A = 3.13052 CLsb = 0.01912 CLb = 0.38097 CLs = 0.05019 + + -- Asymptotic -- +Observed Limit: r < 17.7345 +Expected 2.5%: r < 10.4867 +Expected 16.0%: r < 14.0567 +Expected 50.0%: r < 19.8125 +Expected 84.0%: r < 28.2627 +Expected 97.5%: r < 38.8824 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_620_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_620_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..5d91a18 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_620_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +WARNING: Best fit of asimov dataset is at r = 0.064542 (0.003227 times rMax), while it should be at zero +Median for expected limits: 17.5625 +Sigma for expected limits: 8.96062 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -0.0273718 (r = 3.4271) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.14862 (r = 0.0426501) +At r = 26.289981: q_mu = 6.20546 q_A = 8.03397 CLsb = 0.00637 CLb = 0.63433 CLs = 0.01004 +At r = 14.858539: q_mu = 1.70807 q_A = 2.81092 CLsb = 0.09562 CLb = 0.64418 CLs = 0.14843 +At r = 20.574260: q_mu = 3.66798 q_A = 5.15876 CLsb = 0.02773 CLb = 0.63911 CLs = 0.04339 +At r = 18.904242: q_mu = 3.03096 q_A = 4.41383 CLsb = 0.04084 CLb = 0.64056 CLs = 0.06376 +At r = 19.748363: q_mu = 3.34648 q_A = 4.78445 CLsb = 0.03367 CLb = 0.63983 CLs = 0.05263 +At r = 20.089084: q_mu = 3.47760 q_A = 4.93749 CLsb = 0.03110 CLb = 0.63953 CLs = 0.04863 +At r = 19.925283: q_mu = 3.41429 q_A = 4.86367 CLsb = 0.03232 CLb = 0.63968 CLs = 0.05052 +At r = 19.993705: q_mu = 3.44068 q_A = 4.89445 CLsb = 0.03180 CLb = 0.63962 CLs = 0.04972 + + -- Asymptotic -- +Observed Limit: r < 19.9937 +Expected 2.5%: r < 9.2272 +Expected 16.0%: r < 12.4506 +Expected 50.0%: r < 17.5625 +Expected 84.0%: r < 25.1930 +Expected 97.5%: r < 34.7807 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_650_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_650_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..e0bb95b --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_650_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +WARNING: Best fit of asimov dataset is at r = 0.067475 (0.003374 times rMax), while it should be at zero +Median for expected limits: 15.4375 +Sigma for expected limits: 7.87642 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 7.13315 (r = 1.9983e-07) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.137323 (r = 0.0149591) +At r = 7.585524: q_mu = 3.80936 q_A = 0.98082 CLsb = 0.00779 CLb = 0.07664 CLs = 0.10170 +At r = 15.171048: q_mu = 9.03712 q_A = 3.69742 CLsb = 0.00046 CLb = 0.08250 CLs = 0.00563 +At r = 7.585524: q_mu = 3.80925 q_A = 0.98083 CLsb = 0.00780 CLb = 0.07665 CLs = 0.10171 +At r = 11.378286: q_mu = 6.27308 q_A = 2.14739 CLsb = 0.00203 CLb = 0.07961 CLs = 0.02553 +At r = 9.144168: q_mu = 4.78200 q_A = 1.41036 CLsb = 0.00457 CLb = 0.07787 CLs = 0.05863 +At r = 9.933166: q_mu = 5.29600 q_A = 1.65472 CLsb = 0.00345 CLb = 0.07848 CLs = 0.04395 +At r = 9.492809: q_mu = 5.00739 q_A = 1.51616 CLsb = 0.00404 CLb = 0.07814 CLs = 0.05166 +At r = 9.651915: q_mu = 5.11116 q_A = 1.56558 CLsb = 0.00381 CLb = 0.07827 CLs = 0.04874 +At r = 9.564116: q_mu = 5.05382 q_A = 1.53821 CLsb = 0.00394 CLb = 0.07820 CLs = 0.05033 +At r = 9.595997: q_mu = 5.07462 q_A = 1.54812 CLsb = 0.00389 CLb = 0.07822 CLs = 0.04975 + + -- Asymptotic -- +Observed Limit: r < 9.5960 +Expected 2.5%: r < 8.1710 +Expected 16.0%: r < 10.9811 +Expected 50.0%: r < 15.4375 +Expected 84.0%: r < 22.1448 +Expected 97.5%: r < 30.7661 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_670_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_670_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..5220a11 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_670_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +WARNING: Best fit of asimov dataset is at r = 0.020142 (0.001007 times rMax), while it should be at zero +Median for expected limits: 14.3125 +Sigma for expected limits: 7.30243 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 6.56595 (r = 3.0721e-07) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.139688 (r = 0.00417938) +At r = 3.645501: q_mu = 2.93068 q_A = 0.27478 CLsb = 0.00112 CLb = 0.00565 CLs = 0.19753 +At r = 7.291001: q_mu = 6.21226 q_A = 1.06500 CLsb = 0.00021 CLb = 0.00632 CLs = 0.03341 +At r = 3.645501: q_mu = 2.93068 q_A = 0.27478 CLsb = 0.00112 CLb = 0.00565 CLs = 0.19753 +At r = 5.468251: q_mu = 4.53238 q_A = 0.60875 CLsb = 0.00049 CLb = 0.00596 CLs = 0.08265 +At r = 6.277316: q_mu = 5.26826 q_A = 0.79680 CLsb = 0.00034 CLb = 0.00613 CLs = 0.05552 +At r = 6.647338: q_mu = 5.61023 q_A = 0.89077 CLsb = 0.00029 CLb = 0.00621 CLs = 0.04618 +At r = 6.445590: q_mu = 5.42338 q_A = 0.83886 CLsb = 0.00031 CLb = 0.00616 CLs = 0.05107 +At r = 6.519842: q_mu = 5.49204 q_A = 0.85775 CLsb = 0.00030 CLb = 0.00618 CLs = 0.04921 +At r = 6.479547: q_mu = 5.45476 q_A = 0.84745 CLsb = 0.00031 CLb = 0.00617 CLs = 0.05021 +At r = 6.494414: q_mu = 5.46851 q_A = 0.85124 CLsb = 0.00031 CLb = 0.00617 CLs = 0.04984 + + -- Asymptotic -- +Observed Limit: r < 6.4944 +Expected 2.5%: r < 7.5197 +Expected 16.0%: r < 10.1466 +Expected 50.0%: r < 14.3125 +Expected 84.0%: r < 20.5310 +Expected 97.5%: r < 28.5240 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_700_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_700_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..6c6e5e5 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_700_13TeV_asymptoticCLs.out @@ -0,0 +1,40 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 13.0625 +Sigma for expected limits: 6.66466 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 7.40867 (r = 4.94184e-05) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.147155 (r = 4.57929e-05) +At r = 7.391949: q_mu = 3.27417 q_A = 1.30873 CLsb = 0.02259 CLb = 0.19516 CLs = 0.11574 +At r = 14.783898: q_mu = 8.51241 q_A = 4.81702 CLsb = 0.00120 CLb = 0.19993 CLs = 0.00598 +At r = 7.391974: q_mu = 3.27418 q_A = 1.30874 CLsb = 0.02259 CLb = 0.19516 CLs = 0.11574 +At r = 11.087936: q_mu = 5.68885 q_A = 2.82685 CLsb = 0.00566 CLb = 0.19735 CLs = 0.02870 +At r = 9.171532: q_mu = 4.38077 q_A = 1.97583 CLsb = 0.01188 CLb = 0.19615 CLs = 0.06055 +At r = 9.947877: q_mu = 4.89744 q_A = 2.30530 CLsb = 0.00885 CLb = 0.19666 CLs = 0.04499 +At r = 9.571786: q_mu = 4.64451 q_A = 2.14270 CLsb = 0.01021 CLb = 0.19640 CLs = 0.05201 +At r = 9.728823: q_mu = 4.74951 q_A = 2.20990 CLsb = 0.00962 CLb = 0.19650 CLs = 0.04897 +At r = 9.653977: q_mu = 4.69935 q_A = 2.17774 CLsb = 0.00990 CLb = 0.19645 CLs = 0.05040 +At r = 9.685465: q_mu = 4.72042 q_A = 2.19123 CLsb = 0.00978 CLb = 0.19647 CLs = 0.04979 + + -- Asymptotic -- +Observed Limit: r < 9.6855 +Expected 2.5%: r < 6.8629 +Expected 16.0%: r < 9.2120 +Expected 50.0%: r < 13.0625 +Expected 84.0%: r < 18.7379 +Expected 97.5%: r < 26.0328 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_720_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_720_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..70f7481 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_720_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 12.2812 +Sigma for expected limits: 6.26606 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 7.96854 (r = 3.23053) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.155656 (r = 0.00394496) +At r = 20.804360: q_mu = 7.05885 q_A = 9.85528 CLsb = 0.00394 CLb = 0.68526 CLs = 0.00576 +At r = 12.017446: q_mu = 1.97316 q_A = 3.67759 CLsb = 0.08006 CLb = 0.69603 CLs = 0.11502 +At r = 16.410903: q_mu = 4.20310 q_A = 6.48958 CLsb = 0.02018 CLb = 0.69052 CLs = 0.02922 +At r = 14.154190: q_mu = 2.97045 q_A = 4.96755 CLsb = 0.04240 CLb = 0.69333 CLs = 0.06115 +At r = 15.097703: q_mu = 3.46452 q_A = 5.58501 CLsb = 0.03135 CLb = 0.69215 CLs = 0.04529 +At r = 14.660426: q_mu = 3.23163 q_A = 5.29569 CLsb = 0.03611 CLb = 0.69272 CLs = 0.05213 +At r = 14.851834: q_mu = 3.33285 q_A = 5.42151 CLsb = 0.03395 CLb = 0.69245 CLs = 0.04904 +At r = 14.764880: q_mu = 3.28668 q_A = 5.36419 CLsb = 0.03492 CLb = 0.69257 CLs = 0.05042 +At r = 14.803297: q_mu = 3.30704 q_A = 5.38948 CLsb = 0.03449 CLb = 0.69252 CLs = 0.04981 + + -- Asymptotic -- +Observed Limit: r < 14.8033 +Expected 2.5%: r < 6.4525 +Expected 16.0%: r < 8.6838 +Expected 50.0%: r < 12.2812 +Expected 84.0%: r < 17.7151 +Expected 97.5%: r < 24.5397 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_750_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_750_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..34949f3 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_750_13TeV_asymptoticCLs.out @@ -0,0 +1,38 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 11.3438 +Sigma for expected limits: 5.78773 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 7.68855 (r = 6.94254) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.165843 (r = 0.003173) +At r = 24.248580: q_mu = 7.06852 q_A = 14.65866 CLsb = 0.00392 CLb = 0.87900 CLs = 0.00446 +At r = 15.595559: q_mu = 1.98736 q_A = 6.83311 CLsb = 0.07931 CLb = 0.88576 CLs = 0.08954 +At r = 19.922070: q_mu = 4.21907 q_A = 10.50681 CLsb = 0.01999 CLb = 0.88246 CLs = 0.02265 +At r = 17.927932: q_mu = 3.10503 q_A = 8.74622 CLsb = 0.03903 CLb = 0.88401 CLs = 0.04415 +At r = 17.132876: q_mu = 2.70052 q_A = 8.07539 CLsb = 0.05016 CLb = 0.88462 CLs = 0.05670 +At r = 17.452444: q_mu = 2.86060 q_A = 8.34301 CLsb = 0.04539 CLb = 0.88437 CLs = 0.05132 +At r = 17.613422: q_mu = 2.94221 q_A = 8.47913 CLsb = 0.04315 CLb = 0.88427 CLs = 0.04879 +At r = 17.518942: q_mu = 2.89404 q_A = 8.39911 CLsb = 0.04445 CLb = 0.88433 CLs = 0.05027 + + -- Asymptotic -- +Observed Limit: r < 17.5189 +Expected 2.5%: r < 5.9599 +Expected 16.0%: r < 8.0419 +Expected 50.0%: r < 11.3438 +Expected 84.0%: r < 16.3628 +Expected 97.5%: r < 22.6665 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_770_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_770_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..58cb08d --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_770_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +WARNING: Best fit of asimov dataset is at r = 0.025041 (0.001252 times rMax), while it should be at zero +Median for expected limits: 10.7188 +Sigma for expected limits: 5.46885 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 7.48978 (r = 7.7411) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.169853 (r = 0.00378125) +At r = 24.134142: q_mu = 7.11427 q_A = 16.12564 CLsb = 0.00382 CLb = 0.91124 CLs = 0.00420 +At r = 15.937621: q_mu = 2.00459 q_A = 7.92401 CLsb = 0.07841 CLb = 0.91911 CLs = 0.08531 +At r = 20.035882: q_mu = 4.25017 q_A = 11.79955 CLsb = 0.01962 CLb = 0.91519 CLs = 0.02144 +At r = 18.025749: q_mu = 3.06250 q_A = 9.83459 CLsb = 0.04006 CLb = 0.91713 CLs = 0.04368 +At r = 17.270860: q_mu = 2.65833 q_A = 9.12761 CLsb = 0.05150 CLb = 0.91785 CLs = 0.05611 +At r = 17.699937: q_mu = 2.88574 q_A = 9.52772 CLsb = 0.04468 CLb = 0.91742 CLs = 0.04871 +At r = 17.550528: q_mu = 2.80552 q_A = 9.38763 CLsb = 0.04697 CLb = 0.91758 CLs = 0.05119 +At r = 17.636899: q_mu = 2.85174 q_A = 9.46850 CLsb = 0.04564 CLb = 0.91749 CLs = 0.04974 + + -- Asymptotic -- +Observed Limit: r < 17.6369 +Expected 2.5%: r < 5.5897 +Expected 16.0%: r < 7.5531 +Expected 50.0%: r < 10.7188 +Expected 84.0%: r < 15.3758 +Expected 97.5%: r < 21.2274 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_800_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_800_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..c9995e2 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_800_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 9.90625 +Sigma for expected limits: 5.0543 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 7.86048 (r = 4.54466) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.16756 (r = 0.000753632) +At r = 19.113986: q_mu = 6.99479 q_A = 12.48890 CLsb = 0.00409 CLb = 0.81305 CLs = 0.00503 +At r = 11.829324: q_mu = 1.94808 q_A = 5.34524 CLsb = 0.08140 CLb = 0.82023 CLs = 0.09924 +At r = 15.471655: q_mu = 4.15768 q_A = 8.65511 CLsb = 0.02072 CLb = 0.81672 CLs = 0.02537 +At r = 13.293924: q_mu = 2.75223 q_A = 6.60474 CLsb = 0.04856 CLb = 0.81885 CLs = 0.05930 +At r = 14.079618: q_mu = 3.23161 q_A = 7.32118 CLsb = 0.03611 CLb = 0.81809 CLs = 0.04415 +At r = 13.657273: q_mu = 2.97057 q_A = 6.93320 CLsb = 0.04240 CLb = 0.81847 CLs = 0.05180 +At r = 13.816441: q_mu = 3.06769 q_A = 7.07836 CLsb = 0.03993 CLb = 0.81833 CLs = 0.04880 +At r = 13.732639: q_mu = 3.01634 q_A = 7.00175 CLsb = 0.04121 CLb = 0.81841 CLs = 0.05036 +At r = 13.764627: q_mu = 3.03588 q_A = 7.03094 CLsb = 0.04072 CLb = 0.81838 CLs = 0.04976 + + -- Asymptotic -- +Observed Limit: r < 13.7646 +Expected 2.5%: r < 5.2047 +Expected 16.0%: r < 6.9861 +Expected 50.0%: r < 9.9062 +Expected 84.0%: r < 14.2103 +Expected 97.5%: r < 19.6183 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_820_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_820_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..3c67090 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_820_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 9.40625 +Sigma for expected limits: 4.7992 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 7.92843 (r = 1.1312) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.16515 (r = 0.000830782) +At r = 14.272387: q_mu = 6.69158 q_A = 8.19180 CLsb = 0.00484 CLb = 0.60847 CLs = 0.00796 +At r = 7.701796: q_mu = 1.84678 q_A = 2.65107 CLsb = 0.08708 CLb = 0.60613 CLs = 0.14366 +At r = 10.987092: q_mu = 3.96037 q_A = 5.12112 CLsb = 0.02329 CLb = 0.60754 CLs = 0.03834 +At r = 9.801635: q_mu = 3.11980 q_A = 4.15367 CLsb = 0.03867 CLb = 0.60710 CLs = 0.06370 +At r = 10.491054: q_mu = 3.59853 q_A = 4.70645 CLsb = 0.02892 CLb = 0.60736 CLs = 0.04761 +At r = 10.260323: q_mu = 3.43534 q_A = 4.51854 CLsb = 0.03191 CLb = 0.60727 CLs = 0.05254 +At r = 10.353154: q_mu = 3.50056 q_A = 4.59372 CLsb = 0.03067 CLb = 0.60731 CLs = 0.05051 +At r = 10.399588: q_mu = 3.53341 q_A = 4.63154 CLsb = 0.03007 CLb = 0.60733 CLs = 0.04952 +At r = 10.372064: q_mu = 3.51392 q_A = 4.60911 CLsb = 0.03043 CLb = 0.60732 CLs = 0.05010 + + -- Asymptotic -- +Observed Limit: r < 10.3721 +Expected 2.5%: r < 4.9052 +Expected 16.0%: r < 6.6458 +Expected 50.0%: r < 9.4062 +Expected 84.0%: r < 13.4931 +Expected 97.5%: r < 18.7461 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_840_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_840_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..6e250bc --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_840_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 9.03125 +Sigma for expected limits: 4.60787 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 7.74727 (r = 3.43821e-05) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.162599 (r = 1.2571e-05) +At r = 47.448815: q_mu = 58.19374 q_A = 56.65642 CLsb = 0.00000 CLb = 0.45933 CLs = 0.00000 +At r = 23.724425: q_mu = 21.76524 q_A = 20.59805 CLsb = 0.00000 CLb = 0.44884 CLs = 0.00000 +At r = 11.862230: q_mu = 7.07970 q_A = 6.32809 CLsb = 0.00385 CLb = 0.44062 CLs = 0.00874 +At r = 5.931132: q_mu = 2.17289 q_A = 1.74626 CLsb = 0.06905 CLb = 0.43588 CLs = 0.15842 +At r = 8.896681: q_mu = 4.34369 q_A = 3.74244 CLsb = 0.01831 CLb = 0.43825 CLs = 0.04178 +At r = 7.413906: q_mu = 3.18043 q_A = 2.66332 CLsb = 0.03669 CLb = 0.43706 CLs = 0.08396 +At r = 8.294956: q_mu = 3.85380 q_A = 3.28595 CLsb = 0.02446 CLb = 0.43777 CLs = 0.05587 +At r = 8.599161: q_mu = 4.09884 q_A = 3.51398 CLsb = 0.02115 CLb = 0.43802 CLs = 0.04829 +At r = 8.480090: q_mu = 4.00211 q_A = 3.42387 CLsb = 0.02240 CLb = 0.43792 CLs = 0.05114 +At r = 8.541288: q_mu = 4.05168 q_A = 3.47004 CLsb = 0.02175 CLb = 0.43797 CLs = 0.04966 +At r = 8.517553: q_mu = 4.03242 q_A = 3.45209 CLsb = 0.02200 CLb = 0.43795 CLs = 0.05023 + + -- Asymptotic -- +Observed Limit: r < 8.5176 +Expected 2.5%: r < 4.7273 +Expected 16.0%: r < 6.3581 +Expected 50.0%: r < 9.0312 +Expected 84.0%: r < 12.9551 +Expected 97.5%: r < 17.9988 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_860_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_860_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..96372ca --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_860_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 8.65625 +Sigma for expected limits: 4.41654 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 7.67989 (r = 1.4786e-05) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.14063 (r = 2.88228e-05) +At r = 13.314270: q_mu = 10.20713 q_A = 8.31580 CLsb = 0.00066 CLb = 0.37148 CLs = 0.00178 +At r = 6.657142: q_mu = 3.41607 q_A = 2.34136 CLsb = 0.02996 CLb = 0.36273 CLs = 0.08261 +At r = 9.985706: q_mu = 6.48186 q_A = 4.96935 CLsb = 0.00511 CLb = 0.36721 CLs = 0.01391 +At r = 8.321424: q_mu = 4.85578 q_A = 3.55430 CLsb = 0.01286 CLb = 0.36498 CLs = 0.03523 +At r = 7.441569: q_mu = 4.06997 q_A = 2.88636 CLsb = 0.02032 CLb = 0.36379 CLs = 0.05584 +At r = 7.786463: q_mu = 4.37195 q_A = 3.14161 CLsb = 0.01702 CLb = 0.36427 CLs = 0.04673 +At r = 7.612781: q_mu = 4.21873 q_A = 3.01183 CLsb = 0.01862 CLb = 0.36403 CLs = 0.05114 +At r = 7.682335: q_mu = 4.27980 q_A = 3.06350 CLsb = 0.01796 CLb = 0.36412 CLs = 0.04933 +At r = 7.647720: q_mu = 4.24936 q_A = 3.03773 CLsb = 0.01829 CLb = 0.36408 CLs = 0.05023 + + -- Asymptotic -- +Observed Limit: r < 7.6477 +Expected 2.5%: r < 4.5479 +Expected 16.0%: r < 6.1367 +Expected 50.0%: r < 8.6562 +Expected 84.0%: r < 12.4862 +Expected 97.5%: r < 17.2964 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_880_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_880_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..77320d5 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_880_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 8.34375 +Sigma for expected limits: 4.25709 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 7.66222 (r = 5.26868e-06) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.158146 (r = 2.1183e-05) +At r = 13.728106: q_mu = 11.38179 q_A = 9.35243 CLsb = 0.00035 CLb = 0.37002 CLs = 0.00094 +At r = 6.864056: q_mu = 3.83187 q_A = 2.69958 CLsb = 0.02343 CLb = 0.36521 CLs = 0.06415 +At r = 10.296081: q_mu = 7.25828 q_A = 5.64925 CLsb = 0.00331 CLb = 0.36750 CLs = 0.00901 +At r = 8.580068: q_mu = 5.44492 q_A = 4.06684 CLsb = 0.00918 CLb = 0.36630 CLs = 0.02506 +At r = 7.571166: q_mu = 4.47046 q_A = 3.23504 CLsb = 0.01609 CLb = 0.36564 CLs = 0.04402 +At r = 7.238331: q_mu = 4.16541 q_A = 2.97823 CLsb = 0.01924 CLb = 0.36544 CLs = 0.05265 +At r = 7.381642: q_mu = 4.29567 q_A = 3.08765 CLsb = 0.01782 CLb = 0.36552 CLs = 0.04876 +At r = 7.315538: q_mu = 4.23538 q_A = 3.03695 CLsb = 0.01847 CLb = 0.36548 CLs = 0.05052 +At r = 7.344297: q_mu = 4.26156 q_A = 3.05896 CLsb = 0.01818 CLb = 0.36550 CLs = 0.04975 + + -- Asymptotic -- +Observed Limit: r < 7.3443 +Expected 2.5%: r < 4.3185 +Expected 16.0%: r < 5.8437 +Expected 50.0%: r < 8.3438 +Expected 84.0%: r < 12.0354 +Expected 97.5%: r < 16.7762 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_900_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_900_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..4b1a3f7 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_900_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 8.15625 +Sigma for expected limits: 4.16143 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 7.62909 (r = 1.41678e-06) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.158128 (r = 0.000345797) +At r = 12.755578: q_mu = 10.90467 q_A = 8.53565 CLsb = 0.00044 CLb = 0.34258 CLs = 0.00128 +At r = 6.377790: q_mu = 3.70331 q_A = 2.41707 CLsb = 0.02451 CLb = 0.33956 CLs = 0.07219 +At r = 9.566684: q_mu = 6.97031 q_A = 5.11512 CLsb = 0.00377 CLb = 0.34085 CLs = 0.01107 +At r = 7.972237: q_mu = 5.24154 q_A = 3.66388 CLsb = 0.01000 CLb = 0.34013 CLs = 0.02941 +At r = 7.218408: q_mu = 4.48897 q_A = 3.04737 CLsb = 0.01544 CLb = 0.33984 CLs = 0.04544 +At r = 6.911306: q_mu = 4.19538 q_A = 2.81011 CLsb = 0.01833 CLb = 0.33974 CLs = 0.05395 +At r = 7.081585: q_mu = 4.35718 q_A = 2.94061 CLsb = 0.01667 CLb = 0.33979 CLs = 0.04907 +At r = 7.020643: q_mu = 4.29899 q_A = 2.89360 CLsb = 0.01725 CLb = 0.33977 CLs = 0.05077 +At r = 7.054795: q_mu = 4.33156 q_A = 2.91991 CLsb = 0.01693 CLb = 0.33978 CLs = 0.04981 + + -- Asymptotic -- +Observed Limit: r < 7.0548 +Expected 2.5%: r < 4.2852 +Expected 16.0%: r < 5.7822 +Expected 50.0%: r < 8.1562 +Expected 84.0%: r < 11.7650 +Expected 97.5%: r < 16.3992 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_920_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_920_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..23d986e --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_920_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 7.65625 +Sigma for expected limits: 3.90632 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 7.53049 (r = 5.97681e-06) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.177356 (r = 0.000701154) +At r = 9.180727: q_mu = 7.58792 q_A = 5.30645 CLsb = 0.00256 CLb = 0.31023 CLs = 0.00827 +At r = 4.590367: q_mu = 2.72793 q_A = 1.46549 CLsb = 0.04164 CLb = 0.30104 CLs = 0.13831 +At r = 6.885547: q_mu = 4.93994 q_A = 3.13927 CLsb = 0.01131 CLb = 0.30567 CLs = 0.03699 +At r = 6.006793: q_mu = 4.03655 q_A = 2.43487 CLsb = 0.01906 CLb = 0.30390 CLs = 0.06271 +At r = 6.484084: q_mu = 4.51928 q_A = 2.80848 CLsb = 0.01440 CLb = 0.30488 CLs = 0.04722 +At r = 6.311725: q_mu = 4.34260 q_A = 2.67090 CLsb = 0.01595 CLb = 0.30452 CLs = 0.05237 +At r = 6.407914: q_mu = 4.44086 q_A = 2.74730 CLsb = 0.01506 CLb = 0.30472 CLs = 0.04944 +At r = 6.373594: q_mu = 4.40571 q_A = 2.71993 CLsb = 0.01537 CLb = 0.30465 CLs = 0.05047 +At r = 6.392861: q_mu = 4.42543 q_A = 2.73528 CLsb = 0.01520 CLb = 0.30469 CLs = 0.04989 + + -- Asymptotic -- +Observed Limit: r < 6.3929 +Expected 2.5%: r < 4.0076 +Expected 16.0%: r < 5.4186 +Expected 50.0%: r < 7.6562 +Expected 84.0%: r < 11.1048 +Expected 97.5%: r < 15.4333 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_940_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_940_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..d255cfb --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_940_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 7.40625 +Sigma for expected limits: 3.77877 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 7.58918 (r = 3.43176e-07) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.191463 (r = 0.00107556) +At r = 12.394837: q_mu = 11.60633 q_A = 9.52188 CLsb = 0.00031 CLb = 0.36777 CLs = 0.00084 +At r = 6.197419: q_mu = 3.97825 q_A = 2.76217 CLsb = 0.02129 CLb = 0.35724 CLs = 0.05959 +At r = 9.296128: q_mu = 7.45812 q_A = 5.77116 CLsb = 0.00295 CLb = 0.36275 CLs = 0.00813 +At r = 7.746773: q_mu = 5.62129 q_A = 4.15964 CLsb = 0.00825 CLb = 0.36005 CLs = 0.02290 +At r = 6.734770: q_mu = 4.52473 q_A = 3.22111 CLsb = 0.01547 CLb = 0.35824 CLs = 0.04318 +At r = 6.431539: q_mu = 4.21291 q_A = 2.95835 CLsb = 0.01855 CLb = 0.35767 CLs = 0.05186 +At r = 6.540542: q_mu = 4.32389 q_A = 3.05158 CLsb = 0.01738 CLb = 0.35787 CLs = 0.04858 +At r = 6.480255: q_mu = 4.26238 q_A = 2.99987 CLsb = 0.01802 CLb = 0.35776 CLs = 0.05037 +At r = 6.502115: q_mu = 4.28464 q_A = 3.01858 CLsb = 0.01779 CLb = 0.35780 CLs = 0.04971 + + -- Asymptotic -- +Observed Limit: r < 6.5021 +Expected 2.5%: r < 3.8622 +Expected 16.0%: r < 5.2051 +Expected 50.0%: r < 7.4062 +Expected 84.0%: r < 10.7422 +Expected 97.5%: r < 15.0213 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_960_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_960_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..e8f9402 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_960_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 7.21875 +Sigma for expected limits: 3.6831 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -0.11739 (r = 0.654975) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.205737 (r = 0.00487269) +At r = 10.590660: q_mu = 6.83695 q_A = 7.63259 CLsb = 0.00446 CLb = 0.55881 CLs = 0.00799 +At r = 5.622818: q_mu = 1.93521 q_A = 2.43652 CLsb = 0.08209 CLb = 0.56742 CLs = 0.14468 +At r = 8.106739: q_mu = 4.09596 q_A = 4.76182 CLsb = 0.02149 CLb = 0.56289 CLs = 0.03818 +At r = 7.207739: q_mu = 3.23898 q_A = 3.84968 CLsb = 0.03595 CLb = 0.56448 CLs = 0.06369 +At r = 7.727735: q_mu = 3.72493 q_A = 4.36810 CLsb = 0.02680 CLb = 0.56356 CLs = 0.04756 +At r = 7.552481: q_mu = 3.55812 q_A = 4.19052 CLsb = 0.02963 CLb = 0.56387 CLs = 0.05254 +At r = 7.657345: q_mu = 3.65755 q_A = 4.29641 CLsb = 0.02791 CLb = 0.56368 CLs = 0.04951 +At r = 7.622482: q_mu = 3.62435 q_A = 4.26107 CLsb = 0.02847 CLb = 0.56374 CLs = 0.05050 +At r = 7.636524: q_mu = 3.63768 q_A = 4.27527 CLsb = 0.02824 CLb = 0.56372 CLs = 0.05010 + + -- Asymptotic -- +Observed Limit: r < 7.6365 +Expected 2.5%: r < 3.7363 +Expected 16.0%: r < 5.0558 +Expected 50.0%: r < 7.2188 +Expected 84.0%: r < 10.4127 +Expected 97.5%: r < 14.6044 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_980_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_980_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..7111b0b --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin0/CMS_HH4b_980_13TeV_asymptoticCLs.out @@ -0,0 +1,37 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 7.03125 +Sigma for expected limits: 3.58744 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -0.0869877 (r = 1.09416) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.22384 (r = 0.0102098) +At r = 10.049581: q_mu = 5.89935 q_A = 7.23946 CLsb = 0.00757 CLb = 0.60325 CLs = 0.01255 +At r = 5.571871: q_mu = 1.65914 q_A = 2.50191 CLsb = 0.09886 CLb = 0.61549 CLs = 0.16062 +At r = 7.810726: q_mu = 3.52195 q_A = 4.63810 CLsb = 0.03028 CLb = 0.60909 CLs = 0.04971 +At r = 6.691298: q_mu = 2.51871 q_A = 3.50497 CLsb = 0.05625 CLb = 0.61222 CLs = 0.09188 +At r = 7.578499: q_mu = 3.30278 q_A = 4.39302 CLsb = 0.03458 CLb = 0.60972 CLs = 0.05672 +At r = 7.756214: q_mu = 3.47000 q_A = 4.58010 CLsb = 0.03125 CLb = 0.60923 CLs = 0.05129 +At r = 7.791809: q_mu = 3.50389 q_A = 4.61792 CLsb = 0.03061 CLb = 0.60913 CLs = 0.05026 + + -- Asymptotic -- +Observed Limit: r < 7.7918 +Expected 2.5%: r < 3.6667 +Expected 16.0%: r < 4.9415 +Expected 50.0%: r < 7.0312 +Expected 84.0%: r < 10.1983 +Expected 97.5%: r < 14.2608 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_1000_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_1000_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..78b89ad --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_1000_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 5.89062 +Sigma for expected limits: 3.00548 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -0.306981 (r = 0.121879) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.330482 (r = 4.93472e-05) +At r = 39.962318: q_mu = 75.80425 q_A = 74.74510 CLsb = 0.00000 CLb = 0.47558 CLs = 0.00000 +At r = 20.042098: q_mu = 30.18384 q_A = 29.80061 CLsb = 0.00000 CLb = 0.48600 CLs = 0.00000 +At r = 10.081988: q_mu = 10.01207 q_A = 9.96915 CLsb = 0.00078 CLb = 0.49729 CLs = 0.00156 +At r = 5.101934: q_mu = 2.88326 q_A = 2.93778 CLsb = 0.04475 CLb = 0.50637 CLs = 0.08838 +At r = 7.591961: q_mu = 6.05332 q_A = 6.07134 CLsb = 0.00694 CLb = 0.50146 CLs = 0.01384 +At r = 6.346947: q_mu = 4.35454 q_A = 4.39465 CLsb = 0.01846 CLb = 0.50382 CLs = 0.03663 +At r = 5.746076: q_mu = 3.61436 q_A = 3.66256 CLsb = 0.02864 CLb = 0.50504 CLs = 0.05671 +At r = 6.004759: q_mu = 3.92618 q_A = 3.97110 CLsb = 0.02377 CLb = 0.50451 CLs = 0.04711 +At r = 5.886674: q_mu = 3.78246 q_A = 3.82889 CLsb = 0.02590 CLb = 0.50475 CLs = 0.05131 +At r = 5.938865: q_mu = 3.84563 q_A = 3.89138 CLsb = 0.02494 CLb = 0.50464 CLs = 0.04942 +At r = 5.915371: q_mu = 3.81706 q_A = 3.86310 CLsb = 0.02537 CLb = 0.50469 CLs = 0.05026 + + -- Asymptotic -- +Observed Limit: r < 5.9154 +Expected 2.5%: r < 3.0834 +Expected 16.0%: r < 4.1580 +Expected 50.0%: r < 5.8906 +Expected 84.0%: r < 8.4969 +Expected 97.5%: r < 11.8439 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_1050_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_1050_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..c10c878 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_1050_13TeV_asymptoticCLs.out @@ -0,0 +1,40 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 6.21875 +Sigma for expected limits: 3.17289 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -1.10418 (r = 3.74902e-07) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.355836 (r = 9.4531e-06) +At r = 3.670872: q_mu = 4.14572 q_A = 1.43620 CLsb = 0.00993 CLb = 0.12914 CLs = 0.07691 +At r = 7.341743: q_mu = 10.13323 q_A = 5.18263 CLsb = 0.00038 CLb = 0.13845 CLs = 0.00278 +At r = 3.670872: q_mu = 4.14573 q_A = 1.43620 CLsb = 0.00993 CLb = 0.12914 CLs = 0.07691 +At r = 5.506308: q_mu = 6.96063 q_A = 3.07347 CLsb = 0.00211 CLb = 0.13379 CLs = 0.01574 +At r = 4.436619: q_mu = 5.27070 q_A = 2.05550 CLsb = 0.00531 CLb = 0.13108 CLs = 0.04051 +At r = 4.082287: q_mu = 4.74131 q_A = 1.75766 CLsb = 0.00712 CLb = 0.13024 CLs = 0.05469 +At r = 4.237770: q_mu = 4.97151 q_A = 1.88567 CLsb = 0.00627 CLb = 0.13059 CLs = 0.04798 +At r = 4.167502: q_mu = 4.86706 q_A = 1.82723 CLsb = 0.00664 CLb = 0.13042 CLs = 0.05091 +At r = 4.198730: q_mu = 4.91338 q_A = 1.85304 CLsb = 0.00647 CLb = 0.13049 CLs = 0.04959 +At r = 4.184713: q_mu = 4.89256 q_A = 1.84142 CLsb = 0.00655 CLb = 0.13046 CLs = 0.05018 + + -- Asymptotic -- +Observed Limit: r < 4.1847 +Expected 2.5%: r < 3.2430 +Expected 16.0%: r < 4.3705 +Expected 50.0%: r < 6.2188 +Expected 84.0%: r < 8.9950 +Expected 97.5%: r < 12.5971 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_1100_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_1100_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..1157641 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_1100_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 6.95312 +Sigma for expected limits: 3.54758 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -0.868114 (r = 8.42799e-06) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.375002 (r = 8.1962e-05) +At r = 5.201996: q_mu = 4.66136 q_A = 2.25008 CLsb = 0.01062 CLb = 0.21077 CLs = 0.05038 +At r = 10.403991: q_mu = 12.01496 q_A = 7.88679 CLsb = 0.00020 CLb = 0.23117 CLs = 0.00085 +At r = 5.202000: q_mu = 4.66137 q_A = 2.25009 CLsb = 0.01062 CLb = 0.21077 CLs = 0.05038 +At r = 7.802995: q_mu = 8.09233 q_A = 4.74640 CLsb = 0.00161 CLb = 0.22127 CLs = 0.00726 +At r = 6.502498: q_mu = 6.30560 q_A = 3.40627 CLsb = 0.00426 CLb = 0.21609 CLs = 0.01969 +At r = 5.470379: q_mu = 4.98794 q_A = 2.47240 CLsb = 0.00884 CLb = 0.21188 CLs = 0.04172 +At r = 5.264184: q_mu = 4.73711 q_A = 2.30157 CLsb = 0.01018 CLb = 0.21107 CLs = 0.04821 +At r = 5.222904: q_mu = 4.68655 q_A = 2.26708 CLsb = 0.01047 CLb = 0.21086 CLs = 0.04965 +At r = 5.210568: q_mu = 4.67169 q_A = 2.25705 CLsb = 0.01056 CLb = 0.21081 CLs = 0.05007 + + -- Asymptotic -- +Observed Limit: r < 5.2106 +Expected 2.5%: r < 3.6259 +Expected 16.0%: r < 4.8866 +Expected 50.0%: r < 6.9531 +Expected 84.0%: r < 10.0295 +Expected 97.5%: r < 14.0670 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_1150_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_1150_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..532dad1 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_1150_13TeV_asymptoticCLs.out @@ -0,0 +1,38 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 6.53125 +Sigma for expected limits: 3.33233 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -0.491704 (r = 3.82992) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.44047 (r = 0.0557444) +At r = 13.083317: q_mu = 6.87455 q_A = 13.08884 CLsb = 0.00437 CLb = 0.84035 CLs = 0.00520 +At r = 8.456618: q_mu = 1.95426 q_A = 6.17759 CLsb = 0.08106 CLb = 0.86160 CLs = 0.09409 +At r = 10.769968: q_mu = 4.12571 q_A = 9.43232 CLsb = 0.02112 CLb = 0.85084 CLs = 0.02482 +At r = 9.797290: q_mu = 3.13378 q_A = 8.00821 CLsb = 0.03834 CLb = 0.85534 CLs = 0.04483 +At r = 9.371175: q_mu = 2.73413 q_A = 7.40883 CLsb = 0.04911 CLb = 0.85733 CLs = 0.05729 +At r = 9.560261: q_mu = 2.90928 q_A = 7.67326 CLsb = 0.04404 CLb = 0.85643 CLs = 0.05142 +At r = 9.646323: q_mu = 2.98966 q_A = 7.79496 CLsb = 0.04190 CLb = 0.85608 CLs = 0.04894 +At r = 9.599281: q_mu = 2.94537 q_A = 7.72831 CLsb = 0.04306 CLb = 0.85628 CLs = 0.05029 + + -- Asymptotic -- +Observed Limit: r < 9.5993 +Expected 2.5%: r < 3.4315 +Expected 16.0%: r < 4.6060 +Expected 50.0%: r < 6.5312 +Expected 84.0%: r < 9.3689 +Expected 97.5%: r < 13.0984 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_1200_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_1200_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..fefad24 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_1200_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 5.42188 +Sigma for expected limits: 2.76631 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -0.263761 (r = 1.78414) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.523063 (r = 0.0149269) +At r = 9.879654: q_mu = 6.58853 q_A = 10.71622 CLsb = 0.00513 CLb = 0.76014 CLs = 0.00675 +At r = 5.831897: q_mu = 1.89778 q_A = 4.37418 CLsb = 0.08416 CLb = 0.76234 CLs = 0.11040 +At r = 7.855776: q_mu = 3.97839 q_A = 7.32822 CLsb = 0.02304 CLb = 0.76192 CLs = 0.03024 +At r = 6.822384: q_mu = 2.84053 q_A = 5.75647 CLsb = 0.04596 CLb = 0.76235 CLs = 0.06028 +At r = 7.253236: q_mu = 3.29697 q_A = 6.39688 CLsb = 0.03470 CLb = 0.76222 CLs = 0.04553 +At r = 7.052066: q_mu = 3.08114 q_A = 6.09553 CLsb = 0.03960 CLb = 0.76226 CLs = 0.05195 +At r = 7.139045: q_mu = 3.17355 q_A = 6.22509 CLsb = 0.03742 CLb = 0.76225 CLs = 0.04909 +At r = 7.099128: q_mu = 3.13095 q_A = 6.16548 CLsb = 0.03841 CLb = 0.76226 CLs = 0.05039 +At r = 7.116593: q_mu = 3.14954 q_A = 6.19153 CLsb = 0.03797 CLb = 0.76226 CLs = 0.04982 + + -- Asymptotic -- +Observed Limit: r < 7.1166 +Expected 2.5%: r < 2.8062 +Expected 16.0%: r < 3.7973 +Expected 50.0%: r < 5.4219 +Expected 84.0%: r < 7.9072 +Expected 97.5%: r < 11.1582 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_260_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_260_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..ba4e864 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_260_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.871094 +Sigma for expected limits: 0.444444 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -5.71368 (r = 1.91825e-07) + +Make global fit of asimov data +NLL at global minimum of asimov: -13.4967 (r = 2.09248e-06) +At r = 7.211415: q_mu = 97.95010 q_A = 97.76285 CLsb = 0.00000 CLb = 0.49622 CLs = 0.00000 +At r = 3.605707: q_mu = 40.86396 q_A = 40.75859 CLsb = 0.00000 CLb = 0.49671 CLs = 0.00000 +At r = 1.802854: q_mu = 14.00070 q_A = 13.94548 CLsb = 0.00009 CLb = 0.49705 CLs = 0.00018 +At r = 0.901427: q_mu = 4.14144 q_A = 4.11451 CLsb = 0.02092 CLb = 0.49735 CLs = 0.04207 +At r = 0.450714: q_mu = 1.16596 q_A = 1.15296 CLsb = 0.14011 CLb = 0.49759 CLs = 0.28159 +At r = 0.676070: q_mu = 2.44896 q_A = 2.42907 CLsb = 0.05880 CLb = 0.49745 CLs = 0.11820 +At r = 0.826209: q_mu = 3.53411 q_A = 3.50954 CLsb = 0.03006 CLb = 0.49738 CLs = 0.06043 +At r = 0.857689: q_mu = 3.78331 q_A = 3.75775 CLsb = 0.02588 CLb = 0.49737 CLs = 0.05204 +At r = 0.873010: q_mu = 3.90720 q_A = 3.88116 CLsb = 0.02404 CLb = 0.49736 CLs = 0.04833 +At r = 0.864320: q_mu = 3.83671 q_A = 3.81095 CLsb = 0.02507 CLb = 0.49737 CLs = 0.05041 +At r = 0.867396: q_mu = 3.86160 q_A = 3.83574 CLsb = 0.02470 CLb = 0.49737 CLs = 0.04966 +At r = 0.865661: q_mu = 3.84755 q_A = 3.82174 CLsb = 0.02491 CLb = 0.49737 CLs = 0.05008 + + -- Asymptotic -- +Observed Limit: r < 0.8657 +Expected 2.5%: r < 0.4458 +Expected 16.0%: r < 0.6069 +Expected 50.0%: r < 0.8711 +Expected 84.0%: r < 1.2496 +Expected 97.5%: r < 1.7360 + +Done in 0.01 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_265_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_265_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..120f061 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_265_13TeV_asymptoticCLs.out @@ -0,0 +1,40 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.855469 +Sigma for expected limits: 0.436472 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -13.6439 (r = 1.37555e-08) + +Make global fit of asimov data +NLL at global minimum of asimov: -12.5786 (r = 1.18461e-12) +At r = 1.200000: q_mu = 16.67565 q_A = 6.98851 CLsb = 0.00000 CLb = 0.03346 CLs = 0.00011 +At r = 0.600000: q_mu = 7.24584 q_A = 2.05539 CLsb = 0.00059 CLb = 0.03513 CLs = 0.01678 +At r = 0.300000: q_mu = 3.29063 q_A = 0.62600 CLsb = 0.00666 CLb = 0.04610 CLs = 0.14446 +At r = 0.478289: q_mu = 5.56866 q_A = 1.38297 CLsb = 0.00156 CLb = 0.03757 CLs = 0.04153 +At r = 0.421391: q_mu = 4.81768 q_A = 1.11135 CLsb = 0.00246 CLb = 0.03938 CLs = 0.06249 +At r = 0.446230: q_mu = 5.14283 q_A = 1.22651 CLsb = 0.00202 CLb = 0.03852 CLs = 0.05234 +At r = 0.457717: q_mu = 5.29463 q_A = 1.28157 CLsb = 0.00184 CLb = 0.03816 CLs = 0.04819 +At r = 0.451327: q_mu = 5.21008 q_A = 1.25080 CLsb = 0.00194 CLb = 0.03836 CLs = 0.05046 +At r = 0.453630: q_mu = 5.24051 q_A = 1.26185 CLsb = 0.00190 CLb = 0.03829 CLs = 0.04963 +At r = 0.452352: q_mu = 5.22363 q_A = 1.25572 CLsb = 0.00192 CLb = 0.03833 CLs = 0.05009 + + -- Asymptotic -- +Observed Limit: r < 0.4524 +Expected 2.5%: r < 0.4261 +Expected 16.0%: r < 0.5921 +Expected 50.0%: r < 0.8555 +Expected 84.0%: r < 1.2408 +Expected 97.5%: r < 1.7244 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_270_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_270_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..673fce7 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_270_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.839844 +Sigma for expected limits: 0.4285 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -12.6488 (r = 6.18841e-09) + +Make global fit of asimov data +NLL at global minimum of asimov: -12.1318 (r = 1.34226e-11) +At r = 1.200000: q_mu = 16.16637 q_A = 7.15059 CLsb = 0.00001 CLb = 0.04592 CLs = 0.00014 +At r = 0.600000: q_mu = 6.95634 q_A = 2.15902 CLsb = 0.00096 CLb = 0.05129 CLs = 0.01875 +At r = 0.300000: q_mu = 3.14183 q_A = 0.68667 CLsb = 0.01044 CLb = 0.06925 CLs = 0.15079 +At r = 0.450000: q_mu = 4.97169 q_A = 1.32853 CLsb = 0.00314 CLb = 0.05701 CLs = 0.05504 +At r = 0.490708: q_mu = 5.49557 q_A = 1.53566 CLsb = 0.00228 CLb = 0.05505 CLs = 0.04137 +At r = 0.469098: q_mu = 5.21606 q_A = 1.42399 CLsb = 0.00270 CLb = 0.05604 CLs = 0.04817 +At r = 0.461008: q_mu = 5.11224 q_A = 1.38318 CLsb = 0.00288 CLb = 0.05644 CLs = 0.05098 +At r = 0.464838: q_mu = 5.16133 q_A = 1.40243 CLsb = 0.00279 CLb = 0.05625 CLs = 0.04963 +At r = 0.463222: q_mu = 5.14061 q_A = 1.39429 CLsb = 0.00283 CLb = 0.05633 CLs = 0.05019 + + -- Asymptotic -- +Observed Limit: r < 0.4632 +Expected 2.5%: r < 0.4084 +Expected 16.0%: r < 0.5753 +Expected 50.0%: r < 0.8398 +Expected 84.0%: r < 1.2248 +Expected 97.5%: r < 1.7076 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_275_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_275_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..1f14072 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_275_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.751953 +Sigma for expected limits: 0.383657 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -10.9295 (r = 3.00826e-08) + +Make global fit of asimov data +NLL at global minimum of asimov: -14.6376 (r = 1.53547e-10) +At r = 1.200000: q_mu = 12.78379 q_A = 8.67252 CLsb = 0.00013 CLb = 0.24258 CLs = 0.00056 +At r = 0.600000: q_mu = 4.78282 q_A = 2.60377 CLsb = 0.01104 CLb = 0.24977 CLs = 0.04422 +At r = 0.300000: q_mu = 1.92347 q_A = 0.81394 CLsb = 0.06462 CLb = 0.26931 CLs = 0.23995 +At r = 0.450000: q_mu = 3.24357 q_A = 1.59230 CLsb = 0.02767 CLb = 0.25646 CLs = 0.10790 +At r = 0.553472: q_mu = 4.28293 q_A = 2.26592 CLsb = 0.01481 CLb = 0.25144 CLs = 0.05888 +At r = 0.574724: q_mu = 4.50881 q_A = 2.41760 CLsb = 0.01296 CLb = 0.25064 CLs = 0.05172 +At r = 0.584138: q_mu = 4.61019 q_A = 2.48621 CLsb = 0.01222 CLb = 0.25031 CLs = 0.04880 +At r = 0.579105: q_mu = 4.55588 q_A = 2.44941 CLsb = 0.01261 CLb = 0.25048 CLs = 0.05034 +At r = 0.580992: q_mu = 4.57622 q_A = 2.46318 CLsb = 0.01246 CLb = 0.25042 CLs = 0.04976 + + -- Asymptotic -- +Observed Limit: r < 0.5810 +Expected 2.5%: r < 0.3657 +Expected 16.0%: r < 0.5151 +Expected 50.0%: r < 0.7520 +Expected 84.0%: r < 1.0966 +Expected 97.5%: r < 1.5289 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_280_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_280_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..b32b129 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_280_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.732422 +Sigma for expected limits: 0.373692 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -6.80886 (r = 8.60386e-09) + +Make global fit of asimov data +NLL at global minimum of asimov: -14.619 (r = 1.16866e-09) +At r = 5.511343: q_mu = 89.67971 q_A = 90.53908 CLsb = 0.00000 CLb = 0.51805 CLs = 0.00000 +At r = 2.755671: q_mu = 34.37855 q_A = 35.04466 CLsb = 0.00000 CLb = 0.52254 CLs = 0.00000 +At r = 1.377836: q_mu = 10.84684 q_A = 11.49441 CLsb = 0.00049 CLb = 0.53859 CLs = 0.00092 +At r = 0.688918: q_mu = 3.16899 q_A = 3.43798 CLsb = 0.03752 CLb = 0.52950 CLs = 0.07087 +At r = 1.033377: q_mu = 6.61856 q_A = 6.99415 CLsb = 0.00505 CLb = 0.52869 CLs = 0.00954 +At r = 0.861147: q_mu = 4.75962 q_A = 5.08419 CLsb = 0.01457 CLb = 0.52916 CLs = 0.02753 +At r = 0.774189: q_mu = 3.92121 q_A = 4.21832 CLsb = 0.02384 CLb = 0.52936 CLs = 0.04504 +At r = 0.741402: q_mu = 3.62360 q_A = 3.91003 CLsb = 0.02848 CLb = 0.52942 CLs = 0.05380 +At r = 0.758766: q_mu = 3.77993 q_A = 4.07202 CLsb = 0.02594 CLb = 0.52938 CLs = 0.04899 +At r = 0.752270: q_mu = 3.72111 q_A = 4.01109 CLsb = 0.02686 CLb = 0.52940 CLs = 0.05075 +At r = 0.755756: q_mu = 3.75262 q_A = 4.04373 CLsb = 0.02636 CLb = 0.52939 CLs = 0.04980 + + -- Asymptotic -- +Observed Limit: r < 0.7558 +Expected 2.5%: r < 0.3619 +Expected 16.0%: r < 0.5052 +Expected 50.0%: r < 0.7324 +Expected 84.0%: r < 1.0682 +Expected 97.5%: r < 1.4892 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_285_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_285_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..1d77e3a --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_285_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.630859 +Sigma for expected limits: 0.321873 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -7.65443 (r = 0.163322) + +Make global fit of asimov data +NLL at global minimum of asimov: -18.6964 (r = 1.46827e-06) +At r = 1.363322: q_mu = 10.74596 q_A = 14.96952 CLsb = 0.00052 CLb = 0.72272 CLs = 0.00072 +At r = 0.763322: q_mu = 3.03043 q_A = 5.42906 CLsb = 0.04086 CLb = 0.72214 CLs = 0.05658 +At r = 1.063322: q_mu = 6.49019 q_A = 9.76696 CLsb = 0.00542 CLb = 0.71824 CLs = 0.00755 +At r = 0.913322: q_mu = 4.62415 q_A = 7.47467 CLsb = 0.01576 CLb = 0.72026 CLs = 0.02188 +At r = 0.808939: q_mu = 3.48437 q_A = 6.02311 CLsb = 0.03098 CLb = 0.72158 CLs = 0.04293 +At r = 0.788782: q_mu = 3.28036 q_A = 5.75749 CLsb = 0.03506 CLb = 0.72183 CLs = 0.04857 +At r = 0.779809: q_mu = 3.19129 q_A = 5.64083 CLsb = 0.03702 CLb = 0.72194 CLs = 0.05127 +At r = 0.784931: q_mu = 3.24199 q_A = 5.70729 CLsb = 0.03589 CLb = 0.72188 CLs = 0.04971 +At r = 0.783142: q_mu = 3.22424 q_A = 5.68404 CLsb = 0.03628 CLb = 0.72190 CLs = 0.05025 + + -- Asymptotic -- +Observed Limit: r < 0.7831 +Expected 2.5%: r < 0.3191 +Expected 16.0%: r < 0.4385 +Expected 50.0%: r < 0.6309 +Expected 84.0%: r < 0.9100 +Expected 97.5%: r < 1.2605 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_290_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_290_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..da8a083 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_290_13TeV_asymptoticCLs.out @@ -0,0 +1,38 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.619141 +Sigma for expected limits: 0.315894 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -7.73267 (r = 0.197359) + +Make global fit of asimov data +NLL at global minimum of asimov: -19.5942 (r = 1.96868e-06) +At r = 1.397359: q_mu = 11.16321 q_A = 16.07932 CLsb = 0.00042 CLb = 0.74818 CLs = 0.00056 +At r = 0.797359: q_mu = 3.11650 q_A = 6.07211 CLsb = 0.03875 CLb = 0.75766 CLs = 0.05115 +At r = 1.097359: q_mu = 6.65666 q_A = 10.65430 CLsb = 0.00494 CLb = 0.75303 CLs = 0.00656 +At r = 0.947359: q_mu = 4.74936 q_A = 8.24197 CLsb = 0.01465 CLb = 0.75540 CLs = 0.01940 +At r = 0.830164: q_mu = 3.44841 q_A = 6.52423 CLsb = 0.03166 CLb = 0.75718 CLs = 0.04181 +At r = 0.806870: q_mu = 3.21123 q_A = 6.20185 CLsb = 0.03657 CLb = 0.75752 CLs = 0.04827 +At r = 0.802243: q_mu = 3.16499 q_A = 6.13859 CLsb = 0.03762 CLb = 0.75759 CLs = 0.04965 +At r = 0.800347: q_mu = 3.14613 q_A = 6.11275 CLsb = 0.03805 CLb = 0.75762 CLs = 0.05023 + + -- Asymptotic -- +Observed Limit: r < 0.8003 +Expected 2.5%: r < 0.3132 +Expected 16.0%: r < 0.4291 +Expected 50.0%: r < 0.6191 +Expected 84.0%: r < 0.8931 +Expected 97.5%: r < 1.2371 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_295_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_295_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..3be6fdf --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_295_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.572266 +Sigma for expected limits: 0.291978 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -14.0202 (r = 0.0805799) + +Make global fit of asimov data +NLL at global minimum of asimov: -24.2504 (r = 1.16607e-09) +At r = 1.280580: q_mu = 13.78809 q_A = 16.15586 CLsb = 0.00010 CLb = 0.62028 CLs = 0.00016 +At r = 0.680580: q_mu = 3.91798 q_A = 5.29244 CLsb = 0.02389 CLb = 0.62595 CLs = 0.03816 +At r = 0.380580: q_mu = 1.02757 q_A = 1.79812 CLsb = 0.15537 CLb = 0.62826 CLs = 0.24729 +At r = 0.530580: q_mu = 2.26158 q_A = 3.34277 CLsb = 0.06631 CLb = 0.62721 CLs = 0.10572 +At r = 0.618757: q_mu = 3.18727 q_A = 4.44303 CLsb = 0.03711 CLb = 0.62648 CLs = 0.05923 +At r = 0.650179: q_mu = 3.55054 q_A = 4.86701 CLsb = 0.02976 CLb = 0.62621 CLs = 0.04753 +At r = 0.638105: q_mu = 3.40894 q_A = 4.70218 CLsb = 0.03242 CLb = 0.62632 CLs = 0.05177 +At r = 0.644446: q_mu = 3.48299 q_A = 4.78844 CLsb = 0.03100 CLb = 0.62626 CLs = 0.04950 +At r = 0.642042: q_mu = 3.45484 q_A = 4.75567 CLsb = 0.03153 CLb = 0.62629 CLs = 0.05035 + + -- Asymptotic -- +Observed Limit: r < 0.6420 +Expected 2.5%: r < 0.2962 +Expected 16.0%: r < 0.4030 +Expected 50.0%: r < 0.5723 +Expected 84.0%: r < 0.8209 +Expected 97.5%: r < 1.1333 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_300_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_300_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..a97521f --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_300_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.572266 +Sigma for expected limits: 0.291978 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -16.2356 (r = 0.00580876) + +Make global fit of asimov data +NLL at global minimum of asimov: -24.9223 (r = 3.70035e-06) +At r = 7.176043: q_mu = 158.95838 q_A = 160.13167 CLsb = 0.00000 CLb = 0.51852 CLs = 0.00000 +At r = 3.590926: q_mu = 72.80760 q_A = 73.66780 CLsb = 0.00000 CLb = 0.52004 CLs = 0.00000 +At r = 1.798367: q_mu = 27.37847 q_A = 27.95084 CLsb = 0.00000 CLb = 0.52170 CLs = 0.00000 +At r = 0.902088: q_mu = 8.46405 q_A = 8.80013 CLsb = 0.00181 CLb = 0.52281 CLs = 0.00346 +At r = 0.453948: q_mu = 2.30134 q_A = 2.48104 CLsb = 0.06463 CLb = 0.52317 CLs = 0.12354 +At r = 0.678018: q_mu = 4.98250 q_A = 5.24383 CLsb = 0.01280 CLb = 0.52304 CLs = 0.02448 +At r = 0.554108: q_mu = 3.38967 q_A = 3.60666 CLsb = 0.03280 CLb = 0.52313 CLs = 0.06271 +At r = 0.602749: q_mu = 3.98386 q_A = 4.21850 CLsb = 0.02297 CLb = 0.52310 CLs = 0.04391 +At r = 0.578836: q_mu = 3.68656 q_A = 3.91256 CLsb = 0.02743 CLb = 0.52312 CLs = 0.05243 +At r = 0.588735: q_mu = 3.80844 q_A = 4.03803 CLsb = 0.02550 CLb = 0.52311 CLs = 0.04874 +At r = 0.583988: q_mu = 3.74977 q_A = 3.97764 CLsb = 0.02641 CLb = 0.52311 CLs = 0.05048 +At r = 0.585975: q_mu = 3.77428 q_A = 4.00287 CLsb = 0.02602 CLb = 0.52311 CLs = 0.04975 + + -- Asymptotic -- +Observed Limit: r < 0.5860 +Expected 2.5%: r < 0.2995 +Expected 16.0%: r < 0.4050 +Expected 50.0%: r < 0.5723 +Expected 84.0%: r < 0.8209 +Expected 97.5%: r < 1.1333 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_310_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_310_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..c2e32af --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_310_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.525391 +Sigma for expected limits: 0.268061 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -34.5718 (r = 4.60208e-09) + +Make global fit of asimov data +NLL at global minimum of asimov: -40.46 (r = 0.0135793) +At r = 1.200000: q_mu = 20.49123 q_A = 17.38444 CLsb = 0.00000 CLb = 0.35474 CLs = 0.00001 +At r = 0.600000: q_mu = 6.74007 q_A = 4.97375 CLsb = 0.00432 CLb = 0.34605 CLs = 0.01248 +At r = 0.300000: q_mu = 2.18023 q_A = 1.25575 CLsb = 0.06263 CLb = 0.33999 CLs = 0.18420 +At r = 0.450000: q_mu = 4.20139 q_A = 2.84220 CLsb = 0.01835 CLb = 0.34343 CLs = 0.05344 +At r = 0.525000: q_mu = 5.41135 q_A = 3.84493 CLsb = 0.00913 CLb = 0.34479 CLs = 0.02648 +At r = 0.470691: q_mu = 4.52271 q_A = 3.10565 CLsb = 0.01522 CLb = 0.34382 CLs = 0.04426 +At r = 0.459988: q_mu = 4.35529 q_A = 2.96810 CLsb = 0.01678 CLb = 0.34362 CLs = 0.04882 +At r = 0.455883: q_mu = 4.29176 q_A = 2.91606 CLsb = 0.01741 CLb = 0.34355 CLs = 0.05068 +At r = 0.457887: q_mu = 4.32273 q_A = 2.94141 CLsb = 0.01710 CLb = 0.34358 CLs = 0.04976 + + -- Asymptotic -- +Observed Limit: r < 0.4579 +Expected 2.5%: r < 0.2842 +Expected 16.0%: r < 0.3775 +Expected 50.0%: r < 0.5254 +Expected 84.0%: r < 0.7411 +Expected 97.5%: r < 1.0188 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_320_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_320_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..9184658 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_320_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.435547 +Sigma for expected limits: 0.222222 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -72.7331 (r = 5.80011e-09) + +Make global fit of asimov data +NLL at global minimum of asimov: -49.0019 (r = 0.00935973) +At r = 1.200000: q_mu = 46.22218 q_A = 23.61288 CLsb = 0.00000 CLb = 0.01000 CLs = 0.00000 +At r = 0.600000: q_mu = 20.56848 q_A = 7.07948 CLsb = 0.00000 CLb = 0.00563 CLs = 0.00002 +At r = 0.300000: q_mu = 9.15678 q_A = 1.85024 CLsb = 0.00003 CLb = 0.00362 CLs = 0.00720 +At r = 0.150000: q_mu = 4.21425 q_A = 0.44514 CLsb = 0.00024 CLb = 0.00237 CLs = 0.10135 +At r = 0.225000: q_mu = 6.60529 q_A = 1.03337 CLsb = 0.00009 CLb = 0.00307 CLs = 0.02802 +At r = 0.182977: q_mu = 5.24442 q_A = 0.67473 CLsb = 0.00016 CLb = 0.00270 CLs = 0.05815 +At r = 0.198336: q_mu = 5.73573 q_A = 0.79734 CLsb = 0.00013 CLb = 0.00284 CLs = 0.04466 +At r = 0.190005: q_mu = 5.46833 q_A = 0.72960 CLsb = 0.00014 CLb = 0.00277 CLs = 0.05155 +At r = 0.193092: q_mu = 5.56716 q_A = 0.75436 CLsb = 0.00014 CLb = 0.00280 CLs = 0.04889 +At r = 0.191429: q_mu = 5.51388 q_A = 0.74097 CLsb = 0.00014 CLb = 0.00278 CLs = 0.05031 +At r = 0.192047: q_mu = 5.53366 q_A = 0.74593 CLsb = 0.00014 CLb = 0.00279 CLs = 0.04978 + + -- Asymptotic -- +Observed Limit: r < 0.1920 +Expected 2.5%: r < 0.2356 +Expected 16.0%: r < 0.3114 +Expected 50.0%: r < 0.4355 +Expected 84.0%: r < 0.6144 +Expected 97.5%: r < 0.8446 + +Done in 0.00 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_330_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_330_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..1e43656 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_330_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.366211 +Sigma for expected limits: 0.186846 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -99.8417 (r = 9.96425e-12) + +Make global fit of asimov data +NLL at global minimum of asimov: -63.0911 (r = 0.00500345) +At r = 1.200000: q_mu = 63.42786 q_A = 30.60526 CLsb = 0.00000 CLb = 0.00151 CLs = 0.00000 +At r = 0.600000: q_mu = 29.92973 q_A = 9.64956 CLsb = 0.00000 CLb = 0.00055 CLs = 0.00000 +At r = 0.300000: q_mu = 13.88150 q_A = 2.61458 CLsb = 0.00000 CLb = 0.00025 CLs = 0.00068 +At r = 0.150000: q_mu = 6.54077 q_A = 0.65167 CLsb = 0.00000 CLb = 0.00013 CLs = 0.03171 +At r = 0.075000: q_mu = 3.15109 q_A = 0.15284 CLsb = 0.00001 CLb = 0.00006 CLs = 0.18952 +At r = 0.112500: q_mu = 4.81873 q_A = 0.35994 CLsb = 0.00001 CLb = 0.00010 CLs = 0.07852 +At r = 0.134935: q_mu = 5.84288 q_A = 0.52435 CLsb = 0.00001 CLb = 0.00012 CLs = 0.04578 +At r = 0.127514: q_mu = 5.50198 q_A = 0.46660 CLsb = 0.00001 CLb = 0.00011 CLs = 0.05478 +At r = 0.130533: q_mu = 5.64040 q_A = 0.48970 CLsb = 0.00001 CLb = 0.00012 CLs = 0.05093 +At r = 0.132021: q_mu = 5.70873 q_A = 0.50128 CLsb = 0.00001 CLb = 0.00012 CLs = 0.04913 +At r = 0.131141: q_mu = 5.66830 q_A = 0.49442 CLsb = 0.00001 CLb = 0.00012 CLs = 0.05018 +At r = 0.131439: q_mu = 5.68198 q_A = 0.49674 CLsb = 0.00001 CLb = 0.00012 CLs = 0.04982 + + -- Asymptotic -- +Observed Limit: r < 0.1314 +Expected 2.5%: r < 0.1967 +Expected 16.0%: r < 0.2623 +Expected 50.0%: r < 0.3662 +Expected 84.0%: r < 0.5195 +Expected 97.5%: r < 0.7121 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_340_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_340_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..951e251 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_340_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.313477 +Sigma for expected limits: 0.15994 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -112.292 (r = 8.31446e-12) + +Make global fit of asimov data +NLL at global minimum of asimov: -79.5082 (r = 0.00295354) +At r = 1.200000: q_mu = 66.10513 q_A = 38.15151 CLsb = 0.00000 CLb = 0.01182 CLs = 0.00000 +At r = 0.600000: q_mu = 30.30873 q_A = 12.60857 CLsb = 0.00000 CLb = 0.00634 CLs = 0.00000 +At r = 0.300000: q_mu = 13.52539 q_A = 3.53264 CLsb = 0.00000 CLb = 0.00393 CLs = 0.00072 +At r = 0.150000: q_mu = 6.16046 q_A = 0.90434 CLsb = 0.00010 CLb = 0.00286 CLs = 0.03561 +At r = 0.075000: q_mu = 2.90119 q_A = 0.22039 CLsb = 0.00044 CLb = 0.00215 CLs = 0.20583 +At r = 0.112500: q_mu = 4.48968 q_A = 0.50598 CLsb = 0.00022 CLb = 0.00255 CLs = 0.08724 +At r = 0.131135: q_mu = 5.31028 q_A = 0.69023 CLsb = 0.00015 CLb = 0.00271 CLs = 0.05613 +At r = 0.138745: q_mu = 5.65099 q_A = 0.77343 CLsb = 0.00013 CLb = 0.00278 CLs = 0.04676 +At r = 0.134992: q_mu = 5.48253 q_A = 0.73181 CLsb = 0.00014 CLb = 0.00275 CLs = 0.05118 +At r = 0.136520: q_mu = 5.55098 q_A = 0.74859 CLsb = 0.00014 CLb = 0.00276 CLs = 0.04934 +At r = 0.135770: q_mu = 5.51737 q_A = 0.74016 CLsb = 0.00014 CLb = 0.00275 CLs = 0.05024 +At r = 0.136077: q_mu = 5.53113 q_A = 0.74353 CLsb = 0.00014 CLb = 0.00275 CLs = 0.04987 + + -- Asymptotic -- +Observed Limit: r < 0.1361 +Expected 2.5%: r < 0.1678 +Expected 16.0%: r < 0.2241 +Expected 50.0%: r < 0.3135 +Expected 84.0%: r < 0.4447 +Expected 97.5%: r < 0.6135 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_350_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_350_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..822e585 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_350_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.276367 +Sigma for expected limits: 0.141006 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -116.33 (r = 1.27829e-10) + +Make global fit of asimov data +NLL at global minimum of asimov: -96.9561 (r = 0.00152179) +At r = 1.200000: q_mu = 60.86842 q_A = 45.17119 CLsb = 0.00000 CLb = 0.12145 CLs = 0.00000 +At r = 0.600000: q_mu = 25.60759 q_A = 15.52494 CLsb = 0.00000 CLb = 0.10037 CLs = 0.00000 +At r = 0.300000: q_mu = 10.21176 q_A = 4.47542 CLsb = 0.00026 CLb = 0.08759 CLs = 0.00296 +At r = 0.150000: q_mu = 4.18630 q_A = 1.16808 CLsb = 0.00662 CLb = 0.08131 CLs = 0.08145 +At r = 0.225000: q_mu = 7.00579 q_A = 2.58332 CLsb = 0.00143 CLb = 0.08445 CLs = 0.01690 +At r = 0.183616: q_mu = 5.39751 q_A = 1.73930 CLsb = 0.00341 CLb = 0.08273 CLs = 0.04119 +At r = 0.169246: q_mu = 4.86903 q_A = 1.48239 CLsb = 0.00455 CLb = 0.08215 CLs = 0.05538 +At r = 0.176089: q_mu = 5.11865 q_A = 1.60230 CLsb = 0.00397 CLb = 0.08242 CLs = 0.04814 +At r = 0.173241: q_mu = 5.01430 q_A = 1.55184 CLsb = 0.00420 CLb = 0.08231 CLs = 0.05104 +At r = 0.174615: q_mu = 5.06455 q_A = 1.57608 CLsb = 0.00409 CLb = 0.08236 CLs = 0.04962 +At r = 0.174047: q_mu = 5.04373 q_A = 1.56603 CLsb = 0.00413 CLb = 0.08234 CLs = 0.05021 + + -- Asymptotic -- +Observed Limit: r < 0.1740 +Expected 2.5%: r < 0.1474 +Expected 16.0%: r < 0.1972 +Expected 50.0%: r < 0.2764 +Expected 84.0%: r < 0.3942 +Expected 97.5%: r < 0.5424 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_360_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_360_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..6978bdf --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_360_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.237305 +Sigma for expected limits: 0.121076 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -130.711 (r = 1.14513e-09) + +Make global fit of asimov data +NLL at global minimum of asimov: -125.766 (r = 0.00042722) +At r = 1.200000: q_mu = 65.00100 q_A = 55.20787 CLsb = 0.00000 CLb = 0.25495 CLs = 0.00000 +At r = 0.600000: q_mu = 26.38681 q_A = 19.92713 CLsb = 0.00000 CLb = 0.23468 CLs = 0.00000 +At r = 0.300000: q_mu = 9.72066 q_A = 5.96493 CLsb = 0.00066 CLb = 0.22098 CLs = 0.00299 +At r = 0.150000: q_mu = 3.58928 q_A = 1.59351 CLsb = 0.02004 CLb = 0.21462 CLs = 0.09339 +At r = 0.225000: q_mu = 6.39187 q_A = 3.48066 CLsb = 0.00407 CLb = 0.21763 CLs = 0.01872 +At r = 0.188325: q_mu = 4.94872 q_A = 2.47666 CLsb = 0.00916 CLb = 0.21611 CLs = 0.04238 +At r = 0.174243: q_mu = 4.43080 q_A = 2.13174 CLsb = 0.01231 CLb = 0.21555 CLs = 0.05710 +At r = 0.182077: q_mu = 4.71646 q_A = 2.32087 CLsb = 0.01045 CLb = 0.21586 CLs = 0.04842 +At r = 0.179293: q_mu = 4.61415 q_A = 2.25278 CLsb = 0.01108 CLb = 0.21575 CLs = 0.05136 +At r = 0.180866: q_mu = 4.67186 q_A = 2.29114 CLsb = 0.01072 CLb = 0.21581 CLs = 0.04968 +At r = 0.180311: q_mu = 4.65146 q_A = 2.27756 CLsb = 0.01085 CLb = 0.21579 CLs = 0.05027 + + -- Asymptotic -- +Observed Limit: r < 0.1803 +Expected 2.5%: r < 0.1256 +Expected 16.0%: r < 0.1688 +Expected 50.0%: r < 0.2373 +Expected 84.0%: r < 0.3385 +Expected 97.5%: r < 0.4657 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_370_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_370_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..41c19a3 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_370_13TeV_asymptoticCLs.out @@ -0,0 +1,40 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.208008 +Sigma for expected limits: 0.106128 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -167.078 (r = 5.85482e-10) + +Make global fit of asimov data +NLL at global minimum of asimov: -157.802 (r = 0.000225297) +At r = 1.200000: q_mu = 77.39288 q_A = 64.95501 CLsb = 0.00000 CLb = 0.22017 CLs = 0.00000 +At r = 0.600000: q_mu = 32.87397 q_A = 24.44918 CLsb = 0.00000 CLb = 0.19713 CLs = 0.00000 +At r = 0.300000: q_mu = 12.60094 q_A = 7.57518 CLsb = 0.00012 CLb = 0.18062 CLs = 0.00068 +At r = 0.150000: q_mu = 4.77741 q_A = 2.06551 CLsb = 0.00864 CLb = 0.17272 CLs = 0.05003 +At r = 0.225000: q_mu = 8.39045 q_A = 4.46437 CLsb = 0.00118 CLb = 0.17643 CLs = 0.00666 +At r = 0.187500: q_mu = 6.49920 q_A = 3.16611 CLsb = 0.00330 CLb = 0.17448 CLs = 0.01894 +At r = 0.157517: q_mu = 5.10797 q_A = 2.26935 CLsb = 0.00717 CLb = 0.17305 CLs = 0.04144 +At r = 0.151521: q_mu = 4.84378 q_A = 2.10615 CLsb = 0.00832 CLb = 0.17279 CLs = 0.04817 +At r = 0.150322: q_mu = 4.79153 q_A = 2.07419 CLsb = 0.00857 CLb = 0.17274 CLs = 0.04963 +At r = 0.150082: q_mu = 4.78101 q_A = 2.06772 CLsb = 0.00862 CLb = 0.17272 CLs = 0.04992 + + -- Asymptotic -- +Observed Limit: r < 0.1501 +Expected 2.5%: r < 0.1101 +Expected 16.0%: r < 0.1472 +Expected 50.0%: r < 0.2080 +Expected 84.0%: r < 0.2967 +Expected 97.5%: r < 0.4082 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_380_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_380_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..b67d9e9 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_380_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.182617 +Sigma for expected limits: 0.0931738 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -208.304 (r = 2.47185e-08) + +Make global fit of asimov data +NLL at global minimum of asimov: -196.96 (r = 1.48835e-06) +At r = 1.200000: q_mu = 89.48698 q_A = 75.58484 CLsb = 0.00000 CLb = 0.21199 CLs = 0.00000 +At r = 0.600000: q_mu = 39.35061 q_A = 29.61836 CLsb = 0.00000 CLb = 0.18562 CLs = 0.00000 +At r = 0.300000: q_mu = 15.51017 q_A = 9.50655 CLsb = 0.00002 CLb = 0.16513 CLs = 0.00015 +At r = 0.150000: q_mu = 5.96094 q_A = 2.64716 CLsb = 0.00408 CLb = 0.15425 CLs = 0.02645 +At r = 0.075000: q_mu = 2.41316 q_A = 0.69219 CLsb = 0.03100 CLb = 0.15051 CLs = 0.20600 +At r = 0.112500: q_mu = 4.05985 q_A = 1.52323 CLsb = 0.01185 CLb = 0.15206 CLs = 0.07796 +At r = 0.132327: q_mu = 5.03524 q_A = 2.08268 CLsb = 0.00683 CLb = 0.15316 CLs = 0.04459 +At r = 0.125110: q_mu = 4.67242 q_A = 1.86999 CLsb = 0.00838 CLb = 0.15276 CLs = 0.05483 +At r = 0.129127: q_mu = 4.87324 q_A = 1.98705 CLsb = 0.00748 CLb = 0.15298 CLs = 0.04889 +At r = 0.127695: q_mu = 4.80132 q_A = 1.94493 CLsb = 0.00779 CLb = 0.15290 CLs = 0.05094 +At r = 0.128501: q_mu = 4.84174 q_A = 1.96858 CLsb = 0.00761 CLb = 0.15294 CLs = 0.04978 +At r = 0.128215: q_mu = 4.82738 q_A = 1.96017 CLsb = 0.00767 CLb = 0.15293 CLs = 0.05019 + + -- Asymptotic -- +Observed Limit: r < 0.1282 +Expected 2.5%: r < 0.0967 +Expected 16.0%: r < 0.1296 +Expected 50.0%: r < 0.1826 +Expected 84.0%: r < 0.2605 +Expected 97.5%: r < 0.3607 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_390_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_390_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..0a6dfea --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_390_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.160645 +Sigma for expected limits: 0.081963 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -245.915 (r = 7.34585e-09) + +Make global fit of asimov data +NLL at global minimum of asimov: -244.15 (r = 9.65223e-07) +At r = 1.200000: q_mu = 93.00380 q_A = 87.18885 CLsb = 0.00000 CLb = 0.37776 CLs = 0.00000 +At r = 0.600000: q_mu = 39.56333 q_A = 35.49591 CLsb = 0.00000 CLb = 0.36642 CLs = 0.00000 +At r = 0.300000: q_mu = 14.32042 q_A = 11.80751 CLsb = 0.00007 CLb = 0.35731 CLs = 0.00020 +At r = 0.150000: q_mu = 4.74521 q_A = 3.36098 CLsb = 0.01352 CLb = 0.35289 CLs = 0.03832 +At r = 0.075000: q_mu = 1.60342 q_A = 0.88814 CLsb = 0.09310 CLb = 0.35216 CLs = 0.26437 +At r = 0.112500: q_mu = 3.00170 q_A = 1.94420 CLsb = 0.03807 CLb = 0.35227 CLs = 0.10807 +At r = 0.134804: q_mu = 3.99986 q_A = 2.74601 CLsb = 0.02090 CLb = 0.35260 CLs = 0.05929 +At r = 0.142589: q_mu = 4.37559 q_A = 3.05461 CLsb = 0.01677 CLb = 0.35275 CLs = 0.04753 +At r = 0.139604: q_mu = 4.22986 q_A = 2.93453 CLsb = 0.01826 CLb = 0.35269 CLs = 0.05177 +At r = 0.141173: q_mu = 4.30619 q_A = 2.99736 CLsb = 0.01746 CLb = 0.35272 CLs = 0.04950 +At r = 0.140579: q_mu = 4.27720 q_A = 2.97348 CLsb = 0.01776 CLb = 0.35271 CLs = 0.05035 +At r = 0.140893: q_mu = 4.29251 q_A = 2.98608 CLsb = 0.01760 CLb = 0.35271 CLs = 0.04990 + + -- Asymptotic -- +Observed Limit: r < 0.1409 +Expected 2.5%: r < 0.0850 +Expected 16.0%: r < 0.1143 +Expected 50.0%: r < 0.1606 +Expected 84.0%: r < 0.2304 +Expected 97.5%: r < 0.3181 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_400_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_400_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..dd3629e --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_400_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.143066 +Sigma for expected limits: 0.0729944 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -304.594 (r = 1.34117e-05) + +Make global fit of asimov data +NLL at global minimum of asimov: -297.818 (r = 1.12204e-06) +At r = 1.200013: q_mu = 103.36235 q_A = 99.32219 CLsb = 0.00000 CLb = 0.41969 CLs = 0.00000 +At r = 0.600013: q_mu = 44.75210 q_A = 41.82977 CLsb = 0.00000 CLb = 0.41063 CLs = 0.00000 +At r = 0.300013: q_mu = 16.26399 q_A = 14.39062 CLsb = 0.00003 CLb = 0.40249 CLs = 0.00007 +At r = 0.150013: q_mu = 5.24944 q_A = 4.18765 CLsb = 0.01056 CLb = 0.39765 CLs = 0.02656 +At r = 0.075013: q_mu = 1.67481 q_A = 1.11783 CLsb = 0.09330 CLb = 0.39612 CLs = 0.23555 +At r = 0.112513: q_mu = 3.25257 q_A = 2.43516 CLsb = 0.03420 CLb = 0.39670 CLs = 0.08620 +At r = 0.133892: q_mu = 4.34355 q_A = 3.38475 CLsb = 0.01785 CLb = 0.39721 CLs = 0.04494 +At r = 0.126813: q_mu = 3.96813 q_A = 3.05555 CLsb = 0.02227 CLb = 0.39703 CLs = 0.05608 +At r = 0.129747: q_mu = 4.12197 q_A = 3.19017 CLsb = 0.02033 CLb = 0.39710 CLs = 0.05120 +At r = 0.131178: q_mu = 4.19793 q_A = 3.25678 CLsb = 0.01944 CLb = 0.39714 CLs = 0.04896 +At r = 0.130353: q_mu = 4.15403 q_A = 3.21827 CLsb = 0.01995 CLb = 0.39712 CLs = 0.05024 +At r = 0.130640: q_mu = 4.16926 q_A = 3.23162 CLsb = 0.01977 CLb = 0.39713 CLs = 0.04979 + + -- Asymptotic -- +Observed Limit: r < 0.1306 +Expected 2.5%: r < 0.0754 +Expected 16.0%: r < 0.1016 +Expected 50.0%: r < 0.1431 +Expected 84.0%: r < 0.2052 +Expected 97.5%: r < 0.2833 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_410_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_410_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..544d03e --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_410_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.131348 +Sigma for expected limits: 0.0670153 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -356.321 (r = 4.59474e-07) + +Make global fit of asimov data +NLL at global minimum of asimov: -348.03 (r = 2.25453e-08) +At r = 1.200000: q_mu = 114.87828 q_A = 109.88733 CLsb = 0.00000 CLb = 0.40592 CLs = 0.00000 +At r = 0.600000: q_mu = 51.06473 q_A = 47.39782 CLsb = 0.00000 CLb = 0.39500 CLs = 0.00000 +At r = 0.300000: q_mu = 19.10913 q_A = 16.71465 CLsb = 0.00001 CLb = 0.38482 CLs = 0.00002 +At r = 0.150000: q_mu = 6.32566 q_A = 4.94789 CLsb = 0.00564 CLb = 0.37840 CLs = 0.01490 +At r = 0.075000: q_mu = 2.05931 q_A = 1.33104 CLsb = 0.07087 CLb = 0.37614 CLs = 0.18842 +At r = 0.112500: q_mu = 3.95403 q_A = 2.88911 CLsb = 0.02206 CLb = 0.37704 CLs = 0.05850 +At r = 0.131250: q_mu = 5.08523 q_A = 3.86081 CLsb = 0.01141 CLb = 0.37768 CLs = 0.03021 +At r = 0.119814: q_mu = 4.38163 q_A = 3.25377 CLsb = 0.01715 CLb = 0.37728 CLs = 0.04547 +At r = 0.116145: q_mu = 4.16493 q_A = 3.06854 CLsb = 0.01948 CLb = 0.37716 CLs = 0.05164 +At r = 0.117623: q_mu = 4.25168 q_A = 3.14258 CLsb = 0.01851 CLb = 0.37721 CLs = 0.04907 +At r = 0.116893: q_mu = 4.20872 q_A = 3.10589 CLsb = 0.01898 CLb = 0.37718 CLs = 0.05033 +At r = 0.117189: q_mu = 4.22613 q_A = 3.12075 CLsb = 0.01879 CLb = 0.37719 CLs = 0.04981 + + -- Asymptotic -- +Observed Limit: r < 0.1172 +Expected 2.5%: r < 0.0690 +Expected 16.0%: r < 0.0929 +Expected 50.0%: r < 0.1313 +Expected 84.0%: r < 0.1874 +Expected 97.5%: r < 0.2594 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_420_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_420_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..709a44c --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_420_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.120605 +Sigma for expected limits: 0.0615345 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -403.385 (r = 1.57706e-09) + +Make global fit of asimov data +NLL at global minimum of asimov: -402.028 (r = 2.59699e-06) +At r = 1.200000: q_mu = 126.66018 q_A = 120.96622 CLsb = 0.00000 CLb = 0.39787 CLs = 0.00000 +At r = 0.600000: q_mu = 57.50089 q_A = 53.25451 CLsb = 0.00000 CLb = 0.38555 CLs = 0.00000 +At r = 0.300000: q_mu = 22.02092 q_A = 19.19675 CLsb = 0.00000 CLb = 0.37362 CLs = 0.00000 +At r = 0.150000: q_mu = 7.42568 q_A = 5.77428 CLsb = 0.00301 CLb = 0.36557 CLs = 0.00824 +At r = 0.075000: q_mu = 2.44582 q_A = 1.56494 CLsb = 0.05446 CLb = 0.36239 CLs = 0.15028 +At r = 0.112500: q_mu = 4.66734 q_A = 3.38502 CLsb = 0.01432 CLb = 0.36374 CLs = 0.03938 +At r = 0.093750: q_mu = 3.48313 q_A = 2.39761 CLsb = 0.02879 CLb = 0.36297 CLs = 0.07931 +At r = 0.103633: q_mu = 4.08981 q_A = 2.89955 CLsb = 0.02007 CLb = 0.36336 CLs = 0.05523 +At r = 0.107493: q_mu = 4.33756 q_A = 3.10699 CLsb = 0.01735 CLb = 0.36352 CLs = 0.04774 +At r = 0.105742: q_mu = 4.22441 q_A = 3.01208 CLsb = 0.01854 CLb = 0.36344 CLs = 0.05102 +At r = 0.106519: q_mu = 4.27444 q_A = 3.05401 CLsb = 0.01801 CLb = 0.36348 CLs = 0.04954 +At r = 0.106169: q_mu = 4.25191 q_A = 3.03512 CLsb = 0.01825 CLb = 0.36346 CLs = 0.05020 + + -- Asymptotic -- +Observed Limit: r < 0.1062 +Expected 2.5%: r < 0.0636 +Expected 16.0%: r < 0.0854 +Expected 50.0%: r < 0.1206 +Expected 84.0%: r < 0.1720 +Expected 97.5%: r < 0.2382 + +Done in 0.00 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_430_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_430_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..66842d1 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_430_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.11084 +Sigma for expected limits: 0.056552 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -457.954 (r = 4.5373e-10) + +Make global fit of asimov data +NLL at global minimum of asimov: -459.693 (r = 4.62772e-06) +At r = 1.200000: q_mu = 136.97118 q_A = 132.58188 CLsb = 0.00000 CLb = 0.42442 CLs = 0.00000 +At r = 0.600000: q_mu = 62.77840 q_A = 59.40345 CLsb = 0.00000 CLb = 0.41335 CLs = 0.00000 +At r = 0.300000: q_mu = 24.15535 q_A = 21.83427 CLsb = 0.00000 CLb = 0.40193 CLs = 0.00000 +At r = 0.150000: q_mu = 8.06241 q_A = 6.66575 CLsb = 0.00217 CLb = 0.39340 CLs = 0.00552 +At r = 0.075000: q_mu = 2.57752 q_A = 1.81931 CLsb = 0.05156 CLb = 0.38933 CLs = 0.13244 +At r = 0.112500: q_mu = 5.01631 q_A = 3.92234 CLsb = 0.01201 CLb = 0.39120 CLs = 0.03071 +At r = 0.094995: q_mu = 3.79472 q_A = 2.85339 CLsb = 0.02454 CLb = 0.39026 CLs = 0.06289 +At r = 0.102977: q_mu = 4.33482 q_A = 3.32300 CLsb = 0.01785 CLb = 0.39069 CLs = 0.04568 +At r = 0.099575: q_mu = 4.10092 q_A = 3.11896 CLsb = 0.02047 CLb = 0.39050 CLs = 0.05243 +At r = 0.101192: q_mu = 4.21138 q_A = 3.21519 CLsb = 0.01918 CLb = 0.39059 CLs = 0.04912 +At r = 0.100515: q_mu = 4.16502 q_A = 3.17477 CLsb = 0.01972 CLb = 0.39055 CLs = 0.05048 +At r = 0.100840: q_mu = 4.18721 q_A = 3.19411 CLsb = 0.01946 CLb = 0.39057 CLs = 0.04982 + + -- Asymptotic -- +Observed Limit: r < 0.1008 +Expected 2.5%: r < 0.0585 +Expected 16.0%: r < 0.0785 +Expected 50.0%: r < 0.1108 +Expected 84.0%: r < 0.1590 +Expected 97.5%: r < 0.2195 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_440_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_440_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..27f5ff2 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_440_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.103027 +Sigma for expected limits: 0.0525659 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -505.286 (r = 0.0142003) + +Make global fit of asimov data +NLL at global minimum of asimov: -523.684 (r = 9.37967e-08) +At r = 1.214200: q_mu = 141.40172 q_A = 147.14392 CLsb = 0.00000 CLb = 0.59446 CLs = 0.00000 +At r = 0.614200: q_mu = 63.98582 q_A = 68.18214 CLsb = 0.00000 CLb = 0.60185 CLs = 0.00000 +At r = 0.314200: q_mu = 23.84676 q_A = 26.63549 CLsb = 0.00000 CLb = 0.60936 CLs = 0.00000 +At r = 0.164200: q_mu = 7.36732 q_A = 9.02667 CLsb = 0.00332 CLb = 0.61415 CLs = 0.00541 +At r = 0.089200: q_mu = 2.01240 q_A = 2.93523 CLsb = 0.07801 CLb = 0.61587 CLs = 0.12666 +At r = 0.126700: q_mu = 4.34425 q_A = 5.65054 CLsb = 0.01857 CLb = 0.61516 CLs = 0.03018 +At r = 0.108642: q_mu = 3.12589 q_A = 4.25119 CLsb = 0.03853 CLb = 0.61555 CLs = 0.06259 +At r = 0.116703: q_mu = 3.64910 q_A = 4.85604 CLsb = 0.02805 CLb = 0.61538 CLs = 0.04558 +At r = 0.113209: q_mu = 3.41804 q_A = 4.58976 CLsb = 0.03224 CLb = 0.61546 CLs = 0.05239 +At r = 0.114845: q_mu = 3.52542 q_A = 4.71367 CLsb = 0.03022 CLb = 0.61543 CLs = 0.04910 +At r = 0.114151: q_mu = 3.47969 q_A = 4.66094 CLsb = 0.03106 CLb = 0.61544 CLs = 0.05047 +At r = 0.114480: q_mu = 3.50129 q_A = 4.68585 CLsb = 0.03066 CLb = 0.61543 CLs = 0.04982 + + -- Asymptotic -- +Observed Limit: r < 0.1145 +Expected 2.5%: r < 0.0543 +Expected 16.0%: r < 0.0730 +Expected 50.0%: r < 0.1030 +Expected 84.0%: r < 0.1470 +Expected 97.5%: r < 0.2035 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_450_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_450_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..d2fff02 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_450_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.0961914 +Sigma for expected limits: 0.0490782 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -540.808 (r = 0.0685438) + +Make global fit of asimov data +NLL at global minimum of asimov: -590.194 (r = 3.90263e-08) +At r = 1.268544: q_mu = 142.08334 q_A = 167.49090 CLsb = 0.00000 CLb = 0.84660 CLs = 0.00000 +At r = 0.668544: q_mu = 64.11550 q_A = 83.52988 CLsb = 0.00000 CLb = 0.87124 CLs = 0.00000 +At r = 0.368544: q_mu = 24.12540 q_A = 37.89762 CLsb = 0.00000 CLb = 0.89331 CLs = 0.00000 +At r = 0.218544: q_mu = 7.62097 q_A = 16.74862 CLsb = 0.00288 CLb = 0.90855 CLs = 0.00318 +At r = 0.143544: q_mu = 2.13060 q_A = 8.08080 CLsb = 0.07219 CLb = 0.91667 CLs = 0.07875 +At r = 0.181044: q_mu = 4.54034 q_A = 12.16686 CLsb = 0.01655 CLb = 0.91266 CLs = 0.01814 +At r = 0.160326: q_mu = 3.11577 q_A = 9.83888 CLsb = 0.03877 CLb = 0.91490 CLs = 0.04238 +At r = 0.153385: q_mu = 2.68911 q_A = 9.09710 CLsb = 0.05052 CLb = 0.91563 CLs = 0.05517 +At r = 0.156845: q_mu = 2.89841 q_A = 9.46427 CLsb = 0.04433 CLb = 0.91527 CLs = 0.04844 +At r = 0.155478: q_mu = 2.81491 q_A = 9.31859 CLsb = 0.04670 CLb = 0.91541 CLs = 0.05101 +At r = 0.156174: q_mu = 2.85731 q_A = 9.39268 CLsb = 0.04548 CLb = 0.91534 CLs = 0.04969 + + -- Asymptotic -- +Observed Limit: r < 0.1562 +Expected 2.5%: r < 0.0507 +Expected 16.0%: r < 0.0681 +Expected 50.0%: r < 0.0962 +Expected 84.0%: r < 0.1365 +Expected 97.5%: r < 0.1883 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_460_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_460_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..516618b --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_460_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.090332 +Sigma for expected limits: 0.0460886 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -572.005 (r = 0.112719) + +Make global fit of asimov data +NLL at global minimum of asimov: -647.67 (r = 2.18632e-06) +At r = 1.312719: q_mu = 142.94218 q_A = 185.61220 CLsb = 0.00000 CLb = 0.95235 CLs = 0.00000 +At r = 0.712719: q_mu = 64.12353 q_A = 97.46317 CLsb = 0.00000 CLb = 0.96888 CLs = 0.00000 +At r = 0.412719: q_mu = 24.19617 q_A = 48.59291 CLsb = 0.00000 CLb = 0.97991 CLs = 0.00000 +At r = 0.262719: q_mu = 7.73397 q_A = 24.84320 CLsb = 0.00271 CLb = 0.98621 CLs = 0.00275 +At r = 0.187719: q_mu = 2.19412 q_A = 14.29589 CLsb = 0.06927 CLb = 0.98927 CLs = 0.07002 +At r = 0.225219: q_mu = 4.63635 q_A = 19.38732 CLsb = 0.01565 CLb = 0.98777 CLs = 0.01584 +At r = 0.202017: q_mu = 3.03756 q_A = 16.18656 CLsb = 0.04068 CLb = 0.98871 CLs = 0.04114 +At r = 0.194964: q_mu = 2.60715 q_A = 15.24543 CLsb = 0.05319 CLb = 0.98899 CLs = 0.05378 +At r = 0.197911: q_mu = 2.78363 q_A = 15.63670 CLsb = 0.04762 CLb = 0.98887 CLs = 0.04815 +At r = 0.196519: q_mu = 2.69965 q_A = 15.45150 CLsb = 0.05019 CLb = 0.98892 CLs = 0.05075 +At r = 0.197112: q_mu = 2.73529 q_A = 15.53033 CLsb = 0.04908 CLb = 0.98890 CLs = 0.04963 + + -- Asymptotic -- +Observed Limit: r < 0.1971 +Expected 2.5%: r < 0.0476 +Expected 16.0%: r < 0.0640 +Expected 50.0%: r < 0.0903 +Expected 84.0%: r < 0.1296 +Expected 97.5%: r < 0.1778 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_470_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_470_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..4d9e9e5 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_470_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.0854492 +Sigma for expected limits: 0.0435973 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -634.141 (r = 0.110322) + +Make global fit of asimov data +NLL at global minimum of asimov: -713.177 (r = 1.55498e-05) +At r = 1.310322: q_mu = 153.93803 q_A = 199.43785 CLsb = 0.00000 CLb = 0.95683 CLs = 0.00000 +At r = 0.710322: q_mu = 69.74057 q_A = 105.23990 CLsb = 0.00000 CLb = 0.97178 CLs = 0.00000 +At r = 0.410322: q_mu = 26.59429 q_A = 52.72711 CLsb = 0.00000 CLb = 0.98233 CLs = 0.00000 +At r = 0.260322: q_mu = 8.58051 q_A = 26.99374 CLsb = 0.00170 CLb = 0.98828 CLs = 0.00172 +At r = 0.185322: q_mu = 2.45019 q_A = 15.49773 CLsb = 0.05876 CLb = 0.99114 CLs = 0.05928 +At r = 0.222822: q_mu = 5.15963 q_A = 21.05282 CLsb = 0.01156 CLb = 0.98974 CLs = 0.01168 +At r = 0.204072: q_mu = 3.70445 q_A = 18.21874 CLsb = 0.02713 CLb = 0.99045 CLs = 0.02740 +At r = 0.192381: q_mu = 2.89707 q_A = 16.50754 CLsb = 0.04437 CLb = 0.99088 CLs = 0.04478 +At r = 0.188749: q_mu = 2.66323 q_A = 15.98571 CLsb = 0.05135 CLb = 0.99102 CLs = 0.05181 +At r = 0.190184: q_mu = 2.75464 q_A = 16.19135 CLsb = 0.04849 CLb = 0.99096 CLs = 0.04893 +At r = 0.189463: q_mu = 2.70852 q_A = 16.08787 CLsb = 0.04991 CLb = 0.99099 CLs = 0.05036 + + -- Asymptotic -- +Observed Limit: r < 0.1895 +Expected 2.5%: r < 0.0451 +Expected 16.0%: r < 0.0605 +Expected 50.0%: r < 0.0854 +Expected 84.0%: r < 0.1219 +Expected 97.5%: r < 0.1677 + +Done in 0.00 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_480_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_480_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..862bc54 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_480_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.0805664 +Sigma for expected limits: 0.0411061 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -723.346 (r = 0.0671984) + +Make global fit of asimov data +NLL at global minimum of asimov: -783.216 (r = 6.60604e-06) +At r = 1.267198: q_mu = 175.33525 q_A = 207.71948 CLsb = 0.00000 CLb = 0.87921 CLs = 0.00000 +At r = 0.667198: q_mu = 81.27298 q_A = 105.90561 CLsb = 0.00000 CLb = 0.89900 CLs = 0.00000 +At r = 0.367198: q_mu = 31.55144 q_A = 49.35093 CLsb = 0.00000 CLb = 0.92043 CLs = 0.00000 +At r = 0.217198: q_mu = 10.25360 q_A = 22.26918 CLsb = 0.00068 CLb = 0.93535 CLs = 0.00073 +At r = 0.142198: q_mu = 2.92203 q_A = 10.85075 CLsb = 0.04369 CLb = 0.94348 CLs = 0.04631 +At r = 0.104698: q_mu = 0.77463 q_A = 6.24573 CLsb = 0.18939 CLb = 0.94728 CLs = 0.19994 +At r = 0.123448: q_mu = 1.69398 q_A = 8.43105 CLsb = 0.09654 CLb = 0.94543 CLs = 0.10211 +At r = 0.136993: q_mu = 2.55190 q_A = 10.15720 CLsb = 0.05508 CLb = 0.94403 CLs = 0.05835 +At r = 0.139774: q_mu = 2.74681 q_A = 10.52569 CLsb = 0.04872 CLb = 0.94374 CLs = 0.05163 +At r = 0.140831: q_mu = 2.82242 q_A = 10.66679 CLsb = 0.04648 CLb = 0.94363 CLs = 0.04925 +At r = 0.140350: q_mu = 2.78787 q_A = 10.60247 CLsb = 0.04749 CLb = 0.94368 CLs = 0.05032 + + -- Asymptotic -- +Observed Limit: r < 0.1403 +Expected 2.5%: r < 0.0425 +Expected 16.0%: r < 0.0571 +Expected 50.0%: r < 0.0806 +Expected 84.0%: r < 0.1149 +Expected 97.5%: r < 0.1581 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_490_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_490_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..388eb09 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_490_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.0766602 +Sigma for expected limits: 0.039113 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -829.008 (r = 0.0156335) + +Make global fit of asimov data +NLL at global minimum of asimov: -856.768 (r = 1.57784e-07) +At r = 1.215634: q_mu = 203.08451 q_A = 213.25274 CLsb = 0.00000 CLb = 0.63773 CLs = 0.00000 +At r = 0.615634: q_mu = 96.43604 q_A = 103.88015 CLsb = 0.00000 CLb = 0.64504 CLs = 0.00000 +At r = 0.315634: q_mu = 38.17933 q_A = 43.28478 CLsb = 0.00000 CLb = 0.65549 CLs = 0.00000 +At r = 0.165634: q_mu = 12.44591 q_A = 15.58715 CLsb = 0.00021 CLb = 0.66282 CLs = 0.00032 +At r = 0.090634: q_mu = 3.50928 q_A = 5.29656 CLsb = 0.03051 CLb = 0.66572 CLs = 0.04583 +At r = 0.053134: q_mu = 0.91960 q_A = 1.92664 CLsb = 0.16879 CLb = 0.66607 CLs = 0.25341 +At r = 0.071884: q_mu = 2.02392 q_A = 3.42875 CLsb = 0.07742 CLb = 0.66605 CLs = 0.11624 +At r = 0.085481: q_mu = 3.06537 q_A = 4.74938 CLsb = 0.03999 CLb = 0.66585 CLs = 0.06006 +At r = 0.088276: q_mu = 3.30283 q_A = 5.04316 CLsb = 0.03458 CLb = 0.66579 CLs = 0.05194 +At r = 0.089322: q_mu = 3.39359 q_A = 5.15489 CLsb = 0.03273 CLb = 0.66577 CLs = 0.04915 +At r = 0.088854: q_mu = 3.35279 q_A = 5.10472 CLsb = 0.03355 CLb = 0.66578 CLs = 0.05039 +At r = 0.089063: q_mu = 3.37103 q_A = 5.12717 CLsb = 0.03318 CLb = 0.66578 CLs = 0.04983 + + -- Asymptotic -- +Observed Limit: r < 0.0891 +Expected 2.5%: r < 0.0404 +Expected 16.0%: r < 0.0543 +Expected 50.0%: r < 0.0767 +Expected 84.0%: r < 0.1087 +Expected 97.5%: r < 0.1500 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_500_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_500_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..c169316 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_500_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.0737305 +Sigma for expected limits: 0.0376183 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -911.172 (r = 6.40898e-11) + +Make global fit of asimov data +NLL at global minimum of asimov: -906.139 (r = 2.6656e-06) +At r = 1.200000: q_mu = 228.44603 q_A = 218.71829 CLsb = 0.00000 CLb = 0.37112 CLs = 0.00000 +At r = 0.600000: q_mu = 112.98935 q_A = 105.21156 CLsb = 0.00000 CLb = 0.35229 CLs = 0.00000 +At r = 0.300000: q_mu = 47.77111 q_A = 42.16905 CLsb = 0.00000 CLb = 0.33311 CLs = 0.00000 +At r = 0.150000: q_mu = 17.40358 q_A = 13.85385 CLsb = 0.00001 CLb = 0.31673 CLs = 0.00004 +At r = 0.075000: q_mu = 5.92138 q_A = 3.92595 CLsb = 0.00648 CLb = 0.30729 CLs = 0.02108 +At r = 0.037500: q_mu = 2.08584 q_A = 1.04002 CLsb = 0.06269 CLb = 0.30406 CLs = 0.20618 +At r = 0.056250: q_mu = 3.80663 q_A = 2.27206 CLsb = 0.02188 CLb = 0.30536 CLs = 0.07165 +At r = 0.064412: q_mu = 4.68135 q_A = 2.94258 CLsb = 0.01313 CLb = 0.30614 CLs = 0.04290 +At r = 0.060831: q_mu = 4.28855 q_A = 2.63869 CLsb = 0.01649 CLb = 0.30579 CLs = 0.05394 +At r = 0.062496: q_mu = 4.46947 q_A = 2.77814 CLsb = 0.01485 CLb = 0.30595 CLs = 0.04853 +At r = 0.061787: q_mu = 4.39200 q_A = 2.71832 CLsb = 0.01553 CLb = 0.30588 CLs = 0.05077 +At r = 0.062121: q_mu = 4.42845 q_A = 2.74644 CLsb = 0.01520 CLb = 0.30591 CLs = 0.04970 + + -- Asymptotic -- +Observed Limit: r < 0.0621 +Expected 2.5%: r < 0.0392 +Expected 16.0%: r < 0.0524 +Expected 50.0%: r < 0.0737 +Expected 84.0%: r < 0.1058 +Expected 97.5%: r < 0.1451 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_510_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_510_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..a05f444 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_510_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.0698242 +Sigma for expected limits: 0.0356253 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -1011.99 (r = 4.0599e-08) + +Make global fit of asimov data +NLL at global minimum of asimov: -985.723 (r = 1.80281e-06) +At r = 1.200000: q_mu = 253.75697 q_A = 231.49147 CLsb = 0.00000 CLb = 0.23217 CLs = 0.00000 +At r = 0.600000: q_mu = 129.88354 q_A = 112.71816 CLsb = 0.00000 CLb = 0.20943 CLs = 0.00000 +At r = 0.300000: q_mu = 58.08778 q_A = 45.81617 CLsb = 0.00000 CLb = 0.18234 CLs = 0.00000 +At r = 0.150000: q_mu = 23.00369 q_A = 15.25101 CLsb = 0.00000 CLb = 0.16045 CLs = 0.00000 +At r = 0.075000: q_mu = 8.71072 q_A = 4.35498 CLsb = 0.00087 CLb = 0.14833 CLs = 0.00588 +At r = 0.037500: q_mu = 3.43792 q_A = 1.15613 CLsb = 0.01633 CLb = 0.14433 CLs = 0.11313 +At r = 0.056250: q_mu = 5.87294 q_A = 2.52365 CLsb = 0.00411 CLb = 0.14590 CLs = 0.02818 +At r = 0.046312: q_mu = 4.52862 q_A = 1.73798 CLsb = 0.00873 CLb = 0.14493 CLs = 0.06026 +At r = 0.050252: q_mu = 5.04738 q_A = 2.03325 CLsb = 0.00652 CLb = 0.14528 CLs = 0.04486 +At r = 0.048305: q_mu = 4.78870 q_A = 1.88466 CLsb = 0.00754 CLb = 0.14510 CLs = 0.05196 +At r = 0.049101: q_mu = 4.89394 q_A = 1.94479 CLsb = 0.00710 CLb = 0.14517 CLs = 0.04894 +At r = 0.048714: q_mu = 4.84260 q_A = 1.91539 CLsb = 0.00731 CLb = 0.14513 CLs = 0.05039 + + -- Asymptotic -- +Observed Limit: r < 0.0487 +Expected 2.5%: r < 0.0368 +Expected 16.0%: r < 0.0500 +Expected 50.0%: r < 0.0698 +Expected 84.0%: r < 0.1002 +Expected 97.5%: r < 0.1374 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_520_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_520_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..ed368a2 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_520_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.0678711 +Sigma for expected limits: 0.0346287 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -1084.59 (r = 1.39161e-10) + +Make global fit of asimov data +NLL at global minimum of asimov: -1046.73 (r = 3.73166e-06) +At r = 1.200000: q_mu = 269.07739 q_A = 240.62333 CLsb = 0.00000 CLb = 0.17953 CLs = 0.00000 +At r = 0.600000: q_mu = 139.60422 q_A = 118.01977 CLsb = 0.00000 CLb = 0.16025 CLs = 0.00000 +At r = 0.300000: q_mu = 63.92342 q_A = 48.44762 CLsb = 0.00000 CLb = 0.13313 CLs = 0.00000 +At r = 0.150000: q_mu = 26.10989 q_A = 16.27957 CLsb = 0.00000 CLb = 0.11158 CLs = 0.00000 +At r = 0.075000: q_mu = 10.22690 q_A = 4.67456 CLsb = 0.00028 CLb = 0.09957 CLs = 0.00286 +At r = 0.037500: q_mu = 4.16051 q_A = 1.24271 CLsb = 0.00769 CLb = 0.09532 CLs = 0.08064 +At r = 0.056250: q_mu = 6.98765 q_A = 2.71155 CLsb = 0.00161 CLb = 0.09707 CLs = 0.01663 +At r = 0.045791: q_mu = 5.35564 q_A = 1.82752 CLsb = 0.00394 CLb = 0.09596 CLs = 0.04111 +At r = 0.042205: q_mu = 4.82768 q_A = 1.56172 CLsb = 0.00529 CLb = 0.09566 CLs = 0.05528 +At r = 0.043895: q_mu = 5.07436 q_A = 1.68453 CLsb = 0.00461 CLb = 0.09579 CLs = 0.04812 +At r = 0.043184: q_mu = 4.97013 q_A = 1.63232 CLsb = 0.00488 CLb = 0.09573 CLs = 0.05103 +At r = 0.043523: q_mu = 5.01980 q_A = 1.65714 CLsb = 0.00475 CLb = 0.09576 CLs = 0.04962 + + -- Asymptotic -- +Observed Limit: r < 0.0435 +Expected 2.5%: r < 0.0358 +Expected 16.0%: r < 0.0481 +Expected 50.0%: r < 0.0679 +Expected 84.0%: r < 0.0963 +Expected 97.5%: r < 0.1320 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_530_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_530_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..81858f7 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_530_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.0649414 +Sigma for expected limits: 0.033134 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -1159.76 (r = 4.66294e-13) + +Make global fit of asimov data +NLL at global minimum of asimov: -1110.16 (r = 4.08504e-06) +At r = 1.200000: q_mu = 283.73452 q_A = 249.46338 CLsb = 0.00000 CLb = 0.13898 CLs = 0.00000 +At r = 0.600000: q_mu = 148.55383 q_A = 123.15580 CLsb = 0.00000 CLb = 0.12625 CLs = 0.00000 +At r = 0.300000: q_mu = 69.20048 q_A = 51.07121 CLsb = 0.00000 CLb = 0.10232 CLs = 0.00000 +At r = 0.150000: q_mu = 28.81604 q_A = 17.33047 CLsb = 0.00000 CLb = 0.08387 CLs = 0.00000 +At r = 0.075000: q_mu = 11.48154 q_A = 5.00595 CLsb = 0.00011 CLb = 0.07393 CLs = 0.00155 +At r = 0.037500: q_mu = 4.72991 q_A = 1.33298 CLsb = 0.00432 CLb = 0.07063 CLs = 0.06122 +At r = 0.056250: q_mu = 7.89039 q_A = 2.90700 CLsb = 0.00077 CLb = 0.07195 CLs = 0.01073 +At r = 0.046875: q_mu = 6.25161 q_A = 2.05022 CLsb = 0.00187 CLb = 0.07117 CLs = 0.02630 +At r = 0.041172: q_mu = 5.31170 q_A = 1.59713 CLsb = 0.00313 CLb = 0.07083 CLs = 0.04425 +At r = 0.039332: q_mu = 5.01762 q_A = 1.46179 CLsb = 0.00369 CLb = 0.07071 CLs = 0.05213 +At r = 0.040074: q_mu = 5.13557 q_A = 1.51558 CLsb = 0.00345 CLb = 0.07075 CLs = 0.04881 +At r = 0.039708: q_mu = 5.07730 q_A = 1.48892 CLsb = 0.00357 CLb = 0.07073 CLs = 0.05042 + + -- Asymptotic -- +Observed Limit: r < 0.0397 +Expected 2.5%: r < 0.0342 +Expected 16.0%: r < 0.0462 +Expected 50.0%: r < 0.0649 +Expected 84.0%: r < 0.0926 +Expected 97.5%: r < 0.1274 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_540_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_540_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..dd9b460 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_540_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 0.0629883 +Sigma for expected limits: 0.0321375 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -1239.31 (r = 2.25578e-10) + +Make global fit of asimov data +NLL at global minimum of asimov: -1176.17 (r = 3.52923e-06) +At r = 1.200000: q_mu = 301.67404 q_A = 258.04014 CLsb = 0.00000 CLb = 0.08721 CLs = 0.00000 +At r = 0.600000: q_mu = 159.98470 q_A = 128.09808 CLsb = 0.00000 CLb = 0.07947 CLs = 0.00000 +At r = 0.300000: q_mu = 76.50399 q_A = 53.64744 CLsb = 0.00000 CLb = 0.05935 CLs = 0.00000 +At r = 0.150000: q_mu = 32.94684 q_A = 18.38196 CLsb = 0.00000 CLb = 0.04470 CLs = 0.00000 +At r = 0.075000: q_mu = 13.59647 q_A = 5.34155 CLsb = 0.00002 CLb = 0.03706 CLs = 0.00056 +At r = 0.037500: q_mu = 5.76783 q_A = 1.42472 CLsb = 0.00129 CLb = 0.03443 CLs = 0.03757 +At r = 0.018750: q_mu = 2.58330 q_A = 0.37042 CLsb = 0.00762 CLb = 0.03454 CLs = 0.22067 +At r = 0.028125: q_mu = 4.10567 q_A = 0.81524 CLsb = 0.00321 CLb = 0.03422 CLs = 0.09395 +At r = 0.033287: q_mu = 5.00421 q_A = 1.13090 CLsb = 0.00196 CLb = 0.03429 CLs = 0.05715 +At r = 0.035203: q_mu = 5.34835 q_A = 1.26064 CLsb = 0.00162 CLb = 0.03435 CLs = 0.04729 +At r = 0.034369: q_mu = 5.19778 q_A = 1.20331 CLsb = 0.00176 CLb = 0.03433 CLs = 0.05137 +At r = 0.034754: q_mu = 5.26711 q_A = 1.22960 CLsb = 0.00170 CLb = 0.03434 CLs = 0.04945 + + -- Asymptotic -- +Observed Limit: r < 0.0348 +Expected 2.5%: r < 0.0330 +Expected 16.0%: r < 0.0447 +Expected 50.0%: r < 0.0630 +Expected 84.0%: r < 0.0894 +Expected 97.5%: r < 0.1233 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_550_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_550_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..87c582d --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_550_13TeV_asymptoticCLs.out @@ -0,0 +1,40 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +WARNING: Best fit of asimov dataset is at r = 0.676879 (0.033844 times rMax), while it should be at zero +Median for expected limits: 16.0625 +Sigma for expected limits: 8.1953 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -0.0978673 (r = 2.61195) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.179176 (r = 0.687894) +At r = 23.576533: q_mu = 6.63403 q_A = 8.08372 CLsb = 0.00500 CLb = 0.60547 CLs = 0.00826 +At r = 13.094243: q_mu = 1.79300 q_A = 2.57114 CLsb = 0.09028 CLb = 0.60428 CLs = 0.14940 +At r = 18.335388: q_mu = 3.89109 q_A = 5.01396 CLsb = 0.02427 CLb = 0.60511 CLs = 0.04011 +At r = 16.584466: q_mu = 3.11234 q_A = 4.12181 CLsb = 0.03885 CLb = 0.60490 CLs = 0.06423 +At r = 17.329494: q_mu = 3.43462 q_A = 4.49257 CLsb = 0.03192 CLb = 0.60499 CLs = 0.05276 +At r = 17.688570: q_mu = 3.59495 q_A = 4.67615 CLsb = 0.02898 CLb = 0.60504 CLs = 0.04789 +At r = 17.489099: q_mu = 3.50548 q_A = 4.57376 CLsb = 0.03058 CLb = 0.60501 CLs = 0.05055 +At r = 17.561319: q_mu = 3.53773 q_A = 4.61070 CLsb = 0.02999 CLb = 0.60502 CLs = 0.04957 +At r = 17.521528: q_mu = 3.51993 q_A = 4.59033 CLsb = 0.03032 CLb = 0.60502 CLs = 0.05011 + + -- Asymptotic -- +Observed Limit: r < 17.5215 +Expected 2.5%: r < 8.8156 +Expected 16.0%: r < 11.5898 +Expected 50.0%: r < 16.0625 +Expected 84.0%: r < 22.5291 +Expected 97.5%: r < 30.6496 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_570_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_570_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..8c09a7f --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_570_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +WARNING: Best fit of asimov dataset is at r = 0.217878 (0.010894 times rMax), while it should be at zero +Median for expected limits: 16.9375 +Sigma for expected limits: 8.64174 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -0.3179 (r = 9.66702) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.196502 (r = 0.327943) +At r = 34.307469: q_mu = 7.36075 q_A = 13.99118 CLsb = 0.00333 CLb = 0.84789 CLs = 0.00393 +At r = 21.987246: q_mu = 2.04213 q_A = 6.29372 CLsb = 0.07650 CLb = 0.85986 CLs = 0.08897 +At r = 28.147357: q_mu = 4.36843 q_A = 9.88047 CLsb = 0.01831 CLb = 0.85389 CLs = 0.02144 +At r = 25.214693: q_mu = 3.16881 q_A = 8.09937 CLsb = 0.03753 CLb = 0.85675 CLs = 0.04380 +At r = 24.087051: q_mu = 2.75105 q_A = 7.44913 CLsb = 0.04860 CLb = 0.85784 CLs = 0.05665 +At r = 24.750526: q_mu = 2.99422 q_A = 7.82963 CLsb = 0.04178 CLb = 0.85719 CLs = 0.04874 +At r = 24.527853: q_mu = 2.91156 q_A = 7.70107 CLsb = 0.04397 CLb = 0.85741 CLs = 0.05129 +At r = 24.661315: q_mu = 2.96095 q_A = 7.77799 CLsb = 0.04265 CLb = 0.85728 CLs = 0.04975 + + -- Asymptotic -- +Observed Limit: r < 24.6613 +Expected 2.5%: r < 9.0973 +Expected 16.0%: r < 12.1292 +Expected 50.0%: r < 16.9375 +Expected 84.0%: r < 24.0264 +Expected 97.5%: r < 32.9353 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_600_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_600_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..e2fdc1d --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_600_13TeV_asymptoticCLs.out @@ -0,0 +1,42 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +WARNING: Best fit of asimov dataset is at r = 0.093465 (0.004673 times rMax), while it should be at zero +Median for expected limits: 14.6875 +Sigma for expected limits: 7.49376 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -0.247526 (r = 3.32732e-05) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.164158 (r = 0.122343) +At r = 79.459005: q_mu = 60.92950 q_A = 60.46277 CLsb = 0.00000 CLb = 0.48803 CLs = 0.00000 +At r = 39.729519: q_mu = 22.74922 q_A = 22.04264 CLsb = 0.00000 CLb = 0.47001 CLs = 0.00000 +At r = 19.864776: q_mu = 7.33392 q_A = 6.71684 CLsb = 0.00336 CLb = 0.45262 CLs = 0.00742 +At r = 9.932405: q_mu = 2.22187 q_A = 1.81572 CLsb = 0.06704 CLb = 0.44010 CLs = 0.15233 +At r = 14.898590: q_mu = 4.47675 q_A = 3.94486 CLsb = 0.01700 CLb = 0.44674 CLs = 0.03805 +At r = 12.415498: q_mu = 3.26650 q_A = 2.79185 CLsb = 0.03492 CLb = 0.44353 CLs = 0.07874 +At r = 13.656088: q_mu = 3.85141 q_A = 3.34683 CLsb = 0.02457 CLb = 0.44516 CLs = 0.05520 +At r = 14.168936: q_mu = 4.10511 q_A = 3.58893 CLsb = 0.02114 CLb = 0.44582 CLs = 0.04743 +At r = 13.923510: q_mu = 3.98279 q_A = 3.47211 CLsb = 0.02273 CLb = 0.44550 CLs = 0.05102 +At r = 14.026836: q_mu = 4.03408 q_A = 3.52107 CLsb = 0.02205 CLb = 0.44564 CLs = 0.04948 +At r = 13.977911: q_mu = 4.00976 q_A = 3.49785 CLsb = 0.02237 CLb = 0.44557 CLs = 0.05020 + + -- Asymptotic -- +Observed Limit: r < 13.9779 +Expected 2.5%: r < 7.7740 +Expected 16.0%: r < 10.4476 +Expected 50.0%: r < 14.6875 +Expected 84.0%: r < 20.9518 +Expected 97.5%: r < 29.0098 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_620_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_620_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..e16a8a0 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_620_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +WARNING: Best fit of asimov dataset is at r = 0.032860 (0.001643 times rMax), while it should be at zero +Median for expected limits: 12.8125 +Sigma for expected limits: 6.53711 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -0.0328461 (r = 2.21884) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.148222 (r = 0.0223934) +At r = 18.850043: q_mu = 6.12695 q_A = 7.72669 CLsb = 0.00666 CLb = 0.61960 CLs = 0.01074 +At r = 10.534443: q_mu = 1.68081 q_A = 2.63984 CLsb = 0.09741 CLb = 0.62866 CLs = 0.15495 +At r = 14.692243: q_mu = 3.61623 q_A = 4.91789 CLsb = 0.02861 CLb = 0.62400 CLs = 0.04585 +At r = 12.613343: q_mu = 2.56950 q_A = 3.70576 CLsb = 0.05447 CLb = 0.62630 CLs = 0.08697 +At r = 14.051293: q_mu = 3.27820 q_A = 4.53006 CLsb = 0.03510 CLb = 0.62469 CLs = 0.05619 +At r = 14.345582: q_mu = 3.43132 q_A = 4.70619 CLsb = 0.03199 CLb = 0.62438 CLs = 0.05123 +At r = 14.475564: q_mu = 3.50018 q_A = 4.78514 CLsb = 0.03068 CLb = 0.62423 CLs = 0.04915 +At r = 14.406511: q_mu = 3.46353 q_A = 4.74314 CLsb = 0.03137 CLb = 0.62431 CLs = 0.05024 + + -- Asymptotic -- +Observed Limit: r < 14.4065 +Expected 2.5%: r < 6.7816 +Expected 16.0%: r < 9.1139 +Expected 50.0%: r < 12.8125 +Expected 84.0%: r < 18.3793 +Expected 97.5%: r < 25.5346 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_650_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_650_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..ac36daf --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_650_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +WARNING: Best fit of asimov dataset is at r = 0.036911 (0.001846 times rMax), while it should be at zero +Median for expected limits: 11.2188 +Sigma for expected limits: 5.72396 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 7.13525 (r = 8.38602e-08) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.139447 (r = 0.007078) +At r = 5.544822: q_mu = 3.82966 q_A = 1.00163 CLsb = 0.00790 CLb = 0.07885 CLs = 0.10014 +At r = 11.089643: q_mu = 9.10509 q_A = 3.76819 CLsb = 0.00046 CLb = 0.08462 CLs = 0.00540 +At r = 5.544822: q_mu = 3.83012 q_A = 1.00164 CLsb = 0.00789 CLb = 0.07882 CLs = 0.10012 +At r = 8.317232: q_mu = 6.31446 q_A = 2.19025 CLsb = 0.00203 CLb = 0.08176 CLs = 0.02484 +At r = 7.204215: q_mu = 5.27726 q_A = 1.66317 CLsb = 0.00356 CLb = 0.08058 CLs = 0.04423 +At r = 6.672977: q_mu = 4.80059 q_A = 1.43478 CLsb = 0.00462 CLb = 0.08002 CLs = 0.05778 +At r = 6.902908: q_mu = 5.00539 q_A = 1.53175 CLsb = 0.00413 CLb = 0.08026 CLs = 0.05150 +At r = 7.009992: q_mu = 5.10155 q_A = 1.57789 CLsb = 0.00392 CLb = 0.08037 CLs = 0.04880 +At r = 6.949906: q_mu = 5.04751 q_A = 1.55192 CLsb = 0.00404 CLb = 0.08031 CLs = 0.05030 +At r = 6.971368: q_mu = 5.06679 q_A = 1.56117 CLsb = 0.00400 CLb = 0.08033 CLs = 0.04976 + + -- Asymptotic -- +Observed Limit: r < 6.9714 +Expected 2.5%: r < 5.8942 +Expected 16.0%: r < 7.9325 +Expected 50.0%: r < 11.2188 +Expected 84.0%: r < 16.0931 +Expected 97.5%: r < 22.2176 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_670_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_670_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..32efca1 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_670_13TeV_asymptoticCLs.out @@ -0,0 +1,40 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 10.5938 +Sigma for expected limits: 5.40507 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 6.55348 (r = 7.73786e-09) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.140859 (r = 0.000895212) +At r = 2.668819: q_mu = 2.92081 q_A = 0.26995 CLsb = 0.00107 CLb = 0.00537 CLs = 0.19890 +At r = 5.337638: q_mu = 6.18428 q_A = 1.04442 CLsb = 0.00020 CLb = 0.00596 CLs = 0.03401 +At r = 2.668819: q_mu = 2.92081 q_A = 0.26995 CLsb = 0.00107 CLb = 0.00537 CLs = 0.19890 +At r = 4.003229: q_mu = 4.51431 q_A = 0.59728 CLsb = 0.00047 CLb = 0.00564 CLs = 0.08366 +At r = 4.613778: q_mu = 5.26881 q_A = 0.78762 CLsb = 0.00032 CLb = 0.00579 CLs = 0.05566 +At r = 4.884563: q_mu = 5.60881 q_A = 0.88000 CLsb = 0.00027 CLb = 0.00586 CLs = 0.04634 +At r = 4.740494: q_mu = 5.42752 q_A = 0.83018 CLsb = 0.00030 CLb = 0.00582 CLs = 0.05109 +At r = 4.794828: q_mu = 5.49579 q_A = 0.84877 CLsb = 0.00029 CLb = 0.00583 CLs = 0.04925 +At r = 4.766054: q_mu = 5.45962 q_A = 0.83888 CLsb = 0.00029 CLb = 0.00583 CLs = 0.05022 +At r = 4.776933: q_mu = 5.47329 q_A = 0.84261 CLsb = 0.00029 CLb = 0.00583 CLs = 0.04985 + + -- Asymptotic -- +Observed Limit: r < 4.7769 +Expected 2.5%: r < 5.5659 +Expected 16.0%: r < 7.4710 +Expected 50.0%: r < 10.5938 +Expected 84.0%: r < 15.1965 +Expected 97.5%: r < 21.1128 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_700_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_700_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..6cf1469 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_700_13TeV_asymptoticCLs.out @@ -0,0 +1,40 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 9.90625 +Sigma for expected limits: 5.0543 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 7.37286 (r = 1.62154e-05) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.150395 (r = 1.95994e-05) +At r = 5.271680: q_mu = 3.15862 q_A = 1.16982 CLsb = 0.02270 CLb = 0.17894 CLs = 0.12684 +At r = 10.543361: q_mu = 8.06608 q_A = 4.31544 CLsb = 0.00144 CLb = 0.18333 CLs = 0.00786 +At r = 5.271689: q_mu = 3.15863 q_A = 1.16982 CLsb = 0.02270 CLb = 0.17894 CLs = 0.12684 +At r = 7.907525: q_mu = 5.42801 q_A = 2.52793 CLsb = 0.00618 CLb = 0.18088 CLs = 0.03414 +At r = 6.767369: q_mu = 4.39724 q_A = 1.88395 CLsb = 0.01107 CLb = 0.17995 CLs = 0.06149 +At r = 7.316085: q_mu = 4.88498 q_A = 2.18415 CLsb = 0.00839 CLb = 0.18042 CLs = 0.04648 +At r = 7.091924: q_mu = 4.68353 q_A = 2.05897 CLsb = 0.00940 CLb = 0.18022 CLs = 0.05216 +At r = 7.202632: q_mu = 4.78263 q_A = 2.12033 CLsb = 0.00889 CLb = 0.18031 CLs = 0.04928 +At r = 7.158009: q_mu = 4.74258 q_A = 2.09548 CLsb = 0.00909 CLb = 0.18027 CLs = 0.05043 +At r = 7.180199: q_mu = 4.76246 q_A = 2.10781 CLsb = 0.00899 CLb = 0.18029 CLs = 0.04986 + + -- Asymptotic -- +Observed Limit: r < 7.1802 +Expected 2.5%: r < 5.1660 +Expected 16.0%: r < 6.9991 +Expected 50.0%: r < 9.9062 +Expected 84.0%: r < 14.2103 +Expected 97.5%: r < 19.7426 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_720_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_720_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..ff1328e --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_720_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 9.53125 +Sigma for expected limits: 4.86297 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 7.96628 (r = 2.27446) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.158676 (r = 0.00281509) +At r = 15.598229: q_mu = 6.85311 q_A = 9.33954 CLsb = 0.00442 CLb = 0.66939 CLs = 0.00661 +At r = 8.936344: q_mu = 1.91004 q_A = 3.41892 CLsb = 0.08348 CLb = 0.67975 CLs = 0.12281 +At r = 12.267286: q_mu = 4.07462 q_A = 6.10472 CLsb = 0.02177 CLb = 0.67444 CLs = 0.03227 +At r = 10.728145: q_mu = 2.98984 q_A = 4.78766 CLsb = 0.04189 CLb = 0.67687 CLs = 0.06189 +At r = 11.439483: q_mu = 3.47408 q_A = 5.38102 CLsb = 0.03117 CLb = 0.67574 CLs = 0.04613 +At r = 11.141124: q_mu = 3.26762 q_A = 5.12912 CLsb = 0.03533 CLb = 0.67620 CLs = 0.05225 +At r = 11.285011: q_mu = 3.36645 q_A = 5.24994 CLsb = 0.03327 CLb = 0.67598 CLs = 0.04922 +At r = 11.225778: q_mu = 3.32559 q_A = 5.20005 CLsb = 0.03410 CLb = 0.67607 CLs = 0.05045 +At r = 11.254646: q_mu = 3.34547 q_A = 5.22434 CLsb = 0.03370 CLb = 0.67603 CLs = 0.04984 + + -- Asymptotic -- +Observed Limit: r < 11.2546 +Expected 2.5%: r < 4.9704 +Expected 16.0%: r < 6.7163 +Expected 50.0%: r < 9.5312 +Expected 84.0%: r < 13.6724 +Expected 97.5%: r < 18.9953 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_750_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_750_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..4c8d809 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_750_13TeV_asymptoticCLs.out @@ -0,0 +1,38 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 8.96875 +Sigma for expected limits: 4.57598 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 7.71563 (r = 5.27332) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.169492 (r = 0.00944538) +At r = 18.889224: q_mu = 7.05923 q_A = 14.35939 CLsb = 0.00394 CLb = 0.87128 CLs = 0.00453 +At r = 12.081272: q_mu = 1.98294 q_A = 6.61555 CLsb = 0.07954 CLb = 0.87777 CLs = 0.09062 +At r = 15.485248: q_mu = 4.21196 q_A = 10.24511 CLsb = 0.02007 CLb = 0.87462 CLs = 0.02295 +At r = 13.941030: q_mu = 3.11557 q_A = 8.53056 CLsb = 0.03877 CLb = 0.87608 CLs = 0.04426 +At r = 13.315815: q_mu = 2.71083 q_A = 7.86749 CLsb = 0.04983 CLb = 0.87666 CLs = 0.05685 +At r = 13.572237: q_mu = 2.87431 q_A = 8.13740 CLsb = 0.04500 CLb = 0.87641 CLs = 0.05135 +At r = 13.698811: q_mu = 2.95598 q_A = 8.27197 CLsb = 0.04278 CLb = 0.87632 CLs = 0.04882 +At r = 13.625541: q_mu = 2.90843 q_A = 8.19394 CLsb = 0.04406 CLb = 0.87638 CLs = 0.05027 + + -- Asymptotic -- +Observed Limit: r < 13.6255 +Expected 2.5%: r < 4.7121 +Expected 16.0%: r < 6.3250 +Expected 50.0%: r < 8.9688 +Expected 84.0%: r < 12.8655 +Expected 97.5%: r < 17.8742 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_770_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_770_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..2eec501 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_770_13TeV_asymptoticCLs.out @@ -0,0 +1,38 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 8.5625 +Sigma for expected limits: 4.3687 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 7.49637 (r = 6.05382) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.157625 (r = 0.000477728) +At r = 19.108166: q_mu = 7.05540 q_A = 15.80761 CLsb = 0.00395 CLb = 0.90653 CLs = 0.00436 +At r = 12.580991: q_mu = 1.98678 q_A = 7.72038 CLsb = 0.07934 CLb = 0.91450 CLs = 0.08676 +At r = 15.844578: q_mu = 4.21380 q_A = 11.53837 CLsb = 0.02005 CLb = 0.91054 CLs = 0.02202 +At r = 14.282970: q_mu = 3.06273 q_A = 9.64755 CLsb = 0.04005 CLb = 0.91245 CLs = 0.04390 +At r = 13.682389: q_mu = 2.66074 q_A = 8.95066 CLsb = 0.05143 CLb = 0.91318 CLs = 0.05632 +At r = 14.031909: q_mu = 2.89245 q_A = 9.35454 CLsb = 0.04450 CLb = 0.91274 CLs = 0.04875 +At r = 13.913005: q_mu = 2.81257 q_A = 9.21635 CLsb = 0.04676 CLb = 0.91289 CLs = 0.05123 +At r = 13.983351: q_mu = 2.85968 q_A = 9.29799 CLsb = 0.04541 CLb = 0.91280 CLs = 0.04975 + + -- Asymptotic -- +Observed Limit: r < 13.9834 +Expected 2.5%: r < 4.4987 +Expected 16.0%: r < 6.0385 +Expected 50.0%: r < 8.5625 +Expected 84.0%: r < 12.2827 +Expected 97.5%: r < 17.0646 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_800_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_800_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..0b71cce --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_800_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 8.03125 +Sigma for expected limits: 4.09765 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 7.87384 (r = 3.54103) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.173959 (r = 0.00361293) +At r = 15.439401: q_mu = 7.08306 q_A = 12.37403 CLsb = 0.00389 CLb = 0.80408 CLs = 0.00484 +At r = 9.490215: q_mu = 1.97617 q_A = 5.23321 CLsb = 0.07990 CLb = 0.81107 CLs = 0.09851 +At r = 12.464808: q_mu = 4.21384 q_A = 8.53838 CLsb = 0.02005 CLb = 0.80765 CLs = 0.02482 +At r = 11.255831: q_mu = 3.22019 q_A = 7.12345 CLsb = 0.03637 CLb = 0.80907 CLs = 0.04495 +At r = 10.711016: q_mu = 2.80899 q_A = 6.51681 CLsb = 0.04687 CLb = 0.80970 CLs = 0.05788 +At r = 10.963356: q_mu = 2.99687 q_A = 6.79559 CLsb = 0.04171 CLb = 0.80940 CLs = 0.05154 +At r = 11.073615: q_mu = 3.08004 q_A = 6.91893 CLsb = 0.03963 CLb = 0.80932 CLs = 0.04897 +At r = 11.015529: q_mu = 3.03594 q_A = 6.85381 CLsb = 0.04072 CLb = 0.80937 CLs = 0.05031 +At r = 11.037761: q_mu = 3.05278 q_A = 6.87868 CLsb = 0.04030 CLb = 0.80935 CLs = 0.04979 + + -- Asymptotic -- +Observed Limit: r < 11.0378 +Expected 2.5%: r < 4.2195 +Expected 16.0%: r < 5.6638 +Expected 50.0%: r < 8.0312 +Expected 84.0%: r < 11.5207 +Expected 97.5%: r < 15.9050 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_820_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_820_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..952f70d --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_820_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 7.59375 +Sigma for expected limits: 3.87443 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 7.90507 (r = 0.822466) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.190281 (r = 0.00085352) +At r = 12.960312: q_mu = 8.48282 q_A = 10.03026 CLsb = 0.00179 CLb = 0.60046 CLs = 0.00299 +At r = 6.891389: q_mu = 2.38010 q_A = 3.20651 CLsb = 0.06144 CLb = 0.59790 CLs = 0.10277 +At r = 9.925851: q_mu = 5.06323 q_A = 6.26063 CLsb = 0.01222 CLb = 0.59947 CLs = 0.02038 +At r = 8.579381: q_mu = 3.77086 q_A = 4.80595 CLsb = 0.02608 CLb = 0.59885 CLs = 0.04354 +At r = 8.024366: q_mu = 3.28403 q_A = 4.25110 CLsb = 0.03498 CLb = 0.59856 CLs = 0.05844 +At r = 8.259716: q_mu = 3.48738 q_A = 4.48334 CLsb = 0.03092 CLb = 0.59868 CLs = 0.05165 +At r = 8.372175: q_mu = 3.58586 q_A = 4.59626 CLsb = 0.02914 CLb = 0.59880 CLs = 0.04866 +At r = 8.308605: q_mu = 3.52988 q_A = 4.53225 CLsb = 0.03014 CLb = 0.59875 CLs = 0.05033 +At r = 8.331263: q_mu = 3.54978 q_A = 4.55464 CLsb = 0.02978 CLb = 0.59873 CLs = 0.04973 + + -- Asymptotic -- +Observed Limit: r < 8.3313 +Expected 2.5%: r < 3.9749 +Expected 16.0%: r < 5.3743 +Expected 50.0%: r < 7.5938 +Expected 84.0%: r < 10.8931 +Expected 97.5%: r < 15.1339 + +Done in 0.00 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_840_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_840_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..3853765 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_840_13TeV_asymptoticCLs.out @@ -0,0 +1,41 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 7.21875 +Sigma for expected limits: 3.6831 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 7.68322 (r = 1.52936e-06) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.205901 (r = 2.23069e-05) +At r = 41.062590: q_mu = 64.23709 q_A = 62.44540 CLsb = 0.00000 CLb = 0.45487 CLs = 0.00000 +At r = 20.531296: q_mu = 24.62647 q_A = 23.26193 CLsb = 0.00000 CLb = 0.44375 CLs = 0.00000 +At r = 10.265649: q_mu = 8.17041 q_A = 7.28403 CLsb = 0.00210 CLb = 0.43478 CLs = 0.00482 +At r = 5.132825: q_mu = 2.53782 q_A = 2.03141 CLsb = 0.05447 CLb = 0.42950 CLs = 0.12683 +At r = 7.699237: q_mu = 5.04213 q_A = 4.33081 CLsb = 0.01216 CLb = 0.43215 CLs = 0.02814 +At r = 6.402239: q_mu = 3.68953 q_A = 3.07782 CLsb = 0.02688 CLb = 0.43080 CLs = 0.06240 +At r = 6.950389: q_mu = 4.24058 q_A = 3.58581 CLsb = 0.01939 CLb = 0.43137 CLs = 0.04495 +At r = 6.698442: q_mu = 3.98381 q_A = 3.34865 CLsb = 0.02256 CLb = 0.43111 CLs = 0.05234 +At r = 6.809342: q_mu = 4.09594 q_A = 3.45211 CLsb = 0.02112 CLb = 0.43122 CLs = 0.04897 +At r = 6.759304: q_mu = 4.04516 q_A = 3.40524 CLsb = 0.02176 CLb = 0.43117 CLs = 0.05046 +At r = 6.781559: q_mu = 4.06770 q_A = 3.42605 CLsb = 0.02147 CLb = 0.43120 CLs = 0.04979 + + -- Asymptotic -- +Observed Limit: r < 6.7816 +Expected 2.5%: r < 3.7645 +Expected 16.0%: r < 5.1003 +Expected 50.0%: r < 7.2188 +Expected 84.0%: r < 10.3551 +Expected 97.5%: r < 14.3866 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_860_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_860_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..3bb61de --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_860_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 6.90625 +Sigma for expected limits: 3.52366 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 7.55 (r = 1.38844e-05) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.22096 (r = 3.84225e-05) +At r = 10.895350: q_mu = 10.72975 q_A = 8.73884 CLsb = 0.00050 CLb = 0.36816 CLs = 0.00135 +At r = 5.447682: q_mu = 3.60806 q_A = 2.47373 CLsb = 0.02659 CLb = 0.35920 CLs = 0.07403 +At r = 8.171516: q_mu = 6.83027 q_A = 5.23605 CLsb = 0.00419 CLb = 0.36379 CLs = 0.01151 +At r = 6.809599: q_mu = 5.12287 q_A = 3.75014 CLsb = 0.01098 CLb = 0.36151 CLs = 0.03038 +At r = 6.200170: q_mu = 4.41973 q_A = 3.15152 CLsb = 0.01649 CLb = 0.36048 CLs = 0.04573 +At r = 5.938170: q_mu = 4.13018 q_A = 2.90800 CLsb = 0.01953 CLb = 0.36004 CLs = 0.05423 +At r = 6.090478: q_mu = 4.29749 q_A = 3.04847 CLsb = 0.01770 CLb = 0.36029 CLs = 0.04914 +At r = 6.038521: q_mu = 4.24009 q_A = 3.00020 CLsb = 0.01831 CLb = 0.36020 CLs = 0.05083 +At r = 6.069072: q_mu = 4.27380 q_A = 3.02854 CLsb = 0.01795 CLb = 0.36025 CLs = 0.04983 + + -- Asymptotic -- +Observed Limit: r < 6.0691 +Expected 2.5%: r < 3.6015 +Expected 16.0%: r < 4.8795 +Expected 50.0%: r < 6.9062 +Expected 84.0%: r < 9.9069 +Expected 97.5%: r < 13.7638 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_880_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_880_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..2c818d8 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_880_13TeV_asymptoticCLs.out @@ -0,0 +1,40 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 6.53125 +Sigma for expected limits: 3.33233 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 7.54841 (r = 4.17385e-06) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.24256 (r = 4.52721e-06) +At r = 12.669265: q_mu = 14.48470 q_A = 12.34968 CLsb = 0.00007 CLb = 0.38065 CLs = 0.00018 +At r = 6.334635: q_mu = 4.82908 q_A = 3.62033 CLsb = 0.01320 CLb = 0.37538 CLs = 0.03516 +At r = 3.167319: q_mu = 1.61558 q_A = 0.97640 CLsb = 0.09483 CLb = 0.37319 CLs = 0.25412 +At r = 4.750977: q_mu = 3.04905 q_A = 2.11579 CLsb = 0.03792 CLb = 0.37418 CLs = 0.10134 +At r = 5.596407: q_mu = 3.95947 q_A = 2.87682 CLsb = 0.02194 CLb = 0.37480 CLs = 0.05853 +At r = 5.926586: q_mu = 4.34056 q_A = 3.20102 CLsb = 0.01753 CLb = 0.37507 CLs = 0.04675 +At r = 5.781487: q_mu = 4.17130 q_A = 3.05665 CLsb = 0.01936 CLb = 0.37495 CLs = 0.05164 +At r = 5.848124: q_mu = 4.24867 q_A = 3.12258 CLsb = 0.01850 CLb = 0.37500 CLs = 0.04934 +At r = 5.819230: q_mu = 4.21505 q_A = 3.09392 CLsb = 0.01887 CLb = 0.37498 CLs = 0.05033 +At r = 5.832583: q_mu = 4.23057 q_A = 3.10714 CLsb = 0.01870 CLb = 0.37499 CLs = 0.04987 + + -- Asymptotic -- +Observed Limit: r < 5.8326 +Expected 2.5%: r < 3.4187 +Expected 16.0%: r < 4.6224 +Expected 50.0%: r < 6.5312 +Expected 84.0%: r < 9.4210 +Expected 97.5%: r < 13.1319 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_900_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_900_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..a3f0522 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_900_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 6.40625 +Sigma for expected limits: 3.26856 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 7.48272 (r = 1.43736e-06) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.250818 (r = 1.55245e-06) +At r = 10.357689: q_mu = 11.43257 q_A = 9.02530 CLsb = 0.00033 CLb = 0.34434 CLs = 0.00096 +At r = 5.178845: q_mu = 3.88106 q_A = 2.56960 CLsb = 0.02211 CLb = 0.34125 CLs = 0.06478 +At r = 7.768267: q_mu = 7.31134 q_A = 5.42290 CLsb = 0.00313 CLb = 0.34257 CLs = 0.00913 +At r = 6.473556: q_mu = 5.49697 q_A = 3.88966 CLsb = 0.00866 CLb = 0.34182 CLs = 0.02534 +At r = 5.723640: q_mu = 4.53503 q_A = 3.09729 CLsb = 0.01506 CLb = 0.34147 CLs = 0.04412 +At r = 5.472696: q_mu = 4.22912 q_A = 2.84924 CLsb = 0.01801 CLb = 0.34137 CLs = 0.05276 +At r = 5.583154: q_mu = 4.36271 q_A = 2.95730 CLsb = 0.01666 CLb = 0.34141 CLs = 0.04879 +At r = 5.533310: q_mu = 4.30222 q_A = 2.90831 CLsb = 0.01726 CLb = 0.34139 CLs = 0.05054 +At r = 5.555472: q_mu = 4.32907 q_A = 2.93005 CLsb = 0.01699 CLb = 0.34140 CLs = 0.04976 + + -- Asymptotic -- +Observed Limit: r < 5.5555 +Expected 2.5%: r < 3.3658 +Expected 16.0%: r < 4.5416 +Expected 50.0%: r < 6.4062 +Expected 84.0%: r < 9.2407 +Expected 97.5%: r < 12.8806 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_920_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_920_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..2a111c1 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_920_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 6.10938 +Sigma for expected limits: 3.11709 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: 7.36944 (r = 2.39866e-06) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.275525 (r = 0.000533625) +At r = 7.680703: q_mu = 8.15052 q_A = 5.83501 CLsb = 0.00190 CLb = 0.31587 CLs = 0.00600 +At r = 3.840353: q_mu = 2.91062 q_A = 1.62117 CLsb = 0.03757 CLb = 0.30630 CLs = 0.12266 +At r = 5.760528: q_mu = 5.29586 q_A = 3.46264 CLsb = 0.00930 CLb = 0.31115 CLs = 0.02989 +At r = 4.816771: q_mu = 4.05830 q_A = 2.48426 CLsb = 0.01897 CLb = 0.30877 CLs = 0.06144 +At r = 5.221439: q_mu = 4.57461 q_A = 2.88759 CLsb = 0.01406 CLb = 0.30981 CLs = 0.04537 +At r = 5.036822: q_mu = 4.33617 q_A = 2.70033 CLsb = 0.01614 CLb = 0.30933 CLs = 0.05217 +At r = 5.118647: q_mu = 4.44125 q_A = 2.78265 CLsb = 0.01518 CLb = 0.30954 CLs = 0.04905 +At r = 5.081907: q_mu = 4.39395 q_A = 2.74556 CLsb = 0.01561 CLb = 0.30945 CLs = 0.05043 +At r = 5.098309: q_mu = 4.41504 q_A = 2.76209 CLsb = 0.01542 CLb = 0.30949 CLs = 0.04981 + + -- Asymptotic -- +Observed Limit: r < 5.0983 +Expected 2.5%: r < 3.1859 +Expected 16.0%: r < 4.2937 +Expected 50.0%: r < 6.1094 +Expected 84.0%: r < 8.8125 +Expected 97.5%: r < 12.2837 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_940_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_940_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..b23cbbf --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_940_13TeV_asymptoticCLs.out @@ -0,0 +1,38 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 5.95312 +Sigma for expected limits: 3.03736 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -0.551612 (r = 3.56507e-08) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.292808 (r = 0.000622116) +At r = 10.391315: q_mu = 12.31834 q_A = 10.26497 CLsb = 0.00021 CLb = 0.37431 CLs = 0.00057 +At r = 5.195658: q_mu = 4.20774 q_A = 3.00083 CLsb = 0.01873 CLb = 0.36379 CLs = 0.05149 +At r = 7.793487: q_mu = 7.91167 q_A = 6.24406 CLsb = 0.00231 CLb = 0.36931 CLs = 0.00625 +At r = 6.494572: q_mu = 5.95710 q_A = 4.50943 CLsb = 0.00686 CLb = 0.36660 CLs = 0.01872 +At r = 5.485691: q_mu = 4.57884 q_A = 3.31626 CLsb = 0.01509 CLb = 0.36442 CLs = 0.04141 +At r = 5.285018: q_mu = 4.32086 q_A = 3.09668 CLsb = 0.01753 CLb = 0.36398 CLs = 0.04817 +At r = 5.245112: q_mu = 4.27023 q_A = 3.05375 CLsb = 0.01806 CLb = 0.36390 CLs = 0.04963 +At r = 5.227273: q_mu = 4.24767 q_A = 3.03464 CLsb = 0.01830 CLb = 0.36386 CLs = 0.05030 + + -- Asymptotic -- +Observed Limit: r < 5.2273 +Expected 2.5%: r < 3.0812 +Expected 16.0%: r < 4.1694 +Expected 50.0%: r < 5.9531 +Expected 84.0%: r < 8.5871 +Expected 97.5%: r < 12.0439 + +Done in 0.00 min (cpu), 0.00 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_960_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_960_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..7c515a1 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_960_13TeV_asymptoticCLs.out @@ -0,0 +1,39 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 5.82812 +Sigma for expected limits: 2.97359 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -0.204404 (r = 0.491632) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.310173 (r = 0.00238276) +At r = 9.144900: q_mu = 7.70409 q_A = 8.48835 CLsb = 0.00275 CLb = 0.55482 CLs = 0.00497 +At r = 4.818266: q_mu = 2.19876 q_A = 2.69649 CLsb = 0.06906 CLb = 0.56328 CLs = 0.12261 +At r = 6.981583: q_mu = 4.63367 q_A = 5.29253 CLsb = 0.01568 CLb = 0.55881 CLs = 0.02805 +At r = 5.870720: q_mu = 3.29329 q_A = 3.87446 CLsb = 0.03478 CLb = 0.56105 CLs = 0.06199 +At r = 6.333853: q_mu = 3.83026 q_A = 4.44504 CLsb = 0.02517 CLb = 0.56010 CLs = 0.04493 +At r = 6.118248: q_mu = 3.57626 q_A = 4.17561 CLsb = 0.02931 CLb = 0.56054 CLs = 0.05228 +At r = 6.212178: q_mu = 3.68606 q_A = 4.29218 CLsb = 0.02743 CLb = 0.56035 CLs = 0.04896 +At r = 6.169325: q_mu = 3.63580 q_A = 4.23883 CLsb = 0.02827 CLb = 0.56043 CLs = 0.05045 +At r = 6.188168: q_mu = 3.65786 q_A = 4.26226 CLsb = 0.02790 CLb = 0.56039 CLs = 0.04979 + + -- Asymptotic -- +Observed Limit: r < 6.1882 +Expected 2.5%: r < 3.0393 +Expected 16.0%: r < 4.0960 +Expected 50.0%: r < 5.8281 +Expected 84.0%: r < 8.4532 +Expected 97.5%: r < 11.8206 + +Done in 0.00 min (cpu), 0.01 min (real) diff --git a/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_980_13TeV_asymptoticCLs.out b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_980_13TeV_asymptoticCLs.out new file mode 100644 index 0000000..60d6896 --- /dev/null +++ b/PreselectedWithRegressionDeepCSV/log_spin2/CMS_HH4b_980_13TeV_asymptoticCLs.out @@ -0,0 +1,38 @@ +>>> including systematics +>>> method used to compute upper limit is Asymptotic +>>> random number generator seed is 123456 +[?1034hComputing limit starting from observation +Will compute both limit(s) using minimizer Minuit2 with strategy 0 and tolerance 0.01 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Median for expected limits: 5.8125 +Sigma for expected limits: 2.96562 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Constraints of type RooGaussian: 4 +Constraints of type SimpleGaussianConstraint: 6 +Restricting r to positive values. + +Make global fit of real data +NLL at global minimum of data: -0.169059 (r = 0.768863) + +Make global fit of asimov data +NLL at global minimum of asimov: -0.323341 (r = 0.00286036) +At r = 8.000155: q_mu = 5.64868 q_A = 6.80562 CLsb = 0.00873 CLb = 0.59176 CLs = 0.01476 +At r = 4.384509: q_mu = 1.57402 q_A = 2.28292 CLsb = 0.10481 CLb = 0.60115 CLs = 0.17435 +At r = 6.192332: q_mu = 3.35784 q_A = 4.31065 CLsb = 0.03344 CLb = 0.59630 CLs = 0.05608 +At r = 7.096244: q_mu = 4.44653 q_A = 5.50599 CLsb = 0.01749 CLb = 0.59398 CLs = 0.02944 +At r = 6.501949: q_mu = 3.71717 q_A = 4.70760 CLsb = 0.02693 CLb = 0.59550 CLs = 0.04522 +At r = 6.324421: q_mu = 3.50936 q_A = 4.47837 CLsb = 0.03051 CLb = 0.59595 CLs = 0.05120 +At r = 6.387004: q_mu = 3.58206 q_A = 4.55867 CLsb = 0.02920 CLb = 0.59579 CLs = 0.04902 +At r = 6.351638: q_mu = 3.54089 q_A = 4.51321 CLsb = 0.02994 CLb = 0.59588 CLs = 0.05024 + + -- Asymptotic -- +Observed Limit: r < 6.3516 +Expected 2.5%: r < 3.0311 +Expected 16.0%: r < 4.0850 +Expected 50.0%: r < 5.8125 +Expected 84.0%: r < 8.3842 +Expected 97.5%: r < 11.7594 + +Done in 0.00 min (cpu), 0.00 min (real) From cd1399012b7c6f586a5a11b9d84733ea27645cde Mon Sep 17 00:00:00 2001 From: daniel Date: Tue, 26 Sep 2017 14:59:30 -0500 Subject: [PATCH 04/11] New files --- InterpolateSignal_bias.C | 941 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 941 insertions(+) create mode 100644 InterpolateSignal_bias.C diff --git a/InterpolateSignal_bias.C b/InterpolateSignal_bias.C new file mode 100644 index 0000000..19bc54f --- /dev/null +++ b/InterpolateSignal_bias.C @@ -0,0 +1,941 @@ +/* ************************************ + * * Library * + * **************************************/ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include "TArrow.h" +#include "TAxis.h" +#include "TCanvas.h" +#include "TChain.h" +#include "TColor.h" +#include "TF1.h" +#include "TFile.h" +#include "TFitResult.h" +#include "TFractionFitter.h" +#include "TFrame.h" +#include "TGraphErrors.h" +#include "TH1.h" +#include "TH2.h" +#include "TH3.h" +#include "TH1F.h" +#include "THStack.h" +#include "TLatex.h" +#include "TLegend.h" +#include "TLine.h" +#include "TLorentzVector.h" +#include "TMinuit.h" +#include "TMath.h" +#include "TMatrixDSym.h" +#include "TPaveText.h" +#include "TPaveText.h" +#include "TProfile.h" +#include "TRandom3.h" +#include "TROOT.h" +#include "TStyle.h" +#include "TSystem.h" +#include "TTree.h" +#include "TTreeReader.h" +#include "TTreeReaderArray.h" +#include "TTreeReaderValue.h" +#include "TView.h" +#ifndef __CINT__ +#include "RooGlobalFunc.h" +#endif +#include "RooAbsPdf.h" +#include "RooAddPdf.h" +#include "RooArgList.h" +#include "RooCBShape.h" +#include "RooChebychev.h" +#include "RooConstVar.h" +#include "RooDataHist.h" +#include "RooDataSet.h" +#include "RooFitResult.h" +#include "RooGaussian.h" +#include "RooIntegralMorph.h" +#include "RooNLLVar.h" +#include "RooPolynomial.h" +#include "RooRealVar.h" +#include "RooPlot.h" +#include "RooWorkspace.h" +#include "../../../PDFs/ExpGaussExp.h" + +using namespace RooFit ; + +/************************************* + ** Function Declaration * + *************************************/ +Double_t straight_line(Double_t *x, Double_t *par); +Double_t pol_line(Double_t *x, Double_t *par); +void PrintArray(Double_t *v, Int_t dim, Int_t precision); +std::string itoa(int i); +void interpolation_normalization(bool, std::string, std::string, int); +bool flag_crystal = 1; //1 for CrystalBall 0 for ExpGaussExp +const int NumOfSyst=5; + +void InterpolateSignal_bias(std::string function, std::string name_range, int range, bool flag_MMR) { + gSystem->Load("../../../PDFs/ExpGaussExp_cxx.so"); + interpolation_normalization(flag_MMR, function, name_range, range); + + // I m p o r t p d f s h a p e s + // ------------------------------------------------------ + + // Observable + RooRealVar *X; + if(flag_MMR){ + X= new RooRealVar("x","x",400,1400); + } + else{ + if (range==1){X= new RooRealVar("x","x",230,400);} + else{X= new RooRealVar("x","x",250,700);} + } + + std::string dir, background=function+"_"+name_range; + double step = 10; + std::vector masses; + std::vector biases; + if (flag_MMR) { + dir = "MMR"; + std::vector masses_temp; + std::vector biases_temp; + if (range==1){ + masses_temp= {550, 600, 650, 750, 800, 900, 1000, 1200}; + biases_temp= {0.170,0.053,-0.062,-0.190,-0.119,-0.033,0.061,0.094}; + } + else{ + masses_temp= {550, 600, 650, 750, 800, 900, 1000, 1200}; + biases_temp= {0.170,0.053,-0.062,-0.190,-0.119,-0.033,0.061,0.094}; + } + for (unsigned int i = 0 ; i< masses_temp.size(); i++) { + masses.push_back(masses_temp[i]); + biases.push_back(biases_temp[i]); + } + } + else{ + dir = "LMR"; + std::vector masses_temp; + std::vector biases_temp; + if (range==1){ + masses_temp= {260, 270, 300, 350}; + biases_temp= {-0.033,-0.071,-0.049,0.}; + } + else{ + masses_temp= {270, 300, 350, 400, 450, 500, 550, 600, 650}; + biases_temp= {0., 0.038,0.005, 0.0001,-0.003,-0.002,-0.003,0.002, 0.}; + } + for (unsigned int i = 0 ; i< masses_temp.size(); i++) { + masses.push_back(masses_temp[i]); + biases.push_back(biases_temp[i]); + } + + } + const unsigned int nMCpoints=masses.size(); + + + TFile *f[nMCpoints]; + RooWorkspace* xf[nMCpoints]; + RooAbsPdf* PDF_mass[nMCpoints]; + + for (unsigned int i = 0; iAccessPathName(name)) { + f[i] = new TFile(name); + xf[i] = (RooWorkspace*)f[i]->Get("HbbHbb"); + xf[i]->Print(); + PDF_mass[i] = xf[i]->pdf("signal_fixed"); + PDF_mass[i]->Print("t"); + } else { + std::cout<<"File is not found: "<Print(); + cout<<"test_2" << endl; + w.import(*PDF_mass[i],RooFit::RenameConflictNodes(name),RooFit::RenameAllVariablesExcept(name,"x"),RooFit::RenameVariable("signal_fixed","signal_fixed_"+name), RooFit::RenameVariable("signalCore_fixed","signalCore_fixed_"+name), RooFit::RenameVariable("signalComb_fixed","signalComb_fixed_"+name) ); + cout<<"test_3" << endl; + w.Print(); + cout<<"test_4" << endl; + PDF_mass[i]->Print(); + cout<<"test_5" << endl; + PDF_mass[i] = w.pdf("signal_fixed_"+name); + cout<<"test_6" << endl; + PDF_mass[i]->Print(); + cout<<"test_7" << endl; + w_test= new RooWorkspace("w_test"); + w_test->import(*PDF_mass[i]); + w_test->Print(); + PDF_mass[i] = w_test->pdf("signal_fixed_"+name); + w_test->Print(); + cout<<"test_8" << endl; + if (i!=0)PDF_mass[i-1]->Print(); + } + cout<<"test_9" << endl; + w_test->Print(); + + + for (unsigned int i = 0; i!=nMCpoints; ++i ) { + cout<<"test_10" << endl; + PDF_mass[i]->Print("t"); + } + + // C r e a t e i n t e r p o l a t i n g p d f + // ----------------------------------------------- + + // Create interpolation variable + RooRealVar alpha("alpha","alpha",0,1.0) ; + + // Specify sampling density on observable and interpolation variable + X->setBins(10000,"cache") ; + alpha.setBins(2200,"cache") ; + + TCanvas* c[nMCpoints]; + TCanvas* c_tot; + TSpline3* s_bias; + RooPlot* frame1[nMCpoints]; + RooPlot* frame_tot; + frame_tot = X->frame(); + s_bias = new TSpline3(Form("Spline_bias_%d_%d",flag_MMR,range), &(masses[0]), &(biases[0]), nMCpoints, "b2e2", 0, 0); + + for (unsigned int iPoint = 0; iPointframe() ; + PDF_mass[iPoint]->plotOn(frame1[iPoint]) ; + PDF_mass[iPoint+1]->plotOn(frame1[iPoint]) ; + PDF_mass[iPoint]->plotOn(frame_tot,LineColor(kRed)) ; + PDF_mass[iPoint+1]->plotOn(frame_tot, LineColor(kRed)) ; + cout<< " Interpolate from " << masses[iPoint] << " to " << masses[iPoint+1] << endl; + + int nPoints = int((masses[iPoint+1]-masses[iPoint])/step); + + for (int i=0; i<=nPoints; i++) { + if (std::find(masses.begin(), masses.end(), int(masses[iPoint]+i*step)) != masses.end()){continue; } + alpha.setVal(double(i)/double(nPoints)) ; + cout<< " Interpolate mass : " << int(masses[iPoint]+i*step) << endl; + lmorph.plotOn(frame1[iPoint],LineColor(kBlue)) ; + lmorph.plotOn(frame_tot,LineColor(kBlue), LineWidth(1)) ; + + TH1D* hist; + if(flag_MMR){ + hist= (TH1D*)lmorph.createHistogram("m_X (GeV)",*X,Binning(1000,400,1400)); + } + else{ + hist= (TH1D*)lmorph.createHistogram("m_X (GeV)",*X,Binning(1000,0,1000)); + } + + TCanvas* c_temp = new TCanvas(Form("linearmorph_%d",iPoint),Form("linearmorph_%d",iPoint),700,700) ; + hist->Draw(); + c_temp->SaveAs(Form("%s_%d_%s/c_mX_SR_KinFit_%d.png", dir.c_str(), int(masses[iPoint]+i*step), background.c_str(), int(masses[iPoint]+i*step))); + delete c_temp; + + RooRealVar *x, *sg_p0, *sg_p1, *sg_p2, *sg_p3,*sg_p4; + double m=masses[iPoint]+i*step; + double bias = s_bias->Eval(m); + cout<<"This is the RooWorkspace bias: "<getVal()); + RooRealVar signal_p1("signal_p1", "signal_p1", sg_p1->getVal()); + RooRealVar signal_p2("signal_p2", "signal_p2", sg_p2->getVal()); + RooRealVar signal_p3("signal_p3", "signal_p3", sg_p3->getVal()); + ExpGaussExp signal_fixed("signal_fixed", "Signal Prediction Fixed", *x, signal_p0, signal_p1, signal_p2, signal_p3); + RooRealVar signal_p0_1("signal_p0_1", "signal_p0_1", sg_p0->getVal()); + RooRealVar signal_p1_1("signal_p1_1", "signal_p1_1", sg_p1->getVal()); + RooRealVar signal_p2_1("signal_p2_1", "signal_p2_1", sg_p2->getVal()); + RooRealVar signal_p3_1("signal_p3_1", "signal_p3_1", sg_p3->getVal()); + ExpGaussExp signal_bkg("signal_bkg", "Signal-as-background Prediction Fixed", *x, signal_p0_1, signal_p1_1, signal_p2_1, signal_p3_1); + RooRealVar *signal_bkg_norm= new RooRealVar("signal_bkg_norm","signal_bkg_norm", 0., -abs(bias), abs(bias),""); + + RooWorkspace *w=new RooWorkspace("HbbHbb"); + w->import(signal_fixed); + w->import(signal_bkg); + w->import(*signal_bkg_norm); + w->SaveAs(Form("%s_%d_%s/w_signal_%d.root", dir.c_str(), int(masses[iPoint]+i*step), background.c_str(), int(masses[iPoint]+i*step))); + } + else{ + double rangeHi = 1.1*m + 50; + double rangeLo = m/3. + 160; + if (rangeLo<250) rangeLo=250; + sg_p0=new RooRealVar("sg_p0", "sg_p0", 0.94*m, 1.1*m); + sg_p1=new RooRealVar("sg_p1", "sg_p1", 2., 0.1*m-20.); + double mu_min = 1.6*m-440.; if (mu_min<0) mu_min=10.; + sg_p2=new RooRealVar("sg_p2", "sg_p2", mu_min, 0.95*m+100.); + double sigma_max; + if (m<300) {sigma_max=300.;}else{ sigma_max = 150.;} + sg_p3=new RooRealVar("sg_p3", "sg_p3", 10.,sigma_max); + sg_p4=new RooRealVar("sg_p4", "sg_p4", 0., 1.); + + x=new RooRealVar("x", "m_{X} (GeV)", rangeLo, rangeHi); + RooGaussian signalCore("signalCore", "Signal Prediction", *x, *sg_p0, *sg_p1); + RooGaussian signalComb("signalComb", "Combinatoric", *x, *sg_p2, *sg_p3); + RooAddPdf signal("signal", "signal", RooArgList(signalCore, signalComb), *sg_p4); + RooDataHist signalHistogram("signalHistogram", "Signal Histogram", RooArgList(*x), hist); + signal.fitTo(signalHistogram, RooFit::Range(rangeLo-50, rangeHi), RooFit::Save()); + + RooRealVar signal_p0("signal_p0", "signal_p0", sg_p0->getVal()); + RooRealVar signal_p1("signal_p1", "signal_p1", sg_p1->getVal()); + RooRealVar signal_p2("signal_p2", "signal_p2", sg_p2->getVal()); + RooRealVar signal_p3("signal_p3", "signal_p3", sg_p3->getVal()); + RooRealVar signal_p4("signal_p4", "signal_p4", sg_p4->getVal()); + RooGaussian signalCore_fixed("signalCore_fixed", "Signal Prediction", *x, signal_p0, signal_p1); + RooGaussian signalComb_fixed("signalComb_fixed", "Combinatoric", *x, signal_p2, signal_p3); + RooAddPdf signal_fixed("signal_fixed", "signal", RooArgList(signalCore_fixed, signalComb_fixed), signal_p4); + RooRealVar signal_p0_1("signal_p0_1", "signal_p0_1", sg_p0->getVal()); + RooRealVar signal_p1_1("signal_p1_1", "signal_p1_1", sg_p1->getVal()); + RooRealVar signal_p2_1("signal_p2_1", "signal_p2_1", sg_p2->getVal()); + RooRealVar signal_p3_1("signal_p3_1", "signal_p3_1", sg_p3->getVal()); + RooRealVar signal_p4_1("signal_p4_1", "signal_p4_1", sg_p4->getVal()); + RooGaussian signalCore_fixed_1("signalCore_fixed_1", "Signal Prediction_1", *x, signal_p0_1, signal_p1_1); + RooGaussian signalComb_fixed_1("signalComb_fixed_1", "Combinatoric_1", *x, signal_p2_1, signal_p3_1); + RooAddPdf signal_bkg("signal_bkg", "signal_1", RooArgList(signalCore_fixed_1, signalComb_fixed_1), signal_p4_1); + + RooRealVar *signal_bkg_norm= new RooRealVar("signal_bkg_norm","signal_bkg_norm", 0., -abs(bias), abs(bias),""); + RooWorkspace *w=new RooWorkspace("HbbHbb"); + w->import(signal_fixed); + w->import(signal_bkg); + w->import(*signal_bkg_norm); + w->SaveAs(Form("%s_%d_%s/w_signal_%d.root", dir.c_str(), int(masses[iPoint]+i*step), background.c_str(), int(masses[iPoint]+i*step))); + } + } + c[iPoint] = new TCanvas(Form("linearmorph_%d",iPoint),Form("linearmorph_%d",iPoint),700,700) ; + frame1[iPoint]->Draw(); + c[iPoint]->SaveAs(Form("fig/linearmorph_%d_%d_%d.png",int(masses[iPoint]), int(masses[iPoint+1]),range)); + c[iPoint]->SaveAs(Form("fig/linearmorph_%d_%d_%d.pdf",int(masses[iPoint]), int(masses[iPoint+1]),range)); + c[iPoint]->SaveAs(Form("fig/linearmorph_%d_%d_%d.root",int(masses[iPoint]), int(masses[iPoint+1]),range)); + + } + c_tot = new TCanvas("linearmorph_tot","linearmorph_tot",700,700) ; + frame_tot->Draw(); + c_tot->SaveAs(Form("fig/linearmorph_tot_%d.png",range)); + c_tot->SaveAs(Form("fig/linearmorph_tot_%d.pdf",range)); + c_tot->SaveAs(Form("fig/linearmorph_tot_%d.root",range)); + return ; +} +/********************************* + ** Functions * + *********************************/ + +//================================================================================ + +void interpolation_normalization(bool flag_MMR, std::string function, std::string name_range, int range){ + + std::vector mass_0; + std::vector mass; + std::string dir, background=function+"_"+name_range; + if (flag_MMR) { + dir = "MMR"; + std::vector mass_0_temp,mass_temp; + if (range==1){mass_0_temp= {550, 600, 650, 750, 800, 900, 1000, 1200};} + else{mass_0_temp= {550, 600, 650, 750, 800, 900, 1000, 1200};} + if (range==1){mass_temp= {550, 570, 600, 620, 650, 670, 700, 720, 750, 770, 800, 820, 840, 860, 880, 900, 920, 940, 960, 980, 1000, 1050, 1100, 1150, 1200};} + else{mass_temp= {550, 570, 600, 620, 650, 670, 700, 720, 750, 770, 800, 820, 840, 860, 880, 900, 920, 940, 960, 980, 1000, 1050, 1100, 1150, 1200};} + for (unsigned int i = 0 ; i< mass_0_temp.size(); i++) { + mass_0.push_back(mass_0_temp[i]); + } + + for (unsigned int i = 0 ; i< mass_temp.size(); i++){ + mass.push_back(mass_temp[i]); + } + } + else{ + dir = "LMR"; + std::vector mass_0_temp,mass_temp; + if (range==1){mass_0_temp= {260, 270, 300, 350};} + else{mass_0_temp= {270, 300, 350, 400, 450, 500, 550, 600, 650};} + if (range==1){mass_temp= {260, 265, 270, 275, 280, 285, 290, 295, 300, 310, 320, 350};} + else{mass_temp= {270, 275, 280, 285, 290, 295, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, 600, 610, 620, 650};} + for (unsigned int i = 0 ; i< mass_0_temp.size(); i++) { + mass_0.push_back(mass_0_temp[i]); + } + + for (unsigned int i = 0 ; i< mass_temp.size(); i++){ + mass.push_back(mass_temp[i]); + + } + + } + const unsigned int nPoints=mass.size(); + const unsigned int nPoints_0=mass_0.size(); + double lin[nPoints],interpol[nPoints]; + double signal_0[nPoints_0]; + double interpol_syst_0[NumOfSyst][nPoints]; + double syst_0[NumOfSyst][nPoints_0]; + double syst[NumOfSyst][nPoints_0]; + double sp_syst_0[nPoints_0]; + std::string name_syst[NumOfSyst]; + double interpol_bias_0[nPoints]; + double signal_0_bias[nPoints_0]; + double sp_bias_0[nPoints_0]; + TSpline3* sp_bias; + + int j=0; + for (int syst_num=0; syst_numAccessPathName(Form("%s_%d_%s", dir.c_str(), int(mass[i]), background.c_str()))) { + gSystem->Exec(Form("mkdir %s_%d_%s", dir.c_str(), int(mass[i]), background.c_str())); + } + int lMarker=0; + for (auto m : mass_0){ + if (m > mass[i]){ + break; + } + lMarker++; + } + gSystem->Exec(Form("cp -r %s_%d_%s/datacard_%d_%s.txt %s_%d_%s/datacard_%d_%s.txt", dir.c_str(), int(mass_0[lMarker]), background.c_str(), int(mass_0[lMarker]), background.c_str(), dir.c_str(), int(mass[i]), background.c_str(), int(mass[i]), background.c_str())); + gSystem->Exec(Form("cp -r %s_%d_%s/signal%d_sig.log %s_%d_%s/signal%d_sig.log", dir.c_str(), int(mass_0[lMarker]), background.c_str(), int(mass_0[lMarker]), dir.c_str(), int(mass[i]), background.c_str(), int(mass[i]))); + gSystem->Exec(Form("cp -r %s_%d_%s/w_background_%s.root %s_%d_%s/w_background_%s.root", dir.c_str(), int(mass_0[lMarker]), background.c_str(), background.c_str(), dir.c_str(), int(mass[i]), background.c_str(), background.c_str())); + if(mass_0[lMarker] == 1200){gSystem->Exec(Form("sed -i 's/.signal_%d./_signal_%d./g' %s_%d_%s/datacard_%d_%s.txt", int(mass_0[lMarker]), int(mass[i]), dir.c_str(), int(mass[i]), background.c_str(), int(mass[i]), background.c_str())); } + else{gSystem->Exec(Form("sed -i 's/%d./%d./g' %s_%d_%s/datacard_%d_%s.txt", int(mass_0[lMarker]), int(mass[i]), dir.c_str(), int(mass[i]), background.c_str(), int(mass[i]), background.c_str()));} + + } + + for (unsigned i = 0; iSetFillStyle(4000); + p_1->SetFrameFillColor(0); + p_1->SetBottomMargin(0.035); + TPad* p_2 = new TPad("p_2", "p_2",0,0,1,0.3); + p_2->SetBottomMargin(0.2); + p_2->SetTopMargin(0.02); + p_2->SetFillColor(0); + p_2->SetBorderMode(0); + p_2->SetBorderSize(2); + p_2->SetFrameBorderMode(0); + p_2->SetFrameBorderMode(0); + p_1->Draw(); + p_2->Draw(); + p_1->cd(); + + TH1F* hr_1; + TH1F* hr_2; + if (flag_MMR) { + if (range==1){hr_1 = c1->DrawFrame(400,0,1300,10);} + else{hr_1 = c1->DrawFrame(400,0,1300,10);} + hr_1->SetTitle("Linear interpolation of yield in MMR"); + } else { + if (range==1){hr_1 = c1->DrawFrame(250,0,370,600);} + else{hr_1 = c1->DrawFrame(250,0,650,2000);} + hr_1->SetTitle("Linear interpolation of yield in LMR"); + } + hr_1->SetXTitle("m_{X} (GeV)"); + hr_1->GetYaxis()->SetTitleOffset(1.2); + hr_1->SetYTitle("Normalization"); + c1->GetFrame()->SetBorderSize(12); + p_2->cd(); + if (flag_MMR) { + if (range==1){hr_2 = c1->DrawFrame(400,-0.07,1300,0.07);} + else{hr_2 = c1->DrawFrame(400,-0.07,1300,0.07);} + } else { + if (range==1){hr_2 = c1->DrawFrame(250,-0.04,370,0.04);} + else{hr_2 = c1->DrawFrame(250,-0.04,650,0.04);} + } + hr_2->SetXTitle("m_{X} (GeV)"); + hr_2->GetXaxis()->SetTitleOffset(0.6); + hr_2->GetXaxis()->SetTitleSize(0.08); + hr_2->GetYaxis()->SetTitleOffset(0.5); + hr_2->GetYaxis()->SetTitleSize(0.08); + hr_2->SetLabelSize(0.06,"xy"); + hr_2->SetYTitle("Relative errors"); + c1->GetFrame()->SetBorderSize(12); + p_1->cd(); + + TGraphErrors* g_signal_0 = new TGraphErrors(nPoints_0, &(mass_0[0]), signal_0); + g_signal_0->SetMarkerColor(kRed); + g_signal_0->SetMarkerStyle(21); + g_signal_0->SetLineColor(0); + g_signal_0->Draw("P"); + + j=0; + for (unsigned i = 0; i mass[i]){break;}lMarker++;} + interpol[i] =( (signal_0[lMarker]-signal_0[lMarker-1])*(mass[i]-mass_0[lMarker-1])/(mass_0[lMarker]-mass_0[lMarker-1])+signal_0[lMarker-1]); + } + } + + TGraphErrors* g_signal_2 = new TGraphErrors(nPoints, &(mass[0]), interpol); + g_signal_2->SetMarkerColor(kBlue); + g_signal_2->SetMarkerStyle(20); + g_signal_2->SetLineColor(0); + g_signal_2->Draw("P"); + g_signal_0->Draw("P"); + + TF1 *fit_pol = new TF1("fit_pol",pol_line,100,1000,4); + fit_pol->SetParameter(0, 1500.); + fit_pol->SetParameter(1, -13.); + fit_pol->SetParameter(2, 0.07 ); + fit_pol->SetParameter(3, -1.e-05); + fit_pol->SetParName(0, "x_0"); + fit_pol->SetParName(1, "x_1"); + fit_pol->SetParName(2, "x_2"); + fit_pol->SetParName(3, "x_3"); + if (flag_MMR) { + g_signal_0->Fit(fit_pol,"","", 550,1200); + } + else{ + if (range==1){ + g_signal_0->Fit(fit_pol,"","",260,400);} + else{g_signal_0->Fit(fit_pol,"","",260,650);} + } + + TGraphErrors* g_pull = new TGraphErrors(nPoints); + g_pull->SetMarkerStyle(7); + g_pull->SetMarkerSize(0.4); + + for (unsigned i = 0; iEval(mass[i]))/fit_pol->Eval(mass[i]); + g_pull->SetPoint(i, mass[i],temp); + } + } + + TLegend *leg=new TLegend(0.2, 0.65, 0.65, 0.85); + leg->SetFillStyle(1); leg->SetFillColor(kWhite); + leg->AddEntry(g_signal_0, "Norm for MC masses", "lep"); + leg->AddEntry(g_signal_2, "Interpolation", "lep"); + leg->SetFillColor(kWhite); + leg->SetFillStyle(0); + leg->SetTextSize(0.03); + leg->SetTextFont(42); + leg->SetBorderSize(0); + leg->Draw(); + + p_2->cd(); + TLine* line; + g_pull->Draw("P"); + if (flag_MMR) { + line= new TLine(350, 0, 1200, 0); + } + else{ + line= new TLine(250, 0, 550, 0); + } + line->SetLineStyle(2); + line->SetLineWidth(1); + line->Draw(); + + if (flag_MMR) { + c1->SaveAs("interpolation_yield_MMR.pdf"); + c1->SaveAs("interpolation_yield_MMR.png"); + + } else { + c1->SaveAs(Form("interpolation_yield_LMR_%d.pdf",range)); + c1->SaveAs(Form("interpolation_yield_LMR_%d.png",range)); + } + + for (unsigned i = 0; i mass[i]){ + break; + } + lMarker++; + } + gSystem->Exec(Form("sed -i 's/.*rate.*/rate %f %f %f /g' %s_%d_%s/datacard_%d_%s.txt", interpol[i], background_temp,interpol[i], dir.c_str(), int(mass[i]), background.c_str(), int(mass[i]), background.c_str())); + } + cout<<"end"<SetFillStyle(4000); + p_3->SetFrameFillColor(0); + p_3->SetBottomMargin(0.035); + p_3->Draw(); + + TH1F* hr_3; + if (flag_MMR) { + if (range==1){hr_3 = c3->DrawFrame(400,-0.5,1400,0.5);} + else{hr_3 = c3->DrawFrame(400,0.5,1400,0.5);} + hr_3->SetTitle("Interpolation of bias in MMR"); + } else { + if (range==1){hr_3 = c3->DrawFrame(250,-0.5,370,0.5);} + else{hr_3 = c3->DrawFrame(250,-0.5,650,0.5);} + hr_3->SetTitle("Interpolation of bias in LMR"); + } + hr_3->SetXTitle("m_{X} (GeV)"); + hr_3->GetYaxis()->SetTitleOffset(1.2); + hr_3->SetYTitle("Bias"); + c3->GetFrame()->SetBorderSize(12); + + TGraphErrors* g_signal_0_bias = new TGraphErrors(nPoints_0, &(mass_0[0]), signal_0_bias); + g_signal_0_bias->SetMarkerColor(kRed); + g_signal_0_bias->SetMarkerStyle(21); + g_signal_0_bias->SetLineColor(0); + + //Code for Spline + for (unsigned i = 0; iSetLineColor(kGreen+2); + + int k=0; + for (unsigned i = 0; iEval(mass[i]); + cout<<"This is the interpolation (bias): "<SetMarkerColor(kBlue); + g_signal_2_bias->SetMarkerStyle(20); + g_signal_2_bias->SetLineColor(0); + g_signal_2_bias->Draw("P"); + g_signal_0_bias->Draw("P"); + sp_bias->Draw("lsame"); + + TLegend *leg_bias=new TLegend(0.2, 0.65, 0.65, 0.85); + leg_bias->SetFillStyle(1); leg_bias->SetFillColor(kWhite); + leg_bias->AddEntry(g_signal_0_bias, "Bias for MC masses", "lep"); + leg_bias->AddEntry(g_signal_2_bias, "Interpolation", "lep"); + leg_bias->AddEntry(sp_bias, "Spline Interpolation", "l"); + leg_bias->SetFillColor(kWhite); + leg_bias->SetFillStyle(0); + leg_bias->SetTextSize(0.03); + leg_bias->SetTextFont(42); + leg_bias->SetBorderSize(0); + leg_bias->Draw(); + + if (flag_MMR) { + c3->SaveAs("interpolation_bias_MMR.pdf"); + c3->SaveAs("interpolation_bias_MMR.png"); + + } else { + c3->SaveAs(Form("interpolation_bias_LMR_%d.pdf",range)); + c3->SaveAs(Form("interpolation_bias_LMR_%d.png",range)); + } + + //Change the bias value in datacards + for (unsigned i = 0; iExec(Form("sed -i 's/shapeBkg_signal_bkg_HbbHbb__norm.*param.*/shapeBkg_signal_bkg_HbbHbb__norm param 0.0 %f /g' %s_%d_%s/datacard_%d_%s.txt", interpol_bias_0[i], dir.c_str(), int(mass[i]), background.c_str(), int(mass[i]), background.c_str())); + file_bias.close(); + } + cout<<"end"<GetFrame()->SetBorderSize(12); + p_syst1[syst_num] = new TPad(Form("p_syst1_%d",syst_num), Form("p_syst1_%d",syst_num), 0, 0, 1, 1); + p_syst1[syst_num]->SetFillStyle(4000); + p_syst1[syst_num]->SetFrameFillColor(0); + p_syst1[syst_num]->SetBottomMargin(0.035); + p_syst1[syst_num]->Draw(); + + if (flag_MMR) { + if (range==1){ + h_syst_1[syst_num] = c2[syst_num]->DrawFrame(500,1,1250,1.10); + } + else{ + h_syst_1[syst_num] = c2[syst_num]->DrawFrame(500,1,1250,1.10); + } + h_syst_1[syst_num]->SetTitle(Form("Interpolation of %s in MMR",name_syst[syst_num].c_str())); + } else { + if (range==1){ + switch (syst_num) { + case 0: h_syst_1[syst_num] = c2[syst_num]->DrawFrame(250,1.0,370,1.30); break; + case 1: h_syst_1[syst_num] = c2[syst_num]->DrawFrame(250,0.97,370,1.07); break; + case 2: h_syst_1[syst_num] = c2[syst_num]->DrawFrame(250,0.95,370,1.05); break; + case 3: h_syst_1[syst_num] = c2[syst_num]->DrawFrame(250,1.0,370,1.05); break; + case 4: h_syst_1[syst_num] = c2[syst_num]->DrawFrame(250,1.05,370,1.15); break; + } + } + else{ + switch (syst_num) { + case 0: h_syst_1[syst_num] = c2[syst_num]->DrawFrame(250,1.0,650,1.30); break; + case 1: h_syst_1[syst_num] = c2[syst_num]->DrawFrame(250,0.97,650,1.07); break; + case 2: h_syst_1[syst_num] = c2[syst_num]->DrawFrame(250,0.95,650,1.05); break; + case 3: h_syst_1[syst_num] = c2[syst_num]->DrawFrame(250,1,650,1.05); break; + case 4: h_syst_1[syst_num] = c2[syst_num]->DrawFrame(250,1.05,650,1.15); break; + } + + } + h_syst_1[syst_num]->SetTitle(Form("Interpolation of %s in LMR",name_syst[syst_num].c_str())); + } + h_syst_1[syst_num]->SetXTitle("m_{X} (GeV)"); + h_syst_1[syst_num]->GetYaxis()->SetTitleOffset(1.2); + h_syst_1[syst_num]->SetYTitle(Form("%s",name_syst[syst_num].c_str())); + g_syst_0[syst_num] = new TGraphErrors(nPoints_0, &(mass_0[0]), syst_0[syst_num]); + g_syst_0[syst_num]->SetMarkerColor(kRed); + g_syst_0[syst_num]->SetMarkerStyle(21); + g_syst_0[syst_num]->SetLineColor(0); + g_syst_0[syst_num]->Draw("P"); + + //Code for Spline + for (unsigned i = 0; iSetLineColor(kGreen+2); + j=0; + for (unsigned i = 0; iEval(mass[i]); + cout<<"This is the interpolation: "<SetMarkerColor(kBlue); + g_syst_1[syst_num]->SetMarkerStyle(20); + g_syst_1[syst_num]->SetLineColor(0); + g_syst_1[syst_num]->Draw("P"); + g_syst_0[syst_num]->Draw("P"); + sp_syst[syst_num]->Draw("lsame"); + + leg_syst[syst_num] =new TLegend(0.5, 0.65, 0.82, 0.85); + leg_syst[syst_num]->SetFillStyle(1); leg->SetFillColor(kWhite); + leg_syst[syst_num]->AddEntry(g_syst_0[syst_num], Form("%s for MC points", name_syst[syst_num].c_str()), "lep"); + leg_syst[syst_num]->AddEntry(g_syst_1[syst_num], Form("%s for interpolated points", name_syst[syst_num].c_str()), "lep"); + leg_syst[syst_num]->AddEntry(sp_syst[syst_num], "Spline Interpolation", "l"); + leg_syst[syst_num]->SetFillColor(kWhite); + leg_syst[syst_num]->SetFillStyle(0); + leg_syst[syst_num]->SetTextSize(0.03); + leg_syst[syst_num]->SetTextFont(42); + leg_syst[syst_num]->SetBorderSize(0); + leg_syst[syst_num]->Draw(); + + if (flag_MMR) { + c2[syst_num]->SaveAs(Form("%s_interpolation_MMR_%d.pdf", name_syst[syst_num].c_str(), range)); + c2[syst_num]->SaveAs(Form("%s_interpolation_MMR_%d.png", name_syst[syst_num].c_str(), range)); + } else { + c2[syst_num]->SaveAs(Form("%s_interpolation_LMR_%d.pdf", name_syst[syst_num].c_str(), range)); + c2[syst_num]->SaveAs(Form("%s_interpolation_LMR_%d.png", name_syst[syst_num].c_str(), range)); + } + + for (unsigned i = 0; iExec(Form("sed -i 's/%s.*lnN.*/%s lnN %f - - /g' %s_%d_%s/datacard_%d_%s.txt", name_syst[syst_num].c_str(), name_syst[syst_num].c_str(), interpol_syst_0[syst_num][i], dir.c_str(), int(mass[i]), background.c_str(), int(mass[i]), background.c_str())); + file_syst.close(); + } + + } +} + + +//================================================================================ + +Double_t straight_line(Double_t *x, Double_t *par) +{ + Double_t m,q; // Exponential slope + + q = par[0]; + m = par[1]; + + return q + m*x[0]; +} + +//================================================================================ + +Double_t pol_line(Double_t *x, Double_t *par) +{ + Double_t x_0,x_1,x_2,x_3; // Exponential slope + + x_0 = par[0]; + x_1 = par[1]; + x_2 = par[2]; + x_3 = par[3]; + + return x_0 + x_1*x[0]+ x_2*x[0]*x[0]+ x_3*x[0]*x[0]*x[0]; +} + +//================================================================================ + +void PrintArray(Double_t *v, Int_t dim, Int_t precision){ + int i; + for (i = 0; i < dim; i++){ + switch (precision) { + case 0: printf("v[%d]: %.0f\n", i, v[i]); break; + case 1: printf("v[%d]: %.1f\n", i, v[i]); break; + case 2: printf("v[%d]: %.2f\n", i, v[i]); break; + case 3: printf("v[%d]: %.3f\n", i, v[i]); break; + case 4: printf("v[%d]: %.4f\n", i, v[i]); break; + case 5: printf("v[%d]: %.5f\n", i, v[i]); break; + case 6: printf("v[%d]: %.6f\n", i, v[i]); break; + case 7: printf("v[%d]: %.7f\n", i, v[i]); break; + default : printf("v[%d]: %.8f\n", i, v[i]); break; + } + } + cout << endl; +} + +//================================================================================ + +std::string itoa(int i) +{ + char res[4]; + sprintf(res, "%d", i); + std::string ret(res); + return ret; +} + +//================================================================================ From 25ebea138700a0caca75a36ee4bdb513d1fea0cd Mon Sep 17 00:00:00 2001 From: daniel Date: Mon, 2 Oct 2017 22:17:56 -0500 Subject: [PATCH 05/11] New files --- .../3GeV/LMR_260_crystal_252_330/data_bkg.log | 750 -------- .../datacard_260_crystal_252_330.txt | 35 - .../fit/3GeV/LMR_260_crystal_252_330/pdf.log | 10 - .../LMR_260_crystal_252_330/signal260_sig.log | 842 --------- .../LMR_260_gaus_exp_252_330/data_bkg.log | 750 -------- .../datacard_260_gaus_exp_252_330.txt | 30 - .../fit/3GeV/LMR_260_gaus_exp_252_330/pdf.log | 10 - .../signal260_sig.log | 842 --------- .../LMR_270_crystal_1_285_624/data_bkg.log | 750 -------- .../datacard_270_crystal_1_285_624.txt | 31 - .../3GeV/LMR_270_crystal_1_285_624/pdf.log | 10 - .../signal270_sig.log | 959 ----------- .../3GeV/LMR_270_crystal_252_330/data_bkg.log | 750 -------- .../datacard_270_crystal_252_330.txt | 35 - .../fit/3GeV/LMR_270_crystal_252_330/pdf.log | 10 - .../LMR_270_crystal_252_330/signal270_sig.log | 959 ----------- .../LMR_270_gaus_exp_252_330/data_bkg.log | 750 -------- .../datacard_270_gaus_exp_252_330.txt | 30 - .../fit/3GeV/LMR_270_gaus_exp_252_330/pdf.log | 10 - .../signal270_sig.log | 959 ----------- .../LMR_270_novo_285_624/signal270_sig.log | 2 - .../LMR_300_crystal_1_285_624/data_bkg.log | 750 -------- .../datacard_300_crystal_1_285_624.txt | 31 - .../3GeV/LMR_300_crystal_1_285_624/pdf.log | 10 - .../signal300_sig.log | 859 ---------- .../3GeV/LMR_300_crystal_252_330/data_bkg.log | 750 -------- .../datacard_300_crystal_252_330.txt | 35 - .../fit/3GeV/LMR_300_crystal_252_330/pdf.log | 10 - .../LMR_300_crystal_252_330/signal300_sig.log | 859 ---------- .../LMR_300_gaus_exp_252_330/data_bkg.log | 750 -------- .../datacard_300_gaus_exp_252_330.txt | 30 - .../fit/3GeV/LMR_300_gaus_exp_252_330/pdf.log | 10 - .../signal300_sig.log | 859 ---------- .../3GeV/LMR_300_novo_285_624/data_bkg.log | 750 -------- .../datacard_300_novo_285_624.txt | 30 - .../fit/3GeV/LMR_300_novo_285_624/pdf.log | 10 - .../LMR_300_novo_285_624/signal300_sig.log | 859 ---------- .../LMR_350_crystal_1_285_624/data_bkg.log | 750 -------- .../datacard_350_crystal_1_285_624.txt | 31 - .../3GeV/LMR_350_crystal_1_285_624/pdf.log | 10 - .../signal350_sig.log | 927 ---------- .../3GeV/LMR_350_crystal_252_330/data_bkg.log | 750 -------- .../datacard_350_crystal_252_330.txt | 35 - .../fit/3GeV/LMR_350_crystal_252_330/pdf.log | 10 - .../LMR_350_crystal_252_330/signal350_sig.log | 927 ---------- .../LMR_350_gaus_exp_252_330/data_bkg.log | 750 -------- .../datacard_350_gaus_exp_252_330.txt | 30 - .../fit/3GeV/LMR_350_gaus_exp_252_330/pdf.log | 10 - .../signal350_sig.log | 927 ---------- .../3GeV/LMR_350_novo_285_624/data_bkg.log | 750 -------- .../datacard_350_novo_285_624.txt | 30 - .../fit/3GeV/LMR_350_novo_285_624/pdf.log | 10 - .../LMR_350_novo_285_624/signal350_sig.log | 927 ---------- .../LMR_400_crystal_1_285_624/data_bkg.log | 750 -------- .../datacard_400_crystal_1_285_624.txt | 31 - .../3GeV/LMR_400_crystal_1_285_624/pdf.log | 10 - .../signal400_sig.log | 869 ---------- .../3GeV/LMR_400_novo_285_624/data_bkg.log | 750 -------- .../datacard_400_novo_285_624.txt | 30 - .../fit/3GeV/LMR_400_novo_285_624/pdf.log | 10 - .../LMR_400_novo_285_624/signal400_sig.log | 869 ---------- .../LMR_450_crystal_1_285_624/data_bkg.log | 750 -------- .../datacard_450_crystal_1_285_624.txt | 31 - .../3GeV/LMR_450_crystal_1_285_624/pdf.log | 10 - .../signal450_sig.log | 849 --------- .../3GeV/LMR_450_novo_285_624/data_bkg.log | 750 -------- .../datacard_450_novo_285_624.txt | 30 - .../fit/3GeV/LMR_450_novo_285_624/pdf.log | 10 - .../LMR_450_novo_285_624/signal450_sig.log | 849 --------- .../LMR_500_crystal_1_285_624/data_bkg.log | 750 -------- .../datacard_500_crystal_1_285_624.txt | 31 - .../3GeV/LMR_500_crystal_1_285_624/pdf.log | 10 - .../signal500_sig.log | 916 ---------- .../3GeV/LMR_500_novo_285_624/data_bkg.log | 750 -------- .../datacard_500_novo_285_624.txt | 30 - .../fit/3GeV/LMR_500_novo_285_624/pdf.log | 10 - .../LMR_500_novo_285_624/signal500_sig.log | 916 ---------- .../LMR_550_crystal_1_285_624/data_bkg.log | 750 -------- .../datacard_550_crystal_1_285_624.txt | 31 - .../3GeV/LMR_550_crystal_1_285_624/pdf.log | 10 - .../signal550_sig.log | 872 ---------- .../3GeV/LMR_550_novo_285_624/data_bkg.log | 750 -------- .../datacard_550_novo_285_624.txt | 30 - .../fit/3GeV/LMR_550_novo_285_624/pdf.log | 10 - .../LMR_550_novo_285_624/signal550_sig.log | 872 ---------- .../LMR_600_crystal_1_285_624/data_bkg.log | 750 -------- .../datacard_600_crystal_1_285_624.txt | 31 - .../3GeV/LMR_600_crystal_1_285_624/pdf.log | 10 - .../signal600_sig.log | 843 --------- .../3GeV/LMR_600_novo_285_624/data_bkg.log | 750 -------- .../datacard_600_novo_285_624.txt | 30 - .../fit/3GeV/LMR_600_novo_285_624/pdf.log | 10 - .../LMR_600_novo_285_624/signal600_sig.log | 843 --------- .../LMR_650_crystal_1_285_624/data_bkg.log | 750 -------- .../datacard_650_crystal_1_285_624.txt | 31 - .../3GeV/LMR_650_crystal_1_285_624/pdf.log | 10 - .../signal650_sig.log | 883 ---------- .../3GeV/LMR_650_novo_285_624/data_bkg.log | 750 -------- .../datacard_650_novo_285_624.txt | 30 - .../fit/3GeV/LMR_650_novo_285_624/pdf.log | 10 - .../LMR_650_novo_285_624/signal650_sig.log | 883 ---------- .../5GeV/LMR_260_crystal_252_330/data_bkg.log | 717 -------- .../datacard_260_crystal_252_330.txt | 34 - .../LMR_260_crystal_252_330/signal260_sig.log | 842 --------- .../LMR_260_gaus_exp_252_330/data_bkg.log | 717 -------- .../datacard_260_gaus_exp_252_330.txt | 29 - .../signal260_sig.log | 842 --------- .../LMR_270_crystal_1_285_624/data_bkg.log | 717 -------- .../datacard_270_crystal_1_285_624.txt | 30 - .../signal270_sig.log | 959 ----------- .../5GeV/LMR_270_crystal_252_330/data_bkg.log | 717 -------- .../datacard_270_crystal_252_330.txt | 34 - .../LMR_270_crystal_252_330/signal270_sig.log | 959 ----------- .../LMR_270_gaus_exp_252_330/data_bkg.log | 717 -------- .../datacard_270_gaus_exp_252_330.txt | 29 - .../signal270_sig.log | 959 ----------- .../5GeV/LMR_270_novo_285_624/data_bkg.log | 717 -------- .../datacard_270_novo_285_624.txt | 29 - .../LMR_270_novo_285_624/signal270_sig.log | 959 ----------- .../LMR_300_crystal_1_285_624/data_bkg.log | 717 -------- .../datacard_300_crystal_1_285_624.txt | 30 - .../signal300_sig.log | 859 ---------- .../5GeV/LMR_300_crystal_252_330/data_bkg.log | 717 -------- .../datacard_300_crystal_252_330.txt | 34 - .../LMR_300_crystal_252_330/signal300_sig.log | 859 ---------- .../LMR_300_gaus_exp_252_330/data_bkg.log | 717 -------- .../datacard_300_gaus_exp_252_330.txt | 29 - .../signal300_sig.log | 859 ---------- .../5GeV/LMR_300_novo_285_624/data_bkg.log | 717 -------- .../datacard_300_novo_285_624.txt | 29 - .../LMR_300_novo_285_624/signal300_sig.log | 859 ---------- .../LMR_350_crystal_1_285_624/data_bkg.log | 717 -------- .../datacard_350_crystal_1_285_624.txt | 30 - .../signal350_sig.log | 927 ---------- .../5GeV/LMR_350_crystal_252_330/data_bkg.log | 717 -------- .../datacard_350_crystal_252_330.txt | 34 - .../LMR_350_crystal_252_330/signal350_sig.log | 927 ---------- .../LMR_350_gaus_exp_252_330/data_bkg.log | 717 -------- .../datacard_350_gaus_exp_252_330.txt | 29 - .../signal350_sig.log | 927 ---------- .../5GeV/LMR_350_novo_285_624/data_bkg.log | 717 -------- .../datacard_350_novo_285_624.txt | 29 - .../LMR_350_novo_285_624/signal350_sig.log | 927 ---------- .../LMR_400_crystal_1_285_624/data_bkg.log | 717 -------- .../datacard_400_crystal_1_285_624.txt | 30 - .../signal400_sig.log | 869 ---------- .../5GeV/LMR_400_novo_285_624/data_bkg.log | 717 -------- .../datacard_400_novo_285_624.txt | 29 - .../LMR_400_novo_285_624/signal400_sig.log | 869 ---------- .../LMR_450_crystal_1_285_624/data_bkg.log | 717 -------- .../datacard_450_crystal_1_285_624.txt | 30 - .../signal450_sig.log | 849 --------- .../5GeV/LMR_450_novo_285_624/data_bkg.log | 717 -------- .../datacard_450_novo_285_624.txt | 29 - .../LMR_450_novo_285_624/signal450_sig.log | 849 --------- .../LMR_500_crystal_1_285_624/data_bkg.log | 717 -------- .../datacard_500_crystal_1_285_624.txt | 30 - .../signal500_sig.log | 916 ---------- .../5GeV/LMR_500_novo_285_624/data_bkg.log | 717 -------- .../datacard_500_novo_285_624.txt | 29 - .../LMR_500_novo_285_624/signal500_sig.log | 916 ---------- .../LMR_550_crystal_1_285_624/data_bkg.log | 717 -------- .../datacard_550_crystal_1_285_624.txt | 30 - .../signal550_sig.log | 872 ---------- .../5GeV/LMR_550_novo_285_624/data_bkg.log | 717 -------- .../datacard_550_novo_285_624.txt | 29 - .../LMR_550_novo_285_624/signal550_sig.log | 872 ---------- .../LMR_600_crystal_1_285_624/data_bkg.log | 717 -------- .../datacard_600_crystal_1_285_624.txt | 30 - .../signal600_sig.log | 843 --------- .../5GeV/LMR_600_novo_285_624/data_bkg.log | 717 -------- .../datacard_600_novo_285_624.txt | 29 - .../LMR_600_novo_285_624/signal600_sig.log | 843 --------- .../LMR_650_crystal_1_285_624/data_bkg.log | 717 -------- .../datacard_650_crystal_1_285_624.txt | 30 - .../signal650_sig.log | 883 ---------- .../5GeV/LMR_650_novo_285_624/data_bkg.log | 717 -------- .../datacard_650_novo_285_624.txt | 29 - .../LMR_650_novo_285_624/signal650_sig.log | 883 ---------- .../save/Histograms_BTagall.root | Bin 65525 -> 0 bytes ...nToHHTo4B_M-260_narrow_13TeV-madgraph.root | Bin 171142 -> 0 bytes ...nToHHTo4B_M-270_narrow_13TeV-madgraph.root | Bin 175715 -> 0 bytes ...nToHHTo4B_M-300_narrow_13TeV-madgraph.root | Bin 206675 -> 0 bytes ...nToHHTo4B_M-350_narrow_13TeV-madgraph.root | Bin 226382 -> 0 bytes ...nToHHTo4B_M-400_narrow_13TeV-madgraph.root | Bin 263149 -> 0 bytes ...nToHHTo4B_M-450_narrow_13TeV-madgraph.root | Bin 178214 -> 0 bytes ...nToHHTo4B_M-500_narrow_13TeV-madgraph.root | Bin 187685 -> 0 bytes ...nToHHTo4B_M-550_narrow_13TeV-madgraph.root | Bin 227553 -> 0 bytes .../MMR_1000_crystal_1_550_1200/data_bkg.log | 690 -------- .../datacard_1000_crystal_1_550_1200.txt | 30 - .../3GeV/MMR_1000_crystal_1_550_1200/pdf.log | 10 - .../signal1000_sig.log | 945 ---------- .../3GeV/MMR_1000_novo_550_1200/data_bkg.log | 690 -------- .../datacard_1000_novo_550_1200.txt | 29 - .../fit/3GeV/MMR_1000_novo_550_1200/pdf.log | 10 - .../MMR_1000_novo_550_1200/signal1000_sig.log | 945 ---------- .../MMR_550_crystal_1_550_1200/data_bkg.log | 690 -------- .../datacard_550_crystal_1_550_1200.txt | 30 - .../3GeV/MMR_550_crystal_1_550_1200/pdf.log | 10 - .../signal550_sig.log | 949 ----------- .../3GeV/MMR_550_novo_550_1200/data_bkg.log | 690 -------- .../datacard_550_novo_550_1200.txt | 29 - .../fit/3GeV/MMR_550_novo_550_1200/pdf.log | 10 - .../MMR_550_novo_550_1200/signal550_sig.log | 949 ----------- .../MMR_600_crystal_1_550_1200/data_bkg.log | 690 -------- .../datacard_600_crystal_1_550_1200.txt | 30 - .../3GeV/MMR_600_crystal_1_550_1200/pdf.log | 10 - .../signal600_sig.log | 985 ----------- .../3GeV/MMR_600_novo_550_1200/data_bkg.log | 690 -------- .../datacard_600_novo_550_1200.txt | 29 - .../fit/3GeV/MMR_600_novo_550_1200/pdf.log | 10 - .../MMR_600_novo_550_1200/signal600_sig.log | 985 ----------- .../MMR_650_crystal_1_550_1200/data_bkg.log | 690 -------- .../datacard_650_crystal_1_550_1200.txt | 30 - .../3GeV/MMR_650_crystal_1_550_1200/pdf.log | 10 - .../signal650_sig.log | 1006 ----------- .../3GeV/MMR_650_novo_550_1200/data_bkg.log | 690 -------- .../datacard_650_novo_550_1200.txt | 29 - .../fit/3GeV/MMR_650_novo_550_1200/pdf.log | 10 - .../MMR_650_novo_550_1200/signal650_sig.log | 1006 ----------- .../MMR_750_crystal_1_550_1200/data_bkg.log | 690 -------- .../datacard_750_crystal_1_550_1200.txt | 30 - .../3GeV/MMR_750_crystal_1_550_1200/pdf.log | 10 - .../signal750_sig.log | 1000 ----------- .../3GeV/MMR_750_novo_550_1200/data_bkg.log | 690 -------- .../datacard_750_novo_550_1200.txt | 29 - .../fit/3GeV/MMR_750_novo_550_1200/pdf.log | 10 - .../MMR_750_novo_550_1200/signal750_sig.log | 1000 ----------- .../MMR_800_crystal_1_550_1200/data_bkg.log | 690 -------- .../datacard_800_crystal_1_550_1200.txt | 30 - .../3GeV/MMR_800_crystal_1_550_1200/pdf.log | 10 - .../signal800_sig.log | 986 ----------- .../3GeV/MMR_800_novo_550_1200/data_bkg.log | 690 -------- .../datacard_800_novo_550_1200.txt | 29 - .../fit/3GeV/MMR_800_novo_550_1200/pdf.log | 10 - .../MMR_800_novo_550_1200/signal800_sig.log | 986 ----------- .../MMR_900_crystal_1_550_1200/data_bkg.log | 690 -------- .../datacard_900_crystal_1_550_1200.txt | 30 - .../3GeV/MMR_900_crystal_1_550_1200/pdf.log | 10 - .../signal900_sig.log | 985 ----------- .../3GeV/MMR_900_novo_550_1200/data_bkg.log | 690 -------- .../datacard_900_novo_550_1200.txt | 29 - .../fit/3GeV/MMR_900_novo_550_1200/pdf.log | 10 - .../MMR_900_novo_550_1200/signal900_sig.log | 985 ----------- .../MMR_1000_crystal_1_550_1200/data_bkg.log | 690 -------- .../datacard_1000_crystal_1_550_1200.txt | 29 - .../signal1000_sig.log | 945 ---------- .../5GeV/MMR_1000_novo_550_1200/data_bkg.log | 690 -------- .../datacard_1000_novo_550_1200.txt | 28 - .../MMR_1000_novo_550_1200/signal1000_sig.log | 945 ---------- .../MMR_550_crystal_1_550_1200/data_bkg.log | 690 -------- .../datacard_550_crystal_1_550_1200.txt | 29 - .../signal550_sig.log | 949 ----------- .../5GeV/MMR_550_novo_550_1200/data_bkg.log | 690 -------- .../datacard_550_novo_550_1200.txt | 28 - .../MMR_550_novo_550_1200/signal550_sig.log | 949 ----------- .../MMR_600_crystal_1_550_1200/data_bkg.log | 690 -------- .../datacard_600_crystal_1_550_1200.txt | 29 - .../signal600_sig.log | 985 ----------- .../5GeV/MMR_600_novo_550_1200/data_bkg.log | 690 -------- .../datacard_600_novo_550_1200.txt | 28 - .../MMR_600_novo_550_1200/signal600_sig.log | 985 ----------- .../MMR_650_crystal_1_550_1200/data_bkg.log | 690 -------- .../datacard_650_crystal_1_550_1200.txt | 29 - .../signal650_sig.log | 1006 ----------- .../5GeV/MMR_650_novo_550_1200/data_bkg.log | 690 -------- .../datacard_650_novo_550_1200.txt | 28 - .../MMR_650_novo_550_1200/signal650_sig.log | 1006 ----------- .../MMR_750_crystal_1_550_1200/data_bkg.log | 690 -------- .../datacard_750_crystal_1_550_1200.txt | 29 - .../signal750_sig.log | 1000 ----------- .../5GeV/MMR_750_novo_550_1200/data_bkg.log | 690 -------- .../datacard_750_novo_550_1200.txt | 28 - .../MMR_750_novo_550_1200/signal750_sig.log | 1000 ----------- .../MMR_800_crystal_1_550_1200/data_bkg.log | 690 -------- .../datacard_800_crystal_1_550_1200.txt | 29 - .../signal800_sig.log | 986 ----------- .../5GeV/MMR_800_novo_550_1200/data_bkg.log | 690 -------- .../datacard_800_novo_550_1200.txt | 28 - .../MMR_800_novo_550_1200/signal800_sig.log | 986 ----------- .../MMR_900_crystal_1_550_1200/data_bkg.log | 690 -------- .../datacard_900_crystal_1_550_1200.txt | 29 - .../signal900_sig.log | 985 ----------- .../5GeV/MMR_900_novo_550_1200/data_bkg.log | 690 -------- .../datacard_900_novo_550_1200.txt | 28 - .../MMR_900_novo_550_1200/signal900_sig.log | 985 ----------- .../save/Histogram_BTagCSV.root | Bin 105743 -> 0 bytes .../save/Histograms_BTagall.root | Bin 120845 -> 0 bytes .../save/Histograms_Btagall.root | Bin 117719 -> 0 bytes ...Tohbbhbb_narrow_M-1000_13TeV-madgraph.root | Bin 219924 -> 0 bytes ...Tohbbhbb_narrow_M-1200_13TeV-madgraph.root | Bin 201290 -> 0 bytes ...nToHHTo4B_M-300_narrow_13TeV-madgraph.root | Bin 159705 -> 0 bytes ...nToHHTo4B_M-350_narrow_13TeV-madgraph.root | Bin 164315 -> 0 bytes ...nToHHTo4B_M-400_narrow_13TeV-madgraph.root | Bin 228356 -> 0 bytes ...nToHHTo4B_M-450_narrow_13TeV-madgraph.root | Bin 158899 -> 0 bytes ...nToHHTo4B_M-500_narrow_13TeV-madgraph.root | Bin 183639 -> 0 bytes ...nToHHTo4B_M-550_narrow_13TeV-madgraph.root | Bin 246147 -> 0 bytes ...nToHHTo4B_M-600_narrow_13TeV-madgraph.root | Bin 261565 -> 0 bytes ...nToHHTo4B_M-650_narrow_13TeV-madgraph.root | Bin 212941 -> 0 bytes ...nToHHTo4B_M-750_narrow_13TeV-madgraph.root | Bin 222818 -> 0 bytes ...nToHHTo4B_M-800_narrow_13TeV-madgraph.root | Bin 270750 -> 0 bytes ...nToHHTo4B_M-900_narrow_13TeV-madgraph.root | Bin 222831 -> 0 bytes .../MMRSelection_chi2/save/Histograms_ST.root | Bin 85642 -> 0 bytes .../MMRSelection_chi2/save/Histograms_TT.root | Bin 184100 -> 0 bytes .../MMRSelection_chi2/save/Histograms_ZZ.root | Bin 67117 -> 0 bytes .../CMS_HH4b_260_13TeV_MaxLikelihood.out | 65 - .../CMS_HH4b_260_13TeV_asymptoticCLs.out | 11 - .../3GeV/LMR_260_crystal_252_330/data_bkg.log | 750 -------- .../datacard_260_crystal_252_330.txt | 35 - .../LMR/3GeV/LMR_260_crystal_252_330/pdf.log | 10 - .../LMR_260_crystal_252_330/signal260_sig.log | 842 --------- .../CMS_HH4b_260_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_260_13TeV_asymptoticCLs.out | 11 - .../LMR_260_gaus_exp_252_330/data_bkg.log | 750 -------- .../datacard_260_gaus_exp_252_330.txt | 30 - .../LMR/3GeV/LMR_260_gaus_exp_252_330/pdf.log | 10 - .../signal260_sig.log | 842 --------- .../CMS_HH4b_270_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_270_13TeV_asymptoticCLs.out | 11 - .../LMR_270_crystal_1_285_624/data_bkg.log | 750 -------- .../datacard_270_crystal_1_285_624.txt | 31 - .../3GeV/LMR_270_crystal_1_285_624/pdf.log | 10 - .../signal270_sig.log | 959 ----------- .../CMS_HH4b_270_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_270_13TeV_asymptoticCLs.out | 11 - .../3GeV/LMR_270_crystal_252_330/data_bkg.log | 750 -------- .../datacard_270_crystal_252_330.txt | 35 - .../LMR/3GeV/LMR_270_crystal_252_330/pdf.log | 10 - .../LMR_270_crystal_252_330/signal270_sig.log | 959 ----------- .../CMS_HH4b_270_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_270_13TeV_asymptoticCLs.out | 11 - .../LMR_270_gaus_exp_252_330/data_bkg.log | 750 -------- .../datacard_270_gaus_exp_252_330.txt | 30 - .../LMR/3GeV/LMR_270_gaus_exp_252_330/pdf.log | 10 - .../signal270_sig.log | 959 ----------- .../CMS_HH4b_270_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_270_13TeV_asymptoticCLs.out | 11 - .../3GeV/LMR_270_novo_285_624/data_bkg.log | 750 -------- .../datacard_270_novo_285_624.txt | 30 - .../LMR/3GeV/LMR_270_novo_285_624/pdf.log | 10 - .../LMR_270_novo_285_624/signal270_sig.log | 959 ----------- .../CMS_HH4b_300_13TeV_MaxLikelihood.out | 341 ---- .../CMS_HH4b_300_13TeV_asymptoticCLs.out | 11 - .../LMR_300_crystal_1_285_624/data_bkg.log | 750 -------- .../datacard_300_crystal_1_285_624.txt | 31 - .../3GeV/LMR_300_crystal_1_285_624/pdf.log | 10 - .../signal300_sig.log | 859 ---------- .../CMS_HH4b_300_13TeV_MaxLikelihood.out | 26 - .../CMS_HH4b_300_13TeV_asymptoticCLs.out | 11 - .../3GeV/LMR_300_crystal_252_330/data_bkg.log | 750 -------- .../datacard_300_crystal_252_330.txt | 35 - .../LMR/3GeV/LMR_300_crystal_252_330/pdf.log | 10 - .../LMR_300_crystal_252_330/signal300_sig.log | 859 ---------- .../CMS_HH4b_300_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_300_13TeV_asymptoticCLs.out | 11 - .../LMR_300_gaus_exp_252_330/data_bkg.log | 750 -------- .../datacard_300_gaus_exp_252_330.txt | 30 - .../LMR/3GeV/LMR_300_gaus_exp_252_330/pdf.log | 10 - .../signal300_sig.log | 859 ---------- .../CMS_HH4b_300_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_300_13TeV_asymptoticCLs.out | 11 - .../3GeV/LMR_300_novo_285_624/data_bkg.log | 750 -------- .../datacard_300_novo_285_624.txt | 30 - .../LMR/3GeV/LMR_300_novo_285_624/pdf.log | 10 - .../LMR_300_novo_285_624/signal300_sig.log | 859 ---------- .../CMS_HH4b_350_13TeV_MaxLikelihood.out | 5 - .../CMS_HH4b_350_13TeV_asymptoticCLs.out | 11 - .../LMR_350_crystal_1_285_624/data_bkg.log | 750 -------- .../datacard_350_crystal_1_285_624.txt | 31 - .../3GeV/LMR_350_crystal_1_285_624/pdf.log | 10 - .../signal350_sig.log | 927 ---------- .../CMS_HH4b_350_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_350_13TeV_asymptoticCLs.out | 11 - .../3GeV/LMR_350_crystal_252_330/data_bkg.log | 750 -------- .../datacard_350_crystal_252_330.txt | 35 - .../LMR/3GeV/LMR_350_crystal_252_330/pdf.log | 10 - .../LMR_350_crystal_252_330/signal350_sig.log | 927 ---------- .../CMS_HH4b_350_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_350_13TeV_asymptoticCLs.out | 11 - .../LMR_350_gaus_exp_252_330/data_bkg.log | 750 -------- .../datacard_350_gaus_exp_252_330.txt | 30 - .../LMR/3GeV/LMR_350_gaus_exp_252_330/pdf.log | 10 - .../signal350_sig.log | 927 ---------- .../CMS_HH4b_350_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_350_13TeV_asymptoticCLs.out | 11 - .../3GeV/LMR_350_novo_285_624/data_bkg.log | 750 -------- .../datacard_350_novo_285_624.txt | 30 - .../LMR/3GeV/LMR_350_novo_285_624/pdf.log | 10 - .../LMR_350_novo_285_624/signal350_sig.log | 927 ---------- .../CMS_HH4b_400_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_400_13TeV_asymptoticCLs.out | 11 - .../LMR_400_crystal_1_285_624/data_bkg.log | 750 -------- .../datacard_400_crystal_1_285_624.txt | 31 - .../3GeV/LMR_400_crystal_1_285_624/pdf.log | 10 - .../signal400_sig.log | 869 ---------- .../CMS_HH4b_400_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_400_13TeV_asymptoticCLs.out | 11 - .../3GeV/LMR_400_novo_285_624/data_bkg.log | 750 -------- .../datacard_400_novo_285_624.txt | 30 - .../LMR/3GeV/LMR_400_novo_285_624/pdf.log | 10 - .../LMR_400_novo_285_624/signal400_sig.log | 869 ---------- .../CMS_HH4b_450_13TeV_MaxLikelihood.out | 5 - .../CMS_HH4b_450_13TeV_asymptoticCLs.out | 11 - .../LMR_450_crystal_1_285_624/data_bkg.log | 750 -------- .../datacard_450_crystal_1_285_624.txt | 31 - .../3GeV/LMR_450_crystal_1_285_624/pdf.log | 10 - .../signal450_sig.log | 849 --------- .../CMS_HH4b_450_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_450_13TeV_asymptoticCLs.out | 11 - .../3GeV/LMR_450_novo_285_624/data_bkg.log | 750 -------- .../datacard_450_novo_285_624.txt | 30 - .../LMR/3GeV/LMR_450_novo_285_624/pdf.log | 10 - .../LMR_450_novo_285_624/signal450_sig.log | 849 --------- .../CMS_HH4b_500_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_500_13TeV_asymptoticCLs.out | 11 - .../LMR_500_crystal_1_285_624/data_bkg.log | 750 -------- .../datacard_500_crystal_1_285_624.txt | 31 - .../3GeV/LMR_500_crystal_1_285_624/pdf.log | 10 - .../signal500_sig.log | 916 ---------- .../CMS_HH4b_500_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_500_13TeV_asymptoticCLs.out | 11 - .../3GeV/LMR_500_novo_285_624/data_bkg.log | 750 -------- .../datacard_500_novo_285_624.txt | 30 - .../LMR/3GeV/LMR_500_novo_285_624/pdf.log | 10 - .../LMR_500_novo_285_624/signal500_sig.log | 916 ---------- .../CMS_HH4b_550_13TeV_MaxLikelihood.out | 26 - .../CMS_HH4b_550_13TeV_asymptoticCLs.out | 11 - .../LMR_550_crystal_1_285_624/data_bkg.log | 750 -------- .../datacard_550_crystal_1_285_624.txt | 31 - .../3GeV/LMR_550_crystal_1_285_624/pdf.log | 10 - .../signal550_sig.log | 872 ---------- .../CMS_HH4b_550_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_550_13TeV_asymptoticCLs.out | 11 - .../3GeV/LMR_550_novo_285_624/data_bkg.log | 750 -------- .../datacard_550_novo_285_624.txt | 30 - .../LMR/3GeV/LMR_550_novo_285_624/pdf.log | 10 - .../LMR_550_novo_285_624/signal550_sig.log | 872 ---------- .../CMS_HH4b_600_13TeV_MaxLikelihood.out | 169 -- .../CMS_HH4b_600_13TeV_asymptoticCLs.out | 11 - .../LMR_600_crystal_1_285_624/data_bkg.log | 750 -------- .../datacard_600_crystal_1_285_624.txt | 31 - .../3GeV/LMR_600_crystal_1_285_624/pdf.log | 10 - .../signal600_sig.log | 843 --------- .../CMS_HH4b_600_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_600_13TeV_asymptoticCLs.out | 11 - .../3GeV/LMR_600_novo_285_624/data_bkg.log | 750 -------- .../datacard_600_novo_285_624.txt | 30 - .../LMR/3GeV/LMR_600_novo_285_624/pdf.log | 10 - .../LMR_600_novo_285_624/signal600_sig.log | 843 --------- .../CMS_HH4b_650_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_650_13TeV_asymptoticCLs.out | 11 - .../LMR_650_crystal_1_285_624/data_bkg.log | 750 -------- .../datacard_650_crystal_1_285_624.txt | 31 - .../3GeV/LMR_650_crystal_1_285_624/pdf.log | 10 - .../signal650_sig.log | 883 ---------- .../CMS_HH4b_650_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_650_13TeV_asymptoticCLs.out | 11 - .../3GeV/LMR_650_novo_285_624/data_bkg.log | 750 -------- .../datacard_650_novo_285_624.txt | 30 - .../LMR/3GeV/LMR_650_novo_285_624/pdf.log | 10 - .../LMR_650_novo_285_624/signal650_sig.log | 883 ---------- .../CMS_HH4b_260_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_260_13TeV_asymptoticCLs.out | 11 - .../5GeV/LMR_260_crystal_252_330/data_bkg.log | 717 -------- .../datacard_260_crystal_252_330.txt | 34 - .../LMR_260_crystal_252_330/signal260_sig.log | 842 --------- .../CMS_HH4b_260_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_260_13TeV_asymptoticCLs.out | 11 - .../LMR_260_gaus_exp_252_330/data_bkg.log | 717 -------- .../datacard_260_gaus_exp_252_330.txt | 29 - .../signal260_sig.log | 842 --------- .../CMS_HH4b_270_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_270_13TeV_asymptoticCLs.out | 11 - .../LMR_270_crystal_1_285_624/data_bkg.log | 717 -------- .../datacard_270_crystal_1_285_624.txt | 30 - .../signal270_sig.log | 959 ----------- .../CMS_HH4b_270_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_270_13TeV_asymptoticCLs.out | 11 - .../5GeV/LMR_270_crystal_252_330/data_bkg.log | 717 -------- .../datacard_270_crystal_252_330.txt | 34 - .../LMR_270_crystal_252_330/signal270_sig.log | 959 ----------- .../CMS_HH4b_270_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_270_13TeV_asymptoticCLs.out | 11 - .../LMR_270_gaus_exp_252_330/data_bkg.log | 717 -------- .../datacard_270_gaus_exp_252_330.txt | 29 - .../signal270_sig.log | 959 ----------- .../CMS_HH4b_270_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_270_13TeV_asymptoticCLs.out | 11 - .../5GeV/LMR_270_novo_285_624/data_bkg.log | 717 -------- .../datacard_270_novo_285_624.txt | 29 - .../LMR_270_novo_285_624/signal270_sig.log | 959 ----------- .../CMS_HH4b_300_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_300_13TeV_asymptoticCLs.out | 11 - .../LMR_300_crystal_1_285_624/data_bkg.log | 717 -------- .../datacard_300_crystal_1_285_624.txt | 30 - .../signal300_sig.log | 859 ---------- .../CMS_HH4b_300_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_300_13TeV_asymptoticCLs.out | 11 - .../5GeV/LMR_300_crystal_252_330/data_bkg.log | 717 -------- .../datacard_300_crystal_252_330.txt | 34 - .../LMR_300_crystal_252_330/signal300_sig.log | 859 ---------- .../CMS_HH4b_300_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_300_13TeV_asymptoticCLs.out | 11 - .../LMR_300_gaus_exp_252_330/data_bkg.log | 717 -------- .../datacard_300_gaus_exp_252_330.txt | 29 - .../signal300_sig.log | 859 ---------- .../CMS_HH4b_300_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_300_13TeV_asymptoticCLs.out | 11 - .../5GeV/LMR_300_novo_285_624/data_bkg.log | 717 -------- .../datacard_300_novo_285_624.txt | 29 - .../LMR_300_novo_285_624/signal300_sig.log | 859 ---------- .../CMS_HH4b_350_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_350_13TeV_asymptoticCLs.out | 11 - .../LMR_350_crystal_1_285_624/data_bkg.log | 717 -------- .../datacard_350_crystal_1_285_624.txt | 30 - .../signal350_sig.log | 927 ---------- .../CMS_HH4b_350_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_350_13TeV_asymptoticCLs.out | 11 - .../5GeV/LMR_350_crystal_252_330/data_bkg.log | 717 -------- .../datacard_350_crystal_252_330.txt | 34 - .../LMR_350_crystal_252_330/signal350_sig.log | 927 ---------- .../CMS_HH4b_350_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_350_13TeV_asymptoticCLs.out | 11 - .../LMR_350_gaus_exp_252_330/data_bkg.log | 717 -------- .../datacard_350_gaus_exp_252_330.txt | 29 - .../signal350_sig.log | 927 ---------- .../CMS_HH4b_350_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_350_13TeV_asymptoticCLs.out | 11 - .../5GeV/LMR_350_novo_285_624/data_bkg.log | 717 -------- .../datacard_350_novo_285_624.txt | 29 - .../LMR_350_novo_285_624/signal350_sig.log | 927 ---------- .../CMS_HH4b_400_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_400_13TeV_asymptoticCLs.out | 11 - .../LMR_400_crystal_1_285_624/data_bkg.log | 717 -------- .../datacard_400_crystal_1_285_624.txt | 30 - .../signal400_sig.log | 869 ---------- .../CMS_HH4b_400_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_400_13TeV_asymptoticCLs.out | 11 - .../5GeV/LMR_400_novo_285_624/data_bkg.log | 717 -------- .../datacard_400_novo_285_624.txt | 29 - .../LMR_400_novo_285_624/signal400_sig.log | 869 ---------- .../CMS_HH4b_450_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_450_13TeV_asymptoticCLs.out | 11 - .../LMR_450_crystal_1_285_624/data_bkg.log | 717 -------- .../datacard_450_crystal_1_285_624.txt | 30 - .../signal450_sig.log | 849 --------- .../CMS_HH4b_450_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_450_13TeV_asymptoticCLs.out | 11 - .../5GeV/LMR_450_novo_285_624/data_bkg.log | 717 -------- .../datacard_450_novo_285_624.txt | 29 - .../LMR_450_novo_285_624/signal450_sig.log | 849 --------- .../CMS_HH4b_500_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_500_13TeV_asymptoticCLs.out | 11 - .../LMR_500_crystal_1_285_624/data_bkg.log | 717 -------- .../datacard_500_crystal_1_285_624.txt | 30 - .../signal500_sig.log | 916 ---------- .../CMS_HH4b_500_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_500_13TeV_asymptoticCLs.out | 11 - .../5GeV/LMR_500_novo_285_624/data_bkg.log | 717 -------- .../datacard_500_novo_285_624.txt | 29 - .../LMR_500_novo_285_624/signal500_sig.log | 916 ---------- .../CMS_HH4b_550_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_550_13TeV_asymptoticCLs.out | 6 - .../LMR_550_crystal_1_285_624/data_bkg.log | 717 -------- .../datacard_550_crystal_1_285_624.txt | 30 - .../signal550_sig.log | 872 ---------- .../CMS_HH4b_550_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_550_13TeV_asymptoticCLs.out | 11 - .../5GeV/LMR_550_novo_285_624/data_bkg.log | 717 -------- .../datacard_550_novo_285_624.txt | 29 - .../LMR_550_novo_285_624/signal550_sig.log | 872 ---------- .../CMS_HH4b_600_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_600_13TeV_asymptoticCLs.out | 11 - .../LMR_600_crystal_1_285_624/data_bkg.log | 717 -------- .../datacard_600_crystal_1_285_624.txt | 30 - .../signal600_sig.log | 843 --------- .../CMS_HH4b_600_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_600_13TeV_asymptoticCLs.out | 11 - .../5GeV/LMR_600_novo_285_624/data_bkg.log | 717 -------- .../datacard_600_novo_285_624.txt | 29 - .../LMR_600_novo_285_624/signal600_sig.log | 843 --------- .../CMS_HH4b_650_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_650_13TeV_asymptoticCLs.out | 11 - .../LMR_650_crystal_1_285_624/data_bkg.log | 717 -------- .../datacard_650_crystal_1_285_624.txt | 30 - .../signal650_sig.log | 883 ---------- .../CMS_HH4b_650_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_650_13TeV_asymptoticCLs.out | 11 - .../5GeV/LMR_650_novo_285_624/data_bkg.log | 717 -------- .../datacard_650_novo_285_624.txt | 29 - .../LMR_650_novo_285_624/signal650_sig.log | 883 ---------- .../limits/LMR/draw_limits.c | 8 - .../limits/LMR/fig/linearmorph_260_270.pdf | Bin 16255 -> 0 bytes .../limits/LMR/fig/linearmorph_260_270.png | Bin 13804 -> 0 bytes .../limits/LMR/fig/linearmorph_270_300.pdf | Bin 15550 -> 0 bytes .../limits/LMR/fig/linearmorph_270_300.png | Bin 11576 -> 0 bytes .../limits/LMR/fig/linearmorph_300_350.pdf | Bin 15870 -> 0 bytes .../limits/LMR/fig/linearmorph_300_350.png | Bin 14903 -> 0 bytes .../CMS_HH4b_1000_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_1000_13TeV_asymptoticCLs.out | 11 - .../MMR_1000_crystal_1_550_1200/data_bkg.log | 690 -------- .../datacard_1000_crystal_1_550_1200.txt | 30 - .../3GeV/MMR_1000_crystal_1_550_1200/pdf.log | 10 - .../signal1000_sig.log | 945 ---------- .../CMS_HH4b_1000_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_1000_13TeV_asymptoticCLs.out | 11 - .../3GeV/MMR_1000_novo_550_1200/data_bkg.log | 690 -------- .../datacard_1000_novo_550_1200.txt | 29 - .../MMR/3GeV/MMR_1000_novo_550_1200/pdf.log | 10 - .../MMR_1000_novo_550_1200/signal1000_sig.log | 945 ---------- .../CMS_HH4b_550_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_550_13TeV_asymptoticCLs.out | 11 - .../MMR_550_crystal_1_550_1200/data_bkg.log | 690 -------- .../datacard_550_crystal_1_550_1200.txt | 30 - .../3GeV/MMR_550_crystal_1_550_1200/pdf.log | 10 - .../signal550_sig.log | 949 ----------- .../CMS_HH4b_550_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_550_13TeV_asymptoticCLs.out | 11 - .../3GeV/MMR_550_novo_550_1200/data_bkg.log | 690 -------- .../datacard_550_novo_550_1200.txt | 29 - .../MMR/3GeV/MMR_550_novo_550_1200/pdf.log | 10 - .../MMR_550_novo_550_1200/signal550_sig.log | 949 ----------- .../CMS_HH4b_600_13TeV_MaxLikelihood.out | 6 - .../CMS_HH4b_600_13TeV_asymptoticCLs.out | 11 - .../MMR_600_crystal_1_550_1200/data_bkg.log | 690 -------- .../datacard_600_crystal_1_550_1200.txt | 30 - .../3GeV/MMR_600_crystal_1_550_1200/pdf.log | 10 - .../signal600_sig.log | 985 ----------- .../CMS_HH4b_600_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_600_13TeV_asymptoticCLs.out | 11 - .../3GeV/MMR_600_novo_550_1200/data_bkg.log | 690 -------- .../datacard_600_novo_550_1200.txt | 29 - .../MMR/3GeV/MMR_600_novo_550_1200/pdf.log | 10 - .../MMR_600_novo_550_1200/signal600_sig.log | 985 ----------- .../CMS_HH4b_650_13TeV_MaxLikelihood.out | 6 - .../CMS_HH4b_650_13TeV_asymptoticCLs.out | 11 - .../MMR_650_crystal_1_550_1200/data_bkg.log | 690 -------- .../datacard_650_crystal_1_550_1200.txt | 30 - .../3GeV/MMR_650_crystal_1_550_1200/pdf.log | 10 - .../signal650_sig.log | 1006 ----------- .../CMS_HH4b_650_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_650_13TeV_asymptoticCLs.out | 11 - .../3GeV/MMR_650_novo_550_1200/data_bkg.log | 690 -------- .../datacard_650_novo_550_1200.txt | 29 - .../MMR/3GeV/MMR_650_novo_550_1200/pdf.log | 10 - .../MMR_650_novo_550_1200/signal650_sig.log | 1006 ----------- .../CMS_HH4b_750_13TeV_MaxLikelihood.out | 6 - .../CMS_HH4b_750_13TeV_asymptoticCLs.out | 11 - .../MMR_750_crystal_1_550_1200/data_bkg.log | 690 -------- .../datacard_750_crystal_1_550_1200.txt | 30 - .../3GeV/MMR_750_crystal_1_550_1200/pdf.log | 10 - .../signal750_sig.log | 1000 ----------- .../CMS_HH4b_750_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_750_13TeV_asymptoticCLs.out | 11 - .../3GeV/MMR_750_novo_550_1200/data_bkg.log | 690 -------- .../datacard_750_novo_550_1200.txt | 29 - .../MMR/3GeV/MMR_750_novo_550_1200/pdf.log | 10 - .../MMR_750_novo_550_1200/signal750_sig.log | 1000 ----------- .../CMS_HH4b_800_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_800_13TeV_asymptoticCLs.out | 11 - .../MMR_800_crystal_1_550_1200/data_bkg.log | 690 -------- .../datacard_800_crystal_1_550_1200.txt | 30 - .../3GeV/MMR_800_crystal_1_550_1200/pdf.log | 10 - .../signal800_sig.log | 986 ----------- .../CMS_HH4b_800_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_800_13TeV_asymptoticCLs.out | 11 - .../3GeV/MMR_800_novo_550_1200/data_bkg.log | 690 -------- .../datacard_800_novo_550_1200.txt | 29 - .../MMR/3GeV/MMR_800_novo_550_1200/pdf.log | 10 - .../MMR_800_novo_550_1200/signal800_sig.log | 986 ----------- .../CMS_HH4b_900_13TeV_MaxLikelihood.out | 7 - .../CMS_HH4b_900_13TeV_asymptoticCLs.out | 11 - .../MMR_900_crystal_1_550_1200/data_bkg.log | 690 -------- .../datacard_900_crystal_1_550_1200.txt | 30 - .../3GeV/MMR_900_crystal_1_550_1200/pdf.log | 10 - .../signal900_sig.log | 985 ----------- .../CMS_HH4b_900_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_900_13TeV_asymptoticCLs.out | 11 - .../3GeV/MMR_900_novo_550_1200/data_bkg.log | 690 -------- .../datacard_900_novo_550_1200.txt | 29 - .../MMR/3GeV/MMR_900_novo_550_1200/pdf.log | 10 - .../MMR_900_novo_550_1200/signal900_sig.log | 985 ----------- .../CMS_HH4b_1000_13TeV_MaxLikelihood.out | 7 - .../CMS_HH4b_1000_13TeV_asymptoticCLs.out | 11 - .../MMR_1000_crystal_1_550_1200/data_bkg.log | 690 -------- .../datacard_1000_crystal_1_550_1200.txt | 29 - .../signal1000_sig.log | 945 ---------- .../CMS_HH4b_1000_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_1000_13TeV_asymptoticCLs.out | 11 - .../5GeV/MMR_1000_novo_550_1200/data_bkg.log | 690 -------- .../datacard_1000_novo_550_1200.txt | 28 - .../MMR_1000_novo_550_1200/signal1000_sig.log | 945 ---------- .../CMS_HH4b_550_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_550_13TeV_asymptoticCLs.out | 11 - .../MMR_550_crystal_1_550_1200/data_bkg.log | 690 -------- .../datacard_550_crystal_1_550_1200.txt | 29 - .../signal550_sig.log | 949 ----------- .../CMS_HH4b_550_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_550_13TeV_asymptoticCLs.out | 11 - .../5GeV/MMR_550_novo_550_1200/data_bkg.log | 690 -------- .../datacard_550_novo_550_1200.txt | 28 - .../MMR_550_novo_550_1200/signal550_sig.log | 949 ----------- .../CMS_HH4b_600_13TeV_MaxLikelihood.out | 6 - .../CMS_HH4b_600_13TeV_asymptoticCLs.out | 11 - .../MMR_600_crystal_1_550_1200/data_bkg.log | 690 -------- .../datacard_600_crystal_1_550_1200.txt | 29 - .../signal600_sig.log | 985 ----------- .../CMS_HH4b_600_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_600_13TeV_asymptoticCLs.out | 11 - .../5GeV/MMR_600_novo_550_1200/data_bkg.log | 690 -------- .../datacard_600_novo_550_1200.txt | 28 - .../MMR_600_novo_550_1200/signal600_sig.log | 985 ----------- .../CMS_HH4b_650_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_650_13TeV_asymptoticCLs.out | 11 - .../MMR_650_crystal_1_550_1200/data_bkg.log | 690 -------- .../datacard_650_crystal_1_550_1200.txt | 29 - .../signal650_sig.log | 1006 ----------- .../CMS_HH4b_650_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_650_13TeV_asymptoticCLs.out | 11 - .../5GeV/MMR_650_novo_550_1200/data_bkg.log | 690 -------- .../datacard_650_novo_550_1200.txt | 28 - .../MMR_650_novo_550_1200/signal650_sig.log | 1006 ----------- .../CMS_HH4b_750_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_750_13TeV_asymptoticCLs.out | 11 - .../MMR_750_crystal_1_550_1200/data_bkg.log | 690 -------- .../datacard_750_crystal_1_550_1200.txt | 29 - .../signal750_sig.log | 1000 ----------- .../CMS_HH4b_750_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_750_13TeV_asymptoticCLs.out | 11 - .../5GeV/MMR_750_novo_550_1200/data_bkg.log | 690 -------- .../datacard_750_novo_550_1200.txt | 28 - .../MMR_750_novo_550_1200/signal750_sig.log | 1000 ----------- .../CMS_HH4b_800_13TeV_MaxLikelihood.out | 7 - .../CMS_HH4b_800_13TeV_asymptoticCLs.out | 11 - .../MMR_800_crystal_1_550_1200/data_bkg.log | 690 -------- .../datacard_800_crystal_1_550_1200.txt | 29 - .../signal800_sig.log | 986 ----------- .../CMS_HH4b_800_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_800_13TeV_asymptoticCLs.out | 11 - .../5GeV/MMR_800_novo_550_1200/data_bkg.log | 690 -------- .../datacard_800_novo_550_1200.txt | 28 - .../MMR_800_novo_550_1200/signal800_sig.log | 986 ----------- .../CMS_HH4b_900_13TeV_MaxLikelihood.out | 7 - .../CMS_HH4b_900_13TeV_asymptoticCLs.out | 11 - .../MMR_900_crystal_1_550_1200/data_bkg.log | 690 -------- .../datacard_900_crystal_1_550_1200.txt | 29 - .../signal900_sig.log | 985 ----------- .../CMS_HH4b_900_13TeV_MaxLikelihood.out | 8 - .../CMS_HH4b_900_13TeV_asymptoticCLs.out | 11 - .../5GeV/MMR_900_novo_550_1200/data_bkg.log | 690 -------- .../datacard_900_novo_550_1200.txt | 28 - .../MMR_900_novo_550_1200/signal900_sig.log | 985 ----------- .../limits/MMR/draw_limits.c | 6 - .../CMS_HH4b_260_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_260_13TeV_asymptoticCLs.out | 0 .../datacard_260_gaus_exp_250_330.txt | 0 .../CMS_HH4b_265_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_265_13TeV_asymptoticCLs.out | 0 .../datacard_265_gaus_exp_250_330.txt | 0 .../.nfs000000300a163622000004a4 | 0 .../CMS_HH4b_270_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_270_13TeV_asymptoticCLs.out | 0 .../datacard_270_gaus_exp_250_330.txt | 0 .../datacard_270_novo_285_625.txt | 0 .../CMS_HH4b_275_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_275_13TeV_asymptoticCLs.out | 0 .../datacard_275_gaus_exp_250_330.txt | 0 .../datacard_275_novo_285_625.txt | 0 .../CMS_HH4b_280_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_280_13TeV_asymptoticCLs.out | 0 .../datacard_280_gaus_exp_250_330.txt | 0 .../datacard_280_novo_285_625.txt | 0 .../CMS_HH4b_285_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_285_13TeV_asymptoticCLs.out | 0 .../datacard_285_gaus_exp_250_330.txt | 0 .../datacard_285_novo_285_625.txt | 0 .../CMS_HH4b_290_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_290_13TeV_asymptoticCLs.out | 0 .../datacard_290_gaus_exp_250_330.txt | 0 .../CMS_HH4b_290_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_290_13TeV_asymptoticCLs.out | 0 .../datacard_290_novo_285_625.txt | 0 .../CMS_HH4b_295_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_295_13TeV_asymptoticCLs.out | 0 .../datacard_295_gaus_exp_250_330.txt | 0 .../CMS_HH4b_295_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_295_13TeV_asymptoticCLs.out | 0 .../datacard_295_novo_285_625.txt | 0 .../CMS_HH4b_300_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_300_13TeV_asymptoticCLs.out | 0 .../datacard_300_gaus_exp_250_330.txt | 0 .../CMS_HH4b_300_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_300_13TeV_asymptoticCLs.out | 0 .../datacard_300_novo_285_625.txt | 0 .../CMS_HH4b_310_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_310_13TeV_asymptoticCLs.out | 0 .../datacard_310_gaus_exp_250_330.txt | 0 .../CMS_HH4b_310_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_310_13TeV_asymptoticCLs.out | 0 .../datacard_310_novo_285_625.txt | 0 .../CMS_HH4b_320_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_320_13TeV_asymptoticCLs.out | 0 .../datacard_320_gaus_exp_250_330.txt | 0 .../CMS_HH4b_320_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_320_13TeV_asymptoticCLs.out | 0 .../datacard_320_novo_285_625.txt | 0 .../CMS_HH4b_330_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_330_13TeV_asymptoticCLs.out | 0 .../datacard_330_novo_285_625.txt | 0 .../CMS_HH4b_340_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_340_13TeV_asymptoticCLs.out | 0 .../datacard_340_novo_285_625.txt | 0 .../datacard_350_gaus_exp_250_330.txt | 0 .../CMS_HH4b_350_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_350_13TeV_asymptoticCLs.out | 0 .../datacard_350_novo_285_625.txt | 0 .../CMS_HH4b_360_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_360_13TeV_asymptoticCLs.out | 0 .../datacard_360_novo_285_625.txt | 0 .../CMS_HH4b_370_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_370_13TeV_asymptoticCLs.out | 0 .../datacard_370_novo_285_625.txt | 0 .../CMS_HH4b_380_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_380_13TeV_asymptoticCLs.out | 0 .../datacard_380_novo_285_625.txt | 0 .../CMS_HH4b_390_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_390_13TeV_asymptoticCLs.out | 0 .../datacard_390_novo_285_625.txt | 0 .../CMS_HH4b_400_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_400_13TeV_asymptoticCLs.out | 0 .../datacard_400_novo_285_625.txt | 0 .../CMS_HH4b_410_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_410_13TeV_asymptoticCLs.out | 0 .../datacard_410_novo_285_625.txt | 0 .../CMS_HH4b_420_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_420_13TeV_asymptoticCLs.out | 0 .../datacard_420_novo_285_625.txt | 0 .../CMS_HH4b_430_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_430_13TeV_asymptoticCLs.out | 0 .../datacard_430_novo_285_625.txt | 0 .../CMS_HH4b_440_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_440_13TeV_asymptoticCLs.out | 0 .../datacard_440_novo_285_625.txt | 0 .../CMS_HH4b_450_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_450_13TeV_asymptoticCLs.out | 0 .../datacard_450_novo_285_625.txt | 0 .../CMS_HH4b_460_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_460_13TeV_asymptoticCLs.out | 0 .../datacard_460_novo_285_625.txt | 0 .../CMS_HH4b_470_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_470_13TeV_asymptoticCLs.out | 0 .../datacard_470_novo_285_625.txt | 0 .../CMS_HH4b_480_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_480_13TeV_asymptoticCLs.out | 0 .../datacard_480_novo_285_625.txt | 0 .../CMS_HH4b_490_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_490_13TeV_asymptoticCLs.out | 0 .../datacard_490_novo_285_625.txt | 0 .../CMS_HH4b_500_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_500_13TeV_asymptoticCLs.out | 0 .../datacard_500_novo_285_625.txt | 0 .../CMS_HH4b_510_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_510_13TeV_asymptoticCLs.out | 0 .../datacard_510_novo_285_625.txt | 0 .../CMS_HH4b_520_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_520_13TeV_asymptoticCLs.out | 0 .../datacard_520_novo_285_625.txt | 0 .../CMS_HH4b_530_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_530_13TeV_asymptoticCLs.out | 0 .../datacard_530_novo_285_625.txt | 0 .../CMS_HH4b_540_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_540_13TeV_asymptoticCLs.out | 0 .../datacard_540_novo_285_625.txt | 0 .../CMS_HH4b_550_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_550_13TeV_asymptoticCLs.out | 0 .../datacard_550_novo_285_625.txt | 0 .../CMS_HH4b_560_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_560_13TeV_asymptoticCLs.out | 0 .../datacard_560_novo_285_625.txt | 0 .../CMS_HH4b_570_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_570_13TeV_asymptoticCLs.out | 0 .../datacard_570_novo_285_625.txt | 0 .../CMS_HH4b_580_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_580_13TeV_asymptoticCLs.out | 0 .../datacard_580_novo_285_625.txt | 0 .../CMS_HH4b_590_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_590_13TeV_asymptoticCLs.out | 0 .../datacard_590_novo_285_625.txt | 0 .../CMS_HH4b_600_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_600_13TeV_asymptoticCLs.out | 0 .../datacard_600_novo_285_625.txt | 0 .../CMS_HH4b_610_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_610_13TeV_asymptoticCLs.out | 0 .../datacard_610_novo_285_625.txt | 0 .../CMS_HH4b_620_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_620_13TeV_asymptoticCLs.out | 0 .../datacard_620_novo_285_625.txt | 0 .../datacard_650_novo_285_625.txt | 0 .../CMS_HH4b_1000_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_1000_13TeV_asymptoticCLs.out | 0 .../datacard_1000_novo_550_1200.txt | 0 .../CMS_HH4b_1050_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_1050_13TeV_asymptoticCLs.out | 0 .../datacard_1050_novo_550_1200.txt | 0 .../CMS_HH4b_1100_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_1100_13TeV_asymptoticCLs.out | 0 .../datacard_1100_novo_550_1200.txt | 0 .../CMS_HH4b_1150_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_1150_13TeV_asymptoticCLs.out | 0 .../datacard_1150_novo_550_1200.txt | 0 .../CMS_HH4b_1200_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_1200_13TeV_asymptoticCLs.out | 0 .../datacard_1200_novo_550_1200.txt | 0 .../CMS_HH4b_550_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_550_13TeV_asymptoticCLs.out | 0 .../datacard_550_novo_550_1200.txt | 0 .../CMS_HH4b_570_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_570_13TeV_asymptoticCLs.out | 0 .../datacard_570_novo_550_1200.txt | 0 .../CMS_HH4b_600_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_600_13TeV_asymptoticCLs.out | 0 .../datacard_600_novo_550_1200.txt | 0 .../CMS_HH4b_620_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_620_13TeV_asymptoticCLs.out | 0 .../datacard_620_novo_550_1200.txt | 0 .../CMS_HH4b_650_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_650_13TeV_asymptoticCLs.out | 0 .../datacard_650_novo_550_1200.txt | 0 .../CMS_HH4b_670_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_670_13TeV_asymptoticCLs.out | 0 .../datacard_670_novo_550_1200.txt | 0 .../CMS_HH4b_700_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_700_13TeV_asymptoticCLs.out | 0 .../datacard_700_novo_550_1200.txt | 0 .../CMS_HH4b_720_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_720_13TeV_asymptoticCLs.out | 0 .../datacard_720_novo_550_1200.txt | 0 .../CMS_HH4b_750_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_750_13TeV_asymptoticCLs.out | 0 .../datacard_750_novo_550_1200.txt | 0 .../CMS_HH4b_770_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_770_13TeV_asymptoticCLs.out | 0 .../datacard_770_novo_550_1200.txt | 0 .../CMS_HH4b_800_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_800_13TeV_asymptoticCLs.out | 0 .../datacard_800_novo_550_1200.txt | 0 .../CMS_HH4b_820_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_820_13TeV_asymptoticCLs.out | 0 .../datacard_820_novo_550_1200.txt | 0 .../CMS_HH4b_840_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_840_13TeV_asymptoticCLs.out | 0 .../datacard_840_novo_550_1200.txt | 0 .../CMS_HH4b_860_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_860_13TeV_asymptoticCLs.out | 0 .../datacard_860_novo_550_1200.txt | 0 .../CMS_HH4b_880_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_880_13TeV_asymptoticCLs.out | 0 .../datacard_880_novo_550_1200.txt | 0 .../CMS_HH4b_900_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_900_13TeV_asymptoticCLs.out | 0 .../datacard_900_novo_550_1200.txt | 0 .../CMS_HH4b_920_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_920_13TeV_asymptoticCLs.out | 0 .../datacard_920_novo_550_1200.txt | 0 .../CMS_HH4b_940_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_940_13TeV_asymptoticCLs.out | 0 .../datacard_940_novo_550_1200.txt | 0 .../CMS_HH4b_960_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_960_13TeV_asymptoticCLs.out | 0 .../datacard_960_novo_550_1200.txt | 0 .../CMS_HH4b_980_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_980_13TeV_asymptoticCLs.out | 0 .../datacard_980_novo_550_1200.txt | 0 .../CMS_HH4b_260_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_260_13TeV_asymptoticCLs.out | 0 .../datacard_260_gaus_exp_250_330.txt | 0 .../CMS_HH4b_265_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_265_13TeV_asymptoticCLs.out | 0 .../datacard_265_gaus_exp_250_330.txt | 0 .../CMS_HH4b_270_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_270_13TeV_asymptoticCLs.out | 0 .../datacard_270_gaus_exp_250_330.txt | 0 .../datacard_270_novo_285_625.txt | 0 .../CMS_HH4b_275_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_275_13TeV_asymptoticCLs.out | 0 .../datacard_275_gaus_exp_250_330.txt | 0 .../datacard_275_novo_285_625.txt | 0 .../CMS_HH4b_280_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_280_13TeV_asymptoticCLs.out | 0 .../datacard_280_gaus_exp_250_330.txt | 0 .../datacard_280_novo_285_625.txt | 0 .../CMS_HH4b_285_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_285_13TeV_asymptoticCLs.out | 0 .../datacard_285_gaus_exp_250_330.txt | 0 .../datacard_285_novo_285_625.txt | 0 .../CMS_HH4b_290_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_290_13TeV_asymptoticCLs.out | 0 .../datacard_290_gaus_exp_250_330.txt | 0 .../CMS_HH4b_290_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_290_13TeV_asymptoticCLs.out | 0 .../datacard_290_novo_285_625.txt | 0 .../CMS_HH4b_295_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_295_13TeV_asymptoticCLs.out | 0 .../datacard_295_gaus_exp_250_330.txt | 0 .../CMS_HH4b_295_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_295_13TeV_asymptoticCLs.out | 0 .../datacard_295_novo_285_625.txt | 0 .../CMS_HH4b_300_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_300_13TeV_asymptoticCLs.out | 0 .../datacard_300_gaus_exp_250_330.txt | 0 .../CMS_HH4b_300_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_300_13TeV_asymptoticCLs.out | 0 .../datacard_300_novo_285_625.txt | 0 .../CMS_HH4b_310_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_310_13TeV_asymptoticCLs.out | 0 .../datacard_310_gaus_exp_250_330.txt | 0 .../CMS_HH4b_310_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_310_13TeV_asymptoticCLs.out | 0 .../datacard_310_novo_285_625.txt | 0 .../CMS_HH4b_320_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_320_13TeV_asymptoticCLs.out | 0 .../datacard_320_gaus_exp_250_330.txt | 0 .../CMS_HH4b_320_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_320_13TeV_asymptoticCLs.out | 0 .../datacard_320_novo_285_625.txt | 0 .../CMS_HH4b_330_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_330_13TeV_asymptoticCLs.out | 0 .../datacard_330_novo_285_625.txt | 0 .../CMS_HH4b_340_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_340_13TeV_asymptoticCLs.out | 0 .../datacard_340_novo_285_625.txt | 0 .../datacard_350_gaus_exp_250_330.txt | 0 .../CMS_HH4b_350_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_350_13TeV_asymptoticCLs.out | 0 .../datacard_350_novo_285_625.txt | 0 .../CMS_HH4b_360_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_360_13TeV_asymptoticCLs.out | 0 .../datacard_360_novo_285_625.txt | 0 .../CMS_HH4b_370_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_370_13TeV_asymptoticCLs.out | 0 .../datacard_370_novo_285_625.txt | 0 .../CMS_HH4b_380_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_380_13TeV_asymptoticCLs.out | 0 .../datacard_380_novo_285_625.txt | 0 .../CMS_HH4b_390_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_390_13TeV_asymptoticCLs.out | 0 .../datacard_390_novo_285_625.txt | 0 .../CMS_HH4b_400_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_400_13TeV_asymptoticCLs.out | 0 .../datacard_400_novo_285_625.txt | 0 .../CMS_HH4b_410_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_410_13TeV_asymptoticCLs.out | 0 .../datacard_410_novo_285_625.txt | 0 .../CMS_HH4b_420_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_420_13TeV_asymptoticCLs.out | 0 .../datacard_420_novo_285_625.txt | 0 .../CMS_HH4b_430_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_430_13TeV_asymptoticCLs.out | 0 .../datacard_430_novo_285_625.txt | 0 .../CMS_HH4b_440_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_440_13TeV_asymptoticCLs.out | 0 .../datacard_440_novo_285_625.txt | 0 .../CMS_HH4b_450_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_450_13TeV_asymptoticCLs.out | 0 .../datacard_450_novo_285_625.txt | 0 .../CMS_HH4b_460_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_460_13TeV_asymptoticCLs.out | 0 .../datacard_460_novo_285_625.txt | 0 .../CMS_HH4b_470_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_470_13TeV_asymptoticCLs.out | 0 .../datacard_470_novo_285_625.txt | 0 .../CMS_HH4b_480_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_480_13TeV_asymptoticCLs.out | 0 .../datacard_480_novo_285_625.txt | 0 .../CMS_HH4b_490_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_490_13TeV_asymptoticCLs.out | 0 .../datacard_490_novo_285_625.txt | 0 .../CMS_HH4b_500_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_500_13TeV_asymptoticCLs.out | 0 .../datacard_500_novo_285_625.txt | 0 .../CMS_HH4b_510_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_510_13TeV_asymptoticCLs.out | 0 .../datacard_510_novo_285_625.txt | 0 .../CMS_HH4b_520_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_520_13TeV_asymptoticCLs.out | 0 .../datacard_520_novo_285_625.txt | 0 .../CMS_HH4b_530_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_530_13TeV_asymptoticCLs.out | 0 .../datacard_530_novo_285_625.txt | 0 .../CMS_HH4b_540_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_540_13TeV_asymptoticCLs.out | 0 .../datacard_540_novo_285_625.txt | 0 .../CMS_HH4b_550_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_550_13TeV_asymptoticCLs.out | 0 .../datacard_550_novo_285_625.txt | 0 .../CMS_HH4b_560_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_560_13TeV_asymptoticCLs.out | 0 .../datacard_560_novo_285_625.txt | 0 .../CMS_HH4b_570_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_570_13TeV_asymptoticCLs.out | 0 .../datacard_570_novo_285_625.txt | 0 .../CMS_HH4b_580_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_580_13TeV_asymptoticCLs.out | 0 .../datacard_580_novo_285_625.txt | 0 .../CMS_HH4b_590_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_590_13TeV_asymptoticCLs.out | 0 .../datacard_590_novo_285_625.txt | 0 .../CMS_HH4b_600_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_600_13TeV_asymptoticCLs.out | 0 .../datacard_600_novo_285_625.txt | 0 .../CMS_HH4b_610_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_610_13TeV_asymptoticCLs.out | 0 .../datacard_610_novo_285_625.txt | 0 .../CMS_HH4b_620_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_620_13TeV_asymptoticCLs.out | 0 .../datacard_620_novo_285_625.txt | 0 .../datacard_650_novo_285_625.txt | 0 .../CMS_HH4b_1000_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_1000_13TeV_asymptoticCLs.out | 0 .../datacard_1000_novo_550_1200.txt | 0 .../CMS_HH4b_1050_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_1050_13TeV_asymptoticCLs.out | 0 .../datacard_1050_novo_550_1200.txt | 0 .../CMS_HH4b_1100_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_1100_13TeV_asymptoticCLs.out | 0 .../datacard_1100_novo_550_1200.txt | 0 .../CMS_HH4b_1150_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_1150_13TeV_asymptoticCLs.out | 0 .../datacard_1150_novo_550_1200.txt | 0 .../CMS_HH4b_1200_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_1200_13TeV_asymptoticCLs.out | 0 .../datacard_1200_novo_550_1200.txt | 0 .../CMS_HH4b_550_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_550_13TeV_asymptoticCLs.out | 0 .../datacard_550_novo_550_1200.txt | 0 .../CMS_HH4b_570_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_570_13TeV_asymptoticCLs.out | 0 .../datacard_570_novo_550_1200.txt | 0 .../CMS_HH4b_600_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_600_13TeV_asymptoticCLs.out | 0 .../datacard_600_novo_550_1200.txt | 0 .../CMS_HH4b_620_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_620_13TeV_asymptoticCLs.out | 0 .../datacard_620_novo_550_1200.txt | 0 .../CMS_HH4b_650_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_650_13TeV_asymptoticCLs.out | 0 .../datacard_650_novo_550_1200.txt | 0 .../CMS_HH4b_670_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_670_13TeV_asymptoticCLs.out | 0 .../datacard_670_novo_550_1200.txt | 0 .../CMS_HH4b_700_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_700_13TeV_asymptoticCLs.out | 0 .../datacard_700_novo_550_1200.txt | 0 .../CMS_HH4b_720_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_720_13TeV_asymptoticCLs.out | 0 .../datacard_720_novo_550_1200.txt | 0 .../CMS_HH4b_750_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_750_13TeV_asymptoticCLs.out | 0 .../datacard_750_novo_550_1200.txt | 0 .../CMS_HH4b_770_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_770_13TeV_asymptoticCLs.out | 0 .../datacard_770_novo_550_1200.txt | 0 .../CMS_HH4b_800_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_800_13TeV_asymptoticCLs.out | 0 .../datacard_800_novo_550_1200.txt | 0 .../CMS_HH4b_820_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_820_13TeV_asymptoticCLs.out | 0 .../datacard_820_novo_550_1200.txt | 0 .../CMS_HH4b_840_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_840_13TeV_asymptoticCLs.out | 0 .../datacard_840_novo_550_1200.txt | 0 .../CMS_HH4b_860_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_860_13TeV_asymptoticCLs.out | 0 .../datacard_860_novo_550_1200.txt | 0 .../CMS_HH4b_880_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_880_13TeV_asymptoticCLs.out | 0 .../datacard_880_novo_550_1200.txt | 0 .../CMS_HH4b_900_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_900_13TeV_asymptoticCLs.out | 0 .../datacard_900_novo_550_1200.txt | 0 .../CMS_HH4b_920_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_920_13TeV_asymptoticCLs.out | 0 .../datacard_920_novo_550_1200.txt | 0 .../CMS_HH4b_940_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_940_13TeV_asymptoticCLs.out | 0 .../datacard_940_novo_550_1200.txt | 0 .../CMS_HH4b_960_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_960_13TeV_asymptoticCLs.out | 0 .../datacard_960_novo_550_1200.txt | 0 .../CMS_HH4b_980_13TeV_MaxLikelihood.out | 0 .../CMS_HH4b_980_13TeV_asymptoticCLs.out | 0 .../datacard_980_novo_550_1200.txt | 0 bias_LMR_1.txt | 3 - bias_LMR_2.txt | 7 - bias_MMR_1.txt | 7 - bias_MMR_2.txt | 7 - out.log | 1516 ----------------- out2.log | 80 - prova.txt | 1 - test1.txt | 0 test10.txt | Bin 284163 -> 0 bytes test11.txt | Bin 284169 -> 0 bytes test12.txt | Bin 284111 -> 0 bytes test2.txt | Bin 143267 -> 0 bytes test3.txt | 6 - test4.txt | Bin 143267 -> 0 bytes test5.txt | 6 - test6.txt | 7 - test7.txt | 6 - test8.txt | 6 - test9.txt | Bin 284218 -> 0 bytes 1211 files changed, 269895 deletions(-) delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_260_crystal_252_330/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_260_crystal_252_330/datacard_260_crystal_252_330.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_260_crystal_252_330/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_260_crystal_252_330/signal260_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_260_gaus_exp_252_330/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_260_gaus_exp_252_330/datacard_260_gaus_exp_252_330.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_260_gaus_exp_252_330/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_260_gaus_exp_252_330/signal260_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_crystal_1_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_crystal_1_285_624/datacard_270_crystal_1_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_crystal_1_285_624/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_crystal_1_285_624/signal270_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_crystal_252_330/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_crystal_252_330/datacard_270_crystal_252_330.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_crystal_252_330/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_crystal_252_330/signal270_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_gaus_exp_252_330/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_gaus_exp_252_330/datacard_270_gaus_exp_252_330.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_gaus_exp_252_330/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_gaus_exp_252_330/signal270_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_novo_285_624/signal270_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_crystal_1_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_crystal_1_285_624/datacard_300_crystal_1_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_crystal_1_285_624/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_crystal_1_285_624/signal300_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_crystal_252_330/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_crystal_252_330/datacard_300_crystal_252_330.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_crystal_252_330/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_crystal_252_330/signal300_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_gaus_exp_252_330/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_gaus_exp_252_330/datacard_300_gaus_exp_252_330.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_gaus_exp_252_330/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_gaus_exp_252_330/signal300_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_novo_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_novo_285_624/datacard_300_novo_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_novo_285_624/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_novo_285_624/signal300_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_crystal_1_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_crystal_1_285_624/datacard_350_crystal_1_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_crystal_1_285_624/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_crystal_1_285_624/signal350_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_crystal_252_330/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_crystal_252_330/datacard_350_crystal_252_330.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_crystal_252_330/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_crystal_252_330/signal350_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_gaus_exp_252_330/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_gaus_exp_252_330/datacard_350_gaus_exp_252_330.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_gaus_exp_252_330/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_gaus_exp_252_330/signal350_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_novo_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_novo_285_624/datacard_350_novo_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_novo_285_624/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_novo_285_624/signal350_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_400_crystal_1_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_400_crystal_1_285_624/datacard_400_crystal_1_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_400_crystal_1_285_624/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_400_crystal_1_285_624/signal400_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_400_novo_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_400_novo_285_624/datacard_400_novo_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_400_novo_285_624/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_400_novo_285_624/signal400_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_450_crystal_1_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_450_crystal_1_285_624/datacard_450_crystal_1_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_450_crystal_1_285_624/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_450_crystal_1_285_624/signal450_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_450_novo_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_450_novo_285_624/datacard_450_novo_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_450_novo_285_624/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_450_novo_285_624/signal450_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_500_crystal_1_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_500_crystal_1_285_624/datacard_500_crystal_1_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_500_crystal_1_285_624/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_500_crystal_1_285_624/signal500_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_500_novo_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_500_novo_285_624/datacard_500_novo_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_500_novo_285_624/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_500_novo_285_624/signal500_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_550_crystal_1_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_550_crystal_1_285_624/datacard_550_crystal_1_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_550_crystal_1_285_624/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_550_crystal_1_285_624/signal550_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_550_novo_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_550_novo_285_624/datacard_550_novo_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_550_novo_285_624/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_550_novo_285_624/signal550_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_600_crystal_1_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_600_crystal_1_285_624/datacard_600_crystal_1_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_600_crystal_1_285_624/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_600_crystal_1_285_624/signal600_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_600_novo_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_600_novo_285_624/datacard_600_novo_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_600_novo_285_624/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_600_novo_285_624/signal600_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_650_crystal_1_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_650_crystal_1_285_624/datacard_650_crystal_1_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_650_crystal_1_285_624/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_650_crystal_1_285_624/signal650_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_650_novo_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_650_novo_285_624/datacard_650_novo_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_650_novo_285_624/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_650_novo_285_624/signal650_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_260_crystal_252_330/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_260_crystal_252_330/datacard_260_crystal_252_330.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_260_crystal_252_330/signal260_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_260_gaus_exp_252_330/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_260_gaus_exp_252_330/datacard_260_gaus_exp_252_330.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_260_gaus_exp_252_330/signal260_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_270_crystal_1_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_270_crystal_1_285_624/datacard_270_crystal_1_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_270_crystal_1_285_624/signal270_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_270_crystal_252_330/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_270_crystal_252_330/datacard_270_crystal_252_330.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_270_crystal_252_330/signal270_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_270_gaus_exp_252_330/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_270_gaus_exp_252_330/datacard_270_gaus_exp_252_330.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_270_gaus_exp_252_330/signal270_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_270_novo_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_270_novo_285_624/datacard_270_novo_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_270_novo_285_624/signal270_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_300_crystal_1_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_300_crystal_1_285_624/datacard_300_crystal_1_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_300_crystal_1_285_624/signal300_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_300_crystal_252_330/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_300_crystal_252_330/datacard_300_crystal_252_330.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_300_crystal_252_330/signal300_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_300_gaus_exp_252_330/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_300_gaus_exp_252_330/datacard_300_gaus_exp_252_330.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_300_gaus_exp_252_330/signal300_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_300_novo_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_300_novo_285_624/datacard_300_novo_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_300_novo_285_624/signal300_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_350_crystal_1_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_350_crystal_1_285_624/datacard_350_crystal_1_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_350_crystal_1_285_624/signal350_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_350_crystal_252_330/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_350_crystal_252_330/datacard_350_crystal_252_330.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_350_crystal_252_330/signal350_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_350_gaus_exp_252_330/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_350_gaus_exp_252_330/datacard_350_gaus_exp_252_330.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_350_gaus_exp_252_330/signal350_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_350_novo_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_350_novo_285_624/datacard_350_novo_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_350_novo_285_624/signal350_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_400_crystal_1_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_400_crystal_1_285_624/datacard_400_crystal_1_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_400_crystal_1_285_624/signal400_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_400_novo_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_400_novo_285_624/datacard_400_novo_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_400_novo_285_624/signal400_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_450_crystal_1_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_450_crystal_1_285_624/datacard_450_crystal_1_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_450_crystal_1_285_624/signal450_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_450_novo_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_450_novo_285_624/datacard_450_novo_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_450_novo_285_624/signal450_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_500_crystal_1_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_500_crystal_1_285_624/datacard_500_crystal_1_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_500_crystal_1_285_624/signal500_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_500_novo_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_500_novo_285_624/datacard_500_novo_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_500_novo_285_624/signal500_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_550_crystal_1_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_550_crystal_1_285_624/datacard_550_crystal_1_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_550_crystal_1_285_624/signal550_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_550_novo_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_550_novo_285_624/datacard_550_novo_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_550_novo_285_624/signal550_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_600_crystal_1_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_600_crystal_1_285_624/datacard_600_crystal_1_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_600_crystal_1_285_624/signal600_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_600_novo_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_600_novo_285_624/datacard_600_novo_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_600_novo_285_624/signal600_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_650_crystal_1_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_650_crystal_1_285_624/datacard_650_crystal_1_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_650_crystal_1_285_624/signal650_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_650_novo_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_650_novo_285_624/datacard_650_novo_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_650_novo_285_624/signal650_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/save/Histograms_BTagall.root delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/save/Histograms_GluGluToBulkGravitonToHHTo4B_M-260_narrow_13TeV-madgraph.root delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/save/Histograms_GluGluToBulkGravitonToHHTo4B_M-270_narrow_13TeV-madgraph.root delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/save/Histograms_GluGluToBulkGravitonToHHTo4B_M-300_narrow_13TeV-madgraph.root delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/save/Histograms_GluGluToBulkGravitonToHHTo4B_M-350_narrow_13TeV-madgraph.root delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/save/Histograms_GluGluToBulkGravitonToHHTo4B_M-400_narrow_13TeV-madgraph.root delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/save/Histograms_GluGluToBulkGravitonToHHTo4B_M-450_narrow_13TeV-madgraph.root delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/save/Histograms_GluGluToBulkGravitonToHHTo4B_M-500_narrow_13TeV-madgraph.root delete mode 100644 PreselectedWithRegressionDeepCSV/LMRSelection_chi2/save/Histograms_GluGluToBulkGravitonToHHTo4B_M-550_narrow_13TeV-madgraph.root delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_1000_crystal_1_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_1000_crystal_1_550_1200/datacard_1000_crystal_1_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_1000_crystal_1_550_1200/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_1000_crystal_1_550_1200/signal1000_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_1000_novo_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_1000_novo_550_1200/datacard_1000_novo_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_1000_novo_550_1200/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_1000_novo_550_1200/signal1000_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_550_crystal_1_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_550_crystal_1_550_1200/datacard_550_crystal_1_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_550_crystal_1_550_1200/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_550_crystal_1_550_1200/signal550_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_550_novo_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_550_novo_550_1200/datacard_550_novo_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_550_novo_550_1200/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_550_novo_550_1200/signal550_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_600_crystal_1_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_600_crystal_1_550_1200/datacard_600_crystal_1_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_600_crystal_1_550_1200/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_600_crystal_1_550_1200/signal600_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_600_novo_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_600_novo_550_1200/datacard_600_novo_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_600_novo_550_1200/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_600_novo_550_1200/signal600_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_650_crystal_1_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_650_crystal_1_550_1200/datacard_650_crystal_1_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_650_crystal_1_550_1200/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_650_crystal_1_550_1200/signal650_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_650_novo_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_650_novo_550_1200/datacard_650_novo_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_650_novo_550_1200/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_650_novo_550_1200/signal650_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_750_crystal_1_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_750_crystal_1_550_1200/datacard_750_crystal_1_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_750_crystal_1_550_1200/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_750_crystal_1_550_1200/signal750_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_750_novo_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_750_novo_550_1200/datacard_750_novo_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_750_novo_550_1200/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_750_novo_550_1200/signal750_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_800_crystal_1_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_800_crystal_1_550_1200/datacard_800_crystal_1_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_800_crystal_1_550_1200/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_800_crystal_1_550_1200/signal800_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_800_novo_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_800_novo_550_1200/datacard_800_novo_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_800_novo_550_1200/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_800_novo_550_1200/signal800_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_900_crystal_1_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_900_crystal_1_550_1200/datacard_900_crystal_1_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_900_crystal_1_550_1200/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_900_crystal_1_550_1200/signal900_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_900_novo_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_900_novo_550_1200/datacard_900_novo_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_900_novo_550_1200/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_900_novo_550_1200/signal900_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_1000_crystal_1_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_1000_crystal_1_550_1200/datacard_1000_crystal_1_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_1000_crystal_1_550_1200/signal1000_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_1000_novo_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_1000_novo_550_1200/datacard_1000_novo_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_1000_novo_550_1200/signal1000_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_550_crystal_1_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_550_crystal_1_550_1200/datacard_550_crystal_1_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_550_crystal_1_550_1200/signal550_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_550_novo_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_550_novo_550_1200/datacard_550_novo_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_550_novo_550_1200/signal550_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_600_crystal_1_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_600_crystal_1_550_1200/datacard_600_crystal_1_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_600_crystal_1_550_1200/signal600_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_600_novo_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_600_novo_550_1200/datacard_600_novo_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_600_novo_550_1200/signal600_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_650_crystal_1_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_650_crystal_1_550_1200/datacard_650_crystal_1_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_650_crystal_1_550_1200/signal650_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_650_novo_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_650_novo_550_1200/datacard_650_novo_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_650_novo_550_1200/signal650_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_750_crystal_1_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_750_crystal_1_550_1200/datacard_750_crystal_1_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_750_crystal_1_550_1200/signal750_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_750_novo_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_750_novo_550_1200/datacard_750_novo_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_750_novo_550_1200/signal750_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_800_crystal_1_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_800_crystal_1_550_1200/datacard_800_crystal_1_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_800_crystal_1_550_1200/signal800_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_800_novo_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_800_novo_550_1200/datacard_800_novo_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_800_novo_550_1200/signal800_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_900_crystal_1_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_900_crystal_1_550_1200/datacard_900_crystal_1_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_900_crystal_1_550_1200/signal900_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_900_novo_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_900_novo_550_1200/datacard_900_novo_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_900_novo_550_1200/signal900_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/save/Histogram_BTagCSV.root delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/save/Histograms_BTagall.root delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/save/Histograms_Btagall.root delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/save/Histograms_BulkGravTohhTohbbhbb_narrow_M-1000_13TeV-madgraph.root delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/save/Histograms_BulkGravTohhTohbbhbb_narrow_M-1200_13TeV-madgraph.root delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/save/Histograms_GluGluToBulkGravitonToHHTo4B_M-300_narrow_13TeV-madgraph.root delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/save/Histograms_GluGluToBulkGravitonToHHTo4B_M-350_narrow_13TeV-madgraph.root delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/save/Histograms_GluGluToBulkGravitonToHHTo4B_M-400_narrow_13TeV-madgraph.root delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/save/Histograms_GluGluToBulkGravitonToHHTo4B_M-450_narrow_13TeV-madgraph.root delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/save/Histograms_GluGluToBulkGravitonToHHTo4B_M-500_narrow_13TeV-madgraph.root delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/save/Histograms_GluGluToBulkGravitonToHHTo4B_M-550_narrow_13TeV-madgraph.root delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/save/Histograms_GluGluToBulkGravitonToHHTo4B_M-600_narrow_13TeV-madgraph.root delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/save/Histograms_GluGluToBulkGravitonToHHTo4B_M-650_narrow_13TeV-madgraph.root delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/save/Histograms_GluGluToBulkGravitonToHHTo4B_M-750_narrow_13TeV-madgraph.root delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/save/Histograms_GluGluToBulkGravitonToHHTo4B_M-800_narrow_13TeV-madgraph.root delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/save/Histograms_GluGluToBulkGravitonToHHTo4B_M-900_narrow_13TeV-madgraph.root delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/save/Histograms_ST.root delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/save/Histograms_TT.root delete mode 100644 PreselectedWithRegressionDeepCSV/MMRSelection_chi2/save/Histograms_ZZ.root delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_260_crystal_252_330/CMS_HH4b_260_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_260_crystal_252_330/CMS_HH4b_260_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_260_crystal_252_330/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_260_crystal_252_330/datacard_260_crystal_252_330.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_260_crystal_252_330/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_260_crystal_252_330/signal260_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_260_gaus_exp_252_330/CMS_HH4b_260_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_260_gaus_exp_252_330/CMS_HH4b_260_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_260_gaus_exp_252_330/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_260_gaus_exp_252_330/datacard_260_gaus_exp_252_330.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_260_gaus_exp_252_330/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_260_gaus_exp_252_330/signal260_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_270_crystal_1_285_624/CMS_HH4b_270_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_270_crystal_1_285_624/CMS_HH4b_270_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_270_crystal_1_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_270_crystal_1_285_624/datacard_270_crystal_1_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_270_crystal_1_285_624/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_270_crystal_1_285_624/signal270_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_270_crystal_252_330/CMS_HH4b_270_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_270_crystal_252_330/CMS_HH4b_270_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_270_crystal_252_330/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_270_crystal_252_330/datacard_270_crystal_252_330.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_270_crystal_252_330/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_270_crystal_252_330/signal270_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_270_gaus_exp_252_330/CMS_HH4b_270_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_270_gaus_exp_252_330/CMS_HH4b_270_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_270_gaus_exp_252_330/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_270_gaus_exp_252_330/datacard_270_gaus_exp_252_330.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_270_gaus_exp_252_330/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_270_gaus_exp_252_330/signal270_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_270_novo_285_624/CMS_HH4b_270_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_270_novo_285_624/CMS_HH4b_270_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_270_novo_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_270_novo_285_624/datacard_270_novo_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_270_novo_285_624/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_270_novo_285_624/signal270_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_300_crystal_1_285_624/CMS_HH4b_300_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_300_crystal_1_285_624/CMS_HH4b_300_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_300_crystal_1_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_300_crystal_1_285_624/datacard_300_crystal_1_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_300_crystal_1_285_624/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_300_crystal_1_285_624/signal300_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_300_crystal_252_330/CMS_HH4b_300_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_300_crystal_252_330/CMS_HH4b_300_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_300_crystal_252_330/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_300_crystal_252_330/datacard_300_crystal_252_330.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_300_crystal_252_330/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_300_crystal_252_330/signal300_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_300_gaus_exp_252_330/CMS_HH4b_300_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_300_gaus_exp_252_330/CMS_HH4b_300_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_300_gaus_exp_252_330/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_300_gaus_exp_252_330/datacard_300_gaus_exp_252_330.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_300_gaus_exp_252_330/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_300_gaus_exp_252_330/signal300_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_300_novo_285_624/CMS_HH4b_300_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_300_novo_285_624/CMS_HH4b_300_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_300_novo_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_300_novo_285_624/datacard_300_novo_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_300_novo_285_624/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_300_novo_285_624/signal300_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_350_crystal_1_285_624/CMS_HH4b_350_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_350_crystal_1_285_624/CMS_HH4b_350_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_350_crystal_1_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_350_crystal_1_285_624/datacard_350_crystal_1_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_350_crystal_1_285_624/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_350_crystal_1_285_624/signal350_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_350_crystal_252_330/CMS_HH4b_350_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_350_crystal_252_330/CMS_HH4b_350_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_350_crystal_252_330/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_350_crystal_252_330/datacard_350_crystal_252_330.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_350_crystal_252_330/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_350_crystal_252_330/signal350_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_350_gaus_exp_252_330/CMS_HH4b_350_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_350_gaus_exp_252_330/CMS_HH4b_350_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_350_gaus_exp_252_330/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_350_gaus_exp_252_330/datacard_350_gaus_exp_252_330.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_350_gaus_exp_252_330/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_350_gaus_exp_252_330/signal350_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_350_novo_285_624/CMS_HH4b_350_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_350_novo_285_624/CMS_HH4b_350_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_350_novo_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_350_novo_285_624/datacard_350_novo_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_350_novo_285_624/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_350_novo_285_624/signal350_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_400_crystal_1_285_624/CMS_HH4b_400_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_400_crystal_1_285_624/CMS_HH4b_400_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_400_crystal_1_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_400_crystal_1_285_624/datacard_400_crystal_1_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_400_crystal_1_285_624/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_400_crystal_1_285_624/signal400_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_400_novo_285_624/CMS_HH4b_400_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_400_novo_285_624/CMS_HH4b_400_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_400_novo_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_400_novo_285_624/datacard_400_novo_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_400_novo_285_624/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_400_novo_285_624/signal400_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_450_crystal_1_285_624/CMS_HH4b_450_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_450_crystal_1_285_624/CMS_HH4b_450_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_450_crystal_1_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_450_crystal_1_285_624/datacard_450_crystal_1_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_450_crystal_1_285_624/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_450_crystal_1_285_624/signal450_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_450_novo_285_624/CMS_HH4b_450_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_450_novo_285_624/CMS_HH4b_450_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_450_novo_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_450_novo_285_624/datacard_450_novo_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_450_novo_285_624/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_450_novo_285_624/signal450_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_500_crystal_1_285_624/CMS_HH4b_500_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_500_crystal_1_285_624/CMS_HH4b_500_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_500_crystal_1_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_500_crystal_1_285_624/datacard_500_crystal_1_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_500_crystal_1_285_624/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_500_crystal_1_285_624/signal500_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_500_novo_285_624/CMS_HH4b_500_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_500_novo_285_624/CMS_HH4b_500_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_500_novo_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_500_novo_285_624/datacard_500_novo_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_500_novo_285_624/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_500_novo_285_624/signal500_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_550_crystal_1_285_624/CMS_HH4b_550_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_550_crystal_1_285_624/CMS_HH4b_550_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_550_crystal_1_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_550_crystal_1_285_624/datacard_550_crystal_1_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_550_crystal_1_285_624/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_550_crystal_1_285_624/signal550_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_550_novo_285_624/CMS_HH4b_550_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_550_novo_285_624/CMS_HH4b_550_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_550_novo_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_550_novo_285_624/datacard_550_novo_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_550_novo_285_624/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_550_novo_285_624/signal550_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_600_crystal_1_285_624/CMS_HH4b_600_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_600_crystal_1_285_624/CMS_HH4b_600_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_600_crystal_1_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_600_crystal_1_285_624/datacard_600_crystal_1_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_600_crystal_1_285_624/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_600_crystal_1_285_624/signal600_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_600_novo_285_624/CMS_HH4b_600_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_600_novo_285_624/CMS_HH4b_600_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_600_novo_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_600_novo_285_624/datacard_600_novo_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_600_novo_285_624/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_600_novo_285_624/signal600_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_650_crystal_1_285_624/CMS_HH4b_650_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_650_crystal_1_285_624/CMS_HH4b_650_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_650_crystal_1_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_650_crystal_1_285_624/datacard_650_crystal_1_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_650_crystal_1_285_624/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_650_crystal_1_285_624/signal650_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_650_novo_285_624/CMS_HH4b_650_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_650_novo_285_624/CMS_HH4b_650_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_650_novo_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_650_novo_285_624/datacard_650_novo_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_650_novo_285_624/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/3GeV/LMR_650_novo_285_624/signal650_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_260_crystal_252_330/CMS_HH4b_260_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_260_crystal_252_330/CMS_HH4b_260_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_260_crystal_252_330/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_260_crystal_252_330/datacard_260_crystal_252_330.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_260_crystal_252_330/signal260_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_260_gaus_exp_252_330/CMS_HH4b_260_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_260_gaus_exp_252_330/CMS_HH4b_260_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_260_gaus_exp_252_330/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_260_gaus_exp_252_330/datacard_260_gaus_exp_252_330.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_260_gaus_exp_252_330/signal260_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_270_crystal_1_285_624/CMS_HH4b_270_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_270_crystal_1_285_624/CMS_HH4b_270_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_270_crystal_1_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_270_crystal_1_285_624/datacard_270_crystal_1_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_270_crystal_1_285_624/signal270_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_270_crystal_252_330/CMS_HH4b_270_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_270_crystal_252_330/CMS_HH4b_270_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_270_crystal_252_330/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_270_crystal_252_330/datacard_270_crystal_252_330.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_270_crystal_252_330/signal270_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_270_gaus_exp_252_330/CMS_HH4b_270_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_270_gaus_exp_252_330/CMS_HH4b_270_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_270_gaus_exp_252_330/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_270_gaus_exp_252_330/datacard_270_gaus_exp_252_330.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_270_gaus_exp_252_330/signal270_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_270_novo_285_624/CMS_HH4b_270_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_270_novo_285_624/CMS_HH4b_270_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_270_novo_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_270_novo_285_624/datacard_270_novo_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_270_novo_285_624/signal270_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_300_crystal_1_285_624/CMS_HH4b_300_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_300_crystal_1_285_624/CMS_HH4b_300_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_300_crystal_1_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_300_crystal_1_285_624/datacard_300_crystal_1_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_300_crystal_1_285_624/signal300_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_300_crystal_252_330/CMS_HH4b_300_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_300_crystal_252_330/CMS_HH4b_300_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_300_crystal_252_330/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_300_crystal_252_330/datacard_300_crystal_252_330.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_300_crystal_252_330/signal300_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_300_gaus_exp_252_330/CMS_HH4b_300_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_300_gaus_exp_252_330/CMS_HH4b_300_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_300_gaus_exp_252_330/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_300_gaus_exp_252_330/datacard_300_gaus_exp_252_330.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_300_gaus_exp_252_330/signal300_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_300_novo_285_624/CMS_HH4b_300_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_300_novo_285_624/CMS_HH4b_300_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_300_novo_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_300_novo_285_624/datacard_300_novo_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_300_novo_285_624/signal300_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_350_crystal_1_285_624/CMS_HH4b_350_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_350_crystal_1_285_624/CMS_HH4b_350_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_350_crystal_1_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_350_crystal_1_285_624/datacard_350_crystal_1_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_350_crystal_1_285_624/signal350_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_350_crystal_252_330/CMS_HH4b_350_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_350_crystal_252_330/CMS_HH4b_350_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_350_crystal_252_330/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_350_crystal_252_330/datacard_350_crystal_252_330.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_350_crystal_252_330/signal350_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_350_gaus_exp_252_330/CMS_HH4b_350_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_350_gaus_exp_252_330/CMS_HH4b_350_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_350_gaus_exp_252_330/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_350_gaus_exp_252_330/datacard_350_gaus_exp_252_330.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_350_gaus_exp_252_330/signal350_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_350_novo_285_624/CMS_HH4b_350_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_350_novo_285_624/CMS_HH4b_350_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_350_novo_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_350_novo_285_624/datacard_350_novo_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_350_novo_285_624/signal350_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_400_crystal_1_285_624/CMS_HH4b_400_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_400_crystal_1_285_624/CMS_HH4b_400_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_400_crystal_1_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_400_crystal_1_285_624/datacard_400_crystal_1_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_400_crystal_1_285_624/signal400_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_400_novo_285_624/CMS_HH4b_400_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_400_novo_285_624/CMS_HH4b_400_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_400_novo_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_400_novo_285_624/datacard_400_novo_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_400_novo_285_624/signal400_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_450_crystal_1_285_624/CMS_HH4b_450_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_450_crystal_1_285_624/CMS_HH4b_450_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_450_crystal_1_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_450_crystal_1_285_624/datacard_450_crystal_1_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_450_crystal_1_285_624/signal450_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_450_novo_285_624/CMS_HH4b_450_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_450_novo_285_624/CMS_HH4b_450_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_450_novo_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_450_novo_285_624/datacard_450_novo_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_450_novo_285_624/signal450_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_500_crystal_1_285_624/CMS_HH4b_500_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_500_crystal_1_285_624/CMS_HH4b_500_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_500_crystal_1_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_500_crystal_1_285_624/datacard_500_crystal_1_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_500_crystal_1_285_624/signal500_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_500_novo_285_624/CMS_HH4b_500_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_500_novo_285_624/CMS_HH4b_500_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_500_novo_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_500_novo_285_624/datacard_500_novo_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_500_novo_285_624/signal500_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_550_crystal_1_285_624/CMS_HH4b_550_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_550_crystal_1_285_624/CMS_HH4b_550_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_550_crystal_1_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_550_crystal_1_285_624/datacard_550_crystal_1_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_550_crystal_1_285_624/signal550_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_550_novo_285_624/CMS_HH4b_550_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_550_novo_285_624/CMS_HH4b_550_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_550_novo_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_550_novo_285_624/datacard_550_novo_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_550_novo_285_624/signal550_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_600_crystal_1_285_624/CMS_HH4b_600_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_600_crystal_1_285_624/CMS_HH4b_600_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_600_crystal_1_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_600_crystal_1_285_624/datacard_600_crystal_1_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_600_crystal_1_285_624/signal600_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_600_novo_285_624/CMS_HH4b_600_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_600_novo_285_624/CMS_HH4b_600_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_600_novo_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_600_novo_285_624/datacard_600_novo_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_600_novo_285_624/signal600_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_650_crystal_1_285_624/CMS_HH4b_650_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_650_crystal_1_285_624/CMS_HH4b_650_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_650_crystal_1_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_650_crystal_1_285_624/datacard_650_crystal_1_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_650_crystal_1_285_624/signal650_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_650_novo_285_624/CMS_HH4b_650_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_650_novo_285_624/CMS_HH4b_650_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_650_novo_285_624/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_650_novo_285_624/datacard_650_novo_285_624.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/5GeV/LMR_650_novo_285_624/signal650_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/draw_limits.c delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/fig/linearmorph_260_270.pdf delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/fig/linearmorph_260_270.png delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/fig/linearmorph_270_300.pdf delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/fig/linearmorph_270_300.png delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/fig/linearmorph_300_350.pdf delete mode 100644 PreselectedWithRegressionDeepCSV/limits/LMR/fig/linearmorph_300_350.png delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_1000_crystal_1_550_1200/CMS_HH4b_1000_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_1000_crystal_1_550_1200/CMS_HH4b_1000_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_1000_crystal_1_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_1000_crystal_1_550_1200/datacard_1000_crystal_1_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_1000_crystal_1_550_1200/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_1000_crystal_1_550_1200/signal1000_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_1000_novo_550_1200/CMS_HH4b_1000_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_1000_novo_550_1200/CMS_HH4b_1000_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_1000_novo_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_1000_novo_550_1200/datacard_1000_novo_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_1000_novo_550_1200/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_1000_novo_550_1200/signal1000_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_550_crystal_1_550_1200/CMS_HH4b_550_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_550_crystal_1_550_1200/CMS_HH4b_550_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_550_crystal_1_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_550_crystal_1_550_1200/datacard_550_crystal_1_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_550_crystal_1_550_1200/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_550_crystal_1_550_1200/signal550_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_550_novo_550_1200/CMS_HH4b_550_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_550_novo_550_1200/CMS_HH4b_550_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_550_novo_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_550_novo_550_1200/datacard_550_novo_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_550_novo_550_1200/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_550_novo_550_1200/signal550_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_600_crystal_1_550_1200/CMS_HH4b_600_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_600_crystal_1_550_1200/CMS_HH4b_600_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_600_crystal_1_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_600_crystal_1_550_1200/datacard_600_crystal_1_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_600_crystal_1_550_1200/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_600_crystal_1_550_1200/signal600_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_600_novo_550_1200/CMS_HH4b_600_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_600_novo_550_1200/CMS_HH4b_600_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_600_novo_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_600_novo_550_1200/datacard_600_novo_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_600_novo_550_1200/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_600_novo_550_1200/signal600_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_650_crystal_1_550_1200/CMS_HH4b_650_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_650_crystal_1_550_1200/CMS_HH4b_650_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_650_crystal_1_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_650_crystal_1_550_1200/datacard_650_crystal_1_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_650_crystal_1_550_1200/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_650_crystal_1_550_1200/signal650_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_650_novo_550_1200/CMS_HH4b_650_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_650_novo_550_1200/CMS_HH4b_650_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_650_novo_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_650_novo_550_1200/datacard_650_novo_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_650_novo_550_1200/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_650_novo_550_1200/signal650_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_750_crystal_1_550_1200/CMS_HH4b_750_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_750_crystal_1_550_1200/CMS_HH4b_750_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_750_crystal_1_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_750_crystal_1_550_1200/datacard_750_crystal_1_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_750_crystal_1_550_1200/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_750_crystal_1_550_1200/signal750_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_750_novo_550_1200/CMS_HH4b_750_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_750_novo_550_1200/CMS_HH4b_750_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_750_novo_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_750_novo_550_1200/datacard_750_novo_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_750_novo_550_1200/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_750_novo_550_1200/signal750_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_800_crystal_1_550_1200/CMS_HH4b_800_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_800_crystal_1_550_1200/CMS_HH4b_800_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_800_crystal_1_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_800_crystal_1_550_1200/datacard_800_crystal_1_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_800_crystal_1_550_1200/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_800_crystal_1_550_1200/signal800_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_800_novo_550_1200/CMS_HH4b_800_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_800_novo_550_1200/CMS_HH4b_800_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_800_novo_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_800_novo_550_1200/datacard_800_novo_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_800_novo_550_1200/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_800_novo_550_1200/signal800_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_900_crystal_1_550_1200/CMS_HH4b_900_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_900_crystal_1_550_1200/CMS_HH4b_900_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_900_crystal_1_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_900_crystal_1_550_1200/datacard_900_crystal_1_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_900_crystal_1_550_1200/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_900_crystal_1_550_1200/signal900_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_900_novo_550_1200/CMS_HH4b_900_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_900_novo_550_1200/CMS_HH4b_900_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_900_novo_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_900_novo_550_1200/datacard_900_novo_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_900_novo_550_1200/pdf.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/3GeV/MMR_900_novo_550_1200/signal900_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_1000_crystal_1_550_1200/CMS_HH4b_1000_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_1000_crystal_1_550_1200/CMS_HH4b_1000_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_1000_crystal_1_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_1000_crystal_1_550_1200/datacard_1000_crystal_1_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_1000_crystal_1_550_1200/signal1000_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_1000_novo_550_1200/CMS_HH4b_1000_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_1000_novo_550_1200/CMS_HH4b_1000_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_1000_novo_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_1000_novo_550_1200/datacard_1000_novo_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_1000_novo_550_1200/signal1000_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_550_crystal_1_550_1200/CMS_HH4b_550_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_550_crystal_1_550_1200/CMS_HH4b_550_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_550_crystal_1_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_550_crystal_1_550_1200/datacard_550_crystal_1_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_550_crystal_1_550_1200/signal550_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_550_novo_550_1200/CMS_HH4b_550_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_550_novo_550_1200/CMS_HH4b_550_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_550_novo_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_550_novo_550_1200/datacard_550_novo_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_550_novo_550_1200/signal550_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_600_crystal_1_550_1200/CMS_HH4b_600_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_600_crystal_1_550_1200/CMS_HH4b_600_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_600_crystal_1_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_600_crystal_1_550_1200/datacard_600_crystal_1_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_600_crystal_1_550_1200/signal600_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_600_novo_550_1200/CMS_HH4b_600_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_600_novo_550_1200/CMS_HH4b_600_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_600_novo_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_600_novo_550_1200/datacard_600_novo_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_600_novo_550_1200/signal600_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_650_crystal_1_550_1200/CMS_HH4b_650_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_650_crystal_1_550_1200/CMS_HH4b_650_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_650_crystal_1_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_650_crystal_1_550_1200/datacard_650_crystal_1_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_650_crystal_1_550_1200/signal650_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_650_novo_550_1200/CMS_HH4b_650_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_650_novo_550_1200/CMS_HH4b_650_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_650_novo_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_650_novo_550_1200/datacard_650_novo_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_650_novo_550_1200/signal650_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_750_crystal_1_550_1200/CMS_HH4b_750_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_750_crystal_1_550_1200/CMS_HH4b_750_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_750_crystal_1_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_750_crystal_1_550_1200/datacard_750_crystal_1_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_750_crystal_1_550_1200/signal750_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_750_novo_550_1200/CMS_HH4b_750_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_750_novo_550_1200/CMS_HH4b_750_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_750_novo_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_750_novo_550_1200/datacard_750_novo_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_750_novo_550_1200/signal750_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_800_crystal_1_550_1200/CMS_HH4b_800_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_800_crystal_1_550_1200/CMS_HH4b_800_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_800_crystal_1_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_800_crystal_1_550_1200/datacard_800_crystal_1_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_800_crystal_1_550_1200/signal800_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_800_novo_550_1200/CMS_HH4b_800_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_800_novo_550_1200/CMS_HH4b_800_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_800_novo_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_800_novo_550_1200/datacard_800_novo_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_800_novo_550_1200/signal800_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_900_crystal_1_550_1200/CMS_HH4b_900_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_900_crystal_1_550_1200/CMS_HH4b_900_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_900_crystal_1_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_900_crystal_1_550_1200/datacard_900_crystal_1_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_900_crystal_1_550_1200/signal900_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_900_novo_550_1200/CMS_HH4b_900_13TeV_MaxLikelihood.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_900_novo_550_1200/CMS_HH4b_900_13TeV_asymptoticCLs.out delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_900_novo_550_1200/data_bkg.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_900_novo_550_1200/datacard_900_novo_550_1200.txt delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/5GeV/MMR_900_novo_550_1200/signal900_sig.log delete mode 100644 PreselectedWithRegressionDeepCSV/limits/MMR/draw_limits.c rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_260_gaus_exp_250_330/CMS_HH4b_260_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_260_gaus_exp_250_330/CMS_HH4b_260_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_260_gaus_exp_250_330/datacard_260_gaus_exp_250_330.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_265_gaus_exp_250_330/CMS_HH4b_265_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_265_gaus_exp_250_330/CMS_HH4b_265_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_265_gaus_exp_250_330/datacard_265_gaus_exp_250_330.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_270_gaus_exp_250_330/.nfs000000300a163622000004a4 (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_270_gaus_exp_250_330/CMS_HH4b_270_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_270_gaus_exp_250_330/CMS_HH4b_270_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_270_gaus_exp_250_330/datacard_270_gaus_exp_250_330.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_270_novo_285_625/datacard_270_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_275_gaus_exp_250_330/CMS_HH4b_275_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_275_gaus_exp_250_330/CMS_HH4b_275_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_275_gaus_exp_250_330/datacard_275_gaus_exp_250_330.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_275_novo_285_625/datacard_275_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_280_gaus_exp_250_330/CMS_HH4b_280_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_280_gaus_exp_250_330/CMS_HH4b_280_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_280_gaus_exp_250_330/datacard_280_gaus_exp_250_330.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_280_novo_285_625/datacard_280_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_285_gaus_exp_250_330/CMS_HH4b_285_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_285_gaus_exp_250_330/CMS_HH4b_285_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_285_gaus_exp_250_330/datacard_285_gaus_exp_250_330.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_285_novo_285_625/datacard_285_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_290_gaus_exp_250_330/CMS_HH4b_290_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_290_gaus_exp_250_330/CMS_HH4b_290_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_290_gaus_exp_250_330/datacard_290_gaus_exp_250_330.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_290_novo_285_625/CMS_HH4b_290_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_290_novo_285_625/CMS_HH4b_290_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_290_novo_285_625/datacard_290_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_295_gaus_exp_250_330/CMS_HH4b_295_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_295_gaus_exp_250_330/CMS_HH4b_295_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_295_gaus_exp_250_330/datacard_295_gaus_exp_250_330.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_295_novo_285_625/CMS_HH4b_295_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_295_novo_285_625/CMS_HH4b_295_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_295_novo_285_625/datacard_295_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_300_gaus_exp_250_330/CMS_HH4b_300_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_300_gaus_exp_250_330/CMS_HH4b_300_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_300_gaus_exp_250_330/datacard_300_gaus_exp_250_330.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_300_novo_285_625/CMS_HH4b_300_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_300_novo_285_625/CMS_HH4b_300_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_300_novo_285_625/datacard_300_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_310_gaus_exp_250_330/CMS_HH4b_310_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_310_gaus_exp_250_330/CMS_HH4b_310_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_310_gaus_exp_250_330/datacard_310_gaus_exp_250_330.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_310_novo_285_625/CMS_HH4b_310_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_310_novo_285_625/CMS_HH4b_310_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_310_novo_285_625/datacard_310_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_320_gaus_exp_250_330/CMS_HH4b_320_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_320_gaus_exp_250_330/CMS_HH4b_320_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_320_gaus_exp_250_330/datacard_320_gaus_exp_250_330.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_320_novo_285_625/CMS_HH4b_320_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_320_novo_285_625/CMS_HH4b_320_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_320_novo_285_625/datacard_320_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_330_novo_285_625/CMS_HH4b_330_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_330_novo_285_625/CMS_HH4b_330_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_330_novo_285_625/datacard_330_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_340_novo_285_625/CMS_HH4b_340_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_340_novo_285_625/CMS_HH4b_340_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_340_novo_285_625/datacard_340_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_350_gaus_exp_250_330/datacard_350_gaus_exp_250_330.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_350_novo_285_625/CMS_HH4b_350_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_350_novo_285_625/CMS_HH4b_350_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_350_novo_285_625/datacard_350_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_360_novo_285_625/CMS_HH4b_360_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_360_novo_285_625/CMS_HH4b_360_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_360_novo_285_625/datacard_360_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_370_novo_285_625/CMS_HH4b_370_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_370_novo_285_625/CMS_HH4b_370_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_370_novo_285_625/datacard_370_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_380_novo_285_625/CMS_HH4b_380_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_380_novo_285_625/CMS_HH4b_380_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_380_novo_285_625/datacard_380_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_390_novo_285_625/CMS_HH4b_390_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_390_novo_285_625/CMS_HH4b_390_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_390_novo_285_625/datacard_390_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_400_novo_285_625/CMS_HH4b_400_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_400_novo_285_625/CMS_HH4b_400_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_400_novo_285_625/datacard_400_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_410_novo_285_625/CMS_HH4b_410_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_410_novo_285_625/CMS_HH4b_410_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_410_novo_285_625/datacard_410_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_420_novo_285_625/CMS_HH4b_420_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_420_novo_285_625/CMS_HH4b_420_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_420_novo_285_625/datacard_420_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_430_novo_285_625/CMS_HH4b_430_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_430_novo_285_625/CMS_HH4b_430_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_430_novo_285_625/datacard_430_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_440_novo_285_625/CMS_HH4b_440_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_440_novo_285_625/CMS_HH4b_440_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_440_novo_285_625/datacard_440_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_450_novo_285_625/CMS_HH4b_450_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_450_novo_285_625/CMS_HH4b_450_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_450_novo_285_625/datacard_450_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_460_novo_285_625/CMS_HH4b_460_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_460_novo_285_625/CMS_HH4b_460_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_460_novo_285_625/datacard_460_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_470_novo_285_625/CMS_HH4b_470_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_470_novo_285_625/CMS_HH4b_470_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_470_novo_285_625/datacard_470_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_480_novo_285_625/CMS_HH4b_480_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_480_novo_285_625/CMS_HH4b_480_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_480_novo_285_625/datacard_480_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_490_novo_285_625/CMS_HH4b_490_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_490_novo_285_625/CMS_HH4b_490_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_490_novo_285_625/datacard_490_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_500_novo_285_625/CMS_HH4b_500_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_500_novo_285_625/CMS_HH4b_500_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_500_novo_285_625/datacard_500_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_510_novo_285_625/CMS_HH4b_510_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_510_novo_285_625/CMS_HH4b_510_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_510_novo_285_625/datacard_510_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_520_novo_285_625/CMS_HH4b_520_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_520_novo_285_625/CMS_HH4b_520_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_520_novo_285_625/datacard_520_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_530_novo_285_625/CMS_HH4b_530_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_530_novo_285_625/CMS_HH4b_530_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_530_novo_285_625/datacard_530_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_540_novo_285_625/CMS_HH4b_540_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_540_novo_285_625/CMS_HH4b_540_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_540_novo_285_625/datacard_540_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_550_novo_285_625/CMS_HH4b_550_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_550_novo_285_625/CMS_HH4b_550_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_550_novo_285_625/datacard_550_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_560_novo_285_625/CMS_HH4b_560_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_560_novo_285_625/CMS_HH4b_560_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_560_novo_285_625/datacard_560_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_570_novo_285_625/CMS_HH4b_570_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_570_novo_285_625/CMS_HH4b_570_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_570_novo_285_625/datacard_570_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_580_novo_285_625/CMS_HH4b_580_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_580_novo_285_625/CMS_HH4b_580_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_580_novo_285_625/datacard_580_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_590_novo_285_625/CMS_HH4b_590_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_590_novo_285_625/CMS_HH4b_590_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_590_novo_285_625/datacard_590_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_600_novo_285_625/CMS_HH4b_600_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_600_novo_285_625/CMS_HH4b_600_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_600_novo_285_625/datacard_600_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_610_novo_285_625/CMS_HH4b_610_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_610_novo_285_625/CMS_HH4b_610_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_610_novo_285_625/datacard_610_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_620_novo_285_625/CMS_HH4b_620_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_620_novo_285_625/CMS_HH4b_620_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_620_novo_285_625/datacard_620_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/LMR/LMR_650_novo_285_625/datacard_650_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_1000_novo_550_1200/CMS_HH4b_1000_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_1000_novo_550_1200/CMS_HH4b_1000_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_1000_novo_550_1200/datacard_1000_novo_550_1200.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_1050_novo_550_1200/CMS_HH4b_1050_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_1050_novo_550_1200/CMS_HH4b_1050_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_1050_novo_550_1200/datacard_1050_novo_550_1200.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_1100_novo_550_1200/CMS_HH4b_1100_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_1100_novo_550_1200/CMS_HH4b_1100_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_1100_novo_550_1200/datacard_1100_novo_550_1200.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_1150_novo_550_1200/CMS_HH4b_1150_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_1150_novo_550_1200/CMS_HH4b_1150_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_1150_novo_550_1200/datacard_1150_novo_550_1200.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_1200_novo_550_1200/CMS_HH4b_1200_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_1200_novo_550_1200/CMS_HH4b_1200_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_1200_novo_550_1200/datacard_1200_novo_550_1200.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_550_novo_550_1200/CMS_HH4b_550_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_550_novo_550_1200/CMS_HH4b_550_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_550_novo_550_1200/datacard_550_novo_550_1200.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_570_novo_550_1200/CMS_HH4b_570_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_570_novo_550_1200/CMS_HH4b_570_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_570_novo_550_1200/datacard_570_novo_550_1200.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_600_novo_550_1200/CMS_HH4b_600_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_600_novo_550_1200/CMS_HH4b_600_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_600_novo_550_1200/datacard_600_novo_550_1200.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_620_novo_550_1200/CMS_HH4b_620_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_620_novo_550_1200/CMS_HH4b_620_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_620_novo_550_1200/datacard_620_novo_550_1200.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_650_novo_550_1200/CMS_HH4b_650_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_650_novo_550_1200/CMS_HH4b_650_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_650_novo_550_1200/datacard_650_novo_550_1200.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_670_novo_550_1200/CMS_HH4b_670_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_670_novo_550_1200/CMS_HH4b_670_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_670_novo_550_1200/datacard_670_novo_550_1200.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_700_novo_550_1200/CMS_HH4b_700_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_700_novo_550_1200/CMS_HH4b_700_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_700_novo_550_1200/datacard_700_novo_550_1200.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_720_novo_550_1200/CMS_HH4b_720_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_720_novo_550_1200/CMS_HH4b_720_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_720_novo_550_1200/datacard_720_novo_550_1200.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_750_novo_550_1200/CMS_HH4b_750_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_750_novo_550_1200/CMS_HH4b_750_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_750_novo_550_1200/datacard_750_novo_550_1200.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_770_novo_550_1200/CMS_HH4b_770_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_770_novo_550_1200/CMS_HH4b_770_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_770_novo_550_1200/datacard_770_novo_550_1200.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_800_novo_550_1200/CMS_HH4b_800_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_800_novo_550_1200/CMS_HH4b_800_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_800_novo_550_1200/datacard_800_novo_550_1200.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_820_novo_550_1200/CMS_HH4b_820_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_820_novo_550_1200/CMS_HH4b_820_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_820_novo_550_1200/datacard_820_novo_550_1200.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_840_novo_550_1200/CMS_HH4b_840_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_840_novo_550_1200/CMS_HH4b_840_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_840_novo_550_1200/datacard_840_novo_550_1200.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_860_novo_550_1200/CMS_HH4b_860_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_860_novo_550_1200/CMS_HH4b_860_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_860_novo_550_1200/datacard_860_novo_550_1200.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_880_novo_550_1200/CMS_HH4b_880_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_880_novo_550_1200/CMS_HH4b_880_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_880_novo_550_1200/datacard_880_novo_550_1200.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_900_novo_550_1200/CMS_HH4b_900_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_900_novo_550_1200/CMS_HH4b_900_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_900_novo_550_1200/datacard_900_novo_550_1200.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_920_novo_550_1200/CMS_HH4b_920_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_920_novo_550_1200/CMS_HH4b_920_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_920_novo_550_1200/datacard_920_novo_550_1200.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_940_novo_550_1200/CMS_HH4b_940_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_940_novo_550_1200/CMS_HH4b_940_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_940_novo_550_1200/datacard_940_novo_550_1200.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_960_novo_550_1200/CMS_HH4b_960_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_960_novo_550_1200/CMS_HH4b_960_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_960_novo_550_1200/datacard_960_novo_550_1200.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_980_novo_550_1200/CMS_HH4b_980_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_980_novo_550_1200/CMS_HH4b_980_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_graviton/MMR/MMR_980_novo_550_1200/datacard_980_novo_550_1200.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_260_gaus_exp_250_330/CMS_HH4b_260_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_260_gaus_exp_250_330/CMS_HH4b_260_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_260_gaus_exp_250_330/datacard_260_gaus_exp_250_330.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_265_gaus_exp_250_330/CMS_HH4b_265_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_265_gaus_exp_250_330/CMS_HH4b_265_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_265_gaus_exp_250_330/datacard_265_gaus_exp_250_330.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_270_gaus_exp_250_330/CMS_HH4b_270_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_270_gaus_exp_250_330/CMS_HH4b_270_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_270_gaus_exp_250_330/datacard_270_gaus_exp_250_330.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_270_novo_285_625/datacard_270_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_275_gaus_exp_250_330/CMS_HH4b_275_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_275_gaus_exp_250_330/CMS_HH4b_275_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_275_gaus_exp_250_330/datacard_275_gaus_exp_250_330.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_275_novo_285_625/datacard_275_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_280_gaus_exp_250_330/CMS_HH4b_280_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_280_gaus_exp_250_330/CMS_HH4b_280_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_280_gaus_exp_250_330/datacard_280_gaus_exp_250_330.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_280_novo_285_625/datacard_280_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_285_gaus_exp_250_330/CMS_HH4b_285_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_285_gaus_exp_250_330/CMS_HH4b_285_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_285_gaus_exp_250_330/datacard_285_gaus_exp_250_330.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_285_novo_285_625/datacard_285_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_290_gaus_exp_250_330/CMS_HH4b_290_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_290_gaus_exp_250_330/CMS_HH4b_290_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_290_gaus_exp_250_330/datacard_290_gaus_exp_250_330.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_290_novo_285_625/CMS_HH4b_290_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_290_novo_285_625/CMS_HH4b_290_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_290_novo_285_625/datacard_290_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_295_gaus_exp_250_330/CMS_HH4b_295_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_295_gaus_exp_250_330/CMS_HH4b_295_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_295_gaus_exp_250_330/datacard_295_gaus_exp_250_330.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_295_novo_285_625/CMS_HH4b_295_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_295_novo_285_625/CMS_HH4b_295_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_295_novo_285_625/datacard_295_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_300_gaus_exp_250_330/CMS_HH4b_300_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_300_gaus_exp_250_330/CMS_HH4b_300_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_300_gaus_exp_250_330/datacard_300_gaus_exp_250_330.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_300_novo_285_625/CMS_HH4b_300_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_300_novo_285_625/CMS_HH4b_300_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_300_novo_285_625/datacard_300_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_310_gaus_exp_250_330/CMS_HH4b_310_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_310_gaus_exp_250_330/CMS_HH4b_310_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_310_gaus_exp_250_330/datacard_310_gaus_exp_250_330.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_310_novo_285_625/CMS_HH4b_310_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_310_novo_285_625/CMS_HH4b_310_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_310_novo_285_625/datacard_310_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_320_gaus_exp_250_330/CMS_HH4b_320_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_320_gaus_exp_250_330/CMS_HH4b_320_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_320_gaus_exp_250_330/datacard_320_gaus_exp_250_330.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_320_novo_285_625/CMS_HH4b_320_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_320_novo_285_625/CMS_HH4b_320_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_320_novo_285_625/datacard_320_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_330_novo_285_625/CMS_HH4b_330_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_330_novo_285_625/CMS_HH4b_330_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_330_novo_285_625/datacard_330_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_340_novo_285_625/CMS_HH4b_340_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_340_novo_285_625/CMS_HH4b_340_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_340_novo_285_625/datacard_340_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_350_gaus_exp_250_330/datacard_350_gaus_exp_250_330.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_350_novo_285_625/CMS_HH4b_350_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_350_novo_285_625/CMS_HH4b_350_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_350_novo_285_625/datacard_350_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_360_novo_285_625/CMS_HH4b_360_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_360_novo_285_625/CMS_HH4b_360_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_360_novo_285_625/datacard_360_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_370_novo_285_625/CMS_HH4b_370_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_370_novo_285_625/CMS_HH4b_370_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_370_novo_285_625/datacard_370_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_380_novo_285_625/CMS_HH4b_380_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_380_novo_285_625/CMS_HH4b_380_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_380_novo_285_625/datacard_380_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_390_novo_285_625/CMS_HH4b_390_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_390_novo_285_625/CMS_HH4b_390_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_390_novo_285_625/datacard_390_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_400_novo_285_625/CMS_HH4b_400_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_400_novo_285_625/CMS_HH4b_400_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_400_novo_285_625/datacard_400_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_410_novo_285_625/CMS_HH4b_410_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_410_novo_285_625/CMS_HH4b_410_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_410_novo_285_625/datacard_410_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_420_novo_285_625/CMS_HH4b_420_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_420_novo_285_625/CMS_HH4b_420_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_420_novo_285_625/datacard_420_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_430_novo_285_625/CMS_HH4b_430_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_430_novo_285_625/CMS_HH4b_430_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_430_novo_285_625/datacard_430_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_440_novo_285_625/CMS_HH4b_440_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_440_novo_285_625/CMS_HH4b_440_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_440_novo_285_625/datacard_440_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_450_novo_285_625/CMS_HH4b_450_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_450_novo_285_625/CMS_HH4b_450_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_450_novo_285_625/datacard_450_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_460_novo_285_625/CMS_HH4b_460_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_460_novo_285_625/CMS_HH4b_460_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_460_novo_285_625/datacard_460_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_470_novo_285_625/CMS_HH4b_470_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_470_novo_285_625/CMS_HH4b_470_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_470_novo_285_625/datacard_470_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_480_novo_285_625/CMS_HH4b_480_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_480_novo_285_625/CMS_HH4b_480_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_480_novo_285_625/datacard_480_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_490_novo_285_625/CMS_HH4b_490_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_490_novo_285_625/CMS_HH4b_490_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_490_novo_285_625/datacard_490_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_500_novo_285_625/CMS_HH4b_500_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_500_novo_285_625/CMS_HH4b_500_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_500_novo_285_625/datacard_500_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_510_novo_285_625/CMS_HH4b_510_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_510_novo_285_625/CMS_HH4b_510_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_510_novo_285_625/datacard_510_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_520_novo_285_625/CMS_HH4b_520_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_520_novo_285_625/CMS_HH4b_520_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_520_novo_285_625/datacard_520_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_530_novo_285_625/CMS_HH4b_530_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_530_novo_285_625/CMS_HH4b_530_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_530_novo_285_625/datacard_530_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_540_novo_285_625/CMS_HH4b_540_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_540_novo_285_625/CMS_HH4b_540_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_540_novo_285_625/datacard_540_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_550_novo_285_625/CMS_HH4b_550_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_550_novo_285_625/CMS_HH4b_550_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_550_novo_285_625/datacard_550_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_560_novo_285_625/CMS_HH4b_560_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_560_novo_285_625/CMS_HH4b_560_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_560_novo_285_625/datacard_560_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_570_novo_285_625/CMS_HH4b_570_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_570_novo_285_625/CMS_HH4b_570_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_570_novo_285_625/datacard_570_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_580_novo_285_625/CMS_HH4b_580_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_580_novo_285_625/CMS_HH4b_580_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_580_novo_285_625/datacard_580_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_590_novo_285_625/CMS_HH4b_590_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_590_novo_285_625/CMS_HH4b_590_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_590_novo_285_625/datacard_590_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_600_novo_285_625/CMS_HH4b_600_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_600_novo_285_625/CMS_HH4b_600_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_600_novo_285_625/datacard_600_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_610_novo_285_625/CMS_HH4b_610_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_610_novo_285_625/CMS_HH4b_610_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_610_novo_285_625/datacard_610_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_620_novo_285_625/CMS_HH4b_620_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_620_novo_285_625/CMS_HH4b_620_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_620_novo_285_625/datacard_620_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/LMR/LMR_650_novo_285_625/datacard_650_novo_285_625.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_1000_novo_550_1200/CMS_HH4b_1000_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_1000_novo_550_1200/CMS_HH4b_1000_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_1000_novo_550_1200/datacard_1000_novo_550_1200.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_1050_novo_550_1200/CMS_HH4b_1050_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_1050_novo_550_1200/CMS_HH4b_1050_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_1050_novo_550_1200/datacard_1050_novo_550_1200.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_1100_novo_550_1200/CMS_HH4b_1100_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_1100_novo_550_1200/CMS_HH4b_1100_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_1100_novo_550_1200/datacard_1100_novo_550_1200.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_1150_novo_550_1200/CMS_HH4b_1150_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_1150_novo_550_1200/CMS_HH4b_1150_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_1150_novo_550_1200/datacard_1150_novo_550_1200.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_1200_novo_550_1200/CMS_HH4b_1200_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_1200_novo_550_1200/CMS_HH4b_1200_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_1200_novo_550_1200/datacard_1200_novo_550_1200.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_550_novo_550_1200/CMS_HH4b_550_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_550_novo_550_1200/CMS_HH4b_550_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_550_novo_550_1200/datacard_550_novo_550_1200.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_570_novo_550_1200/CMS_HH4b_570_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_570_novo_550_1200/CMS_HH4b_570_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_570_novo_550_1200/datacard_570_novo_550_1200.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_600_novo_550_1200/CMS_HH4b_600_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_600_novo_550_1200/CMS_HH4b_600_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_600_novo_550_1200/datacard_600_novo_550_1200.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_620_novo_550_1200/CMS_HH4b_620_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_620_novo_550_1200/CMS_HH4b_620_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_620_novo_550_1200/datacard_620_novo_550_1200.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_650_novo_550_1200/CMS_HH4b_650_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_650_novo_550_1200/CMS_HH4b_650_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_650_novo_550_1200/datacard_650_novo_550_1200.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_670_novo_550_1200/CMS_HH4b_670_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_670_novo_550_1200/CMS_HH4b_670_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_670_novo_550_1200/datacard_670_novo_550_1200.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_700_novo_550_1200/CMS_HH4b_700_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_700_novo_550_1200/CMS_HH4b_700_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_700_novo_550_1200/datacard_700_novo_550_1200.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_720_novo_550_1200/CMS_HH4b_720_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_720_novo_550_1200/CMS_HH4b_720_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_720_novo_550_1200/datacard_720_novo_550_1200.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_750_novo_550_1200/CMS_HH4b_750_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_750_novo_550_1200/CMS_HH4b_750_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_750_novo_550_1200/datacard_750_novo_550_1200.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_770_novo_550_1200/CMS_HH4b_770_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_770_novo_550_1200/CMS_HH4b_770_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_770_novo_550_1200/datacard_770_novo_550_1200.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_800_novo_550_1200/CMS_HH4b_800_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_800_novo_550_1200/CMS_HH4b_800_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_800_novo_550_1200/datacard_800_novo_550_1200.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_820_novo_550_1200/CMS_HH4b_820_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_820_novo_550_1200/CMS_HH4b_820_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_820_novo_550_1200/datacard_820_novo_550_1200.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_840_novo_550_1200/CMS_HH4b_840_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_840_novo_550_1200/CMS_HH4b_840_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_840_novo_550_1200/datacard_840_novo_550_1200.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_860_novo_550_1200/CMS_HH4b_860_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_860_novo_550_1200/CMS_HH4b_860_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_860_novo_550_1200/datacard_860_novo_550_1200.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_880_novo_550_1200/CMS_HH4b_880_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_880_novo_550_1200/CMS_HH4b_880_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_880_novo_550_1200/datacard_880_novo_550_1200.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_900_novo_550_1200/CMS_HH4b_900_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_900_novo_550_1200/CMS_HH4b_900_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_900_novo_550_1200/datacard_900_novo_550_1200.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_920_novo_550_1200/CMS_HH4b_920_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_920_novo_550_1200/CMS_HH4b_920_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_920_novo_550_1200/datacard_920_novo_550_1200.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_940_novo_550_1200/CMS_HH4b_940_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_940_novo_550_1200/CMS_HH4b_940_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_940_novo_550_1200/datacard_940_novo_550_1200.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_960_novo_550_1200/CMS_HH4b_960_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_960_novo_550_1200/CMS_HH4b_960_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_960_novo_550_1200/datacard_960_novo_550_1200.txt (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_980_novo_550_1200/CMS_HH4b_980_13TeV_MaxLikelihood.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_980_novo_550_1200/CMS_HH4b_980_13TeV_asymptoticCLs.out (100%) rename PreselectedWithRegressionDeepCSV/{ => limits_bias}/limits_bias_radion/MMR/MMR_980_novo_550_1200/datacard_980_novo_550_1200.txt (100%) delete mode 100644 bias_LMR_1.txt delete mode 100644 bias_LMR_2.txt delete mode 100644 bias_MMR_1.txt delete mode 100644 bias_MMR_2.txt delete mode 100644 out.log delete mode 100644 out2.log delete mode 100644 prova.txt delete mode 100644 test1.txt delete mode 100644 test10.txt delete mode 100644 test11.txt delete mode 100644 test12.txt delete mode 100644 test2.txt delete mode 100644 test3.txt delete mode 100644 test4.txt delete mode 100644 test5.txt delete mode 100644 test6.txt delete mode 100644 test7.txt delete mode 100644 test8.txt delete mode 100644 test9.txt diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_260_crystal_252_330/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_260_crystal_252_330/data_bkg.log deleted file mode 100644 index 3cc1900..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_260_crystal_252_330/data_bkg.log +++ /dev/null @@ -1,750 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [252,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=62921.6 FROM MIGRAD STATUS=INITIATE 90 CALLS 91 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.21879e-02 5.09000e-01 0.00000e+00 -9.80911e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -1.28354e+01 - 3 par_crystal_2 2.65669e+02 4.00000e+00 0.00000e+00 3.55320e+02 - 4 par_crystal_3 1.06488e+01 2.70000e+00 -4.48284e-01 -2.33576e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62883.4 FROM HESSE STATUS=OK 29 CALLS 257 TOTAL - EDM=4.91113 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.66060e-01 4.16121e-03 3.52377e-04 -4.74293e+00 - 2 par_crystal_1 4.45375e+00 2.73731e+00 1.77223e-01 2.66184e-01 - 3 par_crystal_2 2.67385e+02 2.04373e-01 8.29600e-04 2.81454e+02 - 4 par_crystal_3 1.36851e+01 5.38888e-01 1.69331e-03 -1.62103e+00 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=62883.3 FROM MIGRAD STATUS=FAILED 358 CALLS 359 TOTAL - EDM=0.00753244 STRATEGY= 1 ERR MATRIX APPROXIMATE - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.65093e-01 8.39913e-03 1.31861e-03 5.42788e+00 - 2 par_crystal_1 5.09910e+00 4.33634e+00 3.39194e-01 -6.59950e-03 - 3 par_crystal_2 2.67339e+02 1.86486e-01 3.32550e-03 -8.58879e+00 - 4 par_crystal_3 1.37140e+01 6.01780e-01 6.34807e-03 1.69258e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.055e-05 1.617e-04 4.699e-04 2.892e-03 - 1.617e-04 1.762e-02 -1.356e-04 -1.108e-03 - 4.699e-04 -1.356e-04 3.478e-02 3.255e-02 - 2.892e-03 -1.108e-03 3.255e-02 3.624e-01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.60853 1.000 0.145 0.300 0.572 - 2 0.19009 0.145 1.000 -0.005 -0.014 - 3 0.33449 0.300 -0.005 1.000 0.290 - 4 0.59243 0.572 -0.014 0.290 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7660e-01 8.1807e-01 1.6519e+00 1.7066e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.178308 TO DIAGONAL. - FCN=62883.3 FROM HESSE STATUS=NOT POSDEF 33 CALLS 392 TOTAL - EDM=3.36849 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.65093e-01 8.70034e-02 2.63722e-04 -1.21988e+00 - 2 par_crystal_1 5.09910e+00 4.18121e+00 5.00000e-01 1.54425e+00 - 3 par_crystal_2 2.67339e+02 5.27040e+00 9.57407e-02 3.75715e-01 - 4 par_crystal_3 1.37140e+01 6.68546e+00 2.53923e-04 -2.07863e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.595e-03 -2.994e-03 4.642e-01 6.089e-01 - -2.994e-03 1.536e-02 -1.944e-01 -2.569e-01 - 4.642e-01 -1.944e-01 2.855e+01 3.736e+01 - 6.089e-01 -2.569e-01 3.736e+01 4.914e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99751 1.000 -0.277 0.997 0.997 - 2 0.37560 -0.277 1.000 -0.293 -0.296 - 3 0.99795 0.997 -0.293 1.000 0.997 - 4 0.99797 0.997 -0.296 0.997 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=62983.1 FROM MIGRAD STATUS=INITIATE 29 CALLS 30 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 6.05383e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -1.33666e+02 - 3 par_gaus_exp_2 3.19008e-01 3.05000e-01 -9.67731e-01 -3.33619e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.00383 added to diagonal of error matrix - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62882.7 FROM MIGRAD STATUS=CONVERGED 228 CALLS 229 TOTAL - EDM=4.4408e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.69095e+02 7.01852e-01 4.07755e-03 2.89794e-02 - 2 par_gaus_exp_1 1.61044e+01 1.09719e+00 7.43010e-03 -1.84784e-02 - 3 par_gaus_exp_2 1.90527e-01 1.58774e-02 1.98778e-03 -6.23432e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 4.929e-01 5.914e-01 9.067e-03 - 5.914e-01 1.207e+00 1.483e-02 - 9.067e-03 1.483e-02 2.521e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.82590 1.000 0.767 0.813 - 2 0.85979 0.767 1.000 0.850 - 3 0.88644 0.813 0.850 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62882.7 FROM HESSE STATUS=OK 16 CALLS 245 TOTAL - EDM=4.28199e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.69095e+02 6.86832e-01 1.63102e-04 -5.76704e-01 - 2 par_gaus_exp_1 1.61044e+01 1.07335e+00 2.97204e-04 -5.72398e-01 - 3 par_gaus_exp_2 1.90527e-01 1.55212e-02 7.95110e-05 -1.13813e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 4.720e-01 5.579e-01 8.580e-03 - 5.579e-01 1.155e+00 1.406e-02 - 8.580e-03 1.406e-02 2.410e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.81734 1.000 0.756 0.805 - 2 0.85292 0.756 1.000 0.843 - 3 0.88081 0.805 0.843 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,624] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.3296 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.3296) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=286.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=286.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=289.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=289.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=295.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=295.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=298.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=298.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=301.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=301.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - ... (remaining 216 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.733611 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.733611) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=313.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=316.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=319.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=325.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=328.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=331.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=334.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=340.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=343.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=346.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - ... (remaining 94 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0733618 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0733618 - - FCN=103426 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57146e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.55551e+03 - 3 par_novo_2 -1.33526e+00 2.00000e+01 0.00000e+00 1.53308e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103192 FROM MIGRAD STATUS=CONVERGED 126 CALLS 127 TOTAL - EDM=1.07924e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.17697e+01 1.69443e-01** at limit ** - 2 par_novo_1 3.87878e+01 2.27475e+00 4.96100e-03 -6.14249e-02 - 3 par_novo_2 -1.26766e+00 7.00630e-02 3.67886e-05 3.77179e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 2.244e-10 -2.632e-07 -1.276e-07 - -2.632e-07 5.190e+00 1.540e-01 - -1.276e-07 1.540e-01 4.909e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.43392 1.000 -0.008 -0.122 - 2 0.97109 -0.008 1.000 0.965 - 3 0.97152 -0.122 0.965 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103192 FROM HESSE STATUS=OK 20 CALLS 147 TOTAL - EDM=1.23299e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.15107e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.87878e+01 2.30410e+00 1.98440e-04 4.51799e-01 - 3 par_novo_2 -1.26766e+00 7.13892e-02 1.47154e-06 -1.26769e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 2.143e-10 3.996e-06 -2.087e-07 - 3.996e-06 5.325e+00 1.518e-01 - -2.087e-07 1.518e-01 5.096e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.80390 1.000 0.118 -0.200 - 2 0.97183 0.118 1.000 0.922 - 3 0.97258 -0.200 0.922 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107617 FROM MIGRAD STATUS=INITIATE 36 CALLS 37 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 6.60405e+03 - 2 par_crystal_1_1 7.90153e-02 5.09000e-01 -1.80421e+00 3.05679e+03 - 3 par_crystal_1_2 2.60000e+02 4.00000e+00 0.00000e+00 1.48888e+03 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 6.99071e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.17529 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.7903e-03 5.8606e-02 5.0897e-01 3.4352e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.006225 TO DIAGONAL. - FCN=103191 FROM MIGRAD STATUS=CONVERGED 353 CALLS 354 TOTAL - EDM=3.7306e-06 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.37913e-01 3.41139e-02 6.19492e-04 4.10204e-01 - 2 par_crystal_1_1 4.44737e+00 5.69760e-01 2.21494e-02 9.88736e-03 - 3 par_crystal_1_2 2.79979e+02 3.40482e+01 2.79535e-01 -2.97577e-04 - 4 par_crystal_1_3 1.87584e+01 2.98857e+00 3.96232e-03 -6.40797e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.164e-03 3.582e-03 3.594e-03 9.898e-02 - 3.582e-03 3.375e-01 -1.052e-02 7.382e-01 - 3.594e-03 -1.052e-02 3.148e+00 6.243e-01 - 9.898e-02 7.382e-01 6.243e-01 9.086e+00 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99630 1.000 0.181 0.059 0.962 - 2 0.95650 0.181 1.000 -0.010 0.422 - 3 0.63948 0.059 -0.010 1.000 0.117 - 4 0.99690 0.962 0.422 0.117 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103191 FROM HESSE STATUS=OK 27 CALLS 381 TOTAL - EDM=6.06842e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 2.37913e-01 2.12502e-01 1.23898e-04 -8.36786e+01 - 2 par_crystal_1_1 4.44737e+00 5.06952e-01 8.85975e-04 -1.65463e+01 - 3 par_crystal_1_2 2.79979e+02 2.96341e+01 5.00000e-01 7.80831e+00 - 4 par_crystal_1_3 1.87584e+01 1.90925e+01 1.58493e-04 2.18231e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.578e-02 1.663e-02 2.427e-02 3.730e+00 - 1.663e-02 2.650e-01 -4.299e-02 1.684e+00 - 2.427e-02 -4.299e-02 1.850e+00 2.341e+00 - 3.730e+00 1.684e+00 2.341e+00 3.045e+02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99991 1.000 0.151 0.083 0.999 - 2 0.94385 0.151 1.000 -0.061 0.187 - 3 0.80384 0.083 -0.061 1.000 0.099 - 4 0.99991 0.999 0.187 0.099 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 13889.7 - Background number of gaus_exp_252_330 = 13889.7 - Background number of novo_285_624 = 17637.2 - Background number of crystal_1_285_624 = 17637.2 - Background number of gaus_bern_285_624 = 17637.2 - Background number of landau_285_624 = 17637.2 -par_crystal_0 param 0.165093 0.0870034 -par_crystal_1 param 5.0991 4.18121 -par_crystal_2 param 267.339 5.2704 -par_crystal_3 param 13.714 6.68546 -par_crystal_1_0 param 0.237913 0.212502 -par_crystal_1_1 param 4.44737 0.506952 -par_crystal_1_2 param 279.979 29.6341 -par_crystal_1_3 param 18.7584 19.0925 -par_gaus_exp_0 param 269.095 0.686832 -par_gaus_exp_1 param 16.1044 1.07335 -par_gaus_exp_2 param 0.190527 0.0155212 -par_novo_0 param 250 31.5107 -par_novo_1 param 38.7878 2.3041 -par_novo_2 param -1.26766 0.0713892 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_260_crystal_252_330/datacard_260_crystal_252_330.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_260_crystal_252_330/datacard_260_crystal_252_330.txt deleted file mode 100644 index 36f4d8c..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_260_crystal_252_330/datacard_260_crystal_252_330.txt +++ /dev/null @@ -1,35 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_260.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_crystal_252_330.root HbbHbb:f_crystal -shapes data_obs HbbHbb w_background_crystal_252_330.root HbbHbb:data_obs_crystal_252_330 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 191.924 13889.7 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06823 - -JER lnN 1.02103 - -JEC lnN 1.01807 - -trigger lnN 1.10 - -PDF lnN 1.01504940545 - -sg_p0 param 260.912 -0.165439/+0.125566 -sg_p1 param 3.47719 -0.0904489/+0.144603 -sg_p2 param 267.513 -4.18377/+4.79216 -sg_p3 param 34.2369 -2.39363/+2.10758 -sg_p4 param 0.640026 -0.0265887/+0.0286105 -par_crystal_0 param 0.165093 0.0870034 -par_crystal_1 param 5.0991 4.18121 -par_crystal_2 param 267.339 5.2704 -par_crystal_3 param 13.714 6.68546 -par_crystal_1_0 param 0.237913 0.212502 -par_crystal_1_1 param 4.44737 0.506952 -par_crystal_1_2 param 279.979 29.6341 -par_crystal_1_3 param 18.7584 19.0925 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_260_crystal_252_330/pdf.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_260_crystal_252_330/pdf.log deleted file mode 100644 index d74576e..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_260_crystal_252_330/pdf.log +++ /dev/null @@ -1,10 +0,0 @@ -[?1034h FCN=7.89989 FROM MIGRAD STATUS=CONVERGED 62 CALLS 63 TOTAL - EDM=5.9771e-09 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 Constant 1.98474e+01 2.50075e+00 3.01290e-03 -1.61476e-05 - 2 Mean 1.00154e+00 1.72384e-03 2.41798e-06 3.32702e-02 - 3 Sigma 1.50494e-02 1.19888e-03 3.07932e-05 1.91423e-03 -1.00153706947 +/- 0.00172384303603 -0.0150494054533 +/- 0.00119888063503 -PDF lnN 1.01504940545 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_260_crystal_252_330/signal260_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_260_crystal_252_330/signal260_sig.log deleted file mode 100644 index 13dd83d..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_260_crystal_252_330/signal260_sig.log +++ /dev/null @@ -1,842 +0,0 @@ - -Processing test.c... -nSignal_init = 300000 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=7249.56 FROM MIGRAD STATUS=INITIATE 45 CALLS 46 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.50000e+02 4.00000e+00 0.00000e+00 -3.41934e+02 - 2 sg_p1 1.35000e+01 2.30000e+00 0.00000e+00 -9.44540e+01 - 3 sg_p2 3.00000e+02 5.80000e+01 0.00000e+00 2.87170e+02 - 4 sg_p3 5.54385e+01 2.90000e+01 -7.56845e-01 -4.27472e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 -1.11620e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7161.13 FROM MIGRAD STATUS=CONVERGED 183 CALLS 184 TOTAL - EDM=2.26284e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.54307e+02 4.46691e-01 1.29592e-03 1.21370e-02 - 2 sg_p1 1.55513e+01 3.65330e-01 1.72918e-03 -4.57555e-02 - 3 sg_p2 3.13992e+02 1.11306e+01 1.54612e-03 9.59972e-03 - 4 sg_p3 7.00767e+01 6.24766e+00 2.56609e-03 1.76365e-03 - 5 sg_p4 9.03546e-01 1.22165e-02 2.78748e-03 -5.41093e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.996e-01 3.046e-02 3.316e-01 2.128e-01 9.423e-04 - 3.046e-02 1.335e-01 1.073e+00 -6.884e-02 1.627e-03 - 3.316e-01 1.073e+00 1.240e+02 -3.745e+01 8.007e-02 - 2.128e-01 -6.884e-02 -3.745e+01 3.907e+01 -1.718e-02 - 9.423e-04 1.627e-03 8.007e-02 -1.718e-02 1.494e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.24437 1.000 0.187 0.067 0.076 0.173 - 2 0.40012 0.187 1.000 0.264 -0.030 0.364 - 3 0.72503 0.067 0.264 1.000 -0.538 0.588 - 4 0.56339 0.076 -0.030 -0.538 1.000 -0.225 - 5 0.63827 0.173 0.364 0.588 -0.225 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7161.13 FROM HESSE STATUS=OK 31 CALLS 215 TOTAL - EDM=2.25533e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.54307e+02 4.46615e-01 2.59185e-04 2.17043e-01 - 2 sg_p1 1.55513e+01 3.65352e-01 3.45837e-04 1.79332e-01 - 3 sg_p2 3.13992e+02 1.12246e+01 6.18447e-05 4.82680e-02 - 4 sg_p3 7.00767e+01 6.29870e+00 1.02643e-04 -6.25716e-01 - 5 sg_p4 9.03546e-01 1.22468e-02 1.11499e-04 6.61353e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.995e-01 3.031e-02 3.258e-01 2.130e-01 9.376e-04 - 3.031e-02 1.335e-01 1.084e+00 -7.870e-02 1.633e-03 - 3.258e-01 1.084e+00 1.261e+02 -3.883e+01 8.134e-02 - 2.130e-01 -7.870e-02 -3.883e+01 3.971e+01 -1.806e-02 - 9.376e-04 1.633e-03 8.134e-02 -1.806e-02 1.502e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.24371 1.000 0.186 0.065 0.076 0.171 - 2 0.40024 0.186 1.000 0.264 -0.034 0.365 - 3 0.73047 0.065 0.264 1.000 -0.549 0.591 - 4 0.57308 0.076 -0.034 -0.549 1.000 -0.234 - 5 0.64057 0.171 0.365 0.591 -0.234 1.000 -260 -254.307 +- 0.446615 -15.5513 +- 0.365352 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=7365.44 FROM MIGRAD STATUS=INITIATE 44 CALLS 45 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.50000e+02 4.00000e+00 0.00000e+00 -5.31672e+02 - 2 sg_p1 1.35000e+01 2.30000e+00 0.00000e+00 -1.29968e+02 - 3 sg_p2 3.00000e+02 5.80000e+01 0.00000e+00 2.18090e+02 - 4 sg_p3 7.02234e+01 2.90000e+01 -6.24469e-01 3.04411e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 -1.01446e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7235.04 FROM MIGRAD STATUS=CONVERGED 193 CALLS 194 TOTAL - EDM=9.01413e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.56005e+02 4.49108e-01 1.34491e-03 -5.08347e-03 - 2 sg_p1 1.58159e+01 3.69974e-01 1.76393e-03 -5.10762e-02 - 3 sg_p2 3.20358e+02 1.45835e+01 1.97066e-03 3.38124e-02 - 4 sg_p3 8.43702e+01 8.25437e+00 3.00025e-03 1.43647e-02 - 5 sg_p4 9.08830e-01 1.15488e-02 2.75207e-03 -4.16137e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.017e-01 3.033e-02 4.244e-01 2.172e-01 8.632e-04 - 3.033e-02 1.369e-01 1.451e+00 -1.530e-01 1.573e-03 - 4.244e-01 1.451e+00 2.129e+02 -7.227e+01 9.550e-02 - 2.172e-01 -1.530e-01 -7.227e+01 6.823e+01 -2.243e-02 - 8.632e-04 1.573e-03 9.550e-02 -2.243e-02 1.335e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23216 1.000 0.182 0.065 0.059 0.166 - 2 0.40488 0.182 1.000 0.269 -0.050 0.368 - 3 0.74731 0.065 0.269 1.000 -0.600 0.566 - 4 0.62245 0.059 -0.050 -0.600 1.000 -0.235 - 5 0.62271 0.166 0.368 0.566 -0.235 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7235.04 FROM HESSE STATUS=OK 31 CALLS 225 TOTAL - EDM=9.02546e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.56005e+02 4.49038e-01 5.37964e-05 3.04976e-01 - 2 sg_p1 1.58159e+01 3.70057e-01 3.52786e-04 2.02768e-01 - 3 sg_p2 3.20358e+02 1.47403e+01 3.94131e-04 7.02587e-02 - 4 sg_p3 8.43702e+01 8.34145e+00 1.20010e-04 -5.08769e-01 - 5 sg_p4 9.08830e-01 1.15806e-02 5.50414e-04 6.88425e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.017e-01 3.017e-02 4.192e-01 2.171e-01 8.603e-04 - 3.017e-02 1.370e-01 1.472e+00 -1.690e-01 1.581e-03 - 4.192e-01 1.472e+00 2.175e+02 -7.517e+01 9.735e-02 - 2.171e-01 -1.690e-01 -7.517e+01 6.968e+01 -2.367e-02 - 8.603e-04 1.581e-03 9.735e-02 -2.367e-02 1.343e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23152 1.000 0.182 0.063 0.058 0.165 - 2 0.40534 0.182 1.000 0.270 -0.055 0.369 - 3 0.75354 0.063 0.270 1.000 -0.611 0.570 - 4 0.63259 0.058 -0.055 -0.611 1.000 -0.245 - 5 0.62540 0.165 0.369 0.570 -0.245 1.000 -260 -256.005 +- 0.449038 -15.8159 +- 0.370057 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=7023.18 FROM MIGRAD STATUS=INITIATE 44 CALLS 45 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.50000e+02 4.00000e+00 0.00000e+00 -2.24645e+02 - 2 sg_p1 1.35000e+01 2.30000e+00 0.00000e+00 -8.46385e+01 - 3 sg_p2 3.00000e+02 5.80000e+01 0.00000e+00 2.26204e+02 - 4 sg_p3 6.83932e+01 2.90000e+01 -6.40116e-01 1.32344e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 -1.30920e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6951.87 FROM MIGRAD STATUS=CONVERGED 181 CALLS 182 TOTAL - EDM=1.6519e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.53020e+02 4.42659e-01 1.26031e-03 3.88378e-02 - 2 sg_p1 1.54031e+01 3.53863e-01 1.68006e-03 -8.87814e-02 - 3 sg_p2 3.18681e+02 1.25359e+01 1.70808e-03 3.37307e-03 - 4 sg_p3 7.61417e+01 7.12298e+00 2.70731e-03 -4.47116e-02 - 5 sg_p4 9.04717e-01 1.16729e-02 2.71701e-03 -2.80475e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.960e-01 2.470e-02 3.794e-01 1.447e-01 7.850e-04 - 2.470e-02 1.253e-01 1.069e+00 -1.360e-01 1.312e-03 - 3.794e-01 1.069e+00 1.572e+02 -5.206e+01 8.352e-02 - 1.447e-01 -1.360e-01 -5.206e+01 5.079e+01 -2.199e-02 - 7.850e-04 1.312e-03 8.352e-02 -2.199e-02 1.364e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20982 1.000 0.158 0.068 0.046 0.152 - 2 0.35244 0.158 1.000 0.241 -0.054 0.317 - 3 0.72927 0.068 0.241 1.000 -0.582 0.570 - 4 0.59651 0.046 -0.054 -0.582 1.000 -0.264 - 5 0.60854 0.152 0.317 0.570 -0.264 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6951.87 FROM HESSE STATUS=OK 31 CALLS 213 TOTAL - EDM=1.65128e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.53020e+02 4.42602e-01 2.52062e-04 1.51594e-01 - 2 sg_p1 1.54031e+01 3.53933e-01 3.36012e-04 1.66253e-01 - 3 sg_p2 3.18681e+02 1.26590e+01 6.83233e-05 6.44624e-02 - 4 sg_p3 7.61417e+01 7.19114e+00 1.08292e-04 -5.75018e-01 - 5 sg_p4 9.04717e-01 1.17079e-02 5.43402e-04 6.67300e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.959e-01 2.459e-02 3.764e-01 1.438e-01 7.830e-04 - 2.459e-02 1.253e-01 1.084e+00 -1.475e-01 1.320e-03 - 3.764e-01 1.084e+00 1.604e+02 -5.404e+01 8.512e-02 - 1.438e-01 -1.475e-01 -5.404e+01 5.177e+01 -2.306e-02 - 7.830e-04 1.320e-03 8.512e-02 -2.306e-02 1.372e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20923 1.000 0.157 0.067 0.045 0.151 - 2 0.35293 0.157 1.000 0.242 -0.058 0.318 - 3 0.73547 0.067 0.242 1.000 -0.593 0.574 - 4 0.60661 0.045 -0.058 -0.593 1.000 -0.274 - 5 0.61162 0.151 0.318 0.574 -0.274 1.000 -260 -253.02 +- 0.442602 -15.4031 +- 0.353933 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=5529.06 FROM MIGRAD STATUS=INITIATE 37 CALLS 38 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60000e+02 2.00000e+00 0.00000e+00 -7.09302e+02 - 2 sg_p1 4.00000e+00 4.00000e-01 0.00000e+00 -1.84754e+01 - 3 sg_p2 1.79000e+02 3.42000e+01 0.00000e+00 -1.60258e+01 - 4 sg_p3 1.19103e+02 2.90000e+01 -2.50167e-01 6.51588e+00 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.55737e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5416.32 FROM MIGRAD STATUS=CONVERGED 276 CALLS 277 TOTAL - EDM=4.33865e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60912e+02 1.23280e-01 6.16272e-04 -2.78767e-01 - 2 sg_p1 3.47719e+00 1.26808e-01 2.66781e-03 -6.03093e-03 - 3 sg_p2 2.67513e+02 7.88309e+00 7.67886e-04 -3.32533e-01 - 4 sg_p3 3.42369e+01 3.97181e+00 1.09311e-03 -2.13224e-01 - 5 sg_p4 6.40026e-01 4.56991e-02 3.70400e-03 4.78364e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.520e-02 2.286e-03 -3.667e-02 3.860e-02 7.477e-05 - 2.286e-03 1.610e-02 4.707e-01 -1.623e-01 3.257e-03 - -3.667e-02 4.707e-01 6.220e+01 -2.796e+01 3.355e-01 - 3.860e-02 -1.623e-01 -2.796e+01 1.579e+01 -1.455e-01 - 7.477e-05 3.257e-03 3.355e-01 -1.455e-01 2.118e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20586 1.000 0.146 -0.038 0.079 0.013 - 2 0.60362 0.146 1.000 0.470 -0.322 0.558 - 3 0.95992 -0.038 0.470 1.000 -0.892 0.924 - 4 0.90004 0.079 -0.322 -0.892 1.000 -0.796 - 5 0.93542 0.013 0.558 0.924 -0.796 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5416.32 FROM HESSE STATUS=OK 31 CALLS 308 TOTAL - EDM=4.34749e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.60912e+02 1.23300e-01 1.23254e-04 9.13107e-02 - 2 sg_p1 3.47719e+00 1.27818e-01 1.06712e-04 -2.64476e-01 - 3 sg_p2 2.67513e+02 8.27292e+00 1.53577e-04 5.44068e-01 - 4 sg_p3 3.42369e+01 4.16972e+00 2.18622e-04 -9.84235e-01 - 5 sg_p4 6.40026e-01 4.75240e-02 7.40799e-04 -4.55485e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.520e-02 2.233e-03 -4.363e-02 4.203e-02 3.794e-05 - 2.233e-03 1.636e-02 5.114e-01 -1.832e-01 3.471e-03 - -4.363e-02 5.114e-01 6.851e+01 -3.117e+01 3.687e-01 - 4.203e-02 -1.832e-01 -3.117e+01 1.740e+01 -1.624e-01 - 3.794e-05 3.471e-03 3.687e-01 -1.624e-01 2.293e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20660 1.000 0.142 -0.043 0.082 0.006 - 2 0.61186 0.142 1.000 0.483 -0.343 0.567 - 3 0.96369 -0.043 0.483 1.000 -0.903 0.930 - 4 0.90977 0.082 -0.343 -0.903 1.000 -0.813 - 5 0.94051 0.006 0.567 0.930 -0.813 1.000 -260 -260.912 +- 0.1233 -3.47719 +- 0.127818 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=5643.26 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60000e+02 2.00000e+00 0.00000e+00 -7.61456e+02 - 2 sg_p1 4.00000e+00 4.00000e-01 0.00000e+00 -4.66447e+01 - 3 sg_p2 1.79000e+02 3.42000e+01 0.00000e+00 -2.40363e+01 - 4 sg_p3 1.17448e+02 2.90000e+01 -2.61968e-01 1.99273e-01 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.86435e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5508.96 FROM MIGRAD STATUS=CONVERGED 329 CALLS 330 TOTAL - EDM=7.77109e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.61021e+02 1.29098e-01 6.49909e-04 -1.01661e-02 - 2 sg_p1 3.57410e+00 1.33955e-01 2.78633e-03 8.71570e-03 - 3 sg_p2 2.69189e+02 7.27138e+00 7.50620e-04 -6.29806e-03 - 4 sg_p3 3.37078e+01 3.73722e+00 1.08346e-03 1.26302e-02 - 5 sg_p4 6.28095e-01 4.44728e-02 3.81722e-03 4.51572e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.667e-02 2.658e-03 -2.984e-02 3.729e-02 1.239e-04 - 2.658e-03 1.797e-02 4.694e-01 -1.655e-01 3.402e-03 - -2.984e-02 4.694e-01 5.292e+01 -2.409e+01 2.999e-01 - 3.729e-02 -1.655e-01 -2.409e+01 1.398e+01 -1.324e-01 - 1.239e-04 3.402e-03 2.999e-01 -1.324e-01 2.006e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.21380 1.000 0.154 -0.032 0.077 0.021 - 2 0.61009 0.154 1.000 0.481 -0.330 0.567 - 3 0.95628 -0.032 0.481 1.000 -0.886 0.921 - 4 0.89342 0.077 -0.330 -0.886 1.000 -0.790 - 5 0.93183 0.021 0.567 0.921 -0.790 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5508.96 FROM HESSE STATUS=OK 31 CALLS 361 TOTAL - EDM=7.78626e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.61021e+02 1.29118e-01 1.29982e-04 1.02301e-01 - 2 sg_p1 3.57410e+00 1.35116e-01 1.11453e-04 -2.14592e-01 - 3 sg_p2 2.69189e+02 7.65572e+00 3.00248e-05 5.55561e-01 - 4 sg_p3 3.37078e+01 3.93737e+00 4.33384e-05 -9.90860e-01 - 5 sg_p4 6.28095e-01 4.63527e-02 1.52689e-04 -5.09360e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.667e-02 2.595e-03 -3.703e-02 4.087e-02 8.376e-05 - 2.595e-03 1.829e-02 5.123e-01 -1.882e-01 3.639e-03 - -3.703e-02 5.123e-01 5.866e+01 -2.709e+01 3.317e-01 - 4.087e-02 -1.882e-01 -2.709e+01 1.552e+01 -1.489e-01 - 8.376e-05 3.639e-03 3.317e-01 -1.489e-01 2.182e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.21449 1.000 0.149 -0.037 0.080 0.014 - 2 0.61885 0.149 1.000 0.495 -0.353 0.576 - 3 0.96065 -0.037 0.495 1.000 -0.898 0.927 - 4 0.90455 0.080 -0.353 -0.898 1.000 -0.810 - 5 0.93751 0.014 0.576 0.927 -0.810 1.000 -260 -261.021 +- 0.129118 -3.5741 +- 0.135116 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=5267.68 FROM MIGRAD STATUS=INITIATE 37 CALLS 38 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60000e+02 2.00000e+00 0.00000e+00 -5.95437e+02 - 2 sg_p1 4.00000e+00 4.00000e-01 0.00000e+00 3.20402e+00 - 3 sg_p2 1.79000e+02 3.42000e+01 0.00000e+00 -1.99949e+01 - 4 sg_p3 1.11751e+02 2.90000e+01 -3.02882e-01 -4.35631e-01 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.33332e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5177.85 FROM MIGRAD STATUS=CONVERGED 294 CALLS 295 TOTAL - EDM=1.65041e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60758e+02 1.21975e-01 5.95143e-04 1.08233e-01 - 2 sg_p1 3.44214e+00 1.23415e-01 2.58042e-03 -3.07927e-02 - 3 sg_p2 2.66886e+02 8.40621e+00 7.85904e-04 -8.91521e-02 - 4 sg_p3 3.45456e+01 4.21772e+00 1.11909e-03 -3.70390e-02 - 5 sg_p4 6.53607e-01 4.66834e-02 3.55052e-03 4.88918e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.488e-02 2.239e-03 -3.126e-02 3.680e-02 1.101e-04 - 2.239e-03 1.525e-02 4.727e-01 -1.617e-01 3.144e-03 - -3.126e-02 4.727e-01 7.074e+01 -3.174e+01 3.661e-01 - 3.680e-02 -1.617e-01 -3.174e+01 1.781e+01 -1.585e-01 - 1.101e-04 3.144e-03 3.661e-01 -1.585e-01 2.210e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20236 1.000 0.149 -0.030 0.072 0.019 - 2 0.58940 0.149 1.000 0.455 -0.310 0.542 - 3 0.96112 -0.030 0.455 1.000 -0.894 0.926 - 4 0.90222 0.072 -0.310 -0.894 1.000 -0.799 - 5 0.93659 0.019 0.542 0.926 -0.799 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5177.85 FROM HESSE STATUS=OK 31 CALLS 326 TOTAL - EDM=1.76189e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.60758e+02 1.21991e-01 1.19029e-04 7.59045e-02 - 2 sg_p1 3.44214e+00 1.24473e-01 5.16084e-04 -2.82680e-01 - 3 sg_p2 2.66886e+02 8.89789e+00 1.57181e-04 5.39785e-01 - 4 sg_p3 3.45456e+01 4.46620e+00 4.47638e-05 -9.80400e-01 - 5 sg_p4 6.53607e-01 4.88967e-02 1.42021e-04 -3.95830e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.488e-02 2.186e-03 -3.913e-02 4.064e-02 6.994e-05 - 2.186e-03 1.552e-02 5.207e-01 -1.864e-01 3.386e-03 - -3.913e-02 5.207e-01 7.927e+01 -3.606e+01 4.092e-01 - 4.064e-02 -1.864e-01 -3.606e+01 1.997e+01 -1.803e-01 - 6.994e-05 3.386e-03 4.092e-01 -1.803e-01 2.428e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20297 1.000 0.144 -0.036 0.075 0.012 - 2 0.59871 0.144 1.000 0.470 -0.335 0.552 - 3 0.96537 -0.036 0.470 1.000 -0.906 0.933 - 4 0.91331 0.075 -0.335 -0.906 1.000 -0.819 - 5 0.94245 0.012 0.552 0.933 -0.819 1.000 -260 -260.758 +- 0.121991 -3.44214 +- 0.124473 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=5338.33 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60000e+02 2.00000e+00 0.00000e+00 -6.92141e+02 - 2 sg_p1 4.00000e+00 4.00000e-01 0.00000e+00 -3.46913e+01 - 3 sg_p2 1.79000e+02 3.42000e+01 0.00000e+00 -1.94669e+01 - 4 sg_p3 1.15260e+02 2.90000e+01 -2.77623e-01 2.60024e+00 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.53009e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5229.92 FROM MIGRAD STATUS=CONVERGED 289 CALLS 290 TOTAL - EDM=1.81993e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60953e+02 1.29425e-01 6.35842e-04 1.60007e-03 - 2 sg_p1 3.60691e+00 1.34289e-01 2.70753e-03 6.00340e-02 - 3 sg_p2 2.69933e+02 7.51981e+00 7.59887e-04 1.45220e-02 - 4 sg_p3 3.30610e+01 3.84505e+00 1.10949e-03 -7.50525e-02 - 5 sg_p4 6.55961e-01 4.53996e-02 3.52891e-03 -1.95435e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.675e-02 2.478e-03 -2.803e-02 3.713e-02 1.271e-04 - 2.478e-03 1.806e-02 5.001e-01 -1.785e-01 3.521e-03 - -2.803e-02 5.001e-01 5.660e+01 -2.561e+01 3.175e-01 - 3.713e-02 -1.785e-01 -2.561e+01 1.480e+01 -1.399e-01 - 1.271e-04 3.521e-03 3.175e-01 -1.399e-01 2.088e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20432 1.000 0.142 -0.029 0.075 0.021 - 2 0.61219 0.142 1.000 0.495 -0.345 0.573 - 3 0.95634 -0.029 0.495 1.000 -0.885 0.924 - 4 0.89204 0.075 -0.345 -0.885 1.000 -0.796 - 5 0.93370 0.021 0.573 0.924 -0.796 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5229.92 FROM HESSE STATUS=OK 31 CALLS 321 TOTAL - EDM=1.90259e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.60953e+02 1.29442e-01 1.27168e-04 9.54629e-02 - 2 sg_p1 3.60691e+00 1.35689e-01 5.41506e-04 -1.97834e-01 - 3 sg_p2 2.69933e+02 7.93967e+00 3.03955e-05 5.60690e-01 - 4 sg_p3 3.30610e+01 4.05992e+00 4.43797e-05 -9.99053e-01 - 5 sg_p4 6.55961e-01 4.74783e-02 7.05783e-04 -3.85646e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.676e-02 2.413e-03 -3.514e-02 4.064e-02 8.764e-05 - 2.413e-03 1.844e-02 5.501e-01 -2.046e-01 3.797e-03 - -3.514e-02 5.501e-01 6.310e+01 -2.896e+01 3.534e-01 - 4.064e-02 -2.046e-01 -2.896e+01 1.650e+01 -1.584e-01 - 8.764e-05 3.797e-03 3.534e-01 -1.584e-01 2.286e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20493 1.000 0.137 -0.034 0.077 0.014 - 2 0.62260 0.137 1.000 0.510 -0.371 0.585 - 3 0.96093 -0.034 0.510 1.000 -0.897 0.930 - 4 0.90377 0.077 -0.371 -0.897 1.000 -0.816 - 5 0.93964 0.014 0.585 0.930 -0.816 1.000 -260 -260.953 +- 0.129442 -3.60691 +- 0.135689 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=5550.93 FROM MIGRAD STATUS=INITIATE 38 CALLS 39 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60000e+02 2.00000e+00 0.00000e+00 -7.28869e+02 - 2 sg_p1 4.00000e+00 4.00000e-01 0.00000e+00 -1.53562e+00 - 3 sg_p2 1.79000e+02 3.42000e+01 0.00000e+00 -1.85127e+01 - 4 sg_p3 1.16923e+02 2.90000e+01 -2.65719e-01 3.07224e+00 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.51841e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5437.82 FROM MIGRAD STATUS=CONVERGED 274 CALLS 275 TOTAL - EDM=7.69222e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60915e+02 1.19244e-01 5.95259e-04 2.60414e-02 - 2 sg_p1 3.41319e+00 1.20663e-01 2.58530e-03 3.23980e-02 - 3 sg_p2 2.68923e+02 7.42025e+00 7.74450e-04 1.02102e-01 - 4 sg_p3 3.38737e+01 3.84818e+00 1.11926e-03 3.14690e-01 - 5 sg_p4 6.51986e-01 4.29286e-02 3.53695e-03 3.46225e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.422e-02 2.303e-03 -1.721e-02 2.984e-02 1.633e-04 - 2.303e-03 1.458e-02 4.143e-01 -1.451e-01 2.850e-03 - -1.721e-02 4.143e-01 5.511e+01 -2.526e+01 2.945e-01 - 2.984e-02 -1.451e-01 -2.526e+01 1.482e+01 -1.311e-01 - 1.633e-04 2.850e-03 2.945e-01 -1.311e-01 1.865e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20941 1.000 0.160 -0.019 0.065 0.032 - 2 0.59245 0.160 1.000 0.462 -0.312 0.547 - 3 0.95480 -0.019 0.462 1.000 -0.884 0.919 - 4 0.89128 0.065 -0.312 -0.884 1.000 -0.789 - 5 0.92953 0.032 0.547 0.919 -0.789 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5437.82 FROM HESSE STATUS=OK 31 CALLS 306 TOTAL - EDM=7.77868e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.60915e+02 1.19248e-01 1.19052e-04 9.16025e-02 - 2 sg_p1 3.41319e+00 1.21507e-01 5.17060e-04 -2.97787e-01 - 3 sg_p2 2.68923e+02 7.75724e+00 1.54890e-04 5.53729e-01 - 4 sg_p3 3.38737e+01 4.02350e+00 2.23853e-04 -9.88776e-01 - 5 sg_p4 6.51986e-01 4.45034e-02 7.07389e-04 -4.02868e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.422e-02 2.266e-03 -2.167e-02 3.206e-02 1.398e-04 - 2.266e-03 1.478e-02 4.471e-01 -1.625e-01 3.022e-03 - -2.167e-02 4.471e-01 6.023e+01 -2.794e+01 3.214e-01 - 3.206e-02 -1.625e-01 -2.794e+01 1.620e+01 -1.452e-01 - 1.398e-04 3.022e-03 3.214e-01 -1.452e-01 2.006e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20954 1.000 0.156 -0.023 0.067 0.026 - 2 0.60000 0.156 1.000 0.474 -0.332 0.555 - 3 0.95873 -0.023 0.474 1.000 -0.894 0.925 - 4 0.90107 0.067 -0.332 -0.894 1.000 -0.805 - 5 0.93466 0.026 0.555 0.925 -0.805 1.000 -260 -260.915 +- 0.119248 -3.41319 +- 0.121507 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=5158.41 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60000e+02 2.00000e+00 0.00000e+00 -6.61967e+02 - 2 sg_p1 4.00000e+00 4.00000e-01 0.00000e+00 -1.61061e+01 - 3 sg_p2 1.79000e+02 3.42000e+01 0.00000e+00 -1.77731e+01 - 4 sg_p3 1.15981e+02 2.90000e+01 -2.72457e-01 3.15087e+00 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.44973e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5054.08 FROM MIGRAD STATUS=CONVERGED 308 CALLS 309 TOTAL - EDM=5.20485e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60912e+02 1.27328e-01 6.14172e-04 -1.42304e-01 - 2 sg_p1 3.47672e+00 1.30824e-01 2.65500e-03 -1.69927e-02 - 3 sg_p2 2.67457e+02 8.15515e+00 7.65940e-04 -5.24312e-02 - 4 sg_p3 3.41797e+01 4.10175e+00 1.09416e-03 -2.88607e-03 - 5 sg_p4 6.41502e-01 4.72632e-02 3.67010e-03 1.46000e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.621e-02 2.418e-03 -4.005e-02 4.151e-02 7.448e-05 - 2.418e-03 1.714e-02 5.016e-01 -1.724e-01 3.472e-03 - -4.005e-02 5.016e-01 6.658e+01 -2.986e+01 3.591e-01 - 4.151e-02 -1.724e-01 -2.986e+01 1.684e+01 -1.554e-01 - 7.448e-05 3.472e-03 3.591e-01 -1.554e-01 2.267e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20516 1.000 0.145 -0.039 0.079 0.012 - 2 0.60288 0.145 1.000 0.470 -0.321 0.557 - 3 0.95995 -0.039 0.470 1.000 -0.892 0.924 - 4 0.89989 0.079 -0.321 -0.892 1.000 -0.795 - 5 0.93542 0.012 0.557 0.924 -0.795 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5054.08 FROM HESSE STATUS=OK 31 CALLS 340 TOTAL - EDM=5.2061e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.60912e+02 1.27350e-01 1.22834e-04 9.13271e-02 - 2 sg_p1 3.47672e+00 1.31905e-01 5.30999e-04 -2.64719e-01 - 3 sg_p2 2.67457e+02 8.59468e+00 1.53188e-04 5.43682e-01 - 4 sg_p3 3.41797e+01 4.32549e+00 4.37665e-05 -9.84949e-01 - 5 sg_p4 6.41502e-01 4.93072e-02 1.46804e-04 -4.48919e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.622e-02 2.353e-03 -4.855e-02 4.568e-02 2.931e-05 - 2.353e-03 1.743e-02 5.482e-01 -1.965e-01 3.716e-03 - -4.855e-02 5.482e-01 7.395e+01 -3.362e+01 3.979e-01 - 4.568e-02 -1.965e-01 -3.362e+01 1.873e+01 -1.751e-01 - 2.931e-05 3.716e-03 3.979e-01 -1.751e-01 2.471e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20598 1.000 0.140 -0.044 0.083 0.005 - 2 0.61146 0.140 1.000 0.483 -0.344 0.566 - 3 0.96402 -0.044 0.483 1.000 -0.903 0.931 - 4 0.91049 0.083 -0.344 -0.903 1.000 -0.814 - 5 0.94091 0.005 0.566 0.931 -0.814 1.000 -260 -260.912 +- 0.12735 -3.47672 +- 0.131905 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=5919.1 FROM MIGRAD STATUS=INITIATE 38 CALLS 39 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60000e+02 2.00000e+00 0.00000e+00 -7.57817e+02 - 2 sg_p1 4.00000e+00 4.00000e-01 0.00000e+00 -2.03212e+01 - 3 sg_p2 1.79000e+02 3.42000e+01 0.00000e+00 -1.98859e+01 - 4 sg_p3 1.17412e+02 2.90000e+01 -2.62219e-01 4.12643e+00 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.69751e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5797.63 FROM MIGRAD STATUS=CONVERGED 275 CALLS 276 TOTAL - EDM=2.6578e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60912e+02 1.19425e-01 6.16849e-04 -2.18136e-01 - 2 sg_p1 3.47734e+00 1.22978e-01 2.67008e-03 -4.00164e-03 - 3 sg_p2 2.67522e+02 7.63977e+00 7.68027e-04 8.93806e-02 - 4 sg_p3 3.43314e+01 3.85522e+00 1.09374e-03 1.59575e-01 - 5 sg_p4 6.38280e-01 4.42553e-02 3.71607e-03 -5.05369e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.426e-02 2.165e-03 -3.368e-02 3.602e-02 7.485e-05 - 2.165e-03 1.514e-02 4.429e-01 -1.530e-01 3.060e-03 - -3.368e-02 4.429e-01 5.842e+01 -2.630e+01 3.147e-01 - 3.602e-02 -1.530e-01 -2.630e+01 1.487e+01 -1.367e-01 - 7.485e-05 3.060e-03 3.147e-01 -1.367e-01 1.985e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20661 1.000 0.147 -0.037 0.078 0.014 - 2 0.60439 0.147 1.000 0.471 -0.322 0.558 - 3 0.95995 -0.037 0.471 1.000 -0.892 0.924 - 4 0.90013 0.078 -0.322 -0.892 1.000 -0.796 - 5 0.93549 0.014 0.558 0.924 -0.796 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5797.63 FROM HESSE STATUS=OK 31 CALLS 307 TOTAL - EDM=2.80959e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.60912e+02 1.19444e-01 1.23370e-04 9.13304e-02 - 2 sg_p1 3.47734e+00 1.23908e-01 1.06803e-04 -2.64402e-01 - 3 sg_p2 2.67522e+02 8.01092e+00 1.53605e-04 5.44131e-01 - 4 sg_p3 3.43314e+01 4.04488e+00 2.18748e-04 -9.83058e-01 - 5 sg_p4 6.38280e-01 4.59835e-02 1.48643e-04 -4.63274e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.427e-02 2.115e-03 -4.024e-02 3.926e-02 4.011e-05 - 2.115e-03 1.537e-02 4.799e-01 -1.722e-01 3.254e-03 - -4.024e-02 4.799e-01 6.424e+01 -2.927e+01 3.453e-01 - 3.926e-02 -1.722e-01 -2.927e+01 1.637e+01 -1.524e-01 - 4.011e-05 3.254e-03 3.453e-01 -1.524e-01 2.145e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20733 1.000 0.143 -0.042 0.081 0.007 - 2 0.61221 0.143 1.000 0.483 -0.343 0.567 - 3 0.96365 -0.042 0.483 1.000 -0.903 0.930 - 4 0.90974 0.081 -0.343 -0.903 1.000 -0.813 - 5 0.94046 0.007 0.567 0.930 -0.813 1.000 -260 -260.912 +- 0.119444 -3.47734 +- 0.123908 -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 260.912 +- 0.1233 (stat) - 0.153523 + 0.10939 (syst); -0.165439/+0.125566 (total) - Uncertainty on sg_p1 = 3.47719 +- 0.127818 (stat) - 0.064005 + 0.129714 (syst); -0.0904489/+0.144603 (total) - Uncertainty on sg_p2 = 267.513 +- 8.27292 (stat) - 0.627396 + 2.41961 (syst); -4.18377/+4.79216 (total) - Uncertainty on sg_p3 = 34.2369 +- 4.16972 (stat) - 1.17594 + 0.308663 (syst); -2.39363/+2.10758 (total) - Uncertainty on sg_p4 = 0.640026 +- 0.047524 (stat) - 0.0119301 + 0.0159351 (syst); -0.0265887/+0.0286105 (total) - === Baseline plot ===
- norm = 191.924 -JEC lnN 1.01807 - -JER lnN 1.02103 - -btag lnN 1.06823 - -sg_p0 param 260.912 -0.165439/+0.125566 -sg_p1 param 3.47719 -0.0904489/+0.144603 -sg_p2 param 267.513 -4.18377/+4.79216 -sg_p3 param 34.2369 -2.39363/+2.10758 -sg_p4 param 0.640026 -0.0265887/+0.0286105 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_260_gaus_exp_252_330/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_260_gaus_exp_252_330/data_bkg.log deleted file mode 100644 index 3cc1900..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_260_gaus_exp_252_330/data_bkg.log +++ /dev/null @@ -1,750 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [252,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=62921.6 FROM MIGRAD STATUS=INITIATE 90 CALLS 91 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.21879e-02 5.09000e-01 0.00000e+00 -9.80911e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -1.28354e+01 - 3 par_crystal_2 2.65669e+02 4.00000e+00 0.00000e+00 3.55320e+02 - 4 par_crystal_3 1.06488e+01 2.70000e+00 -4.48284e-01 -2.33576e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62883.4 FROM HESSE STATUS=OK 29 CALLS 257 TOTAL - EDM=4.91113 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.66060e-01 4.16121e-03 3.52377e-04 -4.74293e+00 - 2 par_crystal_1 4.45375e+00 2.73731e+00 1.77223e-01 2.66184e-01 - 3 par_crystal_2 2.67385e+02 2.04373e-01 8.29600e-04 2.81454e+02 - 4 par_crystal_3 1.36851e+01 5.38888e-01 1.69331e-03 -1.62103e+00 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=62883.3 FROM MIGRAD STATUS=FAILED 358 CALLS 359 TOTAL - EDM=0.00753244 STRATEGY= 1 ERR MATRIX APPROXIMATE - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.65093e-01 8.39913e-03 1.31861e-03 5.42788e+00 - 2 par_crystal_1 5.09910e+00 4.33634e+00 3.39194e-01 -6.59950e-03 - 3 par_crystal_2 2.67339e+02 1.86486e-01 3.32550e-03 -8.58879e+00 - 4 par_crystal_3 1.37140e+01 6.01780e-01 6.34807e-03 1.69258e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.055e-05 1.617e-04 4.699e-04 2.892e-03 - 1.617e-04 1.762e-02 -1.356e-04 -1.108e-03 - 4.699e-04 -1.356e-04 3.478e-02 3.255e-02 - 2.892e-03 -1.108e-03 3.255e-02 3.624e-01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.60853 1.000 0.145 0.300 0.572 - 2 0.19009 0.145 1.000 -0.005 -0.014 - 3 0.33449 0.300 -0.005 1.000 0.290 - 4 0.59243 0.572 -0.014 0.290 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7660e-01 8.1807e-01 1.6519e+00 1.7066e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.178308 TO DIAGONAL. - FCN=62883.3 FROM HESSE STATUS=NOT POSDEF 33 CALLS 392 TOTAL - EDM=3.36849 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.65093e-01 8.70034e-02 2.63722e-04 -1.21988e+00 - 2 par_crystal_1 5.09910e+00 4.18121e+00 5.00000e-01 1.54425e+00 - 3 par_crystal_2 2.67339e+02 5.27040e+00 9.57407e-02 3.75715e-01 - 4 par_crystal_3 1.37140e+01 6.68546e+00 2.53923e-04 -2.07863e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.595e-03 -2.994e-03 4.642e-01 6.089e-01 - -2.994e-03 1.536e-02 -1.944e-01 -2.569e-01 - 4.642e-01 -1.944e-01 2.855e+01 3.736e+01 - 6.089e-01 -2.569e-01 3.736e+01 4.914e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99751 1.000 -0.277 0.997 0.997 - 2 0.37560 -0.277 1.000 -0.293 -0.296 - 3 0.99795 0.997 -0.293 1.000 0.997 - 4 0.99797 0.997 -0.296 0.997 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=62983.1 FROM MIGRAD STATUS=INITIATE 29 CALLS 30 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 6.05383e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -1.33666e+02 - 3 par_gaus_exp_2 3.19008e-01 3.05000e-01 -9.67731e-01 -3.33619e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.00383 added to diagonal of error matrix - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62882.7 FROM MIGRAD STATUS=CONVERGED 228 CALLS 229 TOTAL - EDM=4.4408e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.69095e+02 7.01852e-01 4.07755e-03 2.89794e-02 - 2 par_gaus_exp_1 1.61044e+01 1.09719e+00 7.43010e-03 -1.84784e-02 - 3 par_gaus_exp_2 1.90527e-01 1.58774e-02 1.98778e-03 -6.23432e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 4.929e-01 5.914e-01 9.067e-03 - 5.914e-01 1.207e+00 1.483e-02 - 9.067e-03 1.483e-02 2.521e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.82590 1.000 0.767 0.813 - 2 0.85979 0.767 1.000 0.850 - 3 0.88644 0.813 0.850 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62882.7 FROM HESSE STATUS=OK 16 CALLS 245 TOTAL - EDM=4.28199e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.69095e+02 6.86832e-01 1.63102e-04 -5.76704e-01 - 2 par_gaus_exp_1 1.61044e+01 1.07335e+00 2.97204e-04 -5.72398e-01 - 3 par_gaus_exp_2 1.90527e-01 1.55212e-02 7.95110e-05 -1.13813e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 4.720e-01 5.579e-01 8.580e-03 - 5.579e-01 1.155e+00 1.406e-02 - 8.580e-03 1.406e-02 2.410e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.81734 1.000 0.756 0.805 - 2 0.85292 0.756 1.000 0.843 - 3 0.88081 0.805 0.843 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,624] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.3296 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.3296) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=286.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=286.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=289.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=289.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=295.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=295.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=298.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=298.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=301.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=301.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - ... (remaining 216 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.733611 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.733611) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=313.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=316.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=319.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=325.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=328.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=331.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=334.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=340.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=343.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=346.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - ... (remaining 94 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0733618 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0733618 - - FCN=103426 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57146e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.55551e+03 - 3 par_novo_2 -1.33526e+00 2.00000e+01 0.00000e+00 1.53308e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103192 FROM MIGRAD STATUS=CONVERGED 126 CALLS 127 TOTAL - EDM=1.07924e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.17697e+01 1.69443e-01** at limit ** - 2 par_novo_1 3.87878e+01 2.27475e+00 4.96100e-03 -6.14249e-02 - 3 par_novo_2 -1.26766e+00 7.00630e-02 3.67886e-05 3.77179e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 2.244e-10 -2.632e-07 -1.276e-07 - -2.632e-07 5.190e+00 1.540e-01 - -1.276e-07 1.540e-01 4.909e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.43392 1.000 -0.008 -0.122 - 2 0.97109 -0.008 1.000 0.965 - 3 0.97152 -0.122 0.965 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103192 FROM HESSE STATUS=OK 20 CALLS 147 TOTAL - EDM=1.23299e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.15107e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.87878e+01 2.30410e+00 1.98440e-04 4.51799e-01 - 3 par_novo_2 -1.26766e+00 7.13892e-02 1.47154e-06 -1.26769e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 2.143e-10 3.996e-06 -2.087e-07 - 3.996e-06 5.325e+00 1.518e-01 - -2.087e-07 1.518e-01 5.096e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.80390 1.000 0.118 -0.200 - 2 0.97183 0.118 1.000 0.922 - 3 0.97258 -0.200 0.922 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107617 FROM MIGRAD STATUS=INITIATE 36 CALLS 37 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 6.60405e+03 - 2 par_crystal_1_1 7.90153e-02 5.09000e-01 -1.80421e+00 3.05679e+03 - 3 par_crystal_1_2 2.60000e+02 4.00000e+00 0.00000e+00 1.48888e+03 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 6.99071e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.17529 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.7903e-03 5.8606e-02 5.0897e-01 3.4352e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.006225 TO DIAGONAL. - FCN=103191 FROM MIGRAD STATUS=CONVERGED 353 CALLS 354 TOTAL - EDM=3.7306e-06 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.37913e-01 3.41139e-02 6.19492e-04 4.10204e-01 - 2 par_crystal_1_1 4.44737e+00 5.69760e-01 2.21494e-02 9.88736e-03 - 3 par_crystal_1_2 2.79979e+02 3.40482e+01 2.79535e-01 -2.97577e-04 - 4 par_crystal_1_3 1.87584e+01 2.98857e+00 3.96232e-03 -6.40797e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.164e-03 3.582e-03 3.594e-03 9.898e-02 - 3.582e-03 3.375e-01 -1.052e-02 7.382e-01 - 3.594e-03 -1.052e-02 3.148e+00 6.243e-01 - 9.898e-02 7.382e-01 6.243e-01 9.086e+00 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99630 1.000 0.181 0.059 0.962 - 2 0.95650 0.181 1.000 -0.010 0.422 - 3 0.63948 0.059 -0.010 1.000 0.117 - 4 0.99690 0.962 0.422 0.117 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103191 FROM HESSE STATUS=OK 27 CALLS 381 TOTAL - EDM=6.06842e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 2.37913e-01 2.12502e-01 1.23898e-04 -8.36786e+01 - 2 par_crystal_1_1 4.44737e+00 5.06952e-01 8.85975e-04 -1.65463e+01 - 3 par_crystal_1_2 2.79979e+02 2.96341e+01 5.00000e-01 7.80831e+00 - 4 par_crystal_1_3 1.87584e+01 1.90925e+01 1.58493e-04 2.18231e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.578e-02 1.663e-02 2.427e-02 3.730e+00 - 1.663e-02 2.650e-01 -4.299e-02 1.684e+00 - 2.427e-02 -4.299e-02 1.850e+00 2.341e+00 - 3.730e+00 1.684e+00 2.341e+00 3.045e+02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99991 1.000 0.151 0.083 0.999 - 2 0.94385 0.151 1.000 -0.061 0.187 - 3 0.80384 0.083 -0.061 1.000 0.099 - 4 0.99991 0.999 0.187 0.099 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 13889.7 - Background number of gaus_exp_252_330 = 13889.7 - Background number of novo_285_624 = 17637.2 - Background number of crystal_1_285_624 = 17637.2 - Background number of gaus_bern_285_624 = 17637.2 - Background number of landau_285_624 = 17637.2 -par_crystal_0 param 0.165093 0.0870034 -par_crystal_1 param 5.0991 4.18121 -par_crystal_2 param 267.339 5.2704 -par_crystal_3 param 13.714 6.68546 -par_crystal_1_0 param 0.237913 0.212502 -par_crystal_1_1 param 4.44737 0.506952 -par_crystal_1_2 param 279.979 29.6341 -par_crystal_1_3 param 18.7584 19.0925 -par_gaus_exp_0 param 269.095 0.686832 -par_gaus_exp_1 param 16.1044 1.07335 -par_gaus_exp_2 param 0.190527 0.0155212 -par_novo_0 param 250 31.5107 -par_novo_1 param 38.7878 2.3041 -par_novo_2 param -1.26766 0.0713892 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_260_gaus_exp_252_330/datacard_260_gaus_exp_252_330.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_260_gaus_exp_252_330/datacard_260_gaus_exp_252_330.txt deleted file mode 100644 index c723563..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_260_gaus_exp_252_330/datacard_260_gaus_exp_252_330.txt +++ /dev/null @@ -1,30 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_260.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_gaus_exp_252_330.root HbbHbb:f_gaus_exp -shapes data_obs HbbHbb w_background_gaus_exp_252_330.root HbbHbb:data_obs_gaus_exp_252_330 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 191.924 13889.7 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06823 - -JER lnN 1.02103 - -JEC lnN 1.01807 - -trigger lnN 1.10 - -PDF lnN 1.01504940545 - -sg_p0 param 260.912 -0.165439/+0.125566 -sg_p1 param 3.47719 -0.0904489/+0.144603 -sg_p2 param 267.513 -4.18377/+4.79216 -sg_p3 param 34.2369 -2.39363/+2.10758 -sg_p4 param 0.640026 -0.0265887/+0.0286105 -par_gaus_exp_0 param 269.095 0.686832 -par_gaus_exp_1 param 16.1044 1.07335 -par_gaus_exp_2 param 0.190527 0.0155212 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_260_gaus_exp_252_330/pdf.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_260_gaus_exp_252_330/pdf.log deleted file mode 100644 index d74576e..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_260_gaus_exp_252_330/pdf.log +++ /dev/null @@ -1,10 +0,0 @@ -[?1034h FCN=7.89989 FROM MIGRAD STATUS=CONVERGED 62 CALLS 63 TOTAL - EDM=5.9771e-09 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 Constant 1.98474e+01 2.50075e+00 3.01290e-03 -1.61476e-05 - 2 Mean 1.00154e+00 1.72384e-03 2.41798e-06 3.32702e-02 - 3 Sigma 1.50494e-02 1.19888e-03 3.07932e-05 1.91423e-03 -1.00153706947 +/- 0.00172384303603 -0.0150494054533 +/- 0.00119888063503 -PDF lnN 1.01504940545 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_260_gaus_exp_252_330/signal260_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_260_gaus_exp_252_330/signal260_sig.log deleted file mode 100644 index 13dd83d..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_260_gaus_exp_252_330/signal260_sig.log +++ /dev/null @@ -1,842 +0,0 @@ - -Processing test.c... -nSignal_init = 300000 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=7249.56 FROM MIGRAD STATUS=INITIATE 45 CALLS 46 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.50000e+02 4.00000e+00 0.00000e+00 -3.41934e+02 - 2 sg_p1 1.35000e+01 2.30000e+00 0.00000e+00 -9.44540e+01 - 3 sg_p2 3.00000e+02 5.80000e+01 0.00000e+00 2.87170e+02 - 4 sg_p3 5.54385e+01 2.90000e+01 -7.56845e-01 -4.27472e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 -1.11620e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7161.13 FROM MIGRAD STATUS=CONVERGED 183 CALLS 184 TOTAL - EDM=2.26284e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.54307e+02 4.46691e-01 1.29592e-03 1.21370e-02 - 2 sg_p1 1.55513e+01 3.65330e-01 1.72918e-03 -4.57555e-02 - 3 sg_p2 3.13992e+02 1.11306e+01 1.54612e-03 9.59972e-03 - 4 sg_p3 7.00767e+01 6.24766e+00 2.56609e-03 1.76365e-03 - 5 sg_p4 9.03546e-01 1.22165e-02 2.78748e-03 -5.41093e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.996e-01 3.046e-02 3.316e-01 2.128e-01 9.423e-04 - 3.046e-02 1.335e-01 1.073e+00 -6.884e-02 1.627e-03 - 3.316e-01 1.073e+00 1.240e+02 -3.745e+01 8.007e-02 - 2.128e-01 -6.884e-02 -3.745e+01 3.907e+01 -1.718e-02 - 9.423e-04 1.627e-03 8.007e-02 -1.718e-02 1.494e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.24437 1.000 0.187 0.067 0.076 0.173 - 2 0.40012 0.187 1.000 0.264 -0.030 0.364 - 3 0.72503 0.067 0.264 1.000 -0.538 0.588 - 4 0.56339 0.076 -0.030 -0.538 1.000 -0.225 - 5 0.63827 0.173 0.364 0.588 -0.225 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7161.13 FROM HESSE STATUS=OK 31 CALLS 215 TOTAL - EDM=2.25533e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.54307e+02 4.46615e-01 2.59185e-04 2.17043e-01 - 2 sg_p1 1.55513e+01 3.65352e-01 3.45837e-04 1.79332e-01 - 3 sg_p2 3.13992e+02 1.12246e+01 6.18447e-05 4.82680e-02 - 4 sg_p3 7.00767e+01 6.29870e+00 1.02643e-04 -6.25716e-01 - 5 sg_p4 9.03546e-01 1.22468e-02 1.11499e-04 6.61353e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.995e-01 3.031e-02 3.258e-01 2.130e-01 9.376e-04 - 3.031e-02 1.335e-01 1.084e+00 -7.870e-02 1.633e-03 - 3.258e-01 1.084e+00 1.261e+02 -3.883e+01 8.134e-02 - 2.130e-01 -7.870e-02 -3.883e+01 3.971e+01 -1.806e-02 - 9.376e-04 1.633e-03 8.134e-02 -1.806e-02 1.502e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.24371 1.000 0.186 0.065 0.076 0.171 - 2 0.40024 0.186 1.000 0.264 -0.034 0.365 - 3 0.73047 0.065 0.264 1.000 -0.549 0.591 - 4 0.57308 0.076 -0.034 -0.549 1.000 -0.234 - 5 0.64057 0.171 0.365 0.591 -0.234 1.000 -260 -254.307 +- 0.446615 -15.5513 +- 0.365352 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=7365.44 FROM MIGRAD STATUS=INITIATE 44 CALLS 45 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.50000e+02 4.00000e+00 0.00000e+00 -5.31672e+02 - 2 sg_p1 1.35000e+01 2.30000e+00 0.00000e+00 -1.29968e+02 - 3 sg_p2 3.00000e+02 5.80000e+01 0.00000e+00 2.18090e+02 - 4 sg_p3 7.02234e+01 2.90000e+01 -6.24469e-01 3.04411e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 -1.01446e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7235.04 FROM MIGRAD STATUS=CONVERGED 193 CALLS 194 TOTAL - EDM=9.01413e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.56005e+02 4.49108e-01 1.34491e-03 -5.08347e-03 - 2 sg_p1 1.58159e+01 3.69974e-01 1.76393e-03 -5.10762e-02 - 3 sg_p2 3.20358e+02 1.45835e+01 1.97066e-03 3.38124e-02 - 4 sg_p3 8.43702e+01 8.25437e+00 3.00025e-03 1.43647e-02 - 5 sg_p4 9.08830e-01 1.15488e-02 2.75207e-03 -4.16137e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.017e-01 3.033e-02 4.244e-01 2.172e-01 8.632e-04 - 3.033e-02 1.369e-01 1.451e+00 -1.530e-01 1.573e-03 - 4.244e-01 1.451e+00 2.129e+02 -7.227e+01 9.550e-02 - 2.172e-01 -1.530e-01 -7.227e+01 6.823e+01 -2.243e-02 - 8.632e-04 1.573e-03 9.550e-02 -2.243e-02 1.335e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23216 1.000 0.182 0.065 0.059 0.166 - 2 0.40488 0.182 1.000 0.269 -0.050 0.368 - 3 0.74731 0.065 0.269 1.000 -0.600 0.566 - 4 0.62245 0.059 -0.050 -0.600 1.000 -0.235 - 5 0.62271 0.166 0.368 0.566 -0.235 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7235.04 FROM HESSE STATUS=OK 31 CALLS 225 TOTAL - EDM=9.02546e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.56005e+02 4.49038e-01 5.37964e-05 3.04976e-01 - 2 sg_p1 1.58159e+01 3.70057e-01 3.52786e-04 2.02768e-01 - 3 sg_p2 3.20358e+02 1.47403e+01 3.94131e-04 7.02587e-02 - 4 sg_p3 8.43702e+01 8.34145e+00 1.20010e-04 -5.08769e-01 - 5 sg_p4 9.08830e-01 1.15806e-02 5.50414e-04 6.88425e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.017e-01 3.017e-02 4.192e-01 2.171e-01 8.603e-04 - 3.017e-02 1.370e-01 1.472e+00 -1.690e-01 1.581e-03 - 4.192e-01 1.472e+00 2.175e+02 -7.517e+01 9.735e-02 - 2.171e-01 -1.690e-01 -7.517e+01 6.968e+01 -2.367e-02 - 8.603e-04 1.581e-03 9.735e-02 -2.367e-02 1.343e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23152 1.000 0.182 0.063 0.058 0.165 - 2 0.40534 0.182 1.000 0.270 -0.055 0.369 - 3 0.75354 0.063 0.270 1.000 -0.611 0.570 - 4 0.63259 0.058 -0.055 -0.611 1.000 -0.245 - 5 0.62540 0.165 0.369 0.570 -0.245 1.000 -260 -256.005 +- 0.449038 -15.8159 +- 0.370057 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=7023.18 FROM MIGRAD STATUS=INITIATE 44 CALLS 45 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.50000e+02 4.00000e+00 0.00000e+00 -2.24645e+02 - 2 sg_p1 1.35000e+01 2.30000e+00 0.00000e+00 -8.46385e+01 - 3 sg_p2 3.00000e+02 5.80000e+01 0.00000e+00 2.26204e+02 - 4 sg_p3 6.83932e+01 2.90000e+01 -6.40116e-01 1.32344e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 -1.30920e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6951.87 FROM MIGRAD STATUS=CONVERGED 181 CALLS 182 TOTAL - EDM=1.6519e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.53020e+02 4.42659e-01 1.26031e-03 3.88378e-02 - 2 sg_p1 1.54031e+01 3.53863e-01 1.68006e-03 -8.87814e-02 - 3 sg_p2 3.18681e+02 1.25359e+01 1.70808e-03 3.37307e-03 - 4 sg_p3 7.61417e+01 7.12298e+00 2.70731e-03 -4.47116e-02 - 5 sg_p4 9.04717e-01 1.16729e-02 2.71701e-03 -2.80475e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.960e-01 2.470e-02 3.794e-01 1.447e-01 7.850e-04 - 2.470e-02 1.253e-01 1.069e+00 -1.360e-01 1.312e-03 - 3.794e-01 1.069e+00 1.572e+02 -5.206e+01 8.352e-02 - 1.447e-01 -1.360e-01 -5.206e+01 5.079e+01 -2.199e-02 - 7.850e-04 1.312e-03 8.352e-02 -2.199e-02 1.364e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20982 1.000 0.158 0.068 0.046 0.152 - 2 0.35244 0.158 1.000 0.241 -0.054 0.317 - 3 0.72927 0.068 0.241 1.000 -0.582 0.570 - 4 0.59651 0.046 -0.054 -0.582 1.000 -0.264 - 5 0.60854 0.152 0.317 0.570 -0.264 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6951.87 FROM HESSE STATUS=OK 31 CALLS 213 TOTAL - EDM=1.65128e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.53020e+02 4.42602e-01 2.52062e-04 1.51594e-01 - 2 sg_p1 1.54031e+01 3.53933e-01 3.36012e-04 1.66253e-01 - 3 sg_p2 3.18681e+02 1.26590e+01 6.83233e-05 6.44624e-02 - 4 sg_p3 7.61417e+01 7.19114e+00 1.08292e-04 -5.75018e-01 - 5 sg_p4 9.04717e-01 1.17079e-02 5.43402e-04 6.67300e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.959e-01 2.459e-02 3.764e-01 1.438e-01 7.830e-04 - 2.459e-02 1.253e-01 1.084e+00 -1.475e-01 1.320e-03 - 3.764e-01 1.084e+00 1.604e+02 -5.404e+01 8.512e-02 - 1.438e-01 -1.475e-01 -5.404e+01 5.177e+01 -2.306e-02 - 7.830e-04 1.320e-03 8.512e-02 -2.306e-02 1.372e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20923 1.000 0.157 0.067 0.045 0.151 - 2 0.35293 0.157 1.000 0.242 -0.058 0.318 - 3 0.73547 0.067 0.242 1.000 -0.593 0.574 - 4 0.60661 0.045 -0.058 -0.593 1.000 -0.274 - 5 0.61162 0.151 0.318 0.574 -0.274 1.000 -260 -253.02 +- 0.442602 -15.4031 +- 0.353933 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=5529.06 FROM MIGRAD STATUS=INITIATE 37 CALLS 38 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60000e+02 2.00000e+00 0.00000e+00 -7.09302e+02 - 2 sg_p1 4.00000e+00 4.00000e-01 0.00000e+00 -1.84754e+01 - 3 sg_p2 1.79000e+02 3.42000e+01 0.00000e+00 -1.60258e+01 - 4 sg_p3 1.19103e+02 2.90000e+01 -2.50167e-01 6.51588e+00 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.55737e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5416.32 FROM MIGRAD STATUS=CONVERGED 276 CALLS 277 TOTAL - EDM=4.33865e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60912e+02 1.23280e-01 6.16272e-04 -2.78767e-01 - 2 sg_p1 3.47719e+00 1.26808e-01 2.66781e-03 -6.03093e-03 - 3 sg_p2 2.67513e+02 7.88309e+00 7.67886e-04 -3.32533e-01 - 4 sg_p3 3.42369e+01 3.97181e+00 1.09311e-03 -2.13224e-01 - 5 sg_p4 6.40026e-01 4.56991e-02 3.70400e-03 4.78364e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.520e-02 2.286e-03 -3.667e-02 3.860e-02 7.477e-05 - 2.286e-03 1.610e-02 4.707e-01 -1.623e-01 3.257e-03 - -3.667e-02 4.707e-01 6.220e+01 -2.796e+01 3.355e-01 - 3.860e-02 -1.623e-01 -2.796e+01 1.579e+01 -1.455e-01 - 7.477e-05 3.257e-03 3.355e-01 -1.455e-01 2.118e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20586 1.000 0.146 -0.038 0.079 0.013 - 2 0.60362 0.146 1.000 0.470 -0.322 0.558 - 3 0.95992 -0.038 0.470 1.000 -0.892 0.924 - 4 0.90004 0.079 -0.322 -0.892 1.000 -0.796 - 5 0.93542 0.013 0.558 0.924 -0.796 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5416.32 FROM HESSE STATUS=OK 31 CALLS 308 TOTAL - EDM=4.34749e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.60912e+02 1.23300e-01 1.23254e-04 9.13107e-02 - 2 sg_p1 3.47719e+00 1.27818e-01 1.06712e-04 -2.64476e-01 - 3 sg_p2 2.67513e+02 8.27292e+00 1.53577e-04 5.44068e-01 - 4 sg_p3 3.42369e+01 4.16972e+00 2.18622e-04 -9.84235e-01 - 5 sg_p4 6.40026e-01 4.75240e-02 7.40799e-04 -4.55485e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.520e-02 2.233e-03 -4.363e-02 4.203e-02 3.794e-05 - 2.233e-03 1.636e-02 5.114e-01 -1.832e-01 3.471e-03 - -4.363e-02 5.114e-01 6.851e+01 -3.117e+01 3.687e-01 - 4.203e-02 -1.832e-01 -3.117e+01 1.740e+01 -1.624e-01 - 3.794e-05 3.471e-03 3.687e-01 -1.624e-01 2.293e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20660 1.000 0.142 -0.043 0.082 0.006 - 2 0.61186 0.142 1.000 0.483 -0.343 0.567 - 3 0.96369 -0.043 0.483 1.000 -0.903 0.930 - 4 0.90977 0.082 -0.343 -0.903 1.000 -0.813 - 5 0.94051 0.006 0.567 0.930 -0.813 1.000 -260 -260.912 +- 0.1233 -3.47719 +- 0.127818 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=5643.26 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60000e+02 2.00000e+00 0.00000e+00 -7.61456e+02 - 2 sg_p1 4.00000e+00 4.00000e-01 0.00000e+00 -4.66447e+01 - 3 sg_p2 1.79000e+02 3.42000e+01 0.00000e+00 -2.40363e+01 - 4 sg_p3 1.17448e+02 2.90000e+01 -2.61968e-01 1.99273e-01 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.86435e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5508.96 FROM MIGRAD STATUS=CONVERGED 329 CALLS 330 TOTAL - EDM=7.77109e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.61021e+02 1.29098e-01 6.49909e-04 -1.01661e-02 - 2 sg_p1 3.57410e+00 1.33955e-01 2.78633e-03 8.71570e-03 - 3 sg_p2 2.69189e+02 7.27138e+00 7.50620e-04 -6.29806e-03 - 4 sg_p3 3.37078e+01 3.73722e+00 1.08346e-03 1.26302e-02 - 5 sg_p4 6.28095e-01 4.44728e-02 3.81722e-03 4.51572e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.667e-02 2.658e-03 -2.984e-02 3.729e-02 1.239e-04 - 2.658e-03 1.797e-02 4.694e-01 -1.655e-01 3.402e-03 - -2.984e-02 4.694e-01 5.292e+01 -2.409e+01 2.999e-01 - 3.729e-02 -1.655e-01 -2.409e+01 1.398e+01 -1.324e-01 - 1.239e-04 3.402e-03 2.999e-01 -1.324e-01 2.006e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.21380 1.000 0.154 -0.032 0.077 0.021 - 2 0.61009 0.154 1.000 0.481 -0.330 0.567 - 3 0.95628 -0.032 0.481 1.000 -0.886 0.921 - 4 0.89342 0.077 -0.330 -0.886 1.000 -0.790 - 5 0.93183 0.021 0.567 0.921 -0.790 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5508.96 FROM HESSE STATUS=OK 31 CALLS 361 TOTAL - EDM=7.78626e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.61021e+02 1.29118e-01 1.29982e-04 1.02301e-01 - 2 sg_p1 3.57410e+00 1.35116e-01 1.11453e-04 -2.14592e-01 - 3 sg_p2 2.69189e+02 7.65572e+00 3.00248e-05 5.55561e-01 - 4 sg_p3 3.37078e+01 3.93737e+00 4.33384e-05 -9.90860e-01 - 5 sg_p4 6.28095e-01 4.63527e-02 1.52689e-04 -5.09360e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.667e-02 2.595e-03 -3.703e-02 4.087e-02 8.376e-05 - 2.595e-03 1.829e-02 5.123e-01 -1.882e-01 3.639e-03 - -3.703e-02 5.123e-01 5.866e+01 -2.709e+01 3.317e-01 - 4.087e-02 -1.882e-01 -2.709e+01 1.552e+01 -1.489e-01 - 8.376e-05 3.639e-03 3.317e-01 -1.489e-01 2.182e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.21449 1.000 0.149 -0.037 0.080 0.014 - 2 0.61885 0.149 1.000 0.495 -0.353 0.576 - 3 0.96065 -0.037 0.495 1.000 -0.898 0.927 - 4 0.90455 0.080 -0.353 -0.898 1.000 -0.810 - 5 0.93751 0.014 0.576 0.927 -0.810 1.000 -260 -261.021 +- 0.129118 -3.5741 +- 0.135116 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=5267.68 FROM MIGRAD STATUS=INITIATE 37 CALLS 38 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60000e+02 2.00000e+00 0.00000e+00 -5.95437e+02 - 2 sg_p1 4.00000e+00 4.00000e-01 0.00000e+00 3.20402e+00 - 3 sg_p2 1.79000e+02 3.42000e+01 0.00000e+00 -1.99949e+01 - 4 sg_p3 1.11751e+02 2.90000e+01 -3.02882e-01 -4.35631e-01 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.33332e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5177.85 FROM MIGRAD STATUS=CONVERGED 294 CALLS 295 TOTAL - EDM=1.65041e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60758e+02 1.21975e-01 5.95143e-04 1.08233e-01 - 2 sg_p1 3.44214e+00 1.23415e-01 2.58042e-03 -3.07927e-02 - 3 sg_p2 2.66886e+02 8.40621e+00 7.85904e-04 -8.91521e-02 - 4 sg_p3 3.45456e+01 4.21772e+00 1.11909e-03 -3.70390e-02 - 5 sg_p4 6.53607e-01 4.66834e-02 3.55052e-03 4.88918e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.488e-02 2.239e-03 -3.126e-02 3.680e-02 1.101e-04 - 2.239e-03 1.525e-02 4.727e-01 -1.617e-01 3.144e-03 - -3.126e-02 4.727e-01 7.074e+01 -3.174e+01 3.661e-01 - 3.680e-02 -1.617e-01 -3.174e+01 1.781e+01 -1.585e-01 - 1.101e-04 3.144e-03 3.661e-01 -1.585e-01 2.210e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20236 1.000 0.149 -0.030 0.072 0.019 - 2 0.58940 0.149 1.000 0.455 -0.310 0.542 - 3 0.96112 -0.030 0.455 1.000 -0.894 0.926 - 4 0.90222 0.072 -0.310 -0.894 1.000 -0.799 - 5 0.93659 0.019 0.542 0.926 -0.799 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5177.85 FROM HESSE STATUS=OK 31 CALLS 326 TOTAL - EDM=1.76189e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.60758e+02 1.21991e-01 1.19029e-04 7.59045e-02 - 2 sg_p1 3.44214e+00 1.24473e-01 5.16084e-04 -2.82680e-01 - 3 sg_p2 2.66886e+02 8.89789e+00 1.57181e-04 5.39785e-01 - 4 sg_p3 3.45456e+01 4.46620e+00 4.47638e-05 -9.80400e-01 - 5 sg_p4 6.53607e-01 4.88967e-02 1.42021e-04 -3.95830e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.488e-02 2.186e-03 -3.913e-02 4.064e-02 6.994e-05 - 2.186e-03 1.552e-02 5.207e-01 -1.864e-01 3.386e-03 - -3.913e-02 5.207e-01 7.927e+01 -3.606e+01 4.092e-01 - 4.064e-02 -1.864e-01 -3.606e+01 1.997e+01 -1.803e-01 - 6.994e-05 3.386e-03 4.092e-01 -1.803e-01 2.428e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20297 1.000 0.144 -0.036 0.075 0.012 - 2 0.59871 0.144 1.000 0.470 -0.335 0.552 - 3 0.96537 -0.036 0.470 1.000 -0.906 0.933 - 4 0.91331 0.075 -0.335 -0.906 1.000 -0.819 - 5 0.94245 0.012 0.552 0.933 -0.819 1.000 -260 -260.758 +- 0.121991 -3.44214 +- 0.124473 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=5338.33 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60000e+02 2.00000e+00 0.00000e+00 -6.92141e+02 - 2 sg_p1 4.00000e+00 4.00000e-01 0.00000e+00 -3.46913e+01 - 3 sg_p2 1.79000e+02 3.42000e+01 0.00000e+00 -1.94669e+01 - 4 sg_p3 1.15260e+02 2.90000e+01 -2.77623e-01 2.60024e+00 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.53009e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5229.92 FROM MIGRAD STATUS=CONVERGED 289 CALLS 290 TOTAL - EDM=1.81993e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60953e+02 1.29425e-01 6.35842e-04 1.60007e-03 - 2 sg_p1 3.60691e+00 1.34289e-01 2.70753e-03 6.00340e-02 - 3 sg_p2 2.69933e+02 7.51981e+00 7.59887e-04 1.45220e-02 - 4 sg_p3 3.30610e+01 3.84505e+00 1.10949e-03 -7.50525e-02 - 5 sg_p4 6.55961e-01 4.53996e-02 3.52891e-03 -1.95435e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.675e-02 2.478e-03 -2.803e-02 3.713e-02 1.271e-04 - 2.478e-03 1.806e-02 5.001e-01 -1.785e-01 3.521e-03 - -2.803e-02 5.001e-01 5.660e+01 -2.561e+01 3.175e-01 - 3.713e-02 -1.785e-01 -2.561e+01 1.480e+01 -1.399e-01 - 1.271e-04 3.521e-03 3.175e-01 -1.399e-01 2.088e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20432 1.000 0.142 -0.029 0.075 0.021 - 2 0.61219 0.142 1.000 0.495 -0.345 0.573 - 3 0.95634 -0.029 0.495 1.000 -0.885 0.924 - 4 0.89204 0.075 -0.345 -0.885 1.000 -0.796 - 5 0.93370 0.021 0.573 0.924 -0.796 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5229.92 FROM HESSE STATUS=OK 31 CALLS 321 TOTAL - EDM=1.90259e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.60953e+02 1.29442e-01 1.27168e-04 9.54629e-02 - 2 sg_p1 3.60691e+00 1.35689e-01 5.41506e-04 -1.97834e-01 - 3 sg_p2 2.69933e+02 7.93967e+00 3.03955e-05 5.60690e-01 - 4 sg_p3 3.30610e+01 4.05992e+00 4.43797e-05 -9.99053e-01 - 5 sg_p4 6.55961e-01 4.74783e-02 7.05783e-04 -3.85646e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.676e-02 2.413e-03 -3.514e-02 4.064e-02 8.764e-05 - 2.413e-03 1.844e-02 5.501e-01 -2.046e-01 3.797e-03 - -3.514e-02 5.501e-01 6.310e+01 -2.896e+01 3.534e-01 - 4.064e-02 -2.046e-01 -2.896e+01 1.650e+01 -1.584e-01 - 8.764e-05 3.797e-03 3.534e-01 -1.584e-01 2.286e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20493 1.000 0.137 -0.034 0.077 0.014 - 2 0.62260 0.137 1.000 0.510 -0.371 0.585 - 3 0.96093 -0.034 0.510 1.000 -0.897 0.930 - 4 0.90377 0.077 -0.371 -0.897 1.000 -0.816 - 5 0.93964 0.014 0.585 0.930 -0.816 1.000 -260 -260.953 +- 0.129442 -3.60691 +- 0.135689 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=5550.93 FROM MIGRAD STATUS=INITIATE 38 CALLS 39 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60000e+02 2.00000e+00 0.00000e+00 -7.28869e+02 - 2 sg_p1 4.00000e+00 4.00000e-01 0.00000e+00 -1.53562e+00 - 3 sg_p2 1.79000e+02 3.42000e+01 0.00000e+00 -1.85127e+01 - 4 sg_p3 1.16923e+02 2.90000e+01 -2.65719e-01 3.07224e+00 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.51841e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5437.82 FROM MIGRAD STATUS=CONVERGED 274 CALLS 275 TOTAL - EDM=7.69222e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60915e+02 1.19244e-01 5.95259e-04 2.60414e-02 - 2 sg_p1 3.41319e+00 1.20663e-01 2.58530e-03 3.23980e-02 - 3 sg_p2 2.68923e+02 7.42025e+00 7.74450e-04 1.02102e-01 - 4 sg_p3 3.38737e+01 3.84818e+00 1.11926e-03 3.14690e-01 - 5 sg_p4 6.51986e-01 4.29286e-02 3.53695e-03 3.46225e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.422e-02 2.303e-03 -1.721e-02 2.984e-02 1.633e-04 - 2.303e-03 1.458e-02 4.143e-01 -1.451e-01 2.850e-03 - -1.721e-02 4.143e-01 5.511e+01 -2.526e+01 2.945e-01 - 2.984e-02 -1.451e-01 -2.526e+01 1.482e+01 -1.311e-01 - 1.633e-04 2.850e-03 2.945e-01 -1.311e-01 1.865e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20941 1.000 0.160 -0.019 0.065 0.032 - 2 0.59245 0.160 1.000 0.462 -0.312 0.547 - 3 0.95480 -0.019 0.462 1.000 -0.884 0.919 - 4 0.89128 0.065 -0.312 -0.884 1.000 -0.789 - 5 0.92953 0.032 0.547 0.919 -0.789 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5437.82 FROM HESSE STATUS=OK 31 CALLS 306 TOTAL - EDM=7.77868e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.60915e+02 1.19248e-01 1.19052e-04 9.16025e-02 - 2 sg_p1 3.41319e+00 1.21507e-01 5.17060e-04 -2.97787e-01 - 3 sg_p2 2.68923e+02 7.75724e+00 1.54890e-04 5.53729e-01 - 4 sg_p3 3.38737e+01 4.02350e+00 2.23853e-04 -9.88776e-01 - 5 sg_p4 6.51986e-01 4.45034e-02 7.07389e-04 -4.02868e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.422e-02 2.266e-03 -2.167e-02 3.206e-02 1.398e-04 - 2.266e-03 1.478e-02 4.471e-01 -1.625e-01 3.022e-03 - -2.167e-02 4.471e-01 6.023e+01 -2.794e+01 3.214e-01 - 3.206e-02 -1.625e-01 -2.794e+01 1.620e+01 -1.452e-01 - 1.398e-04 3.022e-03 3.214e-01 -1.452e-01 2.006e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20954 1.000 0.156 -0.023 0.067 0.026 - 2 0.60000 0.156 1.000 0.474 -0.332 0.555 - 3 0.95873 -0.023 0.474 1.000 -0.894 0.925 - 4 0.90107 0.067 -0.332 -0.894 1.000 -0.805 - 5 0.93466 0.026 0.555 0.925 -0.805 1.000 -260 -260.915 +- 0.119248 -3.41319 +- 0.121507 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=5158.41 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60000e+02 2.00000e+00 0.00000e+00 -6.61967e+02 - 2 sg_p1 4.00000e+00 4.00000e-01 0.00000e+00 -1.61061e+01 - 3 sg_p2 1.79000e+02 3.42000e+01 0.00000e+00 -1.77731e+01 - 4 sg_p3 1.15981e+02 2.90000e+01 -2.72457e-01 3.15087e+00 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.44973e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5054.08 FROM MIGRAD STATUS=CONVERGED 308 CALLS 309 TOTAL - EDM=5.20485e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60912e+02 1.27328e-01 6.14172e-04 -1.42304e-01 - 2 sg_p1 3.47672e+00 1.30824e-01 2.65500e-03 -1.69927e-02 - 3 sg_p2 2.67457e+02 8.15515e+00 7.65940e-04 -5.24312e-02 - 4 sg_p3 3.41797e+01 4.10175e+00 1.09416e-03 -2.88607e-03 - 5 sg_p4 6.41502e-01 4.72632e-02 3.67010e-03 1.46000e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.621e-02 2.418e-03 -4.005e-02 4.151e-02 7.448e-05 - 2.418e-03 1.714e-02 5.016e-01 -1.724e-01 3.472e-03 - -4.005e-02 5.016e-01 6.658e+01 -2.986e+01 3.591e-01 - 4.151e-02 -1.724e-01 -2.986e+01 1.684e+01 -1.554e-01 - 7.448e-05 3.472e-03 3.591e-01 -1.554e-01 2.267e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20516 1.000 0.145 -0.039 0.079 0.012 - 2 0.60288 0.145 1.000 0.470 -0.321 0.557 - 3 0.95995 -0.039 0.470 1.000 -0.892 0.924 - 4 0.89989 0.079 -0.321 -0.892 1.000 -0.795 - 5 0.93542 0.012 0.557 0.924 -0.795 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5054.08 FROM HESSE STATUS=OK 31 CALLS 340 TOTAL - EDM=5.2061e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.60912e+02 1.27350e-01 1.22834e-04 9.13271e-02 - 2 sg_p1 3.47672e+00 1.31905e-01 5.30999e-04 -2.64719e-01 - 3 sg_p2 2.67457e+02 8.59468e+00 1.53188e-04 5.43682e-01 - 4 sg_p3 3.41797e+01 4.32549e+00 4.37665e-05 -9.84949e-01 - 5 sg_p4 6.41502e-01 4.93072e-02 1.46804e-04 -4.48919e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.622e-02 2.353e-03 -4.855e-02 4.568e-02 2.931e-05 - 2.353e-03 1.743e-02 5.482e-01 -1.965e-01 3.716e-03 - -4.855e-02 5.482e-01 7.395e+01 -3.362e+01 3.979e-01 - 4.568e-02 -1.965e-01 -3.362e+01 1.873e+01 -1.751e-01 - 2.931e-05 3.716e-03 3.979e-01 -1.751e-01 2.471e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20598 1.000 0.140 -0.044 0.083 0.005 - 2 0.61146 0.140 1.000 0.483 -0.344 0.566 - 3 0.96402 -0.044 0.483 1.000 -0.903 0.931 - 4 0.91049 0.083 -0.344 -0.903 1.000 -0.814 - 5 0.94091 0.005 0.566 0.931 -0.814 1.000 -260 -260.912 +- 0.12735 -3.47672 +- 0.131905 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=5919.1 FROM MIGRAD STATUS=INITIATE 38 CALLS 39 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60000e+02 2.00000e+00 0.00000e+00 -7.57817e+02 - 2 sg_p1 4.00000e+00 4.00000e-01 0.00000e+00 -2.03212e+01 - 3 sg_p2 1.79000e+02 3.42000e+01 0.00000e+00 -1.98859e+01 - 4 sg_p3 1.17412e+02 2.90000e+01 -2.62219e-01 4.12643e+00 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.69751e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5797.63 FROM MIGRAD STATUS=CONVERGED 275 CALLS 276 TOTAL - EDM=2.6578e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60912e+02 1.19425e-01 6.16849e-04 -2.18136e-01 - 2 sg_p1 3.47734e+00 1.22978e-01 2.67008e-03 -4.00164e-03 - 3 sg_p2 2.67522e+02 7.63977e+00 7.68027e-04 8.93806e-02 - 4 sg_p3 3.43314e+01 3.85522e+00 1.09374e-03 1.59575e-01 - 5 sg_p4 6.38280e-01 4.42553e-02 3.71607e-03 -5.05369e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.426e-02 2.165e-03 -3.368e-02 3.602e-02 7.485e-05 - 2.165e-03 1.514e-02 4.429e-01 -1.530e-01 3.060e-03 - -3.368e-02 4.429e-01 5.842e+01 -2.630e+01 3.147e-01 - 3.602e-02 -1.530e-01 -2.630e+01 1.487e+01 -1.367e-01 - 7.485e-05 3.060e-03 3.147e-01 -1.367e-01 1.985e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20661 1.000 0.147 -0.037 0.078 0.014 - 2 0.60439 0.147 1.000 0.471 -0.322 0.558 - 3 0.95995 -0.037 0.471 1.000 -0.892 0.924 - 4 0.90013 0.078 -0.322 -0.892 1.000 -0.796 - 5 0.93549 0.014 0.558 0.924 -0.796 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5797.63 FROM HESSE STATUS=OK 31 CALLS 307 TOTAL - EDM=2.80959e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.60912e+02 1.19444e-01 1.23370e-04 9.13304e-02 - 2 sg_p1 3.47734e+00 1.23908e-01 1.06803e-04 -2.64402e-01 - 3 sg_p2 2.67522e+02 8.01092e+00 1.53605e-04 5.44131e-01 - 4 sg_p3 3.43314e+01 4.04488e+00 2.18748e-04 -9.83058e-01 - 5 sg_p4 6.38280e-01 4.59835e-02 1.48643e-04 -4.63274e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.427e-02 2.115e-03 -4.024e-02 3.926e-02 4.011e-05 - 2.115e-03 1.537e-02 4.799e-01 -1.722e-01 3.254e-03 - -4.024e-02 4.799e-01 6.424e+01 -2.927e+01 3.453e-01 - 3.926e-02 -1.722e-01 -2.927e+01 1.637e+01 -1.524e-01 - 4.011e-05 3.254e-03 3.453e-01 -1.524e-01 2.145e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20733 1.000 0.143 -0.042 0.081 0.007 - 2 0.61221 0.143 1.000 0.483 -0.343 0.567 - 3 0.96365 -0.042 0.483 1.000 -0.903 0.930 - 4 0.90974 0.081 -0.343 -0.903 1.000 -0.813 - 5 0.94046 0.007 0.567 0.930 -0.813 1.000 -260 -260.912 +- 0.119444 -3.47734 +- 0.123908 -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 260.912 +- 0.1233 (stat) - 0.153523 + 0.10939 (syst); -0.165439/+0.125566 (total) - Uncertainty on sg_p1 = 3.47719 +- 0.127818 (stat) - 0.064005 + 0.129714 (syst); -0.0904489/+0.144603 (total) - Uncertainty on sg_p2 = 267.513 +- 8.27292 (stat) - 0.627396 + 2.41961 (syst); -4.18377/+4.79216 (total) - Uncertainty on sg_p3 = 34.2369 +- 4.16972 (stat) - 1.17594 + 0.308663 (syst); -2.39363/+2.10758 (total) - Uncertainty on sg_p4 = 0.640026 +- 0.047524 (stat) - 0.0119301 + 0.0159351 (syst); -0.0265887/+0.0286105 (total) - === Baseline plot ===
- norm = 191.924 -JEC lnN 1.01807 - -JER lnN 1.02103 - -btag lnN 1.06823 - -sg_p0 param 260.912 -0.165439/+0.125566 -sg_p1 param 3.47719 -0.0904489/+0.144603 -sg_p2 param 267.513 -4.18377/+4.79216 -sg_p3 param 34.2369 -2.39363/+2.10758 -sg_p4 param 0.640026 -0.0265887/+0.0286105 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_crystal_1_285_624/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_crystal_1_285_624/data_bkg.log deleted file mode 100644 index 118332d..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_crystal_1_285_624/data_bkg.log +++ /dev/null @@ -1,750 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [252,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=62921.6 FROM MIGRAD STATUS=INITIATE 90 CALLS 91 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.21879e-02 5.09000e-01 0.00000e+00 -9.80911e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -1.28354e+01 - 3 par_crystal_2 2.65669e+02 4.00000e+00 0.00000e+00 3.55320e+02 - 4 par_crystal_3 1.06488e+01 2.70000e+00 -4.48284e-01 -2.33576e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62883.4 FROM HESSE STATUS=OK 29 CALLS 257 TOTAL - EDM=4.91113 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.66060e-01 4.16121e-03 3.52377e-04 -4.74293e+00 - 2 par_crystal_1 4.45375e+00 2.73731e+00 1.77223e-01 2.66184e-01 - 3 par_crystal_2 2.67385e+02 2.04373e-01 8.29600e-04 2.81454e+02 - 4 par_crystal_3 1.36851e+01 5.38888e-01 1.69331e-03 -1.62103e+00 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=62883.3 FROM MIGRAD STATUS=FAILED 358 CALLS 359 TOTAL - EDM=0.00753244 STRATEGY= 1 ERR MATRIX APPROXIMATE - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.65093e-01 8.39913e-03 1.31861e-03 5.42788e+00 - 2 par_crystal_1 5.09910e+00 4.33634e+00 3.39194e-01 -6.59950e-03 - 3 par_crystal_2 2.67339e+02 1.86486e-01 3.32550e-03 -8.58879e+00 - 4 par_crystal_3 1.37140e+01 6.01780e-01 6.34807e-03 1.69258e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.055e-05 1.617e-04 4.699e-04 2.892e-03 - 1.617e-04 1.762e-02 -1.356e-04 -1.108e-03 - 4.699e-04 -1.356e-04 3.478e-02 3.255e-02 - 2.892e-03 -1.108e-03 3.255e-02 3.624e-01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.60853 1.000 0.145 0.300 0.572 - 2 0.19009 0.145 1.000 -0.005 -0.014 - 3 0.33449 0.300 -0.005 1.000 0.290 - 4 0.59243 0.572 -0.014 0.290 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7660e-01 8.1807e-01 1.6519e+00 1.7066e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.178308 TO DIAGONAL. - FCN=62883.3 FROM HESSE STATUS=NOT POSDEF 33 CALLS 392 TOTAL - EDM=3.36849 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.65093e-01 8.70034e-02 2.63722e-04 -1.21988e+00 - 2 par_crystal_1 5.09910e+00 4.18121e+00 5.00000e-01 1.54425e+00 - 3 par_crystal_2 2.67339e+02 5.27040e+00 9.57407e-02 3.75715e-01 - 4 par_crystal_3 1.37140e+01 6.68546e+00 2.53923e-04 -2.07863e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.595e-03 -2.994e-03 4.642e-01 6.089e-01 - -2.994e-03 1.536e-02 -1.944e-01 -2.569e-01 - 4.642e-01 -1.944e-01 2.855e+01 3.736e+01 - 6.089e-01 -2.569e-01 3.736e+01 4.914e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99751 1.000 -0.277 0.997 0.997 - 2 0.37560 -0.277 1.000 -0.293 -0.296 - 3 0.99795 0.997 -0.293 1.000 0.997 - 4 0.99797 0.997 -0.296 0.997 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=62983.1 FROM MIGRAD STATUS=INITIATE 29 CALLS 30 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 6.05383e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -1.33666e+02 - 3 par_gaus_exp_2 3.19008e-01 3.05000e-01 -9.67731e-01 -3.33619e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.00383 added to diagonal of error matrix - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62882.7 FROM MIGRAD STATUS=CONVERGED 228 CALLS 229 TOTAL - EDM=4.4408e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.69095e+02 7.01852e-01 4.07755e-03 2.89794e-02 - 2 par_gaus_exp_1 1.61044e+01 1.09719e+00 7.43010e-03 -1.84784e-02 - 3 par_gaus_exp_2 1.90527e-01 1.58774e-02 1.98778e-03 -6.23432e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 4.929e-01 5.914e-01 9.067e-03 - 5.914e-01 1.207e+00 1.483e-02 - 9.067e-03 1.483e-02 2.521e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.82590 1.000 0.767 0.813 - 2 0.85979 0.767 1.000 0.850 - 3 0.88644 0.813 0.850 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62882.7 FROM HESSE STATUS=OK 16 CALLS 245 TOTAL - EDM=4.28199e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.69095e+02 6.86832e-01 1.63102e-04 -5.76704e-01 - 2 par_gaus_exp_1 1.61044e+01 1.07335e+00 2.97204e-04 -5.72398e-01 - 3 par_gaus_exp_2 1.90527e-01 1.55212e-02 7.95110e-05 -1.13813e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 4.720e-01 5.579e-01 8.580e-03 - 5.579e-01 1.155e+00 1.406e-02 - 8.580e-03 1.406e-02 2.410e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.81734 1.000 0.756 0.805 - 2 0.85292 0.756 1.000 0.843 - 3 0.88081 0.805 0.843 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,624] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.3296 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=286.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=286.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=289.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=289.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=295.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=295.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=298.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=298.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=301.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=301.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - ... (remaining 216 messages suppressed) -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.3296) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.733611 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=313.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=316.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=319.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=325.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=328.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=331.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=334.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=340.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=343.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=346.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - ... (remaining 94 messages suppressed) -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.733611) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0733618 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0733618 - - FCN=103426 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57146e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.55551e+03 - 3 par_novo_2 -1.33526e+00 2.00000e+01 0.00000e+00 1.53308e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103192 FROM MIGRAD STATUS=CONVERGED 126 CALLS 127 TOTAL - EDM=1.07924e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.17697e+01 1.69443e-01** at limit ** - 2 par_novo_1 3.87878e+01 2.27475e+00 4.96100e-03 -6.14249e-02 - 3 par_novo_2 -1.26766e+00 7.00630e-02 3.67886e-05 3.77179e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 2.244e-10 -2.632e-07 -1.276e-07 - -2.632e-07 5.190e+00 1.540e-01 - -1.276e-07 1.540e-01 4.909e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.43392 1.000 -0.008 -0.122 - 2 0.97109 -0.008 1.000 0.965 - 3 0.97152 -0.122 0.965 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103192 FROM HESSE STATUS=OK 20 CALLS 147 TOTAL - EDM=1.23299e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.15107e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.87878e+01 2.30410e+00 1.98440e-04 4.51799e-01 - 3 par_novo_2 -1.26766e+00 7.13892e-02 1.47154e-06 -1.26769e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 2.143e-10 3.996e-06 -2.087e-07 - 3.996e-06 5.325e+00 1.518e-01 - -2.087e-07 1.518e-01 5.096e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.80390 1.000 0.118 -0.200 - 2 0.97183 0.118 1.000 0.922 - 3 0.97258 -0.200 0.922 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107617 FROM MIGRAD STATUS=INITIATE 36 CALLS 37 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 6.60405e+03 - 2 par_crystal_1_1 7.90153e-02 5.09000e-01 -1.80421e+00 3.05679e+03 - 3 par_crystal_1_2 2.60000e+02 4.00000e+00 0.00000e+00 1.48888e+03 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 6.99071e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.17529 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.7903e-03 5.8606e-02 5.0897e-01 3.4352e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.006225 TO DIAGONAL. - FCN=103191 FROM MIGRAD STATUS=CONVERGED 353 CALLS 354 TOTAL - EDM=3.7306e-06 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.37913e-01 3.41139e-02 6.19492e-04 4.10204e-01 - 2 par_crystal_1_1 4.44737e+00 5.69760e-01 2.21494e-02 9.88736e-03 - 3 par_crystal_1_2 2.79979e+02 3.40482e+01 2.79535e-01 -2.97577e-04 - 4 par_crystal_1_3 1.87584e+01 2.98857e+00 3.96232e-03 -6.40797e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.164e-03 3.582e-03 3.594e-03 9.898e-02 - 3.582e-03 3.375e-01 -1.052e-02 7.382e-01 - 3.594e-03 -1.052e-02 3.148e+00 6.243e-01 - 9.898e-02 7.382e-01 6.243e-01 9.086e+00 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99630 1.000 0.181 0.059 0.962 - 2 0.95650 0.181 1.000 -0.010 0.422 - 3 0.63948 0.059 -0.010 1.000 0.117 - 4 0.99690 0.962 0.422 0.117 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103191 FROM HESSE STATUS=OK 27 CALLS 381 TOTAL - EDM=6.06842e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 2.37913e-01 2.12502e-01 1.23898e-04 -8.36786e+01 - 2 par_crystal_1_1 4.44737e+00 5.06952e-01 8.85975e-04 -1.65463e+01 - 3 par_crystal_1_2 2.79979e+02 2.96341e+01 5.00000e-01 7.80831e+00 - 4 par_crystal_1_3 1.87584e+01 1.90925e+01 1.58493e-04 2.18231e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.578e-02 1.663e-02 2.427e-02 3.730e+00 - 1.663e-02 2.650e-01 -4.299e-02 1.684e+00 - 2.427e-02 -4.299e-02 1.850e+00 2.341e+00 - 3.730e+00 1.684e+00 2.341e+00 3.045e+02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99991 1.000 0.151 0.083 0.999 - 2 0.94385 0.151 1.000 -0.061 0.187 - 3 0.80384 0.083 -0.061 1.000 0.099 - 4 0.99991 0.999 0.187 0.099 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 13889.7 - Background number of gaus_exp_252_330 = 13889.7 - Background number of novo_285_624 = 17637.2 - Background number of crystal_1_285_624 = 17637.2 - Background number of gaus_bern_285_624 = 17637.2 - Background number of landau_285_624 = 17637.2 -par_crystal_0 param 0.165093 0.0870034 -par_crystal_1 param 5.0991 4.18121 -par_crystal_2 param 267.339 5.2704 -par_crystal_3 param 13.714 6.68546 -par_crystal_1_0 param 0.237913 0.212502 -par_crystal_1_1 param 4.44737 0.506952 -par_crystal_1_2 param 279.979 29.6341 -par_crystal_1_3 param 18.7584 19.0925 -par_gaus_exp_0 param 269.095 0.686832 -par_gaus_exp_1 param 16.1044 1.07335 -par_gaus_exp_2 param 0.190527 0.0155212 -par_novo_0 param 250 31.5107 -par_novo_1 param 38.7878 2.3041 -par_novo_2 param -1.26766 0.0713892 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_crystal_1_285_624/datacard_270_crystal_1_285_624.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_crystal_1_285_624/datacard_270_crystal_1_285_624.txt deleted file mode 100644 index 23958b1..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_crystal_1_285_624/datacard_270_crystal_1_285_624.txt +++ /dev/null @@ -1,31 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_270.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_crystal_1_285_624.root HbbHbb:f_crystal_1 -shapes data_obs HbbHbb w_background_crystal_1_285_624.root HbbHbb:data_obs_crystal_1_285_624 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 213.048 17637.2 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06825 - -JER lnN 1.01721 - -JEC lnN 1.01241 - -trigger lnN 1.10 - -PDF lnN 1.01516984881 - -sg_p0 param 270.677 -0.225239/+0.0876663 -sg_p1 param 5.0777 -0.239144/+0.155575 -sg_p2 param 262.057 -19.7868/+10.1549 -sg_p3 param 42.5329 -4.55325/+9.01351 -sg_p4 param 0.6462 -0.0412043/+0.0260553 -par_crystal_1_0 param 0.237913 0.212502 -par_crystal_1_1 param 4.44737 0.506952 -par_crystal_1_2 param 279.979 29.6341 -par_crystal_1_3 param 18.7584 19.0925 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_crystal_1_285_624/pdf.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_crystal_1_285_624/pdf.log deleted file mode 100644 index 423e5dc..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_crystal_1_285_624/pdf.log +++ /dev/null @@ -1,10 +0,0 @@ -[?1034h FCN=9.27724 FROM MIGRAD STATUS=CONVERGED 62 CALLS 63 TOTAL - EDM=6.38865e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 Constant 1.93907e+01 2.48425e+00 3.18529e-03 -3.25663e-04 - 2 Mean 1.00132e+00 1.76739e-03 2.62530e-06 -5.38456e-01 - 3 Sigma 1.51698e-02 1.24775e-03 3.39881e-05 -4.59685e-03 -1.00131825619 +/- 0.00176739498053 -0.015169848807 +/- 0.00124775214983 -PDF lnN 1.01516984881 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_crystal_1_285_624/signal270_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_crystal_1_285_624/signal270_sig.log deleted file mode 100644 index 9030762..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_crystal_1_285_624/signal270_sig.log +++ /dev/null @@ -1,959 +0,0 @@ - -Processing test.c... -nSignal_init = 300000 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=8392.45 FROM MIGRAD STATUS=INITIATE 43 CALLS 44 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.65000e+02 3.00000e+00 0.00000e+00 2.86291e+02 - 2 sg_p1 8.50000e+00 1.30000e+00 0.00000e+00 -7.99146e+02 - 3 sg_p2 2.70000e+02 5.20000e+01 0.00000e+00 2.60544e+02 - 4 sg_p3 7.14818e+01 2.90000e+01 -6.13812e-01 5.50184e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.51376e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7995.55 FROM MIGRAD STATUS=CONVERGED 263 CALLS 264 TOTAL - EDM=2.79948e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.62655e+02 3.96075e-01 1.63668e-03 -1.71407e-02 - 2 sg_p1 1.50000e+01 3.66501e-02 6.55558e-03** at limit ** - 3 sg_p2 3.32688e+02 1.22425e+01 2.10215e-03 1.48173e-02 - 4 sg_p3 7.88319e+01 7.17424e+00 2.90211e-03 4.51106e-02 - 5 sg_p4 9.12549e-01 1.01971e-02 2.71366e-03 7.36508e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.569e-01 -9.420e-08 -6.520e-02 2.553e-01 2.627e-04 - -9.420e-08 5.458e-08 -8.702e-06 1.981e-06 -8.254e-09 - -6.520e-02 -8.702e-06 1.500e+02 -4.987e+01 7.092e-02 - 2.553e-01 1.981e-06 -4.987e+01 5.153e+01 -2.107e-02 - 2.627e-04 -8.254e-09 7.092e-02 -2.107e-02 1.041e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.13067 1.000 -0.001 -0.013 0.090 0.065 - 2 0.00383 -0.001 1.000 -0.003 0.001 -0.003 - 3 0.70719 -0.013 -0.003 1.000 -0.567 0.568 - 4 0.57426 0.090 0.001 -0.567 1.000 -0.288 - 5 0.57327 0.065 -0.003 0.568 -0.288 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7995.55 FROM HESSE STATUS=OK 31 CALLS 295 TOTAL - EDM=2.79956e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.62655e+02 3.96099e-01 3.27335e-04 -1.56977e-01 - 2 sg_p1 1.50000e+01 3.66519e-02 1.31112e-03 1.57113e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 3 sg_p2 3.32688e+02 1.23641e+01 8.40862e-05 2.43509e-01 - 4 sg_p3 7.88319e+01 7.24309e+00 1.16084e-04 -5.53064e-01 - 5 sg_p4 9.12549e-01 1.02319e-02 5.42731e-04 7.07842e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.569e-01 -2.556e-08 -7.512e-02 2.598e-01 2.581e-04 - -2.556e-08 5.458e-08 -2.431e-06 5.742e-07 -2.287e-09 - -7.512e-02 -2.431e-06 1.530e+02 -5.186e+01 7.239e-02 - 2.598e-01 5.742e-07 -5.186e+01 5.252e+01 -2.206e-02 - 2.581e-04 -2.287e-09 7.239e-02 -2.206e-02 1.048e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.13113 1.000 -0.000 -0.015 0.090 0.064 - 2 0.00106 -0.000 1.000 -0.001 0.000 -0.001 - 3 0.71407 -0.015 -0.001 1.000 -0.578 0.572 - 4 0.58519 0.090 0.000 -0.578 1.000 -0.297 - 5 0.57724 0.064 -0.001 0.572 -0.297 1.000 -270 -262.655 +- 0.396099 -15 +- 0.0366519 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=8301.08 FROM MIGRAD STATUS=INITIATE 43 CALLS 44 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.65000e+02 3.00000e+00 0.00000e+00 1.57276e+02 - 2 sg_p1 8.50000e+00 1.30000e+00 0.00000e+00 -7.20874e+02 - 3 sg_p2 2.70000e+02 5.20000e+01 0.00000e+00 1.31136e+02 - 4 sg_p3 6.67985e+01 2.90000e+01 -6.53900e-01 6.21676e+00 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.55343e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7960.31 FROM MIGRAD STATUS=CONVERGED 215 CALLS 216 TOTAL - EDM=0.000112509 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.63717e+02 4.03328e-01 1.64549e-03 2.85410e-02 - 2 sg_p1 1.50000e+01 4.16874e-02 6.99690e-03** at limit ** - 3 sg_p2 3.26691e+02 1.09550e+01 1.90596e-03 -1.07432e-01 - 4 sg_p3 7.56151e+01 6.41429e+00 2.71105e-03 7.69878e-02 - 5 sg_p4 9.03852e-01 1.08010e-02 2.78869e-03 -3.02927e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.627e-01 -1.817e-07 -1.584e-01 2.985e-01 2.635e-04 - -1.817e-07 2.669e-07 -1.400e-05 2.491e-06 -1.659e-08 - -1.584e-01 -1.400e-05 1.201e+02 -3.790e+01 6.574e-02 - 2.985e-01 2.491e-06 -3.790e+01 4.118e+01 -1.657e-02 - 2.635e-04 -1.659e-08 6.574e-02 -1.657e-02 1.168e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.14787 1.000 -0.001 -0.036 0.115 0.060 - 2 0.00326 -0.001 1.000 -0.002 0.001 -0.003 - 3 0.69527 -0.036 -0.002 1.000 -0.539 0.555 - 4 0.55108 0.115 0.001 -0.539 1.000 -0.239 - 5 0.56440 0.060 -0.003 0.555 -0.239 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7960.31 FROM HESSE STATUS=OK 31 CALLS 247 TOTAL - EDM=0.000114252 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.63717e+02 4.03375e-01 3.29097e-04 -8.56522e-02 - 2 sg_p1 1.50000e+01 4.16903e-02 1.39938e-03 1.57009e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 3 sg_p2 3.26691e+02 1.10364e+01 3.81192e-04 2.19808e-01 - 4 sg_p3 7.56151e+01 6.46046e+00 1.08442e-04 -5.79352e-01 - 5 sg_p4 9.03852e-01 1.08250e-02 5.57738e-04 6.62902e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.628e-01 1.090e-10 -1.678e-01 3.031e-01 2.586e-04 - 1.090e-10 2.669e-07 8.739e-09 -1.723e-09 1.020e-11 - -1.678e-01 8.739e-09 1.219e+02 -3.912e+01 6.671e-02 - 3.031e-01 -1.723e-09 -3.912e+01 4.178e+01 -1.726e-02 - 2.586e-04 1.020e-11 6.671e-02 -1.726e-02 1.173e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.14863 1.000 0.000 -0.038 0.116 0.059 - 2 0.00000 0.000 1.000 0.000 -0.000 0.000 - 3 0.70071 -0.038 0.000 1.000 -0.548 0.558 - 4 0.56000 0.116 -0.000 -0.548 1.000 -0.247 - 5 0.56706 0.059 0.000 0.558 -0.247 1.000 -270 -263.717 +- 0.403375 -15 +- 0.0416903 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=8131.38 FROM MIGRAD STATUS=INITIATE 44 CALLS 45 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.65000e+02 3.00000e+00 0.00000e+00 4.48644e+02 - 2 sg_p1 8.50000e+00 1.30000e+00 0.00000e+00 -7.91305e+02 - 3 sg_p2 2.70000e+02 5.20000e+01 0.00000e+00 3.73822e+02 - 4 sg_p3 6.56628e+01 2.90000e+01 -6.63806e-01 5.24608e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.60990e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7699.77 FROM MIGRAD STATUS=CONVERGED 264 CALLS 265 TOTAL - EDM=1.20255e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.61106e+02 3.97606e-01 1.64949e-03 6.43216e-02 - 2 sg_p1 1.50000e+01 4.40817e-02 7.05863e-03** at limit ** - 3 sg_p2 3.31806e+02 1.18077e+01 2.04938e-03 4.68003e-02 - 4 sg_p3 7.39962e+01 6.87793e+00 2.89900e-03 4.25993e-02 - 5 sg_p4 9.20380e-01 9.82533e-03 2.67537e-03 -4.86834e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.581e-01 -4.250e-09 7.358e-02 1.895e-01 3.289e-04 - -4.250e-09 8.677e-11 -3.111e-07 6.344e-08 -2.998e-10 - 7.358e-02 -3.111e-07 1.395e+02 -4.404e+01 6.552e-02 - 1.895e-01 6.344e-08 -4.404e+01 4.736e+01 -1.922e-02 - 3.289e-04 -2.998e-10 6.552e-02 -1.922e-02 9.663e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.12888 1.000 -0.001 0.016 0.069 0.084 - 2 0.00364 -0.001 1.000 -0.003 0.001 -0.003 - 3 0.69043 0.016 -0.003 1.000 -0.542 0.564 - 4 0.54763 0.069 0.001 -0.542 1.000 -0.284 - 5 0.56955 0.084 -0.003 0.564 -0.284 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7699.77 FROM HESSE STATUS=OK 31 CALLS 296 TOTAL - EDM=1.20761e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.61106e+02 3.97608e-01 3.29897e-04 -2.62628e-01 - 2 sg_p1 1.50000e+01 4.40850e-02 1.41173e-03 1.57081e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 3 sg_p2 3.31806e+02 1.19031e+01 4.09876e-04 2.40013e-01 - 4 sg_p3 7.39962e+01 6.93093e+00 1.15960e-04 -5.92753e-01 - 5 sg_p4 9.20380e-01 9.85509e-03 5.35074e-04 7.49837e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.581e-01 -8.535e-10 6.846e-02 1.911e-01 3.266e-04 - -8.535e-10 8.678e-11 -6.392e-08 1.351e-08 -6.118e-11 - 6.846e-02 -6.392e-08 1.418e+02 -4.555e+01 6.667e-02 - 1.911e-01 1.351e-08 -4.555e+01 4.809e+01 -2.000e-02 - 3.266e-04 -6.118e-11 6.667e-02 -2.000e-02 9.722e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.12891 1.000 -0.000 0.014 0.069 0.083 - 2 0.00074 -0.000 1.000 -0.001 0.000 -0.001 - 3 0.69646 0.014 -0.001 1.000 -0.552 0.568 - 4 0.55728 0.069 0.000 -0.552 1.000 -0.292 - 5 0.57312 0.083 -0.001 0.568 -0.292 1.000 -270 -261.106 +- 0.397608 -15 +- 0.044085 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=6358.39 FROM MIGRAD STATUS=INITIATE 18 CALLS 19 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70000e+02 2.00000e+00 2.01358e-01 -2.79566e+02 - 2 sg_p1 5.00000e+00 6.00000e-01 2.01358e-01 -1.50106e+02 - 3 sg_p2 1.79500e+02 3.41000e+01 2.01358e-01 1.43645e+00 - 4 sg_p3 1.55000e+02 2.90000e+01 2.01358e-01 1.18935e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 2.01358e-01 1.12505e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6301.03 FROM MIGRAD STATUS=CONVERGED 228 CALLS 229 TOTAL - EDM=6.55748e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70677e+02 1.72165e-01 9.18183e-04 1.47070e-02 - 2 sg_p1 5.07770e+00 1.66247e-01 2.54292e-03 -1.24810e-03 - 3 sg_p2 2.62057e+02 9.37512e+00 1.10376e-03 -2.64630e-02 - 4 sg_p3 4.25329e+01 5.68857e+00 1.50462e-03 -2.35495e-02 - 5 sg_p4 6.46200e-01 3.59740e-02 4.14748e-03 5.84314e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.964e-02 -1.980e-03 -3.797e-01 1.772e-01 -1.311e-03 - -1.980e-03 2.767e-02 2.898e-01 1.419e-02 2.579e-03 - -3.797e-01 2.898e-01 8.801e+01 -4.644e+01 2.783e-01 - 1.772e-01 1.419e-02 -4.644e+01 3.240e+01 -1.232e-01 - -1.311e-03 2.579e-03 2.783e-01 -1.232e-01 1.305e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.24028 1.000 -0.069 -0.235 0.181 -0.211 - 2 0.54786 -0.069 1.000 0.186 0.015 0.429 - 3 0.94759 -0.235 0.186 1.000 -0.870 0.821 - 4 0.89770 0.181 0.015 -0.870 1.000 -0.599 - 5 0.87941 -0.211 0.429 0.821 -0.599 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6301.03 FROM HESSE STATUS=OK 31 CALLS 260 TOTAL - EDM=6.88941e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.70677e+02 1.72924e-01 1.83637e-04 6.77760e-02 - 2 sg_p1 5.07770e+00 1.66149e-01 1.01717e-04 2.59024e-02 - 3 sg_p2 2.62057e+02 1.02016e+01 4.41505e-05 5.05456e-01 - 4 sg_p3 4.25329e+01 6.20016e+00 6.01848e-05 -8.87721e-01 - 5 sg_p4 6.46200e-01 3.77070e-02 1.65899e-04 -4.28163e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.991e-02 -2.057e-03 -4.449e-01 2.178e-01 -1.495e-03 - -2.057e-03 2.763e-02 3.050e-01 2.707e-03 2.616e-03 - -4.449e-01 3.050e-01 1.042e+02 -5.647e+01 3.244e-01 - 2.178e-01 2.707e-03 -5.647e+01 3.850e+01 -1.520e-01 - -1.495e-03 2.616e-03 3.244e-01 -1.520e-01 1.435e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25688 1.000 -0.072 -0.252 0.203 -0.228 - 2 0.54710 -0.072 1.000 0.180 0.003 0.415 - 3 0.95594 -0.252 0.180 1.000 -0.891 0.839 - 4 0.91467 0.203 0.003 -0.891 1.000 -0.647 - 5 0.89101 -0.228 0.415 0.839 -0.647 1.000 -270 -270.677 +- 0.172924 -5.0777 +- 0.166149 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=6365.99 FROM MIGRAD STATUS=INITIATE 16 CALLS 17 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70000e+02 2.00000e+00 2.01358e-01 -3.03648e+02 - 2 sg_p1 5.00000e+00 6.00000e-01 2.01358e-01 -1.61990e+02 - 3 sg_p2 1.79500e+02 3.41000e+01 2.01358e-01 -2.65770e+00 - 4 sg_p3 1.55000e+02 2.90000e+01 2.01358e-01 8.50425e+00 - 5 sg_p4 7.50000e-01 5.00000e-02 2.01358e-01 1.31190e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6299.61 FROM MIGRAD STATUS=CONVERGED 237 CALLS 238 TOTAL - EDM=7.93407e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70692e+02 1.77044e-01 9.42241e-04 3.84277e-02 - 2 sg_p1 5.17409e+00 1.71536e-01 2.60847e-03 -2.11829e-03 - 3 sg_p2 2.70838e+02 6.84551e+00 1.03343e-03 5.78086e-03 - 4 sg_p3 3.91980e+01 4.62395e+00 1.61118e-03 1.03114e-02 - 5 sg_p4 6.64184e-01 3.27535e-02 3.88817e-03 5.22515e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.135e-02 -1.758e-03 -3.016e-01 1.665e-01 -1.164e-03 - -1.758e-03 2.946e-02 3.251e-01 -2.221e-02 2.675e-03 - -3.016e-01 3.251e-01 4.690e+01 -2.546e+01 1.845e-01 - 1.665e-01 -2.221e-02 -2.546e+01 2.140e+01 -8.613e-02 - -1.164e-03 2.675e-03 1.845e-01 -8.613e-02 1.080e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.24905 1.000 -0.058 -0.249 0.203 -0.200 - 2 0.55757 -0.058 1.000 0.277 -0.028 0.474 - 3 0.91827 -0.249 0.277 1.000 -0.804 0.820 - 4 0.83247 0.203 -0.028 -0.804 1.000 -0.567 - 5 0.86222 -0.200 0.474 0.820 -0.567 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6299.61 FROM HESSE STATUS=OK 31 CALLS 269 TOTAL - EDM=7.9228e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.70692e+02 1.77623e-01 1.88448e-04 6.92275e-02 - 2 sg_p1 5.17409e+00 1.71578e-01 1.04339e-04 5.80618e-02 - 3 sg_p2 2.70838e+02 7.18808e+00 4.13373e-05 5.65345e-01 - 4 sg_p3 3.91980e+01 4.86021e+00 6.44473e-05 -9.25023e-01 - 5 sg_p4 6.64184e-01 3.36636e-02 1.55527e-04 -3.50391e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.155e-02 -1.878e-03 -3.331e-01 1.884e-01 -1.276e-03 - -1.878e-03 2.947e-02 3.399e-01 -3.425e-02 2.726e-03 - -3.331e-01 3.399e-01 5.171e+01 -2.882e+01 2.017e-01 - 1.884e-01 -3.425e-02 -2.882e+01 2.365e+01 -9.825e-02 - -1.276e-03 2.726e-03 2.017e-01 -9.825e-02 1.141e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.26103 1.000 -0.062 -0.261 0.218 -0.213 - 2 0.55787 -0.062 1.000 0.275 -0.041 0.470 - 3 0.92618 -0.261 0.275 1.000 -0.824 0.830 - 4 0.84979 0.218 -0.041 -0.824 1.000 -0.598 - 5 0.87017 -0.213 0.470 0.830 -0.598 1.000 -270 -270.692 +- 0.177623 -5.17409 +- 0.171578 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=6100.43 FROM MIGRAD STATUS=INITIATE 38 CALLS 39 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70000e+02 2.00000e+00 0.00000e+00 -1.76480e+02 - 2 sg_p1 5.00000e+00 6.00000e-01 0.00000e+00 -9.50553e+01 - 3 sg_p2 1.79500e+02 3.41000e+01 0.00000e+00 -1.03797e+01 - 4 sg_p3 1.15860e+02 2.90000e+01 -2.73322e-01 1.99528e+00 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.00751e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6063.49 FROM MIGRAD STATUS=CONVERGED 263 CALLS 264 TOTAL - EDM=9.43817e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70469e+02 1.64489e-01 8.67373e-04 9.78651e-02 - 2 sg_p1 4.85345e+00 1.61763e-01 2.44261e-03 2.33446e-02 - 3 sg_p2 2.42939e+02 1.76038e+01 1.34178e-03 -9.41851e-03 - 4 sg_p3 5.09965e+01 8.69738e+00 1.37274e-03 -8.34558e-03 - 5 sg_p4 6.09562e-01 4.12691e-02 4.72433e-03 -1.03290e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.706e-02 -1.143e-03 -5.339e-01 2.032e-01 -1.240e-03 - -1.143e-03 2.619e-02 2.008e-01 9.614e-02 2.479e-03 - -5.339e-01 2.008e-01 3.112e+02 -1.431e+02 5.930e-01 - 2.032e-01 9.614e-02 -1.431e+02 7.583e+01 -2.285e-01 - -1.240e-03 2.479e-03 5.930e-01 -2.285e-01 1.726e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20148 1.000 -0.043 -0.184 0.142 -0.181 - 2 0.54100 -0.043 1.000 0.070 0.068 0.369 - 3 0.97454 -0.184 0.070 1.000 -0.932 0.809 - 4 0.95515 0.142 0.068 -0.932 1.000 -0.632 - 5 0.89940 -0.181 0.369 0.809 -0.632 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6063.49 FROM HESSE STATUS=OK 31 CALLS 295 TOTAL - EDM=1.17248e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.70469e+02 1.65601e-01 1.73475e-04 4.69431e-02 - 2 sg_p1 4.85345e+00 1.61522e-01 4.88521e-04 -4.88702e-02 - 3 sg_p2 2.42939e+02 2.15740e+01 5.36712e-05 3.81246e-01 - 4 sg_p3 5.09965e+01 1.06929e+01 5.49095e-05 -7.99870e-01 - 5 sg_p4 6.09562e-01 4.63125e-02 1.88973e-04 -5.96502e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.743e-02 -1.089e-03 -7.748e-01 3.240e-01 -1.649e-03 - -1.089e-03 2.611e-02 1.620e-01 1.121e-01 2.395e-03 - -7.748e-01 1.620e-01 4.683e+02 -2.215e+02 8.616e-01 - 3.240e-01 1.121e-01 -2.215e+02 1.148e+02 -3.632e-01 - -1.649e-03 2.395e-03 8.616e-01 -3.632e-01 2.182e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23115 1.000 -0.041 -0.216 0.183 -0.213 - 2 0.53904 -0.041 1.000 0.046 0.065 0.317 - 3 0.98316 -0.216 0.046 1.000 -0.955 0.852 - 4 0.97060 0.183 0.065 -0.955 1.000 -0.726 - 5 0.92131 -0.213 0.317 0.852 -0.726 1.000 -270 -270.469 +- 0.165601 -4.85345 +- 0.161522 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=6207.91 FROM MIGRAD STATUS=INITIATE 18 CALLS 19 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70000e+02 2.00000e+00 2.01358e-01 -2.64216e+02 - 2 sg_p1 5.00000e+00 6.00000e-01 2.01358e-01 -1.71360e+02 - 3 sg_p2 1.79500e+02 3.41000e+01 2.01358e-01 4.14298e-01 - 4 sg_p3 1.55000e+02 2.90000e+01 2.01358e-01 1.11372e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 2.01358e-01 1.18895e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6146.33 FROM MIGRAD STATUS=CONVERGED 215 CALLS 216 TOTAL - EDM=6.61513e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70656e+02 1.81990e-01 9.51015e-04 2.93883e-01 - 2 sg_p1 5.20924e+00 1.80376e-01 2.66180e-03 1.75576e-02 - 3 sg_p2 2.64216e+02 9.79599e+00 1.09853e-03 2.68338e-01 - 4 sg_p3 4.19600e+01 6.09659e+00 1.54906e-03 -8.69463e-02 - 5 sg_p4 6.49014e-01 3.85333e-02 4.14029e-03 -7.85398e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.312e-02 -1.986e-03 -4.776e-01 -2.455e-01 -1.622e-03 - -1.986e-03 3.258e-02 3.816e-01 8.852e-03 3.179e-03 - -4.776e-01 3.816e-01 9.610e+01 5.251e+01 3.182e-01 - -2.455e-01 8.852e-03 5.251e+01 3.722e+01 1.487e-01 - -1.622e-03 3.179e-03 3.182e-01 1.487e-01 1.499e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.26944 1.000 -0.060 -0.268 -0.221 -0.230 - 2 0.57936 -0.060 1.000 0.216 0.008 0.455 - 3 0.95227 -0.268 0.216 1.000 0.878 0.838 - 4 0.90487 -0.221 0.008 0.878 1.000 0.630 - 5 0.89253 -0.230 0.455 0.838 0.630 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6146.33 FROM HESSE STATUS=OK 31 CALLS 247 TOTAL - EDM=6.61792e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.70656e+02 1.81849e-01 1.90203e-04 6.56339e-02 - 2 sg_p1 5.20924e+00 1.80330e-01 1.06472e-04 6.98019e-02 - 3 sg_p2 2.64216e+02 9.67079e+00 2.19705e-04 5.19985e-01 - 4 sg_p3 4.19600e+01 6.02003e+00 6.19622e-05 -2.24759e+00 - 5 sg_p4 6.49014e-01 3.82479e-02 8.28058e-04 -4.15825e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.307e-02 -1.974e-03 -4.664e-01 -2.386e-01 -1.589e-03 - -1.974e-03 3.256e-02 3.740e-01 4.110e-03 3.157e-03 - -4.664e-01 3.740e-01 9.366e+01 5.099e+01 3.108e-01 - -2.386e-01 4.110e-03 5.099e+01 3.629e+01 1.442e-01 - -1.589e-03 3.157e-03 3.108e-01 1.442e-01 1.477e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.26676 1.000 -0.060 -0.265 -0.218 -0.227 - 2 0.57907 -0.060 1.000 0.214 0.004 0.455 - 3 0.95099 -0.265 0.214 1.000 0.875 0.836 - 4 0.90230 -0.218 0.004 0.875 1.000 0.623 - 5 0.89080 -0.227 0.455 0.836 0.623 1.000 -270 -270.656 +- 0.181849 -5.20924 +- 0.18033 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=6345.12 FROM MIGRAD STATUS=INITIATE 18 CALLS 19 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70000e+02 2.00000e+00 2.01358e-01 -2.76463e+02 - 2 sg_p1 5.00000e+00 6.00000e-01 2.01358e-01 -1.12933e+02 - 3 sg_p2 1.79500e+02 3.41000e+01 2.01358e-01 1.61677e+00 - 4 sg_p3 1.55000e+02 2.90000e+01 2.01358e-01 1.12497e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 2.01358e-01 1.04922e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.05988 added to diagonal of error matrix -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (9513.77) to force MIGRAD to back out of this region. Error log follows -Parameter values: sg_p0=269.51, sg_p1=3.81892, sg_p2=26.0784, sg_p3=20.4464, sg_p4=0.504154 -RooNLLVar::nll_signal_signalHistogram[ paramSet=(sg_p0,sg_p1,sg_p2,sg_p3,sg_p4) ] - function value is NAN @ paramSet=(sg_p0 = 269.51,sg_p1 = 3.81892,sg_p2 = 26.0784,sg_p3 = 20.4464,sg_p4 = 0.504154) -RooGaussian::signalComb[ x=x mean=sg_p2 sigma=sg_p3 ] - p.d.f normalization integral is zero or negative @ x=x=250.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=253.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=256.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=259.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=262.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=265.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=268.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=271.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=274.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=277.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=280.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=283.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - ... (remaining 24 messages suppressed) -RooAddPdf::signal[ sg_p4 * signalCore + [%] * signalComb ] - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 250.5), !pdfs=(signalCore = 4.16274e-06/9.57261,signalComb = 6.90752e-27/0), !coefficients=(sg_p4 = 0.504154) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 250.5), !pdfs=(signalCore = 4.16274e-06/9.57261,signalComb = 6.90752e-27/0), !coefficients=(sg_p4 = 0.504154) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 253.5), !pdfs=(signalCore = 0.000152629/9.57261,signalComb = 1.36531e-27/0), !coefficients=(sg_p4 = 0.504154) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 253.5), !pdfs=(signalCore = 0.000152629/9.57261,signalComb = 1.36531e-27/0), !coefficients=(sg_p4 = 0.504154) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 256.5), !pdfs=(signalCore = 0.00301916/9.57261,signalComb = 2.64114e-28/0), !coefficients=(sg_p4 = 0.504154) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 256.5), !pdfs=(signalCore = 0.00301916/9.57261,signalComb = 2.64114e-28/0), !coefficients=(sg_p4 = 0.504154) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 259.5), !pdfs=(signalCore = 0.0322202/9.57261,signalComb = 5.00036e-29/0), !coefficients=(sg_p4 = 0.504154) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 259.5), !pdfs=(signalCore = 0.0322202/9.57261,signalComb = 5.00036e-29/0), !coefficients=(sg_p4 = 0.504154) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 262.5), !pdfs=(signalCore = 0.185509/9.57261,signalComb = 9.26534e-30/0), !coefficients=(sg_p4 = 0.504154) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 262.5), !pdfs=(signalCore = 0.185509/9.57261,signalComb = 9.26534e-30/0), !coefficients=(sg_p4 = 0.504154) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 265.5), !pdfs=(signalCore = 0.576226/9.57261,signalComb = 1.68024e-30/0), !coefficients=(sg_p4 = 0.504154) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 265.5), !pdfs=(signalCore = 0.576226/9.57261,signalComb = 1.68024e-30/0), !coefficients=(sg_p4 = 0.504154) - ... (remaining 58 messages suppressed) -RooRealIntegral::signalComb_Int[x|NormalizationRangeForfit]_Norm[x][ Int signalComb_Norm(x) d[Ana](x) ] - function value is NAN @ !sumList=(), !intList=(), !anaList=(x = 250.5), !jacList=(), !facList=(), !func=signalComb=6.90752e-27/0, !sumCat=() - - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6295.95 FROM MIGRAD STATUS=CONVERGED 426 CALLS 427 TOTAL - EDM=1.36563e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70665e+02 1.63477e-01 8.78610e-04 2.15233e-02 - 2 sg_p1 4.89880e+00 1.57011e-01 2.44680e-03 2.25239e-02 - 3 sg_p2 2.54654e+02 1.25915e+01 1.24303e-03 5.47392e-03 - 4 sg_p3 4.70832e+01 7.17725e+00 1.51317e-03 2.13001e-03 - 5 sg_p4 6.29901e-01 3.72328e-02 4.32749e-03 -5.67064e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.673e-02 -8.488e-04 -4.087e-01 1.835e-01 -1.095e-03 - -8.488e-04 2.467e-02 2.172e-01 5.764e-02 2.181e-03 - -4.087e-01 2.172e-01 1.589e+02 -8.190e+01 3.873e-01 - 1.835e-01 5.764e-02 -8.190e+01 5.161e+01 -1.691e-01 - -1.095e-03 2.181e-03 3.873e-01 -1.691e-01 1.400e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20590 1.000 -0.033 -0.198 0.156 -0.179 - 2 0.52321 -0.033 1.000 0.110 0.051 0.371 - 3 0.96127 -0.198 0.110 1.000 -0.904 0.821 - 4 0.92824 0.156 0.051 -0.904 1.000 -0.629 - 5 0.88645 -0.179 0.371 0.821 -0.629 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6295.95 FROM HESSE STATUS=OK 31 CALLS 458 TOTAL - EDM=1.44185e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.70665e+02 1.64298e-01 1.75722e-04 6.65783e-02 - 2 sg_p1 4.89880e+00 1.56830e-01 4.89360e-04 -3.37402e-02 - 3 sg_p2 2.54654e+02 1.43586e+01 4.97213e-05 4.56472e-01 - 4 sg_p3 4.70832e+01 8.20025e+00 6.05269e-05 -7.12260e+00 - 5 sg_p4 6.29901e-01 4.01552e-02 1.73099e-04 -5.01104e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.700e-02 -8.623e-04 -5.225e-01 2.494e-01 -1.344e-03 - -8.623e-04 2.462e-02 2.174e-01 5.502e-02 2.172e-03 - -5.225e-01 2.174e-01 2.068e+02 -1.095e+02 4.928e-01 - 2.494e-01 5.502e-02 -1.095e+02 6.741e+01 -2.303e-01 - -1.344e-03 2.172e-03 4.928e-01 -2.303e-01 1.631e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22790 1.000 -0.033 -0.221 0.185 -0.203 - 2 0.52160 -0.033 1.000 0.096 0.043 0.343 - 3 0.97037 -0.221 0.096 1.000 -0.928 0.849 - 4 0.94554 0.185 0.043 -0.928 1.000 -0.695 - 5 0.90340 -0.203 0.343 0.849 -0.695 1.000 -270 -270.665 +- 0.164298 -4.8988 +- 0.15683 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=5935.06 FROM MIGRAD STATUS=INITIATE 18 CALLS 19 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70000e+02 2.00000e+00 2.01358e-01 -2.61773e+02 - 2 sg_p1 5.00000e+00 6.00000e-01 2.01358e-01 -1.38965e+02 - 3 sg_p2 1.79500e+02 3.41000e+01 2.01358e-01 1.59791e+00 - 4 sg_p3 1.55000e+02 2.90000e+01 2.01358e-01 1.10752e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 2.01358e-01 1.03362e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 5 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 2.28866 added to diagonal of error matrix -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (10056.7) to force MIGRAD to back out of this region. Error log follows -Parameter values: sg_p0=272.549, sg_p1=2.86401, sg_p2=114.179, sg_p3=10.3302, sg_p4=0.609584 -RooGaussian::signalComb[ x=x mean=sg_p2 sigma=sg_p3 ] - p.d.f normalization integral is zero or negative @ x=x=250.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=253.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=256.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=259.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=262.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=265.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=268.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=271.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=274.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=277.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=280.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=283.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - ... (remaining 24 messages suppressed) - - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.08701 added to diagonal of error matrix -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (10056.7) to force MIGRAD to back out of this region. Error log follows -Parameter values: sg_p0=272.29, sg_p1=6.01777, sg_p2=84.8692, sg_p3=12.3721, sg_p4=0.588994 -RooGaussian::signalComb[ x=x mean=sg_p2 sigma=sg_p3 ] - p.d.f normalization integral is zero or negative @ x=x=250.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=253.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=256.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=259.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=262.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=265.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=268.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=271.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=274.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=277.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=280.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=283.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - ... (remaining 24 messages suppressed) -RooAddPdf::signal[ sg_p4 * signalCore + [%] * signalComb ] - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 250.5), !pdfs=(signalCore = 0.00142225/15.0827,signalComb = 1.20756e-39/0), !coefficients=(sg_p4 = 0.588994) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 250.5), !pdfs=(signalCore = 0.00142225/15.0827,signalComb = 1.20756e-39/0), !coefficients=(sg_p4 = 0.588994) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 253.5), !pdfs=(signalCore = 0.00763766/15.0827,signalComb = 4.56383e-41/0), !coefficients=(sg_p4 = 0.588994) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 253.5), !pdfs=(signalCore = 0.00763766/15.0827,signalComb = 4.56383e-41/0), !coefficients=(sg_p4 = 0.588994) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 256.5), !pdfs=(signalCore = 0.0319897/15.0827,signalComb = 1.62635e-42/0), !coefficients=(sg_p4 = 0.588994) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 256.5), !pdfs=(signalCore = 0.0319897/15.0827,signalComb = 1.62635e-42/0), !coefficients=(sg_p4 = 0.588994) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 259.5), !pdfs=(signalCore = 0.104502/15.0827,signalComb = 5.46463e-44/0), !coefficients=(sg_p4 = 0.588994) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 259.5), !pdfs=(signalCore = 0.104502/15.0827,signalComb = 5.46463e-44/0), !coefficients=(sg_p4 = 0.588994) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 262.5), !pdfs=(signalCore = 0.266262/15.0827,signalComb = 1.7313e-45/0), !coefficients=(sg_p4 = 0.588994) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 262.5), !pdfs=(signalCore = 0.266262/15.0827,signalComb = 1.7313e-45/0), !coefficients=(sg_p4 = 0.588994) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 265.5), !pdfs=(signalCore = 0.529127/15.0827,signalComb = 5.17191e-47/0), !coefficients=(sg_p4 = 0.588994) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 265.5), !pdfs=(signalCore = 0.529127/15.0827,signalComb = 5.17191e-47/0), !coefficients=(sg_p4 = 0.588994) - ... (remaining 58 messages suppressed) -RooNLLVar::nll_signal_signalHistogram[ paramSet=(sg_p0,sg_p1,sg_p2,sg_p3,sg_p4) ] - function value is NAN @ paramSet=(sg_p0 = 272.29,sg_p1 = 6.01777,sg_p2 = 84.8692,sg_p3 = 12.3721,sg_p4 = 0.588994) -RooRealIntegral::signalComb_Int[x|NormalizationRangeForfit]_Norm[x][ Int signalComb_Norm(x) d[Ana](x) ] - function value is NAN @ !sumList=(), !intList=(), !anaList=(x = 250.5), !jacList=(), !facList=(), !func=signalComb=1.20756e-39/0, !sumCat=() - - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -7.5154e-01 8.8570e-03 4.2097e-01 8.1972e-01 4.5020e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 0.756042 TO DIAGONAL. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5882.02 FROM MIGRAD STATUS=CONVERGED 478 CALLS 479 TOTAL - EDM=5.04966e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70677e+02 1.77765e-01 9.15542e-04 3.54204e-02 - 2 sg_p1 5.07405e+00 1.71518e-01 2.53252e-03 -1.40075e-03 - 3 sg_p2 2.62185e+02 9.60022e+00 1.09335e-03 9.09533e-02 - 4 sg_p3 4.23182e+01 5.82557e+00 1.49714e-03 7.35079e-02 - 5 sg_p4 6.47917e-01 3.70971e-02 4.11649e-03 -7.98184e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.160e-02 -2.097e-03 -4.013e-01 1.872e-01 -1.393e-03 - -2.097e-03 2.945e-02 3.055e-01 1.580e-02 2.743e-03 - -4.013e-01 3.055e-01 9.229e+01 -4.866e+01 2.937e-01 - 1.872e-01 1.580e-02 -4.866e+01 3.398e+01 -1.298e-01 - -1.393e-03 2.743e-03 2.937e-01 -1.298e-01 1.388e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.24009 1.000 -0.069 -0.235 0.181 -0.210 - 2 0.54730 -0.069 1.000 0.185 0.016 0.429 - 3 0.94713 -0.235 0.185 1.000 -0.869 0.821 - 4 0.89685 0.181 0.016 -0.869 1.000 -0.598 - 5 0.87877 -0.210 0.429 0.821 -0.598 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5882.02 FROM HESSE STATUS=OK 31 CALLS 510 TOTAL - EDM=5.00987e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.70677e+02 1.78459e-01 1.83108e-04 6.77551e-02 - 2 sg_p1 5.07405e+00 1.71428e-01 1.01301e-04 2.46861e-02 - 3 sg_p2 2.62185e+02 1.03547e+01 2.18670e-04 5.06313e-01 - 4 sg_p3 4.23182e+01 6.29339e+00 5.98854e-05 -8.90070e-01 - 5 sg_p4 6.47917e-01 3.86762e-02 1.64659e-04 -4.20625e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.185e-02 -2.170e-03 -4.624e-01 2.253e-01 -1.567e-03 - -2.170e-03 2.942e-02 3.193e-01 5.301e-03 2.776e-03 - -4.624e-01 3.193e-01 1.074e+02 -5.800e+01 3.368e-01 - 2.253e-01 5.301e-03 -5.800e+01 3.967e+01 -1.567e-01 - -1.567e-03 2.776e-03 3.368e-01 -1.567e-01 1.510e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25486 1.000 -0.071 -0.250 0.200 -0.226 - 2 0.54662 -0.071 1.000 0.180 0.005 0.416 - 3 0.95474 -0.250 0.180 1.000 -0.889 0.836 - 4 0.91235 0.200 0.005 -0.889 1.000 -0.640 - 5 0.88917 -0.226 0.416 0.836 -0.640 1.000 -270 -270.677 +- 0.178459 -5.07405 +- 0.171428 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=6803.83 FROM MIGRAD STATUS=INITIATE 18 CALLS 19 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70000e+02 2.00000e+00 2.01358e-01 -2.98256e+02 - 2 sg_p1 5.00000e+00 6.00000e-01 2.01358e-01 -1.61883e+02 - 3 sg_p2 1.79500e+02 3.41000e+01 2.01358e-01 1.25354e+00 - 4 sg_p3 1.55000e+02 2.90000e+01 2.01358e-01 1.25340e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 2.01358e-01 1.22208e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6741.9 FROM MIGRAD STATUS=CONVERGED 248 CALLS 249 TOTAL - EDM=5.61336e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70678e+02 1.67660e-01 9.20230e-04 6.43100e-02 - 2 sg_p1 5.08061e+00 1.61195e-01 2.54959e-03 -4.59615e-02 - 3 sg_p2 2.61887e+02 1.01188e+01 1.11479e-03 1.73033e-01 - 4 sg_p3 4.27760e+01 6.14640e+00 1.50758e-03 -1.30340e-01 - 5 sg_p4 6.44308e-01 3.69099e-02 4.17152e-03 -5.60004e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.811e-02 -1.952e-03 -4.320e-01 -2.124e-01 -1.437e-03 - -1.952e-03 2.601e-02 2.973e-01 2.175e-03 2.487e-03 - -4.320e-01 2.973e-01 1.025e+02 5.575e+01 3.161e-01 - -2.124e-01 2.175e-03 5.575e+01 3.783e+01 1.492e-01 - -1.437e-03 2.487e-03 3.161e-01 1.492e-01 1.375e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25937 1.000 -0.072 -0.254 -0.206 -0.231 - 2 0.54843 -0.072 1.000 0.182 0.002 0.416 - 3 0.95754 -0.254 0.182 1.000 0.895 0.842 - 4 0.91772 -0.206 0.002 0.895 1.000 0.654 - 5 0.89354 -0.231 0.416 0.842 0.654 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6741.9 FROM HESSE STATUS=OK 31 CALLS 280 TOTAL - EDM=5.55033e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.70678e+02 1.67525e-01 1.84046e-04 6.78347e-02 - 2 sg_p1 5.08061e+00 1.61130e-01 5.09917e-04 2.68728e-02 - 3 sg_p2 2.61887e+02 9.96431e+00 2.22958e-04 5.04317e-01 - 4 sg_p3 4.27760e+01 6.05400e+00 6.03031e-05 -2.25652e+00 - 5 sg_p4 6.44308e-01 3.65699e-02 8.34304e-04 -4.36497e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.807e-02 -1.942e-03 -4.201e-01 -2.053e-01 -1.403e-03 - -1.942e-03 2.599e-02 2.900e-01 -2.123e-03 2.465e-03 - -4.201e-01 2.900e-01 9.944e+01 5.387e+01 3.073e-01 - -2.053e-01 -2.123e-03 5.387e+01 3.670e+01 1.439e-01 - -1.403e-03 2.465e-03 3.073e-01 1.439e-01 1.349e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25646 1.000 -0.072 -0.251 -0.202 -0.228 - 2 0.54791 -0.072 1.000 0.180 -0.002 0.416 - 3 0.95619 -0.251 0.180 1.000 0.892 0.839 - 4 0.91507 -0.202 -0.002 0.892 1.000 0.647 - 5 0.89141 -0.228 0.416 0.839 0.647 1.000 -270 -270.678 +- 0.167525 -5.08061 +- 0.16113 -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 270.677 +- 0.172924 (stat) - 0.207983 + 0.0144814 (syst); -0.225239/+0.0876663 (total) - Uncertainty on sg_p1 = 5.0777 +- 0.166149 (stat) - 0.224251 + 0.131537 (syst); -0.239144/+0.155575 (total) - Uncertainty on sg_p2 = 262.057 +- 10.2016 (stat) - 19.1181 + 8.78082 (syst); -19.7868/+10.1549 (total) - Uncertainty on sg_p3 = 42.5329 +- 6.20016 (stat) - 3.33491 + 8.46362 (syst); -4.55325/+9.01351 (total) - Uncertainty on sg_p4 = 0.6462 +- 0.037707 (stat) - 0.0366379 + 0.017984 (syst); -0.0412043/+0.0260553 (total) - === Baseline plot ===
- norm = 213.048 -JEC lnN 1.01241 - -JER lnN 1.01721 - -btag lnN 1.06825 - -sg_p0 param 270.677 -0.225239/+0.0876663 -sg_p1 param 5.0777 -0.239144/+0.155575 -sg_p2 param 262.057 -19.7868/+10.1549 -sg_p3 param 42.5329 -4.55325/+9.01351 -sg_p4 param 0.6462 -0.0412043/+0.0260553 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_crystal_252_330/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_crystal_252_330/data_bkg.log deleted file mode 100644 index 118332d..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_crystal_252_330/data_bkg.log +++ /dev/null @@ -1,750 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [252,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=62921.6 FROM MIGRAD STATUS=INITIATE 90 CALLS 91 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.21879e-02 5.09000e-01 0.00000e+00 -9.80911e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -1.28354e+01 - 3 par_crystal_2 2.65669e+02 4.00000e+00 0.00000e+00 3.55320e+02 - 4 par_crystal_3 1.06488e+01 2.70000e+00 -4.48284e-01 -2.33576e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62883.4 FROM HESSE STATUS=OK 29 CALLS 257 TOTAL - EDM=4.91113 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.66060e-01 4.16121e-03 3.52377e-04 -4.74293e+00 - 2 par_crystal_1 4.45375e+00 2.73731e+00 1.77223e-01 2.66184e-01 - 3 par_crystal_2 2.67385e+02 2.04373e-01 8.29600e-04 2.81454e+02 - 4 par_crystal_3 1.36851e+01 5.38888e-01 1.69331e-03 -1.62103e+00 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=62883.3 FROM MIGRAD STATUS=FAILED 358 CALLS 359 TOTAL - EDM=0.00753244 STRATEGY= 1 ERR MATRIX APPROXIMATE - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.65093e-01 8.39913e-03 1.31861e-03 5.42788e+00 - 2 par_crystal_1 5.09910e+00 4.33634e+00 3.39194e-01 -6.59950e-03 - 3 par_crystal_2 2.67339e+02 1.86486e-01 3.32550e-03 -8.58879e+00 - 4 par_crystal_3 1.37140e+01 6.01780e-01 6.34807e-03 1.69258e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.055e-05 1.617e-04 4.699e-04 2.892e-03 - 1.617e-04 1.762e-02 -1.356e-04 -1.108e-03 - 4.699e-04 -1.356e-04 3.478e-02 3.255e-02 - 2.892e-03 -1.108e-03 3.255e-02 3.624e-01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.60853 1.000 0.145 0.300 0.572 - 2 0.19009 0.145 1.000 -0.005 -0.014 - 3 0.33449 0.300 -0.005 1.000 0.290 - 4 0.59243 0.572 -0.014 0.290 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7660e-01 8.1807e-01 1.6519e+00 1.7066e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.178308 TO DIAGONAL. - FCN=62883.3 FROM HESSE STATUS=NOT POSDEF 33 CALLS 392 TOTAL - EDM=3.36849 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.65093e-01 8.70034e-02 2.63722e-04 -1.21988e+00 - 2 par_crystal_1 5.09910e+00 4.18121e+00 5.00000e-01 1.54425e+00 - 3 par_crystal_2 2.67339e+02 5.27040e+00 9.57407e-02 3.75715e-01 - 4 par_crystal_3 1.37140e+01 6.68546e+00 2.53923e-04 -2.07863e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.595e-03 -2.994e-03 4.642e-01 6.089e-01 - -2.994e-03 1.536e-02 -1.944e-01 -2.569e-01 - 4.642e-01 -1.944e-01 2.855e+01 3.736e+01 - 6.089e-01 -2.569e-01 3.736e+01 4.914e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99751 1.000 -0.277 0.997 0.997 - 2 0.37560 -0.277 1.000 -0.293 -0.296 - 3 0.99795 0.997 -0.293 1.000 0.997 - 4 0.99797 0.997 -0.296 0.997 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=62983.1 FROM MIGRAD STATUS=INITIATE 29 CALLS 30 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 6.05383e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -1.33666e+02 - 3 par_gaus_exp_2 3.19008e-01 3.05000e-01 -9.67731e-01 -3.33619e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.00383 added to diagonal of error matrix - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62882.7 FROM MIGRAD STATUS=CONVERGED 228 CALLS 229 TOTAL - EDM=4.4408e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.69095e+02 7.01852e-01 4.07755e-03 2.89794e-02 - 2 par_gaus_exp_1 1.61044e+01 1.09719e+00 7.43010e-03 -1.84784e-02 - 3 par_gaus_exp_2 1.90527e-01 1.58774e-02 1.98778e-03 -6.23432e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 4.929e-01 5.914e-01 9.067e-03 - 5.914e-01 1.207e+00 1.483e-02 - 9.067e-03 1.483e-02 2.521e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.82590 1.000 0.767 0.813 - 2 0.85979 0.767 1.000 0.850 - 3 0.88644 0.813 0.850 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62882.7 FROM HESSE STATUS=OK 16 CALLS 245 TOTAL - EDM=4.28199e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.69095e+02 6.86832e-01 1.63102e-04 -5.76704e-01 - 2 par_gaus_exp_1 1.61044e+01 1.07335e+00 2.97204e-04 -5.72398e-01 - 3 par_gaus_exp_2 1.90527e-01 1.55212e-02 7.95110e-05 -1.13813e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 4.720e-01 5.579e-01 8.580e-03 - 5.579e-01 1.155e+00 1.406e-02 - 8.580e-03 1.406e-02 2.410e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.81734 1.000 0.756 0.805 - 2 0.85292 0.756 1.000 0.843 - 3 0.88081 0.805 0.843 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,624] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.3296 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=286.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=286.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=289.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=289.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=295.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=295.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=298.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=298.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=301.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=301.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - ... (remaining 216 messages suppressed) -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.3296) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.733611 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=313.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=316.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=319.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=325.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=328.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=331.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=334.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=340.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=343.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=346.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - ... (remaining 94 messages suppressed) -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.733611) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0733618 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0733618 - - FCN=103426 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57146e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.55551e+03 - 3 par_novo_2 -1.33526e+00 2.00000e+01 0.00000e+00 1.53308e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103192 FROM MIGRAD STATUS=CONVERGED 126 CALLS 127 TOTAL - EDM=1.07924e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.17697e+01 1.69443e-01** at limit ** - 2 par_novo_1 3.87878e+01 2.27475e+00 4.96100e-03 -6.14249e-02 - 3 par_novo_2 -1.26766e+00 7.00630e-02 3.67886e-05 3.77179e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 2.244e-10 -2.632e-07 -1.276e-07 - -2.632e-07 5.190e+00 1.540e-01 - -1.276e-07 1.540e-01 4.909e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.43392 1.000 -0.008 -0.122 - 2 0.97109 -0.008 1.000 0.965 - 3 0.97152 -0.122 0.965 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103192 FROM HESSE STATUS=OK 20 CALLS 147 TOTAL - EDM=1.23299e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.15107e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.87878e+01 2.30410e+00 1.98440e-04 4.51799e-01 - 3 par_novo_2 -1.26766e+00 7.13892e-02 1.47154e-06 -1.26769e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 2.143e-10 3.996e-06 -2.087e-07 - 3.996e-06 5.325e+00 1.518e-01 - -2.087e-07 1.518e-01 5.096e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.80390 1.000 0.118 -0.200 - 2 0.97183 0.118 1.000 0.922 - 3 0.97258 -0.200 0.922 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107617 FROM MIGRAD STATUS=INITIATE 36 CALLS 37 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 6.60405e+03 - 2 par_crystal_1_1 7.90153e-02 5.09000e-01 -1.80421e+00 3.05679e+03 - 3 par_crystal_1_2 2.60000e+02 4.00000e+00 0.00000e+00 1.48888e+03 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 6.99071e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.17529 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.7903e-03 5.8606e-02 5.0897e-01 3.4352e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.006225 TO DIAGONAL. - FCN=103191 FROM MIGRAD STATUS=CONVERGED 353 CALLS 354 TOTAL - EDM=3.7306e-06 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.37913e-01 3.41139e-02 6.19492e-04 4.10204e-01 - 2 par_crystal_1_1 4.44737e+00 5.69760e-01 2.21494e-02 9.88736e-03 - 3 par_crystal_1_2 2.79979e+02 3.40482e+01 2.79535e-01 -2.97577e-04 - 4 par_crystal_1_3 1.87584e+01 2.98857e+00 3.96232e-03 -6.40797e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.164e-03 3.582e-03 3.594e-03 9.898e-02 - 3.582e-03 3.375e-01 -1.052e-02 7.382e-01 - 3.594e-03 -1.052e-02 3.148e+00 6.243e-01 - 9.898e-02 7.382e-01 6.243e-01 9.086e+00 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99630 1.000 0.181 0.059 0.962 - 2 0.95650 0.181 1.000 -0.010 0.422 - 3 0.63948 0.059 -0.010 1.000 0.117 - 4 0.99690 0.962 0.422 0.117 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103191 FROM HESSE STATUS=OK 27 CALLS 381 TOTAL - EDM=6.06842e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 2.37913e-01 2.12502e-01 1.23898e-04 -8.36786e+01 - 2 par_crystal_1_1 4.44737e+00 5.06952e-01 8.85975e-04 -1.65463e+01 - 3 par_crystal_1_2 2.79979e+02 2.96341e+01 5.00000e-01 7.80831e+00 - 4 par_crystal_1_3 1.87584e+01 1.90925e+01 1.58493e-04 2.18231e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.578e-02 1.663e-02 2.427e-02 3.730e+00 - 1.663e-02 2.650e-01 -4.299e-02 1.684e+00 - 2.427e-02 -4.299e-02 1.850e+00 2.341e+00 - 3.730e+00 1.684e+00 2.341e+00 3.045e+02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99991 1.000 0.151 0.083 0.999 - 2 0.94385 0.151 1.000 -0.061 0.187 - 3 0.80384 0.083 -0.061 1.000 0.099 - 4 0.99991 0.999 0.187 0.099 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 13889.7 - Background number of gaus_exp_252_330 = 13889.7 - Background number of novo_285_624 = 17637.2 - Background number of crystal_1_285_624 = 17637.2 - Background number of gaus_bern_285_624 = 17637.2 - Background number of landau_285_624 = 17637.2 -par_crystal_0 param 0.165093 0.0870034 -par_crystal_1 param 5.0991 4.18121 -par_crystal_2 param 267.339 5.2704 -par_crystal_3 param 13.714 6.68546 -par_crystal_1_0 param 0.237913 0.212502 -par_crystal_1_1 param 4.44737 0.506952 -par_crystal_1_2 param 279.979 29.6341 -par_crystal_1_3 param 18.7584 19.0925 -par_gaus_exp_0 param 269.095 0.686832 -par_gaus_exp_1 param 16.1044 1.07335 -par_gaus_exp_2 param 0.190527 0.0155212 -par_novo_0 param 250 31.5107 -par_novo_1 param 38.7878 2.3041 -par_novo_2 param -1.26766 0.0713892 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_crystal_252_330/datacard_270_crystal_252_330.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_crystal_252_330/datacard_270_crystal_252_330.txt deleted file mode 100644 index 32490f8..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_crystal_252_330/datacard_270_crystal_252_330.txt +++ /dev/null @@ -1,35 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_270.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_crystal_252_330.root HbbHbb:f_crystal -shapes data_obs HbbHbb w_background_crystal_252_330.root HbbHbb:data_obs_crystal_252_330 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 213.048 13889.7 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06825 - -JER lnN 1.01721 - -JEC lnN 1.01241 - -trigger lnN 1.10 - -PDF lnN 1.01516984881 - -sg_p0 param 270.677 -0.225239/+0.0876663 -sg_p1 param 5.0777 -0.239144/+0.155575 -sg_p2 param 262.057 -19.7868/+10.1549 -sg_p3 param 42.5329 -4.55325/+9.01351 -sg_p4 param 0.6462 -0.0412043/+0.0260553 -par_crystal_0 param 0.165093 0.0870034 -par_crystal_1 param 5.0991 4.18121 -par_crystal_2 param 267.339 5.2704 -par_crystal_3 param 13.714 6.68546 -par_crystal_1_0 param 0.237913 0.212502 -par_crystal_1_1 param 4.44737 0.506952 -par_crystal_1_2 param 279.979 29.6341 -par_crystal_1_3 param 18.7584 19.0925 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_crystal_252_330/pdf.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_crystal_252_330/pdf.log deleted file mode 100644 index 423e5dc..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_crystal_252_330/pdf.log +++ /dev/null @@ -1,10 +0,0 @@ -[?1034h FCN=9.27724 FROM MIGRAD STATUS=CONVERGED 62 CALLS 63 TOTAL - EDM=6.38865e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 Constant 1.93907e+01 2.48425e+00 3.18529e-03 -3.25663e-04 - 2 Mean 1.00132e+00 1.76739e-03 2.62530e-06 -5.38456e-01 - 3 Sigma 1.51698e-02 1.24775e-03 3.39881e-05 -4.59685e-03 -1.00131825619 +/- 0.00176739498053 -0.015169848807 +/- 0.00124775214983 -PDF lnN 1.01516984881 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_crystal_252_330/signal270_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_crystal_252_330/signal270_sig.log deleted file mode 100644 index b05287e..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_crystal_252_330/signal270_sig.log +++ /dev/null @@ -1,959 +0,0 @@ - -Processing test.c... -nSignal_init = 300000 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=8392.45 FROM MIGRAD STATUS=INITIATE 43 CALLS 44 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.65000e+02 3.00000e+00 0.00000e+00 2.86291e+02 - 2 sg_p1 8.50000e+00 1.30000e+00 0.00000e+00 -7.99146e+02 - 3 sg_p2 2.70000e+02 5.20000e+01 0.00000e+00 2.60544e+02 - 4 sg_p3 7.14818e+01 2.90000e+01 -6.13812e-01 5.50184e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.51376e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7995.55 FROM MIGRAD STATUS=CONVERGED 263 CALLS 264 TOTAL - EDM=2.79948e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.62655e+02 3.96075e-01 1.63668e-03 -1.71407e-02 - 2 sg_p1 1.50000e+01 3.66501e-02 6.55558e-03** at limit ** - 3 sg_p2 3.32688e+02 1.22425e+01 2.10215e-03 1.48173e-02 - 4 sg_p3 7.88319e+01 7.17424e+00 2.90211e-03 4.51106e-02 - 5 sg_p4 9.12549e-01 1.01971e-02 2.71366e-03 7.36508e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.569e-01 -9.420e-08 -6.520e-02 2.553e-01 2.627e-04 - -9.420e-08 5.458e-08 -8.702e-06 1.981e-06 -8.254e-09 - -6.520e-02 -8.702e-06 1.500e+02 -4.987e+01 7.092e-02 - 2.553e-01 1.981e-06 -4.987e+01 5.153e+01 -2.107e-02 - 2.627e-04 -8.254e-09 7.092e-02 -2.107e-02 1.041e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.13067 1.000 -0.001 -0.013 0.090 0.065 - 2 0.00383 -0.001 1.000 -0.003 0.001 -0.003 - 3 0.70719 -0.013 -0.003 1.000 -0.567 0.568 - 4 0.57426 0.090 0.001 -0.567 1.000 -0.288 - 5 0.57327 0.065 -0.003 0.568 -0.288 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7995.55 FROM HESSE STATUS=OK 31 CALLS 295 TOTAL - EDM=2.79956e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.62655e+02 3.96099e-01 3.27335e-04 -1.56977e-01 - 2 sg_p1 1.50000e+01 3.66519e-02 1.31112e-03 1.57113e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 3 sg_p2 3.32688e+02 1.23641e+01 8.40862e-05 2.43509e-01 - 4 sg_p3 7.88319e+01 7.24309e+00 1.16084e-04 -5.53064e-01 - 5 sg_p4 9.12549e-01 1.02319e-02 5.42731e-04 7.07842e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.569e-01 -2.556e-08 -7.512e-02 2.598e-01 2.581e-04 - -2.556e-08 5.458e-08 -2.431e-06 5.742e-07 -2.287e-09 - -7.512e-02 -2.431e-06 1.530e+02 -5.186e+01 7.239e-02 - 2.598e-01 5.742e-07 -5.186e+01 5.252e+01 -2.206e-02 - 2.581e-04 -2.287e-09 7.239e-02 -2.206e-02 1.048e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.13113 1.000 -0.000 -0.015 0.090 0.064 - 2 0.00106 -0.000 1.000 -0.001 0.000 -0.001 - 3 0.71407 -0.015 -0.001 1.000 -0.578 0.572 - 4 0.58519 0.090 0.000 -0.578 1.000 -0.297 - 5 0.57724 0.064 -0.001 0.572 -0.297 1.000 -270 -262.655 +- 0.396099 -15 +- 0.0366519 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=8301.08 FROM MIGRAD STATUS=INITIATE 43 CALLS 44 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.65000e+02 3.00000e+00 0.00000e+00 1.57276e+02 - 2 sg_p1 8.50000e+00 1.30000e+00 0.00000e+00 -7.20874e+02 - 3 sg_p2 2.70000e+02 5.20000e+01 0.00000e+00 1.31136e+02 - 4 sg_p3 6.67985e+01 2.90000e+01 -6.53900e-01 6.21676e+00 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.55343e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7960.31 FROM MIGRAD STATUS=CONVERGED 215 CALLS 216 TOTAL - EDM=0.000112509 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.63717e+02 4.03328e-01 1.64549e-03 2.85410e-02 - 2 sg_p1 1.50000e+01 4.16874e-02 6.99690e-03** at limit ** - 3 sg_p2 3.26691e+02 1.09550e+01 1.90596e-03 -1.07432e-01 - 4 sg_p3 7.56151e+01 6.41429e+00 2.71105e-03 7.69878e-02 - 5 sg_p4 9.03852e-01 1.08010e-02 2.78869e-03 -3.02927e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.627e-01 -1.817e-07 -1.584e-01 2.985e-01 2.635e-04 - -1.817e-07 2.669e-07 -1.400e-05 2.491e-06 -1.659e-08 - -1.584e-01 -1.400e-05 1.201e+02 -3.790e+01 6.574e-02 - 2.985e-01 2.491e-06 -3.790e+01 4.118e+01 -1.657e-02 - 2.635e-04 -1.659e-08 6.574e-02 -1.657e-02 1.168e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.14787 1.000 -0.001 -0.036 0.115 0.060 - 2 0.00326 -0.001 1.000 -0.002 0.001 -0.003 - 3 0.69527 -0.036 -0.002 1.000 -0.539 0.555 - 4 0.55108 0.115 0.001 -0.539 1.000 -0.239 - 5 0.56440 0.060 -0.003 0.555 -0.239 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7960.31 FROM HESSE STATUS=OK 31 CALLS 247 TOTAL - EDM=0.000114252 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.63717e+02 4.03375e-01 3.29097e-04 -8.56522e-02 - 2 sg_p1 1.50000e+01 4.16903e-02 1.39938e-03 1.57009e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 3 sg_p2 3.26691e+02 1.10364e+01 3.81192e-04 2.19808e-01 - 4 sg_p3 7.56151e+01 6.46046e+00 1.08442e-04 -5.79352e-01 - 5 sg_p4 9.03852e-01 1.08250e-02 5.57738e-04 6.62902e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.628e-01 1.090e-10 -1.678e-01 3.031e-01 2.586e-04 - 1.090e-10 2.669e-07 8.739e-09 -1.723e-09 1.020e-11 - -1.678e-01 8.739e-09 1.219e+02 -3.912e+01 6.671e-02 - 3.031e-01 -1.723e-09 -3.912e+01 4.178e+01 -1.726e-02 - 2.586e-04 1.020e-11 6.671e-02 -1.726e-02 1.173e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.14863 1.000 0.000 -0.038 0.116 0.059 - 2 0.00000 0.000 1.000 0.000 -0.000 0.000 - 3 0.70071 -0.038 0.000 1.000 -0.548 0.558 - 4 0.56000 0.116 -0.000 -0.548 1.000 -0.247 - 5 0.56706 0.059 0.000 0.558 -0.247 1.000 -270 -263.717 +- 0.403375 -15 +- 0.0416903 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=8131.38 FROM MIGRAD STATUS=INITIATE 44 CALLS 45 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.65000e+02 3.00000e+00 0.00000e+00 4.48644e+02 - 2 sg_p1 8.50000e+00 1.30000e+00 0.00000e+00 -7.91305e+02 - 3 sg_p2 2.70000e+02 5.20000e+01 0.00000e+00 3.73822e+02 - 4 sg_p3 6.56628e+01 2.90000e+01 -6.63806e-01 5.24608e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.60990e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7699.77 FROM MIGRAD STATUS=CONVERGED 264 CALLS 265 TOTAL - EDM=1.20255e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.61106e+02 3.97606e-01 1.64949e-03 6.43216e-02 - 2 sg_p1 1.50000e+01 4.40817e-02 7.05863e-03** at limit ** - 3 sg_p2 3.31806e+02 1.18077e+01 2.04938e-03 4.68003e-02 - 4 sg_p3 7.39962e+01 6.87793e+00 2.89900e-03 4.25993e-02 - 5 sg_p4 9.20380e-01 9.82533e-03 2.67537e-03 -4.86834e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.581e-01 -4.250e-09 7.358e-02 1.895e-01 3.289e-04 - -4.250e-09 8.677e-11 -3.111e-07 6.344e-08 -2.998e-10 - 7.358e-02 -3.111e-07 1.395e+02 -4.404e+01 6.552e-02 - 1.895e-01 6.344e-08 -4.404e+01 4.736e+01 -1.922e-02 - 3.289e-04 -2.998e-10 6.552e-02 -1.922e-02 9.663e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.12888 1.000 -0.001 0.016 0.069 0.084 - 2 0.00364 -0.001 1.000 -0.003 0.001 -0.003 - 3 0.69043 0.016 -0.003 1.000 -0.542 0.564 - 4 0.54763 0.069 0.001 -0.542 1.000 -0.284 - 5 0.56955 0.084 -0.003 0.564 -0.284 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7699.77 FROM HESSE STATUS=OK 31 CALLS 296 TOTAL - EDM=1.20761e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.61106e+02 3.97608e-01 3.29897e-04 -2.62628e-01 - 2 sg_p1 1.50000e+01 4.40850e-02 1.41173e-03 1.57081e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 3 sg_p2 3.31806e+02 1.19031e+01 4.09876e-04 2.40013e-01 - 4 sg_p3 7.39962e+01 6.93093e+00 1.15960e-04 -5.92753e-01 - 5 sg_p4 9.20380e-01 9.85509e-03 5.35074e-04 7.49837e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.581e-01 -8.535e-10 6.846e-02 1.911e-01 3.266e-04 - -8.535e-10 8.678e-11 -6.392e-08 1.351e-08 -6.118e-11 - 6.846e-02 -6.392e-08 1.418e+02 -4.555e+01 6.667e-02 - 1.911e-01 1.351e-08 -4.555e+01 4.809e+01 -2.000e-02 - 3.266e-04 -6.118e-11 6.667e-02 -2.000e-02 9.722e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.12891 1.000 -0.000 0.014 0.069 0.083 - 2 0.00074 -0.000 1.000 -0.001 0.000 -0.001 - 3 0.69646 0.014 -0.001 1.000 -0.552 0.568 - 4 0.55728 0.069 0.000 -0.552 1.000 -0.292 - 5 0.57312 0.083 -0.001 0.568 -0.292 1.000 -270 -261.106 +- 0.397608 -15 +- 0.044085 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=6358.39 FROM MIGRAD STATUS=INITIATE 18 CALLS 19 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70000e+02 2.00000e+00 2.01358e-01 -2.79566e+02 - 2 sg_p1 5.00000e+00 6.00000e-01 2.01358e-01 -1.50106e+02 - 3 sg_p2 1.79500e+02 3.41000e+01 2.01358e-01 1.43645e+00 - 4 sg_p3 1.55000e+02 2.90000e+01 2.01358e-01 1.18935e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 2.01358e-01 1.12505e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6301.03 FROM MIGRAD STATUS=CONVERGED 228 CALLS 229 TOTAL - EDM=6.55748e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70677e+02 1.72165e-01 9.18183e-04 1.47070e-02 - 2 sg_p1 5.07770e+00 1.66247e-01 2.54292e-03 -1.24810e-03 - 3 sg_p2 2.62057e+02 9.37512e+00 1.10376e-03 -2.64630e-02 - 4 sg_p3 4.25329e+01 5.68857e+00 1.50462e-03 -2.35495e-02 - 5 sg_p4 6.46200e-01 3.59740e-02 4.14748e-03 5.84314e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.964e-02 -1.980e-03 -3.797e-01 1.772e-01 -1.311e-03 - -1.980e-03 2.767e-02 2.898e-01 1.419e-02 2.579e-03 - -3.797e-01 2.898e-01 8.801e+01 -4.644e+01 2.783e-01 - 1.772e-01 1.419e-02 -4.644e+01 3.240e+01 -1.232e-01 - -1.311e-03 2.579e-03 2.783e-01 -1.232e-01 1.305e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.24028 1.000 -0.069 -0.235 0.181 -0.211 - 2 0.54786 -0.069 1.000 0.186 0.015 0.429 - 3 0.94759 -0.235 0.186 1.000 -0.870 0.821 - 4 0.89770 0.181 0.015 -0.870 1.000 -0.599 - 5 0.87941 -0.211 0.429 0.821 -0.599 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6301.03 FROM HESSE STATUS=OK 31 CALLS 260 TOTAL - EDM=6.88941e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.70677e+02 1.72924e-01 1.83637e-04 6.77760e-02 - 2 sg_p1 5.07770e+00 1.66149e-01 1.01717e-04 2.59024e-02 - 3 sg_p2 2.62057e+02 1.02016e+01 4.41505e-05 5.05456e-01 - 4 sg_p3 4.25329e+01 6.20016e+00 6.01848e-05 -8.87721e-01 - 5 sg_p4 6.46200e-01 3.77070e-02 1.65899e-04 -4.28163e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.991e-02 -2.057e-03 -4.449e-01 2.178e-01 -1.495e-03 - -2.057e-03 2.763e-02 3.050e-01 2.707e-03 2.616e-03 - -4.449e-01 3.050e-01 1.042e+02 -5.647e+01 3.244e-01 - 2.178e-01 2.707e-03 -5.647e+01 3.850e+01 -1.520e-01 - -1.495e-03 2.616e-03 3.244e-01 -1.520e-01 1.435e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25688 1.000 -0.072 -0.252 0.203 -0.228 - 2 0.54710 -0.072 1.000 0.180 0.003 0.415 - 3 0.95594 -0.252 0.180 1.000 -0.891 0.839 - 4 0.91467 0.203 0.003 -0.891 1.000 -0.647 - 5 0.89101 -0.228 0.415 0.839 -0.647 1.000 -270 -270.677 +- 0.172924 -5.0777 +- 0.166149 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=6365.99 FROM MIGRAD STATUS=INITIATE 16 CALLS 17 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70000e+02 2.00000e+00 2.01358e-01 -3.03648e+02 - 2 sg_p1 5.00000e+00 6.00000e-01 2.01358e-01 -1.61990e+02 - 3 sg_p2 1.79500e+02 3.41000e+01 2.01358e-01 -2.65770e+00 - 4 sg_p3 1.55000e+02 2.90000e+01 2.01358e-01 8.50425e+00 - 5 sg_p4 7.50000e-01 5.00000e-02 2.01358e-01 1.31190e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6299.61 FROM MIGRAD STATUS=CONVERGED 237 CALLS 238 TOTAL - EDM=7.93407e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70692e+02 1.77044e-01 9.42241e-04 3.84277e-02 - 2 sg_p1 5.17409e+00 1.71536e-01 2.60847e-03 -2.11829e-03 - 3 sg_p2 2.70838e+02 6.84551e+00 1.03343e-03 5.78086e-03 - 4 sg_p3 3.91980e+01 4.62395e+00 1.61118e-03 1.03114e-02 - 5 sg_p4 6.64184e-01 3.27535e-02 3.88817e-03 5.22515e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.135e-02 -1.758e-03 -3.016e-01 1.665e-01 -1.164e-03 - -1.758e-03 2.946e-02 3.251e-01 -2.221e-02 2.675e-03 - -3.016e-01 3.251e-01 4.690e+01 -2.546e+01 1.845e-01 - 1.665e-01 -2.221e-02 -2.546e+01 2.140e+01 -8.613e-02 - -1.164e-03 2.675e-03 1.845e-01 -8.613e-02 1.080e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.24905 1.000 -0.058 -0.249 0.203 -0.200 - 2 0.55757 -0.058 1.000 0.277 -0.028 0.474 - 3 0.91827 -0.249 0.277 1.000 -0.804 0.820 - 4 0.83247 0.203 -0.028 -0.804 1.000 -0.567 - 5 0.86222 -0.200 0.474 0.820 -0.567 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6299.61 FROM HESSE STATUS=OK 31 CALLS 269 TOTAL - EDM=7.9228e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.70692e+02 1.77623e-01 1.88448e-04 6.92275e-02 - 2 sg_p1 5.17409e+00 1.71578e-01 1.04339e-04 5.80618e-02 - 3 sg_p2 2.70838e+02 7.18808e+00 4.13373e-05 5.65345e-01 - 4 sg_p3 3.91980e+01 4.86021e+00 6.44473e-05 -9.25023e-01 - 5 sg_p4 6.64184e-01 3.36636e-02 1.55527e-04 -3.50391e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.155e-02 -1.878e-03 -3.331e-01 1.884e-01 -1.276e-03 - -1.878e-03 2.947e-02 3.399e-01 -3.425e-02 2.726e-03 - -3.331e-01 3.399e-01 5.171e+01 -2.882e+01 2.017e-01 - 1.884e-01 -3.425e-02 -2.882e+01 2.365e+01 -9.825e-02 - -1.276e-03 2.726e-03 2.017e-01 -9.825e-02 1.141e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.26103 1.000 -0.062 -0.261 0.218 -0.213 - 2 0.55787 -0.062 1.000 0.275 -0.041 0.470 - 3 0.92618 -0.261 0.275 1.000 -0.824 0.830 - 4 0.84979 0.218 -0.041 -0.824 1.000 -0.598 - 5 0.87017 -0.213 0.470 0.830 -0.598 1.000 -270 -270.692 +- 0.177623 -5.17409 +- 0.171578 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=6100.43 FROM MIGRAD STATUS=INITIATE 38 CALLS 39 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70000e+02 2.00000e+00 0.00000e+00 -1.76480e+02 - 2 sg_p1 5.00000e+00 6.00000e-01 0.00000e+00 -9.50553e+01 - 3 sg_p2 1.79500e+02 3.41000e+01 0.00000e+00 -1.03797e+01 - 4 sg_p3 1.15860e+02 2.90000e+01 -2.73322e-01 1.99528e+00 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.00751e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6063.49 FROM MIGRAD STATUS=CONVERGED 263 CALLS 264 TOTAL - EDM=9.43817e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70469e+02 1.64489e-01 8.67373e-04 9.78651e-02 - 2 sg_p1 4.85345e+00 1.61763e-01 2.44261e-03 2.33446e-02 - 3 sg_p2 2.42939e+02 1.76038e+01 1.34178e-03 -9.41851e-03 - 4 sg_p3 5.09965e+01 8.69738e+00 1.37274e-03 -8.34558e-03 - 5 sg_p4 6.09562e-01 4.12691e-02 4.72433e-03 -1.03290e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.706e-02 -1.143e-03 -5.339e-01 2.032e-01 -1.240e-03 - -1.143e-03 2.619e-02 2.008e-01 9.614e-02 2.479e-03 - -5.339e-01 2.008e-01 3.112e+02 -1.431e+02 5.930e-01 - 2.032e-01 9.614e-02 -1.431e+02 7.583e+01 -2.285e-01 - -1.240e-03 2.479e-03 5.930e-01 -2.285e-01 1.726e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20148 1.000 -0.043 -0.184 0.142 -0.181 - 2 0.54100 -0.043 1.000 0.070 0.068 0.369 - 3 0.97454 -0.184 0.070 1.000 -0.932 0.809 - 4 0.95515 0.142 0.068 -0.932 1.000 -0.632 - 5 0.89940 -0.181 0.369 0.809 -0.632 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6063.49 FROM HESSE STATUS=OK 31 CALLS 295 TOTAL - EDM=1.17248e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.70469e+02 1.65601e-01 1.73475e-04 4.69431e-02 - 2 sg_p1 4.85345e+00 1.61522e-01 4.88521e-04 -4.88702e-02 - 3 sg_p2 2.42939e+02 2.15740e+01 5.36712e-05 3.81246e-01 - 4 sg_p3 5.09965e+01 1.06929e+01 5.49095e-05 -7.99870e-01 - 5 sg_p4 6.09562e-01 4.63125e-02 1.88973e-04 -5.96502e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.743e-02 -1.089e-03 -7.748e-01 3.240e-01 -1.649e-03 - -1.089e-03 2.611e-02 1.620e-01 1.121e-01 2.395e-03 - -7.748e-01 1.620e-01 4.683e+02 -2.215e+02 8.616e-01 - 3.240e-01 1.121e-01 -2.215e+02 1.148e+02 -3.632e-01 - -1.649e-03 2.395e-03 8.616e-01 -3.632e-01 2.182e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23115 1.000 -0.041 -0.216 0.183 -0.213 - 2 0.53904 -0.041 1.000 0.046 0.065 0.317 - 3 0.98316 -0.216 0.046 1.000 -0.955 0.852 - 4 0.97060 0.183 0.065 -0.955 1.000 -0.726 - 5 0.92131 -0.213 0.317 0.852 -0.726 1.000 -270 -270.469 +- 0.165601 -4.85345 +- 0.161522 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=6207.91 FROM MIGRAD STATUS=INITIATE 18 CALLS 19 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70000e+02 2.00000e+00 2.01358e-01 -2.64216e+02 - 2 sg_p1 5.00000e+00 6.00000e-01 2.01358e-01 -1.71360e+02 - 3 sg_p2 1.79500e+02 3.41000e+01 2.01358e-01 4.14298e-01 - 4 sg_p3 1.55000e+02 2.90000e+01 2.01358e-01 1.11372e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 2.01358e-01 1.18895e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6146.33 FROM MIGRAD STATUS=CONVERGED 215 CALLS 216 TOTAL - EDM=6.61513e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70656e+02 1.81990e-01 9.51015e-04 2.93883e-01 - 2 sg_p1 5.20924e+00 1.80376e-01 2.66180e-03 1.75576e-02 - 3 sg_p2 2.64216e+02 9.79599e+00 1.09853e-03 2.68338e-01 - 4 sg_p3 4.19600e+01 6.09659e+00 1.54906e-03 -8.69463e-02 - 5 sg_p4 6.49014e-01 3.85333e-02 4.14029e-03 -7.85398e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.312e-02 -1.986e-03 -4.776e-01 -2.455e-01 -1.622e-03 - -1.986e-03 3.258e-02 3.816e-01 8.852e-03 3.179e-03 - -4.776e-01 3.816e-01 9.610e+01 5.251e+01 3.182e-01 - -2.455e-01 8.852e-03 5.251e+01 3.722e+01 1.487e-01 - -1.622e-03 3.179e-03 3.182e-01 1.487e-01 1.499e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.26944 1.000 -0.060 -0.268 -0.221 -0.230 - 2 0.57936 -0.060 1.000 0.216 0.008 0.455 - 3 0.95227 -0.268 0.216 1.000 0.878 0.838 - 4 0.90487 -0.221 0.008 0.878 1.000 0.630 - 5 0.89253 -0.230 0.455 0.838 0.630 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6146.33 FROM HESSE STATUS=OK 31 CALLS 247 TOTAL - EDM=6.61792e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.70656e+02 1.81849e-01 1.90203e-04 6.56339e-02 - 2 sg_p1 5.20924e+00 1.80330e-01 1.06472e-04 6.98019e-02 - 3 sg_p2 2.64216e+02 9.67079e+00 2.19705e-04 5.19985e-01 - 4 sg_p3 4.19600e+01 6.02003e+00 6.19622e-05 -2.24759e+00 - 5 sg_p4 6.49014e-01 3.82479e-02 8.28058e-04 -4.15825e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.307e-02 -1.974e-03 -4.664e-01 -2.386e-01 -1.589e-03 - -1.974e-03 3.256e-02 3.740e-01 4.110e-03 3.157e-03 - -4.664e-01 3.740e-01 9.366e+01 5.099e+01 3.108e-01 - -2.386e-01 4.110e-03 5.099e+01 3.629e+01 1.442e-01 - -1.589e-03 3.157e-03 3.108e-01 1.442e-01 1.477e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.26676 1.000 -0.060 -0.265 -0.218 -0.227 - 2 0.57907 -0.060 1.000 0.214 0.004 0.455 - 3 0.95099 -0.265 0.214 1.000 0.875 0.836 - 4 0.90230 -0.218 0.004 0.875 1.000 0.623 - 5 0.89080 -0.227 0.455 0.836 0.623 1.000 -270 -270.656 +- 0.181849 -5.20924 +- 0.18033 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=6345.12 FROM MIGRAD STATUS=INITIATE 18 CALLS 19 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70000e+02 2.00000e+00 2.01358e-01 -2.76463e+02 - 2 sg_p1 5.00000e+00 6.00000e-01 2.01358e-01 -1.12933e+02 - 3 sg_p2 1.79500e+02 3.41000e+01 2.01358e-01 1.61677e+00 - 4 sg_p3 1.55000e+02 2.90000e+01 2.01358e-01 1.12497e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 2.01358e-01 1.04922e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.05988 added to diagonal of error matrix -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (9513.77) to force MIGRAD to back out of this region. Error log follows -Parameter values: sg_p0=269.51, sg_p1=3.81892, sg_p2=26.0784, sg_p3=20.4464, sg_p4=0.504154 -RooGaussian::signalComb[ x=x mean=sg_p2 sigma=sg_p3 ] - p.d.f normalization integral is zero or negative @ x=x=250.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=253.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=256.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=259.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=262.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=265.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=268.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=271.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=274.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=277.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=280.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=283.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - ... (remaining 24 messages suppressed) -RooAddPdf::signal[ sg_p4 * signalCore + [%] * signalComb ] - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 250.5), !pdfs=(signalCore = 4.16274e-06/9.57261,signalComb = 6.90752e-27/0), !coefficients=(sg_p4 = 0.504154) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 250.5), !pdfs=(signalCore = 4.16274e-06/9.57261,signalComb = 6.90752e-27/0), !coefficients=(sg_p4 = 0.504154) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 253.5), !pdfs=(signalCore = 0.000152629/9.57261,signalComb = 1.36531e-27/0), !coefficients=(sg_p4 = 0.504154) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 253.5), !pdfs=(signalCore = 0.000152629/9.57261,signalComb = 1.36531e-27/0), !coefficients=(sg_p4 = 0.504154) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 256.5), !pdfs=(signalCore = 0.00301916/9.57261,signalComb = 2.64114e-28/0), !coefficients=(sg_p4 = 0.504154) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 256.5), !pdfs=(signalCore = 0.00301916/9.57261,signalComb = 2.64114e-28/0), !coefficients=(sg_p4 = 0.504154) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 259.5), !pdfs=(signalCore = 0.0322202/9.57261,signalComb = 5.00036e-29/0), !coefficients=(sg_p4 = 0.504154) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 259.5), !pdfs=(signalCore = 0.0322202/9.57261,signalComb = 5.00036e-29/0), !coefficients=(sg_p4 = 0.504154) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 262.5), !pdfs=(signalCore = 0.185509/9.57261,signalComb = 9.26534e-30/0), !coefficients=(sg_p4 = 0.504154) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 262.5), !pdfs=(signalCore = 0.185509/9.57261,signalComb = 9.26534e-30/0), !coefficients=(sg_p4 = 0.504154) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 265.5), !pdfs=(signalCore = 0.576226/9.57261,signalComb = 1.68024e-30/0), !coefficients=(sg_p4 = 0.504154) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 265.5), !pdfs=(signalCore = 0.576226/9.57261,signalComb = 1.68024e-30/0), !coefficients=(sg_p4 = 0.504154) - ... (remaining 58 messages suppressed) -RooNLLVar::nll_signal_signalHistogram[ paramSet=(sg_p0,sg_p1,sg_p2,sg_p3,sg_p4) ] - function value is NAN @ paramSet=(sg_p0 = 269.51,sg_p1 = 3.81892,sg_p2 = 26.0784,sg_p3 = 20.4464,sg_p4 = 0.504154) -RooRealIntegral::signalComb_Int[x|NormalizationRangeForfit]_Norm[x][ Int signalComb_Norm(x) d[Ana](x) ] - function value is NAN @ !sumList=(), !intList=(), !anaList=(x = 250.5), !jacList=(), !facList=(), !func=signalComb=6.90752e-27/0, !sumCat=() - - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6295.95 FROM MIGRAD STATUS=CONVERGED 426 CALLS 427 TOTAL - EDM=1.36563e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70665e+02 1.63477e-01 8.78610e-04 2.15233e-02 - 2 sg_p1 4.89880e+00 1.57011e-01 2.44680e-03 2.25239e-02 - 3 sg_p2 2.54654e+02 1.25915e+01 1.24303e-03 5.47392e-03 - 4 sg_p3 4.70832e+01 7.17725e+00 1.51317e-03 2.13001e-03 - 5 sg_p4 6.29901e-01 3.72328e-02 4.32749e-03 -5.67064e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.673e-02 -8.488e-04 -4.087e-01 1.835e-01 -1.095e-03 - -8.488e-04 2.467e-02 2.172e-01 5.764e-02 2.181e-03 - -4.087e-01 2.172e-01 1.589e+02 -8.190e+01 3.873e-01 - 1.835e-01 5.764e-02 -8.190e+01 5.161e+01 -1.691e-01 - -1.095e-03 2.181e-03 3.873e-01 -1.691e-01 1.400e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20590 1.000 -0.033 -0.198 0.156 -0.179 - 2 0.52321 -0.033 1.000 0.110 0.051 0.371 - 3 0.96127 -0.198 0.110 1.000 -0.904 0.821 - 4 0.92824 0.156 0.051 -0.904 1.000 -0.629 - 5 0.88645 -0.179 0.371 0.821 -0.629 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6295.95 FROM HESSE STATUS=OK 31 CALLS 458 TOTAL - EDM=1.44185e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.70665e+02 1.64298e-01 1.75722e-04 6.65783e-02 - 2 sg_p1 4.89880e+00 1.56830e-01 4.89360e-04 -3.37402e-02 - 3 sg_p2 2.54654e+02 1.43586e+01 4.97213e-05 4.56472e-01 - 4 sg_p3 4.70832e+01 8.20025e+00 6.05269e-05 -7.12260e+00 - 5 sg_p4 6.29901e-01 4.01552e-02 1.73099e-04 -5.01104e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.700e-02 -8.623e-04 -5.225e-01 2.494e-01 -1.344e-03 - -8.623e-04 2.462e-02 2.174e-01 5.502e-02 2.172e-03 - -5.225e-01 2.174e-01 2.068e+02 -1.095e+02 4.928e-01 - 2.494e-01 5.502e-02 -1.095e+02 6.741e+01 -2.303e-01 - -1.344e-03 2.172e-03 4.928e-01 -2.303e-01 1.631e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22790 1.000 -0.033 -0.221 0.185 -0.203 - 2 0.52160 -0.033 1.000 0.096 0.043 0.343 - 3 0.97037 -0.221 0.096 1.000 -0.928 0.849 - 4 0.94554 0.185 0.043 -0.928 1.000 -0.695 - 5 0.90340 -0.203 0.343 0.849 -0.695 1.000 -270 -270.665 +- 0.164298 -4.8988 +- 0.15683 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=5935.06 FROM MIGRAD STATUS=INITIATE 18 CALLS 19 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70000e+02 2.00000e+00 2.01358e-01 -2.61773e+02 - 2 sg_p1 5.00000e+00 6.00000e-01 2.01358e-01 -1.38965e+02 - 3 sg_p2 1.79500e+02 3.41000e+01 2.01358e-01 1.59791e+00 - 4 sg_p3 1.55000e+02 2.90000e+01 2.01358e-01 1.10752e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 2.01358e-01 1.03362e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 5 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 2.28866 added to diagonal of error matrix -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (10056.7) to force MIGRAD to back out of this region. Error log follows -Parameter values: sg_p0=272.549, sg_p1=2.86401, sg_p2=114.179, sg_p3=10.3302, sg_p4=0.609584 -RooGaussian::signalComb[ x=x mean=sg_p2 sigma=sg_p3 ] - p.d.f normalization integral is zero or negative @ x=x=250.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=253.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=256.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=259.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=262.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=265.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=268.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=271.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=274.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=277.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=280.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=283.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - ... (remaining 24 messages suppressed) - - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.08701 added to diagonal of error matrix -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (10056.7) to force MIGRAD to back out of this region. Error log follows -Parameter values: sg_p0=272.29, sg_p1=6.01777, sg_p2=84.8692, sg_p3=12.3721, sg_p4=0.588994 -RooAddPdf::signal[ sg_p4 * signalCore + [%] * signalComb ] - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 250.5), !pdfs=(signalCore = 0.00142225/15.0827,signalComb = 1.20756e-39/0), !coefficients=(sg_p4 = 0.588994) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 250.5), !pdfs=(signalCore = 0.00142225/15.0827,signalComb = 1.20756e-39/0), !coefficients=(sg_p4 = 0.588994) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 253.5), !pdfs=(signalCore = 0.00763766/15.0827,signalComb = 4.56383e-41/0), !coefficients=(sg_p4 = 0.588994) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 253.5), !pdfs=(signalCore = 0.00763766/15.0827,signalComb = 4.56383e-41/0), !coefficients=(sg_p4 = 0.588994) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 256.5), !pdfs=(signalCore = 0.0319897/15.0827,signalComb = 1.62635e-42/0), !coefficients=(sg_p4 = 0.588994) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 256.5), !pdfs=(signalCore = 0.0319897/15.0827,signalComb = 1.62635e-42/0), !coefficients=(sg_p4 = 0.588994) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 259.5), !pdfs=(signalCore = 0.104502/15.0827,signalComb = 5.46463e-44/0), !coefficients=(sg_p4 = 0.588994) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 259.5), !pdfs=(signalCore = 0.104502/15.0827,signalComb = 5.46463e-44/0), !coefficients=(sg_p4 = 0.588994) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 262.5), !pdfs=(signalCore = 0.266262/15.0827,signalComb = 1.7313e-45/0), !coefficients=(sg_p4 = 0.588994) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 262.5), !pdfs=(signalCore = 0.266262/15.0827,signalComb = 1.7313e-45/0), !coefficients=(sg_p4 = 0.588994) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 265.5), !pdfs=(signalCore = 0.529127/15.0827,signalComb = 5.17191e-47/0), !coefficients=(sg_p4 = 0.588994) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 265.5), !pdfs=(signalCore = 0.529127/15.0827,signalComb = 5.17191e-47/0), !coefficients=(sg_p4 = 0.588994) - ... (remaining 58 messages suppressed) -RooGaussian::signalComb[ x=x mean=sg_p2 sigma=sg_p3 ] - p.d.f normalization integral is zero or negative @ x=x=250.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=253.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=256.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=259.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=262.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=265.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=268.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=271.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=274.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=277.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=280.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=283.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - ... (remaining 24 messages suppressed) -RooNLLVar::nll_signal_signalHistogram[ paramSet=(sg_p0,sg_p1,sg_p2,sg_p3,sg_p4) ] - function value is NAN @ paramSet=(sg_p0 = 272.29,sg_p1 = 6.01777,sg_p2 = 84.8692,sg_p3 = 12.3721,sg_p4 = 0.588994) -RooRealIntegral::signalComb_Int[x|NormalizationRangeForfit]_Norm[x][ Int signalComb_Norm(x) d[Ana](x) ] - function value is NAN @ !sumList=(), !intList=(), !anaList=(x = 250.5), !jacList=(), !facList=(), !func=signalComb=1.20756e-39/0, !sumCat=() - - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -7.5154e-01 8.8570e-03 4.2097e-01 8.1972e-01 4.5020e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 0.756042 TO DIAGONAL. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5882.02 FROM MIGRAD STATUS=CONVERGED 478 CALLS 479 TOTAL - EDM=5.04966e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70677e+02 1.77765e-01 9.15542e-04 3.54204e-02 - 2 sg_p1 5.07405e+00 1.71518e-01 2.53252e-03 -1.40075e-03 - 3 sg_p2 2.62185e+02 9.60022e+00 1.09335e-03 9.09533e-02 - 4 sg_p3 4.23182e+01 5.82557e+00 1.49714e-03 7.35079e-02 - 5 sg_p4 6.47917e-01 3.70971e-02 4.11649e-03 -7.98184e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.160e-02 -2.097e-03 -4.013e-01 1.872e-01 -1.393e-03 - -2.097e-03 2.945e-02 3.055e-01 1.580e-02 2.743e-03 - -4.013e-01 3.055e-01 9.229e+01 -4.866e+01 2.937e-01 - 1.872e-01 1.580e-02 -4.866e+01 3.398e+01 -1.298e-01 - -1.393e-03 2.743e-03 2.937e-01 -1.298e-01 1.388e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.24009 1.000 -0.069 -0.235 0.181 -0.210 - 2 0.54730 -0.069 1.000 0.185 0.016 0.429 - 3 0.94713 -0.235 0.185 1.000 -0.869 0.821 - 4 0.89685 0.181 0.016 -0.869 1.000 -0.598 - 5 0.87877 -0.210 0.429 0.821 -0.598 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5882.02 FROM HESSE STATUS=OK 31 CALLS 510 TOTAL - EDM=5.00987e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.70677e+02 1.78459e-01 1.83108e-04 6.77551e-02 - 2 sg_p1 5.07405e+00 1.71428e-01 1.01301e-04 2.46861e-02 - 3 sg_p2 2.62185e+02 1.03547e+01 2.18670e-04 5.06313e-01 - 4 sg_p3 4.23182e+01 6.29339e+00 5.98854e-05 -8.90070e-01 - 5 sg_p4 6.47917e-01 3.86762e-02 1.64659e-04 -4.20625e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.185e-02 -2.170e-03 -4.624e-01 2.253e-01 -1.567e-03 - -2.170e-03 2.942e-02 3.193e-01 5.301e-03 2.776e-03 - -4.624e-01 3.193e-01 1.074e+02 -5.800e+01 3.368e-01 - 2.253e-01 5.301e-03 -5.800e+01 3.967e+01 -1.567e-01 - -1.567e-03 2.776e-03 3.368e-01 -1.567e-01 1.510e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25486 1.000 -0.071 -0.250 0.200 -0.226 - 2 0.54662 -0.071 1.000 0.180 0.005 0.416 - 3 0.95474 -0.250 0.180 1.000 -0.889 0.836 - 4 0.91235 0.200 0.005 -0.889 1.000 -0.640 - 5 0.88917 -0.226 0.416 0.836 -0.640 1.000 -270 -270.677 +- 0.178459 -5.07405 +- 0.171428 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=6803.83 FROM MIGRAD STATUS=INITIATE 18 CALLS 19 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70000e+02 2.00000e+00 2.01358e-01 -2.98256e+02 - 2 sg_p1 5.00000e+00 6.00000e-01 2.01358e-01 -1.61883e+02 - 3 sg_p2 1.79500e+02 3.41000e+01 2.01358e-01 1.25354e+00 - 4 sg_p3 1.55000e+02 2.90000e+01 2.01358e-01 1.25340e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 2.01358e-01 1.22208e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6741.9 FROM MIGRAD STATUS=CONVERGED 248 CALLS 249 TOTAL - EDM=5.61336e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70678e+02 1.67660e-01 9.20230e-04 6.43100e-02 - 2 sg_p1 5.08061e+00 1.61195e-01 2.54959e-03 -4.59615e-02 - 3 sg_p2 2.61887e+02 1.01188e+01 1.11479e-03 1.73033e-01 - 4 sg_p3 4.27760e+01 6.14640e+00 1.50758e-03 -1.30340e-01 - 5 sg_p4 6.44308e-01 3.69099e-02 4.17152e-03 -5.60004e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.811e-02 -1.952e-03 -4.320e-01 -2.124e-01 -1.437e-03 - -1.952e-03 2.601e-02 2.973e-01 2.175e-03 2.487e-03 - -4.320e-01 2.973e-01 1.025e+02 5.575e+01 3.161e-01 - -2.124e-01 2.175e-03 5.575e+01 3.783e+01 1.492e-01 - -1.437e-03 2.487e-03 3.161e-01 1.492e-01 1.375e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25937 1.000 -0.072 -0.254 -0.206 -0.231 - 2 0.54843 -0.072 1.000 0.182 0.002 0.416 - 3 0.95754 -0.254 0.182 1.000 0.895 0.842 - 4 0.91772 -0.206 0.002 0.895 1.000 0.654 - 5 0.89354 -0.231 0.416 0.842 0.654 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6741.9 FROM HESSE STATUS=OK 31 CALLS 280 TOTAL - EDM=5.55033e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.70678e+02 1.67525e-01 1.84046e-04 6.78347e-02 - 2 sg_p1 5.08061e+00 1.61130e-01 5.09917e-04 2.68728e-02 - 3 sg_p2 2.61887e+02 9.96431e+00 2.22958e-04 5.04317e-01 - 4 sg_p3 4.27760e+01 6.05400e+00 6.03031e-05 -2.25652e+00 - 5 sg_p4 6.44308e-01 3.65699e-02 8.34304e-04 -4.36497e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.807e-02 -1.942e-03 -4.201e-01 -2.053e-01 -1.403e-03 - -1.942e-03 2.599e-02 2.900e-01 -2.123e-03 2.465e-03 - -4.201e-01 2.900e-01 9.944e+01 5.387e+01 3.073e-01 - -2.053e-01 -2.123e-03 5.387e+01 3.670e+01 1.439e-01 - -1.403e-03 2.465e-03 3.073e-01 1.439e-01 1.349e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25646 1.000 -0.072 -0.251 -0.202 -0.228 - 2 0.54791 -0.072 1.000 0.180 -0.002 0.416 - 3 0.95619 -0.251 0.180 1.000 0.892 0.839 - 4 0.91507 -0.202 -0.002 0.892 1.000 0.647 - 5 0.89141 -0.228 0.416 0.839 0.647 1.000 -270 -270.678 +- 0.167525 -5.08061 +- 0.16113 -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 270.677 +- 0.172924 (stat) - 0.207983 + 0.0144814 (syst); -0.225239/+0.0876663 (total) - Uncertainty on sg_p1 = 5.0777 +- 0.166149 (stat) - 0.224251 + 0.131537 (syst); -0.239144/+0.155575 (total) - Uncertainty on sg_p2 = 262.057 +- 10.2016 (stat) - 19.1181 + 8.78082 (syst); -19.7868/+10.1549 (total) - Uncertainty on sg_p3 = 42.5329 +- 6.20016 (stat) - 3.33491 + 8.46362 (syst); -4.55325/+9.01351 (total) - Uncertainty on sg_p4 = 0.6462 +- 0.037707 (stat) - 0.0366379 + 0.017984 (syst); -0.0412043/+0.0260553 (total) - === Baseline plot ===
- norm = 213.048 -JEC lnN 1.01241 - -JER lnN 1.01721 - -btag lnN 1.06825 - -sg_p0 param 270.677 -0.225239/+0.0876663 -sg_p1 param 5.0777 -0.239144/+0.155575 -sg_p2 param 262.057 -19.7868/+10.1549 -sg_p3 param 42.5329 -4.55325/+9.01351 -sg_p4 param 0.6462 -0.0412043/+0.0260553 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_gaus_exp_252_330/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_gaus_exp_252_330/data_bkg.log deleted file mode 100644 index 3cc1900..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_gaus_exp_252_330/data_bkg.log +++ /dev/null @@ -1,750 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [252,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=62921.6 FROM MIGRAD STATUS=INITIATE 90 CALLS 91 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.21879e-02 5.09000e-01 0.00000e+00 -9.80911e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -1.28354e+01 - 3 par_crystal_2 2.65669e+02 4.00000e+00 0.00000e+00 3.55320e+02 - 4 par_crystal_3 1.06488e+01 2.70000e+00 -4.48284e-01 -2.33576e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62883.4 FROM HESSE STATUS=OK 29 CALLS 257 TOTAL - EDM=4.91113 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.66060e-01 4.16121e-03 3.52377e-04 -4.74293e+00 - 2 par_crystal_1 4.45375e+00 2.73731e+00 1.77223e-01 2.66184e-01 - 3 par_crystal_2 2.67385e+02 2.04373e-01 8.29600e-04 2.81454e+02 - 4 par_crystal_3 1.36851e+01 5.38888e-01 1.69331e-03 -1.62103e+00 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=62883.3 FROM MIGRAD STATUS=FAILED 358 CALLS 359 TOTAL - EDM=0.00753244 STRATEGY= 1 ERR MATRIX APPROXIMATE - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.65093e-01 8.39913e-03 1.31861e-03 5.42788e+00 - 2 par_crystal_1 5.09910e+00 4.33634e+00 3.39194e-01 -6.59950e-03 - 3 par_crystal_2 2.67339e+02 1.86486e-01 3.32550e-03 -8.58879e+00 - 4 par_crystal_3 1.37140e+01 6.01780e-01 6.34807e-03 1.69258e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.055e-05 1.617e-04 4.699e-04 2.892e-03 - 1.617e-04 1.762e-02 -1.356e-04 -1.108e-03 - 4.699e-04 -1.356e-04 3.478e-02 3.255e-02 - 2.892e-03 -1.108e-03 3.255e-02 3.624e-01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.60853 1.000 0.145 0.300 0.572 - 2 0.19009 0.145 1.000 -0.005 -0.014 - 3 0.33449 0.300 -0.005 1.000 0.290 - 4 0.59243 0.572 -0.014 0.290 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7660e-01 8.1807e-01 1.6519e+00 1.7066e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.178308 TO DIAGONAL. - FCN=62883.3 FROM HESSE STATUS=NOT POSDEF 33 CALLS 392 TOTAL - EDM=3.36849 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.65093e-01 8.70034e-02 2.63722e-04 -1.21988e+00 - 2 par_crystal_1 5.09910e+00 4.18121e+00 5.00000e-01 1.54425e+00 - 3 par_crystal_2 2.67339e+02 5.27040e+00 9.57407e-02 3.75715e-01 - 4 par_crystal_3 1.37140e+01 6.68546e+00 2.53923e-04 -2.07863e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.595e-03 -2.994e-03 4.642e-01 6.089e-01 - -2.994e-03 1.536e-02 -1.944e-01 -2.569e-01 - 4.642e-01 -1.944e-01 2.855e+01 3.736e+01 - 6.089e-01 -2.569e-01 3.736e+01 4.914e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99751 1.000 -0.277 0.997 0.997 - 2 0.37560 -0.277 1.000 -0.293 -0.296 - 3 0.99795 0.997 -0.293 1.000 0.997 - 4 0.99797 0.997 -0.296 0.997 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=62983.1 FROM MIGRAD STATUS=INITIATE 29 CALLS 30 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 6.05383e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -1.33666e+02 - 3 par_gaus_exp_2 3.19008e-01 3.05000e-01 -9.67731e-01 -3.33619e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.00383 added to diagonal of error matrix - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62882.7 FROM MIGRAD STATUS=CONVERGED 228 CALLS 229 TOTAL - EDM=4.4408e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.69095e+02 7.01852e-01 4.07755e-03 2.89794e-02 - 2 par_gaus_exp_1 1.61044e+01 1.09719e+00 7.43010e-03 -1.84784e-02 - 3 par_gaus_exp_2 1.90527e-01 1.58774e-02 1.98778e-03 -6.23432e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 4.929e-01 5.914e-01 9.067e-03 - 5.914e-01 1.207e+00 1.483e-02 - 9.067e-03 1.483e-02 2.521e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.82590 1.000 0.767 0.813 - 2 0.85979 0.767 1.000 0.850 - 3 0.88644 0.813 0.850 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62882.7 FROM HESSE STATUS=OK 16 CALLS 245 TOTAL - EDM=4.28199e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.69095e+02 6.86832e-01 1.63102e-04 -5.76704e-01 - 2 par_gaus_exp_1 1.61044e+01 1.07335e+00 2.97204e-04 -5.72398e-01 - 3 par_gaus_exp_2 1.90527e-01 1.55212e-02 7.95110e-05 -1.13813e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 4.720e-01 5.579e-01 8.580e-03 - 5.579e-01 1.155e+00 1.406e-02 - 8.580e-03 1.406e-02 2.410e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.81734 1.000 0.756 0.805 - 2 0.85292 0.756 1.000 0.843 - 3 0.88081 0.805 0.843 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,624] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.3296 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.3296) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=286.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=286.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=289.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=289.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=295.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=295.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=298.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=298.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=301.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=301.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - ... (remaining 216 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.733611 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.733611) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=313.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=316.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=319.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=325.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=328.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=331.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=334.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=340.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=343.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=346.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - ... (remaining 94 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0733618 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0733618 - - FCN=103426 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57146e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.55551e+03 - 3 par_novo_2 -1.33526e+00 2.00000e+01 0.00000e+00 1.53308e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103192 FROM MIGRAD STATUS=CONVERGED 126 CALLS 127 TOTAL - EDM=1.07924e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.17697e+01 1.69443e-01** at limit ** - 2 par_novo_1 3.87878e+01 2.27475e+00 4.96100e-03 -6.14249e-02 - 3 par_novo_2 -1.26766e+00 7.00630e-02 3.67886e-05 3.77179e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 2.244e-10 -2.632e-07 -1.276e-07 - -2.632e-07 5.190e+00 1.540e-01 - -1.276e-07 1.540e-01 4.909e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.43392 1.000 -0.008 -0.122 - 2 0.97109 -0.008 1.000 0.965 - 3 0.97152 -0.122 0.965 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103192 FROM HESSE STATUS=OK 20 CALLS 147 TOTAL - EDM=1.23299e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.15107e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.87878e+01 2.30410e+00 1.98440e-04 4.51799e-01 - 3 par_novo_2 -1.26766e+00 7.13892e-02 1.47154e-06 -1.26769e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 2.143e-10 3.996e-06 -2.087e-07 - 3.996e-06 5.325e+00 1.518e-01 - -2.087e-07 1.518e-01 5.096e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.80390 1.000 0.118 -0.200 - 2 0.97183 0.118 1.000 0.922 - 3 0.97258 -0.200 0.922 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107617 FROM MIGRAD STATUS=INITIATE 36 CALLS 37 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 6.60405e+03 - 2 par_crystal_1_1 7.90153e-02 5.09000e-01 -1.80421e+00 3.05679e+03 - 3 par_crystal_1_2 2.60000e+02 4.00000e+00 0.00000e+00 1.48888e+03 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 6.99071e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.17529 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.7903e-03 5.8606e-02 5.0897e-01 3.4352e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.006225 TO DIAGONAL. - FCN=103191 FROM MIGRAD STATUS=CONVERGED 353 CALLS 354 TOTAL - EDM=3.7306e-06 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.37913e-01 3.41139e-02 6.19492e-04 4.10204e-01 - 2 par_crystal_1_1 4.44737e+00 5.69760e-01 2.21494e-02 9.88736e-03 - 3 par_crystal_1_2 2.79979e+02 3.40482e+01 2.79535e-01 -2.97577e-04 - 4 par_crystal_1_3 1.87584e+01 2.98857e+00 3.96232e-03 -6.40797e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.164e-03 3.582e-03 3.594e-03 9.898e-02 - 3.582e-03 3.375e-01 -1.052e-02 7.382e-01 - 3.594e-03 -1.052e-02 3.148e+00 6.243e-01 - 9.898e-02 7.382e-01 6.243e-01 9.086e+00 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99630 1.000 0.181 0.059 0.962 - 2 0.95650 0.181 1.000 -0.010 0.422 - 3 0.63948 0.059 -0.010 1.000 0.117 - 4 0.99690 0.962 0.422 0.117 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103191 FROM HESSE STATUS=OK 27 CALLS 381 TOTAL - EDM=6.06842e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 2.37913e-01 2.12502e-01 1.23898e-04 -8.36786e+01 - 2 par_crystal_1_1 4.44737e+00 5.06952e-01 8.85975e-04 -1.65463e+01 - 3 par_crystal_1_2 2.79979e+02 2.96341e+01 5.00000e-01 7.80831e+00 - 4 par_crystal_1_3 1.87584e+01 1.90925e+01 1.58493e-04 2.18231e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.578e-02 1.663e-02 2.427e-02 3.730e+00 - 1.663e-02 2.650e-01 -4.299e-02 1.684e+00 - 2.427e-02 -4.299e-02 1.850e+00 2.341e+00 - 3.730e+00 1.684e+00 2.341e+00 3.045e+02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99991 1.000 0.151 0.083 0.999 - 2 0.94385 0.151 1.000 -0.061 0.187 - 3 0.80384 0.083 -0.061 1.000 0.099 - 4 0.99991 0.999 0.187 0.099 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 13889.7 - Background number of gaus_exp_252_330 = 13889.7 - Background number of novo_285_624 = 17637.2 - Background number of crystal_1_285_624 = 17637.2 - Background number of gaus_bern_285_624 = 17637.2 - Background number of landau_285_624 = 17637.2 -par_crystal_0 param 0.165093 0.0870034 -par_crystal_1 param 5.0991 4.18121 -par_crystal_2 param 267.339 5.2704 -par_crystal_3 param 13.714 6.68546 -par_crystal_1_0 param 0.237913 0.212502 -par_crystal_1_1 param 4.44737 0.506952 -par_crystal_1_2 param 279.979 29.6341 -par_crystal_1_3 param 18.7584 19.0925 -par_gaus_exp_0 param 269.095 0.686832 -par_gaus_exp_1 param 16.1044 1.07335 -par_gaus_exp_2 param 0.190527 0.0155212 -par_novo_0 param 250 31.5107 -par_novo_1 param 38.7878 2.3041 -par_novo_2 param -1.26766 0.0713892 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_gaus_exp_252_330/datacard_270_gaus_exp_252_330.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_gaus_exp_252_330/datacard_270_gaus_exp_252_330.txt deleted file mode 100644 index 9d1fc9f..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_gaus_exp_252_330/datacard_270_gaus_exp_252_330.txt +++ /dev/null @@ -1,30 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_270.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_gaus_exp_252_330.root HbbHbb:f_gaus_exp -shapes data_obs HbbHbb w_background_gaus_exp_252_330.root HbbHbb:data_obs_gaus_exp_252_330 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 213.048 13889.7 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06825 - -JER lnN 1.01721 - -JEC lnN 1.01241 - -trigger lnN 1.10 - -PDF lnN 1.01516984881 - -sg_p0 param 270.677 -0.225239/+0.0876663 -sg_p1 param 5.0777 -0.239144/+0.155575 -sg_p2 param 262.057 -19.7868/+10.1549 -sg_p3 param 42.5329 -4.55325/+9.01351 -sg_p4 param 0.6462 -0.0412043/+0.0260553 -par_gaus_exp_0 param 269.095 0.686832 -par_gaus_exp_1 param 16.1044 1.07335 -par_gaus_exp_2 param 0.190527 0.0155212 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_gaus_exp_252_330/pdf.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_gaus_exp_252_330/pdf.log deleted file mode 100644 index 423e5dc..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_gaus_exp_252_330/pdf.log +++ /dev/null @@ -1,10 +0,0 @@ -[?1034h FCN=9.27724 FROM MIGRAD STATUS=CONVERGED 62 CALLS 63 TOTAL - EDM=6.38865e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 Constant 1.93907e+01 2.48425e+00 3.18529e-03 -3.25663e-04 - 2 Mean 1.00132e+00 1.76739e-03 2.62530e-06 -5.38456e-01 - 3 Sigma 1.51698e-02 1.24775e-03 3.39881e-05 -4.59685e-03 -1.00131825619 +/- 0.00176739498053 -0.015169848807 +/- 0.00124775214983 -PDF lnN 1.01516984881 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_gaus_exp_252_330/signal270_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_gaus_exp_252_330/signal270_sig.log deleted file mode 100644 index 373c8cc..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_gaus_exp_252_330/signal270_sig.log +++ /dev/null @@ -1,959 +0,0 @@ - -Processing test.c... -nSignal_init = 300000 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=8392.45 FROM MIGRAD STATUS=INITIATE 43 CALLS 44 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.65000e+02 3.00000e+00 0.00000e+00 2.86291e+02 - 2 sg_p1 8.50000e+00 1.30000e+00 0.00000e+00 -7.99146e+02 - 3 sg_p2 2.70000e+02 5.20000e+01 0.00000e+00 2.60544e+02 - 4 sg_p3 7.14818e+01 2.90000e+01 -6.13812e-01 5.50184e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.51376e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7995.55 FROM MIGRAD STATUS=CONVERGED 263 CALLS 264 TOTAL - EDM=2.79948e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.62655e+02 3.96075e-01 1.63668e-03 -1.71407e-02 - 2 sg_p1 1.50000e+01 3.66501e-02 6.55558e-03** at limit ** - 3 sg_p2 3.32688e+02 1.22425e+01 2.10215e-03 1.48173e-02 - 4 sg_p3 7.88319e+01 7.17424e+00 2.90211e-03 4.51106e-02 - 5 sg_p4 9.12549e-01 1.01971e-02 2.71366e-03 7.36508e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.569e-01 -9.420e-08 -6.520e-02 2.553e-01 2.627e-04 - -9.420e-08 5.458e-08 -8.702e-06 1.981e-06 -8.254e-09 - -6.520e-02 -8.702e-06 1.500e+02 -4.987e+01 7.092e-02 - 2.553e-01 1.981e-06 -4.987e+01 5.153e+01 -2.107e-02 - 2.627e-04 -8.254e-09 7.092e-02 -2.107e-02 1.041e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.13067 1.000 -0.001 -0.013 0.090 0.065 - 2 0.00383 -0.001 1.000 -0.003 0.001 -0.003 - 3 0.70719 -0.013 -0.003 1.000 -0.567 0.568 - 4 0.57426 0.090 0.001 -0.567 1.000 -0.288 - 5 0.57327 0.065 -0.003 0.568 -0.288 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7995.55 FROM HESSE STATUS=OK 31 CALLS 295 TOTAL - EDM=2.79956e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.62655e+02 3.96099e-01 3.27335e-04 -1.56977e-01 - 2 sg_p1 1.50000e+01 3.66519e-02 1.31112e-03 1.57113e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 3 sg_p2 3.32688e+02 1.23641e+01 8.40862e-05 2.43509e-01 - 4 sg_p3 7.88319e+01 7.24309e+00 1.16084e-04 -5.53064e-01 - 5 sg_p4 9.12549e-01 1.02319e-02 5.42731e-04 7.07842e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.569e-01 -2.556e-08 -7.512e-02 2.598e-01 2.581e-04 - -2.556e-08 5.458e-08 -2.431e-06 5.742e-07 -2.287e-09 - -7.512e-02 -2.431e-06 1.530e+02 -5.186e+01 7.239e-02 - 2.598e-01 5.742e-07 -5.186e+01 5.252e+01 -2.206e-02 - 2.581e-04 -2.287e-09 7.239e-02 -2.206e-02 1.048e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.13113 1.000 -0.000 -0.015 0.090 0.064 - 2 0.00106 -0.000 1.000 -0.001 0.000 -0.001 - 3 0.71407 -0.015 -0.001 1.000 -0.578 0.572 - 4 0.58519 0.090 0.000 -0.578 1.000 -0.297 - 5 0.57724 0.064 -0.001 0.572 -0.297 1.000 -270 -262.655 +- 0.396099 -15 +- 0.0366519 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=8301.08 FROM MIGRAD STATUS=INITIATE 43 CALLS 44 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.65000e+02 3.00000e+00 0.00000e+00 1.57276e+02 - 2 sg_p1 8.50000e+00 1.30000e+00 0.00000e+00 -7.20874e+02 - 3 sg_p2 2.70000e+02 5.20000e+01 0.00000e+00 1.31136e+02 - 4 sg_p3 6.67985e+01 2.90000e+01 -6.53900e-01 6.21676e+00 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.55343e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7960.31 FROM MIGRAD STATUS=CONVERGED 215 CALLS 216 TOTAL - EDM=0.000112509 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.63717e+02 4.03328e-01 1.64549e-03 2.85410e-02 - 2 sg_p1 1.50000e+01 4.16874e-02 6.99690e-03** at limit ** - 3 sg_p2 3.26691e+02 1.09550e+01 1.90596e-03 -1.07432e-01 - 4 sg_p3 7.56151e+01 6.41429e+00 2.71105e-03 7.69878e-02 - 5 sg_p4 9.03852e-01 1.08010e-02 2.78869e-03 -3.02927e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.627e-01 -1.817e-07 -1.584e-01 2.985e-01 2.635e-04 - -1.817e-07 2.669e-07 -1.400e-05 2.491e-06 -1.659e-08 - -1.584e-01 -1.400e-05 1.201e+02 -3.790e+01 6.574e-02 - 2.985e-01 2.491e-06 -3.790e+01 4.118e+01 -1.657e-02 - 2.635e-04 -1.659e-08 6.574e-02 -1.657e-02 1.168e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.14787 1.000 -0.001 -0.036 0.115 0.060 - 2 0.00326 -0.001 1.000 -0.002 0.001 -0.003 - 3 0.69527 -0.036 -0.002 1.000 -0.539 0.555 - 4 0.55108 0.115 0.001 -0.539 1.000 -0.239 - 5 0.56440 0.060 -0.003 0.555 -0.239 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7960.31 FROM HESSE STATUS=OK 31 CALLS 247 TOTAL - EDM=0.000114252 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.63717e+02 4.03375e-01 3.29097e-04 -8.56522e-02 - 2 sg_p1 1.50000e+01 4.16903e-02 1.39938e-03 1.57009e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 3 sg_p2 3.26691e+02 1.10364e+01 3.81192e-04 2.19808e-01 - 4 sg_p3 7.56151e+01 6.46046e+00 1.08442e-04 -5.79352e-01 - 5 sg_p4 9.03852e-01 1.08250e-02 5.57738e-04 6.62902e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.628e-01 1.090e-10 -1.678e-01 3.031e-01 2.586e-04 - 1.090e-10 2.669e-07 8.739e-09 -1.723e-09 1.020e-11 - -1.678e-01 8.739e-09 1.219e+02 -3.912e+01 6.671e-02 - 3.031e-01 -1.723e-09 -3.912e+01 4.178e+01 -1.726e-02 - 2.586e-04 1.020e-11 6.671e-02 -1.726e-02 1.173e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.14863 1.000 0.000 -0.038 0.116 0.059 - 2 0.00000 0.000 1.000 0.000 -0.000 0.000 - 3 0.70071 -0.038 0.000 1.000 -0.548 0.558 - 4 0.56000 0.116 -0.000 -0.548 1.000 -0.247 - 5 0.56706 0.059 0.000 0.558 -0.247 1.000 -270 -263.717 +- 0.403375 -15 +- 0.0416903 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=8131.38 FROM MIGRAD STATUS=INITIATE 44 CALLS 45 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.65000e+02 3.00000e+00 0.00000e+00 4.48644e+02 - 2 sg_p1 8.50000e+00 1.30000e+00 0.00000e+00 -7.91305e+02 - 3 sg_p2 2.70000e+02 5.20000e+01 0.00000e+00 3.73822e+02 - 4 sg_p3 6.56628e+01 2.90000e+01 -6.63806e-01 5.24608e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.60990e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7699.77 FROM MIGRAD STATUS=CONVERGED 264 CALLS 265 TOTAL - EDM=1.20255e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.61106e+02 3.97606e-01 1.64949e-03 6.43216e-02 - 2 sg_p1 1.50000e+01 4.40817e-02 7.05863e-03** at limit ** - 3 sg_p2 3.31806e+02 1.18077e+01 2.04938e-03 4.68003e-02 - 4 sg_p3 7.39962e+01 6.87793e+00 2.89900e-03 4.25993e-02 - 5 sg_p4 9.20380e-01 9.82533e-03 2.67537e-03 -4.86834e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.581e-01 -4.250e-09 7.358e-02 1.895e-01 3.289e-04 - -4.250e-09 8.677e-11 -3.111e-07 6.344e-08 -2.998e-10 - 7.358e-02 -3.111e-07 1.395e+02 -4.404e+01 6.552e-02 - 1.895e-01 6.344e-08 -4.404e+01 4.736e+01 -1.922e-02 - 3.289e-04 -2.998e-10 6.552e-02 -1.922e-02 9.663e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.12888 1.000 -0.001 0.016 0.069 0.084 - 2 0.00364 -0.001 1.000 -0.003 0.001 -0.003 - 3 0.69043 0.016 -0.003 1.000 -0.542 0.564 - 4 0.54763 0.069 0.001 -0.542 1.000 -0.284 - 5 0.56955 0.084 -0.003 0.564 -0.284 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7699.77 FROM HESSE STATUS=OK 31 CALLS 296 TOTAL - EDM=1.20761e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.61106e+02 3.97608e-01 3.29897e-04 -2.62628e-01 - 2 sg_p1 1.50000e+01 4.40850e-02 1.41173e-03 1.57081e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 3 sg_p2 3.31806e+02 1.19031e+01 4.09876e-04 2.40013e-01 - 4 sg_p3 7.39962e+01 6.93093e+00 1.15960e-04 -5.92753e-01 - 5 sg_p4 9.20380e-01 9.85509e-03 5.35074e-04 7.49837e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.581e-01 -8.535e-10 6.846e-02 1.911e-01 3.266e-04 - -8.535e-10 8.678e-11 -6.392e-08 1.351e-08 -6.118e-11 - 6.846e-02 -6.392e-08 1.418e+02 -4.555e+01 6.667e-02 - 1.911e-01 1.351e-08 -4.555e+01 4.809e+01 -2.000e-02 - 3.266e-04 -6.118e-11 6.667e-02 -2.000e-02 9.722e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.12891 1.000 -0.000 0.014 0.069 0.083 - 2 0.00074 -0.000 1.000 -0.001 0.000 -0.001 - 3 0.69646 0.014 -0.001 1.000 -0.552 0.568 - 4 0.55728 0.069 0.000 -0.552 1.000 -0.292 - 5 0.57312 0.083 -0.001 0.568 -0.292 1.000 -270 -261.106 +- 0.397608 -15 +- 0.044085 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=6358.39 FROM MIGRAD STATUS=INITIATE 18 CALLS 19 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70000e+02 2.00000e+00 2.01358e-01 -2.79566e+02 - 2 sg_p1 5.00000e+00 6.00000e-01 2.01358e-01 -1.50106e+02 - 3 sg_p2 1.79500e+02 3.41000e+01 2.01358e-01 1.43645e+00 - 4 sg_p3 1.55000e+02 2.90000e+01 2.01358e-01 1.18935e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 2.01358e-01 1.12505e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6301.03 FROM MIGRAD STATUS=CONVERGED 228 CALLS 229 TOTAL - EDM=6.55748e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70677e+02 1.72165e-01 9.18183e-04 1.47070e-02 - 2 sg_p1 5.07770e+00 1.66247e-01 2.54292e-03 -1.24810e-03 - 3 sg_p2 2.62057e+02 9.37512e+00 1.10376e-03 -2.64630e-02 - 4 sg_p3 4.25329e+01 5.68857e+00 1.50462e-03 -2.35495e-02 - 5 sg_p4 6.46200e-01 3.59740e-02 4.14748e-03 5.84314e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.964e-02 -1.980e-03 -3.797e-01 1.772e-01 -1.311e-03 - -1.980e-03 2.767e-02 2.898e-01 1.419e-02 2.579e-03 - -3.797e-01 2.898e-01 8.801e+01 -4.644e+01 2.783e-01 - 1.772e-01 1.419e-02 -4.644e+01 3.240e+01 -1.232e-01 - -1.311e-03 2.579e-03 2.783e-01 -1.232e-01 1.305e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.24028 1.000 -0.069 -0.235 0.181 -0.211 - 2 0.54786 -0.069 1.000 0.186 0.015 0.429 - 3 0.94759 -0.235 0.186 1.000 -0.870 0.821 - 4 0.89770 0.181 0.015 -0.870 1.000 -0.599 - 5 0.87941 -0.211 0.429 0.821 -0.599 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6301.03 FROM HESSE STATUS=OK 31 CALLS 260 TOTAL - EDM=6.88941e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.70677e+02 1.72924e-01 1.83637e-04 6.77760e-02 - 2 sg_p1 5.07770e+00 1.66149e-01 1.01717e-04 2.59024e-02 - 3 sg_p2 2.62057e+02 1.02016e+01 4.41505e-05 5.05456e-01 - 4 sg_p3 4.25329e+01 6.20016e+00 6.01848e-05 -8.87721e-01 - 5 sg_p4 6.46200e-01 3.77070e-02 1.65899e-04 -4.28163e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.991e-02 -2.057e-03 -4.449e-01 2.178e-01 -1.495e-03 - -2.057e-03 2.763e-02 3.050e-01 2.707e-03 2.616e-03 - -4.449e-01 3.050e-01 1.042e+02 -5.647e+01 3.244e-01 - 2.178e-01 2.707e-03 -5.647e+01 3.850e+01 -1.520e-01 - -1.495e-03 2.616e-03 3.244e-01 -1.520e-01 1.435e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25688 1.000 -0.072 -0.252 0.203 -0.228 - 2 0.54710 -0.072 1.000 0.180 0.003 0.415 - 3 0.95594 -0.252 0.180 1.000 -0.891 0.839 - 4 0.91467 0.203 0.003 -0.891 1.000 -0.647 - 5 0.89101 -0.228 0.415 0.839 -0.647 1.000 -270 -270.677 +- 0.172924 -5.0777 +- 0.166149 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=6365.99 FROM MIGRAD STATUS=INITIATE 16 CALLS 17 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70000e+02 2.00000e+00 2.01358e-01 -3.03648e+02 - 2 sg_p1 5.00000e+00 6.00000e-01 2.01358e-01 -1.61990e+02 - 3 sg_p2 1.79500e+02 3.41000e+01 2.01358e-01 -2.65770e+00 - 4 sg_p3 1.55000e+02 2.90000e+01 2.01358e-01 8.50425e+00 - 5 sg_p4 7.50000e-01 5.00000e-02 2.01358e-01 1.31190e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6299.61 FROM MIGRAD STATUS=CONVERGED 237 CALLS 238 TOTAL - EDM=7.93407e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70692e+02 1.77044e-01 9.42241e-04 3.84277e-02 - 2 sg_p1 5.17409e+00 1.71536e-01 2.60847e-03 -2.11829e-03 - 3 sg_p2 2.70838e+02 6.84551e+00 1.03343e-03 5.78086e-03 - 4 sg_p3 3.91980e+01 4.62395e+00 1.61118e-03 1.03114e-02 - 5 sg_p4 6.64184e-01 3.27535e-02 3.88817e-03 5.22515e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.135e-02 -1.758e-03 -3.016e-01 1.665e-01 -1.164e-03 - -1.758e-03 2.946e-02 3.251e-01 -2.221e-02 2.675e-03 - -3.016e-01 3.251e-01 4.690e+01 -2.546e+01 1.845e-01 - 1.665e-01 -2.221e-02 -2.546e+01 2.140e+01 -8.613e-02 - -1.164e-03 2.675e-03 1.845e-01 -8.613e-02 1.080e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.24905 1.000 -0.058 -0.249 0.203 -0.200 - 2 0.55757 -0.058 1.000 0.277 -0.028 0.474 - 3 0.91827 -0.249 0.277 1.000 -0.804 0.820 - 4 0.83247 0.203 -0.028 -0.804 1.000 -0.567 - 5 0.86222 -0.200 0.474 0.820 -0.567 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6299.61 FROM HESSE STATUS=OK 31 CALLS 269 TOTAL - EDM=7.9228e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.70692e+02 1.77623e-01 1.88448e-04 6.92275e-02 - 2 sg_p1 5.17409e+00 1.71578e-01 1.04339e-04 5.80618e-02 - 3 sg_p2 2.70838e+02 7.18808e+00 4.13373e-05 5.65345e-01 - 4 sg_p3 3.91980e+01 4.86021e+00 6.44473e-05 -9.25023e-01 - 5 sg_p4 6.64184e-01 3.36636e-02 1.55527e-04 -3.50391e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.155e-02 -1.878e-03 -3.331e-01 1.884e-01 -1.276e-03 - -1.878e-03 2.947e-02 3.399e-01 -3.425e-02 2.726e-03 - -3.331e-01 3.399e-01 5.171e+01 -2.882e+01 2.017e-01 - 1.884e-01 -3.425e-02 -2.882e+01 2.365e+01 -9.825e-02 - -1.276e-03 2.726e-03 2.017e-01 -9.825e-02 1.141e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.26103 1.000 -0.062 -0.261 0.218 -0.213 - 2 0.55787 -0.062 1.000 0.275 -0.041 0.470 - 3 0.92618 -0.261 0.275 1.000 -0.824 0.830 - 4 0.84979 0.218 -0.041 -0.824 1.000 -0.598 - 5 0.87017 -0.213 0.470 0.830 -0.598 1.000 -270 -270.692 +- 0.177623 -5.17409 +- 0.171578 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=6100.43 FROM MIGRAD STATUS=INITIATE 38 CALLS 39 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70000e+02 2.00000e+00 0.00000e+00 -1.76480e+02 - 2 sg_p1 5.00000e+00 6.00000e-01 0.00000e+00 -9.50553e+01 - 3 sg_p2 1.79500e+02 3.41000e+01 0.00000e+00 -1.03797e+01 - 4 sg_p3 1.15860e+02 2.90000e+01 -2.73322e-01 1.99528e+00 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.00751e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6063.49 FROM MIGRAD STATUS=CONVERGED 263 CALLS 264 TOTAL - EDM=9.43817e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70469e+02 1.64489e-01 8.67373e-04 9.78651e-02 - 2 sg_p1 4.85345e+00 1.61763e-01 2.44261e-03 2.33446e-02 - 3 sg_p2 2.42939e+02 1.76038e+01 1.34178e-03 -9.41851e-03 - 4 sg_p3 5.09965e+01 8.69738e+00 1.37274e-03 -8.34558e-03 - 5 sg_p4 6.09562e-01 4.12691e-02 4.72433e-03 -1.03290e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.706e-02 -1.143e-03 -5.339e-01 2.032e-01 -1.240e-03 - -1.143e-03 2.619e-02 2.008e-01 9.614e-02 2.479e-03 - -5.339e-01 2.008e-01 3.112e+02 -1.431e+02 5.930e-01 - 2.032e-01 9.614e-02 -1.431e+02 7.583e+01 -2.285e-01 - -1.240e-03 2.479e-03 5.930e-01 -2.285e-01 1.726e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20148 1.000 -0.043 -0.184 0.142 -0.181 - 2 0.54100 -0.043 1.000 0.070 0.068 0.369 - 3 0.97454 -0.184 0.070 1.000 -0.932 0.809 - 4 0.95515 0.142 0.068 -0.932 1.000 -0.632 - 5 0.89940 -0.181 0.369 0.809 -0.632 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6063.49 FROM HESSE STATUS=OK 31 CALLS 295 TOTAL - EDM=1.17248e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.70469e+02 1.65601e-01 1.73475e-04 4.69431e-02 - 2 sg_p1 4.85345e+00 1.61522e-01 4.88521e-04 -4.88702e-02 - 3 sg_p2 2.42939e+02 2.15740e+01 5.36712e-05 3.81246e-01 - 4 sg_p3 5.09965e+01 1.06929e+01 5.49095e-05 -7.99870e-01 - 5 sg_p4 6.09562e-01 4.63125e-02 1.88973e-04 -5.96502e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.743e-02 -1.089e-03 -7.748e-01 3.240e-01 -1.649e-03 - -1.089e-03 2.611e-02 1.620e-01 1.121e-01 2.395e-03 - -7.748e-01 1.620e-01 4.683e+02 -2.215e+02 8.616e-01 - 3.240e-01 1.121e-01 -2.215e+02 1.148e+02 -3.632e-01 - -1.649e-03 2.395e-03 8.616e-01 -3.632e-01 2.182e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23115 1.000 -0.041 -0.216 0.183 -0.213 - 2 0.53904 -0.041 1.000 0.046 0.065 0.317 - 3 0.98316 -0.216 0.046 1.000 -0.955 0.852 - 4 0.97060 0.183 0.065 -0.955 1.000 -0.726 - 5 0.92131 -0.213 0.317 0.852 -0.726 1.000 -270 -270.469 +- 0.165601 -4.85345 +- 0.161522 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=6207.91 FROM MIGRAD STATUS=INITIATE 18 CALLS 19 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70000e+02 2.00000e+00 2.01358e-01 -2.64216e+02 - 2 sg_p1 5.00000e+00 6.00000e-01 2.01358e-01 -1.71360e+02 - 3 sg_p2 1.79500e+02 3.41000e+01 2.01358e-01 4.14298e-01 - 4 sg_p3 1.55000e+02 2.90000e+01 2.01358e-01 1.11372e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 2.01358e-01 1.18895e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6146.33 FROM MIGRAD STATUS=CONVERGED 215 CALLS 216 TOTAL - EDM=6.61513e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70656e+02 1.81990e-01 9.51015e-04 2.93883e-01 - 2 sg_p1 5.20924e+00 1.80376e-01 2.66180e-03 1.75576e-02 - 3 sg_p2 2.64216e+02 9.79599e+00 1.09853e-03 2.68338e-01 - 4 sg_p3 4.19600e+01 6.09659e+00 1.54906e-03 -8.69463e-02 - 5 sg_p4 6.49014e-01 3.85333e-02 4.14029e-03 -7.85398e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.312e-02 -1.986e-03 -4.776e-01 -2.455e-01 -1.622e-03 - -1.986e-03 3.258e-02 3.816e-01 8.852e-03 3.179e-03 - -4.776e-01 3.816e-01 9.610e+01 5.251e+01 3.182e-01 - -2.455e-01 8.852e-03 5.251e+01 3.722e+01 1.487e-01 - -1.622e-03 3.179e-03 3.182e-01 1.487e-01 1.499e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.26944 1.000 -0.060 -0.268 -0.221 -0.230 - 2 0.57936 -0.060 1.000 0.216 0.008 0.455 - 3 0.95227 -0.268 0.216 1.000 0.878 0.838 - 4 0.90487 -0.221 0.008 0.878 1.000 0.630 - 5 0.89253 -0.230 0.455 0.838 0.630 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6146.33 FROM HESSE STATUS=OK 31 CALLS 247 TOTAL - EDM=6.61792e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.70656e+02 1.81849e-01 1.90203e-04 6.56339e-02 - 2 sg_p1 5.20924e+00 1.80330e-01 1.06472e-04 6.98019e-02 - 3 sg_p2 2.64216e+02 9.67079e+00 2.19705e-04 5.19985e-01 - 4 sg_p3 4.19600e+01 6.02003e+00 6.19622e-05 -2.24759e+00 - 5 sg_p4 6.49014e-01 3.82479e-02 8.28058e-04 -4.15825e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.307e-02 -1.974e-03 -4.664e-01 -2.386e-01 -1.589e-03 - -1.974e-03 3.256e-02 3.740e-01 4.110e-03 3.157e-03 - -4.664e-01 3.740e-01 9.366e+01 5.099e+01 3.108e-01 - -2.386e-01 4.110e-03 5.099e+01 3.629e+01 1.442e-01 - -1.589e-03 3.157e-03 3.108e-01 1.442e-01 1.477e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.26676 1.000 -0.060 -0.265 -0.218 -0.227 - 2 0.57907 -0.060 1.000 0.214 0.004 0.455 - 3 0.95099 -0.265 0.214 1.000 0.875 0.836 - 4 0.90230 -0.218 0.004 0.875 1.000 0.623 - 5 0.89080 -0.227 0.455 0.836 0.623 1.000 -270 -270.656 +- 0.181849 -5.20924 +- 0.18033 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=6345.12 FROM MIGRAD STATUS=INITIATE 18 CALLS 19 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70000e+02 2.00000e+00 2.01358e-01 -2.76463e+02 - 2 sg_p1 5.00000e+00 6.00000e-01 2.01358e-01 -1.12933e+02 - 3 sg_p2 1.79500e+02 3.41000e+01 2.01358e-01 1.61677e+00 - 4 sg_p3 1.55000e+02 2.90000e+01 2.01358e-01 1.12497e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 2.01358e-01 1.04922e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.05988 added to diagonal of error matrix -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (9513.77) to force MIGRAD to back out of this region. Error log follows -Parameter values: sg_p0=269.51, sg_p1=3.81892, sg_p2=26.0784, sg_p3=20.4464, sg_p4=0.504154 -RooAddPdf::signal[ sg_p4 * signalCore + [%] * signalComb ] - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 250.5), !pdfs=(signalCore = 4.16274e-06/9.57261,signalComb = 6.90752e-27/0), !coefficients=(sg_p4 = 0.504154) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 250.5), !pdfs=(signalCore = 4.16274e-06/9.57261,signalComb = 6.90752e-27/0), !coefficients=(sg_p4 = 0.504154) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 253.5), !pdfs=(signalCore = 0.000152629/9.57261,signalComb = 1.36531e-27/0), !coefficients=(sg_p4 = 0.504154) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 253.5), !pdfs=(signalCore = 0.000152629/9.57261,signalComb = 1.36531e-27/0), !coefficients=(sg_p4 = 0.504154) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 256.5), !pdfs=(signalCore = 0.00301916/9.57261,signalComb = 2.64114e-28/0), !coefficients=(sg_p4 = 0.504154) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 256.5), !pdfs=(signalCore = 0.00301916/9.57261,signalComb = 2.64114e-28/0), !coefficients=(sg_p4 = 0.504154) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 259.5), !pdfs=(signalCore = 0.0322202/9.57261,signalComb = 5.00036e-29/0), !coefficients=(sg_p4 = 0.504154) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 259.5), !pdfs=(signalCore = 0.0322202/9.57261,signalComb = 5.00036e-29/0), !coefficients=(sg_p4 = 0.504154) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 262.5), !pdfs=(signalCore = 0.185509/9.57261,signalComb = 9.26534e-30/0), !coefficients=(sg_p4 = 0.504154) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 262.5), !pdfs=(signalCore = 0.185509/9.57261,signalComb = 9.26534e-30/0), !coefficients=(sg_p4 = 0.504154) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 265.5), !pdfs=(signalCore = 0.576226/9.57261,signalComb = 1.68024e-30/0), !coefficients=(sg_p4 = 0.504154) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 265.5), !pdfs=(signalCore = 0.576226/9.57261,signalComb = 1.68024e-30/0), !coefficients=(sg_p4 = 0.504154) - ... (remaining 58 messages suppressed) -RooGaussian::signalComb[ x=x mean=sg_p2 sigma=sg_p3 ] - p.d.f normalization integral is zero or negative @ x=x=250.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=253.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=256.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=259.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=262.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=265.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=268.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=271.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=274.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=277.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=280.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=283.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - ... (remaining 24 messages suppressed) -RooNLLVar::nll_signal_signalHistogram[ paramSet=(sg_p0,sg_p1,sg_p2,sg_p3,sg_p4) ] - function value is NAN @ paramSet=(sg_p0 = 269.51,sg_p1 = 3.81892,sg_p2 = 26.0784,sg_p3 = 20.4464,sg_p4 = 0.504154) -RooRealIntegral::signalComb_Int[x|NormalizationRangeForfit]_Norm[x][ Int signalComb_Norm(x) d[Ana](x) ] - function value is NAN @ !sumList=(), !intList=(), !anaList=(x = 250.5), !jacList=(), !facList=(), !func=signalComb=6.90752e-27/0, !sumCat=() - - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6295.95 FROM MIGRAD STATUS=CONVERGED 426 CALLS 427 TOTAL - EDM=1.36563e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70665e+02 1.63477e-01 8.78610e-04 2.15233e-02 - 2 sg_p1 4.89880e+00 1.57011e-01 2.44680e-03 2.25239e-02 - 3 sg_p2 2.54654e+02 1.25915e+01 1.24303e-03 5.47392e-03 - 4 sg_p3 4.70832e+01 7.17725e+00 1.51317e-03 2.13001e-03 - 5 sg_p4 6.29901e-01 3.72328e-02 4.32749e-03 -5.67064e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.673e-02 -8.488e-04 -4.087e-01 1.835e-01 -1.095e-03 - -8.488e-04 2.467e-02 2.172e-01 5.764e-02 2.181e-03 - -4.087e-01 2.172e-01 1.589e+02 -8.190e+01 3.873e-01 - 1.835e-01 5.764e-02 -8.190e+01 5.161e+01 -1.691e-01 - -1.095e-03 2.181e-03 3.873e-01 -1.691e-01 1.400e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20590 1.000 -0.033 -0.198 0.156 -0.179 - 2 0.52321 -0.033 1.000 0.110 0.051 0.371 - 3 0.96127 -0.198 0.110 1.000 -0.904 0.821 - 4 0.92824 0.156 0.051 -0.904 1.000 -0.629 - 5 0.88645 -0.179 0.371 0.821 -0.629 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6295.95 FROM HESSE STATUS=OK 31 CALLS 458 TOTAL - EDM=1.44185e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.70665e+02 1.64298e-01 1.75722e-04 6.65783e-02 - 2 sg_p1 4.89880e+00 1.56830e-01 4.89360e-04 -3.37402e-02 - 3 sg_p2 2.54654e+02 1.43586e+01 4.97213e-05 4.56472e-01 - 4 sg_p3 4.70832e+01 8.20025e+00 6.05269e-05 -7.12260e+00 - 5 sg_p4 6.29901e-01 4.01552e-02 1.73099e-04 -5.01104e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.700e-02 -8.623e-04 -5.225e-01 2.494e-01 -1.344e-03 - -8.623e-04 2.462e-02 2.174e-01 5.502e-02 2.172e-03 - -5.225e-01 2.174e-01 2.068e+02 -1.095e+02 4.928e-01 - 2.494e-01 5.502e-02 -1.095e+02 6.741e+01 -2.303e-01 - -1.344e-03 2.172e-03 4.928e-01 -2.303e-01 1.631e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22790 1.000 -0.033 -0.221 0.185 -0.203 - 2 0.52160 -0.033 1.000 0.096 0.043 0.343 - 3 0.97037 -0.221 0.096 1.000 -0.928 0.849 - 4 0.94554 0.185 0.043 -0.928 1.000 -0.695 - 5 0.90340 -0.203 0.343 0.849 -0.695 1.000 -270 -270.665 +- 0.164298 -4.8988 +- 0.15683 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=5935.06 FROM MIGRAD STATUS=INITIATE 18 CALLS 19 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70000e+02 2.00000e+00 2.01358e-01 -2.61773e+02 - 2 sg_p1 5.00000e+00 6.00000e-01 2.01358e-01 -1.38965e+02 - 3 sg_p2 1.79500e+02 3.41000e+01 2.01358e-01 1.59791e+00 - 4 sg_p3 1.55000e+02 2.90000e+01 2.01358e-01 1.10752e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 2.01358e-01 1.03362e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 5 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 2.28866 added to diagonal of error matrix -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (10056.7) to force MIGRAD to back out of this region. Error log follows -Parameter values: sg_p0=272.549, sg_p1=2.86401, sg_p2=114.179, sg_p3=10.3302, sg_p4=0.609584 -RooGaussian::signalComb[ x=x mean=sg_p2 sigma=sg_p3 ] - p.d.f normalization integral is zero or negative @ x=x=250.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=253.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=256.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=259.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=262.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=265.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=268.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=271.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=274.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=277.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=280.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=283.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - ... (remaining 24 messages suppressed) - - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.08701 added to diagonal of error matrix -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (10056.7) to force MIGRAD to back out of this region. Error log follows -Parameter values: sg_p0=272.29, sg_p1=6.01777, sg_p2=84.8692, sg_p3=12.3721, sg_p4=0.588994 -RooAddPdf::signal[ sg_p4 * signalCore + [%] * signalComb ] - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 250.5), !pdfs=(signalCore = 0.00142225/15.0827,signalComb = 1.20756e-39/0), !coefficients=(sg_p4 = 0.588994) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 250.5), !pdfs=(signalCore = 0.00142225/15.0827,signalComb = 1.20756e-39/0), !coefficients=(sg_p4 = 0.588994) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 253.5), !pdfs=(signalCore = 0.00763766/15.0827,signalComb = 4.56383e-41/0), !coefficients=(sg_p4 = 0.588994) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 253.5), !pdfs=(signalCore = 0.00763766/15.0827,signalComb = 4.56383e-41/0), !coefficients=(sg_p4 = 0.588994) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 256.5), !pdfs=(signalCore = 0.0319897/15.0827,signalComb = 1.62635e-42/0), !coefficients=(sg_p4 = 0.588994) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 256.5), !pdfs=(signalCore = 0.0319897/15.0827,signalComb = 1.62635e-42/0), !coefficients=(sg_p4 = 0.588994) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 259.5), !pdfs=(signalCore = 0.104502/15.0827,signalComb = 5.46463e-44/0), !coefficients=(sg_p4 = 0.588994) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 259.5), !pdfs=(signalCore = 0.104502/15.0827,signalComb = 5.46463e-44/0), !coefficients=(sg_p4 = 0.588994) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 262.5), !pdfs=(signalCore = 0.266262/15.0827,signalComb = 1.7313e-45/0), !coefficients=(sg_p4 = 0.588994) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 262.5), !pdfs=(signalCore = 0.266262/15.0827,signalComb = 1.7313e-45/0), !coefficients=(sg_p4 = 0.588994) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 265.5), !pdfs=(signalCore = 0.529127/15.0827,signalComb = 5.17191e-47/0), !coefficients=(sg_p4 = 0.588994) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 265.5), !pdfs=(signalCore = 0.529127/15.0827,signalComb = 5.17191e-47/0), !coefficients=(sg_p4 = 0.588994) - ... (remaining 58 messages suppressed) -RooNLLVar::nll_signal_signalHistogram[ paramSet=(sg_p0,sg_p1,sg_p2,sg_p3,sg_p4) ] - function value is NAN @ paramSet=(sg_p0 = 272.29,sg_p1 = 6.01777,sg_p2 = 84.8692,sg_p3 = 12.3721,sg_p4 = 0.588994) -RooGaussian::signalComb[ x=x mean=sg_p2 sigma=sg_p3 ] - p.d.f normalization integral is zero or negative @ x=x=250.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=253.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=256.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=259.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=262.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=265.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=268.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=271.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=274.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=277.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=280.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=283.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - ... (remaining 24 messages suppressed) -RooRealIntegral::signalComb_Int[x|NormalizationRangeForfit]_Norm[x][ Int signalComb_Norm(x) d[Ana](x) ] - function value is NAN @ !sumList=(), !intList=(), !anaList=(x = 250.5), !jacList=(), !facList=(), !func=signalComb=1.20756e-39/0, !sumCat=() - - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -7.5154e-01 8.8570e-03 4.2097e-01 8.1972e-01 4.5020e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 0.756042 TO DIAGONAL. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5882.02 FROM MIGRAD STATUS=CONVERGED 478 CALLS 479 TOTAL - EDM=5.04966e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70677e+02 1.77765e-01 9.15542e-04 3.54204e-02 - 2 sg_p1 5.07405e+00 1.71518e-01 2.53252e-03 -1.40075e-03 - 3 sg_p2 2.62185e+02 9.60022e+00 1.09335e-03 9.09533e-02 - 4 sg_p3 4.23182e+01 5.82557e+00 1.49714e-03 7.35079e-02 - 5 sg_p4 6.47917e-01 3.70971e-02 4.11649e-03 -7.98184e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.160e-02 -2.097e-03 -4.013e-01 1.872e-01 -1.393e-03 - -2.097e-03 2.945e-02 3.055e-01 1.580e-02 2.743e-03 - -4.013e-01 3.055e-01 9.229e+01 -4.866e+01 2.937e-01 - 1.872e-01 1.580e-02 -4.866e+01 3.398e+01 -1.298e-01 - -1.393e-03 2.743e-03 2.937e-01 -1.298e-01 1.388e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.24009 1.000 -0.069 -0.235 0.181 -0.210 - 2 0.54730 -0.069 1.000 0.185 0.016 0.429 - 3 0.94713 -0.235 0.185 1.000 -0.869 0.821 - 4 0.89685 0.181 0.016 -0.869 1.000 -0.598 - 5 0.87877 -0.210 0.429 0.821 -0.598 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5882.02 FROM HESSE STATUS=OK 31 CALLS 510 TOTAL - EDM=5.00987e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.70677e+02 1.78459e-01 1.83108e-04 6.77551e-02 - 2 sg_p1 5.07405e+00 1.71428e-01 1.01301e-04 2.46861e-02 - 3 sg_p2 2.62185e+02 1.03547e+01 2.18670e-04 5.06313e-01 - 4 sg_p3 4.23182e+01 6.29339e+00 5.98854e-05 -8.90070e-01 - 5 sg_p4 6.47917e-01 3.86762e-02 1.64659e-04 -4.20625e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.185e-02 -2.170e-03 -4.624e-01 2.253e-01 -1.567e-03 - -2.170e-03 2.942e-02 3.193e-01 5.301e-03 2.776e-03 - -4.624e-01 3.193e-01 1.074e+02 -5.800e+01 3.368e-01 - 2.253e-01 5.301e-03 -5.800e+01 3.967e+01 -1.567e-01 - -1.567e-03 2.776e-03 3.368e-01 -1.567e-01 1.510e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25486 1.000 -0.071 -0.250 0.200 -0.226 - 2 0.54662 -0.071 1.000 0.180 0.005 0.416 - 3 0.95474 -0.250 0.180 1.000 -0.889 0.836 - 4 0.91235 0.200 0.005 -0.889 1.000 -0.640 - 5 0.88917 -0.226 0.416 0.836 -0.640 1.000 -270 -270.677 +- 0.178459 -5.07405 +- 0.171428 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=6803.83 FROM MIGRAD STATUS=INITIATE 18 CALLS 19 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70000e+02 2.00000e+00 2.01358e-01 -2.98256e+02 - 2 sg_p1 5.00000e+00 6.00000e-01 2.01358e-01 -1.61883e+02 - 3 sg_p2 1.79500e+02 3.41000e+01 2.01358e-01 1.25354e+00 - 4 sg_p3 1.55000e+02 2.90000e+01 2.01358e-01 1.25340e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 2.01358e-01 1.22208e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6741.9 FROM MIGRAD STATUS=CONVERGED 248 CALLS 249 TOTAL - EDM=5.61336e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70678e+02 1.67660e-01 9.20230e-04 6.43100e-02 - 2 sg_p1 5.08061e+00 1.61195e-01 2.54959e-03 -4.59615e-02 - 3 sg_p2 2.61887e+02 1.01188e+01 1.11479e-03 1.73033e-01 - 4 sg_p3 4.27760e+01 6.14640e+00 1.50758e-03 -1.30340e-01 - 5 sg_p4 6.44308e-01 3.69099e-02 4.17152e-03 -5.60004e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.811e-02 -1.952e-03 -4.320e-01 -2.124e-01 -1.437e-03 - -1.952e-03 2.601e-02 2.973e-01 2.175e-03 2.487e-03 - -4.320e-01 2.973e-01 1.025e+02 5.575e+01 3.161e-01 - -2.124e-01 2.175e-03 5.575e+01 3.783e+01 1.492e-01 - -1.437e-03 2.487e-03 3.161e-01 1.492e-01 1.375e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25937 1.000 -0.072 -0.254 -0.206 -0.231 - 2 0.54843 -0.072 1.000 0.182 0.002 0.416 - 3 0.95754 -0.254 0.182 1.000 0.895 0.842 - 4 0.91772 -0.206 0.002 0.895 1.000 0.654 - 5 0.89354 -0.231 0.416 0.842 0.654 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6741.9 FROM HESSE STATUS=OK 31 CALLS 280 TOTAL - EDM=5.55033e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.70678e+02 1.67525e-01 1.84046e-04 6.78347e-02 - 2 sg_p1 5.08061e+00 1.61130e-01 5.09917e-04 2.68728e-02 - 3 sg_p2 2.61887e+02 9.96431e+00 2.22958e-04 5.04317e-01 - 4 sg_p3 4.27760e+01 6.05400e+00 6.03031e-05 -2.25652e+00 - 5 sg_p4 6.44308e-01 3.65699e-02 8.34304e-04 -4.36497e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.807e-02 -1.942e-03 -4.201e-01 -2.053e-01 -1.403e-03 - -1.942e-03 2.599e-02 2.900e-01 -2.123e-03 2.465e-03 - -4.201e-01 2.900e-01 9.944e+01 5.387e+01 3.073e-01 - -2.053e-01 -2.123e-03 5.387e+01 3.670e+01 1.439e-01 - -1.403e-03 2.465e-03 3.073e-01 1.439e-01 1.349e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25646 1.000 -0.072 -0.251 -0.202 -0.228 - 2 0.54791 -0.072 1.000 0.180 -0.002 0.416 - 3 0.95619 -0.251 0.180 1.000 0.892 0.839 - 4 0.91507 -0.202 -0.002 0.892 1.000 0.647 - 5 0.89141 -0.228 0.416 0.839 0.647 1.000 -270 -270.678 +- 0.167525 -5.08061 +- 0.16113 -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 270.677 +- 0.172924 (stat) - 0.207983 + 0.0144814 (syst); -0.225239/+0.0876663 (total) - Uncertainty on sg_p1 = 5.0777 +- 0.166149 (stat) - 0.224251 + 0.131537 (syst); -0.239144/+0.155575 (total) - Uncertainty on sg_p2 = 262.057 +- 10.2016 (stat) - 19.1181 + 8.78082 (syst); -19.7868/+10.1549 (total) - Uncertainty on sg_p3 = 42.5329 +- 6.20016 (stat) - 3.33491 + 8.46362 (syst); -4.55325/+9.01351 (total) - Uncertainty on sg_p4 = 0.6462 +- 0.037707 (stat) - 0.0366379 + 0.017984 (syst); -0.0412043/+0.0260553 (total) - === Baseline plot ===
- norm = 213.048 -JEC lnN 1.01241 - -JER lnN 1.01721 - -btag lnN 1.06825 - -sg_p0 param 270.677 -0.225239/+0.0876663 -sg_p1 param 5.0777 -0.239144/+0.155575 -sg_p2 param 262.057 -19.7868/+10.1549 -sg_p3 param 42.5329 -4.55325/+9.01351 -sg_p4 param 0.6462 -0.0412043/+0.0260553 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_novo_285_624/signal270_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_novo_285_624/signal270_sig.log deleted file mode 100644 index ef5c6ed..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_270_novo_285_624/signal270_sig.log +++ /dev/null @@ -1,2 +0,0 @@ - -Processing test.c... diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_crystal_1_285_624/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_crystal_1_285_624/data_bkg.log deleted file mode 100644 index 3cc1900..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_crystal_1_285_624/data_bkg.log +++ /dev/null @@ -1,750 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [252,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=62921.6 FROM MIGRAD STATUS=INITIATE 90 CALLS 91 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.21879e-02 5.09000e-01 0.00000e+00 -9.80911e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -1.28354e+01 - 3 par_crystal_2 2.65669e+02 4.00000e+00 0.00000e+00 3.55320e+02 - 4 par_crystal_3 1.06488e+01 2.70000e+00 -4.48284e-01 -2.33576e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62883.4 FROM HESSE STATUS=OK 29 CALLS 257 TOTAL - EDM=4.91113 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.66060e-01 4.16121e-03 3.52377e-04 -4.74293e+00 - 2 par_crystal_1 4.45375e+00 2.73731e+00 1.77223e-01 2.66184e-01 - 3 par_crystal_2 2.67385e+02 2.04373e-01 8.29600e-04 2.81454e+02 - 4 par_crystal_3 1.36851e+01 5.38888e-01 1.69331e-03 -1.62103e+00 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=62883.3 FROM MIGRAD STATUS=FAILED 358 CALLS 359 TOTAL - EDM=0.00753244 STRATEGY= 1 ERR MATRIX APPROXIMATE - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.65093e-01 8.39913e-03 1.31861e-03 5.42788e+00 - 2 par_crystal_1 5.09910e+00 4.33634e+00 3.39194e-01 -6.59950e-03 - 3 par_crystal_2 2.67339e+02 1.86486e-01 3.32550e-03 -8.58879e+00 - 4 par_crystal_3 1.37140e+01 6.01780e-01 6.34807e-03 1.69258e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.055e-05 1.617e-04 4.699e-04 2.892e-03 - 1.617e-04 1.762e-02 -1.356e-04 -1.108e-03 - 4.699e-04 -1.356e-04 3.478e-02 3.255e-02 - 2.892e-03 -1.108e-03 3.255e-02 3.624e-01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.60853 1.000 0.145 0.300 0.572 - 2 0.19009 0.145 1.000 -0.005 -0.014 - 3 0.33449 0.300 -0.005 1.000 0.290 - 4 0.59243 0.572 -0.014 0.290 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7660e-01 8.1807e-01 1.6519e+00 1.7066e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.178308 TO DIAGONAL. - FCN=62883.3 FROM HESSE STATUS=NOT POSDEF 33 CALLS 392 TOTAL - EDM=3.36849 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.65093e-01 8.70034e-02 2.63722e-04 -1.21988e+00 - 2 par_crystal_1 5.09910e+00 4.18121e+00 5.00000e-01 1.54425e+00 - 3 par_crystal_2 2.67339e+02 5.27040e+00 9.57407e-02 3.75715e-01 - 4 par_crystal_3 1.37140e+01 6.68546e+00 2.53923e-04 -2.07863e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.595e-03 -2.994e-03 4.642e-01 6.089e-01 - -2.994e-03 1.536e-02 -1.944e-01 -2.569e-01 - 4.642e-01 -1.944e-01 2.855e+01 3.736e+01 - 6.089e-01 -2.569e-01 3.736e+01 4.914e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99751 1.000 -0.277 0.997 0.997 - 2 0.37560 -0.277 1.000 -0.293 -0.296 - 3 0.99795 0.997 -0.293 1.000 0.997 - 4 0.99797 0.997 -0.296 0.997 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=62983.1 FROM MIGRAD STATUS=INITIATE 29 CALLS 30 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 6.05383e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -1.33666e+02 - 3 par_gaus_exp_2 3.19008e-01 3.05000e-01 -9.67731e-01 -3.33619e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.00383 added to diagonal of error matrix - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62882.7 FROM MIGRAD STATUS=CONVERGED 228 CALLS 229 TOTAL - EDM=4.4408e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.69095e+02 7.01852e-01 4.07755e-03 2.89794e-02 - 2 par_gaus_exp_1 1.61044e+01 1.09719e+00 7.43010e-03 -1.84784e-02 - 3 par_gaus_exp_2 1.90527e-01 1.58774e-02 1.98778e-03 -6.23432e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 4.929e-01 5.914e-01 9.067e-03 - 5.914e-01 1.207e+00 1.483e-02 - 9.067e-03 1.483e-02 2.521e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.82590 1.000 0.767 0.813 - 2 0.85979 0.767 1.000 0.850 - 3 0.88644 0.813 0.850 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62882.7 FROM HESSE STATUS=OK 16 CALLS 245 TOTAL - EDM=4.28199e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.69095e+02 6.86832e-01 1.63102e-04 -5.76704e-01 - 2 par_gaus_exp_1 1.61044e+01 1.07335e+00 2.97204e-04 -5.72398e-01 - 3 par_gaus_exp_2 1.90527e-01 1.55212e-02 7.95110e-05 -1.13813e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 4.720e-01 5.579e-01 8.580e-03 - 5.579e-01 1.155e+00 1.406e-02 - 8.580e-03 1.406e-02 2.410e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.81734 1.000 0.756 0.805 - 2 0.85292 0.756 1.000 0.843 - 3 0.88081 0.805 0.843 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,624] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.3296 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.3296) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=286.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=286.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=289.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=289.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=295.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=295.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=298.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=298.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=301.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=301.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - ... (remaining 216 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.733611 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.733611) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=313.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=316.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=319.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=325.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=328.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=331.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=334.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=340.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=343.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=346.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - ... (remaining 94 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0733618 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0733618 - - FCN=103426 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57146e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.55551e+03 - 3 par_novo_2 -1.33526e+00 2.00000e+01 0.00000e+00 1.53308e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103192 FROM MIGRAD STATUS=CONVERGED 126 CALLS 127 TOTAL - EDM=1.07924e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.17697e+01 1.69443e-01** at limit ** - 2 par_novo_1 3.87878e+01 2.27475e+00 4.96100e-03 -6.14249e-02 - 3 par_novo_2 -1.26766e+00 7.00630e-02 3.67886e-05 3.77179e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 2.244e-10 -2.632e-07 -1.276e-07 - -2.632e-07 5.190e+00 1.540e-01 - -1.276e-07 1.540e-01 4.909e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.43392 1.000 -0.008 -0.122 - 2 0.97109 -0.008 1.000 0.965 - 3 0.97152 -0.122 0.965 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103192 FROM HESSE STATUS=OK 20 CALLS 147 TOTAL - EDM=1.23299e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.15107e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.87878e+01 2.30410e+00 1.98440e-04 4.51799e-01 - 3 par_novo_2 -1.26766e+00 7.13892e-02 1.47154e-06 -1.26769e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 2.143e-10 3.996e-06 -2.087e-07 - 3.996e-06 5.325e+00 1.518e-01 - -2.087e-07 1.518e-01 5.096e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.80390 1.000 0.118 -0.200 - 2 0.97183 0.118 1.000 0.922 - 3 0.97258 -0.200 0.922 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107617 FROM MIGRAD STATUS=INITIATE 36 CALLS 37 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 6.60405e+03 - 2 par_crystal_1_1 7.90153e-02 5.09000e-01 -1.80421e+00 3.05679e+03 - 3 par_crystal_1_2 2.60000e+02 4.00000e+00 0.00000e+00 1.48888e+03 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 6.99071e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.17529 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.7903e-03 5.8606e-02 5.0897e-01 3.4352e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.006225 TO DIAGONAL. - FCN=103191 FROM MIGRAD STATUS=CONVERGED 353 CALLS 354 TOTAL - EDM=3.7306e-06 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.37913e-01 3.41139e-02 6.19492e-04 4.10204e-01 - 2 par_crystal_1_1 4.44737e+00 5.69760e-01 2.21494e-02 9.88736e-03 - 3 par_crystal_1_2 2.79979e+02 3.40482e+01 2.79535e-01 -2.97577e-04 - 4 par_crystal_1_3 1.87584e+01 2.98857e+00 3.96232e-03 -6.40797e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.164e-03 3.582e-03 3.594e-03 9.898e-02 - 3.582e-03 3.375e-01 -1.052e-02 7.382e-01 - 3.594e-03 -1.052e-02 3.148e+00 6.243e-01 - 9.898e-02 7.382e-01 6.243e-01 9.086e+00 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99630 1.000 0.181 0.059 0.962 - 2 0.95650 0.181 1.000 -0.010 0.422 - 3 0.63948 0.059 -0.010 1.000 0.117 - 4 0.99690 0.962 0.422 0.117 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103191 FROM HESSE STATUS=OK 27 CALLS 381 TOTAL - EDM=6.06842e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 2.37913e-01 2.12502e-01 1.23898e-04 -8.36786e+01 - 2 par_crystal_1_1 4.44737e+00 5.06952e-01 8.85975e-04 -1.65463e+01 - 3 par_crystal_1_2 2.79979e+02 2.96341e+01 5.00000e-01 7.80831e+00 - 4 par_crystal_1_3 1.87584e+01 1.90925e+01 1.58493e-04 2.18231e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.578e-02 1.663e-02 2.427e-02 3.730e+00 - 1.663e-02 2.650e-01 -4.299e-02 1.684e+00 - 2.427e-02 -4.299e-02 1.850e+00 2.341e+00 - 3.730e+00 1.684e+00 2.341e+00 3.045e+02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99991 1.000 0.151 0.083 0.999 - 2 0.94385 0.151 1.000 -0.061 0.187 - 3 0.80384 0.083 -0.061 1.000 0.099 - 4 0.99991 0.999 0.187 0.099 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 13889.7 - Background number of gaus_exp_252_330 = 13889.7 - Background number of novo_285_624 = 17637.2 - Background number of crystal_1_285_624 = 17637.2 - Background number of gaus_bern_285_624 = 17637.2 - Background number of landau_285_624 = 17637.2 -par_crystal_0 param 0.165093 0.0870034 -par_crystal_1 param 5.0991 4.18121 -par_crystal_2 param 267.339 5.2704 -par_crystal_3 param 13.714 6.68546 -par_crystal_1_0 param 0.237913 0.212502 -par_crystal_1_1 param 4.44737 0.506952 -par_crystal_1_2 param 279.979 29.6341 -par_crystal_1_3 param 18.7584 19.0925 -par_gaus_exp_0 param 269.095 0.686832 -par_gaus_exp_1 param 16.1044 1.07335 -par_gaus_exp_2 param 0.190527 0.0155212 -par_novo_0 param 250 31.5107 -par_novo_1 param 38.7878 2.3041 -par_novo_2 param -1.26766 0.0713892 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_crystal_1_285_624/datacard_300_crystal_1_285_624.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_crystal_1_285_624/datacard_300_crystal_1_285_624.txt deleted file mode 100644 index 36960b1..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_crystal_1_285_624/datacard_300_crystal_1_285_624.txt +++ /dev/null @@ -1,31 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_300.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_crystal_1_285_624.root HbbHbb:f_crystal_1 -shapes data_obs HbbHbb w_background_crystal_1_285_624.root HbbHbb:data_obs_crystal_1_285_624 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 304.126 17637.2 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06837 - -JER lnN 1.02029 - -JEC lnN 1.00496 - -trigger lnN 1.10 - -PDF lnN 1.01533148611 - -sg_p0 param 300.807 -0.137814/+0.209326 -sg_p1 param 6.67548 -0.208065/+0.115424 -sg_p2 param 286.348 -3.92058/+7.00009 -sg_p3 param 37.0116 -5.30823/+2.45479 -sg_p4 param 0.646423 -0.0121632/+0.0116859 -par_crystal_1_0 param 0.237913 0.212502 -par_crystal_1_1 param 4.44737 0.506952 -par_crystal_1_2 param 279.979 29.6341 -par_crystal_1_3 param 18.7584 19.0925 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_crystal_1_285_624/pdf.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_crystal_1_285_624/pdf.log deleted file mode 100644 index e77095c..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_crystal_1_285_624/pdf.log +++ /dev/null @@ -1,10 +0,0 @@ -[?1034h FCN=10.366 FROM MIGRAD STATUS=CONVERGED 69 CALLS 70 TOTAL - EDM=1.25903e-09 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 Constant 1.89692e+01 2.45680e+00 3.29830e-03 -7.24825e-06 - 2 Mean 1.00074e+00 1.81805e-03 2.81850e-06 3.61959e-03 - 3 Sigma 1.53315e-02 1.29036e-03 3.63480e-05 1.24404e-03 -1.00074474072 +/- 0.00181805488368 -0.0153314861114 +/- 0.00129036445321 -PDF lnN 1.01533148611 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_crystal_1_285_624/signal300_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_crystal_1_285_624/signal300_sig.log deleted file mode 100644 index e692189..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_crystal_1_285_624/signal300_sig.log +++ /dev/null @@ -1,859 +0,0 @@ - -Processing test.c... -nSignal_init = 292400 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11139.4 FROM MIGRAD STATUS=INITIATE 41 CALLS 42 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.85000e+02 7.00000e+00 0.00000e+00 3.99147e+02 - 2 sg_p1 2.00000e+01 3.00000e+00 0.00000e+00 5.36454e+01 - 3 sg_p2 3.05000e+02 1.10000e+01 0.00000e+00 5.03573e+02 - 4 sg_p3 2.15253e+01 1.20000e+01 -9.40600e-01 -5.65980e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -2.37474e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10983.2 FROM MIGRAD STATUS=CONVERGED 401 CALLS 402 TOTAL - EDM=5.6187e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.88323e+02 4.47990e-01 9.04940e-04 1.11533e-01 - 2 sg_p1 2.05573e+01 3.30978e-01 1.55295e-03 -5.38166e-02 - 3 sg_p2 3.60000e+02 7.01972e+00 3.68073e-02** at limit ** - 4 sg_p3 3.31232e+01 1.31185e+01 9.89999e-03 1.11043e-02 - 5 sg_p4 9.64843e-01 1.04001e-02 1.95930e-03 4.50763e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.007e-01 1.739e-02 -1.190e-04 -7.889e-01 9.394e-04 - 1.739e-02 1.096e-01 -6.312e-05 -5.744e-02 4.186e-04 - -1.190e-04 -6.312e-05 9.525e-05 8.817e-03 -7.777e-06 - -7.889e-01 -5.744e-02 8.817e-03 1.767e+02 -1.200e-01 - 9.394e-04 4.186e-04 -7.777e-06 -1.200e-01 1.083e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23279 1.000 0.117 -0.027 -0.132 0.202 - 2 0.23564 0.117 1.000 -0.020 -0.013 0.122 - 3 0.07829 -0.027 -0.020 1.000 0.068 -0.077 - 4 0.87296 -0.132 -0.013 0.068 1.000 -0.867 - 5 0.87761 0.202 0.122 -0.077 -0.867 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10983.2 FROM HESSE STATUS=OK 31 CALLS 433 TOTAL - EDM=5.61214e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.88323e+02 4.48511e-01 1.80988e-04 9.50767e-02 - 2 sg_p1 2.05573e+01 3.30912e-01 6.21181e-05 3.71642e-02 - 3 sg_p2 3.60000e+02 7.00510e+00 7.36146e-03 1.57114e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 3.31232e+01 1.34621e+01 3.96000e-04 -6.61896e-01 - 5 sg_p4 9.64843e-01 1.06761e-02 3.91861e-04 1.19356e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.012e-01 1.735e-02 -2.672e-05 -8.721e-01 9.990e-04 - 1.735e-02 1.095e-01 -1.383e-05 -7.606e-02 4.303e-04 - -2.672e-05 -1.383e-05 9.505e-05 2.045e-03 -1.786e-06 - -8.721e-01 -7.606e-02 2.045e-03 1.863e+02 -1.276e-01 - 9.990e-04 4.303e-04 -1.786e-06 -1.276e-01 1.141e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23747 1.000 0.117 -0.006 -0.142 0.209 - 2 0.23484 0.117 1.000 -0.004 -0.017 0.122 - 3 0.01751 -0.006 -0.004 1.000 0.015 -0.017 - 4 0.87999 -0.142 -0.017 0.015 1.000 -0.875 - 5 0.88427 0.209 0.122 -0.017 -0.875 1.000 -300 -288.323 +- 0.448511 -20.5573 +- 0.330912 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11021.8 FROM MIGRAD STATUS=INITIATE 44 CALLS 45 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.85000e+02 7.00000e+00 0.00000e+00 -1.23228e+01 - 2 sg_p1 2.00000e+01 3.00000e+00 0.00000e+00 1.69370e+02 - 3 sg_p2 3.05000e+02 1.10000e+01 0.00000e+00 3.59937e+02 - 4 sg_p3 2.91405e+01 1.20000e+01 -7.49116e-01 1.62870e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -1.88730e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10926.7 FROM MIGRAD STATUS=CONVERGED 404 CALLS 405 TOTAL - EDM=7.36709e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.89695e+02 4.48479e-01 9.08525e-04 -1.63756e-02 - 2 sg_p1 2.04912e+01 3.33789e-01 1.55841e-03 3.48244e-02 - 3 sg_p2 3.60000e+02 5.29130e+00 3.12243e-02** at limit ** - 4 sg_p3 2.52611e+01 5.98773e+00 7.97733e-03 1.66965e-02 - 5 sg_p4 9.65128e-01 6.44706e-03 1.81806e-03 6.25824e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.011e-01 1.895e-02 -2.334e-04 -3.465e-01 6.114e-04 - 1.895e-02 1.114e-01 -1.530e-04 -6.771e-02 4.120e-04 - -2.334e-04 -1.530e-04 2.973e-04 6.759e-03 -8.288e-06 - -3.465e-01 -6.771e-02 6.759e-03 3.612e+01 -2.585e-02 - 6.114e-04 4.120e-04 -8.288e-06 -2.585e-02 4.158e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22936 1.000 0.127 -0.030 -0.129 0.211 - 2 0.24516 0.127 1.000 -0.027 -0.034 0.191 - 3 0.08010 -0.030 -0.027 1.000 0.065 -0.075 - 4 0.67399 -0.129 -0.034 0.065 1.000 -0.667 - 5 0.69669 0.211 0.191 -0.075 -0.667 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10926.7 FROM HESSE STATUS=OK 31 CALLS 436 TOTAL - EDM=7.38964e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.89695e+02 4.48441e-01 1.81705e-04 1.34553e-01 - 2 sg_p1 2.04912e+01 3.33683e-01 6.23363e-05 3.27513e-02 - 3 sg_p2 3.60000e+02 5.29001e+00 6.24486e-03 1.57151e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 2.52611e+01 5.99008e+00 3.19093e-04 -8.41506e-01 - 5 sg_p4 9.65128e-01 6.44684e-03 3.63611e-04 1.19511e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.011e-01 1.882e-02 -5.556e-05 -3.514e-01 6.128e-04 - 1.882e-02 1.114e-01 -3.636e-05 -7.207e-02 4.132e-04 - -5.556e-05 -3.636e-05 2.972e-04 1.629e-03 -1.980e-06 - -3.514e-01 -7.207e-02 1.629e-03 3.615e+01 -2.589e-02 - 6.128e-04 4.132e-04 -1.980e-06 -2.589e-02 4.158e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22901 1.000 0.126 -0.007 -0.130 0.212 - 2 0.24394 0.126 1.000 -0.006 -0.036 0.192 - 3 0.01917 -0.007 -0.006 1.000 0.016 -0.018 - 4 0.67426 -0.130 -0.036 0.016 1.000 -0.668 - 5 0.69667 0.212 0.192 -0.018 -0.668 1.000 -300 -289.695 +- 0.448441 -20.4912 +- 0.333683 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10998.6 FROM MIGRAD STATUS=INITIATE 44 CALLS 45 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.85000e+02 7.00000e+00 0.00000e+00 1.82292e+02 - 2 sg_p1 2.00000e+01 3.00000e+00 0.00000e+00 1.71874e+02 - 3 sg_p2 3.05000e+02 1.10000e+01 0.00000e+00 5.32975e+02 - 4 sg_p3 3.07762e+01 1.20000e+01 -7.12504e-01 9.72386e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -2.81076e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10857.4 FROM MIGRAD STATUS=CONVERGED 443 CALLS 444 TOTAL - EDM=4.98868e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.86897e+02 4.50384e-01 9.00651e-04 -4.42030e-02 - 2 sg_p1 2.05381e+01 3.30444e-01 1.54851e-03 -1.71904e-02 - 3 sg_p2 3.60000e+02 4.58768e+00 2.94940e-02** at limit ** - 4 sg_p3 3.22720e+01 1.23522e+01 9.50923e-03 1.52629e-02 - 5 sg_p4 9.64411e-01 1.01122e-02 1.90336e-03 6.66364e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.029e-01 1.643e-02 -6.905e-05 -9.258e-01 1.002e-03 - 1.643e-02 1.092e-01 -3.441e-05 -1.687e-01 4.515e-04 - -6.905e-05 -3.441e-05 5.485e-05 5.168e-03 -4.433e-06 - -9.258e-01 -1.687e-01 5.168e-03 1.563e+02 -1.096e-01 - 1.002e-03 4.515e-04 -4.433e-06 -1.096e-01 1.024e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23805 1.000 0.110 -0.021 -0.164 0.220 - 2 0.21706 0.110 1.000 -0.014 -0.041 0.135 - 3 0.06085 -0.021 -0.014 1.000 0.056 -0.059 - 4 0.87005 -0.164 -0.041 0.056 1.000 -0.866 - 5 0.87483 0.220 0.135 -0.059 -0.866 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10857.4 FROM HESSE STATUS=OK 31 CALLS 475 TOTAL - EDM=4.96344e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.86897e+02 4.51095e-01 1.80130e-04 5.42398e-02 - 2 sg_p1 2.05381e+01 3.30465e-01 6.19404e-05 3.58796e-02 - 3 sg_p2 3.60000e+02 4.57970e+00 5.89879e-03 1.57112e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 3.22720e+01 1.26301e+01 3.80369e-04 -6.80009e-01 - 5 sg_p4 9.64411e-01 1.03457e-02 3.80673e-04 1.19122e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.035e-01 1.650e-02 -1.576e-05 -1.005e+00 1.062e-03 - 1.650e-02 1.092e-01 -7.711e-06 -1.941e-01 4.695e-04 - -1.576e-05 -7.711e-06 5.475e-05 1.202e-03 -1.025e-06 - -1.005e+00 -1.941e-01 1.202e-03 1.636e+02 -1.156e-01 - 1.062e-03 4.695e-04 -1.025e-06 -1.156e-01 1.071e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.24421 1.000 0.111 -0.005 -0.174 0.227 - 2 0.21733 0.111 1.000 -0.003 -0.046 0.137 - 3 0.01376 -0.005 -0.003 1.000 0.013 -0.013 - 4 0.87625 -0.174 -0.046 0.013 1.000 -0.873 - 5 0.88081 0.227 0.137 -0.013 -0.873 1.000 -300 -286.897 +- 0.451095 -20.5381 +- 0.330465 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=9427.95 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 0.00000e+00 1.31464e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 0.00000e+00 -2.82382e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 0.00000e+00 -1.05976e+00 - 4 sg_p3 5.43313e+01 1.20000e+01 -2.64207e-01 7.00043e+00 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -1.45220e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9204.59 FROM MIGRAD STATUS=CONVERGED 229 CALLS 230 TOTAL - EDM=6.66547e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00807e+02 2.06875e-01 9.24958e-04 -7.84006e-02 - 2 sg_p1 6.67548e+00 2.20836e-01 5.66581e-03 -4.55276e-03 - 3 sg_p2 2.86348e+02 3.69244e+00 1.62590e-03 -1.80856e-01 - 4 sg_p3 3.70116e+01 4.47529e+00 3.25190e-03 -7.94138e-02 - 5 sg_p4 6.46423e-01 1.60401e-02 1.99112e-03 -2.02931e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.280e-02 -6.675e-03 3.606e-02 -1.464e-01 -2.452e-04 - -6.675e-03 4.897e-02 -3.892e-01 5.095e-01 1.306e-03 - 3.606e-02 -3.892e-01 1.364e+01 -1.331e+01 -4.368e-04 - -1.464e-01 5.095e-01 -1.331e+01 2.008e+01 -1.514e-03 - -2.452e-04 1.306e-03 -4.368e-04 -1.514e-03 2.574e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23172 1.000 -0.146 0.047 -0.158 -0.074 - 2 0.64662 -0.146 1.000 -0.476 0.514 0.368 - 3 0.81187 0.047 -0.476 1.000 -0.804 -0.007 - 4 0.82962 -0.158 0.514 -0.804 1.000 -0.021 - 5 0.44432 -0.074 0.368 -0.007 -0.021 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9204.59 FROM HESSE STATUS=OK 31 CALLS 261 TOTAL - EDM=6.65624e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00807e+02 2.07041e-01 1.84992e-04 -2.83282e-01 - 2 sg_p1 6.67548e+00 2.24150e-01 2.26632e-04 -1.62980e-01 - 3 sg_p2 2.86348e+02 3.84665e+00 3.25179e-04 2.97108e-01 - 4 sg_p3 3.70116e+01 4.66245e+00 1.30076e-04 -5.82134e-01 - 5 sg_p4 6.46423e-01 1.60428e-02 3.98224e-04 2.97202e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.287e-02 -7.031e-03 4.534e-02 -1.570e-01 -2.475e-04 - -7.031e-03 5.046e-02 -4.308e-01 5.599e-01 1.315e-03 - 4.534e-02 -4.308e-01 1.481e+01 -1.475e+01 -6.186e-04 - -1.570e-01 5.599e-01 -1.475e+01 2.180e+01 -1.240e-03 - -2.475e-04 1.315e-03 -6.186e-04 -1.240e-03 2.575e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23496 1.000 -0.151 0.057 -0.162 -0.074 - 2 0.65975 -0.151 1.000 -0.498 0.534 0.365 - 3 0.82821 0.057 -0.498 1.000 -0.821 -0.010 - 4 0.84430 -0.162 0.534 -0.821 1.000 -0.017 - 5 0.44463 -0.074 0.365 -0.010 -0.017 1.000 -300 -300.807 +- 0.207041 -6.67548 +- 0.22415 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=9324.05 FROM MIGRAD STATUS=INITIATE 18 CALLS 19 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 2.01358e-01 1.26986e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -3.26570e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 2.01358e-01 1.80651e+01 - 4 sg_p3 7.00000e+01 1.20000e+01 2.01358e-01 1.95490e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -1.28150e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 11.1802 added to diagonal of error matrix - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.2302e+00 1.0000e+00 1.0003e+00 1.0996e+00 3.1303e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 1.233367 TO DIAGONAL. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9114.57 FROM MIGRAD STATUS=CONVERGED 289 CALLS 290 TOTAL - EDM=5.54375e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00989e+02 2.12814e-01 9.43941e-04 -9.14080e-04 - 2 sg_p1 6.53035e+00 2.40800e-01 5.98084e-03 4.80647e-03 - 3 sg_p2 2.93079e+02 2.00891e+00 1.26510e-03 8.67004e-03 - 4 sg_p3 3.22426e+01 3.06970e+00 3.13614e-03 5.39262e-03 - 5 sg_p4 6.37280e-01 1.82444e-02 2.01579e-03 -9.05889e-04 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.529e-02 -7.391e-03 -1.667e-02 -9.633e-02 -4.577e-04 - -7.391e-03 5.828e-02 -1.840e-01 4.072e-01 2.575e-03 - -1.667e-02 -1.840e-01 4.036e+00 -3.579e+00 -1.048e-02 - -9.633e-02 4.072e-01 -3.579e+00 9.437e+00 2.200e-02 - -4.577e-04 2.575e-03 -1.048e-02 2.200e-02 3.330e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23364 1.000 -0.144 -0.039 -0.147 -0.118 - 2 0.68293 -0.144 1.000 -0.379 0.549 0.585 - 3 0.60026 -0.039 -0.379 1.000 -0.580 -0.286 - 4 0.69097 -0.147 0.549 -0.580 1.000 0.393 - 5 0.59255 -0.118 0.585 -0.286 0.393 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9114.57 FROM HESSE STATUS=OK 31 CALLS 321 TOTAL - EDM=5.65701e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00989e+02 2.12854e-01 3.77576e-05 -2.70672e-01 - 2 sg_p1 6.53035e+00 2.42646e-01 1.19617e-03 -2.37040e-01 - 3 sg_p2 2.93079e+02 2.03806e+00 2.53019e-04 3.76364e-01 - 4 sg_p3 3.22426e+01 3.11925e+00 1.25446e-04 -6.80639e-01 - 5 sg_p4 6.37280e-01 1.83457e-02 8.06317e-05 2.78131e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.531e-02 -7.562e-03 -1.490e-02 -9.842e-02 -4.666e-04 - -7.562e-03 5.919e-02 -1.948e-01 4.241e-01 2.634e-03 - -1.490e-02 -1.948e-01 4.155e+00 -3.791e+00 -1.116e-02 - -9.842e-02 4.241e-01 -3.791e+00 9.744e+00 2.314e-02 - -4.666e-04 2.634e-03 -1.116e-02 2.314e-02 3.367e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23439 1.000 -0.146 -0.034 -0.148 -0.119 - 2 0.68886 -0.146 1.000 -0.393 0.558 0.590 - 3 0.61521 -0.034 -0.393 1.000 -0.596 -0.298 - 4 0.70278 -0.148 0.558 -0.596 1.000 0.404 - 5 0.59855 -0.119 0.590 -0.298 0.404 1.000 -300 -300.989 +- 0.212854 -6.53035 +- 0.242646 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=9310.64 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 0.00000e+00 1.34333e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 0.00000e+00 -2.36771e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 0.00000e+00 -1.06301e+01 - 4 sg_p3 4.94125e+01 1.20000e+01 -3.50242e-01 -6.56876e+00 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -1.57740e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9074.37 FROM MIGRAD STATUS=CONVERGED 198 CALLS 199 TOTAL - EDM=4.60513e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00716e+02 2.01045e-01 8.96469e-04 2.14226e-01 - 2 sg_p1 6.51517e+00 2.15145e-01 5.62639e-03 1.07423e-02 - 3 sg_p2 2.82932e+02 4.43725e+00 1.74062e-03 -1.31230e-01 - 4 sg_p3 3.77806e+01 4.64318e+00 3.03684e-03 -8.20421e-02 - 5 sg_p4 6.44030e-01 1.61428e-02 1.96449e-03 1.08169e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.042e-02 -6.174e-03 6.288e-02 -1.484e-01 -1.712e-04 - -6.174e-03 4.648e-02 -4.710e-01 4.996e-01 9.943e-04 - 6.288e-02 -4.710e-01 1.971e+01 -1.755e+01 9.466e-03 - -1.484e-01 4.996e-01 -1.755e+01 2.162e+01 -1.284e-02 - -1.712e-04 9.943e-04 9.466e-03 -1.284e-02 2.607e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22609 1.000 -0.142 0.070 -0.159 -0.053 - 2 0.63799 -0.142 1.000 -0.492 0.498 0.286 - 3 0.85697 0.070 -0.492 1.000 -0.850 0.132 - 4 0.86627 -0.159 0.498 -0.850 1.000 -0.171 - 5 0.46460 -0.053 0.286 0.132 -0.171 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9074.37 FROM HESSE STATUS=OK 31 CALLS 230 TOTAL - EDM=4.60124e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00716e+02 2.01266e-01 1.79294e-04 -2.89604e-01 - 2 sg_p1 6.51517e+00 2.18764e-01 1.12528e-03 -2.44853e-01 - 3 sg_p2 2.82932e+02 4.66955e+00 3.48124e-04 2.57637e-01 - 4 sg_p3 3.77806e+01 4.88570e+00 1.21473e-04 -5.66865e-01 - 5 sg_p4 6.44030e-01 1.61620e-02 3.92898e-04 2.92200e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.051e-02 -6.582e-03 7.683e-02 -1.625e-01 -1.645e-04 - -6.582e-03 4.806e-02 -5.290e-01 5.602e-01 9.646e-04 - 7.683e-02 -5.290e-01 2.183e+01 -1.979e+01 1.061e-02 - -1.625e-01 5.602e-01 -1.979e+01 2.394e+01 -1.401e-02 - -1.645e-04 9.646e-04 1.061e-02 -1.401e-02 2.613e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23066 1.000 -0.149 0.082 -0.165 -0.051 - 2 0.65313 -0.149 1.000 -0.516 0.522 0.272 - 3 0.87189 0.082 -0.516 1.000 -0.866 0.140 - 4 0.88014 -0.165 0.522 -0.866 1.000 -0.177 - 5 0.46660 -0.051 0.272 0.140 -0.177 1.000 -300 -300.716 +- 0.201266 -6.51517 +- 0.218764 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=9199.28 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 2.01358e-01 1.31737e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -3.80725e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 2.01358e-01 3.68970e+01 - 4 sg_p3 7.00000e+01 1.20000e+01 2.01358e-01 3.60460e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -9.61061e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=8979.33 FROM MIGRAD STATUS=CONVERGED 286 CALLS 287 TOTAL - EDM=6.06176e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00769e+02 2.16735e-01 9.53991e-04 -5.33757e-02 - 2 sg_p1 6.70308e+00 2.45021e-01 5.89293e-03 -3.95912e-02 - 3 sg_p2 2.87922e+02 3.34063e+00 1.53235e-03 -3.18644e-02 - 4 sg_p3 3.55948e+01 4.26381e+00 3.23155e-03 -4.27157e-03 - 5 sg_p4 6.37600e-01 1.68956e-02 2.00611e-03 2.50190e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.698e-02 -9.160e-03 4.009e-02 1.638e-01 -3.977e-04 - -9.160e-03 6.035e-02 -4.159e-01 -5.898e-01 1.951e-03 - 4.009e-02 -4.159e-01 1.117e+01 1.132e+01 -9.034e-03 - 1.638e-01 -5.898e-01 1.132e+01 1.823e+01 -1.125e-02 - -3.977e-04 1.951e-03 -9.034e-03 -1.125e-02 2.856e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25346 1.000 -0.172 0.055 0.177 -0.109 - 2 0.68892 -0.172 1.000 -0.507 -0.562 0.470 - 3 0.80257 0.055 -0.507 1.000 0.794 -0.160 - 4 0.82438 0.177 -0.562 0.794 1.000 -0.156 - 5 0.48969 -0.109 0.470 -0.160 -0.156 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=8979.33 FROM HESSE STATUS=OK 31 CALLS 318 TOTAL - EDM=6.06043e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00769e+02 2.16688e-01 1.90798e-04 -2.85961e-01 - 2 sg_p1 6.70308e+00 2.44943e-01 1.17859e-03 -1.49009e-01 - 3 sg_p2 2.87922e+02 3.32664e+00 3.06471e-04 3.15452e-01 - 4 sg_p3 3.55948e+01 4.24592e+00 1.29262e-04 -2.53092e+00 - 5 sg_p4 6.37600e-01 1.68934e-02 4.01222e-04 2.78798e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.696e-02 -9.141e-03 3.853e-02 1.617e-01 -3.954e-04 - -9.141e-03 6.031e-02 -4.131e-01 -5.862e-01 1.947e-03 - 3.853e-02 -4.131e-01 1.107e+01 1.120e+01 -8.911e-03 - 1.617e-01 -5.862e-01 1.120e+01 1.807e+01 -1.105e-02 - -3.954e-04 1.947e-03 -8.911e-03 -1.105e-02 2.855e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25265 1.000 -0.172 0.053 0.175 -0.108 - 2 0.68868 -0.172 1.000 -0.506 -0.562 0.469 - 3 0.80070 0.053 -0.506 1.000 0.792 -0.158 - 4 0.82272 0.175 -0.562 0.792 1.000 -0.154 - 5 0.48949 -0.108 0.469 -0.158 -0.154 1.000 -300 -300.769 +- 0.216688 -6.70308 +- 0.244943 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=9528.95 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 2.01358e-01 1.40358e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -2.86077e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 2.01358e-01 4.07742e+01 - 4 sg_p3 7.00000e+01 1.20000e+01 2.01358e-01 3.28657e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -1.55130e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9284.6 FROM MIGRAD STATUS=CONVERGED 275 CALLS 276 TOTAL - EDM=1.0669e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00844e+02 2.01930e-01 9.05593e-04 7.10616e-03 - 2 sg_p1 6.50018e+00 2.20682e-01 5.70172e-03 -1.20796e-03 - 3 sg_p2 2.89404e+02 2.63913e+00 1.40244e-03 7.93444e-03 - 4 sg_p3 3.36229e+01 3.43508e+00 3.08392e-03 -8.78771e-03 - 5 sg_p4 6.54921e-01 1.64524e-02 1.98673e-03 -7.23147e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.078e-02 -6.775e-03 1.130e-02 -1.118e-01 -3.655e-04 - -6.775e-03 4.891e-02 -2.623e-01 4.000e-01 1.828e-03 - 1.130e-02 -2.623e-01 6.967e+00 -6.550e+00 -9.484e-03 - -1.118e-01 4.000e-01 -6.550e+00 1.182e+01 1.315e-02 - -3.655e-04 1.828e-03 -9.484e-03 1.315e-02 2.708e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23688 1.000 -0.152 0.021 -0.161 -0.110 - 2 0.66103 -0.152 1.000 -0.449 0.526 0.502 - 3 0.73398 0.021 -0.449 1.000 -0.722 -0.218 - 4 0.76528 -0.161 0.526 -0.722 1.000 0.232 - 5 0.50584 -0.110 0.502 -0.218 0.232 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9284.6 FROM HESSE STATUS=OK 31 CALLS 307 TOTAL - EDM=1.12622e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00844e+02 2.02032e-01 3.62237e-05 -2.80744e-01 - 2 sg_p1 6.50018e+00 2.23003e-01 2.28069e-04 -2.52587e-01 - 3 sg_p2 2.89404e+02 2.70635e+00 2.80488e-04 3.32825e-01 - 4 sg_p3 3.36229e+01 3.52423e+00 1.23357e-04 -6.93457e+00 - 5 sg_p4 6.54921e-01 1.65063e-02 3.97346e-04 3.15027e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.082e-02 -7.019e-03 1.539e-02 -1.166e-01 -3.746e-04 - -7.019e-03 4.995e-02 -2.818e-01 4.255e-01 1.872e-03 - 1.539e-02 -2.818e-01 7.327e+00 -7.045e+00 -1.028e-02 - -1.166e-01 4.255e-01 -7.045e+00 1.244e+01 1.424e-02 - -3.746e-04 1.872e-03 -1.028e-02 1.424e-02 2.726e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23888 1.000 -0.155 0.028 -0.164 -0.112 - 2 0.66984 -0.155 1.000 -0.466 0.540 0.507 - 3 0.74924 0.028 -0.466 1.000 -0.738 -0.230 - 4 0.77870 -0.164 0.540 -0.738 1.000 0.244 - 5 0.51061 -0.112 0.507 -0.230 0.244 1.000 -300 -300.844 +- 0.202032 -6.50018 +- 0.223003 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=8804.14 FROM MIGRAD STATUS=INITIATE 38 CALLS 39 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 0.00000e+00 1.21619e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 0.00000e+00 -2.50995e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 0.00000e+00 -2.34806e+01 - 4 sg_p3 5.09831e+01 1.20000e+01 -3.22511e-01 -1.58294e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -1.45258e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=8594.18 FROM MIGRAD STATUS=CONVERGED 195 CALLS 196 TOTAL - EDM=0.000103955 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00810e+02 2.13585e-01 9.23962e-04 -3.32389e-01 - 2 sg_p1 6.67466e+00 2.27375e-01 5.64986e-03 -6.39462e-02 - 3 sg_p2 2.86358e+02 3.78706e+00 1.67027e-03 2.10141e-01 - 4 sg_p3 3.68730e+01 4.57772e+00 3.31711e-03 1.33026e-01 - 5 sg_p4 6.48483e-01 1.65693e-02 1.99186e-03 1.18731e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.562e-02 -7.064e-03 3.747e-02 -1.545e-01 -2.634e-04 - -7.064e-03 5.193e-02 -4.091e-01 5.342e-01 1.402e-03 - 3.747e-02 -4.091e-01 1.435e+01 -1.392e+01 -8.150e-04 - -1.545e-01 5.342e-01 -1.392e+01 2.101e+01 -1.176e-03 - -2.634e-04 1.402e-03 -8.150e-04 -1.176e-03 2.747e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23149 1.000 -0.145 0.046 -0.158 -0.074 - 2 0.64493 -0.145 1.000 -0.474 0.511 0.371 - 3 0.80971 0.046 -0.474 1.000 -0.802 -0.013 - 4 0.82741 -0.158 0.511 -0.802 1.000 -0.015 - 5 0.44365 -0.074 0.371 -0.013 -0.015 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=8594.18 FROM HESSE STATUS=OK 31 CALLS 227 TOTAL - EDM=0.000103618 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00810e+02 2.13733e-01 1.84792e-04 -2.83111e-01 - 2 sg_p1 6.67466e+00 2.30409e-01 1.12997e-03 -1.63396e-01 - 3 sg_p2 2.86358e+02 3.92954e+00 3.34054e-04 2.97224e-01 - 4 sg_p3 3.68730e+01 4.75005e+00 6.63422e-04 -5.84901e-01 - 5 sg_p4 6.48483e-01 1.65714e-02 3.98372e-04 3.01515e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.569e-02 -7.400e-03 4.620e-02 -1.644e-01 -2.656e-04 - -7.400e-03 5.333e-02 -4.485e-01 5.817e-01 1.411e-03 - 4.620e-02 -4.485e-01 1.545e+01 -1.528e+01 -1.007e-03 - -1.644e-01 5.817e-01 -1.528e+01 2.263e+01 -8.956e-04 - -2.656e-04 1.411e-03 -1.007e-03 -8.956e-04 2.747e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23430 1.000 -0.150 0.055 -0.162 -0.075 - 2 0.65672 -0.150 1.000 -0.494 0.530 0.369 - 3 0.82472 0.055 -0.494 1.000 -0.817 -0.015 - 4 0.84090 -0.162 0.530 -0.817 1.000 -0.011 - 5 0.44388 -0.075 0.369 -0.015 -0.011 1.000 -300 -300.81 +- 0.213733 -6.67466 +- 0.230409 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10085.1 FROM MIGRAD STATUS=INITIATE 38 CALLS 39 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 0.00000e+00 1.41204e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 0.00000e+00 -3.13147e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 0.00000e+00 9.36393e+00 - 4 sg_p3 5.63011e+01 1.20000e+01 -2.30347e-01 1.74222e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -1.47792e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9847.01 FROM MIGRAD STATUS=CONVERGED 237 CALLS 238 TOTAL - EDM=9.73968e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00804e+02 2.00448e-01 9.27938e-04 -2.66723e-02 - 2 sg_p1 6.67674e+00 2.14181e-01 5.68372e-03 6.00134e-04 - 3 sg_p2 2.86357e+02 3.57965e+00 1.66724e-03 -1.62501e-02 - 4 sg_p3 3.71633e+01 4.35962e+00 3.32473e-03 2.36830e-03 - 5 sg_p4 6.44672e-01 1.55331e-02 1.99195e-03 -8.00555e-04 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.018e-02 -6.290e-03 3.361e-02 -1.381e-01 -2.282e-04 - -6.290e-03 4.605e-02 -3.651e-01 4.812e-01 1.217e-03 - 3.361e-02 -3.651e-01 1.282e+01 -1.255e+01 -7.211e-05 - -1.381e-01 4.812e-01 -1.255e+01 1.905e+01 -1.851e-03 - -2.282e-04 1.217e-03 -7.211e-05 -1.851e-03 2.414e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23182 1.000 -0.146 0.047 -0.158 -0.073 - 2 0.64675 -0.146 1.000 -0.475 0.514 0.365 - 3 0.81111 0.047 -0.475 1.000 -0.803 -0.001 - 4 0.82935 -0.158 0.514 -0.803 1.000 -0.027 - 5 0.44510 -0.073 0.365 -0.001 -0.027 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9847.01 FROM HESSE STATUS=OK 31 CALLS 269 TOTAL - EDM=1.05973e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00804e+02 2.00611e-01 1.85588e-04 -2.83535e-01 - 2 sg_p1 6.67674e+00 2.17452e-01 2.27349e-04 -1.62344e-01 - 3 sg_p2 2.86357e+02 3.73232e+00 3.33449e-04 2.97212e-01 - 4 sg_p3 3.71633e+01 4.54584e+00 1.32989e-04 -5.79108e-01 - 5 sg_p4 6.44672e-01 1.55348e-02 7.96779e-05 2.93540e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.025e-02 -6.630e-03 4.251e-02 -1.483e-01 -2.300e-04 - -6.630e-03 4.748e-02 -4.050e-01 5.298e-01 1.225e-03 - 4.251e-02 -4.050e-01 1.394e+01 -1.395e+01 -2.119e-04 - -1.483e-01 5.298e-01 -1.395e+01 2.072e+01 -1.629e-03 - -2.300e-04 1.225e-03 -2.119e-04 -1.629e-03 2.414e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23512 1.000 -0.152 0.057 -0.162 -0.074 - 2 0.66010 -0.152 1.000 -0.498 0.534 0.362 - 3 0.82785 0.057 -0.498 1.000 -0.821 -0.004 - 4 0.84435 -0.162 0.534 -0.821 1.000 -0.023 - 5 0.44529 -0.074 0.362 -0.004 -0.023 1.000 -300 -300.804 +- 0.200611 -6.67674 +- 0.217452 -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 300.807 +- 0.207041 (stat) - 0.0909738 + 0.181936 (syst); -0.137814/+0.209326 (total) - Uncertainty on sg_p1 = 6.67548 +- 0.22415 (stat) - 0.1753 + 0.0276028 (syst); -0.208065/+0.115424 (total) - Uncertainty on sg_p2 = 286.348 +- 3.84665 (stat) - 3.4164 + 6.73068 (syst); -3.92058/+7.00009 (total) - Uncertainty on sg_p3 = 37.0116 +- 4.66245 (stat) - 4.76893 + 0.769026 (syst); -5.30823/+2.45479 (total) - Uncertainty on sg_p4 = 0.646423 +- 0.0160428 (stat) - 0.00914333 + 0.00849815 (syst); -0.0121632/+0.0116859 (total) - === Baseline plot ===
- norm = 304.126 -JEC lnN 1.00496 - -JER lnN 1.02029 - -btag lnN 1.06837 - -sg_p0 param 300.807 -0.137814/+0.209326 -sg_p1 param 6.67548 -0.208065/+0.115424 -sg_p2 param 286.348 -3.92058/+7.00009 -sg_p3 param 37.0116 -5.30823/+2.45479 -sg_p4 param 0.646423 -0.0121632/+0.0116859 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_crystal_252_330/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_crystal_252_330/data_bkg.log deleted file mode 100644 index 3cc1900..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_crystal_252_330/data_bkg.log +++ /dev/null @@ -1,750 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [252,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=62921.6 FROM MIGRAD STATUS=INITIATE 90 CALLS 91 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.21879e-02 5.09000e-01 0.00000e+00 -9.80911e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -1.28354e+01 - 3 par_crystal_2 2.65669e+02 4.00000e+00 0.00000e+00 3.55320e+02 - 4 par_crystal_3 1.06488e+01 2.70000e+00 -4.48284e-01 -2.33576e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62883.4 FROM HESSE STATUS=OK 29 CALLS 257 TOTAL - EDM=4.91113 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.66060e-01 4.16121e-03 3.52377e-04 -4.74293e+00 - 2 par_crystal_1 4.45375e+00 2.73731e+00 1.77223e-01 2.66184e-01 - 3 par_crystal_2 2.67385e+02 2.04373e-01 8.29600e-04 2.81454e+02 - 4 par_crystal_3 1.36851e+01 5.38888e-01 1.69331e-03 -1.62103e+00 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=62883.3 FROM MIGRAD STATUS=FAILED 358 CALLS 359 TOTAL - EDM=0.00753244 STRATEGY= 1 ERR MATRIX APPROXIMATE - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.65093e-01 8.39913e-03 1.31861e-03 5.42788e+00 - 2 par_crystal_1 5.09910e+00 4.33634e+00 3.39194e-01 -6.59950e-03 - 3 par_crystal_2 2.67339e+02 1.86486e-01 3.32550e-03 -8.58879e+00 - 4 par_crystal_3 1.37140e+01 6.01780e-01 6.34807e-03 1.69258e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.055e-05 1.617e-04 4.699e-04 2.892e-03 - 1.617e-04 1.762e-02 -1.356e-04 -1.108e-03 - 4.699e-04 -1.356e-04 3.478e-02 3.255e-02 - 2.892e-03 -1.108e-03 3.255e-02 3.624e-01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.60853 1.000 0.145 0.300 0.572 - 2 0.19009 0.145 1.000 -0.005 -0.014 - 3 0.33449 0.300 -0.005 1.000 0.290 - 4 0.59243 0.572 -0.014 0.290 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7660e-01 8.1807e-01 1.6519e+00 1.7066e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.178308 TO DIAGONAL. - FCN=62883.3 FROM HESSE STATUS=NOT POSDEF 33 CALLS 392 TOTAL - EDM=3.36849 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.65093e-01 8.70034e-02 2.63722e-04 -1.21988e+00 - 2 par_crystal_1 5.09910e+00 4.18121e+00 5.00000e-01 1.54425e+00 - 3 par_crystal_2 2.67339e+02 5.27040e+00 9.57407e-02 3.75715e-01 - 4 par_crystal_3 1.37140e+01 6.68546e+00 2.53923e-04 -2.07863e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.595e-03 -2.994e-03 4.642e-01 6.089e-01 - -2.994e-03 1.536e-02 -1.944e-01 -2.569e-01 - 4.642e-01 -1.944e-01 2.855e+01 3.736e+01 - 6.089e-01 -2.569e-01 3.736e+01 4.914e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99751 1.000 -0.277 0.997 0.997 - 2 0.37560 -0.277 1.000 -0.293 -0.296 - 3 0.99795 0.997 -0.293 1.000 0.997 - 4 0.99797 0.997 -0.296 0.997 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=62983.1 FROM MIGRAD STATUS=INITIATE 29 CALLS 30 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 6.05383e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -1.33666e+02 - 3 par_gaus_exp_2 3.19008e-01 3.05000e-01 -9.67731e-01 -3.33619e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.00383 added to diagonal of error matrix - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62882.7 FROM MIGRAD STATUS=CONVERGED 228 CALLS 229 TOTAL - EDM=4.4408e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.69095e+02 7.01852e-01 4.07755e-03 2.89794e-02 - 2 par_gaus_exp_1 1.61044e+01 1.09719e+00 7.43010e-03 -1.84784e-02 - 3 par_gaus_exp_2 1.90527e-01 1.58774e-02 1.98778e-03 -6.23432e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 4.929e-01 5.914e-01 9.067e-03 - 5.914e-01 1.207e+00 1.483e-02 - 9.067e-03 1.483e-02 2.521e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.82590 1.000 0.767 0.813 - 2 0.85979 0.767 1.000 0.850 - 3 0.88644 0.813 0.850 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62882.7 FROM HESSE STATUS=OK 16 CALLS 245 TOTAL - EDM=4.28199e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.69095e+02 6.86832e-01 1.63102e-04 -5.76704e-01 - 2 par_gaus_exp_1 1.61044e+01 1.07335e+00 2.97204e-04 -5.72398e-01 - 3 par_gaus_exp_2 1.90527e-01 1.55212e-02 7.95110e-05 -1.13813e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 4.720e-01 5.579e-01 8.580e-03 - 5.579e-01 1.155e+00 1.406e-02 - 8.580e-03 1.406e-02 2.410e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.81734 1.000 0.756 0.805 - 2 0.85292 0.756 1.000 0.843 - 3 0.88081 0.805 0.843 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,624] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.3296 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.3296) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=286.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=286.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=289.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=289.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=295.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=295.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=298.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=298.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=301.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=301.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - ... (remaining 216 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.733611 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.733611) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=313.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=316.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=319.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=325.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=328.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=331.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=334.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=340.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=343.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=346.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - ... (remaining 94 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0733618 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0733618 - - FCN=103426 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57146e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.55551e+03 - 3 par_novo_2 -1.33526e+00 2.00000e+01 0.00000e+00 1.53308e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103192 FROM MIGRAD STATUS=CONVERGED 126 CALLS 127 TOTAL - EDM=1.07924e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.17697e+01 1.69443e-01** at limit ** - 2 par_novo_1 3.87878e+01 2.27475e+00 4.96100e-03 -6.14249e-02 - 3 par_novo_2 -1.26766e+00 7.00630e-02 3.67886e-05 3.77179e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 2.244e-10 -2.632e-07 -1.276e-07 - -2.632e-07 5.190e+00 1.540e-01 - -1.276e-07 1.540e-01 4.909e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.43392 1.000 -0.008 -0.122 - 2 0.97109 -0.008 1.000 0.965 - 3 0.97152 -0.122 0.965 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103192 FROM HESSE STATUS=OK 20 CALLS 147 TOTAL - EDM=1.23299e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.15107e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.87878e+01 2.30410e+00 1.98440e-04 4.51799e-01 - 3 par_novo_2 -1.26766e+00 7.13892e-02 1.47154e-06 -1.26769e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 2.143e-10 3.996e-06 -2.087e-07 - 3.996e-06 5.325e+00 1.518e-01 - -2.087e-07 1.518e-01 5.096e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.80390 1.000 0.118 -0.200 - 2 0.97183 0.118 1.000 0.922 - 3 0.97258 -0.200 0.922 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107617 FROM MIGRAD STATUS=INITIATE 36 CALLS 37 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 6.60405e+03 - 2 par_crystal_1_1 7.90153e-02 5.09000e-01 -1.80421e+00 3.05679e+03 - 3 par_crystal_1_2 2.60000e+02 4.00000e+00 0.00000e+00 1.48888e+03 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 6.99071e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.17529 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.7903e-03 5.8606e-02 5.0897e-01 3.4352e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.006225 TO DIAGONAL. - FCN=103191 FROM MIGRAD STATUS=CONVERGED 353 CALLS 354 TOTAL - EDM=3.7306e-06 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.37913e-01 3.41139e-02 6.19492e-04 4.10204e-01 - 2 par_crystal_1_1 4.44737e+00 5.69760e-01 2.21494e-02 9.88736e-03 - 3 par_crystal_1_2 2.79979e+02 3.40482e+01 2.79535e-01 -2.97577e-04 - 4 par_crystal_1_3 1.87584e+01 2.98857e+00 3.96232e-03 -6.40797e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.164e-03 3.582e-03 3.594e-03 9.898e-02 - 3.582e-03 3.375e-01 -1.052e-02 7.382e-01 - 3.594e-03 -1.052e-02 3.148e+00 6.243e-01 - 9.898e-02 7.382e-01 6.243e-01 9.086e+00 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99630 1.000 0.181 0.059 0.962 - 2 0.95650 0.181 1.000 -0.010 0.422 - 3 0.63948 0.059 -0.010 1.000 0.117 - 4 0.99690 0.962 0.422 0.117 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103191 FROM HESSE STATUS=OK 27 CALLS 381 TOTAL - EDM=6.06842e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 2.37913e-01 2.12502e-01 1.23898e-04 -8.36786e+01 - 2 par_crystal_1_1 4.44737e+00 5.06952e-01 8.85975e-04 -1.65463e+01 - 3 par_crystal_1_2 2.79979e+02 2.96341e+01 5.00000e-01 7.80831e+00 - 4 par_crystal_1_3 1.87584e+01 1.90925e+01 1.58493e-04 2.18231e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.578e-02 1.663e-02 2.427e-02 3.730e+00 - 1.663e-02 2.650e-01 -4.299e-02 1.684e+00 - 2.427e-02 -4.299e-02 1.850e+00 2.341e+00 - 3.730e+00 1.684e+00 2.341e+00 3.045e+02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99991 1.000 0.151 0.083 0.999 - 2 0.94385 0.151 1.000 -0.061 0.187 - 3 0.80384 0.083 -0.061 1.000 0.099 - 4 0.99991 0.999 0.187 0.099 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 13889.7 - Background number of gaus_exp_252_330 = 13889.7 - Background number of novo_285_624 = 17637.2 - Background number of crystal_1_285_624 = 17637.2 - Background number of gaus_bern_285_624 = 17637.2 - Background number of landau_285_624 = 17637.2 -par_crystal_0 param 0.165093 0.0870034 -par_crystal_1 param 5.0991 4.18121 -par_crystal_2 param 267.339 5.2704 -par_crystal_3 param 13.714 6.68546 -par_crystal_1_0 param 0.237913 0.212502 -par_crystal_1_1 param 4.44737 0.506952 -par_crystal_1_2 param 279.979 29.6341 -par_crystal_1_3 param 18.7584 19.0925 -par_gaus_exp_0 param 269.095 0.686832 -par_gaus_exp_1 param 16.1044 1.07335 -par_gaus_exp_2 param 0.190527 0.0155212 -par_novo_0 param 250 31.5107 -par_novo_1 param 38.7878 2.3041 -par_novo_2 param -1.26766 0.0713892 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_crystal_252_330/datacard_300_crystal_252_330.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_crystal_252_330/datacard_300_crystal_252_330.txt deleted file mode 100644 index 6ba9ae7..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_crystal_252_330/datacard_300_crystal_252_330.txt +++ /dev/null @@ -1,35 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_300.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_crystal_252_330.root HbbHbb:f_crystal -shapes data_obs HbbHbb w_background_crystal_252_330.root HbbHbb:data_obs_crystal_252_330 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 304.126 13889.7 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06837 - -JER lnN 1.02029 - -JEC lnN 1.00496 - -trigger lnN 1.10 - -PDF lnN 1.01533148611 - -sg_p0 param 300.807 -0.137814/+0.209326 -sg_p1 param 6.67548 -0.208065/+0.115424 -sg_p2 param 286.348 -3.92058/+7.00009 -sg_p3 param 37.0116 -5.30823/+2.45479 -sg_p4 param 0.646423 -0.0121632/+0.0116859 -par_crystal_0 param 0.165093 0.0870034 -par_crystal_1 param 5.0991 4.18121 -par_crystal_2 param 267.339 5.2704 -par_crystal_3 param 13.714 6.68546 -par_crystal_1_0 param 0.237913 0.212502 -par_crystal_1_1 param 4.44737 0.506952 -par_crystal_1_2 param 279.979 29.6341 -par_crystal_1_3 param 18.7584 19.0925 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_crystal_252_330/pdf.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_crystal_252_330/pdf.log deleted file mode 100644 index e77095c..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_crystal_252_330/pdf.log +++ /dev/null @@ -1,10 +0,0 @@ -[?1034h FCN=10.366 FROM MIGRAD STATUS=CONVERGED 69 CALLS 70 TOTAL - EDM=1.25903e-09 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 Constant 1.89692e+01 2.45680e+00 3.29830e-03 -7.24825e-06 - 2 Mean 1.00074e+00 1.81805e-03 2.81850e-06 3.61959e-03 - 3 Sigma 1.53315e-02 1.29036e-03 3.63480e-05 1.24404e-03 -1.00074474072 +/- 0.00181805488368 -0.0153314861114 +/- 0.00129036445321 -PDF lnN 1.01533148611 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_crystal_252_330/signal300_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_crystal_252_330/signal300_sig.log deleted file mode 100644 index e692189..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_crystal_252_330/signal300_sig.log +++ /dev/null @@ -1,859 +0,0 @@ - -Processing test.c... -nSignal_init = 292400 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11139.4 FROM MIGRAD STATUS=INITIATE 41 CALLS 42 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.85000e+02 7.00000e+00 0.00000e+00 3.99147e+02 - 2 sg_p1 2.00000e+01 3.00000e+00 0.00000e+00 5.36454e+01 - 3 sg_p2 3.05000e+02 1.10000e+01 0.00000e+00 5.03573e+02 - 4 sg_p3 2.15253e+01 1.20000e+01 -9.40600e-01 -5.65980e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -2.37474e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10983.2 FROM MIGRAD STATUS=CONVERGED 401 CALLS 402 TOTAL - EDM=5.6187e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.88323e+02 4.47990e-01 9.04940e-04 1.11533e-01 - 2 sg_p1 2.05573e+01 3.30978e-01 1.55295e-03 -5.38166e-02 - 3 sg_p2 3.60000e+02 7.01972e+00 3.68073e-02** at limit ** - 4 sg_p3 3.31232e+01 1.31185e+01 9.89999e-03 1.11043e-02 - 5 sg_p4 9.64843e-01 1.04001e-02 1.95930e-03 4.50763e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.007e-01 1.739e-02 -1.190e-04 -7.889e-01 9.394e-04 - 1.739e-02 1.096e-01 -6.312e-05 -5.744e-02 4.186e-04 - -1.190e-04 -6.312e-05 9.525e-05 8.817e-03 -7.777e-06 - -7.889e-01 -5.744e-02 8.817e-03 1.767e+02 -1.200e-01 - 9.394e-04 4.186e-04 -7.777e-06 -1.200e-01 1.083e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23279 1.000 0.117 -0.027 -0.132 0.202 - 2 0.23564 0.117 1.000 -0.020 -0.013 0.122 - 3 0.07829 -0.027 -0.020 1.000 0.068 -0.077 - 4 0.87296 -0.132 -0.013 0.068 1.000 -0.867 - 5 0.87761 0.202 0.122 -0.077 -0.867 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10983.2 FROM HESSE STATUS=OK 31 CALLS 433 TOTAL - EDM=5.61214e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.88323e+02 4.48511e-01 1.80988e-04 9.50767e-02 - 2 sg_p1 2.05573e+01 3.30912e-01 6.21181e-05 3.71642e-02 - 3 sg_p2 3.60000e+02 7.00510e+00 7.36146e-03 1.57114e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 3.31232e+01 1.34621e+01 3.96000e-04 -6.61896e-01 - 5 sg_p4 9.64843e-01 1.06761e-02 3.91861e-04 1.19356e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.012e-01 1.735e-02 -2.672e-05 -8.721e-01 9.990e-04 - 1.735e-02 1.095e-01 -1.383e-05 -7.606e-02 4.303e-04 - -2.672e-05 -1.383e-05 9.505e-05 2.045e-03 -1.786e-06 - -8.721e-01 -7.606e-02 2.045e-03 1.863e+02 -1.276e-01 - 9.990e-04 4.303e-04 -1.786e-06 -1.276e-01 1.141e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23747 1.000 0.117 -0.006 -0.142 0.209 - 2 0.23484 0.117 1.000 -0.004 -0.017 0.122 - 3 0.01751 -0.006 -0.004 1.000 0.015 -0.017 - 4 0.87999 -0.142 -0.017 0.015 1.000 -0.875 - 5 0.88427 0.209 0.122 -0.017 -0.875 1.000 -300 -288.323 +- 0.448511 -20.5573 +- 0.330912 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11021.8 FROM MIGRAD STATUS=INITIATE 44 CALLS 45 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.85000e+02 7.00000e+00 0.00000e+00 -1.23228e+01 - 2 sg_p1 2.00000e+01 3.00000e+00 0.00000e+00 1.69370e+02 - 3 sg_p2 3.05000e+02 1.10000e+01 0.00000e+00 3.59937e+02 - 4 sg_p3 2.91405e+01 1.20000e+01 -7.49116e-01 1.62870e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -1.88730e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10926.7 FROM MIGRAD STATUS=CONVERGED 404 CALLS 405 TOTAL - EDM=7.36709e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.89695e+02 4.48479e-01 9.08525e-04 -1.63756e-02 - 2 sg_p1 2.04912e+01 3.33789e-01 1.55841e-03 3.48244e-02 - 3 sg_p2 3.60000e+02 5.29130e+00 3.12243e-02** at limit ** - 4 sg_p3 2.52611e+01 5.98773e+00 7.97733e-03 1.66965e-02 - 5 sg_p4 9.65128e-01 6.44706e-03 1.81806e-03 6.25824e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.011e-01 1.895e-02 -2.334e-04 -3.465e-01 6.114e-04 - 1.895e-02 1.114e-01 -1.530e-04 -6.771e-02 4.120e-04 - -2.334e-04 -1.530e-04 2.973e-04 6.759e-03 -8.288e-06 - -3.465e-01 -6.771e-02 6.759e-03 3.612e+01 -2.585e-02 - 6.114e-04 4.120e-04 -8.288e-06 -2.585e-02 4.158e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22936 1.000 0.127 -0.030 -0.129 0.211 - 2 0.24516 0.127 1.000 -0.027 -0.034 0.191 - 3 0.08010 -0.030 -0.027 1.000 0.065 -0.075 - 4 0.67399 -0.129 -0.034 0.065 1.000 -0.667 - 5 0.69669 0.211 0.191 -0.075 -0.667 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10926.7 FROM HESSE STATUS=OK 31 CALLS 436 TOTAL - EDM=7.38964e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.89695e+02 4.48441e-01 1.81705e-04 1.34553e-01 - 2 sg_p1 2.04912e+01 3.33683e-01 6.23363e-05 3.27513e-02 - 3 sg_p2 3.60000e+02 5.29001e+00 6.24486e-03 1.57151e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 2.52611e+01 5.99008e+00 3.19093e-04 -8.41506e-01 - 5 sg_p4 9.65128e-01 6.44684e-03 3.63611e-04 1.19511e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.011e-01 1.882e-02 -5.556e-05 -3.514e-01 6.128e-04 - 1.882e-02 1.114e-01 -3.636e-05 -7.207e-02 4.132e-04 - -5.556e-05 -3.636e-05 2.972e-04 1.629e-03 -1.980e-06 - -3.514e-01 -7.207e-02 1.629e-03 3.615e+01 -2.589e-02 - 6.128e-04 4.132e-04 -1.980e-06 -2.589e-02 4.158e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22901 1.000 0.126 -0.007 -0.130 0.212 - 2 0.24394 0.126 1.000 -0.006 -0.036 0.192 - 3 0.01917 -0.007 -0.006 1.000 0.016 -0.018 - 4 0.67426 -0.130 -0.036 0.016 1.000 -0.668 - 5 0.69667 0.212 0.192 -0.018 -0.668 1.000 -300 -289.695 +- 0.448441 -20.4912 +- 0.333683 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10998.6 FROM MIGRAD STATUS=INITIATE 44 CALLS 45 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.85000e+02 7.00000e+00 0.00000e+00 1.82292e+02 - 2 sg_p1 2.00000e+01 3.00000e+00 0.00000e+00 1.71874e+02 - 3 sg_p2 3.05000e+02 1.10000e+01 0.00000e+00 5.32975e+02 - 4 sg_p3 3.07762e+01 1.20000e+01 -7.12504e-01 9.72386e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -2.81076e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10857.4 FROM MIGRAD STATUS=CONVERGED 443 CALLS 444 TOTAL - EDM=4.98868e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.86897e+02 4.50384e-01 9.00651e-04 -4.42030e-02 - 2 sg_p1 2.05381e+01 3.30444e-01 1.54851e-03 -1.71904e-02 - 3 sg_p2 3.60000e+02 4.58768e+00 2.94940e-02** at limit ** - 4 sg_p3 3.22720e+01 1.23522e+01 9.50923e-03 1.52629e-02 - 5 sg_p4 9.64411e-01 1.01122e-02 1.90336e-03 6.66364e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.029e-01 1.643e-02 -6.905e-05 -9.258e-01 1.002e-03 - 1.643e-02 1.092e-01 -3.441e-05 -1.687e-01 4.515e-04 - -6.905e-05 -3.441e-05 5.485e-05 5.168e-03 -4.433e-06 - -9.258e-01 -1.687e-01 5.168e-03 1.563e+02 -1.096e-01 - 1.002e-03 4.515e-04 -4.433e-06 -1.096e-01 1.024e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23805 1.000 0.110 -0.021 -0.164 0.220 - 2 0.21706 0.110 1.000 -0.014 -0.041 0.135 - 3 0.06085 -0.021 -0.014 1.000 0.056 -0.059 - 4 0.87005 -0.164 -0.041 0.056 1.000 -0.866 - 5 0.87483 0.220 0.135 -0.059 -0.866 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10857.4 FROM HESSE STATUS=OK 31 CALLS 475 TOTAL - EDM=4.96344e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.86897e+02 4.51095e-01 1.80130e-04 5.42398e-02 - 2 sg_p1 2.05381e+01 3.30465e-01 6.19404e-05 3.58796e-02 - 3 sg_p2 3.60000e+02 4.57970e+00 5.89879e-03 1.57112e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 3.22720e+01 1.26301e+01 3.80369e-04 -6.80009e-01 - 5 sg_p4 9.64411e-01 1.03457e-02 3.80673e-04 1.19122e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.035e-01 1.650e-02 -1.576e-05 -1.005e+00 1.062e-03 - 1.650e-02 1.092e-01 -7.711e-06 -1.941e-01 4.695e-04 - -1.576e-05 -7.711e-06 5.475e-05 1.202e-03 -1.025e-06 - -1.005e+00 -1.941e-01 1.202e-03 1.636e+02 -1.156e-01 - 1.062e-03 4.695e-04 -1.025e-06 -1.156e-01 1.071e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.24421 1.000 0.111 -0.005 -0.174 0.227 - 2 0.21733 0.111 1.000 -0.003 -0.046 0.137 - 3 0.01376 -0.005 -0.003 1.000 0.013 -0.013 - 4 0.87625 -0.174 -0.046 0.013 1.000 -0.873 - 5 0.88081 0.227 0.137 -0.013 -0.873 1.000 -300 -286.897 +- 0.451095 -20.5381 +- 0.330465 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=9427.95 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 0.00000e+00 1.31464e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 0.00000e+00 -2.82382e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 0.00000e+00 -1.05976e+00 - 4 sg_p3 5.43313e+01 1.20000e+01 -2.64207e-01 7.00043e+00 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -1.45220e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9204.59 FROM MIGRAD STATUS=CONVERGED 229 CALLS 230 TOTAL - EDM=6.66547e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00807e+02 2.06875e-01 9.24958e-04 -7.84006e-02 - 2 sg_p1 6.67548e+00 2.20836e-01 5.66581e-03 -4.55276e-03 - 3 sg_p2 2.86348e+02 3.69244e+00 1.62590e-03 -1.80856e-01 - 4 sg_p3 3.70116e+01 4.47529e+00 3.25190e-03 -7.94138e-02 - 5 sg_p4 6.46423e-01 1.60401e-02 1.99112e-03 -2.02931e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.280e-02 -6.675e-03 3.606e-02 -1.464e-01 -2.452e-04 - -6.675e-03 4.897e-02 -3.892e-01 5.095e-01 1.306e-03 - 3.606e-02 -3.892e-01 1.364e+01 -1.331e+01 -4.368e-04 - -1.464e-01 5.095e-01 -1.331e+01 2.008e+01 -1.514e-03 - -2.452e-04 1.306e-03 -4.368e-04 -1.514e-03 2.574e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23172 1.000 -0.146 0.047 -0.158 -0.074 - 2 0.64662 -0.146 1.000 -0.476 0.514 0.368 - 3 0.81187 0.047 -0.476 1.000 -0.804 -0.007 - 4 0.82962 -0.158 0.514 -0.804 1.000 -0.021 - 5 0.44432 -0.074 0.368 -0.007 -0.021 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9204.59 FROM HESSE STATUS=OK 31 CALLS 261 TOTAL - EDM=6.65624e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00807e+02 2.07041e-01 1.84992e-04 -2.83282e-01 - 2 sg_p1 6.67548e+00 2.24150e-01 2.26632e-04 -1.62980e-01 - 3 sg_p2 2.86348e+02 3.84665e+00 3.25179e-04 2.97108e-01 - 4 sg_p3 3.70116e+01 4.66245e+00 1.30076e-04 -5.82134e-01 - 5 sg_p4 6.46423e-01 1.60428e-02 3.98224e-04 2.97202e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.287e-02 -7.031e-03 4.534e-02 -1.570e-01 -2.475e-04 - -7.031e-03 5.046e-02 -4.308e-01 5.599e-01 1.315e-03 - 4.534e-02 -4.308e-01 1.481e+01 -1.475e+01 -6.186e-04 - -1.570e-01 5.599e-01 -1.475e+01 2.180e+01 -1.240e-03 - -2.475e-04 1.315e-03 -6.186e-04 -1.240e-03 2.575e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23496 1.000 -0.151 0.057 -0.162 -0.074 - 2 0.65975 -0.151 1.000 -0.498 0.534 0.365 - 3 0.82821 0.057 -0.498 1.000 -0.821 -0.010 - 4 0.84430 -0.162 0.534 -0.821 1.000 -0.017 - 5 0.44463 -0.074 0.365 -0.010 -0.017 1.000 -300 -300.807 +- 0.207041 -6.67548 +- 0.22415 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=9324.05 FROM MIGRAD STATUS=INITIATE 18 CALLS 19 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 2.01358e-01 1.26986e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -3.26570e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 2.01358e-01 1.80651e+01 - 4 sg_p3 7.00000e+01 1.20000e+01 2.01358e-01 1.95490e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -1.28150e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 11.1802 added to diagonal of error matrix - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.2302e+00 1.0000e+00 1.0003e+00 1.0996e+00 3.1303e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 1.233367 TO DIAGONAL. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9114.57 FROM MIGRAD STATUS=CONVERGED 289 CALLS 290 TOTAL - EDM=5.54375e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00989e+02 2.12814e-01 9.43941e-04 -9.14080e-04 - 2 sg_p1 6.53035e+00 2.40800e-01 5.98084e-03 4.80647e-03 - 3 sg_p2 2.93079e+02 2.00891e+00 1.26510e-03 8.67004e-03 - 4 sg_p3 3.22426e+01 3.06970e+00 3.13614e-03 5.39262e-03 - 5 sg_p4 6.37280e-01 1.82444e-02 2.01579e-03 -9.05889e-04 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.529e-02 -7.391e-03 -1.667e-02 -9.633e-02 -4.577e-04 - -7.391e-03 5.828e-02 -1.840e-01 4.072e-01 2.575e-03 - -1.667e-02 -1.840e-01 4.036e+00 -3.579e+00 -1.048e-02 - -9.633e-02 4.072e-01 -3.579e+00 9.437e+00 2.200e-02 - -4.577e-04 2.575e-03 -1.048e-02 2.200e-02 3.330e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23364 1.000 -0.144 -0.039 -0.147 -0.118 - 2 0.68293 -0.144 1.000 -0.379 0.549 0.585 - 3 0.60026 -0.039 -0.379 1.000 -0.580 -0.286 - 4 0.69097 -0.147 0.549 -0.580 1.000 0.393 - 5 0.59255 -0.118 0.585 -0.286 0.393 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9114.57 FROM HESSE STATUS=OK 31 CALLS 321 TOTAL - EDM=5.65701e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00989e+02 2.12854e-01 3.77576e-05 -2.70672e-01 - 2 sg_p1 6.53035e+00 2.42646e-01 1.19617e-03 -2.37040e-01 - 3 sg_p2 2.93079e+02 2.03806e+00 2.53019e-04 3.76364e-01 - 4 sg_p3 3.22426e+01 3.11925e+00 1.25446e-04 -6.80639e-01 - 5 sg_p4 6.37280e-01 1.83457e-02 8.06317e-05 2.78131e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.531e-02 -7.562e-03 -1.490e-02 -9.842e-02 -4.666e-04 - -7.562e-03 5.919e-02 -1.948e-01 4.241e-01 2.634e-03 - -1.490e-02 -1.948e-01 4.155e+00 -3.791e+00 -1.116e-02 - -9.842e-02 4.241e-01 -3.791e+00 9.744e+00 2.314e-02 - -4.666e-04 2.634e-03 -1.116e-02 2.314e-02 3.367e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23439 1.000 -0.146 -0.034 -0.148 -0.119 - 2 0.68886 -0.146 1.000 -0.393 0.558 0.590 - 3 0.61521 -0.034 -0.393 1.000 -0.596 -0.298 - 4 0.70278 -0.148 0.558 -0.596 1.000 0.404 - 5 0.59855 -0.119 0.590 -0.298 0.404 1.000 -300 -300.989 +- 0.212854 -6.53035 +- 0.242646 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=9310.64 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 0.00000e+00 1.34333e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 0.00000e+00 -2.36771e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 0.00000e+00 -1.06301e+01 - 4 sg_p3 4.94125e+01 1.20000e+01 -3.50242e-01 -6.56876e+00 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -1.57740e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9074.37 FROM MIGRAD STATUS=CONVERGED 198 CALLS 199 TOTAL - EDM=4.60513e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00716e+02 2.01045e-01 8.96469e-04 2.14226e-01 - 2 sg_p1 6.51517e+00 2.15145e-01 5.62639e-03 1.07423e-02 - 3 sg_p2 2.82932e+02 4.43725e+00 1.74062e-03 -1.31230e-01 - 4 sg_p3 3.77806e+01 4.64318e+00 3.03684e-03 -8.20421e-02 - 5 sg_p4 6.44030e-01 1.61428e-02 1.96449e-03 1.08169e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.042e-02 -6.174e-03 6.288e-02 -1.484e-01 -1.712e-04 - -6.174e-03 4.648e-02 -4.710e-01 4.996e-01 9.943e-04 - 6.288e-02 -4.710e-01 1.971e+01 -1.755e+01 9.466e-03 - -1.484e-01 4.996e-01 -1.755e+01 2.162e+01 -1.284e-02 - -1.712e-04 9.943e-04 9.466e-03 -1.284e-02 2.607e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22609 1.000 -0.142 0.070 -0.159 -0.053 - 2 0.63799 -0.142 1.000 -0.492 0.498 0.286 - 3 0.85697 0.070 -0.492 1.000 -0.850 0.132 - 4 0.86627 -0.159 0.498 -0.850 1.000 -0.171 - 5 0.46460 -0.053 0.286 0.132 -0.171 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9074.37 FROM HESSE STATUS=OK 31 CALLS 230 TOTAL - EDM=4.60124e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00716e+02 2.01266e-01 1.79294e-04 -2.89604e-01 - 2 sg_p1 6.51517e+00 2.18764e-01 1.12528e-03 -2.44853e-01 - 3 sg_p2 2.82932e+02 4.66955e+00 3.48124e-04 2.57637e-01 - 4 sg_p3 3.77806e+01 4.88570e+00 1.21473e-04 -5.66865e-01 - 5 sg_p4 6.44030e-01 1.61620e-02 3.92898e-04 2.92200e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.051e-02 -6.582e-03 7.683e-02 -1.625e-01 -1.645e-04 - -6.582e-03 4.806e-02 -5.290e-01 5.602e-01 9.646e-04 - 7.683e-02 -5.290e-01 2.183e+01 -1.979e+01 1.061e-02 - -1.625e-01 5.602e-01 -1.979e+01 2.394e+01 -1.401e-02 - -1.645e-04 9.646e-04 1.061e-02 -1.401e-02 2.613e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23066 1.000 -0.149 0.082 -0.165 -0.051 - 2 0.65313 -0.149 1.000 -0.516 0.522 0.272 - 3 0.87189 0.082 -0.516 1.000 -0.866 0.140 - 4 0.88014 -0.165 0.522 -0.866 1.000 -0.177 - 5 0.46660 -0.051 0.272 0.140 -0.177 1.000 -300 -300.716 +- 0.201266 -6.51517 +- 0.218764 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=9199.28 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 2.01358e-01 1.31737e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -3.80725e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 2.01358e-01 3.68970e+01 - 4 sg_p3 7.00000e+01 1.20000e+01 2.01358e-01 3.60460e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -9.61061e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=8979.33 FROM MIGRAD STATUS=CONVERGED 286 CALLS 287 TOTAL - EDM=6.06176e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00769e+02 2.16735e-01 9.53991e-04 -5.33757e-02 - 2 sg_p1 6.70308e+00 2.45021e-01 5.89293e-03 -3.95912e-02 - 3 sg_p2 2.87922e+02 3.34063e+00 1.53235e-03 -3.18644e-02 - 4 sg_p3 3.55948e+01 4.26381e+00 3.23155e-03 -4.27157e-03 - 5 sg_p4 6.37600e-01 1.68956e-02 2.00611e-03 2.50190e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.698e-02 -9.160e-03 4.009e-02 1.638e-01 -3.977e-04 - -9.160e-03 6.035e-02 -4.159e-01 -5.898e-01 1.951e-03 - 4.009e-02 -4.159e-01 1.117e+01 1.132e+01 -9.034e-03 - 1.638e-01 -5.898e-01 1.132e+01 1.823e+01 -1.125e-02 - -3.977e-04 1.951e-03 -9.034e-03 -1.125e-02 2.856e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25346 1.000 -0.172 0.055 0.177 -0.109 - 2 0.68892 -0.172 1.000 -0.507 -0.562 0.470 - 3 0.80257 0.055 -0.507 1.000 0.794 -0.160 - 4 0.82438 0.177 -0.562 0.794 1.000 -0.156 - 5 0.48969 -0.109 0.470 -0.160 -0.156 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=8979.33 FROM HESSE STATUS=OK 31 CALLS 318 TOTAL - EDM=6.06043e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00769e+02 2.16688e-01 1.90798e-04 -2.85961e-01 - 2 sg_p1 6.70308e+00 2.44943e-01 1.17859e-03 -1.49009e-01 - 3 sg_p2 2.87922e+02 3.32664e+00 3.06471e-04 3.15452e-01 - 4 sg_p3 3.55948e+01 4.24592e+00 1.29262e-04 -2.53092e+00 - 5 sg_p4 6.37600e-01 1.68934e-02 4.01222e-04 2.78798e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.696e-02 -9.141e-03 3.853e-02 1.617e-01 -3.954e-04 - -9.141e-03 6.031e-02 -4.131e-01 -5.862e-01 1.947e-03 - 3.853e-02 -4.131e-01 1.107e+01 1.120e+01 -8.911e-03 - 1.617e-01 -5.862e-01 1.120e+01 1.807e+01 -1.105e-02 - -3.954e-04 1.947e-03 -8.911e-03 -1.105e-02 2.855e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25265 1.000 -0.172 0.053 0.175 -0.108 - 2 0.68868 -0.172 1.000 -0.506 -0.562 0.469 - 3 0.80070 0.053 -0.506 1.000 0.792 -0.158 - 4 0.82272 0.175 -0.562 0.792 1.000 -0.154 - 5 0.48949 -0.108 0.469 -0.158 -0.154 1.000 -300 -300.769 +- 0.216688 -6.70308 +- 0.244943 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=9528.95 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 2.01358e-01 1.40358e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -2.86077e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 2.01358e-01 4.07742e+01 - 4 sg_p3 7.00000e+01 1.20000e+01 2.01358e-01 3.28657e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -1.55130e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9284.6 FROM MIGRAD STATUS=CONVERGED 275 CALLS 276 TOTAL - EDM=1.0669e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00844e+02 2.01930e-01 9.05593e-04 7.10616e-03 - 2 sg_p1 6.50018e+00 2.20682e-01 5.70172e-03 -1.20796e-03 - 3 sg_p2 2.89404e+02 2.63913e+00 1.40244e-03 7.93444e-03 - 4 sg_p3 3.36229e+01 3.43508e+00 3.08392e-03 -8.78771e-03 - 5 sg_p4 6.54921e-01 1.64524e-02 1.98673e-03 -7.23147e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.078e-02 -6.775e-03 1.130e-02 -1.118e-01 -3.655e-04 - -6.775e-03 4.891e-02 -2.623e-01 4.000e-01 1.828e-03 - 1.130e-02 -2.623e-01 6.967e+00 -6.550e+00 -9.484e-03 - -1.118e-01 4.000e-01 -6.550e+00 1.182e+01 1.315e-02 - -3.655e-04 1.828e-03 -9.484e-03 1.315e-02 2.708e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23688 1.000 -0.152 0.021 -0.161 -0.110 - 2 0.66103 -0.152 1.000 -0.449 0.526 0.502 - 3 0.73398 0.021 -0.449 1.000 -0.722 -0.218 - 4 0.76528 -0.161 0.526 -0.722 1.000 0.232 - 5 0.50584 -0.110 0.502 -0.218 0.232 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9284.6 FROM HESSE STATUS=OK 31 CALLS 307 TOTAL - EDM=1.12622e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00844e+02 2.02032e-01 3.62237e-05 -2.80744e-01 - 2 sg_p1 6.50018e+00 2.23003e-01 2.28069e-04 -2.52587e-01 - 3 sg_p2 2.89404e+02 2.70635e+00 2.80488e-04 3.32825e-01 - 4 sg_p3 3.36229e+01 3.52423e+00 1.23357e-04 -6.93457e+00 - 5 sg_p4 6.54921e-01 1.65063e-02 3.97346e-04 3.15027e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.082e-02 -7.019e-03 1.539e-02 -1.166e-01 -3.746e-04 - -7.019e-03 4.995e-02 -2.818e-01 4.255e-01 1.872e-03 - 1.539e-02 -2.818e-01 7.327e+00 -7.045e+00 -1.028e-02 - -1.166e-01 4.255e-01 -7.045e+00 1.244e+01 1.424e-02 - -3.746e-04 1.872e-03 -1.028e-02 1.424e-02 2.726e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23888 1.000 -0.155 0.028 -0.164 -0.112 - 2 0.66984 -0.155 1.000 -0.466 0.540 0.507 - 3 0.74924 0.028 -0.466 1.000 -0.738 -0.230 - 4 0.77870 -0.164 0.540 -0.738 1.000 0.244 - 5 0.51061 -0.112 0.507 -0.230 0.244 1.000 -300 -300.844 +- 0.202032 -6.50018 +- 0.223003 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=8804.14 FROM MIGRAD STATUS=INITIATE 38 CALLS 39 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 0.00000e+00 1.21619e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 0.00000e+00 -2.50995e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 0.00000e+00 -2.34806e+01 - 4 sg_p3 5.09831e+01 1.20000e+01 -3.22511e-01 -1.58294e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -1.45258e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=8594.18 FROM MIGRAD STATUS=CONVERGED 195 CALLS 196 TOTAL - EDM=0.000103955 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00810e+02 2.13585e-01 9.23962e-04 -3.32389e-01 - 2 sg_p1 6.67466e+00 2.27375e-01 5.64986e-03 -6.39462e-02 - 3 sg_p2 2.86358e+02 3.78706e+00 1.67027e-03 2.10141e-01 - 4 sg_p3 3.68730e+01 4.57772e+00 3.31711e-03 1.33026e-01 - 5 sg_p4 6.48483e-01 1.65693e-02 1.99186e-03 1.18731e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.562e-02 -7.064e-03 3.747e-02 -1.545e-01 -2.634e-04 - -7.064e-03 5.193e-02 -4.091e-01 5.342e-01 1.402e-03 - 3.747e-02 -4.091e-01 1.435e+01 -1.392e+01 -8.150e-04 - -1.545e-01 5.342e-01 -1.392e+01 2.101e+01 -1.176e-03 - -2.634e-04 1.402e-03 -8.150e-04 -1.176e-03 2.747e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23149 1.000 -0.145 0.046 -0.158 -0.074 - 2 0.64493 -0.145 1.000 -0.474 0.511 0.371 - 3 0.80971 0.046 -0.474 1.000 -0.802 -0.013 - 4 0.82741 -0.158 0.511 -0.802 1.000 -0.015 - 5 0.44365 -0.074 0.371 -0.013 -0.015 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=8594.18 FROM HESSE STATUS=OK 31 CALLS 227 TOTAL - EDM=0.000103618 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00810e+02 2.13733e-01 1.84792e-04 -2.83111e-01 - 2 sg_p1 6.67466e+00 2.30409e-01 1.12997e-03 -1.63396e-01 - 3 sg_p2 2.86358e+02 3.92954e+00 3.34054e-04 2.97224e-01 - 4 sg_p3 3.68730e+01 4.75005e+00 6.63422e-04 -5.84901e-01 - 5 sg_p4 6.48483e-01 1.65714e-02 3.98372e-04 3.01515e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.569e-02 -7.400e-03 4.620e-02 -1.644e-01 -2.656e-04 - -7.400e-03 5.333e-02 -4.485e-01 5.817e-01 1.411e-03 - 4.620e-02 -4.485e-01 1.545e+01 -1.528e+01 -1.007e-03 - -1.644e-01 5.817e-01 -1.528e+01 2.263e+01 -8.956e-04 - -2.656e-04 1.411e-03 -1.007e-03 -8.956e-04 2.747e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23430 1.000 -0.150 0.055 -0.162 -0.075 - 2 0.65672 -0.150 1.000 -0.494 0.530 0.369 - 3 0.82472 0.055 -0.494 1.000 -0.817 -0.015 - 4 0.84090 -0.162 0.530 -0.817 1.000 -0.011 - 5 0.44388 -0.075 0.369 -0.015 -0.011 1.000 -300 -300.81 +- 0.213733 -6.67466 +- 0.230409 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10085.1 FROM MIGRAD STATUS=INITIATE 38 CALLS 39 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 0.00000e+00 1.41204e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 0.00000e+00 -3.13147e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 0.00000e+00 9.36393e+00 - 4 sg_p3 5.63011e+01 1.20000e+01 -2.30347e-01 1.74222e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -1.47792e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9847.01 FROM MIGRAD STATUS=CONVERGED 237 CALLS 238 TOTAL - EDM=9.73968e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00804e+02 2.00448e-01 9.27938e-04 -2.66723e-02 - 2 sg_p1 6.67674e+00 2.14181e-01 5.68372e-03 6.00134e-04 - 3 sg_p2 2.86357e+02 3.57965e+00 1.66724e-03 -1.62501e-02 - 4 sg_p3 3.71633e+01 4.35962e+00 3.32473e-03 2.36830e-03 - 5 sg_p4 6.44672e-01 1.55331e-02 1.99195e-03 -8.00555e-04 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.018e-02 -6.290e-03 3.361e-02 -1.381e-01 -2.282e-04 - -6.290e-03 4.605e-02 -3.651e-01 4.812e-01 1.217e-03 - 3.361e-02 -3.651e-01 1.282e+01 -1.255e+01 -7.211e-05 - -1.381e-01 4.812e-01 -1.255e+01 1.905e+01 -1.851e-03 - -2.282e-04 1.217e-03 -7.211e-05 -1.851e-03 2.414e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23182 1.000 -0.146 0.047 -0.158 -0.073 - 2 0.64675 -0.146 1.000 -0.475 0.514 0.365 - 3 0.81111 0.047 -0.475 1.000 -0.803 -0.001 - 4 0.82935 -0.158 0.514 -0.803 1.000 -0.027 - 5 0.44510 -0.073 0.365 -0.001 -0.027 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9847.01 FROM HESSE STATUS=OK 31 CALLS 269 TOTAL - EDM=1.05973e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00804e+02 2.00611e-01 1.85588e-04 -2.83535e-01 - 2 sg_p1 6.67674e+00 2.17452e-01 2.27349e-04 -1.62344e-01 - 3 sg_p2 2.86357e+02 3.73232e+00 3.33449e-04 2.97212e-01 - 4 sg_p3 3.71633e+01 4.54584e+00 1.32989e-04 -5.79108e-01 - 5 sg_p4 6.44672e-01 1.55348e-02 7.96779e-05 2.93540e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.025e-02 -6.630e-03 4.251e-02 -1.483e-01 -2.300e-04 - -6.630e-03 4.748e-02 -4.050e-01 5.298e-01 1.225e-03 - 4.251e-02 -4.050e-01 1.394e+01 -1.395e+01 -2.119e-04 - -1.483e-01 5.298e-01 -1.395e+01 2.072e+01 -1.629e-03 - -2.300e-04 1.225e-03 -2.119e-04 -1.629e-03 2.414e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23512 1.000 -0.152 0.057 -0.162 -0.074 - 2 0.66010 -0.152 1.000 -0.498 0.534 0.362 - 3 0.82785 0.057 -0.498 1.000 -0.821 -0.004 - 4 0.84435 -0.162 0.534 -0.821 1.000 -0.023 - 5 0.44529 -0.074 0.362 -0.004 -0.023 1.000 -300 -300.804 +- 0.200611 -6.67674 +- 0.217452 -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 300.807 +- 0.207041 (stat) - 0.0909738 + 0.181936 (syst); -0.137814/+0.209326 (total) - Uncertainty on sg_p1 = 6.67548 +- 0.22415 (stat) - 0.1753 + 0.0276028 (syst); -0.208065/+0.115424 (total) - Uncertainty on sg_p2 = 286.348 +- 3.84665 (stat) - 3.4164 + 6.73068 (syst); -3.92058/+7.00009 (total) - Uncertainty on sg_p3 = 37.0116 +- 4.66245 (stat) - 4.76893 + 0.769026 (syst); -5.30823/+2.45479 (total) - Uncertainty on sg_p4 = 0.646423 +- 0.0160428 (stat) - 0.00914333 + 0.00849815 (syst); -0.0121632/+0.0116859 (total) - === Baseline plot ===
- norm = 304.126 -JEC lnN 1.00496 - -JER lnN 1.02029 - -btag lnN 1.06837 - -sg_p0 param 300.807 -0.137814/+0.209326 -sg_p1 param 6.67548 -0.208065/+0.115424 -sg_p2 param 286.348 -3.92058/+7.00009 -sg_p3 param 37.0116 -5.30823/+2.45479 -sg_p4 param 0.646423 -0.0121632/+0.0116859 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_gaus_exp_252_330/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_gaus_exp_252_330/data_bkg.log deleted file mode 100644 index 3cc1900..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_gaus_exp_252_330/data_bkg.log +++ /dev/null @@ -1,750 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [252,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=62921.6 FROM MIGRAD STATUS=INITIATE 90 CALLS 91 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.21879e-02 5.09000e-01 0.00000e+00 -9.80911e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -1.28354e+01 - 3 par_crystal_2 2.65669e+02 4.00000e+00 0.00000e+00 3.55320e+02 - 4 par_crystal_3 1.06488e+01 2.70000e+00 -4.48284e-01 -2.33576e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62883.4 FROM HESSE STATUS=OK 29 CALLS 257 TOTAL - EDM=4.91113 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.66060e-01 4.16121e-03 3.52377e-04 -4.74293e+00 - 2 par_crystal_1 4.45375e+00 2.73731e+00 1.77223e-01 2.66184e-01 - 3 par_crystal_2 2.67385e+02 2.04373e-01 8.29600e-04 2.81454e+02 - 4 par_crystal_3 1.36851e+01 5.38888e-01 1.69331e-03 -1.62103e+00 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=62883.3 FROM MIGRAD STATUS=FAILED 358 CALLS 359 TOTAL - EDM=0.00753244 STRATEGY= 1 ERR MATRIX APPROXIMATE - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.65093e-01 8.39913e-03 1.31861e-03 5.42788e+00 - 2 par_crystal_1 5.09910e+00 4.33634e+00 3.39194e-01 -6.59950e-03 - 3 par_crystal_2 2.67339e+02 1.86486e-01 3.32550e-03 -8.58879e+00 - 4 par_crystal_3 1.37140e+01 6.01780e-01 6.34807e-03 1.69258e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.055e-05 1.617e-04 4.699e-04 2.892e-03 - 1.617e-04 1.762e-02 -1.356e-04 -1.108e-03 - 4.699e-04 -1.356e-04 3.478e-02 3.255e-02 - 2.892e-03 -1.108e-03 3.255e-02 3.624e-01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.60853 1.000 0.145 0.300 0.572 - 2 0.19009 0.145 1.000 -0.005 -0.014 - 3 0.33449 0.300 -0.005 1.000 0.290 - 4 0.59243 0.572 -0.014 0.290 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7660e-01 8.1807e-01 1.6519e+00 1.7066e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.178308 TO DIAGONAL. - FCN=62883.3 FROM HESSE STATUS=NOT POSDEF 33 CALLS 392 TOTAL - EDM=3.36849 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.65093e-01 8.70034e-02 2.63722e-04 -1.21988e+00 - 2 par_crystal_1 5.09910e+00 4.18121e+00 5.00000e-01 1.54425e+00 - 3 par_crystal_2 2.67339e+02 5.27040e+00 9.57407e-02 3.75715e-01 - 4 par_crystal_3 1.37140e+01 6.68546e+00 2.53923e-04 -2.07863e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.595e-03 -2.994e-03 4.642e-01 6.089e-01 - -2.994e-03 1.536e-02 -1.944e-01 -2.569e-01 - 4.642e-01 -1.944e-01 2.855e+01 3.736e+01 - 6.089e-01 -2.569e-01 3.736e+01 4.914e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99751 1.000 -0.277 0.997 0.997 - 2 0.37560 -0.277 1.000 -0.293 -0.296 - 3 0.99795 0.997 -0.293 1.000 0.997 - 4 0.99797 0.997 -0.296 0.997 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=62983.1 FROM MIGRAD STATUS=INITIATE 29 CALLS 30 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 6.05383e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -1.33666e+02 - 3 par_gaus_exp_2 3.19008e-01 3.05000e-01 -9.67731e-01 -3.33619e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.00383 added to diagonal of error matrix - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62882.7 FROM MIGRAD STATUS=CONVERGED 228 CALLS 229 TOTAL - EDM=4.4408e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.69095e+02 7.01852e-01 4.07755e-03 2.89794e-02 - 2 par_gaus_exp_1 1.61044e+01 1.09719e+00 7.43010e-03 -1.84784e-02 - 3 par_gaus_exp_2 1.90527e-01 1.58774e-02 1.98778e-03 -6.23432e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 4.929e-01 5.914e-01 9.067e-03 - 5.914e-01 1.207e+00 1.483e-02 - 9.067e-03 1.483e-02 2.521e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.82590 1.000 0.767 0.813 - 2 0.85979 0.767 1.000 0.850 - 3 0.88644 0.813 0.850 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62882.7 FROM HESSE STATUS=OK 16 CALLS 245 TOTAL - EDM=4.28199e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.69095e+02 6.86832e-01 1.63102e-04 -5.76704e-01 - 2 par_gaus_exp_1 1.61044e+01 1.07335e+00 2.97204e-04 -5.72398e-01 - 3 par_gaus_exp_2 1.90527e-01 1.55212e-02 7.95110e-05 -1.13813e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 4.720e-01 5.579e-01 8.580e-03 - 5.579e-01 1.155e+00 1.406e-02 - 8.580e-03 1.406e-02 2.410e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.81734 1.000 0.756 0.805 - 2 0.85292 0.756 1.000 0.843 - 3 0.88081 0.805 0.843 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,624] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.3296 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.3296) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=286.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=286.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=289.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=289.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=295.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=295.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=298.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=298.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=301.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=301.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - ... (remaining 216 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.733611 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.733611) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=313.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=316.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=319.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=325.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=328.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=331.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=334.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=340.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=343.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=346.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - ... (remaining 94 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0733618 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0733618 - - FCN=103426 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57146e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.55551e+03 - 3 par_novo_2 -1.33526e+00 2.00000e+01 0.00000e+00 1.53308e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103192 FROM MIGRAD STATUS=CONVERGED 126 CALLS 127 TOTAL - EDM=1.07924e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.17697e+01 1.69443e-01** at limit ** - 2 par_novo_1 3.87878e+01 2.27475e+00 4.96100e-03 -6.14249e-02 - 3 par_novo_2 -1.26766e+00 7.00630e-02 3.67886e-05 3.77179e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 2.244e-10 -2.632e-07 -1.276e-07 - -2.632e-07 5.190e+00 1.540e-01 - -1.276e-07 1.540e-01 4.909e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.43392 1.000 -0.008 -0.122 - 2 0.97109 -0.008 1.000 0.965 - 3 0.97152 -0.122 0.965 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103192 FROM HESSE STATUS=OK 20 CALLS 147 TOTAL - EDM=1.23299e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.15107e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.87878e+01 2.30410e+00 1.98440e-04 4.51799e-01 - 3 par_novo_2 -1.26766e+00 7.13892e-02 1.47154e-06 -1.26769e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 2.143e-10 3.996e-06 -2.087e-07 - 3.996e-06 5.325e+00 1.518e-01 - -2.087e-07 1.518e-01 5.096e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.80390 1.000 0.118 -0.200 - 2 0.97183 0.118 1.000 0.922 - 3 0.97258 -0.200 0.922 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107617 FROM MIGRAD STATUS=INITIATE 36 CALLS 37 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 6.60405e+03 - 2 par_crystal_1_1 7.90153e-02 5.09000e-01 -1.80421e+00 3.05679e+03 - 3 par_crystal_1_2 2.60000e+02 4.00000e+00 0.00000e+00 1.48888e+03 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 6.99071e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.17529 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.7903e-03 5.8606e-02 5.0897e-01 3.4352e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.006225 TO DIAGONAL. - FCN=103191 FROM MIGRAD STATUS=CONVERGED 353 CALLS 354 TOTAL - EDM=3.7306e-06 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.37913e-01 3.41139e-02 6.19492e-04 4.10204e-01 - 2 par_crystal_1_1 4.44737e+00 5.69760e-01 2.21494e-02 9.88736e-03 - 3 par_crystal_1_2 2.79979e+02 3.40482e+01 2.79535e-01 -2.97577e-04 - 4 par_crystal_1_3 1.87584e+01 2.98857e+00 3.96232e-03 -6.40797e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.164e-03 3.582e-03 3.594e-03 9.898e-02 - 3.582e-03 3.375e-01 -1.052e-02 7.382e-01 - 3.594e-03 -1.052e-02 3.148e+00 6.243e-01 - 9.898e-02 7.382e-01 6.243e-01 9.086e+00 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99630 1.000 0.181 0.059 0.962 - 2 0.95650 0.181 1.000 -0.010 0.422 - 3 0.63948 0.059 -0.010 1.000 0.117 - 4 0.99690 0.962 0.422 0.117 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103191 FROM HESSE STATUS=OK 27 CALLS 381 TOTAL - EDM=6.06842e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 2.37913e-01 2.12502e-01 1.23898e-04 -8.36786e+01 - 2 par_crystal_1_1 4.44737e+00 5.06952e-01 8.85975e-04 -1.65463e+01 - 3 par_crystal_1_2 2.79979e+02 2.96341e+01 5.00000e-01 7.80831e+00 - 4 par_crystal_1_3 1.87584e+01 1.90925e+01 1.58493e-04 2.18231e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.578e-02 1.663e-02 2.427e-02 3.730e+00 - 1.663e-02 2.650e-01 -4.299e-02 1.684e+00 - 2.427e-02 -4.299e-02 1.850e+00 2.341e+00 - 3.730e+00 1.684e+00 2.341e+00 3.045e+02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99991 1.000 0.151 0.083 0.999 - 2 0.94385 0.151 1.000 -0.061 0.187 - 3 0.80384 0.083 -0.061 1.000 0.099 - 4 0.99991 0.999 0.187 0.099 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 13889.7 - Background number of gaus_exp_252_330 = 13889.7 - Background number of novo_285_624 = 17637.2 - Background number of crystal_1_285_624 = 17637.2 - Background number of gaus_bern_285_624 = 17637.2 - Background number of landau_285_624 = 17637.2 -par_crystal_0 param 0.165093 0.0870034 -par_crystal_1 param 5.0991 4.18121 -par_crystal_2 param 267.339 5.2704 -par_crystal_3 param 13.714 6.68546 -par_crystal_1_0 param 0.237913 0.212502 -par_crystal_1_1 param 4.44737 0.506952 -par_crystal_1_2 param 279.979 29.6341 -par_crystal_1_3 param 18.7584 19.0925 -par_gaus_exp_0 param 269.095 0.686832 -par_gaus_exp_1 param 16.1044 1.07335 -par_gaus_exp_2 param 0.190527 0.0155212 -par_novo_0 param 250 31.5107 -par_novo_1 param 38.7878 2.3041 -par_novo_2 param -1.26766 0.0713892 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_gaus_exp_252_330/datacard_300_gaus_exp_252_330.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_gaus_exp_252_330/datacard_300_gaus_exp_252_330.txt deleted file mode 100644 index 54d56e8..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_gaus_exp_252_330/datacard_300_gaus_exp_252_330.txt +++ /dev/null @@ -1,30 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_300.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_gaus_exp_252_330.root HbbHbb:f_gaus_exp -shapes data_obs HbbHbb w_background_gaus_exp_252_330.root HbbHbb:data_obs_gaus_exp_252_330 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 304.126 13889.7 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06837 - -JER lnN 1.02029 - -JEC lnN 1.00496 - -trigger lnN 1.10 - -PDF lnN 1.01533148611 - -sg_p0 param 300.807 -0.137814/+0.209326 -sg_p1 param 6.67548 -0.208065/+0.115424 -sg_p2 param 286.348 -3.92058/+7.00009 -sg_p3 param 37.0116 -5.30823/+2.45479 -sg_p4 param 0.646423 -0.0121632/+0.0116859 -par_gaus_exp_0 param 269.095 0.686832 -par_gaus_exp_1 param 16.1044 1.07335 -par_gaus_exp_2 param 0.190527 0.0155212 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_gaus_exp_252_330/pdf.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_gaus_exp_252_330/pdf.log deleted file mode 100644 index e77095c..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_gaus_exp_252_330/pdf.log +++ /dev/null @@ -1,10 +0,0 @@ -[?1034h FCN=10.366 FROM MIGRAD STATUS=CONVERGED 69 CALLS 70 TOTAL - EDM=1.25903e-09 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 Constant 1.89692e+01 2.45680e+00 3.29830e-03 -7.24825e-06 - 2 Mean 1.00074e+00 1.81805e-03 2.81850e-06 3.61959e-03 - 3 Sigma 1.53315e-02 1.29036e-03 3.63480e-05 1.24404e-03 -1.00074474072 +/- 0.00181805488368 -0.0153314861114 +/- 0.00129036445321 -PDF lnN 1.01533148611 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_gaus_exp_252_330/signal300_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_gaus_exp_252_330/signal300_sig.log deleted file mode 100644 index e692189..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_gaus_exp_252_330/signal300_sig.log +++ /dev/null @@ -1,859 +0,0 @@ - -Processing test.c... -nSignal_init = 292400 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11139.4 FROM MIGRAD STATUS=INITIATE 41 CALLS 42 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.85000e+02 7.00000e+00 0.00000e+00 3.99147e+02 - 2 sg_p1 2.00000e+01 3.00000e+00 0.00000e+00 5.36454e+01 - 3 sg_p2 3.05000e+02 1.10000e+01 0.00000e+00 5.03573e+02 - 4 sg_p3 2.15253e+01 1.20000e+01 -9.40600e-01 -5.65980e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -2.37474e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10983.2 FROM MIGRAD STATUS=CONVERGED 401 CALLS 402 TOTAL - EDM=5.6187e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.88323e+02 4.47990e-01 9.04940e-04 1.11533e-01 - 2 sg_p1 2.05573e+01 3.30978e-01 1.55295e-03 -5.38166e-02 - 3 sg_p2 3.60000e+02 7.01972e+00 3.68073e-02** at limit ** - 4 sg_p3 3.31232e+01 1.31185e+01 9.89999e-03 1.11043e-02 - 5 sg_p4 9.64843e-01 1.04001e-02 1.95930e-03 4.50763e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.007e-01 1.739e-02 -1.190e-04 -7.889e-01 9.394e-04 - 1.739e-02 1.096e-01 -6.312e-05 -5.744e-02 4.186e-04 - -1.190e-04 -6.312e-05 9.525e-05 8.817e-03 -7.777e-06 - -7.889e-01 -5.744e-02 8.817e-03 1.767e+02 -1.200e-01 - 9.394e-04 4.186e-04 -7.777e-06 -1.200e-01 1.083e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23279 1.000 0.117 -0.027 -0.132 0.202 - 2 0.23564 0.117 1.000 -0.020 -0.013 0.122 - 3 0.07829 -0.027 -0.020 1.000 0.068 -0.077 - 4 0.87296 -0.132 -0.013 0.068 1.000 -0.867 - 5 0.87761 0.202 0.122 -0.077 -0.867 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10983.2 FROM HESSE STATUS=OK 31 CALLS 433 TOTAL - EDM=5.61214e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.88323e+02 4.48511e-01 1.80988e-04 9.50767e-02 - 2 sg_p1 2.05573e+01 3.30912e-01 6.21181e-05 3.71642e-02 - 3 sg_p2 3.60000e+02 7.00510e+00 7.36146e-03 1.57114e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 3.31232e+01 1.34621e+01 3.96000e-04 -6.61896e-01 - 5 sg_p4 9.64843e-01 1.06761e-02 3.91861e-04 1.19356e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.012e-01 1.735e-02 -2.672e-05 -8.721e-01 9.990e-04 - 1.735e-02 1.095e-01 -1.383e-05 -7.606e-02 4.303e-04 - -2.672e-05 -1.383e-05 9.505e-05 2.045e-03 -1.786e-06 - -8.721e-01 -7.606e-02 2.045e-03 1.863e+02 -1.276e-01 - 9.990e-04 4.303e-04 -1.786e-06 -1.276e-01 1.141e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23747 1.000 0.117 -0.006 -0.142 0.209 - 2 0.23484 0.117 1.000 -0.004 -0.017 0.122 - 3 0.01751 -0.006 -0.004 1.000 0.015 -0.017 - 4 0.87999 -0.142 -0.017 0.015 1.000 -0.875 - 5 0.88427 0.209 0.122 -0.017 -0.875 1.000 -300 -288.323 +- 0.448511 -20.5573 +- 0.330912 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11021.8 FROM MIGRAD STATUS=INITIATE 44 CALLS 45 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.85000e+02 7.00000e+00 0.00000e+00 -1.23228e+01 - 2 sg_p1 2.00000e+01 3.00000e+00 0.00000e+00 1.69370e+02 - 3 sg_p2 3.05000e+02 1.10000e+01 0.00000e+00 3.59937e+02 - 4 sg_p3 2.91405e+01 1.20000e+01 -7.49116e-01 1.62870e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -1.88730e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10926.7 FROM MIGRAD STATUS=CONVERGED 404 CALLS 405 TOTAL - EDM=7.36709e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.89695e+02 4.48479e-01 9.08525e-04 -1.63756e-02 - 2 sg_p1 2.04912e+01 3.33789e-01 1.55841e-03 3.48244e-02 - 3 sg_p2 3.60000e+02 5.29130e+00 3.12243e-02** at limit ** - 4 sg_p3 2.52611e+01 5.98773e+00 7.97733e-03 1.66965e-02 - 5 sg_p4 9.65128e-01 6.44706e-03 1.81806e-03 6.25824e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.011e-01 1.895e-02 -2.334e-04 -3.465e-01 6.114e-04 - 1.895e-02 1.114e-01 -1.530e-04 -6.771e-02 4.120e-04 - -2.334e-04 -1.530e-04 2.973e-04 6.759e-03 -8.288e-06 - -3.465e-01 -6.771e-02 6.759e-03 3.612e+01 -2.585e-02 - 6.114e-04 4.120e-04 -8.288e-06 -2.585e-02 4.158e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22936 1.000 0.127 -0.030 -0.129 0.211 - 2 0.24516 0.127 1.000 -0.027 -0.034 0.191 - 3 0.08010 -0.030 -0.027 1.000 0.065 -0.075 - 4 0.67399 -0.129 -0.034 0.065 1.000 -0.667 - 5 0.69669 0.211 0.191 -0.075 -0.667 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10926.7 FROM HESSE STATUS=OK 31 CALLS 436 TOTAL - EDM=7.38964e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.89695e+02 4.48441e-01 1.81705e-04 1.34553e-01 - 2 sg_p1 2.04912e+01 3.33683e-01 6.23363e-05 3.27513e-02 - 3 sg_p2 3.60000e+02 5.29001e+00 6.24486e-03 1.57151e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 2.52611e+01 5.99008e+00 3.19093e-04 -8.41506e-01 - 5 sg_p4 9.65128e-01 6.44684e-03 3.63611e-04 1.19511e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.011e-01 1.882e-02 -5.556e-05 -3.514e-01 6.128e-04 - 1.882e-02 1.114e-01 -3.636e-05 -7.207e-02 4.132e-04 - -5.556e-05 -3.636e-05 2.972e-04 1.629e-03 -1.980e-06 - -3.514e-01 -7.207e-02 1.629e-03 3.615e+01 -2.589e-02 - 6.128e-04 4.132e-04 -1.980e-06 -2.589e-02 4.158e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22901 1.000 0.126 -0.007 -0.130 0.212 - 2 0.24394 0.126 1.000 -0.006 -0.036 0.192 - 3 0.01917 -0.007 -0.006 1.000 0.016 -0.018 - 4 0.67426 -0.130 -0.036 0.016 1.000 -0.668 - 5 0.69667 0.212 0.192 -0.018 -0.668 1.000 -300 -289.695 +- 0.448441 -20.4912 +- 0.333683 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10998.6 FROM MIGRAD STATUS=INITIATE 44 CALLS 45 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.85000e+02 7.00000e+00 0.00000e+00 1.82292e+02 - 2 sg_p1 2.00000e+01 3.00000e+00 0.00000e+00 1.71874e+02 - 3 sg_p2 3.05000e+02 1.10000e+01 0.00000e+00 5.32975e+02 - 4 sg_p3 3.07762e+01 1.20000e+01 -7.12504e-01 9.72386e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -2.81076e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10857.4 FROM MIGRAD STATUS=CONVERGED 443 CALLS 444 TOTAL - EDM=4.98868e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.86897e+02 4.50384e-01 9.00651e-04 -4.42030e-02 - 2 sg_p1 2.05381e+01 3.30444e-01 1.54851e-03 -1.71904e-02 - 3 sg_p2 3.60000e+02 4.58768e+00 2.94940e-02** at limit ** - 4 sg_p3 3.22720e+01 1.23522e+01 9.50923e-03 1.52629e-02 - 5 sg_p4 9.64411e-01 1.01122e-02 1.90336e-03 6.66364e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.029e-01 1.643e-02 -6.905e-05 -9.258e-01 1.002e-03 - 1.643e-02 1.092e-01 -3.441e-05 -1.687e-01 4.515e-04 - -6.905e-05 -3.441e-05 5.485e-05 5.168e-03 -4.433e-06 - -9.258e-01 -1.687e-01 5.168e-03 1.563e+02 -1.096e-01 - 1.002e-03 4.515e-04 -4.433e-06 -1.096e-01 1.024e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23805 1.000 0.110 -0.021 -0.164 0.220 - 2 0.21706 0.110 1.000 -0.014 -0.041 0.135 - 3 0.06085 -0.021 -0.014 1.000 0.056 -0.059 - 4 0.87005 -0.164 -0.041 0.056 1.000 -0.866 - 5 0.87483 0.220 0.135 -0.059 -0.866 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10857.4 FROM HESSE STATUS=OK 31 CALLS 475 TOTAL - EDM=4.96344e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.86897e+02 4.51095e-01 1.80130e-04 5.42398e-02 - 2 sg_p1 2.05381e+01 3.30465e-01 6.19404e-05 3.58796e-02 - 3 sg_p2 3.60000e+02 4.57970e+00 5.89879e-03 1.57112e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 3.22720e+01 1.26301e+01 3.80369e-04 -6.80009e-01 - 5 sg_p4 9.64411e-01 1.03457e-02 3.80673e-04 1.19122e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.035e-01 1.650e-02 -1.576e-05 -1.005e+00 1.062e-03 - 1.650e-02 1.092e-01 -7.711e-06 -1.941e-01 4.695e-04 - -1.576e-05 -7.711e-06 5.475e-05 1.202e-03 -1.025e-06 - -1.005e+00 -1.941e-01 1.202e-03 1.636e+02 -1.156e-01 - 1.062e-03 4.695e-04 -1.025e-06 -1.156e-01 1.071e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.24421 1.000 0.111 -0.005 -0.174 0.227 - 2 0.21733 0.111 1.000 -0.003 -0.046 0.137 - 3 0.01376 -0.005 -0.003 1.000 0.013 -0.013 - 4 0.87625 -0.174 -0.046 0.013 1.000 -0.873 - 5 0.88081 0.227 0.137 -0.013 -0.873 1.000 -300 -286.897 +- 0.451095 -20.5381 +- 0.330465 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=9427.95 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 0.00000e+00 1.31464e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 0.00000e+00 -2.82382e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 0.00000e+00 -1.05976e+00 - 4 sg_p3 5.43313e+01 1.20000e+01 -2.64207e-01 7.00043e+00 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -1.45220e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9204.59 FROM MIGRAD STATUS=CONVERGED 229 CALLS 230 TOTAL - EDM=6.66547e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00807e+02 2.06875e-01 9.24958e-04 -7.84006e-02 - 2 sg_p1 6.67548e+00 2.20836e-01 5.66581e-03 -4.55276e-03 - 3 sg_p2 2.86348e+02 3.69244e+00 1.62590e-03 -1.80856e-01 - 4 sg_p3 3.70116e+01 4.47529e+00 3.25190e-03 -7.94138e-02 - 5 sg_p4 6.46423e-01 1.60401e-02 1.99112e-03 -2.02931e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.280e-02 -6.675e-03 3.606e-02 -1.464e-01 -2.452e-04 - -6.675e-03 4.897e-02 -3.892e-01 5.095e-01 1.306e-03 - 3.606e-02 -3.892e-01 1.364e+01 -1.331e+01 -4.368e-04 - -1.464e-01 5.095e-01 -1.331e+01 2.008e+01 -1.514e-03 - -2.452e-04 1.306e-03 -4.368e-04 -1.514e-03 2.574e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23172 1.000 -0.146 0.047 -0.158 -0.074 - 2 0.64662 -0.146 1.000 -0.476 0.514 0.368 - 3 0.81187 0.047 -0.476 1.000 -0.804 -0.007 - 4 0.82962 -0.158 0.514 -0.804 1.000 -0.021 - 5 0.44432 -0.074 0.368 -0.007 -0.021 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9204.59 FROM HESSE STATUS=OK 31 CALLS 261 TOTAL - EDM=6.65624e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00807e+02 2.07041e-01 1.84992e-04 -2.83282e-01 - 2 sg_p1 6.67548e+00 2.24150e-01 2.26632e-04 -1.62980e-01 - 3 sg_p2 2.86348e+02 3.84665e+00 3.25179e-04 2.97108e-01 - 4 sg_p3 3.70116e+01 4.66245e+00 1.30076e-04 -5.82134e-01 - 5 sg_p4 6.46423e-01 1.60428e-02 3.98224e-04 2.97202e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.287e-02 -7.031e-03 4.534e-02 -1.570e-01 -2.475e-04 - -7.031e-03 5.046e-02 -4.308e-01 5.599e-01 1.315e-03 - 4.534e-02 -4.308e-01 1.481e+01 -1.475e+01 -6.186e-04 - -1.570e-01 5.599e-01 -1.475e+01 2.180e+01 -1.240e-03 - -2.475e-04 1.315e-03 -6.186e-04 -1.240e-03 2.575e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23496 1.000 -0.151 0.057 -0.162 -0.074 - 2 0.65975 -0.151 1.000 -0.498 0.534 0.365 - 3 0.82821 0.057 -0.498 1.000 -0.821 -0.010 - 4 0.84430 -0.162 0.534 -0.821 1.000 -0.017 - 5 0.44463 -0.074 0.365 -0.010 -0.017 1.000 -300 -300.807 +- 0.207041 -6.67548 +- 0.22415 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=9324.05 FROM MIGRAD STATUS=INITIATE 18 CALLS 19 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 2.01358e-01 1.26986e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -3.26570e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 2.01358e-01 1.80651e+01 - 4 sg_p3 7.00000e+01 1.20000e+01 2.01358e-01 1.95490e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -1.28150e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 11.1802 added to diagonal of error matrix - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.2302e+00 1.0000e+00 1.0003e+00 1.0996e+00 3.1303e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 1.233367 TO DIAGONAL. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9114.57 FROM MIGRAD STATUS=CONVERGED 289 CALLS 290 TOTAL - EDM=5.54375e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00989e+02 2.12814e-01 9.43941e-04 -9.14080e-04 - 2 sg_p1 6.53035e+00 2.40800e-01 5.98084e-03 4.80647e-03 - 3 sg_p2 2.93079e+02 2.00891e+00 1.26510e-03 8.67004e-03 - 4 sg_p3 3.22426e+01 3.06970e+00 3.13614e-03 5.39262e-03 - 5 sg_p4 6.37280e-01 1.82444e-02 2.01579e-03 -9.05889e-04 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.529e-02 -7.391e-03 -1.667e-02 -9.633e-02 -4.577e-04 - -7.391e-03 5.828e-02 -1.840e-01 4.072e-01 2.575e-03 - -1.667e-02 -1.840e-01 4.036e+00 -3.579e+00 -1.048e-02 - -9.633e-02 4.072e-01 -3.579e+00 9.437e+00 2.200e-02 - -4.577e-04 2.575e-03 -1.048e-02 2.200e-02 3.330e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23364 1.000 -0.144 -0.039 -0.147 -0.118 - 2 0.68293 -0.144 1.000 -0.379 0.549 0.585 - 3 0.60026 -0.039 -0.379 1.000 -0.580 -0.286 - 4 0.69097 -0.147 0.549 -0.580 1.000 0.393 - 5 0.59255 -0.118 0.585 -0.286 0.393 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9114.57 FROM HESSE STATUS=OK 31 CALLS 321 TOTAL - EDM=5.65701e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00989e+02 2.12854e-01 3.77576e-05 -2.70672e-01 - 2 sg_p1 6.53035e+00 2.42646e-01 1.19617e-03 -2.37040e-01 - 3 sg_p2 2.93079e+02 2.03806e+00 2.53019e-04 3.76364e-01 - 4 sg_p3 3.22426e+01 3.11925e+00 1.25446e-04 -6.80639e-01 - 5 sg_p4 6.37280e-01 1.83457e-02 8.06317e-05 2.78131e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.531e-02 -7.562e-03 -1.490e-02 -9.842e-02 -4.666e-04 - -7.562e-03 5.919e-02 -1.948e-01 4.241e-01 2.634e-03 - -1.490e-02 -1.948e-01 4.155e+00 -3.791e+00 -1.116e-02 - -9.842e-02 4.241e-01 -3.791e+00 9.744e+00 2.314e-02 - -4.666e-04 2.634e-03 -1.116e-02 2.314e-02 3.367e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23439 1.000 -0.146 -0.034 -0.148 -0.119 - 2 0.68886 -0.146 1.000 -0.393 0.558 0.590 - 3 0.61521 -0.034 -0.393 1.000 -0.596 -0.298 - 4 0.70278 -0.148 0.558 -0.596 1.000 0.404 - 5 0.59855 -0.119 0.590 -0.298 0.404 1.000 -300 -300.989 +- 0.212854 -6.53035 +- 0.242646 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=9310.64 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 0.00000e+00 1.34333e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 0.00000e+00 -2.36771e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 0.00000e+00 -1.06301e+01 - 4 sg_p3 4.94125e+01 1.20000e+01 -3.50242e-01 -6.56876e+00 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -1.57740e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9074.37 FROM MIGRAD STATUS=CONVERGED 198 CALLS 199 TOTAL - EDM=4.60513e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00716e+02 2.01045e-01 8.96469e-04 2.14226e-01 - 2 sg_p1 6.51517e+00 2.15145e-01 5.62639e-03 1.07423e-02 - 3 sg_p2 2.82932e+02 4.43725e+00 1.74062e-03 -1.31230e-01 - 4 sg_p3 3.77806e+01 4.64318e+00 3.03684e-03 -8.20421e-02 - 5 sg_p4 6.44030e-01 1.61428e-02 1.96449e-03 1.08169e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.042e-02 -6.174e-03 6.288e-02 -1.484e-01 -1.712e-04 - -6.174e-03 4.648e-02 -4.710e-01 4.996e-01 9.943e-04 - 6.288e-02 -4.710e-01 1.971e+01 -1.755e+01 9.466e-03 - -1.484e-01 4.996e-01 -1.755e+01 2.162e+01 -1.284e-02 - -1.712e-04 9.943e-04 9.466e-03 -1.284e-02 2.607e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22609 1.000 -0.142 0.070 -0.159 -0.053 - 2 0.63799 -0.142 1.000 -0.492 0.498 0.286 - 3 0.85697 0.070 -0.492 1.000 -0.850 0.132 - 4 0.86627 -0.159 0.498 -0.850 1.000 -0.171 - 5 0.46460 -0.053 0.286 0.132 -0.171 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9074.37 FROM HESSE STATUS=OK 31 CALLS 230 TOTAL - EDM=4.60124e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00716e+02 2.01266e-01 1.79294e-04 -2.89604e-01 - 2 sg_p1 6.51517e+00 2.18764e-01 1.12528e-03 -2.44853e-01 - 3 sg_p2 2.82932e+02 4.66955e+00 3.48124e-04 2.57637e-01 - 4 sg_p3 3.77806e+01 4.88570e+00 1.21473e-04 -5.66865e-01 - 5 sg_p4 6.44030e-01 1.61620e-02 3.92898e-04 2.92200e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.051e-02 -6.582e-03 7.683e-02 -1.625e-01 -1.645e-04 - -6.582e-03 4.806e-02 -5.290e-01 5.602e-01 9.646e-04 - 7.683e-02 -5.290e-01 2.183e+01 -1.979e+01 1.061e-02 - -1.625e-01 5.602e-01 -1.979e+01 2.394e+01 -1.401e-02 - -1.645e-04 9.646e-04 1.061e-02 -1.401e-02 2.613e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23066 1.000 -0.149 0.082 -0.165 -0.051 - 2 0.65313 -0.149 1.000 -0.516 0.522 0.272 - 3 0.87189 0.082 -0.516 1.000 -0.866 0.140 - 4 0.88014 -0.165 0.522 -0.866 1.000 -0.177 - 5 0.46660 -0.051 0.272 0.140 -0.177 1.000 -300 -300.716 +- 0.201266 -6.51517 +- 0.218764 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=9199.28 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 2.01358e-01 1.31737e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -3.80725e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 2.01358e-01 3.68970e+01 - 4 sg_p3 7.00000e+01 1.20000e+01 2.01358e-01 3.60460e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -9.61061e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=8979.33 FROM MIGRAD STATUS=CONVERGED 286 CALLS 287 TOTAL - EDM=6.06176e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00769e+02 2.16735e-01 9.53991e-04 -5.33757e-02 - 2 sg_p1 6.70308e+00 2.45021e-01 5.89293e-03 -3.95912e-02 - 3 sg_p2 2.87922e+02 3.34063e+00 1.53235e-03 -3.18644e-02 - 4 sg_p3 3.55948e+01 4.26381e+00 3.23155e-03 -4.27157e-03 - 5 sg_p4 6.37600e-01 1.68956e-02 2.00611e-03 2.50190e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.698e-02 -9.160e-03 4.009e-02 1.638e-01 -3.977e-04 - -9.160e-03 6.035e-02 -4.159e-01 -5.898e-01 1.951e-03 - 4.009e-02 -4.159e-01 1.117e+01 1.132e+01 -9.034e-03 - 1.638e-01 -5.898e-01 1.132e+01 1.823e+01 -1.125e-02 - -3.977e-04 1.951e-03 -9.034e-03 -1.125e-02 2.856e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25346 1.000 -0.172 0.055 0.177 -0.109 - 2 0.68892 -0.172 1.000 -0.507 -0.562 0.470 - 3 0.80257 0.055 -0.507 1.000 0.794 -0.160 - 4 0.82438 0.177 -0.562 0.794 1.000 -0.156 - 5 0.48969 -0.109 0.470 -0.160 -0.156 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=8979.33 FROM HESSE STATUS=OK 31 CALLS 318 TOTAL - EDM=6.06043e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00769e+02 2.16688e-01 1.90798e-04 -2.85961e-01 - 2 sg_p1 6.70308e+00 2.44943e-01 1.17859e-03 -1.49009e-01 - 3 sg_p2 2.87922e+02 3.32664e+00 3.06471e-04 3.15452e-01 - 4 sg_p3 3.55948e+01 4.24592e+00 1.29262e-04 -2.53092e+00 - 5 sg_p4 6.37600e-01 1.68934e-02 4.01222e-04 2.78798e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.696e-02 -9.141e-03 3.853e-02 1.617e-01 -3.954e-04 - -9.141e-03 6.031e-02 -4.131e-01 -5.862e-01 1.947e-03 - 3.853e-02 -4.131e-01 1.107e+01 1.120e+01 -8.911e-03 - 1.617e-01 -5.862e-01 1.120e+01 1.807e+01 -1.105e-02 - -3.954e-04 1.947e-03 -8.911e-03 -1.105e-02 2.855e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25265 1.000 -0.172 0.053 0.175 -0.108 - 2 0.68868 -0.172 1.000 -0.506 -0.562 0.469 - 3 0.80070 0.053 -0.506 1.000 0.792 -0.158 - 4 0.82272 0.175 -0.562 0.792 1.000 -0.154 - 5 0.48949 -0.108 0.469 -0.158 -0.154 1.000 -300 -300.769 +- 0.216688 -6.70308 +- 0.244943 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=9528.95 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 2.01358e-01 1.40358e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -2.86077e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 2.01358e-01 4.07742e+01 - 4 sg_p3 7.00000e+01 1.20000e+01 2.01358e-01 3.28657e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -1.55130e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9284.6 FROM MIGRAD STATUS=CONVERGED 275 CALLS 276 TOTAL - EDM=1.0669e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00844e+02 2.01930e-01 9.05593e-04 7.10616e-03 - 2 sg_p1 6.50018e+00 2.20682e-01 5.70172e-03 -1.20796e-03 - 3 sg_p2 2.89404e+02 2.63913e+00 1.40244e-03 7.93444e-03 - 4 sg_p3 3.36229e+01 3.43508e+00 3.08392e-03 -8.78771e-03 - 5 sg_p4 6.54921e-01 1.64524e-02 1.98673e-03 -7.23147e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.078e-02 -6.775e-03 1.130e-02 -1.118e-01 -3.655e-04 - -6.775e-03 4.891e-02 -2.623e-01 4.000e-01 1.828e-03 - 1.130e-02 -2.623e-01 6.967e+00 -6.550e+00 -9.484e-03 - -1.118e-01 4.000e-01 -6.550e+00 1.182e+01 1.315e-02 - -3.655e-04 1.828e-03 -9.484e-03 1.315e-02 2.708e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23688 1.000 -0.152 0.021 -0.161 -0.110 - 2 0.66103 -0.152 1.000 -0.449 0.526 0.502 - 3 0.73398 0.021 -0.449 1.000 -0.722 -0.218 - 4 0.76528 -0.161 0.526 -0.722 1.000 0.232 - 5 0.50584 -0.110 0.502 -0.218 0.232 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9284.6 FROM HESSE STATUS=OK 31 CALLS 307 TOTAL - EDM=1.12622e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00844e+02 2.02032e-01 3.62237e-05 -2.80744e-01 - 2 sg_p1 6.50018e+00 2.23003e-01 2.28069e-04 -2.52587e-01 - 3 sg_p2 2.89404e+02 2.70635e+00 2.80488e-04 3.32825e-01 - 4 sg_p3 3.36229e+01 3.52423e+00 1.23357e-04 -6.93457e+00 - 5 sg_p4 6.54921e-01 1.65063e-02 3.97346e-04 3.15027e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.082e-02 -7.019e-03 1.539e-02 -1.166e-01 -3.746e-04 - -7.019e-03 4.995e-02 -2.818e-01 4.255e-01 1.872e-03 - 1.539e-02 -2.818e-01 7.327e+00 -7.045e+00 -1.028e-02 - -1.166e-01 4.255e-01 -7.045e+00 1.244e+01 1.424e-02 - -3.746e-04 1.872e-03 -1.028e-02 1.424e-02 2.726e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23888 1.000 -0.155 0.028 -0.164 -0.112 - 2 0.66984 -0.155 1.000 -0.466 0.540 0.507 - 3 0.74924 0.028 -0.466 1.000 -0.738 -0.230 - 4 0.77870 -0.164 0.540 -0.738 1.000 0.244 - 5 0.51061 -0.112 0.507 -0.230 0.244 1.000 -300 -300.844 +- 0.202032 -6.50018 +- 0.223003 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=8804.14 FROM MIGRAD STATUS=INITIATE 38 CALLS 39 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 0.00000e+00 1.21619e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 0.00000e+00 -2.50995e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 0.00000e+00 -2.34806e+01 - 4 sg_p3 5.09831e+01 1.20000e+01 -3.22511e-01 -1.58294e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -1.45258e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=8594.18 FROM MIGRAD STATUS=CONVERGED 195 CALLS 196 TOTAL - EDM=0.000103955 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00810e+02 2.13585e-01 9.23962e-04 -3.32389e-01 - 2 sg_p1 6.67466e+00 2.27375e-01 5.64986e-03 -6.39462e-02 - 3 sg_p2 2.86358e+02 3.78706e+00 1.67027e-03 2.10141e-01 - 4 sg_p3 3.68730e+01 4.57772e+00 3.31711e-03 1.33026e-01 - 5 sg_p4 6.48483e-01 1.65693e-02 1.99186e-03 1.18731e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.562e-02 -7.064e-03 3.747e-02 -1.545e-01 -2.634e-04 - -7.064e-03 5.193e-02 -4.091e-01 5.342e-01 1.402e-03 - 3.747e-02 -4.091e-01 1.435e+01 -1.392e+01 -8.150e-04 - -1.545e-01 5.342e-01 -1.392e+01 2.101e+01 -1.176e-03 - -2.634e-04 1.402e-03 -8.150e-04 -1.176e-03 2.747e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23149 1.000 -0.145 0.046 -0.158 -0.074 - 2 0.64493 -0.145 1.000 -0.474 0.511 0.371 - 3 0.80971 0.046 -0.474 1.000 -0.802 -0.013 - 4 0.82741 -0.158 0.511 -0.802 1.000 -0.015 - 5 0.44365 -0.074 0.371 -0.013 -0.015 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=8594.18 FROM HESSE STATUS=OK 31 CALLS 227 TOTAL - EDM=0.000103618 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00810e+02 2.13733e-01 1.84792e-04 -2.83111e-01 - 2 sg_p1 6.67466e+00 2.30409e-01 1.12997e-03 -1.63396e-01 - 3 sg_p2 2.86358e+02 3.92954e+00 3.34054e-04 2.97224e-01 - 4 sg_p3 3.68730e+01 4.75005e+00 6.63422e-04 -5.84901e-01 - 5 sg_p4 6.48483e-01 1.65714e-02 3.98372e-04 3.01515e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.569e-02 -7.400e-03 4.620e-02 -1.644e-01 -2.656e-04 - -7.400e-03 5.333e-02 -4.485e-01 5.817e-01 1.411e-03 - 4.620e-02 -4.485e-01 1.545e+01 -1.528e+01 -1.007e-03 - -1.644e-01 5.817e-01 -1.528e+01 2.263e+01 -8.956e-04 - -2.656e-04 1.411e-03 -1.007e-03 -8.956e-04 2.747e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23430 1.000 -0.150 0.055 -0.162 -0.075 - 2 0.65672 -0.150 1.000 -0.494 0.530 0.369 - 3 0.82472 0.055 -0.494 1.000 -0.817 -0.015 - 4 0.84090 -0.162 0.530 -0.817 1.000 -0.011 - 5 0.44388 -0.075 0.369 -0.015 -0.011 1.000 -300 -300.81 +- 0.213733 -6.67466 +- 0.230409 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10085.1 FROM MIGRAD STATUS=INITIATE 38 CALLS 39 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 0.00000e+00 1.41204e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 0.00000e+00 -3.13147e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 0.00000e+00 9.36393e+00 - 4 sg_p3 5.63011e+01 1.20000e+01 -2.30347e-01 1.74222e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -1.47792e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9847.01 FROM MIGRAD STATUS=CONVERGED 237 CALLS 238 TOTAL - EDM=9.73968e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00804e+02 2.00448e-01 9.27938e-04 -2.66723e-02 - 2 sg_p1 6.67674e+00 2.14181e-01 5.68372e-03 6.00134e-04 - 3 sg_p2 2.86357e+02 3.57965e+00 1.66724e-03 -1.62501e-02 - 4 sg_p3 3.71633e+01 4.35962e+00 3.32473e-03 2.36830e-03 - 5 sg_p4 6.44672e-01 1.55331e-02 1.99195e-03 -8.00555e-04 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.018e-02 -6.290e-03 3.361e-02 -1.381e-01 -2.282e-04 - -6.290e-03 4.605e-02 -3.651e-01 4.812e-01 1.217e-03 - 3.361e-02 -3.651e-01 1.282e+01 -1.255e+01 -7.211e-05 - -1.381e-01 4.812e-01 -1.255e+01 1.905e+01 -1.851e-03 - -2.282e-04 1.217e-03 -7.211e-05 -1.851e-03 2.414e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23182 1.000 -0.146 0.047 -0.158 -0.073 - 2 0.64675 -0.146 1.000 -0.475 0.514 0.365 - 3 0.81111 0.047 -0.475 1.000 -0.803 -0.001 - 4 0.82935 -0.158 0.514 -0.803 1.000 -0.027 - 5 0.44510 -0.073 0.365 -0.001 -0.027 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9847.01 FROM HESSE STATUS=OK 31 CALLS 269 TOTAL - EDM=1.05973e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00804e+02 2.00611e-01 1.85588e-04 -2.83535e-01 - 2 sg_p1 6.67674e+00 2.17452e-01 2.27349e-04 -1.62344e-01 - 3 sg_p2 2.86357e+02 3.73232e+00 3.33449e-04 2.97212e-01 - 4 sg_p3 3.71633e+01 4.54584e+00 1.32989e-04 -5.79108e-01 - 5 sg_p4 6.44672e-01 1.55348e-02 7.96779e-05 2.93540e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.025e-02 -6.630e-03 4.251e-02 -1.483e-01 -2.300e-04 - -6.630e-03 4.748e-02 -4.050e-01 5.298e-01 1.225e-03 - 4.251e-02 -4.050e-01 1.394e+01 -1.395e+01 -2.119e-04 - -1.483e-01 5.298e-01 -1.395e+01 2.072e+01 -1.629e-03 - -2.300e-04 1.225e-03 -2.119e-04 -1.629e-03 2.414e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23512 1.000 -0.152 0.057 -0.162 -0.074 - 2 0.66010 -0.152 1.000 -0.498 0.534 0.362 - 3 0.82785 0.057 -0.498 1.000 -0.821 -0.004 - 4 0.84435 -0.162 0.534 -0.821 1.000 -0.023 - 5 0.44529 -0.074 0.362 -0.004 -0.023 1.000 -300 -300.804 +- 0.200611 -6.67674 +- 0.217452 -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 300.807 +- 0.207041 (stat) - 0.0909738 + 0.181936 (syst); -0.137814/+0.209326 (total) - Uncertainty on sg_p1 = 6.67548 +- 0.22415 (stat) - 0.1753 + 0.0276028 (syst); -0.208065/+0.115424 (total) - Uncertainty on sg_p2 = 286.348 +- 3.84665 (stat) - 3.4164 + 6.73068 (syst); -3.92058/+7.00009 (total) - Uncertainty on sg_p3 = 37.0116 +- 4.66245 (stat) - 4.76893 + 0.769026 (syst); -5.30823/+2.45479 (total) - Uncertainty on sg_p4 = 0.646423 +- 0.0160428 (stat) - 0.00914333 + 0.00849815 (syst); -0.0121632/+0.0116859 (total) - === Baseline plot ===
- norm = 304.126 -JEC lnN 1.00496 - -JER lnN 1.02029 - -btag lnN 1.06837 - -sg_p0 param 300.807 -0.137814/+0.209326 -sg_p1 param 6.67548 -0.208065/+0.115424 -sg_p2 param 286.348 -3.92058/+7.00009 -sg_p3 param 37.0116 -5.30823/+2.45479 -sg_p4 param 0.646423 -0.0121632/+0.0116859 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_novo_285_624/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_novo_285_624/data_bkg.log deleted file mode 100644 index 3cc1900..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_novo_285_624/data_bkg.log +++ /dev/null @@ -1,750 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [252,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=62921.6 FROM MIGRAD STATUS=INITIATE 90 CALLS 91 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.21879e-02 5.09000e-01 0.00000e+00 -9.80911e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -1.28354e+01 - 3 par_crystal_2 2.65669e+02 4.00000e+00 0.00000e+00 3.55320e+02 - 4 par_crystal_3 1.06488e+01 2.70000e+00 -4.48284e-01 -2.33576e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62883.4 FROM HESSE STATUS=OK 29 CALLS 257 TOTAL - EDM=4.91113 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.66060e-01 4.16121e-03 3.52377e-04 -4.74293e+00 - 2 par_crystal_1 4.45375e+00 2.73731e+00 1.77223e-01 2.66184e-01 - 3 par_crystal_2 2.67385e+02 2.04373e-01 8.29600e-04 2.81454e+02 - 4 par_crystal_3 1.36851e+01 5.38888e-01 1.69331e-03 -1.62103e+00 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=62883.3 FROM MIGRAD STATUS=FAILED 358 CALLS 359 TOTAL - EDM=0.00753244 STRATEGY= 1 ERR MATRIX APPROXIMATE - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.65093e-01 8.39913e-03 1.31861e-03 5.42788e+00 - 2 par_crystal_1 5.09910e+00 4.33634e+00 3.39194e-01 -6.59950e-03 - 3 par_crystal_2 2.67339e+02 1.86486e-01 3.32550e-03 -8.58879e+00 - 4 par_crystal_3 1.37140e+01 6.01780e-01 6.34807e-03 1.69258e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.055e-05 1.617e-04 4.699e-04 2.892e-03 - 1.617e-04 1.762e-02 -1.356e-04 -1.108e-03 - 4.699e-04 -1.356e-04 3.478e-02 3.255e-02 - 2.892e-03 -1.108e-03 3.255e-02 3.624e-01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.60853 1.000 0.145 0.300 0.572 - 2 0.19009 0.145 1.000 -0.005 -0.014 - 3 0.33449 0.300 -0.005 1.000 0.290 - 4 0.59243 0.572 -0.014 0.290 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7660e-01 8.1807e-01 1.6519e+00 1.7066e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.178308 TO DIAGONAL. - FCN=62883.3 FROM HESSE STATUS=NOT POSDEF 33 CALLS 392 TOTAL - EDM=3.36849 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.65093e-01 8.70034e-02 2.63722e-04 -1.21988e+00 - 2 par_crystal_1 5.09910e+00 4.18121e+00 5.00000e-01 1.54425e+00 - 3 par_crystal_2 2.67339e+02 5.27040e+00 9.57407e-02 3.75715e-01 - 4 par_crystal_3 1.37140e+01 6.68546e+00 2.53923e-04 -2.07863e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.595e-03 -2.994e-03 4.642e-01 6.089e-01 - -2.994e-03 1.536e-02 -1.944e-01 -2.569e-01 - 4.642e-01 -1.944e-01 2.855e+01 3.736e+01 - 6.089e-01 -2.569e-01 3.736e+01 4.914e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99751 1.000 -0.277 0.997 0.997 - 2 0.37560 -0.277 1.000 -0.293 -0.296 - 3 0.99795 0.997 -0.293 1.000 0.997 - 4 0.99797 0.997 -0.296 0.997 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=62983.1 FROM MIGRAD STATUS=INITIATE 29 CALLS 30 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 6.05383e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -1.33666e+02 - 3 par_gaus_exp_2 3.19008e-01 3.05000e-01 -9.67731e-01 -3.33619e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.00383 added to diagonal of error matrix - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62882.7 FROM MIGRAD STATUS=CONVERGED 228 CALLS 229 TOTAL - EDM=4.4408e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.69095e+02 7.01852e-01 4.07755e-03 2.89794e-02 - 2 par_gaus_exp_1 1.61044e+01 1.09719e+00 7.43010e-03 -1.84784e-02 - 3 par_gaus_exp_2 1.90527e-01 1.58774e-02 1.98778e-03 -6.23432e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 4.929e-01 5.914e-01 9.067e-03 - 5.914e-01 1.207e+00 1.483e-02 - 9.067e-03 1.483e-02 2.521e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.82590 1.000 0.767 0.813 - 2 0.85979 0.767 1.000 0.850 - 3 0.88644 0.813 0.850 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62882.7 FROM HESSE STATUS=OK 16 CALLS 245 TOTAL - EDM=4.28199e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.69095e+02 6.86832e-01 1.63102e-04 -5.76704e-01 - 2 par_gaus_exp_1 1.61044e+01 1.07335e+00 2.97204e-04 -5.72398e-01 - 3 par_gaus_exp_2 1.90527e-01 1.55212e-02 7.95110e-05 -1.13813e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 4.720e-01 5.579e-01 8.580e-03 - 5.579e-01 1.155e+00 1.406e-02 - 8.580e-03 1.406e-02 2.410e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.81734 1.000 0.756 0.805 - 2 0.85292 0.756 1.000 0.843 - 3 0.88081 0.805 0.843 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,624] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.3296 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.3296) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=286.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=286.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=289.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=289.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=295.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=295.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=298.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=298.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=301.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=301.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - ... (remaining 216 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.733611 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.733611) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=313.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=316.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=319.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=325.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=328.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=331.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=334.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=340.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=343.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=346.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - ... (remaining 94 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0733618 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0733618 - - FCN=103426 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57146e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.55551e+03 - 3 par_novo_2 -1.33526e+00 2.00000e+01 0.00000e+00 1.53308e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103192 FROM MIGRAD STATUS=CONVERGED 126 CALLS 127 TOTAL - EDM=1.07924e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.17697e+01 1.69443e-01** at limit ** - 2 par_novo_1 3.87878e+01 2.27475e+00 4.96100e-03 -6.14249e-02 - 3 par_novo_2 -1.26766e+00 7.00630e-02 3.67886e-05 3.77179e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 2.244e-10 -2.632e-07 -1.276e-07 - -2.632e-07 5.190e+00 1.540e-01 - -1.276e-07 1.540e-01 4.909e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.43392 1.000 -0.008 -0.122 - 2 0.97109 -0.008 1.000 0.965 - 3 0.97152 -0.122 0.965 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103192 FROM HESSE STATUS=OK 20 CALLS 147 TOTAL - EDM=1.23299e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.15107e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.87878e+01 2.30410e+00 1.98440e-04 4.51799e-01 - 3 par_novo_2 -1.26766e+00 7.13892e-02 1.47154e-06 -1.26769e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 2.143e-10 3.996e-06 -2.087e-07 - 3.996e-06 5.325e+00 1.518e-01 - -2.087e-07 1.518e-01 5.096e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.80390 1.000 0.118 -0.200 - 2 0.97183 0.118 1.000 0.922 - 3 0.97258 -0.200 0.922 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107617 FROM MIGRAD STATUS=INITIATE 36 CALLS 37 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 6.60405e+03 - 2 par_crystal_1_1 7.90153e-02 5.09000e-01 -1.80421e+00 3.05679e+03 - 3 par_crystal_1_2 2.60000e+02 4.00000e+00 0.00000e+00 1.48888e+03 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 6.99071e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.17529 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.7903e-03 5.8606e-02 5.0897e-01 3.4352e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.006225 TO DIAGONAL. - FCN=103191 FROM MIGRAD STATUS=CONVERGED 353 CALLS 354 TOTAL - EDM=3.7306e-06 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.37913e-01 3.41139e-02 6.19492e-04 4.10204e-01 - 2 par_crystal_1_1 4.44737e+00 5.69760e-01 2.21494e-02 9.88736e-03 - 3 par_crystal_1_2 2.79979e+02 3.40482e+01 2.79535e-01 -2.97577e-04 - 4 par_crystal_1_3 1.87584e+01 2.98857e+00 3.96232e-03 -6.40797e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.164e-03 3.582e-03 3.594e-03 9.898e-02 - 3.582e-03 3.375e-01 -1.052e-02 7.382e-01 - 3.594e-03 -1.052e-02 3.148e+00 6.243e-01 - 9.898e-02 7.382e-01 6.243e-01 9.086e+00 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99630 1.000 0.181 0.059 0.962 - 2 0.95650 0.181 1.000 -0.010 0.422 - 3 0.63948 0.059 -0.010 1.000 0.117 - 4 0.99690 0.962 0.422 0.117 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103191 FROM HESSE STATUS=OK 27 CALLS 381 TOTAL - EDM=6.06842e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 2.37913e-01 2.12502e-01 1.23898e-04 -8.36786e+01 - 2 par_crystal_1_1 4.44737e+00 5.06952e-01 8.85975e-04 -1.65463e+01 - 3 par_crystal_1_2 2.79979e+02 2.96341e+01 5.00000e-01 7.80831e+00 - 4 par_crystal_1_3 1.87584e+01 1.90925e+01 1.58493e-04 2.18231e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.578e-02 1.663e-02 2.427e-02 3.730e+00 - 1.663e-02 2.650e-01 -4.299e-02 1.684e+00 - 2.427e-02 -4.299e-02 1.850e+00 2.341e+00 - 3.730e+00 1.684e+00 2.341e+00 3.045e+02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99991 1.000 0.151 0.083 0.999 - 2 0.94385 0.151 1.000 -0.061 0.187 - 3 0.80384 0.083 -0.061 1.000 0.099 - 4 0.99991 0.999 0.187 0.099 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 13889.7 - Background number of gaus_exp_252_330 = 13889.7 - Background number of novo_285_624 = 17637.2 - Background number of crystal_1_285_624 = 17637.2 - Background number of gaus_bern_285_624 = 17637.2 - Background number of landau_285_624 = 17637.2 -par_crystal_0 param 0.165093 0.0870034 -par_crystal_1 param 5.0991 4.18121 -par_crystal_2 param 267.339 5.2704 -par_crystal_3 param 13.714 6.68546 -par_crystal_1_0 param 0.237913 0.212502 -par_crystal_1_1 param 4.44737 0.506952 -par_crystal_1_2 param 279.979 29.6341 -par_crystal_1_3 param 18.7584 19.0925 -par_gaus_exp_0 param 269.095 0.686832 -par_gaus_exp_1 param 16.1044 1.07335 -par_gaus_exp_2 param 0.190527 0.0155212 -par_novo_0 param 250 31.5107 -par_novo_1 param 38.7878 2.3041 -par_novo_2 param -1.26766 0.0713892 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_novo_285_624/datacard_300_novo_285_624.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_novo_285_624/datacard_300_novo_285_624.txt deleted file mode 100644 index 7ace650..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_novo_285_624/datacard_300_novo_285_624.txt +++ /dev/null @@ -1,30 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_300.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_novo_285_624.root HbbHbb:f_novo -shapes data_obs HbbHbb w_background_novo_285_624.root HbbHbb:data_obs_novo_285_624 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 304.126 17637.2 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06837 - -JER lnN 1.02029 - -JEC lnN 1.00496 - -trigger lnN 1.10 - -PDF lnN 1.01533148611 - -sg_p0 param 300.807 -0.137814/+0.209326 -sg_p1 param 6.67548 -0.208065/+0.115424 -sg_p2 param 286.348 -3.92058/+7.00009 -sg_p3 param 37.0116 -5.30823/+2.45479 -sg_p4 param 0.646423 -0.0121632/+0.0116859 -par_novo_0 param 250 31.5107 -par_novo_1 param 38.7878 2.3041 -par_novo_2 param -1.26766 0.0713892 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_novo_285_624/pdf.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_novo_285_624/pdf.log deleted file mode 100644 index e77095c..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_novo_285_624/pdf.log +++ /dev/null @@ -1,10 +0,0 @@ -[?1034h FCN=10.366 FROM MIGRAD STATUS=CONVERGED 69 CALLS 70 TOTAL - EDM=1.25903e-09 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 Constant 1.89692e+01 2.45680e+00 3.29830e-03 -7.24825e-06 - 2 Mean 1.00074e+00 1.81805e-03 2.81850e-06 3.61959e-03 - 3 Sigma 1.53315e-02 1.29036e-03 3.63480e-05 1.24404e-03 -1.00074474072 +/- 0.00181805488368 -0.0153314861114 +/- 0.00129036445321 -PDF lnN 1.01533148611 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_novo_285_624/signal300_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_novo_285_624/signal300_sig.log deleted file mode 100644 index e692189..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_300_novo_285_624/signal300_sig.log +++ /dev/null @@ -1,859 +0,0 @@ - -Processing test.c... -nSignal_init = 292400 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11139.4 FROM MIGRAD STATUS=INITIATE 41 CALLS 42 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.85000e+02 7.00000e+00 0.00000e+00 3.99147e+02 - 2 sg_p1 2.00000e+01 3.00000e+00 0.00000e+00 5.36454e+01 - 3 sg_p2 3.05000e+02 1.10000e+01 0.00000e+00 5.03573e+02 - 4 sg_p3 2.15253e+01 1.20000e+01 -9.40600e-01 -5.65980e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -2.37474e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10983.2 FROM MIGRAD STATUS=CONVERGED 401 CALLS 402 TOTAL - EDM=5.6187e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.88323e+02 4.47990e-01 9.04940e-04 1.11533e-01 - 2 sg_p1 2.05573e+01 3.30978e-01 1.55295e-03 -5.38166e-02 - 3 sg_p2 3.60000e+02 7.01972e+00 3.68073e-02** at limit ** - 4 sg_p3 3.31232e+01 1.31185e+01 9.89999e-03 1.11043e-02 - 5 sg_p4 9.64843e-01 1.04001e-02 1.95930e-03 4.50763e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.007e-01 1.739e-02 -1.190e-04 -7.889e-01 9.394e-04 - 1.739e-02 1.096e-01 -6.312e-05 -5.744e-02 4.186e-04 - -1.190e-04 -6.312e-05 9.525e-05 8.817e-03 -7.777e-06 - -7.889e-01 -5.744e-02 8.817e-03 1.767e+02 -1.200e-01 - 9.394e-04 4.186e-04 -7.777e-06 -1.200e-01 1.083e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23279 1.000 0.117 -0.027 -0.132 0.202 - 2 0.23564 0.117 1.000 -0.020 -0.013 0.122 - 3 0.07829 -0.027 -0.020 1.000 0.068 -0.077 - 4 0.87296 -0.132 -0.013 0.068 1.000 -0.867 - 5 0.87761 0.202 0.122 -0.077 -0.867 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10983.2 FROM HESSE STATUS=OK 31 CALLS 433 TOTAL - EDM=5.61214e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.88323e+02 4.48511e-01 1.80988e-04 9.50767e-02 - 2 sg_p1 2.05573e+01 3.30912e-01 6.21181e-05 3.71642e-02 - 3 sg_p2 3.60000e+02 7.00510e+00 7.36146e-03 1.57114e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 3.31232e+01 1.34621e+01 3.96000e-04 -6.61896e-01 - 5 sg_p4 9.64843e-01 1.06761e-02 3.91861e-04 1.19356e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.012e-01 1.735e-02 -2.672e-05 -8.721e-01 9.990e-04 - 1.735e-02 1.095e-01 -1.383e-05 -7.606e-02 4.303e-04 - -2.672e-05 -1.383e-05 9.505e-05 2.045e-03 -1.786e-06 - -8.721e-01 -7.606e-02 2.045e-03 1.863e+02 -1.276e-01 - 9.990e-04 4.303e-04 -1.786e-06 -1.276e-01 1.141e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23747 1.000 0.117 -0.006 -0.142 0.209 - 2 0.23484 0.117 1.000 -0.004 -0.017 0.122 - 3 0.01751 -0.006 -0.004 1.000 0.015 -0.017 - 4 0.87999 -0.142 -0.017 0.015 1.000 -0.875 - 5 0.88427 0.209 0.122 -0.017 -0.875 1.000 -300 -288.323 +- 0.448511 -20.5573 +- 0.330912 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11021.8 FROM MIGRAD STATUS=INITIATE 44 CALLS 45 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.85000e+02 7.00000e+00 0.00000e+00 -1.23228e+01 - 2 sg_p1 2.00000e+01 3.00000e+00 0.00000e+00 1.69370e+02 - 3 sg_p2 3.05000e+02 1.10000e+01 0.00000e+00 3.59937e+02 - 4 sg_p3 2.91405e+01 1.20000e+01 -7.49116e-01 1.62870e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -1.88730e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10926.7 FROM MIGRAD STATUS=CONVERGED 404 CALLS 405 TOTAL - EDM=7.36709e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.89695e+02 4.48479e-01 9.08525e-04 -1.63756e-02 - 2 sg_p1 2.04912e+01 3.33789e-01 1.55841e-03 3.48244e-02 - 3 sg_p2 3.60000e+02 5.29130e+00 3.12243e-02** at limit ** - 4 sg_p3 2.52611e+01 5.98773e+00 7.97733e-03 1.66965e-02 - 5 sg_p4 9.65128e-01 6.44706e-03 1.81806e-03 6.25824e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.011e-01 1.895e-02 -2.334e-04 -3.465e-01 6.114e-04 - 1.895e-02 1.114e-01 -1.530e-04 -6.771e-02 4.120e-04 - -2.334e-04 -1.530e-04 2.973e-04 6.759e-03 -8.288e-06 - -3.465e-01 -6.771e-02 6.759e-03 3.612e+01 -2.585e-02 - 6.114e-04 4.120e-04 -8.288e-06 -2.585e-02 4.158e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22936 1.000 0.127 -0.030 -0.129 0.211 - 2 0.24516 0.127 1.000 -0.027 -0.034 0.191 - 3 0.08010 -0.030 -0.027 1.000 0.065 -0.075 - 4 0.67399 -0.129 -0.034 0.065 1.000 -0.667 - 5 0.69669 0.211 0.191 -0.075 -0.667 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10926.7 FROM HESSE STATUS=OK 31 CALLS 436 TOTAL - EDM=7.38964e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.89695e+02 4.48441e-01 1.81705e-04 1.34553e-01 - 2 sg_p1 2.04912e+01 3.33683e-01 6.23363e-05 3.27513e-02 - 3 sg_p2 3.60000e+02 5.29001e+00 6.24486e-03 1.57151e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 2.52611e+01 5.99008e+00 3.19093e-04 -8.41506e-01 - 5 sg_p4 9.65128e-01 6.44684e-03 3.63611e-04 1.19511e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.011e-01 1.882e-02 -5.556e-05 -3.514e-01 6.128e-04 - 1.882e-02 1.114e-01 -3.636e-05 -7.207e-02 4.132e-04 - -5.556e-05 -3.636e-05 2.972e-04 1.629e-03 -1.980e-06 - -3.514e-01 -7.207e-02 1.629e-03 3.615e+01 -2.589e-02 - 6.128e-04 4.132e-04 -1.980e-06 -2.589e-02 4.158e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22901 1.000 0.126 -0.007 -0.130 0.212 - 2 0.24394 0.126 1.000 -0.006 -0.036 0.192 - 3 0.01917 -0.007 -0.006 1.000 0.016 -0.018 - 4 0.67426 -0.130 -0.036 0.016 1.000 -0.668 - 5 0.69667 0.212 0.192 -0.018 -0.668 1.000 -300 -289.695 +- 0.448441 -20.4912 +- 0.333683 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10998.6 FROM MIGRAD STATUS=INITIATE 44 CALLS 45 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.85000e+02 7.00000e+00 0.00000e+00 1.82292e+02 - 2 sg_p1 2.00000e+01 3.00000e+00 0.00000e+00 1.71874e+02 - 3 sg_p2 3.05000e+02 1.10000e+01 0.00000e+00 5.32975e+02 - 4 sg_p3 3.07762e+01 1.20000e+01 -7.12504e-01 9.72386e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -2.81076e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10857.4 FROM MIGRAD STATUS=CONVERGED 443 CALLS 444 TOTAL - EDM=4.98868e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.86897e+02 4.50384e-01 9.00651e-04 -4.42030e-02 - 2 sg_p1 2.05381e+01 3.30444e-01 1.54851e-03 -1.71904e-02 - 3 sg_p2 3.60000e+02 4.58768e+00 2.94940e-02** at limit ** - 4 sg_p3 3.22720e+01 1.23522e+01 9.50923e-03 1.52629e-02 - 5 sg_p4 9.64411e-01 1.01122e-02 1.90336e-03 6.66364e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.029e-01 1.643e-02 -6.905e-05 -9.258e-01 1.002e-03 - 1.643e-02 1.092e-01 -3.441e-05 -1.687e-01 4.515e-04 - -6.905e-05 -3.441e-05 5.485e-05 5.168e-03 -4.433e-06 - -9.258e-01 -1.687e-01 5.168e-03 1.563e+02 -1.096e-01 - 1.002e-03 4.515e-04 -4.433e-06 -1.096e-01 1.024e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23805 1.000 0.110 -0.021 -0.164 0.220 - 2 0.21706 0.110 1.000 -0.014 -0.041 0.135 - 3 0.06085 -0.021 -0.014 1.000 0.056 -0.059 - 4 0.87005 -0.164 -0.041 0.056 1.000 -0.866 - 5 0.87483 0.220 0.135 -0.059 -0.866 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10857.4 FROM HESSE STATUS=OK 31 CALLS 475 TOTAL - EDM=4.96344e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.86897e+02 4.51095e-01 1.80130e-04 5.42398e-02 - 2 sg_p1 2.05381e+01 3.30465e-01 6.19404e-05 3.58796e-02 - 3 sg_p2 3.60000e+02 4.57970e+00 5.89879e-03 1.57112e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 3.22720e+01 1.26301e+01 3.80369e-04 -6.80009e-01 - 5 sg_p4 9.64411e-01 1.03457e-02 3.80673e-04 1.19122e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.035e-01 1.650e-02 -1.576e-05 -1.005e+00 1.062e-03 - 1.650e-02 1.092e-01 -7.711e-06 -1.941e-01 4.695e-04 - -1.576e-05 -7.711e-06 5.475e-05 1.202e-03 -1.025e-06 - -1.005e+00 -1.941e-01 1.202e-03 1.636e+02 -1.156e-01 - 1.062e-03 4.695e-04 -1.025e-06 -1.156e-01 1.071e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.24421 1.000 0.111 -0.005 -0.174 0.227 - 2 0.21733 0.111 1.000 -0.003 -0.046 0.137 - 3 0.01376 -0.005 -0.003 1.000 0.013 -0.013 - 4 0.87625 -0.174 -0.046 0.013 1.000 -0.873 - 5 0.88081 0.227 0.137 -0.013 -0.873 1.000 -300 -286.897 +- 0.451095 -20.5381 +- 0.330465 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=9427.95 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 0.00000e+00 1.31464e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 0.00000e+00 -2.82382e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 0.00000e+00 -1.05976e+00 - 4 sg_p3 5.43313e+01 1.20000e+01 -2.64207e-01 7.00043e+00 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -1.45220e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9204.59 FROM MIGRAD STATUS=CONVERGED 229 CALLS 230 TOTAL - EDM=6.66547e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00807e+02 2.06875e-01 9.24958e-04 -7.84006e-02 - 2 sg_p1 6.67548e+00 2.20836e-01 5.66581e-03 -4.55276e-03 - 3 sg_p2 2.86348e+02 3.69244e+00 1.62590e-03 -1.80856e-01 - 4 sg_p3 3.70116e+01 4.47529e+00 3.25190e-03 -7.94138e-02 - 5 sg_p4 6.46423e-01 1.60401e-02 1.99112e-03 -2.02931e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.280e-02 -6.675e-03 3.606e-02 -1.464e-01 -2.452e-04 - -6.675e-03 4.897e-02 -3.892e-01 5.095e-01 1.306e-03 - 3.606e-02 -3.892e-01 1.364e+01 -1.331e+01 -4.368e-04 - -1.464e-01 5.095e-01 -1.331e+01 2.008e+01 -1.514e-03 - -2.452e-04 1.306e-03 -4.368e-04 -1.514e-03 2.574e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23172 1.000 -0.146 0.047 -0.158 -0.074 - 2 0.64662 -0.146 1.000 -0.476 0.514 0.368 - 3 0.81187 0.047 -0.476 1.000 -0.804 -0.007 - 4 0.82962 -0.158 0.514 -0.804 1.000 -0.021 - 5 0.44432 -0.074 0.368 -0.007 -0.021 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9204.59 FROM HESSE STATUS=OK 31 CALLS 261 TOTAL - EDM=6.65624e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00807e+02 2.07041e-01 1.84992e-04 -2.83282e-01 - 2 sg_p1 6.67548e+00 2.24150e-01 2.26632e-04 -1.62980e-01 - 3 sg_p2 2.86348e+02 3.84665e+00 3.25179e-04 2.97108e-01 - 4 sg_p3 3.70116e+01 4.66245e+00 1.30076e-04 -5.82134e-01 - 5 sg_p4 6.46423e-01 1.60428e-02 3.98224e-04 2.97202e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.287e-02 -7.031e-03 4.534e-02 -1.570e-01 -2.475e-04 - -7.031e-03 5.046e-02 -4.308e-01 5.599e-01 1.315e-03 - 4.534e-02 -4.308e-01 1.481e+01 -1.475e+01 -6.186e-04 - -1.570e-01 5.599e-01 -1.475e+01 2.180e+01 -1.240e-03 - -2.475e-04 1.315e-03 -6.186e-04 -1.240e-03 2.575e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23496 1.000 -0.151 0.057 -0.162 -0.074 - 2 0.65975 -0.151 1.000 -0.498 0.534 0.365 - 3 0.82821 0.057 -0.498 1.000 -0.821 -0.010 - 4 0.84430 -0.162 0.534 -0.821 1.000 -0.017 - 5 0.44463 -0.074 0.365 -0.010 -0.017 1.000 -300 -300.807 +- 0.207041 -6.67548 +- 0.22415 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=9324.05 FROM MIGRAD STATUS=INITIATE 18 CALLS 19 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 2.01358e-01 1.26986e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -3.26570e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 2.01358e-01 1.80651e+01 - 4 sg_p3 7.00000e+01 1.20000e+01 2.01358e-01 1.95490e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -1.28150e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 11.1802 added to diagonal of error matrix - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.2302e+00 1.0000e+00 1.0003e+00 1.0996e+00 3.1303e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 1.233367 TO DIAGONAL. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9114.57 FROM MIGRAD STATUS=CONVERGED 289 CALLS 290 TOTAL - EDM=5.54375e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00989e+02 2.12814e-01 9.43941e-04 -9.14080e-04 - 2 sg_p1 6.53035e+00 2.40800e-01 5.98084e-03 4.80647e-03 - 3 sg_p2 2.93079e+02 2.00891e+00 1.26510e-03 8.67004e-03 - 4 sg_p3 3.22426e+01 3.06970e+00 3.13614e-03 5.39262e-03 - 5 sg_p4 6.37280e-01 1.82444e-02 2.01579e-03 -9.05889e-04 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.529e-02 -7.391e-03 -1.667e-02 -9.633e-02 -4.577e-04 - -7.391e-03 5.828e-02 -1.840e-01 4.072e-01 2.575e-03 - -1.667e-02 -1.840e-01 4.036e+00 -3.579e+00 -1.048e-02 - -9.633e-02 4.072e-01 -3.579e+00 9.437e+00 2.200e-02 - -4.577e-04 2.575e-03 -1.048e-02 2.200e-02 3.330e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23364 1.000 -0.144 -0.039 -0.147 -0.118 - 2 0.68293 -0.144 1.000 -0.379 0.549 0.585 - 3 0.60026 -0.039 -0.379 1.000 -0.580 -0.286 - 4 0.69097 -0.147 0.549 -0.580 1.000 0.393 - 5 0.59255 -0.118 0.585 -0.286 0.393 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9114.57 FROM HESSE STATUS=OK 31 CALLS 321 TOTAL - EDM=5.65701e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00989e+02 2.12854e-01 3.77576e-05 -2.70672e-01 - 2 sg_p1 6.53035e+00 2.42646e-01 1.19617e-03 -2.37040e-01 - 3 sg_p2 2.93079e+02 2.03806e+00 2.53019e-04 3.76364e-01 - 4 sg_p3 3.22426e+01 3.11925e+00 1.25446e-04 -6.80639e-01 - 5 sg_p4 6.37280e-01 1.83457e-02 8.06317e-05 2.78131e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.531e-02 -7.562e-03 -1.490e-02 -9.842e-02 -4.666e-04 - -7.562e-03 5.919e-02 -1.948e-01 4.241e-01 2.634e-03 - -1.490e-02 -1.948e-01 4.155e+00 -3.791e+00 -1.116e-02 - -9.842e-02 4.241e-01 -3.791e+00 9.744e+00 2.314e-02 - -4.666e-04 2.634e-03 -1.116e-02 2.314e-02 3.367e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23439 1.000 -0.146 -0.034 -0.148 -0.119 - 2 0.68886 -0.146 1.000 -0.393 0.558 0.590 - 3 0.61521 -0.034 -0.393 1.000 -0.596 -0.298 - 4 0.70278 -0.148 0.558 -0.596 1.000 0.404 - 5 0.59855 -0.119 0.590 -0.298 0.404 1.000 -300 -300.989 +- 0.212854 -6.53035 +- 0.242646 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=9310.64 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 0.00000e+00 1.34333e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 0.00000e+00 -2.36771e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 0.00000e+00 -1.06301e+01 - 4 sg_p3 4.94125e+01 1.20000e+01 -3.50242e-01 -6.56876e+00 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -1.57740e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9074.37 FROM MIGRAD STATUS=CONVERGED 198 CALLS 199 TOTAL - EDM=4.60513e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00716e+02 2.01045e-01 8.96469e-04 2.14226e-01 - 2 sg_p1 6.51517e+00 2.15145e-01 5.62639e-03 1.07423e-02 - 3 sg_p2 2.82932e+02 4.43725e+00 1.74062e-03 -1.31230e-01 - 4 sg_p3 3.77806e+01 4.64318e+00 3.03684e-03 -8.20421e-02 - 5 sg_p4 6.44030e-01 1.61428e-02 1.96449e-03 1.08169e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.042e-02 -6.174e-03 6.288e-02 -1.484e-01 -1.712e-04 - -6.174e-03 4.648e-02 -4.710e-01 4.996e-01 9.943e-04 - 6.288e-02 -4.710e-01 1.971e+01 -1.755e+01 9.466e-03 - -1.484e-01 4.996e-01 -1.755e+01 2.162e+01 -1.284e-02 - -1.712e-04 9.943e-04 9.466e-03 -1.284e-02 2.607e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22609 1.000 -0.142 0.070 -0.159 -0.053 - 2 0.63799 -0.142 1.000 -0.492 0.498 0.286 - 3 0.85697 0.070 -0.492 1.000 -0.850 0.132 - 4 0.86627 -0.159 0.498 -0.850 1.000 -0.171 - 5 0.46460 -0.053 0.286 0.132 -0.171 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9074.37 FROM HESSE STATUS=OK 31 CALLS 230 TOTAL - EDM=4.60124e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00716e+02 2.01266e-01 1.79294e-04 -2.89604e-01 - 2 sg_p1 6.51517e+00 2.18764e-01 1.12528e-03 -2.44853e-01 - 3 sg_p2 2.82932e+02 4.66955e+00 3.48124e-04 2.57637e-01 - 4 sg_p3 3.77806e+01 4.88570e+00 1.21473e-04 -5.66865e-01 - 5 sg_p4 6.44030e-01 1.61620e-02 3.92898e-04 2.92200e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.051e-02 -6.582e-03 7.683e-02 -1.625e-01 -1.645e-04 - -6.582e-03 4.806e-02 -5.290e-01 5.602e-01 9.646e-04 - 7.683e-02 -5.290e-01 2.183e+01 -1.979e+01 1.061e-02 - -1.625e-01 5.602e-01 -1.979e+01 2.394e+01 -1.401e-02 - -1.645e-04 9.646e-04 1.061e-02 -1.401e-02 2.613e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23066 1.000 -0.149 0.082 -0.165 -0.051 - 2 0.65313 -0.149 1.000 -0.516 0.522 0.272 - 3 0.87189 0.082 -0.516 1.000 -0.866 0.140 - 4 0.88014 -0.165 0.522 -0.866 1.000 -0.177 - 5 0.46660 -0.051 0.272 0.140 -0.177 1.000 -300 -300.716 +- 0.201266 -6.51517 +- 0.218764 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=9199.28 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 2.01358e-01 1.31737e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -3.80725e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 2.01358e-01 3.68970e+01 - 4 sg_p3 7.00000e+01 1.20000e+01 2.01358e-01 3.60460e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -9.61061e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=8979.33 FROM MIGRAD STATUS=CONVERGED 286 CALLS 287 TOTAL - EDM=6.06176e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00769e+02 2.16735e-01 9.53991e-04 -5.33757e-02 - 2 sg_p1 6.70308e+00 2.45021e-01 5.89293e-03 -3.95912e-02 - 3 sg_p2 2.87922e+02 3.34063e+00 1.53235e-03 -3.18644e-02 - 4 sg_p3 3.55948e+01 4.26381e+00 3.23155e-03 -4.27157e-03 - 5 sg_p4 6.37600e-01 1.68956e-02 2.00611e-03 2.50190e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.698e-02 -9.160e-03 4.009e-02 1.638e-01 -3.977e-04 - -9.160e-03 6.035e-02 -4.159e-01 -5.898e-01 1.951e-03 - 4.009e-02 -4.159e-01 1.117e+01 1.132e+01 -9.034e-03 - 1.638e-01 -5.898e-01 1.132e+01 1.823e+01 -1.125e-02 - -3.977e-04 1.951e-03 -9.034e-03 -1.125e-02 2.856e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25346 1.000 -0.172 0.055 0.177 -0.109 - 2 0.68892 -0.172 1.000 -0.507 -0.562 0.470 - 3 0.80257 0.055 -0.507 1.000 0.794 -0.160 - 4 0.82438 0.177 -0.562 0.794 1.000 -0.156 - 5 0.48969 -0.109 0.470 -0.160 -0.156 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=8979.33 FROM HESSE STATUS=OK 31 CALLS 318 TOTAL - EDM=6.06043e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00769e+02 2.16688e-01 1.90798e-04 -2.85961e-01 - 2 sg_p1 6.70308e+00 2.44943e-01 1.17859e-03 -1.49009e-01 - 3 sg_p2 2.87922e+02 3.32664e+00 3.06471e-04 3.15452e-01 - 4 sg_p3 3.55948e+01 4.24592e+00 1.29262e-04 -2.53092e+00 - 5 sg_p4 6.37600e-01 1.68934e-02 4.01222e-04 2.78798e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.696e-02 -9.141e-03 3.853e-02 1.617e-01 -3.954e-04 - -9.141e-03 6.031e-02 -4.131e-01 -5.862e-01 1.947e-03 - 3.853e-02 -4.131e-01 1.107e+01 1.120e+01 -8.911e-03 - 1.617e-01 -5.862e-01 1.120e+01 1.807e+01 -1.105e-02 - -3.954e-04 1.947e-03 -8.911e-03 -1.105e-02 2.855e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25265 1.000 -0.172 0.053 0.175 -0.108 - 2 0.68868 -0.172 1.000 -0.506 -0.562 0.469 - 3 0.80070 0.053 -0.506 1.000 0.792 -0.158 - 4 0.82272 0.175 -0.562 0.792 1.000 -0.154 - 5 0.48949 -0.108 0.469 -0.158 -0.154 1.000 -300 -300.769 +- 0.216688 -6.70308 +- 0.244943 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=9528.95 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 2.01358e-01 1.40358e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -2.86077e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 2.01358e-01 4.07742e+01 - 4 sg_p3 7.00000e+01 1.20000e+01 2.01358e-01 3.28657e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -1.55130e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9284.6 FROM MIGRAD STATUS=CONVERGED 275 CALLS 276 TOTAL - EDM=1.0669e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00844e+02 2.01930e-01 9.05593e-04 7.10616e-03 - 2 sg_p1 6.50018e+00 2.20682e-01 5.70172e-03 -1.20796e-03 - 3 sg_p2 2.89404e+02 2.63913e+00 1.40244e-03 7.93444e-03 - 4 sg_p3 3.36229e+01 3.43508e+00 3.08392e-03 -8.78771e-03 - 5 sg_p4 6.54921e-01 1.64524e-02 1.98673e-03 -7.23147e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.078e-02 -6.775e-03 1.130e-02 -1.118e-01 -3.655e-04 - -6.775e-03 4.891e-02 -2.623e-01 4.000e-01 1.828e-03 - 1.130e-02 -2.623e-01 6.967e+00 -6.550e+00 -9.484e-03 - -1.118e-01 4.000e-01 -6.550e+00 1.182e+01 1.315e-02 - -3.655e-04 1.828e-03 -9.484e-03 1.315e-02 2.708e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23688 1.000 -0.152 0.021 -0.161 -0.110 - 2 0.66103 -0.152 1.000 -0.449 0.526 0.502 - 3 0.73398 0.021 -0.449 1.000 -0.722 -0.218 - 4 0.76528 -0.161 0.526 -0.722 1.000 0.232 - 5 0.50584 -0.110 0.502 -0.218 0.232 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9284.6 FROM HESSE STATUS=OK 31 CALLS 307 TOTAL - EDM=1.12622e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00844e+02 2.02032e-01 3.62237e-05 -2.80744e-01 - 2 sg_p1 6.50018e+00 2.23003e-01 2.28069e-04 -2.52587e-01 - 3 sg_p2 2.89404e+02 2.70635e+00 2.80488e-04 3.32825e-01 - 4 sg_p3 3.36229e+01 3.52423e+00 1.23357e-04 -6.93457e+00 - 5 sg_p4 6.54921e-01 1.65063e-02 3.97346e-04 3.15027e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.082e-02 -7.019e-03 1.539e-02 -1.166e-01 -3.746e-04 - -7.019e-03 4.995e-02 -2.818e-01 4.255e-01 1.872e-03 - 1.539e-02 -2.818e-01 7.327e+00 -7.045e+00 -1.028e-02 - -1.166e-01 4.255e-01 -7.045e+00 1.244e+01 1.424e-02 - -3.746e-04 1.872e-03 -1.028e-02 1.424e-02 2.726e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23888 1.000 -0.155 0.028 -0.164 -0.112 - 2 0.66984 -0.155 1.000 -0.466 0.540 0.507 - 3 0.74924 0.028 -0.466 1.000 -0.738 -0.230 - 4 0.77870 -0.164 0.540 -0.738 1.000 0.244 - 5 0.51061 -0.112 0.507 -0.230 0.244 1.000 -300 -300.844 +- 0.202032 -6.50018 +- 0.223003 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=8804.14 FROM MIGRAD STATUS=INITIATE 38 CALLS 39 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 0.00000e+00 1.21619e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 0.00000e+00 -2.50995e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 0.00000e+00 -2.34806e+01 - 4 sg_p3 5.09831e+01 1.20000e+01 -3.22511e-01 -1.58294e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -1.45258e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=8594.18 FROM MIGRAD STATUS=CONVERGED 195 CALLS 196 TOTAL - EDM=0.000103955 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00810e+02 2.13585e-01 9.23962e-04 -3.32389e-01 - 2 sg_p1 6.67466e+00 2.27375e-01 5.64986e-03 -6.39462e-02 - 3 sg_p2 2.86358e+02 3.78706e+00 1.67027e-03 2.10141e-01 - 4 sg_p3 3.68730e+01 4.57772e+00 3.31711e-03 1.33026e-01 - 5 sg_p4 6.48483e-01 1.65693e-02 1.99186e-03 1.18731e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.562e-02 -7.064e-03 3.747e-02 -1.545e-01 -2.634e-04 - -7.064e-03 5.193e-02 -4.091e-01 5.342e-01 1.402e-03 - 3.747e-02 -4.091e-01 1.435e+01 -1.392e+01 -8.150e-04 - -1.545e-01 5.342e-01 -1.392e+01 2.101e+01 -1.176e-03 - -2.634e-04 1.402e-03 -8.150e-04 -1.176e-03 2.747e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23149 1.000 -0.145 0.046 -0.158 -0.074 - 2 0.64493 -0.145 1.000 -0.474 0.511 0.371 - 3 0.80971 0.046 -0.474 1.000 -0.802 -0.013 - 4 0.82741 -0.158 0.511 -0.802 1.000 -0.015 - 5 0.44365 -0.074 0.371 -0.013 -0.015 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=8594.18 FROM HESSE STATUS=OK 31 CALLS 227 TOTAL - EDM=0.000103618 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00810e+02 2.13733e-01 1.84792e-04 -2.83111e-01 - 2 sg_p1 6.67466e+00 2.30409e-01 1.12997e-03 -1.63396e-01 - 3 sg_p2 2.86358e+02 3.92954e+00 3.34054e-04 2.97224e-01 - 4 sg_p3 3.68730e+01 4.75005e+00 6.63422e-04 -5.84901e-01 - 5 sg_p4 6.48483e-01 1.65714e-02 3.98372e-04 3.01515e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.569e-02 -7.400e-03 4.620e-02 -1.644e-01 -2.656e-04 - -7.400e-03 5.333e-02 -4.485e-01 5.817e-01 1.411e-03 - 4.620e-02 -4.485e-01 1.545e+01 -1.528e+01 -1.007e-03 - -1.644e-01 5.817e-01 -1.528e+01 2.263e+01 -8.956e-04 - -2.656e-04 1.411e-03 -1.007e-03 -8.956e-04 2.747e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23430 1.000 -0.150 0.055 -0.162 -0.075 - 2 0.65672 -0.150 1.000 -0.494 0.530 0.369 - 3 0.82472 0.055 -0.494 1.000 -0.817 -0.015 - 4 0.84090 -0.162 0.530 -0.817 1.000 -0.011 - 5 0.44388 -0.075 0.369 -0.015 -0.011 1.000 -300 -300.81 +- 0.213733 -6.67466 +- 0.230409 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10085.1 FROM MIGRAD STATUS=INITIATE 38 CALLS 39 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 0.00000e+00 1.41204e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 0.00000e+00 -3.13147e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 0.00000e+00 9.36393e+00 - 4 sg_p3 5.63011e+01 1.20000e+01 -2.30347e-01 1.74222e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -1.47792e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9847.01 FROM MIGRAD STATUS=CONVERGED 237 CALLS 238 TOTAL - EDM=9.73968e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00804e+02 2.00448e-01 9.27938e-04 -2.66723e-02 - 2 sg_p1 6.67674e+00 2.14181e-01 5.68372e-03 6.00134e-04 - 3 sg_p2 2.86357e+02 3.57965e+00 1.66724e-03 -1.62501e-02 - 4 sg_p3 3.71633e+01 4.35962e+00 3.32473e-03 2.36830e-03 - 5 sg_p4 6.44672e-01 1.55331e-02 1.99195e-03 -8.00555e-04 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.018e-02 -6.290e-03 3.361e-02 -1.381e-01 -2.282e-04 - -6.290e-03 4.605e-02 -3.651e-01 4.812e-01 1.217e-03 - 3.361e-02 -3.651e-01 1.282e+01 -1.255e+01 -7.211e-05 - -1.381e-01 4.812e-01 -1.255e+01 1.905e+01 -1.851e-03 - -2.282e-04 1.217e-03 -7.211e-05 -1.851e-03 2.414e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23182 1.000 -0.146 0.047 -0.158 -0.073 - 2 0.64675 -0.146 1.000 -0.475 0.514 0.365 - 3 0.81111 0.047 -0.475 1.000 -0.803 -0.001 - 4 0.82935 -0.158 0.514 -0.803 1.000 -0.027 - 5 0.44510 -0.073 0.365 -0.001 -0.027 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9847.01 FROM HESSE STATUS=OK 31 CALLS 269 TOTAL - EDM=1.05973e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00804e+02 2.00611e-01 1.85588e-04 -2.83535e-01 - 2 sg_p1 6.67674e+00 2.17452e-01 2.27349e-04 -1.62344e-01 - 3 sg_p2 2.86357e+02 3.73232e+00 3.33449e-04 2.97212e-01 - 4 sg_p3 3.71633e+01 4.54584e+00 1.32989e-04 -5.79108e-01 - 5 sg_p4 6.44672e-01 1.55348e-02 7.96779e-05 2.93540e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.025e-02 -6.630e-03 4.251e-02 -1.483e-01 -2.300e-04 - -6.630e-03 4.748e-02 -4.050e-01 5.298e-01 1.225e-03 - 4.251e-02 -4.050e-01 1.394e+01 -1.395e+01 -2.119e-04 - -1.483e-01 5.298e-01 -1.395e+01 2.072e+01 -1.629e-03 - -2.300e-04 1.225e-03 -2.119e-04 -1.629e-03 2.414e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23512 1.000 -0.152 0.057 -0.162 -0.074 - 2 0.66010 -0.152 1.000 -0.498 0.534 0.362 - 3 0.82785 0.057 -0.498 1.000 -0.821 -0.004 - 4 0.84435 -0.162 0.534 -0.821 1.000 -0.023 - 5 0.44529 -0.074 0.362 -0.004 -0.023 1.000 -300 -300.804 +- 0.200611 -6.67674 +- 0.217452 -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 300.807 +- 0.207041 (stat) - 0.0909738 + 0.181936 (syst); -0.137814/+0.209326 (total) - Uncertainty on sg_p1 = 6.67548 +- 0.22415 (stat) - 0.1753 + 0.0276028 (syst); -0.208065/+0.115424 (total) - Uncertainty on sg_p2 = 286.348 +- 3.84665 (stat) - 3.4164 + 6.73068 (syst); -3.92058/+7.00009 (total) - Uncertainty on sg_p3 = 37.0116 +- 4.66245 (stat) - 4.76893 + 0.769026 (syst); -5.30823/+2.45479 (total) - Uncertainty on sg_p4 = 0.646423 +- 0.0160428 (stat) - 0.00914333 + 0.00849815 (syst); -0.0121632/+0.0116859 (total) - === Baseline plot ===
- norm = 304.126 -JEC lnN 1.00496 - -JER lnN 1.02029 - -btag lnN 1.06837 - -sg_p0 param 300.807 -0.137814/+0.209326 -sg_p1 param 6.67548 -0.208065/+0.115424 -sg_p2 param 286.348 -3.92058/+7.00009 -sg_p3 param 37.0116 -5.30823/+2.45479 -sg_p4 param 0.646423 -0.0121632/+0.0116859 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_crystal_1_285_624/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_crystal_1_285_624/data_bkg.log deleted file mode 100644 index 3cc1900..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_crystal_1_285_624/data_bkg.log +++ /dev/null @@ -1,750 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [252,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=62921.6 FROM MIGRAD STATUS=INITIATE 90 CALLS 91 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.21879e-02 5.09000e-01 0.00000e+00 -9.80911e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -1.28354e+01 - 3 par_crystal_2 2.65669e+02 4.00000e+00 0.00000e+00 3.55320e+02 - 4 par_crystal_3 1.06488e+01 2.70000e+00 -4.48284e-01 -2.33576e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62883.4 FROM HESSE STATUS=OK 29 CALLS 257 TOTAL - EDM=4.91113 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.66060e-01 4.16121e-03 3.52377e-04 -4.74293e+00 - 2 par_crystal_1 4.45375e+00 2.73731e+00 1.77223e-01 2.66184e-01 - 3 par_crystal_2 2.67385e+02 2.04373e-01 8.29600e-04 2.81454e+02 - 4 par_crystal_3 1.36851e+01 5.38888e-01 1.69331e-03 -1.62103e+00 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=62883.3 FROM MIGRAD STATUS=FAILED 358 CALLS 359 TOTAL - EDM=0.00753244 STRATEGY= 1 ERR MATRIX APPROXIMATE - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.65093e-01 8.39913e-03 1.31861e-03 5.42788e+00 - 2 par_crystal_1 5.09910e+00 4.33634e+00 3.39194e-01 -6.59950e-03 - 3 par_crystal_2 2.67339e+02 1.86486e-01 3.32550e-03 -8.58879e+00 - 4 par_crystal_3 1.37140e+01 6.01780e-01 6.34807e-03 1.69258e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.055e-05 1.617e-04 4.699e-04 2.892e-03 - 1.617e-04 1.762e-02 -1.356e-04 -1.108e-03 - 4.699e-04 -1.356e-04 3.478e-02 3.255e-02 - 2.892e-03 -1.108e-03 3.255e-02 3.624e-01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.60853 1.000 0.145 0.300 0.572 - 2 0.19009 0.145 1.000 -0.005 -0.014 - 3 0.33449 0.300 -0.005 1.000 0.290 - 4 0.59243 0.572 -0.014 0.290 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7660e-01 8.1807e-01 1.6519e+00 1.7066e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.178308 TO DIAGONAL. - FCN=62883.3 FROM HESSE STATUS=NOT POSDEF 33 CALLS 392 TOTAL - EDM=3.36849 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.65093e-01 8.70034e-02 2.63722e-04 -1.21988e+00 - 2 par_crystal_1 5.09910e+00 4.18121e+00 5.00000e-01 1.54425e+00 - 3 par_crystal_2 2.67339e+02 5.27040e+00 9.57407e-02 3.75715e-01 - 4 par_crystal_3 1.37140e+01 6.68546e+00 2.53923e-04 -2.07863e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.595e-03 -2.994e-03 4.642e-01 6.089e-01 - -2.994e-03 1.536e-02 -1.944e-01 -2.569e-01 - 4.642e-01 -1.944e-01 2.855e+01 3.736e+01 - 6.089e-01 -2.569e-01 3.736e+01 4.914e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99751 1.000 -0.277 0.997 0.997 - 2 0.37560 -0.277 1.000 -0.293 -0.296 - 3 0.99795 0.997 -0.293 1.000 0.997 - 4 0.99797 0.997 -0.296 0.997 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=62983.1 FROM MIGRAD STATUS=INITIATE 29 CALLS 30 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 6.05383e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -1.33666e+02 - 3 par_gaus_exp_2 3.19008e-01 3.05000e-01 -9.67731e-01 -3.33619e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.00383 added to diagonal of error matrix - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62882.7 FROM MIGRAD STATUS=CONVERGED 228 CALLS 229 TOTAL - EDM=4.4408e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.69095e+02 7.01852e-01 4.07755e-03 2.89794e-02 - 2 par_gaus_exp_1 1.61044e+01 1.09719e+00 7.43010e-03 -1.84784e-02 - 3 par_gaus_exp_2 1.90527e-01 1.58774e-02 1.98778e-03 -6.23432e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 4.929e-01 5.914e-01 9.067e-03 - 5.914e-01 1.207e+00 1.483e-02 - 9.067e-03 1.483e-02 2.521e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.82590 1.000 0.767 0.813 - 2 0.85979 0.767 1.000 0.850 - 3 0.88644 0.813 0.850 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62882.7 FROM HESSE STATUS=OK 16 CALLS 245 TOTAL - EDM=4.28199e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.69095e+02 6.86832e-01 1.63102e-04 -5.76704e-01 - 2 par_gaus_exp_1 1.61044e+01 1.07335e+00 2.97204e-04 -5.72398e-01 - 3 par_gaus_exp_2 1.90527e-01 1.55212e-02 7.95110e-05 -1.13813e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 4.720e-01 5.579e-01 8.580e-03 - 5.579e-01 1.155e+00 1.406e-02 - 8.580e-03 1.406e-02 2.410e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.81734 1.000 0.756 0.805 - 2 0.85292 0.756 1.000 0.843 - 3 0.88081 0.805 0.843 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,624] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.3296 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.3296) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=286.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=286.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=289.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=289.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=295.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=295.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=298.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=298.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=301.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=301.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - ... (remaining 216 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.733611 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.733611) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=313.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=316.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=319.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=325.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=328.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=331.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=334.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=340.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=343.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=346.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - ... (remaining 94 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0733618 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0733618 - - FCN=103426 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57146e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.55551e+03 - 3 par_novo_2 -1.33526e+00 2.00000e+01 0.00000e+00 1.53308e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103192 FROM MIGRAD STATUS=CONVERGED 126 CALLS 127 TOTAL - EDM=1.07924e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.17697e+01 1.69443e-01** at limit ** - 2 par_novo_1 3.87878e+01 2.27475e+00 4.96100e-03 -6.14249e-02 - 3 par_novo_2 -1.26766e+00 7.00630e-02 3.67886e-05 3.77179e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 2.244e-10 -2.632e-07 -1.276e-07 - -2.632e-07 5.190e+00 1.540e-01 - -1.276e-07 1.540e-01 4.909e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.43392 1.000 -0.008 -0.122 - 2 0.97109 -0.008 1.000 0.965 - 3 0.97152 -0.122 0.965 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103192 FROM HESSE STATUS=OK 20 CALLS 147 TOTAL - EDM=1.23299e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.15107e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.87878e+01 2.30410e+00 1.98440e-04 4.51799e-01 - 3 par_novo_2 -1.26766e+00 7.13892e-02 1.47154e-06 -1.26769e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 2.143e-10 3.996e-06 -2.087e-07 - 3.996e-06 5.325e+00 1.518e-01 - -2.087e-07 1.518e-01 5.096e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.80390 1.000 0.118 -0.200 - 2 0.97183 0.118 1.000 0.922 - 3 0.97258 -0.200 0.922 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107617 FROM MIGRAD STATUS=INITIATE 36 CALLS 37 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 6.60405e+03 - 2 par_crystal_1_1 7.90153e-02 5.09000e-01 -1.80421e+00 3.05679e+03 - 3 par_crystal_1_2 2.60000e+02 4.00000e+00 0.00000e+00 1.48888e+03 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 6.99071e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.17529 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.7903e-03 5.8606e-02 5.0897e-01 3.4352e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.006225 TO DIAGONAL. - FCN=103191 FROM MIGRAD STATUS=CONVERGED 353 CALLS 354 TOTAL - EDM=3.7306e-06 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.37913e-01 3.41139e-02 6.19492e-04 4.10204e-01 - 2 par_crystal_1_1 4.44737e+00 5.69760e-01 2.21494e-02 9.88736e-03 - 3 par_crystal_1_2 2.79979e+02 3.40482e+01 2.79535e-01 -2.97577e-04 - 4 par_crystal_1_3 1.87584e+01 2.98857e+00 3.96232e-03 -6.40797e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.164e-03 3.582e-03 3.594e-03 9.898e-02 - 3.582e-03 3.375e-01 -1.052e-02 7.382e-01 - 3.594e-03 -1.052e-02 3.148e+00 6.243e-01 - 9.898e-02 7.382e-01 6.243e-01 9.086e+00 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99630 1.000 0.181 0.059 0.962 - 2 0.95650 0.181 1.000 -0.010 0.422 - 3 0.63948 0.059 -0.010 1.000 0.117 - 4 0.99690 0.962 0.422 0.117 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103191 FROM HESSE STATUS=OK 27 CALLS 381 TOTAL - EDM=6.06842e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 2.37913e-01 2.12502e-01 1.23898e-04 -8.36786e+01 - 2 par_crystal_1_1 4.44737e+00 5.06952e-01 8.85975e-04 -1.65463e+01 - 3 par_crystal_1_2 2.79979e+02 2.96341e+01 5.00000e-01 7.80831e+00 - 4 par_crystal_1_3 1.87584e+01 1.90925e+01 1.58493e-04 2.18231e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.578e-02 1.663e-02 2.427e-02 3.730e+00 - 1.663e-02 2.650e-01 -4.299e-02 1.684e+00 - 2.427e-02 -4.299e-02 1.850e+00 2.341e+00 - 3.730e+00 1.684e+00 2.341e+00 3.045e+02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99991 1.000 0.151 0.083 0.999 - 2 0.94385 0.151 1.000 -0.061 0.187 - 3 0.80384 0.083 -0.061 1.000 0.099 - 4 0.99991 0.999 0.187 0.099 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 13889.7 - Background number of gaus_exp_252_330 = 13889.7 - Background number of novo_285_624 = 17637.2 - Background number of crystal_1_285_624 = 17637.2 - Background number of gaus_bern_285_624 = 17637.2 - Background number of landau_285_624 = 17637.2 -par_crystal_0 param 0.165093 0.0870034 -par_crystal_1 param 5.0991 4.18121 -par_crystal_2 param 267.339 5.2704 -par_crystal_3 param 13.714 6.68546 -par_crystal_1_0 param 0.237913 0.212502 -par_crystal_1_1 param 4.44737 0.506952 -par_crystal_1_2 param 279.979 29.6341 -par_crystal_1_3 param 18.7584 19.0925 -par_gaus_exp_0 param 269.095 0.686832 -par_gaus_exp_1 param 16.1044 1.07335 -par_gaus_exp_2 param 0.190527 0.0155212 -par_novo_0 param 250 31.5107 -par_novo_1 param 38.7878 2.3041 -par_novo_2 param -1.26766 0.0713892 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_crystal_1_285_624/datacard_350_crystal_1_285_624.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_crystal_1_285_624/datacard_350_crystal_1_285_624.txt deleted file mode 100644 index 9ce90d6..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_crystal_1_285_624/datacard_350_crystal_1_285_624.txt +++ /dev/null @@ -1,31 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_350.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_crystal_1_285_624.root HbbHbb:f_crystal_1 -shapes data_obs HbbHbb w_background_crystal_1_285_624.root HbbHbb:data_obs_crystal_1_285_624 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 541.084 17637.2 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06649 - -JER lnN 1.00905 - -JEC lnN 1.0101 - -trigger lnN 1.10 - -PDF lnN 1.0164211668 - -sg_p0 param 351.69 -0.33742/+0.289485 -sg_p1 param 8.9999 -0.244659/+0.23626 -sg_p2 param 337.532 -5.30516/+3.56202 -sg_p3 param 35.585 -1.92591/+2.70654 -sg_p4 param 0.703842 -0.0115673/+0.013846 -par_crystal_1_0 param 0.237913 0.212502 -par_crystal_1_1 param 4.44737 0.506952 -par_crystal_1_2 param 279.979 29.6341 -par_crystal_1_3 param 18.7584 19.0925 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_crystal_1_285_624/pdf.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_crystal_1_285_624/pdf.log deleted file mode 100644 index 9259882..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_crystal_1_285_624/pdf.log +++ /dev/null @@ -1,10 +0,0 @@ -[?1034h FCN=9.92721 FROM MIGRAD STATUS=CONVERGED 62 CALLS 63 TOTAL - EDM=6.1511e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 Constant 1.76281e+01 2.26075e+00 2.99629e-03 -1.83938e-04 - 2 Mean 1.00111e+00 1.89451e-03 2.87033e-06 -5.72789e-01 - 3 Sigma 1.64212e-02 1.27561e-03 3.30460e-05 -5.02787e-03 -1.00110542289 +/- 0.00189450571012 -0.0164211667957 +/- 0.00127560788686 -PDF lnN 1.0164211668 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_crystal_1_285_624/signal350_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_crystal_1_285_624/signal350_sig.log deleted file mode 100644 index 3cd3455..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_crystal_1_285_624/signal350_sig.log +++ /dev/null @@ -1,927 +0,0 @@ - -Processing test.c... -nSignal_init = 300000 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=22528 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.45000e+02 7.00000e+00 2.01358e-01 1.85444e+03 - 2 sg_p1 2.00000e+01 3.00000e+00 2.01358e-01 -1.26556e+01 - 3 sg_p2 3.75000e+02 9.00000e+00 2.01358e-01 1.23451e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -4.81309e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -9.79262e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21380.5 FROM MIGRAD STATUS=CONVERGED 200 CALLS 201 TOTAL - EDM=3.93725e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.34187e+02 4.37520e-01 1.19182e-03 3.04020e-02 - 2 sg_p1 2.26141e+01 4.79817e-01 2.16429e-03 1.96597e-03 - 3 sg_p2 3.30000e+02 7.71533e-01 1.87116e-02** at limit ** - 4 sg_p3 7.15373e+01 5.51063e+00 8.04417e-03 3.88300e-03 - 5 sg_p4 8.94168e-01 1.56675e-02 2.59223e-03 3.19034e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.914e-01 -8.489e-02 -1.235e-06 -8.412e-01 -2.850e-03 - -8.489e-02 2.303e-01 1.528e-06 1.618e+00 5.594e-03 - -1.235e-06 1.528e-06 1.273e-07 1.107e-05 4.780e-08 - -8.412e-01 1.618e+00 1.107e-05 3.054e+01 6.912e-02 - -2.850e-03 5.594e-03 4.780e-08 6.912e-02 2.457e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.43984 1.000 -0.404 -0.008 -0.348 -0.416 - 2 0.75144 -0.404 1.000 0.009 0.610 0.744 - 3 0.01053 -0.008 0.009 1.000 0.006 0.009 - 4 0.79840 -0.348 0.610 0.006 1.000 0.798 - 5 0.86375 -0.416 0.744 0.009 0.798 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21380.5 FROM HESSE STATUS=OK 31 CALLS 232 TOTAL - EDM=4.04441e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.34187e+02 4.38578e-01 4.76728e-05 -3.14089e-01 - 2 sg_p1 2.26141e+01 4.83583e-01 8.65717e-05 1.75170e-01 - 3 sg_p2 3.30000e+02 7.71716e-01 3.74232e-03 -1.57084e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 7.15373e+01 5.57705e+00 3.21767e-04 3.76314e-01 - 5 sg_p4 8.94168e-01 1.58618e-02 5.18445e-04 9.08100e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.924e-01 -8.684e-02 -2.448e-07 -8.666e-01 -2.922e-03 - -8.684e-02 2.339e-01 3.045e-07 1.670e+00 5.743e-03 - -2.448e-07 3.045e-07 1.274e-07 2.232e-06 9.555e-09 - -8.666e-01 1.670e+00 2.232e-06 3.129e+01 7.130e-02 - -2.922e-03 5.743e-03 9.555e-09 7.130e-02 2.518e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.44424 1.000 -0.409 -0.002 -0.353 -0.420 - 2 0.75592 -0.409 1.000 0.002 0.617 0.748 - 3 0.00208 -0.002 0.002 1.000 0.001 0.002 - 4 0.80377 -0.353 0.617 0.001 1.000 0.803 - 5 0.86733 -0.420 0.748 0.002 0.803 1.000 -350 -334.187 +- 0.438578 -22.6141 +- 0.483583 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=22627.8 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.45000e+02 7.00000e+00 2.01358e-01 1.57892e+03 - 2 sg_p1 2.00000e+01 3.00000e+00 2.01358e-01 2.75936e+01 - 3 sg_p2 3.75000e+02 9.00000e+00 2.01358e-01 1.16953e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -3.72010e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -9.99046e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21614.3 FROM MIGRAD STATUS=CONVERGED 179 CALLS 180 TOTAL - EDM=0.000765156 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.35798e+02 4.40505e-01 1.18756e-03 5.85918e-02 - 2 sg_p1 2.30753e+01 4.76357e-01 2.18690e-03 -2.03897e-03 - 3 sg_p2 3.30001e+02 1.45352e+00 2.57988e-02 -9.05792e-02 - 4 sg_p3 7.35354e+01 6.02462e+00 8.88269e-03 -1.01559e-01 - 5 sg_p4 9.01891e-01 1.51622e-02 2.60225e-03 2.64090e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.941e-01 -8.403e-02 -1.778e-04 -9.585e-01 -2.816e-03 - -8.403e-02 2.270e-01 1.870e-04 1.767e+00 5.355e-03 - -1.778e-04 1.870e-04 4.564e-03 5.987e-04 4.935e-06 - -9.585e-01 1.767e+00 5.987e-04 3.656e+01 7.358e-02 - -2.816e-03 5.355e-03 4.935e-06 7.358e-02 2.301e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.44243 1.000 -0.400 -0.006 -0.360 -0.421 - 2 0.74784 -0.400 1.000 0.006 0.613 0.741 - 3 0.00826 -0.006 0.006 1.000 0.001 0.005 - 4 0.80297 -0.360 0.613 0.001 1.000 0.802 - 5 0.86456 -0.421 0.741 0.005 0.802 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21614.3 FROM HESSE STATUS=OK 31 CALLS 211 TOTAL - EDM=0.000770472 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.35798e+02 4.41802e-01 2.37512e-04 -2.66038e-01 - 2 sg_p1 2.30753e+01 4.80609e-01 8.74761e-05 2.06482e-01 - 3 sg_p2 3.30001e+02 1.45505e+00 5.15976e-03 -1.57669e+00 - 4 sg_p3 7.35354e+01 6.11053e+00 3.55307e-04 4.24535e-01 - 5 sg_p4 9.01891e-01 1.53826e-02 1.04090e-04 9.33626e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.952e-01 -8.630e-02 8.428e-05 -9.929e-01 -2.902e-03 - -8.630e-02 2.311e-01 -8.883e-05 1.833e+00 5.520e-03 - 8.428e-05 -8.883e-05 4.569e-03 -2.859e-04 -2.344e-06 - -9.929e-01 1.833e+00 -2.859e-04 3.762e+01 7.631e-02 - -2.902e-03 5.520e-03 -2.344e-06 7.631e-02 2.368e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.44772 1.000 -0.406 0.003 -0.366 -0.427 - 2 0.75302 -0.406 1.000 -0.003 0.622 0.746 - 3 0.00390 0.003 -0.003 1.000 -0.001 -0.002 - 4 0.80914 -0.366 0.622 -0.001 1.000 0.808 - 5 0.86871 -0.427 0.746 -0.002 0.808 1.000 -350 -335.798 +- 0.441802 -23.0753 +- 0.480609 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=22461.8 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.45000e+02 7.00000e+00 2.01358e-01 2.12122e+03 - 2 sg_p1 2.00000e+01 3.00000e+00 2.01358e-01 -1.16373e+02 - 3 sg_p2 3.75000e+02 9.00000e+00 2.01358e-01 1.31911e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -5.79911e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -9.15472e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21165.5 FROM MIGRAD STATUS=CONVERGED 173 CALLS 174 TOTAL - EDM=1.05905e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.32336e+02 4.42443e-01 1.23362e-03 3.68247e-02 - 2 sg_p1 2.24290e+01 4.96251e-01 2.19433e-03 -3.29729e-02 - 3 sg_p2 3.30000e+02 5.15272e-01 1.52593e-02** at limit ** - 4 sg_p3 6.46965e+01 4.49942e+00 6.08111e-03 5.16840e-02 - 5 sg_p4 8.77595e-01 1.81613e-02 2.70062e-03 -5.60533e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.958e-01 -8.688e-02 -6.473e-07 -6.527e-01 -3.215e-03 - -8.688e-02 2.464e-01 8.468e-07 1.363e+00 6.784e-03 - -6.473e-07 8.468e-07 3.789e-08 6.087e-06 3.127e-08 - -6.527e-01 1.363e+00 6.087e-06 2.032e+01 6.625e-02 - -3.215e-03 6.784e-03 3.127e-08 6.625e-02 3.302e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.42501 1.000 -0.396 -0.008 -0.327 -0.400 - 2 0.75928 -0.396 1.000 0.009 0.609 0.752 - 3 0.01018 -0.008 0.009 1.000 0.007 0.009 - 4 0.80887 -0.327 0.609 0.007 1.000 0.809 - 5 0.87457 -0.400 0.752 0.009 0.809 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21165.5 FROM HESSE STATUS=OK 31 CALLS 205 TOTAL - EDM=1.06081e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.32336e+02 4.43146e-01 4.93448e-05 -3.70218e-01 - 2 sg_p1 2.24290e+01 4.99339e-01 8.77732e-05 1.62649e-01 - 3 sg_p2 3.30000e+02 5.15335e-01 3.05186e-03 -1.57077e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 6.46965e+01 4.54231e+00 2.43244e-04 2.17181e-01 - 5 sg_p4 8.77595e-01 1.83407e-02 5.40123e-04 8.55943e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.964e-01 -8.838e-02 -1.326e-07 -6.673e-01 -3.275e-03 - -8.838e-02 2.494e-01 1.746e-07 1.397e+00 6.925e-03 - -1.326e-07 1.746e-07 3.790e-08 1.265e-06 6.465e-09 - -6.673e-01 1.397e+00 1.265e-06 2.071e+01 6.788e-02 - -3.275e-03 6.925e-03 6.465e-09 6.788e-02 3.367e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.42806 1.000 -0.399 -0.002 -0.331 -0.403 - 2 0.76271 -0.399 1.000 0.002 0.615 0.756 - 3 0.00208 -0.002 0.002 1.000 0.001 0.002 - 4 0.81288 -0.331 0.615 0.001 1.000 0.813 - 5 0.87719 -0.403 0.756 0.002 0.813 1.000 -350 -332.336 +- 0.443146 -22.429 +- 0.499339 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17745.4 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 3.81607e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -5.82292e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.35171e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -4.55171e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 5.60829e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.4848e-03 4.4073e-01 9.4874e-01 1.6613e+00 1.9507e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.003435 TO DIAGONAL. - FCN=17037.5 FROM MIGRAD STATUS=CONVERGED 272 CALLS 273 TOTAL - EDM=0.000229841 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51690e+02 3.12909e-01 7.20357e-04 1.50885e-02 - 2 sg_p1 8.99990e+00 2.02072e+00 1.07460e-01 -8.64629e-04 - 3 sg_p2 3.37532e+02 1.70704e+01 8.89534e-04 8.91783e-02 - 4 sg_p3 3.55850e+01 1.57412e+01 2.01445e-03 5.68535e-02 - 5 sg_p4 7.03842e-01 9.36961e-02 8.03918e-03 -4.45853e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.792e-02 9.007e-02 3.977e+00 -3.782e+00 -2.519e-02 - 9.007e-02 1.430e-01 6.397e+00 -5.986e+00 -3.967e-02 - 3.977e+00 6.397e+00 2.927e+02 -2.722e+02 -1.779e+00 - -3.782e+00 -5.986e+00 -2.722e+02 2.551e+02 1.667e+00 - -2.519e-02 -3.967e-02 -1.779e+00 1.667e+00 1.115e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.77487 1.000 0.761 0.743 -0.757 -0.763 - 2 0.99571 0.761 1.000 0.989 -0.991 -0.994 - 3 0.99637 0.743 0.989 1.000 -0.996 -0.985 - 4 0.99713 -0.757 -0.991 -0.996 1.000 0.988 - 5 0.99425 -0.763 -0.994 -0.985 0.988 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17037.5 FROM HESSE STATUS=OK 35 CALLS 308 TOTAL - EDM=2.9509e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51690e+02 2.05801e-01 1.44071e-04 -1.32785e-01 - 2 sg_p1 8.99990e+00 4.72520e-01 4.38435e-01 1.58093e+00 - 3 sg_p2 3.37532e+02 3.63434e+00 1.77907e-04 4.55143e-01 - 4 sg_p3 3.55850e+01 3.20621e+00 8.05779e-05 -6.87361e-01 - 5 sg_p4 7.03842e-01 1.85963e-02 3.21567e-04 -7.64719e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.236e-02 4.581e-04 2.670e-02 -8.569e-02 -6.634e-04 - 4.581e-04 2.023e-04 3.597e-02 -3.336e-02 -2.070e-04 - 2.670e-02 3.597e-02 1.321e+01 -1.062e+01 -4.128e-02 - -8.569e-02 -3.336e-02 -1.062e+01 1.029e+01 3.997e-02 - -6.634e-04 -2.070e-04 -4.128e-02 3.997e-02 3.484e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.27036 1.000 0.157 0.036 -0.130 -0.173 - 2 0.83318 0.157 1.000 0.696 -0.731 -0.780 - 3 0.91590 0.036 0.696 1.000 -0.910 -0.608 - 4 0.92588 -0.130 -0.731 -0.910 1.000 0.668 - 5 0.79489 -0.173 -0.780 -0.608 0.668 1.000 -350 -351.69 +- 0.205801 -8.9999 +- 0.47252 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17980.6 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 3.49987e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -5.98208e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.69170e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -7.83629e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 5.56311e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17292.9 FROM HESSE STATUS=OK 33 CALLS 303 TOTAL - EDM=0.00176494 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51961e+02 2.04460e-01 7.28165e-04 -2.52563e-01 - 2 sg_p1 8.99915e+00 2.30345e-01 4.30116e-02 1.25408e-01 - 3 sg_p2 3.40595e+02 2.15600e+00 8.33185e-04 -5.45844e-01 - 4 sg_p3 3.45143e+01 1.95839e+00 2.03832e-03 -4.14782e-02 - 5 sg_p4 7.03933e-01 1.22162e-02 8.12692e-03 9.35709e-02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=17292.9 FROM MIGRAD STATUS=CONVERGED 313 CALLS 314 TOTAL - EDM=4.59633e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 1.1 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51961e+02 2.04485e-01 4.26699e-06 -6.13016e-02 - 2 sg_p1 9.00000e+00 2.28984e-01 -2.81882e-02 4.39584e-03 - 3 sg_p2 3.40596e+02 2.15817e+00 9.56132e-06 -1.29730e-01 - 4 sg_p3 3.45177e+01 1.95208e+00 6.42863e-05 7.35163e-02 - 5 sg_p4 7.03952e-01 1.21706e-02 1.50864e-04 7.78726e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.182e-02 1.059e-06 -5.711e-02 -6.423e-03 -1.875e-04 - 1.059e-06 9.432e-07 8.505e-05 -8.954e-05 -6.387e-07 - -5.711e-02 8.505e-05 4.658e+00 -3.232e+00 -5.893e-03 - -6.423e-03 -8.954e-05 -3.232e+00 3.812e+00 7.975e-03 - -1.875e-04 -6.387e-07 -5.893e-03 7.975e-03 1.486e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23004 1.000 0.005 -0.129 -0.016 -0.075 - 2 0.06294 0.005 1.000 0.041 -0.047 -0.054 - 3 0.78034 -0.129 0.041 1.000 -0.767 -0.224 - 4 0.79125 -0.016 -0.047 -0.767 1.000 0.335 - 5 0.34635 -0.075 -0.054 -0.224 0.335 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17292.9 FROM HESSE STATUS=OK 33 CALLS 347 TOTAL - EDM=8.75756e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51961e+02 2.04438e-01 7.28075e-04 -1.21874e-01 - 2 sg_p1 9.00000e+00 2.29843e-01 4.29288e-02 1.57180e+00 - 3 sg_p2 3.40596e+02 2.15392e+00 8.34476e-04 4.75922e-01 - 4 sg_p3 3.45177e+01 1.95162e+00 8.15327e-04 -7.07252e-01 - 5 sg_p4 7.03952e-01 1.20329e-02 8.13654e-03 -7.63847e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.180e-02 1.680e-06 -5.851e-02 -5.134e-03 -1.774e-04 - 1.680e-06 9.469e-07 1.234e-04 -1.333e-04 -1.048e-06 - -5.851e-02 1.234e-04 4.640e+00 -3.221e+00 -5.474e-03 - -5.134e-03 -1.333e-04 -3.221e+00 3.811e+00 7.658e-03 - -1.774e-04 -1.048e-06 -5.474e-03 7.658e-03 1.452e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22989 1.000 0.008 -0.133 -0.013 -0.072 - 2 0.10030 0.008 1.000 0.059 -0.070 -0.089 - 3 0.77997 -0.133 0.059 1.000 -0.766 -0.211 - 4 0.79057 -0.013 -0.070 -0.766 1.000 0.326 - 5 0.34225 -0.072 -0.089 -0.211 0.326 1.000 -350 -351.961 +- 0.204438 -9 +- 0.229843 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17556.6 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 4.17830e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -5.68439e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.02939e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -1.22040e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 5.78553e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - MINUIT WARNING IN HESSE - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN HESSE - ============== 1.39906 added to diagonal of error matrix - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16809.1 FROM HESSE STATUS=OK 37 CALLS 272 TOTAL - EDM=0.00897496 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51361e+02 2.01282e-01 7.11370e-04 1.72820e-01 - 2 sg_p1 8.99409e+00 2.54007e+00 1.10453e-01 1.29902e-01 - 3 sg_p2 3.31862e+02 3.59215e+00 1.00989e-03 -2.61406e-01 - 4 sg_p3 3.82944e+01 2.65752e+00 2.00950e-03 -4.58275e-02 - 5 sg_p4 6.99077e-01 1.14579e-02 8.35244e-03 6.96141e-02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16809.1 FROM MIGRAD STATUS=CONVERGED 368 CALLS 369 TOTAL - EDM=2.66923e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51369e+02 2.03042e-01 7.10429e-04 6.65922e-02 - 2 sg_p1 8.93634e+00 2.26538e-01 3.06864e-02 1.49692e-02 - 3 sg_p2 3.32548e+02 4.06056e+00 9.86163e-04 4.21549e-03 - 4 sg_p3 3.77657e+01 3.08320e+00 1.99063e-03 -6.94419e-02 - 5 sg_p4 6.96961e-01 1.39263e-02 8.49674e-03 -1.61305e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.123e-02 -6.678e-03 2.163e-02 -7.188e-02 -4.511e-04 - -6.678e-03 5.527e-02 -5.307e-01 4.156e-01 1.876e-03 - 2.163e-02 -5.307e-01 1.649e+01 -1.137e+01 -1.673e-02 - -7.188e-02 4.156e-01 -1.137e+01 9.516e+00 1.485e-02 - -4.511e-04 1.876e-03 -1.673e-02 1.485e-02 1.948e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25576 1.000 -0.140 0.026 -0.115 -0.159 - 2 0.70688 -0.140 1.000 -0.556 0.573 0.572 - 3 0.91344 0.026 -0.556 1.000 -0.908 -0.295 - 4 0.91579 -0.115 0.573 -0.908 1.000 0.345 - 5 0.58244 -0.159 0.572 -0.295 0.345 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16809.1 FROM HESSE STATUS=OK 31 CALLS 400 TOTAL - EDM=2.70646e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51369e+02 2.03746e-01 1.42086e-04 -1.45765e-01 - 2 sg_p1 8.93634e+00 2.54070e-01 1.22745e-03 1.31782e+00 - 3 sg_p2 3.32548e+02 4.51761e+00 3.94465e-05 4.21778e-01 - 4 sg_p3 3.77657e+01 3.43807e+00 7.96253e-05 -6.47692e-01 - 5 sg_p4 6.96961e-01 1.47151e-02 3.39870e-04 -8.20745e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.151e-02 -8.628e-03 5.304e-02 -9.587e-02 -5.312e-04 - -8.628e-03 6.725e-02 -7.432e-01 5.794e-01 2.412e-03 - 5.304e-02 -7.432e-01 2.041e+01 -1.440e+01 -2.542e-02 - -9.587e-02 5.794e-01 -1.440e+01 1.184e+01 2.153e-02 - -5.312e-04 2.412e-03 -2.542e-02 2.153e-02 2.176e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.26808 1.000 -0.163 0.058 -0.137 -0.177 - 2 0.76639 -0.163 1.000 -0.634 0.650 0.630 - 3 0.93070 0.058 -0.634 1.000 -0.926 -0.381 - 4 0.93289 -0.137 0.650 -0.926 1.000 0.424 - 5 0.63913 -0.177 0.630 -0.381 0.424 1.000 -350 -351.369 +- 0.203746 -8.93634 +- 0.25407 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17593.4 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 3.78939e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -5.82009e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.40055e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -4.92268e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 5.69068e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16875.6 FROM MIGRAD STATUS=CONVERGED 320 CALLS 321 TOTAL - EDM=1.73973e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51639e+02 2.04706e-01 7.22407e-04 -3.09735e-01 - 2 sg_p1 9.00000e+00 1.66126e-01 3.62658e-02 -7.99062e-03 - 3 sg_p2 3.36604e+02 2.77890e+00 9.23538e-04 -8.53328e-02 - 4 sg_p3 3.65924e+01 2.29934e+00 2.05397e-03 -4.59757e-02 - 5 sg_p4 7.00430e-01 1.16607e-02 8.31070e-03 -3.87898e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.191e-02 1.719e-06 -5.416e-02 -1.332e-02 -2.187e-04 - 1.719e-06 1.229e-06 1.227e-04 -1.127e-04 -6.551e-07 - -5.416e-02 1.227e-04 7.723e+00 -5.279e+00 -3.068e-03 - -1.332e-02 -1.127e-04 -5.279e+00 5.290e+00 4.752e-03 - -2.187e-04 -6.551e-07 -3.068e-03 4.752e-03 1.364e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22303 1.000 0.008 -0.095 -0.028 -0.091 - 2 0.06294 0.008 1.000 0.040 -0.044 -0.051 - 3 0.83540 -0.095 0.040 1.000 -0.826 -0.095 - 4 0.83755 -0.028 -0.044 -0.826 1.000 0.177 - 5 0.21502 -0.091 -0.051 -0.095 0.177 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16875.6 FROM HESSE STATUS=OK 31 CALLS 352 TOTAL - EDM=1.75499e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51639e+02 2.04671e-01 1.44481e-04 -1.34847e-01 - 2 sg_p1 9.00000e+00 1.66721e-01 7.25317e-03 1.56945e+00 - 3 sg_p2 3.36604e+02 2.84821e+00 1.84708e-04 4.48885e-01 - 4 sg_p3 3.65924e+01 2.35643e+00 8.21590e-05 -6.68882e-01 - 5 sg_p4 7.00430e-01 1.16522e-02 3.32428e-04 -7.92102e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.189e-02 2.314e-07 -5.503e-02 -1.229e-02 -2.144e-04 - 2.314e-07 1.234e-06 1.775e-05 -1.618e-05 -8.940e-08 - -5.503e-02 1.775e-05 8.113e+00 -5.607e+00 -3.304e-03 - -1.229e-02 -1.618e-05 -5.607e+00 5.556e+00 4.919e-03 - -2.144e-04 -8.940e-08 -3.304e-03 4.919e-03 1.362e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22229 1.000 0.001 -0.094 -0.025 -0.090 - 2 0.00867 0.001 1.000 0.006 -0.006 -0.007 - 3 0.84405 -0.094 0.006 1.000 -0.835 -0.099 - 4 0.84604 -0.025 -0.006 -0.835 1.000 0.179 - 5 0.21170 -0.090 -0.007 -0.099 0.179 1.000 -350 -351.639 +- 0.204671 -9 +- 0.166721 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17828.5 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 3.94800e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -5.62258e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.22820e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -3.94120e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 5.44291e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -6.7726e-02 3.7089e-01 9.5269e-01 1.7434e+00 2.0007e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.069727 TO DIAGONAL. - FCN=17147.5 FROM HESSE STATUS=NOT POSDEF 35 CALLS 251 TOTAL - EDM=1.1309 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51658e+02 3.51659e-01 7.01219e-04 -5.40058e-02 - 2 sg_p1 8.97742e+00 2.95083e+00 6.13915e-02 -2.03655e-01 - 3 sg_p2 3.35380e+02 1.79447e+01 9.83548e-04 6.97732e-01 - 4 sg_p3 3.73975e+01 1.59176e+01 2.11985e-03 1.68496e-01 - 5 sg_p4 7.15638e-01 9.42908e-02 7.30647e-03 -1.11566e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17147.5 FROM MIGRAD STATUS=CONVERGED 369 CALLS 370 TOTAL - EDM=4.09796e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51663e+02 1.99263e-01 7.00634e-04 4.55239e-02 - 2 sg_p1 8.93699e+00 2.96196e-01 2.96808e-02 -1.54899e-02 - 3 sg_p2 3.35749e+02 3.96525e+00 9.64449e-04 -8.88348e-03 - 4 sg_p3 3.70652e+01 3.34839e+00 2.10353e-03 -1.67958e-02 - 5 sg_p4 7.14101e-01 1.63480e-02 7.39271e-03 -2.31381e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.971e-02 9.041e-03 3.441e-02 -8.945e-02 -5.869e-04 - 9.041e-03 7.788e-02 7.343e-01 -6.508e-01 -3.330e-03 - 3.441e-02 7.343e-01 1.573e+01 -1.210e+01 -3.297e-02 - -8.945e-02 -6.508e-01 -1.210e+01 1.123e+01 3.115e-02 - -5.869e-04 -3.330e-03 -3.297e-02 3.115e-02 2.686e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.26818 1.000 0.163 0.044 -0.134 -0.180 - 2 0.81011 0.163 1.000 0.664 -0.696 -0.728 - 3 0.91607 0.044 0.664 1.000 -0.911 -0.507 - 4 0.92336 -0.134 -0.696 -0.911 1.000 0.567 - 5 0.73770 -0.180 -0.728 -0.507 0.567 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17147.5 FROM HESSE STATUS=OK 31 CALLS 401 TOTAL - EDM=3.78098e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51663e+02 1.98626e-01 1.40127e-04 -1.33882e-01 - 2 sg_p1 8.93699e+00 2.60351e-01 1.18723e-03 1.82247e+00 - 3 sg_p2 3.35749e+02 3.94847e+00 3.85780e-05 4.43146e-01 - 4 sg_p3 3.70652e+01 3.31177e+00 8.41412e-05 -6.60300e-01 - 5 sg_p4 7.14101e-01 1.54021e-02 2.95708e-04 -6.86338e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.945e-02 7.419e-03 1.957e-02 -7.558e-02 -4.983e-04 - 7.419e-03 6.823e-02 6.530e-01 -5.744e-01 -2.764e-03 - 1.957e-02 6.530e-01 1.559e+01 -1.191e+01 -2.828e-02 - -7.558e-02 -5.744e-01 -1.191e+01 1.098e+01 2.678e-02 - -4.983e-04 -2.764e-03 -2.828e-02 2.678e-02 2.383e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25680 1.000 0.143 0.025 -0.115 -0.163 - 2 0.77869 0.143 1.000 0.633 -0.664 -0.686 - 3 0.91532 0.025 0.633 1.000 -0.910 -0.464 - 4 0.92158 -0.115 -0.664 -0.910 1.000 0.524 - 5 0.69729 -0.163 -0.686 -0.464 0.524 1.000 -350 -351.663 +- 0.198626 -8.93699 +- 0.260351 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=16599.2 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 3.57504e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -5.44923e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.17494e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -4.08170e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 5.21506e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15939.1 FROM HESSE STATUS=OK 37 CALLS 314 TOTAL - EDM=0.000648585 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51693e+02 2.15714e-01 7.19414e-04 4.43718e-02 - 2 sg_p1 8.99487e+00 3.57548e+00 7.75677e-02 1.91574e-02 - 3 sg_p2 3.37608e+02 4.45408e+00 8.83711e-04 -1.12364e-01 - 4 sg_p3 3.54407e+01 4.01631e+00 2.01394e-03 2.05443e-02 - 5 sg_p4 7.05167e-01 2.51719e-02 7.97965e-03 2.01078e-02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 13.9403 added to diagonal of error matrix - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15939.1 FROM MIGRAD STATUS=CONVERGED 457 CALLS 458 TOTAL - EDM=6.3256e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51693e+02 2.10894e-01 7.19542e-04 -1.67564e-01 - 2 sg_p1 9.00000e+00 3.24335e+00 1.16287e-01** at limit ** - 3 sg_p2 3.37572e+02 3.03107e+00 8.85564e-04 -1.40083e-01 - 4 sg_p3 3.54732e+01 2.61363e+00 2.01712e-03 -2.42748e-02 - 5 sg_p4 7.05375e-01 1.51863e-02 7.98331e-03 2.92592e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.448e-02 6.249e-05 -2.584e-02 -4.146e-02 -4.052e-04 - 6.249e-05 8.943e-06 4.513e-03 -4.212e-03 -2.775e-05 - -2.584e-02 4.513e-03 9.189e+00 -6.814e+00 -1.858e-02 - -4.146e-02 -4.212e-03 -6.814e+00 6.836e+00 1.914e-02 - -4.052e-04 -2.775e-05 -1.858e-02 1.914e-02 2.317e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.24408 1.000 0.099 -0.040 -0.075 -0.126 - 2 0.67618 0.099 1.000 0.498 -0.539 -0.610 - 3 0.86794 -0.040 0.498 1.000 -0.860 -0.403 - 4 0.87833 -0.075 -0.539 -0.860 1.000 0.481 - 5 0.64024 -0.126 -0.610 -0.403 0.481 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15939.1 FROM HESSE STATUS=OK 35 CALLS 493 TOTAL - EDM=7.60914e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51693e+02 2.11707e-01 1.43908e-04 -1.32683e-01 - 2 sg_p1 9.00000e+00 3.40291e-01 4.74451e-01 1.56997e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 3 sg_p2 3.37572e+02 3.47654e+00 1.77113e-04 4.55410e-01 - 4 sg_p3 3.54732e+01 3.03978e+00 8.06848e-05 -6.89429e-01 - 5 sg_p4 7.05375e-01 1.75095e-02 3.19332e-04 -7.52647e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.482e-02 2.743e-05 3.917e-03 -6.861e-02 -5.663e-04 - 2.743e-05 9.504e-07 2.150e-03 -1.992e-03 -1.243e-05 - 3.917e-03 2.150e-03 1.209e+01 -9.464e+00 -3.305e-02 - -6.861e-02 -1.992e-03 -9.464e+00 9.250e+00 3.240e-02 - -5.663e-04 -1.243e-05 -3.305e-02 3.240e-02 3.085e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25843 1.000 0.133 0.005 -0.107 -0.152 - 2 0.78663 0.133 1.000 0.634 -0.672 -0.726 - 3 0.90139 0.005 0.634 1.000 -0.895 -0.541 - 4 0.91165 -0.107 -0.672 -0.895 1.000 0.606 - 5 0.74619 -0.152 -0.726 -0.541 0.606 1.000 -350 -351.693 +- 0.211707 -9 +- 0.340291 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=18950.1 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 4.06912e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -6.21556e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.53873e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -5.05415e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 6.02316e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 2.05452 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - MACHINE ACCURACY LIMITS FURTHER IMPROVEMENT. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -7.6627e-03 4.3650e-01 9.4912e-01 1.6697e+00 1.9524e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.009615 TO DIAGONAL. - FCN=18191.7 FROM MIGRAD STATUS=CONVERGED 438 CALLS 439 TOTAL - EDM=2.38291e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51688e+02 3.06549e-01 7.21716e-04 1.38139e-02 - 2 sg_p1 8.99221e+00 3.97298e+00 7.87824e-02 -1.20842e-03 - 3 sg_p2 3.37548e+02 1.63062e+01 8.85928e-04 1.17278e-02 - 4 sg_p3 3.56395e+01 1.51287e+01 2.01699e-03 1.74046e-02 - 5 sg_p4 7.02105e-01 9.20868e-02 8.19474e-03 -1.20385e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.398e-02 3.866e-01 3.761e+00 -3.594e+00 -2.447e-02 - 3.866e-01 2.690e+00 2.650e+01 -2.493e+01 -1.690e-01 - 3.761e+00 2.650e+01 2.670e+02 -2.495e+02 -1.668e+00 - -3.594e+00 -2.493e+01 -2.495e+02 2.351e+02 1.571e+00 - -2.447e-02 -1.690e-01 -1.668e+00 1.571e+00 1.074e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.78192 1.000 0.769 0.751 -0.765 -0.770 - 2 0.99585 0.769 1.000 0.989 -0.991 -0.994 - 3 0.99631 0.751 0.989 1.000 -0.996 -0.985 - 4 0.99710 -0.765 -0.991 -0.996 1.000 0.989 - 5 0.99443 -0.770 -0.994 -0.985 0.989 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2500 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.2541e-02 4.4218e-01 9.5025e-01 1.6636e+00 1.9565e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.014497 TO DIAGONAL. - FCN=18191.7 FROM HESSE STATUS=NOT POSDEF 37 CALLS 476 TOTAL - EDM=6.23545e-06 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51688e+02 2.98004e-01 1.44343e-04 -1.32867e-01 - 2 sg_p1 8.99221e+00 3.99098e+00 5.00000e-01 1.65911e+00 - 3 sg_p2 3.37548e+02 1.66076e+01 3.54371e-05 4.55246e-01 - 4 sg_p3 3.56395e+01 1.53152e+01 8.06796e-05 -6.86354e-01 - 5 sg_p4 7.02105e-01 8.98453e-02 3.27790e-04 -7.78566e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 8.881e-02 1.322e-01 3.655e+00 -3.473e+00 -2.261e-02 - 1.322e-01 3.453e-01 9.674e+00 -9.044e+00 -5.859e-02 - 3.655e+00 9.674e+00 2.770e+02 -2.574e+02 -1.645e+00 - -3.473e+00 -9.044e+00 -2.574e+02 2.411e+02 1.540e+00 - -2.261e-02 -5.859e-02 -1.645e+00 1.540e+00 1.007e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.76862 1.000 0.755 0.737 -0.751 -0.756 - 2 0.99570 0.755 1.000 0.989 -0.991 -0.994 - 3 0.99646 0.737 0.989 1.000 -0.996 -0.985 - 4 0.99718 -0.751 -0.991 -0.996 1.000 0.988 - 5 0.99409 -0.756 -0.994 -0.985 0.988 1.000 - ERR MATRIX NOT POS-DEF -350 -351.688 +- 0.298004 -8.99221 +- 3.99098 -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 351.69 +- 0.205801 (stat) - 0.321347 + 0.270579 (syst); -0.33742/+0.289485 (total) - Uncertainty on sg_p1 = 8.9999 +- 0.47252 (stat) - 0.0635526 + 0.000102014 (syst); -0.244659/+0.23626 (total) - Uncertainty on sg_p2 = 337.532 +- 3.63434 (stat) - 4.98423 + 3.06364 (syst); -5.30516/+3.56202 (total) - Uncertainty on sg_p3 = 35.585 +- 3.20621 (stat) - 1.06732 + 2.18069 (syst); -1.92591/+2.70654 (total) - Uncertainty on sg_p4 = 0.703842 +- 0.0185963 (stat) - 0.00688091 + 0.0102594 (syst); -0.0115673/+0.013846 (total) - === Baseline plot ===
- norm = 541.084 -JEC lnN 1.0101 - -JER lnN 1.00905 - -btag lnN 1.06649 - -sg_p0 param 351.69 -0.33742/+0.289485 -sg_p1 param 8.9999 -0.244659/+0.23626 -sg_p2 param 337.532 -5.30516/+3.56202 -sg_p3 param 35.585 -1.92591/+2.70654 -sg_p4 param 0.703842 -0.0115673/+0.013846 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_crystal_252_330/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_crystal_252_330/data_bkg.log deleted file mode 100644 index 3cc1900..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_crystal_252_330/data_bkg.log +++ /dev/null @@ -1,750 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [252,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=62921.6 FROM MIGRAD STATUS=INITIATE 90 CALLS 91 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.21879e-02 5.09000e-01 0.00000e+00 -9.80911e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -1.28354e+01 - 3 par_crystal_2 2.65669e+02 4.00000e+00 0.00000e+00 3.55320e+02 - 4 par_crystal_3 1.06488e+01 2.70000e+00 -4.48284e-01 -2.33576e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62883.4 FROM HESSE STATUS=OK 29 CALLS 257 TOTAL - EDM=4.91113 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.66060e-01 4.16121e-03 3.52377e-04 -4.74293e+00 - 2 par_crystal_1 4.45375e+00 2.73731e+00 1.77223e-01 2.66184e-01 - 3 par_crystal_2 2.67385e+02 2.04373e-01 8.29600e-04 2.81454e+02 - 4 par_crystal_3 1.36851e+01 5.38888e-01 1.69331e-03 -1.62103e+00 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=62883.3 FROM MIGRAD STATUS=FAILED 358 CALLS 359 TOTAL - EDM=0.00753244 STRATEGY= 1 ERR MATRIX APPROXIMATE - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.65093e-01 8.39913e-03 1.31861e-03 5.42788e+00 - 2 par_crystal_1 5.09910e+00 4.33634e+00 3.39194e-01 -6.59950e-03 - 3 par_crystal_2 2.67339e+02 1.86486e-01 3.32550e-03 -8.58879e+00 - 4 par_crystal_3 1.37140e+01 6.01780e-01 6.34807e-03 1.69258e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.055e-05 1.617e-04 4.699e-04 2.892e-03 - 1.617e-04 1.762e-02 -1.356e-04 -1.108e-03 - 4.699e-04 -1.356e-04 3.478e-02 3.255e-02 - 2.892e-03 -1.108e-03 3.255e-02 3.624e-01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.60853 1.000 0.145 0.300 0.572 - 2 0.19009 0.145 1.000 -0.005 -0.014 - 3 0.33449 0.300 -0.005 1.000 0.290 - 4 0.59243 0.572 -0.014 0.290 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7660e-01 8.1807e-01 1.6519e+00 1.7066e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.178308 TO DIAGONAL. - FCN=62883.3 FROM HESSE STATUS=NOT POSDEF 33 CALLS 392 TOTAL - EDM=3.36849 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.65093e-01 8.70034e-02 2.63722e-04 -1.21988e+00 - 2 par_crystal_1 5.09910e+00 4.18121e+00 5.00000e-01 1.54425e+00 - 3 par_crystal_2 2.67339e+02 5.27040e+00 9.57407e-02 3.75715e-01 - 4 par_crystal_3 1.37140e+01 6.68546e+00 2.53923e-04 -2.07863e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.595e-03 -2.994e-03 4.642e-01 6.089e-01 - -2.994e-03 1.536e-02 -1.944e-01 -2.569e-01 - 4.642e-01 -1.944e-01 2.855e+01 3.736e+01 - 6.089e-01 -2.569e-01 3.736e+01 4.914e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99751 1.000 -0.277 0.997 0.997 - 2 0.37560 -0.277 1.000 -0.293 -0.296 - 3 0.99795 0.997 -0.293 1.000 0.997 - 4 0.99797 0.997 -0.296 0.997 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=62983.1 FROM MIGRAD STATUS=INITIATE 29 CALLS 30 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 6.05383e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -1.33666e+02 - 3 par_gaus_exp_2 3.19008e-01 3.05000e-01 -9.67731e-01 -3.33619e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.00383 added to diagonal of error matrix - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62882.7 FROM MIGRAD STATUS=CONVERGED 228 CALLS 229 TOTAL - EDM=4.4408e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.69095e+02 7.01852e-01 4.07755e-03 2.89794e-02 - 2 par_gaus_exp_1 1.61044e+01 1.09719e+00 7.43010e-03 -1.84784e-02 - 3 par_gaus_exp_2 1.90527e-01 1.58774e-02 1.98778e-03 -6.23432e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 4.929e-01 5.914e-01 9.067e-03 - 5.914e-01 1.207e+00 1.483e-02 - 9.067e-03 1.483e-02 2.521e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.82590 1.000 0.767 0.813 - 2 0.85979 0.767 1.000 0.850 - 3 0.88644 0.813 0.850 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62882.7 FROM HESSE STATUS=OK 16 CALLS 245 TOTAL - EDM=4.28199e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.69095e+02 6.86832e-01 1.63102e-04 -5.76704e-01 - 2 par_gaus_exp_1 1.61044e+01 1.07335e+00 2.97204e-04 -5.72398e-01 - 3 par_gaus_exp_2 1.90527e-01 1.55212e-02 7.95110e-05 -1.13813e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 4.720e-01 5.579e-01 8.580e-03 - 5.579e-01 1.155e+00 1.406e-02 - 8.580e-03 1.406e-02 2.410e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.81734 1.000 0.756 0.805 - 2 0.85292 0.756 1.000 0.843 - 3 0.88081 0.805 0.843 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,624] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.3296 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.3296) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=286.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=286.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=289.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=289.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=295.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=295.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=298.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=298.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=301.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=301.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - ... (remaining 216 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.733611 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.733611) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=313.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=316.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=319.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=325.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=328.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=331.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=334.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=340.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=343.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=346.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - ... (remaining 94 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0733618 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0733618 - - FCN=103426 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57146e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.55551e+03 - 3 par_novo_2 -1.33526e+00 2.00000e+01 0.00000e+00 1.53308e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103192 FROM MIGRAD STATUS=CONVERGED 126 CALLS 127 TOTAL - EDM=1.07924e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.17697e+01 1.69443e-01** at limit ** - 2 par_novo_1 3.87878e+01 2.27475e+00 4.96100e-03 -6.14249e-02 - 3 par_novo_2 -1.26766e+00 7.00630e-02 3.67886e-05 3.77179e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 2.244e-10 -2.632e-07 -1.276e-07 - -2.632e-07 5.190e+00 1.540e-01 - -1.276e-07 1.540e-01 4.909e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.43392 1.000 -0.008 -0.122 - 2 0.97109 -0.008 1.000 0.965 - 3 0.97152 -0.122 0.965 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103192 FROM HESSE STATUS=OK 20 CALLS 147 TOTAL - EDM=1.23299e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.15107e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.87878e+01 2.30410e+00 1.98440e-04 4.51799e-01 - 3 par_novo_2 -1.26766e+00 7.13892e-02 1.47154e-06 -1.26769e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 2.143e-10 3.996e-06 -2.087e-07 - 3.996e-06 5.325e+00 1.518e-01 - -2.087e-07 1.518e-01 5.096e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.80390 1.000 0.118 -0.200 - 2 0.97183 0.118 1.000 0.922 - 3 0.97258 -0.200 0.922 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107617 FROM MIGRAD STATUS=INITIATE 36 CALLS 37 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 6.60405e+03 - 2 par_crystal_1_1 7.90153e-02 5.09000e-01 -1.80421e+00 3.05679e+03 - 3 par_crystal_1_2 2.60000e+02 4.00000e+00 0.00000e+00 1.48888e+03 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 6.99071e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.17529 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.7903e-03 5.8606e-02 5.0897e-01 3.4352e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.006225 TO DIAGONAL. - FCN=103191 FROM MIGRAD STATUS=CONVERGED 353 CALLS 354 TOTAL - EDM=3.7306e-06 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.37913e-01 3.41139e-02 6.19492e-04 4.10204e-01 - 2 par_crystal_1_1 4.44737e+00 5.69760e-01 2.21494e-02 9.88736e-03 - 3 par_crystal_1_2 2.79979e+02 3.40482e+01 2.79535e-01 -2.97577e-04 - 4 par_crystal_1_3 1.87584e+01 2.98857e+00 3.96232e-03 -6.40797e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.164e-03 3.582e-03 3.594e-03 9.898e-02 - 3.582e-03 3.375e-01 -1.052e-02 7.382e-01 - 3.594e-03 -1.052e-02 3.148e+00 6.243e-01 - 9.898e-02 7.382e-01 6.243e-01 9.086e+00 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99630 1.000 0.181 0.059 0.962 - 2 0.95650 0.181 1.000 -0.010 0.422 - 3 0.63948 0.059 -0.010 1.000 0.117 - 4 0.99690 0.962 0.422 0.117 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103191 FROM HESSE STATUS=OK 27 CALLS 381 TOTAL - EDM=6.06842e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 2.37913e-01 2.12502e-01 1.23898e-04 -8.36786e+01 - 2 par_crystal_1_1 4.44737e+00 5.06952e-01 8.85975e-04 -1.65463e+01 - 3 par_crystal_1_2 2.79979e+02 2.96341e+01 5.00000e-01 7.80831e+00 - 4 par_crystal_1_3 1.87584e+01 1.90925e+01 1.58493e-04 2.18231e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.578e-02 1.663e-02 2.427e-02 3.730e+00 - 1.663e-02 2.650e-01 -4.299e-02 1.684e+00 - 2.427e-02 -4.299e-02 1.850e+00 2.341e+00 - 3.730e+00 1.684e+00 2.341e+00 3.045e+02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99991 1.000 0.151 0.083 0.999 - 2 0.94385 0.151 1.000 -0.061 0.187 - 3 0.80384 0.083 -0.061 1.000 0.099 - 4 0.99991 0.999 0.187 0.099 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 13889.7 - Background number of gaus_exp_252_330 = 13889.7 - Background number of novo_285_624 = 17637.2 - Background number of crystal_1_285_624 = 17637.2 - Background number of gaus_bern_285_624 = 17637.2 - Background number of landau_285_624 = 17637.2 -par_crystal_0 param 0.165093 0.0870034 -par_crystal_1 param 5.0991 4.18121 -par_crystal_2 param 267.339 5.2704 -par_crystal_3 param 13.714 6.68546 -par_crystal_1_0 param 0.237913 0.212502 -par_crystal_1_1 param 4.44737 0.506952 -par_crystal_1_2 param 279.979 29.6341 -par_crystal_1_3 param 18.7584 19.0925 -par_gaus_exp_0 param 269.095 0.686832 -par_gaus_exp_1 param 16.1044 1.07335 -par_gaus_exp_2 param 0.190527 0.0155212 -par_novo_0 param 250 31.5107 -par_novo_1 param 38.7878 2.3041 -par_novo_2 param -1.26766 0.0713892 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_crystal_252_330/datacard_350_crystal_252_330.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_crystal_252_330/datacard_350_crystal_252_330.txt deleted file mode 100644 index c4e6ad8..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_crystal_252_330/datacard_350_crystal_252_330.txt +++ /dev/null @@ -1,35 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_350.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_crystal_252_330.root HbbHbb:f_crystal -shapes data_obs HbbHbb w_background_crystal_252_330.root HbbHbb:data_obs_crystal_252_330 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 541.084 13889.7 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06649 - -JER lnN 1.00905 - -JEC lnN 1.0101 - -trigger lnN 1.10 - -PDF lnN 1.0164211668 - -sg_p0 param 351.69 -0.33742/+0.289485 -sg_p1 param 8.9999 -0.244659/+0.23626 -sg_p2 param 337.532 -5.30516/+3.56202 -sg_p3 param 35.585 -1.92591/+2.70654 -sg_p4 param 0.703842 -0.0115673/+0.013846 -par_crystal_0 param 0.165093 0.0870034 -par_crystal_1 param 5.0991 4.18121 -par_crystal_2 param 267.339 5.2704 -par_crystal_3 param 13.714 6.68546 -par_crystal_1_0 param 0.237913 0.212502 -par_crystal_1_1 param 4.44737 0.506952 -par_crystal_1_2 param 279.979 29.6341 -par_crystal_1_3 param 18.7584 19.0925 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_crystal_252_330/pdf.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_crystal_252_330/pdf.log deleted file mode 100644 index 9259882..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_crystal_252_330/pdf.log +++ /dev/null @@ -1,10 +0,0 @@ -[?1034h FCN=9.92721 FROM MIGRAD STATUS=CONVERGED 62 CALLS 63 TOTAL - EDM=6.1511e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 Constant 1.76281e+01 2.26075e+00 2.99629e-03 -1.83938e-04 - 2 Mean 1.00111e+00 1.89451e-03 2.87033e-06 -5.72789e-01 - 3 Sigma 1.64212e-02 1.27561e-03 3.30460e-05 -5.02787e-03 -1.00110542289 +/- 0.00189450571012 -0.0164211667957 +/- 0.00127560788686 -PDF lnN 1.0164211668 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_crystal_252_330/signal350_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_crystal_252_330/signal350_sig.log deleted file mode 100644 index 3cd3455..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_crystal_252_330/signal350_sig.log +++ /dev/null @@ -1,927 +0,0 @@ - -Processing test.c... -nSignal_init = 300000 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=22528 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.45000e+02 7.00000e+00 2.01358e-01 1.85444e+03 - 2 sg_p1 2.00000e+01 3.00000e+00 2.01358e-01 -1.26556e+01 - 3 sg_p2 3.75000e+02 9.00000e+00 2.01358e-01 1.23451e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -4.81309e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -9.79262e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21380.5 FROM MIGRAD STATUS=CONVERGED 200 CALLS 201 TOTAL - EDM=3.93725e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.34187e+02 4.37520e-01 1.19182e-03 3.04020e-02 - 2 sg_p1 2.26141e+01 4.79817e-01 2.16429e-03 1.96597e-03 - 3 sg_p2 3.30000e+02 7.71533e-01 1.87116e-02** at limit ** - 4 sg_p3 7.15373e+01 5.51063e+00 8.04417e-03 3.88300e-03 - 5 sg_p4 8.94168e-01 1.56675e-02 2.59223e-03 3.19034e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.914e-01 -8.489e-02 -1.235e-06 -8.412e-01 -2.850e-03 - -8.489e-02 2.303e-01 1.528e-06 1.618e+00 5.594e-03 - -1.235e-06 1.528e-06 1.273e-07 1.107e-05 4.780e-08 - -8.412e-01 1.618e+00 1.107e-05 3.054e+01 6.912e-02 - -2.850e-03 5.594e-03 4.780e-08 6.912e-02 2.457e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.43984 1.000 -0.404 -0.008 -0.348 -0.416 - 2 0.75144 -0.404 1.000 0.009 0.610 0.744 - 3 0.01053 -0.008 0.009 1.000 0.006 0.009 - 4 0.79840 -0.348 0.610 0.006 1.000 0.798 - 5 0.86375 -0.416 0.744 0.009 0.798 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21380.5 FROM HESSE STATUS=OK 31 CALLS 232 TOTAL - EDM=4.04441e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.34187e+02 4.38578e-01 4.76728e-05 -3.14089e-01 - 2 sg_p1 2.26141e+01 4.83583e-01 8.65717e-05 1.75170e-01 - 3 sg_p2 3.30000e+02 7.71716e-01 3.74232e-03 -1.57084e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 7.15373e+01 5.57705e+00 3.21767e-04 3.76314e-01 - 5 sg_p4 8.94168e-01 1.58618e-02 5.18445e-04 9.08100e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.924e-01 -8.684e-02 -2.448e-07 -8.666e-01 -2.922e-03 - -8.684e-02 2.339e-01 3.045e-07 1.670e+00 5.743e-03 - -2.448e-07 3.045e-07 1.274e-07 2.232e-06 9.555e-09 - -8.666e-01 1.670e+00 2.232e-06 3.129e+01 7.130e-02 - -2.922e-03 5.743e-03 9.555e-09 7.130e-02 2.518e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.44424 1.000 -0.409 -0.002 -0.353 -0.420 - 2 0.75592 -0.409 1.000 0.002 0.617 0.748 - 3 0.00208 -0.002 0.002 1.000 0.001 0.002 - 4 0.80377 -0.353 0.617 0.001 1.000 0.803 - 5 0.86733 -0.420 0.748 0.002 0.803 1.000 -350 -334.187 +- 0.438578 -22.6141 +- 0.483583 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=22627.8 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.45000e+02 7.00000e+00 2.01358e-01 1.57892e+03 - 2 sg_p1 2.00000e+01 3.00000e+00 2.01358e-01 2.75936e+01 - 3 sg_p2 3.75000e+02 9.00000e+00 2.01358e-01 1.16953e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -3.72010e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -9.99046e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21614.3 FROM MIGRAD STATUS=CONVERGED 179 CALLS 180 TOTAL - EDM=0.000765156 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.35798e+02 4.40505e-01 1.18756e-03 5.85918e-02 - 2 sg_p1 2.30753e+01 4.76357e-01 2.18690e-03 -2.03897e-03 - 3 sg_p2 3.30001e+02 1.45352e+00 2.57988e-02 -9.05792e-02 - 4 sg_p3 7.35354e+01 6.02462e+00 8.88269e-03 -1.01559e-01 - 5 sg_p4 9.01891e-01 1.51622e-02 2.60225e-03 2.64090e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.941e-01 -8.403e-02 -1.778e-04 -9.585e-01 -2.816e-03 - -8.403e-02 2.270e-01 1.870e-04 1.767e+00 5.355e-03 - -1.778e-04 1.870e-04 4.564e-03 5.987e-04 4.935e-06 - -9.585e-01 1.767e+00 5.987e-04 3.656e+01 7.358e-02 - -2.816e-03 5.355e-03 4.935e-06 7.358e-02 2.301e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.44243 1.000 -0.400 -0.006 -0.360 -0.421 - 2 0.74784 -0.400 1.000 0.006 0.613 0.741 - 3 0.00826 -0.006 0.006 1.000 0.001 0.005 - 4 0.80297 -0.360 0.613 0.001 1.000 0.802 - 5 0.86456 -0.421 0.741 0.005 0.802 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21614.3 FROM HESSE STATUS=OK 31 CALLS 211 TOTAL - EDM=0.000770472 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.35798e+02 4.41802e-01 2.37512e-04 -2.66038e-01 - 2 sg_p1 2.30753e+01 4.80609e-01 8.74761e-05 2.06482e-01 - 3 sg_p2 3.30001e+02 1.45505e+00 5.15976e-03 -1.57669e+00 - 4 sg_p3 7.35354e+01 6.11053e+00 3.55307e-04 4.24535e-01 - 5 sg_p4 9.01891e-01 1.53826e-02 1.04090e-04 9.33626e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.952e-01 -8.630e-02 8.428e-05 -9.929e-01 -2.902e-03 - -8.630e-02 2.311e-01 -8.883e-05 1.833e+00 5.520e-03 - 8.428e-05 -8.883e-05 4.569e-03 -2.859e-04 -2.344e-06 - -9.929e-01 1.833e+00 -2.859e-04 3.762e+01 7.631e-02 - -2.902e-03 5.520e-03 -2.344e-06 7.631e-02 2.368e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.44772 1.000 -0.406 0.003 -0.366 -0.427 - 2 0.75302 -0.406 1.000 -0.003 0.622 0.746 - 3 0.00390 0.003 -0.003 1.000 -0.001 -0.002 - 4 0.80914 -0.366 0.622 -0.001 1.000 0.808 - 5 0.86871 -0.427 0.746 -0.002 0.808 1.000 -350 -335.798 +- 0.441802 -23.0753 +- 0.480609 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=22461.8 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.45000e+02 7.00000e+00 2.01358e-01 2.12122e+03 - 2 sg_p1 2.00000e+01 3.00000e+00 2.01358e-01 -1.16373e+02 - 3 sg_p2 3.75000e+02 9.00000e+00 2.01358e-01 1.31911e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -5.79911e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -9.15472e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21165.5 FROM MIGRAD STATUS=CONVERGED 173 CALLS 174 TOTAL - EDM=1.05905e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.32336e+02 4.42443e-01 1.23362e-03 3.68247e-02 - 2 sg_p1 2.24290e+01 4.96251e-01 2.19433e-03 -3.29729e-02 - 3 sg_p2 3.30000e+02 5.15272e-01 1.52593e-02** at limit ** - 4 sg_p3 6.46965e+01 4.49942e+00 6.08111e-03 5.16840e-02 - 5 sg_p4 8.77595e-01 1.81613e-02 2.70062e-03 -5.60533e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.958e-01 -8.688e-02 -6.473e-07 -6.527e-01 -3.215e-03 - -8.688e-02 2.464e-01 8.468e-07 1.363e+00 6.784e-03 - -6.473e-07 8.468e-07 3.789e-08 6.087e-06 3.127e-08 - -6.527e-01 1.363e+00 6.087e-06 2.032e+01 6.625e-02 - -3.215e-03 6.784e-03 3.127e-08 6.625e-02 3.302e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.42501 1.000 -0.396 -0.008 -0.327 -0.400 - 2 0.75928 -0.396 1.000 0.009 0.609 0.752 - 3 0.01018 -0.008 0.009 1.000 0.007 0.009 - 4 0.80887 -0.327 0.609 0.007 1.000 0.809 - 5 0.87457 -0.400 0.752 0.009 0.809 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21165.5 FROM HESSE STATUS=OK 31 CALLS 205 TOTAL - EDM=1.06081e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.32336e+02 4.43146e-01 4.93448e-05 -3.70218e-01 - 2 sg_p1 2.24290e+01 4.99339e-01 8.77732e-05 1.62649e-01 - 3 sg_p2 3.30000e+02 5.15335e-01 3.05186e-03 -1.57077e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 6.46965e+01 4.54231e+00 2.43244e-04 2.17181e-01 - 5 sg_p4 8.77595e-01 1.83407e-02 5.40123e-04 8.55943e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.964e-01 -8.838e-02 -1.326e-07 -6.673e-01 -3.275e-03 - -8.838e-02 2.494e-01 1.746e-07 1.397e+00 6.925e-03 - -1.326e-07 1.746e-07 3.790e-08 1.265e-06 6.465e-09 - -6.673e-01 1.397e+00 1.265e-06 2.071e+01 6.788e-02 - -3.275e-03 6.925e-03 6.465e-09 6.788e-02 3.367e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.42806 1.000 -0.399 -0.002 -0.331 -0.403 - 2 0.76271 -0.399 1.000 0.002 0.615 0.756 - 3 0.00208 -0.002 0.002 1.000 0.001 0.002 - 4 0.81288 -0.331 0.615 0.001 1.000 0.813 - 5 0.87719 -0.403 0.756 0.002 0.813 1.000 -350 -332.336 +- 0.443146 -22.429 +- 0.499339 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17745.4 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 3.81607e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -5.82292e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.35171e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -4.55171e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 5.60829e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.4848e-03 4.4073e-01 9.4874e-01 1.6613e+00 1.9507e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.003435 TO DIAGONAL. - FCN=17037.5 FROM MIGRAD STATUS=CONVERGED 272 CALLS 273 TOTAL - EDM=0.000229841 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51690e+02 3.12909e-01 7.20357e-04 1.50885e-02 - 2 sg_p1 8.99990e+00 2.02072e+00 1.07460e-01 -8.64629e-04 - 3 sg_p2 3.37532e+02 1.70704e+01 8.89534e-04 8.91783e-02 - 4 sg_p3 3.55850e+01 1.57412e+01 2.01445e-03 5.68535e-02 - 5 sg_p4 7.03842e-01 9.36961e-02 8.03918e-03 -4.45853e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.792e-02 9.007e-02 3.977e+00 -3.782e+00 -2.519e-02 - 9.007e-02 1.430e-01 6.397e+00 -5.986e+00 -3.967e-02 - 3.977e+00 6.397e+00 2.927e+02 -2.722e+02 -1.779e+00 - -3.782e+00 -5.986e+00 -2.722e+02 2.551e+02 1.667e+00 - -2.519e-02 -3.967e-02 -1.779e+00 1.667e+00 1.115e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.77487 1.000 0.761 0.743 -0.757 -0.763 - 2 0.99571 0.761 1.000 0.989 -0.991 -0.994 - 3 0.99637 0.743 0.989 1.000 -0.996 -0.985 - 4 0.99713 -0.757 -0.991 -0.996 1.000 0.988 - 5 0.99425 -0.763 -0.994 -0.985 0.988 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17037.5 FROM HESSE STATUS=OK 35 CALLS 308 TOTAL - EDM=2.9509e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51690e+02 2.05801e-01 1.44071e-04 -1.32785e-01 - 2 sg_p1 8.99990e+00 4.72520e-01 4.38435e-01 1.58093e+00 - 3 sg_p2 3.37532e+02 3.63434e+00 1.77907e-04 4.55143e-01 - 4 sg_p3 3.55850e+01 3.20621e+00 8.05779e-05 -6.87361e-01 - 5 sg_p4 7.03842e-01 1.85963e-02 3.21567e-04 -7.64719e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.236e-02 4.581e-04 2.670e-02 -8.569e-02 -6.634e-04 - 4.581e-04 2.023e-04 3.597e-02 -3.336e-02 -2.070e-04 - 2.670e-02 3.597e-02 1.321e+01 -1.062e+01 -4.128e-02 - -8.569e-02 -3.336e-02 -1.062e+01 1.029e+01 3.997e-02 - -6.634e-04 -2.070e-04 -4.128e-02 3.997e-02 3.484e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.27036 1.000 0.157 0.036 -0.130 -0.173 - 2 0.83318 0.157 1.000 0.696 -0.731 -0.780 - 3 0.91590 0.036 0.696 1.000 -0.910 -0.608 - 4 0.92588 -0.130 -0.731 -0.910 1.000 0.668 - 5 0.79489 -0.173 -0.780 -0.608 0.668 1.000 -350 -351.69 +- 0.205801 -8.9999 +- 0.47252 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17980.6 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 3.49987e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -5.98208e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.69170e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -7.83629e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 5.56311e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17292.9 FROM HESSE STATUS=OK 33 CALLS 303 TOTAL - EDM=0.00176494 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51961e+02 2.04460e-01 7.28165e-04 -2.52563e-01 - 2 sg_p1 8.99915e+00 2.30345e-01 4.30116e-02 1.25408e-01 - 3 sg_p2 3.40595e+02 2.15600e+00 8.33185e-04 -5.45844e-01 - 4 sg_p3 3.45143e+01 1.95839e+00 2.03832e-03 -4.14782e-02 - 5 sg_p4 7.03933e-01 1.22162e-02 8.12692e-03 9.35709e-02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=17292.9 FROM MIGRAD STATUS=CONVERGED 313 CALLS 314 TOTAL - EDM=4.59633e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 1.1 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51961e+02 2.04485e-01 4.26699e-06 -6.13016e-02 - 2 sg_p1 9.00000e+00 2.28984e-01 -2.81882e-02 4.39584e-03 - 3 sg_p2 3.40596e+02 2.15817e+00 9.56132e-06 -1.29730e-01 - 4 sg_p3 3.45177e+01 1.95208e+00 6.42863e-05 7.35163e-02 - 5 sg_p4 7.03952e-01 1.21706e-02 1.50864e-04 7.78726e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.182e-02 1.059e-06 -5.711e-02 -6.423e-03 -1.875e-04 - 1.059e-06 9.432e-07 8.505e-05 -8.954e-05 -6.387e-07 - -5.711e-02 8.505e-05 4.658e+00 -3.232e+00 -5.893e-03 - -6.423e-03 -8.954e-05 -3.232e+00 3.812e+00 7.975e-03 - -1.875e-04 -6.387e-07 -5.893e-03 7.975e-03 1.486e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23004 1.000 0.005 -0.129 -0.016 -0.075 - 2 0.06294 0.005 1.000 0.041 -0.047 -0.054 - 3 0.78034 -0.129 0.041 1.000 -0.767 -0.224 - 4 0.79125 -0.016 -0.047 -0.767 1.000 0.335 - 5 0.34635 -0.075 -0.054 -0.224 0.335 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17292.9 FROM HESSE STATUS=OK 33 CALLS 347 TOTAL - EDM=8.75756e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51961e+02 2.04438e-01 7.28075e-04 -1.21874e-01 - 2 sg_p1 9.00000e+00 2.29843e-01 4.29288e-02 1.57180e+00 - 3 sg_p2 3.40596e+02 2.15392e+00 8.34476e-04 4.75922e-01 - 4 sg_p3 3.45177e+01 1.95162e+00 8.15327e-04 -7.07252e-01 - 5 sg_p4 7.03952e-01 1.20329e-02 8.13654e-03 -7.63847e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.180e-02 1.680e-06 -5.851e-02 -5.134e-03 -1.774e-04 - 1.680e-06 9.469e-07 1.234e-04 -1.333e-04 -1.048e-06 - -5.851e-02 1.234e-04 4.640e+00 -3.221e+00 -5.474e-03 - -5.134e-03 -1.333e-04 -3.221e+00 3.811e+00 7.658e-03 - -1.774e-04 -1.048e-06 -5.474e-03 7.658e-03 1.452e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22989 1.000 0.008 -0.133 -0.013 -0.072 - 2 0.10030 0.008 1.000 0.059 -0.070 -0.089 - 3 0.77997 -0.133 0.059 1.000 -0.766 -0.211 - 4 0.79057 -0.013 -0.070 -0.766 1.000 0.326 - 5 0.34225 -0.072 -0.089 -0.211 0.326 1.000 -350 -351.961 +- 0.204438 -9 +- 0.229843 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17556.6 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 4.17830e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -5.68439e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.02939e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -1.22040e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 5.78553e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - MINUIT WARNING IN HESSE - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN HESSE - ============== 1.39906 added to diagonal of error matrix - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16809.1 FROM HESSE STATUS=OK 37 CALLS 272 TOTAL - EDM=0.00897496 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51361e+02 2.01282e-01 7.11370e-04 1.72820e-01 - 2 sg_p1 8.99409e+00 2.54007e+00 1.10453e-01 1.29902e-01 - 3 sg_p2 3.31862e+02 3.59215e+00 1.00989e-03 -2.61406e-01 - 4 sg_p3 3.82944e+01 2.65752e+00 2.00950e-03 -4.58275e-02 - 5 sg_p4 6.99077e-01 1.14579e-02 8.35244e-03 6.96141e-02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16809.1 FROM MIGRAD STATUS=CONVERGED 368 CALLS 369 TOTAL - EDM=2.66923e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51369e+02 2.03042e-01 7.10429e-04 6.65922e-02 - 2 sg_p1 8.93634e+00 2.26538e-01 3.06864e-02 1.49692e-02 - 3 sg_p2 3.32548e+02 4.06056e+00 9.86163e-04 4.21549e-03 - 4 sg_p3 3.77657e+01 3.08320e+00 1.99063e-03 -6.94419e-02 - 5 sg_p4 6.96961e-01 1.39263e-02 8.49674e-03 -1.61305e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.123e-02 -6.678e-03 2.163e-02 -7.188e-02 -4.511e-04 - -6.678e-03 5.527e-02 -5.307e-01 4.156e-01 1.876e-03 - 2.163e-02 -5.307e-01 1.649e+01 -1.137e+01 -1.673e-02 - -7.188e-02 4.156e-01 -1.137e+01 9.516e+00 1.485e-02 - -4.511e-04 1.876e-03 -1.673e-02 1.485e-02 1.948e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25576 1.000 -0.140 0.026 -0.115 -0.159 - 2 0.70688 -0.140 1.000 -0.556 0.573 0.572 - 3 0.91344 0.026 -0.556 1.000 -0.908 -0.295 - 4 0.91579 -0.115 0.573 -0.908 1.000 0.345 - 5 0.58244 -0.159 0.572 -0.295 0.345 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16809.1 FROM HESSE STATUS=OK 31 CALLS 400 TOTAL - EDM=2.70646e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51369e+02 2.03746e-01 1.42086e-04 -1.45765e-01 - 2 sg_p1 8.93634e+00 2.54070e-01 1.22745e-03 1.31782e+00 - 3 sg_p2 3.32548e+02 4.51761e+00 3.94465e-05 4.21778e-01 - 4 sg_p3 3.77657e+01 3.43807e+00 7.96253e-05 -6.47692e-01 - 5 sg_p4 6.96961e-01 1.47151e-02 3.39870e-04 -8.20745e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.151e-02 -8.628e-03 5.304e-02 -9.587e-02 -5.312e-04 - -8.628e-03 6.725e-02 -7.432e-01 5.794e-01 2.412e-03 - 5.304e-02 -7.432e-01 2.041e+01 -1.440e+01 -2.542e-02 - -9.587e-02 5.794e-01 -1.440e+01 1.184e+01 2.153e-02 - -5.312e-04 2.412e-03 -2.542e-02 2.153e-02 2.176e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.26808 1.000 -0.163 0.058 -0.137 -0.177 - 2 0.76639 -0.163 1.000 -0.634 0.650 0.630 - 3 0.93070 0.058 -0.634 1.000 -0.926 -0.381 - 4 0.93289 -0.137 0.650 -0.926 1.000 0.424 - 5 0.63913 -0.177 0.630 -0.381 0.424 1.000 -350 -351.369 +- 0.203746 -8.93634 +- 0.25407 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17593.4 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 3.78939e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -5.82009e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.40055e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -4.92268e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 5.69068e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16875.6 FROM MIGRAD STATUS=CONVERGED 320 CALLS 321 TOTAL - EDM=1.73973e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51639e+02 2.04706e-01 7.22407e-04 -3.09735e-01 - 2 sg_p1 9.00000e+00 1.66126e-01 3.62658e-02 -7.99062e-03 - 3 sg_p2 3.36604e+02 2.77890e+00 9.23538e-04 -8.53328e-02 - 4 sg_p3 3.65924e+01 2.29934e+00 2.05397e-03 -4.59757e-02 - 5 sg_p4 7.00430e-01 1.16607e-02 8.31070e-03 -3.87898e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.191e-02 1.719e-06 -5.416e-02 -1.332e-02 -2.187e-04 - 1.719e-06 1.229e-06 1.227e-04 -1.127e-04 -6.551e-07 - -5.416e-02 1.227e-04 7.723e+00 -5.279e+00 -3.068e-03 - -1.332e-02 -1.127e-04 -5.279e+00 5.290e+00 4.752e-03 - -2.187e-04 -6.551e-07 -3.068e-03 4.752e-03 1.364e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22303 1.000 0.008 -0.095 -0.028 -0.091 - 2 0.06294 0.008 1.000 0.040 -0.044 -0.051 - 3 0.83540 -0.095 0.040 1.000 -0.826 -0.095 - 4 0.83755 -0.028 -0.044 -0.826 1.000 0.177 - 5 0.21502 -0.091 -0.051 -0.095 0.177 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16875.6 FROM HESSE STATUS=OK 31 CALLS 352 TOTAL - EDM=1.75499e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51639e+02 2.04671e-01 1.44481e-04 -1.34847e-01 - 2 sg_p1 9.00000e+00 1.66721e-01 7.25317e-03 1.56945e+00 - 3 sg_p2 3.36604e+02 2.84821e+00 1.84708e-04 4.48885e-01 - 4 sg_p3 3.65924e+01 2.35643e+00 8.21590e-05 -6.68882e-01 - 5 sg_p4 7.00430e-01 1.16522e-02 3.32428e-04 -7.92102e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.189e-02 2.314e-07 -5.503e-02 -1.229e-02 -2.144e-04 - 2.314e-07 1.234e-06 1.775e-05 -1.618e-05 -8.940e-08 - -5.503e-02 1.775e-05 8.113e+00 -5.607e+00 -3.304e-03 - -1.229e-02 -1.618e-05 -5.607e+00 5.556e+00 4.919e-03 - -2.144e-04 -8.940e-08 -3.304e-03 4.919e-03 1.362e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22229 1.000 0.001 -0.094 -0.025 -0.090 - 2 0.00867 0.001 1.000 0.006 -0.006 -0.007 - 3 0.84405 -0.094 0.006 1.000 -0.835 -0.099 - 4 0.84604 -0.025 -0.006 -0.835 1.000 0.179 - 5 0.21170 -0.090 -0.007 -0.099 0.179 1.000 -350 -351.639 +- 0.204671 -9 +- 0.166721 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17828.5 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 3.94800e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -5.62258e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.22820e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -3.94120e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 5.44291e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -6.7726e-02 3.7089e-01 9.5269e-01 1.7434e+00 2.0007e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.069727 TO DIAGONAL. - FCN=17147.5 FROM HESSE STATUS=NOT POSDEF 35 CALLS 251 TOTAL - EDM=1.1309 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51658e+02 3.51659e-01 7.01219e-04 -5.40058e-02 - 2 sg_p1 8.97742e+00 2.95083e+00 6.13915e-02 -2.03655e-01 - 3 sg_p2 3.35380e+02 1.79447e+01 9.83548e-04 6.97732e-01 - 4 sg_p3 3.73975e+01 1.59176e+01 2.11985e-03 1.68496e-01 - 5 sg_p4 7.15638e-01 9.42908e-02 7.30647e-03 -1.11566e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17147.5 FROM MIGRAD STATUS=CONVERGED 369 CALLS 370 TOTAL - EDM=4.09796e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51663e+02 1.99263e-01 7.00634e-04 4.55239e-02 - 2 sg_p1 8.93699e+00 2.96196e-01 2.96808e-02 -1.54899e-02 - 3 sg_p2 3.35749e+02 3.96525e+00 9.64449e-04 -8.88348e-03 - 4 sg_p3 3.70652e+01 3.34839e+00 2.10353e-03 -1.67958e-02 - 5 sg_p4 7.14101e-01 1.63480e-02 7.39271e-03 -2.31381e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.971e-02 9.041e-03 3.441e-02 -8.945e-02 -5.869e-04 - 9.041e-03 7.788e-02 7.343e-01 -6.508e-01 -3.330e-03 - 3.441e-02 7.343e-01 1.573e+01 -1.210e+01 -3.297e-02 - -8.945e-02 -6.508e-01 -1.210e+01 1.123e+01 3.115e-02 - -5.869e-04 -3.330e-03 -3.297e-02 3.115e-02 2.686e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.26818 1.000 0.163 0.044 -0.134 -0.180 - 2 0.81011 0.163 1.000 0.664 -0.696 -0.728 - 3 0.91607 0.044 0.664 1.000 -0.911 -0.507 - 4 0.92336 -0.134 -0.696 -0.911 1.000 0.567 - 5 0.73770 -0.180 -0.728 -0.507 0.567 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17147.5 FROM HESSE STATUS=OK 31 CALLS 401 TOTAL - EDM=3.78098e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51663e+02 1.98626e-01 1.40127e-04 -1.33882e-01 - 2 sg_p1 8.93699e+00 2.60351e-01 1.18723e-03 1.82247e+00 - 3 sg_p2 3.35749e+02 3.94847e+00 3.85780e-05 4.43146e-01 - 4 sg_p3 3.70652e+01 3.31177e+00 8.41412e-05 -6.60300e-01 - 5 sg_p4 7.14101e-01 1.54021e-02 2.95708e-04 -6.86338e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.945e-02 7.419e-03 1.957e-02 -7.558e-02 -4.983e-04 - 7.419e-03 6.823e-02 6.530e-01 -5.744e-01 -2.764e-03 - 1.957e-02 6.530e-01 1.559e+01 -1.191e+01 -2.828e-02 - -7.558e-02 -5.744e-01 -1.191e+01 1.098e+01 2.678e-02 - -4.983e-04 -2.764e-03 -2.828e-02 2.678e-02 2.383e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25680 1.000 0.143 0.025 -0.115 -0.163 - 2 0.77869 0.143 1.000 0.633 -0.664 -0.686 - 3 0.91532 0.025 0.633 1.000 -0.910 -0.464 - 4 0.92158 -0.115 -0.664 -0.910 1.000 0.524 - 5 0.69729 -0.163 -0.686 -0.464 0.524 1.000 -350 -351.663 +- 0.198626 -8.93699 +- 0.260351 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=16599.2 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 3.57504e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -5.44923e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.17494e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -4.08170e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 5.21506e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15939.1 FROM HESSE STATUS=OK 37 CALLS 314 TOTAL - EDM=0.000648585 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51693e+02 2.15714e-01 7.19414e-04 4.43718e-02 - 2 sg_p1 8.99487e+00 3.57548e+00 7.75677e-02 1.91574e-02 - 3 sg_p2 3.37608e+02 4.45408e+00 8.83711e-04 -1.12364e-01 - 4 sg_p3 3.54407e+01 4.01631e+00 2.01394e-03 2.05443e-02 - 5 sg_p4 7.05167e-01 2.51719e-02 7.97965e-03 2.01078e-02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 13.9403 added to diagonal of error matrix - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15939.1 FROM MIGRAD STATUS=CONVERGED 457 CALLS 458 TOTAL - EDM=6.3256e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51693e+02 2.10894e-01 7.19542e-04 -1.67564e-01 - 2 sg_p1 9.00000e+00 3.24335e+00 1.16287e-01** at limit ** - 3 sg_p2 3.37572e+02 3.03107e+00 8.85564e-04 -1.40083e-01 - 4 sg_p3 3.54732e+01 2.61363e+00 2.01712e-03 -2.42748e-02 - 5 sg_p4 7.05375e-01 1.51863e-02 7.98331e-03 2.92592e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.448e-02 6.249e-05 -2.584e-02 -4.146e-02 -4.052e-04 - 6.249e-05 8.943e-06 4.513e-03 -4.212e-03 -2.775e-05 - -2.584e-02 4.513e-03 9.189e+00 -6.814e+00 -1.858e-02 - -4.146e-02 -4.212e-03 -6.814e+00 6.836e+00 1.914e-02 - -4.052e-04 -2.775e-05 -1.858e-02 1.914e-02 2.317e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.24408 1.000 0.099 -0.040 -0.075 -0.126 - 2 0.67618 0.099 1.000 0.498 -0.539 -0.610 - 3 0.86794 -0.040 0.498 1.000 -0.860 -0.403 - 4 0.87833 -0.075 -0.539 -0.860 1.000 0.481 - 5 0.64024 -0.126 -0.610 -0.403 0.481 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15939.1 FROM HESSE STATUS=OK 35 CALLS 493 TOTAL - EDM=7.60914e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51693e+02 2.11707e-01 1.43908e-04 -1.32683e-01 - 2 sg_p1 9.00000e+00 3.40291e-01 4.74451e-01 1.56997e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 3 sg_p2 3.37572e+02 3.47654e+00 1.77113e-04 4.55410e-01 - 4 sg_p3 3.54732e+01 3.03978e+00 8.06848e-05 -6.89429e-01 - 5 sg_p4 7.05375e-01 1.75095e-02 3.19332e-04 -7.52647e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.482e-02 2.743e-05 3.917e-03 -6.861e-02 -5.663e-04 - 2.743e-05 9.504e-07 2.150e-03 -1.992e-03 -1.243e-05 - 3.917e-03 2.150e-03 1.209e+01 -9.464e+00 -3.305e-02 - -6.861e-02 -1.992e-03 -9.464e+00 9.250e+00 3.240e-02 - -5.663e-04 -1.243e-05 -3.305e-02 3.240e-02 3.085e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25843 1.000 0.133 0.005 -0.107 -0.152 - 2 0.78663 0.133 1.000 0.634 -0.672 -0.726 - 3 0.90139 0.005 0.634 1.000 -0.895 -0.541 - 4 0.91165 -0.107 -0.672 -0.895 1.000 0.606 - 5 0.74619 -0.152 -0.726 -0.541 0.606 1.000 -350 -351.693 +- 0.211707 -9 +- 0.340291 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=18950.1 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 4.06912e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -6.21556e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.53873e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -5.05415e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 6.02316e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 2.05452 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - MACHINE ACCURACY LIMITS FURTHER IMPROVEMENT. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -7.6627e-03 4.3650e-01 9.4912e-01 1.6697e+00 1.9524e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.009615 TO DIAGONAL. - FCN=18191.7 FROM MIGRAD STATUS=CONVERGED 438 CALLS 439 TOTAL - EDM=2.38291e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51688e+02 3.06549e-01 7.21716e-04 1.38139e-02 - 2 sg_p1 8.99221e+00 3.97298e+00 7.87824e-02 -1.20842e-03 - 3 sg_p2 3.37548e+02 1.63062e+01 8.85928e-04 1.17278e-02 - 4 sg_p3 3.56395e+01 1.51287e+01 2.01699e-03 1.74046e-02 - 5 sg_p4 7.02105e-01 9.20868e-02 8.19474e-03 -1.20385e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.398e-02 3.866e-01 3.761e+00 -3.594e+00 -2.447e-02 - 3.866e-01 2.690e+00 2.650e+01 -2.493e+01 -1.690e-01 - 3.761e+00 2.650e+01 2.670e+02 -2.495e+02 -1.668e+00 - -3.594e+00 -2.493e+01 -2.495e+02 2.351e+02 1.571e+00 - -2.447e-02 -1.690e-01 -1.668e+00 1.571e+00 1.074e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.78192 1.000 0.769 0.751 -0.765 -0.770 - 2 0.99585 0.769 1.000 0.989 -0.991 -0.994 - 3 0.99631 0.751 0.989 1.000 -0.996 -0.985 - 4 0.99710 -0.765 -0.991 -0.996 1.000 0.989 - 5 0.99443 -0.770 -0.994 -0.985 0.989 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2500 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.2541e-02 4.4218e-01 9.5025e-01 1.6636e+00 1.9565e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.014497 TO DIAGONAL. - FCN=18191.7 FROM HESSE STATUS=NOT POSDEF 37 CALLS 476 TOTAL - EDM=6.23545e-06 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51688e+02 2.98004e-01 1.44343e-04 -1.32867e-01 - 2 sg_p1 8.99221e+00 3.99098e+00 5.00000e-01 1.65911e+00 - 3 sg_p2 3.37548e+02 1.66076e+01 3.54371e-05 4.55246e-01 - 4 sg_p3 3.56395e+01 1.53152e+01 8.06796e-05 -6.86354e-01 - 5 sg_p4 7.02105e-01 8.98453e-02 3.27790e-04 -7.78566e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 8.881e-02 1.322e-01 3.655e+00 -3.473e+00 -2.261e-02 - 1.322e-01 3.453e-01 9.674e+00 -9.044e+00 -5.859e-02 - 3.655e+00 9.674e+00 2.770e+02 -2.574e+02 -1.645e+00 - -3.473e+00 -9.044e+00 -2.574e+02 2.411e+02 1.540e+00 - -2.261e-02 -5.859e-02 -1.645e+00 1.540e+00 1.007e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.76862 1.000 0.755 0.737 -0.751 -0.756 - 2 0.99570 0.755 1.000 0.989 -0.991 -0.994 - 3 0.99646 0.737 0.989 1.000 -0.996 -0.985 - 4 0.99718 -0.751 -0.991 -0.996 1.000 0.988 - 5 0.99409 -0.756 -0.994 -0.985 0.988 1.000 - ERR MATRIX NOT POS-DEF -350 -351.688 +- 0.298004 -8.99221 +- 3.99098 -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 351.69 +- 0.205801 (stat) - 0.321347 + 0.270579 (syst); -0.33742/+0.289485 (total) - Uncertainty on sg_p1 = 8.9999 +- 0.47252 (stat) - 0.0635526 + 0.000102014 (syst); -0.244659/+0.23626 (total) - Uncertainty on sg_p2 = 337.532 +- 3.63434 (stat) - 4.98423 + 3.06364 (syst); -5.30516/+3.56202 (total) - Uncertainty on sg_p3 = 35.585 +- 3.20621 (stat) - 1.06732 + 2.18069 (syst); -1.92591/+2.70654 (total) - Uncertainty on sg_p4 = 0.703842 +- 0.0185963 (stat) - 0.00688091 + 0.0102594 (syst); -0.0115673/+0.013846 (total) - === Baseline plot ===
- norm = 541.084 -JEC lnN 1.0101 - -JER lnN 1.00905 - -btag lnN 1.06649 - -sg_p0 param 351.69 -0.33742/+0.289485 -sg_p1 param 8.9999 -0.244659/+0.23626 -sg_p2 param 337.532 -5.30516/+3.56202 -sg_p3 param 35.585 -1.92591/+2.70654 -sg_p4 param 0.703842 -0.0115673/+0.013846 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_gaus_exp_252_330/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_gaus_exp_252_330/data_bkg.log deleted file mode 100644 index 118332d..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_gaus_exp_252_330/data_bkg.log +++ /dev/null @@ -1,750 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [252,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=62921.6 FROM MIGRAD STATUS=INITIATE 90 CALLS 91 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.21879e-02 5.09000e-01 0.00000e+00 -9.80911e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -1.28354e+01 - 3 par_crystal_2 2.65669e+02 4.00000e+00 0.00000e+00 3.55320e+02 - 4 par_crystal_3 1.06488e+01 2.70000e+00 -4.48284e-01 -2.33576e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62883.4 FROM HESSE STATUS=OK 29 CALLS 257 TOTAL - EDM=4.91113 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.66060e-01 4.16121e-03 3.52377e-04 -4.74293e+00 - 2 par_crystal_1 4.45375e+00 2.73731e+00 1.77223e-01 2.66184e-01 - 3 par_crystal_2 2.67385e+02 2.04373e-01 8.29600e-04 2.81454e+02 - 4 par_crystal_3 1.36851e+01 5.38888e-01 1.69331e-03 -1.62103e+00 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=62883.3 FROM MIGRAD STATUS=FAILED 358 CALLS 359 TOTAL - EDM=0.00753244 STRATEGY= 1 ERR MATRIX APPROXIMATE - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.65093e-01 8.39913e-03 1.31861e-03 5.42788e+00 - 2 par_crystal_1 5.09910e+00 4.33634e+00 3.39194e-01 -6.59950e-03 - 3 par_crystal_2 2.67339e+02 1.86486e-01 3.32550e-03 -8.58879e+00 - 4 par_crystal_3 1.37140e+01 6.01780e-01 6.34807e-03 1.69258e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.055e-05 1.617e-04 4.699e-04 2.892e-03 - 1.617e-04 1.762e-02 -1.356e-04 -1.108e-03 - 4.699e-04 -1.356e-04 3.478e-02 3.255e-02 - 2.892e-03 -1.108e-03 3.255e-02 3.624e-01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.60853 1.000 0.145 0.300 0.572 - 2 0.19009 0.145 1.000 -0.005 -0.014 - 3 0.33449 0.300 -0.005 1.000 0.290 - 4 0.59243 0.572 -0.014 0.290 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7660e-01 8.1807e-01 1.6519e+00 1.7066e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.178308 TO DIAGONAL. - FCN=62883.3 FROM HESSE STATUS=NOT POSDEF 33 CALLS 392 TOTAL - EDM=3.36849 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.65093e-01 8.70034e-02 2.63722e-04 -1.21988e+00 - 2 par_crystal_1 5.09910e+00 4.18121e+00 5.00000e-01 1.54425e+00 - 3 par_crystal_2 2.67339e+02 5.27040e+00 9.57407e-02 3.75715e-01 - 4 par_crystal_3 1.37140e+01 6.68546e+00 2.53923e-04 -2.07863e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.595e-03 -2.994e-03 4.642e-01 6.089e-01 - -2.994e-03 1.536e-02 -1.944e-01 -2.569e-01 - 4.642e-01 -1.944e-01 2.855e+01 3.736e+01 - 6.089e-01 -2.569e-01 3.736e+01 4.914e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99751 1.000 -0.277 0.997 0.997 - 2 0.37560 -0.277 1.000 -0.293 -0.296 - 3 0.99795 0.997 -0.293 1.000 0.997 - 4 0.99797 0.997 -0.296 0.997 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=62983.1 FROM MIGRAD STATUS=INITIATE 29 CALLS 30 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 6.05383e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -1.33666e+02 - 3 par_gaus_exp_2 3.19008e-01 3.05000e-01 -9.67731e-01 -3.33619e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.00383 added to diagonal of error matrix - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62882.7 FROM MIGRAD STATUS=CONVERGED 228 CALLS 229 TOTAL - EDM=4.4408e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.69095e+02 7.01852e-01 4.07755e-03 2.89794e-02 - 2 par_gaus_exp_1 1.61044e+01 1.09719e+00 7.43010e-03 -1.84784e-02 - 3 par_gaus_exp_2 1.90527e-01 1.58774e-02 1.98778e-03 -6.23432e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 4.929e-01 5.914e-01 9.067e-03 - 5.914e-01 1.207e+00 1.483e-02 - 9.067e-03 1.483e-02 2.521e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.82590 1.000 0.767 0.813 - 2 0.85979 0.767 1.000 0.850 - 3 0.88644 0.813 0.850 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62882.7 FROM HESSE STATUS=OK 16 CALLS 245 TOTAL - EDM=4.28199e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.69095e+02 6.86832e-01 1.63102e-04 -5.76704e-01 - 2 par_gaus_exp_1 1.61044e+01 1.07335e+00 2.97204e-04 -5.72398e-01 - 3 par_gaus_exp_2 1.90527e-01 1.55212e-02 7.95110e-05 -1.13813e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 4.720e-01 5.579e-01 8.580e-03 - 5.579e-01 1.155e+00 1.406e-02 - 8.580e-03 1.406e-02 2.410e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.81734 1.000 0.756 0.805 - 2 0.85292 0.756 1.000 0.843 - 3 0.88081 0.805 0.843 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,624] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.3296 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=286.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=286.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=289.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=289.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=295.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=295.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=298.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=298.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=301.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=301.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - ... (remaining 216 messages suppressed) -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.3296) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.733611 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=313.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=316.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=319.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=325.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=328.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=331.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=334.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=340.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=343.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=346.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - ... (remaining 94 messages suppressed) -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.733611) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0733618 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0733618 - - FCN=103426 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57146e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.55551e+03 - 3 par_novo_2 -1.33526e+00 2.00000e+01 0.00000e+00 1.53308e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103192 FROM MIGRAD STATUS=CONVERGED 126 CALLS 127 TOTAL - EDM=1.07924e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.17697e+01 1.69443e-01** at limit ** - 2 par_novo_1 3.87878e+01 2.27475e+00 4.96100e-03 -6.14249e-02 - 3 par_novo_2 -1.26766e+00 7.00630e-02 3.67886e-05 3.77179e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 2.244e-10 -2.632e-07 -1.276e-07 - -2.632e-07 5.190e+00 1.540e-01 - -1.276e-07 1.540e-01 4.909e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.43392 1.000 -0.008 -0.122 - 2 0.97109 -0.008 1.000 0.965 - 3 0.97152 -0.122 0.965 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103192 FROM HESSE STATUS=OK 20 CALLS 147 TOTAL - EDM=1.23299e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.15107e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.87878e+01 2.30410e+00 1.98440e-04 4.51799e-01 - 3 par_novo_2 -1.26766e+00 7.13892e-02 1.47154e-06 -1.26769e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 2.143e-10 3.996e-06 -2.087e-07 - 3.996e-06 5.325e+00 1.518e-01 - -2.087e-07 1.518e-01 5.096e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.80390 1.000 0.118 -0.200 - 2 0.97183 0.118 1.000 0.922 - 3 0.97258 -0.200 0.922 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107617 FROM MIGRAD STATUS=INITIATE 36 CALLS 37 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 6.60405e+03 - 2 par_crystal_1_1 7.90153e-02 5.09000e-01 -1.80421e+00 3.05679e+03 - 3 par_crystal_1_2 2.60000e+02 4.00000e+00 0.00000e+00 1.48888e+03 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 6.99071e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.17529 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.7903e-03 5.8606e-02 5.0897e-01 3.4352e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.006225 TO DIAGONAL. - FCN=103191 FROM MIGRAD STATUS=CONVERGED 353 CALLS 354 TOTAL - EDM=3.7306e-06 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.37913e-01 3.41139e-02 6.19492e-04 4.10204e-01 - 2 par_crystal_1_1 4.44737e+00 5.69760e-01 2.21494e-02 9.88736e-03 - 3 par_crystal_1_2 2.79979e+02 3.40482e+01 2.79535e-01 -2.97577e-04 - 4 par_crystal_1_3 1.87584e+01 2.98857e+00 3.96232e-03 -6.40797e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.164e-03 3.582e-03 3.594e-03 9.898e-02 - 3.582e-03 3.375e-01 -1.052e-02 7.382e-01 - 3.594e-03 -1.052e-02 3.148e+00 6.243e-01 - 9.898e-02 7.382e-01 6.243e-01 9.086e+00 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99630 1.000 0.181 0.059 0.962 - 2 0.95650 0.181 1.000 -0.010 0.422 - 3 0.63948 0.059 -0.010 1.000 0.117 - 4 0.99690 0.962 0.422 0.117 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103191 FROM HESSE STATUS=OK 27 CALLS 381 TOTAL - EDM=6.06842e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 2.37913e-01 2.12502e-01 1.23898e-04 -8.36786e+01 - 2 par_crystal_1_1 4.44737e+00 5.06952e-01 8.85975e-04 -1.65463e+01 - 3 par_crystal_1_2 2.79979e+02 2.96341e+01 5.00000e-01 7.80831e+00 - 4 par_crystal_1_3 1.87584e+01 1.90925e+01 1.58493e-04 2.18231e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.578e-02 1.663e-02 2.427e-02 3.730e+00 - 1.663e-02 2.650e-01 -4.299e-02 1.684e+00 - 2.427e-02 -4.299e-02 1.850e+00 2.341e+00 - 3.730e+00 1.684e+00 2.341e+00 3.045e+02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99991 1.000 0.151 0.083 0.999 - 2 0.94385 0.151 1.000 -0.061 0.187 - 3 0.80384 0.083 -0.061 1.000 0.099 - 4 0.99991 0.999 0.187 0.099 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 13889.7 - Background number of gaus_exp_252_330 = 13889.7 - Background number of novo_285_624 = 17637.2 - Background number of crystal_1_285_624 = 17637.2 - Background number of gaus_bern_285_624 = 17637.2 - Background number of landau_285_624 = 17637.2 -par_crystal_0 param 0.165093 0.0870034 -par_crystal_1 param 5.0991 4.18121 -par_crystal_2 param 267.339 5.2704 -par_crystal_3 param 13.714 6.68546 -par_crystal_1_0 param 0.237913 0.212502 -par_crystal_1_1 param 4.44737 0.506952 -par_crystal_1_2 param 279.979 29.6341 -par_crystal_1_3 param 18.7584 19.0925 -par_gaus_exp_0 param 269.095 0.686832 -par_gaus_exp_1 param 16.1044 1.07335 -par_gaus_exp_2 param 0.190527 0.0155212 -par_novo_0 param 250 31.5107 -par_novo_1 param 38.7878 2.3041 -par_novo_2 param -1.26766 0.0713892 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_gaus_exp_252_330/datacard_350_gaus_exp_252_330.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_gaus_exp_252_330/datacard_350_gaus_exp_252_330.txt deleted file mode 100644 index 34f3d13..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_gaus_exp_252_330/datacard_350_gaus_exp_252_330.txt +++ /dev/null @@ -1,30 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_350.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_gaus_exp_252_330.root HbbHbb:f_gaus_exp -shapes data_obs HbbHbb w_background_gaus_exp_252_330.root HbbHbb:data_obs_gaus_exp_252_330 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 541.084 13889.7 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06649 - -JER lnN 1.00905 - -JEC lnN 1.0101 - -trigger lnN 1.10 - -PDF lnN 1.0164211668 - -sg_p0 param 351.69 -0.33742/+0.289485 -sg_p1 param 8.9999 -0.244659/+0.23626 -sg_p2 param 337.532 -5.30516/+3.56202 -sg_p3 param 35.585 -1.92591/+2.70654 -sg_p4 param 0.703842 -0.0115673/+0.013846 -par_gaus_exp_0 param 269.095 0.686832 -par_gaus_exp_1 param 16.1044 1.07335 -par_gaus_exp_2 param 0.190527 0.0155212 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_gaus_exp_252_330/pdf.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_gaus_exp_252_330/pdf.log deleted file mode 100644 index 9259882..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_gaus_exp_252_330/pdf.log +++ /dev/null @@ -1,10 +0,0 @@ -[?1034h FCN=9.92721 FROM MIGRAD STATUS=CONVERGED 62 CALLS 63 TOTAL - EDM=6.1511e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 Constant 1.76281e+01 2.26075e+00 2.99629e-03 -1.83938e-04 - 2 Mean 1.00111e+00 1.89451e-03 2.87033e-06 -5.72789e-01 - 3 Sigma 1.64212e-02 1.27561e-03 3.30460e-05 -5.02787e-03 -1.00110542289 +/- 0.00189450571012 -0.0164211667957 +/- 0.00127560788686 -PDF lnN 1.0164211668 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_gaus_exp_252_330/signal350_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_gaus_exp_252_330/signal350_sig.log deleted file mode 100644 index 3cd3455..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_gaus_exp_252_330/signal350_sig.log +++ /dev/null @@ -1,927 +0,0 @@ - -Processing test.c... -nSignal_init = 300000 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=22528 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.45000e+02 7.00000e+00 2.01358e-01 1.85444e+03 - 2 sg_p1 2.00000e+01 3.00000e+00 2.01358e-01 -1.26556e+01 - 3 sg_p2 3.75000e+02 9.00000e+00 2.01358e-01 1.23451e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -4.81309e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -9.79262e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21380.5 FROM MIGRAD STATUS=CONVERGED 200 CALLS 201 TOTAL - EDM=3.93725e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.34187e+02 4.37520e-01 1.19182e-03 3.04020e-02 - 2 sg_p1 2.26141e+01 4.79817e-01 2.16429e-03 1.96597e-03 - 3 sg_p2 3.30000e+02 7.71533e-01 1.87116e-02** at limit ** - 4 sg_p3 7.15373e+01 5.51063e+00 8.04417e-03 3.88300e-03 - 5 sg_p4 8.94168e-01 1.56675e-02 2.59223e-03 3.19034e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.914e-01 -8.489e-02 -1.235e-06 -8.412e-01 -2.850e-03 - -8.489e-02 2.303e-01 1.528e-06 1.618e+00 5.594e-03 - -1.235e-06 1.528e-06 1.273e-07 1.107e-05 4.780e-08 - -8.412e-01 1.618e+00 1.107e-05 3.054e+01 6.912e-02 - -2.850e-03 5.594e-03 4.780e-08 6.912e-02 2.457e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.43984 1.000 -0.404 -0.008 -0.348 -0.416 - 2 0.75144 -0.404 1.000 0.009 0.610 0.744 - 3 0.01053 -0.008 0.009 1.000 0.006 0.009 - 4 0.79840 -0.348 0.610 0.006 1.000 0.798 - 5 0.86375 -0.416 0.744 0.009 0.798 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21380.5 FROM HESSE STATUS=OK 31 CALLS 232 TOTAL - EDM=4.04441e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.34187e+02 4.38578e-01 4.76728e-05 -3.14089e-01 - 2 sg_p1 2.26141e+01 4.83583e-01 8.65717e-05 1.75170e-01 - 3 sg_p2 3.30000e+02 7.71716e-01 3.74232e-03 -1.57084e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 7.15373e+01 5.57705e+00 3.21767e-04 3.76314e-01 - 5 sg_p4 8.94168e-01 1.58618e-02 5.18445e-04 9.08100e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.924e-01 -8.684e-02 -2.448e-07 -8.666e-01 -2.922e-03 - -8.684e-02 2.339e-01 3.045e-07 1.670e+00 5.743e-03 - -2.448e-07 3.045e-07 1.274e-07 2.232e-06 9.555e-09 - -8.666e-01 1.670e+00 2.232e-06 3.129e+01 7.130e-02 - -2.922e-03 5.743e-03 9.555e-09 7.130e-02 2.518e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.44424 1.000 -0.409 -0.002 -0.353 -0.420 - 2 0.75592 -0.409 1.000 0.002 0.617 0.748 - 3 0.00208 -0.002 0.002 1.000 0.001 0.002 - 4 0.80377 -0.353 0.617 0.001 1.000 0.803 - 5 0.86733 -0.420 0.748 0.002 0.803 1.000 -350 -334.187 +- 0.438578 -22.6141 +- 0.483583 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=22627.8 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.45000e+02 7.00000e+00 2.01358e-01 1.57892e+03 - 2 sg_p1 2.00000e+01 3.00000e+00 2.01358e-01 2.75936e+01 - 3 sg_p2 3.75000e+02 9.00000e+00 2.01358e-01 1.16953e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -3.72010e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -9.99046e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21614.3 FROM MIGRAD STATUS=CONVERGED 179 CALLS 180 TOTAL - EDM=0.000765156 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.35798e+02 4.40505e-01 1.18756e-03 5.85918e-02 - 2 sg_p1 2.30753e+01 4.76357e-01 2.18690e-03 -2.03897e-03 - 3 sg_p2 3.30001e+02 1.45352e+00 2.57988e-02 -9.05792e-02 - 4 sg_p3 7.35354e+01 6.02462e+00 8.88269e-03 -1.01559e-01 - 5 sg_p4 9.01891e-01 1.51622e-02 2.60225e-03 2.64090e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.941e-01 -8.403e-02 -1.778e-04 -9.585e-01 -2.816e-03 - -8.403e-02 2.270e-01 1.870e-04 1.767e+00 5.355e-03 - -1.778e-04 1.870e-04 4.564e-03 5.987e-04 4.935e-06 - -9.585e-01 1.767e+00 5.987e-04 3.656e+01 7.358e-02 - -2.816e-03 5.355e-03 4.935e-06 7.358e-02 2.301e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.44243 1.000 -0.400 -0.006 -0.360 -0.421 - 2 0.74784 -0.400 1.000 0.006 0.613 0.741 - 3 0.00826 -0.006 0.006 1.000 0.001 0.005 - 4 0.80297 -0.360 0.613 0.001 1.000 0.802 - 5 0.86456 -0.421 0.741 0.005 0.802 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21614.3 FROM HESSE STATUS=OK 31 CALLS 211 TOTAL - EDM=0.000770472 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.35798e+02 4.41802e-01 2.37512e-04 -2.66038e-01 - 2 sg_p1 2.30753e+01 4.80609e-01 8.74761e-05 2.06482e-01 - 3 sg_p2 3.30001e+02 1.45505e+00 5.15976e-03 -1.57669e+00 - 4 sg_p3 7.35354e+01 6.11053e+00 3.55307e-04 4.24535e-01 - 5 sg_p4 9.01891e-01 1.53826e-02 1.04090e-04 9.33626e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.952e-01 -8.630e-02 8.428e-05 -9.929e-01 -2.902e-03 - -8.630e-02 2.311e-01 -8.883e-05 1.833e+00 5.520e-03 - 8.428e-05 -8.883e-05 4.569e-03 -2.859e-04 -2.344e-06 - -9.929e-01 1.833e+00 -2.859e-04 3.762e+01 7.631e-02 - -2.902e-03 5.520e-03 -2.344e-06 7.631e-02 2.368e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.44772 1.000 -0.406 0.003 -0.366 -0.427 - 2 0.75302 -0.406 1.000 -0.003 0.622 0.746 - 3 0.00390 0.003 -0.003 1.000 -0.001 -0.002 - 4 0.80914 -0.366 0.622 -0.001 1.000 0.808 - 5 0.86871 -0.427 0.746 -0.002 0.808 1.000 -350 -335.798 +- 0.441802 -23.0753 +- 0.480609 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=22461.8 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.45000e+02 7.00000e+00 2.01358e-01 2.12122e+03 - 2 sg_p1 2.00000e+01 3.00000e+00 2.01358e-01 -1.16373e+02 - 3 sg_p2 3.75000e+02 9.00000e+00 2.01358e-01 1.31911e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -5.79911e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -9.15472e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21165.5 FROM MIGRAD STATUS=CONVERGED 173 CALLS 174 TOTAL - EDM=1.05905e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.32336e+02 4.42443e-01 1.23362e-03 3.68247e-02 - 2 sg_p1 2.24290e+01 4.96251e-01 2.19433e-03 -3.29729e-02 - 3 sg_p2 3.30000e+02 5.15272e-01 1.52593e-02** at limit ** - 4 sg_p3 6.46965e+01 4.49942e+00 6.08111e-03 5.16840e-02 - 5 sg_p4 8.77595e-01 1.81613e-02 2.70062e-03 -5.60533e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.958e-01 -8.688e-02 -6.473e-07 -6.527e-01 -3.215e-03 - -8.688e-02 2.464e-01 8.468e-07 1.363e+00 6.784e-03 - -6.473e-07 8.468e-07 3.789e-08 6.087e-06 3.127e-08 - -6.527e-01 1.363e+00 6.087e-06 2.032e+01 6.625e-02 - -3.215e-03 6.784e-03 3.127e-08 6.625e-02 3.302e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.42501 1.000 -0.396 -0.008 -0.327 -0.400 - 2 0.75928 -0.396 1.000 0.009 0.609 0.752 - 3 0.01018 -0.008 0.009 1.000 0.007 0.009 - 4 0.80887 -0.327 0.609 0.007 1.000 0.809 - 5 0.87457 -0.400 0.752 0.009 0.809 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21165.5 FROM HESSE STATUS=OK 31 CALLS 205 TOTAL - EDM=1.06081e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.32336e+02 4.43146e-01 4.93448e-05 -3.70218e-01 - 2 sg_p1 2.24290e+01 4.99339e-01 8.77732e-05 1.62649e-01 - 3 sg_p2 3.30000e+02 5.15335e-01 3.05186e-03 -1.57077e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 6.46965e+01 4.54231e+00 2.43244e-04 2.17181e-01 - 5 sg_p4 8.77595e-01 1.83407e-02 5.40123e-04 8.55943e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.964e-01 -8.838e-02 -1.326e-07 -6.673e-01 -3.275e-03 - -8.838e-02 2.494e-01 1.746e-07 1.397e+00 6.925e-03 - -1.326e-07 1.746e-07 3.790e-08 1.265e-06 6.465e-09 - -6.673e-01 1.397e+00 1.265e-06 2.071e+01 6.788e-02 - -3.275e-03 6.925e-03 6.465e-09 6.788e-02 3.367e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.42806 1.000 -0.399 -0.002 -0.331 -0.403 - 2 0.76271 -0.399 1.000 0.002 0.615 0.756 - 3 0.00208 -0.002 0.002 1.000 0.001 0.002 - 4 0.81288 -0.331 0.615 0.001 1.000 0.813 - 5 0.87719 -0.403 0.756 0.002 0.813 1.000 -350 -332.336 +- 0.443146 -22.429 +- 0.499339 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17745.4 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 3.81607e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -5.82292e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.35171e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -4.55171e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 5.60829e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.4848e-03 4.4073e-01 9.4874e-01 1.6613e+00 1.9507e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.003435 TO DIAGONAL. - FCN=17037.5 FROM MIGRAD STATUS=CONVERGED 272 CALLS 273 TOTAL - EDM=0.000229841 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51690e+02 3.12909e-01 7.20357e-04 1.50885e-02 - 2 sg_p1 8.99990e+00 2.02072e+00 1.07460e-01 -8.64629e-04 - 3 sg_p2 3.37532e+02 1.70704e+01 8.89534e-04 8.91783e-02 - 4 sg_p3 3.55850e+01 1.57412e+01 2.01445e-03 5.68535e-02 - 5 sg_p4 7.03842e-01 9.36961e-02 8.03918e-03 -4.45853e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.792e-02 9.007e-02 3.977e+00 -3.782e+00 -2.519e-02 - 9.007e-02 1.430e-01 6.397e+00 -5.986e+00 -3.967e-02 - 3.977e+00 6.397e+00 2.927e+02 -2.722e+02 -1.779e+00 - -3.782e+00 -5.986e+00 -2.722e+02 2.551e+02 1.667e+00 - -2.519e-02 -3.967e-02 -1.779e+00 1.667e+00 1.115e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.77487 1.000 0.761 0.743 -0.757 -0.763 - 2 0.99571 0.761 1.000 0.989 -0.991 -0.994 - 3 0.99637 0.743 0.989 1.000 -0.996 -0.985 - 4 0.99713 -0.757 -0.991 -0.996 1.000 0.988 - 5 0.99425 -0.763 -0.994 -0.985 0.988 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17037.5 FROM HESSE STATUS=OK 35 CALLS 308 TOTAL - EDM=2.9509e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51690e+02 2.05801e-01 1.44071e-04 -1.32785e-01 - 2 sg_p1 8.99990e+00 4.72520e-01 4.38435e-01 1.58093e+00 - 3 sg_p2 3.37532e+02 3.63434e+00 1.77907e-04 4.55143e-01 - 4 sg_p3 3.55850e+01 3.20621e+00 8.05779e-05 -6.87361e-01 - 5 sg_p4 7.03842e-01 1.85963e-02 3.21567e-04 -7.64719e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.236e-02 4.581e-04 2.670e-02 -8.569e-02 -6.634e-04 - 4.581e-04 2.023e-04 3.597e-02 -3.336e-02 -2.070e-04 - 2.670e-02 3.597e-02 1.321e+01 -1.062e+01 -4.128e-02 - -8.569e-02 -3.336e-02 -1.062e+01 1.029e+01 3.997e-02 - -6.634e-04 -2.070e-04 -4.128e-02 3.997e-02 3.484e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.27036 1.000 0.157 0.036 -0.130 -0.173 - 2 0.83318 0.157 1.000 0.696 -0.731 -0.780 - 3 0.91590 0.036 0.696 1.000 -0.910 -0.608 - 4 0.92588 -0.130 -0.731 -0.910 1.000 0.668 - 5 0.79489 -0.173 -0.780 -0.608 0.668 1.000 -350 -351.69 +- 0.205801 -8.9999 +- 0.47252 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17980.6 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 3.49987e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -5.98208e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.69170e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -7.83629e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 5.56311e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17292.9 FROM HESSE STATUS=OK 33 CALLS 303 TOTAL - EDM=0.00176494 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51961e+02 2.04460e-01 7.28165e-04 -2.52563e-01 - 2 sg_p1 8.99915e+00 2.30345e-01 4.30116e-02 1.25408e-01 - 3 sg_p2 3.40595e+02 2.15600e+00 8.33185e-04 -5.45844e-01 - 4 sg_p3 3.45143e+01 1.95839e+00 2.03832e-03 -4.14782e-02 - 5 sg_p4 7.03933e-01 1.22162e-02 8.12692e-03 9.35709e-02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=17292.9 FROM MIGRAD STATUS=CONVERGED 313 CALLS 314 TOTAL - EDM=4.59633e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 1.1 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51961e+02 2.04485e-01 4.26699e-06 -6.13016e-02 - 2 sg_p1 9.00000e+00 2.28984e-01 -2.81882e-02 4.39584e-03 - 3 sg_p2 3.40596e+02 2.15817e+00 9.56132e-06 -1.29730e-01 - 4 sg_p3 3.45177e+01 1.95208e+00 6.42863e-05 7.35163e-02 - 5 sg_p4 7.03952e-01 1.21706e-02 1.50864e-04 7.78726e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.182e-02 1.059e-06 -5.711e-02 -6.423e-03 -1.875e-04 - 1.059e-06 9.432e-07 8.505e-05 -8.954e-05 -6.387e-07 - -5.711e-02 8.505e-05 4.658e+00 -3.232e+00 -5.893e-03 - -6.423e-03 -8.954e-05 -3.232e+00 3.812e+00 7.975e-03 - -1.875e-04 -6.387e-07 -5.893e-03 7.975e-03 1.486e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23004 1.000 0.005 -0.129 -0.016 -0.075 - 2 0.06294 0.005 1.000 0.041 -0.047 -0.054 - 3 0.78034 -0.129 0.041 1.000 -0.767 -0.224 - 4 0.79125 -0.016 -0.047 -0.767 1.000 0.335 - 5 0.34635 -0.075 -0.054 -0.224 0.335 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17292.9 FROM HESSE STATUS=OK 33 CALLS 347 TOTAL - EDM=8.75756e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51961e+02 2.04438e-01 7.28075e-04 -1.21874e-01 - 2 sg_p1 9.00000e+00 2.29843e-01 4.29288e-02 1.57180e+00 - 3 sg_p2 3.40596e+02 2.15392e+00 8.34476e-04 4.75922e-01 - 4 sg_p3 3.45177e+01 1.95162e+00 8.15327e-04 -7.07252e-01 - 5 sg_p4 7.03952e-01 1.20329e-02 8.13654e-03 -7.63847e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.180e-02 1.680e-06 -5.851e-02 -5.134e-03 -1.774e-04 - 1.680e-06 9.469e-07 1.234e-04 -1.333e-04 -1.048e-06 - -5.851e-02 1.234e-04 4.640e+00 -3.221e+00 -5.474e-03 - -5.134e-03 -1.333e-04 -3.221e+00 3.811e+00 7.658e-03 - -1.774e-04 -1.048e-06 -5.474e-03 7.658e-03 1.452e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22989 1.000 0.008 -0.133 -0.013 -0.072 - 2 0.10030 0.008 1.000 0.059 -0.070 -0.089 - 3 0.77997 -0.133 0.059 1.000 -0.766 -0.211 - 4 0.79057 -0.013 -0.070 -0.766 1.000 0.326 - 5 0.34225 -0.072 -0.089 -0.211 0.326 1.000 -350 -351.961 +- 0.204438 -9 +- 0.229843 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17556.6 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 4.17830e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -5.68439e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.02939e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -1.22040e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 5.78553e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - MINUIT WARNING IN HESSE - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN HESSE - ============== 1.39906 added to diagonal of error matrix - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16809.1 FROM HESSE STATUS=OK 37 CALLS 272 TOTAL - EDM=0.00897496 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51361e+02 2.01282e-01 7.11370e-04 1.72820e-01 - 2 sg_p1 8.99409e+00 2.54007e+00 1.10453e-01 1.29902e-01 - 3 sg_p2 3.31862e+02 3.59215e+00 1.00989e-03 -2.61406e-01 - 4 sg_p3 3.82944e+01 2.65752e+00 2.00950e-03 -4.58275e-02 - 5 sg_p4 6.99077e-01 1.14579e-02 8.35244e-03 6.96141e-02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16809.1 FROM MIGRAD STATUS=CONVERGED 368 CALLS 369 TOTAL - EDM=2.66923e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51369e+02 2.03042e-01 7.10429e-04 6.65922e-02 - 2 sg_p1 8.93634e+00 2.26538e-01 3.06864e-02 1.49692e-02 - 3 sg_p2 3.32548e+02 4.06056e+00 9.86163e-04 4.21549e-03 - 4 sg_p3 3.77657e+01 3.08320e+00 1.99063e-03 -6.94419e-02 - 5 sg_p4 6.96961e-01 1.39263e-02 8.49674e-03 -1.61305e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.123e-02 -6.678e-03 2.163e-02 -7.188e-02 -4.511e-04 - -6.678e-03 5.527e-02 -5.307e-01 4.156e-01 1.876e-03 - 2.163e-02 -5.307e-01 1.649e+01 -1.137e+01 -1.673e-02 - -7.188e-02 4.156e-01 -1.137e+01 9.516e+00 1.485e-02 - -4.511e-04 1.876e-03 -1.673e-02 1.485e-02 1.948e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25576 1.000 -0.140 0.026 -0.115 -0.159 - 2 0.70688 -0.140 1.000 -0.556 0.573 0.572 - 3 0.91344 0.026 -0.556 1.000 -0.908 -0.295 - 4 0.91579 -0.115 0.573 -0.908 1.000 0.345 - 5 0.58244 -0.159 0.572 -0.295 0.345 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16809.1 FROM HESSE STATUS=OK 31 CALLS 400 TOTAL - EDM=2.70646e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51369e+02 2.03746e-01 1.42086e-04 -1.45765e-01 - 2 sg_p1 8.93634e+00 2.54070e-01 1.22745e-03 1.31782e+00 - 3 sg_p2 3.32548e+02 4.51761e+00 3.94465e-05 4.21778e-01 - 4 sg_p3 3.77657e+01 3.43807e+00 7.96253e-05 -6.47692e-01 - 5 sg_p4 6.96961e-01 1.47151e-02 3.39870e-04 -8.20745e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.151e-02 -8.628e-03 5.304e-02 -9.587e-02 -5.312e-04 - -8.628e-03 6.725e-02 -7.432e-01 5.794e-01 2.412e-03 - 5.304e-02 -7.432e-01 2.041e+01 -1.440e+01 -2.542e-02 - -9.587e-02 5.794e-01 -1.440e+01 1.184e+01 2.153e-02 - -5.312e-04 2.412e-03 -2.542e-02 2.153e-02 2.176e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.26808 1.000 -0.163 0.058 -0.137 -0.177 - 2 0.76639 -0.163 1.000 -0.634 0.650 0.630 - 3 0.93070 0.058 -0.634 1.000 -0.926 -0.381 - 4 0.93289 -0.137 0.650 -0.926 1.000 0.424 - 5 0.63913 -0.177 0.630 -0.381 0.424 1.000 -350 -351.369 +- 0.203746 -8.93634 +- 0.25407 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17593.4 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 3.78939e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -5.82009e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.40055e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -4.92268e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 5.69068e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16875.6 FROM MIGRAD STATUS=CONVERGED 320 CALLS 321 TOTAL - EDM=1.73973e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51639e+02 2.04706e-01 7.22407e-04 -3.09735e-01 - 2 sg_p1 9.00000e+00 1.66126e-01 3.62658e-02 -7.99062e-03 - 3 sg_p2 3.36604e+02 2.77890e+00 9.23538e-04 -8.53328e-02 - 4 sg_p3 3.65924e+01 2.29934e+00 2.05397e-03 -4.59757e-02 - 5 sg_p4 7.00430e-01 1.16607e-02 8.31070e-03 -3.87898e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.191e-02 1.719e-06 -5.416e-02 -1.332e-02 -2.187e-04 - 1.719e-06 1.229e-06 1.227e-04 -1.127e-04 -6.551e-07 - -5.416e-02 1.227e-04 7.723e+00 -5.279e+00 -3.068e-03 - -1.332e-02 -1.127e-04 -5.279e+00 5.290e+00 4.752e-03 - -2.187e-04 -6.551e-07 -3.068e-03 4.752e-03 1.364e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22303 1.000 0.008 -0.095 -0.028 -0.091 - 2 0.06294 0.008 1.000 0.040 -0.044 -0.051 - 3 0.83540 -0.095 0.040 1.000 -0.826 -0.095 - 4 0.83755 -0.028 -0.044 -0.826 1.000 0.177 - 5 0.21502 -0.091 -0.051 -0.095 0.177 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16875.6 FROM HESSE STATUS=OK 31 CALLS 352 TOTAL - EDM=1.75499e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51639e+02 2.04671e-01 1.44481e-04 -1.34847e-01 - 2 sg_p1 9.00000e+00 1.66721e-01 7.25317e-03 1.56945e+00 - 3 sg_p2 3.36604e+02 2.84821e+00 1.84708e-04 4.48885e-01 - 4 sg_p3 3.65924e+01 2.35643e+00 8.21590e-05 -6.68882e-01 - 5 sg_p4 7.00430e-01 1.16522e-02 3.32428e-04 -7.92102e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.189e-02 2.314e-07 -5.503e-02 -1.229e-02 -2.144e-04 - 2.314e-07 1.234e-06 1.775e-05 -1.618e-05 -8.940e-08 - -5.503e-02 1.775e-05 8.113e+00 -5.607e+00 -3.304e-03 - -1.229e-02 -1.618e-05 -5.607e+00 5.556e+00 4.919e-03 - -2.144e-04 -8.940e-08 -3.304e-03 4.919e-03 1.362e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22229 1.000 0.001 -0.094 -0.025 -0.090 - 2 0.00867 0.001 1.000 0.006 -0.006 -0.007 - 3 0.84405 -0.094 0.006 1.000 -0.835 -0.099 - 4 0.84604 -0.025 -0.006 -0.835 1.000 0.179 - 5 0.21170 -0.090 -0.007 -0.099 0.179 1.000 -350 -351.639 +- 0.204671 -9 +- 0.166721 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17828.5 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 3.94800e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -5.62258e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.22820e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -3.94120e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 5.44291e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -6.7726e-02 3.7089e-01 9.5269e-01 1.7434e+00 2.0007e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.069727 TO DIAGONAL. - FCN=17147.5 FROM HESSE STATUS=NOT POSDEF 35 CALLS 251 TOTAL - EDM=1.1309 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51658e+02 3.51659e-01 7.01219e-04 -5.40058e-02 - 2 sg_p1 8.97742e+00 2.95083e+00 6.13915e-02 -2.03655e-01 - 3 sg_p2 3.35380e+02 1.79447e+01 9.83548e-04 6.97732e-01 - 4 sg_p3 3.73975e+01 1.59176e+01 2.11985e-03 1.68496e-01 - 5 sg_p4 7.15638e-01 9.42908e-02 7.30647e-03 -1.11566e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17147.5 FROM MIGRAD STATUS=CONVERGED 369 CALLS 370 TOTAL - EDM=4.09796e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51663e+02 1.99263e-01 7.00634e-04 4.55239e-02 - 2 sg_p1 8.93699e+00 2.96196e-01 2.96808e-02 -1.54899e-02 - 3 sg_p2 3.35749e+02 3.96525e+00 9.64449e-04 -8.88348e-03 - 4 sg_p3 3.70652e+01 3.34839e+00 2.10353e-03 -1.67958e-02 - 5 sg_p4 7.14101e-01 1.63480e-02 7.39271e-03 -2.31381e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.971e-02 9.041e-03 3.441e-02 -8.945e-02 -5.869e-04 - 9.041e-03 7.788e-02 7.343e-01 -6.508e-01 -3.330e-03 - 3.441e-02 7.343e-01 1.573e+01 -1.210e+01 -3.297e-02 - -8.945e-02 -6.508e-01 -1.210e+01 1.123e+01 3.115e-02 - -5.869e-04 -3.330e-03 -3.297e-02 3.115e-02 2.686e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.26818 1.000 0.163 0.044 -0.134 -0.180 - 2 0.81011 0.163 1.000 0.664 -0.696 -0.728 - 3 0.91607 0.044 0.664 1.000 -0.911 -0.507 - 4 0.92336 -0.134 -0.696 -0.911 1.000 0.567 - 5 0.73770 -0.180 -0.728 -0.507 0.567 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17147.5 FROM HESSE STATUS=OK 31 CALLS 401 TOTAL - EDM=3.78098e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51663e+02 1.98626e-01 1.40127e-04 -1.33882e-01 - 2 sg_p1 8.93699e+00 2.60351e-01 1.18723e-03 1.82247e+00 - 3 sg_p2 3.35749e+02 3.94847e+00 3.85780e-05 4.43146e-01 - 4 sg_p3 3.70652e+01 3.31177e+00 8.41412e-05 -6.60300e-01 - 5 sg_p4 7.14101e-01 1.54021e-02 2.95708e-04 -6.86338e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.945e-02 7.419e-03 1.957e-02 -7.558e-02 -4.983e-04 - 7.419e-03 6.823e-02 6.530e-01 -5.744e-01 -2.764e-03 - 1.957e-02 6.530e-01 1.559e+01 -1.191e+01 -2.828e-02 - -7.558e-02 -5.744e-01 -1.191e+01 1.098e+01 2.678e-02 - -4.983e-04 -2.764e-03 -2.828e-02 2.678e-02 2.383e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25680 1.000 0.143 0.025 -0.115 -0.163 - 2 0.77869 0.143 1.000 0.633 -0.664 -0.686 - 3 0.91532 0.025 0.633 1.000 -0.910 -0.464 - 4 0.92158 -0.115 -0.664 -0.910 1.000 0.524 - 5 0.69729 -0.163 -0.686 -0.464 0.524 1.000 -350 -351.663 +- 0.198626 -8.93699 +- 0.260351 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=16599.2 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 3.57504e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -5.44923e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.17494e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -4.08170e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 5.21506e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15939.1 FROM HESSE STATUS=OK 37 CALLS 314 TOTAL - EDM=0.000648585 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51693e+02 2.15714e-01 7.19414e-04 4.43718e-02 - 2 sg_p1 8.99487e+00 3.57548e+00 7.75677e-02 1.91574e-02 - 3 sg_p2 3.37608e+02 4.45408e+00 8.83711e-04 -1.12364e-01 - 4 sg_p3 3.54407e+01 4.01631e+00 2.01394e-03 2.05443e-02 - 5 sg_p4 7.05167e-01 2.51719e-02 7.97965e-03 2.01078e-02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 13.9403 added to diagonal of error matrix - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15939.1 FROM MIGRAD STATUS=CONVERGED 457 CALLS 458 TOTAL - EDM=6.3256e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51693e+02 2.10894e-01 7.19542e-04 -1.67564e-01 - 2 sg_p1 9.00000e+00 3.24335e+00 1.16287e-01** at limit ** - 3 sg_p2 3.37572e+02 3.03107e+00 8.85564e-04 -1.40083e-01 - 4 sg_p3 3.54732e+01 2.61363e+00 2.01712e-03 -2.42748e-02 - 5 sg_p4 7.05375e-01 1.51863e-02 7.98331e-03 2.92592e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.448e-02 6.249e-05 -2.584e-02 -4.146e-02 -4.052e-04 - 6.249e-05 8.943e-06 4.513e-03 -4.212e-03 -2.775e-05 - -2.584e-02 4.513e-03 9.189e+00 -6.814e+00 -1.858e-02 - -4.146e-02 -4.212e-03 -6.814e+00 6.836e+00 1.914e-02 - -4.052e-04 -2.775e-05 -1.858e-02 1.914e-02 2.317e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.24408 1.000 0.099 -0.040 -0.075 -0.126 - 2 0.67618 0.099 1.000 0.498 -0.539 -0.610 - 3 0.86794 -0.040 0.498 1.000 -0.860 -0.403 - 4 0.87833 -0.075 -0.539 -0.860 1.000 0.481 - 5 0.64024 -0.126 -0.610 -0.403 0.481 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15939.1 FROM HESSE STATUS=OK 35 CALLS 493 TOTAL - EDM=7.60914e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51693e+02 2.11707e-01 1.43908e-04 -1.32683e-01 - 2 sg_p1 9.00000e+00 3.40291e-01 4.74451e-01 1.56997e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 3 sg_p2 3.37572e+02 3.47654e+00 1.77113e-04 4.55410e-01 - 4 sg_p3 3.54732e+01 3.03978e+00 8.06848e-05 -6.89429e-01 - 5 sg_p4 7.05375e-01 1.75095e-02 3.19332e-04 -7.52647e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.482e-02 2.743e-05 3.917e-03 -6.861e-02 -5.663e-04 - 2.743e-05 9.504e-07 2.150e-03 -1.992e-03 -1.243e-05 - 3.917e-03 2.150e-03 1.209e+01 -9.464e+00 -3.305e-02 - -6.861e-02 -1.992e-03 -9.464e+00 9.250e+00 3.240e-02 - -5.663e-04 -1.243e-05 -3.305e-02 3.240e-02 3.085e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25843 1.000 0.133 0.005 -0.107 -0.152 - 2 0.78663 0.133 1.000 0.634 -0.672 -0.726 - 3 0.90139 0.005 0.634 1.000 -0.895 -0.541 - 4 0.91165 -0.107 -0.672 -0.895 1.000 0.606 - 5 0.74619 -0.152 -0.726 -0.541 0.606 1.000 -350 -351.693 +- 0.211707 -9 +- 0.340291 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=18950.1 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 4.06912e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -6.21556e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.53873e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -5.05415e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 6.02316e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 2.05452 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - MACHINE ACCURACY LIMITS FURTHER IMPROVEMENT. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -7.6627e-03 4.3650e-01 9.4912e-01 1.6697e+00 1.9524e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.009615 TO DIAGONAL. - FCN=18191.7 FROM MIGRAD STATUS=CONVERGED 438 CALLS 439 TOTAL - EDM=2.38291e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51688e+02 3.06549e-01 7.21716e-04 1.38139e-02 - 2 sg_p1 8.99221e+00 3.97298e+00 7.87824e-02 -1.20842e-03 - 3 sg_p2 3.37548e+02 1.63062e+01 8.85928e-04 1.17278e-02 - 4 sg_p3 3.56395e+01 1.51287e+01 2.01699e-03 1.74046e-02 - 5 sg_p4 7.02105e-01 9.20868e-02 8.19474e-03 -1.20385e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.398e-02 3.866e-01 3.761e+00 -3.594e+00 -2.447e-02 - 3.866e-01 2.690e+00 2.650e+01 -2.493e+01 -1.690e-01 - 3.761e+00 2.650e+01 2.670e+02 -2.495e+02 -1.668e+00 - -3.594e+00 -2.493e+01 -2.495e+02 2.351e+02 1.571e+00 - -2.447e-02 -1.690e-01 -1.668e+00 1.571e+00 1.074e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.78192 1.000 0.769 0.751 -0.765 -0.770 - 2 0.99585 0.769 1.000 0.989 -0.991 -0.994 - 3 0.99631 0.751 0.989 1.000 -0.996 -0.985 - 4 0.99710 -0.765 -0.991 -0.996 1.000 0.989 - 5 0.99443 -0.770 -0.994 -0.985 0.989 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2500 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.2541e-02 4.4218e-01 9.5025e-01 1.6636e+00 1.9565e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.014497 TO DIAGONAL. - FCN=18191.7 FROM HESSE STATUS=NOT POSDEF 37 CALLS 476 TOTAL - EDM=6.23545e-06 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51688e+02 2.98004e-01 1.44343e-04 -1.32867e-01 - 2 sg_p1 8.99221e+00 3.99098e+00 5.00000e-01 1.65911e+00 - 3 sg_p2 3.37548e+02 1.66076e+01 3.54371e-05 4.55246e-01 - 4 sg_p3 3.56395e+01 1.53152e+01 8.06796e-05 -6.86354e-01 - 5 sg_p4 7.02105e-01 8.98453e-02 3.27790e-04 -7.78566e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 8.881e-02 1.322e-01 3.655e+00 -3.473e+00 -2.261e-02 - 1.322e-01 3.453e-01 9.674e+00 -9.044e+00 -5.859e-02 - 3.655e+00 9.674e+00 2.770e+02 -2.574e+02 -1.645e+00 - -3.473e+00 -9.044e+00 -2.574e+02 2.411e+02 1.540e+00 - -2.261e-02 -5.859e-02 -1.645e+00 1.540e+00 1.007e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.76862 1.000 0.755 0.737 -0.751 -0.756 - 2 0.99570 0.755 1.000 0.989 -0.991 -0.994 - 3 0.99646 0.737 0.989 1.000 -0.996 -0.985 - 4 0.99718 -0.751 -0.991 -0.996 1.000 0.988 - 5 0.99409 -0.756 -0.994 -0.985 0.988 1.000 - ERR MATRIX NOT POS-DEF -350 -351.688 +- 0.298004 -8.99221 +- 3.99098 -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 351.69 +- 0.205801 (stat) - 0.321347 + 0.270579 (syst); -0.33742/+0.289485 (total) - Uncertainty on sg_p1 = 8.9999 +- 0.47252 (stat) - 0.0635526 + 0.000102014 (syst); -0.244659/+0.23626 (total) - Uncertainty on sg_p2 = 337.532 +- 3.63434 (stat) - 4.98423 + 3.06364 (syst); -5.30516/+3.56202 (total) - Uncertainty on sg_p3 = 35.585 +- 3.20621 (stat) - 1.06732 + 2.18069 (syst); -1.92591/+2.70654 (total) - Uncertainty on sg_p4 = 0.703842 +- 0.0185963 (stat) - 0.00688091 + 0.0102594 (syst); -0.0115673/+0.013846 (total) - === Baseline plot ===
- norm = 541.084 -JEC lnN 1.0101 - -JER lnN 1.00905 - -btag lnN 1.06649 - -sg_p0 param 351.69 -0.33742/+0.289485 -sg_p1 param 8.9999 -0.244659/+0.23626 -sg_p2 param 337.532 -5.30516/+3.56202 -sg_p3 param 35.585 -1.92591/+2.70654 -sg_p4 param 0.703842 -0.0115673/+0.013846 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_novo_285_624/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_novo_285_624/data_bkg.log deleted file mode 100644 index 3cc1900..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_novo_285_624/data_bkg.log +++ /dev/null @@ -1,750 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [252,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=62921.6 FROM MIGRAD STATUS=INITIATE 90 CALLS 91 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.21879e-02 5.09000e-01 0.00000e+00 -9.80911e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -1.28354e+01 - 3 par_crystal_2 2.65669e+02 4.00000e+00 0.00000e+00 3.55320e+02 - 4 par_crystal_3 1.06488e+01 2.70000e+00 -4.48284e-01 -2.33576e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62883.4 FROM HESSE STATUS=OK 29 CALLS 257 TOTAL - EDM=4.91113 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.66060e-01 4.16121e-03 3.52377e-04 -4.74293e+00 - 2 par_crystal_1 4.45375e+00 2.73731e+00 1.77223e-01 2.66184e-01 - 3 par_crystal_2 2.67385e+02 2.04373e-01 8.29600e-04 2.81454e+02 - 4 par_crystal_3 1.36851e+01 5.38888e-01 1.69331e-03 -1.62103e+00 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=62883.3 FROM MIGRAD STATUS=FAILED 358 CALLS 359 TOTAL - EDM=0.00753244 STRATEGY= 1 ERR MATRIX APPROXIMATE - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.65093e-01 8.39913e-03 1.31861e-03 5.42788e+00 - 2 par_crystal_1 5.09910e+00 4.33634e+00 3.39194e-01 -6.59950e-03 - 3 par_crystal_2 2.67339e+02 1.86486e-01 3.32550e-03 -8.58879e+00 - 4 par_crystal_3 1.37140e+01 6.01780e-01 6.34807e-03 1.69258e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.055e-05 1.617e-04 4.699e-04 2.892e-03 - 1.617e-04 1.762e-02 -1.356e-04 -1.108e-03 - 4.699e-04 -1.356e-04 3.478e-02 3.255e-02 - 2.892e-03 -1.108e-03 3.255e-02 3.624e-01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.60853 1.000 0.145 0.300 0.572 - 2 0.19009 0.145 1.000 -0.005 -0.014 - 3 0.33449 0.300 -0.005 1.000 0.290 - 4 0.59243 0.572 -0.014 0.290 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7660e-01 8.1807e-01 1.6519e+00 1.7066e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.178308 TO DIAGONAL. - FCN=62883.3 FROM HESSE STATUS=NOT POSDEF 33 CALLS 392 TOTAL - EDM=3.36849 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.65093e-01 8.70034e-02 2.63722e-04 -1.21988e+00 - 2 par_crystal_1 5.09910e+00 4.18121e+00 5.00000e-01 1.54425e+00 - 3 par_crystal_2 2.67339e+02 5.27040e+00 9.57407e-02 3.75715e-01 - 4 par_crystal_3 1.37140e+01 6.68546e+00 2.53923e-04 -2.07863e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.595e-03 -2.994e-03 4.642e-01 6.089e-01 - -2.994e-03 1.536e-02 -1.944e-01 -2.569e-01 - 4.642e-01 -1.944e-01 2.855e+01 3.736e+01 - 6.089e-01 -2.569e-01 3.736e+01 4.914e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99751 1.000 -0.277 0.997 0.997 - 2 0.37560 -0.277 1.000 -0.293 -0.296 - 3 0.99795 0.997 -0.293 1.000 0.997 - 4 0.99797 0.997 -0.296 0.997 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=62983.1 FROM MIGRAD STATUS=INITIATE 29 CALLS 30 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 6.05383e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -1.33666e+02 - 3 par_gaus_exp_2 3.19008e-01 3.05000e-01 -9.67731e-01 -3.33619e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.00383 added to diagonal of error matrix - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62882.7 FROM MIGRAD STATUS=CONVERGED 228 CALLS 229 TOTAL - EDM=4.4408e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.69095e+02 7.01852e-01 4.07755e-03 2.89794e-02 - 2 par_gaus_exp_1 1.61044e+01 1.09719e+00 7.43010e-03 -1.84784e-02 - 3 par_gaus_exp_2 1.90527e-01 1.58774e-02 1.98778e-03 -6.23432e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 4.929e-01 5.914e-01 9.067e-03 - 5.914e-01 1.207e+00 1.483e-02 - 9.067e-03 1.483e-02 2.521e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.82590 1.000 0.767 0.813 - 2 0.85979 0.767 1.000 0.850 - 3 0.88644 0.813 0.850 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62882.7 FROM HESSE STATUS=OK 16 CALLS 245 TOTAL - EDM=4.28199e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.69095e+02 6.86832e-01 1.63102e-04 -5.76704e-01 - 2 par_gaus_exp_1 1.61044e+01 1.07335e+00 2.97204e-04 -5.72398e-01 - 3 par_gaus_exp_2 1.90527e-01 1.55212e-02 7.95110e-05 -1.13813e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 4.720e-01 5.579e-01 8.580e-03 - 5.579e-01 1.155e+00 1.406e-02 - 8.580e-03 1.406e-02 2.410e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.81734 1.000 0.756 0.805 - 2 0.85292 0.756 1.000 0.843 - 3 0.88081 0.805 0.843 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,624] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.3296 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.3296) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=286.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=286.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=289.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=289.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=295.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=295.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=298.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=298.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=301.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=301.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - ... (remaining 216 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.733611 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.733611) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=313.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=316.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=319.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=325.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=328.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=331.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=334.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=340.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=343.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=346.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - ... (remaining 94 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0733618 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0733618 - - FCN=103426 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57146e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.55551e+03 - 3 par_novo_2 -1.33526e+00 2.00000e+01 0.00000e+00 1.53308e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103192 FROM MIGRAD STATUS=CONVERGED 126 CALLS 127 TOTAL - EDM=1.07924e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.17697e+01 1.69443e-01** at limit ** - 2 par_novo_1 3.87878e+01 2.27475e+00 4.96100e-03 -6.14249e-02 - 3 par_novo_2 -1.26766e+00 7.00630e-02 3.67886e-05 3.77179e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 2.244e-10 -2.632e-07 -1.276e-07 - -2.632e-07 5.190e+00 1.540e-01 - -1.276e-07 1.540e-01 4.909e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.43392 1.000 -0.008 -0.122 - 2 0.97109 -0.008 1.000 0.965 - 3 0.97152 -0.122 0.965 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103192 FROM HESSE STATUS=OK 20 CALLS 147 TOTAL - EDM=1.23299e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.15107e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.87878e+01 2.30410e+00 1.98440e-04 4.51799e-01 - 3 par_novo_2 -1.26766e+00 7.13892e-02 1.47154e-06 -1.26769e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 2.143e-10 3.996e-06 -2.087e-07 - 3.996e-06 5.325e+00 1.518e-01 - -2.087e-07 1.518e-01 5.096e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.80390 1.000 0.118 -0.200 - 2 0.97183 0.118 1.000 0.922 - 3 0.97258 -0.200 0.922 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107617 FROM MIGRAD STATUS=INITIATE 36 CALLS 37 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 6.60405e+03 - 2 par_crystal_1_1 7.90153e-02 5.09000e-01 -1.80421e+00 3.05679e+03 - 3 par_crystal_1_2 2.60000e+02 4.00000e+00 0.00000e+00 1.48888e+03 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 6.99071e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.17529 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.7903e-03 5.8606e-02 5.0897e-01 3.4352e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.006225 TO DIAGONAL. - FCN=103191 FROM MIGRAD STATUS=CONVERGED 353 CALLS 354 TOTAL - EDM=3.7306e-06 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.37913e-01 3.41139e-02 6.19492e-04 4.10204e-01 - 2 par_crystal_1_1 4.44737e+00 5.69760e-01 2.21494e-02 9.88736e-03 - 3 par_crystal_1_2 2.79979e+02 3.40482e+01 2.79535e-01 -2.97577e-04 - 4 par_crystal_1_3 1.87584e+01 2.98857e+00 3.96232e-03 -6.40797e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.164e-03 3.582e-03 3.594e-03 9.898e-02 - 3.582e-03 3.375e-01 -1.052e-02 7.382e-01 - 3.594e-03 -1.052e-02 3.148e+00 6.243e-01 - 9.898e-02 7.382e-01 6.243e-01 9.086e+00 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99630 1.000 0.181 0.059 0.962 - 2 0.95650 0.181 1.000 -0.010 0.422 - 3 0.63948 0.059 -0.010 1.000 0.117 - 4 0.99690 0.962 0.422 0.117 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103191 FROM HESSE STATUS=OK 27 CALLS 381 TOTAL - EDM=6.06842e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 2.37913e-01 2.12502e-01 1.23898e-04 -8.36786e+01 - 2 par_crystal_1_1 4.44737e+00 5.06952e-01 8.85975e-04 -1.65463e+01 - 3 par_crystal_1_2 2.79979e+02 2.96341e+01 5.00000e-01 7.80831e+00 - 4 par_crystal_1_3 1.87584e+01 1.90925e+01 1.58493e-04 2.18231e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.578e-02 1.663e-02 2.427e-02 3.730e+00 - 1.663e-02 2.650e-01 -4.299e-02 1.684e+00 - 2.427e-02 -4.299e-02 1.850e+00 2.341e+00 - 3.730e+00 1.684e+00 2.341e+00 3.045e+02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99991 1.000 0.151 0.083 0.999 - 2 0.94385 0.151 1.000 -0.061 0.187 - 3 0.80384 0.083 -0.061 1.000 0.099 - 4 0.99991 0.999 0.187 0.099 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 13889.7 - Background number of gaus_exp_252_330 = 13889.7 - Background number of novo_285_624 = 17637.2 - Background number of crystal_1_285_624 = 17637.2 - Background number of gaus_bern_285_624 = 17637.2 - Background number of landau_285_624 = 17637.2 -par_crystal_0 param 0.165093 0.0870034 -par_crystal_1 param 5.0991 4.18121 -par_crystal_2 param 267.339 5.2704 -par_crystal_3 param 13.714 6.68546 -par_crystal_1_0 param 0.237913 0.212502 -par_crystal_1_1 param 4.44737 0.506952 -par_crystal_1_2 param 279.979 29.6341 -par_crystal_1_3 param 18.7584 19.0925 -par_gaus_exp_0 param 269.095 0.686832 -par_gaus_exp_1 param 16.1044 1.07335 -par_gaus_exp_2 param 0.190527 0.0155212 -par_novo_0 param 250 31.5107 -par_novo_1 param 38.7878 2.3041 -par_novo_2 param -1.26766 0.0713892 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_novo_285_624/datacard_350_novo_285_624.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_novo_285_624/datacard_350_novo_285_624.txt deleted file mode 100644 index a5c3f61..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_novo_285_624/datacard_350_novo_285_624.txt +++ /dev/null @@ -1,30 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_350.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_novo_285_624.root HbbHbb:f_novo -shapes data_obs HbbHbb w_background_novo_285_624.root HbbHbb:data_obs_novo_285_624 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 541.084 17637.2 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06649 - -JER lnN 1.00905 - -JEC lnN 1.0101 - -trigger lnN 1.10 - -PDF lnN 1.0164211668 - -sg_p0 param 351.69 -0.33742/+0.289485 -sg_p1 param 8.9999 -0.244659/+0.23626 -sg_p2 param 337.532 -5.30516/+3.56202 -sg_p3 param 35.585 -1.92591/+2.70654 -sg_p4 param 0.703842 -0.0115673/+0.013846 -par_novo_0 param 250 31.5107 -par_novo_1 param 38.7878 2.3041 -par_novo_2 param -1.26766 0.0713892 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_novo_285_624/pdf.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_novo_285_624/pdf.log deleted file mode 100644 index 9259882..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_novo_285_624/pdf.log +++ /dev/null @@ -1,10 +0,0 @@ -[?1034h FCN=9.92721 FROM MIGRAD STATUS=CONVERGED 62 CALLS 63 TOTAL - EDM=6.1511e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 Constant 1.76281e+01 2.26075e+00 2.99629e-03 -1.83938e-04 - 2 Mean 1.00111e+00 1.89451e-03 2.87033e-06 -5.72789e-01 - 3 Sigma 1.64212e-02 1.27561e-03 3.30460e-05 -5.02787e-03 -1.00110542289 +/- 0.00189450571012 -0.0164211667957 +/- 0.00127560788686 -PDF lnN 1.0164211668 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_novo_285_624/signal350_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_novo_285_624/signal350_sig.log deleted file mode 100644 index 3cd3455..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_350_novo_285_624/signal350_sig.log +++ /dev/null @@ -1,927 +0,0 @@ - -Processing test.c... -nSignal_init = 300000 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=22528 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.45000e+02 7.00000e+00 2.01358e-01 1.85444e+03 - 2 sg_p1 2.00000e+01 3.00000e+00 2.01358e-01 -1.26556e+01 - 3 sg_p2 3.75000e+02 9.00000e+00 2.01358e-01 1.23451e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -4.81309e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -9.79262e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21380.5 FROM MIGRAD STATUS=CONVERGED 200 CALLS 201 TOTAL - EDM=3.93725e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.34187e+02 4.37520e-01 1.19182e-03 3.04020e-02 - 2 sg_p1 2.26141e+01 4.79817e-01 2.16429e-03 1.96597e-03 - 3 sg_p2 3.30000e+02 7.71533e-01 1.87116e-02** at limit ** - 4 sg_p3 7.15373e+01 5.51063e+00 8.04417e-03 3.88300e-03 - 5 sg_p4 8.94168e-01 1.56675e-02 2.59223e-03 3.19034e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.914e-01 -8.489e-02 -1.235e-06 -8.412e-01 -2.850e-03 - -8.489e-02 2.303e-01 1.528e-06 1.618e+00 5.594e-03 - -1.235e-06 1.528e-06 1.273e-07 1.107e-05 4.780e-08 - -8.412e-01 1.618e+00 1.107e-05 3.054e+01 6.912e-02 - -2.850e-03 5.594e-03 4.780e-08 6.912e-02 2.457e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.43984 1.000 -0.404 -0.008 -0.348 -0.416 - 2 0.75144 -0.404 1.000 0.009 0.610 0.744 - 3 0.01053 -0.008 0.009 1.000 0.006 0.009 - 4 0.79840 -0.348 0.610 0.006 1.000 0.798 - 5 0.86375 -0.416 0.744 0.009 0.798 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21380.5 FROM HESSE STATUS=OK 31 CALLS 232 TOTAL - EDM=4.04441e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.34187e+02 4.38578e-01 4.76728e-05 -3.14089e-01 - 2 sg_p1 2.26141e+01 4.83583e-01 8.65717e-05 1.75170e-01 - 3 sg_p2 3.30000e+02 7.71716e-01 3.74232e-03 -1.57084e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 7.15373e+01 5.57705e+00 3.21767e-04 3.76314e-01 - 5 sg_p4 8.94168e-01 1.58618e-02 5.18445e-04 9.08100e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.924e-01 -8.684e-02 -2.448e-07 -8.666e-01 -2.922e-03 - -8.684e-02 2.339e-01 3.045e-07 1.670e+00 5.743e-03 - -2.448e-07 3.045e-07 1.274e-07 2.232e-06 9.555e-09 - -8.666e-01 1.670e+00 2.232e-06 3.129e+01 7.130e-02 - -2.922e-03 5.743e-03 9.555e-09 7.130e-02 2.518e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.44424 1.000 -0.409 -0.002 -0.353 -0.420 - 2 0.75592 -0.409 1.000 0.002 0.617 0.748 - 3 0.00208 -0.002 0.002 1.000 0.001 0.002 - 4 0.80377 -0.353 0.617 0.001 1.000 0.803 - 5 0.86733 -0.420 0.748 0.002 0.803 1.000 -350 -334.187 +- 0.438578 -22.6141 +- 0.483583 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=22627.8 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.45000e+02 7.00000e+00 2.01358e-01 1.57892e+03 - 2 sg_p1 2.00000e+01 3.00000e+00 2.01358e-01 2.75936e+01 - 3 sg_p2 3.75000e+02 9.00000e+00 2.01358e-01 1.16953e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -3.72010e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -9.99046e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21614.3 FROM MIGRAD STATUS=CONVERGED 179 CALLS 180 TOTAL - EDM=0.000765156 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.35798e+02 4.40505e-01 1.18756e-03 5.85918e-02 - 2 sg_p1 2.30753e+01 4.76357e-01 2.18690e-03 -2.03897e-03 - 3 sg_p2 3.30001e+02 1.45352e+00 2.57988e-02 -9.05792e-02 - 4 sg_p3 7.35354e+01 6.02462e+00 8.88269e-03 -1.01559e-01 - 5 sg_p4 9.01891e-01 1.51622e-02 2.60225e-03 2.64090e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.941e-01 -8.403e-02 -1.778e-04 -9.585e-01 -2.816e-03 - -8.403e-02 2.270e-01 1.870e-04 1.767e+00 5.355e-03 - -1.778e-04 1.870e-04 4.564e-03 5.987e-04 4.935e-06 - -9.585e-01 1.767e+00 5.987e-04 3.656e+01 7.358e-02 - -2.816e-03 5.355e-03 4.935e-06 7.358e-02 2.301e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.44243 1.000 -0.400 -0.006 -0.360 -0.421 - 2 0.74784 -0.400 1.000 0.006 0.613 0.741 - 3 0.00826 -0.006 0.006 1.000 0.001 0.005 - 4 0.80297 -0.360 0.613 0.001 1.000 0.802 - 5 0.86456 -0.421 0.741 0.005 0.802 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21614.3 FROM HESSE STATUS=OK 31 CALLS 211 TOTAL - EDM=0.000770472 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.35798e+02 4.41802e-01 2.37512e-04 -2.66038e-01 - 2 sg_p1 2.30753e+01 4.80609e-01 8.74761e-05 2.06482e-01 - 3 sg_p2 3.30001e+02 1.45505e+00 5.15976e-03 -1.57669e+00 - 4 sg_p3 7.35354e+01 6.11053e+00 3.55307e-04 4.24535e-01 - 5 sg_p4 9.01891e-01 1.53826e-02 1.04090e-04 9.33626e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.952e-01 -8.630e-02 8.428e-05 -9.929e-01 -2.902e-03 - -8.630e-02 2.311e-01 -8.883e-05 1.833e+00 5.520e-03 - 8.428e-05 -8.883e-05 4.569e-03 -2.859e-04 -2.344e-06 - -9.929e-01 1.833e+00 -2.859e-04 3.762e+01 7.631e-02 - -2.902e-03 5.520e-03 -2.344e-06 7.631e-02 2.368e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.44772 1.000 -0.406 0.003 -0.366 -0.427 - 2 0.75302 -0.406 1.000 -0.003 0.622 0.746 - 3 0.00390 0.003 -0.003 1.000 -0.001 -0.002 - 4 0.80914 -0.366 0.622 -0.001 1.000 0.808 - 5 0.86871 -0.427 0.746 -0.002 0.808 1.000 -350 -335.798 +- 0.441802 -23.0753 +- 0.480609 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=22461.8 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.45000e+02 7.00000e+00 2.01358e-01 2.12122e+03 - 2 sg_p1 2.00000e+01 3.00000e+00 2.01358e-01 -1.16373e+02 - 3 sg_p2 3.75000e+02 9.00000e+00 2.01358e-01 1.31911e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -5.79911e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -9.15472e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21165.5 FROM MIGRAD STATUS=CONVERGED 173 CALLS 174 TOTAL - EDM=1.05905e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.32336e+02 4.42443e-01 1.23362e-03 3.68247e-02 - 2 sg_p1 2.24290e+01 4.96251e-01 2.19433e-03 -3.29729e-02 - 3 sg_p2 3.30000e+02 5.15272e-01 1.52593e-02** at limit ** - 4 sg_p3 6.46965e+01 4.49942e+00 6.08111e-03 5.16840e-02 - 5 sg_p4 8.77595e-01 1.81613e-02 2.70062e-03 -5.60533e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.958e-01 -8.688e-02 -6.473e-07 -6.527e-01 -3.215e-03 - -8.688e-02 2.464e-01 8.468e-07 1.363e+00 6.784e-03 - -6.473e-07 8.468e-07 3.789e-08 6.087e-06 3.127e-08 - -6.527e-01 1.363e+00 6.087e-06 2.032e+01 6.625e-02 - -3.215e-03 6.784e-03 3.127e-08 6.625e-02 3.302e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.42501 1.000 -0.396 -0.008 -0.327 -0.400 - 2 0.75928 -0.396 1.000 0.009 0.609 0.752 - 3 0.01018 -0.008 0.009 1.000 0.007 0.009 - 4 0.80887 -0.327 0.609 0.007 1.000 0.809 - 5 0.87457 -0.400 0.752 0.009 0.809 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21165.5 FROM HESSE STATUS=OK 31 CALLS 205 TOTAL - EDM=1.06081e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.32336e+02 4.43146e-01 4.93448e-05 -3.70218e-01 - 2 sg_p1 2.24290e+01 4.99339e-01 8.77732e-05 1.62649e-01 - 3 sg_p2 3.30000e+02 5.15335e-01 3.05186e-03 -1.57077e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 6.46965e+01 4.54231e+00 2.43244e-04 2.17181e-01 - 5 sg_p4 8.77595e-01 1.83407e-02 5.40123e-04 8.55943e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.964e-01 -8.838e-02 -1.326e-07 -6.673e-01 -3.275e-03 - -8.838e-02 2.494e-01 1.746e-07 1.397e+00 6.925e-03 - -1.326e-07 1.746e-07 3.790e-08 1.265e-06 6.465e-09 - -6.673e-01 1.397e+00 1.265e-06 2.071e+01 6.788e-02 - -3.275e-03 6.925e-03 6.465e-09 6.788e-02 3.367e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.42806 1.000 -0.399 -0.002 -0.331 -0.403 - 2 0.76271 -0.399 1.000 0.002 0.615 0.756 - 3 0.00208 -0.002 0.002 1.000 0.001 0.002 - 4 0.81288 -0.331 0.615 0.001 1.000 0.813 - 5 0.87719 -0.403 0.756 0.002 0.813 1.000 -350 -332.336 +- 0.443146 -22.429 +- 0.499339 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17745.4 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 3.81607e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -5.82292e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.35171e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -4.55171e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 5.60829e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.4848e-03 4.4073e-01 9.4874e-01 1.6613e+00 1.9507e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.003435 TO DIAGONAL. - FCN=17037.5 FROM MIGRAD STATUS=CONVERGED 272 CALLS 273 TOTAL - EDM=0.000229841 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51690e+02 3.12909e-01 7.20357e-04 1.50885e-02 - 2 sg_p1 8.99990e+00 2.02072e+00 1.07460e-01 -8.64629e-04 - 3 sg_p2 3.37532e+02 1.70704e+01 8.89534e-04 8.91783e-02 - 4 sg_p3 3.55850e+01 1.57412e+01 2.01445e-03 5.68535e-02 - 5 sg_p4 7.03842e-01 9.36961e-02 8.03918e-03 -4.45853e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.792e-02 9.007e-02 3.977e+00 -3.782e+00 -2.519e-02 - 9.007e-02 1.430e-01 6.397e+00 -5.986e+00 -3.967e-02 - 3.977e+00 6.397e+00 2.927e+02 -2.722e+02 -1.779e+00 - -3.782e+00 -5.986e+00 -2.722e+02 2.551e+02 1.667e+00 - -2.519e-02 -3.967e-02 -1.779e+00 1.667e+00 1.115e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.77487 1.000 0.761 0.743 -0.757 -0.763 - 2 0.99571 0.761 1.000 0.989 -0.991 -0.994 - 3 0.99637 0.743 0.989 1.000 -0.996 -0.985 - 4 0.99713 -0.757 -0.991 -0.996 1.000 0.988 - 5 0.99425 -0.763 -0.994 -0.985 0.988 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17037.5 FROM HESSE STATUS=OK 35 CALLS 308 TOTAL - EDM=2.9509e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51690e+02 2.05801e-01 1.44071e-04 -1.32785e-01 - 2 sg_p1 8.99990e+00 4.72520e-01 4.38435e-01 1.58093e+00 - 3 sg_p2 3.37532e+02 3.63434e+00 1.77907e-04 4.55143e-01 - 4 sg_p3 3.55850e+01 3.20621e+00 8.05779e-05 -6.87361e-01 - 5 sg_p4 7.03842e-01 1.85963e-02 3.21567e-04 -7.64719e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.236e-02 4.581e-04 2.670e-02 -8.569e-02 -6.634e-04 - 4.581e-04 2.023e-04 3.597e-02 -3.336e-02 -2.070e-04 - 2.670e-02 3.597e-02 1.321e+01 -1.062e+01 -4.128e-02 - -8.569e-02 -3.336e-02 -1.062e+01 1.029e+01 3.997e-02 - -6.634e-04 -2.070e-04 -4.128e-02 3.997e-02 3.484e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.27036 1.000 0.157 0.036 -0.130 -0.173 - 2 0.83318 0.157 1.000 0.696 -0.731 -0.780 - 3 0.91590 0.036 0.696 1.000 -0.910 -0.608 - 4 0.92588 -0.130 -0.731 -0.910 1.000 0.668 - 5 0.79489 -0.173 -0.780 -0.608 0.668 1.000 -350 -351.69 +- 0.205801 -8.9999 +- 0.47252 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17980.6 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 3.49987e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -5.98208e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.69170e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -7.83629e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 5.56311e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17292.9 FROM HESSE STATUS=OK 33 CALLS 303 TOTAL - EDM=0.00176494 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51961e+02 2.04460e-01 7.28165e-04 -2.52563e-01 - 2 sg_p1 8.99915e+00 2.30345e-01 4.30116e-02 1.25408e-01 - 3 sg_p2 3.40595e+02 2.15600e+00 8.33185e-04 -5.45844e-01 - 4 sg_p3 3.45143e+01 1.95839e+00 2.03832e-03 -4.14782e-02 - 5 sg_p4 7.03933e-01 1.22162e-02 8.12692e-03 9.35709e-02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=17292.9 FROM MIGRAD STATUS=CONVERGED 313 CALLS 314 TOTAL - EDM=4.59633e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 1.1 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51961e+02 2.04485e-01 4.26699e-06 -6.13016e-02 - 2 sg_p1 9.00000e+00 2.28984e-01 -2.81882e-02 4.39584e-03 - 3 sg_p2 3.40596e+02 2.15817e+00 9.56132e-06 -1.29730e-01 - 4 sg_p3 3.45177e+01 1.95208e+00 6.42863e-05 7.35163e-02 - 5 sg_p4 7.03952e-01 1.21706e-02 1.50864e-04 7.78726e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.182e-02 1.059e-06 -5.711e-02 -6.423e-03 -1.875e-04 - 1.059e-06 9.432e-07 8.505e-05 -8.954e-05 -6.387e-07 - -5.711e-02 8.505e-05 4.658e+00 -3.232e+00 -5.893e-03 - -6.423e-03 -8.954e-05 -3.232e+00 3.812e+00 7.975e-03 - -1.875e-04 -6.387e-07 -5.893e-03 7.975e-03 1.486e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23004 1.000 0.005 -0.129 -0.016 -0.075 - 2 0.06294 0.005 1.000 0.041 -0.047 -0.054 - 3 0.78034 -0.129 0.041 1.000 -0.767 -0.224 - 4 0.79125 -0.016 -0.047 -0.767 1.000 0.335 - 5 0.34635 -0.075 -0.054 -0.224 0.335 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17292.9 FROM HESSE STATUS=OK 33 CALLS 347 TOTAL - EDM=8.75756e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51961e+02 2.04438e-01 7.28075e-04 -1.21874e-01 - 2 sg_p1 9.00000e+00 2.29843e-01 4.29288e-02 1.57180e+00 - 3 sg_p2 3.40596e+02 2.15392e+00 8.34476e-04 4.75922e-01 - 4 sg_p3 3.45177e+01 1.95162e+00 8.15327e-04 -7.07252e-01 - 5 sg_p4 7.03952e-01 1.20329e-02 8.13654e-03 -7.63847e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.180e-02 1.680e-06 -5.851e-02 -5.134e-03 -1.774e-04 - 1.680e-06 9.469e-07 1.234e-04 -1.333e-04 -1.048e-06 - -5.851e-02 1.234e-04 4.640e+00 -3.221e+00 -5.474e-03 - -5.134e-03 -1.333e-04 -3.221e+00 3.811e+00 7.658e-03 - -1.774e-04 -1.048e-06 -5.474e-03 7.658e-03 1.452e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22989 1.000 0.008 -0.133 -0.013 -0.072 - 2 0.10030 0.008 1.000 0.059 -0.070 -0.089 - 3 0.77997 -0.133 0.059 1.000 -0.766 -0.211 - 4 0.79057 -0.013 -0.070 -0.766 1.000 0.326 - 5 0.34225 -0.072 -0.089 -0.211 0.326 1.000 -350 -351.961 +- 0.204438 -9 +- 0.229843 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17556.6 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 4.17830e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -5.68439e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.02939e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -1.22040e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 5.78553e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - MINUIT WARNING IN HESSE - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN HESSE - ============== 1.39906 added to diagonal of error matrix - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16809.1 FROM HESSE STATUS=OK 37 CALLS 272 TOTAL - EDM=0.00897496 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51361e+02 2.01282e-01 7.11370e-04 1.72820e-01 - 2 sg_p1 8.99409e+00 2.54007e+00 1.10453e-01 1.29902e-01 - 3 sg_p2 3.31862e+02 3.59215e+00 1.00989e-03 -2.61406e-01 - 4 sg_p3 3.82944e+01 2.65752e+00 2.00950e-03 -4.58275e-02 - 5 sg_p4 6.99077e-01 1.14579e-02 8.35244e-03 6.96141e-02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16809.1 FROM MIGRAD STATUS=CONVERGED 368 CALLS 369 TOTAL - EDM=2.66923e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51369e+02 2.03042e-01 7.10429e-04 6.65922e-02 - 2 sg_p1 8.93634e+00 2.26538e-01 3.06864e-02 1.49692e-02 - 3 sg_p2 3.32548e+02 4.06056e+00 9.86163e-04 4.21549e-03 - 4 sg_p3 3.77657e+01 3.08320e+00 1.99063e-03 -6.94419e-02 - 5 sg_p4 6.96961e-01 1.39263e-02 8.49674e-03 -1.61305e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.123e-02 -6.678e-03 2.163e-02 -7.188e-02 -4.511e-04 - -6.678e-03 5.527e-02 -5.307e-01 4.156e-01 1.876e-03 - 2.163e-02 -5.307e-01 1.649e+01 -1.137e+01 -1.673e-02 - -7.188e-02 4.156e-01 -1.137e+01 9.516e+00 1.485e-02 - -4.511e-04 1.876e-03 -1.673e-02 1.485e-02 1.948e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25576 1.000 -0.140 0.026 -0.115 -0.159 - 2 0.70688 -0.140 1.000 -0.556 0.573 0.572 - 3 0.91344 0.026 -0.556 1.000 -0.908 -0.295 - 4 0.91579 -0.115 0.573 -0.908 1.000 0.345 - 5 0.58244 -0.159 0.572 -0.295 0.345 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16809.1 FROM HESSE STATUS=OK 31 CALLS 400 TOTAL - EDM=2.70646e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51369e+02 2.03746e-01 1.42086e-04 -1.45765e-01 - 2 sg_p1 8.93634e+00 2.54070e-01 1.22745e-03 1.31782e+00 - 3 sg_p2 3.32548e+02 4.51761e+00 3.94465e-05 4.21778e-01 - 4 sg_p3 3.77657e+01 3.43807e+00 7.96253e-05 -6.47692e-01 - 5 sg_p4 6.96961e-01 1.47151e-02 3.39870e-04 -8.20745e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.151e-02 -8.628e-03 5.304e-02 -9.587e-02 -5.312e-04 - -8.628e-03 6.725e-02 -7.432e-01 5.794e-01 2.412e-03 - 5.304e-02 -7.432e-01 2.041e+01 -1.440e+01 -2.542e-02 - -9.587e-02 5.794e-01 -1.440e+01 1.184e+01 2.153e-02 - -5.312e-04 2.412e-03 -2.542e-02 2.153e-02 2.176e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.26808 1.000 -0.163 0.058 -0.137 -0.177 - 2 0.76639 -0.163 1.000 -0.634 0.650 0.630 - 3 0.93070 0.058 -0.634 1.000 -0.926 -0.381 - 4 0.93289 -0.137 0.650 -0.926 1.000 0.424 - 5 0.63913 -0.177 0.630 -0.381 0.424 1.000 -350 -351.369 +- 0.203746 -8.93634 +- 0.25407 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17593.4 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 3.78939e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -5.82009e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.40055e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -4.92268e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 5.69068e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16875.6 FROM MIGRAD STATUS=CONVERGED 320 CALLS 321 TOTAL - EDM=1.73973e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51639e+02 2.04706e-01 7.22407e-04 -3.09735e-01 - 2 sg_p1 9.00000e+00 1.66126e-01 3.62658e-02 -7.99062e-03 - 3 sg_p2 3.36604e+02 2.77890e+00 9.23538e-04 -8.53328e-02 - 4 sg_p3 3.65924e+01 2.29934e+00 2.05397e-03 -4.59757e-02 - 5 sg_p4 7.00430e-01 1.16607e-02 8.31070e-03 -3.87898e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.191e-02 1.719e-06 -5.416e-02 -1.332e-02 -2.187e-04 - 1.719e-06 1.229e-06 1.227e-04 -1.127e-04 -6.551e-07 - -5.416e-02 1.227e-04 7.723e+00 -5.279e+00 -3.068e-03 - -1.332e-02 -1.127e-04 -5.279e+00 5.290e+00 4.752e-03 - -2.187e-04 -6.551e-07 -3.068e-03 4.752e-03 1.364e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22303 1.000 0.008 -0.095 -0.028 -0.091 - 2 0.06294 0.008 1.000 0.040 -0.044 -0.051 - 3 0.83540 -0.095 0.040 1.000 -0.826 -0.095 - 4 0.83755 -0.028 -0.044 -0.826 1.000 0.177 - 5 0.21502 -0.091 -0.051 -0.095 0.177 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16875.6 FROM HESSE STATUS=OK 31 CALLS 352 TOTAL - EDM=1.75499e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51639e+02 2.04671e-01 1.44481e-04 -1.34847e-01 - 2 sg_p1 9.00000e+00 1.66721e-01 7.25317e-03 1.56945e+00 - 3 sg_p2 3.36604e+02 2.84821e+00 1.84708e-04 4.48885e-01 - 4 sg_p3 3.65924e+01 2.35643e+00 8.21590e-05 -6.68882e-01 - 5 sg_p4 7.00430e-01 1.16522e-02 3.32428e-04 -7.92102e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.189e-02 2.314e-07 -5.503e-02 -1.229e-02 -2.144e-04 - 2.314e-07 1.234e-06 1.775e-05 -1.618e-05 -8.940e-08 - -5.503e-02 1.775e-05 8.113e+00 -5.607e+00 -3.304e-03 - -1.229e-02 -1.618e-05 -5.607e+00 5.556e+00 4.919e-03 - -2.144e-04 -8.940e-08 -3.304e-03 4.919e-03 1.362e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22229 1.000 0.001 -0.094 -0.025 -0.090 - 2 0.00867 0.001 1.000 0.006 -0.006 -0.007 - 3 0.84405 -0.094 0.006 1.000 -0.835 -0.099 - 4 0.84604 -0.025 -0.006 -0.835 1.000 0.179 - 5 0.21170 -0.090 -0.007 -0.099 0.179 1.000 -350 -351.639 +- 0.204671 -9 +- 0.166721 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17828.5 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 3.94800e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -5.62258e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.22820e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -3.94120e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 5.44291e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -6.7726e-02 3.7089e-01 9.5269e-01 1.7434e+00 2.0007e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.069727 TO DIAGONAL. - FCN=17147.5 FROM HESSE STATUS=NOT POSDEF 35 CALLS 251 TOTAL - EDM=1.1309 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51658e+02 3.51659e-01 7.01219e-04 -5.40058e-02 - 2 sg_p1 8.97742e+00 2.95083e+00 6.13915e-02 -2.03655e-01 - 3 sg_p2 3.35380e+02 1.79447e+01 9.83548e-04 6.97732e-01 - 4 sg_p3 3.73975e+01 1.59176e+01 2.11985e-03 1.68496e-01 - 5 sg_p4 7.15638e-01 9.42908e-02 7.30647e-03 -1.11566e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17147.5 FROM MIGRAD STATUS=CONVERGED 369 CALLS 370 TOTAL - EDM=4.09796e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51663e+02 1.99263e-01 7.00634e-04 4.55239e-02 - 2 sg_p1 8.93699e+00 2.96196e-01 2.96808e-02 -1.54899e-02 - 3 sg_p2 3.35749e+02 3.96525e+00 9.64449e-04 -8.88348e-03 - 4 sg_p3 3.70652e+01 3.34839e+00 2.10353e-03 -1.67958e-02 - 5 sg_p4 7.14101e-01 1.63480e-02 7.39271e-03 -2.31381e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.971e-02 9.041e-03 3.441e-02 -8.945e-02 -5.869e-04 - 9.041e-03 7.788e-02 7.343e-01 -6.508e-01 -3.330e-03 - 3.441e-02 7.343e-01 1.573e+01 -1.210e+01 -3.297e-02 - -8.945e-02 -6.508e-01 -1.210e+01 1.123e+01 3.115e-02 - -5.869e-04 -3.330e-03 -3.297e-02 3.115e-02 2.686e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.26818 1.000 0.163 0.044 -0.134 -0.180 - 2 0.81011 0.163 1.000 0.664 -0.696 -0.728 - 3 0.91607 0.044 0.664 1.000 -0.911 -0.507 - 4 0.92336 -0.134 -0.696 -0.911 1.000 0.567 - 5 0.73770 -0.180 -0.728 -0.507 0.567 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17147.5 FROM HESSE STATUS=OK 31 CALLS 401 TOTAL - EDM=3.78098e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51663e+02 1.98626e-01 1.40127e-04 -1.33882e-01 - 2 sg_p1 8.93699e+00 2.60351e-01 1.18723e-03 1.82247e+00 - 3 sg_p2 3.35749e+02 3.94847e+00 3.85780e-05 4.43146e-01 - 4 sg_p3 3.70652e+01 3.31177e+00 8.41412e-05 -6.60300e-01 - 5 sg_p4 7.14101e-01 1.54021e-02 2.95708e-04 -6.86338e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.945e-02 7.419e-03 1.957e-02 -7.558e-02 -4.983e-04 - 7.419e-03 6.823e-02 6.530e-01 -5.744e-01 -2.764e-03 - 1.957e-02 6.530e-01 1.559e+01 -1.191e+01 -2.828e-02 - -7.558e-02 -5.744e-01 -1.191e+01 1.098e+01 2.678e-02 - -4.983e-04 -2.764e-03 -2.828e-02 2.678e-02 2.383e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25680 1.000 0.143 0.025 -0.115 -0.163 - 2 0.77869 0.143 1.000 0.633 -0.664 -0.686 - 3 0.91532 0.025 0.633 1.000 -0.910 -0.464 - 4 0.92158 -0.115 -0.664 -0.910 1.000 0.524 - 5 0.69729 -0.163 -0.686 -0.464 0.524 1.000 -350 -351.663 +- 0.198626 -8.93699 +- 0.260351 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=16599.2 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 3.57504e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -5.44923e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.17494e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -4.08170e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 5.21506e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15939.1 FROM HESSE STATUS=OK 37 CALLS 314 TOTAL - EDM=0.000648585 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51693e+02 2.15714e-01 7.19414e-04 4.43718e-02 - 2 sg_p1 8.99487e+00 3.57548e+00 7.75677e-02 1.91574e-02 - 3 sg_p2 3.37608e+02 4.45408e+00 8.83711e-04 -1.12364e-01 - 4 sg_p3 3.54407e+01 4.01631e+00 2.01394e-03 2.05443e-02 - 5 sg_p4 7.05167e-01 2.51719e-02 7.97965e-03 2.01078e-02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 13.9403 added to diagonal of error matrix - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15939.1 FROM MIGRAD STATUS=CONVERGED 457 CALLS 458 TOTAL - EDM=6.3256e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51693e+02 2.10894e-01 7.19542e-04 -1.67564e-01 - 2 sg_p1 9.00000e+00 3.24335e+00 1.16287e-01** at limit ** - 3 sg_p2 3.37572e+02 3.03107e+00 8.85564e-04 -1.40083e-01 - 4 sg_p3 3.54732e+01 2.61363e+00 2.01712e-03 -2.42748e-02 - 5 sg_p4 7.05375e-01 1.51863e-02 7.98331e-03 2.92592e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.448e-02 6.249e-05 -2.584e-02 -4.146e-02 -4.052e-04 - 6.249e-05 8.943e-06 4.513e-03 -4.212e-03 -2.775e-05 - -2.584e-02 4.513e-03 9.189e+00 -6.814e+00 -1.858e-02 - -4.146e-02 -4.212e-03 -6.814e+00 6.836e+00 1.914e-02 - -4.052e-04 -2.775e-05 -1.858e-02 1.914e-02 2.317e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.24408 1.000 0.099 -0.040 -0.075 -0.126 - 2 0.67618 0.099 1.000 0.498 -0.539 -0.610 - 3 0.86794 -0.040 0.498 1.000 -0.860 -0.403 - 4 0.87833 -0.075 -0.539 -0.860 1.000 0.481 - 5 0.64024 -0.126 -0.610 -0.403 0.481 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15939.1 FROM HESSE STATUS=OK 35 CALLS 493 TOTAL - EDM=7.60914e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51693e+02 2.11707e-01 1.43908e-04 -1.32683e-01 - 2 sg_p1 9.00000e+00 3.40291e-01 4.74451e-01 1.56997e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 3 sg_p2 3.37572e+02 3.47654e+00 1.77113e-04 4.55410e-01 - 4 sg_p3 3.54732e+01 3.03978e+00 8.06848e-05 -6.89429e-01 - 5 sg_p4 7.05375e-01 1.75095e-02 3.19332e-04 -7.52647e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.482e-02 2.743e-05 3.917e-03 -6.861e-02 -5.663e-04 - 2.743e-05 9.504e-07 2.150e-03 -1.992e-03 -1.243e-05 - 3.917e-03 2.150e-03 1.209e+01 -9.464e+00 -3.305e-02 - -6.861e-02 -1.992e-03 -9.464e+00 9.250e+00 3.240e-02 - -5.663e-04 -1.243e-05 -3.305e-02 3.240e-02 3.085e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25843 1.000 0.133 0.005 -0.107 -0.152 - 2 0.78663 0.133 1.000 0.634 -0.672 -0.726 - 3 0.90139 0.005 0.634 1.000 -0.895 -0.541 - 4 0.91165 -0.107 -0.672 -0.895 1.000 0.606 - 5 0.74619 -0.152 -0.726 -0.541 0.606 1.000 -350 -351.693 +- 0.211707 -9 +- 0.340291 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=18950.1 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 4.06912e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -6.21556e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.53873e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -5.05415e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 6.02316e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 2.05452 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - MACHINE ACCURACY LIMITS FURTHER IMPROVEMENT. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -7.6627e-03 4.3650e-01 9.4912e-01 1.6697e+00 1.9524e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.009615 TO DIAGONAL. - FCN=18191.7 FROM MIGRAD STATUS=CONVERGED 438 CALLS 439 TOTAL - EDM=2.38291e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51688e+02 3.06549e-01 7.21716e-04 1.38139e-02 - 2 sg_p1 8.99221e+00 3.97298e+00 7.87824e-02 -1.20842e-03 - 3 sg_p2 3.37548e+02 1.63062e+01 8.85928e-04 1.17278e-02 - 4 sg_p3 3.56395e+01 1.51287e+01 2.01699e-03 1.74046e-02 - 5 sg_p4 7.02105e-01 9.20868e-02 8.19474e-03 -1.20385e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.398e-02 3.866e-01 3.761e+00 -3.594e+00 -2.447e-02 - 3.866e-01 2.690e+00 2.650e+01 -2.493e+01 -1.690e-01 - 3.761e+00 2.650e+01 2.670e+02 -2.495e+02 -1.668e+00 - -3.594e+00 -2.493e+01 -2.495e+02 2.351e+02 1.571e+00 - -2.447e-02 -1.690e-01 -1.668e+00 1.571e+00 1.074e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.78192 1.000 0.769 0.751 -0.765 -0.770 - 2 0.99585 0.769 1.000 0.989 -0.991 -0.994 - 3 0.99631 0.751 0.989 1.000 -0.996 -0.985 - 4 0.99710 -0.765 -0.991 -0.996 1.000 0.989 - 5 0.99443 -0.770 -0.994 -0.985 0.989 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2500 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.2541e-02 4.4218e-01 9.5025e-01 1.6636e+00 1.9565e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.014497 TO DIAGONAL. - FCN=18191.7 FROM HESSE STATUS=NOT POSDEF 37 CALLS 476 TOTAL - EDM=6.23545e-06 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51688e+02 2.98004e-01 1.44343e-04 -1.32867e-01 - 2 sg_p1 8.99221e+00 3.99098e+00 5.00000e-01 1.65911e+00 - 3 sg_p2 3.37548e+02 1.66076e+01 3.54371e-05 4.55246e-01 - 4 sg_p3 3.56395e+01 1.53152e+01 8.06796e-05 -6.86354e-01 - 5 sg_p4 7.02105e-01 8.98453e-02 3.27790e-04 -7.78566e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 8.881e-02 1.322e-01 3.655e+00 -3.473e+00 -2.261e-02 - 1.322e-01 3.453e-01 9.674e+00 -9.044e+00 -5.859e-02 - 3.655e+00 9.674e+00 2.770e+02 -2.574e+02 -1.645e+00 - -3.473e+00 -9.044e+00 -2.574e+02 2.411e+02 1.540e+00 - -2.261e-02 -5.859e-02 -1.645e+00 1.540e+00 1.007e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.76862 1.000 0.755 0.737 -0.751 -0.756 - 2 0.99570 0.755 1.000 0.989 -0.991 -0.994 - 3 0.99646 0.737 0.989 1.000 -0.996 -0.985 - 4 0.99718 -0.751 -0.991 -0.996 1.000 0.988 - 5 0.99409 -0.756 -0.994 -0.985 0.988 1.000 - ERR MATRIX NOT POS-DEF -350 -351.688 +- 0.298004 -8.99221 +- 3.99098 -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 351.69 +- 0.205801 (stat) - 0.321347 + 0.270579 (syst); -0.33742/+0.289485 (total) - Uncertainty on sg_p1 = 8.9999 +- 0.47252 (stat) - 0.0635526 + 0.000102014 (syst); -0.244659/+0.23626 (total) - Uncertainty on sg_p2 = 337.532 +- 3.63434 (stat) - 4.98423 + 3.06364 (syst); -5.30516/+3.56202 (total) - Uncertainty on sg_p3 = 35.585 +- 3.20621 (stat) - 1.06732 + 2.18069 (syst); -1.92591/+2.70654 (total) - Uncertainty on sg_p4 = 0.703842 +- 0.0185963 (stat) - 0.00688091 + 0.0102594 (syst); -0.0115673/+0.013846 (total) - === Baseline plot ===
- norm = 541.084 -JEC lnN 1.0101 - -JER lnN 1.00905 - -btag lnN 1.06649 - -sg_p0 param 351.69 -0.33742/+0.289485 -sg_p1 param 8.9999 -0.244659/+0.23626 -sg_p2 param 337.532 -5.30516/+3.56202 -sg_p3 param 35.585 -1.92591/+2.70654 -sg_p4 param 0.703842 -0.0115673/+0.013846 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_400_crystal_1_285_624/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_400_crystal_1_285_624/data_bkg.log deleted file mode 100644 index 3cc1900..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_400_crystal_1_285_624/data_bkg.log +++ /dev/null @@ -1,750 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [252,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=62921.6 FROM MIGRAD STATUS=INITIATE 90 CALLS 91 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.21879e-02 5.09000e-01 0.00000e+00 -9.80911e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -1.28354e+01 - 3 par_crystal_2 2.65669e+02 4.00000e+00 0.00000e+00 3.55320e+02 - 4 par_crystal_3 1.06488e+01 2.70000e+00 -4.48284e-01 -2.33576e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62883.4 FROM HESSE STATUS=OK 29 CALLS 257 TOTAL - EDM=4.91113 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.66060e-01 4.16121e-03 3.52377e-04 -4.74293e+00 - 2 par_crystal_1 4.45375e+00 2.73731e+00 1.77223e-01 2.66184e-01 - 3 par_crystal_2 2.67385e+02 2.04373e-01 8.29600e-04 2.81454e+02 - 4 par_crystal_3 1.36851e+01 5.38888e-01 1.69331e-03 -1.62103e+00 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=62883.3 FROM MIGRAD STATUS=FAILED 358 CALLS 359 TOTAL - EDM=0.00753244 STRATEGY= 1 ERR MATRIX APPROXIMATE - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.65093e-01 8.39913e-03 1.31861e-03 5.42788e+00 - 2 par_crystal_1 5.09910e+00 4.33634e+00 3.39194e-01 -6.59950e-03 - 3 par_crystal_2 2.67339e+02 1.86486e-01 3.32550e-03 -8.58879e+00 - 4 par_crystal_3 1.37140e+01 6.01780e-01 6.34807e-03 1.69258e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.055e-05 1.617e-04 4.699e-04 2.892e-03 - 1.617e-04 1.762e-02 -1.356e-04 -1.108e-03 - 4.699e-04 -1.356e-04 3.478e-02 3.255e-02 - 2.892e-03 -1.108e-03 3.255e-02 3.624e-01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.60853 1.000 0.145 0.300 0.572 - 2 0.19009 0.145 1.000 -0.005 -0.014 - 3 0.33449 0.300 -0.005 1.000 0.290 - 4 0.59243 0.572 -0.014 0.290 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7660e-01 8.1807e-01 1.6519e+00 1.7066e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.178308 TO DIAGONAL. - FCN=62883.3 FROM HESSE STATUS=NOT POSDEF 33 CALLS 392 TOTAL - EDM=3.36849 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.65093e-01 8.70034e-02 2.63722e-04 -1.21988e+00 - 2 par_crystal_1 5.09910e+00 4.18121e+00 5.00000e-01 1.54425e+00 - 3 par_crystal_2 2.67339e+02 5.27040e+00 9.57407e-02 3.75715e-01 - 4 par_crystal_3 1.37140e+01 6.68546e+00 2.53923e-04 -2.07863e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.595e-03 -2.994e-03 4.642e-01 6.089e-01 - -2.994e-03 1.536e-02 -1.944e-01 -2.569e-01 - 4.642e-01 -1.944e-01 2.855e+01 3.736e+01 - 6.089e-01 -2.569e-01 3.736e+01 4.914e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99751 1.000 -0.277 0.997 0.997 - 2 0.37560 -0.277 1.000 -0.293 -0.296 - 3 0.99795 0.997 -0.293 1.000 0.997 - 4 0.99797 0.997 -0.296 0.997 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=62983.1 FROM MIGRAD STATUS=INITIATE 29 CALLS 30 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 6.05383e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -1.33666e+02 - 3 par_gaus_exp_2 3.19008e-01 3.05000e-01 -9.67731e-01 -3.33619e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.00383 added to diagonal of error matrix - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62882.7 FROM MIGRAD STATUS=CONVERGED 228 CALLS 229 TOTAL - EDM=4.4408e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.69095e+02 7.01852e-01 4.07755e-03 2.89794e-02 - 2 par_gaus_exp_1 1.61044e+01 1.09719e+00 7.43010e-03 -1.84784e-02 - 3 par_gaus_exp_2 1.90527e-01 1.58774e-02 1.98778e-03 -6.23432e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 4.929e-01 5.914e-01 9.067e-03 - 5.914e-01 1.207e+00 1.483e-02 - 9.067e-03 1.483e-02 2.521e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.82590 1.000 0.767 0.813 - 2 0.85979 0.767 1.000 0.850 - 3 0.88644 0.813 0.850 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62882.7 FROM HESSE STATUS=OK 16 CALLS 245 TOTAL - EDM=4.28199e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.69095e+02 6.86832e-01 1.63102e-04 -5.76704e-01 - 2 par_gaus_exp_1 1.61044e+01 1.07335e+00 2.97204e-04 -5.72398e-01 - 3 par_gaus_exp_2 1.90527e-01 1.55212e-02 7.95110e-05 -1.13813e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 4.720e-01 5.579e-01 8.580e-03 - 5.579e-01 1.155e+00 1.406e-02 - 8.580e-03 1.406e-02 2.410e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.81734 1.000 0.756 0.805 - 2 0.85292 0.756 1.000 0.843 - 3 0.88081 0.805 0.843 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,624] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.3296 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.3296) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=286.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=286.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=289.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=289.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=295.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=295.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=298.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=298.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=301.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=301.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - ... (remaining 216 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.733611 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.733611) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=313.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=316.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=319.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=325.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=328.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=331.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=334.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=340.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=343.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=346.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - ... (remaining 94 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0733618 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0733618 - - FCN=103426 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57146e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.55551e+03 - 3 par_novo_2 -1.33526e+00 2.00000e+01 0.00000e+00 1.53308e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103192 FROM MIGRAD STATUS=CONVERGED 126 CALLS 127 TOTAL - EDM=1.07924e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.17697e+01 1.69443e-01** at limit ** - 2 par_novo_1 3.87878e+01 2.27475e+00 4.96100e-03 -6.14249e-02 - 3 par_novo_2 -1.26766e+00 7.00630e-02 3.67886e-05 3.77179e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 2.244e-10 -2.632e-07 -1.276e-07 - -2.632e-07 5.190e+00 1.540e-01 - -1.276e-07 1.540e-01 4.909e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.43392 1.000 -0.008 -0.122 - 2 0.97109 -0.008 1.000 0.965 - 3 0.97152 -0.122 0.965 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103192 FROM HESSE STATUS=OK 20 CALLS 147 TOTAL - EDM=1.23299e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.15107e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.87878e+01 2.30410e+00 1.98440e-04 4.51799e-01 - 3 par_novo_2 -1.26766e+00 7.13892e-02 1.47154e-06 -1.26769e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 2.143e-10 3.996e-06 -2.087e-07 - 3.996e-06 5.325e+00 1.518e-01 - -2.087e-07 1.518e-01 5.096e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.80390 1.000 0.118 -0.200 - 2 0.97183 0.118 1.000 0.922 - 3 0.97258 -0.200 0.922 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107617 FROM MIGRAD STATUS=INITIATE 36 CALLS 37 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 6.60405e+03 - 2 par_crystal_1_1 7.90153e-02 5.09000e-01 -1.80421e+00 3.05679e+03 - 3 par_crystal_1_2 2.60000e+02 4.00000e+00 0.00000e+00 1.48888e+03 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 6.99071e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.17529 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.7903e-03 5.8606e-02 5.0897e-01 3.4352e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.006225 TO DIAGONAL. - FCN=103191 FROM MIGRAD STATUS=CONVERGED 353 CALLS 354 TOTAL - EDM=3.7306e-06 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.37913e-01 3.41139e-02 6.19492e-04 4.10204e-01 - 2 par_crystal_1_1 4.44737e+00 5.69760e-01 2.21494e-02 9.88736e-03 - 3 par_crystal_1_2 2.79979e+02 3.40482e+01 2.79535e-01 -2.97577e-04 - 4 par_crystal_1_3 1.87584e+01 2.98857e+00 3.96232e-03 -6.40797e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.164e-03 3.582e-03 3.594e-03 9.898e-02 - 3.582e-03 3.375e-01 -1.052e-02 7.382e-01 - 3.594e-03 -1.052e-02 3.148e+00 6.243e-01 - 9.898e-02 7.382e-01 6.243e-01 9.086e+00 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99630 1.000 0.181 0.059 0.962 - 2 0.95650 0.181 1.000 -0.010 0.422 - 3 0.63948 0.059 -0.010 1.000 0.117 - 4 0.99690 0.962 0.422 0.117 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103191 FROM HESSE STATUS=OK 27 CALLS 381 TOTAL - EDM=6.06842e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 2.37913e-01 2.12502e-01 1.23898e-04 -8.36786e+01 - 2 par_crystal_1_1 4.44737e+00 5.06952e-01 8.85975e-04 -1.65463e+01 - 3 par_crystal_1_2 2.79979e+02 2.96341e+01 5.00000e-01 7.80831e+00 - 4 par_crystal_1_3 1.87584e+01 1.90925e+01 1.58493e-04 2.18231e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.578e-02 1.663e-02 2.427e-02 3.730e+00 - 1.663e-02 2.650e-01 -4.299e-02 1.684e+00 - 2.427e-02 -4.299e-02 1.850e+00 2.341e+00 - 3.730e+00 1.684e+00 2.341e+00 3.045e+02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99991 1.000 0.151 0.083 0.999 - 2 0.94385 0.151 1.000 -0.061 0.187 - 3 0.80384 0.083 -0.061 1.000 0.099 - 4 0.99991 0.999 0.187 0.099 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 13889.7 - Background number of gaus_exp_252_330 = 13889.7 - Background number of novo_285_624 = 17637.2 - Background number of crystal_1_285_624 = 17637.2 - Background number of gaus_bern_285_624 = 17637.2 - Background number of landau_285_624 = 17637.2 -par_crystal_0 param 0.165093 0.0870034 -par_crystal_1 param 5.0991 4.18121 -par_crystal_2 param 267.339 5.2704 -par_crystal_3 param 13.714 6.68546 -par_crystal_1_0 param 0.237913 0.212502 -par_crystal_1_1 param 4.44737 0.506952 -par_crystal_1_2 param 279.979 29.6341 -par_crystal_1_3 param 18.7584 19.0925 -par_gaus_exp_0 param 269.095 0.686832 -par_gaus_exp_1 param 16.1044 1.07335 -par_gaus_exp_2 param 0.190527 0.0155212 -par_novo_0 param 250 31.5107 -par_novo_1 param 38.7878 2.3041 -par_novo_2 param -1.26766 0.0713892 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_400_crystal_1_285_624/datacard_400_crystal_1_285_624.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_400_crystal_1_285_624/datacard_400_crystal_1_285_624.txt deleted file mode 100644 index e06f0b4..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_400_crystal_1_285_624/datacard_400_crystal_1_285_624.txt +++ /dev/null @@ -1,31 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_400.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_crystal_1_285_624.root HbbHbb:f_crystal_1 -shapes data_obs HbbHbb w_background_crystal_1_285_624.root HbbHbb:data_obs_crystal_1_285_624 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 790.651 17637.2 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06523 - -JER lnN 1.01925 - -JEC lnN 1.00381 - -trigger lnN 1.10 - -PDF lnN 1.0199774927 - -sg_p0 param 403.031 -0.393186/+0.517221 -sg_p1 param 9.12153 -0.182675/+0.229073 -sg_p2 param 399.298 -1.13534/+0.652569 -sg_p3 param 21.4947 -0.582718/+0.966802 -sg_p4 param 0.642062 -0.0211457/+0.049893 -par_crystal_1_0 param 0.237913 0.212502 -par_crystal_1_1 param 4.44737 0.506952 -par_crystal_1_2 param 279.979 29.6341 -par_crystal_1_3 param 18.7584 19.0925 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_400_crystal_1_285_624/pdf.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_400_crystal_1_285_624/pdf.log deleted file mode 100644 index 6c83983..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_400_crystal_1_285_624/pdf.log +++ /dev/null @@ -1,10 +0,0 @@ -[?1034h FCN=9.89323 FROM MIGRAD STATUS=CONVERGED 63 CALLS 64 TOTAL - EDM=7.57236e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 Constant 1.56976e+01 1.98145e+00 2.66437e-03 2.44799e-04 - 2 Mean 9.97211e-01 2.43742e-03 3.88392e-06 6.59106e-02 - 3 Sigma 1.99775e-02 1.81293e-03 4.40458e-05 -2.69742e-02 -0.997211474351 +/- 0.00243741718583 -0.0199774926998 +/- 0.0018129318814 -PDF lnN 1.0199774927 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_400_crystal_1_285_624/signal400_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_400_crystal_1_285_624/signal400_sig.log deleted file mode 100644 index 9acbb71..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_400_crystal_1_285_624/signal400_sig.log +++ /dev/null @@ -1,869 +0,0 @@ - -Processing test.c... -nSignal_init = 299800 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=33249 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.95000e+02 7.00000e+00 2.01358e-01 2.15243e+03 - 2 sg_p1 2.15000e+01 3.70000e+00 2.01358e-01 1.37205e+02 - 3 sg_p2 4.15000e+02 9.00000e+00 2.01358e-01 1.80805e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -7.17737e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -9.38307e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31857.3 FROM MIGRAD STATUS=CONVERGED 163 CALLS 164 TOTAL - EDM=1.96152e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.85506e+02 3.78343e-01 1.28380e-03 -1.79696e-02 - 2 sg_p1 2.16205e+01 3.35235e-01 1.80013e-03 -1.11987e-02 - 3 sg_p2 3.70000e+02 1.32448e-01 9.45540e-03** at limit ** - 4 sg_p3 6.22011e+01 2.14887e+00 4.32821e-03 3.71767e-02 - 5 sg_p4 7.86673e-01 1.32740e-02 2.60376e-03 -4.77327e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.431e-01 -3.809e-02 -1.363e-08 -2.470e-01 -1.694e-03 - -3.809e-02 1.124e-01 1.303e-09 3.035e-01 2.581e-03 - -1.363e-08 1.303e-09 4.343e-10 9.091e-11 -1.595e-10 - -2.470e-01 3.035e-01 9.091e-11 4.621e+00 1.948e-02 - -1.694e-03 2.581e-03 -1.595e-10 1.948e-02 1.763e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.37324 1.000 -0.300 -0.002 -0.304 -0.337 - 2 0.59095 -0.300 1.000 0.000 0.421 0.580 - 3 0.00218 -0.002 0.000 1.000 0.000 -0.001 - 4 0.68717 -0.304 0.421 0.000 1.000 0.682 - 5 0.75833 -0.337 0.580 -0.001 0.682 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31857.3 FROM HESSE STATUS=OK 31 CALLS 195 TOTAL - EDM=1.96284e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.85506e+02 3.78550e-01 5.13518e-05 -2.74710e-01 - 2 sg_p1 2.16205e+01 3.35880e-01 7.20051e-05 6.51457e-03 - 3 sg_p2 3.70000e+02 1.32456e-01 1.89108e-03 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 6.22011e+01 2.15536e+00 1.73128e-04 1.60716e-01 - 5 sg_p4 7.86673e-01 1.33169e-02 5.20752e-04 6.10583e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.433e-01 -3.844e-02 -2.714e-09 -2.490e-01 -1.705e-03 - -3.844e-02 1.128e-01 2.582e-10 3.070e-01 2.603e-03 - -2.714e-09 2.582e-10 4.343e-10 2.856e-11 -3.187e-11 - -2.490e-01 3.070e-01 2.856e-11 4.649e+00 1.966e-02 - -1.705e-03 2.603e-03 -3.187e-11 1.966e-02 1.774e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.37450 1.000 -0.302 -0.000 -0.305 -0.338 - 2 0.59306 -0.302 1.000 0.000 0.424 0.582 - 3 0.00043 -0.000 0.000 1.000 0.000 -0.000 - 4 0.68946 -0.305 0.424 0.000 1.000 0.685 - 5 0.76013 -0.338 0.582 -0.000 0.685 1.000 -400 -385.506 +- 0.37855 -21.6205 +- 0.33588 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=33081 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.95000e+02 7.00000e+00 2.01358e-01 1.81151e+03 - 2 sg_p1 2.15000e+01 3.70000e+00 2.01358e-01 2.25726e+02 - 3 sg_p2 4.15000e+02 9.00000e+00 2.01358e-01 1.70388e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -5.66591e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -9.95873e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31839.3 FROM MIGRAD STATUS=CONVERGED 160 CALLS 161 TOTAL - EDM=5.64365e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.87437e+02 3.85764e-01 1.26589e-03 -5.15663e-01 - 2 sg_p1 2.16839e+01 3.35523e-01 1.79115e-03 1.07532e-01 - 3 sg_p2 3.70000e+02 1.39833e-01 9.73370e-03** at limit ** - 4 sg_p3 6.08508e+01 2.10095e+00 4.12758e-03 3.24347e-02 - 5 sg_p4 7.89007e-01 1.33639e-02 2.62549e-03 -2.60744e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.488e-01 -4.305e-02 -2.519e-07 -2.764e-01 -1.946e-03 - -4.305e-02 1.126e-01 -9.366e-09 3.008e-01 2.619e-03 - -2.519e-07 -9.366e-09 1.704e-07 -3.173e-07 -6.072e-09 - -2.764e-01 3.008e-01 -3.173e-07 4.417e+00 1.920e-02 - -1.946e-03 2.619e-03 -6.072e-09 1.920e-02 1.787e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.41597 1.000 -0.333 -0.002 -0.341 -0.377 - 2 0.59692 -0.333 1.000 -0.000 0.427 0.584 - 3 0.00247 -0.002 -0.000 1.000 -0.000 -0.001 - 4 0.68971 -0.341 0.427 -0.000 1.000 0.684 - 5 0.76090 -0.377 0.584 -0.001 0.684 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31839.3 FROM HESSE STATUS=OK 31 CALLS 192 TOTAL - EDM=5.65901e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.87437e+02 3.86035e-01 2.53178e-04 -2.17803e-01 - 2 sg_p1 2.16839e+01 3.36156e-01 7.16461e-05 9.94233e-03 - 3 sg_p2 3.70000e+02 1.39842e-01 1.94674e-03 -1.57091e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 6.08508e+01 2.10696e+00 1.65103e-04 1.30388e-01 - 5 sg_p4 7.89007e-01 1.34047e-02 5.25097e-04 6.16292e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.490e-01 -4.342e-02 -4.545e-08 -2.786e-01 -1.959e-03 - -4.342e-02 1.130e-01 -1.794e-09 3.041e-01 2.641e-03 - -4.545e-08 -1.794e-09 1.704e-07 -5.759e-08 -1.102e-09 - -2.786e-01 3.041e-01 -5.759e-08 4.443e+00 1.938e-02 - -1.959e-03 2.641e-03 -1.102e-09 1.938e-02 1.798e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.41736 1.000 -0.335 -0.000 -0.342 -0.378 - 2 0.59895 -0.335 1.000 -0.000 0.429 0.586 - 3 0.00045 -0.000 -0.000 1.000 -0.000 -0.000 - 4 0.69187 -0.342 0.429 -0.000 1.000 0.686 - 5 0.76259 -0.378 0.586 -0.000 0.686 1.000 -400 -387.437 +- 0.386035 -21.6839 +- 0.336156 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=33253.4 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.95000e+02 7.00000e+00 2.01358e-01 2.45970e+03 - 2 sg_p1 2.15000e+01 3.70000e+00 2.01358e-01 2.71903e+00 - 3 sg_p2 4.15000e+02 9.00000e+00 2.01358e-01 1.91853e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -8.75244e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -8.55185e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31693.5 FROM MIGRAD STATUS=CONVERGED 158 CALLS 159 TOTAL - EDM=3.35227e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.83669e+02 3.75050e-01 1.31711e-03 2.71422e-01 - 2 sg_p1 2.15657e+01 3.35007e-01 1.81860e-03 2.93721e-01 - 3 sg_p2 3.70000e+02 1.18706e-01 8.94035e-03** at limit ** - 4 sg_p3 6.23837e+01 2.11611e+00 4.26491e-03 6.14124e-02 - 5 sg_p4 7.79157e-01 1.33723e-02 2.61066e-03 -1.92762e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.407e-01 -3.293e-02 -8.781e-08 -2.099e-01 -1.470e-03 - -3.293e-02 1.122e-01 1.601e-08 2.882e-01 2.545e-03 - -8.781e-08 1.601e-08 1.802e-08 1.177e-07 -2.465e-10 - -2.099e-01 2.882e-01 1.177e-07 4.481e+00 1.922e-02 - -1.470e-03 2.545e-03 -2.465e-10 1.922e-02 1.789e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.32654 1.000 -0.262 -0.002 -0.264 -0.293 - 2 0.57704 -0.262 1.000 0.000 0.406 0.568 - 3 0.00196 -0.002 0.000 1.000 0.000 -0.000 - 4 0.68265 -0.264 0.406 0.000 1.000 0.679 - 5 0.75308 -0.293 0.568 -0.000 0.679 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31693.5 FROM HESSE STATUS=OK 31 CALLS 190 TOTAL - EDM=3.3512e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.83669e+02 3.75180e-01 2.63421e-04 -3.29696e-01 - 2 sg_p1 2.15657e+01 3.35505e-01 3.63719e-04 3.55092e-03 - 3 sg_p2 3.70000e+02 1.18712e-01 1.78807e-03 -1.57084e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 6.23837e+01 2.12217e+00 1.70597e-04 1.64828e-01 - 5 sg_p4 7.79157e-01 1.34121e-02 5.22132e-04 5.92353e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.408e-01 -3.318e-02 -1.693e-08 -2.114e-01 -1.478e-03 - -3.318e-02 1.126e-01 3.095e-09 2.911e-01 2.564e-03 - -1.693e-08 3.095e-09 1.803e-08 2.290e-08 -4.701e-11 - -2.114e-01 2.911e-01 2.290e-08 4.507e+00 1.940e-02 - -1.478e-03 2.564e-03 -4.701e-11 1.940e-02 1.799e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.32749 1.000 -0.264 -0.000 -0.265 -0.294 - 2 0.57875 -0.264 1.000 0.000 0.409 0.570 - 3 0.00038 -0.000 0.000 1.000 0.000 -0.000 - 4 0.68487 -0.265 0.409 0.000 1.000 0.681 - 5 0.75478 -0.294 0.570 -0.000 0.681 1.000 -400 -383.669 +- 0.37518 -21.5657 +- 0.335505 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=24472.6 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.00000e+02 6.00000e+00 2.01358e-01 -3.05856e+03 - 2 sg_p1 9.00000e+00 1.20000e+00 2.01358e-01 -2.09033e+02 - 3 sg_p2 3.35000e+02 2.30000e+01 2.01358e-01 -1.48368e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -1.94112e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -7.96270e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24016.6 FROM MIGRAD STATUS=CONVERGED 509 CALLS 510 TOTAL - EDM=2.5866e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.03031e+02 2.26519e-01 7.06422e-04 -6.24953e-01 - 2 sg_p1 9.12153e+00 3.63993e-01 2.95185e-03 -8.05301e-02 - 3 sg_p2 3.99298e+02 7.10621e-01 6.21816e-04 1.57926e-02 - 4 sg_p3 2.14947e+01 1.13267e+00 1.39396e-03 -1.73297e-02 - 5 sg_p4 6.42062e-01 4.06347e-02 2.84361e-03 2.63915e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 5.131e-02 -2.172e-02 2.774e-02 -8.091e-02 -2.646e-03 - -2.172e-02 1.327e-01 1.233e-01 3.176e-01 1.317e-02 - 2.774e-02 1.233e-01 5.050e-01 3.697e-01 1.525e-02 - -8.091e-02 3.176e-01 3.697e-01 1.283e+00 4.116e-02 - -2.646e-03 1.317e-02 1.525e-02 4.116e-02 1.655e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.49329 1.000 -0.263 0.172 -0.315 -0.287 - 2 0.89097 -0.263 1.000 0.476 0.770 0.889 - 3 0.62717 0.172 0.476 1.000 0.459 0.527 - 4 0.89690 -0.315 0.770 0.459 1.000 0.893 - 5 0.94977 -0.287 0.889 0.527 0.893 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24016.6 FROM HESSE STATUS=OK 31 CALLS 541 TOTAL - EDM=2.57939e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.03031e+02 2.26798e-01 1.41284e-04 1.01207e-01 - 2 sg_p1 9.12153e+00 3.64169e-01 5.90369e-04 2.02560e-02 - 3 sg_p2 3.99298e+02 7.06750e-01 2.48726e-05 2.54828e+00 - 4 sg_p3 2.14947e+01 1.13406e+00 5.57583e-05 -9.89569e-01 - 5 sg_p4 6.42062e-01 4.06652e-02 5.68723e-04 2.88093e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 5.144e-02 -2.202e-02 2.804e-02 -8.193e-02 -2.679e-03 - -2.202e-02 1.328e-01 1.208e-01 3.183e-01 1.319e-02 - 2.804e-02 1.208e-01 4.995e-01 3.614e-01 1.495e-02 - -8.193e-02 3.183e-01 3.614e-01 1.286e+00 4.125e-02 - -2.679e-03 1.319e-02 1.495e-02 4.125e-02 1.658e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.49518 1.000 -0.266 0.175 -0.319 -0.290 - 2 0.89108 -0.266 1.000 0.469 0.770 0.889 - 3 0.62183 0.175 0.469 1.000 0.451 0.520 - 4 0.89717 -0.319 0.770 0.451 1.000 0.893 - 5 0.94985 -0.290 0.889 0.520 0.893 1.000 -400 -403.031 +- 0.226798 -9.12153 +- 0.364169 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=24696.6 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.00000e+02 6.00000e+00 2.01358e-01 -3.50567e+03 - 2 sg_p1 9.00000e+00 1.20000e+00 2.01358e-01 -2.99560e+02 - 3 sg_p2 3.35000e+02 2.30000e+01 2.01358e-01 -1.90457e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -2.28000e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -7.50850e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24177.3 FROM MIGRAD STATUS=CONVERGED 461 CALLS 462 TOTAL - EDM=2.05098e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.03536e+02 2.36042e-01 7.27613e-04 1.38133e-01 - 2 sg_p1 9.26052e+00 3.88073e-01 3.03064e-03 3.06014e-03 - 3 sg_p2 3.99846e+02 7.05843e-01 6.16081e-04 4.24773e-01 - 4 sg_p3 2.13604e+01 1.14532e+00 1.37198e-03 1.42343e-01 - 5 sg_p4 6.36255e-01 4.36783e-02 2.89979e-03 -2.83285e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 5.572e-02 -2.634e-02 2.796e-02 -9.283e-02 -3.232e-03 - -2.634e-02 1.508e-01 1.325e-01 3.480e-01 1.525e-02 - 2.796e-02 1.325e-01 4.982e-01 3.683e-01 1.636e-02 - -9.283e-02 3.480e-01 3.683e-01 1.312e+00 4.510e-02 - -3.232e-03 1.525e-02 1.636e-02 4.510e-02 1.913e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.51806 1.000 -0.287 0.168 -0.343 -0.313 - 2 0.90009 -0.287 1.000 0.483 0.782 0.898 - 3 0.63614 0.168 0.483 1.000 0.456 0.530 - 4 0.90455 -0.343 0.782 0.456 1.000 0.900 - 5 0.95487 -0.313 0.898 0.530 0.900 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24177.3 FROM HESSE STATUS=OK 31 CALLS 493 TOTAL - EDM=2.03888e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.03536e+02 2.36409e-01 1.45523e-04 1.18130e-01 - 2 sg_p1 9.26052e+00 3.89977e-01 1.21225e-04 4.34340e-02 - 3 sg_p2 3.99846e+02 7.03519e-01 1.23216e-04 2.54251e+00 - 4 sg_p3 2.13604e+01 1.15130e+00 5.48791e-05 -9.93073e-01 - 5 sg_p4 6.36255e-01 4.39145e-02 5.79958e-04 2.76000e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 5.589e-02 -2.689e-02 2.803e-02 -9.446e-02 -3.293e-03 - -2.689e-02 1.523e-01 1.317e-01 3.524e-01 1.543e-02 - 2.803e-02 1.317e-01 4.949e-01 3.651e-01 1.624e-02 - -9.446e-02 3.524e-01 3.651e-01 1.326e+00 4.564e-02 - -3.293e-03 1.543e-02 1.624e-02 4.564e-02 1.934e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.52024 1.000 -0.291 0.169 -0.347 -0.317 - 2 0.90112 -0.291 1.000 0.480 0.784 0.899 - 3 0.63303 0.169 0.480 1.000 0.451 0.525 - 4 0.90559 -0.347 0.784 0.451 1.000 0.901 - 5 0.95536 -0.317 0.899 0.525 0.901 1.000 -400 -403.536 +- 0.236409 -9.26052 +- 0.389977 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=24015.5 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.00000e+02 6.00000e+00 2.01358e-01 -2.73383e+03 - 2 sg_p1 9.00000e+00 1.20000e+00 2.01358e-01 -1.14601e+02 - 3 sg_p2 3.35000e+02 2.30000e+01 2.01358e-01 -1.01620e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -1.59452e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -8.70364e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23589.1 FROM MIGRAD STATUS=CONVERGED 571 CALLS 572 TOTAL - EDM=2.11975e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.02655e+02 2.13288e-01 6.62907e-04 -4.46168e-01 - 2 sg_p1 9.23949e+00 3.37872e-01 2.75680e-03 -1.32311e-01 - 3 sg_p2 3.98219e+02 8.68178e-01 7.02928e-04 2.98040e-01 - 4 sg_p3 2.22778e+01 1.33749e+00 1.59705e-03 -1.34034e-01 - 5 sg_p4 6.87624e-01 3.80009e-02 2.77016e-03 9.90234e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.549e-02 -1.871e-02 2.077e-02 -9.028e-02 -2.314e-03 - -1.871e-02 1.143e-01 1.614e-01 3.481e-01 1.139e-02 - 2.077e-02 1.614e-01 7.538e-01 6.352e-01 2.015e-02 - -9.028e-02 3.481e-01 6.352e-01 1.790e+00 4.538e-02 - -2.314e-03 1.139e-02 2.015e-02 4.538e-02 1.447e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.48247 1.000 -0.259 0.112 -0.316 -0.285 - 2 0.88740 -0.259 1.000 0.550 0.770 0.886 - 3 0.68165 0.112 0.550 1.000 0.547 0.610 - 4 0.89573 -0.316 0.770 0.547 1.000 0.892 - 5 0.94802 -0.285 0.886 0.610 0.892 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23589.1 FROM HESSE STATUS=OK 31 CALLS 603 TOTAL - EDM=2.11621e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.02655e+02 2.13549e-01 1.32581e-04 8.86008e-02 - 2 sg_p1 9.23949e+00 3.38145e-01 5.51360e-04 3.99260e-02 - 3 sg_p2 3.98219e+02 8.63799e-01 1.40586e-04 2.55955e+00 - 4 sg_p3 2.22778e+01 1.33974e+00 6.38820e-05 -9.69500e-01 - 5 sg_p4 6.87624e-01 3.80543e-02 5.54033e-04 3.84665e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.560e-02 -1.897e-02 2.093e-02 -9.145e-02 -2.344e-03 - -1.897e-02 1.145e-01 1.594e-01 3.492e-01 1.142e-02 - 2.093e-02 1.594e-01 7.462e-01 6.264e-01 1.990e-02 - -9.145e-02 3.492e-01 6.264e-01 1.796e+00 4.554e-02 - -2.344e-03 1.142e-02 1.990e-02 4.554e-02 1.451e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.48441 1.000 -0.263 0.113 -0.320 -0.288 - 2 0.88760 -0.263 1.000 0.545 0.770 0.886 - 3 0.67765 0.113 0.545 1.000 0.541 0.605 - 4 0.89610 -0.320 0.770 0.541 1.000 0.892 - 5 0.94817 -0.288 0.886 0.605 0.892 1.000 -400 -402.655 +- 0.213549 -9.23949 +- 0.338145 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=23933.8 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.00000e+02 6.00000e+00 2.01358e-01 -3.00563e+03 - 2 sg_p1 9.00000e+00 1.20000e+00 2.01358e-01 -2.26149e+02 - 3 sg_p2 3.35000e+02 2.30000e+01 2.01358e-01 -1.57290e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -1.98719e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -7.58184e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=23482 FROM MIGRAD STATUS=CONVERGED 425 CALLS 426 TOTAL - EDM=1.98551e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 2.6 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.03064e+02 2.30766e-01 4.51369e-05 5.86157e-01 - 2 sg_p1 9.18055e+00 3.67314e-01 -4.43730e-04 8.55470e-03 - 3 sg_p2 3.99566e+02 7.08192e-01 -8.00128e-05 -4.66991e-01 - 4 sg_p3 2.13892e+01 1.12890e+00 4.69804e-04 -1.79727e-01 - 5 sg_p4 6.36669e-01 4.03843e-02 7.38905e-05 1.36445e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 5.325e-02 -2.904e-02 2.726e-02 -9.686e-02 -3.527e-03 - -2.904e-02 1.351e-01 1.202e-01 3.188e-01 1.315e-02 - 2.726e-02 1.202e-01 5.015e-01 3.501e-01 1.456e-02 - -9.686e-02 3.188e-01 3.501e-01 1.275e+00 4.101e-02 - -3.527e-03 1.315e-02 1.456e-02 4.101e-02 1.635e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.56644 1.000 -0.342 0.167 -0.372 -0.378 - 2 0.88731 -0.342 1.000 0.462 0.768 0.885 - 3 0.64043 0.167 0.462 1.000 0.438 0.509 - 4 0.90083 -0.372 0.768 0.438 1.000 0.898 - 5 0.95189 -0.378 0.885 0.509 0.898 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23482 FROM HESSE STATUS=OK 35 CALLS 461 TOTAL - EDM=5.54045e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.03064e+02 2.33269e-01 7.19455e-04 1.02309e-01 - 2 sg_p1 9.18055e+00 3.92591e-01 3.01012e-03 3.00958e-02 - 3 sg_p2 3.99566e+02 7.11832e-01 6.13401e-04 2.54546e+00 - 4 sg_p3 2.13892e+01 1.16905e+00 1.37125e-03 -9.92320e-01 - 5 sg_p4 6.36669e-01 4.39485e-02 2.87997e-03 2.76861e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 5.442e-02 -2.298e-02 3.133e-02 -8.326e-02 -2.828e-03 - -2.298e-02 1.543e-01 1.349e-01 3.609e-01 1.554e-02 - 3.133e-02 1.349e-01 5.067e-01 3.816e-01 1.648e-02 - -8.326e-02 3.609e-01 3.816e-01 1.367e+00 4.638e-02 - -2.828e-03 1.554e-02 1.648e-02 4.638e-02 1.937e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.49395 1.000 -0.251 0.189 -0.305 -0.275 - 2 0.90095 -0.251 1.000 0.482 0.786 0.899 - 3 0.63094 0.189 0.482 1.000 0.459 0.526 - 4 0.90514 -0.305 0.786 0.459 1.000 0.901 - 5 0.95480 -0.275 0.899 0.526 0.901 1.000 -400 -403.064 +- 0.233269 -9.18055 +- 0.392591 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=24885.4 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.00000e+02 6.00000e+00 2.01358e-01 -3.11264e+03 - 2 sg_p1 9.00000e+00 1.20000e+00 2.01358e-01 -1.79480e+02 - 3 sg_p2 3.35000e+02 2.30000e+01 2.01358e-01 -1.39340e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -1.92985e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -8.63355e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24409.7 FROM MIGRAD STATUS=CONVERGED 428 CALLS 429 TOTAL - EDM=7.26443e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.02955e+02 2.19114e-01 6.87184e-04 -4.52991e-01 - 2 sg_p1 9.16571e+00 3.57674e-01 2.86480e-03 -1.28599e-01 - 3 sg_p2 3.99199e+02 7.40925e-01 6.46031e-04 5.84783e-01 - 4 sg_p3 2.16431e+01 1.21207e+00 1.45003e-03 -5.04696e-01 - 5 sg_p4 6.62907e-01 4.05793e-02 2.83164e-03 1.71367e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.801e-02 -2.192e-02 2.514e-02 -8.718e-02 -2.692e-03 - -2.192e-02 1.281e-01 1.292e-01 3.393e-01 1.300e-02 - 2.514e-02 1.292e-01 5.490e-01 4.252e-01 1.618e-02 - -8.718e-02 3.393e-01 4.252e-01 1.470e+00 4.429e-02 - -2.692e-03 1.300e-02 1.618e-02 4.429e-02 1.651e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.49883 1.000 -0.280 0.155 -0.328 -0.302 - 2 0.89599 -0.280 1.000 0.487 0.782 0.894 - 3 0.63326 0.155 0.487 1.000 0.473 0.538 - 4 0.90259 -0.328 0.782 0.473 1.000 0.899 - 5 0.95237 -0.302 0.894 0.538 0.899 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24409.7 FROM HESSE STATUS=OK 31 CALLS 460 TOTAL - EDM=7.27657e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.02955e+02 2.19385e-01 1.37437e-04 9.86503e-02 - 2 sg_p1 9.16571e+00 3.58424e-01 5.72960e-04 2.76226e-02 - 3 sg_p2 3.99199e+02 7.37765e-01 1.29206e-04 2.54932e+00 - 4 sg_p3 2.16431e+01 1.21551e+00 2.90006e-04 -9.85719e-01 - 5 sg_p4 6.62907e-01 4.06836e-02 5.66328e-04 3.31874e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.813e-02 -2.225e-02 2.533e-02 -8.836e-02 -2.729e-03 - -2.225e-02 1.286e-01 1.275e-01 3.414e-01 1.307e-02 - 2.533e-02 1.275e-01 5.443e-01 4.191e-01 1.598e-02 - -8.836e-02 3.414e-01 4.191e-01 1.478e+00 4.455e-02 - -2.729e-03 1.307e-02 1.598e-02 4.455e-02 1.659e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.50069 1.000 -0.283 0.157 -0.331 -0.305 - 2 0.89645 -0.283 1.000 0.482 0.783 0.895 - 3 0.62918 0.157 0.482 1.000 0.467 0.532 - 4 0.90317 -0.331 0.783 0.467 1.000 0.900 - 5 0.95262 -0.305 0.895 0.532 0.900 1.000 -400 -402.955 +- 0.219385 -9.16571 +- 0.358424 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=22933.4 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.00000e+02 6.00000e+00 2.01358e-01 -2.87100e+03 - 2 sg_p1 9.00000e+00 1.20000e+00 2.01358e-01 -1.93992e+02 - 3 sg_p2 3.35000e+02 2.30000e+01 2.01358e-01 -1.39002e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -1.82300e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -7.50242e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=22503.6 FROM MIGRAD STATUS=CONVERGED 449 CALLS 450 TOTAL - EDM=1.18063e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.03032e+02 2.33943e-01 7.06213e-04 9.04520e-02 - 2 sg_p1 9.10686e+00 3.76352e-01 2.94856e-03 -2.29097e-02 - 3 sg_p2 3.99344e+02 7.27483e-01 6.18170e-04 -1.42732e-01 - 4 sg_p3 2.14204e+01 1.15968e+00 1.38769e-03 7.24703e-02 - 5 sg_p4 6.41123e-01 4.21101e-02 2.84478e-03 -3.40374e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 5.473e-02 -2.306e-02 3.001e-02 -8.509e-02 -2.816e-03 - -2.306e-02 1.418e-01 1.295e-01 3.363e-01 1.412e-02 - 3.001e-02 1.295e-01 5.292e-01 3.838e-01 1.605e-02 - -8.509e-02 3.363e-01 3.838e-01 1.345e+00 4.369e-02 - -2.816e-03 1.412e-02 1.605e-02 4.369e-02 1.778e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.49289 1.000 -0.262 0.176 -0.314 -0.285 - 2 0.89116 -0.262 1.000 0.473 0.770 0.889 - 3 0.62460 0.176 0.473 1.000 0.455 0.523 - 4 0.89709 -0.314 0.770 0.455 1.000 0.893 - 5 0.94991 -0.285 0.889 0.523 0.893 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=22503.6 FROM HESSE STATUS=OK 31 CALLS 481 TOTAL - EDM=1.18704e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.03032e+02 2.34247e-01 1.41243e-04 1.01255e-01 - 2 sg_p1 9.10686e+00 3.78028e-01 1.17943e-04 1.78107e-02 - 3 sg_p2 3.99344e+02 7.25174e-01 1.23634e-04 2.54779e+00 - 4 sg_p3 2.14204e+01 1.16522e+00 5.55076e-05 -9.91505e-01 - 5 sg_p4 6.41123e-01 4.23208e-02 5.68957e-04 2.86134e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 5.487e-02 -2.352e-02 3.007e-02 -8.655e-02 -2.868e-03 - -2.352e-02 1.431e-01 1.286e-01 3.403e-01 1.427e-02 - 3.007e-02 1.286e-01 5.259e-01 3.804e-01 1.593e-02 - -8.655e-02 3.403e-01 3.804e-01 1.358e+00 4.417e-02 - -2.868e-03 1.427e-02 1.593e-02 4.417e-02 1.796e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.49488 1.000 -0.265 0.177 -0.317 -0.289 - 2 0.89218 -0.265 1.000 0.469 0.772 0.890 - 3 0.62148 0.177 0.469 1.000 0.450 0.519 - 4 0.89813 -0.317 0.772 0.450 1.000 0.894 - 5 0.95042 -0.289 0.890 0.519 0.894 1.000 -400 -403.032 +- 0.234247 -9.10686 +- 0.378028 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=26088.1 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.00000e+02 6.00000e+00 2.01358e-01 -3.25521e+03 - 2 sg_p1 9.00000e+00 1.20000e+00 2.01358e-01 -2.24913e+02 - 3 sg_p2 3.35000e+02 2.30000e+01 2.01358e-01 -1.58204e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -2.06494e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -8.44374e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.85098 added to diagonal of error matrix -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (43592.9) to force MIGRAD to back out of this region. Error log follows -Parameter values: sg_p0=411.751, sg_p1=10.1393, sg_p2=221.646, sg_p3=12.3173, sg_p4=0.392797 -RooGaussian::signalComb[ x=x mean=sg_p2 sigma=sg_p3 ] - p.d.f normalization integral is zero or negative @ x=x=352.5, mean=sg_p2=221.646, sigma=sg_p3=12.3173 - p.d.f normalization integral is zero or negative @ x=x=355.5, mean=sg_p2=221.646, sigma=sg_p3=12.3173 - p.d.f normalization integral is zero or negative @ x=x=358.5, mean=sg_p2=221.646, sigma=sg_p3=12.3173 - p.d.f normalization integral is zero or negative @ x=x=361.5, mean=sg_p2=221.646, sigma=sg_p3=12.3173 - p.d.f normalization integral is zero or negative @ x=x=364.5, mean=sg_p2=221.646, sigma=sg_p3=12.3173 - p.d.f normalization integral is zero or negative @ x=x=367.5, mean=sg_p2=221.646, sigma=sg_p3=12.3173 - p.d.f normalization integral is zero or negative @ x=x=370.5, mean=sg_p2=221.646, sigma=sg_p3=12.3173 - p.d.f normalization integral is zero or negative @ x=x=373.5, mean=sg_p2=221.646, sigma=sg_p3=12.3173 - p.d.f normalization integral is zero or negative @ x=x=376.5, mean=sg_p2=221.646, sigma=sg_p3=12.3173 - p.d.f normalization integral is zero or negative @ x=x=379.5, mean=sg_p2=221.646, sigma=sg_p3=12.3173 - p.d.f normalization integral is zero or negative @ x=x=382.5, mean=sg_p2=221.646, sigma=sg_p3=12.3173 - p.d.f normalization integral is zero or negative @ x=x=385.5, mean=sg_p2=221.646, sigma=sg_p3=12.3173 - ... (remaining 23 messages suppressed) - - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=25604.6 FROM MIGRAD STATUS=CONVERGED 410 CALLS 411 TOTAL - EDM=8.53169e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.03032e+02 2.19508e-01 7.06641e-04 2.77604e-01 - 2 sg_p1 9.13654e+00 3.52245e-01 2.95146e-03 6.85002e-02 - 3 sg_p2 3.99251e+02 6.94391e-01 6.24869e-04 -5.23482e-02 - 4 sg_p3 2.15673e+01 1.10701e+00 1.40379e-03 1.05606e-01 - 5 sg_p4 6.42963e-01 3.92422e-02 2.83913e-03 -5.31174e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.818e-02 -2.053e-02 2.561e-02 -7.720e-02 -2.495e-03 - -2.053e-02 1.242e-01 1.174e-01 3.004e-01 1.231e-02 - 2.561e-02 1.174e-01 4.822e-01 3.562e-01 1.450e-02 - -7.720e-02 3.004e-01 3.562e-01 1.226e+00 3.884e-02 - -2.495e-03 1.231e-02 1.450e-02 3.884e-02 1.543e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.49407 1.000 -0.265 0.168 -0.318 -0.289 - 2 0.89076 -0.265 1.000 0.480 0.770 0.889 - 3 0.62968 0.168 0.480 1.000 0.463 0.531 - 4 0.89677 -0.318 0.770 0.463 1.000 0.893 - 5 0.94966 -0.289 0.889 0.531 0.893 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=25604.6 FROM HESSE STATUS=OK 31 CALLS 442 TOTAL - EDM=8.53668e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.03032e+02 2.19804e-01 1.41328e-04 1.01235e-01 - 2 sg_p1 9.13654e+00 3.53820e-01 1.18058e-04 2.27585e-02 - 3 sg_p2 3.99251e+02 6.92171e-01 1.24974e-04 2.54877e+00 - 4 sg_p3 2.15673e+01 1.11233e+00 5.61518e-05 -9.87685e-01 - 5 sg_p4 6.42963e-01 3.94399e-02 5.67827e-04 2.89973e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.831e-02 -2.094e-02 2.565e-02 -7.854e-02 -2.542e-03 - -2.094e-02 1.253e-01 1.167e-01 3.040e-01 1.244e-02 - 2.565e-02 1.167e-01 4.791e-01 3.532e-01 1.440e-02 - -7.854e-02 3.040e-01 3.532e-01 1.238e+00 3.927e-02 - -2.542e-03 1.244e-02 1.440e-02 3.927e-02 1.559e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.49612 1.000 -0.269 0.169 -0.321 -0.293 - 2 0.89179 -0.269 1.000 0.476 0.772 0.890 - 3 0.62659 0.169 0.476 1.000 0.459 0.527 - 4 0.89781 -0.321 0.772 0.459 1.000 0.894 - 5 0.95017 -0.293 0.890 0.527 0.894 1.000 -400 -403.032 +- 0.219804 -9.13654 +- 0.35382 -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 403.031 +- 0.226798 (stat) - 0.376479 + 0.504637 (syst); -0.393186/+0.517221 (total) - Uncertainty on sg_p1 = 9.12153 +- 0.364169 (stat) - 0.014669 + 0.138994 (syst); -0.182675/+0.229073 (total) - Uncertainty on sg_p2 = 399.298 +- 0.70675 (stat) - 1.07894 + 0.548609 (syst); -1.13534/+0.652569 (total) - Uncertainty on sg_p3 = 21.4947 +- 1.13406 (stat) - 0.134294 + 0.783059 (syst); -0.582718/+0.966802 (total) - Uncertainty on sg_p4 = 0.642062 +- 0.0406652 (stat) - 0.00580743 + 0.0455621 (syst); -0.0211457/+0.049893 (total) - === Baseline plot ===
- norm = 790.651 -JEC lnN 1.00381 - -JER lnN 1.01925 - -btag lnN 1.06523 - -sg_p0 param 403.031 -0.393186/+0.517221 -sg_p1 param 9.12153 -0.182675/+0.229073 -sg_p2 param 399.298 -1.13534/+0.652569 -sg_p3 param 21.4947 -0.582718/+0.966802 -sg_p4 param 0.642062 -0.0211457/+0.049893 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_400_novo_285_624/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_400_novo_285_624/data_bkg.log deleted file mode 100644 index 3cc1900..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_400_novo_285_624/data_bkg.log +++ /dev/null @@ -1,750 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [252,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=62921.6 FROM MIGRAD STATUS=INITIATE 90 CALLS 91 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.21879e-02 5.09000e-01 0.00000e+00 -9.80911e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -1.28354e+01 - 3 par_crystal_2 2.65669e+02 4.00000e+00 0.00000e+00 3.55320e+02 - 4 par_crystal_3 1.06488e+01 2.70000e+00 -4.48284e-01 -2.33576e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62883.4 FROM HESSE STATUS=OK 29 CALLS 257 TOTAL - EDM=4.91113 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.66060e-01 4.16121e-03 3.52377e-04 -4.74293e+00 - 2 par_crystal_1 4.45375e+00 2.73731e+00 1.77223e-01 2.66184e-01 - 3 par_crystal_2 2.67385e+02 2.04373e-01 8.29600e-04 2.81454e+02 - 4 par_crystal_3 1.36851e+01 5.38888e-01 1.69331e-03 -1.62103e+00 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=62883.3 FROM MIGRAD STATUS=FAILED 358 CALLS 359 TOTAL - EDM=0.00753244 STRATEGY= 1 ERR MATRIX APPROXIMATE - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.65093e-01 8.39913e-03 1.31861e-03 5.42788e+00 - 2 par_crystal_1 5.09910e+00 4.33634e+00 3.39194e-01 -6.59950e-03 - 3 par_crystal_2 2.67339e+02 1.86486e-01 3.32550e-03 -8.58879e+00 - 4 par_crystal_3 1.37140e+01 6.01780e-01 6.34807e-03 1.69258e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.055e-05 1.617e-04 4.699e-04 2.892e-03 - 1.617e-04 1.762e-02 -1.356e-04 -1.108e-03 - 4.699e-04 -1.356e-04 3.478e-02 3.255e-02 - 2.892e-03 -1.108e-03 3.255e-02 3.624e-01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.60853 1.000 0.145 0.300 0.572 - 2 0.19009 0.145 1.000 -0.005 -0.014 - 3 0.33449 0.300 -0.005 1.000 0.290 - 4 0.59243 0.572 -0.014 0.290 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7660e-01 8.1807e-01 1.6519e+00 1.7066e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.178308 TO DIAGONAL. - FCN=62883.3 FROM HESSE STATUS=NOT POSDEF 33 CALLS 392 TOTAL - EDM=3.36849 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.65093e-01 8.70034e-02 2.63722e-04 -1.21988e+00 - 2 par_crystal_1 5.09910e+00 4.18121e+00 5.00000e-01 1.54425e+00 - 3 par_crystal_2 2.67339e+02 5.27040e+00 9.57407e-02 3.75715e-01 - 4 par_crystal_3 1.37140e+01 6.68546e+00 2.53923e-04 -2.07863e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.595e-03 -2.994e-03 4.642e-01 6.089e-01 - -2.994e-03 1.536e-02 -1.944e-01 -2.569e-01 - 4.642e-01 -1.944e-01 2.855e+01 3.736e+01 - 6.089e-01 -2.569e-01 3.736e+01 4.914e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99751 1.000 -0.277 0.997 0.997 - 2 0.37560 -0.277 1.000 -0.293 -0.296 - 3 0.99795 0.997 -0.293 1.000 0.997 - 4 0.99797 0.997 -0.296 0.997 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=62983.1 FROM MIGRAD STATUS=INITIATE 29 CALLS 30 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 6.05383e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -1.33666e+02 - 3 par_gaus_exp_2 3.19008e-01 3.05000e-01 -9.67731e-01 -3.33619e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.00383 added to diagonal of error matrix - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62882.7 FROM MIGRAD STATUS=CONVERGED 228 CALLS 229 TOTAL - EDM=4.4408e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.69095e+02 7.01852e-01 4.07755e-03 2.89794e-02 - 2 par_gaus_exp_1 1.61044e+01 1.09719e+00 7.43010e-03 -1.84784e-02 - 3 par_gaus_exp_2 1.90527e-01 1.58774e-02 1.98778e-03 -6.23432e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 4.929e-01 5.914e-01 9.067e-03 - 5.914e-01 1.207e+00 1.483e-02 - 9.067e-03 1.483e-02 2.521e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.82590 1.000 0.767 0.813 - 2 0.85979 0.767 1.000 0.850 - 3 0.88644 0.813 0.850 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62882.7 FROM HESSE STATUS=OK 16 CALLS 245 TOTAL - EDM=4.28199e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.69095e+02 6.86832e-01 1.63102e-04 -5.76704e-01 - 2 par_gaus_exp_1 1.61044e+01 1.07335e+00 2.97204e-04 -5.72398e-01 - 3 par_gaus_exp_2 1.90527e-01 1.55212e-02 7.95110e-05 -1.13813e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 4.720e-01 5.579e-01 8.580e-03 - 5.579e-01 1.155e+00 1.406e-02 - 8.580e-03 1.406e-02 2.410e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.81734 1.000 0.756 0.805 - 2 0.85292 0.756 1.000 0.843 - 3 0.88081 0.805 0.843 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,624] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.3296 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.3296) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=286.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=286.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=289.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=289.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=295.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=295.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=298.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=298.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=301.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=301.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - ... (remaining 216 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.733611 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.733611) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=313.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=316.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=319.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=325.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=328.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=331.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=334.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=340.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=343.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=346.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - ... (remaining 94 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0733618 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0733618 - - FCN=103426 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57146e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.55551e+03 - 3 par_novo_2 -1.33526e+00 2.00000e+01 0.00000e+00 1.53308e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103192 FROM MIGRAD STATUS=CONVERGED 126 CALLS 127 TOTAL - EDM=1.07924e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.17697e+01 1.69443e-01** at limit ** - 2 par_novo_1 3.87878e+01 2.27475e+00 4.96100e-03 -6.14249e-02 - 3 par_novo_2 -1.26766e+00 7.00630e-02 3.67886e-05 3.77179e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 2.244e-10 -2.632e-07 -1.276e-07 - -2.632e-07 5.190e+00 1.540e-01 - -1.276e-07 1.540e-01 4.909e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.43392 1.000 -0.008 -0.122 - 2 0.97109 -0.008 1.000 0.965 - 3 0.97152 -0.122 0.965 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103192 FROM HESSE STATUS=OK 20 CALLS 147 TOTAL - EDM=1.23299e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.15107e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.87878e+01 2.30410e+00 1.98440e-04 4.51799e-01 - 3 par_novo_2 -1.26766e+00 7.13892e-02 1.47154e-06 -1.26769e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 2.143e-10 3.996e-06 -2.087e-07 - 3.996e-06 5.325e+00 1.518e-01 - -2.087e-07 1.518e-01 5.096e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.80390 1.000 0.118 -0.200 - 2 0.97183 0.118 1.000 0.922 - 3 0.97258 -0.200 0.922 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107617 FROM MIGRAD STATUS=INITIATE 36 CALLS 37 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 6.60405e+03 - 2 par_crystal_1_1 7.90153e-02 5.09000e-01 -1.80421e+00 3.05679e+03 - 3 par_crystal_1_2 2.60000e+02 4.00000e+00 0.00000e+00 1.48888e+03 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 6.99071e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.17529 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.7903e-03 5.8606e-02 5.0897e-01 3.4352e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.006225 TO DIAGONAL. - FCN=103191 FROM MIGRAD STATUS=CONVERGED 353 CALLS 354 TOTAL - EDM=3.7306e-06 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.37913e-01 3.41139e-02 6.19492e-04 4.10204e-01 - 2 par_crystal_1_1 4.44737e+00 5.69760e-01 2.21494e-02 9.88736e-03 - 3 par_crystal_1_2 2.79979e+02 3.40482e+01 2.79535e-01 -2.97577e-04 - 4 par_crystal_1_3 1.87584e+01 2.98857e+00 3.96232e-03 -6.40797e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.164e-03 3.582e-03 3.594e-03 9.898e-02 - 3.582e-03 3.375e-01 -1.052e-02 7.382e-01 - 3.594e-03 -1.052e-02 3.148e+00 6.243e-01 - 9.898e-02 7.382e-01 6.243e-01 9.086e+00 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99630 1.000 0.181 0.059 0.962 - 2 0.95650 0.181 1.000 -0.010 0.422 - 3 0.63948 0.059 -0.010 1.000 0.117 - 4 0.99690 0.962 0.422 0.117 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103191 FROM HESSE STATUS=OK 27 CALLS 381 TOTAL - EDM=6.06842e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 2.37913e-01 2.12502e-01 1.23898e-04 -8.36786e+01 - 2 par_crystal_1_1 4.44737e+00 5.06952e-01 8.85975e-04 -1.65463e+01 - 3 par_crystal_1_2 2.79979e+02 2.96341e+01 5.00000e-01 7.80831e+00 - 4 par_crystal_1_3 1.87584e+01 1.90925e+01 1.58493e-04 2.18231e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.578e-02 1.663e-02 2.427e-02 3.730e+00 - 1.663e-02 2.650e-01 -4.299e-02 1.684e+00 - 2.427e-02 -4.299e-02 1.850e+00 2.341e+00 - 3.730e+00 1.684e+00 2.341e+00 3.045e+02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99991 1.000 0.151 0.083 0.999 - 2 0.94385 0.151 1.000 -0.061 0.187 - 3 0.80384 0.083 -0.061 1.000 0.099 - 4 0.99991 0.999 0.187 0.099 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 13889.7 - Background number of gaus_exp_252_330 = 13889.7 - Background number of novo_285_624 = 17637.2 - Background number of crystal_1_285_624 = 17637.2 - Background number of gaus_bern_285_624 = 17637.2 - Background number of landau_285_624 = 17637.2 -par_crystal_0 param 0.165093 0.0870034 -par_crystal_1 param 5.0991 4.18121 -par_crystal_2 param 267.339 5.2704 -par_crystal_3 param 13.714 6.68546 -par_crystal_1_0 param 0.237913 0.212502 -par_crystal_1_1 param 4.44737 0.506952 -par_crystal_1_2 param 279.979 29.6341 -par_crystal_1_3 param 18.7584 19.0925 -par_gaus_exp_0 param 269.095 0.686832 -par_gaus_exp_1 param 16.1044 1.07335 -par_gaus_exp_2 param 0.190527 0.0155212 -par_novo_0 param 250 31.5107 -par_novo_1 param 38.7878 2.3041 -par_novo_2 param -1.26766 0.0713892 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_400_novo_285_624/datacard_400_novo_285_624.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_400_novo_285_624/datacard_400_novo_285_624.txt deleted file mode 100644 index 198429b..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_400_novo_285_624/datacard_400_novo_285_624.txt +++ /dev/null @@ -1,30 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_400.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_novo_285_624.root HbbHbb:f_novo -shapes data_obs HbbHbb w_background_novo_285_624.root HbbHbb:data_obs_novo_285_624 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 790.651 17637.2 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06523 - -JER lnN 1.01925 - -JEC lnN 1.00381 - -trigger lnN 1.10 - -PDF lnN 1.0199774927 - -sg_p0 param 403.031 -0.393186/+0.517221 -sg_p1 param 9.12153 -0.182675/+0.229073 -sg_p2 param 399.298 -1.13534/+0.652569 -sg_p3 param 21.4947 -0.582718/+0.966802 -sg_p4 param 0.642062 -0.0211457/+0.049893 -par_novo_0 param 250 31.5107 -par_novo_1 param 38.7878 2.3041 -par_novo_2 param -1.26766 0.0713892 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_400_novo_285_624/pdf.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_400_novo_285_624/pdf.log deleted file mode 100644 index 6c83983..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_400_novo_285_624/pdf.log +++ /dev/null @@ -1,10 +0,0 @@ -[?1034h FCN=9.89323 FROM MIGRAD STATUS=CONVERGED 63 CALLS 64 TOTAL - EDM=7.57236e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 Constant 1.56976e+01 1.98145e+00 2.66437e-03 2.44799e-04 - 2 Mean 9.97211e-01 2.43742e-03 3.88392e-06 6.59106e-02 - 3 Sigma 1.99775e-02 1.81293e-03 4.40458e-05 -2.69742e-02 -0.997211474351 +/- 0.00243741718583 -0.0199774926998 +/- 0.0018129318814 -PDF lnN 1.0199774927 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_400_novo_285_624/signal400_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_400_novo_285_624/signal400_sig.log deleted file mode 100644 index 9acbb71..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_400_novo_285_624/signal400_sig.log +++ /dev/null @@ -1,869 +0,0 @@ - -Processing test.c... -nSignal_init = 299800 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=33249 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.95000e+02 7.00000e+00 2.01358e-01 2.15243e+03 - 2 sg_p1 2.15000e+01 3.70000e+00 2.01358e-01 1.37205e+02 - 3 sg_p2 4.15000e+02 9.00000e+00 2.01358e-01 1.80805e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -7.17737e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -9.38307e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31857.3 FROM MIGRAD STATUS=CONVERGED 163 CALLS 164 TOTAL - EDM=1.96152e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.85506e+02 3.78343e-01 1.28380e-03 -1.79696e-02 - 2 sg_p1 2.16205e+01 3.35235e-01 1.80013e-03 -1.11987e-02 - 3 sg_p2 3.70000e+02 1.32448e-01 9.45540e-03** at limit ** - 4 sg_p3 6.22011e+01 2.14887e+00 4.32821e-03 3.71767e-02 - 5 sg_p4 7.86673e-01 1.32740e-02 2.60376e-03 -4.77327e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.431e-01 -3.809e-02 -1.363e-08 -2.470e-01 -1.694e-03 - -3.809e-02 1.124e-01 1.303e-09 3.035e-01 2.581e-03 - -1.363e-08 1.303e-09 4.343e-10 9.091e-11 -1.595e-10 - -2.470e-01 3.035e-01 9.091e-11 4.621e+00 1.948e-02 - -1.694e-03 2.581e-03 -1.595e-10 1.948e-02 1.763e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.37324 1.000 -0.300 -0.002 -0.304 -0.337 - 2 0.59095 -0.300 1.000 0.000 0.421 0.580 - 3 0.00218 -0.002 0.000 1.000 0.000 -0.001 - 4 0.68717 -0.304 0.421 0.000 1.000 0.682 - 5 0.75833 -0.337 0.580 -0.001 0.682 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31857.3 FROM HESSE STATUS=OK 31 CALLS 195 TOTAL - EDM=1.96284e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.85506e+02 3.78550e-01 5.13518e-05 -2.74710e-01 - 2 sg_p1 2.16205e+01 3.35880e-01 7.20051e-05 6.51457e-03 - 3 sg_p2 3.70000e+02 1.32456e-01 1.89108e-03 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 6.22011e+01 2.15536e+00 1.73128e-04 1.60716e-01 - 5 sg_p4 7.86673e-01 1.33169e-02 5.20752e-04 6.10583e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.433e-01 -3.844e-02 -2.714e-09 -2.490e-01 -1.705e-03 - -3.844e-02 1.128e-01 2.582e-10 3.070e-01 2.603e-03 - -2.714e-09 2.582e-10 4.343e-10 2.856e-11 -3.187e-11 - -2.490e-01 3.070e-01 2.856e-11 4.649e+00 1.966e-02 - -1.705e-03 2.603e-03 -3.187e-11 1.966e-02 1.774e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.37450 1.000 -0.302 -0.000 -0.305 -0.338 - 2 0.59306 -0.302 1.000 0.000 0.424 0.582 - 3 0.00043 -0.000 0.000 1.000 0.000 -0.000 - 4 0.68946 -0.305 0.424 0.000 1.000 0.685 - 5 0.76013 -0.338 0.582 -0.000 0.685 1.000 -400 -385.506 +- 0.37855 -21.6205 +- 0.33588 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=33081 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.95000e+02 7.00000e+00 2.01358e-01 1.81151e+03 - 2 sg_p1 2.15000e+01 3.70000e+00 2.01358e-01 2.25726e+02 - 3 sg_p2 4.15000e+02 9.00000e+00 2.01358e-01 1.70388e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -5.66591e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -9.95873e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31839.3 FROM MIGRAD STATUS=CONVERGED 160 CALLS 161 TOTAL - EDM=5.64365e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.87437e+02 3.85764e-01 1.26589e-03 -5.15663e-01 - 2 sg_p1 2.16839e+01 3.35523e-01 1.79115e-03 1.07532e-01 - 3 sg_p2 3.70000e+02 1.39833e-01 9.73370e-03** at limit ** - 4 sg_p3 6.08508e+01 2.10095e+00 4.12758e-03 3.24347e-02 - 5 sg_p4 7.89007e-01 1.33639e-02 2.62549e-03 -2.60744e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.488e-01 -4.305e-02 -2.519e-07 -2.764e-01 -1.946e-03 - -4.305e-02 1.126e-01 -9.366e-09 3.008e-01 2.619e-03 - -2.519e-07 -9.366e-09 1.704e-07 -3.173e-07 -6.072e-09 - -2.764e-01 3.008e-01 -3.173e-07 4.417e+00 1.920e-02 - -1.946e-03 2.619e-03 -6.072e-09 1.920e-02 1.787e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.41597 1.000 -0.333 -0.002 -0.341 -0.377 - 2 0.59692 -0.333 1.000 -0.000 0.427 0.584 - 3 0.00247 -0.002 -0.000 1.000 -0.000 -0.001 - 4 0.68971 -0.341 0.427 -0.000 1.000 0.684 - 5 0.76090 -0.377 0.584 -0.001 0.684 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31839.3 FROM HESSE STATUS=OK 31 CALLS 192 TOTAL - EDM=5.65901e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.87437e+02 3.86035e-01 2.53178e-04 -2.17803e-01 - 2 sg_p1 2.16839e+01 3.36156e-01 7.16461e-05 9.94233e-03 - 3 sg_p2 3.70000e+02 1.39842e-01 1.94674e-03 -1.57091e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 6.08508e+01 2.10696e+00 1.65103e-04 1.30388e-01 - 5 sg_p4 7.89007e-01 1.34047e-02 5.25097e-04 6.16292e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.490e-01 -4.342e-02 -4.545e-08 -2.786e-01 -1.959e-03 - -4.342e-02 1.130e-01 -1.794e-09 3.041e-01 2.641e-03 - -4.545e-08 -1.794e-09 1.704e-07 -5.759e-08 -1.102e-09 - -2.786e-01 3.041e-01 -5.759e-08 4.443e+00 1.938e-02 - -1.959e-03 2.641e-03 -1.102e-09 1.938e-02 1.798e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.41736 1.000 -0.335 -0.000 -0.342 -0.378 - 2 0.59895 -0.335 1.000 -0.000 0.429 0.586 - 3 0.00045 -0.000 -0.000 1.000 -0.000 -0.000 - 4 0.69187 -0.342 0.429 -0.000 1.000 0.686 - 5 0.76259 -0.378 0.586 -0.000 0.686 1.000 -400 -387.437 +- 0.386035 -21.6839 +- 0.336156 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=33253.4 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.95000e+02 7.00000e+00 2.01358e-01 2.45970e+03 - 2 sg_p1 2.15000e+01 3.70000e+00 2.01358e-01 2.71903e+00 - 3 sg_p2 4.15000e+02 9.00000e+00 2.01358e-01 1.91853e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -8.75244e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -8.55185e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31693.5 FROM MIGRAD STATUS=CONVERGED 158 CALLS 159 TOTAL - EDM=3.35227e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.83669e+02 3.75050e-01 1.31711e-03 2.71422e-01 - 2 sg_p1 2.15657e+01 3.35007e-01 1.81860e-03 2.93721e-01 - 3 sg_p2 3.70000e+02 1.18706e-01 8.94035e-03** at limit ** - 4 sg_p3 6.23837e+01 2.11611e+00 4.26491e-03 6.14124e-02 - 5 sg_p4 7.79157e-01 1.33723e-02 2.61066e-03 -1.92762e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.407e-01 -3.293e-02 -8.781e-08 -2.099e-01 -1.470e-03 - -3.293e-02 1.122e-01 1.601e-08 2.882e-01 2.545e-03 - -8.781e-08 1.601e-08 1.802e-08 1.177e-07 -2.465e-10 - -2.099e-01 2.882e-01 1.177e-07 4.481e+00 1.922e-02 - -1.470e-03 2.545e-03 -2.465e-10 1.922e-02 1.789e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.32654 1.000 -0.262 -0.002 -0.264 -0.293 - 2 0.57704 -0.262 1.000 0.000 0.406 0.568 - 3 0.00196 -0.002 0.000 1.000 0.000 -0.000 - 4 0.68265 -0.264 0.406 0.000 1.000 0.679 - 5 0.75308 -0.293 0.568 -0.000 0.679 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31693.5 FROM HESSE STATUS=OK 31 CALLS 190 TOTAL - EDM=3.3512e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.83669e+02 3.75180e-01 2.63421e-04 -3.29696e-01 - 2 sg_p1 2.15657e+01 3.35505e-01 3.63719e-04 3.55092e-03 - 3 sg_p2 3.70000e+02 1.18712e-01 1.78807e-03 -1.57084e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 6.23837e+01 2.12217e+00 1.70597e-04 1.64828e-01 - 5 sg_p4 7.79157e-01 1.34121e-02 5.22132e-04 5.92353e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.408e-01 -3.318e-02 -1.693e-08 -2.114e-01 -1.478e-03 - -3.318e-02 1.126e-01 3.095e-09 2.911e-01 2.564e-03 - -1.693e-08 3.095e-09 1.803e-08 2.290e-08 -4.701e-11 - -2.114e-01 2.911e-01 2.290e-08 4.507e+00 1.940e-02 - -1.478e-03 2.564e-03 -4.701e-11 1.940e-02 1.799e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.32749 1.000 -0.264 -0.000 -0.265 -0.294 - 2 0.57875 -0.264 1.000 0.000 0.409 0.570 - 3 0.00038 -0.000 0.000 1.000 0.000 -0.000 - 4 0.68487 -0.265 0.409 0.000 1.000 0.681 - 5 0.75478 -0.294 0.570 -0.000 0.681 1.000 -400 -383.669 +- 0.37518 -21.5657 +- 0.335505 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=24472.6 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.00000e+02 6.00000e+00 2.01358e-01 -3.05856e+03 - 2 sg_p1 9.00000e+00 1.20000e+00 2.01358e-01 -2.09033e+02 - 3 sg_p2 3.35000e+02 2.30000e+01 2.01358e-01 -1.48368e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -1.94112e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -7.96270e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24016.6 FROM MIGRAD STATUS=CONVERGED 509 CALLS 510 TOTAL - EDM=2.5866e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.03031e+02 2.26519e-01 7.06422e-04 -6.24953e-01 - 2 sg_p1 9.12153e+00 3.63993e-01 2.95185e-03 -8.05301e-02 - 3 sg_p2 3.99298e+02 7.10621e-01 6.21816e-04 1.57926e-02 - 4 sg_p3 2.14947e+01 1.13267e+00 1.39396e-03 -1.73297e-02 - 5 sg_p4 6.42062e-01 4.06347e-02 2.84361e-03 2.63915e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 5.131e-02 -2.172e-02 2.774e-02 -8.091e-02 -2.646e-03 - -2.172e-02 1.327e-01 1.233e-01 3.176e-01 1.317e-02 - 2.774e-02 1.233e-01 5.050e-01 3.697e-01 1.525e-02 - -8.091e-02 3.176e-01 3.697e-01 1.283e+00 4.116e-02 - -2.646e-03 1.317e-02 1.525e-02 4.116e-02 1.655e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.49329 1.000 -0.263 0.172 -0.315 -0.287 - 2 0.89097 -0.263 1.000 0.476 0.770 0.889 - 3 0.62717 0.172 0.476 1.000 0.459 0.527 - 4 0.89690 -0.315 0.770 0.459 1.000 0.893 - 5 0.94977 -0.287 0.889 0.527 0.893 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24016.6 FROM HESSE STATUS=OK 31 CALLS 541 TOTAL - EDM=2.57939e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.03031e+02 2.26798e-01 1.41284e-04 1.01207e-01 - 2 sg_p1 9.12153e+00 3.64169e-01 5.90369e-04 2.02560e-02 - 3 sg_p2 3.99298e+02 7.06750e-01 2.48726e-05 2.54828e+00 - 4 sg_p3 2.14947e+01 1.13406e+00 5.57583e-05 -9.89569e-01 - 5 sg_p4 6.42062e-01 4.06652e-02 5.68723e-04 2.88093e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 5.144e-02 -2.202e-02 2.804e-02 -8.193e-02 -2.679e-03 - -2.202e-02 1.328e-01 1.208e-01 3.183e-01 1.319e-02 - 2.804e-02 1.208e-01 4.995e-01 3.614e-01 1.495e-02 - -8.193e-02 3.183e-01 3.614e-01 1.286e+00 4.125e-02 - -2.679e-03 1.319e-02 1.495e-02 4.125e-02 1.658e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.49518 1.000 -0.266 0.175 -0.319 -0.290 - 2 0.89108 -0.266 1.000 0.469 0.770 0.889 - 3 0.62183 0.175 0.469 1.000 0.451 0.520 - 4 0.89717 -0.319 0.770 0.451 1.000 0.893 - 5 0.94985 -0.290 0.889 0.520 0.893 1.000 -400 -403.031 +- 0.226798 -9.12153 +- 0.364169 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=24696.6 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.00000e+02 6.00000e+00 2.01358e-01 -3.50567e+03 - 2 sg_p1 9.00000e+00 1.20000e+00 2.01358e-01 -2.99560e+02 - 3 sg_p2 3.35000e+02 2.30000e+01 2.01358e-01 -1.90457e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -2.28000e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -7.50850e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24177.3 FROM MIGRAD STATUS=CONVERGED 461 CALLS 462 TOTAL - EDM=2.05098e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.03536e+02 2.36042e-01 7.27613e-04 1.38133e-01 - 2 sg_p1 9.26052e+00 3.88073e-01 3.03064e-03 3.06014e-03 - 3 sg_p2 3.99846e+02 7.05843e-01 6.16081e-04 4.24773e-01 - 4 sg_p3 2.13604e+01 1.14532e+00 1.37198e-03 1.42343e-01 - 5 sg_p4 6.36255e-01 4.36783e-02 2.89979e-03 -2.83285e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 5.572e-02 -2.634e-02 2.796e-02 -9.283e-02 -3.232e-03 - -2.634e-02 1.508e-01 1.325e-01 3.480e-01 1.525e-02 - 2.796e-02 1.325e-01 4.982e-01 3.683e-01 1.636e-02 - -9.283e-02 3.480e-01 3.683e-01 1.312e+00 4.510e-02 - -3.232e-03 1.525e-02 1.636e-02 4.510e-02 1.913e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.51806 1.000 -0.287 0.168 -0.343 -0.313 - 2 0.90009 -0.287 1.000 0.483 0.782 0.898 - 3 0.63614 0.168 0.483 1.000 0.456 0.530 - 4 0.90455 -0.343 0.782 0.456 1.000 0.900 - 5 0.95487 -0.313 0.898 0.530 0.900 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24177.3 FROM HESSE STATUS=OK 31 CALLS 493 TOTAL - EDM=2.03888e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.03536e+02 2.36409e-01 1.45523e-04 1.18130e-01 - 2 sg_p1 9.26052e+00 3.89977e-01 1.21225e-04 4.34340e-02 - 3 sg_p2 3.99846e+02 7.03519e-01 1.23216e-04 2.54251e+00 - 4 sg_p3 2.13604e+01 1.15130e+00 5.48791e-05 -9.93073e-01 - 5 sg_p4 6.36255e-01 4.39145e-02 5.79958e-04 2.76000e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 5.589e-02 -2.689e-02 2.803e-02 -9.446e-02 -3.293e-03 - -2.689e-02 1.523e-01 1.317e-01 3.524e-01 1.543e-02 - 2.803e-02 1.317e-01 4.949e-01 3.651e-01 1.624e-02 - -9.446e-02 3.524e-01 3.651e-01 1.326e+00 4.564e-02 - -3.293e-03 1.543e-02 1.624e-02 4.564e-02 1.934e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.52024 1.000 -0.291 0.169 -0.347 -0.317 - 2 0.90112 -0.291 1.000 0.480 0.784 0.899 - 3 0.63303 0.169 0.480 1.000 0.451 0.525 - 4 0.90559 -0.347 0.784 0.451 1.000 0.901 - 5 0.95536 -0.317 0.899 0.525 0.901 1.000 -400 -403.536 +- 0.236409 -9.26052 +- 0.389977 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=24015.5 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.00000e+02 6.00000e+00 2.01358e-01 -2.73383e+03 - 2 sg_p1 9.00000e+00 1.20000e+00 2.01358e-01 -1.14601e+02 - 3 sg_p2 3.35000e+02 2.30000e+01 2.01358e-01 -1.01620e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -1.59452e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -8.70364e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23589.1 FROM MIGRAD STATUS=CONVERGED 571 CALLS 572 TOTAL - EDM=2.11975e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.02655e+02 2.13288e-01 6.62907e-04 -4.46168e-01 - 2 sg_p1 9.23949e+00 3.37872e-01 2.75680e-03 -1.32311e-01 - 3 sg_p2 3.98219e+02 8.68178e-01 7.02928e-04 2.98040e-01 - 4 sg_p3 2.22778e+01 1.33749e+00 1.59705e-03 -1.34034e-01 - 5 sg_p4 6.87624e-01 3.80009e-02 2.77016e-03 9.90234e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.549e-02 -1.871e-02 2.077e-02 -9.028e-02 -2.314e-03 - -1.871e-02 1.143e-01 1.614e-01 3.481e-01 1.139e-02 - 2.077e-02 1.614e-01 7.538e-01 6.352e-01 2.015e-02 - -9.028e-02 3.481e-01 6.352e-01 1.790e+00 4.538e-02 - -2.314e-03 1.139e-02 2.015e-02 4.538e-02 1.447e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.48247 1.000 -0.259 0.112 -0.316 -0.285 - 2 0.88740 -0.259 1.000 0.550 0.770 0.886 - 3 0.68165 0.112 0.550 1.000 0.547 0.610 - 4 0.89573 -0.316 0.770 0.547 1.000 0.892 - 5 0.94802 -0.285 0.886 0.610 0.892 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23589.1 FROM HESSE STATUS=OK 31 CALLS 603 TOTAL - EDM=2.11621e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.02655e+02 2.13549e-01 1.32581e-04 8.86008e-02 - 2 sg_p1 9.23949e+00 3.38145e-01 5.51360e-04 3.99260e-02 - 3 sg_p2 3.98219e+02 8.63799e-01 1.40586e-04 2.55955e+00 - 4 sg_p3 2.22778e+01 1.33974e+00 6.38820e-05 -9.69500e-01 - 5 sg_p4 6.87624e-01 3.80543e-02 5.54033e-04 3.84665e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.560e-02 -1.897e-02 2.093e-02 -9.145e-02 -2.344e-03 - -1.897e-02 1.145e-01 1.594e-01 3.492e-01 1.142e-02 - 2.093e-02 1.594e-01 7.462e-01 6.264e-01 1.990e-02 - -9.145e-02 3.492e-01 6.264e-01 1.796e+00 4.554e-02 - -2.344e-03 1.142e-02 1.990e-02 4.554e-02 1.451e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.48441 1.000 -0.263 0.113 -0.320 -0.288 - 2 0.88760 -0.263 1.000 0.545 0.770 0.886 - 3 0.67765 0.113 0.545 1.000 0.541 0.605 - 4 0.89610 -0.320 0.770 0.541 1.000 0.892 - 5 0.94817 -0.288 0.886 0.605 0.892 1.000 -400 -402.655 +- 0.213549 -9.23949 +- 0.338145 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=23933.8 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.00000e+02 6.00000e+00 2.01358e-01 -3.00563e+03 - 2 sg_p1 9.00000e+00 1.20000e+00 2.01358e-01 -2.26149e+02 - 3 sg_p2 3.35000e+02 2.30000e+01 2.01358e-01 -1.57290e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -1.98719e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -7.58184e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=23482 FROM MIGRAD STATUS=CONVERGED 425 CALLS 426 TOTAL - EDM=1.98551e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 2.6 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.03064e+02 2.30766e-01 4.51369e-05 5.86157e-01 - 2 sg_p1 9.18055e+00 3.67314e-01 -4.43730e-04 8.55470e-03 - 3 sg_p2 3.99566e+02 7.08192e-01 -8.00128e-05 -4.66991e-01 - 4 sg_p3 2.13892e+01 1.12890e+00 4.69804e-04 -1.79727e-01 - 5 sg_p4 6.36669e-01 4.03843e-02 7.38905e-05 1.36445e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 5.325e-02 -2.904e-02 2.726e-02 -9.686e-02 -3.527e-03 - -2.904e-02 1.351e-01 1.202e-01 3.188e-01 1.315e-02 - 2.726e-02 1.202e-01 5.015e-01 3.501e-01 1.456e-02 - -9.686e-02 3.188e-01 3.501e-01 1.275e+00 4.101e-02 - -3.527e-03 1.315e-02 1.456e-02 4.101e-02 1.635e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.56644 1.000 -0.342 0.167 -0.372 -0.378 - 2 0.88731 -0.342 1.000 0.462 0.768 0.885 - 3 0.64043 0.167 0.462 1.000 0.438 0.509 - 4 0.90083 -0.372 0.768 0.438 1.000 0.898 - 5 0.95189 -0.378 0.885 0.509 0.898 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23482 FROM HESSE STATUS=OK 35 CALLS 461 TOTAL - EDM=5.54045e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.03064e+02 2.33269e-01 7.19455e-04 1.02309e-01 - 2 sg_p1 9.18055e+00 3.92591e-01 3.01012e-03 3.00958e-02 - 3 sg_p2 3.99566e+02 7.11832e-01 6.13401e-04 2.54546e+00 - 4 sg_p3 2.13892e+01 1.16905e+00 1.37125e-03 -9.92320e-01 - 5 sg_p4 6.36669e-01 4.39485e-02 2.87997e-03 2.76861e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 5.442e-02 -2.298e-02 3.133e-02 -8.326e-02 -2.828e-03 - -2.298e-02 1.543e-01 1.349e-01 3.609e-01 1.554e-02 - 3.133e-02 1.349e-01 5.067e-01 3.816e-01 1.648e-02 - -8.326e-02 3.609e-01 3.816e-01 1.367e+00 4.638e-02 - -2.828e-03 1.554e-02 1.648e-02 4.638e-02 1.937e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.49395 1.000 -0.251 0.189 -0.305 -0.275 - 2 0.90095 -0.251 1.000 0.482 0.786 0.899 - 3 0.63094 0.189 0.482 1.000 0.459 0.526 - 4 0.90514 -0.305 0.786 0.459 1.000 0.901 - 5 0.95480 -0.275 0.899 0.526 0.901 1.000 -400 -403.064 +- 0.233269 -9.18055 +- 0.392591 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=24885.4 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.00000e+02 6.00000e+00 2.01358e-01 -3.11264e+03 - 2 sg_p1 9.00000e+00 1.20000e+00 2.01358e-01 -1.79480e+02 - 3 sg_p2 3.35000e+02 2.30000e+01 2.01358e-01 -1.39340e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -1.92985e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -8.63355e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24409.7 FROM MIGRAD STATUS=CONVERGED 428 CALLS 429 TOTAL - EDM=7.26443e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.02955e+02 2.19114e-01 6.87184e-04 -4.52991e-01 - 2 sg_p1 9.16571e+00 3.57674e-01 2.86480e-03 -1.28599e-01 - 3 sg_p2 3.99199e+02 7.40925e-01 6.46031e-04 5.84783e-01 - 4 sg_p3 2.16431e+01 1.21207e+00 1.45003e-03 -5.04696e-01 - 5 sg_p4 6.62907e-01 4.05793e-02 2.83164e-03 1.71367e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.801e-02 -2.192e-02 2.514e-02 -8.718e-02 -2.692e-03 - -2.192e-02 1.281e-01 1.292e-01 3.393e-01 1.300e-02 - 2.514e-02 1.292e-01 5.490e-01 4.252e-01 1.618e-02 - -8.718e-02 3.393e-01 4.252e-01 1.470e+00 4.429e-02 - -2.692e-03 1.300e-02 1.618e-02 4.429e-02 1.651e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.49883 1.000 -0.280 0.155 -0.328 -0.302 - 2 0.89599 -0.280 1.000 0.487 0.782 0.894 - 3 0.63326 0.155 0.487 1.000 0.473 0.538 - 4 0.90259 -0.328 0.782 0.473 1.000 0.899 - 5 0.95237 -0.302 0.894 0.538 0.899 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24409.7 FROM HESSE STATUS=OK 31 CALLS 460 TOTAL - EDM=7.27657e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.02955e+02 2.19385e-01 1.37437e-04 9.86503e-02 - 2 sg_p1 9.16571e+00 3.58424e-01 5.72960e-04 2.76226e-02 - 3 sg_p2 3.99199e+02 7.37765e-01 1.29206e-04 2.54932e+00 - 4 sg_p3 2.16431e+01 1.21551e+00 2.90006e-04 -9.85719e-01 - 5 sg_p4 6.62907e-01 4.06836e-02 5.66328e-04 3.31874e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.813e-02 -2.225e-02 2.533e-02 -8.836e-02 -2.729e-03 - -2.225e-02 1.286e-01 1.275e-01 3.414e-01 1.307e-02 - 2.533e-02 1.275e-01 5.443e-01 4.191e-01 1.598e-02 - -8.836e-02 3.414e-01 4.191e-01 1.478e+00 4.455e-02 - -2.729e-03 1.307e-02 1.598e-02 4.455e-02 1.659e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.50069 1.000 -0.283 0.157 -0.331 -0.305 - 2 0.89645 -0.283 1.000 0.482 0.783 0.895 - 3 0.62918 0.157 0.482 1.000 0.467 0.532 - 4 0.90317 -0.331 0.783 0.467 1.000 0.900 - 5 0.95262 -0.305 0.895 0.532 0.900 1.000 -400 -402.955 +- 0.219385 -9.16571 +- 0.358424 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=22933.4 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.00000e+02 6.00000e+00 2.01358e-01 -2.87100e+03 - 2 sg_p1 9.00000e+00 1.20000e+00 2.01358e-01 -1.93992e+02 - 3 sg_p2 3.35000e+02 2.30000e+01 2.01358e-01 -1.39002e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -1.82300e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -7.50242e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=22503.6 FROM MIGRAD STATUS=CONVERGED 449 CALLS 450 TOTAL - EDM=1.18063e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.03032e+02 2.33943e-01 7.06213e-04 9.04520e-02 - 2 sg_p1 9.10686e+00 3.76352e-01 2.94856e-03 -2.29097e-02 - 3 sg_p2 3.99344e+02 7.27483e-01 6.18170e-04 -1.42732e-01 - 4 sg_p3 2.14204e+01 1.15968e+00 1.38769e-03 7.24703e-02 - 5 sg_p4 6.41123e-01 4.21101e-02 2.84478e-03 -3.40374e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 5.473e-02 -2.306e-02 3.001e-02 -8.509e-02 -2.816e-03 - -2.306e-02 1.418e-01 1.295e-01 3.363e-01 1.412e-02 - 3.001e-02 1.295e-01 5.292e-01 3.838e-01 1.605e-02 - -8.509e-02 3.363e-01 3.838e-01 1.345e+00 4.369e-02 - -2.816e-03 1.412e-02 1.605e-02 4.369e-02 1.778e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.49289 1.000 -0.262 0.176 -0.314 -0.285 - 2 0.89116 -0.262 1.000 0.473 0.770 0.889 - 3 0.62460 0.176 0.473 1.000 0.455 0.523 - 4 0.89709 -0.314 0.770 0.455 1.000 0.893 - 5 0.94991 -0.285 0.889 0.523 0.893 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=22503.6 FROM HESSE STATUS=OK 31 CALLS 481 TOTAL - EDM=1.18704e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.03032e+02 2.34247e-01 1.41243e-04 1.01255e-01 - 2 sg_p1 9.10686e+00 3.78028e-01 1.17943e-04 1.78107e-02 - 3 sg_p2 3.99344e+02 7.25174e-01 1.23634e-04 2.54779e+00 - 4 sg_p3 2.14204e+01 1.16522e+00 5.55076e-05 -9.91505e-01 - 5 sg_p4 6.41123e-01 4.23208e-02 5.68957e-04 2.86134e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 5.487e-02 -2.352e-02 3.007e-02 -8.655e-02 -2.868e-03 - -2.352e-02 1.431e-01 1.286e-01 3.403e-01 1.427e-02 - 3.007e-02 1.286e-01 5.259e-01 3.804e-01 1.593e-02 - -8.655e-02 3.403e-01 3.804e-01 1.358e+00 4.417e-02 - -2.868e-03 1.427e-02 1.593e-02 4.417e-02 1.796e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.49488 1.000 -0.265 0.177 -0.317 -0.289 - 2 0.89218 -0.265 1.000 0.469 0.772 0.890 - 3 0.62148 0.177 0.469 1.000 0.450 0.519 - 4 0.89813 -0.317 0.772 0.450 1.000 0.894 - 5 0.95042 -0.289 0.890 0.519 0.894 1.000 -400 -403.032 +- 0.234247 -9.10686 +- 0.378028 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=26088.1 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.00000e+02 6.00000e+00 2.01358e-01 -3.25521e+03 - 2 sg_p1 9.00000e+00 1.20000e+00 2.01358e-01 -2.24913e+02 - 3 sg_p2 3.35000e+02 2.30000e+01 2.01358e-01 -1.58204e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -2.06494e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -8.44374e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.85098 added to diagonal of error matrix -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (43592.9) to force MIGRAD to back out of this region. Error log follows -Parameter values: sg_p0=411.751, sg_p1=10.1393, sg_p2=221.646, sg_p3=12.3173, sg_p4=0.392797 -RooGaussian::signalComb[ x=x mean=sg_p2 sigma=sg_p3 ] - p.d.f normalization integral is zero or negative @ x=x=352.5, mean=sg_p2=221.646, sigma=sg_p3=12.3173 - p.d.f normalization integral is zero or negative @ x=x=355.5, mean=sg_p2=221.646, sigma=sg_p3=12.3173 - p.d.f normalization integral is zero or negative @ x=x=358.5, mean=sg_p2=221.646, sigma=sg_p3=12.3173 - p.d.f normalization integral is zero or negative @ x=x=361.5, mean=sg_p2=221.646, sigma=sg_p3=12.3173 - p.d.f normalization integral is zero or negative @ x=x=364.5, mean=sg_p2=221.646, sigma=sg_p3=12.3173 - p.d.f normalization integral is zero or negative @ x=x=367.5, mean=sg_p2=221.646, sigma=sg_p3=12.3173 - p.d.f normalization integral is zero or negative @ x=x=370.5, mean=sg_p2=221.646, sigma=sg_p3=12.3173 - p.d.f normalization integral is zero or negative @ x=x=373.5, mean=sg_p2=221.646, sigma=sg_p3=12.3173 - p.d.f normalization integral is zero or negative @ x=x=376.5, mean=sg_p2=221.646, sigma=sg_p3=12.3173 - p.d.f normalization integral is zero or negative @ x=x=379.5, mean=sg_p2=221.646, sigma=sg_p3=12.3173 - p.d.f normalization integral is zero or negative @ x=x=382.5, mean=sg_p2=221.646, sigma=sg_p3=12.3173 - p.d.f normalization integral is zero or negative @ x=x=385.5, mean=sg_p2=221.646, sigma=sg_p3=12.3173 - ... (remaining 23 messages suppressed) - - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=25604.6 FROM MIGRAD STATUS=CONVERGED 410 CALLS 411 TOTAL - EDM=8.53169e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.03032e+02 2.19508e-01 7.06641e-04 2.77604e-01 - 2 sg_p1 9.13654e+00 3.52245e-01 2.95146e-03 6.85002e-02 - 3 sg_p2 3.99251e+02 6.94391e-01 6.24869e-04 -5.23482e-02 - 4 sg_p3 2.15673e+01 1.10701e+00 1.40379e-03 1.05606e-01 - 5 sg_p4 6.42963e-01 3.92422e-02 2.83913e-03 -5.31174e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.818e-02 -2.053e-02 2.561e-02 -7.720e-02 -2.495e-03 - -2.053e-02 1.242e-01 1.174e-01 3.004e-01 1.231e-02 - 2.561e-02 1.174e-01 4.822e-01 3.562e-01 1.450e-02 - -7.720e-02 3.004e-01 3.562e-01 1.226e+00 3.884e-02 - -2.495e-03 1.231e-02 1.450e-02 3.884e-02 1.543e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.49407 1.000 -0.265 0.168 -0.318 -0.289 - 2 0.89076 -0.265 1.000 0.480 0.770 0.889 - 3 0.62968 0.168 0.480 1.000 0.463 0.531 - 4 0.89677 -0.318 0.770 0.463 1.000 0.893 - 5 0.94966 -0.289 0.889 0.531 0.893 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=25604.6 FROM HESSE STATUS=OK 31 CALLS 442 TOTAL - EDM=8.53668e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.03032e+02 2.19804e-01 1.41328e-04 1.01235e-01 - 2 sg_p1 9.13654e+00 3.53820e-01 1.18058e-04 2.27585e-02 - 3 sg_p2 3.99251e+02 6.92171e-01 1.24974e-04 2.54877e+00 - 4 sg_p3 2.15673e+01 1.11233e+00 5.61518e-05 -9.87685e-01 - 5 sg_p4 6.42963e-01 3.94399e-02 5.67827e-04 2.89973e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.831e-02 -2.094e-02 2.565e-02 -7.854e-02 -2.542e-03 - -2.094e-02 1.253e-01 1.167e-01 3.040e-01 1.244e-02 - 2.565e-02 1.167e-01 4.791e-01 3.532e-01 1.440e-02 - -7.854e-02 3.040e-01 3.532e-01 1.238e+00 3.927e-02 - -2.542e-03 1.244e-02 1.440e-02 3.927e-02 1.559e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.49612 1.000 -0.269 0.169 -0.321 -0.293 - 2 0.89179 -0.269 1.000 0.476 0.772 0.890 - 3 0.62659 0.169 0.476 1.000 0.459 0.527 - 4 0.89781 -0.321 0.772 0.459 1.000 0.894 - 5 0.95017 -0.293 0.890 0.527 0.894 1.000 -400 -403.032 +- 0.219804 -9.13654 +- 0.35382 -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 403.031 +- 0.226798 (stat) - 0.376479 + 0.504637 (syst); -0.393186/+0.517221 (total) - Uncertainty on sg_p1 = 9.12153 +- 0.364169 (stat) - 0.014669 + 0.138994 (syst); -0.182675/+0.229073 (total) - Uncertainty on sg_p2 = 399.298 +- 0.70675 (stat) - 1.07894 + 0.548609 (syst); -1.13534/+0.652569 (total) - Uncertainty on sg_p3 = 21.4947 +- 1.13406 (stat) - 0.134294 + 0.783059 (syst); -0.582718/+0.966802 (total) - Uncertainty on sg_p4 = 0.642062 +- 0.0406652 (stat) - 0.00580743 + 0.0455621 (syst); -0.0211457/+0.049893 (total) - === Baseline plot ===
- norm = 790.651 -JEC lnN 1.00381 - -JER lnN 1.01925 - -btag lnN 1.06523 - -sg_p0 param 403.031 -0.393186/+0.517221 -sg_p1 param 9.12153 -0.182675/+0.229073 -sg_p2 param 399.298 -1.13534/+0.652569 -sg_p3 param 21.4947 -0.582718/+0.966802 -sg_p4 param 0.642062 -0.0211457/+0.049893 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_450_crystal_1_285_624/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_450_crystal_1_285_624/data_bkg.log deleted file mode 100644 index 118332d..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_450_crystal_1_285_624/data_bkg.log +++ /dev/null @@ -1,750 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [252,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=62921.6 FROM MIGRAD STATUS=INITIATE 90 CALLS 91 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.21879e-02 5.09000e-01 0.00000e+00 -9.80911e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -1.28354e+01 - 3 par_crystal_2 2.65669e+02 4.00000e+00 0.00000e+00 3.55320e+02 - 4 par_crystal_3 1.06488e+01 2.70000e+00 -4.48284e-01 -2.33576e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62883.4 FROM HESSE STATUS=OK 29 CALLS 257 TOTAL - EDM=4.91113 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.66060e-01 4.16121e-03 3.52377e-04 -4.74293e+00 - 2 par_crystal_1 4.45375e+00 2.73731e+00 1.77223e-01 2.66184e-01 - 3 par_crystal_2 2.67385e+02 2.04373e-01 8.29600e-04 2.81454e+02 - 4 par_crystal_3 1.36851e+01 5.38888e-01 1.69331e-03 -1.62103e+00 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=62883.3 FROM MIGRAD STATUS=FAILED 358 CALLS 359 TOTAL - EDM=0.00753244 STRATEGY= 1 ERR MATRIX APPROXIMATE - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.65093e-01 8.39913e-03 1.31861e-03 5.42788e+00 - 2 par_crystal_1 5.09910e+00 4.33634e+00 3.39194e-01 -6.59950e-03 - 3 par_crystal_2 2.67339e+02 1.86486e-01 3.32550e-03 -8.58879e+00 - 4 par_crystal_3 1.37140e+01 6.01780e-01 6.34807e-03 1.69258e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.055e-05 1.617e-04 4.699e-04 2.892e-03 - 1.617e-04 1.762e-02 -1.356e-04 -1.108e-03 - 4.699e-04 -1.356e-04 3.478e-02 3.255e-02 - 2.892e-03 -1.108e-03 3.255e-02 3.624e-01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.60853 1.000 0.145 0.300 0.572 - 2 0.19009 0.145 1.000 -0.005 -0.014 - 3 0.33449 0.300 -0.005 1.000 0.290 - 4 0.59243 0.572 -0.014 0.290 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7660e-01 8.1807e-01 1.6519e+00 1.7066e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.178308 TO DIAGONAL. - FCN=62883.3 FROM HESSE STATUS=NOT POSDEF 33 CALLS 392 TOTAL - EDM=3.36849 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.65093e-01 8.70034e-02 2.63722e-04 -1.21988e+00 - 2 par_crystal_1 5.09910e+00 4.18121e+00 5.00000e-01 1.54425e+00 - 3 par_crystal_2 2.67339e+02 5.27040e+00 9.57407e-02 3.75715e-01 - 4 par_crystal_3 1.37140e+01 6.68546e+00 2.53923e-04 -2.07863e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.595e-03 -2.994e-03 4.642e-01 6.089e-01 - -2.994e-03 1.536e-02 -1.944e-01 -2.569e-01 - 4.642e-01 -1.944e-01 2.855e+01 3.736e+01 - 6.089e-01 -2.569e-01 3.736e+01 4.914e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99751 1.000 -0.277 0.997 0.997 - 2 0.37560 -0.277 1.000 -0.293 -0.296 - 3 0.99795 0.997 -0.293 1.000 0.997 - 4 0.99797 0.997 -0.296 0.997 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=62983.1 FROM MIGRAD STATUS=INITIATE 29 CALLS 30 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 6.05383e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -1.33666e+02 - 3 par_gaus_exp_2 3.19008e-01 3.05000e-01 -9.67731e-01 -3.33619e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.00383 added to diagonal of error matrix - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62882.7 FROM MIGRAD STATUS=CONVERGED 228 CALLS 229 TOTAL - EDM=4.4408e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.69095e+02 7.01852e-01 4.07755e-03 2.89794e-02 - 2 par_gaus_exp_1 1.61044e+01 1.09719e+00 7.43010e-03 -1.84784e-02 - 3 par_gaus_exp_2 1.90527e-01 1.58774e-02 1.98778e-03 -6.23432e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 4.929e-01 5.914e-01 9.067e-03 - 5.914e-01 1.207e+00 1.483e-02 - 9.067e-03 1.483e-02 2.521e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.82590 1.000 0.767 0.813 - 2 0.85979 0.767 1.000 0.850 - 3 0.88644 0.813 0.850 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62882.7 FROM HESSE STATUS=OK 16 CALLS 245 TOTAL - EDM=4.28199e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.69095e+02 6.86832e-01 1.63102e-04 -5.76704e-01 - 2 par_gaus_exp_1 1.61044e+01 1.07335e+00 2.97204e-04 -5.72398e-01 - 3 par_gaus_exp_2 1.90527e-01 1.55212e-02 7.95110e-05 -1.13813e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 4.720e-01 5.579e-01 8.580e-03 - 5.579e-01 1.155e+00 1.406e-02 - 8.580e-03 1.406e-02 2.410e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.81734 1.000 0.756 0.805 - 2 0.85292 0.756 1.000 0.843 - 3 0.88081 0.805 0.843 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,624] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.3296 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=286.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=286.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=289.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=289.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=295.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=295.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=298.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=298.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=301.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=301.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - ... (remaining 216 messages suppressed) -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.3296) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.733611 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=313.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=316.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=319.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=325.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=328.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=331.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=334.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=340.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=343.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=346.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - ... (remaining 94 messages suppressed) -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.733611) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0733618 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0733618 - - FCN=103426 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57146e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.55551e+03 - 3 par_novo_2 -1.33526e+00 2.00000e+01 0.00000e+00 1.53308e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103192 FROM MIGRAD STATUS=CONVERGED 126 CALLS 127 TOTAL - EDM=1.07924e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.17697e+01 1.69443e-01** at limit ** - 2 par_novo_1 3.87878e+01 2.27475e+00 4.96100e-03 -6.14249e-02 - 3 par_novo_2 -1.26766e+00 7.00630e-02 3.67886e-05 3.77179e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 2.244e-10 -2.632e-07 -1.276e-07 - -2.632e-07 5.190e+00 1.540e-01 - -1.276e-07 1.540e-01 4.909e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.43392 1.000 -0.008 -0.122 - 2 0.97109 -0.008 1.000 0.965 - 3 0.97152 -0.122 0.965 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103192 FROM HESSE STATUS=OK 20 CALLS 147 TOTAL - EDM=1.23299e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.15107e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.87878e+01 2.30410e+00 1.98440e-04 4.51799e-01 - 3 par_novo_2 -1.26766e+00 7.13892e-02 1.47154e-06 -1.26769e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 2.143e-10 3.996e-06 -2.087e-07 - 3.996e-06 5.325e+00 1.518e-01 - -2.087e-07 1.518e-01 5.096e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.80390 1.000 0.118 -0.200 - 2 0.97183 0.118 1.000 0.922 - 3 0.97258 -0.200 0.922 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107617 FROM MIGRAD STATUS=INITIATE 36 CALLS 37 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 6.60405e+03 - 2 par_crystal_1_1 7.90153e-02 5.09000e-01 -1.80421e+00 3.05679e+03 - 3 par_crystal_1_2 2.60000e+02 4.00000e+00 0.00000e+00 1.48888e+03 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 6.99071e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.17529 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.7903e-03 5.8606e-02 5.0897e-01 3.4352e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.006225 TO DIAGONAL. - FCN=103191 FROM MIGRAD STATUS=CONVERGED 353 CALLS 354 TOTAL - EDM=3.7306e-06 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.37913e-01 3.41139e-02 6.19492e-04 4.10204e-01 - 2 par_crystal_1_1 4.44737e+00 5.69760e-01 2.21494e-02 9.88736e-03 - 3 par_crystal_1_2 2.79979e+02 3.40482e+01 2.79535e-01 -2.97577e-04 - 4 par_crystal_1_3 1.87584e+01 2.98857e+00 3.96232e-03 -6.40797e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.164e-03 3.582e-03 3.594e-03 9.898e-02 - 3.582e-03 3.375e-01 -1.052e-02 7.382e-01 - 3.594e-03 -1.052e-02 3.148e+00 6.243e-01 - 9.898e-02 7.382e-01 6.243e-01 9.086e+00 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99630 1.000 0.181 0.059 0.962 - 2 0.95650 0.181 1.000 -0.010 0.422 - 3 0.63948 0.059 -0.010 1.000 0.117 - 4 0.99690 0.962 0.422 0.117 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103191 FROM HESSE STATUS=OK 27 CALLS 381 TOTAL - EDM=6.06842e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 2.37913e-01 2.12502e-01 1.23898e-04 -8.36786e+01 - 2 par_crystal_1_1 4.44737e+00 5.06952e-01 8.85975e-04 -1.65463e+01 - 3 par_crystal_1_2 2.79979e+02 2.96341e+01 5.00000e-01 7.80831e+00 - 4 par_crystal_1_3 1.87584e+01 1.90925e+01 1.58493e-04 2.18231e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.578e-02 1.663e-02 2.427e-02 3.730e+00 - 1.663e-02 2.650e-01 -4.299e-02 1.684e+00 - 2.427e-02 -4.299e-02 1.850e+00 2.341e+00 - 3.730e+00 1.684e+00 2.341e+00 3.045e+02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99991 1.000 0.151 0.083 0.999 - 2 0.94385 0.151 1.000 -0.061 0.187 - 3 0.80384 0.083 -0.061 1.000 0.099 - 4 0.99991 0.999 0.187 0.099 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 13889.7 - Background number of gaus_exp_252_330 = 13889.7 - Background number of novo_285_624 = 17637.2 - Background number of crystal_1_285_624 = 17637.2 - Background number of gaus_bern_285_624 = 17637.2 - Background number of landau_285_624 = 17637.2 -par_crystal_0 param 0.165093 0.0870034 -par_crystal_1 param 5.0991 4.18121 -par_crystal_2 param 267.339 5.2704 -par_crystal_3 param 13.714 6.68546 -par_crystal_1_0 param 0.237913 0.212502 -par_crystal_1_1 param 4.44737 0.506952 -par_crystal_1_2 param 279.979 29.6341 -par_crystal_1_3 param 18.7584 19.0925 -par_gaus_exp_0 param 269.095 0.686832 -par_gaus_exp_1 param 16.1044 1.07335 -par_gaus_exp_2 param 0.190527 0.0155212 -par_novo_0 param 250 31.5107 -par_novo_1 param 38.7878 2.3041 -par_novo_2 param -1.26766 0.0713892 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_450_crystal_1_285_624/datacard_450_crystal_1_285_624.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_450_crystal_1_285_624/datacard_450_crystal_1_285_624.txt deleted file mode 100644 index 1b07531..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_450_crystal_1_285_624/datacard_450_crystal_1_285_624.txt +++ /dev/null @@ -1,31 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_450.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_crystal_1_285_624.root HbbHbb:f_crystal_1 -shapes data_obs HbbHbb w_background_crystal_1_285_624.root HbbHbb:data_obs_crystal_1_285_624 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 1083.26 17637.2 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06507 - -JER lnN 1.01521 - -JEC lnN 1.00732 - -trigger lnN 1.10 - -PDF lnN 1.01846991095 - -sg_p0 param 453.121 -0.497337/+0.712236 -sg_p1 param 13.2664 -0.387695/+0.262907 -sg_p2 param 441.85 -2.76371/+2.88009 -sg_p3 param 39.952 -2.5136/+2.92847 -sg_p4 param 0.869549 -0.0148009/+0.0189113 -par_crystal_1_0 param 0.237913 0.212502 -par_crystal_1_1 param 4.44737 0.506952 -par_crystal_1_2 param 279.979 29.6341 -par_crystal_1_3 param 18.7584 19.0925 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_450_crystal_1_285_624/pdf.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_450_crystal_1_285_624/pdf.log deleted file mode 100644 index 823f341..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_450_crystal_1_285_624/pdf.log +++ /dev/null @@ -1,10 +0,0 @@ -[?1034h FCN=9.42219 FROM MIGRAD STATUS=CONVERGED 62 CALLS 63 TOTAL - EDM=3.69018e-10 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 Constant 1.61838e+01 2.04083e+00 2.68103e-03 -9.45046e-06 - 2 Mean 1.00001e+00 2.14045e-03 3.36992e-06 -5.72729e-03 - 3 Sigma 1.84699e-02 1.55576e-03 3.84421e-05 -9.86497e-04 -1.00001004927 +/- 0.00214044725813 -0.0184699109466 +/- 0.00155575701095 -PDF lnN 1.01846991095 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_450_crystal_1_285_624/signal450_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_450_crystal_1_285_624/signal450_sig.log deleted file mode 100644 index 758dffb..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_450_crystal_1_285_624/signal450_sig.log +++ /dev/null @@ -1,849 +0,0 @@ - -Processing test.c... -nSignal_init = 100000 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=15106.7 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.45000e+02 7.00000e+00 2.01358e-01 9.40956e+02 - 2 sg_p1 1.90000e+01 3.20000e+00 2.01358e-01 -1.15795e+02 - 3 sg_p2 4.50000e+02 8.00000e+00 2.01358e-01 5.60158e+02 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -7.43253e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -2.02042e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14616.9 FROM MIGRAD STATUS=CONVERGED 237 CALLS 238 TOTAL - EDM=3.59834e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.33700e+02 5.20779e-01 1.28024e-03 -4.50888e-02 - 2 sg_p1 2.45512e+01 4.32325e-01 2.13929e-03 2.15071e-02 - 3 sg_p2 4.10000e+02 7.56422e-01 1.62500e-02** at limit ** - 4 sg_p3 9.59075e+01 9.76509e+00 3.57927e-02 -4.80697e-03 - 5 sg_p4 8.98300e-01 1.09856e-02 2.31920e-03 1.35348e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.712e-01 -3.295e-02 -7.320e-06 -1.029e+00 -1.066e-03 - -3.295e-02 1.870e-01 4.421e-06 1.512e+00 2.106e-03 - -7.320e-06 4.421e-06 3.900e-05 3.605e-04 1.357e-07 - -1.029e+00 1.512e+00 3.605e-04 1.055e+02 6.647e-02 - -1.066e-03 2.106e-03 1.357e-07 6.647e-02 1.207e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22083 1.000 -0.146 -0.002 -0.192 -0.186 - 2 0.45738 -0.146 1.000 0.002 0.340 0.443 - 3 0.00601 -0.002 0.002 1.000 0.006 0.002 - 4 0.60064 -0.192 0.340 0.006 1.000 0.589 - 5 0.64515 -0.186 0.443 0.002 0.589 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14616.9 FROM HESSE STATUS=OK 31 CALLS 269 TOTAL - EDM=3.62828e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.33700e+02 5.22464e-01 2.56047e-04 -3.28756e-01 - 2 sg_p1 2.45512e+01 4.36897e-01 8.55715e-05 3.54316e-01 - 3 sg_p2 4.10000e+02 7.56439e-01 3.24999e-03 -1.56999e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 9.59075e+01 1.00551e+01 1.43171e-03 1.14101e+00 - 5 sg_p4 8.98300e-01 1.13202e-02 4.63840e-04 9.21649e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.730e-01 -3.575e-02 -2.151e-06 -1.151e+00 -1.179e-03 - -3.575e-02 1.909e-01 1.441e-06 1.696e+00 2.279e-03 - -2.151e-06 1.441e-06 3.900e-05 1.093e-04 4.737e-08 - -1.151e+00 1.696e+00 1.093e-04 1.126e+02 7.452e-02 - -1.179e-03 2.279e-03 4.737e-08 7.452e-02 1.282e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23428 1.000 -0.157 -0.001 -0.208 -0.199 - 2 0.47504 -0.157 1.000 0.001 0.366 0.461 - 3 0.00175 -0.001 0.001 1.000 0.002 0.001 - 4 0.63167 -0.208 0.366 0.002 1.000 0.620 - 5 0.67100 -0.199 0.461 0.001 0.620 1.000 -450 -433.7 +- 0.522464 -24.5512 +- 0.436897 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=14967 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.45000e+02 7.00000e+00 2.01358e-01 7.30094e+02 - 2 sg_p1 1.90000e+01 3.20000e+00 2.01358e-01 -7.17086e+01 - 3 sg_p2 4.50000e+02 8.00000e+00 2.01358e-01 4.92262e+02 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 1.24799e+00 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -2.52207e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14568.3 FROM MIGRAD STATUS=CONVERGED 225 CALLS 226 TOTAL - EDM=1.40963e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.35880e+02 5.28453e-01 1.25742e-03 3.65467e-02 - 2 sg_p1 2.47804e+01 4.36143e-01 2.15058e-03 8.90109e-02 - 3 sg_p2 4.10000e+02 8.41699e-01 1.71227e-02** at limit ** - 4 sg_p3 9.34154e+01 9.89175e+00 2.81029e-02 3.92610e-03 - 5 sg_p4 9.04757e-01 1.10728e-02 2.34320e-03 -1.13912e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.793e-01 -4.062e-02 -3.574e-06 -1.243e+00 -1.334e-03 - -4.062e-02 1.903e-01 1.963e-06 1.596e+00 2.205e-03 - -3.574e-06 1.963e-06 1.004e-05 1.505e-04 5.291e-08 - -1.243e+00 1.596e+00 1.505e-04 1.043e+02 6.945e-02 - -1.334e-03 2.205e-03 5.291e-08 6.945e-02 1.227e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.26417 1.000 -0.176 -0.002 -0.230 -0.228 - 2 0.47132 -0.176 1.000 0.001 0.358 0.457 - 3 0.00513 -0.002 0.001 1.000 0.005 0.002 - 4 0.62620 -0.230 0.358 0.005 1.000 0.614 - 5 0.66724 -0.228 0.457 0.002 0.614 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14568.3 FROM HESSE STATUS=OK 31 CALLS 257 TOTAL - EDM=1.45125e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.35880e+02 5.30103e-01 2.51483e-04 -2.63606e-01 - 2 sg_p1 2.47804e+01 4.39593e-01 4.30116e-04 3.69632e-01 - 3 sg_p2 4.10000e+02 8.41739e-01 3.42455e-03 -1.57118e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 9.34154e+01 1.01144e+01 1.12412e-03 1.02300e+00 - 5 sg_p4 9.04757e-01 1.13218e-02 9.37280e-05 9.43325e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.810e-01 -4.308e-02 -6.126e-07 -1.344e+00 -1.432e-03 - -4.308e-02 1.933e-01 3.606e-07 1.730e+00 2.336e-03 - -6.126e-07 3.606e-07 1.004e-05 2.633e-05 1.041e-08 - -1.344e+00 1.730e+00 2.633e-05 1.094e+02 7.528e-02 - -1.432e-03 2.336e-03 1.041e-08 7.528e-02 1.282e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.27490 1.000 -0.185 -0.000 -0.242 -0.238 - 2 0.48405 -0.185 1.000 0.000 0.376 0.469 - 3 0.00087 -0.000 0.000 1.000 0.001 0.000 - 4 0.64751 -0.242 0.376 0.001 1.000 0.636 - 5 0.68509 -0.238 0.469 0.000 0.636 1.000 -450 -435.88 +- 0.530103 -24.7804 +- 0.439593 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=14989.3 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.45000e+02 7.00000e+00 2.01358e-01 1.09913e+03 - 2 sg_p1 1.90000e+01 3.20000e+00 2.01358e-01 -1.79281e+02 - 3 sg_p2 4.50000e+02 8.00000e+00 2.01358e-01 6.15691e+02 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -1.35305e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -1.43184e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14396.8 FROM MIGRAD STATUS=CONVERGED 259 CALLS 260 TOTAL - EDM=2.88948e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.31562e+02 5.09368e-01 1.30052e-03 -5.36209e-02 - 2 sg_p1 2.44193e+01 3.99415e-01 2.10037e-03 1.06473e-02 - 3 sg_p2 4.10000e+02 7.22690e-01 1.57718e-02** at limit ** - 4 sg_p3 1.00000e+02 1.55471e+01 7.04637e-02** at limit ** - 5 sg_p4 8.97810e-01 8.75371e-03 2.28074e-03 2.04575e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.595e-01 -1.470e-02 -3.574e-07 3.497e-04 -3.281e-04 - -1.470e-02 1.596e-01 -3.286e-08 -5.660e-04 1.020e-03 - -3.574e-07 -3.286e-08 5.312e-07 -1.926e-08 -7.103e-09 - 3.497e-04 -5.660e-04 -1.926e-08 1.262e-03 -2.615e-05 - -3.281e-04 1.020e-03 -7.103e-09 -2.615e-05 7.665e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.09157 1.000 -0.072 -0.001 0.019 -0.074 - 2 0.29639 -0.072 1.000 -0.000 -0.040 0.292 - 3 0.00174 -0.001 -0.000 1.000 -0.001 -0.001 - 4 0.08650 0.019 -0.040 -0.001 1.000 -0.084 - 5 0.30486 -0.074 0.292 -0.001 -0.084 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14396.8 FROM HESSE STATUS=OK 31 CALLS 291 TOTAL - EDM=2.76365e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.31562e+02 5.09297e-01 2.60104e-04 -3.94063e-01 - 2 sg_p1 2.44193e+01 3.99210e-01 8.40147e-05 3.45541e-01 - 3 sg_p2 4.10000e+02 7.22718e-01 3.15436e-03 -1.57070e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 1.00000e+02 1.57628e+01 1.40927e-02 1.56988e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 5 sg_p4 8.97810e-01 8.72528e-03 9.12295e-05 9.20031e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.594e-01 -1.474e-02 -7.385e-08 6.324e-05 -3.205e-04 - -1.474e-02 1.594e-01 -8.717e-09 -1.029e-04 1.011e-03 - -7.385e-08 -8.717e-09 5.312e-07 -7.301e-10 -1.575e-09 - 6.324e-05 -1.029e-04 -7.301e-10 1.280e-03 -4.742e-06 - -3.205e-04 1.011e-03 -1.575e-09 -4.742e-06 7.615e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.09005 1.000 -0.072 -0.000 0.003 -0.072 - 2 0.29480 -0.072 1.000 -0.000 -0.007 0.290 - 3 0.00033 -0.000 -0.000 1.000 -0.000 -0.000 - 4 0.01563 0.003 -0.007 -0.000 1.000 -0.015 - 5 0.29498 -0.072 0.290 -0.000 -0.015 1.000 -450 -431.562 +- 0.509297 -24.4193 +- 0.39921 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=12740.9 FROM MIGRAD STATUS=INITIATE 45 CALLS 46 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.50000e+02 6.00000e+00 0.00000e+00 -8.59626e+02 - 2 sg_p1 1.40000e+01 2.20000e+00 0.00000e+00 2.90307e+02 - 3 sg_p2 4.35000e+02 1.10000e+01 0.00000e+00 -9.30862e+02 - 4 sg_p3 3.11611e+01 1.40000e+01 -7.72180e-01 1.25776e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -5.90098e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12371.9 FROM MIGRAD STATUS=CONVERGED 204 CALLS 205 TOTAL - EDM=1.72857e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.53121e+02 3.12103e-01 7.60916e-04 -1.37805e-01 - 2 sg_p1 1.32664e+01 3.51765e-01 1.66864e-03 -1.59663e-01 - 3 sg_p2 4.41850e+02 2.88341e+00 3.42150e-03 -4.30161e-02 - 4 sg_p3 3.99520e+01 3.27521e+00 2.78644e-03 -1.95155e-02 - 5 sg_p4 8.69549e-01 2.03464e-02 2.42525e-03 7.02356e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.741e-02 -2.019e-02 -5.897e-02 -2.380e-01 -1.352e-03 - -2.019e-02 1.238e-01 -4.014e-01 6.784e-01 5.251e-03 - -5.897e-02 -4.014e-01 8.322e+00 -4.133e+00 -2.949e-02 - -2.380e-01 6.784e-01 -4.133e+00 1.074e+01 5.122e-02 - -1.352e-03 5.251e-03 -2.949e-02 5.122e-02 4.145e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.32114 1.000 -0.184 -0.066 -0.233 -0.213 - 2 0.73542 -0.184 1.000 -0.395 0.588 0.733 - 3 0.54335 -0.066 -0.395 1.000 -0.437 -0.502 - 4 0.77539 -0.233 0.588 -0.437 1.000 0.768 - 5 0.85259 -0.213 0.733 -0.502 0.768 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12371.9 FROM HESSE STATUS=OK 31 CALLS 236 TOTAL - EDM=1.73002e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.53121e+02 3.12202e-01 1.52183e-04 1.04231e-01 - 2 sg_p1 1.32664e+01 3.54275e-01 3.33728e-04 -6.67445e-02 - 3 sg_p2 4.41850e+02 2.90658e+00 6.84300e-04 1.24877e-01 - 4 sg_p3 3.99520e+01 3.31061e+00 1.11458e-04 -6.09081e-01 - 5 sg_p4 8.69549e-01 2.05823e-02 4.85050e-04 8.31731e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.747e-02 -2.060e-02 -5.492e-02 -2.421e-01 -1.378e-03 - -2.060e-02 1.256e-01 -4.183e-01 6.988e-01 5.382e-03 - -5.492e-02 -4.183e-01 8.456e+00 -4.334e+00 -3.074e-02 - -2.421e-01 6.988e-01 -4.334e+00 1.097e+01 5.275e-02 - -1.378e-03 5.382e-03 -3.074e-02 5.275e-02 4.242e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.32202 1.000 -0.186 -0.060 -0.234 -0.214 - 2 0.73982 -0.186 1.000 -0.406 0.595 0.738 - 3 0.55356 -0.060 -0.406 1.000 -0.450 -0.513 - 4 0.78084 -0.234 0.595 -0.450 1.000 0.773 - 5 0.85624 -0.214 0.738 -0.513 0.773 1.000 -450 -453.121 +- 0.312202 -13.2664 +- 0.354275 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=12831.2 FROM MIGRAD STATUS=INITIATE 47 CALLS 48 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.50000e+02 6.00000e+00 0.00000e+00 -9.71963e+02 - 2 sg_p1 1.40000e+01 2.20000e+00 0.00000e+00 2.47720e+02 - 3 sg_p2 4.35000e+02 1.10000e+01 0.00000e+00 -9.59810e+02 - 4 sg_p3 3.20356e+01 1.40000e+01 -7.54886e-01 1.25318e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -5.92447e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12439.7 FROM MIGRAD STATUS=CONVERGED 195 CALLS 196 TOTAL - EDM=5.05245e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.53816e+02 3.21132e-01 7.83772e-04 -7.95633e-02 - 2 sg_p1 1.33997e+01 3.69195e-01 1.71799e-03 1.80096e-01 - 3 sg_p2 4.44337e+02 2.53515e+00 3.11461e-03 -5.82291e-02 - 4 sg_p3 3.80604e+01 2.91065e+00 2.47607e-03 7.49358e-02 - 5 sg_p4 8.58912e-01 2.26324e-02 2.50700e-03 -6.85706e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.031e-01 -2.126e-02 -8.734e-02 -2.148e-01 -1.521e-03 - -2.126e-02 1.364e-01 -3.383e-01 6.405e-01 6.246e-03 - -8.734e-02 -3.383e-01 6.432e+00 -2.789e+00 -2.624e-02 - -2.148e-01 6.405e-01 -2.789e+00 8.480e+00 5.167e-02 - -1.521e-03 6.246e-03 -2.624e-02 5.167e-02 5.129e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.33218 1.000 -0.179 -0.107 -0.230 -0.209 - 2 0.74782 -0.179 1.000 -0.361 0.596 0.747 - 3 0.50601 -0.107 -0.361 1.000 -0.378 -0.457 - 4 0.78747 -0.230 0.596 -0.378 1.000 0.784 - 5 0.86569 -0.209 0.747 -0.457 0.784 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12439.7 FROM HESSE STATUS=OK 31 CALLS 227 TOTAL - EDM=5.14272e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.53816e+02 3.21170e-01 1.56754e-04 1.27552e-01 - 2 sg_p1 1.33997e+01 3.71529e-01 3.43597e-04 -5.45997e-02 - 3 sg_p2 4.44337e+02 2.55137e+00 6.22923e-04 1.70589e-01 - 4 sg_p3 3.80604e+01 2.93737e+00 9.90429e-05 -6.42423e-01 - 5 sg_p4 8.58912e-01 2.28649e-02 5.01401e-04 8.00670e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.032e-01 -2.159e-02 -8.447e-02 -2.173e-01 -1.542e-03 - -2.159e-02 1.381e-01 -3.519e-01 6.569e-01 6.381e-03 - -8.447e-02 -3.519e-01 6.514e+00 -2.922e+00 -2.730e-02 - -2.173e-01 6.569e-01 -2.922e+00 8.636e+00 5.298e-02 - -1.542e-03 6.381e-03 -2.730e-02 5.298e-02 5.236e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.33250 1.000 -0.181 -0.103 -0.230 -0.210 - 2 0.75151 -0.181 1.000 -0.371 0.602 0.750 - 3 0.51526 -0.103 -0.371 1.000 -0.390 -0.467 - 4 0.79182 -0.230 0.602 -0.390 1.000 0.788 - 5 0.86862 -0.210 0.750 -0.467 0.788 1.000 -450 -453.816 +- 0.32117 -13.3997 +- 0.371529 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=12450.5 FROM MIGRAD STATUS=INITIATE 45 CALLS 46 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.50000e+02 6.00000e+00 0.00000e+00 -7.89096e+02 - 2 sg_p1 1.40000e+01 2.20000e+00 0.00000e+00 3.29312e+02 - 3 sg_p2 4.35000e+02 1.10000e+01 0.00000e+00 -9.41083e+02 - 4 sg_p3 2.97404e+01 1.40000e+01 -8.00916e-01 5.32420e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -5.78505e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12082.3 FROM MIGRAD STATUS=CONVERGED 217 CALLS 218 TOTAL - EDM=9.81901e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.52649e+02 2.99257e-01 7.27117e-04 -1.85651e-01 - 2 sg_p1 1.29215e+01 3.26230e-01 1.60240e-03 -1.04599e-01 - 3 sg_p2 4.39500e+02 3.30234e+00 3.79402e-03 -2.47036e-02 - 4 sg_p3 4.23678e+01 3.70551e+00 3.18328e-03 -2.16927e-02 - 5 sg_p4 8.78387e-01 1.75288e-02 2.31775e-03 5.63843e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 8.956e-02 -1.634e-02 -3.809e-02 -2.386e-01 -1.021e-03 - -1.634e-02 1.065e-01 -4.382e-01 6.785e-01 4.010e-03 - -3.809e-02 -4.382e-01 1.092e+01 -5.893e+00 -3.008e-02 - -2.386e-01 6.785e-01 -5.893e+00 1.375e+01 4.755e-02 - -1.021e-03 4.010e-03 -3.008e-02 4.755e-02 3.076e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.29182 1.000 -0.167 -0.039 -0.215 -0.195 - 2 0.70607 -0.167 1.000 -0.406 0.561 0.701 - 3 0.56523 -0.039 -0.406 1.000 -0.481 -0.519 - 4 0.74887 -0.215 0.561 -0.481 1.000 0.731 - 5 0.82206 -0.195 0.701 -0.519 0.731 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12082.3 FROM HESSE STATUS=OK 31 CALLS 249 TOTAL - EDM=9.82123e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.52649e+02 2.99376e-01 1.45423e-04 8.84175e-02 - 2 sg_p1 1.29215e+01 3.28560e-01 3.20481e-04 -9.82038e-02 - 3 sg_p2 4.39500e+02 3.33339e+00 7.58805e-04 8.19031e-02 - 4 sg_p3 4.23678e+01 3.74990e+00 1.27331e-04 -5.67592e-01 - 5 sg_p4 8.78387e-01 1.77374e-02 4.63550e-04 8.58362e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 8.963e-02 -1.673e-02 -3.321e-02 -2.436e-01 -1.045e-03 - -1.673e-02 1.080e-01 -4.573e-01 7.011e-01 4.116e-03 - -3.321e-02 -4.573e-01 1.113e+01 -6.187e+00 -3.140e-02 - -2.436e-01 7.011e-01 -6.187e+00 1.408e+01 4.914e-02 - -1.045e-03 4.116e-03 -3.140e-02 4.914e-02 3.149e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.29306 1.000 -0.170 -0.033 -0.217 -0.197 - 2 0.71107 -0.170 1.000 -0.417 0.569 0.706 - 3 0.57630 -0.033 -0.417 1.000 -0.494 -0.531 - 4 0.75573 -0.217 0.569 -0.494 1.000 0.738 - 5 0.82667 -0.197 0.706 -0.531 0.738 1.000 -450 -452.649 +- 0.299376 -12.9215 +- 0.32856 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=12485 FROM MIGRAD STATUS=INITIATE 47 CALLS 48 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.50000e+02 6.00000e+00 0.00000e+00 -8.28524e+02 - 2 sg_p1 1.40000e+01 2.20000e+00 0.00000e+00 2.76932e+02 - 3 sg_p2 4.35000e+02 1.10000e+01 0.00000e+00 -9.07179e+02 - 4 sg_p3 3.15199e+01 1.40000e+01 -7.65049e-01 1.17013e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -5.75418e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12126.6 FROM MIGRAD STATUS=CONVERGED 206 CALLS 207 TOTAL - EDM=8.2003e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.53041e+02 3.16233e-01 7.67663e-04 -4.53747e-01 - 2 sg_p1 1.34606e+01 3.60067e-01 1.68094e-03 -2.56821e-01 - 3 sg_p2 4.42647e+02 3.03755e+00 3.65255e-03 -7.93949e-02 - 4 sg_p3 4.13701e+01 3.70699e+00 3.03411e-03 -1.62102e-02 - 5 sg_p4 8.74490e-01 2.02974e-02 2.42550e-03 1.44185e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.000e-01 -1.902e-02 -8.059e-02 -2.487e-01 -1.247e-03 - -1.902e-02 1.297e-01 -4.096e-01 8.024e-01 5.385e-03 - -8.059e-02 -4.096e-01 9.236e+00 -4.749e+00 -2.911e-02 - -2.487e-01 8.024e-01 -4.749e+00 1.376e+01 5.850e-02 - -1.247e-03 5.385e-03 -2.911e-02 5.850e-02 4.125e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.30405 1.000 -0.167 -0.084 -0.212 -0.194 - 2 0.73858 -0.167 1.000 -0.374 0.601 0.736 - 3 0.51688 -0.084 -0.374 1.000 -0.421 -0.472 - 4 0.78361 -0.212 0.601 -0.421 1.000 0.776 - 5 0.85381 -0.194 0.736 -0.472 0.776 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12126.6 FROM HESSE STATUS=OK 31 CALLS 238 TOTAL - EDM=8.28097e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.53041e+02 3.16314e-01 1.53533e-04 1.01529e-01 - 2 sg_p1 1.34606e+01 3.62947e-01 3.36188e-04 -4.90533e-02 - 3 sg_p2 4.42647e+02 3.06302e+00 7.30509e-04 1.39482e-01 - 4 sg_p3 4.13701e+01 3.75314e+00 1.21364e-04 -5.84588e-01 - 5 sg_p4 8.74490e-01 2.05612e-02 4.85100e-04 8.46520e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.001e-01 -1.944e-02 -7.634e-02 -2.533e-01 -1.273e-03 - -1.944e-02 1.318e-01 -4.295e-01 8.293e-01 5.535e-03 - -7.634e-02 -4.295e-01 9.392e+00 -5.013e+00 -3.054e-02 - -2.533e-01 8.293e-01 -5.013e+00 1.411e+01 6.046e-02 - -1.273e-03 5.535e-03 -3.054e-02 6.046e-02 4.233e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.30482 1.000 -0.169 -0.079 -0.213 -0.196 - 2 0.74343 -0.169 1.000 -0.386 0.608 0.741 - 3 0.52851 -0.079 -0.386 1.000 -0.436 -0.484 - 4 0.78960 -0.213 0.608 -0.436 1.000 0.782 - 5 0.85785 -0.196 0.741 -0.484 0.782 1.000 -450 -453.041 +- 0.316314 -13.4606 +- 0.362947 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=12831.1 FROM MIGRAD STATUS=INITIATE 45 CALLS 46 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.50000e+02 6.00000e+00 0.00000e+00 -9.34152e+02 - 2 sg_p1 1.40000e+01 2.20000e+00 0.00000e+00 2.79811e+02 - 3 sg_p2 4.35000e+02 1.10000e+01 0.00000e+00 -1.07673e+03 - 4 sg_p3 2.91978e+01 1.40000e+01 -8.12117e-01 -1.15313e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -5.79673e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12442.9 FROM MIGRAD STATUS=CONVERGED 214 CALLS 215 TOTAL - EDM=2.54338e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.53203e+02 3.05272e-01 7.48199e-04 1.37509e-01 - 2 sg_p1 1.33442e+01 3.36784e-01 1.63030e-03 -1.73887e-01 - 3 sg_p2 4.40023e+02 3.36501e+00 3.85092e-03 -4.69572e-02 - 4 sg_p3 4.14043e+01 3.72019e+00 3.17044e-03 -1.58965e-02 - 5 sg_p4 8.85415e-01 1.84477e-02 2.39174e-03 8.69592e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.319e-02 -1.886e-02 -3.146e-02 -2.700e-01 -1.210e-03 - -1.886e-02 1.135e-01 -4.902e-01 7.251e-01 4.482e-03 - -3.146e-02 -4.902e-01 1.134e+01 -6.160e+00 -3.421e-02 - -2.700e-01 7.251e-01 -6.160e+00 1.386e+01 5.193e-02 - -1.210e-03 4.482e-03 -3.421e-02 5.193e-02 3.407e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.31564 1.000 -0.183 -0.031 -0.238 -0.215 - 2 0.72421 -0.183 1.000 -0.432 0.578 0.721 - 3 0.58870 -0.031 -0.432 1.000 -0.491 -0.551 - 4 0.76796 -0.238 0.578 -0.491 1.000 0.756 - 5 0.84414 -0.215 0.721 -0.551 0.756 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12442.9 FROM HESSE STATUS=OK 31 CALLS 246 TOTAL - EDM=2.55427e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.53203e+02 3.05429e-01 1.49640e-04 1.06973e-01 - 2 sg_p1 1.33442e+01 3.39511e-01 3.26061e-04 -5.96515e-02 - 3 sg_p2 4.40023e+02 3.39967e+00 7.70184e-04 9.14550e-02 - 4 sg_p3 4.14043e+01 3.76783e+00 1.26818e-04 -5.84003e-01 - 5 sg_p4 8.85415e-01 1.86940e-02 4.78349e-04 8.80144e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.329e-02 -1.935e-02 -2.553e-02 -2.761e-01 -1.241e-03 - -1.935e-02 1.153e-01 -5.124e-01 7.508e-01 4.612e-03 - -2.553e-02 -5.124e-01 1.157e+01 -6.480e+00 -3.578e-02 - -2.761e-01 7.508e-01 -6.480e+00 1.422e+01 5.377e-02 - -1.241e-03 4.612e-03 -3.578e-02 5.377e-02 3.499e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.31711 1.000 -0.187 -0.025 -0.240 -0.217 - 2 0.72945 -0.187 1.000 -0.444 0.586 0.726 - 3 0.59988 -0.025 -0.444 1.000 -0.505 -0.562 - 4 0.77464 -0.240 0.586 -0.505 1.000 0.762 - 5 0.84859 -0.217 0.726 -0.562 0.762 1.000 -450 -453.203 +- 0.305429 -13.3442 +- 0.339511 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11934 FROM MIGRAD STATUS=INITIATE 45 CALLS 46 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.50000e+02 6.00000e+00 0.00000e+00 -8.21817e+02 - 2 sg_p1 1.40000e+01 2.20000e+00 0.00000e+00 2.66012e+02 - 3 sg_p2 4.35000e+02 1.10000e+01 0.00000e+00 -9.28921e+02 - 4 sg_p3 3.02910e+01 1.40000e+01 -7.89682e-01 6.24982e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -5.41964e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11588.1 FROM MIGRAD STATUS=CONVERGED 204 CALLS 205 TOTAL - EDM=3.59163e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.53125e+02 3.22437e-01 7.59830e-04 3.14030e-01 - 2 sg_p1 1.32568e+01 3.64776e-01 1.66662e-03 1.31711e-01 - 3 sg_p2 4.41914e+02 2.96380e+00 3.40318e-03 -1.73168e-02 - 4 sg_p3 3.96954e+01 3.35557e+00 2.76524e-03 -2.51020e-02 - 5 sg_p4 8.69980e-01 2.12003e-02 2.43138e-03 2.99659e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.040e-01 -2.192e-02 -6.249e-02 -2.549e-01 -1.475e-03 - -2.192e-02 1.331e-01 -4.296e-01 7.236e-01 5.697e-03 - -6.249e-02 -4.296e-01 8.793e+00 -4.343e+00 -3.167e-02 - -2.549e-01 7.236e-01 -4.343e+00 1.127e+01 5.485e-02 - -1.475e-03 5.697e-03 -3.167e-02 5.485e-02 4.500e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.32406 1.000 -0.186 -0.065 -0.235 -0.216 - 2 0.73815 -0.186 1.000 -0.397 0.591 0.736 - 3 0.54427 -0.065 -0.397 1.000 -0.436 -0.503 - 4 0.77722 -0.235 0.591 -0.436 1.000 0.770 - 5 0.85485 -0.216 0.736 -0.503 0.770 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11588.1 FROM HESSE STATUS=OK 31 CALLS 236 TOTAL - EDM=3.63213e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.53125e+02 3.22540e-01 1.51966e-04 1.04341e-01 - 2 sg_p1 1.32568e+01 3.67383e-01 3.33325e-04 -6.76154e-02 - 3 sg_p2 4.41914e+02 2.98753e+00 6.80636e-04 1.26049e-01 - 4 sg_p3 3.96954e+01 3.39157e+00 1.10610e-04 -6.13558e-01 - 5 sg_p4 8.69980e-01 2.14457e-02 4.86276e-04 8.33011e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.040e-01 -2.236e-02 -5.816e-02 -2.592e-01 -1.503e-03 - -2.236e-02 1.350e-01 -4.476e-01 7.452e-01 5.838e-03 - -5.816e-02 -4.476e-01 8.934e+00 -4.553e+00 -3.300e-02 - -2.592e-01 7.452e-01 -4.553e+00 1.152e+01 5.647e-02 - -1.503e-03 5.838e-03 -3.300e-02 5.647e-02 4.605e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.32494 1.000 -0.189 -0.060 -0.237 -0.217 - 2 0.74250 -0.189 1.000 -0.408 0.598 0.740 - 3 0.55442 -0.060 -0.408 1.000 -0.449 -0.514 - 4 0.78258 -0.237 0.598 -0.449 1.000 0.775 - 5 0.85843 -0.217 0.740 -0.514 0.775 1.000 -450 -453.125 +- 0.32254 -13.2568 +- 0.367383 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=13588.6 FROM MIGRAD STATUS=INITIATE 45 CALLS 46 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.50000e+02 6.00000e+00 0.00000e+00 -9.01194e+02 - 2 sg_p1 1.40000e+01 2.20000e+00 0.00000e+00 3.14820e+02 - 3 sg_p2 4.35000e+02 1.10000e+01 0.00000e+00 -9.36931e+02 - 4 sg_p3 3.19529e+01 1.40000e+01 -7.56508e-01 1.83311e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -6.40586e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=13194.8 FROM MIGRAD STATUS=CONVERGED 205 CALLS 206 TOTAL - EDM=2.9635e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.53119e+02 3.02295e-01 7.61866e-04 -3.75062e-01 - 2 sg_p1 1.32780e+01 3.39541e-01 1.67011e-03 -9.46376e-02 - 3 sg_p2 4.41784e+02 2.80838e+00 3.43889e-03 -7.54198e-02 - 4 sg_p3 4.02094e+01 3.20169e+00 2.80752e-03 5.20848e-02 - 5 sg_p4 8.69165e-01 1.95466e-02 2.41927e-03 -3.07790e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.139e-02 -1.864e-02 -5.556e-02 -2.229e-01 -1.243e-03 - -1.864e-02 1.153e-01 -3.761e-01 6.379e-01 4.851e-03 - -5.556e-02 -3.761e-01 7.894e+00 -3.947e+00 -2.754e-02 - -2.229e-01 6.379e-01 -3.947e+00 1.026e+01 4.798e-02 - -1.243e-03 4.851e-03 -2.754e-02 4.798e-02 3.825e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.31836 1.000 -0.182 -0.065 -0.230 -0.210 - 2 0.73280 -0.182 1.000 -0.394 0.586 0.730 - 3 0.54277 -0.065 -0.394 1.000 -0.439 -0.501 - 4 0.77378 -0.230 0.586 -0.439 1.000 0.766 - 5 0.85046 -0.210 0.730 -0.501 0.766 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=13194.8 FROM HESSE STATUS=OK 31 CALLS 237 TOTAL - EDM=2.98129e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.53119e+02 3.02390e-01 1.52373e-04 1.04142e-01 - 2 sg_p1 1.32780e+01 3.41962e-01 3.34022e-04 -6.56836e-02 - 3 sg_p2 4.41784e+02 2.83105e+00 6.87778e-04 1.23663e-01 - 4 sg_p3 4.02094e+01 3.23660e+00 1.12301e-04 -6.04605e-01 - 5 sg_p4 8.69165e-01 1.97739e-02 4.83854e-04 8.30589e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.144e-02 -1.903e-02 -5.175e-02 -2.268e-01 -1.268e-03 - -1.903e-02 1.170e-01 -3.920e-01 6.571e-01 4.973e-03 - -5.175e-02 -3.920e-01 8.022e+00 -4.140e+00 -2.871e-02 - -2.268e-01 6.571e-01 -4.140e+00 1.049e+01 4.942e-02 - -1.268e-03 4.973e-03 -2.871e-02 4.942e-02 3.915e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.31924 1.000 -0.184 -0.060 -0.232 -0.212 - 2 0.73725 -0.184 1.000 -0.405 0.593 0.735 - 3 0.55306 -0.060 -0.405 1.000 -0.451 -0.512 - 4 0.77932 -0.232 0.593 -0.451 1.000 0.771 - 5 0.85417 -0.212 0.735 -0.512 0.771 1.000 -450 -453.119 +- 0.30239 -13.278 +- 0.341962 -35.9 fb^{-1} (13 TeV) -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 23 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 72 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 80 has zero error, setting residual to zero - Uncertainty on sg_p0 = 453.121 +- 0.312202 (stat) - 0.472204 + 0.694919 (syst); -0.497337/+0.712236 (total) - Uncertainty on sg_p1 = 13.2664 +- 0.354275 (stat) - 0.344861 + 0.194275 (syst); -0.387695/+0.262907 (total) - Uncertainty on sg_p2 = 441.85 +- 2.90658 (stat) - 2.35076 + 2.48654 (syst); -2.76371/+2.88009 (total) - Uncertainty on sg_p3 = 39.952 +- 3.31061 (stat) - 1.8916 + 2.41576 (syst); -2.5136/+2.92847 (total) - Uncertainty on sg_p4 = 0.869549 +- 0.0205823 (stat) - 0.0106377 + 0.015866 (syst); -0.0148009/+0.0189113 (total) - === Baseline plot ===
- norm = 1083.26 -JEC lnN 1.00732 - -JER lnN 1.01521 - -btag lnN 1.06507 - -sg_p0 param 453.121 -0.497337/+0.712236 -sg_p1 param 13.2664 -0.387695/+0.262907 -sg_p2 param 441.85 -2.76371/+2.88009 -sg_p3 param 39.952 -2.5136/+2.92847 -sg_p4 param 0.869549 -0.0148009/+0.0189113 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_450_novo_285_624/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_450_novo_285_624/data_bkg.log deleted file mode 100644 index 118332d..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_450_novo_285_624/data_bkg.log +++ /dev/null @@ -1,750 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [252,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=62921.6 FROM MIGRAD STATUS=INITIATE 90 CALLS 91 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.21879e-02 5.09000e-01 0.00000e+00 -9.80911e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -1.28354e+01 - 3 par_crystal_2 2.65669e+02 4.00000e+00 0.00000e+00 3.55320e+02 - 4 par_crystal_3 1.06488e+01 2.70000e+00 -4.48284e-01 -2.33576e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62883.4 FROM HESSE STATUS=OK 29 CALLS 257 TOTAL - EDM=4.91113 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.66060e-01 4.16121e-03 3.52377e-04 -4.74293e+00 - 2 par_crystal_1 4.45375e+00 2.73731e+00 1.77223e-01 2.66184e-01 - 3 par_crystal_2 2.67385e+02 2.04373e-01 8.29600e-04 2.81454e+02 - 4 par_crystal_3 1.36851e+01 5.38888e-01 1.69331e-03 -1.62103e+00 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=62883.3 FROM MIGRAD STATUS=FAILED 358 CALLS 359 TOTAL - EDM=0.00753244 STRATEGY= 1 ERR MATRIX APPROXIMATE - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.65093e-01 8.39913e-03 1.31861e-03 5.42788e+00 - 2 par_crystal_1 5.09910e+00 4.33634e+00 3.39194e-01 -6.59950e-03 - 3 par_crystal_2 2.67339e+02 1.86486e-01 3.32550e-03 -8.58879e+00 - 4 par_crystal_3 1.37140e+01 6.01780e-01 6.34807e-03 1.69258e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.055e-05 1.617e-04 4.699e-04 2.892e-03 - 1.617e-04 1.762e-02 -1.356e-04 -1.108e-03 - 4.699e-04 -1.356e-04 3.478e-02 3.255e-02 - 2.892e-03 -1.108e-03 3.255e-02 3.624e-01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.60853 1.000 0.145 0.300 0.572 - 2 0.19009 0.145 1.000 -0.005 -0.014 - 3 0.33449 0.300 -0.005 1.000 0.290 - 4 0.59243 0.572 -0.014 0.290 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7660e-01 8.1807e-01 1.6519e+00 1.7066e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.178308 TO DIAGONAL. - FCN=62883.3 FROM HESSE STATUS=NOT POSDEF 33 CALLS 392 TOTAL - EDM=3.36849 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.65093e-01 8.70034e-02 2.63722e-04 -1.21988e+00 - 2 par_crystal_1 5.09910e+00 4.18121e+00 5.00000e-01 1.54425e+00 - 3 par_crystal_2 2.67339e+02 5.27040e+00 9.57407e-02 3.75715e-01 - 4 par_crystal_3 1.37140e+01 6.68546e+00 2.53923e-04 -2.07863e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.595e-03 -2.994e-03 4.642e-01 6.089e-01 - -2.994e-03 1.536e-02 -1.944e-01 -2.569e-01 - 4.642e-01 -1.944e-01 2.855e+01 3.736e+01 - 6.089e-01 -2.569e-01 3.736e+01 4.914e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99751 1.000 -0.277 0.997 0.997 - 2 0.37560 -0.277 1.000 -0.293 -0.296 - 3 0.99795 0.997 -0.293 1.000 0.997 - 4 0.99797 0.997 -0.296 0.997 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=62983.1 FROM MIGRAD STATUS=INITIATE 29 CALLS 30 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 6.05383e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -1.33666e+02 - 3 par_gaus_exp_2 3.19008e-01 3.05000e-01 -9.67731e-01 -3.33619e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.00383 added to diagonal of error matrix - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62882.7 FROM MIGRAD STATUS=CONVERGED 228 CALLS 229 TOTAL - EDM=4.4408e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.69095e+02 7.01852e-01 4.07755e-03 2.89794e-02 - 2 par_gaus_exp_1 1.61044e+01 1.09719e+00 7.43010e-03 -1.84784e-02 - 3 par_gaus_exp_2 1.90527e-01 1.58774e-02 1.98778e-03 -6.23432e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 4.929e-01 5.914e-01 9.067e-03 - 5.914e-01 1.207e+00 1.483e-02 - 9.067e-03 1.483e-02 2.521e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.82590 1.000 0.767 0.813 - 2 0.85979 0.767 1.000 0.850 - 3 0.88644 0.813 0.850 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62882.7 FROM HESSE STATUS=OK 16 CALLS 245 TOTAL - EDM=4.28199e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.69095e+02 6.86832e-01 1.63102e-04 -5.76704e-01 - 2 par_gaus_exp_1 1.61044e+01 1.07335e+00 2.97204e-04 -5.72398e-01 - 3 par_gaus_exp_2 1.90527e-01 1.55212e-02 7.95110e-05 -1.13813e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 4.720e-01 5.579e-01 8.580e-03 - 5.579e-01 1.155e+00 1.406e-02 - 8.580e-03 1.406e-02 2.410e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.81734 1.000 0.756 0.805 - 2 0.85292 0.756 1.000 0.843 - 3 0.88081 0.805 0.843 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,624] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.3296 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=286.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=286.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=289.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=289.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=295.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=295.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=298.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=298.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=301.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=301.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - ... (remaining 216 messages suppressed) -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.3296) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.733611 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=313.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=316.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=319.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=325.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=328.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=331.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=334.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=340.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=343.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=346.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - ... (remaining 94 messages suppressed) -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.733611) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0733618 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0733618 - - FCN=103426 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57146e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.55551e+03 - 3 par_novo_2 -1.33526e+00 2.00000e+01 0.00000e+00 1.53308e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103192 FROM MIGRAD STATUS=CONVERGED 126 CALLS 127 TOTAL - EDM=1.07924e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.17697e+01 1.69443e-01** at limit ** - 2 par_novo_1 3.87878e+01 2.27475e+00 4.96100e-03 -6.14249e-02 - 3 par_novo_2 -1.26766e+00 7.00630e-02 3.67886e-05 3.77179e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 2.244e-10 -2.632e-07 -1.276e-07 - -2.632e-07 5.190e+00 1.540e-01 - -1.276e-07 1.540e-01 4.909e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.43392 1.000 -0.008 -0.122 - 2 0.97109 -0.008 1.000 0.965 - 3 0.97152 -0.122 0.965 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103192 FROM HESSE STATUS=OK 20 CALLS 147 TOTAL - EDM=1.23299e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.15107e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.87878e+01 2.30410e+00 1.98440e-04 4.51799e-01 - 3 par_novo_2 -1.26766e+00 7.13892e-02 1.47154e-06 -1.26769e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 2.143e-10 3.996e-06 -2.087e-07 - 3.996e-06 5.325e+00 1.518e-01 - -2.087e-07 1.518e-01 5.096e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.80390 1.000 0.118 -0.200 - 2 0.97183 0.118 1.000 0.922 - 3 0.97258 -0.200 0.922 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107617 FROM MIGRAD STATUS=INITIATE 36 CALLS 37 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 6.60405e+03 - 2 par_crystal_1_1 7.90153e-02 5.09000e-01 -1.80421e+00 3.05679e+03 - 3 par_crystal_1_2 2.60000e+02 4.00000e+00 0.00000e+00 1.48888e+03 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 6.99071e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.17529 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.7903e-03 5.8606e-02 5.0897e-01 3.4352e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.006225 TO DIAGONAL. - FCN=103191 FROM MIGRAD STATUS=CONVERGED 353 CALLS 354 TOTAL - EDM=3.7306e-06 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.37913e-01 3.41139e-02 6.19492e-04 4.10204e-01 - 2 par_crystal_1_1 4.44737e+00 5.69760e-01 2.21494e-02 9.88736e-03 - 3 par_crystal_1_2 2.79979e+02 3.40482e+01 2.79535e-01 -2.97577e-04 - 4 par_crystal_1_3 1.87584e+01 2.98857e+00 3.96232e-03 -6.40797e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.164e-03 3.582e-03 3.594e-03 9.898e-02 - 3.582e-03 3.375e-01 -1.052e-02 7.382e-01 - 3.594e-03 -1.052e-02 3.148e+00 6.243e-01 - 9.898e-02 7.382e-01 6.243e-01 9.086e+00 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99630 1.000 0.181 0.059 0.962 - 2 0.95650 0.181 1.000 -0.010 0.422 - 3 0.63948 0.059 -0.010 1.000 0.117 - 4 0.99690 0.962 0.422 0.117 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103191 FROM HESSE STATUS=OK 27 CALLS 381 TOTAL - EDM=6.06842e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 2.37913e-01 2.12502e-01 1.23898e-04 -8.36786e+01 - 2 par_crystal_1_1 4.44737e+00 5.06952e-01 8.85975e-04 -1.65463e+01 - 3 par_crystal_1_2 2.79979e+02 2.96341e+01 5.00000e-01 7.80831e+00 - 4 par_crystal_1_3 1.87584e+01 1.90925e+01 1.58493e-04 2.18231e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.578e-02 1.663e-02 2.427e-02 3.730e+00 - 1.663e-02 2.650e-01 -4.299e-02 1.684e+00 - 2.427e-02 -4.299e-02 1.850e+00 2.341e+00 - 3.730e+00 1.684e+00 2.341e+00 3.045e+02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99991 1.000 0.151 0.083 0.999 - 2 0.94385 0.151 1.000 -0.061 0.187 - 3 0.80384 0.083 -0.061 1.000 0.099 - 4 0.99991 0.999 0.187 0.099 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 13889.7 - Background number of gaus_exp_252_330 = 13889.7 - Background number of novo_285_624 = 17637.2 - Background number of crystal_1_285_624 = 17637.2 - Background number of gaus_bern_285_624 = 17637.2 - Background number of landau_285_624 = 17637.2 -par_crystal_0 param 0.165093 0.0870034 -par_crystal_1 param 5.0991 4.18121 -par_crystal_2 param 267.339 5.2704 -par_crystal_3 param 13.714 6.68546 -par_crystal_1_0 param 0.237913 0.212502 -par_crystal_1_1 param 4.44737 0.506952 -par_crystal_1_2 param 279.979 29.6341 -par_crystal_1_3 param 18.7584 19.0925 -par_gaus_exp_0 param 269.095 0.686832 -par_gaus_exp_1 param 16.1044 1.07335 -par_gaus_exp_2 param 0.190527 0.0155212 -par_novo_0 param 250 31.5107 -par_novo_1 param 38.7878 2.3041 -par_novo_2 param -1.26766 0.0713892 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_450_novo_285_624/datacard_450_novo_285_624.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_450_novo_285_624/datacard_450_novo_285_624.txt deleted file mode 100644 index ef7832d..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_450_novo_285_624/datacard_450_novo_285_624.txt +++ /dev/null @@ -1,30 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_450.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_novo_285_624.root HbbHbb:f_novo -shapes data_obs HbbHbb w_background_novo_285_624.root HbbHbb:data_obs_novo_285_624 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 1083.26 17637.2 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06507 - -JER lnN 1.01521 - -JEC lnN 1.00732 - -trigger lnN 1.10 - -PDF lnN 1.01846991095 - -sg_p0 param 453.121 -0.497337/+0.712236 -sg_p1 param 13.2664 -0.387695/+0.262907 -sg_p2 param 441.85 -2.76371/+2.88009 -sg_p3 param 39.952 -2.5136/+2.92847 -sg_p4 param 0.869549 -0.0148009/+0.0189113 -par_novo_0 param 250 31.5107 -par_novo_1 param 38.7878 2.3041 -par_novo_2 param -1.26766 0.0713892 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_450_novo_285_624/pdf.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_450_novo_285_624/pdf.log deleted file mode 100644 index 823f341..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_450_novo_285_624/pdf.log +++ /dev/null @@ -1,10 +0,0 @@ -[?1034h FCN=9.42219 FROM MIGRAD STATUS=CONVERGED 62 CALLS 63 TOTAL - EDM=3.69018e-10 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 Constant 1.61838e+01 2.04083e+00 2.68103e-03 -9.45046e-06 - 2 Mean 1.00001e+00 2.14045e-03 3.36992e-06 -5.72729e-03 - 3 Sigma 1.84699e-02 1.55576e-03 3.84421e-05 -9.86497e-04 -1.00001004927 +/- 0.00214044725813 -0.0184699109466 +/- 0.00155575701095 -PDF lnN 1.01846991095 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_450_novo_285_624/signal450_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_450_novo_285_624/signal450_sig.log deleted file mode 100644 index 758dffb..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_450_novo_285_624/signal450_sig.log +++ /dev/null @@ -1,849 +0,0 @@ - -Processing test.c... -nSignal_init = 100000 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=15106.7 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.45000e+02 7.00000e+00 2.01358e-01 9.40956e+02 - 2 sg_p1 1.90000e+01 3.20000e+00 2.01358e-01 -1.15795e+02 - 3 sg_p2 4.50000e+02 8.00000e+00 2.01358e-01 5.60158e+02 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -7.43253e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -2.02042e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14616.9 FROM MIGRAD STATUS=CONVERGED 237 CALLS 238 TOTAL - EDM=3.59834e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.33700e+02 5.20779e-01 1.28024e-03 -4.50888e-02 - 2 sg_p1 2.45512e+01 4.32325e-01 2.13929e-03 2.15071e-02 - 3 sg_p2 4.10000e+02 7.56422e-01 1.62500e-02** at limit ** - 4 sg_p3 9.59075e+01 9.76509e+00 3.57927e-02 -4.80697e-03 - 5 sg_p4 8.98300e-01 1.09856e-02 2.31920e-03 1.35348e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.712e-01 -3.295e-02 -7.320e-06 -1.029e+00 -1.066e-03 - -3.295e-02 1.870e-01 4.421e-06 1.512e+00 2.106e-03 - -7.320e-06 4.421e-06 3.900e-05 3.605e-04 1.357e-07 - -1.029e+00 1.512e+00 3.605e-04 1.055e+02 6.647e-02 - -1.066e-03 2.106e-03 1.357e-07 6.647e-02 1.207e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22083 1.000 -0.146 -0.002 -0.192 -0.186 - 2 0.45738 -0.146 1.000 0.002 0.340 0.443 - 3 0.00601 -0.002 0.002 1.000 0.006 0.002 - 4 0.60064 -0.192 0.340 0.006 1.000 0.589 - 5 0.64515 -0.186 0.443 0.002 0.589 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14616.9 FROM HESSE STATUS=OK 31 CALLS 269 TOTAL - EDM=3.62828e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.33700e+02 5.22464e-01 2.56047e-04 -3.28756e-01 - 2 sg_p1 2.45512e+01 4.36897e-01 8.55715e-05 3.54316e-01 - 3 sg_p2 4.10000e+02 7.56439e-01 3.24999e-03 -1.56999e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 9.59075e+01 1.00551e+01 1.43171e-03 1.14101e+00 - 5 sg_p4 8.98300e-01 1.13202e-02 4.63840e-04 9.21649e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.730e-01 -3.575e-02 -2.151e-06 -1.151e+00 -1.179e-03 - -3.575e-02 1.909e-01 1.441e-06 1.696e+00 2.279e-03 - -2.151e-06 1.441e-06 3.900e-05 1.093e-04 4.737e-08 - -1.151e+00 1.696e+00 1.093e-04 1.126e+02 7.452e-02 - -1.179e-03 2.279e-03 4.737e-08 7.452e-02 1.282e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23428 1.000 -0.157 -0.001 -0.208 -0.199 - 2 0.47504 -0.157 1.000 0.001 0.366 0.461 - 3 0.00175 -0.001 0.001 1.000 0.002 0.001 - 4 0.63167 -0.208 0.366 0.002 1.000 0.620 - 5 0.67100 -0.199 0.461 0.001 0.620 1.000 -450 -433.7 +- 0.522464 -24.5512 +- 0.436897 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=14967 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.45000e+02 7.00000e+00 2.01358e-01 7.30094e+02 - 2 sg_p1 1.90000e+01 3.20000e+00 2.01358e-01 -7.17086e+01 - 3 sg_p2 4.50000e+02 8.00000e+00 2.01358e-01 4.92262e+02 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 1.24799e+00 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -2.52207e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14568.3 FROM MIGRAD STATUS=CONVERGED 225 CALLS 226 TOTAL - EDM=1.40963e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.35880e+02 5.28453e-01 1.25742e-03 3.65467e-02 - 2 sg_p1 2.47804e+01 4.36143e-01 2.15058e-03 8.90109e-02 - 3 sg_p2 4.10000e+02 8.41699e-01 1.71227e-02** at limit ** - 4 sg_p3 9.34154e+01 9.89175e+00 2.81029e-02 3.92610e-03 - 5 sg_p4 9.04757e-01 1.10728e-02 2.34320e-03 -1.13912e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.793e-01 -4.062e-02 -3.574e-06 -1.243e+00 -1.334e-03 - -4.062e-02 1.903e-01 1.963e-06 1.596e+00 2.205e-03 - -3.574e-06 1.963e-06 1.004e-05 1.505e-04 5.291e-08 - -1.243e+00 1.596e+00 1.505e-04 1.043e+02 6.945e-02 - -1.334e-03 2.205e-03 5.291e-08 6.945e-02 1.227e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.26417 1.000 -0.176 -0.002 -0.230 -0.228 - 2 0.47132 -0.176 1.000 0.001 0.358 0.457 - 3 0.00513 -0.002 0.001 1.000 0.005 0.002 - 4 0.62620 -0.230 0.358 0.005 1.000 0.614 - 5 0.66724 -0.228 0.457 0.002 0.614 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14568.3 FROM HESSE STATUS=OK 31 CALLS 257 TOTAL - EDM=1.45125e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.35880e+02 5.30103e-01 2.51483e-04 -2.63606e-01 - 2 sg_p1 2.47804e+01 4.39593e-01 4.30116e-04 3.69632e-01 - 3 sg_p2 4.10000e+02 8.41739e-01 3.42455e-03 -1.57118e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 9.34154e+01 1.01144e+01 1.12412e-03 1.02300e+00 - 5 sg_p4 9.04757e-01 1.13218e-02 9.37280e-05 9.43325e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.810e-01 -4.308e-02 -6.126e-07 -1.344e+00 -1.432e-03 - -4.308e-02 1.933e-01 3.606e-07 1.730e+00 2.336e-03 - -6.126e-07 3.606e-07 1.004e-05 2.633e-05 1.041e-08 - -1.344e+00 1.730e+00 2.633e-05 1.094e+02 7.528e-02 - -1.432e-03 2.336e-03 1.041e-08 7.528e-02 1.282e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.27490 1.000 -0.185 -0.000 -0.242 -0.238 - 2 0.48405 -0.185 1.000 0.000 0.376 0.469 - 3 0.00087 -0.000 0.000 1.000 0.001 0.000 - 4 0.64751 -0.242 0.376 0.001 1.000 0.636 - 5 0.68509 -0.238 0.469 0.000 0.636 1.000 -450 -435.88 +- 0.530103 -24.7804 +- 0.439593 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=14989.3 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.45000e+02 7.00000e+00 2.01358e-01 1.09913e+03 - 2 sg_p1 1.90000e+01 3.20000e+00 2.01358e-01 -1.79281e+02 - 3 sg_p2 4.50000e+02 8.00000e+00 2.01358e-01 6.15691e+02 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -1.35305e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -1.43184e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14396.8 FROM MIGRAD STATUS=CONVERGED 259 CALLS 260 TOTAL - EDM=2.88948e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.31562e+02 5.09368e-01 1.30052e-03 -5.36209e-02 - 2 sg_p1 2.44193e+01 3.99415e-01 2.10037e-03 1.06473e-02 - 3 sg_p2 4.10000e+02 7.22690e-01 1.57718e-02** at limit ** - 4 sg_p3 1.00000e+02 1.55471e+01 7.04637e-02** at limit ** - 5 sg_p4 8.97810e-01 8.75371e-03 2.28074e-03 2.04575e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.595e-01 -1.470e-02 -3.574e-07 3.497e-04 -3.281e-04 - -1.470e-02 1.596e-01 -3.286e-08 -5.660e-04 1.020e-03 - -3.574e-07 -3.286e-08 5.312e-07 -1.926e-08 -7.103e-09 - 3.497e-04 -5.660e-04 -1.926e-08 1.262e-03 -2.615e-05 - -3.281e-04 1.020e-03 -7.103e-09 -2.615e-05 7.665e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.09157 1.000 -0.072 -0.001 0.019 -0.074 - 2 0.29639 -0.072 1.000 -0.000 -0.040 0.292 - 3 0.00174 -0.001 -0.000 1.000 -0.001 -0.001 - 4 0.08650 0.019 -0.040 -0.001 1.000 -0.084 - 5 0.30486 -0.074 0.292 -0.001 -0.084 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14396.8 FROM HESSE STATUS=OK 31 CALLS 291 TOTAL - EDM=2.76365e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.31562e+02 5.09297e-01 2.60104e-04 -3.94063e-01 - 2 sg_p1 2.44193e+01 3.99210e-01 8.40147e-05 3.45541e-01 - 3 sg_p2 4.10000e+02 7.22718e-01 3.15436e-03 -1.57070e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 1.00000e+02 1.57628e+01 1.40927e-02 1.56988e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 5 sg_p4 8.97810e-01 8.72528e-03 9.12295e-05 9.20031e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.594e-01 -1.474e-02 -7.385e-08 6.324e-05 -3.205e-04 - -1.474e-02 1.594e-01 -8.717e-09 -1.029e-04 1.011e-03 - -7.385e-08 -8.717e-09 5.312e-07 -7.301e-10 -1.575e-09 - 6.324e-05 -1.029e-04 -7.301e-10 1.280e-03 -4.742e-06 - -3.205e-04 1.011e-03 -1.575e-09 -4.742e-06 7.615e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.09005 1.000 -0.072 -0.000 0.003 -0.072 - 2 0.29480 -0.072 1.000 -0.000 -0.007 0.290 - 3 0.00033 -0.000 -0.000 1.000 -0.000 -0.000 - 4 0.01563 0.003 -0.007 -0.000 1.000 -0.015 - 5 0.29498 -0.072 0.290 -0.000 -0.015 1.000 -450 -431.562 +- 0.509297 -24.4193 +- 0.39921 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=12740.9 FROM MIGRAD STATUS=INITIATE 45 CALLS 46 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.50000e+02 6.00000e+00 0.00000e+00 -8.59626e+02 - 2 sg_p1 1.40000e+01 2.20000e+00 0.00000e+00 2.90307e+02 - 3 sg_p2 4.35000e+02 1.10000e+01 0.00000e+00 -9.30862e+02 - 4 sg_p3 3.11611e+01 1.40000e+01 -7.72180e-01 1.25776e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -5.90098e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12371.9 FROM MIGRAD STATUS=CONVERGED 204 CALLS 205 TOTAL - EDM=1.72857e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.53121e+02 3.12103e-01 7.60916e-04 -1.37805e-01 - 2 sg_p1 1.32664e+01 3.51765e-01 1.66864e-03 -1.59663e-01 - 3 sg_p2 4.41850e+02 2.88341e+00 3.42150e-03 -4.30161e-02 - 4 sg_p3 3.99520e+01 3.27521e+00 2.78644e-03 -1.95155e-02 - 5 sg_p4 8.69549e-01 2.03464e-02 2.42525e-03 7.02356e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.741e-02 -2.019e-02 -5.897e-02 -2.380e-01 -1.352e-03 - -2.019e-02 1.238e-01 -4.014e-01 6.784e-01 5.251e-03 - -5.897e-02 -4.014e-01 8.322e+00 -4.133e+00 -2.949e-02 - -2.380e-01 6.784e-01 -4.133e+00 1.074e+01 5.122e-02 - -1.352e-03 5.251e-03 -2.949e-02 5.122e-02 4.145e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.32114 1.000 -0.184 -0.066 -0.233 -0.213 - 2 0.73542 -0.184 1.000 -0.395 0.588 0.733 - 3 0.54335 -0.066 -0.395 1.000 -0.437 -0.502 - 4 0.77539 -0.233 0.588 -0.437 1.000 0.768 - 5 0.85259 -0.213 0.733 -0.502 0.768 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12371.9 FROM HESSE STATUS=OK 31 CALLS 236 TOTAL - EDM=1.73002e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.53121e+02 3.12202e-01 1.52183e-04 1.04231e-01 - 2 sg_p1 1.32664e+01 3.54275e-01 3.33728e-04 -6.67445e-02 - 3 sg_p2 4.41850e+02 2.90658e+00 6.84300e-04 1.24877e-01 - 4 sg_p3 3.99520e+01 3.31061e+00 1.11458e-04 -6.09081e-01 - 5 sg_p4 8.69549e-01 2.05823e-02 4.85050e-04 8.31731e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.747e-02 -2.060e-02 -5.492e-02 -2.421e-01 -1.378e-03 - -2.060e-02 1.256e-01 -4.183e-01 6.988e-01 5.382e-03 - -5.492e-02 -4.183e-01 8.456e+00 -4.334e+00 -3.074e-02 - -2.421e-01 6.988e-01 -4.334e+00 1.097e+01 5.275e-02 - -1.378e-03 5.382e-03 -3.074e-02 5.275e-02 4.242e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.32202 1.000 -0.186 -0.060 -0.234 -0.214 - 2 0.73982 -0.186 1.000 -0.406 0.595 0.738 - 3 0.55356 -0.060 -0.406 1.000 -0.450 -0.513 - 4 0.78084 -0.234 0.595 -0.450 1.000 0.773 - 5 0.85624 -0.214 0.738 -0.513 0.773 1.000 -450 -453.121 +- 0.312202 -13.2664 +- 0.354275 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=12831.2 FROM MIGRAD STATUS=INITIATE 47 CALLS 48 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.50000e+02 6.00000e+00 0.00000e+00 -9.71963e+02 - 2 sg_p1 1.40000e+01 2.20000e+00 0.00000e+00 2.47720e+02 - 3 sg_p2 4.35000e+02 1.10000e+01 0.00000e+00 -9.59810e+02 - 4 sg_p3 3.20356e+01 1.40000e+01 -7.54886e-01 1.25318e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -5.92447e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12439.7 FROM MIGRAD STATUS=CONVERGED 195 CALLS 196 TOTAL - EDM=5.05245e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.53816e+02 3.21132e-01 7.83772e-04 -7.95633e-02 - 2 sg_p1 1.33997e+01 3.69195e-01 1.71799e-03 1.80096e-01 - 3 sg_p2 4.44337e+02 2.53515e+00 3.11461e-03 -5.82291e-02 - 4 sg_p3 3.80604e+01 2.91065e+00 2.47607e-03 7.49358e-02 - 5 sg_p4 8.58912e-01 2.26324e-02 2.50700e-03 -6.85706e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.031e-01 -2.126e-02 -8.734e-02 -2.148e-01 -1.521e-03 - -2.126e-02 1.364e-01 -3.383e-01 6.405e-01 6.246e-03 - -8.734e-02 -3.383e-01 6.432e+00 -2.789e+00 -2.624e-02 - -2.148e-01 6.405e-01 -2.789e+00 8.480e+00 5.167e-02 - -1.521e-03 6.246e-03 -2.624e-02 5.167e-02 5.129e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.33218 1.000 -0.179 -0.107 -0.230 -0.209 - 2 0.74782 -0.179 1.000 -0.361 0.596 0.747 - 3 0.50601 -0.107 -0.361 1.000 -0.378 -0.457 - 4 0.78747 -0.230 0.596 -0.378 1.000 0.784 - 5 0.86569 -0.209 0.747 -0.457 0.784 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12439.7 FROM HESSE STATUS=OK 31 CALLS 227 TOTAL - EDM=5.14272e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.53816e+02 3.21170e-01 1.56754e-04 1.27552e-01 - 2 sg_p1 1.33997e+01 3.71529e-01 3.43597e-04 -5.45997e-02 - 3 sg_p2 4.44337e+02 2.55137e+00 6.22923e-04 1.70589e-01 - 4 sg_p3 3.80604e+01 2.93737e+00 9.90429e-05 -6.42423e-01 - 5 sg_p4 8.58912e-01 2.28649e-02 5.01401e-04 8.00670e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.032e-01 -2.159e-02 -8.447e-02 -2.173e-01 -1.542e-03 - -2.159e-02 1.381e-01 -3.519e-01 6.569e-01 6.381e-03 - -8.447e-02 -3.519e-01 6.514e+00 -2.922e+00 -2.730e-02 - -2.173e-01 6.569e-01 -2.922e+00 8.636e+00 5.298e-02 - -1.542e-03 6.381e-03 -2.730e-02 5.298e-02 5.236e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.33250 1.000 -0.181 -0.103 -0.230 -0.210 - 2 0.75151 -0.181 1.000 -0.371 0.602 0.750 - 3 0.51526 -0.103 -0.371 1.000 -0.390 -0.467 - 4 0.79182 -0.230 0.602 -0.390 1.000 0.788 - 5 0.86862 -0.210 0.750 -0.467 0.788 1.000 -450 -453.816 +- 0.32117 -13.3997 +- 0.371529 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=12450.5 FROM MIGRAD STATUS=INITIATE 45 CALLS 46 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.50000e+02 6.00000e+00 0.00000e+00 -7.89096e+02 - 2 sg_p1 1.40000e+01 2.20000e+00 0.00000e+00 3.29312e+02 - 3 sg_p2 4.35000e+02 1.10000e+01 0.00000e+00 -9.41083e+02 - 4 sg_p3 2.97404e+01 1.40000e+01 -8.00916e-01 5.32420e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -5.78505e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12082.3 FROM MIGRAD STATUS=CONVERGED 217 CALLS 218 TOTAL - EDM=9.81901e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.52649e+02 2.99257e-01 7.27117e-04 -1.85651e-01 - 2 sg_p1 1.29215e+01 3.26230e-01 1.60240e-03 -1.04599e-01 - 3 sg_p2 4.39500e+02 3.30234e+00 3.79402e-03 -2.47036e-02 - 4 sg_p3 4.23678e+01 3.70551e+00 3.18328e-03 -2.16927e-02 - 5 sg_p4 8.78387e-01 1.75288e-02 2.31775e-03 5.63843e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 8.956e-02 -1.634e-02 -3.809e-02 -2.386e-01 -1.021e-03 - -1.634e-02 1.065e-01 -4.382e-01 6.785e-01 4.010e-03 - -3.809e-02 -4.382e-01 1.092e+01 -5.893e+00 -3.008e-02 - -2.386e-01 6.785e-01 -5.893e+00 1.375e+01 4.755e-02 - -1.021e-03 4.010e-03 -3.008e-02 4.755e-02 3.076e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.29182 1.000 -0.167 -0.039 -0.215 -0.195 - 2 0.70607 -0.167 1.000 -0.406 0.561 0.701 - 3 0.56523 -0.039 -0.406 1.000 -0.481 -0.519 - 4 0.74887 -0.215 0.561 -0.481 1.000 0.731 - 5 0.82206 -0.195 0.701 -0.519 0.731 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12082.3 FROM HESSE STATUS=OK 31 CALLS 249 TOTAL - EDM=9.82123e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.52649e+02 2.99376e-01 1.45423e-04 8.84175e-02 - 2 sg_p1 1.29215e+01 3.28560e-01 3.20481e-04 -9.82038e-02 - 3 sg_p2 4.39500e+02 3.33339e+00 7.58805e-04 8.19031e-02 - 4 sg_p3 4.23678e+01 3.74990e+00 1.27331e-04 -5.67592e-01 - 5 sg_p4 8.78387e-01 1.77374e-02 4.63550e-04 8.58362e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 8.963e-02 -1.673e-02 -3.321e-02 -2.436e-01 -1.045e-03 - -1.673e-02 1.080e-01 -4.573e-01 7.011e-01 4.116e-03 - -3.321e-02 -4.573e-01 1.113e+01 -6.187e+00 -3.140e-02 - -2.436e-01 7.011e-01 -6.187e+00 1.408e+01 4.914e-02 - -1.045e-03 4.116e-03 -3.140e-02 4.914e-02 3.149e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.29306 1.000 -0.170 -0.033 -0.217 -0.197 - 2 0.71107 -0.170 1.000 -0.417 0.569 0.706 - 3 0.57630 -0.033 -0.417 1.000 -0.494 -0.531 - 4 0.75573 -0.217 0.569 -0.494 1.000 0.738 - 5 0.82667 -0.197 0.706 -0.531 0.738 1.000 -450 -452.649 +- 0.299376 -12.9215 +- 0.32856 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=12485 FROM MIGRAD STATUS=INITIATE 47 CALLS 48 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.50000e+02 6.00000e+00 0.00000e+00 -8.28524e+02 - 2 sg_p1 1.40000e+01 2.20000e+00 0.00000e+00 2.76932e+02 - 3 sg_p2 4.35000e+02 1.10000e+01 0.00000e+00 -9.07179e+02 - 4 sg_p3 3.15199e+01 1.40000e+01 -7.65049e-01 1.17013e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -5.75418e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12126.6 FROM MIGRAD STATUS=CONVERGED 206 CALLS 207 TOTAL - EDM=8.2003e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.53041e+02 3.16233e-01 7.67663e-04 -4.53747e-01 - 2 sg_p1 1.34606e+01 3.60067e-01 1.68094e-03 -2.56821e-01 - 3 sg_p2 4.42647e+02 3.03755e+00 3.65255e-03 -7.93949e-02 - 4 sg_p3 4.13701e+01 3.70699e+00 3.03411e-03 -1.62102e-02 - 5 sg_p4 8.74490e-01 2.02974e-02 2.42550e-03 1.44185e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.000e-01 -1.902e-02 -8.059e-02 -2.487e-01 -1.247e-03 - -1.902e-02 1.297e-01 -4.096e-01 8.024e-01 5.385e-03 - -8.059e-02 -4.096e-01 9.236e+00 -4.749e+00 -2.911e-02 - -2.487e-01 8.024e-01 -4.749e+00 1.376e+01 5.850e-02 - -1.247e-03 5.385e-03 -2.911e-02 5.850e-02 4.125e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.30405 1.000 -0.167 -0.084 -0.212 -0.194 - 2 0.73858 -0.167 1.000 -0.374 0.601 0.736 - 3 0.51688 -0.084 -0.374 1.000 -0.421 -0.472 - 4 0.78361 -0.212 0.601 -0.421 1.000 0.776 - 5 0.85381 -0.194 0.736 -0.472 0.776 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12126.6 FROM HESSE STATUS=OK 31 CALLS 238 TOTAL - EDM=8.28097e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.53041e+02 3.16314e-01 1.53533e-04 1.01529e-01 - 2 sg_p1 1.34606e+01 3.62947e-01 3.36188e-04 -4.90533e-02 - 3 sg_p2 4.42647e+02 3.06302e+00 7.30509e-04 1.39482e-01 - 4 sg_p3 4.13701e+01 3.75314e+00 1.21364e-04 -5.84588e-01 - 5 sg_p4 8.74490e-01 2.05612e-02 4.85100e-04 8.46520e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.001e-01 -1.944e-02 -7.634e-02 -2.533e-01 -1.273e-03 - -1.944e-02 1.318e-01 -4.295e-01 8.293e-01 5.535e-03 - -7.634e-02 -4.295e-01 9.392e+00 -5.013e+00 -3.054e-02 - -2.533e-01 8.293e-01 -5.013e+00 1.411e+01 6.046e-02 - -1.273e-03 5.535e-03 -3.054e-02 6.046e-02 4.233e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.30482 1.000 -0.169 -0.079 -0.213 -0.196 - 2 0.74343 -0.169 1.000 -0.386 0.608 0.741 - 3 0.52851 -0.079 -0.386 1.000 -0.436 -0.484 - 4 0.78960 -0.213 0.608 -0.436 1.000 0.782 - 5 0.85785 -0.196 0.741 -0.484 0.782 1.000 -450 -453.041 +- 0.316314 -13.4606 +- 0.362947 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=12831.1 FROM MIGRAD STATUS=INITIATE 45 CALLS 46 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.50000e+02 6.00000e+00 0.00000e+00 -9.34152e+02 - 2 sg_p1 1.40000e+01 2.20000e+00 0.00000e+00 2.79811e+02 - 3 sg_p2 4.35000e+02 1.10000e+01 0.00000e+00 -1.07673e+03 - 4 sg_p3 2.91978e+01 1.40000e+01 -8.12117e-01 -1.15313e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -5.79673e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12442.9 FROM MIGRAD STATUS=CONVERGED 214 CALLS 215 TOTAL - EDM=2.54338e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.53203e+02 3.05272e-01 7.48199e-04 1.37509e-01 - 2 sg_p1 1.33442e+01 3.36784e-01 1.63030e-03 -1.73887e-01 - 3 sg_p2 4.40023e+02 3.36501e+00 3.85092e-03 -4.69572e-02 - 4 sg_p3 4.14043e+01 3.72019e+00 3.17044e-03 -1.58965e-02 - 5 sg_p4 8.85415e-01 1.84477e-02 2.39174e-03 8.69592e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.319e-02 -1.886e-02 -3.146e-02 -2.700e-01 -1.210e-03 - -1.886e-02 1.135e-01 -4.902e-01 7.251e-01 4.482e-03 - -3.146e-02 -4.902e-01 1.134e+01 -6.160e+00 -3.421e-02 - -2.700e-01 7.251e-01 -6.160e+00 1.386e+01 5.193e-02 - -1.210e-03 4.482e-03 -3.421e-02 5.193e-02 3.407e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.31564 1.000 -0.183 -0.031 -0.238 -0.215 - 2 0.72421 -0.183 1.000 -0.432 0.578 0.721 - 3 0.58870 -0.031 -0.432 1.000 -0.491 -0.551 - 4 0.76796 -0.238 0.578 -0.491 1.000 0.756 - 5 0.84414 -0.215 0.721 -0.551 0.756 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12442.9 FROM HESSE STATUS=OK 31 CALLS 246 TOTAL - EDM=2.55427e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.53203e+02 3.05429e-01 1.49640e-04 1.06973e-01 - 2 sg_p1 1.33442e+01 3.39511e-01 3.26061e-04 -5.96515e-02 - 3 sg_p2 4.40023e+02 3.39967e+00 7.70184e-04 9.14550e-02 - 4 sg_p3 4.14043e+01 3.76783e+00 1.26818e-04 -5.84003e-01 - 5 sg_p4 8.85415e-01 1.86940e-02 4.78349e-04 8.80144e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.329e-02 -1.935e-02 -2.553e-02 -2.761e-01 -1.241e-03 - -1.935e-02 1.153e-01 -5.124e-01 7.508e-01 4.612e-03 - -2.553e-02 -5.124e-01 1.157e+01 -6.480e+00 -3.578e-02 - -2.761e-01 7.508e-01 -6.480e+00 1.422e+01 5.377e-02 - -1.241e-03 4.612e-03 -3.578e-02 5.377e-02 3.499e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.31711 1.000 -0.187 -0.025 -0.240 -0.217 - 2 0.72945 -0.187 1.000 -0.444 0.586 0.726 - 3 0.59988 -0.025 -0.444 1.000 -0.505 -0.562 - 4 0.77464 -0.240 0.586 -0.505 1.000 0.762 - 5 0.84859 -0.217 0.726 -0.562 0.762 1.000 -450 -453.203 +- 0.305429 -13.3442 +- 0.339511 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11934 FROM MIGRAD STATUS=INITIATE 45 CALLS 46 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.50000e+02 6.00000e+00 0.00000e+00 -8.21817e+02 - 2 sg_p1 1.40000e+01 2.20000e+00 0.00000e+00 2.66012e+02 - 3 sg_p2 4.35000e+02 1.10000e+01 0.00000e+00 -9.28921e+02 - 4 sg_p3 3.02910e+01 1.40000e+01 -7.89682e-01 6.24982e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -5.41964e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11588.1 FROM MIGRAD STATUS=CONVERGED 204 CALLS 205 TOTAL - EDM=3.59163e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.53125e+02 3.22437e-01 7.59830e-04 3.14030e-01 - 2 sg_p1 1.32568e+01 3.64776e-01 1.66662e-03 1.31711e-01 - 3 sg_p2 4.41914e+02 2.96380e+00 3.40318e-03 -1.73168e-02 - 4 sg_p3 3.96954e+01 3.35557e+00 2.76524e-03 -2.51020e-02 - 5 sg_p4 8.69980e-01 2.12003e-02 2.43138e-03 2.99659e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.040e-01 -2.192e-02 -6.249e-02 -2.549e-01 -1.475e-03 - -2.192e-02 1.331e-01 -4.296e-01 7.236e-01 5.697e-03 - -6.249e-02 -4.296e-01 8.793e+00 -4.343e+00 -3.167e-02 - -2.549e-01 7.236e-01 -4.343e+00 1.127e+01 5.485e-02 - -1.475e-03 5.697e-03 -3.167e-02 5.485e-02 4.500e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.32406 1.000 -0.186 -0.065 -0.235 -0.216 - 2 0.73815 -0.186 1.000 -0.397 0.591 0.736 - 3 0.54427 -0.065 -0.397 1.000 -0.436 -0.503 - 4 0.77722 -0.235 0.591 -0.436 1.000 0.770 - 5 0.85485 -0.216 0.736 -0.503 0.770 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11588.1 FROM HESSE STATUS=OK 31 CALLS 236 TOTAL - EDM=3.63213e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.53125e+02 3.22540e-01 1.51966e-04 1.04341e-01 - 2 sg_p1 1.32568e+01 3.67383e-01 3.33325e-04 -6.76154e-02 - 3 sg_p2 4.41914e+02 2.98753e+00 6.80636e-04 1.26049e-01 - 4 sg_p3 3.96954e+01 3.39157e+00 1.10610e-04 -6.13558e-01 - 5 sg_p4 8.69980e-01 2.14457e-02 4.86276e-04 8.33011e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.040e-01 -2.236e-02 -5.816e-02 -2.592e-01 -1.503e-03 - -2.236e-02 1.350e-01 -4.476e-01 7.452e-01 5.838e-03 - -5.816e-02 -4.476e-01 8.934e+00 -4.553e+00 -3.300e-02 - -2.592e-01 7.452e-01 -4.553e+00 1.152e+01 5.647e-02 - -1.503e-03 5.838e-03 -3.300e-02 5.647e-02 4.605e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.32494 1.000 -0.189 -0.060 -0.237 -0.217 - 2 0.74250 -0.189 1.000 -0.408 0.598 0.740 - 3 0.55442 -0.060 -0.408 1.000 -0.449 -0.514 - 4 0.78258 -0.237 0.598 -0.449 1.000 0.775 - 5 0.85843 -0.217 0.740 -0.514 0.775 1.000 -450 -453.125 +- 0.32254 -13.2568 +- 0.367383 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=13588.6 FROM MIGRAD STATUS=INITIATE 45 CALLS 46 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.50000e+02 6.00000e+00 0.00000e+00 -9.01194e+02 - 2 sg_p1 1.40000e+01 2.20000e+00 0.00000e+00 3.14820e+02 - 3 sg_p2 4.35000e+02 1.10000e+01 0.00000e+00 -9.36931e+02 - 4 sg_p3 3.19529e+01 1.40000e+01 -7.56508e-01 1.83311e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -6.40586e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=13194.8 FROM MIGRAD STATUS=CONVERGED 205 CALLS 206 TOTAL - EDM=2.9635e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.53119e+02 3.02295e-01 7.61866e-04 -3.75062e-01 - 2 sg_p1 1.32780e+01 3.39541e-01 1.67011e-03 -9.46376e-02 - 3 sg_p2 4.41784e+02 2.80838e+00 3.43889e-03 -7.54198e-02 - 4 sg_p3 4.02094e+01 3.20169e+00 2.80752e-03 5.20848e-02 - 5 sg_p4 8.69165e-01 1.95466e-02 2.41927e-03 -3.07790e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.139e-02 -1.864e-02 -5.556e-02 -2.229e-01 -1.243e-03 - -1.864e-02 1.153e-01 -3.761e-01 6.379e-01 4.851e-03 - -5.556e-02 -3.761e-01 7.894e+00 -3.947e+00 -2.754e-02 - -2.229e-01 6.379e-01 -3.947e+00 1.026e+01 4.798e-02 - -1.243e-03 4.851e-03 -2.754e-02 4.798e-02 3.825e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.31836 1.000 -0.182 -0.065 -0.230 -0.210 - 2 0.73280 -0.182 1.000 -0.394 0.586 0.730 - 3 0.54277 -0.065 -0.394 1.000 -0.439 -0.501 - 4 0.77378 -0.230 0.586 -0.439 1.000 0.766 - 5 0.85046 -0.210 0.730 -0.501 0.766 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=13194.8 FROM HESSE STATUS=OK 31 CALLS 237 TOTAL - EDM=2.98129e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.53119e+02 3.02390e-01 1.52373e-04 1.04142e-01 - 2 sg_p1 1.32780e+01 3.41962e-01 3.34022e-04 -6.56836e-02 - 3 sg_p2 4.41784e+02 2.83105e+00 6.87778e-04 1.23663e-01 - 4 sg_p3 4.02094e+01 3.23660e+00 1.12301e-04 -6.04605e-01 - 5 sg_p4 8.69165e-01 1.97739e-02 4.83854e-04 8.30589e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.144e-02 -1.903e-02 -5.175e-02 -2.268e-01 -1.268e-03 - -1.903e-02 1.170e-01 -3.920e-01 6.571e-01 4.973e-03 - -5.175e-02 -3.920e-01 8.022e+00 -4.140e+00 -2.871e-02 - -2.268e-01 6.571e-01 -4.140e+00 1.049e+01 4.942e-02 - -1.268e-03 4.973e-03 -2.871e-02 4.942e-02 3.915e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.31924 1.000 -0.184 -0.060 -0.232 -0.212 - 2 0.73725 -0.184 1.000 -0.405 0.593 0.735 - 3 0.55306 -0.060 -0.405 1.000 -0.451 -0.512 - 4 0.77932 -0.232 0.593 -0.451 1.000 0.771 - 5 0.85417 -0.212 0.735 -0.512 0.771 1.000 -450 -453.119 +- 0.30239 -13.278 +- 0.341962 -35.9 fb^{-1} (13 TeV) -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 23 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 72 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 80 has zero error, setting residual to zero - Uncertainty on sg_p0 = 453.121 +- 0.312202 (stat) - 0.472204 + 0.694919 (syst); -0.497337/+0.712236 (total) - Uncertainty on sg_p1 = 13.2664 +- 0.354275 (stat) - 0.344861 + 0.194275 (syst); -0.387695/+0.262907 (total) - Uncertainty on sg_p2 = 441.85 +- 2.90658 (stat) - 2.35076 + 2.48654 (syst); -2.76371/+2.88009 (total) - Uncertainty on sg_p3 = 39.952 +- 3.31061 (stat) - 1.8916 + 2.41576 (syst); -2.5136/+2.92847 (total) - Uncertainty on sg_p4 = 0.869549 +- 0.0205823 (stat) - 0.0106377 + 0.015866 (syst); -0.0148009/+0.0189113 (total) - === Baseline plot ===
- norm = 1083.26 -JEC lnN 1.00732 - -JER lnN 1.01521 - -btag lnN 1.06507 - -sg_p0 param 453.121 -0.497337/+0.712236 -sg_p1 param 13.2664 -0.387695/+0.262907 -sg_p2 param 441.85 -2.76371/+2.88009 -sg_p3 param 39.952 -2.5136/+2.92847 -sg_p4 param 0.869549 -0.0148009/+0.0189113 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_500_crystal_1_285_624/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_500_crystal_1_285_624/data_bkg.log deleted file mode 100644 index 3cc1900..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_500_crystal_1_285_624/data_bkg.log +++ /dev/null @@ -1,750 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [252,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=62921.6 FROM MIGRAD STATUS=INITIATE 90 CALLS 91 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.21879e-02 5.09000e-01 0.00000e+00 -9.80911e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -1.28354e+01 - 3 par_crystal_2 2.65669e+02 4.00000e+00 0.00000e+00 3.55320e+02 - 4 par_crystal_3 1.06488e+01 2.70000e+00 -4.48284e-01 -2.33576e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62883.4 FROM HESSE STATUS=OK 29 CALLS 257 TOTAL - EDM=4.91113 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.66060e-01 4.16121e-03 3.52377e-04 -4.74293e+00 - 2 par_crystal_1 4.45375e+00 2.73731e+00 1.77223e-01 2.66184e-01 - 3 par_crystal_2 2.67385e+02 2.04373e-01 8.29600e-04 2.81454e+02 - 4 par_crystal_3 1.36851e+01 5.38888e-01 1.69331e-03 -1.62103e+00 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=62883.3 FROM MIGRAD STATUS=FAILED 358 CALLS 359 TOTAL - EDM=0.00753244 STRATEGY= 1 ERR MATRIX APPROXIMATE - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.65093e-01 8.39913e-03 1.31861e-03 5.42788e+00 - 2 par_crystal_1 5.09910e+00 4.33634e+00 3.39194e-01 -6.59950e-03 - 3 par_crystal_2 2.67339e+02 1.86486e-01 3.32550e-03 -8.58879e+00 - 4 par_crystal_3 1.37140e+01 6.01780e-01 6.34807e-03 1.69258e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.055e-05 1.617e-04 4.699e-04 2.892e-03 - 1.617e-04 1.762e-02 -1.356e-04 -1.108e-03 - 4.699e-04 -1.356e-04 3.478e-02 3.255e-02 - 2.892e-03 -1.108e-03 3.255e-02 3.624e-01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.60853 1.000 0.145 0.300 0.572 - 2 0.19009 0.145 1.000 -0.005 -0.014 - 3 0.33449 0.300 -0.005 1.000 0.290 - 4 0.59243 0.572 -0.014 0.290 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7660e-01 8.1807e-01 1.6519e+00 1.7066e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.178308 TO DIAGONAL. - FCN=62883.3 FROM HESSE STATUS=NOT POSDEF 33 CALLS 392 TOTAL - EDM=3.36849 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.65093e-01 8.70034e-02 2.63722e-04 -1.21988e+00 - 2 par_crystal_1 5.09910e+00 4.18121e+00 5.00000e-01 1.54425e+00 - 3 par_crystal_2 2.67339e+02 5.27040e+00 9.57407e-02 3.75715e-01 - 4 par_crystal_3 1.37140e+01 6.68546e+00 2.53923e-04 -2.07863e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.595e-03 -2.994e-03 4.642e-01 6.089e-01 - -2.994e-03 1.536e-02 -1.944e-01 -2.569e-01 - 4.642e-01 -1.944e-01 2.855e+01 3.736e+01 - 6.089e-01 -2.569e-01 3.736e+01 4.914e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99751 1.000 -0.277 0.997 0.997 - 2 0.37560 -0.277 1.000 -0.293 -0.296 - 3 0.99795 0.997 -0.293 1.000 0.997 - 4 0.99797 0.997 -0.296 0.997 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=62983.1 FROM MIGRAD STATUS=INITIATE 29 CALLS 30 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 6.05383e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -1.33666e+02 - 3 par_gaus_exp_2 3.19008e-01 3.05000e-01 -9.67731e-01 -3.33619e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.00383 added to diagonal of error matrix - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62882.7 FROM MIGRAD STATUS=CONVERGED 228 CALLS 229 TOTAL - EDM=4.4408e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.69095e+02 7.01852e-01 4.07755e-03 2.89794e-02 - 2 par_gaus_exp_1 1.61044e+01 1.09719e+00 7.43010e-03 -1.84784e-02 - 3 par_gaus_exp_2 1.90527e-01 1.58774e-02 1.98778e-03 -6.23432e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 4.929e-01 5.914e-01 9.067e-03 - 5.914e-01 1.207e+00 1.483e-02 - 9.067e-03 1.483e-02 2.521e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.82590 1.000 0.767 0.813 - 2 0.85979 0.767 1.000 0.850 - 3 0.88644 0.813 0.850 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62882.7 FROM HESSE STATUS=OK 16 CALLS 245 TOTAL - EDM=4.28199e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.69095e+02 6.86832e-01 1.63102e-04 -5.76704e-01 - 2 par_gaus_exp_1 1.61044e+01 1.07335e+00 2.97204e-04 -5.72398e-01 - 3 par_gaus_exp_2 1.90527e-01 1.55212e-02 7.95110e-05 -1.13813e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 4.720e-01 5.579e-01 8.580e-03 - 5.579e-01 1.155e+00 1.406e-02 - 8.580e-03 1.406e-02 2.410e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.81734 1.000 0.756 0.805 - 2 0.85292 0.756 1.000 0.843 - 3 0.88081 0.805 0.843 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,624] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.3296 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.3296) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=286.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=286.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=289.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=289.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=295.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=295.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=298.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=298.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=301.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=301.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - ... (remaining 216 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.733611 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.733611) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=313.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=316.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=319.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=325.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=328.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=331.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=334.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=340.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=343.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=346.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - ... (remaining 94 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0733618 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0733618 - - FCN=103426 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57146e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.55551e+03 - 3 par_novo_2 -1.33526e+00 2.00000e+01 0.00000e+00 1.53308e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103192 FROM MIGRAD STATUS=CONVERGED 126 CALLS 127 TOTAL - EDM=1.07924e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.17697e+01 1.69443e-01** at limit ** - 2 par_novo_1 3.87878e+01 2.27475e+00 4.96100e-03 -6.14249e-02 - 3 par_novo_2 -1.26766e+00 7.00630e-02 3.67886e-05 3.77179e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 2.244e-10 -2.632e-07 -1.276e-07 - -2.632e-07 5.190e+00 1.540e-01 - -1.276e-07 1.540e-01 4.909e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.43392 1.000 -0.008 -0.122 - 2 0.97109 -0.008 1.000 0.965 - 3 0.97152 -0.122 0.965 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103192 FROM HESSE STATUS=OK 20 CALLS 147 TOTAL - EDM=1.23299e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.15107e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.87878e+01 2.30410e+00 1.98440e-04 4.51799e-01 - 3 par_novo_2 -1.26766e+00 7.13892e-02 1.47154e-06 -1.26769e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 2.143e-10 3.996e-06 -2.087e-07 - 3.996e-06 5.325e+00 1.518e-01 - -2.087e-07 1.518e-01 5.096e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.80390 1.000 0.118 -0.200 - 2 0.97183 0.118 1.000 0.922 - 3 0.97258 -0.200 0.922 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107617 FROM MIGRAD STATUS=INITIATE 36 CALLS 37 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 6.60405e+03 - 2 par_crystal_1_1 7.90153e-02 5.09000e-01 -1.80421e+00 3.05679e+03 - 3 par_crystal_1_2 2.60000e+02 4.00000e+00 0.00000e+00 1.48888e+03 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 6.99071e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.17529 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.7903e-03 5.8606e-02 5.0897e-01 3.4352e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.006225 TO DIAGONAL. - FCN=103191 FROM MIGRAD STATUS=CONVERGED 353 CALLS 354 TOTAL - EDM=3.7306e-06 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.37913e-01 3.41139e-02 6.19492e-04 4.10204e-01 - 2 par_crystal_1_1 4.44737e+00 5.69760e-01 2.21494e-02 9.88736e-03 - 3 par_crystal_1_2 2.79979e+02 3.40482e+01 2.79535e-01 -2.97577e-04 - 4 par_crystal_1_3 1.87584e+01 2.98857e+00 3.96232e-03 -6.40797e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.164e-03 3.582e-03 3.594e-03 9.898e-02 - 3.582e-03 3.375e-01 -1.052e-02 7.382e-01 - 3.594e-03 -1.052e-02 3.148e+00 6.243e-01 - 9.898e-02 7.382e-01 6.243e-01 9.086e+00 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99630 1.000 0.181 0.059 0.962 - 2 0.95650 0.181 1.000 -0.010 0.422 - 3 0.63948 0.059 -0.010 1.000 0.117 - 4 0.99690 0.962 0.422 0.117 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103191 FROM HESSE STATUS=OK 27 CALLS 381 TOTAL - EDM=6.06842e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 2.37913e-01 2.12502e-01 1.23898e-04 -8.36786e+01 - 2 par_crystal_1_1 4.44737e+00 5.06952e-01 8.85975e-04 -1.65463e+01 - 3 par_crystal_1_2 2.79979e+02 2.96341e+01 5.00000e-01 7.80831e+00 - 4 par_crystal_1_3 1.87584e+01 1.90925e+01 1.58493e-04 2.18231e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.578e-02 1.663e-02 2.427e-02 3.730e+00 - 1.663e-02 2.650e-01 -4.299e-02 1.684e+00 - 2.427e-02 -4.299e-02 1.850e+00 2.341e+00 - 3.730e+00 1.684e+00 2.341e+00 3.045e+02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99991 1.000 0.151 0.083 0.999 - 2 0.94385 0.151 1.000 -0.061 0.187 - 3 0.80384 0.083 -0.061 1.000 0.099 - 4 0.99991 0.999 0.187 0.099 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 13889.7 - Background number of gaus_exp_252_330 = 13889.7 - Background number of novo_285_624 = 17637.2 - Background number of crystal_1_285_624 = 17637.2 - Background number of gaus_bern_285_624 = 17637.2 - Background number of landau_285_624 = 17637.2 -par_crystal_0 param 0.165093 0.0870034 -par_crystal_1 param 5.0991 4.18121 -par_crystal_2 param 267.339 5.2704 -par_crystal_3 param 13.714 6.68546 -par_crystal_1_0 param 0.237913 0.212502 -par_crystal_1_1 param 4.44737 0.506952 -par_crystal_1_2 param 279.979 29.6341 -par_crystal_1_3 param 18.7584 19.0925 -par_gaus_exp_0 param 269.095 0.686832 -par_gaus_exp_1 param 16.1044 1.07335 -par_gaus_exp_2 param 0.190527 0.0155212 -par_novo_0 param 250 31.5107 -par_novo_1 param 38.7878 2.3041 -par_novo_2 param -1.26766 0.0713892 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_500_crystal_1_285_624/datacard_500_crystal_1_285_624.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_500_crystal_1_285_624/datacard_500_crystal_1_285_624.txt deleted file mode 100644 index 1b0b59a..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_500_crystal_1_285_624/datacard_500_crystal_1_285_624.txt +++ /dev/null @@ -1,31 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_500.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_crystal_1_285_624.root HbbHbb:f_crystal_1 -shapes data_obs HbbHbb w_background_crystal_1_285_624.root HbbHbb:data_obs_crystal_1_285_624 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 1319.62 17637.2 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06496 - -JER lnN 1.01686 - -JEC lnN 1.00347 - -trigger lnN 1.10 - -PDF lnN 1.01997778164 - -sg_p0 param 503.541 -0.717957/+0.695495 -sg_p1 param 16.4684 -0.412882/+0.314547 -sg_p2 param 454.55 -10.3364/+13.4131 -sg_p3 param 135.056 -25.6003/+15.0508 -sg_p4 param 0.927449 -0.00368502/+0.00494853 -par_crystal_1_0 param 0.237913 0.212502 -par_crystal_1_1 param 4.44737 0.506952 -par_crystal_1_2 param 279.979 29.6341 -par_crystal_1_3 param 18.7584 19.0925 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_500_crystal_1_285_624/pdf.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_500_crystal_1_285_624/pdf.log deleted file mode 100644 index 22b256a..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_500_crystal_1_285_624/pdf.log +++ /dev/null @@ -1,10 +0,0 @@ -[?1034h FCN=7.73723 FROM MIGRAD STATUS=CONVERGED 68 CALLS 69 TOTAL - EDM=1.48553e-09 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 Constant 1.55193e+01 2.01523e+00 2.33208e-03 3.31664e-05 - 2 Mean 9.99114e-01 2.37917e-03 3.42556e-06 -1.77868e-04 - 3 Sigma 1.99778e-02 2.01544e-03 4.15348e-05 8.52046e-04 -0.999114272503 +/- 0.00237917106011 -0.0199777816408 +/- 0.00201543879959 -PDF lnN 1.01997778164 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_500_crystal_1_285_624/signal500_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_500_crystal_1_285_624/signal500_sig.log deleted file mode 100644 index 3014dec..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_500_crystal_1_285_624/signal500_sig.log +++ /dev/null @@ -1,916 +0,0 @@ - -Processing test.c... -nSignal_init = 100000 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=18297.2 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.90000e+02 6.00000e+00 2.01358e-01 4.88508e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 7.52283e+01 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 1.04492e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -1.27139e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -3.31849e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17871.1 FROM MIGRAD STATUS=CONVERGED 270 CALLS 271 TOTAL - EDM=0.000209103 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.82781e+02 4.91816e-01 1.54936e-03 4.63902e-01 - 2 sg_p1 2.77322e+01 3.77130e-01 2.11298e-03 -7.95545e-04 - 3 sg_p2 4.00000e+02 7.22234e+00 3.62181e-02 1.52038e-02 - 4 sg_p3 9.99995e+01 7.83688e+00 5.52124e-02 -1.33082e-02 - 5 sg_p4 9.49597e-01 5.34566e-03 2.17525e-03 3.38347e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.419e-01 -1.201e-02 7.239e-06 6.832e-04 -2.726e-04 - -1.201e-02 1.423e-01 -5.971e-04 4.705e-05 4.980e-04 - 7.239e-06 -5.971e-04 7.635e-03 -3.089e-06 -2.189e-05 - 6.832e-04 4.705e-05 -3.089e-06 1.671e-02 2.174e-06 - -2.726e-04 4.980e-04 -2.189e-05 2.174e-06 2.858e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.11194 1.000 -0.065 0.000 0.011 -0.104 - 2 0.25018 -0.065 1.000 -0.018 0.001 0.247 - 3 0.04761 0.000 -0.018 1.000 -0.000 -0.047 - 4 0.01159 0.011 0.001 -0.000 1.000 0.003 - 5 0.26559 -0.104 0.247 -0.047 0.003 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17871.1 FROM HESSE STATUS=OK 31 CALLS 302 TOTAL - EDM=0.000214101 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.82781e+02 4.91810e-01 3.09872e-04 -2.43026e-01 - 2 sg_p1 2.77322e+01 3.77150e-01 8.45194e-05 2.59399e-01 - 3 sg_p2 4.00000e+02 7.23045e+00 7.24363e-03 -1.56845e+00 - 4 sg_p3 9.99995e+01 7.86694e+00 1.10425e-02 1.56600e+00 - 5 sg_p4 9.49597e-01 5.34101e-03 4.35051e-04 1.11793e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.419e-01 -1.221e-02 2.317e-06 2.181e-05 -2.728e-04 - -1.221e-02 1.423e-01 -1.751e-04 1.477e-06 4.978e-04 - 2.317e-06 -1.751e-04 7.644e-03 -2.852e-08 -6.407e-06 - 2.181e-05 1.477e-06 -2.852e-08 1.678e-02 6.944e-08 - -2.728e-04 4.978e-04 -6.407e-06 6.944e-08 2.853e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.11182 1.000 -0.066 0.000 0.000 -0.104 - 2 0.25038 -0.066 1.000 -0.005 0.000 0.247 - 3 0.01394 0.000 -0.005 1.000 -0.000 -0.014 - 4 0.00037 0.000 0.000 -0.000 1.000 0.000 - 5 0.26252 -0.104 0.247 -0.014 0.000 1.000 -500 -482.781 +- 0.49181 -27.7322 +- 0.37715 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=18169.3 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.90000e+02 6.00000e+00 2.01358e-01 3.31882e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 8.82382e+01 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 9.40789e+02 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -1.28474e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -3.45518e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17775 FROM MIGRAD STATUS=CONVERGED 298 CALLS 299 TOTAL - EDM=6.02039e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.84762e+02 4.94191e-01 1.52434e-03 1.30913e-01 - 2 sg_p1 2.76557e+01 3.74902e-01 2.09728e-03 4.83776e-02 - 3 sg_p2 4.00000e+02 4.37949e+00 2.80592e-02** at limit ** - 4 sg_p3 9.99992e+01 6.41285e+01 1.21382e-01 2.55150e-03 - 5 sg_p4 9.47779e-01 5.38139e-03 2.15294e-03 -2.62881e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.442e-01 -1.391e-02 1.965e-06 1.328e-02 -2.985e-04 - -1.391e-02 1.406e-01 -2.130e-05 -8.696e-04 4.743e-04 - 1.965e-06 -2.130e-05 4.142e-05 -4.503e-06 -8.642e-07 - 1.328e-02 -8.696e-04 -4.503e-06 1.378e-01 3.311e-05 - -2.985e-04 4.743e-04 -8.642e-07 3.311e-05 2.896e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.14334 1.000 -0.075 0.001 0.072 -0.112 - 2 0.24021 -0.075 1.000 -0.009 -0.006 0.235 - 3 0.02528 0.001 -0.009 1.000 -0.002 -0.025 - 4 0.07681 0.072 -0.006 -0.002 1.000 0.017 - 5 0.25571 -0.112 0.235 -0.025 0.017 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17775 FROM HESSE STATUS=OK 35 CALLS 334 TOTAL - EDM=5.16959e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.84762e+02 5.00293e-01 3.04869e-04 -1.75493e-01 - 2 sg_p1 2.76557e+01 3.74977e-01 8.38911e-05 2.54605e-01 - 3 sg_p2 4.00000e+02 4.38207e+00 5.61185e-03 -1.57057e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 9.99992e+01 1.55865e+01 4.95239e-01 1.57658e+00 - 5 sg_p4 9.47779e-01 5.38465e-03 4.30589e-04 1.10968e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.503e-01 -1.437e-02 -1.054e-07 1.912e-02 -2.821e-04 - -1.437e-02 1.406e-01 -4.527e-06 -8.788e-04 4.745e-04 - -1.054e-07 -4.527e-06 4.144e-05 -1.618e-06 -1.856e-07 - 1.912e-02 -8.788e-04 -1.618e-06 4.993e-02 5.148e-05 - -2.821e-04 4.745e-04 -1.856e-07 5.148e-05 2.900e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.21046 1.000 -0.077 -0.000 0.171 -0.105 - 2 0.24099 -0.077 1.000 -0.002 -0.010 0.235 - 3 0.00549 -0.000 -0.002 1.000 -0.001 -0.005 - 4 0.18195 0.171 -0.010 -0.001 1.000 0.043 - 5 0.25791 -0.105 0.235 -0.005 0.043 1.000 -500 -484.762 +- 0.500293 -27.6557 +- 0.374977 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=18067.3 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.90000e+02 6.00000e+00 2.01358e-01 6.30906e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 6.68366e+01 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 1.15954e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -1.16092e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -3.26605e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17575.8 FROM MIGRAD STATUS=CONVERGED 279 CALLS 280 TOTAL - EDM=3.64156e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.80603e+02 4.87655e-01 1.55641e-03 1.00438e-01 - 2 sg_p1 2.73597e+01 3.75999e-01 2.07241e-03 -3.88766e-02 - 3 sg_p2 4.00000e+02 7.70615e+00 3.73444e-02 -1.20875e-02 - 4 sg_p3 9.99999e+01 9.07676e+00 5.91616e-02 4.30185e-03 - 5 sg_p4 9.52020e-01 5.29904e-03 2.18424e-03 -2.42849e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.378e-01 -1.252e-02 1.605e-06 3.978e-04 -2.735e-04 - -1.252e-02 1.414e-01 -4.268e-04 1.441e-06 5.110e-04 - 1.605e-06 -4.268e-04 5.890e-03 -4.600e-07 -1.533e-05 - 3.978e-04 1.441e-06 -4.600e-07 2.758e-03 4.935e-07 - -2.735e-04 5.110e-04 -1.533e-05 4.935e-07 2.809e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.11523 1.000 -0.068 0.000 0.016 -0.106 - 2 0.25980 -0.068 1.000 -0.015 0.000 0.256 - 3 0.03828 0.000 -0.015 1.000 -0.000 -0.038 - 4 0.01591 0.016 0.000 -0.000 1.000 0.002 - 5 0.27342 -0.106 0.256 -0.038 0.002 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17575.8 FROM HESSE STATUS=OK 31 CALLS 311 TOTAL - EDM=3.66903e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.80603e+02 4.87622e-01 3.11281e-04 -3.18584e-01 - 2 sg_p1 2.73597e+01 3.76029e-01 8.28962e-05 2.36108e-01 - 3 sg_p2 4.00000e+02 7.72173e+00 7.46888e-03 -1.57279e+00 - 4 sg_p3 9.99999e+01 9.11980e+00 1.18323e-02 1.57260e+00 - 5 sg_p4 9.52020e-01 5.29594e-03 8.73698e-05 1.12913e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.378e-01 -1.272e-02 2.233e-07 9.824e-05 -2.737e-04 - -1.272e-02 1.414e-01 -4.487e-05 2.340e-07 5.111e-04 - 2.233e-07 -4.487e-05 5.902e-03 -1.148e-08 -1.609e-06 - 9.824e-05 2.340e-07 -1.148e-08 2.771e-03 1.224e-07 - -2.737e-04 5.111e-04 -1.609e-06 1.224e-07 2.805e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.11467 1.000 -0.069 0.000 0.004 -0.106 - 2 0.26008 -0.069 1.000 -0.002 0.000 0.257 - 3 0.00402 0.000 -0.002 1.000 -0.000 -0.004 - 4 0.00392 0.004 0.000 -0.000 1.000 0.000 - 5 0.27142 -0.106 0.257 -0.004 0.000 1.000 -500 -480.603 +- 0.487622 -27.3597 +- 0.376029 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=16835.6 FROM MIGRAD STATUS=INITIATE 46 CALLS 47 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.00000e+02 4.00000e+00 0.00000e+00 -3.93448e+02 - 2 sg_p1 1.85000e+01 2.30000e+00 0.00000e+00 4.78837e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 0.00000e+00 -1.66272e+02 - 4 sg_p3 4.24477e+01 1.40000e+01 -5.66239e-01 4.08068e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -6.94465e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16163.1 FROM HESSE STATUS=OK 31 CALLS 270 TOTAL - EDM=0.0123886 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.03549e+02 3.01469e-01 1.32569e-03 7.22248e-02 - 2 sg_p1 1.64694e+01 2.69674e-01 1.82958e-03 1.11175e-01 - 3 sg_p2 4.52623e+02 1.84688e+01 1.67733e-02 -5.64013e-01 - 4 sg_p3 1.31659e+02 2.60244e+01 4.76520e-02 -2.04899e-01 - 5 sg_p4 9.27815e-01 7.08262e-03 2.04007e-03 -6.32432e-02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=16163.1 FROM MIGRAD STATUS=CONVERGED 293 CALLS 294 TOTAL - EDM=1.39803e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 9.0 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.03541e+02 3.02714e-01 -6.04564e-05 -2.41635e-02 - 2 sg_p1 1.64684e+01 2.71856e-01 1.82456e-04 2.35248e-02 - 3 sg_p2 4.54550e+02 1.81378e+01 -3.71817e-04 2.34305e-03 - 4 sg_p3 1.35056e+02 2.96709e+01 1.70336e-02 -8.15967e-03 - 5 sg_p4 9.27449e-01 7.04529e-03 2.19134e-05 -1.27756e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.164e-02 -7.657e-03 -1.012e-01 -1.679e+00 -7.191e-05 - -7.657e-03 7.392e-02 -1.518e+00 2.592e+00 7.352e-04 - -1.012e-01 -1.518e+00 3.340e+02 -8.231e+01 -5.363e-02 - -1.679e+00 2.592e+00 -8.231e+01 1.069e+03 -1.492e-03 - -7.191e-05 7.352e-04 -5.363e-02 -1.492e-03 4.965e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.18907 1.000 -0.093 -0.018 -0.170 -0.034 - 2 0.49868 -0.093 1.000 -0.305 0.292 0.384 - 3 0.45946 -0.018 -0.305 1.000 -0.138 -0.416 - 4 0.36545 -0.170 0.292 -0.138 1.000 -0.006 - 5 0.51683 -0.034 0.384 -0.416 -0.006 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16163.1 FROM HESSE STATUS=OK 39 CALLS 333 TOTAL - EDM=4.95712e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.03541e+02 3.01948e-01 1.32548e-03 1.78010e-01 - 2 sg_p1 1.64684e+01 2.69373e-01 1.82921e-03 -1.77589e-01 - 3 sg_p2 4.54550e+02 1.88889e+01 1.71373e-02 -4.39830e-01 - 4 sg_p3 1.35056e+02 2.91667e+01 5.83968e-02 9.05144e-01 - 5 sg_p4 9.27449e-01 7.08973e-03 2.04457e-03 1.02536e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.118e-02 -6.694e-03 -1.967e-01 -1.492e+00 -6.118e-05 - -6.694e-03 7.258e-02 -1.499e+00 2.192e+00 7.371e-04 - -1.967e-01 -1.499e+00 3.627e+02 -4.939e+01 -5.738e-02 - -1.492e+00 2.192e+00 -4.939e+01 1.025e+03 -5.946e-03 - -6.118e-05 7.371e-04 -5.738e-02 -5.946e-03 5.028e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.17693 1.000 -0.082 -0.034 -0.154 -0.029 - 2 0.48331 -0.082 1.000 -0.292 0.254 0.386 - 3 0.45514 -0.034 -0.292 1.000 -0.081 -0.425 - 4 0.32411 -0.154 0.254 -0.081 1.000 -0.026 - 5 0.52326 -0.029 0.386 -0.425 -0.026 1.000 -500 -503.541 +- 0.301948 -16.4684 +- 0.269373 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=16739.6 FROM MIGRAD STATUS=INITIATE 45 CALLS 46 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.00000e+02 4.00000e+00 0.00000e+00 -4.55651e+02 - 2 sg_p1 1.85000e+01 2.30000e+00 0.00000e+00 4.48786e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 0.00000e+00 -2.68451e+02 - 4 sg_p3 4.32221e+01 1.40000e+01 -5.53184e-01 1.18283e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -6.96034e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16081.3 FROM MIGRAD STATUS=CONVERGED 313 CALLS 314 TOTAL - EDM=8.68132e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.04220e+02 3.07707e-01 1.35237e-03 1.08303e-01 - 2 sg_p1 1.66795e+01 2.77507e-01 1.84894e-03 6.94551e-02 - 3 sg_p2 4.62822e+02 1.91078e+01 1.68854e-02 -1.14748e-02 - 4 sg_p3 1.35582e+02 3.03789e+01 6.57946e-02 1.08838e-02 - 5 sg_p4 9.28230e-01 7.23504e-03 2.06982e-03 -3.02724e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.469e-02 -7.947e-03 -3.583e-01 -1.715e+00 -8.078e-05 - -7.947e-03 7.703e-02 -1.315e+00 2.634e+00 8.091e-04 - -3.583e-01 -1.315e+00 3.708e+02 4.728e+01 -6.075e-02 - -1.715e+00 2.634e+00 4.728e+01 1.145e+03 2.032e-03 - -8.078e-05 8.091e-04 -6.075e-02 2.032e-03 5.236e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.18853 1.000 -0.093 -0.060 -0.165 -0.036 - 2 0.50124 -0.093 1.000 -0.246 0.281 0.403 - 3 0.46006 -0.060 -0.246 1.000 0.073 -0.436 - 4 0.34759 -0.165 0.281 0.073 1.000 0.008 - 5 0.53639 -0.036 0.403 -0.436 0.008 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16081.3 FROM HESSE STATUS=OK 31 CALLS 345 TOTAL - EDM=9.10947e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.04220e+02 3.08377e-01 2.70474e-04 2.12615e-01 - 2 sg_p1 1.66795e+01 2.80568e-01 3.69788e-04 -1.58971e-01 - 3 sg_p2 4.62822e+02 1.90695e+01 6.75418e-04 -3.45556e-01 - 4 sg_p3 1.35582e+02 3.07077e+01 2.63178e-03 9.17410e-01 - 5 sg_p4 9.28230e-01 7.23811e-03 4.13965e-04 1.02837e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.510e-02 -8.877e-03 -3.212e-01 -1.872e+00 -9.078e-05 - -8.877e-03 7.873e-02 -1.370e+00 3.011e+00 8.254e-04 - -3.212e-01 -1.370e+00 3.693e+02 2.368e+01 -6.065e-02 - -1.872e+00 3.011e+00 2.368e+01 1.177e+03 7.626e-03 - -9.078e-05 8.254e-04 -6.065e-02 7.626e-03 5.240e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.19932 1.000 -0.103 -0.054 -0.177 -0.041 - 2 0.51720 -0.103 1.000 -0.254 0.313 0.406 - 3 0.45661 -0.054 -0.254 1.000 0.036 -0.436 - 4 0.36806 -0.177 0.313 0.036 1.000 0.031 - 5 0.53695 -0.041 0.406 -0.436 0.031 1.000 -500 -504.22 +- 0.308377 -16.6795 +- 0.280568 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=16548.5 FROM MIGRAD STATUS=INITIATE 40 CALLS 41 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.00000e+02 4.00000e+00 0.00000e+00 -3.23108e+02 - 2 sg_p1 1.85000e+01 2.30000e+00 0.00000e+00 5.18946e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 0.00000e+00 -1.42436e+02 - 4 sg_p3 4.43542e+01 1.40000e+01 -5.34286e-01 2.49400e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -7.66244e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15889.1 FROM HESSE STATUS=OK 37 CALLS 242 TOTAL - EDM=0.000693776 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.02838e+02 2.97826e-01 1.28795e-03 -1.05531e-02 - 2 sg_p1 1.60782e+01 2.67978e-01 1.80577e-03 2.44112e-02 - 3 sg_p2 4.64332e+02 1.37627e+01 1.17387e-02 2.07821e-01 - 4 sg_p3 1.14468e+02 2.01486e+01 2.64964e-02 5.48597e-02 - 5 sg_p4 9.27839e-01 7.15691e-03 2.03796e-03 1.57814e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=15889.1 FROM MIGRAD STATUS=CONVERGED 254 CALLS 255 TOTAL - EDM=9.17556e-06 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 2.8 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.02840e+02 2.97434e-01 8.32709e-05 -7.82024e-03 - 2 sg_p1 1.60782e+01 2.67892e-01 -2.85162e-06 4.43301e-03 - 3 sg_p2 4.63894e+02 1.38330e+01 -4.87307e-03 -3.70669e-03 - 4 sg_p3 1.14016e+02 1.92315e+01 -7.40995e-03 -1.25650e-02 - 5 sg_p4 9.27892e-01 7.16442e-03 2.06750e-04 1.26344e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 8.847e-02 -6.452e-03 -2.568e-01 -8.771e-01 -8.776e-05 - -6.452e-03 7.178e-02 -9.238e-01 1.447e+00 8.030e-04 - -2.568e-01 -9.238e-01 1.929e+02 9.107e+00 -4.221e-02 - -8.771e-01 1.447e+00 9.107e+00 3.827e+02 1.223e-02 - -8.776e-05 8.030e-04 -4.221e-02 1.223e-02 5.134e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.17624 1.000 -0.081 -0.062 -0.151 -0.041 - 2 0.49356 -0.081 1.000 -0.248 0.276 0.418 - 3 0.44761 -0.062 -0.248 1.000 0.034 -0.424 - 4 0.31902 -0.151 0.276 0.034 1.000 0.087 - 5 0.53440 -0.041 0.418 -0.424 0.087 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15889.1 FROM HESSE STATUS=OK 39 CALLS 294 TOTAL - EDM=3.03558e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.02840e+02 2.97751e-01 5.15179e-04 1.42457e-01 - 2 sg_p1 1.60782e+01 2.68158e-01 7.22309e-04 -2.12184e-01 - 3 sg_p2 4.63894e+02 1.36806e+01 1.19116e-02 -3.33579e-01 - 4 sg_p3 1.14016e+02 1.97620e+01 2.70009e-02 5.07434e-01 - 5 sg_p4 9.27892e-01 7.16159e-03 2.03722e-03 1.02707e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 8.866e-02 -6.740e-03 -2.651e-01 -9.501e-01 -8.838e-05 - -6.740e-03 7.192e-02 -8.846e-01 1.490e+00 8.010e-04 - -2.651e-01 -8.846e-01 1.886e+02 2.011e+01 -4.167e-02 - -9.501e-01 1.490e+00 2.011e+01 4.049e+02 1.100e-02 - -8.838e-05 8.010e-04 -4.167e-02 1.100e-02 5.130e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.18198 1.000 -0.084 -0.065 -0.159 -0.041 - 2 0.49512 -0.084 1.000 -0.240 0.276 0.417 - 3 0.45379 -0.065 -0.240 1.000 0.073 -0.424 - 4 0.33483 -0.159 0.276 0.073 1.000 0.076 - 5 0.53499 -0.041 0.417 -0.424 0.076 1.000 -500 -502.84 +- 0.297751 -16.0782 +- 0.268158 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=16477.8 FROM MIGRAD STATUS=INITIATE 46 CALLS 47 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.00000e+02 4.00000e+00 0.00000e+00 -3.86200e+02 - 2 sg_p1 1.85000e+01 2.30000e+00 0.00000e+00 4.57301e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 0.00000e+00 -1.88126e+02 - 4 sg_p3 4.29079e+01 1.40000e+01 -5.58468e-01 8.72628e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -6.83965e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15837 FROM HESSE STATUS=OK 33 CALLS 278 TOTAL - EDM=0.00228562 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.03601e+02 3.08955e-01 1.34585e-03 3.00627e-01 - 2 sg_p1 1.67537e+01 2.75890e-01 1.84217e-03 1.71804e-01 - 3 sg_p2 4.49584e+02 2.10318e+01 1.89093e-02 -1.86124e-01 - 4 sg_p3 1.37208e+02 2.92076e+01 6.33389e-02 -7.21712e-02 - 5 sg_p4 9.31031e-01 7.12595e-03 2.05778e-03 -2.05034e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=15837 FROM MIGRAD STATUS=CONVERGED 290 CALLS 291 TOTAL - EDM=9.94244e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 5.2 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.03597e+02 3.10422e-01 -2.20880e-04 7.26010e-03 - 2 sg_p1 1.67527e+01 2.74763e-01 -8.54234e-05 -2.36066e-02 - 3 sg_p2 4.50350e+02 1.99263e+01 9.15141e-03 7.10266e-03 - 4 sg_p3 1.38778e+02 3.01976e+01 4.00555e-02 -1.66420e-02 - 5 sg_p4 9.30902e-01 7.07722e-03 -5.07201e-04 -3.19630e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.637e-02 -7.329e-03 -9.169e-02 -1.905e+00 -5.097e-05 - -7.329e-03 7.551e-02 -1.688e+00 2.407e+00 7.425e-04 - -9.169e-02 -1.688e+00 4.048e+02 -1.012e+02 -6.013e-02 - -1.905e+00 2.407e+00 -1.012e+02 1.218e+03 -1.228e-02 - -5.097e-05 7.425e-04 -6.013e-02 -1.228e-02 5.010e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.19304 1.000 -0.086 -0.015 -0.176 -0.023 - 2 0.48229 -0.086 1.000 -0.305 0.251 0.382 - 3 0.47089 -0.015 -0.305 1.000 -0.144 -0.422 - 4 0.36202 -0.176 0.251 -0.144 1.000 -0.050 - 5 0.52945 -0.023 0.382 -0.422 -0.050 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15837 FROM HESSE STATUS=OK 41 CALLS 332 TOTAL - EDM=6.005e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.03597e+02 3.09136e-01 1.34573e-03 1.80817e-01 - 2 sg_p1 1.67527e+01 2.75606e-01 1.84171e-03 -1.52530e-01 - 3 sg_p2 4.50350e+02 2.12182e+01 1.91941e-02 -4.89291e-01 - 4 sg_p3 1.38778e+02 3.03916e+01 7.62661e-02 9.96701e-01 - 5 sg_p4 9.30902e-01 7.12819e-03 2.05809e-03 1.03882e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.557e-02 -6.148e-03 -1.876e-01 -1.605e+00 -4.622e-05 - -6.148e-03 7.597e-02 -1.916e+00 2.306e+00 7.753e-04 - -1.876e-01 -1.916e+00 4.602e+02 -1.123e+02 -6.665e-02 - -1.605e+00 2.306e+00 -1.123e+02 1.240e+03 -9.523e-03 - -4.622e-05 7.753e-04 -6.665e-02 -9.523e-03 5.082e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.17020 1.000 -0.072 -0.028 -0.147 -0.021 - 2 0.48615 -0.072 1.000 -0.324 0.238 0.395 - 3 0.48715 -0.028 -0.324 1.000 -0.149 -0.436 - 4 0.33778 -0.147 0.238 -0.149 1.000 -0.038 - 5 0.53739 -0.021 0.395 -0.436 -0.038 1.000 -500 -503.597 +- 0.309136 -16.7527 +- 0.275606 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=16981.8 FROM MIGRAD STATUS=INITIATE 47 CALLS 48 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.00000e+02 4.00000e+00 0.00000e+00 -4.05566e+02 - 2 sg_p1 1.85000e+01 2.30000e+00 0.00000e+00 4.79846e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 0.00000e+00 -2.38683e+02 - 4 sg_p3 3.85734e+01 1.40000e+01 -6.33300e-01 -1.09954e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -6.06818e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16302.6 FROM HESSE STATUS=OK 33 CALLS 261 TOTAL - EDM=0.000884701 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.03638e+02 2.96476e-01 1.30613e-03 -5.89524e-02 - 2 sg_p1 1.61908e+01 2.68536e-01 1.81793e-03 -9.06324e-02 - 3 sg_p2 4.64623e+02 1.46357e+01 1.25261e-02 2.17668e-01 - 4 sg_p3 1.18516e+02 2.19593e+01 3.03884e-02 5.10539e-02 - 5 sg_p4 9.27881e-01 7.13588e-03 2.04703e-03 7.03448e-02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=16302.6 FROM MIGRAD STATUS=CONVERGED 273 CALLS 274 TOTAL - EDM=1.35619e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 3.1 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.03639e+02 2.96022e-01 9.77721e-05 -9.91628e-03 - 2 sg_p1 1.61919e+01 2.69186e-01 9.95735e-05 3.66259e-03 - 3 sg_p2 4.64075e+02 1.47143e+01 -6.09837e-03 -4.10999e-03 - 4 sg_p3 1.17996e+02 2.09578e+01 -8.86611e-03 -1.33437e-02 - 5 sg_p4 9.27974e-01 7.15584e-03 3.61873e-04 3.29176e-06 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 8.764e-02 -6.654e-03 -2.734e-01 -9.694e-01 -8.441e-05 - -6.654e-03 7.247e-02 -1.035e+00 1.644e+00 8.204e-04 - -2.734e-01 -1.035e+00 2.185e+02 1.062e+01 -4.631e-02 - -9.694e-01 1.644e+00 1.062e+01 4.592e+02 1.234e-02 - -8.441e-05 8.204e-04 -4.631e-02 1.234e-02 5.122e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.17873 1.000 -0.083 -0.062 -0.153 -0.040 - 2 0.50630 -0.083 1.000 -0.260 0.285 0.426 - 3 0.46142 -0.062 -0.260 1.000 0.034 -0.438 - 4 0.32893 -0.153 0.285 0.034 1.000 0.080 - 5 0.54522 -0.040 0.426 -0.438 0.080 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16302.6 FROM HESSE STATUS=OK 41 CALLS 315 TOTAL - EDM=4.81522e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.03639e+02 2.96371e-01 1.30576e-03 1.82991e-01 - 2 sg_p1 1.61919e+01 2.68611e-01 1.81691e-03 -2.02075e-01 - 3 sg_p2 4.64075e+02 1.45352e+01 1.27410e-02 -3.31572e-01 - 4 sg_p3 1.17996e+02 2.14738e+01 3.10172e-02 5.73772e-01 - 5 sg_p4 9.27974e-01 7.13651e-03 2.04596e-03 1.02738e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 8.784e-02 -6.886e-03 -2.835e-01 -1.054e+00 -8.375e-05 - -6.886e-03 7.217e-02 -9.670e-01 1.646e+00 8.068e-04 - -2.835e-01 -9.670e-01 2.131e+02 2.545e+01 -4.521e-02 - -1.054e+00 1.646e+00 2.545e+01 4.832e+02 9.584e-03 - -8.375e-05 8.068e-04 -4.521e-02 9.584e-03 5.094e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.18509 1.000 -0.086 -0.066 -0.162 -0.040 - 2 0.50306 -0.086 1.000 -0.247 0.279 0.421 - 3 0.46399 -0.066 -0.247 1.000 0.079 -0.434 - 4 0.34172 -0.162 0.279 0.079 1.000 0.061 - 5 0.54250 -0.040 0.421 -0.434 0.061 1.000 -500 -503.639 +- 0.296371 -16.1919 +- 0.268611 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=15760.3 FROM MIGRAD STATUS=INITIATE 46 CALLS 47 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.00000e+02 4.00000e+00 0.00000e+00 -3.68945e+02 - 2 sg_p1 1.85000e+01 2.30000e+00 0.00000e+00 4.51251e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 0.00000e+00 -1.65516e+02 - 4 sg_p3 4.28306e+01 1.40000e+01 -5.59769e-01 7.96964e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -6.63393e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15131 FROM HESSE STATUS=OK 31 CALLS 270 TOTAL - EDM=0.00917808 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.03544e+02 3.11234e-01 1.32359e-03 3.99151e-02 - 2 sg_p1 1.64644e+01 2.78325e-01 1.82583e-03 8.26169e-02 - 3 sg_p2 4.53596e+02 1.89196e+01 1.66163e-02 -4.74680e-01 - 4 sg_p3 1.30948e+02 2.69531e+01 4.74560e-02 -1.69826e-01 - 5 sg_p4 9.28806e-01 7.28371e-03 2.04213e-03 -7.21183e-02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=15131 FROM MIGRAD STATUS=CONVERGED 292 CALLS 293 TOTAL - EDM=1.59446e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 8.3 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.03538e+02 3.12525e-01 -4.41178e-05 -1.54585e-02 - 2 sg_p1 1.64635e+01 2.80799e-01 1.36626e-04 1.03835e-02 - 3 sg_p2 4.55327e+02 1.85938e+01 -2.83276e-04 1.31641e-03 - 4 sg_p3 1.33880e+02 3.06660e+01 1.19135e-02 -8.53961e-03 - 5 sg_p4 9.28489e-01 7.24733e-03 2.34109e-05 -1.19312e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.768e-02 -8.237e-03 -1.269e-01 -1.811e+00 -7.804e-05 - -8.237e-03 7.886e-02 -1.583e+00 2.810e+00 7.851e-04 - -1.269e-01 -1.583e+00 3.512e+02 -7.894e+01 -5.706e-02 - -1.811e+00 2.810e+00 -7.894e+01 1.142e+03 2.159e-04 - -7.804e-05 7.851e-04 -5.706e-02 2.159e-04 5.254e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.19100 1.000 -0.094 -0.022 -0.171 -0.034 - 2 0.50054 -0.094 1.000 -0.301 0.296 0.386 - 3 0.45764 -0.022 -0.301 1.000 -0.125 -0.420 - 4 0.36350 -0.171 0.296 -0.125 1.000 0.001 - 5 0.51853 -0.034 0.386 -0.420 0.001 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15131 FROM HESSE STATUS=OK 39 CALLS 332 TOTAL - EDM=8.18863e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.03538e+02 3.11671e-01 1.32357e-03 1.77834e-01 - 2 sg_p1 1.64635e+01 2.78053e-01 1.82591e-03 -1.78022e-01 - 3 sg_p2 4.55327e+02 1.93050e+01 1.69364e-02 -4.30811e-01 - 4 sg_p3 1.33880e+02 2.97612e+01 5.65680e-02 8.78399e-01 - 5 sg_p4 9.28489e-01 7.28924e-03 2.04602e-03 1.02938e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.715e-02 -7.165e-03 -2.210e-01 -1.574e+00 -6.699e-05 - -7.165e-03 7.733e-02 -1.562e+00 2.322e+00 7.859e-04 - -2.210e-01 -1.562e+00 3.791e+02 -4.296e+01 -6.069e-02 - -1.574e+00 2.322e+00 -4.296e+01 1.061e+03 -4.723e-03 - -6.699e-05 7.859e-04 -6.069e-02 -4.723e-03 5.315e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.17762 1.000 -0.083 -0.036 -0.155 -0.029 - 2 0.48429 -0.083 1.000 -0.289 0.256 0.388 - 3 0.45436 -0.036 -0.289 1.000 -0.068 -0.428 - 4 0.32111 -0.155 0.256 -0.068 1.000 -0.020 - 5 0.52435 -0.029 0.388 -0.428 -0.020 1.000 -500 -503.538 +- 0.311671 -16.4635 +- 0.278053 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17965.7 FROM MIGRAD STATUS=INITIATE 46 CALLS 47 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.00000e+02 4.00000e+00 0.00000e+00 -4.19180e+02 - 2 sg_p1 1.85000e+01 2.30000e+00 0.00000e+00 5.07558e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 0.00000e+00 -1.66310e+02 - 4 sg_p3 4.20660e+01 1.40000e+01 -5.72713e-01 -5.27926e+00 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -7.26010e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17247.2 FROM HESSE STATUS=OK 31 CALLS 273 TOTAL - EDM=0.0158866 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.03553e+02 2.92162e-01 1.32752e-03 1.92047e-01 - 2 sg_p1 1.64746e+01 2.61492e-01 1.83264e-03 9.93853e-02 - 3 sg_p2 4.51603e+02 1.81044e+01 1.70017e-02 -6.77062e-01 - 4 sg_p3 1.32529e+02 2.52771e+01 4.84704e-02 -2.30017e-01 - 5 sg_p4 9.26851e-01 6.88981e-03 2.03844e-03 -1.42588e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=17247.2 FROM MIGRAD STATUS=CONVERGED 294 CALLS 295 TOTAL - EDM=4.77096e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 9.6 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.03545e+02 2.93438e-01 -5.87528e-05 -3.40309e-02 - 2 sg_p1 1.64727e+01 2.63670e-01 1.74859e-04 2.14591e-02 - 3 sg_p2 4.53798e+02 1.77853e+01 -4.09286e-04 3.31652e-04 - 4 sg_p3 1.35998e+02 2.90570e+01 1.70332e-02 -1.52432e-02 - 5 sg_p4 9.26443e-01 6.85608e-03 1.63285e-05 -2.74842e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 8.611e-02 -7.218e-03 -7.462e-02 -1.599e+00 -6.663e-05 - -7.218e-03 6.953e-02 -1.469e+00 2.461e+00 6.909e-04 - -7.462e-02 -1.469e+00 3.210e+02 -8.810e+01 -5.081e-02 - -1.599e+00 2.461e+00 -8.810e+01 1.030e+03 -2.764e-03 - -6.663e-05 6.909e-04 -5.081e-02 -2.764e-03 4.702e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.18896 1.000 -0.093 -0.014 -0.170 -0.033 - 2 0.49890 -0.093 1.000 -0.311 0.291 0.382 - 3 0.46311 -0.014 -0.311 1.000 -0.153 -0.414 - 4 0.37220 -0.170 0.291 -0.153 1.000 -0.013 - 5 0.51605 -0.033 0.382 -0.414 -0.013 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17247.2 FROM HESSE STATUS=OK 37 CALLS 332 TOTAL - EDM=2.5481e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.03545e+02 2.92634e-01 1.32733e-03 1.78200e-01 - 2 sg_p1 1.64727e+01 2.61019e-01 1.83240e-03 -1.77216e-01 - 3 sg_p2 4.53798e+02 1.84402e+01 1.73428e-02 -4.48601e-01 - 4 sg_p3 1.35998e+02 2.83987e+01 6.04366e-02 9.27242e-01 - 5 sg_p4 9.26443e-01 6.89823e-03 2.04324e-03 1.02149e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 8.564e-02 -6.233e-03 -1.752e-01 -1.395e+00 -5.632e-05 - -6.233e-03 6.814e-02 -1.435e+00 2.042e+00 6.927e-04 - -1.752e-01 -1.435e+00 3.454e+02 -5.423e+01 -5.416e-02 - -1.395e+00 2.042e+00 -5.423e+01 9.726e+02 -6.753e-03 - -5.632e-05 6.927e-04 -5.416e-02 -6.753e-03 4.760e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.17564 1.000 -0.082 -0.032 -0.153 -0.028 - 2 0.48195 -0.082 1.000 -0.296 0.251 0.385 - 3 0.45633 -0.032 -0.296 1.000 -0.094 -0.422 - 4 0.32602 -0.153 0.251 -0.094 1.000 -0.031 - 5 0.52240 -0.028 0.385 -0.422 -0.031 1.000 -500 -503.545 +- 0.292634 -16.4727 +- 0.261019 -35.9 fb^{-1} (13 TeV) -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 37 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 57 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 59 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 110 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 113 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 115 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 116 has zero error, setting residual to zero - Uncertainty on sg_p0 = 503.541 +- 0.301948 (stat) - 0.701904 + 0.678912 (syst); -0.717957/+0.695495 (total) - Uncertainty on sg_p1 = 16.4684 +- 0.269373 (stat) - 0.390296 + 0.284252 (syst); -0.412882/+0.314547 (total) - Uncertainty on sg_p2 = 454.55 +- 18.8889 (stat) - 4.20037 + 9.52429 (syst); -10.3364/+13.4131 (total) - Uncertainty on sg_p3 = 135.056 +- 29.1667 (stat) - 21.0404 + 3.7219 (syst); -25.6003/+15.0508 (total) - Uncertainty on sg_p4 = 0.927449 +- 0.00708973 (stat) - 0.00100662 + 0.0034528 (syst); -0.00368502/+0.00494853 (total) - === Baseline plot ===
- norm = 1319.62 -JEC lnN 1.00347 - -JER lnN 1.01686 - -btag lnN 1.06496 - -sg_p0 param 503.541 -0.717957/+0.695495 -sg_p1 param 16.4684 -0.412882/+0.314547 -sg_p2 param 454.55 -10.3364/+13.4131 -sg_p3 param 135.056 -25.6003/+15.0508 -sg_p4 param 0.927449 -0.00368502/+0.00494853 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_500_novo_285_624/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_500_novo_285_624/data_bkg.log deleted file mode 100644 index 3cc1900..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_500_novo_285_624/data_bkg.log +++ /dev/null @@ -1,750 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [252,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=62921.6 FROM MIGRAD STATUS=INITIATE 90 CALLS 91 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.21879e-02 5.09000e-01 0.00000e+00 -9.80911e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -1.28354e+01 - 3 par_crystal_2 2.65669e+02 4.00000e+00 0.00000e+00 3.55320e+02 - 4 par_crystal_3 1.06488e+01 2.70000e+00 -4.48284e-01 -2.33576e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62883.4 FROM HESSE STATUS=OK 29 CALLS 257 TOTAL - EDM=4.91113 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.66060e-01 4.16121e-03 3.52377e-04 -4.74293e+00 - 2 par_crystal_1 4.45375e+00 2.73731e+00 1.77223e-01 2.66184e-01 - 3 par_crystal_2 2.67385e+02 2.04373e-01 8.29600e-04 2.81454e+02 - 4 par_crystal_3 1.36851e+01 5.38888e-01 1.69331e-03 -1.62103e+00 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=62883.3 FROM MIGRAD STATUS=FAILED 358 CALLS 359 TOTAL - EDM=0.00753244 STRATEGY= 1 ERR MATRIX APPROXIMATE - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.65093e-01 8.39913e-03 1.31861e-03 5.42788e+00 - 2 par_crystal_1 5.09910e+00 4.33634e+00 3.39194e-01 -6.59950e-03 - 3 par_crystal_2 2.67339e+02 1.86486e-01 3.32550e-03 -8.58879e+00 - 4 par_crystal_3 1.37140e+01 6.01780e-01 6.34807e-03 1.69258e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.055e-05 1.617e-04 4.699e-04 2.892e-03 - 1.617e-04 1.762e-02 -1.356e-04 -1.108e-03 - 4.699e-04 -1.356e-04 3.478e-02 3.255e-02 - 2.892e-03 -1.108e-03 3.255e-02 3.624e-01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.60853 1.000 0.145 0.300 0.572 - 2 0.19009 0.145 1.000 -0.005 -0.014 - 3 0.33449 0.300 -0.005 1.000 0.290 - 4 0.59243 0.572 -0.014 0.290 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7660e-01 8.1807e-01 1.6519e+00 1.7066e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.178308 TO DIAGONAL. - FCN=62883.3 FROM HESSE STATUS=NOT POSDEF 33 CALLS 392 TOTAL - EDM=3.36849 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.65093e-01 8.70034e-02 2.63722e-04 -1.21988e+00 - 2 par_crystal_1 5.09910e+00 4.18121e+00 5.00000e-01 1.54425e+00 - 3 par_crystal_2 2.67339e+02 5.27040e+00 9.57407e-02 3.75715e-01 - 4 par_crystal_3 1.37140e+01 6.68546e+00 2.53923e-04 -2.07863e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.595e-03 -2.994e-03 4.642e-01 6.089e-01 - -2.994e-03 1.536e-02 -1.944e-01 -2.569e-01 - 4.642e-01 -1.944e-01 2.855e+01 3.736e+01 - 6.089e-01 -2.569e-01 3.736e+01 4.914e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99751 1.000 -0.277 0.997 0.997 - 2 0.37560 -0.277 1.000 -0.293 -0.296 - 3 0.99795 0.997 -0.293 1.000 0.997 - 4 0.99797 0.997 -0.296 0.997 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=62983.1 FROM MIGRAD STATUS=INITIATE 29 CALLS 30 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 6.05383e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -1.33666e+02 - 3 par_gaus_exp_2 3.19008e-01 3.05000e-01 -9.67731e-01 -3.33619e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.00383 added to diagonal of error matrix - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62882.7 FROM MIGRAD STATUS=CONVERGED 228 CALLS 229 TOTAL - EDM=4.4408e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.69095e+02 7.01852e-01 4.07755e-03 2.89794e-02 - 2 par_gaus_exp_1 1.61044e+01 1.09719e+00 7.43010e-03 -1.84784e-02 - 3 par_gaus_exp_2 1.90527e-01 1.58774e-02 1.98778e-03 -6.23432e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 4.929e-01 5.914e-01 9.067e-03 - 5.914e-01 1.207e+00 1.483e-02 - 9.067e-03 1.483e-02 2.521e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.82590 1.000 0.767 0.813 - 2 0.85979 0.767 1.000 0.850 - 3 0.88644 0.813 0.850 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62882.7 FROM HESSE STATUS=OK 16 CALLS 245 TOTAL - EDM=4.28199e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.69095e+02 6.86832e-01 1.63102e-04 -5.76704e-01 - 2 par_gaus_exp_1 1.61044e+01 1.07335e+00 2.97204e-04 -5.72398e-01 - 3 par_gaus_exp_2 1.90527e-01 1.55212e-02 7.95110e-05 -1.13813e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 4.720e-01 5.579e-01 8.580e-03 - 5.579e-01 1.155e+00 1.406e-02 - 8.580e-03 1.406e-02 2.410e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.81734 1.000 0.756 0.805 - 2 0.85292 0.756 1.000 0.843 - 3 0.88081 0.805 0.843 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,624] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.3296 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.3296) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=286.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=286.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=289.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=289.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=295.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=295.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=298.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=298.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=301.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=301.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - ... (remaining 216 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.733611 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.733611) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=313.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=316.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=319.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=325.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=328.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=331.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=334.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=340.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=343.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=346.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - ... (remaining 94 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0733618 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0733618 - - FCN=103426 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57146e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.55551e+03 - 3 par_novo_2 -1.33526e+00 2.00000e+01 0.00000e+00 1.53308e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103192 FROM MIGRAD STATUS=CONVERGED 126 CALLS 127 TOTAL - EDM=1.07924e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.17697e+01 1.69443e-01** at limit ** - 2 par_novo_1 3.87878e+01 2.27475e+00 4.96100e-03 -6.14249e-02 - 3 par_novo_2 -1.26766e+00 7.00630e-02 3.67886e-05 3.77179e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 2.244e-10 -2.632e-07 -1.276e-07 - -2.632e-07 5.190e+00 1.540e-01 - -1.276e-07 1.540e-01 4.909e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.43392 1.000 -0.008 -0.122 - 2 0.97109 -0.008 1.000 0.965 - 3 0.97152 -0.122 0.965 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103192 FROM HESSE STATUS=OK 20 CALLS 147 TOTAL - EDM=1.23299e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.15107e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.87878e+01 2.30410e+00 1.98440e-04 4.51799e-01 - 3 par_novo_2 -1.26766e+00 7.13892e-02 1.47154e-06 -1.26769e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 2.143e-10 3.996e-06 -2.087e-07 - 3.996e-06 5.325e+00 1.518e-01 - -2.087e-07 1.518e-01 5.096e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.80390 1.000 0.118 -0.200 - 2 0.97183 0.118 1.000 0.922 - 3 0.97258 -0.200 0.922 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107617 FROM MIGRAD STATUS=INITIATE 36 CALLS 37 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 6.60405e+03 - 2 par_crystal_1_1 7.90153e-02 5.09000e-01 -1.80421e+00 3.05679e+03 - 3 par_crystal_1_2 2.60000e+02 4.00000e+00 0.00000e+00 1.48888e+03 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 6.99071e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.17529 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.7903e-03 5.8606e-02 5.0897e-01 3.4352e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.006225 TO DIAGONAL. - FCN=103191 FROM MIGRAD STATUS=CONVERGED 353 CALLS 354 TOTAL - EDM=3.7306e-06 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.37913e-01 3.41139e-02 6.19492e-04 4.10204e-01 - 2 par_crystal_1_1 4.44737e+00 5.69760e-01 2.21494e-02 9.88736e-03 - 3 par_crystal_1_2 2.79979e+02 3.40482e+01 2.79535e-01 -2.97577e-04 - 4 par_crystal_1_3 1.87584e+01 2.98857e+00 3.96232e-03 -6.40797e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.164e-03 3.582e-03 3.594e-03 9.898e-02 - 3.582e-03 3.375e-01 -1.052e-02 7.382e-01 - 3.594e-03 -1.052e-02 3.148e+00 6.243e-01 - 9.898e-02 7.382e-01 6.243e-01 9.086e+00 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99630 1.000 0.181 0.059 0.962 - 2 0.95650 0.181 1.000 -0.010 0.422 - 3 0.63948 0.059 -0.010 1.000 0.117 - 4 0.99690 0.962 0.422 0.117 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103191 FROM HESSE STATUS=OK 27 CALLS 381 TOTAL - EDM=6.06842e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 2.37913e-01 2.12502e-01 1.23898e-04 -8.36786e+01 - 2 par_crystal_1_1 4.44737e+00 5.06952e-01 8.85975e-04 -1.65463e+01 - 3 par_crystal_1_2 2.79979e+02 2.96341e+01 5.00000e-01 7.80831e+00 - 4 par_crystal_1_3 1.87584e+01 1.90925e+01 1.58493e-04 2.18231e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.578e-02 1.663e-02 2.427e-02 3.730e+00 - 1.663e-02 2.650e-01 -4.299e-02 1.684e+00 - 2.427e-02 -4.299e-02 1.850e+00 2.341e+00 - 3.730e+00 1.684e+00 2.341e+00 3.045e+02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99991 1.000 0.151 0.083 0.999 - 2 0.94385 0.151 1.000 -0.061 0.187 - 3 0.80384 0.083 -0.061 1.000 0.099 - 4 0.99991 0.999 0.187 0.099 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 13889.7 - Background number of gaus_exp_252_330 = 13889.7 - Background number of novo_285_624 = 17637.2 - Background number of crystal_1_285_624 = 17637.2 - Background number of gaus_bern_285_624 = 17637.2 - Background number of landau_285_624 = 17637.2 -par_crystal_0 param 0.165093 0.0870034 -par_crystal_1 param 5.0991 4.18121 -par_crystal_2 param 267.339 5.2704 -par_crystal_3 param 13.714 6.68546 -par_crystal_1_0 param 0.237913 0.212502 -par_crystal_1_1 param 4.44737 0.506952 -par_crystal_1_2 param 279.979 29.6341 -par_crystal_1_3 param 18.7584 19.0925 -par_gaus_exp_0 param 269.095 0.686832 -par_gaus_exp_1 param 16.1044 1.07335 -par_gaus_exp_2 param 0.190527 0.0155212 -par_novo_0 param 250 31.5107 -par_novo_1 param 38.7878 2.3041 -par_novo_2 param -1.26766 0.0713892 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_500_novo_285_624/datacard_500_novo_285_624.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_500_novo_285_624/datacard_500_novo_285_624.txt deleted file mode 100644 index 3909453..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_500_novo_285_624/datacard_500_novo_285_624.txt +++ /dev/null @@ -1,30 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_500.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_novo_285_624.root HbbHbb:f_novo -shapes data_obs HbbHbb w_background_novo_285_624.root HbbHbb:data_obs_novo_285_624 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 1319.62 17637.2 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06496 - -JER lnN 1.01686 - -JEC lnN 1.00347 - -trigger lnN 1.10 - -PDF lnN 1.01997778164 - -sg_p0 param 503.541 -0.717957/+0.695495 -sg_p1 param 16.4684 -0.412882/+0.314547 -sg_p2 param 454.55 -10.3364/+13.4131 -sg_p3 param 135.056 -25.6003/+15.0508 -sg_p4 param 0.927449 -0.00368502/+0.00494853 -par_novo_0 param 250 31.5107 -par_novo_1 param 38.7878 2.3041 -par_novo_2 param -1.26766 0.0713892 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_500_novo_285_624/pdf.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_500_novo_285_624/pdf.log deleted file mode 100644 index 22b256a..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_500_novo_285_624/pdf.log +++ /dev/null @@ -1,10 +0,0 @@ -[?1034h FCN=7.73723 FROM MIGRAD STATUS=CONVERGED 68 CALLS 69 TOTAL - EDM=1.48553e-09 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 Constant 1.55193e+01 2.01523e+00 2.33208e-03 3.31664e-05 - 2 Mean 9.99114e-01 2.37917e-03 3.42556e-06 -1.77868e-04 - 3 Sigma 1.99778e-02 2.01544e-03 4.15348e-05 8.52046e-04 -0.999114272503 +/- 0.00237917106011 -0.0199777816408 +/- 0.00201543879959 -PDF lnN 1.01997778164 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_500_novo_285_624/signal500_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_500_novo_285_624/signal500_sig.log deleted file mode 100644 index 3014dec..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_500_novo_285_624/signal500_sig.log +++ /dev/null @@ -1,916 +0,0 @@ - -Processing test.c... -nSignal_init = 100000 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=18297.2 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.90000e+02 6.00000e+00 2.01358e-01 4.88508e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 7.52283e+01 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 1.04492e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -1.27139e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -3.31849e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17871.1 FROM MIGRAD STATUS=CONVERGED 270 CALLS 271 TOTAL - EDM=0.000209103 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.82781e+02 4.91816e-01 1.54936e-03 4.63902e-01 - 2 sg_p1 2.77322e+01 3.77130e-01 2.11298e-03 -7.95545e-04 - 3 sg_p2 4.00000e+02 7.22234e+00 3.62181e-02 1.52038e-02 - 4 sg_p3 9.99995e+01 7.83688e+00 5.52124e-02 -1.33082e-02 - 5 sg_p4 9.49597e-01 5.34566e-03 2.17525e-03 3.38347e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.419e-01 -1.201e-02 7.239e-06 6.832e-04 -2.726e-04 - -1.201e-02 1.423e-01 -5.971e-04 4.705e-05 4.980e-04 - 7.239e-06 -5.971e-04 7.635e-03 -3.089e-06 -2.189e-05 - 6.832e-04 4.705e-05 -3.089e-06 1.671e-02 2.174e-06 - -2.726e-04 4.980e-04 -2.189e-05 2.174e-06 2.858e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.11194 1.000 -0.065 0.000 0.011 -0.104 - 2 0.25018 -0.065 1.000 -0.018 0.001 0.247 - 3 0.04761 0.000 -0.018 1.000 -0.000 -0.047 - 4 0.01159 0.011 0.001 -0.000 1.000 0.003 - 5 0.26559 -0.104 0.247 -0.047 0.003 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17871.1 FROM HESSE STATUS=OK 31 CALLS 302 TOTAL - EDM=0.000214101 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.82781e+02 4.91810e-01 3.09872e-04 -2.43026e-01 - 2 sg_p1 2.77322e+01 3.77150e-01 8.45194e-05 2.59399e-01 - 3 sg_p2 4.00000e+02 7.23045e+00 7.24363e-03 -1.56845e+00 - 4 sg_p3 9.99995e+01 7.86694e+00 1.10425e-02 1.56600e+00 - 5 sg_p4 9.49597e-01 5.34101e-03 4.35051e-04 1.11793e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.419e-01 -1.221e-02 2.317e-06 2.181e-05 -2.728e-04 - -1.221e-02 1.423e-01 -1.751e-04 1.477e-06 4.978e-04 - 2.317e-06 -1.751e-04 7.644e-03 -2.852e-08 -6.407e-06 - 2.181e-05 1.477e-06 -2.852e-08 1.678e-02 6.944e-08 - -2.728e-04 4.978e-04 -6.407e-06 6.944e-08 2.853e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.11182 1.000 -0.066 0.000 0.000 -0.104 - 2 0.25038 -0.066 1.000 -0.005 0.000 0.247 - 3 0.01394 0.000 -0.005 1.000 -0.000 -0.014 - 4 0.00037 0.000 0.000 -0.000 1.000 0.000 - 5 0.26252 -0.104 0.247 -0.014 0.000 1.000 -500 -482.781 +- 0.49181 -27.7322 +- 0.37715 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=18169.3 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.90000e+02 6.00000e+00 2.01358e-01 3.31882e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 8.82382e+01 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 9.40789e+02 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -1.28474e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -3.45518e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17775 FROM MIGRAD STATUS=CONVERGED 298 CALLS 299 TOTAL - EDM=6.02039e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.84762e+02 4.94191e-01 1.52434e-03 1.30913e-01 - 2 sg_p1 2.76557e+01 3.74902e-01 2.09728e-03 4.83776e-02 - 3 sg_p2 4.00000e+02 4.37949e+00 2.80592e-02** at limit ** - 4 sg_p3 9.99992e+01 6.41285e+01 1.21382e-01 2.55150e-03 - 5 sg_p4 9.47779e-01 5.38139e-03 2.15294e-03 -2.62881e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.442e-01 -1.391e-02 1.965e-06 1.328e-02 -2.985e-04 - -1.391e-02 1.406e-01 -2.130e-05 -8.696e-04 4.743e-04 - 1.965e-06 -2.130e-05 4.142e-05 -4.503e-06 -8.642e-07 - 1.328e-02 -8.696e-04 -4.503e-06 1.378e-01 3.311e-05 - -2.985e-04 4.743e-04 -8.642e-07 3.311e-05 2.896e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.14334 1.000 -0.075 0.001 0.072 -0.112 - 2 0.24021 -0.075 1.000 -0.009 -0.006 0.235 - 3 0.02528 0.001 -0.009 1.000 -0.002 -0.025 - 4 0.07681 0.072 -0.006 -0.002 1.000 0.017 - 5 0.25571 -0.112 0.235 -0.025 0.017 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17775 FROM HESSE STATUS=OK 35 CALLS 334 TOTAL - EDM=5.16959e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.84762e+02 5.00293e-01 3.04869e-04 -1.75493e-01 - 2 sg_p1 2.76557e+01 3.74977e-01 8.38911e-05 2.54605e-01 - 3 sg_p2 4.00000e+02 4.38207e+00 5.61185e-03 -1.57057e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 9.99992e+01 1.55865e+01 4.95239e-01 1.57658e+00 - 5 sg_p4 9.47779e-01 5.38465e-03 4.30589e-04 1.10968e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.503e-01 -1.437e-02 -1.054e-07 1.912e-02 -2.821e-04 - -1.437e-02 1.406e-01 -4.527e-06 -8.788e-04 4.745e-04 - -1.054e-07 -4.527e-06 4.144e-05 -1.618e-06 -1.856e-07 - 1.912e-02 -8.788e-04 -1.618e-06 4.993e-02 5.148e-05 - -2.821e-04 4.745e-04 -1.856e-07 5.148e-05 2.900e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.21046 1.000 -0.077 -0.000 0.171 -0.105 - 2 0.24099 -0.077 1.000 -0.002 -0.010 0.235 - 3 0.00549 -0.000 -0.002 1.000 -0.001 -0.005 - 4 0.18195 0.171 -0.010 -0.001 1.000 0.043 - 5 0.25791 -0.105 0.235 -0.005 0.043 1.000 -500 -484.762 +- 0.500293 -27.6557 +- 0.374977 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=18067.3 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.90000e+02 6.00000e+00 2.01358e-01 6.30906e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 6.68366e+01 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 1.15954e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -1.16092e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -3.26605e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17575.8 FROM MIGRAD STATUS=CONVERGED 279 CALLS 280 TOTAL - EDM=3.64156e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.80603e+02 4.87655e-01 1.55641e-03 1.00438e-01 - 2 sg_p1 2.73597e+01 3.75999e-01 2.07241e-03 -3.88766e-02 - 3 sg_p2 4.00000e+02 7.70615e+00 3.73444e-02 -1.20875e-02 - 4 sg_p3 9.99999e+01 9.07676e+00 5.91616e-02 4.30185e-03 - 5 sg_p4 9.52020e-01 5.29904e-03 2.18424e-03 -2.42849e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.378e-01 -1.252e-02 1.605e-06 3.978e-04 -2.735e-04 - -1.252e-02 1.414e-01 -4.268e-04 1.441e-06 5.110e-04 - 1.605e-06 -4.268e-04 5.890e-03 -4.600e-07 -1.533e-05 - 3.978e-04 1.441e-06 -4.600e-07 2.758e-03 4.935e-07 - -2.735e-04 5.110e-04 -1.533e-05 4.935e-07 2.809e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.11523 1.000 -0.068 0.000 0.016 -0.106 - 2 0.25980 -0.068 1.000 -0.015 0.000 0.256 - 3 0.03828 0.000 -0.015 1.000 -0.000 -0.038 - 4 0.01591 0.016 0.000 -0.000 1.000 0.002 - 5 0.27342 -0.106 0.256 -0.038 0.002 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17575.8 FROM HESSE STATUS=OK 31 CALLS 311 TOTAL - EDM=3.66903e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.80603e+02 4.87622e-01 3.11281e-04 -3.18584e-01 - 2 sg_p1 2.73597e+01 3.76029e-01 8.28962e-05 2.36108e-01 - 3 sg_p2 4.00000e+02 7.72173e+00 7.46888e-03 -1.57279e+00 - 4 sg_p3 9.99999e+01 9.11980e+00 1.18323e-02 1.57260e+00 - 5 sg_p4 9.52020e-01 5.29594e-03 8.73698e-05 1.12913e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.378e-01 -1.272e-02 2.233e-07 9.824e-05 -2.737e-04 - -1.272e-02 1.414e-01 -4.487e-05 2.340e-07 5.111e-04 - 2.233e-07 -4.487e-05 5.902e-03 -1.148e-08 -1.609e-06 - 9.824e-05 2.340e-07 -1.148e-08 2.771e-03 1.224e-07 - -2.737e-04 5.111e-04 -1.609e-06 1.224e-07 2.805e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.11467 1.000 -0.069 0.000 0.004 -0.106 - 2 0.26008 -0.069 1.000 -0.002 0.000 0.257 - 3 0.00402 0.000 -0.002 1.000 -0.000 -0.004 - 4 0.00392 0.004 0.000 -0.000 1.000 0.000 - 5 0.27142 -0.106 0.257 -0.004 0.000 1.000 -500 -480.603 +- 0.487622 -27.3597 +- 0.376029 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=16835.6 FROM MIGRAD STATUS=INITIATE 46 CALLS 47 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.00000e+02 4.00000e+00 0.00000e+00 -3.93448e+02 - 2 sg_p1 1.85000e+01 2.30000e+00 0.00000e+00 4.78837e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 0.00000e+00 -1.66272e+02 - 4 sg_p3 4.24477e+01 1.40000e+01 -5.66239e-01 4.08068e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -6.94465e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16163.1 FROM HESSE STATUS=OK 31 CALLS 270 TOTAL - EDM=0.0123886 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.03549e+02 3.01469e-01 1.32569e-03 7.22248e-02 - 2 sg_p1 1.64694e+01 2.69674e-01 1.82958e-03 1.11175e-01 - 3 sg_p2 4.52623e+02 1.84688e+01 1.67733e-02 -5.64013e-01 - 4 sg_p3 1.31659e+02 2.60244e+01 4.76520e-02 -2.04899e-01 - 5 sg_p4 9.27815e-01 7.08262e-03 2.04007e-03 -6.32432e-02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=16163.1 FROM MIGRAD STATUS=CONVERGED 293 CALLS 294 TOTAL - EDM=1.39803e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 9.0 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.03541e+02 3.02714e-01 -6.04564e-05 -2.41635e-02 - 2 sg_p1 1.64684e+01 2.71856e-01 1.82456e-04 2.35248e-02 - 3 sg_p2 4.54550e+02 1.81378e+01 -3.71817e-04 2.34305e-03 - 4 sg_p3 1.35056e+02 2.96709e+01 1.70336e-02 -8.15967e-03 - 5 sg_p4 9.27449e-01 7.04529e-03 2.19134e-05 -1.27756e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.164e-02 -7.657e-03 -1.012e-01 -1.679e+00 -7.191e-05 - -7.657e-03 7.392e-02 -1.518e+00 2.592e+00 7.352e-04 - -1.012e-01 -1.518e+00 3.340e+02 -8.231e+01 -5.363e-02 - -1.679e+00 2.592e+00 -8.231e+01 1.069e+03 -1.492e-03 - -7.191e-05 7.352e-04 -5.363e-02 -1.492e-03 4.965e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.18907 1.000 -0.093 -0.018 -0.170 -0.034 - 2 0.49868 -0.093 1.000 -0.305 0.292 0.384 - 3 0.45946 -0.018 -0.305 1.000 -0.138 -0.416 - 4 0.36545 -0.170 0.292 -0.138 1.000 -0.006 - 5 0.51683 -0.034 0.384 -0.416 -0.006 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16163.1 FROM HESSE STATUS=OK 39 CALLS 333 TOTAL - EDM=4.95712e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.03541e+02 3.01948e-01 1.32548e-03 1.78010e-01 - 2 sg_p1 1.64684e+01 2.69373e-01 1.82921e-03 -1.77589e-01 - 3 sg_p2 4.54550e+02 1.88889e+01 1.71373e-02 -4.39830e-01 - 4 sg_p3 1.35056e+02 2.91667e+01 5.83968e-02 9.05144e-01 - 5 sg_p4 9.27449e-01 7.08973e-03 2.04457e-03 1.02536e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.118e-02 -6.694e-03 -1.967e-01 -1.492e+00 -6.118e-05 - -6.694e-03 7.258e-02 -1.499e+00 2.192e+00 7.371e-04 - -1.967e-01 -1.499e+00 3.627e+02 -4.939e+01 -5.738e-02 - -1.492e+00 2.192e+00 -4.939e+01 1.025e+03 -5.946e-03 - -6.118e-05 7.371e-04 -5.738e-02 -5.946e-03 5.028e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.17693 1.000 -0.082 -0.034 -0.154 -0.029 - 2 0.48331 -0.082 1.000 -0.292 0.254 0.386 - 3 0.45514 -0.034 -0.292 1.000 -0.081 -0.425 - 4 0.32411 -0.154 0.254 -0.081 1.000 -0.026 - 5 0.52326 -0.029 0.386 -0.425 -0.026 1.000 -500 -503.541 +- 0.301948 -16.4684 +- 0.269373 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=16739.6 FROM MIGRAD STATUS=INITIATE 45 CALLS 46 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.00000e+02 4.00000e+00 0.00000e+00 -4.55651e+02 - 2 sg_p1 1.85000e+01 2.30000e+00 0.00000e+00 4.48786e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 0.00000e+00 -2.68451e+02 - 4 sg_p3 4.32221e+01 1.40000e+01 -5.53184e-01 1.18283e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -6.96034e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16081.3 FROM MIGRAD STATUS=CONVERGED 313 CALLS 314 TOTAL - EDM=8.68132e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.04220e+02 3.07707e-01 1.35237e-03 1.08303e-01 - 2 sg_p1 1.66795e+01 2.77507e-01 1.84894e-03 6.94551e-02 - 3 sg_p2 4.62822e+02 1.91078e+01 1.68854e-02 -1.14748e-02 - 4 sg_p3 1.35582e+02 3.03789e+01 6.57946e-02 1.08838e-02 - 5 sg_p4 9.28230e-01 7.23504e-03 2.06982e-03 -3.02724e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.469e-02 -7.947e-03 -3.583e-01 -1.715e+00 -8.078e-05 - -7.947e-03 7.703e-02 -1.315e+00 2.634e+00 8.091e-04 - -3.583e-01 -1.315e+00 3.708e+02 4.728e+01 -6.075e-02 - -1.715e+00 2.634e+00 4.728e+01 1.145e+03 2.032e-03 - -8.078e-05 8.091e-04 -6.075e-02 2.032e-03 5.236e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.18853 1.000 -0.093 -0.060 -0.165 -0.036 - 2 0.50124 -0.093 1.000 -0.246 0.281 0.403 - 3 0.46006 -0.060 -0.246 1.000 0.073 -0.436 - 4 0.34759 -0.165 0.281 0.073 1.000 0.008 - 5 0.53639 -0.036 0.403 -0.436 0.008 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16081.3 FROM HESSE STATUS=OK 31 CALLS 345 TOTAL - EDM=9.10947e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.04220e+02 3.08377e-01 2.70474e-04 2.12615e-01 - 2 sg_p1 1.66795e+01 2.80568e-01 3.69788e-04 -1.58971e-01 - 3 sg_p2 4.62822e+02 1.90695e+01 6.75418e-04 -3.45556e-01 - 4 sg_p3 1.35582e+02 3.07077e+01 2.63178e-03 9.17410e-01 - 5 sg_p4 9.28230e-01 7.23811e-03 4.13965e-04 1.02837e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.510e-02 -8.877e-03 -3.212e-01 -1.872e+00 -9.078e-05 - -8.877e-03 7.873e-02 -1.370e+00 3.011e+00 8.254e-04 - -3.212e-01 -1.370e+00 3.693e+02 2.368e+01 -6.065e-02 - -1.872e+00 3.011e+00 2.368e+01 1.177e+03 7.626e-03 - -9.078e-05 8.254e-04 -6.065e-02 7.626e-03 5.240e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.19932 1.000 -0.103 -0.054 -0.177 -0.041 - 2 0.51720 -0.103 1.000 -0.254 0.313 0.406 - 3 0.45661 -0.054 -0.254 1.000 0.036 -0.436 - 4 0.36806 -0.177 0.313 0.036 1.000 0.031 - 5 0.53695 -0.041 0.406 -0.436 0.031 1.000 -500 -504.22 +- 0.308377 -16.6795 +- 0.280568 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=16548.5 FROM MIGRAD STATUS=INITIATE 40 CALLS 41 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.00000e+02 4.00000e+00 0.00000e+00 -3.23108e+02 - 2 sg_p1 1.85000e+01 2.30000e+00 0.00000e+00 5.18946e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 0.00000e+00 -1.42436e+02 - 4 sg_p3 4.43542e+01 1.40000e+01 -5.34286e-01 2.49400e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -7.66244e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15889.1 FROM HESSE STATUS=OK 37 CALLS 242 TOTAL - EDM=0.000693776 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.02838e+02 2.97826e-01 1.28795e-03 -1.05531e-02 - 2 sg_p1 1.60782e+01 2.67978e-01 1.80577e-03 2.44112e-02 - 3 sg_p2 4.64332e+02 1.37627e+01 1.17387e-02 2.07821e-01 - 4 sg_p3 1.14468e+02 2.01486e+01 2.64964e-02 5.48597e-02 - 5 sg_p4 9.27839e-01 7.15691e-03 2.03796e-03 1.57814e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=15889.1 FROM MIGRAD STATUS=CONVERGED 254 CALLS 255 TOTAL - EDM=9.17556e-06 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 2.8 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.02840e+02 2.97434e-01 8.32709e-05 -7.82024e-03 - 2 sg_p1 1.60782e+01 2.67892e-01 -2.85162e-06 4.43301e-03 - 3 sg_p2 4.63894e+02 1.38330e+01 -4.87307e-03 -3.70669e-03 - 4 sg_p3 1.14016e+02 1.92315e+01 -7.40995e-03 -1.25650e-02 - 5 sg_p4 9.27892e-01 7.16442e-03 2.06750e-04 1.26344e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 8.847e-02 -6.452e-03 -2.568e-01 -8.771e-01 -8.776e-05 - -6.452e-03 7.178e-02 -9.238e-01 1.447e+00 8.030e-04 - -2.568e-01 -9.238e-01 1.929e+02 9.107e+00 -4.221e-02 - -8.771e-01 1.447e+00 9.107e+00 3.827e+02 1.223e-02 - -8.776e-05 8.030e-04 -4.221e-02 1.223e-02 5.134e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.17624 1.000 -0.081 -0.062 -0.151 -0.041 - 2 0.49356 -0.081 1.000 -0.248 0.276 0.418 - 3 0.44761 -0.062 -0.248 1.000 0.034 -0.424 - 4 0.31902 -0.151 0.276 0.034 1.000 0.087 - 5 0.53440 -0.041 0.418 -0.424 0.087 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15889.1 FROM HESSE STATUS=OK 39 CALLS 294 TOTAL - EDM=3.03558e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.02840e+02 2.97751e-01 5.15179e-04 1.42457e-01 - 2 sg_p1 1.60782e+01 2.68158e-01 7.22309e-04 -2.12184e-01 - 3 sg_p2 4.63894e+02 1.36806e+01 1.19116e-02 -3.33579e-01 - 4 sg_p3 1.14016e+02 1.97620e+01 2.70009e-02 5.07434e-01 - 5 sg_p4 9.27892e-01 7.16159e-03 2.03722e-03 1.02707e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 8.866e-02 -6.740e-03 -2.651e-01 -9.501e-01 -8.838e-05 - -6.740e-03 7.192e-02 -8.846e-01 1.490e+00 8.010e-04 - -2.651e-01 -8.846e-01 1.886e+02 2.011e+01 -4.167e-02 - -9.501e-01 1.490e+00 2.011e+01 4.049e+02 1.100e-02 - -8.838e-05 8.010e-04 -4.167e-02 1.100e-02 5.130e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.18198 1.000 -0.084 -0.065 -0.159 -0.041 - 2 0.49512 -0.084 1.000 -0.240 0.276 0.417 - 3 0.45379 -0.065 -0.240 1.000 0.073 -0.424 - 4 0.33483 -0.159 0.276 0.073 1.000 0.076 - 5 0.53499 -0.041 0.417 -0.424 0.076 1.000 -500 -502.84 +- 0.297751 -16.0782 +- 0.268158 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=16477.8 FROM MIGRAD STATUS=INITIATE 46 CALLS 47 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.00000e+02 4.00000e+00 0.00000e+00 -3.86200e+02 - 2 sg_p1 1.85000e+01 2.30000e+00 0.00000e+00 4.57301e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 0.00000e+00 -1.88126e+02 - 4 sg_p3 4.29079e+01 1.40000e+01 -5.58468e-01 8.72628e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -6.83965e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15837 FROM HESSE STATUS=OK 33 CALLS 278 TOTAL - EDM=0.00228562 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.03601e+02 3.08955e-01 1.34585e-03 3.00627e-01 - 2 sg_p1 1.67537e+01 2.75890e-01 1.84217e-03 1.71804e-01 - 3 sg_p2 4.49584e+02 2.10318e+01 1.89093e-02 -1.86124e-01 - 4 sg_p3 1.37208e+02 2.92076e+01 6.33389e-02 -7.21712e-02 - 5 sg_p4 9.31031e-01 7.12595e-03 2.05778e-03 -2.05034e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=15837 FROM MIGRAD STATUS=CONVERGED 290 CALLS 291 TOTAL - EDM=9.94244e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 5.2 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.03597e+02 3.10422e-01 -2.20880e-04 7.26010e-03 - 2 sg_p1 1.67527e+01 2.74763e-01 -8.54234e-05 -2.36066e-02 - 3 sg_p2 4.50350e+02 1.99263e+01 9.15141e-03 7.10266e-03 - 4 sg_p3 1.38778e+02 3.01976e+01 4.00555e-02 -1.66420e-02 - 5 sg_p4 9.30902e-01 7.07722e-03 -5.07201e-04 -3.19630e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.637e-02 -7.329e-03 -9.169e-02 -1.905e+00 -5.097e-05 - -7.329e-03 7.551e-02 -1.688e+00 2.407e+00 7.425e-04 - -9.169e-02 -1.688e+00 4.048e+02 -1.012e+02 -6.013e-02 - -1.905e+00 2.407e+00 -1.012e+02 1.218e+03 -1.228e-02 - -5.097e-05 7.425e-04 -6.013e-02 -1.228e-02 5.010e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.19304 1.000 -0.086 -0.015 -0.176 -0.023 - 2 0.48229 -0.086 1.000 -0.305 0.251 0.382 - 3 0.47089 -0.015 -0.305 1.000 -0.144 -0.422 - 4 0.36202 -0.176 0.251 -0.144 1.000 -0.050 - 5 0.52945 -0.023 0.382 -0.422 -0.050 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15837 FROM HESSE STATUS=OK 41 CALLS 332 TOTAL - EDM=6.005e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.03597e+02 3.09136e-01 1.34573e-03 1.80817e-01 - 2 sg_p1 1.67527e+01 2.75606e-01 1.84171e-03 -1.52530e-01 - 3 sg_p2 4.50350e+02 2.12182e+01 1.91941e-02 -4.89291e-01 - 4 sg_p3 1.38778e+02 3.03916e+01 7.62661e-02 9.96701e-01 - 5 sg_p4 9.30902e-01 7.12819e-03 2.05809e-03 1.03882e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.557e-02 -6.148e-03 -1.876e-01 -1.605e+00 -4.622e-05 - -6.148e-03 7.597e-02 -1.916e+00 2.306e+00 7.753e-04 - -1.876e-01 -1.916e+00 4.602e+02 -1.123e+02 -6.665e-02 - -1.605e+00 2.306e+00 -1.123e+02 1.240e+03 -9.523e-03 - -4.622e-05 7.753e-04 -6.665e-02 -9.523e-03 5.082e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.17020 1.000 -0.072 -0.028 -0.147 -0.021 - 2 0.48615 -0.072 1.000 -0.324 0.238 0.395 - 3 0.48715 -0.028 -0.324 1.000 -0.149 -0.436 - 4 0.33778 -0.147 0.238 -0.149 1.000 -0.038 - 5 0.53739 -0.021 0.395 -0.436 -0.038 1.000 -500 -503.597 +- 0.309136 -16.7527 +- 0.275606 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=16981.8 FROM MIGRAD STATUS=INITIATE 47 CALLS 48 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.00000e+02 4.00000e+00 0.00000e+00 -4.05566e+02 - 2 sg_p1 1.85000e+01 2.30000e+00 0.00000e+00 4.79846e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 0.00000e+00 -2.38683e+02 - 4 sg_p3 3.85734e+01 1.40000e+01 -6.33300e-01 -1.09954e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -6.06818e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16302.6 FROM HESSE STATUS=OK 33 CALLS 261 TOTAL - EDM=0.000884701 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.03638e+02 2.96476e-01 1.30613e-03 -5.89524e-02 - 2 sg_p1 1.61908e+01 2.68536e-01 1.81793e-03 -9.06324e-02 - 3 sg_p2 4.64623e+02 1.46357e+01 1.25261e-02 2.17668e-01 - 4 sg_p3 1.18516e+02 2.19593e+01 3.03884e-02 5.10539e-02 - 5 sg_p4 9.27881e-01 7.13588e-03 2.04703e-03 7.03448e-02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=16302.6 FROM MIGRAD STATUS=CONVERGED 273 CALLS 274 TOTAL - EDM=1.35619e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 3.1 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.03639e+02 2.96022e-01 9.77721e-05 -9.91628e-03 - 2 sg_p1 1.61919e+01 2.69186e-01 9.95735e-05 3.66259e-03 - 3 sg_p2 4.64075e+02 1.47143e+01 -6.09837e-03 -4.10999e-03 - 4 sg_p3 1.17996e+02 2.09578e+01 -8.86611e-03 -1.33437e-02 - 5 sg_p4 9.27974e-01 7.15584e-03 3.61873e-04 3.29176e-06 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 8.764e-02 -6.654e-03 -2.734e-01 -9.694e-01 -8.441e-05 - -6.654e-03 7.247e-02 -1.035e+00 1.644e+00 8.204e-04 - -2.734e-01 -1.035e+00 2.185e+02 1.062e+01 -4.631e-02 - -9.694e-01 1.644e+00 1.062e+01 4.592e+02 1.234e-02 - -8.441e-05 8.204e-04 -4.631e-02 1.234e-02 5.122e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.17873 1.000 -0.083 -0.062 -0.153 -0.040 - 2 0.50630 -0.083 1.000 -0.260 0.285 0.426 - 3 0.46142 -0.062 -0.260 1.000 0.034 -0.438 - 4 0.32893 -0.153 0.285 0.034 1.000 0.080 - 5 0.54522 -0.040 0.426 -0.438 0.080 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16302.6 FROM HESSE STATUS=OK 41 CALLS 315 TOTAL - EDM=4.81522e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.03639e+02 2.96371e-01 1.30576e-03 1.82991e-01 - 2 sg_p1 1.61919e+01 2.68611e-01 1.81691e-03 -2.02075e-01 - 3 sg_p2 4.64075e+02 1.45352e+01 1.27410e-02 -3.31572e-01 - 4 sg_p3 1.17996e+02 2.14738e+01 3.10172e-02 5.73772e-01 - 5 sg_p4 9.27974e-01 7.13651e-03 2.04596e-03 1.02738e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 8.784e-02 -6.886e-03 -2.835e-01 -1.054e+00 -8.375e-05 - -6.886e-03 7.217e-02 -9.670e-01 1.646e+00 8.068e-04 - -2.835e-01 -9.670e-01 2.131e+02 2.545e+01 -4.521e-02 - -1.054e+00 1.646e+00 2.545e+01 4.832e+02 9.584e-03 - -8.375e-05 8.068e-04 -4.521e-02 9.584e-03 5.094e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.18509 1.000 -0.086 -0.066 -0.162 -0.040 - 2 0.50306 -0.086 1.000 -0.247 0.279 0.421 - 3 0.46399 -0.066 -0.247 1.000 0.079 -0.434 - 4 0.34172 -0.162 0.279 0.079 1.000 0.061 - 5 0.54250 -0.040 0.421 -0.434 0.061 1.000 -500 -503.639 +- 0.296371 -16.1919 +- 0.268611 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=15760.3 FROM MIGRAD STATUS=INITIATE 46 CALLS 47 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.00000e+02 4.00000e+00 0.00000e+00 -3.68945e+02 - 2 sg_p1 1.85000e+01 2.30000e+00 0.00000e+00 4.51251e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 0.00000e+00 -1.65516e+02 - 4 sg_p3 4.28306e+01 1.40000e+01 -5.59769e-01 7.96964e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -6.63393e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15131 FROM HESSE STATUS=OK 31 CALLS 270 TOTAL - EDM=0.00917808 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.03544e+02 3.11234e-01 1.32359e-03 3.99151e-02 - 2 sg_p1 1.64644e+01 2.78325e-01 1.82583e-03 8.26169e-02 - 3 sg_p2 4.53596e+02 1.89196e+01 1.66163e-02 -4.74680e-01 - 4 sg_p3 1.30948e+02 2.69531e+01 4.74560e-02 -1.69826e-01 - 5 sg_p4 9.28806e-01 7.28371e-03 2.04213e-03 -7.21183e-02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=15131 FROM MIGRAD STATUS=CONVERGED 292 CALLS 293 TOTAL - EDM=1.59446e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 8.3 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.03538e+02 3.12525e-01 -4.41178e-05 -1.54585e-02 - 2 sg_p1 1.64635e+01 2.80799e-01 1.36626e-04 1.03835e-02 - 3 sg_p2 4.55327e+02 1.85938e+01 -2.83276e-04 1.31641e-03 - 4 sg_p3 1.33880e+02 3.06660e+01 1.19135e-02 -8.53961e-03 - 5 sg_p4 9.28489e-01 7.24733e-03 2.34109e-05 -1.19312e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.768e-02 -8.237e-03 -1.269e-01 -1.811e+00 -7.804e-05 - -8.237e-03 7.886e-02 -1.583e+00 2.810e+00 7.851e-04 - -1.269e-01 -1.583e+00 3.512e+02 -7.894e+01 -5.706e-02 - -1.811e+00 2.810e+00 -7.894e+01 1.142e+03 2.159e-04 - -7.804e-05 7.851e-04 -5.706e-02 2.159e-04 5.254e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.19100 1.000 -0.094 -0.022 -0.171 -0.034 - 2 0.50054 -0.094 1.000 -0.301 0.296 0.386 - 3 0.45764 -0.022 -0.301 1.000 -0.125 -0.420 - 4 0.36350 -0.171 0.296 -0.125 1.000 0.001 - 5 0.51853 -0.034 0.386 -0.420 0.001 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15131 FROM HESSE STATUS=OK 39 CALLS 332 TOTAL - EDM=8.18863e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.03538e+02 3.11671e-01 1.32357e-03 1.77834e-01 - 2 sg_p1 1.64635e+01 2.78053e-01 1.82591e-03 -1.78022e-01 - 3 sg_p2 4.55327e+02 1.93050e+01 1.69364e-02 -4.30811e-01 - 4 sg_p3 1.33880e+02 2.97612e+01 5.65680e-02 8.78399e-01 - 5 sg_p4 9.28489e-01 7.28924e-03 2.04602e-03 1.02938e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.715e-02 -7.165e-03 -2.210e-01 -1.574e+00 -6.699e-05 - -7.165e-03 7.733e-02 -1.562e+00 2.322e+00 7.859e-04 - -2.210e-01 -1.562e+00 3.791e+02 -4.296e+01 -6.069e-02 - -1.574e+00 2.322e+00 -4.296e+01 1.061e+03 -4.723e-03 - -6.699e-05 7.859e-04 -6.069e-02 -4.723e-03 5.315e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.17762 1.000 -0.083 -0.036 -0.155 -0.029 - 2 0.48429 -0.083 1.000 -0.289 0.256 0.388 - 3 0.45436 -0.036 -0.289 1.000 -0.068 -0.428 - 4 0.32111 -0.155 0.256 -0.068 1.000 -0.020 - 5 0.52435 -0.029 0.388 -0.428 -0.020 1.000 -500 -503.538 +- 0.311671 -16.4635 +- 0.278053 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17965.7 FROM MIGRAD STATUS=INITIATE 46 CALLS 47 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.00000e+02 4.00000e+00 0.00000e+00 -4.19180e+02 - 2 sg_p1 1.85000e+01 2.30000e+00 0.00000e+00 5.07558e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 0.00000e+00 -1.66310e+02 - 4 sg_p3 4.20660e+01 1.40000e+01 -5.72713e-01 -5.27926e+00 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -7.26010e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17247.2 FROM HESSE STATUS=OK 31 CALLS 273 TOTAL - EDM=0.0158866 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.03553e+02 2.92162e-01 1.32752e-03 1.92047e-01 - 2 sg_p1 1.64746e+01 2.61492e-01 1.83264e-03 9.93853e-02 - 3 sg_p2 4.51603e+02 1.81044e+01 1.70017e-02 -6.77062e-01 - 4 sg_p3 1.32529e+02 2.52771e+01 4.84704e-02 -2.30017e-01 - 5 sg_p4 9.26851e-01 6.88981e-03 2.03844e-03 -1.42588e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=17247.2 FROM MIGRAD STATUS=CONVERGED 294 CALLS 295 TOTAL - EDM=4.77096e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 9.6 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.03545e+02 2.93438e-01 -5.87528e-05 -3.40309e-02 - 2 sg_p1 1.64727e+01 2.63670e-01 1.74859e-04 2.14591e-02 - 3 sg_p2 4.53798e+02 1.77853e+01 -4.09286e-04 3.31652e-04 - 4 sg_p3 1.35998e+02 2.90570e+01 1.70332e-02 -1.52432e-02 - 5 sg_p4 9.26443e-01 6.85608e-03 1.63285e-05 -2.74842e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 8.611e-02 -7.218e-03 -7.462e-02 -1.599e+00 -6.663e-05 - -7.218e-03 6.953e-02 -1.469e+00 2.461e+00 6.909e-04 - -7.462e-02 -1.469e+00 3.210e+02 -8.810e+01 -5.081e-02 - -1.599e+00 2.461e+00 -8.810e+01 1.030e+03 -2.764e-03 - -6.663e-05 6.909e-04 -5.081e-02 -2.764e-03 4.702e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.18896 1.000 -0.093 -0.014 -0.170 -0.033 - 2 0.49890 -0.093 1.000 -0.311 0.291 0.382 - 3 0.46311 -0.014 -0.311 1.000 -0.153 -0.414 - 4 0.37220 -0.170 0.291 -0.153 1.000 -0.013 - 5 0.51605 -0.033 0.382 -0.414 -0.013 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17247.2 FROM HESSE STATUS=OK 37 CALLS 332 TOTAL - EDM=2.5481e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.03545e+02 2.92634e-01 1.32733e-03 1.78200e-01 - 2 sg_p1 1.64727e+01 2.61019e-01 1.83240e-03 -1.77216e-01 - 3 sg_p2 4.53798e+02 1.84402e+01 1.73428e-02 -4.48601e-01 - 4 sg_p3 1.35998e+02 2.83987e+01 6.04366e-02 9.27242e-01 - 5 sg_p4 9.26443e-01 6.89823e-03 2.04324e-03 1.02149e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 8.564e-02 -6.233e-03 -1.752e-01 -1.395e+00 -5.632e-05 - -6.233e-03 6.814e-02 -1.435e+00 2.042e+00 6.927e-04 - -1.752e-01 -1.435e+00 3.454e+02 -5.423e+01 -5.416e-02 - -1.395e+00 2.042e+00 -5.423e+01 9.726e+02 -6.753e-03 - -5.632e-05 6.927e-04 -5.416e-02 -6.753e-03 4.760e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.17564 1.000 -0.082 -0.032 -0.153 -0.028 - 2 0.48195 -0.082 1.000 -0.296 0.251 0.385 - 3 0.45633 -0.032 -0.296 1.000 -0.094 -0.422 - 4 0.32602 -0.153 0.251 -0.094 1.000 -0.031 - 5 0.52240 -0.028 0.385 -0.422 -0.031 1.000 -500 -503.545 +- 0.292634 -16.4727 +- 0.261019 -35.9 fb^{-1} (13 TeV) -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 37 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 57 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 59 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 110 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 113 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 115 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 116 has zero error, setting residual to zero - Uncertainty on sg_p0 = 503.541 +- 0.301948 (stat) - 0.701904 + 0.678912 (syst); -0.717957/+0.695495 (total) - Uncertainty on sg_p1 = 16.4684 +- 0.269373 (stat) - 0.390296 + 0.284252 (syst); -0.412882/+0.314547 (total) - Uncertainty on sg_p2 = 454.55 +- 18.8889 (stat) - 4.20037 + 9.52429 (syst); -10.3364/+13.4131 (total) - Uncertainty on sg_p3 = 135.056 +- 29.1667 (stat) - 21.0404 + 3.7219 (syst); -25.6003/+15.0508 (total) - Uncertainty on sg_p4 = 0.927449 +- 0.00708973 (stat) - 0.00100662 + 0.0034528 (syst); -0.00368502/+0.00494853 (total) - === Baseline plot ===
- norm = 1319.62 -JEC lnN 1.00347 - -JER lnN 1.01686 - -btag lnN 1.06496 - -sg_p0 param 503.541 -0.717957/+0.695495 -sg_p1 param 16.4684 -0.412882/+0.314547 -sg_p2 param 454.55 -10.3364/+13.4131 -sg_p3 param 135.056 -25.6003/+15.0508 -sg_p4 param 0.927449 -0.00368502/+0.00494853 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_550_crystal_1_285_624/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_550_crystal_1_285_624/data_bkg.log deleted file mode 100644 index 118332d..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_550_crystal_1_285_624/data_bkg.log +++ /dev/null @@ -1,750 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [252,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=62921.6 FROM MIGRAD STATUS=INITIATE 90 CALLS 91 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.21879e-02 5.09000e-01 0.00000e+00 -9.80911e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -1.28354e+01 - 3 par_crystal_2 2.65669e+02 4.00000e+00 0.00000e+00 3.55320e+02 - 4 par_crystal_3 1.06488e+01 2.70000e+00 -4.48284e-01 -2.33576e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62883.4 FROM HESSE STATUS=OK 29 CALLS 257 TOTAL - EDM=4.91113 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.66060e-01 4.16121e-03 3.52377e-04 -4.74293e+00 - 2 par_crystal_1 4.45375e+00 2.73731e+00 1.77223e-01 2.66184e-01 - 3 par_crystal_2 2.67385e+02 2.04373e-01 8.29600e-04 2.81454e+02 - 4 par_crystal_3 1.36851e+01 5.38888e-01 1.69331e-03 -1.62103e+00 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=62883.3 FROM MIGRAD STATUS=FAILED 358 CALLS 359 TOTAL - EDM=0.00753244 STRATEGY= 1 ERR MATRIX APPROXIMATE - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.65093e-01 8.39913e-03 1.31861e-03 5.42788e+00 - 2 par_crystal_1 5.09910e+00 4.33634e+00 3.39194e-01 -6.59950e-03 - 3 par_crystal_2 2.67339e+02 1.86486e-01 3.32550e-03 -8.58879e+00 - 4 par_crystal_3 1.37140e+01 6.01780e-01 6.34807e-03 1.69258e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.055e-05 1.617e-04 4.699e-04 2.892e-03 - 1.617e-04 1.762e-02 -1.356e-04 -1.108e-03 - 4.699e-04 -1.356e-04 3.478e-02 3.255e-02 - 2.892e-03 -1.108e-03 3.255e-02 3.624e-01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.60853 1.000 0.145 0.300 0.572 - 2 0.19009 0.145 1.000 -0.005 -0.014 - 3 0.33449 0.300 -0.005 1.000 0.290 - 4 0.59243 0.572 -0.014 0.290 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7660e-01 8.1807e-01 1.6519e+00 1.7066e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.178308 TO DIAGONAL. - FCN=62883.3 FROM HESSE STATUS=NOT POSDEF 33 CALLS 392 TOTAL - EDM=3.36849 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.65093e-01 8.70034e-02 2.63722e-04 -1.21988e+00 - 2 par_crystal_1 5.09910e+00 4.18121e+00 5.00000e-01 1.54425e+00 - 3 par_crystal_2 2.67339e+02 5.27040e+00 9.57407e-02 3.75715e-01 - 4 par_crystal_3 1.37140e+01 6.68546e+00 2.53923e-04 -2.07863e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.595e-03 -2.994e-03 4.642e-01 6.089e-01 - -2.994e-03 1.536e-02 -1.944e-01 -2.569e-01 - 4.642e-01 -1.944e-01 2.855e+01 3.736e+01 - 6.089e-01 -2.569e-01 3.736e+01 4.914e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99751 1.000 -0.277 0.997 0.997 - 2 0.37560 -0.277 1.000 -0.293 -0.296 - 3 0.99795 0.997 -0.293 1.000 0.997 - 4 0.99797 0.997 -0.296 0.997 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=62983.1 FROM MIGRAD STATUS=INITIATE 29 CALLS 30 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 6.05383e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -1.33666e+02 - 3 par_gaus_exp_2 3.19008e-01 3.05000e-01 -9.67731e-01 -3.33619e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.00383 added to diagonal of error matrix - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62882.7 FROM MIGRAD STATUS=CONVERGED 228 CALLS 229 TOTAL - EDM=4.4408e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.69095e+02 7.01852e-01 4.07755e-03 2.89794e-02 - 2 par_gaus_exp_1 1.61044e+01 1.09719e+00 7.43010e-03 -1.84784e-02 - 3 par_gaus_exp_2 1.90527e-01 1.58774e-02 1.98778e-03 -6.23432e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 4.929e-01 5.914e-01 9.067e-03 - 5.914e-01 1.207e+00 1.483e-02 - 9.067e-03 1.483e-02 2.521e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.82590 1.000 0.767 0.813 - 2 0.85979 0.767 1.000 0.850 - 3 0.88644 0.813 0.850 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62882.7 FROM HESSE STATUS=OK 16 CALLS 245 TOTAL - EDM=4.28199e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.69095e+02 6.86832e-01 1.63102e-04 -5.76704e-01 - 2 par_gaus_exp_1 1.61044e+01 1.07335e+00 2.97204e-04 -5.72398e-01 - 3 par_gaus_exp_2 1.90527e-01 1.55212e-02 7.95110e-05 -1.13813e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 4.720e-01 5.579e-01 8.580e-03 - 5.579e-01 1.155e+00 1.406e-02 - 8.580e-03 1.406e-02 2.410e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.81734 1.000 0.756 0.805 - 2 0.85292 0.756 1.000 0.843 - 3 0.88081 0.805 0.843 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,624] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.3296 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=286.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=286.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=289.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=289.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=295.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=295.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=298.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=298.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=301.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=301.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - ... (remaining 216 messages suppressed) -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.3296) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.733611 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=313.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=316.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=319.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=325.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=328.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=331.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=334.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=340.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=343.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=346.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - ... (remaining 94 messages suppressed) -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.733611) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0733618 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0733618 - - FCN=103426 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57146e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.55551e+03 - 3 par_novo_2 -1.33526e+00 2.00000e+01 0.00000e+00 1.53308e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103192 FROM MIGRAD STATUS=CONVERGED 126 CALLS 127 TOTAL - EDM=1.07924e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.17697e+01 1.69443e-01** at limit ** - 2 par_novo_1 3.87878e+01 2.27475e+00 4.96100e-03 -6.14249e-02 - 3 par_novo_2 -1.26766e+00 7.00630e-02 3.67886e-05 3.77179e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 2.244e-10 -2.632e-07 -1.276e-07 - -2.632e-07 5.190e+00 1.540e-01 - -1.276e-07 1.540e-01 4.909e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.43392 1.000 -0.008 -0.122 - 2 0.97109 -0.008 1.000 0.965 - 3 0.97152 -0.122 0.965 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103192 FROM HESSE STATUS=OK 20 CALLS 147 TOTAL - EDM=1.23299e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.15107e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.87878e+01 2.30410e+00 1.98440e-04 4.51799e-01 - 3 par_novo_2 -1.26766e+00 7.13892e-02 1.47154e-06 -1.26769e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 2.143e-10 3.996e-06 -2.087e-07 - 3.996e-06 5.325e+00 1.518e-01 - -2.087e-07 1.518e-01 5.096e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.80390 1.000 0.118 -0.200 - 2 0.97183 0.118 1.000 0.922 - 3 0.97258 -0.200 0.922 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107617 FROM MIGRAD STATUS=INITIATE 36 CALLS 37 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 6.60405e+03 - 2 par_crystal_1_1 7.90153e-02 5.09000e-01 -1.80421e+00 3.05679e+03 - 3 par_crystal_1_2 2.60000e+02 4.00000e+00 0.00000e+00 1.48888e+03 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 6.99071e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.17529 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.7903e-03 5.8606e-02 5.0897e-01 3.4352e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.006225 TO DIAGONAL. - FCN=103191 FROM MIGRAD STATUS=CONVERGED 353 CALLS 354 TOTAL - EDM=3.7306e-06 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.37913e-01 3.41139e-02 6.19492e-04 4.10204e-01 - 2 par_crystal_1_1 4.44737e+00 5.69760e-01 2.21494e-02 9.88736e-03 - 3 par_crystal_1_2 2.79979e+02 3.40482e+01 2.79535e-01 -2.97577e-04 - 4 par_crystal_1_3 1.87584e+01 2.98857e+00 3.96232e-03 -6.40797e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.164e-03 3.582e-03 3.594e-03 9.898e-02 - 3.582e-03 3.375e-01 -1.052e-02 7.382e-01 - 3.594e-03 -1.052e-02 3.148e+00 6.243e-01 - 9.898e-02 7.382e-01 6.243e-01 9.086e+00 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99630 1.000 0.181 0.059 0.962 - 2 0.95650 0.181 1.000 -0.010 0.422 - 3 0.63948 0.059 -0.010 1.000 0.117 - 4 0.99690 0.962 0.422 0.117 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103191 FROM HESSE STATUS=OK 27 CALLS 381 TOTAL - EDM=6.06842e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 2.37913e-01 2.12502e-01 1.23898e-04 -8.36786e+01 - 2 par_crystal_1_1 4.44737e+00 5.06952e-01 8.85975e-04 -1.65463e+01 - 3 par_crystal_1_2 2.79979e+02 2.96341e+01 5.00000e-01 7.80831e+00 - 4 par_crystal_1_3 1.87584e+01 1.90925e+01 1.58493e-04 2.18231e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.578e-02 1.663e-02 2.427e-02 3.730e+00 - 1.663e-02 2.650e-01 -4.299e-02 1.684e+00 - 2.427e-02 -4.299e-02 1.850e+00 2.341e+00 - 3.730e+00 1.684e+00 2.341e+00 3.045e+02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99991 1.000 0.151 0.083 0.999 - 2 0.94385 0.151 1.000 -0.061 0.187 - 3 0.80384 0.083 -0.061 1.000 0.099 - 4 0.99991 0.999 0.187 0.099 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 13889.7 - Background number of gaus_exp_252_330 = 13889.7 - Background number of novo_285_624 = 17637.2 - Background number of crystal_1_285_624 = 17637.2 - Background number of gaus_bern_285_624 = 17637.2 - Background number of landau_285_624 = 17637.2 -par_crystal_0 param 0.165093 0.0870034 -par_crystal_1 param 5.0991 4.18121 -par_crystal_2 param 267.339 5.2704 -par_crystal_3 param 13.714 6.68546 -par_crystal_1_0 param 0.237913 0.212502 -par_crystal_1_1 param 4.44737 0.506952 -par_crystal_1_2 param 279.979 29.6341 -par_crystal_1_3 param 18.7584 19.0925 -par_gaus_exp_0 param 269.095 0.686832 -par_gaus_exp_1 param 16.1044 1.07335 -par_gaus_exp_2 param 0.190527 0.0155212 -par_novo_0 param 250 31.5107 -par_novo_1 param 38.7878 2.3041 -par_novo_2 param -1.26766 0.0713892 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_550_crystal_1_285_624/datacard_550_crystal_1_285_624.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_550_crystal_1_285_624/datacard_550_crystal_1_285_624.txt deleted file mode 100644 index 53fc2c1..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_550_crystal_1_285_624/datacard_550_crystal_1_285_624.txt +++ /dev/null @@ -1,31 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_550.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_crystal_1_285_624.root HbbHbb:f_crystal_1 -shapes data_obs HbbHbb w_background_crystal_1_285_624.root HbbHbb:data_obs_crystal_1_285_624 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 1470.79 17637.2 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06585 - -JER lnN 1.01675 - -JEC lnN 1.0002 - -trigger lnN 1.10 - -PDF lnN 1.02229693932 - -sg_p0 param 554.818 -0.962884/+1.00345 -sg_p1 param 17.6653 -0.406141/+0.201469 -sg_p2 param 524.916 -3.25944/+5.80057 -sg_p3 param 75.7816 -3.8388/+5.30509 -sg_p4 param 0.915383 -0.00789935/+0.00487649 -par_crystal_1_0 param 0.237913 0.212502 -par_crystal_1_1 param 4.44737 0.506952 -par_crystal_1_2 param 279.979 29.6341 -par_crystal_1_3 param 18.7584 19.0925 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_550_crystal_1_285_624/pdf.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_550_crystal_1_285_624/pdf.log deleted file mode 100644 index 259cbcf..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_550_crystal_1_285_624/pdf.log +++ /dev/null @@ -1,10 +0,0 @@ -[?1034h FCN=13.8549 FROM MIGRAD STATUS=CONVERGED 70 CALLS 71 TOTAL - EDM=1.39547e-10 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 Constant 1.33669e+01 1.80554e+00 2.71051e-03 4.30284e-06 - 2 Mean 9.99344e-01 2.90546e-03 5.44875e-06 -4.96208e-03 - 3 Sigma 2.22969e-02 2.61448e-03 6.50610e-05 1.72213e-05 -0.999344037733 +/- 0.0029054638886 -0.0222969393194 +/- 0.00261447795001 -PDF lnN 1.02229693932 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_550_crystal_1_285_624/signal550_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_550_crystal_1_285_624/signal550_sig.log deleted file mode 100644 index 31e7a79..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_550_crystal_1_285_624/signal550_sig.log +++ /dev/null @@ -1,872 +0,0 @@ - -Processing test.c... -nSignal_init = 100000 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=20474.1 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.45000e+02 7.00000e+00 2.01358e-01 5.07174e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 5.94014e+01 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 -9.02149e+02 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 3.92576e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -5.54746e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20087.2 FROM MIGRAD STATUS=CONVERGED 293 CALLS 294 TOTAL - EDM=2.38221e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.31487e+02 5.32162e-01 1.51230e-03 1.42028e-02 - 2 sg_p1 2.98204e+01 4.47933e-01 2.42219e-03 7.73048e-03 - 3 sg_p2 4.57724e+02 1.56211e+01 1.09347e-02 -8.53008e-03 - 4 sg_p3 8.95652e+01 1.08014e+01 3.54792e-02 1.21216e-02 - 5 sg_p4 9.54096e-01 8.70766e-03 2.37118e-03 -9.01545e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.832e-01 -4.050e-02 7.504e-01 -1.728e+00 -9.374e-04 - -4.050e-02 2.007e-01 -3.095e+00 6.692e-01 2.076e-03 - 7.504e-01 -3.095e+00 2.467e+02 -1.356e+01 -1.062e-01 - -1.728e+00 6.692e-01 -1.356e+01 1.226e+02 1.630e-02 - -9.374e-04 2.076e-03 -1.062e-01 1.630e-02 7.587e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.34824 1.000 -0.170 0.090 -0.293 -0.202 - 2 0.53901 -0.170 1.000 -0.440 0.135 0.532 - 3 0.78111 0.090 -0.440 1.000 -0.078 -0.776 - 4 0.32107 -0.293 0.135 -0.078 1.000 0.169 - 5 0.81348 -0.202 0.532 -0.776 0.169 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20087.2 FROM HESSE STATUS=OK 31 CALLS 325 TOTAL - EDM=2.38806e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.31487e+02 5.34249e-01 6.04920e-05 -3.96390e-01 - 2 sg_p1 2.98204e+01 4.49790e-01 9.68875e-05 3.93104e-01 - 3 sg_p2 4.57724e+02 1.57210e+01 4.37390e-04 -4.03212e-01 - 4 sg_p3 8.95652e+01 1.08586e+01 1.41917e-03 8.75892e-01 - 5 sg_p4 9.54096e-01 8.77545e-03 4.74236e-04 1.13895e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.854e-01 -4.220e-02 8.178e-01 -1.810e+00 -9.783e-04 - -4.220e-02 2.024e-01 -3.172e+00 7.162e-01 2.121e-03 - 8.178e-01 -3.172e+00 2.499e+02 -1.585e+01 -1.082e-01 - -1.810e+00 7.162e-01 -1.585e+01 1.240e+02 1.767e-02 - -9.783e-04 2.121e-03 -1.082e-01 1.767e-02 7.705e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.35795 1.000 -0.176 0.097 -0.304 -0.209 - 2 0.54441 -0.176 1.000 -0.446 0.143 0.537 - 3 0.78430 0.097 -0.446 1.000 -0.090 -0.780 - 4 0.33330 -0.304 0.143 -0.090 1.000 0.181 - 5 0.81668 -0.209 0.537 -0.780 0.181 1.000 -550 -531.487 +- 0.534249 -29.8204 +- 0.44979 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=20306.4 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.45000e+02 7.00000e+00 2.01358e-01 3.00053e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 7.48703e+01 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 -9.55356e+02 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 2.98032e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -6.39572e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19957.6 FROM MIGRAD STATUS=CONVERGED 292 CALLS 293 TOTAL - EDM=4.51479e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.33845e+02 5.50540e-01 1.48402e-03 3.91502e-02 - 2 sg_p1 2.97723e+01 4.71570e-01 2.44878e-03 2.61411e-02 - 3 sg_p2 4.60591e+02 1.38428e+01 8.85082e-03 -6.68765e-03 - 4 sg_p3 8.05212e+01 8.20745e+00 2.03850e-02 9.33536e-03 - 5 sg_p4 9.47592e-01 1.00547e-02 2.37122e-03 -3.27058e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.031e-01 -5.910e-02 9.827e-01 -1.368e+00 -1.430e-03 - -5.910e-02 2.224e-01 -3.125e+00 3.654e-01 2.724e-03 - 9.827e-01 -3.125e+00 1.932e+02 9.312e+00 -1.123e-01 - -1.368e+00 3.654e-01 9.312e+00 6.849e+01 4.927e-03 - -1.430e-03 2.724e-03 -1.123e-01 4.927e-03 1.012e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.39978 1.000 -0.228 0.128 -0.300 -0.258 - 2 0.58300 -0.228 1.000 -0.477 0.094 0.574 - 3 0.81557 0.128 -0.477 1.000 0.081 -0.803 - 4 0.35284 -0.300 0.094 0.081 1.000 0.059 - 5 0.84274 -0.258 0.574 -0.803 0.059 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19957.6 FROM HESSE STATUS=OK 31 CALLS 324 TOTAL - EDM=4.5264e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.33845e+02 5.51808e-01 2.96804e-04 -3.24384e-01 - 2 sg_p1 2.97723e+01 4.73610e-01 9.79512e-05 3.89948e-01 - 3 sg_p2 4.60591e+02 1.39421e+01 3.54033e-04 -3.70629e-01 - 4 sg_p3 8.05212e+01 8.22375e+00 8.15398e-04 6.03025e-01 - 5 sg_p4 9.47592e-01 1.01305e-02 4.74244e-04 1.10884e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.045e-01 -6.047e-02 1.021e+00 -1.394e+00 -1.460e-03 - -6.047e-02 2.244e-01 -3.200e+00 3.711e-01 2.779e-03 - 1.021e+00 -3.200e+00 1.960e+02 9.327e+00 -1.144e-01 - -1.394e+00 3.711e-01 9.327e+00 6.877e+01 5.012e-03 - -1.460e-03 2.779e-03 -1.144e-01 5.012e-03 1.027e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.40458 1.000 -0.231 0.132 -0.305 -0.261 - 2 0.58785 -0.231 1.000 -0.483 0.094 0.579 - 3 0.81850 0.132 -0.483 1.000 0.080 -0.806 - 4 0.35705 -0.305 0.094 0.080 1.000 0.060 - 5 0.84530 -0.261 0.579 -0.806 0.060 1.000 -550 -533.845 +- 0.551808 -29.7723 +- 0.47361 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=20361.9 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.45000e+02 7.00000e+00 2.01358e-01 7.00402e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 2.42051e+01 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 -8.13221e+02 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 4.85542e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -4.37084e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - MINUIT WARNING IN HESSE - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN HESSE - ============== 1.70671 added to diagonal of error matrix - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19935.7 FROM HESSE STATUS=OK 37 CALLS 258 TOTAL - EDM=0.0234896 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.29061e+02 5.14520e-01 1.55758e-03 2.24394e-02 - 2 sg_p1 2.98860e+01 4.23991e-01 2.39855e-03 -1.26397e-01 - 3 sg_p2 4.50244e+02 1.76938e+01 1.40698e-02 -3.32037e-01 - 4 sg_p3 9.92707e+01 5.23923e+01 1.16245e-01 -1.87665e-01 - 5 sg_p4 9.58893e-01 7.41282e-03 2.32468e-03 -2.84571e-02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19935.7 FROM MIGRAD STATUS=CONVERGED 353 CALLS 354 TOTAL - EDM=3.50844e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.29115e+02 5.27512e-01 1.55654e-03 5.63178e-02 - 2 sg_p1 2.98537e+01 4.31194e-01 2.39683e-03 -4.86594e-03 - 3 sg_p2 4.52810e+02 1.71881e+01 1.26957e-02 -2.51152e-02 - 4 sg_p3 9.42149e+01 1.22791e+01 5.42279e-02 -7.82994e-03 - 5 sg_p4 9.57905e-01 7.92585e-03 2.33854e-03 -5.94545e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.783e-01 -2.926e-02 6.244e-01 2.021e+00 -6.669e-04 - -2.926e-02 1.860e-01 -3.058e+00 -6.317e-01 1.675e-03 - 6.244e-01 -3.058e+00 2.995e+02 2.884e+01 -1.049e-01 - 2.021e+00 -6.317e-01 2.884e+01 1.696e+02 -1.694e-02 - -6.669e-04 1.675e-03 -1.049e-01 -1.694e-02 6.285e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.33042 1.000 -0.129 0.068 0.294 -0.159 - 2 0.49650 -0.129 1.000 -0.410 -0.112 0.490 - 3 0.76815 0.068 -0.410 1.000 0.128 -0.765 - 4 0.31895 0.294 -0.112 0.128 1.000 -0.164 - 5 0.79426 -0.159 0.490 -0.765 -0.164 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19935.7 FROM HESSE STATUS=OK 31 CALLS 385 TOTAL - EDM=3.65774e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.29115e+02 5.25382e-01 3.11308e-04 -4.71083e-01 - 2 sg_p1 2.98537e+01 4.32758e-01 9.58731e-05 3.95290e-01 - 3 sg_p2 4.52810e+02 1.73342e+01 5.07828e-04 -4.60177e-01 - 4 sg_p3 9.42149e+01 1.23119e+01 2.16911e-03 2.08346e+00 - 5 sg_p4 9.57905e-01 7.98860e-03 4.67708e-04 1.15752e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.761e-01 -3.020e-02 7.182e-01 1.927e+00 -6.928e-04 - -3.020e-02 1.873e-01 -3.149e+00 -7.080e-01 1.713e-03 - 7.182e-01 -3.149e+00 3.047e+02 3.675e+01 -1.073e-01 - 1.927e+00 -7.080e-01 3.675e+01 1.706e+02 -1.945e-02 - -6.928e-04 1.713e-03 -1.073e-01 -1.945e-02 6.385e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.31928 1.000 -0.133 0.078 0.281 -0.165 - 2 0.50194 -0.133 1.000 -0.417 -0.125 0.495 - 3 0.77268 0.078 -0.417 1.000 0.161 -0.769 - 4 0.31887 0.281 -0.125 0.161 1.000 -0.186 - 5 0.79789 -0.165 0.495 -0.769 -0.186 1.000 -550 -529.115 +- 0.525382 -29.8537 +- 0.432758 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=19951.1 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.45000e+02 7.00000e+00 2.01358e-01 -1.82283e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 5.71398e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 -1.74238e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -4.44109e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -1.77604e+03 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18314.7 FROM MIGRAD STATUS=CONVERGED 211 CALLS 212 TOTAL - EDM=2.97149e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.54818e+02 3.19097e-01 8.63536e-04 -3.36904e-01 - 2 sg_p1 1.76653e+01 2.93110e-01 1.48879e-03 2.40235e-04 - 3 sg_p2 5.24916e+02 6.40830e+00 5.54557e-03 -1.03056e-02 - 4 sg_p3 7.57816e+01 6.01449e+00 1.24041e-02 -3.47693e-02 - 5 sg_p4 9.15383e-01 8.76094e-03 2.18461e-03 2.17805e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.018e-01 -7.952e-03 2.184e-01 -3.767e-01 -2.239e-04 - -7.952e-03 8.592e-02 5.369e-01 4.736e-01 1.353e-03 - 2.184e-01 5.369e-01 4.114e+01 -3.542e+00 2.620e-02 - -3.767e-01 4.736e-01 -3.542e+00 3.645e+01 1.672e-02 - -2.239e-04 1.353e-03 2.620e-02 1.672e-02 7.678e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23180 1.000 -0.085 0.107 -0.196 -0.080 - 2 0.54417 -0.085 1.000 0.286 0.268 0.527 - 3 0.54552 0.107 0.286 1.000 -0.091 0.466 - 4 0.45297 -0.196 0.268 -0.091 1.000 0.316 - 5 0.66946 -0.080 0.527 0.466 0.316 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18314.7 FROM HESSE STATUS=OK 31 CALLS 243 TOTAL - EDM=2.96981e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.54818e+02 3.19404e-01 1.72707e-04 2.84322e-01 - 2 sg_p1 1.76653e+01 2.93042e-01 5.95515e-05 -3.61434e-01 - 3 sg_p2 5.24916e+02 6.41299e+00 1.10911e-03 2.82124e+00 - 4 sg_p3 7.57816e+01 6.04287e+00 4.96162e-04 4.80037e-01 - 5 sg_p4 9.15383e-01 8.75334e-03 8.73843e-05 9.80484e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.020e-01 -8.145e-03 2.258e-01 -3.874e-01 -2.275e-04 - -8.145e-03 8.588e-02 5.267e-01 4.756e-01 1.350e-03 - 2.258e-01 5.267e-01 4.120e+01 -4.152e+00 2.584e-02 - -3.874e-01 4.756e-01 -4.152e+00 3.680e+01 1.675e-02 - -2.275e-04 1.350e-03 2.584e-02 1.675e-02 7.665e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23569 1.000 -0.087 0.110 -0.200 -0.081 - 2 0.54387 -0.087 1.000 0.280 0.268 0.526 - 3 0.54648 0.110 0.280 1.000 -0.107 0.460 - 4 0.46089 -0.200 0.268 -0.107 1.000 0.315 - 5 0.66874 -0.081 0.526 0.460 0.315 1.000 -550 -554.818 +- 0.319404 -17.6653 +- 0.293042 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=19898.5 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.45000e+02 7.00000e+00 2.01358e-01 -1.95168e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 4.81948e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 -1.76540e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -4.98194e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -1.74417e+03 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18245.4 FROM MIGRAD STATUS=CONVERGED 196 CALLS 197 TOTAL - EDM=1.01176e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.55808e+02 3.25659e-01 8.83901e-04 -1.63522e-01 - 2 sg_p1 1.77469e+01 3.01241e-01 1.51845e-03 -1.82594e-02 - 3 sg_p2 5.26122e+02 6.31840e+00 5.51012e-03 -4.30688e-02 - 4 sg_p3 7.70352e+01 6.10785e+00 1.27318e-02 -4.97405e-03 - 5 sg_p4 9.08807e-01 9.02494e-03 2.18610e-03 -1.94192e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.061e-01 -1.054e-02 -2.294e-01 -4.229e-01 -2.862e-04 - -1.054e-02 9.076e-02 -4.904e-01 5.133e-01 1.441e-03 - -2.294e-01 -4.904e-01 3.999e+01 5.524e+00 -2.505e-02 - -4.229e-01 5.133e-01 5.524e+00 3.761e+01 1.706e-02 - -2.862e-04 1.441e-03 -2.505e-02 1.706e-02 8.148e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.24854 1.000 -0.107 -0.111 -0.212 -0.097 - 2 0.54949 -0.107 1.000 -0.257 0.278 0.530 - 3 0.54187 -0.111 -0.257 1.000 0.142 -0.439 - 4 0.47566 -0.212 0.278 0.142 1.000 0.308 - 5 0.66453 -0.097 0.530 -0.439 0.308 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18245.4 FROM HESSE STATUS=OK 31 CALLS 228 TOTAL - EDM=1.00847e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.55808e+02 3.25832e-01 1.76780e-04 3.13943e-01 - 2 sg_p1 1.77469e+01 3.02069e-01 6.07379e-05 -3.56157e-01 - 3 sg_p2 5.26122e+02 6.32494e+00 1.10202e-03 6.61694e+00 - 4 sg_p3 7.70352e+01 6.12320e+00 5.09272e-04 5.11714e-01 - 5 sg_p4 9.08807e-01 9.06729e-03 8.74438e-05 9.57256e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.062e-01 -1.081e-02 -2.268e-01 -4.286e-01 -2.938e-04 - -1.081e-02 9.126e-02 -4.992e-01 5.258e-01 1.460e-03 - -2.268e-01 -4.992e-01 4.007e+01 5.270e+00 -2.536e-02 - -4.286e-01 5.258e-01 5.270e+00 3.780e+01 1.761e-02 - -2.938e-04 1.460e-03 -2.536e-02 1.761e-02 8.224e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25053 1.000 -0.110 -0.110 -0.214 -0.099 - 2 0.55296 -0.110 1.000 -0.261 0.283 0.533 - 3 0.54324 -0.110 -0.261 1.000 0.135 -0.442 - 4 0.47947 -0.214 0.283 0.135 1.000 0.316 - 5 0.66843 -0.099 0.533 -0.442 0.316 1.000 -550 -555.808 +- 0.325832 -17.7469 +- 0.302069 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=19728.7 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.45000e+02 7.00000e+00 2.01358e-01 -1.67505e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 6.63661e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 -1.67995e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -4.03919e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -1.77879e+03 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18112.5 FROM MIGRAD STATUS=CONVERGED 209 CALLS 210 TOTAL - EDM=1.24678e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.53868e+02 3.10680e-01 8.32651e-04 -2.62603e-02 - 2 sg_p1 1.72866e+01 2.81268e-01 1.45728e-03 8.07767e-02 - 3 sg_p2 5.24887e+02 6.75798e+00 5.96660e-03 -3.92394e-02 - 4 sg_p3 7.92365e+01 6.79795e+00 1.48996e-02 6.90285e-03 - 5 sg_p4 9.17534e-01 8.29708e-03 2.15408e-03 -1.06137e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.652e-02 -6.967e-03 2.218e-01 -3.867e-01 -1.900e-04 - -6.967e-03 7.912e-02 4.748e-01 5.229e-01 1.170e-03 - 2.218e-01 4.748e-01 4.576e+01 -5.306e+00 2.407e-02 - -3.867e-01 5.229e-01 -5.306e+00 4.672e+01 1.731e-02 - -1.900e-04 1.170e-03 2.407e-02 1.731e-02 6.886e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.21574 1.000 -0.080 0.106 -0.182 -0.074 - 2 0.52328 -0.080 1.000 0.250 0.272 0.501 - 3 0.51581 0.106 0.250 1.000 -0.115 0.429 - 4 0.44943 -0.182 0.272 -0.115 1.000 0.305 - 5 0.64010 -0.074 0.501 0.429 0.305 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18112.5 FROM HESSE STATUS=OK 31 CALLS 241 TOTAL - EDM=1.27405e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.53868e+02 3.10987e-01 1.66530e-04 2.56169e-01 - 2 sg_p1 1.72866e+01 2.81269e-01 2.91456e-04 -3.86094e-01 - 3 sg_p2 5.24887e+02 6.76745e+00 1.19332e-03 2.82155e+00 - 4 sg_p3 7.92365e+01 6.83832e+00 5.95982e-04 5.68761e-01 - 5 sg_p4 9.17534e-01 8.29250e-03 8.61633e-05 9.88256e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.672e-02 -7.180e-03 2.301e-01 -3.999e-01 -1.942e-04 - -7.180e-03 7.912e-02 4.628e-01 5.278e-01 1.169e-03 - 2.301e-01 4.628e-01 4.588e+01 -6.142e+00 2.369e-02 - -3.999e-01 5.278e-01 -6.142e+00 4.728e+01 1.742e-02 - -1.942e-04 1.169e-03 2.369e-02 1.742e-02 6.879e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22006 1.000 -0.082 0.109 -0.187 -0.075 - 2 0.52328 -0.082 1.000 0.243 0.273 0.501 - 3 0.51782 0.109 0.243 1.000 -0.132 0.422 - 4 0.45946 -0.187 0.273 -0.132 1.000 0.305 - 5 0.63959 -0.075 0.501 0.422 0.305 1.000 -550 -553.868 +- 0.310987 -17.2866 +- 0.281269 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=19523.7 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.45000e+02 7.00000e+00 2.01358e-01 -1.78246e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 5.48227e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 -1.72744e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -4.53463e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -1.73440e+03 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17921.7 FROM MIGRAD STATUS=CONVERGED 220 CALLS 221 TOTAL - EDM=1.1296e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.54743e+02 3.23108e-01 8.67838e-04 1.02910e-02 - 2 sg_p1 1.78036e+01 2.93560e-01 1.48809e-03 3.64244e-02 - 3 sg_p2 5.29749e+02 7.02376e+00 6.17425e-03 3.49463e-03 - 4 sg_p3 8.01422e+01 7.11749e+00 1.53333e-02 4.67692e-03 - 5 sg_p4 9.16151e-01 8.68122e-03 2.20244e-03 -2.64886e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.044e-01 -5.800e-03 3.107e-01 -4.077e-01 -1.462e-04 - -5.800e-03 8.619e-02 4.716e-01 5.708e-01 1.298e-03 - 3.107e-01 4.716e-01 4.944e+01 -9.571e+00 2.482e-02 - -4.077e-01 5.708e-01 -9.571e+00 5.129e+01 1.933e-02 - -1.462e-04 1.298e-03 2.482e-02 1.933e-02 7.539e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.21481 1.000 -0.061 0.137 -0.176 -0.052 - 2 0.52839 -0.061 1.000 0.228 0.271 0.509 - 3 0.54059 0.137 0.228 1.000 -0.190 0.407 - 4 0.49556 -0.176 0.271 -0.190 1.000 0.311 - 5 0.64950 -0.052 0.509 0.407 0.311 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17921.7 FROM HESSE STATUS=OK 31 CALLS 252 TOTAL - EDM=1.13732e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.54743e+02 3.23491e-01 3.47135e-05 2.82090e-01 - 2 sg_p1 1.78036e+01 2.93564e-01 5.95236e-05 -3.52489e-01 - 3 sg_p2 5.29749e+02 7.04856e+00 2.46970e-04 2.76712e+00 - 4 sg_p3 8.01422e+01 7.18360e+00 6.13332e-04 5.92835e-01 - 5 sg_p4 9.16151e-01 8.67262e-03 4.40487e-04 9.83249e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.046e-01 -6.090e-03 3.230e-01 -4.265e-01 -1.522e-04 - -6.090e-03 8.619e-02 4.539e-01 5.786e-01 1.296e-03 - 3.230e-01 4.539e-01 4.979e+01 -1.084e+01 2.423e-02 - -4.265e-01 5.786e-01 -1.084e+01 5.225e+01 1.948e-02 - -1.522e-04 1.296e-03 2.423e-02 1.948e-02 7.524e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22000 1.000 -0.064 0.142 -0.182 -0.054 - 2 0.52841 -0.064 1.000 0.219 0.273 0.509 - 3 0.54519 0.142 0.219 1.000 -0.213 0.396 - 4 0.50912 -0.182 0.273 -0.213 1.000 0.311 - 5 0.64862 -0.054 0.509 0.396 0.311 1.000 -550 -554.743 +- 0.323491 -17.8036 +- 0.293564 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=20158.4 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.45000e+02 7.00000e+00 2.01358e-01 -1.85494e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 6.04709e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 -1.75210e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -4.33590e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -1.81352e+03 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18466.6 FROM MIGRAD STATUS=CONVERGED 201 CALLS 202 TOTAL - EDM=7.37276e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.54870e+02 3.11615e-01 8.46985e-04 -5.92156e-02 - 2 sg_p1 1.73495e+01 2.85260e-01 1.47111e-03 7.67177e-02 - 3 sg_p2 5.24331e+02 6.05754e+00 5.28257e-03 4.53885e-03 - 4 sg_p3 7.34136e+01 5.53118e+00 1.12466e-02 -1.10576e-02 - 5 sg_p4 9.15605e-01 8.65240e-03 2.17248e-03 -7.85532e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.711e-02 -7.947e-03 1.826e-01 -3.420e-01 -2.412e-04 - -7.947e-03 8.138e-02 5.038e-01 4.162e-01 1.294e-03 - 1.826e-01 5.038e-01 3.675e+01 -2.414e+00 2.461e-02 - -3.420e-01 4.162e-01 -2.414e+00 3.078e+01 1.542e-02 - -2.412e-04 1.294e-03 2.461e-02 1.542e-02 7.489e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23325 1.000 -0.089 0.097 -0.198 -0.089 - 2 0.54079 -0.089 1.000 0.291 0.263 0.524 - 3 0.54052 0.097 0.291 1.000 -0.072 0.469 - 4 0.44504 -0.198 0.263 -0.072 1.000 0.321 - 5 0.66858 -0.089 0.524 0.469 0.321 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18466.6 FROM HESSE STATUS=OK 31 CALLS 233 TOTAL - EDM=7.38816e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.54870e+02 3.11900e-01 1.69397e-04 2.85889e-01 - 2 sg_p1 1.73495e+01 2.85061e-01 2.94222e-04 -3.81980e-01 - 3 sg_p2 5.24331e+02 6.05810e+00 2.11303e-04 2.82772e+00 - 4 sg_p3 7.34136e+01 5.55334e+00 4.49864e-04 4.21567e-01 - 5 sg_p4 9.15605e-01 8.63836e-03 4.34496e-04 9.81281e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.728e-02 -8.106e-03 1.896e-01 -3.508e-01 -2.439e-04 - -8.106e-03 8.127e-02 4.931e-01 4.161e-01 1.289e-03 - 1.896e-01 4.931e-01 3.676e+01 -2.963e+00 2.422e-02 - -3.508e-01 4.161e-01 -2.963e+00 3.103e+01 1.537e-02 - -2.439e-04 1.289e-03 2.422e-02 1.537e-02 7.465e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23692 1.000 -0.091 0.100 -0.202 -0.091 - 2 0.53988 -0.091 1.000 0.285 0.262 0.523 - 3 0.54066 0.100 0.285 1.000 -0.088 0.462 - 4 0.45196 -0.202 0.262 -0.088 1.000 0.319 - 5 0.66723 -0.091 0.523 0.462 0.319 1.000 -550 -554.87 +- 0.3119 -17.3495 +- 0.285061 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=18671.1 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.45000e+02 7.00000e+00 2.01358e-01 -1.70584e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 5.36049e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 -1.63312e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -4.13435e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -1.66463e+03 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17136.3 FROM MIGRAD STATUS=CONVERGED 203 CALLS 204 TOTAL - EDM=1.02695e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.54811e+02 3.29767e-01 8.63223e-04 -1.93001e-01 - 2 sg_p1 1.76648e+01 3.03153e-01 1.48879e-03 3.74125e-02 - 3 sg_p2 5.25130e+02 6.59118e+00 5.51974e-03 -1.87163e-03 - 4 sg_p3 7.53402e+01 6.16780e+00 1.22242e-02 -1.30639e-02 - 5 sg_p4 9.15918e-01 9.07192e-03 2.19004e-03 -5.75224e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.088e-01 -8.558e-03 2.332e-01 -4.008e-01 -2.433e-04 - -8.558e-03 9.191e-02 5.712e-01 5.058e-01 1.454e-03 - 2.332e-01 5.712e-01 4.352e+01 -3.716e+00 2.786e-02 - -4.008e-01 5.058e-01 -3.716e+00 3.834e+01 1.804e-02 - -2.433e-04 1.454e-03 2.786e-02 1.804e-02 8.233e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23278 1.000 -0.086 0.107 -0.196 -0.081 - 2 0.54570 -0.086 1.000 0.286 0.269 0.529 - 3 0.54594 0.107 0.286 1.000 -0.091 0.465 - 4 0.45689 -0.196 0.269 -0.091 1.000 0.321 - 5 0.67171 -0.081 0.529 0.465 0.321 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17136.3 FROM HESSE STATUS=OK 31 CALLS 235 TOTAL - EDM=1.02452e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.54811e+02 3.30104e-01 1.72645e-04 2.84116e-01 - 2 sg_p1 1.76648e+01 3.03000e-01 5.95517e-05 -3.61468e-01 - 3 sg_p2 5.25130e+02 6.59509e+00 2.20790e-04 2.81886e+00 - 4 sg_p3 7.53402e+01 6.19835e+00 4.88968e-04 4.69011e-01 - 5 sg_p4 9.15918e-01 9.05834e-03 4.38009e-04 9.82408e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.090e-01 -8.764e-03 2.421e-01 -4.127e-01 -2.470e-04 - -8.764e-03 9.182e-02 5.581e-01 5.069e-01 1.449e-03 - 2.421e-01 5.581e-01 4.357e+01 -4.454e+00 2.739e-02 - -4.127e-01 5.069e-01 -4.454e+00 3.873e+01 1.802e-02 - -2.470e-04 1.449e-03 2.739e-02 1.802e-02 8.208e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23689 1.000 -0.088 0.111 -0.201 -0.083 - 2 0.54504 -0.088 1.000 0.279 0.269 0.528 - 3 0.54671 0.111 0.279 1.000 -0.108 0.458 - 4 0.46512 -0.201 0.269 -0.108 1.000 0.320 - 5 0.67048 -0.083 0.528 0.458 0.320 1.000 -550 -554.811 +- 0.330104 -17.6648 +- 0.303 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=21296.1 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.45000e+02 7.00000e+00 2.01358e-01 -1.94576e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 6.08481e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 -1.85706e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -4.76455e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -1.89298e+03 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19553.2 FROM MIGRAD STATUS=CONVERGED 208 CALLS 209 TOTAL - EDM=3.34483e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.54825e+02 3.08932e-01 8.64414e-04 -3.40457e-01 - 2 sg_p1 1.76653e+01 2.83564e-01 1.49117e-03 -1.87292e-01 - 3 sg_p2 5.24710e+02 6.23394e+00 5.56281e-03 -3.21417e-03 - 4 sg_p3 7.62214e+01 5.87300e+00 1.25436e-02 -2.96877e-02 - 5 sg_p4 9.14864e-01 8.46661e-03 2.18261e-03 1.16509e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.544e-02 -7.404e-03 2.048e-01 -3.550e-01 -2.065e-04 - -7.404e-03 8.042e-02 5.052e-01 4.449e-01 1.260e-03 - 2.048e-01 5.052e-01 3.892e+01 -3.380e+00 2.466e-02 - -3.550e-01 4.449e-01 -3.380e+00 3.475e+01 1.555e-02 - -2.065e-04 1.260e-03 2.466e-02 1.555e-02 7.171e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23094 1.000 -0.085 0.106 -0.195 -0.079 - 2 0.54280 -0.085 1.000 0.286 0.266 0.525 - 3 0.54506 0.106 0.286 1.000 -0.092 0.467 - 4 0.44944 -0.195 0.266 -0.092 1.000 0.312 - 5 0.66734 -0.079 0.525 0.467 0.312 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19553.2 FROM HESSE STATUS=OK 31 CALLS 240 TOTAL - EDM=3.3454e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.54825e+02 3.09247e-01 1.72883e-04 2.84530e-01 - 2 sg_p1 1.76653e+01 2.83385e-01 2.98233e-04 -3.61435e-01 - 3 sg_p2 5.24710e+02 6.23786e+00 2.22512e-04 2.82352e+00 - 4 sg_p3 7.62214e+01 5.90192e+00 5.01743e-04 4.91089e-01 - 5 sg_p4 9.14864e-01 8.45305e-03 4.36523e-04 9.78619e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.564e-02 -7.578e-03 2.127e-01 -3.656e-01 -2.095e-04 - -7.578e-03 8.032e-02 4.934e-01 4.455e-01 1.255e-03 - 2.127e-01 4.934e-01 3.897e+01 -4.053e+00 2.424e-02 - -3.656e-01 4.455e-01 -4.053e+00 3.509e+01 1.551e-02 - -2.095e-04 1.255e-03 2.424e-02 1.551e-02 7.148e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23507 1.000 -0.086 0.110 -0.200 -0.080 - 2 0.54198 -0.086 1.000 0.279 0.265 0.524 - 3 0.54588 0.110 0.279 1.000 -0.110 0.459 - 4 0.45781 -0.200 0.265 -0.110 1.000 0.310 - 5 0.66600 -0.080 0.524 0.459 0.310 1.000 -550 -554.825 +- 0.309247 -17.6653 +- 0.283385 -35.9 fb^{-1} (13 TeV) -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 24 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 25 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 31 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 34 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 38 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 39 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 40 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 47 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 112 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 113 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 114 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 115 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 116 has zero error, setting residual to zero - Uncertainty on sg_p0 = 554.818 +- 0.319404 (stat) - 0.949548 + 0.990665 (syst); -0.962884/+1.00345 (total) - Uncertainty on sg_p1 = 17.6653 +- 0.293042 (stat) - 0.37879 + 0.13828 (syst); -0.406141/+0.201469 (total) - Uncertainty on sg_p2 = 524.916 +- 6.41299 (stat) - 0.585115 + 4.83374 (syst); -3.25944/+5.80057 (total) - Uncertainty on sg_p3 = 75.7816 +- 6.04287 (stat) - 2.36797 + 4.36061 (syst); -3.8388/+5.30509 (total) - Uncertainty on sg_p4 = 0.915383 +- 0.00875334 (stat) - 0.00657606 + 0.00215055 (syst); -0.00789935/+0.00487649 (total) - === Baseline plot ===
- norm = 1470.79 -JEC lnN 1.0002 - -JER lnN 1.01675 - -btag lnN 1.06585 - -sg_p0 param 554.818 -0.962884/+1.00345 -sg_p1 param 17.6653 -0.406141/+0.201469 -sg_p2 param 524.916 -3.25944/+5.80057 -sg_p3 param 75.7816 -3.8388/+5.30509 -sg_p4 param 0.915383 -0.00789935/+0.00487649 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_550_novo_285_624/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_550_novo_285_624/data_bkg.log deleted file mode 100644 index 3cc1900..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_550_novo_285_624/data_bkg.log +++ /dev/null @@ -1,750 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [252,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=62921.6 FROM MIGRAD STATUS=INITIATE 90 CALLS 91 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.21879e-02 5.09000e-01 0.00000e+00 -9.80911e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -1.28354e+01 - 3 par_crystal_2 2.65669e+02 4.00000e+00 0.00000e+00 3.55320e+02 - 4 par_crystal_3 1.06488e+01 2.70000e+00 -4.48284e-01 -2.33576e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62883.4 FROM HESSE STATUS=OK 29 CALLS 257 TOTAL - EDM=4.91113 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.66060e-01 4.16121e-03 3.52377e-04 -4.74293e+00 - 2 par_crystal_1 4.45375e+00 2.73731e+00 1.77223e-01 2.66184e-01 - 3 par_crystal_2 2.67385e+02 2.04373e-01 8.29600e-04 2.81454e+02 - 4 par_crystal_3 1.36851e+01 5.38888e-01 1.69331e-03 -1.62103e+00 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=62883.3 FROM MIGRAD STATUS=FAILED 358 CALLS 359 TOTAL - EDM=0.00753244 STRATEGY= 1 ERR MATRIX APPROXIMATE - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.65093e-01 8.39913e-03 1.31861e-03 5.42788e+00 - 2 par_crystal_1 5.09910e+00 4.33634e+00 3.39194e-01 -6.59950e-03 - 3 par_crystal_2 2.67339e+02 1.86486e-01 3.32550e-03 -8.58879e+00 - 4 par_crystal_3 1.37140e+01 6.01780e-01 6.34807e-03 1.69258e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.055e-05 1.617e-04 4.699e-04 2.892e-03 - 1.617e-04 1.762e-02 -1.356e-04 -1.108e-03 - 4.699e-04 -1.356e-04 3.478e-02 3.255e-02 - 2.892e-03 -1.108e-03 3.255e-02 3.624e-01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.60853 1.000 0.145 0.300 0.572 - 2 0.19009 0.145 1.000 -0.005 -0.014 - 3 0.33449 0.300 -0.005 1.000 0.290 - 4 0.59243 0.572 -0.014 0.290 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7660e-01 8.1807e-01 1.6519e+00 1.7066e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.178308 TO DIAGONAL. - FCN=62883.3 FROM HESSE STATUS=NOT POSDEF 33 CALLS 392 TOTAL - EDM=3.36849 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.65093e-01 8.70034e-02 2.63722e-04 -1.21988e+00 - 2 par_crystal_1 5.09910e+00 4.18121e+00 5.00000e-01 1.54425e+00 - 3 par_crystal_2 2.67339e+02 5.27040e+00 9.57407e-02 3.75715e-01 - 4 par_crystal_3 1.37140e+01 6.68546e+00 2.53923e-04 -2.07863e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.595e-03 -2.994e-03 4.642e-01 6.089e-01 - -2.994e-03 1.536e-02 -1.944e-01 -2.569e-01 - 4.642e-01 -1.944e-01 2.855e+01 3.736e+01 - 6.089e-01 -2.569e-01 3.736e+01 4.914e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99751 1.000 -0.277 0.997 0.997 - 2 0.37560 -0.277 1.000 -0.293 -0.296 - 3 0.99795 0.997 -0.293 1.000 0.997 - 4 0.99797 0.997 -0.296 0.997 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=62983.1 FROM MIGRAD STATUS=INITIATE 29 CALLS 30 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 6.05383e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -1.33666e+02 - 3 par_gaus_exp_2 3.19008e-01 3.05000e-01 -9.67731e-01 -3.33619e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.00383 added to diagonal of error matrix - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62882.7 FROM MIGRAD STATUS=CONVERGED 228 CALLS 229 TOTAL - EDM=4.4408e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.69095e+02 7.01852e-01 4.07755e-03 2.89794e-02 - 2 par_gaus_exp_1 1.61044e+01 1.09719e+00 7.43010e-03 -1.84784e-02 - 3 par_gaus_exp_2 1.90527e-01 1.58774e-02 1.98778e-03 -6.23432e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 4.929e-01 5.914e-01 9.067e-03 - 5.914e-01 1.207e+00 1.483e-02 - 9.067e-03 1.483e-02 2.521e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.82590 1.000 0.767 0.813 - 2 0.85979 0.767 1.000 0.850 - 3 0.88644 0.813 0.850 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62882.7 FROM HESSE STATUS=OK 16 CALLS 245 TOTAL - EDM=4.28199e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.69095e+02 6.86832e-01 1.63102e-04 -5.76704e-01 - 2 par_gaus_exp_1 1.61044e+01 1.07335e+00 2.97204e-04 -5.72398e-01 - 3 par_gaus_exp_2 1.90527e-01 1.55212e-02 7.95110e-05 -1.13813e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 4.720e-01 5.579e-01 8.580e-03 - 5.579e-01 1.155e+00 1.406e-02 - 8.580e-03 1.406e-02 2.410e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.81734 1.000 0.756 0.805 - 2 0.85292 0.756 1.000 0.843 - 3 0.88081 0.805 0.843 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,624] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.3296 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.3296) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=286.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=286.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=289.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=289.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=295.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=295.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=298.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=298.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=301.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=301.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - ... (remaining 216 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.733611 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.733611) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=313.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=316.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=319.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=325.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=328.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=331.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=334.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=340.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=343.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=346.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - ... (remaining 94 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0733618 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0733618 - - FCN=103426 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57146e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.55551e+03 - 3 par_novo_2 -1.33526e+00 2.00000e+01 0.00000e+00 1.53308e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103192 FROM MIGRAD STATUS=CONVERGED 126 CALLS 127 TOTAL - EDM=1.07924e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.17697e+01 1.69443e-01** at limit ** - 2 par_novo_1 3.87878e+01 2.27475e+00 4.96100e-03 -6.14249e-02 - 3 par_novo_2 -1.26766e+00 7.00630e-02 3.67886e-05 3.77179e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 2.244e-10 -2.632e-07 -1.276e-07 - -2.632e-07 5.190e+00 1.540e-01 - -1.276e-07 1.540e-01 4.909e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.43392 1.000 -0.008 -0.122 - 2 0.97109 -0.008 1.000 0.965 - 3 0.97152 -0.122 0.965 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103192 FROM HESSE STATUS=OK 20 CALLS 147 TOTAL - EDM=1.23299e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.15107e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.87878e+01 2.30410e+00 1.98440e-04 4.51799e-01 - 3 par_novo_2 -1.26766e+00 7.13892e-02 1.47154e-06 -1.26769e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 2.143e-10 3.996e-06 -2.087e-07 - 3.996e-06 5.325e+00 1.518e-01 - -2.087e-07 1.518e-01 5.096e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.80390 1.000 0.118 -0.200 - 2 0.97183 0.118 1.000 0.922 - 3 0.97258 -0.200 0.922 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107617 FROM MIGRAD STATUS=INITIATE 36 CALLS 37 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 6.60405e+03 - 2 par_crystal_1_1 7.90153e-02 5.09000e-01 -1.80421e+00 3.05679e+03 - 3 par_crystal_1_2 2.60000e+02 4.00000e+00 0.00000e+00 1.48888e+03 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 6.99071e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.17529 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.7903e-03 5.8606e-02 5.0897e-01 3.4352e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.006225 TO DIAGONAL. - FCN=103191 FROM MIGRAD STATUS=CONVERGED 353 CALLS 354 TOTAL - EDM=3.7306e-06 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.37913e-01 3.41139e-02 6.19492e-04 4.10204e-01 - 2 par_crystal_1_1 4.44737e+00 5.69760e-01 2.21494e-02 9.88736e-03 - 3 par_crystal_1_2 2.79979e+02 3.40482e+01 2.79535e-01 -2.97577e-04 - 4 par_crystal_1_3 1.87584e+01 2.98857e+00 3.96232e-03 -6.40797e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.164e-03 3.582e-03 3.594e-03 9.898e-02 - 3.582e-03 3.375e-01 -1.052e-02 7.382e-01 - 3.594e-03 -1.052e-02 3.148e+00 6.243e-01 - 9.898e-02 7.382e-01 6.243e-01 9.086e+00 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99630 1.000 0.181 0.059 0.962 - 2 0.95650 0.181 1.000 -0.010 0.422 - 3 0.63948 0.059 -0.010 1.000 0.117 - 4 0.99690 0.962 0.422 0.117 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103191 FROM HESSE STATUS=OK 27 CALLS 381 TOTAL - EDM=6.06842e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 2.37913e-01 2.12502e-01 1.23898e-04 -8.36786e+01 - 2 par_crystal_1_1 4.44737e+00 5.06952e-01 8.85975e-04 -1.65463e+01 - 3 par_crystal_1_2 2.79979e+02 2.96341e+01 5.00000e-01 7.80831e+00 - 4 par_crystal_1_3 1.87584e+01 1.90925e+01 1.58493e-04 2.18231e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.578e-02 1.663e-02 2.427e-02 3.730e+00 - 1.663e-02 2.650e-01 -4.299e-02 1.684e+00 - 2.427e-02 -4.299e-02 1.850e+00 2.341e+00 - 3.730e+00 1.684e+00 2.341e+00 3.045e+02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99991 1.000 0.151 0.083 0.999 - 2 0.94385 0.151 1.000 -0.061 0.187 - 3 0.80384 0.083 -0.061 1.000 0.099 - 4 0.99991 0.999 0.187 0.099 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 13889.7 - Background number of gaus_exp_252_330 = 13889.7 - Background number of novo_285_624 = 17637.2 - Background number of crystal_1_285_624 = 17637.2 - Background number of gaus_bern_285_624 = 17637.2 - Background number of landau_285_624 = 17637.2 -par_crystal_0 param 0.165093 0.0870034 -par_crystal_1 param 5.0991 4.18121 -par_crystal_2 param 267.339 5.2704 -par_crystal_3 param 13.714 6.68546 -par_crystal_1_0 param 0.237913 0.212502 -par_crystal_1_1 param 4.44737 0.506952 -par_crystal_1_2 param 279.979 29.6341 -par_crystal_1_3 param 18.7584 19.0925 -par_gaus_exp_0 param 269.095 0.686832 -par_gaus_exp_1 param 16.1044 1.07335 -par_gaus_exp_2 param 0.190527 0.0155212 -par_novo_0 param 250 31.5107 -par_novo_1 param 38.7878 2.3041 -par_novo_2 param -1.26766 0.0713892 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_550_novo_285_624/datacard_550_novo_285_624.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_550_novo_285_624/datacard_550_novo_285_624.txt deleted file mode 100644 index bfb9aa5..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_550_novo_285_624/datacard_550_novo_285_624.txt +++ /dev/null @@ -1,30 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_550.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_novo_285_624.root HbbHbb:f_novo -shapes data_obs HbbHbb w_background_novo_285_624.root HbbHbb:data_obs_novo_285_624 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 1470.79 17637.2 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06585 - -JER lnN 1.01675 - -JEC lnN 1.0002 - -trigger lnN 1.10 - -PDF lnN 1.02229693932 - -sg_p0 param 554.818 -0.962884/+1.00345 -sg_p1 param 17.6653 -0.406141/+0.201469 -sg_p2 param 524.916 -3.25944/+5.80057 -sg_p3 param 75.7816 -3.8388/+5.30509 -sg_p4 param 0.915383 -0.00789935/+0.00487649 -par_novo_0 param 250 31.5107 -par_novo_1 param 38.7878 2.3041 -par_novo_2 param -1.26766 0.0713892 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_550_novo_285_624/pdf.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_550_novo_285_624/pdf.log deleted file mode 100644 index 259cbcf..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_550_novo_285_624/pdf.log +++ /dev/null @@ -1,10 +0,0 @@ -[?1034h FCN=13.8549 FROM MIGRAD STATUS=CONVERGED 70 CALLS 71 TOTAL - EDM=1.39547e-10 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 Constant 1.33669e+01 1.80554e+00 2.71051e-03 4.30284e-06 - 2 Mean 9.99344e-01 2.90546e-03 5.44875e-06 -4.96208e-03 - 3 Sigma 2.22969e-02 2.61448e-03 6.50610e-05 1.72213e-05 -0.999344037733 +/- 0.0029054638886 -0.0222969393194 +/- 0.00261447795001 -PDF lnN 1.02229693932 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_550_novo_285_624/signal550_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_550_novo_285_624/signal550_sig.log deleted file mode 100644 index 31e7a79..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_550_novo_285_624/signal550_sig.log +++ /dev/null @@ -1,872 +0,0 @@ - -Processing test.c... -nSignal_init = 100000 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=20474.1 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.45000e+02 7.00000e+00 2.01358e-01 5.07174e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 5.94014e+01 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 -9.02149e+02 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 3.92576e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -5.54746e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20087.2 FROM MIGRAD STATUS=CONVERGED 293 CALLS 294 TOTAL - EDM=2.38221e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.31487e+02 5.32162e-01 1.51230e-03 1.42028e-02 - 2 sg_p1 2.98204e+01 4.47933e-01 2.42219e-03 7.73048e-03 - 3 sg_p2 4.57724e+02 1.56211e+01 1.09347e-02 -8.53008e-03 - 4 sg_p3 8.95652e+01 1.08014e+01 3.54792e-02 1.21216e-02 - 5 sg_p4 9.54096e-01 8.70766e-03 2.37118e-03 -9.01545e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.832e-01 -4.050e-02 7.504e-01 -1.728e+00 -9.374e-04 - -4.050e-02 2.007e-01 -3.095e+00 6.692e-01 2.076e-03 - 7.504e-01 -3.095e+00 2.467e+02 -1.356e+01 -1.062e-01 - -1.728e+00 6.692e-01 -1.356e+01 1.226e+02 1.630e-02 - -9.374e-04 2.076e-03 -1.062e-01 1.630e-02 7.587e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.34824 1.000 -0.170 0.090 -0.293 -0.202 - 2 0.53901 -0.170 1.000 -0.440 0.135 0.532 - 3 0.78111 0.090 -0.440 1.000 -0.078 -0.776 - 4 0.32107 -0.293 0.135 -0.078 1.000 0.169 - 5 0.81348 -0.202 0.532 -0.776 0.169 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20087.2 FROM HESSE STATUS=OK 31 CALLS 325 TOTAL - EDM=2.38806e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.31487e+02 5.34249e-01 6.04920e-05 -3.96390e-01 - 2 sg_p1 2.98204e+01 4.49790e-01 9.68875e-05 3.93104e-01 - 3 sg_p2 4.57724e+02 1.57210e+01 4.37390e-04 -4.03212e-01 - 4 sg_p3 8.95652e+01 1.08586e+01 1.41917e-03 8.75892e-01 - 5 sg_p4 9.54096e-01 8.77545e-03 4.74236e-04 1.13895e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.854e-01 -4.220e-02 8.178e-01 -1.810e+00 -9.783e-04 - -4.220e-02 2.024e-01 -3.172e+00 7.162e-01 2.121e-03 - 8.178e-01 -3.172e+00 2.499e+02 -1.585e+01 -1.082e-01 - -1.810e+00 7.162e-01 -1.585e+01 1.240e+02 1.767e-02 - -9.783e-04 2.121e-03 -1.082e-01 1.767e-02 7.705e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.35795 1.000 -0.176 0.097 -0.304 -0.209 - 2 0.54441 -0.176 1.000 -0.446 0.143 0.537 - 3 0.78430 0.097 -0.446 1.000 -0.090 -0.780 - 4 0.33330 -0.304 0.143 -0.090 1.000 0.181 - 5 0.81668 -0.209 0.537 -0.780 0.181 1.000 -550 -531.487 +- 0.534249 -29.8204 +- 0.44979 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=20306.4 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.45000e+02 7.00000e+00 2.01358e-01 3.00053e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 7.48703e+01 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 -9.55356e+02 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 2.98032e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -6.39572e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19957.6 FROM MIGRAD STATUS=CONVERGED 292 CALLS 293 TOTAL - EDM=4.51479e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.33845e+02 5.50540e-01 1.48402e-03 3.91502e-02 - 2 sg_p1 2.97723e+01 4.71570e-01 2.44878e-03 2.61411e-02 - 3 sg_p2 4.60591e+02 1.38428e+01 8.85082e-03 -6.68765e-03 - 4 sg_p3 8.05212e+01 8.20745e+00 2.03850e-02 9.33536e-03 - 5 sg_p4 9.47592e-01 1.00547e-02 2.37122e-03 -3.27058e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.031e-01 -5.910e-02 9.827e-01 -1.368e+00 -1.430e-03 - -5.910e-02 2.224e-01 -3.125e+00 3.654e-01 2.724e-03 - 9.827e-01 -3.125e+00 1.932e+02 9.312e+00 -1.123e-01 - -1.368e+00 3.654e-01 9.312e+00 6.849e+01 4.927e-03 - -1.430e-03 2.724e-03 -1.123e-01 4.927e-03 1.012e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.39978 1.000 -0.228 0.128 -0.300 -0.258 - 2 0.58300 -0.228 1.000 -0.477 0.094 0.574 - 3 0.81557 0.128 -0.477 1.000 0.081 -0.803 - 4 0.35284 -0.300 0.094 0.081 1.000 0.059 - 5 0.84274 -0.258 0.574 -0.803 0.059 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19957.6 FROM HESSE STATUS=OK 31 CALLS 324 TOTAL - EDM=4.5264e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.33845e+02 5.51808e-01 2.96804e-04 -3.24384e-01 - 2 sg_p1 2.97723e+01 4.73610e-01 9.79512e-05 3.89948e-01 - 3 sg_p2 4.60591e+02 1.39421e+01 3.54033e-04 -3.70629e-01 - 4 sg_p3 8.05212e+01 8.22375e+00 8.15398e-04 6.03025e-01 - 5 sg_p4 9.47592e-01 1.01305e-02 4.74244e-04 1.10884e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.045e-01 -6.047e-02 1.021e+00 -1.394e+00 -1.460e-03 - -6.047e-02 2.244e-01 -3.200e+00 3.711e-01 2.779e-03 - 1.021e+00 -3.200e+00 1.960e+02 9.327e+00 -1.144e-01 - -1.394e+00 3.711e-01 9.327e+00 6.877e+01 5.012e-03 - -1.460e-03 2.779e-03 -1.144e-01 5.012e-03 1.027e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.40458 1.000 -0.231 0.132 -0.305 -0.261 - 2 0.58785 -0.231 1.000 -0.483 0.094 0.579 - 3 0.81850 0.132 -0.483 1.000 0.080 -0.806 - 4 0.35705 -0.305 0.094 0.080 1.000 0.060 - 5 0.84530 -0.261 0.579 -0.806 0.060 1.000 -550 -533.845 +- 0.551808 -29.7723 +- 0.47361 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=20361.9 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.45000e+02 7.00000e+00 2.01358e-01 7.00402e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 2.42051e+01 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 -8.13221e+02 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 4.85542e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -4.37084e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - MINUIT WARNING IN HESSE - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN HESSE - ============== 1.70671 added to diagonal of error matrix - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19935.7 FROM HESSE STATUS=OK 37 CALLS 258 TOTAL - EDM=0.0234896 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.29061e+02 5.14520e-01 1.55758e-03 2.24394e-02 - 2 sg_p1 2.98860e+01 4.23991e-01 2.39855e-03 -1.26397e-01 - 3 sg_p2 4.50244e+02 1.76938e+01 1.40698e-02 -3.32037e-01 - 4 sg_p3 9.92707e+01 5.23923e+01 1.16245e-01 -1.87665e-01 - 5 sg_p4 9.58893e-01 7.41282e-03 2.32468e-03 -2.84571e-02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19935.7 FROM MIGRAD STATUS=CONVERGED 353 CALLS 354 TOTAL - EDM=3.50844e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.29115e+02 5.27512e-01 1.55654e-03 5.63178e-02 - 2 sg_p1 2.98537e+01 4.31194e-01 2.39683e-03 -4.86594e-03 - 3 sg_p2 4.52810e+02 1.71881e+01 1.26957e-02 -2.51152e-02 - 4 sg_p3 9.42149e+01 1.22791e+01 5.42279e-02 -7.82994e-03 - 5 sg_p4 9.57905e-01 7.92585e-03 2.33854e-03 -5.94545e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.783e-01 -2.926e-02 6.244e-01 2.021e+00 -6.669e-04 - -2.926e-02 1.860e-01 -3.058e+00 -6.317e-01 1.675e-03 - 6.244e-01 -3.058e+00 2.995e+02 2.884e+01 -1.049e-01 - 2.021e+00 -6.317e-01 2.884e+01 1.696e+02 -1.694e-02 - -6.669e-04 1.675e-03 -1.049e-01 -1.694e-02 6.285e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.33042 1.000 -0.129 0.068 0.294 -0.159 - 2 0.49650 -0.129 1.000 -0.410 -0.112 0.490 - 3 0.76815 0.068 -0.410 1.000 0.128 -0.765 - 4 0.31895 0.294 -0.112 0.128 1.000 -0.164 - 5 0.79426 -0.159 0.490 -0.765 -0.164 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19935.7 FROM HESSE STATUS=OK 31 CALLS 385 TOTAL - EDM=3.65774e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.29115e+02 5.25382e-01 3.11308e-04 -4.71083e-01 - 2 sg_p1 2.98537e+01 4.32758e-01 9.58731e-05 3.95290e-01 - 3 sg_p2 4.52810e+02 1.73342e+01 5.07828e-04 -4.60177e-01 - 4 sg_p3 9.42149e+01 1.23119e+01 2.16911e-03 2.08346e+00 - 5 sg_p4 9.57905e-01 7.98860e-03 4.67708e-04 1.15752e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.761e-01 -3.020e-02 7.182e-01 1.927e+00 -6.928e-04 - -3.020e-02 1.873e-01 -3.149e+00 -7.080e-01 1.713e-03 - 7.182e-01 -3.149e+00 3.047e+02 3.675e+01 -1.073e-01 - 1.927e+00 -7.080e-01 3.675e+01 1.706e+02 -1.945e-02 - -6.928e-04 1.713e-03 -1.073e-01 -1.945e-02 6.385e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.31928 1.000 -0.133 0.078 0.281 -0.165 - 2 0.50194 -0.133 1.000 -0.417 -0.125 0.495 - 3 0.77268 0.078 -0.417 1.000 0.161 -0.769 - 4 0.31887 0.281 -0.125 0.161 1.000 -0.186 - 5 0.79789 -0.165 0.495 -0.769 -0.186 1.000 -550 -529.115 +- 0.525382 -29.8537 +- 0.432758 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=19951.1 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.45000e+02 7.00000e+00 2.01358e-01 -1.82283e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 5.71398e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 -1.74238e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -4.44109e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -1.77604e+03 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18314.7 FROM MIGRAD STATUS=CONVERGED 211 CALLS 212 TOTAL - EDM=2.97149e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.54818e+02 3.19097e-01 8.63536e-04 -3.36904e-01 - 2 sg_p1 1.76653e+01 2.93110e-01 1.48879e-03 2.40235e-04 - 3 sg_p2 5.24916e+02 6.40830e+00 5.54557e-03 -1.03056e-02 - 4 sg_p3 7.57816e+01 6.01449e+00 1.24041e-02 -3.47693e-02 - 5 sg_p4 9.15383e-01 8.76094e-03 2.18461e-03 2.17805e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.018e-01 -7.952e-03 2.184e-01 -3.767e-01 -2.239e-04 - -7.952e-03 8.592e-02 5.369e-01 4.736e-01 1.353e-03 - 2.184e-01 5.369e-01 4.114e+01 -3.542e+00 2.620e-02 - -3.767e-01 4.736e-01 -3.542e+00 3.645e+01 1.672e-02 - -2.239e-04 1.353e-03 2.620e-02 1.672e-02 7.678e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23180 1.000 -0.085 0.107 -0.196 -0.080 - 2 0.54417 -0.085 1.000 0.286 0.268 0.527 - 3 0.54552 0.107 0.286 1.000 -0.091 0.466 - 4 0.45297 -0.196 0.268 -0.091 1.000 0.316 - 5 0.66946 -0.080 0.527 0.466 0.316 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18314.7 FROM HESSE STATUS=OK 31 CALLS 243 TOTAL - EDM=2.96981e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.54818e+02 3.19404e-01 1.72707e-04 2.84322e-01 - 2 sg_p1 1.76653e+01 2.93042e-01 5.95515e-05 -3.61434e-01 - 3 sg_p2 5.24916e+02 6.41299e+00 1.10911e-03 2.82124e+00 - 4 sg_p3 7.57816e+01 6.04287e+00 4.96162e-04 4.80037e-01 - 5 sg_p4 9.15383e-01 8.75334e-03 8.73843e-05 9.80484e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.020e-01 -8.145e-03 2.258e-01 -3.874e-01 -2.275e-04 - -8.145e-03 8.588e-02 5.267e-01 4.756e-01 1.350e-03 - 2.258e-01 5.267e-01 4.120e+01 -4.152e+00 2.584e-02 - -3.874e-01 4.756e-01 -4.152e+00 3.680e+01 1.675e-02 - -2.275e-04 1.350e-03 2.584e-02 1.675e-02 7.665e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23569 1.000 -0.087 0.110 -0.200 -0.081 - 2 0.54387 -0.087 1.000 0.280 0.268 0.526 - 3 0.54648 0.110 0.280 1.000 -0.107 0.460 - 4 0.46089 -0.200 0.268 -0.107 1.000 0.315 - 5 0.66874 -0.081 0.526 0.460 0.315 1.000 -550 -554.818 +- 0.319404 -17.6653 +- 0.293042 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=19898.5 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.45000e+02 7.00000e+00 2.01358e-01 -1.95168e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 4.81948e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 -1.76540e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -4.98194e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -1.74417e+03 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18245.4 FROM MIGRAD STATUS=CONVERGED 196 CALLS 197 TOTAL - EDM=1.01176e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.55808e+02 3.25659e-01 8.83901e-04 -1.63522e-01 - 2 sg_p1 1.77469e+01 3.01241e-01 1.51845e-03 -1.82594e-02 - 3 sg_p2 5.26122e+02 6.31840e+00 5.51012e-03 -4.30688e-02 - 4 sg_p3 7.70352e+01 6.10785e+00 1.27318e-02 -4.97405e-03 - 5 sg_p4 9.08807e-01 9.02494e-03 2.18610e-03 -1.94192e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.061e-01 -1.054e-02 -2.294e-01 -4.229e-01 -2.862e-04 - -1.054e-02 9.076e-02 -4.904e-01 5.133e-01 1.441e-03 - -2.294e-01 -4.904e-01 3.999e+01 5.524e+00 -2.505e-02 - -4.229e-01 5.133e-01 5.524e+00 3.761e+01 1.706e-02 - -2.862e-04 1.441e-03 -2.505e-02 1.706e-02 8.148e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.24854 1.000 -0.107 -0.111 -0.212 -0.097 - 2 0.54949 -0.107 1.000 -0.257 0.278 0.530 - 3 0.54187 -0.111 -0.257 1.000 0.142 -0.439 - 4 0.47566 -0.212 0.278 0.142 1.000 0.308 - 5 0.66453 -0.097 0.530 -0.439 0.308 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18245.4 FROM HESSE STATUS=OK 31 CALLS 228 TOTAL - EDM=1.00847e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.55808e+02 3.25832e-01 1.76780e-04 3.13943e-01 - 2 sg_p1 1.77469e+01 3.02069e-01 6.07379e-05 -3.56157e-01 - 3 sg_p2 5.26122e+02 6.32494e+00 1.10202e-03 6.61694e+00 - 4 sg_p3 7.70352e+01 6.12320e+00 5.09272e-04 5.11714e-01 - 5 sg_p4 9.08807e-01 9.06729e-03 8.74438e-05 9.57256e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.062e-01 -1.081e-02 -2.268e-01 -4.286e-01 -2.938e-04 - -1.081e-02 9.126e-02 -4.992e-01 5.258e-01 1.460e-03 - -2.268e-01 -4.992e-01 4.007e+01 5.270e+00 -2.536e-02 - -4.286e-01 5.258e-01 5.270e+00 3.780e+01 1.761e-02 - -2.938e-04 1.460e-03 -2.536e-02 1.761e-02 8.224e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25053 1.000 -0.110 -0.110 -0.214 -0.099 - 2 0.55296 -0.110 1.000 -0.261 0.283 0.533 - 3 0.54324 -0.110 -0.261 1.000 0.135 -0.442 - 4 0.47947 -0.214 0.283 0.135 1.000 0.316 - 5 0.66843 -0.099 0.533 -0.442 0.316 1.000 -550 -555.808 +- 0.325832 -17.7469 +- 0.302069 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=19728.7 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.45000e+02 7.00000e+00 2.01358e-01 -1.67505e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 6.63661e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 -1.67995e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -4.03919e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -1.77879e+03 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18112.5 FROM MIGRAD STATUS=CONVERGED 209 CALLS 210 TOTAL - EDM=1.24678e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.53868e+02 3.10680e-01 8.32651e-04 -2.62603e-02 - 2 sg_p1 1.72866e+01 2.81268e-01 1.45728e-03 8.07767e-02 - 3 sg_p2 5.24887e+02 6.75798e+00 5.96660e-03 -3.92394e-02 - 4 sg_p3 7.92365e+01 6.79795e+00 1.48996e-02 6.90285e-03 - 5 sg_p4 9.17534e-01 8.29708e-03 2.15408e-03 -1.06137e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.652e-02 -6.967e-03 2.218e-01 -3.867e-01 -1.900e-04 - -6.967e-03 7.912e-02 4.748e-01 5.229e-01 1.170e-03 - 2.218e-01 4.748e-01 4.576e+01 -5.306e+00 2.407e-02 - -3.867e-01 5.229e-01 -5.306e+00 4.672e+01 1.731e-02 - -1.900e-04 1.170e-03 2.407e-02 1.731e-02 6.886e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.21574 1.000 -0.080 0.106 -0.182 -0.074 - 2 0.52328 -0.080 1.000 0.250 0.272 0.501 - 3 0.51581 0.106 0.250 1.000 -0.115 0.429 - 4 0.44943 -0.182 0.272 -0.115 1.000 0.305 - 5 0.64010 -0.074 0.501 0.429 0.305 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18112.5 FROM HESSE STATUS=OK 31 CALLS 241 TOTAL - EDM=1.27405e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.53868e+02 3.10987e-01 1.66530e-04 2.56169e-01 - 2 sg_p1 1.72866e+01 2.81269e-01 2.91456e-04 -3.86094e-01 - 3 sg_p2 5.24887e+02 6.76745e+00 1.19332e-03 2.82155e+00 - 4 sg_p3 7.92365e+01 6.83832e+00 5.95982e-04 5.68761e-01 - 5 sg_p4 9.17534e-01 8.29250e-03 8.61633e-05 9.88256e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.672e-02 -7.180e-03 2.301e-01 -3.999e-01 -1.942e-04 - -7.180e-03 7.912e-02 4.628e-01 5.278e-01 1.169e-03 - 2.301e-01 4.628e-01 4.588e+01 -6.142e+00 2.369e-02 - -3.999e-01 5.278e-01 -6.142e+00 4.728e+01 1.742e-02 - -1.942e-04 1.169e-03 2.369e-02 1.742e-02 6.879e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22006 1.000 -0.082 0.109 -0.187 -0.075 - 2 0.52328 -0.082 1.000 0.243 0.273 0.501 - 3 0.51782 0.109 0.243 1.000 -0.132 0.422 - 4 0.45946 -0.187 0.273 -0.132 1.000 0.305 - 5 0.63959 -0.075 0.501 0.422 0.305 1.000 -550 -553.868 +- 0.310987 -17.2866 +- 0.281269 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=19523.7 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.45000e+02 7.00000e+00 2.01358e-01 -1.78246e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 5.48227e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 -1.72744e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -4.53463e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -1.73440e+03 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17921.7 FROM MIGRAD STATUS=CONVERGED 220 CALLS 221 TOTAL - EDM=1.1296e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.54743e+02 3.23108e-01 8.67838e-04 1.02910e-02 - 2 sg_p1 1.78036e+01 2.93560e-01 1.48809e-03 3.64244e-02 - 3 sg_p2 5.29749e+02 7.02376e+00 6.17425e-03 3.49463e-03 - 4 sg_p3 8.01422e+01 7.11749e+00 1.53333e-02 4.67692e-03 - 5 sg_p4 9.16151e-01 8.68122e-03 2.20244e-03 -2.64886e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.044e-01 -5.800e-03 3.107e-01 -4.077e-01 -1.462e-04 - -5.800e-03 8.619e-02 4.716e-01 5.708e-01 1.298e-03 - 3.107e-01 4.716e-01 4.944e+01 -9.571e+00 2.482e-02 - -4.077e-01 5.708e-01 -9.571e+00 5.129e+01 1.933e-02 - -1.462e-04 1.298e-03 2.482e-02 1.933e-02 7.539e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.21481 1.000 -0.061 0.137 -0.176 -0.052 - 2 0.52839 -0.061 1.000 0.228 0.271 0.509 - 3 0.54059 0.137 0.228 1.000 -0.190 0.407 - 4 0.49556 -0.176 0.271 -0.190 1.000 0.311 - 5 0.64950 -0.052 0.509 0.407 0.311 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17921.7 FROM HESSE STATUS=OK 31 CALLS 252 TOTAL - EDM=1.13732e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.54743e+02 3.23491e-01 3.47135e-05 2.82090e-01 - 2 sg_p1 1.78036e+01 2.93564e-01 5.95236e-05 -3.52489e-01 - 3 sg_p2 5.29749e+02 7.04856e+00 2.46970e-04 2.76712e+00 - 4 sg_p3 8.01422e+01 7.18360e+00 6.13332e-04 5.92835e-01 - 5 sg_p4 9.16151e-01 8.67262e-03 4.40487e-04 9.83249e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.046e-01 -6.090e-03 3.230e-01 -4.265e-01 -1.522e-04 - -6.090e-03 8.619e-02 4.539e-01 5.786e-01 1.296e-03 - 3.230e-01 4.539e-01 4.979e+01 -1.084e+01 2.423e-02 - -4.265e-01 5.786e-01 -1.084e+01 5.225e+01 1.948e-02 - -1.522e-04 1.296e-03 2.423e-02 1.948e-02 7.524e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22000 1.000 -0.064 0.142 -0.182 -0.054 - 2 0.52841 -0.064 1.000 0.219 0.273 0.509 - 3 0.54519 0.142 0.219 1.000 -0.213 0.396 - 4 0.50912 -0.182 0.273 -0.213 1.000 0.311 - 5 0.64862 -0.054 0.509 0.396 0.311 1.000 -550 -554.743 +- 0.323491 -17.8036 +- 0.293564 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=20158.4 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.45000e+02 7.00000e+00 2.01358e-01 -1.85494e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 6.04709e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 -1.75210e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -4.33590e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -1.81352e+03 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18466.6 FROM MIGRAD STATUS=CONVERGED 201 CALLS 202 TOTAL - EDM=7.37276e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.54870e+02 3.11615e-01 8.46985e-04 -5.92156e-02 - 2 sg_p1 1.73495e+01 2.85260e-01 1.47111e-03 7.67177e-02 - 3 sg_p2 5.24331e+02 6.05754e+00 5.28257e-03 4.53885e-03 - 4 sg_p3 7.34136e+01 5.53118e+00 1.12466e-02 -1.10576e-02 - 5 sg_p4 9.15605e-01 8.65240e-03 2.17248e-03 -7.85532e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.711e-02 -7.947e-03 1.826e-01 -3.420e-01 -2.412e-04 - -7.947e-03 8.138e-02 5.038e-01 4.162e-01 1.294e-03 - 1.826e-01 5.038e-01 3.675e+01 -2.414e+00 2.461e-02 - -3.420e-01 4.162e-01 -2.414e+00 3.078e+01 1.542e-02 - -2.412e-04 1.294e-03 2.461e-02 1.542e-02 7.489e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23325 1.000 -0.089 0.097 -0.198 -0.089 - 2 0.54079 -0.089 1.000 0.291 0.263 0.524 - 3 0.54052 0.097 0.291 1.000 -0.072 0.469 - 4 0.44504 -0.198 0.263 -0.072 1.000 0.321 - 5 0.66858 -0.089 0.524 0.469 0.321 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18466.6 FROM HESSE STATUS=OK 31 CALLS 233 TOTAL - EDM=7.38816e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.54870e+02 3.11900e-01 1.69397e-04 2.85889e-01 - 2 sg_p1 1.73495e+01 2.85061e-01 2.94222e-04 -3.81980e-01 - 3 sg_p2 5.24331e+02 6.05810e+00 2.11303e-04 2.82772e+00 - 4 sg_p3 7.34136e+01 5.55334e+00 4.49864e-04 4.21567e-01 - 5 sg_p4 9.15605e-01 8.63836e-03 4.34496e-04 9.81281e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.728e-02 -8.106e-03 1.896e-01 -3.508e-01 -2.439e-04 - -8.106e-03 8.127e-02 4.931e-01 4.161e-01 1.289e-03 - 1.896e-01 4.931e-01 3.676e+01 -2.963e+00 2.422e-02 - -3.508e-01 4.161e-01 -2.963e+00 3.103e+01 1.537e-02 - -2.439e-04 1.289e-03 2.422e-02 1.537e-02 7.465e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23692 1.000 -0.091 0.100 -0.202 -0.091 - 2 0.53988 -0.091 1.000 0.285 0.262 0.523 - 3 0.54066 0.100 0.285 1.000 -0.088 0.462 - 4 0.45196 -0.202 0.262 -0.088 1.000 0.319 - 5 0.66723 -0.091 0.523 0.462 0.319 1.000 -550 -554.87 +- 0.3119 -17.3495 +- 0.285061 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=18671.1 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.45000e+02 7.00000e+00 2.01358e-01 -1.70584e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 5.36049e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 -1.63312e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -4.13435e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -1.66463e+03 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17136.3 FROM MIGRAD STATUS=CONVERGED 203 CALLS 204 TOTAL - EDM=1.02695e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.54811e+02 3.29767e-01 8.63223e-04 -1.93001e-01 - 2 sg_p1 1.76648e+01 3.03153e-01 1.48879e-03 3.74125e-02 - 3 sg_p2 5.25130e+02 6.59118e+00 5.51974e-03 -1.87163e-03 - 4 sg_p3 7.53402e+01 6.16780e+00 1.22242e-02 -1.30639e-02 - 5 sg_p4 9.15918e-01 9.07192e-03 2.19004e-03 -5.75224e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.088e-01 -8.558e-03 2.332e-01 -4.008e-01 -2.433e-04 - -8.558e-03 9.191e-02 5.712e-01 5.058e-01 1.454e-03 - 2.332e-01 5.712e-01 4.352e+01 -3.716e+00 2.786e-02 - -4.008e-01 5.058e-01 -3.716e+00 3.834e+01 1.804e-02 - -2.433e-04 1.454e-03 2.786e-02 1.804e-02 8.233e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23278 1.000 -0.086 0.107 -0.196 -0.081 - 2 0.54570 -0.086 1.000 0.286 0.269 0.529 - 3 0.54594 0.107 0.286 1.000 -0.091 0.465 - 4 0.45689 -0.196 0.269 -0.091 1.000 0.321 - 5 0.67171 -0.081 0.529 0.465 0.321 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17136.3 FROM HESSE STATUS=OK 31 CALLS 235 TOTAL - EDM=1.02452e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.54811e+02 3.30104e-01 1.72645e-04 2.84116e-01 - 2 sg_p1 1.76648e+01 3.03000e-01 5.95517e-05 -3.61468e-01 - 3 sg_p2 5.25130e+02 6.59509e+00 2.20790e-04 2.81886e+00 - 4 sg_p3 7.53402e+01 6.19835e+00 4.88968e-04 4.69011e-01 - 5 sg_p4 9.15918e-01 9.05834e-03 4.38009e-04 9.82408e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.090e-01 -8.764e-03 2.421e-01 -4.127e-01 -2.470e-04 - -8.764e-03 9.182e-02 5.581e-01 5.069e-01 1.449e-03 - 2.421e-01 5.581e-01 4.357e+01 -4.454e+00 2.739e-02 - -4.127e-01 5.069e-01 -4.454e+00 3.873e+01 1.802e-02 - -2.470e-04 1.449e-03 2.739e-02 1.802e-02 8.208e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23689 1.000 -0.088 0.111 -0.201 -0.083 - 2 0.54504 -0.088 1.000 0.279 0.269 0.528 - 3 0.54671 0.111 0.279 1.000 -0.108 0.458 - 4 0.46512 -0.201 0.269 -0.108 1.000 0.320 - 5 0.67048 -0.083 0.528 0.458 0.320 1.000 -550 -554.811 +- 0.330104 -17.6648 +- 0.303 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=21296.1 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.45000e+02 7.00000e+00 2.01358e-01 -1.94576e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 6.08481e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 -1.85706e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -4.76455e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -1.89298e+03 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19553.2 FROM MIGRAD STATUS=CONVERGED 208 CALLS 209 TOTAL - EDM=3.34483e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.54825e+02 3.08932e-01 8.64414e-04 -3.40457e-01 - 2 sg_p1 1.76653e+01 2.83564e-01 1.49117e-03 -1.87292e-01 - 3 sg_p2 5.24710e+02 6.23394e+00 5.56281e-03 -3.21417e-03 - 4 sg_p3 7.62214e+01 5.87300e+00 1.25436e-02 -2.96877e-02 - 5 sg_p4 9.14864e-01 8.46661e-03 2.18261e-03 1.16509e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.544e-02 -7.404e-03 2.048e-01 -3.550e-01 -2.065e-04 - -7.404e-03 8.042e-02 5.052e-01 4.449e-01 1.260e-03 - 2.048e-01 5.052e-01 3.892e+01 -3.380e+00 2.466e-02 - -3.550e-01 4.449e-01 -3.380e+00 3.475e+01 1.555e-02 - -2.065e-04 1.260e-03 2.466e-02 1.555e-02 7.171e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23094 1.000 -0.085 0.106 -0.195 -0.079 - 2 0.54280 -0.085 1.000 0.286 0.266 0.525 - 3 0.54506 0.106 0.286 1.000 -0.092 0.467 - 4 0.44944 -0.195 0.266 -0.092 1.000 0.312 - 5 0.66734 -0.079 0.525 0.467 0.312 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19553.2 FROM HESSE STATUS=OK 31 CALLS 240 TOTAL - EDM=3.3454e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.54825e+02 3.09247e-01 1.72883e-04 2.84530e-01 - 2 sg_p1 1.76653e+01 2.83385e-01 2.98233e-04 -3.61435e-01 - 3 sg_p2 5.24710e+02 6.23786e+00 2.22512e-04 2.82352e+00 - 4 sg_p3 7.62214e+01 5.90192e+00 5.01743e-04 4.91089e-01 - 5 sg_p4 9.14864e-01 8.45305e-03 4.36523e-04 9.78619e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.564e-02 -7.578e-03 2.127e-01 -3.656e-01 -2.095e-04 - -7.578e-03 8.032e-02 4.934e-01 4.455e-01 1.255e-03 - 2.127e-01 4.934e-01 3.897e+01 -4.053e+00 2.424e-02 - -3.656e-01 4.455e-01 -4.053e+00 3.509e+01 1.551e-02 - -2.095e-04 1.255e-03 2.424e-02 1.551e-02 7.148e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23507 1.000 -0.086 0.110 -0.200 -0.080 - 2 0.54198 -0.086 1.000 0.279 0.265 0.524 - 3 0.54588 0.110 0.279 1.000 -0.110 0.459 - 4 0.45781 -0.200 0.265 -0.110 1.000 0.310 - 5 0.66600 -0.080 0.524 0.459 0.310 1.000 -550 -554.825 +- 0.309247 -17.6653 +- 0.283385 -35.9 fb^{-1} (13 TeV) -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 24 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 25 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 31 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 34 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 38 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 39 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 40 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 47 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 112 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 113 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 114 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 115 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 116 has zero error, setting residual to zero - Uncertainty on sg_p0 = 554.818 +- 0.319404 (stat) - 0.949548 + 0.990665 (syst); -0.962884/+1.00345 (total) - Uncertainty on sg_p1 = 17.6653 +- 0.293042 (stat) - 0.37879 + 0.13828 (syst); -0.406141/+0.201469 (total) - Uncertainty on sg_p2 = 524.916 +- 6.41299 (stat) - 0.585115 + 4.83374 (syst); -3.25944/+5.80057 (total) - Uncertainty on sg_p3 = 75.7816 +- 6.04287 (stat) - 2.36797 + 4.36061 (syst); -3.8388/+5.30509 (total) - Uncertainty on sg_p4 = 0.915383 +- 0.00875334 (stat) - 0.00657606 + 0.00215055 (syst); -0.00789935/+0.00487649 (total) - === Baseline plot ===
- norm = 1470.79 -JEC lnN 1.0002 - -JER lnN 1.01675 - -btag lnN 1.06585 - -sg_p0 param 554.818 -0.962884/+1.00345 -sg_p1 param 17.6653 -0.406141/+0.201469 -sg_p2 param 524.916 -3.25944/+5.80057 -sg_p3 param 75.7816 -3.8388/+5.30509 -sg_p4 param 0.915383 -0.00789935/+0.00487649 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_600_crystal_1_285_624/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_600_crystal_1_285_624/data_bkg.log deleted file mode 100644 index 3cc1900..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_600_crystal_1_285_624/data_bkg.log +++ /dev/null @@ -1,750 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [252,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=62921.6 FROM MIGRAD STATUS=INITIATE 90 CALLS 91 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.21879e-02 5.09000e-01 0.00000e+00 -9.80911e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -1.28354e+01 - 3 par_crystal_2 2.65669e+02 4.00000e+00 0.00000e+00 3.55320e+02 - 4 par_crystal_3 1.06488e+01 2.70000e+00 -4.48284e-01 -2.33576e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62883.4 FROM HESSE STATUS=OK 29 CALLS 257 TOTAL - EDM=4.91113 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.66060e-01 4.16121e-03 3.52377e-04 -4.74293e+00 - 2 par_crystal_1 4.45375e+00 2.73731e+00 1.77223e-01 2.66184e-01 - 3 par_crystal_2 2.67385e+02 2.04373e-01 8.29600e-04 2.81454e+02 - 4 par_crystal_3 1.36851e+01 5.38888e-01 1.69331e-03 -1.62103e+00 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=62883.3 FROM MIGRAD STATUS=FAILED 358 CALLS 359 TOTAL - EDM=0.00753244 STRATEGY= 1 ERR MATRIX APPROXIMATE - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.65093e-01 8.39913e-03 1.31861e-03 5.42788e+00 - 2 par_crystal_1 5.09910e+00 4.33634e+00 3.39194e-01 -6.59950e-03 - 3 par_crystal_2 2.67339e+02 1.86486e-01 3.32550e-03 -8.58879e+00 - 4 par_crystal_3 1.37140e+01 6.01780e-01 6.34807e-03 1.69258e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.055e-05 1.617e-04 4.699e-04 2.892e-03 - 1.617e-04 1.762e-02 -1.356e-04 -1.108e-03 - 4.699e-04 -1.356e-04 3.478e-02 3.255e-02 - 2.892e-03 -1.108e-03 3.255e-02 3.624e-01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.60853 1.000 0.145 0.300 0.572 - 2 0.19009 0.145 1.000 -0.005 -0.014 - 3 0.33449 0.300 -0.005 1.000 0.290 - 4 0.59243 0.572 -0.014 0.290 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7660e-01 8.1807e-01 1.6519e+00 1.7066e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.178308 TO DIAGONAL. - FCN=62883.3 FROM HESSE STATUS=NOT POSDEF 33 CALLS 392 TOTAL - EDM=3.36849 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.65093e-01 8.70034e-02 2.63722e-04 -1.21988e+00 - 2 par_crystal_1 5.09910e+00 4.18121e+00 5.00000e-01 1.54425e+00 - 3 par_crystal_2 2.67339e+02 5.27040e+00 9.57407e-02 3.75715e-01 - 4 par_crystal_3 1.37140e+01 6.68546e+00 2.53923e-04 -2.07863e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.595e-03 -2.994e-03 4.642e-01 6.089e-01 - -2.994e-03 1.536e-02 -1.944e-01 -2.569e-01 - 4.642e-01 -1.944e-01 2.855e+01 3.736e+01 - 6.089e-01 -2.569e-01 3.736e+01 4.914e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99751 1.000 -0.277 0.997 0.997 - 2 0.37560 -0.277 1.000 -0.293 -0.296 - 3 0.99795 0.997 -0.293 1.000 0.997 - 4 0.99797 0.997 -0.296 0.997 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=62983.1 FROM MIGRAD STATUS=INITIATE 29 CALLS 30 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 6.05383e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -1.33666e+02 - 3 par_gaus_exp_2 3.19008e-01 3.05000e-01 -9.67731e-01 -3.33619e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.00383 added to diagonal of error matrix - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62882.7 FROM MIGRAD STATUS=CONVERGED 228 CALLS 229 TOTAL - EDM=4.4408e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.69095e+02 7.01852e-01 4.07755e-03 2.89794e-02 - 2 par_gaus_exp_1 1.61044e+01 1.09719e+00 7.43010e-03 -1.84784e-02 - 3 par_gaus_exp_2 1.90527e-01 1.58774e-02 1.98778e-03 -6.23432e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 4.929e-01 5.914e-01 9.067e-03 - 5.914e-01 1.207e+00 1.483e-02 - 9.067e-03 1.483e-02 2.521e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.82590 1.000 0.767 0.813 - 2 0.85979 0.767 1.000 0.850 - 3 0.88644 0.813 0.850 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62882.7 FROM HESSE STATUS=OK 16 CALLS 245 TOTAL - EDM=4.28199e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.69095e+02 6.86832e-01 1.63102e-04 -5.76704e-01 - 2 par_gaus_exp_1 1.61044e+01 1.07335e+00 2.97204e-04 -5.72398e-01 - 3 par_gaus_exp_2 1.90527e-01 1.55212e-02 7.95110e-05 -1.13813e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 4.720e-01 5.579e-01 8.580e-03 - 5.579e-01 1.155e+00 1.406e-02 - 8.580e-03 1.406e-02 2.410e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.81734 1.000 0.756 0.805 - 2 0.85292 0.756 1.000 0.843 - 3 0.88081 0.805 0.843 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,624] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.3296 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.3296) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=286.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=286.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=289.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=289.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=295.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=295.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=298.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=298.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=301.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=301.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - ... (remaining 216 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.733611 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.733611) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=313.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=316.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=319.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=325.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=328.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=331.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=334.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=340.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=343.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=346.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - ... (remaining 94 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0733618 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0733618 - - FCN=103426 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57146e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.55551e+03 - 3 par_novo_2 -1.33526e+00 2.00000e+01 0.00000e+00 1.53308e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103192 FROM MIGRAD STATUS=CONVERGED 126 CALLS 127 TOTAL - EDM=1.07924e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.17697e+01 1.69443e-01** at limit ** - 2 par_novo_1 3.87878e+01 2.27475e+00 4.96100e-03 -6.14249e-02 - 3 par_novo_2 -1.26766e+00 7.00630e-02 3.67886e-05 3.77179e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 2.244e-10 -2.632e-07 -1.276e-07 - -2.632e-07 5.190e+00 1.540e-01 - -1.276e-07 1.540e-01 4.909e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.43392 1.000 -0.008 -0.122 - 2 0.97109 -0.008 1.000 0.965 - 3 0.97152 -0.122 0.965 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103192 FROM HESSE STATUS=OK 20 CALLS 147 TOTAL - EDM=1.23299e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.15107e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.87878e+01 2.30410e+00 1.98440e-04 4.51799e-01 - 3 par_novo_2 -1.26766e+00 7.13892e-02 1.47154e-06 -1.26769e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 2.143e-10 3.996e-06 -2.087e-07 - 3.996e-06 5.325e+00 1.518e-01 - -2.087e-07 1.518e-01 5.096e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.80390 1.000 0.118 -0.200 - 2 0.97183 0.118 1.000 0.922 - 3 0.97258 -0.200 0.922 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107617 FROM MIGRAD STATUS=INITIATE 36 CALLS 37 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 6.60405e+03 - 2 par_crystal_1_1 7.90153e-02 5.09000e-01 -1.80421e+00 3.05679e+03 - 3 par_crystal_1_2 2.60000e+02 4.00000e+00 0.00000e+00 1.48888e+03 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 6.99071e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.17529 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.7903e-03 5.8606e-02 5.0897e-01 3.4352e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.006225 TO DIAGONAL. - FCN=103191 FROM MIGRAD STATUS=CONVERGED 353 CALLS 354 TOTAL - EDM=3.7306e-06 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.37913e-01 3.41139e-02 6.19492e-04 4.10204e-01 - 2 par_crystal_1_1 4.44737e+00 5.69760e-01 2.21494e-02 9.88736e-03 - 3 par_crystal_1_2 2.79979e+02 3.40482e+01 2.79535e-01 -2.97577e-04 - 4 par_crystal_1_3 1.87584e+01 2.98857e+00 3.96232e-03 -6.40797e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.164e-03 3.582e-03 3.594e-03 9.898e-02 - 3.582e-03 3.375e-01 -1.052e-02 7.382e-01 - 3.594e-03 -1.052e-02 3.148e+00 6.243e-01 - 9.898e-02 7.382e-01 6.243e-01 9.086e+00 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99630 1.000 0.181 0.059 0.962 - 2 0.95650 0.181 1.000 -0.010 0.422 - 3 0.63948 0.059 -0.010 1.000 0.117 - 4 0.99690 0.962 0.422 0.117 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103191 FROM HESSE STATUS=OK 27 CALLS 381 TOTAL - EDM=6.06842e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 2.37913e-01 2.12502e-01 1.23898e-04 -8.36786e+01 - 2 par_crystal_1_1 4.44737e+00 5.06952e-01 8.85975e-04 -1.65463e+01 - 3 par_crystal_1_2 2.79979e+02 2.96341e+01 5.00000e-01 7.80831e+00 - 4 par_crystal_1_3 1.87584e+01 1.90925e+01 1.58493e-04 2.18231e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.578e-02 1.663e-02 2.427e-02 3.730e+00 - 1.663e-02 2.650e-01 -4.299e-02 1.684e+00 - 2.427e-02 -4.299e-02 1.850e+00 2.341e+00 - 3.730e+00 1.684e+00 2.341e+00 3.045e+02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99991 1.000 0.151 0.083 0.999 - 2 0.94385 0.151 1.000 -0.061 0.187 - 3 0.80384 0.083 -0.061 1.000 0.099 - 4 0.99991 0.999 0.187 0.099 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 13889.7 - Background number of gaus_exp_252_330 = 13889.7 - Background number of novo_285_624 = 17637.2 - Background number of crystal_1_285_624 = 17637.2 - Background number of gaus_bern_285_624 = 17637.2 - Background number of landau_285_624 = 17637.2 -par_crystal_0 param 0.165093 0.0870034 -par_crystal_1 param 5.0991 4.18121 -par_crystal_2 param 267.339 5.2704 -par_crystal_3 param 13.714 6.68546 -par_crystal_1_0 param 0.237913 0.212502 -par_crystal_1_1 param 4.44737 0.506952 -par_crystal_1_2 param 279.979 29.6341 -par_crystal_1_3 param 18.7584 19.0925 -par_gaus_exp_0 param 269.095 0.686832 -par_gaus_exp_1 param 16.1044 1.07335 -par_gaus_exp_2 param 0.190527 0.0155212 -par_novo_0 param 250 31.5107 -par_novo_1 param 38.7878 2.3041 -par_novo_2 param -1.26766 0.0713892 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_600_crystal_1_285_624/datacard_600_crystal_1_285_624.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_600_crystal_1_285_624/datacard_600_crystal_1_285_624.txt deleted file mode 100644 index 3c90258..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_600_crystal_1_285_624/datacard_600_crystal_1_285_624.txt +++ /dev/null @@ -1,31 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_600.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_crystal_1_285_624.root HbbHbb:f_crystal_1 -shapes data_obs HbbHbb w_background_crystal_1_285_624.root HbbHbb:data_obs_crystal_1_285_624 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 1712.99 17637.2 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06714 - -JER lnN 1.01626 - -JEC lnN 1.00275 - -trigger lnN 1.10 - -PDF lnN 1.0229477477 - -sg_p0 param 606.507 -1.40207/+1.4263 -sg_p1 param 17.4848 -0.433147/+0.398968 -sg_p2 param 599.858 -0.911028/+1.31674 -sg_p3 param 35.1205 -1.67663/+1.56849 -sg_p4 param 0.769875 -0.0510934/+0.0296057 -par_crystal_1_0 param 0.237913 0.212502 -par_crystal_1_1 param 4.44737 0.506952 -par_crystal_1_2 param 279.979 29.6341 -par_crystal_1_3 param 18.7584 19.0925 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_600_crystal_1_285_624/pdf.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_600_crystal_1_285_624/pdf.log deleted file mode 100644 index 1900262..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_600_crystal_1_285_624/pdf.log +++ /dev/null @@ -1,10 +0,0 @@ -[?1034h FCN=13.9498 FROM MIGRAD STATUS=CONVERGED 71 CALLS 72 TOTAL - EDM=6.95637e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 Constant 1.30566e+01 1.77733e+00 2.65488e-03 2.23742e-05 - 2 Mean 1.00046e+00 3.03346e-03 5.72003e-06 3.78371e-01 - 3 Sigma 2.29477e-02 2.84199e-03 6.88862e-05 6.32201e-03 -1.00046088083 +/- 0.0030334648545 -0.0229477477015 +/- 0.00284199080585 -PDF lnN 1.0229477477 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_600_crystal_1_285_624/signal600_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_600_crystal_1_285_624/signal600_sig.log deleted file mode 100644 index 3215894..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_600_crystal_1_285_624/signal600_sig.log +++ /dev/null @@ -1,843 +0,0 @@ - -Processing test.c... -nSignal_init = 100000 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=24280 FROM MIGRAD STATUS=INITIATE 43 CALLS 44 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 0.00000e+00 3.58677e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 -1.18368e+03 - 3 sg_p2 5.75000e+02 1.50000e+01 0.00000e+00 1.42384e+03 - 4 sg_p3 4.21820e+01 1.20000e+01 -4.82092e-01 -6.03718e-01 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 7.69925e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23075.2 FROM MIGRAD STATUS=CONVERGED 442 CALLS 443 TOTAL - EDM=3.37608e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.88137e+02 2.17401e+00 1.57187e-03 5.45097e-02 - 2 sg_p1 2.90958e+01 6.86009e-01 3.13675e-03 7.79119e-02 - 3 sg_p2 5.59880e+02 5.00457e+00 1.98829e-03 -7.62283e-02 - 4 sg_p3 3.62716e+01 3.18321e+00 2.14823e-03 9.85100e-02 - 5 sg_p4 7.00002e-01 2.12576e-01 1.12952e-01 2.90847e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.731e+00 -1.030e+00 -9.979e+00 -6.388e+00 -2.483e-04 - -1.030e+00 4.709e-01 2.213e+00 1.252e+00 1.258e-04 - -9.979e+00 2.213e+00 2.508e+01 1.471e+01 -7.877e-04 - -6.388e+00 1.252e+00 1.471e+01 1.015e+01 1.142e-06 - -2.483e-04 1.258e-04 -7.877e-04 1.142e-06 1.239e-06 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.95782 1.000 -0.690 -0.916 -0.922 -0.103 - 2 0.73673 -0.690 1.000 0.644 0.573 0.165 - 3 0.96060 -0.916 0.644 1.000 0.922 -0.141 - 4 0.94775 -0.922 0.573 0.922 1.000 0.000 - 5 0.62405 -0.103 0.165 -0.141 0.000 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23075.2 FROM HESSE STATUS=OK 35 CALLS 478 TOTAL - EDM=0.000121989 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.88137e+02 3.29842e+00 3.14373e-04 -3.84102e-01 - 2 sg_p1 2.90958e+01 1.12225e+00 1.25470e-04 3.45999e-01 - 3 sg_p2 5.59880e+02 4.99521e+00 3.97658e-04 -2.02989e-01 - 4 sg_p3 3.62716e+01 3.76792e+00 8.59293e-05 -5.96971e-01 - 5 sg_p4 7.00002e-01 2.43034e-01 4.60846e-01 -1.56553e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.090e+01 -3.238e+00 -9.781e+00 -1.140e+01 -3.564e-03 - -3.238e+00 1.262e+00 2.139e+00 3.042e+00 1.285e-03 - -9.781e+00 2.139e+00 2.499e+01 1.455e+01 -2.935e-04 - -1.140e+01 3.042e+00 1.455e+01 1.422e+01 2.841e-03 - -3.564e-03 1.285e-03 -2.935e-04 2.841e-03 2.063e-06 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.98192 1.000 -0.873 -0.593 -0.915 -0.752 - 2 0.91068 -0.873 1.000 0.381 0.718 0.797 - 3 0.96045 -0.593 0.381 1.000 0.772 -0.041 - 4 0.96302 -0.915 0.718 0.772 1.000 0.524 - 5 0.96908 -0.752 0.797 -0.041 0.524 1.000 -600 -588.137 +- 3.29842 -29.0958 +- 1.12225 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=23767.1 FROM MIGRAD STATUS=INITIATE 42 CALLS 43 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 0.00000e+00 3.17349e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 -1.02365e+03 - 3 sg_p2 5.75000e+02 1.50000e+01 0.00000e+00 1.16298e+03 - 4 sg_p3 4.39845e+01 1.20000e+01 -4.48474e-01 4.93391e+01 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 6.61691e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=22821.9 FROM MIGRAD STATUS=CONVERGED 329 CALLS 330 TOTAL - EDM=4.72305e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.92012e+02 1.51134e+00 1.46358e-03 1.14647e-01 - 2 sg_p1 2.81327e+01 6.59039e-01 2.96171e-03 -1.30179e-01 - 3 sg_p2 5.58427e+02 3.47970e+00 1.93226e-03 6.71315e-02 - 4 sg_p3 3.58696e+01 2.45943e+00 2.12007e-03 3.27001e-02 - 5 sg_p4 7.00002e-01 6.59449e-02 8.47138e-02 5.69759e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.285e+00 -7.049e-01 -4.524e+00 -3.253e+00 -8.515e-05 - -7.049e-01 4.346e-01 1.539e+00 9.868e-01 4.573e-05 - -4.524e+00 1.539e+00 1.212e+01 7.552e+00 -3.909e-04 - -3.253e+00 9.868e-01 7.552e+00 6.054e+00 -5.215e-05 - -8.515e-05 4.573e-05 -3.909e-04 -5.215e-05 5.765e-07 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.91672 1.000 -0.707 -0.860 -0.875 -0.074 - 2 0.73205 -0.707 1.000 0.671 0.608 0.091 - 3 0.92123 -0.860 0.671 1.000 0.882 -0.148 - 4 0.91302 -0.875 0.608 0.882 1.000 -0.028 - 5 0.44297 -0.074 0.091 -0.148 -0.028 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=22821.9 FROM HESSE STATUS=OK 37 CALLS 367 TOTAL - EDM=3.83352e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.92012e+02 1.96656e+00 2.92716e-04 -2.92785e-01 - 2 sg_p1 2.81327e+01 8.71252e-01 5.92343e-04 2.84598e-01 - 3 sg_p2 5.58427e+02 3.77659e+00 3.86452e-04 -2.22807e-01 - 4 sg_p3 3.58696e+01 2.54070e+00 8.48026e-05 -6.05095e-01 - 5 sg_p4 7.00002e-01 1.87580e-01 5.00000e-01 -1.56561e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.870e+00 -1.423e+00 -2.748e+00 -4.031e+00 -1.028e-03 - -1.423e+00 7.598e-01 7.297e-01 1.337e+00 4.676e-04 - -2.748e+00 7.297e-01 1.428e+01 6.747e+00 -1.238e-03 - -4.031e+00 1.337e+00 6.747e+00 6.461e+00 4.747e-04 - -1.028e-03 4.676e-04 -1.238e-03 4.747e-04 6.718e-07 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.95171 1.000 -0.830 -0.370 -0.806 -0.637 - 2 0.85706 -0.830 1.000 0.222 0.604 0.654 - 3 0.93356 -0.370 0.222 1.000 0.703 -0.400 - 4 0.91874 -0.806 0.604 0.703 1.000 0.228 - 5 0.94267 -0.637 0.654 -0.400 0.228 1.000 -600 -592.012 +- 1.96656 -28.1327 +- 0.871252 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=24394 FROM MIGRAD STATUS=INITIATE 42 CALLS 43 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 0.00000e+00 3.94278e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 -1.29909e+03 - 3 sg_p2 5.75000e+02 1.50000e+01 0.00000e+00 1.67228e+03 - 4 sg_p3 4.09440e+01 1.20000e+01 -5.05526e-01 -7.57306e+01 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 8.58548e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=22933.1 FROM MIGRAD STATUS=CONVERGED 638 CALLS 639 TOTAL - EDM=8.42969e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.78603e+02 5.64911e-01 1.40473e-03 3.72907e-01 - 2 sg_p1 3.20881e+01 4.06669e-01 2.67756e-03 1.44036e-01 - 3 sg_p2 5.00002e+02 1.10618e+02 1.52750e-01 -2.88106e-03 - 4 sg_p3 6.94039e+01 2.89324e+01 3.44374e-02 -1.04731e-02 - 5 sg_p4 9.76772e-01 7.03168e-03 5.92623e-03 -8.42769e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.191e-01 -1.408e-02 3.587e-02 -7.029e+00 1.364e-04 - -1.408e-02 1.654e-01 -3.289e-02 -2.769e+00 1.295e-03 - 3.587e-02 -3.289e-02 6.513e-01 -1.947e+00 -1.609e-03 - -7.029e+00 -2.769e+00 -1.947e+00 9.115e+02 -1.280e-01 - 1.364e-04 1.295e-03 -1.609e-03 -1.280e-01 4.957e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.49930 1.000 -0.061 0.079 -0.412 0.034 - 2 0.46165 -0.061 1.000 -0.100 -0.225 0.452 - 3 0.43169 0.079 -0.100 1.000 -0.080 -0.283 - 4 0.75355 -0.412 -0.225 -0.080 1.000 -0.602 - 5 0.76469 0.034 0.452 -0.283 -0.602 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=22933.1 FROM HESSE STATUS=OK 35 CALLS 674 TOTAL - EDM=8.36581e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.78603e+02 5.65787e-01 2.80946e-04 -6.26852e-01 - 2 sg_p1 3.20881e+01 4.25746e-01 5.35511e-04 5.47427e-01 - 3 sg_p2 5.00002e+02 9.83339e+01 5.00000e-01 -1.57791e+00 - 4 sg_p3 6.94039e+01 2.99669e+01 6.88747e-03 -9.93577e-03 - 5 sg_p4 9.76772e-01 9.53722e-03 1.18525e-03 1.00684e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.201e-01 -1.400e-02 1.487e-02 -7.254e+00 1.740e-04 - -1.400e-02 1.813e-01 -8.069e-02 -3.550e+00 2.110e-03 - 1.487e-02 -8.069e-02 3.935e-01 2.133e+00 -4.095e-03 - -7.254e+00 -3.550e+00 2.133e+00 9.846e+02 -1.706e-01 - 1.740e-04 2.110e-03 -4.095e-03 -1.706e-01 9.139e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.50162 1.000 -0.058 0.042 -0.409 0.032 - 2 0.53111 -0.058 1.000 -0.302 -0.266 0.518 - 3 0.77391 0.042 -0.302 1.000 0.108 -0.683 - 4 0.77455 -0.409 -0.266 0.108 1.000 -0.569 - 5 0.88021 0.032 0.518 -0.683 -0.569 1.000 -600 -578.603 +- 0.565787 -32.0881 +- 0.425746 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=21188 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 0.00000e+00 -4.10915e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 7.89680e+02 - 3 sg_p2 5.75000e+02 1.50000e+01 0.00000e+00 -1.48216e+02 - 4 sg_p3 5.20622e+01 1.20000e+01 -3.03606e-01 1.51172e+00 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -1.90966e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20995.9 FROM MIGRAD STATUS=CONVERGED 266 CALLS 267 TOTAL - EDM=3.97173e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.06507e+02 4.54842e-01 7.93051e-04 2.28694e-01 - 2 sg_p1 1.74848e+01 6.42892e-01 1.87527e-03 -5.26219e-03 - 3 sg_p2 5.99858e+02 1.64781e+00 1.84882e-03 3.91300e-02 - 4 sg_p3 3.51205e+01 2.40944e+00 1.97487e-03 -2.11296e-02 - 5 sg_p4 7.69875e-01 4.95303e-02 1.12811e-02 5.41517e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.069e-01 -1.274e-01 -9.667e-02 -5.293e-01 -1.089e-02 - -1.274e-01 4.136e-01 -4.310e-01 1.196e+00 2.909e-02 - -9.667e-02 -4.310e-01 2.716e+00 -1.523e+00 -3.888e-02 - -5.293e-01 1.196e+00 -1.523e+00 5.810e+00 1.117e-01 - -1.089e-02 2.909e-02 -3.888e-02 1.117e-01 2.589e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.62100 1.000 -0.435 -0.129 -0.483 -0.470 - 2 0.89410 -0.435 1.000 -0.407 0.772 0.889 - 3 0.60904 -0.129 -0.407 1.000 -0.383 -0.464 - 4 0.91664 -0.483 0.772 -0.383 1.000 0.910 - 5 0.95959 -0.470 0.889 -0.464 0.910 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20995.9 FROM HESSE STATUS=OK 31 CALLS 298 TOTAL - EDM=3.94319e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.06507e+02 4.49294e-01 1.58610e-04 3.34861e-02 - 2 sg_p1 1.74848e+01 6.23965e-01 7.50107e-05 -3.73160e-01 - 3 sg_p2 5.99858e+02 1.64758e+00 3.69764e-04 3.37830e-01 - 4 sg_p3 3.51205e+01 2.33871e+00 7.89949e-05 -6.20356e-01 - 5 sg_p4 7.69875e-01 4.80150e-02 4.51245e-04 -5.63520e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.019e-01 -1.162e-01 -1.057e-01 -4.868e-01 -9.943e-03 - -1.162e-01 3.895e-01 -4.147e-01 1.106e+00 2.709e-02 - -1.057e-01 -4.147e-01 2.715e+00 -1.465e+00 -3.762e-02 - -4.868e-01 1.106e+00 -1.465e+00 5.474e+00 1.042e-01 - -9.943e-03 2.709e-02 -3.762e-02 1.042e-01 2.425e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.60859 1.000 -0.414 -0.143 -0.463 -0.449 - 2 0.88716 -0.414 1.000 -0.403 0.757 0.881 - 3 0.60890 -0.143 -0.403 1.000 -0.380 -0.464 - 4 0.91127 -0.463 0.757 -0.380 1.000 0.905 - 5 0.95679 -0.449 0.881 -0.464 0.905 1.000 -600 -606.507 +- 0.449294 -17.4848 +- 0.623965 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=20985 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 2.01358e-01 -6.03053e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 7.30191e+02 - 3 sg_p2 5.75000e+02 1.50000e+01 2.01358e-01 -5.66899e+01 - 4 sg_p3 7.00000e+01 1.20000e+01 2.01358e-01 -3.40682e+00 - 5 sg_p4 8.50000e-01 3.00000e-02 2.01358e-01 -1.90294e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20801.6 FROM MIGRAD STATUS=CONVERGED 278 CALLS 279 TOTAL - EDM=1.57711e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.07915e+02 5.09392e-01 8.36892e-04 -1.25909e-01 - 2 sg_p1 1.72285e+01 7.70692e-01 2.00532e-03 -9.85888e-02 - 3 sg_p2 6.00885e+02 1.55983e+00 1.61488e-03 1.97987e-02 - 4 sg_p3 3.39190e+01 2.23203e+00 1.72499e-03 -5.63339e-02 - 5 sg_p4 7.24773e-01 5.61261e-02 1.85033e-02 4.35514e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.595e-01 -1.965e-01 -2.282e-02 -6.210e-01 -1.671e-02 - -1.965e-01 5.945e-01 -6.118e-01 1.389e+00 4.341e-02 - -2.282e-02 -6.118e-01 2.433e+00 -1.664e+00 -5.404e-02 - -6.210e-01 1.389e+00 -1.664e+00 4.986e+00 1.270e-01 - -1.671e-02 4.341e-02 -5.404e-02 1.270e-01 3.808e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.67158 1.000 -0.500 -0.029 -0.546 -0.531 - 2 0.91709 -0.500 1.000 -0.509 0.807 0.912 - 3 0.68224 -0.029 -0.509 1.000 -0.478 -0.561 - 4 0.92836 -0.546 0.807 -0.478 1.000 0.922 - 5 0.96819 -0.531 0.912 -0.561 0.922 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20801.6 FROM HESSE STATUS=OK 31 CALLS 310 TOTAL - EDM=1.26117e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.07915e+02 4.85233e-01 1.67378e-04 6.48251e-02 - 2 sg_p1 1.72285e+01 6.67550e-01 4.01065e-04 -3.89892e-01 - 3 sg_p2 6.00885e+02 1.49623e+00 3.22976e-04 3.52384e-01 - 4 sg_p3 3.39190e+01 1.92936e+00 6.89997e-05 -6.45190e-01 - 5 sg_p4 7.24773e-01 4.89776e-02 7.40132e-04 -9.87850e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.355e-01 -1.368e-01 -9.181e-02 -4.464e-01 -1.164e-02 - -1.368e-01 4.459e-01 -4.412e-01 9.559e-01 3.085e-02 - -9.181e-02 -4.412e-01 2.239e+00 -1.168e+00 -3.968e-02 - -4.464e-01 9.559e-01 -1.168e+00 3.724e+00 9.043e-02 - -1.164e-02 3.085e-02 -3.968e-02 9.043e-02 2.749e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.62849 1.000 -0.422 -0.126 -0.477 -0.457 - 2 0.88775 -0.422 1.000 -0.442 0.742 0.881 - 3 0.64733 -0.126 -0.442 1.000 -0.405 -0.506 - 4 0.90281 -0.477 0.742 -0.405 1.000 0.894 - 5 0.95565 -0.457 0.881 -0.506 0.894 1.000 -600 -607.915 +- 0.485233 -17.2285 +- 0.66755 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=21050.7 FROM MIGRAD STATUS=INITIATE 55 CALLS 56 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 0.00000e+00 -2.45953e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 7.88326e+02 - 3 sg_p2 5.75000e+02 1.50000e+01 0.00000e+00 -2.88080e+02 - 4 sg_p3 4.00581e+01 1.20000e+01 8.28277e-02 -3.70864e-02 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -1.79687e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20847.8 FROM MIGRAD STATUS=CONVERGED 330 CALLS 331 TOTAL - EDM=4.39005e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05123e+02 4.29424e-01 7.69738e-04 2.63328e-01 - 2 sg_p1 1.74149e+01 6.34617e-01 1.82227e-03 -3.70681e-04 - 3 sg_p2 5.99738e+02 1.64211e+00 1.95138e-03 3.85233e-02 - 4 sg_p3 3.56367e+01 2.67089e+00 2.08773e-03 1.43347e-02 - 5 sg_p4 7.87200e-01 4.88787e-02 1.01395e-02 6.65902e-04 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.844e-01 -1.102e-01 -1.471e-01 -5.033e-01 -9.306e-03 - -1.102e-01 4.030e-01 -3.214e-01 1.334e+00 2.833e-02 - -1.471e-01 -3.214e-01 2.697e+00 -1.302e+00 -2.911e-02 - -5.033e-01 1.334e+00 -1.302e+00 7.141e+00 1.227e-01 - -9.306e-03 2.833e-02 -2.911e-02 1.227e-01 2.499e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.58762 1.000 -0.404 -0.209 -0.439 -0.433 - 2 0.89717 -0.404 1.000 -0.308 0.786 0.893 - 3 0.53678 -0.209 -0.308 1.000 -0.297 -0.355 - 4 0.92270 -0.439 0.786 -0.297 1.000 0.918 - 5 0.96074 -0.433 0.893 -0.355 0.918 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20847.8 FROM HESSE STATUS=OK 31 CALLS 362 TOTAL - EDM=4.37345e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.05123e+02 4.25719e-01 1.53948e-04 2.72521e-03 - 2 sg_p1 1.74149e+01 6.21639e-01 7.28909e-05 -3.77714e-01 - 3 sg_p2 5.99738e+02 1.64785e+00 3.90277e-04 3.36136e-01 - 4 sg_p3 3.56367e+01 2.61918e+00 8.35094e-05 -6.09822e-01 - 5 sg_p4 7.87200e-01 4.78840e-02 4.05579e-04 -4.31980e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.812e-01 -1.028e-01 -1.491e-01 -4.715e-01 -8.683e-03 - -1.028e-01 3.866e-01 -3.221e-01 1.267e+00 2.701e-02 - -1.491e-01 -3.221e-01 2.716e+00 -1.312e+00 -2.930e-02 - -4.715e-01 1.267e+00 -1.312e+00 6.867e+00 1.173e-01 - -8.683e-03 2.701e-02 -2.930e-02 1.173e-01 2.394e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.57780 1.000 -0.388 -0.212 -0.423 -0.417 - 2 0.89257 -0.388 1.000 -0.314 0.777 0.888 - 3 0.54137 -0.212 -0.314 1.000 -0.304 -0.363 - 4 0.91948 -0.423 0.777 -0.304 1.000 0.915 - 5 0.95897 -0.417 0.888 -0.363 0.915 1.000 -600 -605.123 +- 0.425719 -17.4149 +- 0.621639 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=20832.1 FROM MIGRAD STATUS=INITIATE 35 CALLS 36 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 0.00000e+00 -4.10122e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 7.39759e+02 - 3 sg_p2 5.75000e+02 1.50000e+01 0.00000e+00 -1.41911e+02 - 4 sg_p3 5.22092e+01 1.20000e+01 -3.01040e-01 -3.82741e+00 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -1.79614e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20660.5 FROM MIGRAD STATUS=CONVERGED 248 CALLS 249 TOTAL - EDM=2.70998e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.06501e+02 4.51807e-01 7.97409e-04 -7.03207e-02 - 2 sg_p1 1.77334e+01 6.52405e-01 1.87706e-03 -1.65059e-02 - 3 sg_p2 5.99469e+02 1.79002e+00 1.94437e-03 -5.75168e-02 - 4 sg_p3 3.61659e+01 2.58390e+00 2.08852e-03 2.55527e-02 - 5 sg_p4 7.77016e-01 4.86366e-02 1.06632e-02 -1.67483e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.041e-01 -1.198e-01 -9.305e-02 -5.364e-01 -9.937e-03 - -1.198e-01 4.259e-01 -5.231e-01 1.301e+00 2.891e-02 - -9.305e-02 -5.231e-01 3.205e+00 -1.947e+00 -4.507e-02 - -5.364e-01 1.301e+00 -1.947e+00 6.683e+00 1.171e-01 - -9.937e-03 2.891e-02 -4.507e-02 1.171e-01 2.483e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.60028 1.000 -0.406 -0.115 -0.459 -0.441 - 2 0.89400 -0.406 1.000 -0.448 0.771 0.889 - 3 0.63123 -0.115 -0.448 1.000 -0.421 -0.505 - 4 0.91499 -0.459 0.771 -0.421 1.000 0.909 - 5 0.95914 -0.441 0.889 -0.505 0.909 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20660.5 FROM HESSE STATUS=OK 31 CALLS 280 TOTAL - EDM=2.68748e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.06501e+02 4.47624e-01 1.59482e-04 3.33576e-02 - 2 sg_p1 1.77334e+01 6.37778e-01 7.50826e-05 -3.57025e-01 - 3 sg_p2 5.99469e+02 1.79219e+00 3.88875e-04 3.32337e-01 - 4 sg_p3 3.61659e+01 2.52790e+00 8.35409e-05 -5.99103e-01 - 5 sg_p4 7.77016e-01 4.75332e-02 4.26528e-04 -5.08149e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.004e-01 -1.112e-01 -1.007e-01 -5.017e-01 -9.233e-03 - -1.112e-01 4.070e-01 -5.109e-01 1.227e+00 2.742e-02 - -1.007e-01 -5.109e-01 3.213e+00 -1.905e+00 -4.423e-02 - -5.017e-01 1.227e+00 -1.905e+00 6.396e+00 1.113e-01 - -9.233e-03 2.742e-02 -4.423e-02 1.113e-01 2.366e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.59019 1.000 -0.389 -0.126 -0.443 -0.424 - 2 0.88878 -0.389 1.000 -0.447 0.760 0.884 - 3 0.63238 -0.126 -0.447 1.000 -0.420 -0.507 - 4 0.91099 -0.443 0.760 -0.420 1.000 0.904 - 5 0.95708 -0.424 0.884 -0.507 0.904 1.000 -600 -606.501 +- 0.447624 -17.7334 +- 0.637778 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=21392 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 0.00000e+00 -4.65951e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 8.31252e+02 - 3 sg_p2 5.75000e+02 1.50000e+01 0.00000e+00 -2.10216e+02 - 4 sg_p3 4.66234e+01 1.20000e+01 -4.00208e-01 -5.49343e-01 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -1.97937e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21176.8 FROM MIGRAD STATUS=CONVERGED 269 CALLS 270 TOTAL - EDM=8.82705e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.06547e+02 4.53645e-01 7.81411e-04 -3.17610e-01 - 2 sg_p1 1.71843e+01 6.39064e-01 1.86421e-03 -1.15499e-01 - 3 sg_p2 5.99736e+02 1.60177e+00 1.78744e-03 -2.73906e-01 - 4 sg_p3 3.43642e+01 2.28667e+00 1.90587e-03 -2.99641e-02 - 5 sg_p4 7.67062e-01 4.97568e-02 1.14541e-02 2.14855e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.058e-01 -1.334e-01 -7.609e-02 -5.233e-01 -1.147e-02 - -1.334e-01 4.086e-01 -4.283e-01 1.132e+00 2.917e-02 - -7.609e-02 -4.283e-01 2.566e+00 -1.449e+00 -3.913e-02 - -5.233e-01 1.132e+00 -1.449e+00 5.233e+00 1.065e-01 - -1.147e-02 2.917e-02 -3.913e-02 1.065e-01 2.619e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.63674 1.000 -0.460 -0.105 -0.504 -0.494 - 2 0.89676 -0.460 1.000 -0.418 0.774 0.892 - 3 0.61833 -0.105 -0.418 1.000 -0.395 -0.477 - 4 0.91625 -0.504 0.774 -0.395 1.000 0.910 - 5 0.96016 -0.494 0.892 -0.477 0.910 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21176.8 FROM HESSE STATUS=OK 31 CALLS 301 TOTAL - EDM=8.5019e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.06547e+02 4.46977e-01 1.56282e-04 3.43777e-02 - 2 sg_p1 1.71843e+01 6.16688e-01 3.72843e-04 -3.92793e-01 - 3 sg_p2 5.99736e+02 1.59872e+00 3.57489e-04 3.36110e-01 - 4 sg_p3 3.43642e+01 2.20755e+00 7.62346e-05 -6.35935e-01 - 5 sg_p4 7.67062e-01 4.79510e-02 4.58166e-04 -5.85865e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.998e-01 -1.203e-01 -8.781e-02 -4.759e-01 -1.035e-02 - -1.203e-01 3.805e-01 -4.057e-01 1.032e+00 2.680e-02 - -8.781e-02 -4.057e-01 2.556e+00 -1.372e+00 -3.733e-02 - -4.759e-01 1.032e+00 -1.372e+00 4.877e+00 9.814e-02 - -1.035e-02 2.680e-02 -3.733e-02 9.814e-02 2.422e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.62255 1.000 -0.436 -0.123 -0.482 -0.470 - 2 0.88865 -0.436 1.000 -0.411 0.757 0.883 - 3 0.61643 -0.123 -0.411 1.000 -0.389 -0.474 - 4 0.90983 -0.482 0.757 -0.389 1.000 0.903 - 5 0.95684 -0.470 0.883 -0.474 0.903 1.000 -600 -606.547 +- 0.446977 -17.1843 +- 0.616688 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=19809.1 FROM MIGRAD STATUS=INITIATE 40 CALLS 41 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 0.00000e+00 -3.98661e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 7.36177e+02 - 3 sg_p2 5.75000e+02 1.50000e+01 0.00000e+00 -1.54710e+02 - 4 sg_p3 5.02879e+01 1.20000e+01 -3.34752e-01 5.32152e-01 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -1.78206e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19628.4 FROM MIGRAD STATUS=CONVERGED 302 CALLS 303 TOTAL - EDM=4.9436e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.06510e+02 4.72659e-01 7.94140e-04 3.55653e-02 - 2 sg_p1 1.74543e+01 6.69157e-01 1.87997e-03 6.61865e-02 - 3 sg_p2 5.99840e+02 1.69608e+00 1.82702e-03 -5.88858e-02 - 4 sg_p3 3.49426e+01 2.46655e+00 1.95035e-03 5.14767e-02 - 5 sg_p4 7.67921e-01 5.16557e-02 1.14960e-02 -1.52477e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.234e-01 -1.390e-01 -9.895e-02 -5.678e-01 -1.194e-02 - -1.390e-01 4.481e-01 -4.692e-01 1.277e+00 3.171e-02 - -9.895e-02 -4.692e-01 2.877e+00 -1.630e+00 -4.248e-02 - -5.678e-01 1.277e+00 -1.630e+00 6.089e+00 1.197e-01 - -1.194e-02 3.171e-02 -4.248e-02 1.197e-01 2.834e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.62474 1.000 -0.439 -0.123 -0.487 -0.474 - 2 0.89528 -0.439 1.000 -0.413 0.773 0.890 - 3 0.61443 -0.123 -0.413 1.000 -0.390 -0.470 - 4 0.91716 -0.487 0.773 -0.390 1.000 0.911 - 5 0.96008 -0.474 0.890 -0.470 0.911 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19628.4 FROM HESSE STATUS=OK 31 CALLS 334 TOTAL - EDM=4.86529e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.06510e+02 4.66252e-01 1.58828e-04 3.35643e-02 - 2 sg_p1 1.74543e+01 6.46362e-01 3.75994e-04 -3.75146e-01 - 3 sg_p2 5.99840e+02 1.69368e+00 3.65403e-04 3.37581e-01 - 4 sg_p3 3.49426e+01 2.38364e+00 7.80141e-05 -6.24005e-01 - 5 sg_p4 7.67921e-01 4.98421e-02 4.59842e-04 -5.79010e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.174e-01 -1.255e-01 -1.108e-01 -5.172e-01 -1.078e-02 - -1.255e-01 4.180e-01 -4.460e-01 1.166e+00 2.921e-02 - -1.108e-01 -4.460e-01 2.869e+00 -1.550e+00 -4.066e-02 - -5.172e-01 1.166e+00 -1.550e+00 5.686e+00 1.105e-01 - -1.078e-02 2.921e-02 -4.066e-02 1.105e-01 2.627e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.61109 1.000 -0.416 -0.140 -0.465 -0.451 - 2 0.88728 -0.416 1.000 -0.407 0.756 0.881 - 3 0.61300 -0.140 -0.407 1.000 -0.384 -0.468 - 4 0.91100 -0.465 0.756 -0.384 1.000 0.904 - 5 0.95686 -0.451 0.881 -0.468 0.904 1.000 -600 -606.51 +- 0.466252 -17.4543 +- 0.646362 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=22637.7 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 0.00000e+00 -4.51042e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 8.38232e+02 - 3 sg_p2 5.75000e+02 1.50000e+01 0.00000e+00 -1.64920e+02 - 4 sg_p3 5.14784e+01 1.20000e+01 -3.13819e-01 -6.61183e-01 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -2.02962e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=22433.8 FROM MIGRAD STATUS=CONVERGED 257 CALLS 258 TOTAL - EDM=0.000145317 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.06503e+02 4.37713e-01 7.91387e-04 5.04043e-01 - 2 sg_p1 1.75196e+01 6.16845e-01 1.86865e-03 2.85731e-01 - 3 sg_p2 5.99868e+02 1.60326e+00 1.87702e-03 4.97177e-02 - 4 sg_p3 3.53013e+01 2.35156e+00 2.00555e-03 -3.27558e-01 - 5 sg_p4 7.72033e-01 4.73986e-02 1.10014e-02 3.49818e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.916e-01 -1.162e-01 -9.469e-02 -4.921e-01 -9.894e-03 - -1.162e-01 3.807e-01 -3.958e-01 1.117e+00 2.658e-02 - -9.469e-02 -3.958e-01 2.571e+00 -1.422e+00 -3.558e-02 - -4.921e-01 1.117e+00 -1.422e+00 5.534e+00 1.039e-01 - -9.894e-03 2.658e-02 -3.558e-02 1.039e-01 2.357e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.61676 1.000 -0.430 -0.135 -0.478 -0.466 - 2 0.89248 -0.430 1.000 -0.400 0.769 0.887 - 3 0.60372 -0.135 -0.400 1.000 -0.377 -0.457 - 4 0.91576 -0.478 0.769 -0.377 1.000 0.910 - 5 0.95892 -0.466 0.887 -0.457 0.910 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=22433.8 FROM HESSE STATUS=OK 31 CALLS 289 TOTAL - EDM=0.000143345 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.06503e+02 4.32589e-01 1.58277e-04 3.34012e-02 - 2 sg_p1 1.75196e+01 5.99409e-01 3.73730e-04 -3.70891e-01 - 3 sg_p2 5.99868e+02 1.60399e+00 3.75403e-04 3.37969e-01 - 4 sg_p3 3.53013e+01 2.28660e+00 4.01111e-04 -6.16657e-01 - 5 sg_p4 7.72033e-01 4.60130e-02 4.40057e-04 -5.46595e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.871e-01 -1.064e-01 -1.024e-01 -4.539e-01 -9.063e-03 - -1.064e-01 3.595e-01 -3.824e-01 1.036e+00 2.483e-02 - -1.024e-01 -3.824e-01 2.573e+00 -1.376e+00 -3.459e-02 - -4.539e-01 1.036e+00 -1.376e+00 5.232e+00 9.734e-02 - -9.063e-03 2.483e-02 -3.459e-02 9.734e-02 2.215e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.60467 1.000 -0.410 -0.148 -0.459 -0.445 - 2 0.88572 -0.410 1.000 -0.398 0.756 0.880 - 3 0.60420 -0.148 -0.398 1.000 -0.375 -0.458 - 4 0.91066 -0.459 0.756 -0.375 1.000 0.904 - 5 0.95622 -0.445 0.880 -0.458 0.904 1.000 -600 -606.503 +- 0.432589 -17.5196 +- 0.599409 -35.9 fb^{-1} (13 TeV) -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 81 has zero error, setting residual to zero - Uncertainty on sg_p0 = 606.507 +- 0.449294 (stat) - 1.38396 + 1.4085 (syst); -1.40207/+1.4263 (total) - Uncertainty on sg_p1 = 17.4848 +- 0.623965 (stat) - 0.300472 + 0.248681 (syst); -0.433147/+0.398968 (total) - Uncertainty on sg_p2 = 599.858 +- 1.64758 (stat) - 0.389024 + 1.02722 (syst); -0.911028/+1.31674 (total) - Uncertainty on sg_p3 = 35.1205 +- 2.33871 (stat) - 1.20153 + 1.04536 (syst); -1.67663/+1.56849 (total) - Uncertainty on sg_p4 = 0.769875 +- 0.048015 (stat) - 0.0451018 + 0.0173244 (syst); -0.0510934/+0.0296057 (total) - === Baseline plot ===
- norm = 1712.99 -JEC lnN 1.00275 - -JER lnN 1.01626 - -btag lnN 1.06714 - -sg_p0 param 606.507 -1.40207/+1.4263 -sg_p1 param 17.4848 -0.433147/+0.398968 -sg_p2 param 599.858 -0.911028/+1.31674 -sg_p3 param 35.1205 -1.67663/+1.56849 -sg_p4 param 0.769875 -0.0510934/+0.0296057 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_600_novo_285_624/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_600_novo_285_624/data_bkg.log deleted file mode 100644 index 3cc1900..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_600_novo_285_624/data_bkg.log +++ /dev/null @@ -1,750 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [252,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=62921.6 FROM MIGRAD STATUS=INITIATE 90 CALLS 91 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.21879e-02 5.09000e-01 0.00000e+00 -9.80911e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -1.28354e+01 - 3 par_crystal_2 2.65669e+02 4.00000e+00 0.00000e+00 3.55320e+02 - 4 par_crystal_3 1.06488e+01 2.70000e+00 -4.48284e-01 -2.33576e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62883.4 FROM HESSE STATUS=OK 29 CALLS 257 TOTAL - EDM=4.91113 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.66060e-01 4.16121e-03 3.52377e-04 -4.74293e+00 - 2 par_crystal_1 4.45375e+00 2.73731e+00 1.77223e-01 2.66184e-01 - 3 par_crystal_2 2.67385e+02 2.04373e-01 8.29600e-04 2.81454e+02 - 4 par_crystal_3 1.36851e+01 5.38888e-01 1.69331e-03 -1.62103e+00 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=62883.3 FROM MIGRAD STATUS=FAILED 358 CALLS 359 TOTAL - EDM=0.00753244 STRATEGY= 1 ERR MATRIX APPROXIMATE - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.65093e-01 8.39913e-03 1.31861e-03 5.42788e+00 - 2 par_crystal_1 5.09910e+00 4.33634e+00 3.39194e-01 -6.59950e-03 - 3 par_crystal_2 2.67339e+02 1.86486e-01 3.32550e-03 -8.58879e+00 - 4 par_crystal_3 1.37140e+01 6.01780e-01 6.34807e-03 1.69258e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.055e-05 1.617e-04 4.699e-04 2.892e-03 - 1.617e-04 1.762e-02 -1.356e-04 -1.108e-03 - 4.699e-04 -1.356e-04 3.478e-02 3.255e-02 - 2.892e-03 -1.108e-03 3.255e-02 3.624e-01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.60853 1.000 0.145 0.300 0.572 - 2 0.19009 0.145 1.000 -0.005 -0.014 - 3 0.33449 0.300 -0.005 1.000 0.290 - 4 0.59243 0.572 -0.014 0.290 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7660e-01 8.1807e-01 1.6519e+00 1.7066e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.178308 TO DIAGONAL. - FCN=62883.3 FROM HESSE STATUS=NOT POSDEF 33 CALLS 392 TOTAL - EDM=3.36849 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.65093e-01 8.70034e-02 2.63722e-04 -1.21988e+00 - 2 par_crystal_1 5.09910e+00 4.18121e+00 5.00000e-01 1.54425e+00 - 3 par_crystal_2 2.67339e+02 5.27040e+00 9.57407e-02 3.75715e-01 - 4 par_crystal_3 1.37140e+01 6.68546e+00 2.53923e-04 -2.07863e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.595e-03 -2.994e-03 4.642e-01 6.089e-01 - -2.994e-03 1.536e-02 -1.944e-01 -2.569e-01 - 4.642e-01 -1.944e-01 2.855e+01 3.736e+01 - 6.089e-01 -2.569e-01 3.736e+01 4.914e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99751 1.000 -0.277 0.997 0.997 - 2 0.37560 -0.277 1.000 -0.293 -0.296 - 3 0.99795 0.997 -0.293 1.000 0.997 - 4 0.99797 0.997 -0.296 0.997 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=62983.1 FROM MIGRAD STATUS=INITIATE 29 CALLS 30 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 6.05383e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -1.33666e+02 - 3 par_gaus_exp_2 3.19008e-01 3.05000e-01 -9.67731e-01 -3.33619e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.00383 added to diagonal of error matrix - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62882.7 FROM MIGRAD STATUS=CONVERGED 228 CALLS 229 TOTAL - EDM=4.4408e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.69095e+02 7.01852e-01 4.07755e-03 2.89794e-02 - 2 par_gaus_exp_1 1.61044e+01 1.09719e+00 7.43010e-03 -1.84784e-02 - 3 par_gaus_exp_2 1.90527e-01 1.58774e-02 1.98778e-03 -6.23432e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 4.929e-01 5.914e-01 9.067e-03 - 5.914e-01 1.207e+00 1.483e-02 - 9.067e-03 1.483e-02 2.521e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.82590 1.000 0.767 0.813 - 2 0.85979 0.767 1.000 0.850 - 3 0.88644 0.813 0.850 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62882.7 FROM HESSE STATUS=OK 16 CALLS 245 TOTAL - EDM=4.28199e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.69095e+02 6.86832e-01 1.63102e-04 -5.76704e-01 - 2 par_gaus_exp_1 1.61044e+01 1.07335e+00 2.97204e-04 -5.72398e-01 - 3 par_gaus_exp_2 1.90527e-01 1.55212e-02 7.95110e-05 -1.13813e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 4.720e-01 5.579e-01 8.580e-03 - 5.579e-01 1.155e+00 1.406e-02 - 8.580e-03 1.406e-02 2.410e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.81734 1.000 0.756 0.805 - 2 0.85292 0.756 1.000 0.843 - 3 0.88081 0.805 0.843 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,624] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.3296 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.3296) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=286.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=286.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=289.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=289.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=295.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=295.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=298.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=298.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=301.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=301.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - ... (remaining 216 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.733611 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.733611) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=313.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=316.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=319.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=325.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=328.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=331.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=334.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=340.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=343.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=346.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - ... (remaining 94 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0733618 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0733618 - - FCN=103426 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57146e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.55551e+03 - 3 par_novo_2 -1.33526e+00 2.00000e+01 0.00000e+00 1.53308e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103192 FROM MIGRAD STATUS=CONVERGED 126 CALLS 127 TOTAL - EDM=1.07924e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.17697e+01 1.69443e-01** at limit ** - 2 par_novo_1 3.87878e+01 2.27475e+00 4.96100e-03 -6.14249e-02 - 3 par_novo_2 -1.26766e+00 7.00630e-02 3.67886e-05 3.77179e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 2.244e-10 -2.632e-07 -1.276e-07 - -2.632e-07 5.190e+00 1.540e-01 - -1.276e-07 1.540e-01 4.909e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.43392 1.000 -0.008 -0.122 - 2 0.97109 -0.008 1.000 0.965 - 3 0.97152 -0.122 0.965 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103192 FROM HESSE STATUS=OK 20 CALLS 147 TOTAL - EDM=1.23299e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.15107e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.87878e+01 2.30410e+00 1.98440e-04 4.51799e-01 - 3 par_novo_2 -1.26766e+00 7.13892e-02 1.47154e-06 -1.26769e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 2.143e-10 3.996e-06 -2.087e-07 - 3.996e-06 5.325e+00 1.518e-01 - -2.087e-07 1.518e-01 5.096e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.80390 1.000 0.118 -0.200 - 2 0.97183 0.118 1.000 0.922 - 3 0.97258 -0.200 0.922 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107617 FROM MIGRAD STATUS=INITIATE 36 CALLS 37 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 6.60405e+03 - 2 par_crystal_1_1 7.90153e-02 5.09000e-01 -1.80421e+00 3.05679e+03 - 3 par_crystal_1_2 2.60000e+02 4.00000e+00 0.00000e+00 1.48888e+03 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 6.99071e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.17529 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.7903e-03 5.8606e-02 5.0897e-01 3.4352e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.006225 TO DIAGONAL. - FCN=103191 FROM MIGRAD STATUS=CONVERGED 353 CALLS 354 TOTAL - EDM=3.7306e-06 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.37913e-01 3.41139e-02 6.19492e-04 4.10204e-01 - 2 par_crystal_1_1 4.44737e+00 5.69760e-01 2.21494e-02 9.88736e-03 - 3 par_crystal_1_2 2.79979e+02 3.40482e+01 2.79535e-01 -2.97577e-04 - 4 par_crystal_1_3 1.87584e+01 2.98857e+00 3.96232e-03 -6.40797e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.164e-03 3.582e-03 3.594e-03 9.898e-02 - 3.582e-03 3.375e-01 -1.052e-02 7.382e-01 - 3.594e-03 -1.052e-02 3.148e+00 6.243e-01 - 9.898e-02 7.382e-01 6.243e-01 9.086e+00 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99630 1.000 0.181 0.059 0.962 - 2 0.95650 0.181 1.000 -0.010 0.422 - 3 0.63948 0.059 -0.010 1.000 0.117 - 4 0.99690 0.962 0.422 0.117 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103191 FROM HESSE STATUS=OK 27 CALLS 381 TOTAL - EDM=6.06842e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 2.37913e-01 2.12502e-01 1.23898e-04 -8.36786e+01 - 2 par_crystal_1_1 4.44737e+00 5.06952e-01 8.85975e-04 -1.65463e+01 - 3 par_crystal_1_2 2.79979e+02 2.96341e+01 5.00000e-01 7.80831e+00 - 4 par_crystal_1_3 1.87584e+01 1.90925e+01 1.58493e-04 2.18231e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.578e-02 1.663e-02 2.427e-02 3.730e+00 - 1.663e-02 2.650e-01 -4.299e-02 1.684e+00 - 2.427e-02 -4.299e-02 1.850e+00 2.341e+00 - 3.730e+00 1.684e+00 2.341e+00 3.045e+02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99991 1.000 0.151 0.083 0.999 - 2 0.94385 0.151 1.000 -0.061 0.187 - 3 0.80384 0.083 -0.061 1.000 0.099 - 4 0.99991 0.999 0.187 0.099 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 13889.7 - Background number of gaus_exp_252_330 = 13889.7 - Background number of novo_285_624 = 17637.2 - Background number of crystal_1_285_624 = 17637.2 - Background number of gaus_bern_285_624 = 17637.2 - Background number of landau_285_624 = 17637.2 -par_crystal_0 param 0.165093 0.0870034 -par_crystal_1 param 5.0991 4.18121 -par_crystal_2 param 267.339 5.2704 -par_crystal_3 param 13.714 6.68546 -par_crystal_1_0 param 0.237913 0.212502 -par_crystal_1_1 param 4.44737 0.506952 -par_crystal_1_2 param 279.979 29.6341 -par_crystal_1_3 param 18.7584 19.0925 -par_gaus_exp_0 param 269.095 0.686832 -par_gaus_exp_1 param 16.1044 1.07335 -par_gaus_exp_2 param 0.190527 0.0155212 -par_novo_0 param 250 31.5107 -par_novo_1 param 38.7878 2.3041 -par_novo_2 param -1.26766 0.0713892 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_600_novo_285_624/datacard_600_novo_285_624.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_600_novo_285_624/datacard_600_novo_285_624.txt deleted file mode 100644 index 2b49156..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_600_novo_285_624/datacard_600_novo_285_624.txt +++ /dev/null @@ -1,30 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_600.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_novo_285_624.root HbbHbb:f_novo -shapes data_obs HbbHbb w_background_novo_285_624.root HbbHbb:data_obs_novo_285_624 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 1712.99 17637.2 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06714 - -JER lnN 1.01626 - -JEC lnN 1.00275 - -trigger lnN 1.10 - -PDF lnN 1.0229477477 - -sg_p0 param 606.507 -1.40207/+1.4263 -sg_p1 param 17.4848 -0.433147/+0.398968 -sg_p2 param 599.858 -0.911028/+1.31674 -sg_p3 param 35.1205 -1.67663/+1.56849 -sg_p4 param 0.769875 -0.0510934/+0.0296057 -par_novo_0 param 250 31.5107 -par_novo_1 param 38.7878 2.3041 -par_novo_2 param -1.26766 0.0713892 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_600_novo_285_624/pdf.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_600_novo_285_624/pdf.log deleted file mode 100644 index 1900262..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_600_novo_285_624/pdf.log +++ /dev/null @@ -1,10 +0,0 @@ -[?1034h FCN=13.9498 FROM MIGRAD STATUS=CONVERGED 71 CALLS 72 TOTAL - EDM=6.95637e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 Constant 1.30566e+01 1.77733e+00 2.65488e-03 2.23742e-05 - 2 Mean 1.00046e+00 3.03346e-03 5.72003e-06 3.78371e-01 - 3 Sigma 2.29477e-02 2.84199e-03 6.88862e-05 6.32201e-03 -1.00046088083 +/- 0.0030334648545 -0.0229477477015 +/- 0.00284199080585 -PDF lnN 1.0229477477 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_600_novo_285_624/signal600_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_600_novo_285_624/signal600_sig.log deleted file mode 100644 index 3215894..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_600_novo_285_624/signal600_sig.log +++ /dev/null @@ -1,843 +0,0 @@ - -Processing test.c... -nSignal_init = 100000 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=24280 FROM MIGRAD STATUS=INITIATE 43 CALLS 44 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 0.00000e+00 3.58677e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 -1.18368e+03 - 3 sg_p2 5.75000e+02 1.50000e+01 0.00000e+00 1.42384e+03 - 4 sg_p3 4.21820e+01 1.20000e+01 -4.82092e-01 -6.03718e-01 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 7.69925e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23075.2 FROM MIGRAD STATUS=CONVERGED 442 CALLS 443 TOTAL - EDM=3.37608e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.88137e+02 2.17401e+00 1.57187e-03 5.45097e-02 - 2 sg_p1 2.90958e+01 6.86009e-01 3.13675e-03 7.79119e-02 - 3 sg_p2 5.59880e+02 5.00457e+00 1.98829e-03 -7.62283e-02 - 4 sg_p3 3.62716e+01 3.18321e+00 2.14823e-03 9.85100e-02 - 5 sg_p4 7.00002e-01 2.12576e-01 1.12952e-01 2.90847e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.731e+00 -1.030e+00 -9.979e+00 -6.388e+00 -2.483e-04 - -1.030e+00 4.709e-01 2.213e+00 1.252e+00 1.258e-04 - -9.979e+00 2.213e+00 2.508e+01 1.471e+01 -7.877e-04 - -6.388e+00 1.252e+00 1.471e+01 1.015e+01 1.142e-06 - -2.483e-04 1.258e-04 -7.877e-04 1.142e-06 1.239e-06 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.95782 1.000 -0.690 -0.916 -0.922 -0.103 - 2 0.73673 -0.690 1.000 0.644 0.573 0.165 - 3 0.96060 -0.916 0.644 1.000 0.922 -0.141 - 4 0.94775 -0.922 0.573 0.922 1.000 0.000 - 5 0.62405 -0.103 0.165 -0.141 0.000 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23075.2 FROM HESSE STATUS=OK 35 CALLS 478 TOTAL - EDM=0.000121989 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.88137e+02 3.29842e+00 3.14373e-04 -3.84102e-01 - 2 sg_p1 2.90958e+01 1.12225e+00 1.25470e-04 3.45999e-01 - 3 sg_p2 5.59880e+02 4.99521e+00 3.97658e-04 -2.02989e-01 - 4 sg_p3 3.62716e+01 3.76792e+00 8.59293e-05 -5.96971e-01 - 5 sg_p4 7.00002e-01 2.43034e-01 4.60846e-01 -1.56553e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.090e+01 -3.238e+00 -9.781e+00 -1.140e+01 -3.564e-03 - -3.238e+00 1.262e+00 2.139e+00 3.042e+00 1.285e-03 - -9.781e+00 2.139e+00 2.499e+01 1.455e+01 -2.935e-04 - -1.140e+01 3.042e+00 1.455e+01 1.422e+01 2.841e-03 - -3.564e-03 1.285e-03 -2.935e-04 2.841e-03 2.063e-06 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.98192 1.000 -0.873 -0.593 -0.915 -0.752 - 2 0.91068 -0.873 1.000 0.381 0.718 0.797 - 3 0.96045 -0.593 0.381 1.000 0.772 -0.041 - 4 0.96302 -0.915 0.718 0.772 1.000 0.524 - 5 0.96908 -0.752 0.797 -0.041 0.524 1.000 -600 -588.137 +- 3.29842 -29.0958 +- 1.12225 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=23767.1 FROM MIGRAD STATUS=INITIATE 42 CALLS 43 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 0.00000e+00 3.17349e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 -1.02365e+03 - 3 sg_p2 5.75000e+02 1.50000e+01 0.00000e+00 1.16298e+03 - 4 sg_p3 4.39845e+01 1.20000e+01 -4.48474e-01 4.93391e+01 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 6.61691e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=22821.9 FROM MIGRAD STATUS=CONVERGED 329 CALLS 330 TOTAL - EDM=4.72305e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.92012e+02 1.51134e+00 1.46358e-03 1.14647e-01 - 2 sg_p1 2.81327e+01 6.59039e-01 2.96171e-03 -1.30179e-01 - 3 sg_p2 5.58427e+02 3.47970e+00 1.93226e-03 6.71315e-02 - 4 sg_p3 3.58696e+01 2.45943e+00 2.12007e-03 3.27001e-02 - 5 sg_p4 7.00002e-01 6.59449e-02 8.47138e-02 5.69759e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.285e+00 -7.049e-01 -4.524e+00 -3.253e+00 -8.515e-05 - -7.049e-01 4.346e-01 1.539e+00 9.868e-01 4.573e-05 - -4.524e+00 1.539e+00 1.212e+01 7.552e+00 -3.909e-04 - -3.253e+00 9.868e-01 7.552e+00 6.054e+00 -5.215e-05 - -8.515e-05 4.573e-05 -3.909e-04 -5.215e-05 5.765e-07 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.91672 1.000 -0.707 -0.860 -0.875 -0.074 - 2 0.73205 -0.707 1.000 0.671 0.608 0.091 - 3 0.92123 -0.860 0.671 1.000 0.882 -0.148 - 4 0.91302 -0.875 0.608 0.882 1.000 -0.028 - 5 0.44297 -0.074 0.091 -0.148 -0.028 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=22821.9 FROM HESSE STATUS=OK 37 CALLS 367 TOTAL - EDM=3.83352e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.92012e+02 1.96656e+00 2.92716e-04 -2.92785e-01 - 2 sg_p1 2.81327e+01 8.71252e-01 5.92343e-04 2.84598e-01 - 3 sg_p2 5.58427e+02 3.77659e+00 3.86452e-04 -2.22807e-01 - 4 sg_p3 3.58696e+01 2.54070e+00 8.48026e-05 -6.05095e-01 - 5 sg_p4 7.00002e-01 1.87580e-01 5.00000e-01 -1.56561e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.870e+00 -1.423e+00 -2.748e+00 -4.031e+00 -1.028e-03 - -1.423e+00 7.598e-01 7.297e-01 1.337e+00 4.676e-04 - -2.748e+00 7.297e-01 1.428e+01 6.747e+00 -1.238e-03 - -4.031e+00 1.337e+00 6.747e+00 6.461e+00 4.747e-04 - -1.028e-03 4.676e-04 -1.238e-03 4.747e-04 6.718e-07 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.95171 1.000 -0.830 -0.370 -0.806 -0.637 - 2 0.85706 -0.830 1.000 0.222 0.604 0.654 - 3 0.93356 -0.370 0.222 1.000 0.703 -0.400 - 4 0.91874 -0.806 0.604 0.703 1.000 0.228 - 5 0.94267 -0.637 0.654 -0.400 0.228 1.000 -600 -592.012 +- 1.96656 -28.1327 +- 0.871252 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=24394 FROM MIGRAD STATUS=INITIATE 42 CALLS 43 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 0.00000e+00 3.94278e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 -1.29909e+03 - 3 sg_p2 5.75000e+02 1.50000e+01 0.00000e+00 1.67228e+03 - 4 sg_p3 4.09440e+01 1.20000e+01 -5.05526e-01 -7.57306e+01 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 8.58548e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=22933.1 FROM MIGRAD STATUS=CONVERGED 638 CALLS 639 TOTAL - EDM=8.42969e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.78603e+02 5.64911e-01 1.40473e-03 3.72907e-01 - 2 sg_p1 3.20881e+01 4.06669e-01 2.67756e-03 1.44036e-01 - 3 sg_p2 5.00002e+02 1.10618e+02 1.52750e-01 -2.88106e-03 - 4 sg_p3 6.94039e+01 2.89324e+01 3.44374e-02 -1.04731e-02 - 5 sg_p4 9.76772e-01 7.03168e-03 5.92623e-03 -8.42769e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.191e-01 -1.408e-02 3.587e-02 -7.029e+00 1.364e-04 - -1.408e-02 1.654e-01 -3.289e-02 -2.769e+00 1.295e-03 - 3.587e-02 -3.289e-02 6.513e-01 -1.947e+00 -1.609e-03 - -7.029e+00 -2.769e+00 -1.947e+00 9.115e+02 -1.280e-01 - 1.364e-04 1.295e-03 -1.609e-03 -1.280e-01 4.957e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.49930 1.000 -0.061 0.079 -0.412 0.034 - 2 0.46165 -0.061 1.000 -0.100 -0.225 0.452 - 3 0.43169 0.079 -0.100 1.000 -0.080 -0.283 - 4 0.75355 -0.412 -0.225 -0.080 1.000 -0.602 - 5 0.76469 0.034 0.452 -0.283 -0.602 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=22933.1 FROM HESSE STATUS=OK 35 CALLS 674 TOTAL - EDM=8.36581e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.78603e+02 5.65787e-01 2.80946e-04 -6.26852e-01 - 2 sg_p1 3.20881e+01 4.25746e-01 5.35511e-04 5.47427e-01 - 3 sg_p2 5.00002e+02 9.83339e+01 5.00000e-01 -1.57791e+00 - 4 sg_p3 6.94039e+01 2.99669e+01 6.88747e-03 -9.93577e-03 - 5 sg_p4 9.76772e-01 9.53722e-03 1.18525e-03 1.00684e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.201e-01 -1.400e-02 1.487e-02 -7.254e+00 1.740e-04 - -1.400e-02 1.813e-01 -8.069e-02 -3.550e+00 2.110e-03 - 1.487e-02 -8.069e-02 3.935e-01 2.133e+00 -4.095e-03 - -7.254e+00 -3.550e+00 2.133e+00 9.846e+02 -1.706e-01 - 1.740e-04 2.110e-03 -4.095e-03 -1.706e-01 9.139e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.50162 1.000 -0.058 0.042 -0.409 0.032 - 2 0.53111 -0.058 1.000 -0.302 -0.266 0.518 - 3 0.77391 0.042 -0.302 1.000 0.108 -0.683 - 4 0.77455 -0.409 -0.266 0.108 1.000 -0.569 - 5 0.88021 0.032 0.518 -0.683 -0.569 1.000 -600 -578.603 +- 0.565787 -32.0881 +- 0.425746 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=21188 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 0.00000e+00 -4.10915e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 7.89680e+02 - 3 sg_p2 5.75000e+02 1.50000e+01 0.00000e+00 -1.48216e+02 - 4 sg_p3 5.20622e+01 1.20000e+01 -3.03606e-01 1.51172e+00 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -1.90966e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20995.9 FROM MIGRAD STATUS=CONVERGED 266 CALLS 267 TOTAL - EDM=3.97173e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.06507e+02 4.54842e-01 7.93051e-04 2.28694e-01 - 2 sg_p1 1.74848e+01 6.42892e-01 1.87527e-03 -5.26219e-03 - 3 sg_p2 5.99858e+02 1.64781e+00 1.84882e-03 3.91300e-02 - 4 sg_p3 3.51205e+01 2.40944e+00 1.97487e-03 -2.11296e-02 - 5 sg_p4 7.69875e-01 4.95303e-02 1.12811e-02 5.41517e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.069e-01 -1.274e-01 -9.667e-02 -5.293e-01 -1.089e-02 - -1.274e-01 4.136e-01 -4.310e-01 1.196e+00 2.909e-02 - -9.667e-02 -4.310e-01 2.716e+00 -1.523e+00 -3.888e-02 - -5.293e-01 1.196e+00 -1.523e+00 5.810e+00 1.117e-01 - -1.089e-02 2.909e-02 -3.888e-02 1.117e-01 2.589e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.62100 1.000 -0.435 -0.129 -0.483 -0.470 - 2 0.89410 -0.435 1.000 -0.407 0.772 0.889 - 3 0.60904 -0.129 -0.407 1.000 -0.383 -0.464 - 4 0.91664 -0.483 0.772 -0.383 1.000 0.910 - 5 0.95959 -0.470 0.889 -0.464 0.910 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20995.9 FROM HESSE STATUS=OK 31 CALLS 298 TOTAL - EDM=3.94319e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.06507e+02 4.49294e-01 1.58610e-04 3.34861e-02 - 2 sg_p1 1.74848e+01 6.23965e-01 7.50107e-05 -3.73160e-01 - 3 sg_p2 5.99858e+02 1.64758e+00 3.69764e-04 3.37830e-01 - 4 sg_p3 3.51205e+01 2.33871e+00 7.89949e-05 -6.20356e-01 - 5 sg_p4 7.69875e-01 4.80150e-02 4.51245e-04 -5.63520e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.019e-01 -1.162e-01 -1.057e-01 -4.868e-01 -9.943e-03 - -1.162e-01 3.895e-01 -4.147e-01 1.106e+00 2.709e-02 - -1.057e-01 -4.147e-01 2.715e+00 -1.465e+00 -3.762e-02 - -4.868e-01 1.106e+00 -1.465e+00 5.474e+00 1.042e-01 - -9.943e-03 2.709e-02 -3.762e-02 1.042e-01 2.425e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.60859 1.000 -0.414 -0.143 -0.463 -0.449 - 2 0.88716 -0.414 1.000 -0.403 0.757 0.881 - 3 0.60890 -0.143 -0.403 1.000 -0.380 -0.464 - 4 0.91127 -0.463 0.757 -0.380 1.000 0.905 - 5 0.95679 -0.449 0.881 -0.464 0.905 1.000 -600 -606.507 +- 0.449294 -17.4848 +- 0.623965 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=20985 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 2.01358e-01 -6.03053e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 7.30191e+02 - 3 sg_p2 5.75000e+02 1.50000e+01 2.01358e-01 -5.66899e+01 - 4 sg_p3 7.00000e+01 1.20000e+01 2.01358e-01 -3.40682e+00 - 5 sg_p4 8.50000e-01 3.00000e-02 2.01358e-01 -1.90294e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20801.6 FROM MIGRAD STATUS=CONVERGED 278 CALLS 279 TOTAL - EDM=1.57711e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.07915e+02 5.09392e-01 8.36892e-04 -1.25909e-01 - 2 sg_p1 1.72285e+01 7.70692e-01 2.00532e-03 -9.85888e-02 - 3 sg_p2 6.00885e+02 1.55983e+00 1.61488e-03 1.97987e-02 - 4 sg_p3 3.39190e+01 2.23203e+00 1.72499e-03 -5.63339e-02 - 5 sg_p4 7.24773e-01 5.61261e-02 1.85033e-02 4.35514e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.595e-01 -1.965e-01 -2.282e-02 -6.210e-01 -1.671e-02 - -1.965e-01 5.945e-01 -6.118e-01 1.389e+00 4.341e-02 - -2.282e-02 -6.118e-01 2.433e+00 -1.664e+00 -5.404e-02 - -6.210e-01 1.389e+00 -1.664e+00 4.986e+00 1.270e-01 - -1.671e-02 4.341e-02 -5.404e-02 1.270e-01 3.808e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.67158 1.000 -0.500 -0.029 -0.546 -0.531 - 2 0.91709 -0.500 1.000 -0.509 0.807 0.912 - 3 0.68224 -0.029 -0.509 1.000 -0.478 -0.561 - 4 0.92836 -0.546 0.807 -0.478 1.000 0.922 - 5 0.96819 -0.531 0.912 -0.561 0.922 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20801.6 FROM HESSE STATUS=OK 31 CALLS 310 TOTAL - EDM=1.26117e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.07915e+02 4.85233e-01 1.67378e-04 6.48251e-02 - 2 sg_p1 1.72285e+01 6.67550e-01 4.01065e-04 -3.89892e-01 - 3 sg_p2 6.00885e+02 1.49623e+00 3.22976e-04 3.52384e-01 - 4 sg_p3 3.39190e+01 1.92936e+00 6.89997e-05 -6.45190e-01 - 5 sg_p4 7.24773e-01 4.89776e-02 7.40132e-04 -9.87850e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.355e-01 -1.368e-01 -9.181e-02 -4.464e-01 -1.164e-02 - -1.368e-01 4.459e-01 -4.412e-01 9.559e-01 3.085e-02 - -9.181e-02 -4.412e-01 2.239e+00 -1.168e+00 -3.968e-02 - -4.464e-01 9.559e-01 -1.168e+00 3.724e+00 9.043e-02 - -1.164e-02 3.085e-02 -3.968e-02 9.043e-02 2.749e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.62849 1.000 -0.422 -0.126 -0.477 -0.457 - 2 0.88775 -0.422 1.000 -0.442 0.742 0.881 - 3 0.64733 -0.126 -0.442 1.000 -0.405 -0.506 - 4 0.90281 -0.477 0.742 -0.405 1.000 0.894 - 5 0.95565 -0.457 0.881 -0.506 0.894 1.000 -600 -607.915 +- 0.485233 -17.2285 +- 0.66755 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=21050.7 FROM MIGRAD STATUS=INITIATE 55 CALLS 56 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 0.00000e+00 -2.45953e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 7.88326e+02 - 3 sg_p2 5.75000e+02 1.50000e+01 0.00000e+00 -2.88080e+02 - 4 sg_p3 4.00581e+01 1.20000e+01 8.28277e-02 -3.70864e-02 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -1.79687e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20847.8 FROM MIGRAD STATUS=CONVERGED 330 CALLS 331 TOTAL - EDM=4.39005e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05123e+02 4.29424e-01 7.69738e-04 2.63328e-01 - 2 sg_p1 1.74149e+01 6.34617e-01 1.82227e-03 -3.70681e-04 - 3 sg_p2 5.99738e+02 1.64211e+00 1.95138e-03 3.85233e-02 - 4 sg_p3 3.56367e+01 2.67089e+00 2.08773e-03 1.43347e-02 - 5 sg_p4 7.87200e-01 4.88787e-02 1.01395e-02 6.65902e-04 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.844e-01 -1.102e-01 -1.471e-01 -5.033e-01 -9.306e-03 - -1.102e-01 4.030e-01 -3.214e-01 1.334e+00 2.833e-02 - -1.471e-01 -3.214e-01 2.697e+00 -1.302e+00 -2.911e-02 - -5.033e-01 1.334e+00 -1.302e+00 7.141e+00 1.227e-01 - -9.306e-03 2.833e-02 -2.911e-02 1.227e-01 2.499e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.58762 1.000 -0.404 -0.209 -0.439 -0.433 - 2 0.89717 -0.404 1.000 -0.308 0.786 0.893 - 3 0.53678 -0.209 -0.308 1.000 -0.297 -0.355 - 4 0.92270 -0.439 0.786 -0.297 1.000 0.918 - 5 0.96074 -0.433 0.893 -0.355 0.918 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20847.8 FROM HESSE STATUS=OK 31 CALLS 362 TOTAL - EDM=4.37345e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.05123e+02 4.25719e-01 1.53948e-04 2.72521e-03 - 2 sg_p1 1.74149e+01 6.21639e-01 7.28909e-05 -3.77714e-01 - 3 sg_p2 5.99738e+02 1.64785e+00 3.90277e-04 3.36136e-01 - 4 sg_p3 3.56367e+01 2.61918e+00 8.35094e-05 -6.09822e-01 - 5 sg_p4 7.87200e-01 4.78840e-02 4.05579e-04 -4.31980e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.812e-01 -1.028e-01 -1.491e-01 -4.715e-01 -8.683e-03 - -1.028e-01 3.866e-01 -3.221e-01 1.267e+00 2.701e-02 - -1.491e-01 -3.221e-01 2.716e+00 -1.312e+00 -2.930e-02 - -4.715e-01 1.267e+00 -1.312e+00 6.867e+00 1.173e-01 - -8.683e-03 2.701e-02 -2.930e-02 1.173e-01 2.394e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.57780 1.000 -0.388 -0.212 -0.423 -0.417 - 2 0.89257 -0.388 1.000 -0.314 0.777 0.888 - 3 0.54137 -0.212 -0.314 1.000 -0.304 -0.363 - 4 0.91948 -0.423 0.777 -0.304 1.000 0.915 - 5 0.95897 -0.417 0.888 -0.363 0.915 1.000 -600 -605.123 +- 0.425719 -17.4149 +- 0.621639 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=20832.1 FROM MIGRAD STATUS=INITIATE 35 CALLS 36 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 0.00000e+00 -4.10122e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 7.39759e+02 - 3 sg_p2 5.75000e+02 1.50000e+01 0.00000e+00 -1.41911e+02 - 4 sg_p3 5.22092e+01 1.20000e+01 -3.01040e-01 -3.82741e+00 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -1.79614e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20660.5 FROM MIGRAD STATUS=CONVERGED 248 CALLS 249 TOTAL - EDM=2.70998e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.06501e+02 4.51807e-01 7.97409e-04 -7.03207e-02 - 2 sg_p1 1.77334e+01 6.52405e-01 1.87706e-03 -1.65059e-02 - 3 sg_p2 5.99469e+02 1.79002e+00 1.94437e-03 -5.75168e-02 - 4 sg_p3 3.61659e+01 2.58390e+00 2.08852e-03 2.55527e-02 - 5 sg_p4 7.77016e-01 4.86366e-02 1.06632e-02 -1.67483e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.041e-01 -1.198e-01 -9.305e-02 -5.364e-01 -9.937e-03 - -1.198e-01 4.259e-01 -5.231e-01 1.301e+00 2.891e-02 - -9.305e-02 -5.231e-01 3.205e+00 -1.947e+00 -4.507e-02 - -5.364e-01 1.301e+00 -1.947e+00 6.683e+00 1.171e-01 - -9.937e-03 2.891e-02 -4.507e-02 1.171e-01 2.483e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.60028 1.000 -0.406 -0.115 -0.459 -0.441 - 2 0.89400 -0.406 1.000 -0.448 0.771 0.889 - 3 0.63123 -0.115 -0.448 1.000 -0.421 -0.505 - 4 0.91499 -0.459 0.771 -0.421 1.000 0.909 - 5 0.95914 -0.441 0.889 -0.505 0.909 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20660.5 FROM HESSE STATUS=OK 31 CALLS 280 TOTAL - EDM=2.68748e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.06501e+02 4.47624e-01 1.59482e-04 3.33576e-02 - 2 sg_p1 1.77334e+01 6.37778e-01 7.50826e-05 -3.57025e-01 - 3 sg_p2 5.99469e+02 1.79219e+00 3.88875e-04 3.32337e-01 - 4 sg_p3 3.61659e+01 2.52790e+00 8.35409e-05 -5.99103e-01 - 5 sg_p4 7.77016e-01 4.75332e-02 4.26528e-04 -5.08149e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.004e-01 -1.112e-01 -1.007e-01 -5.017e-01 -9.233e-03 - -1.112e-01 4.070e-01 -5.109e-01 1.227e+00 2.742e-02 - -1.007e-01 -5.109e-01 3.213e+00 -1.905e+00 -4.423e-02 - -5.017e-01 1.227e+00 -1.905e+00 6.396e+00 1.113e-01 - -9.233e-03 2.742e-02 -4.423e-02 1.113e-01 2.366e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.59019 1.000 -0.389 -0.126 -0.443 -0.424 - 2 0.88878 -0.389 1.000 -0.447 0.760 0.884 - 3 0.63238 -0.126 -0.447 1.000 -0.420 -0.507 - 4 0.91099 -0.443 0.760 -0.420 1.000 0.904 - 5 0.95708 -0.424 0.884 -0.507 0.904 1.000 -600 -606.501 +- 0.447624 -17.7334 +- 0.637778 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=21392 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 0.00000e+00 -4.65951e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 8.31252e+02 - 3 sg_p2 5.75000e+02 1.50000e+01 0.00000e+00 -2.10216e+02 - 4 sg_p3 4.66234e+01 1.20000e+01 -4.00208e-01 -5.49343e-01 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -1.97937e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21176.8 FROM MIGRAD STATUS=CONVERGED 269 CALLS 270 TOTAL - EDM=8.82705e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.06547e+02 4.53645e-01 7.81411e-04 -3.17610e-01 - 2 sg_p1 1.71843e+01 6.39064e-01 1.86421e-03 -1.15499e-01 - 3 sg_p2 5.99736e+02 1.60177e+00 1.78744e-03 -2.73906e-01 - 4 sg_p3 3.43642e+01 2.28667e+00 1.90587e-03 -2.99641e-02 - 5 sg_p4 7.67062e-01 4.97568e-02 1.14541e-02 2.14855e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.058e-01 -1.334e-01 -7.609e-02 -5.233e-01 -1.147e-02 - -1.334e-01 4.086e-01 -4.283e-01 1.132e+00 2.917e-02 - -7.609e-02 -4.283e-01 2.566e+00 -1.449e+00 -3.913e-02 - -5.233e-01 1.132e+00 -1.449e+00 5.233e+00 1.065e-01 - -1.147e-02 2.917e-02 -3.913e-02 1.065e-01 2.619e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.63674 1.000 -0.460 -0.105 -0.504 -0.494 - 2 0.89676 -0.460 1.000 -0.418 0.774 0.892 - 3 0.61833 -0.105 -0.418 1.000 -0.395 -0.477 - 4 0.91625 -0.504 0.774 -0.395 1.000 0.910 - 5 0.96016 -0.494 0.892 -0.477 0.910 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21176.8 FROM HESSE STATUS=OK 31 CALLS 301 TOTAL - EDM=8.5019e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.06547e+02 4.46977e-01 1.56282e-04 3.43777e-02 - 2 sg_p1 1.71843e+01 6.16688e-01 3.72843e-04 -3.92793e-01 - 3 sg_p2 5.99736e+02 1.59872e+00 3.57489e-04 3.36110e-01 - 4 sg_p3 3.43642e+01 2.20755e+00 7.62346e-05 -6.35935e-01 - 5 sg_p4 7.67062e-01 4.79510e-02 4.58166e-04 -5.85865e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.998e-01 -1.203e-01 -8.781e-02 -4.759e-01 -1.035e-02 - -1.203e-01 3.805e-01 -4.057e-01 1.032e+00 2.680e-02 - -8.781e-02 -4.057e-01 2.556e+00 -1.372e+00 -3.733e-02 - -4.759e-01 1.032e+00 -1.372e+00 4.877e+00 9.814e-02 - -1.035e-02 2.680e-02 -3.733e-02 9.814e-02 2.422e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.62255 1.000 -0.436 -0.123 -0.482 -0.470 - 2 0.88865 -0.436 1.000 -0.411 0.757 0.883 - 3 0.61643 -0.123 -0.411 1.000 -0.389 -0.474 - 4 0.90983 -0.482 0.757 -0.389 1.000 0.903 - 5 0.95684 -0.470 0.883 -0.474 0.903 1.000 -600 -606.547 +- 0.446977 -17.1843 +- 0.616688 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=19809.1 FROM MIGRAD STATUS=INITIATE 40 CALLS 41 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 0.00000e+00 -3.98661e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 7.36177e+02 - 3 sg_p2 5.75000e+02 1.50000e+01 0.00000e+00 -1.54710e+02 - 4 sg_p3 5.02879e+01 1.20000e+01 -3.34752e-01 5.32152e-01 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -1.78206e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19628.4 FROM MIGRAD STATUS=CONVERGED 302 CALLS 303 TOTAL - EDM=4.9436e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.06510e+02 4.72659e-01 7.94140e-04 3.55653e-02 - 2 sg_p1 1.74543e+01 6.69157e-01 1.87997e-03 6.61865e-02 - 3 sg_p2 5.99840e+02 1.69608e+00 1.82702e-03 -5.88858e-02 - 4 sg_p3 3.49426e+01 2.46655e+00 1.95035e-03 5.14767e-02 - 5 sg_p4 7.67921e-01 5.16557e-02 1.14960e-02 -1.52477e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.234e-01 -1.390e-01 -9.895e-02 -5.678e-01 -1.194e-02 - -1.390e-01 4.481e-01 -4.692e-01 1.277e+00 3.171e-02 - -9.895e-02 -4.692e-01 2.877e+00 -1.630e+00 -4.248e-02 - -5.678e-01 1.277e+00 -1.630e+00 6.089e+00 1.197e-01 - -1.194e-02 3.171e-02 -4.248e-02 1.197e-01 2.834e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.62474 1.000 -0.439 -0.123 -0.487 -0.474 - 2 0.89528 -0.439 1.000 -0.413 0.773 0.890 - 3 0.61443 -0.123 -0.413 1.000 -0.390 -0.470 - 4 0.91716 -0.487 0.773 -0.390 1.000 0.911 - 5 0.96008 -0.474 0.890 -0.470 0.911 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19628.4 FROM HESSE STATUS=OK 31 CALLS 334 TOTAL - EDM=4.86529e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.06510e+02 4.66252e-01 1.58828e-04 3.35643e-02 - 2 sg_p1 1.74543e+01 6.46362e-01 3.75994e-04 -3.75146e-01 - 3 sg_p2 5.99840e+02 1.69368e+00 3.65403e-04 3.37581e-01 - 4 sg_p3 3.49426e+01 2.38364e+00 7.80141e-05 -6.24005e-01 - 5 sg_p4 7.67921e-01 4.98421e-02 4.59842e-04 -5.79010e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.174e-01 -1.255e-01 -1.108e-01 -5.172e-01 -1.078e-02 - -1.255e-01 4.180e-01 -4.460e-01 1.166e+00 2.921e-02 - -1.108e-01 -4.460e-01 2.869e+00 -1.550e+00 -4.066e-02 - -5.172e-01 1.166e+00 -1.550e+00 5.686e+00 1.105e-01 - -1.078e-02 2.921e-02 -4.066e-02 1.105e-01 2.627e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.61109 1.000 -0.416 -0.140 -0.465 -0.451 - 2 0.88728 -0.416 1.000 -0.407 0.756 0.881 - 3 0.61300 -0.140 -0.407 1.000 -0.384 -0.468 - 4 0.91100 -0.465 0.756 -0.384 1.000 0.904 - 5 0.95686 -0.451 0.881 -0.468 0.904 1.000 -600 -606.51 +- 0.466252 -17.4543 +- 0.646362 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=22637.7 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 0.00000e+00 -4.51042e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 8.38232e+02 - 3 sg_p2 5.75000e+02 1.50000e+01 0.00000e+00 -1.64920e+02 - 4 sg_p3 5.14784e+01 1.20000e+01 -3.13819e-01 -6.61183e-01 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -2.02962e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=22433.8 FROM MIGRAD STATUS=CONVERGED 257 CALLS 258 TOTAL - EDM=0.000145317 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.06503e+02 4.37713e-01 7.91387e-04 5.04043e-01 - 2 sg_p1 1.75196e+01 6.16845e-01 1.86865e-03 2.85731e-01 - 3 sg_p2 5.99868e+02 1.60326e+00 1.87702e-03 4.97177e-02 - 4 sg_p3 3.53013e+01 2.35156e+00 2.00555e-03 -3.27558e-01 - 5 sg_p4 7.72033e-01 4.73986e-02 1.10014e-02 3.49818e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.916e-01 -1.162e-01 -9.469e-02 -4.921e-01 -9.894e-03 - -1.162e-01 3.807e-01 -3.958e-01 1.117e+00 2.658e-02 - -9.469e-02 -3.958e-01 2.571e+00 -1.422e+00 -3.558e-02 - -4.921e-01 1.117e+00 -1.422e+00 5.534e+00 1.039e-01 - -9.894e-03 2.658e-02 -3.558e-02 1.039e-01 2.357e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.61676 1.000 -0.430 -0.135 -0.478 -0.466 - 2 0.89248 -0.430 1.000 -0.400 0.769 0.887 - 3 0.60372 -0.135 -0.400 1.000 -0.377 -0.457 - 4 0.91576 -0.478 0.769 -0.377 1.000 0.910 - 5 0.95892 -0.466 0.887 -0.457 0.910 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=22433.8 FROM HESSE STATUS=OK 31 CALLS 289 TOTAL - EDM=0.000143345 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.06503e+02 4.32589e-01 1.58277e-04 3.34012e-02 - 2 sg_p1 1.75196e+01 5.99409e-01 3.73730e-04 -3.70891e-01 - 3 sg_p2 5.99868e+02 1.60399e+00 3.75403e-04 3.37969e-01 - 4 sg_p3 3.53013e+01 2.28660e+00 4.01111e-04 -6.16657e-01 - 5 sg_p4 7.72033e-01 4.60130e-02 4.40057e-04 -5.46595e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.871e-01 -1.064e-01 -1.024e-01 -4.539e-01 -9.063e-03 - -1.064e-01 3.595e-01 -3.824e-01 1.036e+00 2.483e-02 - -1.024e-01 -3.824e-01 2.573e+00 -1.376e+00 -3.459e-02 - -4.539e-01 1.036e+00 -1.376e+00 5.232e+00 9.734e-02 - -9.063e-03 2.483e-02 -3.459e-02 9.734e-02 2.215e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.60467 1.000 -0.410 -0.148 -0.459 -0.445 - 2 0.88572 -0.410 1.000 -0.398 0.756 0.880 - 3 0.60420 -0.148 -0.398 1.000 -0.375 -0.458 - 4 0.91066 -0.459 0.756 -0.375 1.000 0.904 - 5 0.95622 -0.445 0.880 -0.458 0.904 1.000 -600 -606.503 +- 0.432589 -17.5196 +- 0.599409 -35.9 fb^{-1} (13 TeV) -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 81 has zero error, setting residual to zero - Uncertainty on sg_p0 = 606.507 +- 0.449294 (stat) - 1.38396 + 1.4085 (syst); -1.40207/+1.4263 (total) - Uncertainty on sg_p1 = 17.4848 +- 0.623965 (stat) - 0.300472 + 0.248681 (syst); -0.433147/+0.398968 (total) - Uncertainty on sg_p2 = 599.858 +- 1.64758 (stat) - 0.389024 + 1.02722 (syst); -0.911028/+1.31674 (total) - Uncertainty on sg_p3 = 35.1205 +- 2.33871 (stat) - 1.20153 + 1.04536 (syst); -1.67663/+1.56849 (total) - Uncertainty on sg_p4 = 0.769875 +- 0.048015 (stat) - 0.0451018 + 0.0173244 (syst); -0.0510934/+0.0296057 (total) - === Baseline plot ===
- norm = 1712.99 -JEC lnN 1.00275 - -JER lnN 1.01626 - -btag lnN 1.06714 - -sg_p0 param 606.507 -1.40207/+1.4263 -sg_p1 param 17.4848 -0.433147/+0.398968 -sg_p2 param 599.858 -0.911028/+1.31674 -sg_p3 param 35.1205 -1.67663/+1.56849 -sg_p4 param 0.769875 -0.0510934/+0.0296057 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_650_crystal_1_285_624/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_650_crystal_1_285_624/data_bkg.log deleted file mode 100644 index 118332d..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_650_crystal_1_285_624/data_bkg.log +++ /dev/null @@ -1,750 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [252,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=62921.6 FROM MIGRAD STATUS=INITIATE 90 CALLS 91 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.21879e-02 5.09000e-01 0.00000e+00 -9.80911e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -1.28354e+01 - 3 par_crystal_2 2.65669e+02 4.00000e+00 0.00000e+00 3.55320e+02 - 4 par_crystal_3 1.06488e+01 2.70000e+00 -4.48284e-01 -2.33576e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62883.4 FROM HESSE STATUS=OK 29 CALLS 257 TOTAL - EDM=4.91113 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.66060e-01 4.16121e-03 3.52377e-04 -4.74293e+00 - 2 par_crystal_1 4.45375e+00 2.73731e+00 1.77223e-01 2.66184e-01 - 3 par_crystal_2 2.67385e+02 2.04373e-01 8.29600e-04 2.81454e+02 - 4 par_crystal_3 1.36851e+01 5.38888e-01 1.69331e-03 -1.62103e+00 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=62883.3 FROM MIGRAD STATUS=FAILED 358 CALLS 359 TOTAL - EDM=0.00753244 STRATEGY= 1 ERR MATRIX APPROXIMATE - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.65093e-01 8.39913e-03 1.31861e-03 5.42788e+00 - 2 par_crystal_1 5.09910e+00 4.33634e+00 3.39194e-01 -6.59950e-03 - 3 par_crystal_2 2.67339e+02 1.86486e-01 3.32550e-03 -8.58879e+00 - 4 par_crystal_3 1.37140e+01 6.01780e-01 6.34807e-03 1.69258e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.055e-05 1.617e-04 4.699e-04 2.892e-03 - 1.617e-04 1.762e-02 -1.356e-04 -1.108e-03 - 4.699e-04 -1.356e-04 3.478e-02 3.255e-02 - 2.892e-03 -1.108e-03 3.255e-02 3.624e-01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.60853 1.000 0.145 0.300 0.572 - 2 0.19009 0.145 1.000 -0.005 -0.014 - 3 0.33449 0.300 -0.005 1.000 0.290 - 4 0.59243 0.572 -0.014 0.290 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7660e-01 8.1807e-01 1.6519e+00 1.7066e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.178308 TO DIAGONAL. - FCN=62883.3 FROM HESSE STATUS=NOT POSDEF 33 CALLS 392 TOTAL - EDM=3.36849 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.65093e-01 8.70034e-02 2.63722e-04 -1.21988e+00 - 2 par_crystal_1 5.09910e+00 4.18121e+00 5.00000e-01 1.54425e+00 - 3 par_crystal_2 2.67339e+02 5.27040e+00 9.57407e-02 3.75715e-01 - 4 par_crystal_3 1.37140e+01 6.68546e+00 2.53923e-04 -2.07863e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.595e-03 -2.994e-03 4.642e-01 6.089e-01 - -2.994e-03 1.536e-02 -1.944e-01 -2.569e-01 - 4.642e-01 -1.944e-01 2.855e+01 3.736e+01 - 6.089e-01 -2.569e-01 3.736e+01 4.914e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99751 1.000 -0.277 0.997 0.997 - 2 0.37560 -0.277 1.000 -0.293 -0.296 - 3 0.99795 0.997 -0.293 1.000 0.997 - 4 0.99797 0.997 -0.296 0.997 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=62983.1 FROM MIGRAD STATUS=INITIATE 29 CALLS 30 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 6.05383e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -1.33666e+02 - 3 par_gaus_exp_2 3.19008e-01 3.05000e-01 -9.67731e-01 -3.33619e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.00383 added to diagonal of error matrix - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62882.7 FROM MIGRAD STATUS=CONVERGED 228 CALLS 229 TOTAL - EDM=4.4408e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.69095e+02 7.01852e-01 4.07755e-03 2.89794e-02 - 2 par_gaus_exp_1 1.61044e+01 1.09719e+00 7.43010e-03 -1.84784e-02 - 3 par_gaus_exp_2 1.90527e-01 1.58774e-02 1.98778e-03 -6.23432e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 4.929e-01 5.914e-01 9.067e-03 - 5.914e-01 1.207e+00 1.483e-02 - 9.067e-03 1.483e-02 2.521e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.82590 1.000 0.767 0.813 - 2 0.85979 0.767 1.000 0.850 - 3 0.88644 0.813 0.850 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62882.7 FROM HESSE STATUS=OK 16 CALLS 245 TOTAL - EDM=4.28199e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.69095e+02 6.86832e-01 1.63102e-04 -5.76704e-01 - 2 par_gaus_exp_1 1.61044e+01 1.07335e+00 2.97204e-04 -5.72398e-01 - 3 par_gaus_exp_2 1.90527e-01 1.55212e-02 7.95110e-05 -1.13813e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 4.720e-01 5.579e-01 8.580e-03 - 5.579e-01 1.155e+00 1.406e-02 - 8.580e-03 1.406e-02 2.410e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.81734 1.000 0.756 0.805 - 2 0.85292 0.756 1.000 0.843 - 3 0.88081 0.805 0.843 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,624] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.3296 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=286.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=286.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=289.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=289.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=295.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=295.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=298.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=298.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=301.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=301.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - ... (remaining 216 messages suppressed) -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.3296) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.733611 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=313.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=316.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=319.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=325.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=328.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=331.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=334.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=340.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=343.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=346.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - ... (remaining 94 messages suppressed) -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.733611) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0733618 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0733618 - - FCN=103426 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57146e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.55551e+03 - 3 par_novo_2 -1.33526e+00 2.00000e+01 0.00000e+00 1.53308e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103192 FROM MIGRAD STATUS=CONVERGED 126 CALLS 127 TOTAL - EDM=1.07924e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.17697e+01 1.69443e-01** at limit ** - 2 par_novo_1 3.87878e+01 2.27475e+00 4.96100e-03 -6.14249e-02 - 3 par_novo_2 -1.26766e+00 7.00630e-02 3.67886e-05 3.77179e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 2.244e-10 -2.632e-07 -1.276e-07 - -2.632e-07 5.190e+00 1.540e-01 - -1.276e-07 1.540e-01 4.909e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.43392 1.000 -0.008 -0.122 - 2 0.97109 -0.008 1.000 0.965 - 3 0.97152 -0.122 0.965 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103192 FROM HESSE STATUS=OK 20 CALLS 147 TOTAL - EDM=1.23299e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.15107e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.87878e+01 2.30410e+00 1.98440e-04 4.51799e-01 - 3 par_novo_2 -1.26766e+00 7.13892e-02 1.47154e-06 -1.26769e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 2.143e-10 3.996e-06 -2.087e-07 - 3.996e-06 5.325e+00 1.518e-01 - -2.087e-07 1.518e-01 5.096e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.80390 1.000 0.118 -0.200 - 2 0.97183 0.118 1.000 0.922 - 3 0.97258 -0.200 0.922 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107617 FROM MIGRAD STATUS=INITIATE 36 CALLS 37 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 6.60405e+03 - 2 par_crystal_1_1 7.90153e-02 5.09000e-01 -1.80421e+00 3.05679e+03 - 3 par_crystal_1_2 2.60000e+02 4.00000e+00 0.00000e+00 1.48888e+03 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 6.99071e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.17529 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.7903e-03 5.8606e-02 5.0897e-01 3.4352e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.006225 TO DIAGONAL. - FCN=103191 FROM MIGRAD STATUS=CONVERGED 353 CALLS 354 TOTAL - EDM=3.7306e-06 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.37913e-01 3.41139e-02 6.19492e-04 4.10204e-01 - 2 par_crystal_1_1 4.44737e+00 5.69760e-01 2.21494e-02 9.88736e-03 - 3 par_crystal_1_2 2.79979e+02 3.40482e+01 2.79535e-01 -2.97577e-04 - 4 par_crystal_1_3 1.87584e+01 2.98857e+00 3.96232e-03 -6.40797e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.164e-03 3.582e-03 3.594e-03 9.898e-02 - 3.582e-03 3.375e-01 -1.052e-02 7.382e-01 - 3.594e-03 -1.052e-02 3.148e+00 6.243e-01 - 9.898e-02 7.382e-01 6.243e-01 9.086e+00 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99630 1.000 0.181 0.059 0.962 - 2 0.95650 0.181 1.000 -0.010 0.422 - 3 0.63948 0.059 -0.010 1.000 0.117 - 4 0.99690 0.962 0.422 0.117 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103191 FROM HESSE STATUS=OK 27 CALLS 381 TOTAL - EDM=6.06842e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 2.37913e-01 2.12502e-01 1.23898e-04 -8.36786e+01 - 2 par_crystal_1_1 4.44737e+00 5.06952e-01 8.85975e-04 -1.65463e+01 - 3 par_crystal_1_2 2.79979e+02 2.96341e+01 5.00000e-01 7.80831e+00 - 4 par_crystal_1_3 1.87584e+01 1.90925e+01 1.58493e-04 2.18231e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.578e-02 1.663e-02 2.427e-02 3.730e+00 - 1.663e-02 2.650e-01 -4.299e-02 1.684e+00 - 2.427e-02 -4.299e-02 1.850e+00 2.341e+00 - 3.730e+00 1.684e+00 2.341e+00 3.045e+02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99991 1.000 0.151 0.083 0.999 - 2 0.94385 0.151 1.000 -0.061 0.187 - 3 0.80384 0.083 -0.061 1.000 0.099 - 4 0.99991 0.999 0.187 0.099 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 13889.7 - Background number of gaus_exp_252_330 = 13889.7 - Background number of novo_285_624 = 17637.2 - Background number of crystal_1_285_624 = 17637.2 - Background number of gaus_bern_285_624 = 17637.2 - Background number of landau_285_624 = 17637.2 -par_crystal_0 param 0.165093 0.0870034 -par_crystal_1 param 5.0991 4.18121 -par_crystal_2 param 267.339 5.2704 -par_crystal_3 param 13.714 6.68546 -par_crystal_1_0 param 0.237913 0.212502 -par_crystal_1_1 param 4.44737 0.506952 -par_crystal_1_2 param 279.979 29.6341 -par_crystal_1_3 param 18.7584 19.0925 -par_gaus_exp_0 param 269.095 0.686832 -par_gaus_exp_1 param 16.1044 1.07335 -par_gaus_exp_2 param 0.190527 0.0155212 -par_novo_0 param 250 31.5107 -par_novo_1 param 38.7878 2.3041 -par_novo_2 param -1.26766 0.0713892 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_650_crystal_1_285_624/datacard_650_crystal_1_285_624.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_650_crystal_1_285_624/datacard_650_crystal_1_285_624.txt deleted file mode 100644 index 0165633..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_650_crystal_1_285_624/datacard_650_crystal_1_285_624.txt +++ /dev/null @@ -1,31 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_650.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_crystal_1_285_624.root HbbHbb:f_crystal_1 -shapes data_obs HbbHbb w_background_crystal_1_285_624.root HbbHbb:data_obs_crystal_1_285_624 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 1859.61 17637.2 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06919 - -JER lnN 1.01327 - -JEC lnN 1.0047 - -trigger lnN 1.10 - -PDF lnN 1.02353914841 - -sg_p0 param 650 -0.00949226/+0.00949226 -sg_p1 param 21.9547 -1.37689/+0.62656 -sg_p2 param 650 -0.561993/+0.561993 -sg_p3 param 53.5044 -10.3824/+3.81258 -sg_p4 param 0.902474 -0.0610726/+0.0174217 -par_crystal_1_0 param 0.237913 0.212502 -par_crystal_1_1 param 4.44737 0.506952 -par_crystal_1_2 param 279.979 29.6341 -par_crystal_1_3 param 18.7584 19.0925 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_650_crystal_1_285_624/pdf.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_650_crystal_1_285_624/pdf.log deleted file mode 100644 index aa6e6c7..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_650_crystal_1_285_624/pdf.log +++ /dev/null @@ -1,10 +0,0 @@ -[?1034h FCN=15.5092 FROM MIGRAD STATUS=CONVERGED 78 CALLS 79 TOTAL - EDM=7.02832e-09 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 Constant 1.26172e+01 1.73351e+00 2.72316e-03 -7.30163e-05 - 2 Mean 1.00012e+00 3.19011e-03 6.31280e-06 1.69814e-02 - 3 Sigma 2.35391e-02 3.03053e-03 7.58042e-05 -1.28772e-03 -1.00012141421 +/- 0.00319010963973 -0.0235391484052 +/- 0.00303053171895 -PDF lnN 1.02353914841 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_650_crystal_1_285_624/signal650_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_650_crystal_1_285_624/signal650_sig.log deleted file mode 100644 index 1f5e75e..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_650_crystal_1_285_624/signal650_sig.log +++ /dev/null @@ -1,883 +0,0 @@ - -Processing test.c... -nSignal_init = 49200 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=13508.9 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 2.01358e-01 -2.87056e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 -1.46321e+03 - 3 sg_p2 5.75000e+02 1.50000e+01 2.01358e-01 -5.56470e+02 - 4 sg_p3 7.00000e+01 1.20000e+01 2.01358e-01 -3.42658e+02 - 5 sg_p4 8.50000e-01 3.00000e-02 2.01358e-01 2.11139e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12287.8 FROM MIGRAD STATUS=CONVERGED 597 CALLS 598 TOTAL - EDM=4.72558e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.31550e+02 1.07438e+00 1.68730e-03 -2.23582e-01 - 2 sg_p1 3.53137e+01 1.11870e+00 4.47963e-03 6.27366e-02 - 3 sg_p2 5.77635e+02 4.62466e+01 1.24400e-02 1.02159e-02 - 4 sg_p3 6.47572e+01 2.35273e+01 1.70525e-02 -3.15130e-03 - 5 sg_p4 9.66896e-01 3.39852e-02 6.34455e-03 -3.92355e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.155e+00 -4.604e-01 -1.111e+01 1.243e+01 -1.676e-02 - -4.604e-01 1.255e+00 2.645e+01 -9.584e+00 2.747e-02 - -1.111e+01 2.645e+01 2.484e+03 4.016e+02 1.548e+00 - 1.243e+01 -9.584e+00 4.016e+02 5.848e+02 -3.604e-02 - -1.676e-02 2.747e-02 1.548e+00 -3.604e-02 1.209e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.66627 1.000 -0.382 -0.207 0.478 -0.449 - 2 0.79846 -0.382 1.000 0.474 -0.354 0.705 - 3 0.96990 -0.207 0.474 1.000 0.333 0.893 - 4 0.84189 0.478 -0.354 0.333 1.000 -0.043 - 5 0.97425 -0.449 0.705 0.893 -0.043 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12287.8 FROM HESSE STATUS=OK 31 CALLS 629 TOTAL - EDM=4.61535e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.31550e+02 1.06668e+00 3.37461e-04 6.31053e-01 - 2 sg_p1 3.53137e+01 1.12240e+00 1.79185e-04 7.98026e-01 - 3 sg_p2 5.77635e+02 4.57102e+01 2.48799e-03 3.10645e+00 - 4 sg_p3 6.47572e+01 2.27278e+01 6.82099e-04 3.22908e+00 - 5 sg_p4 9.66896e-01 3.40601e-02 1.26891e-03 8.93554e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.138e+00 -4.570e-01 -1.213e+01 1.173e+01 -1.703e-02 - -4.570e-01 1.264e+00 2.725e+01 -9.434e+00 2.793e-02 - -1.213e+01 2.725e+01 2.417e+03 3.349e+02 1.539e+00 - 1.173e+01 -9.434e+00 3.349e+02 5.436e+02 -5.744e-02 - -1.703e-02 2.793e-02 1.539e+00 -5.744e-02 1.215e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.66019 1.000 -0.381 -0.231 0.472 -0.458 - 2 0.79995 -0.381 1.000 0.493 -0.360 0.713 - 3 0.96905 -0.231 0.493 1.000 0.292 0.898 - 4 0.82847 0.472 -0.360 0.292 1.000 -0.071 - 5 0.97437 -0.458 0.713 0.898 -0.071 1.000 -650 -631.55 +- 1.06668 -35.3137 +- 1.1224 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=13608.2 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 2.01358e-01 -3.05846e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 -1.60421e+03 - 3 sg_p2 5.75000e+02 1.50000e+01 2.01358e-01 -6.11096e+02 - 4 sg_p3 7.00000e+01 1.20000e+01 2.01358e-01 -3.92754e+02 - 5 sg_p4 8.50000e-01 3.00000e-02 2.01358e-01 2.53615e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12183.3 FROM MIGRAD STATUS=CONVERGED 366 CALLS 367 TOTAL - EDM=4.73777e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.34937e+02 1.20416e+00 1.88745e-03 1.06307e-02 - 2 sg_p1 3.54255e+01 1.33397e+00 4.75405e-03 -6.42739e-03 - 3 sg_p2 5.82190e+02 3.67116e+01 1.00364e-02 4.55135e-03 - 4 sg_p3 6.30056e+01 1.66588e+01 1.25710e-02 4.37361e-03 - 5 sg_p4 9.54564e-01 4.17481e-02 6.34242e-03 8.71212e-04 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.451e+00 -7.734e-01 -1.793e+01 -1.063e+01 -3.042e-02 - -7.734e-01 1.788e+00 3.000e+01 1.060e+01 4.484e-02 - -1.793e+01 3.000e+01 1.473e+03 -4.482e+01 1.490e+00 - -1.063e+01 1.060e+01 -4.482e+01 2.851e+02 1.993e-01 - -3.042e-02 4.484e-02 1.490e+00 1.993e-01 1.838e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.72232 1.000 -0.480 -0.388 -0.523 -0.589 - 2 0.84648 -0.480 1.000 0.585 0.469 0.782 - 3 0.96726 -0.388 0.585 1.000 -0.069 0.905 - 4 0.81721 -0.523 0.469 -0.069 1.000 0.275 - 5 0.97806 -0.589 0.782 0.905 0.275 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12183.3 FROM HESSE STATUS=OK 31 CALLS 398 TOTAL - EDM=4.49878e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.34937e+02 1.17331e+00 7.54981e-05 7.27855e-01 - 2 sg_p1 3.54255e+01 1.28807e+00 1.90162e-04 8.07781e-01 - 3 sg_p2 5.82190e+02 3.82291e+01 2.00727e-03 3.04558e+00 - 4 sg_p3 6.30056e+01 1.76697e+01 5.02840e-04 -1.16840e-01 - 5 sg_p4 9.54564e-01 4.07959e-02 2.53697e-04 7.71340e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.377e+00 -6.709e-01 -1.351e+01 -1.025e+01 -2.563e-02 - -6.709e-01 1.666e+00 2.684e+01 9.073e+00 4.040e-02 - -1.351e+01 2.684e+01 1.611e+03 -1.944e+02 1.503e+00 - -1.025e+01 9.073e+00 -1.944e+02 3.218e+02 7.926e-02 - -2.563e-02 4.040e-02 1.503e+00 7.926e-02 1.751e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.70445 1.000 -0.443 -0.287 -0.487 -0.522 - 2 0.83419 -0.443 1.000 0.518 0.392 0.748 - 3 0.97010 -0.287 0.518 1.000 -0.270 0.895 - 4 0.84000 -0.487 0.392 -0.270 1.000 0.106 - 5 0.97695 -0.522 0.748 0.895 0.106 1.000 -650 -634.937 +- 1.17331 -35.4255 +- 1.28807 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=13336.9 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 2.01358e-01 -2.61029e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 -1.30706e+03 - 3 sg_p2 5.75000e+02 1.50000e+01 2.01358e-01 -4.94508e+02 - 4 sg_p3 7.00000e+01 1.20000e+01 2.01358e-01 -2.82439e+02 - 5 sg_p4 8.50000e-01 3.00000e-02 2.01358e-01 1.69237e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 5 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 2.26189 added to diagonal of error matrix - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -3.9054e-01 1.0008e+00 1.0126e+00 1.3098e+00 2.0673e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 0.392608 TO DIAGONAL. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12331.2 FROM MIGRAD STATUS=CONVERGED 434 CALLS 435 TOTAL - EDM=9.27116e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.29363e+02 1.94289e+00 1.61110e-03 -6.12714e-02 - 2 sg_p1 3.39915e+01 1.39941e+00 4.02767e-03 1.41131e-02 - 3 sg_p2 5.86998e+02 3.80498e+01 5.91384e-03 1.10012e-02 - 4 sg_p3 4.52433e+01 9.31868e+00 5.76920e-03 6.15069e-03 - 5 sg_p4 9.32822e-01 8.73169e-02 7.58377e-03 -1.49983e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.778e+00 -2.106e+00 -5.004e+01 -2.088e+00 -1.541e-01 - -2.106e+00 1.966e+00 3.539e+01 6.357e-01 1.083e-01 - -5.004e+01 3.539e+01 1.597e+03 -2.131e+02 3.640e+00 - -2.088e+00 6.357e-01 -2.131e+02 8.769e+01 -2.781e-01 - -1.541e-01 1.083e-01 3.640e+00 -2.781e-01 9.342e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.91269 1.000 -0.773 -0.644 -0.115 -0.820 - 2 0.87908 -0.773 1.000 0.631 0.048 0.799 - 3 0.98973 -0.644 0.631 1.000 -0.569 0.942 - 4 0.89773 -0.115 0.048 -0.569 1.000 -0.307 - 5 0.99185 -0.820 0.799 0.942 -0.307 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12331.2 FROM HESSE STATUS=OK 31 CALLS 466 TOTAL - EDM=1.05015e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.29363e+02 1.77740e+00 3.22219e-04 5.72091e-01 - 2 sg_p1 3.39915e+01 1.30671e+00 1.61107e-04 6.89109e-01 - 3 sg_p2 5.86998e+02 4.00071e+01 2.36554e-04 2.98093e+00 - 4 sg_p3 4.52433e+01 1.08302e+01 2.30768e-04 -4.25319e-01 - 5 sg_p4 9.32822e-01 8.54732e-02 1.51675e-03 5.84938e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.161e+00 -1.710e+00 -4.134e+01 -1.168e+00 -1.264e-01 - -1.710e+00 1.714e+00 3.071e+01 -2.615e-01 9.187e-02 - -4.134e+01 3.071e+01 1.786e+03 -3.269e+02 3.736e+00 - -1.168e+00 -2.615e-01 -3.269e+02 1.189e+02 -4.766e-01 - -1.264e-01 9.187e-02 3.736e+00 -4.766e-01 8.856e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.89467 1.000 -0.735 -0.550 -0.060 -0.756 - 2 0.85981 -0.735 1.000 0.555 -0.018 0.746 - 3 0.99083 -0.550 0.555 1.000 -0.709 0.939 - 4 0.92564 -0.060 -0.018 -0.709 1.000 -0.465 - 5 0.99140 -0.756 0.746 0.939 -0.465 1.000 -650 -629.363 +- 1.7774 -33.9915 +- 1.30671 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11100.7 FROM MIGRAD STATUS=INITIATE 80 CALLS 81 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.49976e+02 9.00000e+00 0.00000e+00 -3.31148e+01 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 1.41635e+02 - 3 sg_p2 6.49999e+02 1.50000e+01 0.00000e+00 -3.52712e-01 - 4 sg_p3 4.45955e+01 1.20000e+01 -4.37204e-01 -1.45659e-01 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -1.61763e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11089.2 FROM MIGRAD STATUS=CONVERGED 189 CALLS 190 TOTAL - EDM=4.42251e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.50000e+02 1.89844e-02 2.11173e-03** at limit ** - 2 sg_p1 2.19547e+01 6.26260e-01 1.90248e-03 -1.39894e-01 - 3 sg_p2 6.50000e+02 1.12485e+00 1.24593e-02** at limit ** - 4 sg_p3 5.35044e+01 7.53715e+00 5.15003e-03 -5.48748e-02 - 5 sg_p4 9.02474e-01 3.44307e-02 8.35217e-03 4.98005e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 6.624e-10 1.398e-08 -1.474e-12 -5.092e-09 1.406e-10 - 1.398e-08 3.924e-01 9.759e-05 2.732e+00 1.581e-02 - -1.474e-12 9.759e-05 5.173e-05 1.252e-03 7.811e-06 - -5.092e-09 2.732e+00 1.252e-03 5.713e+01 2.196e-01 - 1.406e-10 1.581e-02 7.811e-06 2.196e-01 1.210e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00112 1.000 0.001 -0.000 -0.000 0.000 - 2 0.72732 0.001 1.000 0.022 0.577 0.725 - 3 0.03176 -0.000 0.022 1.000 0.023 0.031 - 4 0.83627 -0.000 0.577 0.023 1.000 0.835 - 5 0.88688 0.000 0.725 0.031 0.835 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11089.2 FROM HESSE STATUS=OK 31 CALLS 221 TOTAL - EDM=4.36793e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.50000e+02 1.89845e-02 4.22346e-04 1.57078e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 sg_p1 2.19547e+01 6.28139e-01 3.80496e-04 -9.37931e-02 - 3 sg_p2 6.50000e+02 1.12399e+00 2.49187e-03 1.57135e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 5.35044e+01 7.59176e+00 2.06001e-04 -2.78513e-01 - 5 sg_p4 9.02474e-01 3.46722e-02 1.67043e-03 3.57388e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 6.624e-10 2.583e-09 -7.268e-14 -1.074e-09 2.545e-11 - 2.583e-09 3.948e-01 2.619e-05 2.775e+00 1.601e-02 - -7.268e-14 2.619e-05 5.169e-05 3.372e-04 2.097e-06 - -1.074e-09 2.775e+00 3.372e-04 5.797e+01 2.235e-01 - 2.545e-11 1.601e-02 2.097e-06 2.235e-01 1.227e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00021 1.000 0.000 -0.000 -0.000 0.000 - 2 0.72925 0.000 1.000 0.006 0.580 0.727 - 3 0.00847 -0.000 0.006 1.000 0.006 0.008 - 4 0.83884 -0.000 0.580 0.006 1.000 0.838 - 5 0.88859 0.000 0.727 0.008 0.838 1.000 -650 -650 +- 0.0189845 -21.9547 +- 0.628139 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10989.9 FROM MIGRAD STATUS=INITIATE 82 CALLS 83 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.49981e+02 9.00000e+00 0.00000e+00 -3.26253e+01 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 1.05547e+02 - 3 sg_p2 6.50000e+02 1.50000e+01 0.00000e+00** at limit ** - 4 sg_p3 4.52220e+01 1.20000e+01 -4.25709e-01 -2.16544e-01 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -1.30632e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10983 FROM MIGRAD STATUS=CONVERGED 188 CALLS 189 TOTAL - EDM=6.98216e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.50000e+02 1.75977e-02 2.02403e-03** at limit ** - 2 sg_p1 2.24968e+01 6.83255e-01 1.97163e-03 -2.42215e-01 - 3 sg_p2 6.50000e+02 1.00518e+00 1.16864e-02** at limit ** - 4 sg_p3 5.38609e+01 8.09997e+00 5.22641e-03 -7.25959e-02 - 5 sg_p4 9.04199e-01 3.73923e-02 8.57345e-03 6.68076e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.162e-10 9.099e-09 -3.513e-14 -1.065e-10 1.081e-10 - 9.099e-09 4.671e-01 8.095e-06 3.376e+00 1.946e-02 - -3.513e-14 8.095e-06 3.071e-07 1.055e-04 6.207e-07 - -1.065e-10 3.376e+00 1.055e-04 6.604e+01 2.615e-01 - 1.081e-10 1.946e-02 6.207e-07 2.615e-01 1.433e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00119 1.000 0.001 -0.000 -0.000 0.000 - 2 0.75475 0.001 1.000 0.021 0.608 0.752 - 3 0.02982 -0.000 0.021 1.000 0.023 0.030 - 4 0.85148 -0.000 0.608 0.023 1.000 0.850 - 5 0.90043 0.000 0.752 0.030 0.850 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10983 FROM HESSE STATUS=OK 31 CALLS 220 TOTAL - EDM=6.97303e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.50000e+02 1.75977e-02 4.04806e-04 1.57081e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 sg_p1 2.24968e+01 6.85707e-01 3.94326e-04 -6.08350e-02 - 3 sg_p2 6.50000e+02 1.00444e+00 2.33727e-03 1.57075e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 5.38609e+01 8.16623e+00 2.09056e-04 -2.72339e-01 - 5 sg_p4 9.04199e-01 3.76884e-02 1.71469e-03 3.69689e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.162e-10 1.898e-09 -1.580e-15 -1.792e-10 2.195e-11 - 1.898e-09 4.705e-01 1.591e-06 3.436e+00 1.974e-02 - -1.580e-15 1.591e-06 3.069e-07 2.082e-05 1.221e-07 - -1.792e-10 3.436e+00 2.082e-05 6.714e+01 2.666e-01 - 2.195e-11 1.974e-02 1.221e-07 2.666e-01 1.456e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00025 1.000 0.000 -0.000 -0.000 0.000 - 2 0.75678 0.000 1.000 0.004 0.611 0.754 - 3 0.00582 -0.000 0.004 1.000 0.005 0.006 - 4 0.85409 -0.000 0.611 0.005 1.000 0.853 - 5 0.90212 0.000 0.754 0.006 0.853 1.000 -650 -650 +- 0.0175977 -22.4968 +- 0.685707 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11116.3 FROM MIGRAD STATUS=INITIATE 85 CALLS 86 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.49937e+02 9.00000e+00 0.00000e+00 -4.29903e+01 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 1.78823e+02 - 3 sg_p2 6.50000e+02 1.50000e+01 0.00000e+00 1.70769e-01 - 4 sg_p3 4.20694e+01 1.20000e+01 -4.84211e-01 8.96725e+00 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -1.70161e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11098.1 FROM MIGRAD STATUS=CONVERGED 198 CALLS 199 TOTAL - EDM=6.95645e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.50000e+02 2.30525e-02 2.32852e-03** at limit ** - 2 sg_p1 2.06141e+01 7.27095e-01 1.91751e-03 -1.78455e-02 - 3 sg_p2 6.50000e+02 5.67699e-01 8.96583e-03** at limit ** - 4 sg_p3 4.38408e+01 4.74866e+00 3.33807e-03 1.68221e-02 - 5 sg_p4 8.43914e-01 5.09939e-02 1.01808e-02 4.65599e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.079e-09 1.526e-08 -3.653e-13 -1.193e-07 -8.752e-10 - 1.526e-08 5.290e-01 4.594e-06 2.209e+00 3.042e-02 - -3.653e-13 4.594e-06 1.090e-07 2.852e-05 4.142e-07 - -1.193e-07 2.209e+00 2.852e-05 2.261e+01 2.103e-01 - -8.752e-10 3.042e-02 4.142e-07 2.103e-01 2.707e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00135 1.000 0.000 -0.000 -0.001 -0.000 - 2 0.80823 0.000 1.000 0.019 0.639 0.804 - 3 0.02454 -0.000 0.019 1.000 0.018 0.024 - 4 0.85317 -0.001 0.639 0.018 1.000 0.850 - 5 0.91509 -0.000 0.804 0.024 0.850 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11098.1 FROM HESSE STATUS=OK 31 CALLS 230 TOTAL - EDM=6.98393e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.50000e+02 2.30527e-02 4.65704e-04 1.57083e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 sg_p1 2.06141e+01 7.25563e-01 7.67004e-05 -1.75808e-01 - 3 sg_p2 6.50000e+02 5.67438e-01 1.79317e-03 1.57076e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 4.38408e+01 4.74709e+00 1.33523e-04 -4.51134e-01 - 5 sg_p4 8.43914e-01 5.09413e-02 4.07231e-04 -4.05850e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.079e-09 3.367e-09 -1.567e-14 -2.669e-08 -1.963e-10 - 3.367e-09 5.268e-01 8.847e-07 2.198e+00 3.029e-02 - -1.567e-14 8.847e-07 1.089e-07 5.498e-06 7.992e-08 - -2.669e-08 2.198e+00 5.498e-06 2.259e+01 2.099e-01 - -1.963e-10 3.029e-02 7.992e-08 2.099e-01 2.702e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00030 1.000 0.000 -0.000 -0.000 -0.000 - 2 0.80732 0.000 1.000 0.004 0.637 0.803 - 3 0.00474 -0.000 0.004 1.000 0.004 0.005 - 4 0.85306 -0.000 0.637 0.004 1.000 0.850 - 5 0.91490 -0.000 0.803 0.005 0.850 1.000 -650 -650 +- 0.0230527 -20.6141 +- 0.725563 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10944.8 FROM MIGRAD STATUS=INITIATE 77 CALLS 78 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.49942e+02 9.00000e+00 0.00000e+00 -4.99582e+01 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 1.21408e+02 - 3 sg_p2 6.49999e+02 1.50000e+01 0.00000e+00 -3.15963e-01 - 4 sg_p3 4.09782e+01 1.20000e+01 -5.04874e-01 -3.48354e+01 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -7.37019e+00 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10932.1 FROM MIGRAD STATUS=CONVERGED 199 CALLS 200 TOTAL - EDM=1.73549e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.50000e+02 1.97234e-02 2.13705e-03** at limit ** - 2 sg_p1 2.20280e+01 6.30629e-01 1.91154e-03 1.91770e-02 - 3 sg_p2 6.50000e+02 1.15642e+00 1.26706e-02** at limit ** - 4 sg_p3 5.38442e+01 7.62585e+00 5.23371e-03 -3.81562e-02 - 5 sg_p4 9.01968e-01 3.44467e-02 8.30135e-03 1.18530e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.307e-08 5.762e-08 -8.280e-13 -3.348e-08 5.240e-10 - 5.762e-08 3.979e-01 1.192e-05 2.762e+00 1.584e-02 - -8.280e-13 1.192e-05 8.864e-07 1.536e-04 9.534e-07 - -3.348e-08 2.762e+00 1.536e-04 5.849e+01 2.220e-01 - 5.240e-10 1.584e-02 9.534e-07 2.220e-01 1.211e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00104 1.000 0.001 -0.000 -0.000 0.000 - 2 0.72341 0.001 1.000 0.020 0.573 0.721 - 3 0.02963 -0.000 0.020 1.000 0.021 0.029 - 4 0.83506 -0.000 0.573 0.021 1.000 0.834 - 5 0.88553 0.000 0.721 0.029 0.834 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10932.1 FROM HESSE STATUS=OK 31 CALLS 231 TOTAL - EDM=1.74019e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.50000e+02 1.97235e-02 4.27410e-04 1.57071e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 sg_p1 2.20280e+01 6.32975e-01 7.64616e-05 -8.93298e-02 - 3 sg_p2 6.50000e+02 1.15565e+00 2.53411e-03 1.57087e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 5.38442e+01 7.69157e+00 2.09349e-04 -2.72628e-01 - 5 sg_p4 9.01968e-01 3.47361e-02 3.32054e-04 3.53784e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.307e-08 7.480e-09 -2.394e-14 -4.978e-09 6.545e-11 - 7.480e-09 4.009e-01 2.527e-06 2.817e+00 1.609e-02 - -2.394e-14 2.527e-06 8.858e-07 3.272e-05 2.022e-07 - -4.978e-09 2.817e+00 3.272e-05 5.951e+01 2.267e-01 - 6.545e-11 1.609e-02 2.022e-07 2.267e-01 1.232e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00014 1.000 0.000 -0.000 -0.000 0.000 - 2 0.72585 0.000 1.000 0.004 0.577 0.724 - 3 0.00624 -0.000 0.004 1.000 0.005 0.006 - 4 0.83815 -0.000 0.577 0.005 1.000 0.837 - 5 0.88759 0.000 0.724 0.006 0.837 1.000 -650 -650 +- 0.0197235 -22.028 +- 0.632975 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11266.8 FROM MIGRAD STATUS=INITIATE 82 CALLS 83 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.49945e+02 9.00000e+00 0.00000e+00 -5.09816e+01 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 1.59572e+02 - 3 sg_p2 6.50000e+02 1.50000e+01 0.00000e+00 -1.69501e-01 - 4 sg_p3 4.29297e+01 1.20000e+01 -4.68077e-01 -5.58269e+00 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -1.53081e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11251.6 FROM MIGRAD STATUS=CONVERGED 192 CALLS 193 TOTAL - EDM=6.51945e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.50000e+02 1.82842e-02 2.08842e-03** at limit ** - 2 sg_p1 2.14609e+01 6.40975e-01 1.89354e-03 -6.53789e-02 - 3 sg_p2 6.50000e+02 8.30067e-01 1.08933e-02** at limit ** - 4 sg_p3 5.04392e+01 6.38127e+00 4.50073e-03 -1.04974e-02 - 5 sg_p4 8.87574e-01 3.78194e-02 8.69382e-03 5.77855e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.336e-12 7.879e-10 -3.359e-14 -1.419e-09 2.261e-12 - 7.879e-10 4.111e-01 2.684e-05 2.430e+00 1.837e-02 - -3.359e-14 2.684e-05 4.386e-06 2.767e-04 2.208e-06 - -1.419e-09 2.430e+00 2.767e-04 4.089e+01 2.045e-01 - 2.261e-12 1.837e-02 2.208e-06 2.045e-01 1.464e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00119 1.000 0.001 -0.000 -0.000 0.000 - 2 0.75133 0.001 1.000 0.020 0.593 0.749 - 3 0.02792 -0.000 0.020 1.000 0.021 0.028 - 4 0.83716 -0.000 0.593 0.021 1.000 0.836 - 5 0.89303 0.000 0.749 0.028 0.836 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11251.6 FROM HESSE STATUS=OK 31 CALLS 224 TOTAL - EDM=6.57565e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.50000e+02 1.82843e-02 4.17684e-04 1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 sg_p1 2.14609e+01 6.41983e-01 3.78708e-04 -1.23899e-01 - 3 sg_p2 6.50000e+02 8.29559e-01 2.17866e-03 1.57098e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 5.04392e+01 6.41541e+00 1.80029e-04 -3.32084e-01 - 5 sg_p4 8.87574e-01 3.80027e-02 3.47753e-04 2.53193e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.336e-12 1.574e-10 -1.584e-15 -3.026e-10 3.527e-13 - 1.574e-10 4.124e-01 6.128e-06 2.455e+00 1.851e-02 - -1.584e-15 6.128e-06 4.383e-06 6.343e-05 5.049e-07 - -3.026e-10 2.455e+00 6.343e-05 4.133e+01 2.070e-01 - 3.527e-13 1.851e-02 5.049e-07 2.070e-01 1.478e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00024 1.000 0.000 -0.000 -0.000 0.000 - 2 0.75224 0.000 1.000 0.005 0.595 0.750 - 3 0.00636 -0.000 0.005 1.000 0.005 0.006 - 4 0.83906 -0.000 0.595 0.005 1.000 0.838 - 5 0.89415 0.000 0.750 0.006 0.838 1.000 -650 -650 +- 0.0182843 -21.4609 +- 0.641983 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10353.9 FROM MIGRAD STATUS=INITIATE 80 CALLS 81 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.49972e+02 9.00000e+00 0.00000e+00 -3.38302e+01 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 1.33664e+02 - 3 sg_p2 6.49999e+02 1.50000e+01 0.00000e+00 -3.20039e-01 - 4 sg_p3 4.45271e+01 1.20000e+01 -4.38463e-01 -2.07423e-02 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -1.51988e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10342.9 FROM MIGRAD STATUS=CONVERGED 189 CALLS 190 TOTAL - EDM=3.70488e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.50000e+02 2.03479e-02 2.11149e-03** at limit ** - 2 sg_p1 2.19227e+01 6.48242e-01 1.90022e-03 -1.27252e-01 - 3 sg_p2 6.50000e+02 1.19398e+00 1.24007e-02** at limit ** - 4 sg_p3 5.33695e+01 7.75365e+00 5.12507e-03 -4.78312e-02 - 5 sg_p4 9.02088e-01 3.57133e-02 8.36019e-03 4.34979e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.234e-10 1.014e-08 -1.058e-12 -4.315e-09 9.944e-11 - 1.014e-08 4.204e-01 1.012e-04 2.912e+00 1.700e-02 - -1.058e-12 1.012e-04 5.221e-05 1.288e-03 8.107e-06 - -4.315e-09 2.912e+00 1.288e-03 6.049e+01 2.345e-01 - 9.944e-11 1.700e-02 8.107e-06 2.345e-01 1.304e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00113 1.000 0.001 -0.000 -0.000 0.000 - 2 0.72806 0.001 1.000 0.022 0.577 0.726 - 3 0.03161 -0.000 0.022 1.000 0.023 0.031 - 4 0.83617 -0.000 0.577 0.023 1.000 0.835 - 5 0.88699 0.000 0.726 0.031 0.835 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10342.9 FROM HESSE STATUS=OK 31 CALLS 221 TOTAL - EDM=3.65925e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.50000e+02 2.03480e-02 4.22297e-04 1.57078e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 sg_p1 2.19227e+01 6.50158e-01 3.80043e-04 -9.57392e-02 - 3 sg_p2 6.50000e+02 1.19307e+00 2.48014e-03 1.57134e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 5.33695e+01 7.80905e+00 2.05003e-04 -2.80852e-01 - 5 sg_p4 9.02088e-01 3.59600e-02 1.67204e-03 3.54640e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.234e-10 1.922e-09 -5.339e-14 -9.335e-10 1.841e-11 - 1.922e-09 4.229e-01 2.702e-05 2.958e+00 1.722e-02 - -5.339e-14 2.702e-05 5.217e-05 3.453e-04 2.166e-06 - -9.335e-10 2.958e+00 3.453e-04 6.136e+01 2.386e-01 - 1.841e-11 1.722e-02 2.166e-06 2.386e-01 1.322e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00022 1.000 0.000 -0.000 -0.000 0.000 - 2 0.72996 0.000 1.000 0.006 0.581 0.728 - 3 0.00839 -0.000 0.006 1.000 0.006 0.008 - 4 0.83871 -0.000 0.581 0.006 1.000 0.838 - 5 0.88867 0.000 0.728 0.008 0.838 1.000 -650 -650 +- 0.020348 -21.9227 +- 0.650158 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11888.7 FROM MIGRAD STATUS=INITIATE 80 CALLS 81 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.49914e+02 9.00000e+00 0.00000e+00 -6.82601e+01 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 1.48309e+02 - 3 sg_p2 6.49999e+02 1.50000e+01 0.00000e+00 -3.99059e-01 - 4 sg_p3 4.46355e+01 1.20000e+01 -4.36469e-01 -2.16258e-01 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -1.69494e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11875.1 FROM MIGRAD STATUS=CONVERGED 189 CALLS 190 TOTAL - EDM=4.23148e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.50000e+02 1.77338e-02 2.11221e-03** at limit ** - 2 sg_p1 2.19855e+01 6.05458e-01 1.90519e-03 -1.38620e-01 - 3 sg_p2 6.50000e+02 1.06015e+00 1.25262e-02** at limit ** - 4 sg_p3 5.36334e+01 7.33056e+00 5.16765e-03 -5.62178e-02 - 5 sg_p4 9.02830e-01 3.32252e-02 8.34638e-03 5.03701e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 5.580e-10 1.247e-08 -1.236e-12 -3.833e-09 1.281e-10 - 1.247e-08 3.667e-01 8.771e-05 2.567e+00 1.472e-02 - -1.236e-12 8.771e-05 4.483e-05 1.134e-03 7.012e-06 - -3.833e-09 2.567e+00 1.134e-03 5.403e+01 2.060e-01 - 1.281e-10 1.472e-02 7.012e-06 2.060e-01 1.125e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00113 1.000 0.001 -0.000 -0.000 0.000 - 2 0.72667 0.001 1.000 0.022 0.577 0.725 - 3 0.03177 -0.000 0.022 1.000 0.023 0.031 - 4 0.83644 -0.000 0.577 0.023 1.000 0.835 - 5 0.88683 0.000 0.725 0.031 0.835 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11875.1 FROM HESSE STATUS=OK 31 CALLS 221 TOTAL - EDM=4.17857e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.50000e+02 1.77339e-02 4.22443e-04 1.57078e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 sg_p1 2.19855e+01 6.07305e-01 3.81037e-04 -9.19155e-02 - 3 sg_p2 6.50000e+02 1.05933e+00 2.50525e-03 1.57133e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 5.36334e+01 7.38443e+00 2.06706e-04 -2.76278e-01 - 5 sg_p4 9.02830e-01 3.34620e-02 1.66928e-03 3.59921e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 5.580e-10 2.310e-09 -6.277e-14 -8.650e-10 2.316e-11 - 2.310e-09 3.690e-01 2.329e-05 2.608e+00 1.491e-02 - -6.277e-14 2.329e-05 4.479e-05 3.022e-04 1.863e-06 - -8.650e-10 2.608e+00 3.022e-04 5.483e+01 2.097e-01 - 2.316e-11 1.491e-02 1.863e-06 2.097e-01 1.142e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00021 1.000 0.000 -0.000 -0.000 0.000 - 2 0.72864 0.000 1.000 0.006 0.580 0.727 - 3 0.00839 -0.000 0.006 1.000 0.006 0.008 - 4 0.83905 -0.000 0.580 0.006 1.000 0.838 - 5 0.88856 0.000 0.727 0.008 0.838 1.000 -650 -650 +- 0.0177339 -21.9855 +- 0.607305 -35.9 fb^{-1} (13 TeV) -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 17 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 18 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 20 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 21 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 22 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 23 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 24 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 26 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 31 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 35 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 41 has zero error, setting residual to zero - Uncertainty on sg_p0 = 650 +- 0.0189845 (stat) - 1.56965e-07 + 8.69034e-09 (syst); -0.00949226/+0.00949226 (total) - Uncertainty on sg_p1 = 21.9547 +- 0.628139 (stat) - 1.34059 + 0.54216 (syst); -1.37689/+0.62656 (total) - Uncertainty on sg_p2 = 650 +- 1.12399 (stat) - 0 + 1.14208e-05 (syst); -0.561993/+0.561993 (total) - Uncertainty on sg_p3 = 53.5044 +- 7.59176 (stat) - 9.66364 + 0.356475 (syst); -10.3824/+3.81258 (total) - Uncertainty on sg_p4 = 0.902474 +- 0.0346722 (stat) - 0.0585604 + 0.00172451 (syst); -0.0610726/+0.0174217 (total) - === Baseline plot ===
- norm = 1859.61 -JEC lnN 1.0047 - -JER lnN 1.01327 - -btag lnN 1.06919 - -sg_p0 param 650 -0.00949226/+0.00949226 -sg_p1 param 21.9547 -1.37689/+0.62656 -sg_p2 param 650 -0.561993/+0.561993 -sg_p3 param 53.5044 -10.3824/+3.81258 -sg_p4 param 0.902474 -0.0610726/+0.0174217 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_650_novo_285_624/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_650_novo_285_624/data_bkg.log deleted file mode 100644 index 3cc1900..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_650_novo_285_624/data_bkg.log +++ /dev/null @@ -1,750 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [252,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=62921.6 FROM MIGRAD STATUS=INITIATE 90 CALLS 91 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.21879e-02 5.09000e-01 0.00000e+00 -9.80911e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -1.28354e+01 - 3 par_crystal_2 2.65669e+02 4.00000e+00 0.00000e+00 3.55320e+02 - 4 par_crystal_3 1.06488e+01 2.70000e+00 -4.48284e-01 -2.33576e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62883.4 FROM HESSE STATUS=OK 29 CALLS 257 TOTAL - EDM=4.91113 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.66060e-01 4.16121e-03 3.52377e-04 -4.74293e+00 - 2 par_crystal_1 4.45375e+00 2.73731e+00 1.77223e-01 2.66184e-01 - 3 par_crystal_2 2.67385e+02 2.04373e-01 8.29600e-04 2.81454e+02 - 4 par_crystal_3 1.36851e+01 5.38888e-01 1.69331e-03 -1.62103e+00 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=62883.3 FROM MIGRAD STATUS=FAILED 358 CALLS 359 TOTAL - EDM=0.00753244 STRATEGY= 1 ERR MATRIX APPROXIMATE - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.65093e-01 8.39913e-03 1.31861e-03 5.42788e+00 - 2 par_crystal_1 5.09910e+00 4.33634e+00 3.39194e-01 -6.59950e-03 - 3 par_crystal_2 2.67339e+02 1.86486e-01 3.32550e-03 -8.58879e+00 - 4 par_crystal_3 1.37140e+01 6.01780e-01 6.34807e-03 1.69258e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.055e-05 1.617e-04 4.699e-04 2.892e-03 - 1.617e-04 1.762e-02 -1.356e-04 -1.108e-03 - 4.699e-04 -1.356e-04 3.478e-02 3.255e-02 - 2.892e-03 -1.108e-03 3.255e-02 3.624e-01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.60853 1.000 0.145 0.300 0.572 - 2 0.19009 0.145 1.000 -0.005 -0.014 - 3 0.33449 0.300 -0.005 1.000 0.290 - 4 0.59243 0.572 -0.014 0.290 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7660e-01 8.1807e-01 1.6519e+00 1.7066e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.178308 TO DIAGONAL. - FCN=62883.3 FROM HESSE STATUS=NOT POSDEF 33 CALLS 392 TOTAL - EDM=3.36849 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.65093e-01 8.70034e-02 2.63722e-04 -1.21988e+00 - 2 par_crystal_1 5.09910e+00 4.18121e+00 5.00000e-01 1.54425e+00 - 3 par_crystal_2 2.67339e+02 5.27040e+00 9.57407e-02 3.75715e-01 - 4 par_crystal_3 1.37140e+01 6.68546e+00 2.53923e-04 -2.07863e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.595e-03 -2.994e-03 4.642e-01 6.089e-01 - -2.994e-03 1.536e-02 -1.944e-01 -2.569e-01 - 4.642e-01 -1.944e-01 2.855e+01 3.736e+01 - 6.089e-01 -2.569e-01 3.736e+01 4.914e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99751 1.000 -0.277 0.997 0.997 - 2 0.37560 -0.277 1.000 -0.293 -0.296 - 3 0.99795 0.997 -0.293 1.000 0.997 - 4 0.99797 0.997 -0.296 0.997 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=62983.1 FROM MIGRAD STATUS=INITIATE 29 CALLS 30 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 6.05383e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -1.33666e+02 - 3 par_gaus_exp_2 3.19008e-01 3.05000e-01 -9.67731e-01 -3.33619e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.00383 added to diagonal of error matrix - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62882.7 FROM MIGRAD STATUS=CONVERGED 228 CALLS 229 TOTAL - EDM=4.4408e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.69095e+02 7.01852e-01 4.07755e-03 2.89794e-02 - 2 par_gaus_exp_1 1.61044e+01 1.09719e+00 7.43010e-03 -1.84784e-02 - 3 par_gaus_exp_2 1.90527e-01 1.58774e-02 1.98778e-03 -6.23432e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 4.929e-01 5.914e-01 9.067e-03 - 5.914e-01 1.207e+00 1.483e-02 - 9.067e-03 1.483e-02 2.521e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.82590 1.000 0.767 0.813 - 2 0.85979 0.767 1.000 0.850 - 3 0.88644 0.813 0.850 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=62882.7 FROM HESSE STATUS=OK 16 CALLS 245 TOTAL - EDM=4.28199e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.69095e+02 6.86832e-01 1.63102e-04 -5.76704e-01 - 2 par_gaus_exp_1 1.61044e+01 1.07335e+00 2.97204e-04 -5.72398e-01 - 3 par_gaus_exp_2 1.90527e-01 1.55212e-02 7.95110e-05 -1.13813e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 4.720e-01 5.579e-01 8.580e-03 - 5.579e-01 1.155e+00 1.406e-02 - 8.580e-03 1.406e-02 2.410e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.81734 1.000 0.756 0.805 - 2 0.85292 0.756 1.000 0.843 - 3 0.88081 0.805 0.843 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,624] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.3296 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.3296) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=286.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=286.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=289.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=289.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=295.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=295.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=298.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=298.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - p.d.f normalization integral is zero or negative @ x=x=301.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - getLogVal() top-level p.d.f evaluates to zero @ x=x=301.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.3296 - ... (remaining 216 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.733611 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.733611) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=313.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=316.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=319.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=325.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=328.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=331.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=334.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=340.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=343.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - getLogVal() top-level p.d.f evaluates to zero @ x=x=346.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.733611 - ... (remaining 94 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (312278) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0733618 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0733618 - - FCN=103426 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57146e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.55551e+03 - 3 par_novo_2 -1.33526e+00 2.00000e+01 0.00000e+00 1.53308e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103192 FROM MIGRAD STATUS=CONVERGED 126 CALLS 127 TOTAL - EDM=1.07924e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.17697e+01 1.69443e-01** at limit ** - 2 par_novo_1 3.87878e+01 2.27475e+00 4.96100e-03 -6.14249e-02 - 3 par_novo_2 -1.26766e+00 7.00630e-02 3.67886e-05 3.77179e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 2.244e-10 -2.632e-07 -1.276e-07 - -2.632e-07 5.190e+00 1.540e-01 - -1.276e-07 1.540e-01 4.909e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.43392 1.000 -0.008 -0.122 - 2 0.97109 -0.008 1.000 0.965 - 3 0.97152 -0.122 0.965 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103192 FROM HESSE STATUS=OK 20 CALLS 147 TOTAL - EDM=1.23299e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.15107e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.87878e+01 2.30410e+00 1.98440e-04 4.51799e-01 - 3 par_novo_2 -1.26766e+00 7.13892e-02 1.47154e-06 -1.26769e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 2.143e-10 3.996e-06 -2.087e-07 - 3.996e-06 5.325e+00 1.518e-01 - -2.087e-07 1.518e-01 5.096e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.80390 1.000 0.118 -0.200 - 2 0.97183 0.118 1.000 0.922 - 3 0.97258 -0.200 0.922 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107617 FROM MIGRAD STATUS=INITIATE 36 CALLS 37 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 6.60405e+03 - 2 par_crystal_1_1 7.90153e-02 5.09000e-01 -1.80421e+00 3.05679e+03 - 3 par_crystal_1_2 2.60000e+02 4.00000e+00 0.00000e+00 1.48888e+03 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 6.99071e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.17529 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.7903e-03 5.8606e-02 5.0897e-01 3.4352e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.006225 TO DIAGONAL. - FCN=103191 FROM MIGRAD STATUS=CONVERGED 353 CALLS 354 TOTAL - EDM=3.7306e-06 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.37913e-01 3.41139e-02 6.19492e-04 4.10204e-01 - 2 par_crystal_1_1 4.44737e+00 5.69760e-01 2.21494e-02 9.88736e-03 - 3 par_crystal_1_2 2.79979e+02 3.40482e+01 2.79535e-01 -2.97577e-04 - 4 par_crystal_1_3 1.87584e+01 2.98857e+00 3.96232e-03 -6.40797e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.164e-03 3.582e-03 3.594e-03 9.898e-02 - 3.582e-03 3.375e-01 -1.052e-02 7.382e-01 - 3.594e-03 -1.052e-02 3.148e+00 6.243e-01 - 9.898e-02 7.382e-01 6.243e-01 9.086e+00 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99630 1.000 0.181 0.059 0.962 - 2 0.95650 0.181 1.000 -0.010 0.422 - 3 0.63948 0.059 -0.010 1.000 0.117 - 4 0.99690 0.962 0.422 0.117 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103191 FROM HESSE STATUS=OK 27 CALLS 381 TOTAL - EDM=6.06842e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 2.37913e-01 2.12502e-01 1.23898e-04 -8.36786e+01 - 2 par_crystal_1_1 4.44737e+00 5.06952e-01 8.85975e-04 -1.65463e+01 - 3 par_crystal_1_2 2.79979e+02 2.96341e+01 5.00000e-01 7.80831e+00 - 4 par_crystal_1_3 1.87584e+01 1.90925e+01 1.58493e-04 2.18231e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.578e-02 1.663e-02 2.427e-02 3.730e+00 - 1.663e-02 2.650e-01 -4.299e-02 1.684e+00 - 2.427e-02 -4.299e-02 1.850e+00 2.341e+00 - 3.730e+00 1.684e+00 2.341e+00 3.045e+02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99991 1.000 0.151 0.083 0.999 - 2 0.94385 0.151 1.000 -0.061 0.187 - 3 0.80384 0.083 -0.061 1.000 0.099 - 4 0.99991 0.999 0.187 0.099 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [252,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,624] --> [285,624] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 13889.7 - Background number of gaus_exp_252_330 = 13889.7 - Background number of novo_285_624 = 17637.2 - Background number of crystal_1_285_624 = 17637.2 - Background number of gaus_bern_285_624 = 17637.2 - Background number of landau_285_624 = 17637.2 -par_crystal_0 param 0.165093 0.0870034 -par_crystal_1 param 5.0991 4.18121 -par_crystal_2 param 267.339 5.2704 -par_crystal_3 param 13.714 6.68546 -par_crystal_1_0 param 0.237913 0.212502 -par_crystal_1_1 param 4.44737 0.506952 -par_crystal_1_2 param 279.979 29.6341 -par_crystal_1_3 param 18.7584 19.0925 -par_gaus_exp_0 param 269.095 0.686832 -par_gaus_exp_1 param 16.1044 1.07335 -par_gaus_exp_2 param 0.190527 0.0155212 -par_novo_0 param 250 31.5107 -par_novo_1 param 38.7878 2.3041 -par_novo_2 param -1.26766 0.0713892 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_650_novo_285_624/datacard_650_novo_285_624.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_650_novo_285_624/datacard_650_novo_285_624.txt deleted file mode 100644 index 820050a..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_650_novo_285_624/datacard_650_novo_285_624.txt +++ /dev/null @@ -1,30 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_650.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_novo_285_624.root HbbHbb:f_novo -shapes data_obs HbbHbb w_background_novo_285_624.root HbbHbb:data_obs_novo_285_624 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 1859.61 17637.2 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06919 - -JER lnN 1.01327 - -JEC lnN 1.0047 - -trigger lnN 1.10 - -PDF lnN 1.02353914841 - -sg_p0 param 650 -0.00949226/+0.00949226 -sg_p1 param 21.9547 -1.37689/+0.62656 -sg_p2 param 650 -0.561993/+0.561993 -sg_p3 param 53.5044 -10.3824/+3.81258 -sg_p4 param 0.902474 -0.0610726/+0.0174217 -par_novo_0 param 250 31.5107 -par_novo_1 param 38.7878 2.3041 -par_novo_2 param -1.26766 0.0713892 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_650_novo_285_624/pdf.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_650_novo_285_624/pdf.log deleted file mode 100644 index aa6e6c7..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_650_novo_285_624/pdf.log +++ /dev/null @@ -1,10 +0,0 @@ -[?1034h FCN=15.5092 FROM MIGRAD STATUS=CONVERGED 78 CALLS 79 TOTAL - EDM=7.02832e-09 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 Constant 1.26172e+01 1.73351e+00 2.72316e-03 -7.30163e-05 - 2 Mean 1.00012e+00 3.19011e-03 6.31280e-06 1.69814e-02 - 3 Sigma 2.35391e-02 3.03053e-03 7.58042e-05 -1.28772e-03 -1.00012141421 +/- 0.00319010963973 -0.0235391484052 +/- 0.00303053171895 -PDF lnN 1.02353914841 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_650_novo_285_624/signal650_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_650_novo_285_624/signal650_sig.log deleted file mode 100644 index 1f5e75e..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/3GeV/LMR_650_novo_285_624/signal650_sig.log +++ /dev/null @@ -1,883 +0,0 @@ - -Processing test.c... -nSignal_init = 49200 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=13508.9 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 2.01358e-01 -2.87056e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 -1.46321e+03 - 3 sg_p2 5.75000e+02 1.50000e+01 2.01358e-01 -5.56470e+02 - 4 sg_p3 7.00000e+01 1.20000e+01 2.01358e-01 -3.42658e+02 - 5 sg_p4 8.50000e-01 3.00000e-02 2.01358e-01 2.11139e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12287.8 FROM MIGRAD STATUS=CONVERGED 597 CALLS 598 TOTAL - EDM=4.72558e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.31550e+02 1.07438e+00 1.68730e-03 -2.23582e-01 - 2 sg_p1 3.53137e+01 1.11870e+00 4.47963e-03 6.27366e-02 - 3 sg_p2 5.77635e+02 4.62466e+01 1.24400e-02 1.02159e-02 - 4 sg_p3 6.47572e+01 2.35273e+01 1.70525e-02 -3.15130e-03 - 5 sg_p4 9.66896e-01 3.39852e-02 6.34455e-03 -3.92355e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.155e+00 -4.604e-01 -1.111e+01 1.243e+01 -1.676e-02 - -4.604e-01 1.255e+00 2.645e+01 -9.584e+00 2.747e-02 - -1.111e+01 2.645e+01 2.484e+03 4.016e+02 1.548e+00 - 1.243e+01 -9.584e+00 4.016e+02 5.848e+02 -3.604e-02 - -1.676e-02 2.747e-02 1.548e+00 -3.604e-02 1.209e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.66627 1.000 -0.382 -0.207 0.478 -0.449 - 2 0.79846 -0.382 1.000 0.474 -0.354 0.705 - 3 0.96990 -0.207 0.474 1.000 0.333 0.893 - 4 0.84189 0.478 -0.354 0.333 1.000 -0.043 - 5 0.97425 -0.449 0.705 0.893 -0.043 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12287.8 FROM HESSE STATUS=OK 31 CALLS 629 TOTAL - EDM=4.61535e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.31550e+02 1.06668e+00 3.37461e-04 6.31053e-01 - 2 sg_p1 3.53137e+01 1.12240e+00 1.79185e-04 7.98026e-01 - 3 sg_p2 5.77635e+02 4.57102e+01 2.48799e-03 3.10645e+00 - 4 sg_p3 6.47572e+01 2.27278e+01 6.82099e-04 3.22908e+00 - 5 sg_p4 9.66896e-01 3.40601e-02 1.26891e-03 8.93554e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.138e+00 -4.570e-01 -1.213e+01 1.173e+01 -1.703e-02 - -4.570e-01 1.264e+00 2.725e+01 -9.434e+00 2.793e-02 - -1.213e+01 2.725e+01 2.417e+03 3.349e+02 1.539e+00 - 1.173e+01 -9.434e+00 3.349e+02 5.436e+02 -5.744e-02 - -1.703e-02 2.793e-02 1.539e+00 -5.744e-02 1.215e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.66019 1.000 -0.381 -0.231 0.472 -0.458 - 2 0.79995 -0.381 1.000 0.493 -0.360 0.713 - 3 0.96905 -0.231 0.493 1.000 0.292 0.898 - 4 0.82847 0.472 -0.360 0.292 1.000 -0.071 - 5 0.97437 -0.458 0.713 0.898 -0.071 1.000 -650 -631.55 +- 1.06668 -35.3137 +- 1.1224 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=13608.2 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 2.01358e-01 -3.05846e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 -1.60421e+03 - 3 sg_p2 5.75000e+02 1.50000e+01 2.01358e-01 -6.11096e+02 - 4 sg_p3 7.00000e+01 1.20000e+01 2.01358e-01 -3.92754e+02 - 5 sg_p4 8.50000e-01 3.00000e-02 2.01358e-01 2.53615e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12183.3 FROM MIGRAD STATUS=CONVERGED 366 CALLS 367 TOTAL - EDM=4.73777e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.34937e+02 1.20416e+00 1.88745e-03 1.06307e-02 - 2 sg_p1 3.54255e+01 1.33397e+00 4.75405e-03 -6.42739e-03 - 3 sg_p2 5.82190e+02 3.67116e+01 1.00364e-02 4.55135e-03 - 4 sg_p3 6.30056e+01 1.66588e+01 1.25710e-02 4.37361e-03 - 5 sg_p4 9.54564e-01 4.17481e-02 6.34242e-03 8.71212e-04 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.451e+00 -7.734e-01 -1.793e+01 -1.063e+01 -3.042e-02 - -7.734e-01 1.788e+00 3.000e+01 1.060e+01 4.484e-02 - -1.793e+01 3.000e+01 1.473e+03 -4.482e+01 1.490e+00 - -1.063e+01 1.060e+01 -4.482e+01 2.851e+02 1.993e-01 - -3.042e-02 4.484e-02 1.490e+00 1.993e-01 1.838e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.72232 1.000 -0.480 -0.388 -0.523 -0.589 - 2 0.84648 -0.480 1.000 0.585 0.469 0.782 - 3 0.96726 -0.388 0.585 1.000 -0.069 0.905 - 4 0.81721 -0.523 0.469 -0.069 1.000 0.275 - 5 0.97806 -0.589 0.782 0.905 0.275 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12183.3 FROM HESSE STATUS=OK 31 CALLS 398 TOTAL - EDM=4.49878e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.34937e+02 1.17331e+00 7.54981e-05 7.27855e-01 - 2 sg_p1 3.54255e+01 1.28807e+00 1.90162e-04 8.07781e-01 - 3 sg_p2 5.82190e+02 3.82291e+01 2.00727e-03 3.04558e+00 - 4 sg_p3 6.30056e+01 1.76697e+01 5.02840e-04 -1.16840e-01 - 5 sg_p4 9.54564e-01 4.07959e-02 2.53697e-04 7.71340e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.377e+00 -6.709e-01 -1.351e+01 -1.025e+01 -2.563e-02 - -6.709e-01 1.666e+00 2.684e+01 9.073e+00 4.040e-02 - -1.351e+01 2.684e+01 1.611e+03 -1.944e+02 1.503e+00 - -1.025e+01 9.073e+00 -1.944e+02 3.218e+02 7.926e-02 - -2.563e-02 4.040e-02 1.503e+00 7.926e-02 1.751e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.70445 1.000 -0.443 -0.287 -0.487 -0.522 - 2 0.83419 -0.443 1.000 0.518 0.392 0.748 - 3 0.97010 -0.287 0.518 1.000 -0.270 0.895 - 4 0.84000 -0.487 0.392 -0.270 1.000 0.106 - 5 0.97695 -0.522 0.748 0.895 0.106 1.000 -650 -634.937 +- 1.17331 -35.4255 +- 1.28807 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=13336.9 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 2.01358e-01 -2.61029e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 -1.30706e+03 - 3 sg_p2 5.75000e+02 1.50000e+01 2.01358e-01 -4.94508e+02 - 4 sg_p3 7.00000e+01 1.20000e+01 2.01358e-01 -2.82439e+02 - 5 sg_p4 8.50000e-01 3.00000e-02 2.01358e-01 1.69237e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 5 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 2.26189 added to diagonal of error matrix - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -3.9054e-01 1.0008e+00 1.0126e+00 1.3098e+00 2.0673e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 0.392608 TO DIAGONAL. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12331.2 FROM MIGRAD STATUS=CONVERGED 434 CALLS 435 TOTAL - EDM=9.27116e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.29363e+02 1.94289e+00 1.61110e-03 -6.12714e-02 - 2 sg_p1 3.39915e+01 1.39941e+00 4.02767e-03 1.41131e-02 - 3 sg_p2 5.86998e+02 3.80498e+01 5.91384e-03 1.10012e-02 - 4 sg_p3 4.52433e+01 9.31868e+00 5.76920e-03 6.15069e-03 - 5 sg_p4 9.32822e-01 8.73169e-02 7.58377e-03 -1.49983e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.778e+00 -2.106e+00 -5.004e+01 -2.088e+00 -1.541e-01 - -2.106e+00 1.966e+00 3.539e+01 6.357e-01 1.083e-01 - -5.004e+01 3.539e+01 1.597e+03 -2.131e+02 3.640e+00 - -2.088e+00 6.357e-01 -2.131e+02 8.769e+01 -2.781e-01 - -1.541e-01 1.083e-01 3.640e+00 -2.781e-01 9.342e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.91269 1.000 -0.773 -0.644 -0.115 -0.820 - 2 0.87908 -0.773 1.000 0.631 0.048 0.799 - 3 0.98973 -0.644 0.631 1.000 -0.569 0.942 - 4 0.89773 -0.115 0.048 -0.569 1.000 -0.307 - 5 0.99185 -0.820 0.799 0.942 -0.307 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12331.2 FROM HESSE STATUS=OK 31 CALLS 466 TOTAL - EDM=1.05015e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.29363e+02 1.77740e+00 3.22219e-04 5.72091e-01 - 2 sg_p1 3.39915e+01 1.30671e+00 1.61107e-04 6.89109e-01 - 3 sg_p2 5.86998e+02 4.00071e+01 2.36554e-04 2.98093e+00 - 4 sg_p3 4.52433e+01 1.08302e+01 2.30768e-04 -4.25319e-01 - 5 sg_p4 9.32822e-01 8.54732e-02 1.51675e-03 5.84938e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.161e+00 -1.710e+00 -4.134e+01 -1.168e+00 -1.264e-01 - -1.710e+00 1.714e+00 3.071e+01 -2.615e-01 9.187e-02 - -4.134e+01 3.071e+01 1.786e+03 -3.269e+02 3.736e+00 - -1.168e+00 -2.615e-01 -3.269e+02 1.189e+02 -4.766e-01 - -1.264e-01 9.187e-02 3.736e+00 -4.766e-01 8.856e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.89467 1.000 -0.735 -0.550 -0.060 -0.756 - 2 0.85981 -0.735 1.000 0.555 -0.018 0.746 - 3 0.99083 -0.550 0.555 1.000 -0.709 0.939 - 4 0.92564 -0.060 -0.018 -0.709 1.000 -0.465 - 5 0.99140 -0.756 0.746 0.939 -0.465 1.000 -650 -629.363 +- 1.7774 -33.9915 +- 1.30671 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11100.7 FROM MIGRAD STATUS=INITIATE 80 CALLS 81 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.49976e+02 9.00000e+00 0.00000e+00 -3.31148e+01 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 1.41635e+02 - 3 sg_p2 6.49999e+02 1.50000e+01 0.00000e+00 -3.52712e-01 - 4 sg_p3 4.45955e+01 1.20000e+01 -4.37204e-01 -1.45659e-01 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -1.61763e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11089.2 FROM MIGRAD STATUS=CONVERGED 189 CALLS 190 TOTAL - EDM=4.42251e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.50000e+02 1.89844e-02 2.11173e-03** at limit ** - 2 sg_p1 2.19547e+01 6.26260e-01 1.90248e-03 -1.39894e-01 - 3 sg_p2 6.50000e+02 1.12485e+00 1.24593e-02** at limit ** - 4 sg_p3 5.35044e+01 7.53715e+00 5.15003e-03 -5.48748e-02 - 5 sg_p4 9.02474e-01 3.44307e-02 8.35217e-03 4.98005e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 6.624e-10 1.398e-08 -1.474e-12 -5.092e-09 1.406e-10 - 1.398e-08 3.924e-01 9.759e-05 2.732e+00 1.581e-02 - -1.474e-12 9.759e-05 5.173e-05 1.252e-03 7.811e-06 - -5.092e-09 2.732e+00 1.252e-03 5.713e+01 2.196e-01 - 1.406e-10 1.581e-02 7.811e-06 2.196e-01 1.210e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00112 1.000 0.001 -0.000 -0.000 0.000 - 2 0.72732 0.001 1.000 0.022 0.577 0.725 - 3 0.03176 -0.000 0.022 1.000 0.023 0.031 - 4 0.83627 -0.000 0.577 0.023 1.000 0.835 - 5 0.88688 0.000 0.725 0.031 0.835 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11089.2 FROM HESSE STATUS=OK 31 CALLS 221 TOTAL - EDM=4.36793e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.50000e+02 1.89845e-02 4.22346e-04 1.57078e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 sg_p1 2.19547e+01 6.28139e-01 3.80496e-04 -9.37931e-02 - 3 sg_p2 6.50000e+02 1.12399e+00 2.49187e-03 1.57135e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 5.35044e+01 7.59176e+00 2.06001e-04 -2.78513e-01 - 5 sg_p4 9.02474e-01 3.46722e-02 1.67043e-03 3.57388e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 6.624e-10 2.583e-09 -7.268e-14 -1.074e-09 2.545e-11 - 2.583e-09 3.948e-01 2.619e-05 2.775e+00 1.601e-02 - -7.268e-14 2.619e-05 5.169e-05 3.372e-04 2.097e-06 - -1.074e-09 2.775e+00 3.372e-04 5.797e+01 2.235e-01 - 2.545e-11 1.601e-02 2.097e-06 2.235e-01 1.227e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00021 1.000 0.000 -0.000 -0.000 0.000 - 2 0.72925 0.000 1.000 0.006 0.580 0.727 - 3 0.00847 -0.000 0.006 1.000 0.006 0.008 - 4 0.83884 -0.000 0.580 0.006 1.000 0.838 - 5 0.88859 0.000 0.727 0.008 0.838 1.000 -650 -650 +- 0.0189845 -21.9547 +- 0.628139 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10989.9 FROM MIGRAD STATUS=INITIATE 82 CALLS 83 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.49981e+02 9.00000e+00 0.00000e+00 -3.26253e+01 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 1.05547e+02 - 3 sg_p2 6.50000e+02 1.50000e+01 0.00000e+00** at limit ** - 4 sg_p3 4.52220e+01 1.20000e+01 -4.25709e-01 -2.16544e-01 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -1.30632e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10983 FROM MIGRAD STATUS=CONVERGED 188 CALLS 189 TOTAL - EDM=6.98216e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.50000e+02 1.75977e-02 2.02403e-03** at limit ** - 2 sg_p1 2.24968e+01 6.83255e-01 1.97163e-03 -2.42215e-01 - 3 sg_p2 6.50000e+02 1.00518e+00 1.16864e-02** at limit ** - 4 sg_p3 5.38609e+01 8.09997e+00 5.22641e-03 -7.25959e-02 - 5 sg_p4 9.04199e-01 3.73923e-02 8.57345e-03 6.68076e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.162e-10 9.099e-09 -3.513e-14 -1.065e-10 1.081e-10 - 9.099e-09 4.671e-01 8.095e-06 3.376e+00 1.946e-02 - -3.513e-14 8.095e-06 3.071e-07 1.055e-04 6.207e-07 - -1.065e-10 3.376e+00 1.055e-04 6.604e+01 2.615e-01 - 1.081e-10 1.946e-02 6.207e-07 2.615e-01 1.433e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00119 1.000 0.001 -0.000 -0.000 0.000 - 2 0.75475 0.001 1.000 0.021 0.608 0.752 - 3 0.02982 -0.000 0.021 1.000 0.023 0.030 - 4 0.85148 -0.000 0.608 0.023 1.000 0.850 - 5 0.90043 0.000 0.752 0.030 0.850 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10983 FROM HESSE STATUS=OK 31 CALLS 220 TOTAL - EDM=6.97303e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.50000e+02 1.75977e-02 4.04806e-04 1.57081e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 sg_p1 2.24968e+01 6.85707e-01 3.94326e-04 -6.08350e-02 - 3 sg_p2 6.50000e+02 1.00444e+00 2.33727e-03 1.57075e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 5.38609e+01 8.16623e+00 2.09056e-04 -2.72339e-01 - 5 sg_p4 9.04199e-01 3.76884e-02 1.71469e-03 3.69689e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.162e-10 1.898e-09 -1.580e-15 -1.792e-10 2.195e-11 - 1.898e-09 4.705e-01 1.591e-06 3.436e+00 1.974e-02 - -1.580e-15 1.591e-06 3.069e-07 2.082e-05 1.221e-07 - -1.792e-10 3.436e+00 2.082e-05 6.714e+01 2.666e-01 - 2.195e-11 1.974e-02 1.221e-07 2.666e-01 1.456e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00025 1.000 0.000 -0.000 -0.000 0.000 - 2 0.75678 0.000 1.000 0.004 0.611 0.754 - 3 0.00582 -0.000 0.004 1.000 0.005 0.006 - 4 0.85409 -0.000 0.611 0.005 1.000 0.853 - 5 0.90212 0.000 0.754 0.006 0.853 1.000 -650 -650 +- 0.0175977 -22.4968 +- 0.685707 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11116.3 FROM MIGRAD STATUS=INITIATE 85 CALLS 86 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.49937e+02 9.00000e+00 0.00000e+00 -4.29903e+01 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 1.78823e+02 - 3 sg_p2 6.50000e+02 1.50000e+01 0.00000e+00 1.70769e-01 - 4 sg_p3 4.20694e+01 1.20000e+01 -4.84211e-01 8.96725e+00 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -1.70161e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11098.1 FROM MIGRAD STATUS=CONVERGED 198 CALLS 199 TOTAL - EDM=6.95645e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.50000e+02 2.30525e-02 2.32852e-03** at limit ** - 2 sg_p1 2.06141e+01 7.27095e-01 1.91751e-03 -1.78455e-02 - 3 sg_p2 6.50000e+02 5.67699e-01 8.96583e-03** at limit ** - 4 sg_p3 4.38408e+01 4.74866e+00 3.33807e-03 1.68221e-02 - 5 sg_p4 8.43914e-01 5.09939e-02 1.01808e-02 4.65599e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.079e-09 1.526e-08 -3.653e-13 -1.193e-07 -8.752e-10 - 1.526e-08 5.290e-01 4.594e-06 2.209e+00 3.042e-02 - -3.653e-13 4.594e-06 1.090e-07 2.852e-05 4.142e-07 - -1.193e-07 2.209e+00 2.852e-05 2.261e+01 2.103e-01 - -8.752e-10 3.042e-02 4.142e-07 2.103e-01 2.707e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00135 1.000 0.000 -0.000 -0.001 -0.000 - 2 0.80823 0.000 1.000 0.019 0.639 0.804 - 3 0.02454 -0.000 0.019 1.000 0.018 0.024 - 4 0.85317 -0.001 0.639 0.018 1.000 0.850 - 5 0.91509 -0.000 0.804 0.024 0.850 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11098.1 FROM HESSE STATUS=OK 31 CALLS 230 TOTAL - EDM=6.98393e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.50000e+02 2.30527e-02 4.65704e-04 1.57083e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 sg_p1 2.06141e+01 7.25563e-01 7.67004e-05 -1.75808e-01 - 3 sg_p2 6.50000e+02 5.67438e-01 1.79317e-03 1.57076e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 4.38408e+01 4.74709e+00 1.33523e-04 -4.51134e-01 - 5 sg_p4 8.43914e-01 5.09413e-02 4.07231e-04 -4.05850e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.079e-09 3.367e-09 -1.567e-14 -2.669e-08 -1.963e-10 - 3.367e-09 5.268e-01 8.847e-07 2.198e+00 3.029e-02 - -1.567e-14 8.847e-07 1.089e-07 5.498e-06 7.992e-08 - -2.669e-08 2.198e+00 5.498e-06 2.259e+01 2.099e-01 - -1.963e-10 3.029e-02 7.992e-08 2.099e-01 2.702e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00030 1.000 0.000 -0.000 -0.000 -0.000 - 2 0.80732 0.000 1.000 0.004 0.637 0.803 - 3 0.00474 -0.000 0.004 1.000 0.004 0.005 - 4 0.85306 -0.000 0.637 0.004 1.000 0.850 - 5 0.91490 -0.000 0.803 0.005 0.850 1.000 -650 -650 +- 0.0230527 -20.6141 +- 0.725563 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10944.8 FROM MIGRAD STATUS=INITIATE 77 CALLS 78 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.49942e+02 9.00000e+00 0.00000e+00 -4.99582e+01 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 1.21408e+02 - 3 sg_p2 6.49999e+02 1.50000e+01 0.00000e+00 -3.15963e-01 - 4 sg_p3 4.09782e+01 1.20000e+01 -5.04874e-01 -3.48354e+01 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -7.37019e+00 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10932.1 FROM MIGRAD STATUS=CONVERGED 199 CALLS 200 TOTAL - EDM=1.73549e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.50000e+02 1.97234e-02 2.13705e-03** at limit ** - 2 sg_p1 2.20280e+01 6.30629e-01 1.91154e-03 1.91770e-02 - 3 sg_p2 6.50000e+02 1.15642e+00 1.26706e-02** at limit ** - 4 sg_p3 5.38442e+01 7.62585e+00 5.23371e-03 -3.81562e-02 - 5 sg_p4 9.01968e-01 3.44467e-02 8.30135e-03 1.18530e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.307e-08 5.762e-08 -8.280e-13 -3.348e-08 5.240e-10 - 5.762e-08 3.979e-01 1.192e-05 2.762e+00 1.584e-02 - -8.280e-13 1.192e-05 8.864e-07 1.536e-04 9.534e-07 - -3.348e-08 2.762e+00 1.536e-04 5.849e+01 2.220e-01 - 5.240e-10 1.584e-02 9.534e-07 2.220e-01 1.211e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00104 1.000 0.001 -0.000 -0.000 0.000 - 2 0.72341 0.001 1.000 0.020 0.573 0.721 - 3 0.02963 -0.000 0.020 1.000 0.021 0.029 - 4 0.83506 -0.000 0.573 0.021 1.000 0.834 - 5 0.88553 0.000 0.721 0.029 0.834 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10932.1 FROM HESSE STATUS=OK 31 CALLS 231 TOTAL - EDM=1.74019e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.50000e+02 1.97235e-02 4.27410e-04 1.57071e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 sg_p1 2.20280e+01 6.32975e-01 7.64616e-05 -8.93298e-02 - 3 sg_p2 6.50000e+02 1.15565e+00 2.53411e-03 1.57087e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 5.38442e+01 7.69157e+00 2.09349e-04 -2.72628e-01 - 5 sg_p4 9.01968e-01 3.47361e-02 3.32054e-04 3.53784e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.307e-08 7.480e-09 -2.394e-14 -4.978e-09 6.545e-11 - 7.480e-09 4.009e-01 2.527e-06 2.817e+00 1.609e-02 - -2.394e-14 2.527e-06 8.858e-07 3.272e-05 2.022e-07 - -4.978e-09 2.817e+00 3.272e-05 5.951e+01 2.267e-01 - 6.545e-11 1.609e-02 2.022e-07 2.267e-01 1.232e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00014 1.000 0.000 -0.000 -0.000 0.000 - 2 0.72585 0.000 1.000 0.004 0.577 0.724 - 3 0.00624 -0.000 0.004 1.000 0.005 0.006 - 4 0.83815 -0.000 0.577 0.005 1.000 0.837 - 5 0.88759 0.000 0.724 0.006 0.837 1.000 -650 -650 +- 0.0197235 -22.028 +- 0.632975 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11266.8 FROM MIGRAD STATUS=INITIATE 82 CALLS 83 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.49945e+02 9.00000e+00 0.00000e+00 -5.09816e+01 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 1.59572e+02 - 3 sg_p2 6.50000e+02 1.50000e+01 0.00000e+00 -1.69501e-01 - 4 sg_p3 4.29297e+01 1.20000e+01 -4.68077e-01 -5.58269e+00 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -1.53081e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11251.6 FROM MIGRAD STATUS=CONVERGED 192 CALLS 193 TOTAL - EDM=6.51945e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.50000e+02 1.82842e-02 2.08842e-03** at limit ** - 2 sg_p1 2.14609e+01 6.40975e-01 1.89354e-03 -6.53789e-02 - 3 sg_p2 6.50000e+02 8.30067e-01 1.08933e-02** at limit ** - 4 sg_p3 5.04392e+01 6.38127e+00 4.50073e-03 -1.04974e-02 - 5 sg_p4 8.87574e-01 3.78194e-02 8.69382e-03 5.77855e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.336e-12 7.879e-10 -3.359e-14 -1.419e-09 2.261e-12 - 7.879e-10 4.111e-01 2.684e-05 2.430e+00 1.837e-02 - -3.359e-14 2.684e-05 4.386e-06 2.767e-04 2.208e-06 - -1.419e-09 2.430e+00 2.767e-04 4.089e+01 2.045e-01 - 2.261e-12 1.837e-02 2.208e-06 2.045e-01 1.464e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00119 1.000 0.001 -0.000 -0.000 0.000 - 2 0.75133 0.001 1.000 0.020 0.593 0.749 - 3 0.02792 -0.000 0.020 1.000 0.021 0.028 - 4 0.83716 -0.000 0.593 0.021 1.000 0.836 - 5 0.89303 0.000 0.749 0.028 0.836 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11251.6 FROM HESSE STATUS=OK 31 CALLS 224 TOTAL - EDM=6.57565e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.50000e+02 1.82843e-02 4.17684e-04 1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 sg_p1 2.14609e+01 6.41983e-01 3.78708e-04 -1.23899e-01 - 3 sg_p2 6.50000e+02 8.29559e-01 2.17866e-03 1.57098e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 5.04392e+01 6.41541e+00 1.80029e-04 -3.32084e-01 - 5 sg_p4 8.87574e-01 3.80027e-02 3.47753e-04 2.53193e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.336e-12 1.574e-10 -1.584e-15 -3.026e-10 3.527e-13 - 1.574e-10 4.124e-01 6.128e-06 2.455e+00 1.851e-02 - -1.584e-15 6.128e-06 4.383e-06 6.343e-05 5.049e-07 - -3.026e-10 2.455e+00 6.343e-05 4.133e+01 2.070e-01 - 3.527e-13 1.851e-02 5.049e-07 2.070e-01 1.478e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00024 1.000 0.000 -0.000 -0.000 0.000 - 2 0.75224 0.000 1.000 0.005 0.595 0.750 - 3 0.00636 -0.000 0.005 1.000 0.005 0.006 - 4 0.83906 -0.000 0.595 0.005 1.000 0.838 - 5 0.89415 0.000 0.750 0.006 0.838 1.000 -650 -650 +- 0.0182843 -21.4609 +- 0.641983 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10353.9 FROM MIGRAD STATUS=INITIATE 80 CALLS 81 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.49972e+02 9.00000e+00 0.00000e+00 -3.38302e+01 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 1.33664e+02 - 3 sg_p2 6.49999e+02 1.50000e+01 0.00000e+00 -3.20039e-01 - 4 sg_p3 4.45271e+01 1.20000e+01 -4.38463e-01 -2.07423e-02 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -1.51988e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10342.9 FROM MIGRAD STATUS=CONVERGED 189 CALLS 190 TOTAL - EDM=3.70488e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.50000e+02 2.03479e-02 2.11149e-03** at limit ** - 2 sg_p1 2.19227e+01 6.48242e-01 1.90022e-03 -1.27252e-01 - 3 sg_p2 6.50000e+02 1.19398e+00 1.24007e-02** at limit ** - 4 sg_p3 5.33695e+01 7.75365e+00 5.12507e-03 -4.78312e-02 - 5 sg_p4 9.02088e-01 3.57133e-02 8.36019e-03 4.34979e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.234e-10 1.014e-08 -1.058e-12 -4.315e-09 9.944e-11 - 1.014e-08 4.204e-01 1.012e-04 2.912e+00 1.700e-02 - -1.058e-12 1.012e-04 5.221e-05 1.288e-03 8.107e-06 - -4.315e-09 2.912e+00 1.288e-03 6.049e+01 2.345e-01 - 9.944e-11 1.700e-02 8.107e-06 2.345e-01 1.304e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00113 1.000 0.001 -0.000 -0.000 0.000 - 2 0.72806 0.001 1.000 0.022 0.577 0.726 - 3 0.03161 -0.000 0.022 1.000 0.023 0.031 - 4 0.83617 -0.000 0.577 0.023 1.000 0.835 - 5 0.88699 0.000 0.726 0.031 0.835 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10342.9 FROM HESSE STATUS=OK 31 CALLS 221 TOTAL - EDM=3.65925e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.50000e+02 2.03480e-02 4.22297e-04 1.57078e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 sg_p1 2.19227e+01 6.50158e-01 3.80043e-04 -9.57392e-02 - 3 sg_p2 6.50000e+02 1.19307e+00 2.48014e-03 1.57134e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 5.33695e+01 7.80905e+00 2.05003e-04 -2.80852e-01 - 5 sg_p4 9.02088e-01 3.59600e-02 1.67204e-03 3.54640e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.234e-10 1.922e-09 -5.339e-14 -9.335e-10 1.841e-11 - 1.922e-09 4.229e-01 2.702e-05 2.958e+00 1.722e-02 - -5.339e-14 2.702e-05 5.217e-05 3.453e-04 2.166e-06 - -9.335e-10 2.958e+00 3.453e-04 6.136e+01 2.386e-01 - 1.841e-11 1.722e-02 2.166e-06 2.386e-01 1.322e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00022 1.000 0.000 -0.000 -0.000 0.000 - 2 0.72996 0.000 1.000 0.006 0.581 0.728 - 3 0.00839 -0.000 0.006 1.000 0.006 0.008 - 4 0.83871 -0.000 0.581 0.006 1.000 0.838 - 5 0.88867 0.000 0.728 0.008 0.838 1.000 -650 -650 +- 0.020348 -21.9227 +- 0.650158 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11888.7 FROM MIGRAD STATUS=INITIATE 80 CALLS 81 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.49914e+02 9.00000e+00 0.00000e+00 -6.82601e+01 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 1.48309e+02 - 3 sg_p2 6.49999e+02 1.50000e+01 0.00000e+00 -3.99059e-01 - 4 sg_p3 4.46355e+01 1.20000e+01 -4.36469e-01 -2.16258e-01 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -1.69494e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11875.1 FROM MIGRAD STATUS=CONVERGED 189 CALLS 190 TOTAL - EDM=4.23148e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.50000e+02 1.77338e-02 2.11221e-03** at limit ** - 2 sg_p1 2.19855e+01 6.05458e-01 1.90519e-03 -1.38620e-01 - 3 sg_p2 6.50000e+02 1.06015e+00 1.25262e-02** at limit ** - 4 sg_p3 5.36334e+01 7.33056e+00 5.16765e-03 -5.62178e-02 - 5 sg_p4 9.02830e-01 3.32252e-02 8.34638e-03 5.03701e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 5.580e-10 1.247e-08 -1.236e-12 -3.833e-09 1.281e-10 - 1.247e-08 3.667e-01 8.771e-05 2.567e+00 1.472e-02 - -1.236e-12 8.771e-05 4.483e-05 1.134e-03 7.012e-06 - -3.833e-09 2.567e+00 1.134e-03 5.403e+01 2.060e-01 - 1.281e-10 1.472e-02 7.012e-06 2.060e-01 1.125e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00113 1.000 0.001 -0.000 -0.000 0.000 - 2 0.72667 0.001 1.000 0.022 0.577 0.725 - 3 0.03177 -0.000 0.022 1.000 0.023 0.031 - 4 0.83644 -0.000 0.577 0.023 1.000 0.835 - 5 0.88683 0.000 0.725 0.031 0.835 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11875.1 FROM HESSE STATUS=OK 31 CALLS 221 TOTAL - EDM=4.17857e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.50000e+02 1.77339e-02 4.22443e-04 1.57078e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 sg_p1 2.19855e+01 6.07305e-01 3.81037e-04 -9.19155e-02 - 3 sg_p2 6.50000e+02 1.05933e+00 2.50525e-03 1.57133e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 5.36334e+01 7.38443e+00 2.06706e-04 -2.76278e-01 - 5 sg_p4 9.02830e-01 3.34620e-02 1.66928e-03 3.59921e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 5.580e-10 2.310e-09 -6.277e-14 -8.650e-10 2.316e-11 - 2.310e-09 3.690e-01 2.329e-05 2.608e+00 1.491e-02 - -6.277e-14 2.329e-05 4.479e-05 3.022e-04 1.863e-06 - -8.650e-10 2.608e+00 3.022e-04 5.483e+01 2.097e-01 - 2.316e-11 1.491e-02 1.863e-06 2.097e-01 1.142e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00021 1.000 0.000 -0.000 -0.000 0.000 - 2 0.72864 0.000 1.000 0.006 0.580 0.727 - 3 0.00839 -0.000 0.006 1.000 0.006 0.008 - 4 0.83905 -0.000 0.580 0.006 1.000 0.838 - 5 0.88856 0.000 0.727 0.008 0.838 1.000 -650 -650 +- 0.0177339 -21.9855 +- 0.607305 -35.9 fb^{-1} (13 TeV) -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 17 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 18 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 20 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 21 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 22 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 23 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 24 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 26 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 31 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 35 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 41 has zero error, setting residual to zero - Uncertainty on sg_p0 = 650 +- 0.0189845 (stat) - 1.56965e-07 + 8.69034e-09 (syst); -0.00949226/+0.00949226 (total) - Uncertainty on sg_p1 = 21.9547 +- 0.628139 (stat) - 1.34059 + 0.54216 (syst); -1.37689/+0.62656 (total) - Uncertainty on sg_p2 = 650 +- 1.12399 (stat) - 0 + 1.14208e-05 (syst); -0.561993/+0.561993 (total) - Uncertainty on sg_p3 = 53.5044 +- 7.59176 (stat) - 9.66364 + 0.356475 (syst); -10.3824/+3.81258 (total) - Uncertainty on sg_p4 = 0.902474 +- 0.0346722 (stat) - 0.0585604 + 0.00172451 (syst); -0.0610726/+0.0174217 (total) - === Baseline plot ===
- norm = 1859.61 -JEC lnN 1.0047 - -JER lnN 1.01327 - -btag lnN 1.06919 - -sg_p0 param 650 -0.00949226/+0.00949226 -sg_p1 param 21.9547 -1.37689/+0.62656 -sg_p2 param 650 -0.561993/+0.561993 -sg_p3 param 53.5044 -10.3824/+3.81258 -sg_p4 param 0.902474 -0.0610726/+0.0174217 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_260_crystal_252_330/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_260_crystal_252_330/data_bkg.log deleted file mode 100644 index 1be2f6e..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_260_crystal_252_330/data_bkg.log +++ /dev/null @@ -1,717 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [250,330] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [250,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63590.5 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.69443e-02 5.09000e-01 0.00000e+00 -7.94680e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -8.91126e+00 - 3 par_crystal_2 2.62020e+02 4.00000e+00 1.01181e-01 -1.53451e+00 - 4 par_crystal_3 1.65000e+01 2.70000e+00 0.00000e+00 7.46021e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM MIGRAD STATUS=CONVERGED 482 CALLS 483 TOTAL - EDM=0.000814822 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 4.40594e-01 4.43750e-02 2.48631e-03 2.88668e-01 - 2 par_crystal_1 9.82994e-01 6.48221e-01 2.14269e-02 -5.28345e-03 - 3 par_crystal_2 2.71542e+02 7.41091e-01 7.20683e-03 -9.27818e-02 - 4 par_crystal_3 2.87224e+01 2.18588e+00 3.97473e-02 -6.99277e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.970e-03 -2.333e-02 -5.115e-04 1.392e-02 - -2.333e-02 4.358e-01 4.870e-03 -8.391e-01 - -5.115e-04 4.870e-03 5.496e-01 4.381e-01 - 1.392e-02 -8.391e-01 4.381e-01 5.029e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.88989 1.000 -0.796 -0.016 0.140 - 2 0.92807 -0.796 1.000 0.010 -0.567 - 3 0.40865 -0.016 0.010 1.000 0.264 - 4 0.80948 0.140 -0.567 0.264 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM HESSE STATUS=OK 23 CALLS 506 TOTAL - EDM=0.000711421 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 4.40594e-01 4.64698e-02 4.97262e-04 -9.80558e-01 - 2 par_crystal_1 9.82994e-01 6.55195e-01 8.57075e-04 -6.65795e-01 - 3 par_crystal_2 2.71542e+02 7.38644e-01 1.44137e-03 6.15159e-01 - 4 par_crystal_3 2.87224e+01 2.03002e+00 1.58989e-03 -1.05570e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.160e-03 -2.581e-02 -1.109e-03 1.530e-02 - -2.581e-02 4.456e-01 2.508e-02 -7.234e-01 - -1.109e-03 2.508e-02 5.460e-01 3.687e-01 - 1.530e-02 -7.234e-01 3.687e-01 4.306e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.90014 1.000 -0.832 -0.032 0.159 - 2 0.92960 -0.832 1.000 0.051 -0.522 - 3 0.40186 -0.032 0.051 1.000 0.240 - 4 0.77207 0.159 -0.522 0.240 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63714.2 FROM MIGRAD STATUS=INITIATE 33 CALLS 34 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 2.63122e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -5.45805e+02 - 3 par_gaus_exp_2 6.67498e-01 3.05000e-01 -6.37370e-01 7.03093e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM MIGRAD STATUS=CONVERGED 131 CALLS 132 TOTAL - EDM=6.15917e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.71558e+02 8.05096e-01 6.82817e-03 6.24407e-02 - 2 par_gaus_exp_1 3.06822e+01 1.83071e+00 1.43475e-02 1.11468e-02 - 3 par_gaus_exp_2 3.82770e-01 2.42284e-02 3.05774e-03 -9.77170e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.486e-01 -6.079e-01 -1.588e-03 - -6.079e-01 3.370e+00 3.082e-02 - -1.588e-03 3.082e-02 5.871e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.49876 1.000 -0.411 -0.081 - 2 0.77898 -0.411 1.000 0.693 - 3 0.72797 -0.081 0.693 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM HESSE STATUS=OK 16 CALLS 148 TOTAL - EDM=6.13964e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.71558e+02 8.14214e-01 2.73127e-04 -4.35760e-01 - 2 par_gaus_exp_1 3.06822e+01 1.86973e+00 5.73898e-04 4.10264e-01 - 3 par_gaus_exp_2 3.82770e-01 2.45149e-02 1.22310e-04 -8.97531e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.634e-01 -6.630e-01 -2.137e-03 - -6.630e-01 3.516e+00 3.227e-02 - -2.137e-03 3.227e-02 6.011e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.51526 1.000 -0.434 -0.107 - 2 0.78935 -0.434 1.000 0.702 - 3 0.73544 -0.107 0.702 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,625] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.33953 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.33953) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - ... (remaining 126 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.734607 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.734607) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=317.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=327.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=332.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=342.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=347.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=352.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=357.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=362.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=367.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - ... (remaining 53 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0734613 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0734613 - - FCN=103487 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57093e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.56195e+03 - 3 par_novo_2 -1.33668e+00 2.00000e+01 0.00000e+00 1.53931e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM MIGRAD STATUS=CONVERGED 127 CALLS 128 TOTAL - EDM=3.4171e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.43423e+01 1.81223e-01** at limit ** - 2 par_novo_1 3.86596e+01 2.27294e+00 4.95847e-03 -1.04123e-02 - 3 par_novo_2 -1.27520e+00 7.07738e-02 3.70975e-05 -1.26322e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.231e-09 -8.491e-07 -8.580e-07 - -8.491e-07 5.181e+00 1.547e-01 - -8.580e-07 1.547e-01 5.009e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.53332 1.000 -0.005 -0.154 - 2 0.97096 -0.005 1.000 0.960 - 3 0.97165 -0.154 0.960 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM HESSE STATUS=OK 20 CALLS 148 TOTAL - EDM=3.43726e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.40246e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.86596e+01 2.31421e+00 1.98339e-04 4.46530e-01 - 3 par_novo_2 -1.27520e+00 7.22930e-02 1.48390e-06 -1.27523e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 5.974e-09 2.819e-05 -1.296e-06 - 2.819e-05 5.372e+00 1.502e-01 - -1.296e-06 1.502e-01 5.226e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.85665 1.000 0.157 -0.232 - 2 0.97200 0.157 1.000 0.897 - 3 0.97285 -0.232 0.897 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107513 FROM MIGRAD STATUS=INITIATE 54 CALLS 55 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 1.39168e+03 - 2 par_crystal_1_1 7.96220e-02 5.09000e-01 0.00000e+00 5.33770e+03 - 3 par_crystal_1_2 2.56879e+02 4.00000e+00 -1.56713e-01 -1.96669e+01 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 -8.45862e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.5057e-02 2.3309e-03 4.9678e-02 3.9730e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.029030 TO DIAGONAL. - FCN=103250 FROM MIGRAD STATUS=CONVERGED 436 CALLS 437 TOTAL - EDM=3.52757e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 4.45574e-02 4.37117e-03 3.09465e-04 -4.28177e+00 - 2 par_crystal_1_1 4.36914e+00 6.24106e-01 1.80400e-02 6.63742e-02 - 3 par_crystal_1_2 2.71531e+02 3.44700e+01 5.81266e-02 2.25694e-02 - 4 par_crystal_1_3 3.37290e+00 2.71702e-01 3.13791e-03 -4.26197e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.911e-05 -1.221e-03 2.089e-01 3.572e-04 - -1.221e-03 4.065e-01 -2.690e+01 -6.822e-02 - 2.089e-01 -2.690e+01 3.429e+03 1.167e+01 - 3.572e-04 -6.822e-02 1.167e+01 7.401e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99136 1.000 -0.438 0.816 0.300 - 2 0.97307 -0.438 1.000 -0.720 -0.393 - 3 0.99735 0.816 -0.720 1.000 0.733 - 4 0.98716 0.300 -0.393 0.733 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -8.0089e-04 4.0193e-04 7.1213e-02 3.9292e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.004730 TO DIAGONAL. - FCN=103250 FROM HESSE STATUS=NOT POSDEF 23 CALLS 460 TOTAL - EDM=3.56127e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 4.45574e-02 7.42610e-03 6.18930e-05 -1.40582e+00 - 2 par_crystal_1_1 4.36914e+00 4.67550e-01 7.21602e-04 -3.93511e+00 - 3 par_crystal_1_2 2.71531e+02 3.29814e+01 2.32506e-03 -3.75607e+00 - 4 par_crystal_1_3 3.37290e+00 5.01685e-01 1.25517e-04 -1.80638e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.515e-05 2.851e-04 2.343e-01 -1.699e-03 - 2.851e-04 2.238e-01 -2.528e+00 1.548e-02 - 2.343e-01 -2.528e+00 2.967e+03 1.176e+01 - -1.699e-03 1.548e-02 1.176e+01 2.538e-01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99694 1.000 0.081 0.579 -0.454 - 2 0.94927 0.081 1.000 -0.098 0.065 - 3 0.99687 0.579 -0.098 1.000 0.429 - 4 0.99618 -0.454 0.065 0.429 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 14211 - Background number of gaus_exp_252_330 = 14211 - Background number of novo_285_624 = 17618.3 - Background number of crystal_1_285_624 = 17618.3 - Background number of gaus_bern_285_624 = 17618.3 - Background number of landau_285_624 = 17618.3 -par_crystal_0 param 0.440594 0.0464698 -par_crystal_1 param 0.982994 0.655195 -par_crystal_2 param 271.542 0.738644 -par_crystal_3 param 28.7224 2.03002 -par_crystal_1_0 param 0.0445574 0.0074261 -par_crystal_1_1 param 4.36914 0.46755 -par_crystal_1_2 param 271.531 32.9814 -par_crystal_1_3 param 3.3729 0.501685 -par_gaus_exp_0 param 271.558 0.814214 -par_gaus_exp_1 param 30.6822 1.86973 -par_gaus_exp_2 param 0.38277 0.0245149 -par_novo_0 param 250 34.0246 -par_novo_1 param 38.6596 2.31421 -par_novo_2 param -1.2752 0.072293 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_260_crystal_252_330/datacard_260_crystal_252_330.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_260_crystal_252_330/datacard_260_crystal_252_330.txt deleted file mode 100644 index c8ac0f6..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_260_crystal_252_330/datacard_260_crystal_252_330.txt +++ /dev/null @@ -1,34 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_260.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_crystal_252_330.root HbbHbb:f_crystal -shapes data_obs HbbHbb w_background_crystal_252_330.root HbbHbb:data_obs_crystal_252_330 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 191.924 14211 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06823 - -JER lnN 1.02103 - -JEC lnN 1.01807 - -trigger lnN 1.10 - -sg_p0 param 260.912 -0.165439/+0.125566 -sg_p1 param 3.47719 -0.0904489/+0.144603 -sg_p2 param 267.513 -4.18377/+4.79216 -sg_p3 param 34.2369 -2.39363/+2.10758 -sg_p4 param 0.640026 -0.0265887/+0.0286105 -par_crystal_0 param 0.440594 0.0464698 -par_crystal_1 param 0.982994 0.655195 -par_crystal_2 param 271.542 0.738644 -par_crystal_3 param 28.7224 2.03002 -par_crystal_1_0 param 0.0445574 0.0074261 -par_crystal_1_1 param 4.36914 0.46755 -par_crystal_1_2 param 271.531 32.9814 -par_crystal_1_3 param 3.3729 0.501685 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_260_crystal_252_330/signal260_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_260_crystal_252_330/signal260_sig.log deleted file mode 100644 index 13dd83d..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_260_crystal_252_330/signal260_sig.log +++ /dev/null @@ -1,842 +0,0 @@ - -Processing test.c... -nSignal_init = 300000 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=7249.56 FROM MIGRAD STATUS=INITIATE 45 CALLS 46 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.50000e+02 4.00000e+00 0.00000e+00 -3.41934e+02 - 2 sg_p1 1.35000e+01 2.30000e+00 0.00000e+00 -9.44540e+01 - 3 sg_p2 3.00000e+02 5.80000e+01 0.00000e+00 2.87170e+02 - 4 sg_p3 5.54385e+01 2.90000e+01 -7.56845e-01 -4.27472e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 -1.11620e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7161.13 FROM MIGRAD STATUS=CONVERGED 183 CALLS 184 TOTAL - EDM=2.26284e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.54307e+02 4.46691e-01 1.29592e-03 1.21370e-02 - 2 sg_p1 1.55513e+01 3.65330e-01 1.72918e-03 -4.57555e-02 - 3 sg_p2 3.13992e+02 1.11306e+01 1.54612e-03 9.59972e-03 - 4 sg_p3 7.00767e+01 6.24766e+00 2.56609e-03 1.76365e-03 - 5 sg_p4 9.03546e-01 1.22165e-02 2.78748e-03 -5.41093e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.996e-01 3.046e-02 3.316e-01 2.128e-01 9.423e-04 - 3.046e-02 1.335e-01 1.073e+00 -6.884e-02 1.627e-03 - 3.316e-01 1.073e+00 1.240e+02 -3.745e+01 8.007e-02 - 2.128e-01 -6.884e-02 -3.745e+01 3.907e+01 -1.718e-02 - 9.423e-04 1.627e-03 8.007e-02 -1.718e-02 1.494e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.24437 1.000 0.187 0.067 0.076 0.173 - 2 0.40012 0.187 1.000 0.264 -0.030 0.364 - 3 0.72503 0.067 0.264 1.000 -0.538 0.588 - 4 0.56339 0.076 -0.030 -0.538 1.000 -0.225 - 5 0.63827 0.173 0.364 0.588 -0.225 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7161.13 FROM HESSE STATUS=OK 31 CALLS 215 TOTAL - EDM=2.25533e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.54307e+02 4.46615e-01 2.59185e-04 2.17043e-01 - 2 sg_p1 1.55513e+01 3.65352e-01 3.45837e-04 1.79332e-01 - 3 sg_p2 3.13992e+02 1.12246e+01 6.18447e-05 4.82680e-02 - 4 sg_p3 7.00767e+01 6.29870e+00 1.02643e-04 -6.25716e-01 - 5 sg_p4 9.03546e-01 1.22468e-02 1.11499e-04 6.61353e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.995e-01 3.031e-02 3.258e-01 2.130e-01 9.376e-04 - 3.031e-02 1.335e-01 1.084e+00 -7.870e-02 1.633e-03 - 3.258e-01 1.084e+00 1.261e+02 -3.883e+01 8.134e-02 - 2.130e-01 -7.870e-02 -3.883e+01 3.971e+01 -1.806e-02 - 9.376e-04 1.633e-03 8.134e-02 -1.806e-02 1.502e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.24371 1.000 0.186 0.065 0.076 0.171 - 2 0.40024 0.186 1.000 0.264 -0.034 0.365 - 3 0.73047 0.065 0.264 1.000 -0.549 0.591 - 4 0.57308 0.076 -0.034 -0.549 1.000 -0.234 - 5 0.64057 0.171 0.365 0.591 -0.234 1.000 -260 -254.307 +- 0.446615 -15.5513 +- 0.365352 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=7365.44 FROM MIGRAD STATUS=INITIATE 44 CALLS 45 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.50000e+02 4.00000e+00 0.00000e+00 -5.31672e+02 - 2 sg_p1 1.35000e+01 2.30000e+00 0.00000e+00 -1.29968e+02 - 3 sg_p2 3.00000e+02 5.80000e+01 0.00000e+00 2.18090e+02 - 4 sg_p3 7.02234e+01 2.90000e+01 -6.24469e-01 3.04411e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 -1.01446e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7235.04 FROM MIGRAD STATUS=CONVERGED 193 CALLS 194 TOTAL - EDM=9.01413e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.56005e+02 4.49108e-01 1.34491e-03 -5.08347e-03 - 2 sg_p1 1.58159e+01 3.69974e-01 1.76393e-03 -5.10762e-02 - 3 sg_p2 3.20358e+02 1.45835e+01 1.97066e-03 3.38124e-02 - 4 sg_p3 8.43702e+01 8.25437e+00 3.00025e-03 1.43647e-02 - 5 sg_p4 9.08830e-01 1.15488e-02 2.75207e-03 -4.16137e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.017e-01 3.033e-02 4.244e-01 2.172e-01 8.632e-04 - 3.033e-02 1.369e-01 1.451e+00 -1.530e-01 1.573e-03 - 4.244e-01 1.451e+00 2.129e+02 -7.227e+01 9.550e-02 - 2.172e-01 -1.530e-01 -7.227e+01 6.823e+01 -2.243e-02 - 8.632e-04 1.573e-03 9.550e-02 -2.243e-02 1.335e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23216 1.000 0.182 0.065 0.059 0.166 - 2 0.40488 0.182 1.000 0.269 -0.050 0.368 - 3 0.74731 0.065 0.269 1.000 -0.600 0.566 - 4 0.62245 0.059 -0.050 -0.600 1.000 -0.235 - 5 0.62271 0.166 0.368 0.566 -0.235 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7235.04 FROM HESSE STATUS=OK 31 CALLS 225 TOTAL - EDM=9.02546e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.56005e+02 4.49038e-01 5.37964e-05 3.04976e-01 - 2 sg_p1 1.58159e+01 3.70057e-01 3.52786e-04 2.02768e-01 - 3 sg_p2 3.20358e+02 1.47403e+01 3.94131e-04 7.02587e-02 - 4 sg_p3 8.43702e+01 8.34145e+00 1.20010e-04 -5.08769e-01 - 5 sg_p4 9.08830e-01 1.15806e-02 5.50414e-04 6.88425e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.017e-01 3.017e-02 4.192e-01 2.171e-01 8.603e-04 - 3.017e-02 1.370e-01 1.472e+00 -1.690e-01 1.581e-03 - 4.192e-01 1.472e+00 2.175e+02 -7.517e+01 9.735e-02 - 2.171e-01 -1.690e-01 -7.517e+01 6.968e+01 -2.367e-02 - 8.603e-04 1.581e-03 9.735e-02 -2.367e-02 1.343e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23152 1.000 0.182 0.063 0.058 0.165 - 2 0.40534 0.182 1.000 0.270 -0.055 0.369 - 3 0.75354 0.063 0.270 1.000 -0.611 0.570 - 4 0.63259 0.058 -0.055 -0.611 1.000 -0.245 - 5 0.62540 0.165 0.369 0.570 -0.245 1.000 -260 -256.005 +- 0.449038 -15.8159 +- 0.370057 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=7023.18 FROM MIGRAD STATUS=INITIATE 44 CALLS 45 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.50000e+02 4.00000e+00 0.00000e+00 -2.24645e+02 - 2 sg_p1 1.35000e+01 2.30000e+00 0.00000e+00 -8.46385e+01 - 3 sg_p2 3.00000e+02 5.80000e+01 0.00000e+00 2.26204e+02 - 4 sg_p3 6.83932e+01 2.90000e+01 -6.40116e-01 1.32344e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 -1.30920e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6951.87 FROM MIGRAD STATUS=CONVERGED 181 CALLS 182 TOTAL - EDM=1.6519e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.53020e+02 4.42659e-01 1.26031e-03 3.88378e-02 - 2 sg_p1 1.54031e+01 3.53863e-01 1.68006e-03 -8.87814e-02 - 3 sg_p2 3.18681e+02 1.25359e+01 1.70808e-03 3.37307e-03 - 4 sg_p3 7.61417e+01 7.12298e+00 2.70731e-03 -4.47116e-02 - 5 sg_p4 9.04717e-01 1.16729e-02 2.71701e-03 -2.80475e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.960e-01 2.470e-02 3.794e-01 1.447e-01 7.850e-04 - 2.470e-02 1.253e-01 1.069e+00 -1.360e-01 1.312e-03 - 3.794e-01 1.069e+00 1.572e+02 -5.206e+01 8.352e-02 - 1.447e-01 -1.360e-01 -5.206e+01 5.079e+01 -2.199e-02 - 7.850e-04 1.312e-03 8.352e-02 -2.199e-02 1.364e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20982 1.000 0.158 0.068 0.046 0.152 - 2 0.35244 0.158 1.000 0.241 -0.054 0.317 - 3 0.72927 0.068 0.241 1.000 -0.582 0.570 - 4 0.59651 0.046 -0.054 -0.582 1.000 -0.264 - 5 0.60854 0.152 0.317 0.570 -0.264 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6951.87 FROM HESSE STATUS=OK 31 CALLS 213 TOTAL - EDM=1.65128e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.53020e+02 4.42602e-01 2.52062e-04 1.51594e-01 - 2 sg_p1 1.54031e+01 3.53933e-01 3.36012e-04 1.66253e-01 - 3 sg_p2 3.18681e+02 1.26590e+01 6.83233e-05 6.44624e-02 - 4 sg_p3 7.61417e+01 7.19114e+00 1.08292e-04 -5.75018e-01 - 5 sg_p4 9.04717e-01 1.17079e-02 5.43402e-04 6.67300e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.959e-01 2.459e-02 3.764e-01 1.438e-01 7.830e-04 - 2.459e-02 1.253e-01 1.084e+00 -1.475e-01 1.320e-03 - 3.764e-01 1.084e+00 1.604e+02 -5.404e+01 8.512e-02 - 1.438e-01 -1.475e-01 -5.404e+01 5.177e+01 -2.306e-02 - 7.830e-04 1.320e-03 8.512e-02 -2.306e-02 1.372e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20923 1.000 0.157 0.067 0.045 0.151 - 2 0.35293 0.157 1.000 0.242 -0.058 0.318 - 3 0.73547 0.067 0.242 1.000 -0.593 0.574 - 4 0.60661 0.045 -0.058 -0.593 1.000 -0.274 - 5 0.61162 0.151 0.318 0.574 -0.274 1.000 -260 -253.02 +- 0.442602 -15.4031 +- 0.353933 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=5529.06 FROM MIGRAD STATUS=INITIATE 37 CALLS 38 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60000e+02 2.00000e+00 0.00000e+00 -7.09302e+02 - 2 sg_p1 4.00000e+00 4.00000e-01 0.00000e+00 -1.84754e+01 - 3 sg_p2 1.79000e+02 3.42000e+01 0.00000e+00 -1.60258e+01 - 4 sg_p3 1.19103e+02 2.90000e+01 -2.50167e-01 6.51588e+00 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.55737e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5416.32 FROM MIGRAD STATUS=CONVERGED 276 CALLS 277 TOTAL - EDM=4.33865e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60912e+02 1.23280e-01 6.16272e-04 -2.78767e-01 - 2 sg_p1 3.47719e+00 1.26808e-01 2.66781e-03 -6.03093e-03 - 3 sg_p2 2.67513e+02 7.88309e+00 7.67886e-04 -3.32533e-01 - 4 sg_p3 3.42369e+01 3.97181e+00 1.09311e-03 -2.13224e-01 - 5 sg_p4 6.40026e-01 4.56991e-02 3.70400e-03 4.78364e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.520e-02 2.286e-03 -3.667e-02 3.860e-02 7.477e-05 - 2.286e-03 1.610e-02 4.707e-01 -1.623e-01 3.257e-03 - -3.667e-02 4.707e-01 6.220e+01 -2.796e+01 3.355e-01 - 3.860e-02 -1.623e-01 -2.796e+01 1.579e+01 -1.455e-01 - 7.477e-05 3.257e-03 3.355e-01 -1.455e-01 2.118e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20586 1.000 0.146 -0.038 0.079 0.013 - 2 0.60362 0.146 1.000 0.470 -0.322 0.558 - 3 0.95992 -0.038 0.470 1.000 -0.892 0.924 - 4 0.90004 0.079 -0.322 -0.892 1.000 -0.796 - 5 0.93542 0.013 0.558 0.924 -0.796 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5416.32 FROM HESSE STATUS=OK 31 CALLS 308 TOTAL - EDM=4.34749e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.60912e+02 1.23300e-01 1.23254e-04 9.13107e-02 - 2 sg_p1 3.47719e+00 1.27818e-01 1.06712e-04 -2.64476e-01 - 3 sg_p2 2.67513e+02 8.27292e+00 1.53577e-04 5.44068e-01 - 4 sg_p3 3.42369e+01 4.16972e+00 2.18622e-04 -9.84235e-01 - 5 sg_p4 6.40026e-01 4.75240e-02 7.40799e-04 -4.55485e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.520e-02 2.233e-03 -4.363e-02 4.203e-02 3.794e-05 - 2.233e-03 1.636e-02 5.114e-01 -1.832e-01 3.471e-03 - -4.363e-02 5.114e-01 6.851e+01 -3.117e+01 3.687e-01 - 4.203e-02 -1.832e-01 -3.117e+01 1.740e+01 -1.624e-01 - 3.794e-05 3.471e-03 3.687e-01 -1.624e-01 2.293e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20660 1.000 0.142 -0.043 0.082 0.006 - 2 0.61186 0.142 1.000 0.483 -0.343 0.567 - 3 0.96369 -0.043 0.483 1.000 -0.903 0.930 - 4 0.90977 0.082 -0.343 -0.903 1.000 -0.813 - 5 0.94051 0.006 0.567 0.930 -0.813 1.000 -260 -260.912 +- 0.1233 -3.47719 +- 0.127818 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=5643.26 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60000e+02 2.00000e+00 0.00000e+00 -7.61456e+02 - 2 sg_p1 4.00000e+00 4.00000e-01 0.00000e+00 -4.66447e+01 - 3 sg_p2 1.79000e+02 3.42000e+01 0.00000e+00 -2.40363e+01 - 4 sg_p3 1.17448e+02 2.90000e+01 -2.61968e-01 1.99273e-01 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.86435e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5508.96 FROM MIGRAD STATUS=CONVERGED 329 CALLS 330 TOTAL - EDM=7.77109e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.61021e+02 1.29098e-01 6.49909e-04 -1.01661e-02 - 2 sg_p1 3.57410e+00 1.33955e-01 2.78633e-03 8.71570e-03 - 3 sg_p2 2.69189e+02 7.27138e+00 7.50620e-04 -6.29806e-03 - 4 sg_p3 3.37078e+01 3.73722e+00 1.08346e-03 1.26302e-02 - 5 sg_p4 6.28095e-01 4.44728e-02 3.81722e-03 4.51572e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.667e-02 2.658e-03 -2.984e-02 3.729e-02 1.239e-04 - 2.658e-03 1.797e-02 4.694e-01 -1.655e-01 3.402e-03 - -2.984e-02 4.694e-01 5.292e+01 -2.409e+01 2.999e-01 - 3.729e-02 -1.655e-01 -2.409e+01 1.398e+01 -1.324e-01 - 1.239e-04 3.402e-03 2.999e-01 -1.324e-01 2.006e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.21380 1.000 0.154 -0.032 0.077 0.021 - 2 0.61009 0.154 1.000 0.481 -0.330 0.567 - 3 0.95628 -0.032 0.481 1.000 -0.886 0.921 - 4 0.89342 0.077 -0.330 -0.886 1.000 -0.790 - 5 0.93183 0.021 0.567 0.921 -0.790 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5508.96 FROM HESSE STATUS=OK 31 CALLS 361 TOTAL - EDM=7.78626e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.61021e+02 1.29118e-01 1.29982e-04 1.02301e-01 - 2 sg_p1 3.57410e+00 1.35116e-01 1.11453e-04 -2.14592e-01 - 3 sg_p2 2.69189e+02 7.65572e+00 3.00248e-05 5.55561e-01 - 4 sg_p3 3.37078e+01 3.93737e+00 4.33384e-05 -9.90860e-01 - 5 sg_p4 6.28095e-01 4.63527e-02 1.52689e-04 -5.09360e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.667e-02 2.595e-03 -3.703e-02 4.087e-02 8.376e-05 - 2.595e-03 1.829e-02 5.123e-01 -1.882e-01 3.639e-03 - -3.703e-02 5.123e-01 5.866e+01 -2.709e+01 3.317e-01 - 4.087e-02 -1.882e-01 -2.709e+01 1.552e+01 -1.489e-01 - 8.376e-05 3.639e-03 3.317e-01 -1.489e-01 2.182e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.21449 1.000 0.149 -0.037 0.080 0.014 - 2 0.61885 0.149 1.000 0.495 -0.353 0.576 - 3 0.96065 -0.037 0.495 1.000 -0.898 0.927 - 4 0.90455 0.080 -0.353 -0.898 1.000 -0.810 - 5 0.93751 0.014 0.576 0.927 -0.810 1.000 -260 -261.021 +- 0.129118 -3.5741 +- 0.135116 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=5267.68 FROM MIGRAD STATUS=INITIATE 37 CALLS 38 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60000e+02 2.00000e+00 0.00000e+00 -5.95437e+02 - 2 sg_p1 4.00000e+00 4.00000e-01 0.00000e+00 3.20402e+00 - 3 sg_p2 1.79000e+02 3.42000e+01 0.00000e+00 -1.99949e+01 - 4 sg_p3 1.11751e+02 2.90000e+01 -3.02882e-01 -4.35631e-01 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.33332e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5177.85 FROM MIGRAD STATUS=CONVERGED 294 CALLS 295 TOTAL - EDM=1.65041e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60758e+02 1.21975e-01 5.95143e-04 1.08233e-01 - 2 sg_p1 3.44214e+00 1.23415e-01 2.58042e-03 -3.07927e-02 - 3 sg_p2 2.66886e+02 8.40621e+00 7.85904e-04 -8.91521e-02 - 4 sg_p3 3.45456e+01 4.21772e+00 1.11909e-03 -3.70390e-02 - 5 sg_p4 6.53607e-01 4.66834e-02 3.55052e-03 4.88918e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.488e-02 2.239e-03 -3.126e-02 3.680e-02 1.101e-04 - 2.239e-03 1.525e-02 4.727e-01 -1.617e-01 3.144e-03 - -3.126e-02 4.727e-01 7.074e+01 -3.174e+01 3.661e-01 - 3.680e-02 -1.617e-01 -3.174e+01 1.781e+01 -1.585e-01 - 1.101e-04 3.144e-03 3.661e-01 -1.585e-01 2.210e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20236 1.000 0.149 -0.030 0.072 0.019 - 2 0.58940 0.149 1.000 0.455 -0.310 0.542 - 3 0.96112 -0.030 0.455 1.000 -0.894 0.926 - 4 0.90222 0.072 -0.310 -0.894 1.000 -0.799 - 5 0.93659 0.019 0.542 0.926 -0.799 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5177.85 FROM HESSE STATUS=OK 31 CALLS 326 TOTAL - EDM=1.76189e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.60758e+02 1.21991e-01 1.19029e-04 7.59045e-02 - 2 sg_p1 3.44214e+00 1.24473e-01 5.16084e-04 -2.82680e-01 - 3 sg_p2 2.66886e+02 8.89789e+00 1.57181e-04 5.39785e-01 - 4 sg_p3 3.45456e+01 4.46620e+00 4.47638e-05 -9.80400e-01 - 5 sg_p4 6.53607e-01 4.88967e-02 1.42021e-04 -3.95830e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.488e-02 2.186e-03 -3.913e-02 4.064e-02 6.994e-05 - 2.186e-03 1.552e-02 5.207e-01 -1.864e-01 3.386e-03 - -3.913e-02 5.207e-01 7.927e+01 -3.606e+01 4.092e-01 - 4.064e-02 -1.864e-01 -3.606e+01 1.997e+01 -1.803e-01 - 6.994e-05 3.386e-03 4.092e-01 -1.803e-01 2.428e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20297 1.000 0.144 -0.036 0.075 0.012 - 2 0.59871 0.144 1.000 0.470 -0.335 0.552 - 3 0.96537 -0.036 0.470 1.000 -0.906 0.933 - 4 0.91331 0.075 -0.335 -0.906 1.000 -0.819 - 5 0.94245 0.012 0.552 0.933 -0.819 1.000 -260 -260.758 +- 0.121991 -3.44214 +- 0.124473 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=5338.33 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60000e+02 2.00000e+00 0.00000e+00 -6.92141e+02 - 2 sg_p1 4.00000e+00 4.00000e-01 0.00000e+00 -3.46913e+01 - 3 sg_p2 1.79000e+02 3.42000e+01 0.00000e+00 -1.94669e+01 - 4 sg_p3 1.15260e+02 2.90000e+01 -2.77623e-01 2.60024e+00 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.53009e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5229.92 FROM MIGRAD STATUS=CONVERGED 289 CALLS 290 TOTAL - EDM=1.81993e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60953e+02 1.29425e-01 6.35842e-04 1.60007e-03 - 2 sg_p1 3.60691e+00 1.34289e-01 2.70753e-03 6.00340e-02 - 3 sg_p2 2.69933e+02 7.51981e+00 7.59887e-04 1.45220e-02 - 4 sg_p3 3.30610e+01 3.84505e+00 1.10949e-03 -7.50525e-02 - 5 sg_p4 6.55961e-01 4.53996e-02 3.52891e-03 -1.95435e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.675e-02 2.478e-03 -2.803e-02 3.713e-02 1.271e-04 - 2.478e-03 1.806e-02 5.001e-01 -1.785e-01 3.521e-03 - -2.803e-02 5.001e-01 5.660e+01 -2.561e+01 3.175e-01 - 3.713e-02 -1.785e-01 -2.561e+01 1.480e+01 -1.399e-01 - 1.271e-04 3.521e-03 3.175e-01 -1.399e-01 2.088e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20432 1.000 0.142 -0.029 0.075 0.021 - 2 0.61219 0.142 1.000 0.495 -0.345 0.573 - 3 0.95634 -0.029 0.495 1.000 -0.885 0.924 - 4 0.89204 0.075 -0.345 -0.885 1.000 -0.796 - 5 0.93370 0.021 0.573 0.924 -0.796 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5229.92 FROM HESSE STATUS=OK 31 CALLS 321 TOTAL - EDM=1.90259e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.60953e+02 1.29442e-01 1.27168e-04 9.54629e-02 - 2 sg_p1 3.60691e+00 1.35689e-01 5.41506e-04 -1.97834e-01 - 3 sg_p2 2.69933e+02 7.93967e+00 3.03955e-05 5.60690e-01 - 4 sg_p3 3.30610e+01 4.05992e+00 4.43797e-05 -9.99053e-01 - 5 sg_p4 6.55961e-01 4.74783e-02 7.05783e-04 -3.85646e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.676e-02 2.413e-03 -3.514e-02 4.064e-02 8.764e-05 - 2.413e-03 1.844e-02 5.501e-01 -2.046e-01 3.797e-03 - -3.514e-02 5.501e-01 6.310e+01 -2.896e+01 3.534e-01 - 4.064e-02 -2.046e-01 -2.896e+01 1.650e+01 -1.584e-01 - 8.764e-05 3.797e-03 3.534e-01 -1.584e-01 2.286e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20493 1.000 0.137 -0.034 0.077 0.014 - 2 0.62260 0.137 1.000 0.510 -0.371 0.585 - 3 0.96093 -0.034 0.510 1.000 -0.897 0.930 - 4 0.90377 0.077 -0.371 -0.897 1.000 -0.816 - 5 0.93964 0.014 0.585 0.930 -0.816 1.000 -260 -260.953 +- 0.129442 -3.60691 +- 0.135689 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=5550.93 FROM MIGRAD STATUS=INITIATE 38 CALLS 39 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60000e+02 2.00000e+00 0.00000e+00 -7.28869e+02 - 2 sg_p1 4.00000e+00 4.00000e-01 0.00000e+00 -1.53562e+00 - 3 sg_p2 1.79000e+02 3.42000e+01 0.00000e+00 -1.85127e+01 - 4 sg_p3 1.16923e+02 2.90000e+01 -2.65719e-01 3.07224e+00 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.51841e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5437.82 FROM MIGRAD STATUS=CONVERGED 274 CALLS 275 TOTAL - EDM=7.69222e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60915e+02 1.19244e-01 5.95259e-04 2.60414e-02 - 2 sg_p1 3.41319e+00 1.20663e-01 2.58530e-03 3.23980e-02 - 3 sg_p2 2.68923e+02 7.42025e+00 7.74450e-04 1.02102e-01 - 4 sg_p3 3.38737e+01 3.84818e+00 1.11926e-03 3.14690e-01 - 5 sg_p4 6.51986e-01 4.29286e-02 3.53695e-03 3.46225e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.422e-02 2.303e-03 -1.721e-02 2.984e-02 1.633e-04 - 2.303e-03 1.458e-02 4.143e-01 -1.451e-01 2.850e-03 - -1.721e-02 4.143e-01 5.511e+01 -2.526e+01 2.945e-01 - 2.984e-02 -1.451e-01 -2.526e+01 1.482e+01 -1.311e-01 - 1.633e-04 2.850e-03 2.945e-01 -1.311e-01 1.865e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20941 1.000 0.160 -0.019 0.065 0.032 - 2 0.59245 0.160 1.000 0.462 -0.312 0.547 - 3 0.95480 -0.019 0.462 1.000 -0.884 0.919 - 4 0.89128 0.065 -0.312 -0.884 1.000 -0.789 - 5 0.92953 0.032 0.547 0.919 -0.789 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5437.82 FROM HESSE STATUS=OK 31 CALLS 306 TOTAL - EDM=7.77868e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.60915e+02 1.19248e-01 1.19052e-04 9.16025e-02 - 2 sg_p1 3.41319e+00 1.21507e-01 5.17060e-04 -2.97787e-01 - 3 sg_p2 2.68923e+02 7.75724e+00 1.54890e-04 5.53729e-01 - 4 sg_p3 3.38737e+01 4.02350e+00 2.23853e-04 -9.88776e-01 - 5 sg_p4 6.51986e-01 4.45034e-02 7.07389e-04 -4.02868e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.422e-02 2.266e-03 -2.167e-02 3.206e-02 1.398e-04 - 2.266e-03 1.478e-02 4.471e-01 -1.625e-01 3.022e-03 - -2.167e-02 4.471e-01 6.023e+01 -2.794e+01 3.214e-01 - 3.206e-02 -1.625e-01 -2.794e+01 1.620e+01 -1.452e-01 - 1.398e-04 3.022e-03 3.214e-01 -1.452e-01 2.006e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20954 1.000 0.156 -0.023 0.067 0.026 - 2 0.60000 0.156 1.000 0.474 -0.332 0.555 - 3 0.95873 -0.023 0.474 1.000 -0.894 0.925 - 4 0.90107 0.067 -0.332 -0.894 1.000 -0.805 - 5 0.93466 0.026 0.555 0.925 -0.805 1.000 -260 -260.915 +- 0.119248 -3.41319 +- 0.121507 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=5158.41 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60000e+02 2.00000e+00 0.00000e+00 -6.61967e+02 - 2 sg_p1 4.00000e+00 4.00000e-01 0.00000e+00 -1.61061e+01 - 3 sg_p2 1.79000e+02 3.42000e+01 0.00000e+00 -1.77731e+01 - 4 sg_p3 1.15981e+02 2.90000e+01 -2.72457e-01 3.15087e+00 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.44973e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5054.08 FROM MIGRAD STATUS=CONVERGED 308 CALLS 309 TOTAL - EDM=5.20485e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60912e+02 1.27328e-01 6.14172e-04 -1.42304e-01 - 2 sg_p1 3.47672e+00 1.30824e-01 2.65500e-03 -1.69927e-02 - 3 sg_p2 2.67457e+02 8.15515e+00 7.65940e-04 -5.24312e-02 - 4 sg_p3 3.41797e+01 4.10175e+00 1.09416e-03 -2.88607e-03 - 5 sg_p4 6.41502e-01 4.72632e-02 3.67010e-03 1.46000e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.621e-02 2.418e-03 -4.005e-02 4.151e-02 7.448e-05 - 2.418e-03 1.714e-02 5.016e-01 -1.724e-01 3.472e-03 - -4.005e-02 5.016e-01 6.658e+01 -2.986e+01 3.591e-01 - 4.151e-02 -1.724e-01 -2.986e+01 1.684e+01 -1.554e-01 - 7.448e-05 3.472e-03 3.591e-01 -1.554e-01 2.267e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20516 1.000 0.145 -0.039 0.079 0.012 - 2 0.60288 0.145 1.000 0.470 -0.321 0.557 - 3 0.95995 -0.039 0.470 1.000 -0.892 0.924 - 4 0.89989 0.079 -0.321 -0.892 1.000 -0.795 - 5 0.93542 0.012 0.557 0.924 -0.795 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5054.08 FROM HESSE STATUS=OK 31 CALLS 340 TOTAL - EDM=5.2061e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.60912e+02 1.27350e-01 1.22834e-04 9.13271e-02 - 2 sg_p1 3.47672e+00 1.31905e-01 5.30999e-04 -2.64719e-01 - 3 sg_p2 2.67457e+02 8.59468e+00 1.53188e-04 5.43682e-01 - 4 sg_p3 3.41797e+01 4.32549e+00 4.37665e-05 -9.84949e-01 - 5 sg_p4 6.41502e-01 4.93072e-02 1.46804e-04 -4.48919e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.622e-02 2.353e-03 -4.855e-02 4.568e-02 2.931e-05 - 2.353e-03 1.743e-02 5.482e-01 -1.965e-01 3.716e-03 - -4.855e-02 5.482e-01 7.395e+01 -3.362e+01 3.979e-01 - 4.568e-02 -1.965e-01 -3.362e+01 1.873e+01 -1.751e-01 - 2.931e-05 3.716e-03 3.979e-01 -1.751e-01 2.471e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20598 1.000 0.140 -0.044 0.083 0.005 - 2 0.61146 0.140 1.000 0.483 -0.344 0.566 - 3 0.96402 -0.044 0.483 1.000 -0.903 0.931 - 4 0.91049 0.083 -0.344 -0.903 1.000 -0.814 - 5 0.94091 0.005 0.566 0.931 -0.814 1.000 -260 -260.912 +- 0.12735 -3.47672 +- 0.131905 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=5919.1 FROM MIGRAD STATUS=INITIATE 38 CALLS 39 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60000e+02 2.00000e+00 0.00000e+00 -7.57817e+02 - 2 sg_p1 4.00000e+00 4.00000e-01 0.00000e+00 -2.03212e+01 - 3 sg_p2 1.79000e+02 3.42000e+01 0.00000e+00 -1.98859e+01 - 4 sg_p3 1.17412e+02 2.90000e+01 -2.62219e-01 4.12643e+00 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.69751e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5797.63 FROM MIGRAD STATUS=CONVERGED 275 CALLS 276 TOTAL - EDM=2.6578e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60912e+02 1.19425e-01 6.16849e-04 -2.18136e-01 - 2 sg_p1 3.47734e+00 1.22978e-01 2.67008e-03 -4.00164e-03 - 3 sg_p2 2.67522e+02 7.63977e+00 7.68027e-04 8.93806e-02 - 4 sg_p3 3.43314e+01 3.85522e+00 1.09374e-03 1.59575e-01 - 5 sg_p4 6.38280e-01 4.42553e-02 3.71607e-03 -5.05369e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.426e-02 2.165e-03 -3.368e-02 3.602e-02 7.485e-05 - 2.165e-03 1.514e-02 4.429e-01 -1.530e-01 3.060e-03 - -3.368e-02 4.429e-01 5.842e+01 -2.630e+01 3.147e-01 - 3.602e-02 -1.530e-01 -2.630e+01 1.487e+01 -1.367e-01 - 7.485e-05 3.060e-03 3.147e-01 -1.367e-01 1.985e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20661 1.000 0.147 -0.037 0.078 0.014 - 2 0.60439 0.147 1.000 0.471 -0.322 0.558 - 3 0.95995 -0.037 0.471 1.000 -0.892 0.924 - 4 0.90013 0.078 -0.322 -0.892 1.000 -0.796 - 5 0.93549 0.014 0.558 0.924 -0.796 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5797.63 FROM HESSE STATUS=OK 31 CALLS 307 TOTAL - EDM=2.80959e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.60912e+02 1.19444e-01 1.23370e-04 9.13304e-02 - 2 sg_p1 3.47734e+00 1.23908e-01 1.06803e-04 -2.64402e-01 - 3 sg_p2 2.67522e+02 8.01092e+00 1.53605e-04 5.44131e-01 - 4 sg_p3 3.43314e+01 4.04488e+00 2.18748e-04 -9.83058e-01 - 5 sg_p4 6.38280e-01 4.59835e-02 1.48643e-04 -4.63274e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.427e-02 2.115e-03 -4.024e-02 3.926e-02 4.011e-05 - 2.115e-03 1.537e-02 4.799e-01 -1.722e-01 3.254e-03 - -4.024e-02 4.799e-01 6.424e+01 -2.927e+01 3.453e-01 - 3.926e-02 -1.722e-01 -2.927e+01 1.637e+01 -1.524e-01 - 4.011e-05 3.254e-03 3.453e-01 -1.524e-01 2.145e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20733 1.000 0.143 -0.042 0.081 0.007 - 2 0.61221 0.143 1.000 0.483 -0.343 0.567 - 3 0.96365 -0.042 0.483 1.000 -0.903 0.930 - 4 0.90974 0.081 -0.343 -0.903 1.000 -0.813 - 5 0.94046 0.007 0.567 0.930 -0.813 1.000 -260 -260.912 +- 0.119444 -3.47734 +- 0.123908 -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 260.912 +- 0.1233 (stat) - 0.153523 + 0.10939 (syst); -0.165439/+0.125566 (total) - Uncertainty on sg_p1 = 3.47719 +- 0.127818 (stat) - 0.064005 + 0.129714 (syst); -0.0904489/+0.144603 (total) - Uncertainty on sg_p2 = 267.513 +- 8.27292 (stat) - 0.627396 + 2.41961 (syst); -4.18377/+4.79216 (total) - Uncertainty on sg_p3 = 34.2369 +- 4.16972 (stat) - 1.17594 + 0.308663 (syst); -2.39363/+2.10758 (total) - Uncertainty on sg_p4 = 0.640026 +- 0.047524 (stat) - 0.0119301 + 0.0159351 (syst); -0.0265887/+0.0286105 (total) - === Baseline plot ===
- norm = 191.924 -JEC lnN 1.01807 - -JER lnN 1.02103 - -btag lnN 1.06823 - -sg_p0 param 260.912 -0.165439/+0.125566 -sg_p1 param 3.47719 -0.0904489/+0.144603 -sg_p2 param 267.513 -4.18377/+4.79216 -sg_p3 param 34.2369 -2.39363/+2.10758 -sg_p4 param 0.640026 -0.0265887/+0.0286105 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_260_gaus_exp_252_330/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_260_gaus_exp_252_330/data_bkg.log deleted file mode 100644 index 1be2f6e..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_260_gaus_exp_252_330/data_bkg.log +++ /dev/null @@ -1,717 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [250,330] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [250,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63590.5 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.69443e-02 5.09000e-01 0.00000e+00 -7.94680e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -8.91126e+00 - 3 par_crystal_2 2.62020e+02 4.00000e+00 1.01181e-01 -1.53451e+00 - 4 par_crystal_3 1.65000e+01 2.70000e+00 0.00000e+00 7.46021e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM MIGRAD STATUS=CONVERGED 482 CALLS 483 TOTAL - EDM=0.000814822 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 4.40594e-01 4.43750e-02 2.48631e-03 2.88668e-01 - 2 par_crystal_1 9.82994e-01 6.48221e-01 2.14269e-02 -5.28345e-03 - 3 par_crystal_2 2.71542e+02 7.41091e-01 7.20683e-03 -9.27818e-02 - 4 par_crystal_3 2.87224e+01 2.18588e+00 3.97473e-02 -6.99277e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.970e-03 -2.333e-02 -5.115e-04 1.392e-02 - -2.333e-02 4.358e-01 4.870e-03 -8.391e-01 - -5.115e-04 4.870e-03 5.496e-01 4.381e-01 - 1.392e-02 -8.391e-01 4.381e-01 5.029e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.88989 1.000 -0.796 -0.016 0.140 - 2 0.92807 -0.796 1.000 0.010 -0.567 - 3 0.40865 -0.016 0.010 1.000 0.264 - 4 0.80948 0.140 -0.567 0.264 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM HESSE STATUS=OK 23 CALLS 506 TOTAL - EDM=0.000711421 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 4.40594e-01 4.64698e-02 4.97262e-04 -9.80558e-01 - 2 par_crystal_1 9.82994e-01 6.55195e-01 8.57075e-04 -6.65795e-01 - 3 par_crystal_2 2.71542e+02 7.38644e-01 1.44137e-03 6.15159e-01 - 4 par_crystal_3 2.87224e+01 2.03002e+00 1.58989e-03 -1.05570e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.160e-03 -2.581e-02 -1.109e-03 1.530e-02 - -2.581e-02 4.456e-01 2.508e-02 -7.234e-01 - -1.109e-03 2.508e-02 5.460e-01 3.687e-01 - 1.530e-02 -7.234e-01 3.687e-01 4.306e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.90014 1.000 -0.832 -0.032 0.159 - 2 0.92960 -0.832 1.000 0.051 -0.522 - 3 0.40186 -0.032 0.051 1.000 0.240 - 4 0.77207 0.159 -0.522 0.240 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63714.2 FROM MIGRAD STATUS=INITIATE 33 CALLS 34 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 2.63122e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -5.45805e+02 - 3 par_gaus_exp_2 6.67498e-01 3.05000e-01 -6.37370e-01 7.03093e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM MIGRAD STATUS=CONVERGED 131 CALLS 132 TOTAL - EDM=6.15917e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.71558e+02 8.05096e-01 6.82817e-03 6.24407e-02 - 2 par_gaus_exp_1 3.06822e+01 1.83071e+00 1.43475e-02 1.11468e-02 - 3 par_gaus_exp_2 3.82770e-01 2.42284e-02 3.05774e-03 -9.77170e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.486e-01 -6.079e-01 -1.588e-03 - -6.079e-01 3.370e+00 3.082e-02 - -1.588e-03 3.082e-02 5.871e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.49876 1.000 -0.411 -0.081 - 2 0.77898 -0.411 1.000 0.693 - 3 0.72797 -0.081 0.693 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM HESSE STATUS=OK 16 CALLS 148 TOTAL - EDM=6.13964e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.71558e+02 8.14214e-01 2.73127e-04 -4.35760e-01 - 2 par_gaus_exp_1 3.06822e+01 1.86973e+00 5.73898e-04 4.10264e-01 - 3 par_gaus_exp_2 3.82770e-01 2.45149e-02 1.22310e-04 -8.97531e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.634e-01 -6.630e-01 -2.137e-03 - -6.630e-01 3.516e+00 3.227e-02 - -2.137e-03 3.227e-02 6.011e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.51526 1.000 -0.434 -0.107 - 2 0.78935 -0.434 1.000 0.702 - 3 0.73544 -0.107 0.702 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,625] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.33953 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.33953) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - ... (remaining 126 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.734607 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.734607) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=317.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=327.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=332.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=342.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=347.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=352.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=357.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=362.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=367.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - ... (remaining 53 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0734613 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0734613 - - FCN=103487 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57093e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.56195e+03 - 3 par_novo_2 -1.33668e+00 2.00000e+01 0.00000e+00 1.53931e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM MIGRAD STATUS=CONVERGED 127 CALLS 128 TOTAL - EDM=3.4171e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.43423e+01 1.81223e-01** at limit ** - 2 par_novo_1 3.86596e+01 2.27294e+00 4.95847e-03 -1.04123e-02 - 3 par_novo_2 -1.27520e+00 7.07738e-02 3.70975e-05 -1.26322e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.231e-09 -8.491e-07 -8.580e-07 - -8.491e-07 5.181e+00 1.547e-01 - -8.580e-07 1.547e-01 5.009e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.53332 1.000 -0.005 -0.154 - 2 0.97096 -0.005 1.000 0.960 - 3 0.97165 -0.154 0.960 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM HESSE STATUS=OK 20 CALLS 148 TOTAL - EDM=3.43726e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.40246e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.86596e+01 2.31421e+00 1.98339e-04 4.46530e-01 - 3 par_novo_2 -1.27520e+00 7.22930e-02 1.48390e-06 -1.27523e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 5.974e-09 2.819e-05 -1.296e-06 - 2.819e-05 5.372e+00 1.502e-01 - -1.296e-06 1.502e-01 5.226e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.85665 1.000 0.157 -0.232 - 2 0.97200 0.157 1.000 0.897 - 3 0.97285 -0.232 0.897 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107513 FROM MIGRAD STATUS=INITIATE 54 CALLS 55 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 1.39168e+03 - 2 par_crystal_1_1 7.96220e-02 5.09000e-01 0.00000e+00 5.33770e+03 - 3 par_crystal_1_2 2.56879e+02 4.00000e+00 -1.56713e-01 -1.96669e+01 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 -8.45862e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.5057e-02 2.3309e-03 4.9678e-02 3.9730e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.029030 TO DIAGONAL. - FCN=103250 FROM MIGRAD STATUS=CONVERGED 436 CALLS 437 TOTAL - EDM=3.52757e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 4.45574e-02 4.37117e-03 3.09465e-04 -4.28177e+00 - 2 par_crystal_1_1 4.36914e+00 6.24106e-01 1.80400e-02 6.63742e-02 - 3 par_crystal_1_2 2.71531e+02 3.44700e+01 5.81266e-02 2.25694e-02 - 4 par_crystal_1_3 3.37290e+00 2.71702e-01 3.13791e-03 -4.26197e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.911e-05 -1.221e-03 2.089e-01 3.572e-04 - -1.221e-03 4.065e-01 -2.690e+01 -6.822e-02 - 2.089e-01 -2.690e+01 3.429e+03 1.167e+01 - 3.572e-04 -6.822e-02 1.167e+01 7.401e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99136 1.000 -0.438 0.816 0.300 - 2 0.97307 -0.438 1.000 -0.720 -0.393 - 3 0.99735 0.816 -0.720 1.000 0.733 - 4 0.98716 0.300 -0.393 0.733 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -8.0089e-04 4.0193e-04 7.1213e-02 3.9292e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.004730 TO DIAGONAL. - FCN=103250 FROM HESSE STATUS=NOT POSDEF 23 CALLS 460 TOTAL - EDM=3.56127e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 4.45574e-02 7.42610e-03 6.18930e-05 -1.40582e+00 - 2 par_crystal_1_1 4.36914e+00 4.67550e-01 7.21602e-04 -3.93511e+00 - 3 par_crystal_1_2 2.71531e+02 3.29814e+01 2.32506e-03 -3.75607e+00 - 4 par_crystal_1_3 3.37290e+00 5.01685e-01 1.25517e-04 -1.80638e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.515e-05 2.851e-04 2.343e-01 -1.699e-03 - 2.851e-04 2.238e-01 -2.528e+00 1.548e-02 - 2.343e-01 -2.528e+00 2.967e+03 1.176e+01 - -1.699e-03 1.548e-02 1.176e+01 2.538e-01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99694 1.000 0.081 0.579 -0.454 - 2 0.94927 0.081 1.000 -0.098 0.065 - 3 0.99687 0.579 -0.098 1.000 0.429 - 4 0.99618 -0.454 0.065 0.429 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 14211 - Background number of gaus_exp_252_330 = 14211 - Background number of novo_285_624 = 17618.3 - Background number of crystal_1_285_624 = 17618.3 - Background number of gaus_bern_285_624 = 17618.3 - Background number of landau_285_624 = 17618.3 -par_crystal_0 param 0.440594 0.0464698 -par_crystal_1 param 0.982994 0.655195 -par_crystal_2 param 271.542 0.738644 -par_crystal_3 param 28.7224 2.03002 -par_crystal_1_0 param 0.0445574 0.0074261 -par_crystal_1_1 param 4.36914 0.46755 -par_crystal_1_2 param 271.531 32.9814 -par_crystal_1_3 param 3.3729 0.501685 -par_gaus_exp_0 param 271.558 0.814214 -par_gaus_exp_1 param 30.6822 1.86973 -par_gaus_exp_2 param 0.38277 0.0245149 -par_novo_0 param 250 34.0246 -par_novo_1 param 38.6596 2.31421 -par_novo_2 param -1.2752 0.072293 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_260_gaus_exp_252_330/datacard_260_gaus_exp_252_330.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_260_gaus_exp_252_330/datacard_260_gaus_exp_252_330.txt deleted file mode 100644 index f12206c..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_260_gaus_exp_252_330/datacard_260_gaus_exp_252_330.txt +++ /dev/null @@ -1,29 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_260.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_gaus_exp_252_330.root HbbHbb:f_gaus_exp -shapes data_obs HbbHbb w_background_gaus_exp_252_330.root HbbHbb:data_obs_gaus_exp_252_330 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 191.924 14211 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06823 - -JER lnN 1.02103 - -JEC lnN 1.01807 - -trigger lnN 1.10 - -sg_p0 param 260.912 -0.165439/+0.125566 -sg_p1 param 3.47719 -0.0904489/+0.144603 -sg_p2 param 267.513 -4.18377/+4.79216 -sg_p3 param 34.2369 -2.39363/+2.10758 -sg_p4 param 0.640026 -0.0265887/+0.0286105 -par_gaus_exp_0 param 271.558 0.814214 -par_gaus_exp_1 param 30.6822 1.86973 -par_gaus_exp_2 param 0.38277 0.0245149 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_260_gaus_exp_252_330/signal260_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_260_gaus_exp_252_330/signal260_sig.log deleted file mode 100644 index 13dd83d..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_260_gaus_exp_252_330/signal260_sig.log +++ /dev/null @@ -1,842 +0,0 @@ - -Processing test.c... -nSignal_init = 300000 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=7249.56 FROM MIGRAD STATUS=INITIATE 45 CALLS 46 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.50000e+02 4.00000e+00 0.00000e+00 -3.41934e+02 - 2 sg_p1 1.35000e+01 2.30000e+00 0.00000e+00 -9.44540e+01 - 3 sg_p2 3.00000e+02 5.80000e+01 0.00000e+00 2.87170e+02 - 4 sg_p3 5.54385e+01 2.90000e+01 -7.56845e-01 -4.27472e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 -1.11620e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7161.13 FROM MIGRAD STATUS=CONVERGED 183 CALLS 184 TOTAL - EDM=2.26284e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.54307e+02 4.46691e-01 1.29592e-03 1.21370e-02 - 2 sg_p1 1.55513e+01 3.65330e-01 1.72918e-03 -4.57555e-02 - 3 sg_p2 3.13992e+02 1.11306e+01 1.54612e-03 9.59972e-03 - 4 sg_p3 7.00767e+01 6.24766e+00 2.56609e-03 1.76365e-03 - 5 sg_p4 9.03546e-01 1.22165e-02 2.78748e-03 -5.41093e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.996e-01 3.046e-02 3.316e-01 2.128e-01 9.423e-04 - 3.046e-02 1.335e-01 1.073e+00 -6.884e-02 1.627e-03 - 3.316e-01 1.073e+00 1.240e+02 -3.745e+01 8.007e-02 - 2.128e-01 -6.884e-02 -3.745e+01 3.907e+01 -1.718e-02 - 9.423e-04 1.627e-03 8.007e-02 -1.718e-02 1.494e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.24437 1.000 0.187 0.067 0.076 0.173 - 2 0.40012 0.187 1.000 0.264 -0.030 0.364 - 3 0.72503 0.067 0.264 1.000 -0.538 0.588 - 4 0.56339 0.076 -0.030 -0.538 1.000 -0.225 - 5 0.63827 0.173 0.364 0.588 -0.225 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7161.13 FROM HESSE STATUS=OK 31 CALLS 215 TOTAL - EDM=2.25533e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.54307e+02 4.46615e-01 2.59185e-04 2.17043e-01 - 2 sg_p1 1.55513e+01 3.65352e-01 3.45837e-04 1.79332e-01 - 3 sg_p2 3.13992e+02 1.12246e+01 6.18447e-05 4.82680e-02 - 4 sg_p3 7.00767e+01 6.29870e+00 1.02643e-04 -6.25716e-01 - 5 sg_p4 9.03546e-01 1.22468e-02 1.11499e-04 6.61353e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.995e-01 3.031e-02 3.258e-01 2.130e-01 9.376e-04 - 3.031e-02 1.335e-01 1.084e+00 -7.870e-02 1.633e-03 - 3.258e-01 1.084e+00 1.261e+02 -3.883e+01 8.134e-02 - 2.130e-01 -7.870e-02 -3.883e+01 3.971e+01 -1.806e-02 - 9.376e-04 1.633e-03 8.134e-02 -1.806e-02 1.502e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.24371 1.000 0.186 0.065 0.076 0.171 - 2 0.40024 0.186 1.000 0.264 -0.034 0.365 - 3 0.73047 0.065 0.264 1.000 -0.549 0.591 - 4 0.57308 0.076 -0.034 -0.549 1.000 -0.234 - 5 0.64057 0.171 0.365 0.591 -0.234 1.000 -260 -254.307 +- 0.446615 -15.5513 +- 0.365352 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=7365.44 FROM MIGRAD STATUS=INITIATE 44 CALLS 45 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.50000e+02 4.00000e+00 0.00000e+00 -5.31672e+02 - 2 sg_p1 1.35000e+01 2.30000e+00 0.00000e+00 -1.29968e+02 - 3 sg_p2 3.00000e+02 5.80000e+01 0.00000e+00 2.18090e+02 - 4 sg_p3 7.02234e+01 2.90000e+01 -6.24469e-01 3.04411e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 -1.01446e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7235.04 FROM MIGRAD STATUS=CONVERGED 193 CALLS 194 TOTAL - EDM=9.01413e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.56005e+02 4.49108e-01 1.34491e-03 -5.08347e-03 - 2 sg_p1 1.58159e+01 3.69974e-01 1.76393e-03 -5.10762e-02 - 3 sg_p2 3.20358e+02 1.45835e+01 1.97066e-03 3.38124e-02 - 4 sg_p3 8.43702e+01 8.25437e+00 3.00025e-03 1.43647e-02 - 5 sg_p4 9.08830e-01 1.15488e-02 2.75207e-03 -4.16137e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.017e-01 3.033e-02 4.244e-01 2.172e-01 8.632e-04 - 3.033e-02 1.369e-01 1.451e+00 -1.530e-01 1.573e-03 - 4.244e-01 1.451e+00 2.129e+02 -7.227e+01 9.550e-02 - 2.172e-01 -1.530e-01 -7.227e+01 6.823e+01 -2.243e-02 - 8.632e-04 1.573e-03 9.550e-02 -2.243e-02 1.335e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23216 1.000 0.182 0.065 0.059 0.166 - 2 0.40488 0.182 1.000 0.269 -0.050 0.368 - 3 0.74731 0.065 0.269 1.000 -0.600 0.566 - 4 0.62245 0.059 -0.050 -0.600 1.000 -0.235 - 5 0.62271 0.166 0.368 0.566 -0.235 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7235.04 FROM HESSE STATUS=OK 31 CALLS 225 TOTAL - EDM=9.02546e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.56005e+02 4.49038e-01 5.37964e-05 3.04976e-01 - 2 sg_p1 1.58159e+01 3.70057e-01 3.52786e-04 2.02768e-01 - 3 sg_p2 3.20358e+02 1.47403e+01 3.94131e-04 7.02587e-02 - 4 sg_p3 8.43702e+01 8.34145e+00 1.20010e-04 -5.08769e-01 - 5 sg_p4 9.08830e-01 1.15806e-02 5.50414e-04 6.88425e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.017e-01 3.017e-02 4.192e-01 2.171e-01 8.603e-04 - 3.017e-02 1.370e-01 1.472e+00 -1.690e-01 1.581e-03 - 4.192e-01 1.472e+00 2.175e+02 -7.517e+01 9.735e-02 - 2.171e-01 -1.690e-01 -7.517e+01 6.968e+01 -2.367e-02 - 8.603e-04 1.581e-03 9.735e-02 -2.367e-02 1.343e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23152 1.000 0.182 0.063 0.058 0.165 - 2 0.40534 0.182 1.000 0.270 -0.055 0.369 - 3 0.75354 0.063 0.270 1.000 -0.611 0.570 - 4 0.63259 0.058 -0.055 -0.611 1.000 -0.245 - 5 0.62540 0.165 0.369 0.570 -0.245 1.000 -260 -256.005 +- 0.449038 -15.8159 +- 0.370057 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=7023.18 FROM MIGRAD STATUS=INITIATE 44 CALLS 45 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.50000e+02 4.00000e+00 0.00000e+00 -2.24645e+02 - 2 sg_p1 1.35000e+01 2.30000e+00 0.00000e+00 -8.46385e+01 - 3 sg_p2 3.00000e+02 5.80000e+01 0.00000e+00 2.26204e+02 - 4 sg_p3 6.83932e+01 2.90000e+01 -6.40116e-01 1.32344e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 -1.30920e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6951.87 FROM MIGRAD STATUS=CONVERGED 181 CALLS 182 TOTAL - EDM=1.6519e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.53020e+02 4.42659e-01 1.26031e-03 3.88378e-02 - 2 sg_p1 1.54031e+01 3.53863e-01 1.68006e-03 -8.87814e-02 - 3 sg_p2 3.18681e+02 1.25359e+01 1.70808e-03 3.37307e-03 - 4 sg_p3 7.61417e+01 7.12298e+00 2.70731e-03 -4.47116e-02 - 5 sg_p4 9.04717e-01 1.16729e-02 2.71701e-03 -2.80475e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.960e-01 2.470e-02 3.794e-01 1.447e-01 7.850e-04 - 2.470e-02 1.253e-01 1.069e+00 -1.360e-01 1.312e-03 - 3.794e-01 1.069e+00 1.572e+02 -5.206e+01 8.352e-02 - 1.447e-01 -1.360e-01 -5.206e+01 5.079e+01 -2.199e-02 - 7.850e-04 1.312e-03 8.352e-02 -2.199e-02 1.364e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20982 1.000 0.158 0.068 0.046 0.152 - 2 0.35244 0.158 1.000 0.241 -0.054 0.317 - 3 0.72927 0.068 0.241 1.000 -0.582 0.570 - 4 0.59651 0.046 -0.054 -0.582 1.000 -0.264 - 5 0.60854 0.152 0.317 0.570 -0.264 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6951.87 FROM HESSE STATUS=OK 31 CALLS 213 TOTAL - EDM=1.65128e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.53020e+02 4.42602e-01 2.52062e-04 1.51594e-01 - 2 sg_p1 1.54031e+01 3.53933e-01 3.36012e-04 1.66253e-01 - 3 sg_p2 3.18681e+02 1.26590e+01 6.83233e-05 6.44624e-02 - 4 sg_p3 7.61417e+01 7.19114e+00 1.08292e-04 -5.75018e-01 - 5 sg_p4 9.04717e-01 1.17079e-02 5.43402e-04 6.67300e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.959e-01 2.459e-02 3.764e-01 1.438e-01 7.830e-04 - 2.459e-02 1.253e-01 1.084e+00 -1.475e-01 1.320e-03 - 3.764e-01 1.084e+00 1.604e+02 -5.404e+01 8.512e-02 - 1.438e-01 -1.475e-01 -5.404e+01 5.177e+01 -2.306e-02 - 7.830e-04 1.320e-03 8.512e-02 -2.306e-02 1.372e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20923 1.000 0.157 0.067 0.045 0.151 - 2 0.35293 0.157 1.000 0.242 -0.058 0.318 - 3 0.73547 0.067 0.242 1.000 -0.593 0.574 - 4 0.60661 0.045 -0.058 -0.593 1.000 -0.274 - 5 0.61162 0.151 0.318 0.574 -0.274 1.000 -260 -253.02 +- 0.442602 -15.4031 +- 0.353933 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=5529.06 FROM MIGRAD STATUS=INITIATE 37 CALLS 38 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60000e+02 2.00000e+00 0.00000e+00 -7.09302e+02 - 2 sg_p1 4.00000e+00 4.00000e-01 0.00000e+00 -1.84754e+01 - 3 sg_p2 1.79000e+02 3.42000e+01 0.00000e+00 -1.60258e+01 - 4 sg_p3 1.19103e+02 2.90000e+01 -2.50167e-01 6.51588e+00 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.55737e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5416.32 FROM MIGRAD STATUS=CONVERGED 276 CALLS 277 TOTAL - EDM=4.33865e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60912e+02 1.23280e-01 6.16272e-04 -2.78767e-01 - 2 sg_p1 3.47719e+00 1.26808e-01 2.66781e-03 -6.03093e-03 - 3 sg_p2 2.67513e+02 7.88309e+00 7.67886e-04 -3.32533e-01 - 4 sg_p3 3.42369e+01 3.97181e+00 1.09311e-03 -2.13224e-01 - 5 sg_p4 6.40026e-01 4.56991e-02 3.70400e-03 4.78364e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.520e-02 2.286e-03 -3.667e-02 3.860e-02 7.477e-05 - 2.286e-03 1.610e-02 4.707e-01 -1.623e-01 3.257e-03 - -3.667e-02 4.707e-01 6.220e+01 -2.796e+01 3.355e-01 - 3.860e-02 -1.623e-01 -2.796e+01 1.579e+01 -1.455e-01 - 7.477e-05 3.257e-03 3.355e-01 -1.455e-01 2.118e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20586 1.000 0.146 -0.038 0.079 0.013 - 2 0.60362 0.146 1.000 0.470 -0.322 0.558 - 3 0.95992 -0.038 0.470 1.000 -0.892 0.924 - 4 0.90004 0.079 -0.322 -0.892 1.000 -0.796 - 5 0.93542 0.013 0.558 0.924 -0.796 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5416.32 FROM HESSE STATUS=OK 31 CALLS 308 TOTAL - EDM=4.34749e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.60912e+02 1.23300e-01 1.23254e-04 9.13107e-02 - 2 sg_p1 3.47719e+00 1.27818e-01 1.06712e-04 -2.64476e-01 - 3 sg_p2 2.67513e+02 8.27292e+00 1.53577e-04 5.44068e-01 - 4 sg_p3 3.42369e+01 4.16972e+00 2.18622e-04 -9.84235e-01 - 5 sg_p4 6.40026e-01 4.75240e-02 7.40799e-04 -4.55485e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.520e-02 2.233e-03 -4.363e-02 4.203e-02 3.794e-05 - 2.233e-03 1.636e-02 5.114e-01 -1.832e-01 3.471e-03 - -4.363e-02 5.114e-01 6.851e+01 -3.117e+01 3.687e-01 - 4.203e-02 -1.832e-01 -3.117e+01 1.740e+01 -1.624e-01 - 3.794e-05 3.471e-03 3.687e-01 -1.624e-01 2.293e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20660 1.000 0.142 -0.043 0.082 0.006 - 2 0.61186 0.142 1.000 0.483 -0.343 0.567 - 3 0.96369 -0.043 0.483 1.000 -0.903 0.930 - 4 0.90977 0.082 -0.343 -0.903 1.000 -0.813 - 5 0.94051 0.006 0.567 0.930 -0.813 1.000 -260 -260.912 +- 0.1233 -3.47719 +- 0.127818 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=5643.26 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60000e+02 2.00000e+00 0.00000e+00 -7.61456e+02 - 2 sg_p1 4.00000e+00 4.00000e-01 0.00000e+00 -4.66447e+01 - 3 sg_p2 1.79000e+02 3.42000e+01 0.00000e+00 -2.40363e+01 - 4 sg_p3 1.17448e+02 2.90000e+01 -2.61968e-01 1.99273e-01 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.86435e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5508.96 FROM MIGRAD STATUS=CONVERGED 329 CALLS 330 TOTAL - EDM=7.77109e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.61021e+02 1.29098e-01 6.49909e-04 -1.01661e-02 - 2 sg_p1 3.57410e+00 1.33955e-01 2.78633e-03 8.71570e-03 - 3 sg_p2 2.69189e+02 7.27138e+00 7.50620e-04 -6.29806e-03 - 4 sg_p3 3.37078e+01 3.73722e+00 1.08346e-03 1.26302e-02 - 5 sg_p4 6.28095e-01 4.44728e-02 3.81722e-03 4.51572e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.667e-02 2.658e-03 -2.984e-02 3.729e-02 1.239e-04 - 2.658e-03 1.797e-02 4.694e-01 -1.655e-01 3.402e-03 - -2.984e-02 4.694e-01 5.292e+01 -2.409e+01 2.999e-01 - 3.729e-02 -1.655e-01 -2.409e+01 1.398e+01 -1.324e-01 - 1.239e-04 3.402e-03 2.999e-01 -1.324e-01 2.006e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.21380 1.000 0.154 -0.032 0.077 0.021 - 2 0.61009 0.154 1.000 0.481 -0.330 0.567 - 3 0.95628 -0.032 0.481 1.000 -0.886 0.921 - 4 0.89342 0.077 -0.330 -0.886 1.000 -0.790 - 5 0.93183 0.021 0.567 0.921 -0.790 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5508.96 FROM HESSE STATUS=OK 31 CALLS 361 TOTAL - EDM=7.78626e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.61021e+02 1.29118e-01 1.29982e-04 1.02301e-01 - 2 sg_p1 3.57410e+00 1.35116e-01 1.11453e-04 -2.14592e-01 - 3 sg_p2 2.69189e+02 7.65572e+00 3.00248e-05 5.55561e-01 - 4 sg_p3 3.37078e+01 3.93737e+00 4.33384e-05 -9.90860e-01 - 5 sg_p4 6.28095e-01 4.63527e-02 1.52689e-04 -5.09360e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.667e-02 2.595e-03 -3.703e-02 4.087e-02 8.376e-05 - 2.595e-03 1.829e-02 5.123e-01 -1.882e-01 3.639e-03 - -3.703e-02 5.123e-01 5.866e+01 -2.709e+01 3.317e-01 - 4.087e-02 -1.882e-01 -2.709e+01 1.552e+01 -1.489e-01 - 8.376e-05 3.639e-03 3.317e-01 -1.489e-01 2.182e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.21449 1.000 0.149 -0.037 0.080 0.014 - 2 0.61885 0.149 1.000 0.495 -0.353 0.576 - 3 0.96065 -0.037 0.495 1.000 -0.898 0.927 - 4 0.90455 0.080 -0.353 -0.898 1.000 -0.810 - 5 0.93751 0.014 0.576 0.927 -0.810 1.000 -260 -261.021 +- 0.129118 -3.5741 +- 0.135116 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=5267.68 FROM MIGRAD STATUS=INITIATE 37 CALLS 38 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60000e+02 2.00000e+00 0.00000e+00 -5.95437e+02 - 2 sg_p1 4.00000e+00 4.00000e-01 0.00000e+00 3.20402e+00 - 3 sg_p2 1.79000e+02 3.42000e+01 0.00000e+00 -1.99949e+01 - 4 sg_p3 1.11751e+02 2.90000e+01 -3.02882e-01 -4.35631e-01 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.33332e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5177.85 FROM MIGRAD STATUS=CONVERGED 294 CALLS 295 TOTAL - EDM=1.65041e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60758e+02 1.21975e-01 5.95143e-04 1.08233e-01 - 2 sg_p1 3.44214e+00 1.23415e-01 2.58042e-03 -3.07927e-02 - 3 sg_p2 2.66886e+02 8.40621e+00 7.85904e-04 -8.91521e-02 - 4 sg_p3 3.45456e+01 4.21772e+00 1.11909e-03 -3.70390e-02 - 5 sg_p4 6.53607e-01 4.66834e-02 3.55052e-03 4.88918e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.488e-02 2.239e-03 -3.126e-02 3.680e-02 1.101e-04 - 2.239e-03 1.525e-02 4.727e-01 -1.617e-01 3.144e-03 - -3.126e-02 4.727e-01 7.074e+01 -3.174e+01 3.661e-01 - 3.680e-02 -1.617e-01 -3.174e+01 1.781e+01 -1.585e-01 - 1.101e-04 3.144e-03 3.661e-01 -1.585e-01 2.210e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20236 1.000 0.149 -0.030 0.072 0.019 - 2 0.58940 0.149 1.000 0.455 -0.310 0.542 - 3 0.96112 -0.030 0.455 1.000 -0.894 0.926 - 4 0.90222 0.072 -0.310 -0.894 1.000 -0.799 - 5 0.93659 0.019 0.542 0.926 -0.799 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5177.85 FROM HESSE STATUS=OK 31 CALLS 326 TOTAL - EDM=1.76189e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.60758e+02 1.21991e-01 1.19029e-04 7.59045e-02 - 2 sg_p1 3.44214e+00 1.24473e-01 5.16084e-04 -2.82680e-01 - 3 sg_p2 2.66886e+02 8.89789e+00 1.57181e-04 5.39785e-01 - 4 sg_p3 3.45456e+01 4.46620e+00 4.47638e-05 -9.80400e-01 - 5 sg_p4 6.53607e-01 4.88967e-02 1.42021e-04 -3.95830e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.488e-02 2.186e-03 -3.913e-02 4.064e-02 6.994e-05 - 2.186e-03 1.552e-02 5.207e-01 -1.864e-01 3.386e-03 - -3.913e-02 5.207e-01 7.927e+01 -3.606e+01 4.092e-01 - 4.064e-02 -1.864e-01 -3.606e+01 1.997e+01 -1.803e-01 - 6.994e-05 3.386e-03 4.092e-01 -1.803e-01 2.428e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20297 1.000 0.144 -0.036 0.075 0.012 - 2 0.59871 0.144 1.000 0.470 -0.335 0.552 - 3 0.96537 -0.036 0.470 1.000 -0.906 0.933 - 4 0.91331 0.075 -0.335 -0.906 1.000 -0.819 - 5 0.94245 0.012 0.552 0.933 -0.819 1.000 -260 -260.758 +- 0.121991 -3.44214 +- 0.124473 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=5338.33 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60000e+02 2.00000e+00 0.00000e+00 -6.92141e+02 - 2 sg_p1 4.00000e+00 4.00000e-01 0.00000e+00 -3.46913e+01 - 3 sg_p2 1.79000e+02 3.42000e+01 0.00000e+00 -1.94669e+01 - 4 sg_p3 1.15260e+02 2.90000e+01 -2.77623e-01 2.60024e+00 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.53009e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5229.92 FROM MIGRAD STATUS=CONVERGED 289 CALLS 290 TOTAL - EDM=1.81993e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60953e+02 1.29425e-01 6.35842e-04 1.60007e-03 - 2 sg_p1 3.60691e+00 1.34289e-01 2.70753e-03 6.00340e-02 - 3 sg_p2 2.69933e+02 7.51981e+00 7.59887e-04 1.45220e-02 - 4 sg_p3 3.30610e+01 3.84505e+00 1.10949e-03 -7.50525e-02 - 5 sg_p4 6.55961e-01 4.53996e-02 3.52891e-03 -1.95435e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.675e-02 2.478e-03 -2.803e-02 3.713e-02 1.271e-04 - 2.478e-03 1.806e-02 5.001e-01 -1.785e-01 3.521e-03 - -2.803e-02 5.001e-01 5.660e+01 -2.561e+01 3.175e-01 - 3.713e-02 -1.785e-01 -2.561e+01 1.480e+01 -1.399e-01 - 1.271e-04 3.521e-03 3.175e-01 -1.399e-01 2.088e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20432 1.000 0.142 -0.029 0.075 0.021 - 2 0.61219 0.142 1.000 0.495 -0.345 0.573 - 3 0.95634 -0.029 0.495 1.000 -0.885 0.924 - 4 0.89204 0.075 -0.345 -0.885 1.000 -0.796 - 5 0.93370 0.021 0.573 0.924 -0.796 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5229.92 FROM HESSE STATUS=OK 31 CALLS 321 TOTAL - EDM=1.90259e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.60953e+02 1.29442e-01 1.27168e-04 9.54629e-02 - 2 sg_p1 3.60691e+00 1.35689e-01 5.41506e-04 -1.97834e-01 - 3 sg_p2 2.69933e+02 7.93967e+00 3.03955e-05 5.60690e-01 - 4 sg_p3 3.30610e+01 4.05992e+00 4.43797e-05 -9.99053e-01 - 5 sg_p4 6.55961e-01 4.74783e-02 7.05783e-04 -3.85646e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.676e-02 2.413e-03 -3.514e-02 4.064e-02 8.764e-05 - 2.413e-03 1.844e-02 5.501e-01 -2.046e-01 3.797e-03 - -3.514e-02 5.501e-01 6.310e+01 -2.896e+01 3.534e-01 - 4.064e-02 -2.046e-01 -2.896e+01 1.650e+01 -1.584e-01 - 8.764e-05 3.797e-03 3.534e-01 -1.584e-01 2.286e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20493 1.000 0.137 -0.034 0.077 0.014 - 2 0.62260 0.137 1.000 0.510 -0.371 0.585 - 3 0.96093 -0.034 0.510 1.000 -0.897 0.930 - 4 0.90377 0.077 -0.371 -0.897 1.000 -0.816 - 5 0.93964 0.014 0.585 0.930 -0.816 1.000 -260 -260.953 +- 0.129442 -3.60691 +- 0.135689 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=5550.93 FROM MIGRAD STATUS=INITIATE 38 CALLS 39 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60000e+02 2.00000e+00 0.00000e+00 -7.28869e+02 - 2 sg_p1 4.00000e+00 4.00000e-01 0.00000e+00 -1.53562e+00 - 3 sg_p2 1.79000e+02 3.42000e+01 0.00000e+00 -1.85127e+01 - 4 sg_p3 1.16923e+02 2.90000e+01 -2.65719e-01 3.07224e+00 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.51841e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5437.82 FROM MIGRAD STATUS=CONVERGED 274 CALLS 275 TOTAL - EDM=7.69222e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60915e+02 1.19244e-01 5.95259e-04 2.60414e-02 - 2 sg_p1 3.41319e+00 1.20663e-01 2.58530e-03 3.23980e-02 - 3 sg_p2 2.68923e+02 7.42025e+00 7.74450e-04 1.02102e-01 - 4 sg_p3 3.38737e+01 3.84818e+00 1.11926e-03 3.14690e-01 - 5 sg_p4 6.51986e-01 4.29286e-02 3.53695e-03 3.46225e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.422e-02 2.303e-03 -1.721e-02 2.984e-02 1.633e-04 - 2.303e-03 1.458e-02 4.143e-01 -1.451e-01 2.850e-03 - -1.721e-02 4.143e-01 5.511e+01 -2.526e+01 2.945e-01 - 2.984e-02 -1.451e-01 -2.526e+01 1.482e+01 -1.311e-01 - 1.633e-04 2.850e-03 2.945e-01 -1.311e-01 1.865e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20941 1.000 0.160 -0.019 0.065 0.032 - 2 0.59245 0.160 1.000 0.462 -0.312 0.547 - 3 0.95480 -0.019 0.462 1.000 -0.884 0.919 - 4 0.89128 0.065 -0.312 -0.884 1.000 -0.789 - 5 0.92953 0.032 0.547 0.919 -0.789 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5437.82 FROM HESSE STATUS=OK 31 CALLS 306 TOTAL - EDM=7.77868e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.60915e+02 1.19248e-01 1.19052e-04 9.16025e-02 - 2 sg_p1 3.41319e+00 1.21507e-01 5.17060e-04 -2.97787e-01 - 3 sg_p2 2.68923e+02 7.75724e+00 1.54890e-04 5.53729e-01 - 4 sg_p3 3.38737e+01 4.02350e+00 2.23853e-04 -9.88776e-01 - 5 sg_p4 6.51986e-01 4.45034e-02 7.07389e-04 -4.02868e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.422e-02 2.266e-03 -2.167e-02 3.206e-02 1.398e-04 - 2.266e-03 1.478e-02 4.471e-01 -1.625e-01 3.022e-03 - -2.167e-02 4.471e-01 6.023e+01 -2.794e+01 3.214e-01 - 3.206e-02 -1.625e-01 -2.794e+01 1.620e+01 -1.452e-01 - 1.398e-04 3.022e-03 3.214e-01 -1.452e-01 2.006e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20954 1.000 0.156 -0.023 0.067 0.026 - 2 0.60000 0.156 1.000 0.474 -0.332 0.555 - 3 0.95873 -0.023 0.474 1.000 -0.894 0.925 - 4 0.90107 0.067 -0.332 -0.894 1.000 -0.805 - 5 0.93466 0.026 0.555 0.925 -0.805 1.000 -260 -260.915 +- 0.119248 -3.41319 +- 0.121507 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=5158.41 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60000e+02 2.00000e+00 0.00000e+00 -6.61967e+02 - 2 sg_p1 4.00000e+00 4.00000e-01 0.00000e+00 -1.61061e+01 - 3 sg_p2 1.79000e+02 3.42000e+01 0.00000e+00 -1.77731e+01 - 4 sg_p3 1.15981e+02 2.90000e+01 -2.72457e-01 3.15087e+00 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.44973e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5054.08 FROM MIGRAD STATUS=CONVERGED 308 CALLS 309 TOTAL - EDM=5.20485e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60912e+02 1.27328e-01 6.14172e-04 -1.42304e-01 - 2 sg_p1 3.47672e+00 1.30824e-01 2.65500e-03 -1.69927e-02 - 3 sg_p2 2.67457e+02 8.15515e+00 7.65940e-04 -5.24312e-02 - 4 sg_p3 3.41797e+01 4.10175e+00 1.09416e-03 -2.88607e-03 - 5 sg_p4 6.41502e-01 4.72632e-02 3.67010e-03 1.46000e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.621e-02 2.418e-03 -4.005e-02 4.151e-02 7.448e-05 - 2.418e-03 1.714e-02 5.016e-01 -1.724e-01 3.472e-03 - -4.005e-02 5.016e-01 6.658e+01 -2.986e+01 3.591e-01 - 4.151e-02 -1.724e-01 -2.986e+01 1.684e+01 -1.554e-01 - 7.448e-05 3.472e-03 3.591e-01 -1.554e-01 2.267e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20516 1.000 0.145 -0.039 0.079 0.012 - 2 0.60288 0.145 1.000 0.470 -0.321 0.557 - 3 0.95995 -0.039 0.470 1.000 -0.892 0.924 - 4 0.89989 0.079 -0.321 -0.892 1.000 -0.795 - 5 0.93542 0.012 0.557 0.924 -0.795 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5054.08 FROM HESSE STATUS=OK 31 CALLS 340 TOTAL - EDM=5.2061e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.60912e+02 1.27350e-01 1.22834e-04 9.13271e-02 - 2 sg_p1 3.47672e+00 1.31905e-01 5.30999e-04 -2.64719e-01 - 3 sg_p2 2.67457e+02 8.59468e+00 1.53188e-04 5.43682e-01 - 4 sg_p3 3.41797e+01 4.32549e+00 4.37665e-05 -9.84949e-01 - 5 sg_p4 6.41502e-01 4.93072e-02 1.46804e-04 -4.48919e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.622e-02 2.353e-03 -4.855e-02 4.568e-02 2.931e-05 - 2.353e-03 1.743e-02 5.482e-01 -1.965e-01 3.716e-03 - -4.855e-02 5.482e-01 7.395e+01 -3.362e+01 3.979e-01 - 4.568e-02 -1.965e-01 -3.362e+01 1.873e+01 -1.751e-01 - 2.931e-05 3.716e-03 3.979e-01 -1.751e-01 2.471e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20598 1.000 0.140 -0.044 0.083 0.005 - 2 0.61146 0.140 1.000 0.483 -0.344 0.566 - 3 0.96402 -0.044 0.483 1.000 -0.903 0.931 - 4 0.91049 0.083 -0.344 -0.903 1.000 -0.814 - 5 0.94091 0.005 0.566 0.931 -0.814 1.000 -260 -260.912 +- 0.12735 -3.47672 +- 0.131905 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=5919.1 FROM MIGRAD STATUS=INITIATE 38 CALLS 39 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60000e+02 2.00000e+00 0.00000e+00 -7.57817e+02 - 2 sg_p1 4.00000e+00 4.00000e-01 0.00000e+00 -2.03212e+01 - 3 sg_p2 1.79000e+02 3.42000e+01 0.00000e+00 -1.98859e+01 - 4 sg_p3 1.17412e+02 2.90000e+01 -2.62219e-01 4.12643e+00 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.69751e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5797.63 FROM MIGRAD STATUS=CONVERGED 275 CALLS 276 TOTAL - EDM=2.6578e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.60912e+02 1.19425e-01 6.16849e-04 -2.18136e-01 - 2 sg_p1 3.47734e+00 1.22978e-01 2.67008e-03 -4.00164e-03 - 3 sg_p2 2.67522e+02 7.63977e+00 7.68027e-04 8.93806e-02 - 4 sg_p3 3.43314e+01 3.85522e+00 1.09374e-03 1.59575e-01 - 5 sg_p4 6.38280e-01 4.42553e-02 3.71607e-03 -5.05369e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.426e-02 2.165e-03 -3.368e-02 3.602e-02 7.485e-05 - 2.165e-03 1.514e-02 4.429e-01 -1.530e-01 3.060e-03 - -3.368e-02 4.429e-01 5.842e+01 -2.630e+01 3.147e-01 - 3.602e-02 -1.530e-01 -2.630e+01 1.487e+01 -1.367e-01 - 7.485e-05 3.060e-03 3.147e-01 -1.367e-01 1.985e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20661 1.000 0.147 -0.037 0.078 0.014 - 2 0.60439 0.147 1.000 0.471 -0.322 0.558 - 3 0.95995 -0.037 0.471 1.000 -0.892 0.924 - 4 0.90013 0.078 -0.322 -0.892 1.000 -0.796 - 5 0.93549 0.014 0.558 0.924 -0.796 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5797.63 FROM HESSE STATUS=OK 31 CALLS 307 TOTAL - EDM=2.80959e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.60912e+02 1.19444e-01 1.23370e-04 9.13304e-02 - 2 sg_p1 3.47734e+00 1.23908e-01 1.06803e-04 -2.64402e-01 - 3 sg_p2 2.67522e+02 8.01092e+00 1.53605e-04 5.44131e-01 - 4 sg_p3 3.43314e+01 4.04488e+00 2.18748e-04 -9.83058e-01 - 5 sg_p4 6.38280e-01 4.59835e-02 1.48643e-04 -4.63274e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.427e-02 2.115e-03 -4.024e-02 3.926e-02 4.011e-05 - 2.115e-03 1.537e-02 4.799e-01 -1.722e-01 3.254e-03 - -4.024e-02 4.799e-01 6.424e+01 -2.927e+01 3.453e-01 - 3.926e-02 -1.722e-01 -2.927e+01 1.637e+01 -1.524e-01 - 4.011e-05 3.254e-03 3.453e-01 -1.524e-01 2.145e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20733 1.000 0.143 -0.042 0.081 0.007 - 2 0.61221 0.143 1.000 0.483 -0.343 0.567 - 3 0.96365 -0.042 0.483 1.000 -0.903 0.930 - 4 0.90974 0.081 -0.343 -0.903 1.000 -0.813 - 5 0.94046 0.007 0.567 0.930 -0.813 1.000 -260 -260.912 +- 0.119444 -3.47734 +- 0.123908 -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 260.912 +- 0.1233 (stat) - 0.153523 + 0.10939 (syst); -0.165439/+0.125566 (total) - Uncertainty on sg_p1 = 3.47719 +- 0.127818 (stat) - 0.064005 + 0.129714 (syst); -0.0904489/+0.144603 (total) - Uncertainty on sg_p2 = 267.513 +- 8.27292 (stat) - 0.627396 + 2.41961 (syst); -4.18377/+4.79216 (total) - Uncertainty on sg_p3 = 34.2369 +- 4.16972 (stat) - 1.17594 + 0.308663 (syst); -2.39363/+2.10758 (total) - Uncertainty on sg_p4 = 0.640026 +- 0.047524 (stat) - 0.0119301 + 0.0159351 (syst); -0.0265887/+0.0286105 (total) - === Baseline plot ===
- norm = 191.924 -JEC lnN 1.01807 - -JER lnN 1.02103 - -btag lnN 1.06823 - -sg_p0 param 260.912 -0.165439/+0.125566 -sg_p1 param 3.47719 -0.0904489/+0.144603 -sg_p2 param 267.513 -4.18377/+4.79216 -sg_p3 param 34.2369 -2.39363/+2.10758 -sg_p4 param 0.640026 -0.0265887/+0.0286105 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_270_crystal_1_285_624/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_270_crystal_1_285_624/data_bkg.log deleted file mode 100644 index 1be2f6e..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_270_crystal_1_285_624/data_bkg.log +++ /dev/null @@ -1,717 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [250,330] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [250,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63590.5 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.69443e-02 5.09000e-01 0.00000e+00 -7.94680e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -8.91126e+00 - 3 par_crystal_2 2.62020e+02 4.00000e+00 1.01181e-01 -1.53451e+00 - 4 par_crystal_3 1.65000e+01 2.70000e+00 0.00000e+00 7.46021e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM MIGRAD STATUS=CONVERGED 482 CALLS 483 TOTAL - EDM=0.000814822 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 4.40594e-01 4.43750e-02 2.48631e-03 2.88668e-01 - 2 par_crystal_1 9.82994e-01 6.48221e-01 2.14269e-02 -5.28345e-03 - 3 par_crystal_2 2.71542e+02 7.41091e-01 7.20683e-03 -9.27818e-02 - 4 par_crystal_3 2.87224e+01 2.18588e+00 3.97473e-02 -6.99277e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.970e-03 -2.333e-02 -5.115e-04 1.392e-02 - -2.333e-02 4.358e-01 4.870e-03 -8.391e-01 - -5.115e-04 4.870e-03 5.496e-01 4.381e-01 - 1.392e-02 -8.391e-01 4.381e-01 5.029e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.88989 1.000 -0.796 -0.016 0.140 - 2 0.92807 -0.796 1.000 0.010 -0.567 - 3 0.40865 -0.016 0.010 1.000 0.264 - 4 0.80948 0.140 -0.567 0.264 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM HESSE STATUS=OK 23 CALLS 506 TOTAL - EDM=0.000711421 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 4.40594e-01 4.64698e-02 4.97262e-04 -9.80558e-01 - 2 par_crystal_1 9.82994e-01 6.55195e-01 8.57075e-04 -6.65795e-01 - 3 par_crystal_2 2.71542e+02 7.38644e-01 1.44137e-03 6.15159e-01 - 4 par_crystal_3 2.87224e+01 2.03002e+00 1.58989e-03 -1.05570e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.160e-03 -2.581e-02 -1.109e-03 1.530e-02 - -2.581e-02 4.456e-01 2.508e-02 -7.234e-01 - -1.109e-03 2.508e-02 5.460e-01 3.687e-01 - 1.530e-02 -7.234e-01 3.687e-01 4.306e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.90014 1.000 -0.832 -0.032 0.159 - 2 0.92960 -0.832 1.000 0.051 -0.522 - 3 0.40186 -0.032 0.051 1.000 0.240 - 4 0.77207 0.159 -0.522 0.240 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63714.2 FROM MIGRAD STATUS=INITIATE 33 CALLS 34 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 2.63122e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -5.45805e+02 - 3 par_gaus_exp_2 6.67498e-01 3.05000e-01 -6.37370e-01 7.03093e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM MIGRAD STATUS=CONVERGED 131 CALLS 132 TOTAL - EDM=6.15917e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.71558e+02 8.05096e-01 6.82817e-03 6.24407e-02 - 2 par_gaus_exp_1 3.06822e+01 1.83071e+00 1.43475e-02 1.11468e-02 - 3 par_gaus_exp_2 3.82770e-01 2.42284e-02 3.05774e-03 -9.77170e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.486e-01 -6.079e-01 -1.588e-03 - -6.079e-01 3.370e+00 3.082e-02 - -1.588e-03 3.082e-02 5.871e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.49876 1.000 -0.411 -0.081 - 2 0.77898 -0.411 1.000 0.693 - 3 0.72797 -0.081 0.693 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM HESSE STATUS=OK 16 CALLS 148 TOTAL - EDM=6.13964e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.71558e+02 8.14214e-01 2.73127e-04 -4.35760e-01 - 2 par_gaus_exp_1 3.06822e+01 1.86973e+00 5.73898e-04 4.10264e-01 - 3 par_gaus_exp_2 3.82770e-01 2.45149e-02 1.22310e-04 -8.97531e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.634e-01 -6.630e-01 -2.137e-03 - -6.630e-01 3.516e+00 3.227e-02 - -2.137e-03 3.227e-02 6.011e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.51526 1.000 -0.434 -0.107 - 2 0.78935 -0.434 1.000 0.702 - 3 0.73544 -0.107 0.702 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,625] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.33953 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.33953) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - ... (remaining 126 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.734607 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.734607) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=317.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=327.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=332.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=342.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=347.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=352.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=357.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=362.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=367.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - ... (remaining 53 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0734613 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0734613 - - FCN=103487 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57093e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.56195e+03 - 3 par_novo_2 -1.33668e+00 2.00000e+01 0.00000e+00 1.53931e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM MIGRAD STATUS=CONVERGED 127 CALLS 128 TOTAL - EDM=3.4171e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.43423e+01 1.81223e-01** at limit ** - 2 par_novo_1 3.86596e+01 2.27294e+00 4.95847e-03 -1.04123e-02 - 3 par_novo_2 -1.27520e+00 7.07738e-02 3.70975e-05 -1.26322e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.231e-09 -8.491e-07 -8.580e-07 - -8.491e-07 5.181e+00 1.547e-01 - -8.580e-07 1.547e-01 5.009e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.53332 1.000 -0.005 -0.154 - 2 0.97096 -0.005 1.000 0.960 - 3 0.97165 -0.154 0.960 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM HESSE STATUS=OK 20 CALLS 148 TOTAL - EDM=3.43726e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.40246e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.86596e+01 2.31421e+00 1.98339e-04 4.46530e-01 - 3 par_novo_2 -1.27520e+00 7.22930e-02 1.48390e-06 -1.27523e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 5.974e-09 2.819e-05 -1.296e-06 - 2.819e-05 5.372e+00 1.502e-01 - -1.296e-06 1.502e-01 5.226e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.85665 1.000 0.157 -0.232 - 2 0.97200 0.157 1.000 0.897 - 3 0.97285 -0.232 0.897 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107513 FROM MIGRAD STATUS=INITIATE 54 CALLS 55 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 1.39168e+03 - 2 par_crystal_1_1 7.96220e-02 5.09000e-01 0.00000e+00 5.33770e+03 - 3 par_crystal_1_2 2.56879e+02 4.00000e+00 -1.56713e-01 -1.96669e+01 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 -8.45862e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.5057e-02 2.3309e-03 4.9678e-02 3.9730e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.029030 TO DIAGONAL. - FCN=103250 FROM MIGRAD STATUS=CONVERGED 436 CALLS 437 TOTAL - EDM=3.52757e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 4.45574e-02 4.37117e-03 3.09465e-04 -4.28177e+00 - 2 par_crystal_1_1 4.36914e+00 6.24106e-01 1.80400e-02 6.63742e-02 - 3 par_crystal_1_2 2.71531e+02 3.44700e+01 5.81266e-02 2.25694e-02 - 4 par_crystal_1_3 3.37290e+00 2.71702e-01 3.13791e-03 -4.26197e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.911e-05 -1.221e-03 2.089e-01 3.572e-04 - -1.221e-03 4.065e-01 -2.690e+01 -6.822e-02 - 2.089e-01 -2.690e+01 3.429e+03 1.167e+01 - 3.572e-04 -6.822e-02 1.167e+01 7.401e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99136 1.000 -0.438 0.816 0.300 - 2 0.97307 -0.438 1.000 -0.720 -0.393 - 3 0.99735 0.816 -0.720 1.000 0.733 - 4 0.98716 0.300 -0.393 0.733 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -8.0089e-04 4.0193e-04 7.1213e-02 3.9292e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.004730 TO DIAGONAL. - FCN=103250 FROM HESSE STATUS=NOT POSDEF 23 CALLS 460 TOTAL - EDM=3.56127e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 4.45574e-02 7.42610e-03 6.18930e-05 -1.40582e+00 - 2 par_crystal_1_1 4.36914e+00 4.67550e-01 7.21602e-04 -3.93511e+00 - 3 par_crystal_1_2 2.71531e+02 3.29814e+01 2.32506e-03 -3.75607e+00 - 4 par_crystal_1_3 3.37290e+00 5.01685e-01 1.25517e-04 -1.80638e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.515e-05 2.851e-04 2.343e-01 -1.699e-03 - 2.851e-04 2.238e-01 -2.528e+00 1.548e-02 - 2.343e-01 -2.528e+00 2.967e+03 1.176e+01 - -1.699e-03 1.548e-02 1.176e+01 2.538e-01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99694 1.000 0.081 0.579 -0.454 - 2 0.94927 0.081 1.000 -0.098 0.065 - 3 0.99687 0.579 -0.098 1.000 0.429 - 4 0.99618 -0.454 0.065 0.429 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 14211 - Background number of gaus_exp_252_330 = 14211 - Background number of novo_285_624 = 17618.3 - Background number of crystal_1_285_624 = 17618.3 - Background number of gaus_bern_285_624 = 17618.3 - Background number of landau_285_624 = 17618.3 -par_crystal_0 param 0.440594 0.0464698 -par_crystal_1 param 0.982994 0.655195 -par_crystal_2 param 271.542 0.738644 -par_crystal_3 param 28.7224 2.03002 -par_crystal_1_0 param 0.0445574 0.0074261 -par_crystal_1_1 param 4.36914 0.46755 -par_crystal_1_2 param 271.531 32.9814 -par_crystal_1_3 param 3.3729 0.501685 -par_gaus_exp_0 param 271.558 0.814214 -par_gaus_exp_1 param 30.6822 1.86973 -par_gaus_exp_2 param 0.38277 0.0245149 -par_novo_0 param 250 34.0246 -par_novo_1 param 38.6596 2.31421 -par_novo_2 param -1.2752 0.072293 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_270_crystal_1_285_624/datacard_270_crystal_1_285_624.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_270_crystal_1_285_624/datacard_270_crystal_1_285_624.txt deleted file mode 100644 index eaf4b66..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_270_crystal_1_285_624/datacard_270_crystal_1_285_624.txt +++ /dev/null @@ -1,30 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_270.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_crystal_1_285_624.root HbbHbb:f_crystal_1 -shapes data_obs HbbHbb w_background_crystal_1_285_624.root HbbHbb:data_obs_crystal_1_285_624 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 213.048 17618.3 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06825 - -JER lnN 1.01721 - -JEC lnN 1.01241 - -trigger lnN 1.10 - -sg_p0 param 270.677 -0.225239/+0.0876663 -sg_p1 param 5.0777 -0.239144/+0.155575 -sg_p2 param 262.057 -19.7868/+10.1549 -sg_p3 param 42.5329 -4.55325/+9.01351 -sg_p4 param 0.6462 -0.0412043/+0.0260553 -par_crystal_1_0 param 0.0445574 0.0074261 -par_crystal_1_1 param 4.36914 0.46755 -par_crystal_1_2 param 271.531 32.9814 -par_crystal_1_3 param 3.3729 0.501685 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_270_crystal_1_285_624/signal270_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_270_crystal_1_285_624/signal270_sig.log deleted file mode 100644 index b10d87d..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_270_crystal_1_285_624/signal270_sig.log +++ /dev/null @@ -1,959 +0,0 @@ - -Processing test.c... -nSignal_init = 300000 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=8392.45 FROM MIGRAD STATUS=INITIATE 43 CALLS 44 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.65000e+02 3.00000e+00 0.00000e+00 2.86291e+02 - 2 sg_p1 8.50000e+00 1.30000e+00 0.00000e+00 -7.99146e+02 - 3 sg_p2 2.70000e+02 5.20000e+01 0.00000e+00 2.60544e+02 - 4 sg_p3 7.14818e+01 2.90000e+01 -6.13812e-01 5.50184e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.51376e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7995.55 FROM MIGRAD STATUS=CONVERGED 263 CALLS 264 TOTAL - EDM=2.79948e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.62655e+02 3.96075e-01 1.63668e-03 -1.71407e-02 - 2 sg_p1 1.50000e+01 3.66501e-02 6.55558e-03** at limit ** - 3 sg_p2 3.32688e+02 1.22425e+01 2.10215e-03 1.48173e-02 - 4 sg_p3 7.88319e+01 7.17424e+00 2.90211e-03 4.51106e-02 - 5 sg_p4 9.12549e-01 1.01971e-02 2.71366e-03 7.36508e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.569e-01 -9.420e-08 -6.520e-02 2.553e-01 2.627e-04 - -9.420e-08 5.458e-08 -8.702e-06 1.981e-06 -8.254e-09 - -6.520e-02 -8.702e-06 1.500e+02 -4.987e+01 7.092e-02 - 2.553e-01 1.981e-06 -4.987e+01 5.153e+01 -2.107e-02 - 2.627e-04 -8.254e-09 7.092e-02 -2.107e-02 1.041e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.13067 1.000 -0.001 -0.013 0.090 0.065 - 2 0.00383 -0.001 1.000 -0.003 0.001 -0.003 - 3 0.70719 -0.013 -0.003 1.000 -0.567 0.568 - 4 0.57426 0.090 0.001 -0.567 1.000 -0.288 - 5 0.57327 0.065 -0.003 0.568 -0.288 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7995.55 FROM HESSE STATUS=OK 31 CALLS 295 TOTAL - EDM=2.79956e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.62655e+02 3.96099e-01 3.27335e-04 -1.56977e-01 - 2 sg_p1 1.50000e+01 3.66519e-02 1.31112e-03 1.57113e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 3 sg_p2 3.32688e+02 1.23641e+01 8.40862e-05 2.43509e-01 - 4 sg_p3 7.88319e+01 7.24309e+00 1.16084e-04 -5.53064e-01 - 5 sg_p4 9.12549e-01 1.02319e-02 5.42731e-04 7.07842e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.569e-01 -2.556e-08 -7.512e-02 2.598e-01 2.581e-04 - -2.556e-08 5.458e-08 -2.431e-06 5.742e-07 -2.287e-09 - -7.512e-02 -2.431e-06 1.530e+02 -5.186e+01 7.239e-02 - 2.598e-01 5.742e-07 -5.186e+01 5.252e+01 -2.206e-02 - 2.581e-04 -2.287e-09 7.239e-02 -2.206e-02 1.048e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.13113 1.000 -0.000 -0.015 0.090 0.064 - 2 0.00106 -0.000 1.000 -0.001 0.000 -0.001 - 3 0.71407 -0.015 -0.001 1.000 -0.578 0.572 - 4 0.58519 0.090 0.000 -0.578 1.000 -0.297 - 5 0.57724 0.064 -0.001 0.572 -0.297 1.000 -270 -262.655 +- 0.396099 -15 +- 0.0366519 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=8301.08 FROM MIGRAD STATUS=INITIATE 43 CALLS 44 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.65000e+02 3.00000e+00 0.00000e+00 1.57276e+02 - 2 sg_p1 8.50000e+00 1.30000e+00 0.00000e+00 -7.20874e+02 - 3 sg_p2 2.70000e+02 5.20000e+01 0.00000e+00 1.31136e+02 - 4 sg_p3 6.67985e+01 2.90000e+01 -6.53900e-01 6.21676e+00 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.55343e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7960.31 FROM MIGRAD STATUS=CONVERGED 215 CALLS 216 TOTAL - EDM=0.000112509 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.63717e+02 4.03328e-01 1.64549e-03 2.85410e-02 - 2 sg_p1 1.50000e+01 4.16874e-02 6.99690e-03** at limit ** - 3 sg_p2 3.26691e+02 1.09550e+01 1.90596e-03 -1.07432e-01 - 4 sg_p3 7.56151e+01 6.41429e+00 2.71105e-03 7.69878e-02 - 5 sg_p4 9.03852e-01 1.08010e-02 2.78869e-03 -3.02927e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.627e-01 -1.817e-07 -1.584e-01 2.985e-01 2.635e-04 - -1.817e-07 2.669e-07 -1.400e-05 2.491e-06 -1.659e-08 - -1.584e-01 -1.400e-05 1.201e+02 -3.790e+01 6.574e-02 - 2.985e-01 2.491e-06 -3.790e+01 4.118e+01 -1.657e-02 - 2.635e-04 -1.659e-08 6.574e-02 -1.657e-02 1.168e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.14787 1.000 -0.001 -0.036 0.115 0.060 - 2 0.00326 -0.001 1.000 -0.002 0.001 -0.003 - 3 0.69527 -0.036 -0.002 1.000 -0.539 0.555 - 4 0.55108 0.115 0.001 -0.539 1.000 -0.239 - 5 0.56440 0.060 -0.003 0.555 -0.239 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7960.31 FROM HESSE STATUS=OK 31 CALLS 247 TOTAL - EDM=0.000114252 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.63717e+02 4.03375e-01 3.29097e-04 -8.56522e-02 - 2 sg_p1 1.50000e+01 4.16903e-02 1.39938e-03 1.57009e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 3 sg_p2 3.26691e+02 1.10364e+01 3.81192e-04 2.19808e-01 - 4 sg_p3 7.56151e+01 6.46046e+00 1.08442e-04 -5.79352e-01 - 5 sg_p4 9.03852e-01 1.08250e-02 5.57738e-04 6.62902e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.628e-01 1.090e-10 -1.678e-01 3.031e-01 2.586e-04 - 1.090e-10 2.669e-07 8.739e-09 -1.723e-09 1.020e-11 - -1.678e-01 8.739e-09 1.219e+02 -3.912e+01 6.671e-02 - 3.031e-01 -1.723e-09 -3.912e+01 4.178e+01 -1.726e-02 - 2.586e-04 1.020e-11 6.671e-02 -1.726e-02 1.173e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.14863 1.000 0.000 -0.038 0.116 0.059 - 2 0.00000 0.000 1.000 0.000 -0.000 0.000 - 3 0.70071 -0.038 0.000 1.000 -0.548 0.558 - 4 0.56000 0.116 -0.000 -0.548 1.000 -0.247 - 5 0.56706 0.059 0.000 0.558 -0.247 1.000 -270 -263.717 +- 0.403375 -15 +- 0.0416903 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=8131.38 FROM MIGRAD STATUS=INITIATE 44 CALLS 45 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.65000e+02 3.00000e+00 0.00000e+00 4.48644e+02 - 2 sg_p1 8.50000e+00 1.30000e+00 0.00000e+00 -7.91305e+02 - 3 sg_p2 2.70000e+02 5.20000e+01 0.00000e+00 3.73822e+02 - 4 sg_p3 6.56628e+01 2.90000e+01 -6.63806e-01 5.24608e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.60990e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7699.77 FROM MIGRAD STATUS=CONVERGED 264 CALLS 265 TOTAL - EDM=1.20255e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.61106e+02 3.97606e-01 1.64949e-03 6.43216e-02 - 2 sg_p1 1.50000e+01 4.40817e-02 7.05863e-03** at limit ** - 3 sg_p2 3.31806e+02 1.18077e+01 2.04938e-03 4.68003e-02 - 4 sg_p3 7.39962e+01 6.87793e+00 2.89900e-03 4.25993e-02 - 5 sg_p4 9.20380e-01 9.82533e-03 2.67537e-03 -4.86834e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.581e-01 -4.250e-09 7.358e-02 1.895e-01 3.289e-04 - -4.250e-09 8.677e-11 -3.111e-07 6.344e-08 -2.998e-10 - 7.358e-02 -3.111e-07 1.395e+02 -4.404e+01 6.552e-02 - 1.895e-01 6.344e-08 -4.404e+01 4.736e+01 -1.922e-02 - 3.289e-04 -2.998e-10 6.552e-02 -1.922e-02 9.663e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.12888 1.000 -0.001 0.016 0.069 0.084 - 2 0.00364 -0.001 1.000 -0.003 0.001 -0.003 - 3 0.69043 0.016 -0.003 1.000 -0.542 0.564 - 4 0.54763 0.069 0.001 -0.542 1.000 -0.284 - 5 0.56955 0.084 -0.003 0.564 -0.284 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7699.77 FROM HESSE STATUS=OK 31 CALLS 296 TOTAL - EDM=1.20761e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.61106e+02 3.97608e-01 3.29897e-04 -2.62628e-01 - 2 sg_p1 1.50000e+01 4.40850e-02 1.41173e-03 1.57081e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 3 sg_p2 3.31806e+02 1.19031e+01 4.09876e-04 2.40013e-01 - 4 sg_p3 7.39962e+01 6.93093e+00 1.15960e-04 -5.92753e-01 - 5 sg_p4 9.20380e-01 9.85509e-03 5.35074e-04 7.49837e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.581e-01 -8.535e-10 6.846e-02 1.911e-01 3.266e-04 - -8.535e-10 8.678e-11 -6.392e-08 1.351e-08 -6.118e-11 - 6.846e-02 -6.392e-08 1.418e+02 -4.555e+01 6.667e-02 - 1.911e-01 1.351e-08 -4.555e+01 4.809e+01 -2.000e-02 - 3.266e-04 -6.118e-11 6.667e-02 -2.000e-02 9.722e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.12891 1.000 -0.000 0.014 0.069 0.083 - 2 0.00074 -0.000 1.000 -0.001 0.000 -0.001 - 3 0.69646 0.014 -0.001 1.000 -0.552 0.568 - 4 0.55728 0.069 0.000 -0.552 1.000 -0.292 - 5 0.57312 0.083 -0.001 0.568 -0.292 1.000 -270 -261.106 +- 0.397608 -15 +- 0.044085 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=6358.39 FROM MIGRAD STATUS=INITIATE 18 CALLS 19 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70000e+02 2.00000e+00 2.01358e-01 -2.79566e+02 - 2 sg_p1 5.00000e+00 6.00000e-01 2.01358e-01 -1.50106e+02 - 3 sg_p2 1.79500e+02 3.41000e+01 2.01358e-01 1.43645e+00 - 4 sg_p3 1.55000e+02 2.90000e+01 2.01358e-01 1.18935e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 2.01358e-01 1.12505e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6301.03 FROM MIGRAD STATUS=CONVERGED 228 CALLS 229 TOTAL - EDM=6.55748e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70677e+02 1.72165e-01 9.18183e-04 1.47070e-02 - 2 sg_p1 5.07770e+00 1.66247e-01 2.54292e-03 -1.24810e-03 - 3 sg_p2 2.62057e+02 9.37512e+00 1.10376e-03 -2.64630e-02 - 4 sg_p3 4.25329e+01 5.68857e+00 1.50462e-03 -2.35495e-02 - 5 sg_p4 6.46200e-01 3.59740e-02 4.14748e-03 5.84314e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.964e-02 -1.980e-03 -3.797e-01 1.772e-01 -1.311e-03 - -1.980e-03 2.767e-02 2.898e-01 1.419e-02 2.579e-03 - -3.797e-01 2.898e-01 8.801e+01 -4.644e+01 2.783e-01 - 1.772e-01 1.419e-02 -4.644e+01 3.240e+01 -1.232e-01 - -1.311e-03 2.579e-03 2.783e-01 -1.232e-01 1.305e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.24028 1.000 -0.069 -0.235 0.181 -0.211 - 2 0.54786 -0.069 1.000 0.186 0.015 0.429 - 3 0.94759 -0.235 0.186 1.000 -0.870 0.821 - 4 0.89770 0.181 0.015 -0.870 1.000 -0.599 - 5 0.87941 -0.211 0.429 0.821 -0.599 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6301.03 FROM HESSE STATUS=OK 31 CALLS 260 TOTAL - EDM=6.88941e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.70677e+02 1.72924e-01 1.83637e-04 6.77760e-02 - 2 sg_p1 5.07770e+00 1.66149e-01 1.01717e-04 2.59024e-02 - 3 sg_p2 2.62057e+02 1.02016e+01 4.41505e-05 5.05456e-01 - 4 sg_p3 4.25329e+01 6.20016e+00 6.01848e-05 -8.87721e-01 - 5 sg_p4 6.46200e-01 3.77070e-02 1.65899e-04 -4.28163e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.991e-02 -2.057e-03 -4.449e-01 2.178e-01 -1.495e-03 - -2.057e-03 2.763e-02 3.050e-01 2.707e-03 2.616e-03 - -4.449e-01 3.050e-01 1.042e+02 -5.647e+01 3.244e-01 - 2.178e-01 2.707e-03 -5.647e+01 3.850e+01 -1.520e-01 - -1.495e-03 2.616e-03 3.244e-01 -1.520e-01 1.435e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25688 1.000 -0.072 -0.252 0.203 -0.228 - 2 0.54710 -0.072 1.000 0.180 0.003 0.415 - 3 0.95594 -0.252 0.180 1.000 -0.891 0.839 - 4 0.91467 0.203 0.003 -0.891 1.000 -0.647 - 5 0.89101 -0.228 0.415 0.839 -0.647 1.000 -270 -270.677 +- 0.172924 -5.0777 +- 0.166149 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=6365.99 FROM MIGRAD STATUS=INITIATE 16 CALLS 17 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70000e+02 2.00000e+00 2.01358e-01 -3.03648e+02 - 2 sg_p1 5.00000e+00 6.00000e-01 2.01358e-01 -1.61990e+02 - 3 sg_p2 1.79500e+02 3.41000e+01 2.01358e-01 -2.65770e+00 - 4 sg_p3 1.55000e+02 2.90000e+01 2.01358e-01 8.50425e+00 - 5 sg_p4 7.50000e-01 5.00000e-02 2.01358e-01 1.31190e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6299.61 FROM MIGRAD STATUS=CONVERGED 237 CALLS 238 TOTAL - EDM=7.93407e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70692e+02 1.77044e-01 9.42241e-04 3.84277e-02 - 2 sg_p1 5.17409e+00 1.71536e-01 2.60847e-03 -2.11829e-03 - 3 sg_p2 2.70838e+02 6.84551e+00 1.03343e-03 5.78086e-03 - 4 sg_p3 3.91980e+01 4.62395e+00 1.61118e-03 1.03114e-02 - 5 sg_p4 6.64184e-01 3.27535e-02 3.88817e-03 5.22515e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.135e-02 -1.758e-03 -3.016e-01 1.665e-01 -1.164e-03 - -1.758e-03 2.946e-02 3.251e-01 -2.221e-02 2.675e-03 - -3.016e-01 3.251e-01 4.690e+01 -2.546e+01 1.845e-01 - 1.665e-01 -2.221e-02 -2.546e+01 2.140e+01 -8.613e-02 - -1.164e-03 2.675e-03 1.845e-01 -8.613e-02 1.080e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.24905 1.000 -0.058 -0.249 0.203 -0.200 - 2 0.55757 -0.058 1.000 0.277 -0.028 0.474 - 3 0.91827 -0.249 0.277 1.000 -0.804 0.820 - 4 0.83247 0.203 -0.028 -0.804 1.000 -0.567 - 5 0.86222 -0.200 0.474 0.820 -0.567 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6299.61 FROM HESSE STATUS=OK 31 CALLS 269 TOTAL - EDM=7.9228e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.70692e+02 1.77623e-01 1.88448e-04 6.92275e-02 - 2 sg_p1 5.17409e+00 1.71578e-01 1.04339e-04 5.80618e-02 - 3 sg_p2 2.70838e+02 7.18808e+00 4.13373e-05 5.65345e-01 - 4 sg_p3 3.91980e+01 4.86021e+00 6.44473e-05 -9.25023e-01 - 5 sg_p4 6.64184e-01 3.36636e-02 1.55527e-04 -3.50391e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.155e-02 -1.878e-03 -3.331e-01 1.884e-01 -1.276e-03 - -1.878e-03 2.947e-02 3.399e-01 -3.425e-02 2.726e-03 - -3.331e-01 3.399e-01 5.171e+01 -2.882e+01 2.017e-01 - 1.884e-01 -3.425e-02 -2.882e+01 2.365e+01 -9.825e-02 - -1.276e-03 2.726e-03 2.017e-01 -9.825e-02 1.141e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.26103 1.000 -0.062 -0.261 0.218 -0.213 - 2 0.55787 -0.062 1.000 0.275 -0.041 0.470 - 3 0.92618 -0.261 0.275 1.000 -0.824 0.830 - 4 0.84979 0.218 -0.041 -0.824 1.000 -0.598 - 5 0.87017 -0.213 0.470 0.830 -0.598 1.000 -270 -270.692 +- 0.177623 -5.17409 +- 0.171578 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=6100.43 FROM MIGRAD STATUS=INITIATE 38 CALLS 39 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70000e+02 2.00000e+00 0.00000e+00 -1.76480e+02 - 2 sg_p1 5.00000e+00 6.00000e-01 0.00000e+00 -9.50553e+01 - 3 sg_p2 1.79500e+02 3.41000e+01 0.00000e+00 -1.03797e+01 - 4 sg_p3 1.15860e+02 2.90000e+01 -2.73322e-01 1.99528e+00 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.00751e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6063.49 FROM MIGRAD STATUS=CONVERGED 263 CALLS 264 TOTAL - EDM=9.43817e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70469e+02 1.64489e-01 8.67373e-04 9.78651e-02 - 2 sg_p1 4.85345e+00 1.61763e-01 2.44261e-03 2.33446e-02 - 3 sg_p2 2.42939e+02 1.76038e+01 1.34178e-03 -9.41851e-03 - 4 sg_p3 5.09965e+01 8.69738e+00 1.37274e-03 -8.34558e-03 - 5 sg_p4 6.09562e-01 4.12691e-02 4.72433e-03 -1.03290e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.706e-02 -1.143e-03 -5.339e-01 2.032e-01 -1.240e-03 - -1.143e-03 2.619e-02 2.008e-01 9.614e-02 2.479e-03 - -5.339e-01 2.008e-01 3.112e+02 -1.431e+02 5.930e-01 - 2.032e-01 9.614e-02 -1.431e+02 7.583e+01 -2.285e-01 - -1.240e-03 2.479e-03 5.930e-01 -2.285e-01 1.726e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20148 1.000 -0.043 -0.184 0.142 -0.181 - 2 0.54100 -0.043 1.000 0.070 0.068 0.369 - 3 0.97454 -0.184 0.070 1.000 -0.932 0.809 - 4 0.95515 0.142 0.068 -0.932 1.000 -0.632 - 5 0.89940 -0.181 0.369 0.809 -0.632 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6063.49 FROM HESSE STATUS=OK 31 CALLS 295 TOTAL - EDM=1.17248e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.70469e+02 1.65601e-01 1.73475e-04 4.69431e-02 - 2 sg_p1 4.85345e+00 1.61522e-01 4.88521e-04 -4.88702e-02 - 3 sg_p2 2.42939e+02 2.15740e+01 5.36712e-05 3.81246e-01 - 4 sg_p3 5.09965e+01 1.06929e+01 5.49095e-05 -7.99870e-01 - 5 sg_p4 6.09562e-01 4.63125e-02 1.88973e-04 -5.96502e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.743e-02 -1.089e-03 -7.748e-01 3.240e-01 -1.649e-03 - -1.089e-03 2.611e-02 1.620e-01 1.121e-01 2.395e-03 - -7.748e-01 1.620e-01 4.683e+02 -2.215e+02 8.616e-01 - 3.240e-01 1.121e-01 -2.215e+02 1.148e+02 -3.632e-01 - -1.649e-03 2.395e-03 8.616e-01 -3.632e-01 2.182e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23115 1.000 -0.041 -0.216 0.183 -0.213 - 2 0.53904 -0.041 1.000 0.046 0.065 0.317 - 3 0.98316 -0.216 0.046 1.000 -0.955 0.852 - 4 0.97060 0.183 0.065 -0.955 1.000 -0.726 - 5 0.92131 -0.213 0.317 0.852 -0.726 1.000 -270 -270.469 +- 0.165601 -4.85345 +- 0.161522 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=6207.91 FROM MIGRAD STATUS=INITIATE 18 CALLS 19 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70000e+02 2.00000e+00 2.01358e-01 -2.64216e+02 - 2 sg_p1 5.00000e+00 6.00000e-01 2.01358e-01 -1.71360e+02 - 3 sg_p2 1.79500e+02 3.41000e+01 2.01358e-01 4.14298e-01 - 4 sg_p3 1.55000e+02 2.90000e+01 2.01358e-01 1.11372e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 2.01358e-01 1.18895e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6146.33 FROM MIGRAD STATUS=CONVERGED 215 CALLS 216 TOTAL - EDM=6.61513e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70656e+02 1.81990e-01 9.51015e-04 2.93883e-01 - 2 sg_p1 5.20924e+00 1.80376e-01 2.66180e-03 1.75576e-02 - 3 sg_p2 2.64216e+02 9.79599e+00 1.09853e-03 2.68338e-01 - 4 sg_p3 4.19600e+01 6.09659e+00 1.54906e-03 -8.69463e-02 - 5 sg_p4 6.49014e-01 3.85333e-02 4.14029e-03 -7.85398e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.312e-02 -1.986e-03 -4.776e-01 -2.455e-01 -1.622e-03 - -1.986e-03 3.258e-02 3.816e-01 8.852e-03 3.179e-03 - -4.776e-01 3.816e-01 9.610e+01 5.251e+01 3.182e-01 - -2.455e-01 8.852e-03 5.251e+01 3.722e+01 1.487e-01 - -1.622e-03 3.179e-03 3.182e-01 1.487e-01 1.499e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.26944 1.000 -0.060 -0.268 -0.221 -0.230 - 2 0.57936 -0.060 1.000 0.216 0.008 0.455 - 3 0.95227 -0.268 0.216 1.000 0.878 0.838 - 4 0.90487 -0.221 0.008 0.878 1.000 0.630 - 5 0.89253 -0.230 0.455 0.838 0.630 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6146.33 FROM HESSE STATUS=OK 31 CALLS 247 TOTAL - EDM=6.61792e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.70656e+02 1.81849e-01 1.90203e-04 6.56339e-02 - 2 sg_p1 5.20924e+00 1.80330e-01 1.06472e-04 6.98019e-02 - 3 sg_p2 2.64216e+02 9.67079e+00 2.19705e-04 5.19985e-01 - 4 sg_p3 4.19600e+01 6.02003e+00 6.19622e-05 -2.24759e+00 - 5 sg_p4 6.49014e-01 3.82479e-02 8.28058e-04 -4.15825e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.307e-02 -1.974e-03 -4.664e-01 -2.386e-01 -1.589e-03 - -1.974e-03 3.256e-02 3.740e-01 4.110e-03 3.157e-03 - -4.664e-01 3.740e-01 9.366e+01 5.099e+01 3.108e-01 - -2.386e-01 4.110e-03 5.099e+01 3.629e+01 1.442e-01 - -1.589e-03 3.157e-03 3.108e-01 1.442e-01 1.477e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.26676 1.000 -0.060 -0.265 -0.218 -0.227 - 2 0.57907 -0.060 1.000 0.214 0.004 0.455 - 3 0.95099 -0.265 0.214 1.000 0.875 0.836 - 4 0.90230 -0.218 0.004 0.875 1.000 0.623 - 5 0.89080 -0.227 0.455 0.836 0.623 1.000 -270 -270.656 +- 0.181849 -5.20924 +- 0.18033 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=6345.12 FROM MIGRAD STATUS=INITIATE 18 CALLS 19 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70000e+02 2.00000e+00 2.01358e-01 -2.76463e+02 - 2 sg_p1 5.00000e+00 6.00000e-01 2.01358e-01 -1.12933e+02 - 3 sg_p2 1.79500e+02 3.41000e+01 2.01358e-01 1.61677e+00 - 4 sg_p3 1.55000e+02 2.90000e+01 2.01358e-01 1.12497e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 2.01358e-01 1.04922e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.05988 added to diagonal of error matrix -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (9513.77) to force MIGRAD to back out of this region. Error log follows -Parameter values: sg_p0=269.51, sg_p1=3.81892, sg_p2=26.0784, sg_p3=20.4464, sg_p4=0.504154 -RooNLLVar::nll_signal_signalHistogram[ paramSet=(sg_p0,sg_p1,sg_p2,sg_p3,sg_p4) ] - function value is NAN @ paramSet=(sg_p0 = 269.51,sg_p1 = 3.81892,sg_p2 = 26.0784,sg_p3 = 20.4464,sg_p4 = 0.504154) -RooAddPdf::signal[ sg_p4 * signalCore + [%] * signalComb ] - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 250.5), !pdfs=(signalCore = 4.16274e-06/9.57261,signalComb = 6.90752e-27/0), !coefficients=(sg_p4 = 0.504154) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 250.5), !pdfs=(signalCore = 4.16274e-06/9.57261,signalComb = 6.90752e-27/0), !coefficients=(sg_p4 = 0.504154) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 253.5), !pdfs=(signalCore = 0.000152629/9.57261,signalComb = 1.36531e-27/0), !coefficients=(sg_p4 = 0.504154) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 253.5), !pdfs=(signalCore = 0.000152629/9.57261,signalComb = 1.36531e-27/0), !coefficients=(sg_p4 = 0.504154) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 256.5), !pdfs=(signalCore = 0.00301916/9.57261,signalComb = 2.64114e-28/0), !coefficients=(sg_p4 = 0.504154) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 256.5), !pdfs=(signalCore = 0.00301916/9.57261,signalComb = 2.64114e-28/0), !coefficients=(sg_p4 = 0.504154) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 259.5), !pdfs=(signalCore = 0.0322202/9.57261,signalComb = 5.00036e-29/0), !coefficients=(sg_p4 = 0.504154) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 259.5), !pdfs=(signalCore = 0.0322202/9.57261,signalComb = 5.00036e-29/0), !coefficients=(sg_p4 = 0.504154) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 262.5), !pdfs=(signalCore = 0.185509/9.57261,signalComb = 9.26534e-30/0), !coefficients=(sg_p4 = 0.504154) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 262.5), !pdfs=(signalCore = 0.185509/9.57261,signalComb = 9.26534e-30/0), !coefficients=(sg_p4 = 0.504154) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 265.5), !pdfs=(signalCore = 0.576226/9.57261,signalComb = 1.68024e-30/0), !coefficients=(sg_p4 = 0.504154) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 265.5), !pdfs=(signalCore = 0.576226/9.57261,signalComb = 1.68024e-30/0), !coefficients=(sg_p4 = 0.504154) - ... (remaining 58 messages suppressed) -RooGaussian::signalComb[ x=x mean=sg_p2 sigma=sg_p3 ] - p.d.f normalization integral is zero or negative @ x=x=250.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=253.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=256.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=259.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=262.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=265.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=268.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=271.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=274.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=277.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=280.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=283.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - ... (remaining 24 messages suppressed) -RooRealIntegral::signalComb_Int[x|NormalizationRangeForfit]_Norm[x][ Int signalComb_Norm(x) d[Ana](x) ] - function value is NAN @ !sumList=(), !intList=(), !anaList=(x = 250.5), !jacList=(), !facList=(), !func=signalComb=6.90752e-27/0, !sumCat=() - - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6295.95 FROM MIGRAD STATUS=CONVERGED 426 CALLS 427 TOTAL - EDM=1.36563e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70665e+02 1.63477e-01 8.78610e-04 2.15233e-02 - 2 sg_p1 4.89880e+00 1.57011e-01 2.44680e-03 2.25239e-02 - 3 sg_p2 2.54654e+02 1.25915e+01 1.24303e-03 5.47392e-03 - 4 sg_p3 4.70832e+01 7.17725e+00 1.51317e-03 2.13001e-03 - 5 sg_p4 6.29901e-01 3.72328e-02 4.32749e-03 -5.67064e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.673e-02 -8.488e-04 -4.087e-01 1.835e-01 -1.095e-03 - -8.488e-04 2.467e-02 2.172e-01 5.764e-02 2.181e-03 - -4.087e-01 2.172e-01 1.589e+02 -8.190e+01 3.873e-01 - 1.835e-01 5.764e-02 -8.190e+01 5.161e+01 -1.691e-01 - -1.095e-03 2.181e-03 3.873e-01 -1.691e-01 1.400e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20590 1.000 -0.033 -0.198 0.156 -0.179 - 2 0.52321 -0.033 1.000 0.110 0.051 0.371 - 3 0.96127 -0.198 0.110 1.000 -0.904 0.821 - 4 0.92824 0.156 0.051 -0.904 1.000 -0.629 - 5 0.88645 -0.179 0.371 0.821 -0.629 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6295.95 FROM HESSE STATUS=OK 31 CALLS 458 TOTAL - EDM=1.44185e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.70665e+02 1.64298e-01 1.75722e-04 6.65783e-02 - 2 sg_p1 4.89880e+00 1.56830e-01 4.89360e-04 -3.37402e-02 - 3 sg_p2 2.54654e+02 1.43586e+01 4.97213e-05 4.56472e-01 - 4 sg_p3 4.70832e+01 8.20025e+00 6.05269e-05 -7.12260e+00 - 5 sg_p4 6.29901e-01 4.01552e-02 1.73099e-04 -5.01104e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.700e-02 -8.623e-04 -5.225e-01 2.494e-01 -1.344e-03 - -8.623e-04 2.462e-02 2.174e-01 5.502e-02 2.172e-03 - -5.225e-01 2.174e-01 2.068e+02 -1.095e+02 4.928e-01 - 2.494e-01 5.502e-02 -1.095e+02 6.741e+01 -2.303e-01 - -1.344e-03 2.172e-03 4.928e-01 -2.303e-01 1.631e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22790 1.000 -0.033 -0.221 0.185 -0.203 - 2 0.52160 -0.033 1.000 0.096 0.043 0.343 - 3 0.97037 -0.221 0.096 1.000 -0.928 0.849 - 4 0.94554 0.185 0.043 -0.928 1.000 -0.695 - 5 0.90340 -0.203 0.343 0.849 -0.695 1.000 -270 -270.665 +- 0.164298 -4.8988 +- 0.15683 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=5935.06 FROM MIGRAD STATUS=INITIATE 18 CALLS 19 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70000e+02 2.00000e+00 2.01358e-01 -2.61773e+02 - 2 sg_p1 5.00000e+00 6.00000e-01 2.01358e-01 -1.38965e+02 - 3 sg_p2 1.79500e+02 3.41000e+01 2.01358e-01 1.59791e+00 - 4 sg_p3 1.55000e+02 2.90000e+01 2.01358e-01 1.10752e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 2.01358e-01 1.03362e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 5 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 2.28866 added to diagonal of error matrix -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (10056.7) to force MIGRAD to back out of this region. Error log follows -Parameter values: sg_p0=272.549, sg_p1=2.86401, sg_p2=114.179, sg_p3=10.3302, sg_p4=0.609584 -RooGaussian::signalComb[ x=x mean=sg_p2 sigma=sg_p3 ] - p.d.f normalization integral is zero or negative @ x=x=250.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=253.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=256.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=259.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=262.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=265.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=268.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=271.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=274.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=277.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=280.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=283.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - ... (remaining 24 messages suppressed) - - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.08701 added to diagonal of error matrix -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (10056.7) to force MIGRAD to back out of this region. Error log follows -Parameter values: sg_p0=272.29, sg_p1=6.01777, sg_p2=84.8692, sg_p3=12.3721, sg_p4=0.588994 -RooAddPdf::signal[ sg_p4 * signalCore + [%] * signalComb ] - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 250.5), !pdfs=(signalCore = 0.00142225/15.0827,signalComb = 1.20756e-39/0), !coefficients=(sg_p4 = 0.588994) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 250.5), !pdfs=(signalCore = 0.00142225/15.0827,signalComb = 1.20756e-39/0), !coefficients=(sg_p4 = 0.588994) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 253.5), !pdfs=(signalCore = 0.00763766/15.0827,signalComb = 4.56383e-41/0), !coefficients=(sg_p4 = 0.588994) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 253.5), !pdfs=(signalCore = 0.00763766/15.0827,signalComb = 4.56383e-41/0), !coefficients=(sg_p4 = 0.588994) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 256.5), !pdfs=(signalCore = 0.0319897/15.0827,signalComb = 1.62635e-42/0), !coefficients=(sg_p4 = 0.588994) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 256.5), !pdfs=(signalCore = 0.0319897/15.0827,signalComb = 1.62635e-42/0), !coefficients=(sg_p4 = 0.588994) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 259.5), !pdfs=(signalCore = 0.104502/15.0827,signalComb = 5.46463e-44/0), !coefficients=(sg_p4 = 0.588994) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 259.5), !pdfs=(signalCore = 0.104502/15.0827,signalComb = 5.46463e-44/0), !coefficients=(sg_p4 = 0.588994) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 262.5), !pdfs=(signalCore = 0.266262/15.0827,signalComb = 1.7313e-45/0), !coefficients=(sg_p4 = 0.588994) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 262.5), !pdfs=(signalCore = 0.266262/15.0827,signalComb = 1.7313e-45/0), !coefficients=(sg_p4 = 0.588994) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 265.5), !pdfs=(signalCore = 0.529127/15.0827,signalComb = 5.17191e-47/0), !coefficients=(sg_p4 = 0.588994) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 265.5), !pdfs=(signalCore = 0.529127/15.0827,signalComb = 5.17191e-47/0), !coefficients=(sg_p4 = 0.588994) - ... (remaining 58 messages suppressed) -RooNLLVar::nll_signal_signalHistogram[ paramSet=(sg_p0,sg_p1,sg_p2,sg_p3,sg_p4) ] - function value is NAN @ paramSet=(sg_p0 = 272.29,sg_p1 = 6.01777,sg_p2 = 84.8692,sg_p3 = 12.3721,sg_p4 = 0.588994) -RooGaussian::signalComb[ x=x mean=sg_p2 sigma=sg_p3 ] - p.d.f normalization integral is zero or negative @ x=x=250.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=253.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=256.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=259.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=262.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=265.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=268.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=271.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=274.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=277.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=280.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=283.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - ... (remaining 24 messages suppressed) -RooRealIntegral::signalComb_Int[x|NormalizationRangeForfit]_Norm[x][ Int signalComb_Norm(x) d[Ana](x) ] - function value is NAN @ !sumList=(), !intList=(), !anaList=(x = 250.5), !jacList=(), !facList=(), !func=signalComb=1.20756e-39/0, !sumCat=() - - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -7.5154e-01 8.8570e-03 4.2097e-01 8.1972e-01 4.5020e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 0.756042 TO DIAGONAL. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5882.02 FROM MIGRAD STATUS=CONVERGED 478 CALLS 479 TOTAL - EDM=5.04966e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70677e+02 1.77765e-01 9.15542e-04 3.54204e-02 - 2 sg_p1 5.07405e+00 1.71518e-01 2.53252e-03 -1.40075e-03 - 3 sg_p2 2.62185e+02 9.60022e+00 1.09335e-03 9.09533e-02 - 4 sg_p3 4.23182e+01 5.82557e+00 1.49714e-03 7.35079e-02 - 5 sg_p4 6.47917e-01 3.70971e-02 4.11649e-03 -7.98184e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.160e-02 -2.097e-03 -4.013e-01 1.872e-01 -1.393e-03 - -2.097e-03 2.945e-02 3.055e-01 1.580e-02 2.743e-03 - -4.013e-01 3.055e-01 9.229e+01 -4.866e+01 2.937e-01 - 1.872e-01 1.580e-02 -4.866e+01 3.398e+01 -1.298e-01 - -1.393e-03 2.743e-03 2.937e-01 -1.298e-01 1.388e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.24009 1.000 -0.069 -0.235 0.181 -0.210 - 2 0.54730 -0.069 1.000 0.185 0.016 0.429 - 3 0.94713 -0.235 0.185 1.000 -0.869 0.821 - 4 0.89685 0.181 0.016 -0.869 1.000 -0.598 - 5 0.87877 -0.210 0.429 0.821 -0.598 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5882.02 FROM HESSE STATUS=OK 31 CALLS 510 TOTAL - EDM=5.00987e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.70677e+02 1.78459e-01 1.83108e-04 6.77551e-02 - 2 sg_p1 5.07405e+00 1.71428e-01 1.01301e-04 2.46861e-02 - 3 sg_p2 2.62185e+02 1.03547e+01 2.18670e-04 5.06313e-01 - 4 sg_p3 4.23182e+01 6.29339e+00 5.98854e-05 -8.90070e-01 - 5 sg_p4 6.47917e-01 3.86762e-02 1.64659e-04 -4.20625e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.185e-02 -2.170e-03 -4.624e-01 2.253e-01 -1.567e-03 - -2.170e-03 2.942e-02 3.193e-01 5.301e-03 2.776e-03 - -4.624e-01 3.193e-01 1.074e+02 -5.800e+01 3.368e-01 - 2.253e-01 5.301e-03 -5.800e+01 3.967e+01 -1.567e-01 - -1.567e-03 2.776e-03 3.368e-01 -1.567e-01 1.510e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25486 1.000 -0.071 -0.250 0.200 -0.226 - 2 0.54662 -0.071 1.000 0.180 0.005 0.416 - 3 0.95474 -0.250 0.180 1.000 -0.889 0.836 - 4 0.91235 0.200 0.005 -0.889 1.000 -0.640 - 5 0.88917 -0.226 0.416 0.836 -0.640 1.000 -270 -270.677 +- 0.178459 -5.07405 +- 0.171428 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=6803.83 FROM MIGRAD STATUS=INITIATE 18 CALLS 19 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70000e+02 2.00000e+00 2.01358e-01 -2.98256e+02 - 2 sg_p1 5.00000e+00 6.00000e-01 2.01358e-01 -1.61883e+02 - 3 sg_p2 1.79500e+02 3.41000e+01 2.01358e-01 1.25354e+00 - 4 sg_p3 1.55000e+02 2.90000e+01 2.01358e-01 1.25340e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 2.01358e-01 1.22208e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6741.9 FROM MIGRAD STATUS=CONVERGED 248 CALLS 249 TOTAL - EDM=5.61336e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70678e+02 1.67660e-01 9.20230e-04 6.43100e-02 - 2 sg_p1 5.08061e+00 1.61195e-01 2.54959e-03 -4.59615e-02 - 3 sg_p2 2.61887e+02 1.01188e+01 1.11479e-03 1.73033e-01 - 4 sg_p3 4.27760e+01 6.14640e+00 1.50758e-03 -1.30340e-01 - 5 sg_p4 6.44308e-01 3.69099e-02 4.17152e-03 -5.60004e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.811e-02 -1.952e-03 -4.320e-01 -2.124e-01 -1.437e-03 - -1.952e-03 2.601e-02 2.973e-01 2.175e-03 2.487e-03 - -4.320e-01 2.973e-01 1.025e+02 5.575e+01 3.161e-01 - -2.124e-01 2.175e-03 5.575e+01 3.783e+01 1.492e-01 - -1.437e-03 2.487e-03 3.161e-01 1.492e-01 1.375e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25937 1.000 -0.072 -0.254 -0.206 -0.231 - 2 0.54843 -0.072 1.000 0.182 0.002 0.416 - 3 0.95754 -0.254 0.182 1.000 0.895 0.842 - 4 0.91772 -0.206 0.002 0.895 1.000 0.654 - 5 0.89354 -0.231 0.416 0.842 0.654 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6741.9 FROM HESSE STATUS=OK 31 CALLS 280 TOTAL - EDM=5.55033e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.70678e+02 1.67525e-01 1.84046e-04 6.78347e-02 - 2 sg_p1 5.08061e+00 1.61130e-01 5.09917e-04 2.68728e-02 - 3 sg_p2 2.61887e+02 9.96431e+00 2.22958e-04 5.04317e-01 - 4 sg_p3 4.27760e+01 6.05400e+00 6.03031e-05 -2.25652e+00 - 5 sg_p4 6.44308e-01 3.65699e-02 8.34304e-04 -4.36497e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.807e-02 -1.942e-03 -4.201e-01 -2.053e-01 -1.403e-03 - -1.942e-03 2.599e-02 2.900e-01 -2.123e-03 2.465e-03 - -4.201e-01 2.900e-01 9.944e+01 5.387e+01 3.073e-01 - -2.053e-01 -2.123e-03 5.387e+01 3.670e+01 1.439e-01 - -1.403e-03 2.465e-03 3.073e-01 1.439e-01 1.349e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25646 1.000 -0.072 -0.251 -0.202 -0.228 - 2 0.54791 -0.072 1.000 0.180 -0.002 0.416 - 3 0.95619 -0.251 0.180 1.000 0.892 0.839 - 4 0.91507 -0.202 -0.002 0.892 1.000 0.647 - 5 0.89141 -0.228 0.416 0.839 0.647 1.000 -270 -270.678 +- 0.167525 -5.08061 +- 0.16113 -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 270.677 +- 0.172924 (stat) - 0.207983 + 0.0144814 (syst); -0.225239/+0.0876663 (total) - Uncertainty on sg_p1 = 5.0777 +- 0.166149 (stat) - 0.224251 + 0.131537 (syst); -0.239144/+0.155575 (total) - Uncertainty on sg_p2 = 262.057 +- 10.2016 (stat) - 19.1181 + 8.78082 (syst); -19.7868/+10.1549 (total) - Uncertainty on sg_p3 = 42.5329 +- 6.20016 (stat) - 3.33491 + 8.46362 (syst); -4.55325/+9.01351 (total) - Uncertainty on sg_p4 = 0.6462 +- 0.037707 (stat) - 0.0366379 + 0.017984 (syst); -0.0412043/+0.0260553 (total) - === Baseline plot ===
- norm = 213.048 -JEC lnN 1.01241 - -JER lnN 1.01721 - -btag lnN 1.06825 - -sg_p0 param 270.677 -0.225239/+0.0876663 -sg_p1 param 5.0777 -0.239144/+0.155575 -sg_p2 param 262.057 -19.7868/+10.1549 -sg_p3 param 42.5329 -4.55325/+9.01351 -sg_p4 param 0.6462 -0.0412043/+0.0260553 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_270_crystal_252_330/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_270_crystal_252_330/data_bkg.log deleted file mode 100644 index 1be2f6e..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_270_crystal_252_330/data_bkg.log +++ /dev/null @@ -1,717 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [250,330] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [250,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63590.5 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.69443e-02 5.09000e-01 0.00000e+00 -7.94680e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -8.91126e+00 - 3 par_crystal_2 2.62020e+02 4.00000e+00 1.01181e-01 -1.53451e+00 - 4 par_crystal_3 1.65000e+01 2.70000e+00 0.00000e+00 7.46021e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM MIGRAD STATUS=CONVERGED 482 CALLS 483 TOTAL - EDM=0.000814822 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 4.40594e-01 4.43750e-02 2.48631e-03 2.88668e-01 - 2 par_crystal_1 9.82994e-01 6.48221e-01 2.14269e-02 -5.28345e-03 - 3 par_crystal_2 2.71542e+02 7.41091e-01 7.20683e-03 -9.27818e-02 - 4 par_crystal_3 2.87224e+01 2.18588e+00 3.97473e-02 -6.99277e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.970e-03 -2.333e-02 -5.115e-04 1.392e-02 - -2.333e-02 4.358e-01 4.870e-03 -8.391e-01 - -5.115e-04 4.870e-03 5.496e-01 4.381e-01 - 1.392e-02 -8.391e-01 4.381e-01 5.029e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.88989 1.000 -0.796 -0.016 0.140 - 2 0.92807 -0.796 1.000 0.010 -0.567 - 3 0.40865 -0.016 0.010 1.000 0.264 - 4 0.80948 0.140 -0.567 0.264 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM HESSE STATUS=OK 23 CALLS 506 TOTAL - EDM=0.000711421 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 4.40594e-01 4.64698e-02 4.97262e-04 -9.80558e-01 - 2 par_crystal_1 9.82994e-01 6.55195e-01 8.57075e-04 -6.65795e-01 - 3 par_crystal_2 2.71542e+02 7.38644e-01 1.44137e-03 6.15159e-01 - 4 par_crystal_3 2.87224e+01 2.03002e+00 1.58989e-03 -1.05570e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.160e-03 -2.581e-02 -1.109e-03 1.530e-02 - -2.581e-02 4.456e-01 2.508e-02 -7.234e-01 - -1.109e-03 2.508e-02 5.460e-01 3.687e-01 - 1.530e-02 -7.234e-01 3.687e-01 4.306e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.90014 1.000 -0.832 -0.032 0.159 - 2 0.92960 -0.832 1.000 0.051 -0.522 - 3 0.40186 -0.032 0.051 1.000 0.240 - 4 0.77207 0.159 -0.522 0.240 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63714.2 FROM MIGRAD STATUS=INITIATE 33 CALLS 34 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 2.63122e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -5.45805e+02 - 3 par_gaus_exp_2 6.67498e-01 3.05000e-01 -6.37370e-01 7.03093e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM MIGRAD STATUS=CONVERGED 131 CALLS 132 TOTAL - EDM=6.15917e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.71558e+02 8.05096e-01 6.82817e-03 6.24407e-02 - 2 par_gaus_exp_1 3.06822e+01 1.83071e+00 1.43475e-02 1.11468e-02 - 3 par_gaus_exp_2 3.82770e-01 2.42284e-02 3.05774e-03 -9.77170e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.486e-01 -6.079e-01 -1.588e-03 - -6.079e-01 3.370e+00 3.082e-02 - -1.588e-03 3.082e-02 5.871e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.49876 1.000 -0.411 -0.081 - 2 0.77898 -0.411 1.000 0.693 - 3 0.72797 -0.081 0.693 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM HESSE STATUS=OK 16 CALLS 148 TOTAL - EDM=6.13964e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.71558e+02 8.14214e-01 2.73127e-04 -4.35760e-01 - 2 par_gaus_exp_1 3.06822e+01 1.86973e+00 5.73898e-04 4.10264e-01 - 3 par_gaus_exp_2 3.82770e-01 2.45149e-02 1.22310e-04 -8.97531e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.634e-01 -6.630e-01 -2.137e-03 - -6.630e-01 3.516e+00 3.227e-02 - -2.137e-03 3.227e-02 6.011e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.51526 1.000 -0.434 -0.107 - 2 0.78935 -0.434 1.000 0.702 - 3 0.73544 -0.107 0.702 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,625] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.33953 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.33953) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - ... (remaining 126 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.734607 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.734607) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=317.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=327.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=332.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=342.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=347.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=352.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=357.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=362.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=367.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - ... (remaining 53 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0734613 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0734613 - - FCN=103487 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57093e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.56195e+03 - 3 par_novo_2 -1.33668e+00 2.00000e+01 0.00000e+00 1.53931e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM MIGRAD STATUS=CONVERGED 127 CALLS 128 TOTAL - EDM=3.4171e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.43423e+01 1.81223e-01** at limit ** - 2 par_novo_1 3.86596e+01 2.27294e+00 4.95847e-03 -1.04123e-02 - 3 par_novo_2 -1.27520e+00 7.07738e-02 3.70975e-05 -1.26322e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.231e-09 -8.491e-07 -8.580e-07 - -8.491e-07 5.181e+00 1.547e-01 - -8.580e-07 1.547e-01 5.009e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.53332 1.000 -0.005 -0.154 - 2 0.97096 -0.005 1.000 0.960 - 3 0.97165 -0.154 0.960 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM HESSE STATUS=OK 20 CALLS 148 TOTAL - EDM=3.43726e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.40246e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.86596e+01 2.31421e+00 1.98339e-04 4.46530e-01 - 3 par_novo_2 -1.27520e+00 7.22930e-02 1.48390e-06 -1.27523e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 5.974e-09 2.819e-05 -1.296e-06 - 2.819e-05 5.372e+00 1.502e-01 - -1.296e-06 1.502e-01 5.226e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.85665 1.000 0.157 -0.232 - 2 0.97200 0.157 1.000 0.897 - 3 0.97285 -0.232 0.897 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107513 FROM MIGRAD STATUS=INITIATE 54 CALLS 55 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 1.39168e+03 - 2 par_crystal_1_1 7.96220e-02 5.09000e-01 0.00000e+00 5.33770e+03 - 3 par_crystal_1_2 2.56879e+02 4.00000e+00 -1.56713e-01 -1.96669e+01 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 -8.45862e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.5057e-02 2.3309e-03 4.9678e-02 3.9730e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.029030 TO DIAGONAL. - FCN=103250 FROM MIGRAD STATUS=CONVERGED 436 CALLS 437 TOTAL - EDM=3.52757e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 4.45574e-02 4.37117e-03 3.09465e-04 -4.28177e+00 - 2 par_crystal_1_1 4.36914e+00 6.24106e-01 1.80400e-02 6.63742e-02 - 3 par_crystal_1_2 2.71531e+02 3.44700e+01 5.81266e-02 2.25694e-02 - 4 par_crystal_1_3 3.37290e+00 2.71702e-01 3.13791e-03 -4.26197e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.911e-05 -1.221e-03 2.089e-01 3.572e-04 - -1.221e-03 4.065e-01 -2.690e+01 -6.822e-02 - 2.089e-01 -2.690e+01 3.429e+03 1.167e+01 - 3.572e-04 -6.822e-02 1.167e+01 7.401e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99136 1.000 -0.438 0.816 0.300 - 2 0.97307 -0.438 1.000 -0.720 -0.393 - 3 0.99735 0.816 -0.720 1.000 0.733 - 4 0.98716 0.300 -0.393 0.733 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -8.0089e-04 4.0193e-04 7.1213e-02 3.9292e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.004730 TO DIAGONAL. - FCN=103250 FROM HESSE STATUS=NOT POSDEF 23 CALLS 460 TOTAL - EDM=3.56127e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 4.45574e-02 7.42610e-03 6.18930e-05 -1.40582e+00 - 2 par_crystal_1_1 4.36914e+00 4.67550e-01 7.21602e-04 -3.93511e+00 - 3 par_crystal_1_2 2.71531e+02 3.29814e+01 2.32506e-03 -3.75607e+00 - 4 par_crystal_1_3 3.37290e+00 5.01685e-01 1.25517e-04 -1.80638e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.515e-05 2.851e-04 2.343e-01 -1.699e-03 - 2.851e-04 2.238e-01 -2.528e+00 1.548e-02 - 2.343e-01 -2.528e+00 2.967e+03 1.176e+01 - -1.699e-03 1.548e-02 1.176e+01 2.538e-01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99694 1.000 0.081 0.579 -0.454 - 2 0.94927 0.081 1.000 -0.098 0.065 - 3 0.99687 0.579 -0.098 1.000 0.429 - 4 0.99618 -0.454 0.065 0.429 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 14211 - Background number of gaus_exp_252_330 = 14211 - Background number of novo_285_624 = 17618.3 - Background number of crystal_1_285_624 = 17618.3 - Background number of gaus_bern_285_624 = 17618.3 - Background number of landau_285_624 = 17618.3 -par_crystal_0 param 0.440594 0.0464698 -par_crystal_1 param 0.982994 0.655195 -par_crystal_2 param 271.542 0.738644 -par_crystal_3 param 28.7224 2.03002 -par_crystal_1_0 param 0.0445574 0.0074261 -par_crystal_1_1 param 4.36914 0.46755 -par_crystal_1_2 param 271.531 32.9814 -par_crystal_1_3 param 3.3729 0.501685 -par_gaus_exp_0 param 271.558 0.814214 -par_gaus_exp_1 param 30.6822 1.86973 -par_gaus_exp_2 param 0.38277 0.0245149 -par_novo_0 param 250 34.0246 -par_novo_1 param 38.6596 2.31421 -par_novo_2 param -1.2752 0.072293 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_270_crystal_252_330/datacard_270_crystal_252_330.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_270_crystal_252_330/datacard_270_crystal_252_330.txt deleted file mode 100644 index 701d69f..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_270_crystal_252_330/datacard_270_crystal_252_330.txt +++ /dev/null @@ -1,34 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_270.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_crystal_252_330.root HbbHbb:f_crystal -shapes data_obs HbbHbb w_background_crystal_252_330.root HbbHbb:data_obs_crystal_252_330 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 213.048 14211 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06825 - -JER lnN 1.01721 - -JEC lnN 1.01241 - -trigger lnN 1.10 - -sg_p0 param 270.677 -0.225239/+0.0876663 -sg_p1 param 5.0777 -0.239144/+0.155575 -sg_p2 param 262.057 -19.7868/+10.1549 -sg_p3 param 42.5329 -4.55325/+9.01351 -sg_p4 param 0.6462 -0.0412043/+0.0260553 -par_crystal_0 param 0.440594 0.0464698 -par_crystal_1 param 0.982994 0.655195 -par_crystal_2 param 271.542 0.738644 -par_crystal_3 param 28.7224 2.03002 -par_crystal_1_0 param 0.0445574 0.0074261 -par_crystal_1_1 param 4.36914 0.46755 -par_crystal_1_2 param 271.531 32.9814 -par_crystal_1_3 param 3.3729 0.501685 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_270_crystal_252_330/signal270_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_270_crystal_252_330/signal270_sig.log deleted file mode 100644 index bbd93fb..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_270_crystal_252_330/signal270_sig.log +++ /dev/null @@ -1,959 +0,0 @@ - -Processing test.c... -nSignal_init = 300000 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=8392.45 FROM MIGRAD STATUS=INITIATE 43 CALLS 44 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.65000e+02 3.00000e+00 0.00000e+00 2.86291e+02 - 2 sg_p1 8.50000e+00 1.30000e+00 0.00000e+00 -7.99146e+02 - 3 sg_p2 2.70000e+02 5.20000e+01 0.00000e+00 2.60544e+02 - 4 sg_p3 7.14818e+01 2.90000e+01 -6.13812e-01 5.50184e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.51376e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7995.55 FROM MIGRAD STATUS=CONVERGED 263 CALLS 264 TOTAL - EDM=2.79948e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.62655e+02 3.96075e-01 1.63668e-03 -1.71407e-02 - 2 sg_p1 1.50000e+01 3.66501e-02 6.55558e-03** at limit ** - 3 sg_p2 3.32688e+02 1.22425e+01 2.10215e-03 1.48173e-02 - 4 sg_p3 7.88319e+01 7.17424e+00 2.90211e-03 4.51106e-02 - 5 sg_p4 9.12549e-01 1.01971e-02 2.71366e-03 7.36508e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.569e-01 -9.420e-08 -6.520e-02 2.553e-01 2.627e-04 - -9.420e-08 5.458e-08 -8.702e-06 1.981e-06 -8.254e-09 - -6.520e-02 -8.702e-06 1.500e+02 -4.987e+01 7.092e-02 - 2.553e-01 1.981e-06 -4.987e+01 5.153e+01 -2.107e-02 - 2.627e-04 -8.254e-09 7.092e-02 -2.107e-02 1.041e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.13067 1.000 -0.001 -0.013 0.090 0.065 - 2 0.00383 -0.001 1.000 -0.003 0.001 -0.003 - 3 0.70719 -0.013 -0.003 1.000 -0.567 0.568 - 4 0.57426 0.090 0.001 -0.567 1.000 -0.288 - 5 0.57327 0.065 -0.003 0.568 -0.288 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7995.55 FROM HESSE STATUS=OK 31 CALLS 295 TOTAL - EDM=2.79956e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.62655e+02 3.96099e-01 3.27335e-04 -1.56977e-01 - 2 sg_p1 1.50000e+01 3.66519e-02 1.31112e-03 1.57113e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 3 sg_p2 3.32688e+02 1.23641e+01 8.40862e-05 2.43509e-01 - 4 sg_p3 7.88319e+01 7.24309e+00 1.16084e-04 -5.53064e-01 - 5 sg_p4 9.12549e-01 1.02319e-02 5.42731e-04 7.07842e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.569e-01 -2.556e-08 -7.512e-02 2.598e-01 2.581e-04 - -2.556e-08 5.458e-08 -2.431e-06 5.742e-07 -2.287e-09 - -7.512e-02 -2.431e-06 1.530e+02 -5.186e+01 7.239e-02 - 2.598e-01 5.742e-07 -5.186e+01 5.252e+01 -2.206e-02 - 2.581e-04 -2.287e-09 7.239e-02 -2.206e-02 1.048e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.13113 1.000 -0.000 -0.015 0.090 0.064 - 2 0.00106 -0.000 1.000 -0.001 0.000 -0.001 - 3 0.71407 -0.015 -0.001 1.000 -0.578 0.572 - 4 0.58519 0.090 0.000 -0.578 1.000 -0.297 - 5 0.57724 0.064 -0.001 0.572 -0.297 1.000 -270 -262.655 +- 0.396099 -15 +- 0.0366519 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=8301.08 FROM MIGRAD STATUS=INITIATE 43 CALLS 44 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.65000e+02 3.00000e+00 0.00000e+00 1.57276e+02 - 2 sg_p1 8.50000e+00 1.30000e+00 0.00000e+00 -7.20874e+02 - 3 sg_p2 2.70000e+02 5.20000e+01 0.00000e+00 1.31136e+02 - 4 sg_p3 6.67985e+01 2.90000e+01 -6.53900e-01 6.21676e+00 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.55343e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7960.31 FROM MIGRAD STATUS=CONVERGED 215 CALLS 216 TOTAL - EDM=0.000112509 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.63717e+02 4.03328e-01 1.64549e-03 2.85410e-02 - 2 sg_p1 1.50000e+01 4.16874e-02 6.99690e-03** at limit ** - 3 sg_p2 3.26691e+02 1.09550e+01 1.90596e-03 -1.07432e-01 - 4 sg_p3 7.56151e+01 6.41429e+00 2.71105e-03 7.69878e-02 - 5 sg_p4 9.03852e-01 1.08010e-02 2.78869e-03 -3.02927e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.627e-01 -1.817e-07 -1.584e-01 2.985e-01 2.635e-04 - -1.817e-07 2.669e-07 -1.400e-05 2.491e-06 -1.659e-08 - -1.584e-01 -1.400e-05 1.201e+02 -3.790e+01 6.574e-02 - 2.985e-01 2.491e-06 -3.790e+01 4.118e+01 -1.657e-02 - 2.635e-04 -1.659e-08 6.574e-02 -1.657e-02 1.168e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.14787 1.000 -0.001 -0.036 0.115 0.060 - 2 0.00326 -0.001 1.000 -0.002 0.001 -0.003 - 3 0.69527 -0.036 -0.002 1.000 -0.539 0.555 - 4 0.55108 0.115 0.001 -0.539 1.000 -0.239 - 5 0.56440 0.060 -0.003 0.555 -0.239 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7960.31 FROM HESSE STATUS=OK 31 CALLS 247 TOTAL - EDM=0.000114252 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.63717e+02 4.03375e-01 3.29097e-04 -8.56522e-02 - 2 sg_p1 1.50000e+01 4.16903e-02 1.39938e-03 1.57009e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 3 sg_p2 3.26691e+02 1.10364e+01 3.81192e-04 2.19808e-01 - 4 sg_p3 7.56151e+01 6.46046e+00 1.08442e-04 -5.79352e-01 - 5 sg_p4 9.03852e-01 1.08250e-02 5.57738e-04 6.62902e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.628e-01 1.090e-10 -1.678e-01 3.031e-01 2.586e-04 - 1.090e-10 2.669e-07 8.739e-09 -1.723e-09 1.020e-11 - -1.678e-01 8.739e-09 1.219e+02 -3.912e+01 6.671e-02 - 3.031e-01 -1.723e-09 -3.912e+01 4.178e+01 -1.726e-02 - 2.586e-04 1.020e-11 6.671e-02 -1.726e-02 1.173e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.14863 1.000 0.000 -0.038 0.116 0.059 - 2 0.00000 0.000 1.000 0.000 -0.000 0.000 - 3 0.70071 -0.038 0.000 1.000 -0.548 0.558 - 4 0.56000 0.116 -0.000 -0.548 1.000 -0.247 - 5 0.56706 0.059 0.000 0.558 -0.247 1.000 -270 -263.717 +- 0.403375 -15 +- 0.0416903 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=8131.38 FROM MIGRAD STATUS=INITIATE 44 CALLS 45 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.65000e+02 3.00000e+00 0.00000e+00 4.48644e+02 - 2 sg_p1 8.50000e+00 1.30000e+00 0.00000e+00 -7.91305e+02 - 3 sg_p2 2.70000e+02 5.20000e+01 0.00000e+00 3.73822e+02 - 4 sg_p3 6.56628e+01 2.90000e+01 -6.63806e-01 5.24608e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.60990e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7699.77 FROM MIGRAD STATUS=CONVERGED 264 CALLS 265 TOTAL - EDM=1.20255e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.61106e+02 3.97606e-01 1.64949e-03 6.43216e-02 - 2 sg_p1 1.50000e+01 4.40817e-02 7.05863e-03** at limit ** - 3 sg_p2 3.31806e+02 1.18077e+01 2.04938e-03 4.68003e-02 - 4 sg_p3 7.39962e+01 6.87793e+00 2.89900e-03 4.25993e-02 - 5 sg_p4 9.20380e-01 9.82533e-03 2.67537e-03 -4.86834e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.581e-01 -4.250e-09 7.358e-02 1.895e-01 3.289e-04 - -4.250e-09 8.677e-11 -3.111e-07 6.344e-08 -2.998e-10 - 7.358e-02 -3.111e-07 1.395e+02 -4.404e+01 6.552e-02 - 1.895e-01 6.344e-08 -4.404e+01 4.736e+01 -1.922e-02 - 3.289e-04 -2.998e-10 6.552e-02 -1.922e-02 9.663e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.12888 1.000 -0.001 0.016 0.069 0.084 - 2 0.00364 -0.001 1.000 -0.003 0.001 -0.003 - 3 0.69043 0.016 -0.003 1.000 -0.542 0.564 - 4 0.54763 0.069 0.001 -0.542 1.000 -0.284 - 5 0.56955 0.084 -0.003 0.564 -0.284 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7699.77 FROM HESSE STATUS=OK 31 CALLS 296 TOTAL - EDM=1.20761e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.61106e+02 3.97608e-01 3.29897e-04 -2.62628e-01 - 2 sg_p1 1.50000e+01 4.40850e-02 1.41173e-03 1.57081e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 3 sg_p2 3.31806e+02 1.19031e+01 4.09876e-04 2.40013e-01 - 4 sg_p3 7.39962e+01 6.93093e+00 1.15960e-04 -5.92753e-01 - 5 sg_p4 9.20380e-01 9.85509e-03 5.35074e-04 7.49837e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.581e-01 -8.535e-10 6.846e-02 1.911e-01 3.266e-04 - -8.535e-10 8.678e-11 -6.392e-08 1.351e-08 -6.118e-11 - 6.846e-02 -6.392e-08 1.418e+02 -4.555e+01 6.667e-02 - 1.911e-01 1.351e-08 -4.555e+01 4.809e+01 -2.000e-02 - 3.266e-04 -6.118e-11 6.667e-02 -2.000e-02 9.722e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.12891 1.000 -0.000 0.014 0.069 0.083 - 2 0.00074 -0.000 1.000 -0.001 0.000 -0.001 - 3 0.69646 0.014 -0.001 1.000 -0.552 0.568 - 4 0.55728 0.069 0.000 -0.552 1.000 -0.292 - 5 0.57312 0.083 -0.001 0.568 -0.292 1.000 -270 -261.106 +- 0.397608 -15 +- 0.044085 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=6358.39 FROM MIGRAD STATUS=INITIATE 18 CALLS 19 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70000e+02 2.00000e+00 2.01358e-01 -2.79566e+02 - 2 sg_p1 5.00000e+00 6.00000e-01 2.01358e-01 -1.50106e+02 - 3 sg_p2 1.79500e+02 3.41000e+01 2.01358e-01 1.43645e+00 - 4 sg_p3 1.55000e+02 2.90000e+01 2.01358e-01 1.18935e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 2.01358e-01 1.12505e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6301.03 FROM MIGRAD STATUS=CONVERGED 228 CALLS 229 TOTAL - EDM=6.55748e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70677e+02 1.72165e-01 9.18183e-04 1.47070e-02 - 2 sg_p1 5.07770e+00 1.66247e-01 2.54292e-03 -1.24810e-03 - 3 sg_p2 2.62057e+02 9.37512e+00 1.10376e-03 -2.64630e-02 - 4 sg_p3 4.25329e+01 5.68857e+00 1.50462e-03 -2.35495e-02 - 5 sg_p4 6.46200e-01 3.59740e-02 4.14748e-03 5.84314e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.964e-02 -1.980e-03 -3.797e-01 1.772e-01 -1.311e-03 - -1.980e-03 2.767e-02 2.898e-01 1.419e-02 2.579e-03 - -3.797e-01 2.898e-01 8.801e+01 -4.644e+01 2.783e-01 - 1.772e-01 1.419e-02 -4.644e+01 3.240e+01 -1.232e-01 - -1.311e-03 2.579e-03 2.783e-01 -1.232e-01 1.305e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.24028 1.000 -0.069 -0.235 0.181 -0.211 - 2 0.54786 -0.069 1.000 0.186 0.015 0.429 - 3 0.94759 -0.235 0.186 1.000 -0.870 0.821 - 4 0.89770 0.181 0.015 -0.870 1.000 -0.599 - 5 0.87941 -0.211 0.429 0.821 -0.599 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6301.03 FROM HESSE STATUS=OK 31 CALLS 260 TOTAL - EDM=6.88941e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.70677e+02 1.72924e-01 1.83637e-04 6.77760e-02 - 2 sg_p1 5.07770e+00 1.66149e-01 1.01717e-04 2.59024e-02 - 3 sg_p2 2.62057e+02 1.02016e+01 4.41505e-05 5.05456e-01 - 4 sg_p3 4.25329e+01 6.20016e+00 6.01848e-05 -8.87721e-01 - 5 sg_p4 6.46200e-01 3.77070e-02 1.65899e-04 -4.28163e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.991e-02 -2.057e-03 -4.449e-01 2.178e-01 -1.495e-03 - -2.057e-03 2.763e-02 3.050e-01 2.707e-03 2.616e-03 - -4.449e-01 3.050e-01 1.042e+02 -5.647e+01 3.244e-01 - 2.178e-01 2.707e-03 -5.647e+01 3.850e+01 -1.520e-01 - -1.495e-03 2.616e-03 3.244e-01 -1.520e-01 1.435e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25688 1.000 -0.072 -0.252 0.203 -0.228 - 2 0.54710 -0.072 1.000 0.180 0.003 0.415 - 3 0.95594 -0.252 0.180 1.000 -0.891 0.839 - 4 0.91467 0.203 0.003 -0.891 1.000 -0.647 - 5 0.89101 -0.228 0.415 0.839 -0.647 1.000 -270 -270.677 +- 0.172924 -5.0777 +- 0.166149 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=6365.99 FROM MIGRAD STATUS=INITIATE 16 CALLS 17 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70000e+02 2.00000e+00 2.01358e-01 -3.03648e+02 - 2 sg_p1 5.00000e+00 6.00000e-01 2.01358e-01 -1.61990e+02 - 3 sg_p2 1.79500e+02 3.41000e+01 2.01358e-01 -2.65770e+00 - 4 sg_p3 1.55000e+02 2.90000e+01 2.01358e-01 8.50425e+00 - 5 sg_p4 7.50000e-01 5.00000e-02 2.01358e-01 1.31190e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6299.61 FROM MIGRAD STATUS=CONVERGED 237 CALLS 238 TOTAL - EDM=7.93407e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70692e+02 1.77044e-01 9.42241e-04 3.84277e-02 - 2 sg_p1 5.17409e+00 1.71536e-01 2.60847e-03 -2.11829e-03 - 3 sg_p2 2.70838e+02 6.84551e+00 1.03343e-03 5.78086e-03 - 4 sg_p3 3.91980e+01 4.62395e+00 1.61118e-03 1.03114e-02 - 5 sg_p4 6.64184e-01 3.27535e-02 3.88817e-03 5.22515e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.135e-02 -1.758e-03 -3.016e-01 1.665e-01 -1.164e-03 - -1.758e-03 2.946e-02 3.251e-01 -2.221e-02 2.675e-03 - -3.016e-01 3.251e-01 4.690e+01 -2.546e+01 1.845e-01 - 1.665e-01 -2.221e-02 -2.546e+01 2.140e+01 -8.613e-02 - -1.164e-03 2.675e-03 1.845e-01 -8.613e-02 1.080e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.24905 1.000 -0.058 -0.249 0.203 -0.200 - 2 0.55757 -0.058 1.000 0.277 -0.028 0.474 - 3 0.91827 -0.249 0.277 1.000 -0.804 0.820 - 4 0.83247 0.203 -0.028 -0.804 1.000 -0.567 - 5 0.86222 -0.200 0.474 0.820 -0.567 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6299.61 FROM HESSE STATUS=OK 31 CALLS 269 TOTAL - EDM=7.9228e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.70692e+02 1.77623e-01 1.88448e-04 6.92275e-02 - 2 sg_p1 5.17409e+00 1.71578e-01 1.04339e-04 5.80618e-02 - 3 sg_p2 2.70838e+02 7.18808e+00 4.13373e-05 5.65345e-01 - 4 sg_p3 3.91980e+01 4.86021e+00 6.44473e-05 -9.25023e-01 - 5 sg_p4 6.64184e-01 3.36636e-02 1.55527e-04 -3.50391e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.155e-02 -1.878e-03 -3.331e-01 1.884e-01 -1.276e-03 - -1.878e-03 2.947e-02 3.399e-01 -3.425e-02 2.726e-03 - -3.331e-01 3.399e-01 5.171e+01 -2.882e+01 2.017e-01 - 1.884e-01 -3.425e-02 -2.882e+01 2.365e+01 -9.825e-02 - -1.276e-03 2.726e-03 2.017e-01 -9.825e-02 1.141e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.26103 1.000 -0.062 -0.261 0.218 -0.213 - 2 0.55787 -0.062 1.000 0.275 -0.041 0.470 - 3 0.92618 -0.261 0.275 1.000 -0.824 0.830 - 4 0.84979 0.218 -0.041 -0.824 1.000 -0.598 - 5 0.87017 -0.213 0.470 0.830 -0.598 1.000 -270 -270.692 +- 0.177623 -5.17409 +- 0.171578 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=6100.43 FROM MIGRAD STATUS=INITIATE 38 CALLS 39 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70000e+02 2.00000e+00 0.00000e+00 -1.76480e+02 - 2 sg_p1 5.00000e+00 6.00000e-01 0.00000e+00 -9.50553e+01 - 3 sg_p2 1.79500e+02 3.41000e+01 0.00000e+00 -1.03797e+01 - 4 sg_p3 1.15860e+02 2.90000e+01 -2.73322e-01 1.99528e+00 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.00751e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6063.49 FROM MIGRAD STATUS=CONVERGED 263 CALLS 264 TOTAL - EDM=9.43817e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70469e+02 1.64489e-01 8.67373e-04 9.78651e-02 - 2 sg_p1 4.85345e+00 1.61763e-01 2.44261e-03 2.33446e-02 - 3 sg_p2 2.42939e+02 1.76038e+01 1.34178e-03 -9.41851e-03 - 4 sg_p3 5.09965e+01 8.69738e+00 1.37274e-03 -8.34558e-03 - 5 sg_p4 6.09562e-01 4.12691e-02 4.72433e-03 -1.03290e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.706e-02 -1.143e-03 -5.339e-01 2.032e-01 -1.240e-03 - -1.143e-03 2.619e-02 2.008e-01 9.614e-02 2.479e-03 - -5.339e-01 2.008e-01 3.112e+02 -1.431e+02 5.930e-01 - 2.032e-01 9.614e-02 -1.431e+02 7.583e+01 -2.285e-01 - -1.240e-03 2.479e-03 5.930e-01 -2.285e-01 1.726e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20148 1.000 -0.043 -0.184 0.142 -0.181 - 2 0.54100 -0.043 1.000 0.070 0.068 0.369 - 3 0.97454 -0.184 0.070 1.000 -0.932 0.809 - 4 0.95515 0.142 0.068 -0.932 1.000 -0.632 - 5 0.89940 -0.181 0.369 0.809 -0.632 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6063.49 FROM HESSE STATUS=OK 31 CALLS 295 TOTAL - EDM=1.17248e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.70469e+02 1.65601e-01 1.73475e-04 4.69431e-02 - 2 sg_p1 4.85345e+00 1.61522e-01 4.88521e-04 -4.88702e-02 - 3 sg_p2 2.42939e+02 2.15740e+01 5.36712e-05 3.81246e-01 - 4 sg_p3 5.09965e+01 1.06929e+01 5.49095e-05 -7.99870e-01 - 5 sg_p4 6.09562e-01 4.63125e-02 1.88973e-04 -5.96502e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.743e-02 -1.089e-03 -7.748e-01 3.240e-01 -1.649e-03 - -1.089e-03 2.611e-02 1.620e-01 1.121e-01 2.395e-03 - -7.748e-01 1.620e-01 4.683e+02 -2.215e+02 8.616e-01 - 3.240e-01 1.121e-01 -2.215e+02 1.148e+02 -3.632e-01 - -1.649e-03 2.395e-03 8.616e-01 -3.632e-01 2.182e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23115 1.000 -0.041 -0.216 0.183 -0.213 - 2 0.53904 -0.041 1.000 0.046 0.065 0.317 - 3 0.98316 -0.216 0.046 1.000 -0.955 0.852 - 4 0.97060 0.183 0.065 -0.955 1.000 -0.726 - 5 0.92131 -0.213 0.317 0.852 -0.726 1.000 -270 -270.469 +- 0.165601 -4.85345 +- 0.161522 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=6207.91 FROM MIGRAD STATUS=INITIATE 18 CALLS 19 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70000e+02 2.00000e+00 2.01358e-01 -2.64216e+02 - 2 sg_p1 5.00000e+00 6.00000e-01 2.01358e-01 -1.71360e+02 - 3 sg_p2 1.79500e+02 3.41000e+01 2.01358e-01 4.14298e-01 - 4 sg_p3 1.55000e+02 2.90000e+01 2.01358e-01 1.11372e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 2.01358e-01 1.18895e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6146.33 FROM MIGRAD STATUS=CONVERGED 215 CALLS 216 TOTAL - EDM=6.61513e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70656e+02 1.81990e-01 9.51015e-04 2.93883e-01 - 2 sg_p1 5.20924e+00 1.80376e-01 2.66180e-03 1.75576e-02 - 3 sg_p2 2.64216e+02 9.79599e+00 1.09853e-03 2.68338e-01 - 4 sg_p3 4.19600e+01 6.09659e+00 1.54906e-03 -8.69463e-02 - 5 sg_p4 6.49014e-01 3.85333e-02 4.14029e-03 -7.85398e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.312e-02 -1.986e-03 -4.776e-01 -2.455e-01 -1.622e-03 - -1.986e-03 3.258e-02 3.816e-01 8.852e-03 3.179e-03 - -4.776e-01 3.816e-01 9.610e+01 5.251e+01 3.182e-01 - -2.455e-01 8.852e-03 5.251e+01 3.722e+01 1.487e-01 - -1.622e-03 3.179e-03 3.182e-01 1.487e-01 1.499e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.26944 1.000 -0.060 -0.268 -0.221 -0.230 - 2 0.57936 -0.060 1.000 0.216 0.008 0.455 - 3 0.95227 -0.268 0.216 1.000 0.878 0.838 - 4 0.90487 -0.221 0.008 0.878 1.000 0.630 - 5 0.89253 -0.230 0.455 0.838 0.630 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6146.33 FROM HESSE STATUS=OK 31 CALLS 247 TOTAL - EDM=6.61792e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.70656e+02 1.81849e-01 1.90203e-04 6.56339e-02 - 2 sg_p1 5.20924e+00 1.80330e-01 1.06472e-04 6.98019e-02 - 3 sg_p2 2.64216e+02 9.67079e+00 2.19705e-04 5.19985e-01 - 4 sg_p3 4.19600e+01 6.02003e+00 6.19622e-05 -2.24759e+00 - 5 sg_p4 6.49014e-01 3.82479e-02 8.28058e-04 -4.15825e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.307e-02 -1.974e-03 -4.664e-01 -2.386e-01 -1.589e-03 - -1.974e-03 3.256e-02 3.740e-01 4.110e-03 3.157e-03 - -4.664e-01 3.740e-01 9.366e+01 5.099e+01 3.108e-01 - -2.386e-01 4.110e-03 5.099e+01 3.629e+01 1.442e-01 - -1.589e-03 3.157e-03 3.108e-01 1.442e-01 1.477e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.26676 1.000 -0.060 -0.265 -0.218 -0.227 - 2 0.57907 -0.060 1.000 0.214 0.004 0.455 - 3 0.95099 -0.265 0.214 1.000 0.875 0.836 - 4 0.90230 -0.218 0.004 0.875 1.000 0.623 - 5 0.89080 -0.227 0.455 0.836 0.623 1.000 -270 -270.656 +- 0.181849 -5.20924 +- 0.18033 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=6345.12 FROM MIGRAD STATUS=INITIATE 18 CALLS 19 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70000e+02 2.00000e+00 2.01358e-01 -2.76463e+02 - 2 sg_p1 5.00000e+00 6.00000e-01 2.01358e-01 -1.12933e+02 - 3 sg_p2 1.79500e+02 3.41000e+01 2.01358e-01 1.61677e+00 - 4 sg_p3 1.55000e+02 2.90000e+01 2.01358e-01 1.12497e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 2.01358e-01 1.04922e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.05988 added to diagonal of error matrix -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (9513.77) to force MIGRAD to back out of this region. Error log follows -Parameter values: sg_p0=269.51, sg_p1=3.81892, sg_p2=26.0784, sg_p3=20.4464, sg_p4=0.504154 -RooGaussian::signalComb[ x=x mean=sg_p2 sigma=sg_p3 ] - p.d.f normalization integral is zero or negative @ x=x=250.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=253.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=256.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=259.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=262.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=265.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=268.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=271.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=274.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=277.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=280.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=283.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - ... (remaining 24 messages suppressed) -RooNLLVar::nll_signal_signalHistogram[ paramSet=(sg_p0,sg_p1,sg_p2,sg_p3,sg_p4) ] - function value is NAN @ paramSet=(sg_p0 = 269.51,sg_p1 = 3.81892,sg_p2 = 26.0784,sg_p3 = 20.4464,sg_p4 = 0.504154) -RooAddPdf::signal[ sg_p4 * signalCore + [%] * signalComb ] - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 250.5), !pdfs=(signalCore = 4.16274e-06/9.57261,signalComb = 6.90752e-27/0), !coefficients=(sg_p4 = 0.504154) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 250.5), !pdfs=(signalCore = 4.16274e-06/9.57261,signalComb = 6.90752e-27/0), !coefficients=(sg_p4 = 0.504154) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 253.5), !pdfs=(signalCore = 0.000152629/9.57261,signalComb = 1.36531e-27/0), !coefficients=(sg_p4 = 0.504154) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 253.5), !pdfs=(signalCore = 0.000152629/9.57261,signalComb = 1.36531e-27/0), !coefficients=(sg_p4 = 0.504154) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 256.5), !pdfs=(signalCore = 0.00301916/9.57261,signalComb = 2.64114e-28/0), !coefficients=(sg_p4 = 0.504154) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 256.5), !pdfs=(signalCore = 0.00301916/9.57261,signalComb = 2.64114e-28/0), !coefficients=(sg_p4 = 0.504154) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 259.5), !pdfs=(signalCore = 0.0322202/9.57261,signalComb = 5.00036e-29/0), !coefficients=(sg_p4 = 0.504154) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 259.5), !pdfs=(signalCore = 0.0322202/9.57261,signalComb = 5.00036e-29/0), !coefficients=(sg_p4 = 0.504154) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 262.5), !pdfs=(signalCore = 0.185509/9.57261,signalComb = 9.26534e-30/0), !coefficients=(sg_p4 = 0.504154) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 262.5), !pdfs=(signalCore = 0.185509/9.57261,signalComb = 9.26534e-30/0), !coefficients=(sg_p4 = 0.504154) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 265.5), !pdfs=(signalCore = 0.576226/9.57261,signalComb = 1.68024e-30/0), !coefficients=(sg_p4 = 0.504154) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 265.5), !pdfs=(signalCore = 0.576226/9.57261,signalComb = 1.68024e-30/0), !coefficients=(sg_p4 = 0.504154) - ... (remaining 58 messages suppressed) -RooRealIntegral::signalComb_Int[x|NormalizationRangeForfit]_Norm[x][ Int signalComb_Norm(x) d[Ana](x) ] - function value is NAN @ !sumList=(), !intList=(), !anaList=(x = 250.5), !jacList=(), !facList=(), !func=signalComb=6.90752e-27/0, !sumCat=() - - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6295.95 FROM MIGRAD STATUS=CONVERGED 426 CALLS 427 TOTAL - EDM=1.36563e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70665e+02 1.63477e-01 8.78610e-04 2.15233e-02 - 2 sg_p1 4.89880e+00 1.57011e-01 2.44680e-03 2.25239e-02 - 3 sg_p2 2.54654e+02 1.25915e+01 1.24303e-03 5.47392e-03 - 4 sg_p3 4.70832e+01 7.17725e+00 1.51317e-03 2.13001e-03 - 5 sg_p4 6.29901e-01 3.72328e-02 4.32749e-03 -5.67064e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.673e-02 -8.488e-04 -4.087e-01 1.835e-01 -1.095e-03 - -8.488e-04 2.467e-02 2.172e-01 5.764e-02 2.181e-03 - -4.087e-01 2.172e-01 1.589e+02 -8.190e+01 3.873e-01 - 1.835e-01 5.764e-02 -8.190e+01 5.161e+01 -1.691e-01 - -1.095e-03 2.181e-03 3.873e-01 -1.691e-01 1.400e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20590 1.000 -0.033 -0.198 0.156 -0.179 - 2 0.52321 -0.033 1.000 0.110 0.051 0.371 - 3 0.96127 -0.198 0.110 1.000 -0.904 0.821 - 4 0.92824 0.156 0.051 -0.904 1.000 -0.629 - 5 0.88645 -0.179 0.371 0.821 -0.629 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6295.95 FROM HESSE STATUS=OK 31 CALLS 458 TOTAL - EDM=1.44185e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.70665e+02 1.64298e-01 1.75722e-04 6.65783e-02 - 2 sg_p1 4.89880e+00 1.56830e-01 4.89360e-04 -3.37402e-02 - 3 sg_p2 2.54654e+02 1.43586e+01 4.97213e-05 4.56472e-01 - 4 sg_p3 4.70832e+01 8.20025e+00 6.05269e-05 -7.12260e+00 - 5 sg_p4 6.29901e-01 4.01552e-02 1.73099e-04 -5.01104e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.700e-02 -8.623e-04 -5.225e-01 2.494e-01 -1.344e-03 - -8.623e-04 2.462e-02 2.174e-01 5.502e-02 2.172e-03 - -5.225e-01 2.174e-01 2.068e+02 -1.095e+02 4.928e-01 - 2.494e-01 5.502e-02 -1.095e+02 6.741e+01 -2.303e-01 - -1.344e-03 2.172e-03 4.928e-01 -2.303e-01 1.631e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22790 1.000 -0.033 -0.221 0.185 -0.203 - 2 0.52160 -0.033 1.000 0.096 0.043 0.343 - 3 0.97037 -0.221 0.096 1.000 -0.928 0.849 - 4 0.94554 0.185 0.043 -0.928 1.000 -0.695 - 5 0.90340 -0.203 0.343 0.849 -0.695 1.000 -270 -270.665 +- 0.164298 -4.8988 +- 0.15683 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=5935.06 FROM MIGRAD STATUS=INITIATE 18 CALLS 19 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70000e+02 2.00000e+00 2.01358e-01 -2.61773e+02 - 2 sg_p1 5.00000e+00 6.00000e-01 2.01358e-01 -1.38965e+02 - 3 sg_p2 1.79500e+02 3.41000e+01 2.01358e-01 1.59791e+00 - 4 sg_p3 1.55000e+02 2.90000e+01 2.01358e-01 1.10752e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 2.01358e-01 1.03362e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 5 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 2.28866 added to diagonal of error matrix -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (10056.7) to force MIGRAD to back out of this region. Error log follows -Parameter values: sg_p0=272.549, sg_p1=2.86401, sg_p2=114.179, sg_p3=10.3302, sg_p4=0.609584 -RooGaussian::signalComb[ x=x mean=sg_p2 sigma=sg_p3 ] - p.d.f normalization integral is zero or negative @ x=x=250.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=253.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=256.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=259.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=262.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=265.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=268.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=271.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=274.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=277.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=280.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=283.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - ... (remaining 24 messages suppressed) - - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.08701 added to diagonal of error matrix -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (10056.7) to force MIGRAD to back out of this region. Error log follows -Parameter values: sg_p0=272.29, sg_p1=6.01777, sg_p2=84.8692, sg_p3=12.3721, sg_p4=0.588994 -RooAddPdf::signal[ sg_p4 * signalCore + [%] * signalComb ] - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 250.5), !pdfs=(signalCore = 0.00142225/15.0827,signalComb = 1.20756e-39/0), !coefficients=(sg_p4 = 0.588994) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 250.5), !pdfs=(signalCore = 0.00142225/15.0827,signalComb = 1.20756e-39/0), !coefficients=(sg_p4 = 0.588994) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 253.5), !pdfs=(signalCore = 0.00763766/15.0827,signalComb = 4.56383e-41/0), !coefficients=(sg_p4 = 0.588994) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 253.5), !pdfs=(signalCore = 0.00763766/15.0827,signalComb = 4.56383e-41/0), !coefficients=(sg_p4 = 0.588994) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 256.5), !pdfs=(signalCore = 0.0319897/15.0827,signalComb = 1.62635e-42/0), !coefficients=(sg_p4 = 0.588994) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 256.5), !pdfs=(signalCore = 0.0319897/15.0827,signalComb = 1.62635e-42/0), !coefficients=(sg_p4 = 0.588994) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 259.5), !pdfs=(signalCore = 0.104502/15.0827,signalComb = 5.46463e-44/0), !coefficients=(sg_p4 = 0.588994) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 259.5), !pdfs=(signalCore = 0.104502/15.0827,signalComb = 5.46463e-44/0), !coefficients=(sg_p4 = 0.588994) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 262.5), !pdfs=(signalCore = 0.266262/15.0827,signalComb = 1.7313e-45/0), !coefficients=(sg_p4 = 0.588994) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 262.5), !pdfs=(signalCore = 0.266262/15.0827,signalComb = 1.7313e-45/0), !coefficients=(sg_p4 = 0.588994) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 265.5), !pdfs=(signalCore = 0.529127/15.0827,signalComb = 5.17191e-47/0), !coefficients=(sg_p4 = 0.588994) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 265.5), !pdfs=(signalCore = 0.529127/15.0827,signalComb = 5.17191e-47/0), !coefficients=(sg_p4 = 0.588994) - ... (remaining 58 messages suppressed) -RooGaussian::signalComb[ x=x mean=sg_p2 sigma=sg_p3 ] - p.d.f normalization integral is zero or negative @ x=x=250.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=253.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=256.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=259.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=262.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=265.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=268.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=271.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=274.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=277.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=280.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=283.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - ... (remaining 24 messages suppressed) -RooNLLVar::nll_signal_signalHistogram[ paramSet=(sg_p0,sg_p1,sg_p2,sg_p3,sg_p4) ] - function value is NAN @ paramSet=(sg_p0 = 272.29,sg_p1 = 6.01777,sg_p2 = 84.8692,sg_p3 = 12.3721,sg_p4 = 0.588994) -RooRealIntegral::signalComb_Int[x|NormalizationRangeForfit]_Norm[x][ Int signalComb_Norm(x) d[Ana](x) ] - function value is NAN @ !sumList=(), !intList=(), !anaList=(x = 250.5), !jacList=(), !facList=(), !func=signalComb=1.20756e-39/0, !sumCat=() - - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -7.5154e-01 8.8570e-03 4.2097e-01 8.1972e-01 4.5020e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 0.756042 TO DIAGONAL. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5882.02 FROM MIGRAD STATUS=CONVERGED 478 CALLS 479 TOTAL - EDM=5.04966e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70677e+02 1.77765e-01 9.15542e-04 3.54204e-02 - 2 sg_p1 5.07405e+00 1.71518e-01 2.53252e-03 -1.40075e-03 - 3 sg_p2 2.62185e+02 9.60022e+00 1.09335e-03 9.09533e-02 - 4 sg_p3 4.23182e+01 5.82557e+00 1.49714e-03 7.35079e-02 - 5 sg_p4 6.47917e-01 3.70971e-02 4.11649e-03 -7.98184e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.160e-02 -2.097e-03 -4.013e-01 1.872e-01 -1.393e-03 - -2.097e-03 2.945e-02 3.055e-01 1.580e-02 2.743e-03 - -4.013e-01 3.055e-01 9.229e+01 -4.866e+01 2.937e-01 - 1.872e-01 1.580e-02 -4.866e+01 3.398e+01 -1.298e-01 - -1.393e-03 2.743e-03 2.937e-01 -1.298e-01 1.388e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.24009 1.000 -0.069 -0.235 0.181 -0.210 - 2 0.54730 -0.069 1.000 0.185 0.016 0.429 - 3 0.94713 -0.235 0.185 1.000 -0.869 0.821 - 4 0.89685 0.181 0.016 -0.869 1.000 -0.598 - 5 0.87877 -0.210 0.429 0.821 -0.598 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5882.02 FROM HESSE STATUS=OK 31 CALLS 510 TOTAL - EDM=5.00987e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.70677e+02 1.78459e-01 1.83108e-04 6.77551e-02 - 2 sg_p1 5.07405e+00 1.71428e-01 1.01301e-04 2.46861e-02 - 3 sg_p2 2.62185e+02 1.03547e+01 2.18670e-04 5.06313e-01 - 4 sg_p3 4.23182e+01 6.29339e+00 5.98854e-05 -8.90070e-01 - 5 sg_p4 6.47917e-01 3.86762e-02 1.64659e-04 -4.20625e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.185e-02 -2.170e-03 -4.624e-01 2.253e-01 -1.567e-03 - -2.170e-03 2.942e-02 3.193e-01 5.301e-03 2.776e-03 - -4.624e-01 3.193e-01 1.074e+02 -5.800e+01 3.368e-01 - 2.253e-01 5.301e-03 -5.800e+01 3.967e+01 -1.567e-01 - -1.567e-03 2.776e-03 3.368e-01 -1.567e-01 1.510e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25486 1.000 -0.071 -0.250 0.200 -0.226 - 2 0.54662 -0.071 1.000 0.180 0.005 0.416 - 3 0.95474 -0.250 0.180 1.000 -0.889 0.836 - 4 0.91235 0.200 0.005 -0.889 1.000 -0.640 - 5 0.88917 -0.226 0.416 0.836 -0.640 1.000 -270 -270.677 +- 0.178459 -5.07405 +- 0.171428 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=6803.83 FROM MIGRAD STATUS=INITIATE 18 CALLS 19 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70000e+02 2.00000e+00 2.01358e-01 -2.98256e+02 - 2 sg_p1 5.00000e+00 6.00000e-01 2.01358e-01 -1.61883e+02 - 3 sg_p2 1.79500e+02 3.41000e+01 2.01358e-01 1.25354e+00 - 4 sg_p3 1.55000e+02 2.90000e+01 2.01358e-01 1.25340e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 2.01358e-01 1.22208e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6741.9 FROM MIGRAD STATUS=CONVERGED 248 CALLS 249 TOTAL - EDM=5.61336e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70678e+02 1.67660e-01 9.20230e-04 6.43100e-02 - 2 sg_p1 5.08061e+00 1.61195e-01 2.54959e-03 -4.59615e-02 - 3 sg_p2 2.61887e+02 1.01188e+01 1.11479e-03 1.73033e-01 - 4 sg_p3 4.27760e+01 6.14640e+00 1.50758e-03 -1.30340e-01 - 5 sg_p4 6.44308e-01 3.69099e-02 4.17152e-03 -5.60004e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.811e-02 -1.952e-03 -4.320e-01 -2.124e-01 -1.437e-03 - -1.952e-03 2.601e-02 2.973e-01 2.175e-03 2.487e-03 - -4.320e-01 2.973e-01 1.025e+02 5.575e+01 3.161e-01 - -2.124e-01 2.175e-03 5.575e+01 3.783e+01 1.492e-01 - -1.437e-03 2.487e-03 3.161e-01 1.492e-01 1.375e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25937 1.000 -0.072 -0.254 -0.206 -0.231 - 2 0.54843 -0.072 1.000 0.182 0.002 0.416 - 3 0.95754 -0.254 0.182 1.000 0.895 0.842 - 4 0.91772 -0.206 0.002 0.895 1.000 0.654 - 5 0.89354 -0.231 0.416 0.842 0.654 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6741.9 FROM HESSE STATUS=OK 31 CALLS 280 TOTAL - EDM=5.55033e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.70678e+02 1.67525e-01 1.84046e-04 6.78347e-02 - 2 sg_p1 5.08061e+00 1.61130e-01 5.09917e-04 2.68728e-02 - 3 sg_p2 2.61887e+02 9.96431e+00 2.22958e-04 5.04317e-01 - 4 sg_p3 4.27760e+01 6.05400e+00 6.03031e-05 -2.25652e+00 - 5 sg_p4 6.44308e-01 3.65699e-02 8.34304e-04 -4.36497e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.807e-02 -1.942e-03 -4.201e-01 -2.053e-01 -1.403e-03 - -1.942e-03 2.599e-02 2.900e-01 -2.123e-03 2.465e-03 - -4.201e-01 2.900e-01 9.944e+01 5.387e+01 3.073e-01 - -2.053e-01 -2.123e-03 5.387e+01 3.670e+01 1.439e-01 - -1.403e-03 2.465e-03 3.073e-01 1.439e-01 1.349e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25646 1.000 -0.072 -0.251 -0.202 -0.228 - 2 0.54791 -0.072 1.000 0.180 -0.002 0.416 - 3 0.95619 -0.251 0.180 1.000 0.892 0.839 - 4 0.91507 -0.202 -0.002 0.892 1.000 0.647 - 5 0.89141 -0.228 0.416 0.839 0.647 1.000 -270 -270.678 +- 0.167525 -5.08061 +- 0.16113 -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 270.677 +- 0.172924 (stat) - 0.207983 + 0.0144814 (syst); -0.225239/+0.0876663 (total) - Uncertainty on sg_p1 = 5.0777 +- 0.166149 (stat) - 0.224251 + 0.131537 (syst); -0.239144/+0.155575 (total) - Uncertainty on sg_p2 = 262.057 +- 10.2016 (stat) - 19.1181 + 8.78082 (syst); -19.7868/+10.1549 (total) - Uncertainty on sg_p3 = 42.5329 +- 6.20016 (stat) - 3.33491 + 8.46362 (syst); -4.55325/+9.01351 (total) - Uncertainty on sg_p4 = 0.6462 +- 0.037707 (stat) - 0.0366379 + 0.017984 (syst); -0.0412043/+0.0260553 (total) - === Baseline plot ===
- norm = 213.048 -JEC lnN 1.01241 - -JER lnN 1.01721 - -btag lnN 1.06825 - -sg_p0 param 270.677 -0.225239/+0.0876663 -sg_p1 param 5.0777 -0.239144/+0.155575 -sg_p2 param 262.057 -19.7868/+10.1549 -sg_p3 param 42.5329 -4.55325/+9.01351 -sg_p4 param 0.6462 -0.0412043/+0.0260553 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_270_gaus_exp_252_330/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_270_gaus_exp_252_330/data_bkg.log deleted file mode 100644 index c704996..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_270_gaus_exp_252_330/data_bkg.log +++ /dev/null @@ -1,717 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [250,330] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [250,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63590.5 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.69443e-02 5.09000e-01 0.00000e+00 -7.94680e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -8.91126e+00 - 3 par_crystal_2 2.62020e+02 4.00000e+00 1.01181e-01 -1.53451e+00 - 4 par_crystal_3 1.65000e+01 2.70000e+00 0.00000e+00 7.46021e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM MIGRAD STATUS=CONVERGED 482 CALLS 483 TOTAL - EDM=0.000814822 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 4.40594e-01 4.43750e-02 2.48631e-03 2.88668e-01 - 2 par_crystal_1 9.82994e-01 6.48221e-01 2.14269e-02 -5.28345e-03 - 3 par_crystal_2 2.71542e+02 7.41091e-01 7.20683e-03 -9.27818e-02 - 4 par_crystal_3 2.87224e+01 2.18588e+00 3.97473e-02 -6.99277e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.970e-03 -2.333e-02 -5.115e-04 1.392e-02 - -2.333e-02 4.358e-01 4.870e-03 -8.391e-01 - -5.115e-04 4.870e-03 5.496e-01 4.381e-01 - 1.392e-02 -8.391e-01 4.381e-01 5.029e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.88989 1.000 -0.796 -0.016 0.140 - 2 0.92807 -0.796 1.000 0.010 -0.567 - 3 0.40865 -0.016 0.010 1.000 0.264 - 4 0.80948 0.140 -0.567 0.264 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM HESSE STATUS=OK 23 CALLS 506 TOTAL - EDM=0.000711421 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 4.40594e-01 4.64698e-02 4.97262e-04 -9.80558e-01 - 2 par_crystal_1 9.82994e-01 6.55195e-01 8.57075e-04 -6.65795e-01 - 3 par_crystal_2 2.71542e+02 7.38644e-01 1.44137e-03 6.15159e-01 - 4 par_crystal_3 2.87224e+01 2.03002e+00 1.58989e-03 -1.05570e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.160e-03 -2.581e-02 -1.109e-03 1.530e-02 - -2.581e-02 4.456e-01 2.508e-02 -7.234e-01 - -1.109e-03 2.508e-02 5.460e-01 3.687e-01 - 1.530e-02 -7.234e-01 3.687e-01 4.306e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.90014 1.000 -0.832 -0.032 0.159 - 2 0.92960 -0.832 1.000 0.051 -0.522 - 3 0.40186 -0.032 0.051 1.000 0.240 - 4 0.77207 0.159 -0.522 0.240 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63714.2 FROM MIGRAD STATUS=INITIATE 33 CALLS 34 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 2.63122e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -5.45805e+02 - 3 par_gaus_exp_2 6.67498e-01 3.05000e-01 -6.37370e-01 7.03093e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM MIGRAD STATUS=CONVERGED 131 CALLS 132 TOTAL - EDM=6.15917e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.71558e+02 8.05096e-01 6.82817e-03 6.24407e-02 - 2 par_gaus_exp_1 3.06822e+01 1.83071e+00 1.43475e-02 1.11468e-02 - 3 par_gaus_exp_2 3.82770e-01 2.42284e-02 3.05774e-03 -9.77170e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.486e-01 -6.079e-01 -1.588e-03 - -6.079e-01 3.370e+00 3.082e-02 - -1.588e-03 3.082e-02 5.871e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.49876 1.000 -0.411 -0.081 - 2 0.77898 -0.411 1.000 0.693 - 3 0.72797 -0.081 0.693 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM HESSE STATUS=OK 16 CALLS 148 TOTAL - EDM=6.13964e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.71558e+02 8.14214e-01 2.73127e-04 -4.35760e-01 - 2 par_gaus_exp_1 3.06822e+01 1.86973e+00 5.73898e-04 4.10264e-01 - 3 par_gaus_exp_2 3.82770e-01 2.45149e-02 1.22310e-04 -8.97531e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.634e-01 -6.630e-01 -2.137e-03 - -6.630e-01 3.516e+00 3.227e-02 - -2.137e-03 3.227e-02 6.011e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.51526 1.000 -0.434 -0.107 - 2 0.78935 -0.434 1.000 0.702 - 3 0.73544 -0.107 0.702 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,625] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.33953 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - ... (remaining 126 messages suppressed) -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.33953) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.734607 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=317.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=327.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=332.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=342.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=347.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=352.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=357.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=362.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=367.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - ... (remaining 53 messages suppressed) -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.734607) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0734613 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0734613 - - FCN=103487 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57093e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.56195e+03 - 3 par_novo_2 -1.33668e+00 2.00000e+01 0.00000e+00 1.53931e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM MIGRAD STATUS=CONVERGED 127 CALLS 128 TOTAL - EDM=3.4171e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.43423e+01 1.81223e-01** at limit ** - 2 par_novo_1 3.86596e+01 2.27294e+00 4.95847e-03 -1.04123e-02 - 3 par_novo_2 -1.27520e+00 7.07738e-02 3.70975e-05 -1.26322e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.231e-09 -8.491e-07 -8.580e-07 - -8.491e-07 5.181e+00 1.547e-01 - -8.580e-07 1.547e-01 5.009e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.53332 1.000 -0.005 -0.154 - 2 0.97096 -0.005 1.000 0.960 - 3 0.97165 -0.154 0.960 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM HESSE STATUS=OK 20 CALLS 148 TOTAL - EDM=3.43726e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.40246e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.86596e+01 2.31421e+00 1.98339e-04 4.46530e-01 - 3 par_novo_2 -1.27520e+00 7.22930e-02 1.48390e-06 -1.27523e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 5.974e-09 2.819e-05 -1.296e-06 - 2.819e-05 5.372e+00 1.502e-01 - -1.296e-06 1.502e-01 5.226e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.85665 1.000 0.157 -0.232 - 2 0.97200 0.157 1.000 0.897 - 3 0.97285 -0.232 0.897 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107513 FROM MIGRAD STATUS=INITIATE 54 CALLS 55 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 1.39168e+03 - 2 par_crystal_1_1 7.96220e-02 5.09000e-01 0.00000e+00 5.33770e+03 - 3 par_crystal_1_2 2.56879e+02 4.00000e+00 -1.56713e-01 -1.96669e+01 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 -8.45862e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.5057e-02 2.3309e-03 4.9678e-02 3.9730e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.029030 TO DIAGONAL. - FCN=103250 FROM MIGRAD STATUS=CONVERGED 436 CALLS 437 TOTAL - EDM=3.52757e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 4.45574e-02 4.37117e-03 3.09465e-04 -4.28177e+00 - 2 par_crystal_1_1 4.36914e+00 6.24106e-01 1.80400e-02 6.63742e-02 - 3 par_crystal_1_2 2.71531e+02 3.44700e+01 5.81266e-02 2.25694e-02 - 4 par_crystal_1_3 3.37290e+00 2.71702e-01 3.13791e-03 -4.26197e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.911e-05 -1.221e-03 2.089e-01 3.572e-04 - -1.221e-03 4.065e-01 -2.690e+01 -6.822e-02 - 2.089e-01 -2.690e+01 3.429e+03 1.167e+01 - 3.572e-04 -6.822e-02 1.167e+01 7.401e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99136 1.000 -0.438 0.816 0.300 - 2 0.97307 -0.438 1.000 -0.720 -0.393 - 3 0.99735 0.816 -0.720 1.000 0.733 - 4 0.98716 0.300 -0.393 0.733 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -8.0089e-04 4.0193e-04 7.1213e-02 3.9292e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.004730 TO DIAGONAL. - FCN=103250 FROM HESSE STATUS=NOT POSDEF 23 CALLS 460 TOTAL - EDM=3.56127e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 4.45574e-02 7.42610e-03 6.18930e-05 -1.40582e+00 - 2 par_crystal_1_1 4.36914e+00 4.67550e-01 7.21602e-04 -3.93511e+00 - 3 par_crystal_1_2 2.71531e+02 3.29814e+01 2.32506e-03 -3.75607e+00 - 4 par_crystal_1_3 3.37290e+00 5.01685e-01 1.25517e-04 -1.80638e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.515e-05 2.851e-04 2.343e-01 -1.699e-03 - 2.851e-04 2.238e-01 -2.528e+00 1.548e-02 - 2.343e-01 -2.528e+00 2.967e+03 1.176e+01 - -1.699e-03 1.548e-02 1.176e+01 2.538e-01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99694 1.000 0.081 0.579 -0.454 - 2 0.94927 0.081 1.000 -0.098 0.065 - 3 0.99687 0.579 -0.098 1.000 0.429 - 4 0.99618 -0.454 0.065 0.429 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 14211 - Background number of gaus_exp_252_330 = 14211 - Background number of novo_285_624 = 17618.3 - Background number of crystal_1_285_624 = 17618.3 - Background number of gaus_bern_285_624 = 17618.3 - Background number of landau_285_624 = 17618.3 -par_crystal_0 param 0.440594 0.0464698 -par_crystal_1 param 0.982994 0.655195 -par_crystal_2 param 271.542 0.738644 -par_crystal_3 param 28.7224 2.03002 -par_crystal_1_0 param 0.0445574 0.0074261 -par_crystal_1_1 param 4.36914 0.46755 -par_crystal_1_2 param 271.531 32.9814 -par_crystal_1_3 param 3.3729 0.501685 -par_gaus_exp_0 param 271.558 0.814214 -par_gaus_exp_1 param 30.6822 1.86973 -par_gaus_exp_2 param 0.38277 0.0245149 -par_novo_0 param 250 34.0246 -par_novo_1 param 38.6596 2.31421 -par_novo_2 param -1.2752 0.072293 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_270_gaus_exp_252_330/datacard_270_gaus_exp_252_330.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_270_gaus_exp_252_330/datacard_270_gaus_exp_252_330.txt deleted file mode 100644 index 05b68a6..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_270_gaus_exp_252_330/datacard_270_gaus_exp_252_330.txt +++ /dev/null @@ -1,29 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_270.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_gaus_exp_252_330.root HbbHbb:f_gaus_exp -shapes data_obs HbbHbb w_background_gaus_exp_252_330.root HbbHbb:data_obs_gaus_exp_252_330 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 213.048 14211 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06825 - -JER lnN 1.01721 - -JEC lnN 1.01241 - -trigger lnN 1.10 - -sg_p0 param 270.677 -0.225239/+0.0876663 -sg_p1 param 5.0777 -0.239144/+0.155575 -sg_p2 param 262.057 -19.7868/+10.1549 -sg_p3 param 42.5329 -4.55325/+9.01351 -sg_p4 param 0.6462 -0.0412043/+0.0260553 -par_gaus_exp_0 param 271.558 0.814214 -par_gaus_exp_1 param 30.6822 1.86973 -par_gaus_exp_2 param 0.38277 0.0245149 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_270_gaus_exp_252_330/signal270_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_270_gaus_exp_252_330/signal270_sig.log deleted file mode 100644 index 8555624..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_270_gaus_exp_252_330/signal270_sig.log +++ /dev/null @@ -1,959 +0,0 @@ - -Processing test.c... -nSignal_init = 300000 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=8392.45 FROM MIGRAD STATUS=INITIATE 43 CALLS 44 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.65000e+02 3.00000e+00 0.00000e+00 2.86291e+02 - 2 sg_p1 8.50000e+00 1.30000e+00 0.00000e+00 -7.99146e+02 - 3 sg_p2 2.70000e+02 5.20000e+01 0.00000e+00 2.60544e+02 - 4 sg_p3 7.14818e+01 2.90000e+01 -6.13812e-01 5.50184e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.51376e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7995.55 FROM MIGRAD STATUS=CONVERGED 263 CALLS 264 TOTAL - EDM=2.79948e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.62655e+02 3.96075e-01 1.63668e-03 -1.71407e-02 - 2 sg_p1 1.50000e+01 3.66501e-02 6.55558e-03** at limit ** - 3 sg_p2 3.32688e+02 1.22425e+01 2.10215e-03 1.48173e-02 - 4 sg_p3 7.88319e+01 7.17424e+00 2.90211e-03 4.51106e-02 - 5 sg_p4 9.12549e-01 1.01971e-02 2.71366e-03 7.36508e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.569e-01 -9.420e-08 -6.520e-02 2.553e-01 2.627e-04 - -9.420e-08 5.458e-08 -8.702e-06 1.981e-06 -8.254e-09 - -6.520e-02 -8.702e-06 1.500e+02 -4.987e+01 7.092e-02 - 2.553e-01 1.981e-06 -4.987e+01 5.153e+01 -2.107e-02 - 2.627e-04 -8.254e-09 7.092e-02 -2.107e-02 1.041e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.13067 1.000 -0.001 -0.013 0.090 0.065 - 2 0.00383 -0.001 1.000 -0.003 0.001 -0.003 - 3 0.70719 -0.013 -0.003 1.000 -0.567 0.568 - 4 0.57426 0.090 0.001 -0.567 1.000 -0.288 - 5 0.57327 0.065 -0.003 0.568 -0.288 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7995.55 FROM HESSE STATUS=OK 31 CALLS 295 TOTAL - EDM=2.79956e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.62655e+02 3.96099e-01 3.27335e-04 -1.56977e-01 - 2 sg_p1 1.50000e+01 3.66519e-02 1.31112e-03 1.57113e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 3 sg_p2 3.32688e+02 1.23641e+01 8.40862e-05 2.43509e-01 - 4 sg_p3 7.88319e+01 7.24309e+00 1.16084e-04 -5.53064e-01 - 5 sg_p4 9.12549e-01 1.02319e-02 5.42731e-04 7.07842e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.569e-01 -2.556e-08 -7.512e-02 2.598e-01 2.581e-04 - -2.556e-08 5.458e-08 -2.431e-06 5.742e-07 -2.287e-09 - -7.512e-02 -2.431e-06 1.530e+02 -5.186e+01 7.239e-02 - 2.598e-01 5.742e-07 -5.186e+01 5.252e+01 -2.206e-02 - 2.581e-04 -2.287e-09 7.239e-02 -2.206e-02 1.048e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.13113 1.000 -0.000 -0.015 0.090 0.064 - 2 0.00106 -0.000 1.000 -0.001 0.000 -0.001 - 3 0.71407 -0.015 -0.001 1.000 -0.578 0.572 - 4 0.58519 0.090 0.000 -0.578 1.000 -0.297 - 5 0.57724 0.064 -0.001 0.572 -0.297 1.000 -270 -262.655 +- 0.396099 -15 +- 0.0366519 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=8301.08 FROM MIGRAD STATUS=INITIATE 43 CALLS 44 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.65000e+02 3.00000e+00 0.00000e+00 1.57276e+02 - 2 sg_p1 8.50000e+00 1.30000e+00 0.00000e+00 -7.20874e+02 - 3 sg_p2 2.70000e+02 5.20000e+01 0.00000e+00 1.31136e+02 - 4 sg_p3 6.67985e+01 2.90000e+01 -6.53900e-01 6.21676e+00 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.55343e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7960.31 FROM MIGRAD STATUS=CONVERGED 215 CALLS 216 TOTAL - EDM=0.000112509 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.63717e+02 4.03328e-01 1.64549e-03 2.85410e-02 - 2 sg_p1 1.50000e+01 4.16874e-02 6.99690e-03** at limit ** - 3 sg_p2 3.26691e+02 1.09550e+01 1.90596e-03 -1.07432e-01 - 4 sg_p3 7.56151e+01 6.41429e+00 2.71105e-03 7.69878e-02 - 5 sg_p4 9.03852e-01 1.08010e-02 2.78869e-03 -3.02927e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.627e-01 -1.817e-07 -1.584e-01 2.985e-01 2.635e-04 - -1.817e-07 2.669e-07 -1.400e-05 2.491e-06 -1.659e-08 - -1.584e-01 -1.400e-05 1.201e+02 -3.790e+01 6.574e-02 - 2.985e-01 2.491e-06 -3.790e+01 4.118e+01 -1.657e-02 - 2.635e-04 -1.659e-08 6.574e-02 -1.657e-02 1.168e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.14787 1.000 -0.001 -0.036 0.115 0.060 - 2 0.00326 -0.001 1.000 -0.002 0.001 -0.003 - 3 0.69527 -0.036 -0.002 1.000 -0.539 0.555 - 4 0.55108 0.115 0.001 -0.539 1.000 -0.239 - 5 0.56440 0.060 -0.003 0.555 -0.239 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7960.31 FROM HESSE STATUS=OK 31 CALLS 247 TOTAL - EDM=0.000114252 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.63717e+02 4.03375e-01 3.29097e-04 -8.56522e-02 - 2 sg_p1 1.50000e+01 4.16903e-02 1.39938e-03 1.57009e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 3 sg_p2 3.26691e+02 1.10364e+01 3.81192e-04 2.19808e-01 - 4 sg_p3 7.56151e+01 6.46046e+00 1.08442e-04 -5.79352e-01 - 5 sg_p4 9.03852e-01 1.08250e-02 5.57738e-04 6.62902e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.628e-01 1.090e-10 -1.678e-01 3.031e-01 2.586e-04 - 1.090e-10 2.669e-07 8.739e-09 -1.723e-09 1.020e-11 - -1.678e-01 8.739e-09 1.219e+02 -3.912e+01 6.671e-02 - 3.031e-01 -1.723e-09 -3.912e+01 4.178e+01 -1.726e-02 - 2.586e-04 1.020e-11 6.671e-02 -1.726e-02 1.173e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.14863 1.000 0.000 -0.038 0.116 0.059 - 2 0.00000 0.000 1.000 0.000 -0.000 0.000 - 3 0.70071 -0.038 0.000 1.000 -0.548 0.558 - 4 0.56000 0.116 -0.000 -0.548 1.000 -0.247 - 5 0.56706 0.059 0.000 0.558 -0.247 1.000 -270 -263.717 +- 0.403375 -15 +- 0.0416903 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=8131.38 FROM MIGRAD STATUS=INITIATE 44 CALLS 45 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.65000e+02 3.00000e+00 0.00000e+00 4.48644e+02 - 2 sg_p1 8.50000e+00 1.30000e+00 0.00000e+00 -7.91305e+02 - 3 sg_p2 2.70000e+02 5.20000e+01 0.00000e+00 3.73822e+02 - 4 sg_p3 6.56628e+01 2.90000e+01 -6.63806e-01 5.24608e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.60990e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7699.77 FROM MIGRAD STATUS=CONVERGED 264 CALLS 265 TOTAL - EDM=1.20255e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.61106e+02 3.97606e-01 1.64949e-03 6.43216e-02 - 2 sg_p1 1.50000e+01 4.40817e-02 7.05863e-03** at limit ** - 3 sg_p2 3.31806e+02 1.18077e+01 2.04938e-03 4.68003e-02 - 4 sg_p3 7.39962e+01 6.87793e+00 2.89900e-03 4.25993e-02 - 5 sg_p4 9.20380e-01 9.82533e-03 2.67537e-03 -4.86834e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.581e-01 -4.250e-09 7.358e-02 1.895e-01 3.289e-04 - -4.250e-09 8.677e-11 -3.111e-07 6.344e-08 -2.998e-10 - 7.358e-02 -3.111e-07 1.395e+02 -4.404e+01 6.552e-02 - 1.895e-01 6.344e-08 -4.404e+01 4.736e+01 -1.922e-02 - 3.289e-04 -2.998e-10 6.552e-02 -1.922e-02 9.663e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.12888 1.000 -0.001 0.016 0.069 0.084 - 2 0.00364 -0.001 1.000 -0.003 0.001 -0.003 - 3 0.69043 0.016 -0.003 1.000 -0.542 0.564 - 4 0.54763 0.069 0.001 -0.542 1.000 -0.284 - 5 0.56955 0.084 -0.003 0.564 -0.284 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7699.77 FROM HESSE STATUS=OK 31 CALLS 296 TOTAL - EDM=1.20761e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.61106e+02 3.97608e-01 3.29897e-04 -2.62628e-01 - 2 sg_p1 1.50000e+01 4.40850e-02 1.41173e-03 1.57081e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 3 sg_p2 3.31806e+02 1.19031e+01 4.09876e-04 2.40013e-01 - 4 sg_p3 7.39962e+01 6.93093e+00 1.15960e-04 -5.92753e-01 - 5 sg_p4 9.20380e-01 9.85509e-03 5.35074e-04 7.49837e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.581e-01 -8.535e-10 6.846e-02 1.911e-01 3.266e-04 - -8.535e-10 8.678e-11 -6.392e-08 1.351e-08 -6.118e-11 - 6.846e-02 -6.392e-08 1.418e+02 -4.555e+01 6.667e-02 - 1.911e-01 1.351e-08 -4.555e+01 4.809e+01 -2.000e-02 - 3.266e-04 -6.118e-11 6.667e-02 -2.000e-02 9.722e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.12891 1.000 -0.000 0.014 0.069 0.083 - 2 0.00074 -0.000 1.000 -0.001 0.000 -0.001 - 3 0.69646 0.014 -0.001 1.000 -0.552 0.568 - 4 0.55728 0.069 0.000 -0.552 1.000 -0.292 - 5 0.57312 0.083 -0.001 0.568 -0.292 1.000 -270 -261.106 +- 0.397608 -15 +- 0.044085 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=6358.39 FROM MIGRAD STATUS=INITIATE 18 CALLS 19 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70000e+02 2.00000e+00 2.01358e-01 -2.79566e+02 - 2 sg_p1 5.00000e+00 6.00000e-01 2.01358e-01 -1.50106e+02 - 3 sg_p2 1.79500e+02 3.41000e+01 2.01358e-01 1.43645e+00 - 4 sg_p3 1.55000e+02 2.90000e+01 2.01358e-01 1.18935e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 2.01358e-01 1.12505e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6301.03 FROM MIGRAD STATUS=CONVERGED 228 CALLS 229 TOTAL - EDM=6.55748e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70677e+02 1.72165e-01 9.18183e-04 1.47070e-02 - 2 sg_p1 5.07770e+00 1.66247e-01 2.54292e-03 -1.24810e-03 - 3 sg_p2 2.62057e+02 9.37512e+00 1.10376e-03 -2.64630e-02 - 4 sg_p3 4.25329e+01 5.68857e+00 1.50462e-03 -2.35495e-02 - 5 sg_p4 6.46200e-01 3.59740e-02 4.14748e-03 5.84314e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.964e-02 -1.980e-03 -3.797e-01 1.772e-01 -1.311e-03 - -1.980e-03 2.767e-02 2.898e-01 1.419e-02 2.579e-03 - -3.797e-01 2.898e-01 8.801e+01 -4.644e+01 2.783e-01 - 1.772e-01 1.419e-02 -4.644e+01 3.240e+01 -1.232e-01 - -1.311e-03 2.579e-03 2.783e-01 -1.232e-01 1.305e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.24028 1.000 -0.069 -0.235 0.181 -0.211 - 2 0.54786 -0.069 1.000 0.186 0.015 0.429 - 3 0.94759 -0.235 0.186 1.000 -0.870 0.821 - 4 0.89770 0.181 0.015 -0.870 1.000 -0.599 - 5 0.87941 -0.211 0.429 0.821 -0.599 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6301.03 FROM HESSE STATUS=OK 31 CALLS 260 TOTAL - EDM=6.88941e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.70677e+02 1.72924e-01 1.83637e-04 6.77760e-02 - 2 sg_p1 5.07770e+00 1.66149e-01 1.01717e-04 2.59024e-02 - 3 sg_p2 2.62057e+02 1.02016e+01 4.41505e-05 5.05456e-01 - 4 sg_p3 4.25329e+01 6.20016e+00 6.01848e-05 -8.87721e-01 - 5 sg_p4 6.46200e-01 3.77070e-02 1.65899e-04 -4.28163e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.991e-02 -2.057e-03 -4.449e-01 2.178e-01 -1.495e-03 - -2.057e-03 2.763e-02 3.050e-01 2.707e-03 2.616e-03 - -4.449e-01 3.050e-01 1.042e+02 -5.647e+01 3.244e-01 - 2.178e-01 2.707e-03 -5.647e+01 3.850e+01 -1.520e-01 - -1.495e-03 2.616e-03 3.244e-01 -1.520e-01 1.435e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25688 1.000 -0.072 -0.252 0.203 -0.228 - 2 0.54710 -0.072 1.000 0.180 0.003 0.415 - 3 0.95594 -0.252 0.180 1.000 -0.891 0.839 - 4 0.91467 0.203 0.003 -0.891 1.000 -0.647 - 5 0.89101 -0.228 0.415 0.839 -0.647 1.000 -270 -270.677 +- 0.172924 -5.0777 +- 0.166149 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=6365.99 FROM MIGRAD STATUS=INITIATE 16 CALLS 17 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70000e+02 2.00000e+00 2.01358e-01 -3.03648e+02 - 2 sg_p1 5.00000e+00 6.00000e-01 2.01358e-01 -1.61990e+02 - 3 sg_p2 1.79500e+02 3.41000e+01 2.01358e-01 -2.65770e+00 - 4 sg_p3 1.55000e+02 2.90000e+01 2.01358e-01 8.50425e+00 - 5 sg_p4 7.50000e-01 5.00000e-02 2.01358e-01 1.31190e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6299.61 FROM MIGRAD STATUS=CONVERGED 237 CALLS 238 TOTAL - EDM=7.93407e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70692e+02 1.77044e-01 9.42241e-04 3.84277e-02 - 2 sg_p1 5.17409e+00 1.71536e-01 2.60847e-03 -2.11829e-03 - 3 sg_p2 2.70838e+02 6.84551e+00 1.03343e-03 5.78086e-03 - 4 sg_p3 3.91980e+01 4.62395e+00 1.61118e-03 1.03114e-02 - 5 sg_p4 6.64184e-01 3.27535e-02 3.88817e-03 5.22515e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.135e-02 -1.758e-03 -3.016e-01 1.665e-01 -1.164e-03 - -1.758e-03 2.946e-02 3.251e-01 -2.221e-02 2.675e-03 - -3.016e-01 3.251e-01 4.690e+01 -2.546e+01 1.845e-01 - 1.665e-01 -2.221e-02 -2.546e+01 2.140e+01 -8.613e-02 - -1.164e-03 2.675e-03 1.845e-01 -8.613e-02 1.080e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.24905 1.000 -0.058 -0.249 0.203 -0.200 - 2 0.55757 -0.058 1.000 0.277 -0.028 0.474 - 3 0.91827 -0.249 0.277 1.000 -0.804 0.820 - 4 0.83247 0.203 -0.028 -0.804 1.000 -0.567 - 5 0.86222 -0.200 0.474 0.820 -0.567 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6299.61 FROM HESSE STATUS=OK 31 CALLS 269 TOTAL - EDM=7.9228e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.70692e+02 1.77623e-01 1.88448e-04 6.92275e-02 - 2 sg_p1 5.17409e+00 1.71578e-01 1.04339e-04 5.80618e-02 - 3 sg_p2 2.70838e+02 7.18808e+00 4.13373e-05 5.65345e-01 - 4 sg_p3 3.91980e+01 4.86021e+00 6.44473e-05 -9.25023e-01 - 5 sg_p4 6.64184e-01 3.36636e-02 1.55527e-04 -3.50391e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.155e-02 -1.878e-03 -3.331e-01 1.884e-01 -1.276e-03 - -1.878e-03 2.947e-02 3.399e-01 -3.425e-02 2.726e-03 - -3.331e-01 3.399e-01 5.171e+01 -2.882e+01 2.017e-01 - 1.884e-01 -3.425e-02 -2.882e+01 2.365e+01 -9.825e-02 - -1.276e-03 2.726e-03 2.017e-01 -9.825e-02 1.141e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.26103 1.000 -0.062 -0.261 0.218 -0.213 - 2 0.55787 -0.062 1.000 0.275 -0.041 0.470 - 3 0.92618 -0.261 0.275 1.000 -0.824 0.830 - 4 0.84979 0.218 -0.041 -0.824 1.000 -0.598 - 5 0.87017 -0.213 0.470 0.830 -0.598 1.000 -270 -270.692 +- 0.177623 -5.17409 +- 0.171578 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=6100.43 FROM MIGRAD STATUS=INITIATE 38 CALLS 39 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70000e+02 2.00000e+00 0.00000e+00 -1.76480e+02 - 2 sg_p1 5.00000e+00 6.00000e-01 0.00000e+00 -9.50553e+01 - 3 sg_p2 1.79500e+02 3.41000e+01 0.00000e+00 -1.03797e+01 - 4 sg_p3 1.15860e+02 2.90000e+01 -2.73322e-01 1.99528e+00 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.00751e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6063.49 FROM MIGRAD STATUS=CONVERGED 263 CALLS 264 TOTAL - EDM=9.43817e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70469e+02 1.64489e-01 8.67373e-04 9.78651e-02 - 2 sg_p1 4.85345e+00 1.61763e-01 2.44261e-03 2.33446e-02 - 3 sg_p2 2.42939e+02 1.76038e+01 1.34178e-03 -9.41851e-03 - 4 sg_p3 5.09965e+01 8.69738e+00 1.37274e-03 -8.34558e-03 - 5 sg_p4 6.09562e-01 4.12691e-02 4.72433e-03 -1.03290e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.706e-02 -1.143e-03 -5.339e-01 2.032e-01 -1.240e-03 - -1.143e-03 2.619e-02 2.008e-01 9.614e-02 2.479e-03 - -5.339e-01 2.008e-01 3.112e+02 -1.431e+02 5.930e-01 - 2.032e-01 9.614e-02 -1.431e+02 7.583e+01 -2.285e-01 - -1.240e-03 2.479e-03 5.930e-01 -2.285e-01 1.726e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20148 1.000 -0.043 -0.184 0.142 -0.181 - 2 0.54100 -0.043 1.000 0.070 0.068 0.369 - 3 0.97454 -0.184 0.070 1.000 -0.932 0.809 - 4 0.95515 0.142 0.068 -0.932 1.000 -0.632 - 5 0.89940 -0.181 0.369 0.809 -0.632 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6063.49 FROM HESSE STATUS=OK 31 CALLS 295 TOTAL - EDM=1.17248e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.70469e+02 1.65601e-01 1.73475e-04 4.69431e-02 - 2 sg_p1 4.85345e+00 1.61522e-01 4.88521e-04 -4.88702e-02 - 3 sg_p2 2.42939e+02 2.15740e+01 5.36712e-05 3.81246e-01 - 4 sg_p3 5.09965e+01 1.06929e+01 5.49095e-05 -7.99870e-01 - 5 sg_p4 6.09562e-01 4.63125e-02 1.88973e-04 -5.96502e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.743e-02 -1.089e-03 -7.748e-01 3.240e-01 -1.649e-03 - -1.089e-03 2.611e-02 1.620e-01 1.121e-01 2.395e-03 - -7.748e-01 1.620e-01 4.683e+02 -2.215e+02 8.616e-01 - 3.240e-01 1.121e-01 -2.215e+02 1.148e+02 -3.632e-01 - -1.649e-03 2.395e-03 8.616e-01 -3.632e-01 2.182e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23115 1.000 -0.041 -0.216 0.183 -0.213 - 2 0.53904 -0.041 1.000 0.046 0.065 0.317 - 3 0.98316 -0.216 0.046 1.000 -0.955 0.852 - 4 0.97060 0.183 0.065 -0.955 1.000 -0.726 - 5 0.92131 -0.213 0.317 0.852 -0.726 1.000 -270 -270.469 +- 0.165601 -4.85345 +- 0.161522 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=6207.91 FROM MIGRAD STATUS=INITIATE 18 CALLS 19 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70000e+02 2.00000e+00 2.01358e-01 -2.64216e+02 - 2 sg_p1 5.00000e+00 6.00000e-01 2.01358e-01 -1.71360e+02 - 3 sg_p2 1.79500e+02 3.41000e+01 2.01358e-01 4.14298e-01 - 4 sg_p3 1.55000e+02 2.90000e+01 2.01358e-01 1.11372e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 2.01358e-01 1.18895e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6146.33 FROM MIGRAD STATUS=CONVERGED 215 CALLS 216 TOTAL - EDM=6.61513e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70656e+02 1.81990e-01 9.51015e-04 2.93883e-01 - 2 sg_p1 5.20924e+00 1.80376e-01 2.66180e-03 1.75576e-02 - 3 sg_p2 2.64216e+02 9.79599e+00 1.09853e-03 2.68338e-01 - 4 sg_p3 4.19600e+01 6.09659e+00 1.54906e-03 -8.69463e-02 - 5 sg_p4 6.49014e-01 3.85333e-02 4.14029e-03 -7.85398e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.312e-02 -1.986e-03 -4.776e-01 -2.455e-01 -1.622e-03 - -1.986e-03 3.258e-02 3.816e-01 8.852e-03 3.179e-03 - -4.776e-01 3.816e-01 9.610e+01 5.251e+01 3.182e-01 - -2.455e-01 8.852e-03 5.251e+01 3.722e+01 1.487e-01 - -1.622e-03 3.179e-03 3.182e-01 1.487e-01 1.499e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.26944 1.000 -0.060 -0.268 -0.221 -0.230 - 2 0.57936 -0.060 1.000 0.216 0.008 0.455 - 3 0.95227 -0.268 0.216 1.000 0.878 0.838 - 4 0.90487 -0.221 0.008 0.878 1.000 0.630 - 5 0.89253 -0.230 0.455 0.838 0.630 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6146.33 FROM HESSE STATUS=OK 31 CALLS 247 TOTAL - EDM=6.61792e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.70656e+02 1.81849e-01 1.90203e-04 6.56339e-02 - 2 sg_p1 5.20924e+00 1.80330e-01 1.06472e-04 6.98019e-02 - 3 sg_p2 2.64216e+02 9.67079e+00 2.19705e-04 5.19985e-01 - 4 sg_p3 4.19600e+01 6.02003e+00 6.19622e-05 -2.24759e+00 - 5 sg_p4 6.49014e-01 3.82479e-02 8.28058e-04 -4.15825e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.307e-02 -1.974e-03 -4.664e-01 -2.386e-01 -1.589e-03 - -1.974e-03 3.256e-02 3.740e-01 4.110e-03 3.157e-03 - -4.664e-01 3.740e-01 9.366e+01 5.099e+01 3.108e-01 - -2.386e-01 4.110e-03 5.099e+01 3.629e+01 1.442e-01 - -1.589e-03 3.157e-03 3.108e-01 1.442e-01 1.477e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.26676 1.000 -0.060 -0.265 -0.218 -0.227 - 2 0.57907 -0.060 1.000 0.214 0.004 0.455 - 3 0.95099 -0.265 0.214 1.000 0.875 0.836 - 4 0.90230 -0.218 0.004 0.875 1.000 0.623 - 5 0.89080 -0.227 0.455 0.836 0.623 1.000 -270 -270.656 +- 0.181849 -5.20924 +- 0.18033 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=6345.12 FROM MIGRAD STATUS=INITIATE 18 CALLS 19 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70000e+02 2.00000e+00 2.01358e-01 -2.76463e+02 - 2 sg_p1 5.00000e+00 6.00000e-01 2.01358e-01 -1.12933e+02 - 3 sg_p2 1.79500e+02 3.41000e+01 2.01358e-01 1.61677e+00 - 4 sg_p3 1.55000e+02 2.90000e+01 2.01358e-01 1.12497e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 2.01358e-01 1.04922e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.05988 added to diagonal of error matrix -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (9513.77) to force MIGRAD to back out of this region. Error log follows -Parameter values: sg_p0=269.51, sg_p1=3.81892, sg_p2=26.0784, sg_p3=20.4464, sg_p4=0.504154 -RooGaussian::signalComb[ x=x mean=sg_p2 sigma=sg_p3 ] - p.d.f normalization integral is zero or negative @ x=x=250.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=253.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=256.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=259.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=262.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=265.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=268.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=271.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=274.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=277.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=280.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=283.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - ... (remaining 24 messages suppressed) -RooNLLVar::nll_signal_signalHistogram[ paramSet=(sg_p0,sg_p1,sg_p2,sg_p3,sg_p4) ] - function value is NAN @ paramSet=(sg_p0 = 269.51,sg_p1 = 3.81892,sg_p2 = 26.0784,sg_p3 = 20.4464,sg_p4 = 0.504154) -RooAddPdf::signal[ sg_p4 * signalCore + [%] * signalComb ] - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 250.5), !pdfs=(signalCore = 4.16274e-06/9.57261,signalComb = 6.90752e-27/0), !coefficients=(sg_p4 = 0.504154) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 250.5), !pdfs=(signalCore = 4.16274e-06/9.57261,signalComb = 6.90752e-27/0), !coefficients=(sg_p4 = 0.504154) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 253.5), !pdfs=(signalCore = 0.000152629/9.57261,signalComb = 1.36531e-27/0), !coefficients=(sg_p4 = 0.504154) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 253.5), !pdfs=(signalCore = 0.000152629/9.57261,signalComb = 1.36531e-27/0), !coefficients=(sg_p4 = 0.504154) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 256.5), !pdfs=(signalCore = 0.00301916/9.57261,signalComb = 2.64114e-28/0), !coefficients=(sg_p4 = 0.504154) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 256.5), !pdfs=(signalCore = 0.00301916/9.57261,signalComb = 2.64114e-28/0), !coefficients=(sg_p4 = 0.504154) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 259.5), !pdfs=(signalCore = 0.0322202/9.57261,signalComb = 5.00036e-29/0), !coefficients=(sg_p4 = 0.504154) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 259.5), !pdfs=(signalCore = 0.0322202/9.57261,signalComb = 5.00036e-29/0), !coefficients=(sg_p4 = 0.504154) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 262.5), !pdfs=(signalCore = 0.185509/9.57261,signalComb = 9.26534e-30/0), !coefficients=(sg_p4 = 0.504154) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 262.5), !pdfs=(signalCore = 0.185509/9.57261,signalComb = 9.26534e-30/0), !coefficients=(sg_p4 = 0.504154) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 265.5), !pdfs=(signalCore = 0.576226/9.57261,signalComb = 1.68024e-30/0), !coefficients=(sg_p4 = 0.504154) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 265.5), !pdfs=(signalCore = 0.576226/9.57261,signalComb = 1.68024e-30/0), !coefficients=(sg_p4 = 0.504154) - ... (remaining 58 messages suppressed) -RooRealIntegral::signalComb_Int[x|NormalizationRangeForfit]_Norm[x][ Int signalComb_Norm(x) d[Ana](x) ] - function value is NAN @ !sumList=(), !intList=(), !anaList=(x = 250.5), !jacList=(), !facList=(), !func=signalComb=6.90752e-27/0, !sumCat=() - - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6295.95 FROM MIGRAD STATUS=CONVERGED 426 CALLS 427 TOTAL - EDM=1.36563e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70665e+02 1.63477e-01 8.78610e-04 2.15233e-02 - 2 sg_p1 4.89880e+00 1.57011e-01 2.44680e-03 2.25239e-02 - 3 sg_p2 2.54654e+02 1.25915e+01 1.24303e-03 5.47392e-03 - 4 sg_p3 4.70832e+01 7.17725e+00 1.51317e-03 2.13001e-03 - 5 sg_p4 6.29901e-01 3.72328e-02 4.32749e-03 -5.67064e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.673e-02 -8.488e-04 -4.087e-01 1.835e-01 -1.095e-03 - -8.488e-04 2.467e-02 2.172e-01 5.764e-02 2.181e-03 - -4.087e-01 2.172e-01 1.589e+02 -8.190e+01 3.873e-01 - 1.835e-01 5.764e-02 -8.190e+01 5.161e+01 -1.691e-01 - -1.095e-03 2.181e-03 3.873e-01 -1.691e-01 1.400e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20590 1.000 -0.033 -0.198 0.156 -0.179 - 2 0.52321 -0.033 1.000 0.110 0.051 0.371 - 3 0.96127 -0.198 0.110 1.000 -0.904 0.821 - 4 0.92824 0.156 0.051 -0.904 1.000 -0.629 - 5 0.88645 -0.179 0.371 0.821 -0.629 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6295.95 FROM HESSE STATUS=OK 31 CALLS 458 TOTAL - EDM=1.44185e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.70665e+02 1.64298e-01 1.75722e-04 6.65783e-02 - 2 sg_p1 4.89880e+00 1.56830e-01 4.89360e-04 -3.37402e-02 - 3 sg_p2 2.54654e+02 1.43586e+01 4.97213e-05 4.56472e-01 - 4 sg_p3 4.70832e+01 8.20025e+00 6.05269e-05 -7.12260e+00 - 5 sg_p4 6.29901e-01 4.01552e-02 1.73099e-04 -5.01104e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.700e-02 -8.623e-04 -5.225e-01 2.494e-01 -1.344e-03 - -8.623e-04 2.462e-02 2.174e-01 5.502e-02 2.172e-03 - -5.225e-01 2.174e-01 2.068e+02 -1.095e+02 4.928e-01 - 2.494e-01 5.502e-02 -1.095e+02 6.741e+01 -2.303e-01 - -1.344e-03 2.172e-03 4.928e-01 -2.303e-01 1.631e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22790 1.000 -0.033 -0.221 0.185 -0.203 - 2 0.52160 -0.033 1.000 0.096 0.043 0.343 - 3 0.97037 -0.221 0.096 1.000 -0.928 0.849 - 4 0.94554 0.185 0.043 -0.928 1.000 -0.695 - 5 0.90340 -0.203 0.343 0.849 -0.695 1.000 -270 -270.665 +- 0.164298 -4.8988 +- 0.15683 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=5935.06 FROM MIGRAD STATUS=INITIATE 18 CALLS 19 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70000e+02 2.00000e+00 2.01358e-01 -2.61773e+02 - 2 sg_p1 5.00000e+00 6.00000e-01 2.01358e-01 -1.38965e+02 - 3 sg_p2 1.79500e+02 3.41000e+01 2.01358e-01 1.59791e+00 - 4 sg_p3 1.55000e+02 2.90000e+01 2.01358e-01 1.10752e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 2.01358e-01 1.03362e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 5 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 2.28866 added to diagonal of error matrix -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (10056.7) to force MIGRAD to back out of this region. Error log follows -Parameter values: sg_p0=272.549, sg_p1=2.86401, sg_p2=114.179, sg_p3=10.3302, sg_p4=0.609584 -RooGaussian::signalComb[ x=x mean=sg_p2 sigma=sg_p3 ] - p.d.f normalization integral is zero or negative @ x=x=250.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=253.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=256.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=259.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=262.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=265.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=268.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=271.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=274.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=277.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=280.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=283.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - ... (remaining 24 messages suppressed) - - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.08701 added to diagonal of error matrix -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (10056.7) to force MIGRAD to back out of this region. Error log follows -Parameter values: sg_p0=272.29, sg_p1=6.01777, sg_p2=84.8692, sg_p3=12.3721, sg_p4=0.588994 -RooNLLVar::nll_signal_signalHistogram[ paramSet=(sg_p0,sg_p1,sg_p2,sg_p3,sg_p4) ] - function value is NAN @ paramSet=(sg_p0 = 272.29,sg_p1 = 6.01777,sg_p2 = 84.8692,sg_p3 = 12.3721,sg_p4 = 0.588994) -RooAddPdf::signal[ sg_p4 * signalCore + [%] * signalComb ] - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 250.5), !pdfs=(signalCore = 0.00142225/15.0827,signalComb = 1.20756e-39/0), !coefficients=(sg_p4 = 0.588994) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 250.5), !pdfs=(signalCore = 0.00142225/15.0827,signalComb = 1.20756e-39/0), !coefficients=(sg_p4 = 0.588994) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 253.5), !pdfs=(signalCore = 0.00763766/15.0827,signalComb = 4.56383e-41/0), !coefficients=(sg_p4 = 0.588994) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 253.5), !pdfs=(signalCore = 0.00763766/15.0827,signalComb = 4.56383e-41/0), !coefficients=(sg_p4 = 0.588994) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 256.5), !pdfs=(signalCore = 0.0319897/15.0827,signalComb = 1.62635e-42/0), !coefficients=(sg_p4 = 0.588994) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 256.5), !pdfs=(signalCore = 0.0319897/15.0827,signalComb = 1.62635e-42/0), !coefficients=(sg_p4 = 0.588994) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 259.5), !pdfs=(signalCore = 0.104502/15.0827,signalComb = 5.46463e-44/0), !coefficients=(sg_p4 = 0.588994) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 259.5), !pdfs=(signalCore = 0.104502/15.0827,signalComb = 5.46463e-44/0), !coefficients=(sg_p4 = 0.588994) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 262.5), !pdfs=(signalCore = 0.266262/15.0827,signalComb = 1.7313e-45/0), !coefficients=(sg_p4 = 0.588994) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 262.5), !pdfs=(signalCore = 0.266262/15.0827,signalComb = 1.7313e-45/0), !coefficients=(sg_p4 = 0.588994) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 265.5), !pdfs=(signalCore = 0.529127/15.0827,signalComb = 5.17191e-47/0), !coefficients=(sg_p4 = 0.588994) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 265.5), !pdfs=(signalCore = 0.529127/15.0827,signalComb = 5.17191e-47/0), !coefficients=(sg_p4 = 0.588994) - ... (remaining 58 messages suppressed) -RooGaussian::signalComb[ x=x mean=sg_p2 sigma=sg_p3 ] - p.d.f normalization integral is zero or negative @ x=x=250.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=253.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=256.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=259.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=262.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=265.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=268.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=271.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=274.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=277.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=280.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=283.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - ... (remaining 24 messages suppressed) -RooRealIntegral::signalComb_Int[x|NormalizationRangeForfit]_Norm[x][ Int signalComb_Norm(x) d[Ana](x) ] - function value is NAN @ !sumList=(), !intList=(), !anaList=(x = 250.5), !jacList=(), !facList=(), !func=signalComb=1.20756e-39/0, !sumCat=() - - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -7.5154e-01 8.8570e-03 4.2097e-01 8.1972e-01 4.5020e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 0.756042 TO DIAGONAL. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5882.02 FROM MIGRAD STATUS=CONVERGED 478 CALLS 479 TOTAL - EDM=5.04966e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70677e+02 1.77765e-01 9.15542e-04 3.54204e-02 - 2 sg_p1 5.07405e+00 1.71518e-01 2.53252e-03 -1.40075e-03 - 3 sg_p2 2.62185e+02 9.60022e+00 1.09335e-03 9.09533e-02 - 4 sg_p3 4.23182e+01 5.82557e+00 1.49714e-03 7.35079e-02 - 5 sg_p4 6.47917e-01 3.70971e-02 4.11649e-03 -7.98184e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.160e-02 -2.097e-03 -4.013e-01 1.872e-01 -1.393e-03 - -2.097e-03 2.945e-02 3.055e-01 1.580e-02 2.743e-03 - -4.013e-01 3.055e-01 9.229e+01 -4.866e+01 2.937e-01 - 1.872e-01 1.580e-02 -4.866e+01 3.398e+01 -1.298e-01 - -1.393e-03 2.743e-03 2.937e-01 -1.298e-01 1.388e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.24009 1.000 -0.069 -0.235 0.181 -0.210 - 2 0.54730 -0.069 1.000 0.185 0.016 0.429 - 3 0.94713 -0.235 0.185 1.000 -0.869 0.821 - 4 0.89685 0.181 0.016 -0.869 1.000 -0.598 - 5 0.87877 -0.210 0.429 0.821 -0.598 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5882.02 FROM HESSE STATUS=OK 31 CALLS 510 TOTAL - EDM=5.00987e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.70677e+02 1.78459e-01 1.83108e-04 6.77551e-02 - 2 sg_p1 5.07405e+00 1.71428e-01 1.01301e-04 2.46861e-02 - 3 sg_p2 2.62185e+02 1.03547e+01 2.18670e-04 5.06313e-01 - 4 sg_p3 4.23182e+01 6.29339e+00 5.98854e-05 -8.90070e-01 - 5 sg_p4 6.47917e-01 3.86762e-02 1.64659e-04 -4.20625e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.185e-02 -2.170e-03 -4.624e-01 2.253e-01 -1.567e-03 - -2.170e-03 2.942e-02 3.193e-01 5.301e-03 2.776e-03 - -4.624e-01 3.193e-01 1.074e+02 -5.800e+01 3.368e-01 - 2.253e-01 5.301e-03 -5.800e+01 3.967e+01 -1.567e-01 - -1.567e-03 2.776e-03 3.368e-01 -1.567e-01 1.510e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25486 1.000 -0.071 -0.250 0.200 -0.226 - 2 0.54662 -0.071 1.000 0.180 0.005 0.416 - 3 0.95474 -0.250 0.180 1.000 -0.889 0.836 - 4 0.91235 0.200 0.005 -0.889 1.000 -0.640 - 5 0.88917 -0.226 0.416 0.836 -0.640 1.000 -270 -270.677 +- 0.178459 -5.07405 +- 0.171428 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=6803.83 FROM MIGRAD STATUS=INITIATE 18 CALLS 19 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70000e+02 2.00000e+00 2.01358e-01 -2.98256e+02 - 2 sg_p1 5.00000e+00 6.00000e-01 2.01358e-01 -1.61883e+02 - 3 sg_p2 1.79500e+02 3.41000e+01 2.01358e-01 1.25354e+00 - 4 sg_p3 1.55000e+02 2.90000e+01 2.01358e-01 1.25340e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 2.01358e-01 1.22208e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6741.9 FROM MIGRAD STATUS=CONVERGED 248 CALLS 249 TOTAL - EDM=5.61336e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70678e+02 1.67660e-01 9.20230e-04 6.43100e-02 - 2 sg_p1 5.08061e+00 1.61195e-01 2.54959e-03 -4.59615e-02 - 3 sg_p2 2.61887e+02 1.01188e+01 1.11479e-03 1.73033e-01 - 4 sg_p3 4.27760e+01 6.14640e+00 1.50758e-03 -1.30340e-01 - 5 sg_p4 6.44308e-01 3.69099e-02 4.17152e-03 -5.60004e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.811e-02 -1.952e-03 -4.320e-01 -2.124e-01 -1.437e-03 - -1.952e-03 2.601e-02 2.973e-01 2.175e-03 2.487e-03 - -4.320e-01 2.973e-01 1.025e+02 5.575e+01 3.161e-01 - -2.124e-01 2.175e-03 5.575e+01 3.783e+01 1.492e-01 - -1.437e-03 2.487e-03 3.161e-01 1.492e-01 1.375e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25937 1.000 -0.072 -0.254 -0.206 -0.231 - 2 0.54843 -0.072 1.000 0.182 0.002 0.416 - 3 0.95754 -0.254 0.182 1.000 0.895 0.842 - 4 0.91772 -0.206 0.002 0.895 1.000 0.654 - 5 0.89354 -0.231 0.416 0.842 0.654 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6741.9 FROM HESSE STATUS=OK 31 CALLS 280 TOTAL - EDM=5.55033e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.70678e+02 1.67525e-01 1.84046e-04 6.78347e-02 - 2 sg_p1 5.08061e+00 1.61130e-01 5.09917e-04 2.68728e-02 - 3 sg_p2 2.61887e+02 9.96431e+00 2.22958e-04 5.04317e-01 - 4 sg_p3 4.27760e+01 6.05400e+00 6.03031e-05 -2.25652e+00 - 5 sg_p4 6.44308e-01 3.65699e-02 8.34304e-04 -4.36497e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.807e-02 -1.942e-03 -4.201e-01 -2.053e-01 -1.403e-03 - -1.942e-03 2.599e-02 2.900e-01 -2.123e-03 2.465e-03 - -4.201e-01 2.900e-01 9.944e+01 5.387e+01 3.073e-01 - -2.053e-01 -2.123e-03 5.387e+01 3.670e+01 1.439e-01 - -1.403e-03 2.465e-03 3.073e-01 1.439e-01 1.349e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25646 1.000 -0.072 -0.251 -0.202 -0.228 - 2 0.54791 -0.072 1.000 0.180 -0.002 0.416 - 3 0.95619 -0.251 0.180 1.000 0.892 0.839 - 4 0.91507 -0.202 -0.002 0.892 1.000 0.647 - 5 0.89141 -0.228 0.416 0.839 0.647 1.000 -270 -270.678 +- 0.167525 -5.08061 +- 0.16113 -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 270.677 +- 0.172924 (stat) - 0.207983 + 0.0144814 (syst); -0.225239/+0.0876663 (total) - Uncertainty on sg_p1 = 5.0777 +- 0.166149 (stat) - 0.224251 + 0.131537 (syst); -0.239144/+0.155575 (total) - Uncertainty on sg_p2 = 262.057 +- 10.2016 (stat) - 19.1181 + 8.78082 (syst); -19.7868/+10.1549 (total) - Uncertainty on sg_p3 = 42.5329 +- 6.20016 (stat) - 3.33491 + 8.46362 (syst); -4.55325/+9.01351 (total) - Uncertainty on sg_p4 = 0.6462 +- 0.037707 (stat) - 0.0366379 + 0.017984 (syst); -0.0412043/+0.0260553 (total) - === Baseline plot ===
- norm = 213.048 -JEC lnN 1.01241 - -JER lnN 1.01721 - -btag lnN 1.06825 - -sg_p0 param 270.677 -0.225239/+0.0876663 -sg_p1 param 5.0777 -0.239144/+0.155575 -sg_p2 param 262.057 -19.7868/+10.1549 -sg_p3 param 42.5329 -4.55325/+9.01351 -sg_p4 param 0.6462 -0.0412043/+0.0260553 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_270_novo_285_624/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_270_novo_285_624/data_bkg.log deleted file mode 100644 index 1be2f6e..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_270_novo_285_624/data_bkg.log +++ /dev/null @@ -1,717 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [250,330] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [250,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63590.5 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.69443e-02 5.09000e-01 0.00000e+00 -7.94680e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -8.91126e+00 - 3 par_crystal_2 2.62020e+02 4.00000e+00 1.01181e-01 -1.53451e+00 - 4 par_crystal_3 1.65000e+01 2.70000e+00 0.00000e+00 7.46021e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM MIGRAD STATUS=CONVERGED 482 CALLS 483 TOTAL - EDM=0.000814822 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 4.40594e-01 4.43750e-02 2.48631e-03 2.88668e-01 - 2 par_crystal_1 9.82994e-01 6.48221e-01 2.14269e-02 -5.28345e-03 - 3 par_crystal_2 2.71542e+02 7.41091e-01 7.20683e-03 -9.27818e-02 - 4 par_crystal_3 2.87224e+01 2.18588e+00 3.97473e-02 -6.99277e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.970e-03 -2.333e-02 -5.115e-04 1.392e-02 - -2.333e-02 4.358e-01 4.870e-03 -8.391e-01 - -5.115e-04 4.870e-03 5.496e-01 4.381e-01 - 1.392e-02 -8.391e-01 4.381e-01 5.029e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.88989 1.000 -0.796 -0.016 0.140 - 2 0.92807 -0.796 1.000 0.010 -0.567 - 3 0.40865 -0.016 0.010 1.000 0.264 - 4 0.80948 0.140 -0.567 0.264 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM HESSE STATUS=OK 23 CALLS 506 TOTAL - EDM=0.000711421 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 4.40594e-01 4.64698e-02 4.97262e-04 -9.80558e-01 - 2 par_crystal_1 9.82994e-01 6.55195e-01 8.57075e-04 -6.65795e-01 - 3 par_crystal_2 2.71542e+02 7.38644e-01 1.44137e-03 6.15159e-01 - 4 par_crystal_3 2.87224e+01 2.03002e+00 1.58989e-03 -1.05570e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.160e-03 -2.581e-02 -1.109e-03 1.530e-02 - -2.581e-02 4.456e-01 2.508e-02 -7.234e-01 - -1.109e-03 2.508e-02 5.460e-01 3.687e-01 - 1.530e-02 -7.234e-01 3.687e-01 4.306e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.90014 1.000 -0.832 -0.032 0.159 - 2 0.92960 -0.832 1.000 0.051 -0.522 - 3 0.40186 -0.032 0.051 1.000 0.240 - 4 0.77207 0.159 -0.522 0.240 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63714.2 FROM MIGRAD STATUS=INITIATE 33 CALLS 34 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 2.63122e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -5.45805e+02 - 3 par_gaus_exp_2 6.67498e-01 3.05000e-01 -6.37370e-01 7.03093e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM MIGRAD STATUS=CONVERGED 131 CALLS 132 TOTAL - EDM=6.15917e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.71558e+02 8.05096e-01 6.82817e-03 6.24407e-02 - 2 par_gaus_exp_1 3.06822e+01 1.83071e+00 1.43475e-02 1.11468e-02 - 3 par_gaus_exp_2 3.82770e-01 2.42284e-02 3.05774e-03 -9.77170e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.486e-01 -6.079e-01 -1.588e-03 - -6.079e-01 3.370e+00 3.082e-02 - -1.588e-03 3.082e-02 5.871e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.49876 1.000 -0.411 -0.081 - 2 0.77898 -0.411 1.000 0.693 - 3 0.72797 -0.081 0.693 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM HESSE STATUS=OK 16 CALLS 148 TOTAL - EDM=6.13964e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.71558e+02 8.14214e-01 2.73127e-04 -4.35760e-01 - 2 par_gaus_exp_1 3.06822e+01 1.86973e+00 5.73898e-04 4.10264e-01 - 3 par_gaus_exp_2 3.82770e-01 2.45149e-02 1.22310e-04 -8.97531e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.634e-01 -6.630e-01 -2.137e-03 - -6.630e-01 3.516e+00 3.227e-02 - -2.137e-03 3.227e-02 6.011e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.51526 1.000 -0.434 -0.107 - 2 0.78935 -0.434 1.000 0.702 - 3 0.73544 -0.107 0.702 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,625] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.33953 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.33953) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - ... (remaining 126 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.734607 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.734607) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=317.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=327.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=332.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=342.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=347.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=352.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=357.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=362.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=367.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - ... (remaining 53 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0734613 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0734613 - - FCN=103487 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57093e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.56195e+03 - 3 par_novo_2 -1.33668e+00 2.00000e+01 0.00000e+00 1.53931e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM MIGRAD STATUS=CONVERGED 127 CALLS 128 TOTAL - EDM=3.4171e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.43423e+01 1.81223e-01** at limit ** - 2 par_novo_1 3.86596e+01 2.27294e+00 4.95847e-03 -1.04123e-02 - 3 par_novo_2 -1.27520e+00 7.07738e-02 3.70975e-05 -1.26322e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.231e-09 -8.491e-07 -8.580e-07 - -8.491e-07 5.181e+00 1.547e-01 - -8.580e-07 1.547e-01 5.009e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.53332 1.000 -0.005 -0.154 - 2 0.97096 -0.005 1.000 0.960 - 3 0.97165 -0.154 0.960 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM HESSE STATUS=OK 20 CALLS 148 TOTAL - EDM=3.43726e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.40246e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.86596e+01 2.31421e+00 1.98339e-04 4.46530e-01 - 3 par_novo_2 -1.27520e+00 7.22930e-02 1.48390e-06 -1.27523e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 5.974e-09 2.819e-05 -1.296e-06 - 2.819e-05 5.372e+00 1.502e-01 - -1.296e-06 1.502e-01 5.226e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.85665 1.000 0.157 -0.232 - 2 0.97200 0.157 1.000 0.897 - 3 0.97285 -0.232 0.897 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107513 FROM MIGRAD STATUS=INITIATE 54 CALLS 55 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 1.39168e+03 - 2 par_crystal_1_1 7.96220e-02 5.09000e-01 0.00000e+00 5.33770e+03 - 3 par_crystal_1_2 2.56879e+02 4.00000e+00 -1.56713e-01 -1.96669e+01 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 -8.45862e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.5057e-02 2.3309e-03 4.9678e-02 3.9730e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.029030 TO DIAGONAL. - FCN=103250 FROM MIGRAD STATUS=CONVERGED 436 CALLS 437 TOTAL - EDM=3.52757e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 4.45574e-02 4.37117e-03 3.09465e-04 -4.28177e+00 - 2 par_crystal_1_1 4.36914e+00 6.24106e-01 1.80400e-02 6.63742e-02 - 3 par_crystal_1_2 2.71531e+02 3.44700e+01 5.81266e-02 2.25694e-02 - 4 par_crystal_1_3 3.37290e+00 2.71702e-01 3.13791e-03 -4.26197e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.911e-05 -1.221e-03 2.089e-01 3.572e-04 - -1.221e-03 4.065e-01 -2.690e+01 -6.822e-02 - 2.089e-01 -2.690e+01 3.429e+03 1.167e+01 - 3.572e-04 -6.822e-02 1.167e+01 7.401e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99136 1.000 -0.438 0.816 0.300 - 2 0.97307 -0.438 1.000 -0.720 -0.393 - 3 0.99735 0.816 -0.720 1.000 0.733 - 4 0.98716 0.300 -0.393 0.733 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -8.0089e-04 4.0193e-04 7.1213e-02 3.9292e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.004730 TO DIAGONAL. - FCN=103250 FROM HESSE STATUS=NOT POSDEF 23 CALLS 460 TOTAL - EDM=3.56127e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 4.45574e-02 7.42610e-03 6.18930e-05 -1.40582e+00 - 2 par_crystal_1_1 4.36914e+00 4.67550e-01 7.21602e-04 -3.93511e+00 - 3 par_crystal_1_2 2.71531e+02 3.29814e+01 2.32506e-03 -3.75607e+00 - 4 par_crystal_1_3 3.37290e+00 5.01685e-01 1.25517e-04 -1.80638e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.515e-05 2.851e-04 2.343e-01 -1.699e-03 - 2.851e-04 2.238e-01 -2.528e+00 1.548e-02 - 2.343e-01 -2.528e+00 2.967e+03 1.176e+01 - -1.699e-03 1.548e-02 1.176e+01 2.538e-01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99694 1.000 0.081 0.579 -0.454 - 2 0.94927 0.081 1.000 -0.098 0.065 - 3 0.99687 0.579 -0.098 1.000 0.429 - 4 0.99618 -0.454 0.065 0.429 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 14211 - Background number of gaus_exp_252_330 = 14211 - Background number of novo_285_624 = 17618.3 - Background number of crystal_1_285_624 = 17618.3 - Background number of gaus_bern_285_624 = 17618.3 - Background number of landau_285_624 = 17618.3 -par_crystal_0 param 0.440594 0.0464698 -par_crystal_1 param 0.982994 0.655195 -par_crystal_2 param 271.542 0.738644 -par_crystal_3 param 28.7224 2.03002 -par_crystal_1_0 param 0.0445574 0.0074261 -par_crystal_1_1 param 4.36914 0.46755 -par_crystal_1_2 param 271.531 32.9814 -par_crystal_1_3 param 3.3729 0.501685 -par_gaus_exp_0 param 271.558 0.814214 -par_gaus_exp_1 param 30.6822 1.86973 -par_gaus_exp_2 param 0.38277 0.0245149 -par_novo_0 param 250 34.0246 -par_novo_1 param 38.6596 2.31421 -par_novo_2 param -1.2752 0.072293 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_270_novo_285_624/datacard_270_novo_285_624.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_270_novo_285_624/datacard_270_novo_285_624.txt deleted file mode 100644 index 8248a5a..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_270_novo_285_624/datacard_270_novo_285_624.txt +++ /dev/null @@ -1,29 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_270.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_novo_285_624.root HbbHbb:f_novo -shapes data_obs HbbHbb w_background_novo_285_624.root HbbHbb:data_obs_novo_285_624 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 213.048 17618.3 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06825 - -JER lnN 1.01721 - -JEC lnN 1.01241 - -trigger lnN 1.10 - -sg_p0 param 270.677 -0.225239/+0.0876663 -sg_p1 param 5.0777 -0.239144/+0.155575 -sg_p2 param 262.057 -19.7868/+10.1549 -sg_p3 param 42.5329 -4.55325/+9.01351 -sg_p4 param 0.6462 -0.0412043/+0.0260553 -par_novo_0 param 250 34.0246 -par_novo_1 param 38.6596 2.31421 -par_novo_2 param -1.2752 0.072293 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_270_novo_285_624/signal270_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_270_novo_285_624/signal270_sig.log deleted file mode 100644 index 7226332..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_270_novo_285_624/signal270_sig.log +++ /dev/null @@ -1,959 +0,0 @@ - -Processing test.c... -nSignal_init = 300000 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=8392.45 FROM MIGRAD STATUS=INITIATE 43 CALLS 44 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.65000e+02 3.00000e+00 0.00000e+00 2.86291e+02 - 2 sg_p1 8.50000e+00 1.30000e+00 0.00000e+00 -7.99146e+02 - 3 sg_p2 2.70000e+02 5.20000e+01 0.00000e+00 2.60544e+02 - 4 sg_p3 7.14818e+01 2.90000e+01 -6.13812e-01 5.50184e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.51376e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7995.55 FROM MIGRAD STATUS=CONVERGED 263 CALLS 264 TOTAL - EDM=2.79948e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.62655e+02 3.96075e-01 1.63668e-03 -1.71407e-02 - 2 sg_p1 1.50000e+01 3.66501e-02 6.55558e-03** at limit ** - 3 sg_p2 3.32688e+02 1.22425e+01 2.10215e-03 1.48173e-02 - 4 sg_p3 7.88319e+01 7.17424e+00 2.90211e-03 4.51106e-02 - 5 sg_p4 9.12549e-01 1.01971e-02 2.71366e-03 7.36508e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.569e-01 -9.420e-08 -6.520e-02 2.553e-01 2.627e-04 - -9.420e-08 5.458e-08 -8.702e-06 1.981e-06 -8.254e-09 - -6.520e-02 -8.702e-06 1.500e+02 -4.987e+01 7.092e-02 - 2.553e-01 1.981e-06 -4.987e+01 5.153e+01 -2.107e-02 - 2.627e-04 -8.254e-09 7.092e-02 -2.107e-02 1.041e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.13067 1.000 -0.001 -0.013 0.090 0.065 - 2 0.00383 -0.001 1.000 -0.003 0.001 -0.003 - 3 0.70719 -0.013 -0.003 1.000 -0.567 0.568 - 4 0.57426 0.090 0.001 -0.567 1.000 -0.288 - 5 0.57327 0.065 -0.003 0.568 -0.288 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7995.55 FROM HESSE STATUS=OK 31 CALLS 295 TOTAL - EDM=2.79956e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.62655e+02 3.96099e-01 3.27335e-04 -1.56977e-01 - 2 sg_p1 1.50000e+01 3.66519e-02 1.31112e-03 1.57113e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 3 sg_p2 3.32688e+02 1.23641e+01 8.40862e-05 2.43509e-01 - 4 sg_p3 7.88319e+01 7.24309e+00 1.16084e-04 -5.53064e-01 - 5 sg_p4 9.12549e-01 1.02319e-02 5.42731e-04 7.07842e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.569e-01 -2.556e-08 -7.512e-02 2.598e-01 2.581e-04 - -2.556e-08 5.458e-08 -2.431e-06 5.742e-07 -2.287e-09 - -7.512e-02 -2.431e-06 1.530e+02 -5.186e+01 7.239e-02 - 2.598e-01 5.742e-07 -5.186e+01 5.252e+01 -2.206e-02 - 2.581e-04 -2.287e-09 7.239e-02 -2.206e-02 1.048e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.13113 1.000 -0.000 -0.015 0.090 0.064 - 2 0.00106 -0.000 1.000 -0.001 0.000 -0.001 - 3 0.71407 -0.015 -0.001 1.000 -0.578 0.572 - 4 0.58519 0.090 0.000 -0.578 1.000 -0.297 - 5 0.57724 0.064 -0.001 0.572 -0.297 1.000 -270 -262.655 +- 0.396099 -15 +- 0.0366519 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=8301.08 FROM MIGRAD STATUS=INITIATE 43 CALLS 44 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.65000e+02 3.00000e+00 0.00000e+00 1.57276e+02 - 2 sg_p1 8.50000e+00 1.30000e+00 0.00000e+00 -7.20874e+02 - 3 sg_p2 2.70000e+02 5.20000e+01 0.00000e+00 1.31136e+02 - 4 sg_p3 6.67985e+01 2.90000e+01 -6.53900e-01 6.21676e+00 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.55343e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7960.31 FROM MIGRAD STATUS=CONVERGED 215 CALLS 216 TOTAL - EDM=0.000112509 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.63717e+02 4.03328e-01 1.64549e-03 2.85410e-02 - 2 sg_p1 1.50000e+01 4.16874e-02 6.99690e-03** at limit ** - 3 sg_p2 3.26691e+02 1.09550e+01 1.90596e-03 -1.07432e-01 - 4 sg_p3 7.56151e+01 6.41429e+00 2.71105e-03 7.69878e-02 - 5 sg_p4 9.03852e-01 1.08010e-02 2.78869e-03 -3.02927e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.627e-01 -1.817e-07 -1.584e-01 2.985e-01 2.635e-04 - -1.817e-07 2.669e-07 -1.400e-05 2.491e-06 -1.659e-08 - -1.584e-01 -1.400e-05 1.201e+02 -3.790e+01 6.574e-02 - 2.985e-01 2.491e-06 -3.790e+01 4.118e+01 -1.657e-02 - 2.635e-04 -1.659e-08 6.574e-02 -1.657e-02 1.168e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.14787 1.000 -0.001 -0.036 0.115 0.060 - 2 0.00326 -0.001 1.000 -0.002 0.001 -0.003 - 3 0.69527 -0.036 -0.002 1.000 -0.539 0.555 - 4 0.55108 0.115 0.001 -0.539 1.000 -0.239 - 5 0.56440 0.060 -0.003 0.555 -0.239 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7960.31 FROM HESSE STATUS=OK 31 CALLS 247 TOTAL - EDM=0.000114252 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.63717e+02 4.03375e-01 3.29097e-04 -8.56522e-02 - 2 sg_p1 1.50000e+01 4.16903e-02 1.39938e-03 1.57009e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 3 sg_p2 3.26691e+02 1.10364e+01 3.81192e-04 2.19808e-01 - 4 sg_p3 7.56151e+01 6.46046e+00 1.08442e-04 -5.79352e-01 - 5 sg_p4 9.03852e-01 1.08250e-02 5.57738e-04 6.62902e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.628e-01 1.090e-10 -1.678e-01 3.031e-01 2.586e-04 - 1.090e-10 2.669e-07 8.739e-09 -1.723e-09 1.020e-11 - -1.678e-01 8.739e-09 1.219e+02 -3.912e+01 6.671e-02 - 3.031e-01 -1.723e-09 -3.912e+01 4.178e+01 -1.726e-02 - 2.586e-04 1.020e-11 6.671e-02 -1.726e-02 1.173e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.14863 1.000 0.000 -0.038 0.116 0.059 - 2 0.00000 0.000 1.000 0.000 -0.000 0.000 - 3 0.70071 -0.038 0.000 1.000 -0.548 0.558 - 4 0.56000 0.116 -0.000 -0.548 1.000 -0.247 - 5 0.56706 0.059 0.000 0.558 -0.247 1.000 -270 -263.717 +- 0.403375 -15 +- 0.0416903 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=8131.38 FROM MIGRAD STATUS=INITIATE 44 CALLS 45 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.65000e+02 3.00000e+00 0.00000e+00 4.48644e+02 - 2 sg_p1 8.50000e+00 1.30000e+00 0.00000e+00 -7.91305e+02 - 3 sg_p2 2.70000e+02 5.20000e+01 0.00000e+00 3.73822e+02 - 4 sg_p3 6.56628e+01 2.90000e+01 -6.63806e-01 5.24608e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.60990e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7699.77 FROM MIGRAD STATUS=CONVERGED 264 CALLS 265 TOTAL - EDM=1.20255e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.61106e+02 3.97606e-01 1.64949e-03 6.43216e-02 - 2 sg_p1 1.50000e+01 4.40817e-02 7.05863e-03** at limit ** - 3 sg_p2 3.31806e+02 1.18077e+01 2.04938e-03 4.68003e-02 - 4 sg_p3 7.39962e+01 6.87793e+00 2.89900e-03 4.25993e-02 - 5 sg_p4 9.20380e-01 9.82533e-03 2.67537e-03 -4.86834e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.581e-01 -4.250e-09 7.358e-02 1.895e-01 3.289e-04 - -4.250e-09 8.677e-11 -3.111e-07 6.344e-08 -2.998e-10 - 7.358e-02 -3.111e-07 1.395e+02 -4.404e+01 6.552e-02 - 1.895e-01 6.344e-08 -4.404e+01 4.736e+01 -1.922e-02 - 3.289e-04 -2.998e-10 6.552e-02 -1.922e-02 9.663e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.12888 1.000 -0.001 0.016 0.069 0.084 - 2 0.00364 -0.001 1.000 -0.003 0.001 -0.003 - 3 0.69043 0.016 -0.003 1.000 -0.542 0.564 - 4 0.54763 0.069 0.001 -0.542 1.000 -0.284 - 5 0.56955 0.084 -0.003 0.564 -0.284 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=7699.77 FROM HESSE STATUS=OK 31 CALLS 296 TOTAL - EDM=1.20761e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.61106e+02 3.97608e-01 3.29897e-04 -2.62628e-01 - 2 sg_p1 1.50000e+01 4.40850e-02 1.41173e-03 1.57081e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 3 sg_p2 3.31806e+02 1.19031e+01 4.09876e-04 2.40013e-01 - 4 sg_p3 7.39962e+01 6.93093e+00 1.15960e-04 -5.92753e-01 - 5 sg_p4 9.20380e-01 9.85509e-03 5.35074e-04 7.49837e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.581e-01 -8.535e-10 6.846e-02 1.911e-01 3.266e-04 - -8.535e-10 8.678e-11 -6.392e-08 1.351e-08 -6.118e-11 - 6.846e-02 -6.392e-08 1.418e+02 -4.555e+01 6.667e-02 - 1.911e-01 1.351e-08 -4.555e+01 4.809e+01 -2.000e-02 - 3.266e-04 -6.118e-11 6.667e-02 -2.000e-02 9.722e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.12891 1.000 -0.000 0.014 0.069 0.083 - 2 0.00074 -0.000 1.000 -0.001 0.000 -0.001 - 3 0.69646 0.014 -0.001 1.000 -0.552 0.568 - 4 0.55728 0.069 0.000 -0.552 1.000 -0.292 - 5 0.57312 0.083 -0.001 0.568 -0.292 1.000 -270 -261.106 +- 0.397608 -15 +- 0.044085 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=6358.39 FROM MIGRAD STATUS=INITIATE 18 CALLS 19 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70000e+02 2.00000e+00 2.01358e-01 -2.79566e+02 - 2 sg_p1 5.00000e+00 6.00000e-01 2.01358e-01 -1.50106e+02 - 3 sg_p2 1.79500e+02 3.41000e+01 2.01358e-01 1.43645e+00 - 4 sg_p3 1.55000e+02 2.90000e+01 2.01358e-01 1.18935e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 2.01358e-01 1.12505e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6301.03 FROM MIGRAD STATUS=CONVERGED 228 CALLS 229 TOTAL - EDM=6.55748e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70677e+02 1.72165e-01 9.18183e-04 1.47070e-02 - 2 sg_p1 5.07770e+00 1.66247e-01 2.54292e-03 -1.24810e-03 - 3 sg_p2 2.62057e+02 9.37512e+00 1.10376e-03 -2.64630e-02 - 4 sg_p3 4.25329e+01 5.68857e+00 1.50462e-03 -2.35495e-02 - 5 sg_p4 6.46200e-01 3.59740e-02 4.14748e-03 5.84314e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.964e-02 -1.980e-03 -3.797e-01 1.772e-01 -1.311e-03 - -1.980e-03 2.767e-02 2.898e-01 1.419e-02 2.579e-03 - -3.797e-01 2.898e-01 8.801e+01 -4.644e+01 2.783e-01 - 1.772e-01 1.419e-02 -4.644e+01 3.240e+01 -1.232e-01 - -1.311e-03 2.579e-03 2.783e-01 -1.232e-01 1.305e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.24028 1.000 -0.069 -0.235 0.181 -0.211 - 2 0.54786 -0.069 1.000 0.186 0.015 0.429 - 3 0.94759 -0.235 0.186 1.000 -0.870 0.821 - 4 0.89770 0.181 0.015 -0.870 1.000 -0.599 - 5 0.87941 -0.211 0.429 0.821 -0.599 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6301.03 FROM HESSE STATUS=OK 31 CALLS 260 TOTAL - EDM=6.88941e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.70677e+02 1.72924e-01 1.83637e-04 6.77760e-02 - 2 sg_p1 5.07770e+00 1.66149e-01 1.01717e-04 2.59024e-02 - 3 sg_p2 2.62057e+02 1.02016e+01 4.41505e-05 5.05456e-01 - 4 sg_p3 4.25329e+01 6.20016e+00 6.01848e-05 -8.87721e-01 - 5 sg_p4 6.46200e-01 3.77070e-02 1.65899e-04 -4.28163e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.991e-02 -2.057e-03 -4.449e-01 2.178e-01 -1.495e-03 - -2.057e-03 2.763e-02 3.050e-01 2.707e-03 2.616e-03 - -4.449e-01 3.050e-01 1.042e+02 -5.647e+01 3.244e-01 - 2.178e-01 2.707e-03 -5.647e+01 3.850e+01 -1.520e-01 - -1.495e-03 2.616e-03 3.244e-01 -1.520e-01 1.435e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25688 1.000 -0.072 -0.252 0.203 -0.228 - 2 0.54710 -0.072 1.000 0.180 0.003 0.415 - 3 0.95594 -0.252 0.180 1.000 -0.891 0.839 - 4 0.91467 0.203 0.003 -0.891 1.000 -0.647 - 5 0.89101 -0.228 0.415 0.839 -0.647 1.000 -270 -270.677 +- 0.172924 -5.0777 +- 0.166149 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=6365.99 FROM MIGRAD STATUS=INITIATE 16 CALLS 17 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70000e+02 2.00000e+00 2.01358e-01 -3.03648e+02 - 2 sg_p1 5.00000e+00 6.00000e-01 2.01358e-01 -1.61990e+02 - 3 sg_p2 1.79500e+02 3.41000e+01 2.01358e-01 -2.65770e+00 - 4 sg_p3 1.55000e+02 2.90000e+01 2.01358e-01 8.50425e+00 - 5 sg_p4 7.50000e-01 5.00000e-02 2.01358e-01 1.31190e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6299.61 FROM MIGRAD STATUS=CONVERGED 237 CALLS 238 TOTAL - EDM=7.93407e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70692e+02 1.77044e-01 9.42241e-04 3.84277e-02 - 2 sg_p1 5.17409e+00 1.71536e-01 2.60847e-03 -2.11829e-03 - 3 sg_p2 2.70838e+02 6.84551e+00 1.03343e-03 5.78086e-03 - 4 sg_p3 3.91980e+01 4.62395e+00 1.61118e-03 1.03114e-02 - 5 sg_p4 6.64184e-01 3.27535e-02 3.88817e-03 5.22515e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.135e-02 -1.758e-03 -3.016e-01 1.665e-01 -1.164e-03 - -1.758e-03 2.946e-02 3.251e-01 -2.221e-02 2.675e-03 - -3.016e-01 3.251e-01 4.690e+01 -2.546e+01 1.845e-01 - 1.665e-01 -2.221e-02 -2.546e+01 2.140e+01 -8.613e-02 - -1.164e-03 2.675e-03 1.845e-01 -8.613e-02 1.080e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.24905 1.000 -0.058 -0.249 0.203 -0.200 - 2 0.55757 -0.058 1.000 0.277 -0.028 0.474 - 3 0.91827 -0.249 0.277 1.000 -0.804 0.820 - 4 0.83247 0.203 -0.028 -0.804 1.000 -0.567 - 5 0.86222 -0.200 0.474 0.820 -0.567 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6299.61 FROM HESSE STATUS=OK 31 CALLS 269 TOTAL - EDM=7.9228e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.70692e+02 1.77623e-01 1.88448e-04 6.92275e-02 - 2 sg_p1 5.17409e+00 1.71578e-01 1.04339e-04 5.80618e-02 - 3 sg_p2 2.70838e+02 7.18808e+00 4.13373e-05 5.65345e-01 - 4 sg_p3 3.91980e+01 4.86021e+00 6.44473e-05 -9.25023e-01 - 5 sg_p4 6.64184e-01 3.36636e-02 1.55527e-04 -3.50391e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.155e-02 -1.878e-03 -3.331e-01 1.884e-01 -1.276e-03 - -1.878e-03 2.947e-02 3.399e-01 -3.425e-02 2.726e-03 - -3.331e-01 3.399e-01 5.171e+01 -2.882e+01 2.017e-01 - 1.884e-01 -3.425e-02 -2.882e+01 2.365e+01 -9.825e-02 - -1.276e-03 2.726e-03 2.017e-01 -9.825e-02 1.141e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.26103 1.000 -0.062 -0.261 0.218 -0.213 - 2 0.55787 -0.062 1.000 0.275 -0.041 0.470 - 3 0.92618 -0.261 0.275 1.000 -0.824 0.830 - 4 0.84979 0.218 -0.041 -0.824 1.000 -0.598 - 5 0.87017 -0.213 0.470 0.830 -0.598 1.000 -270 -270.692 +- 0.177623 -5.17409 +- 0.171578 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=6100.43 FROM MIGRAD STATUS=INITIATE 38 CALLS 39 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70000e+02 2.00000e+00 0.00000e+00 -1.76480e+02 - 2 sg_p1 5.00000e+00 6.00000e-01 0.00000e+00 -9.50553e+01 - 3 sg_p2 1.79500e+02 3.41000e+01 0.00000e+00 -1.03797e+01 - 4 sg_p3 1.15860e+02 2.90000e+01 -2.73322e-01 1.99528e+00 - 5 sg_p4 7.50000e-01 5.00000e-02 0.00000e+00 1.00751e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6063.49 FROM MIGRAD STATUS=CONVERGED 263 CALLS 264 TOTAL - EDM=9.43817e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70469e+02 1.64489e-01 8.67373e-04 9.78651e-02 - 2 sg_p1 4.85345e+00 1.61763e-01 2.44261e-03 2.33446e-02 - 3 sg_p2 2.42939e+02 1.76038e+01 1.34178e-03 -9.41851e-03 - 4 sg_p3 5.09965e+01 8.69738e+00 1.37274e-03 -8.34558e-03 - 5 sg_p4 6.09562e-01 4.12691e-02 4.72433e-03 -1.03290e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.706e-02 -1.143e-03 -5.339e-01 2.032e-01 -1.240e-03 - -1.143e-03 2.619e-02 2.008e-01 9.614e-02 2.479e-03 - -5.339e-01 2.008e-01 3.112e+02 -1.431e+02 5.930e-01 - 2.032e-01 9.614e-02 -1.431e+02 7.583e+01 -2.285e-01 - -1.240e-03 2.479e-03 5.930e-01 -2.285e-01 1.726e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20148 1.000 -0.043 -0.184 0.142 -0.181 - 2 0.54100 -0.043 1.000 0.070 0.068 0.369 - 3 0.97454 -0.184 0.070 1.000 -0.932 0.809 - 4 0.95515 0.142 0.068 -0.932 1.000 -0.632 - 5 0.89940 -0.181 0.369 0.809 -0.632 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6063.49 FROM HESSE STATUS=OK 31 CALLS 295 TOTAL - EDM=1.17248e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.70469e+02 1.65601e-01 1.73475e-04 4.69431e-02 - 2 sg_p1 4.85345e+00 1.61522e-01 4.88521e-04 -4.88702e-02 - 3 sg_p2 2.42939e+02 2.15740e+01 5.36712e-05 3.81246e-01 - 4 sg_p3 5.09965e+01 1.06929e+01 5.49095e-05 -7.99870e-01 - 5 sg_p4 6.09562e-01 4.63125e-02 1.88973e-04 -5.96502e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.743e-02 -1.089e-03 -7.748e-01 3.240e-01 -1.649e-03 - -1.089e-03 2.611e-02 1.620e-01 1.121e-01 2.395e-03 - -7.748e-01 1.620e-01 4.683e+02 -2.215e+02 8.616e-01 - 3.240e-01 1.121e-01 -2.215e+02 1.148e+02 -3.632e-01 - -1.649e-03 2.395e-03 8.616e-01 -3.632e-01 2.182e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23115 1.000 -0.041 -0.216 0.183 -0.213 - 2 0.53904 -0.041 1.000 0.046 0.065 0.317 - 3 0.98316 -0.216 0.046 1.000 -0.955 0.852 - 4 0.97060 0.183 0.065 -0.955 1.000 -0.726 - 5 0.92131 -0.213 0.317 0.852 -0.726 1.000 -270 -270.469 +- 0.165601 -4.85345 +- 0.161522 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=6207.91 FROM MIGRAD STATUS=INITIATE 18 CALLS 19 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70000e+02 2.00000e+00 2.01358e-01 -2.64216e+02 - 2 sg_p1 5.00000e+00 6.00000e-01 2.01358e-01 -1.71360e+02 - 3 sg_p2 1.79500e+02 3.41000e+01 2.01358e-01 4.14298e-01 - 4 sg_p3 1.55000e+02 2.90000e+01 2.01358e-01 1.11372e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 2.01358e-01 1.18895e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6146.33 FROM MIGRAD STATUS=CONVERGED 215 CALLS 216 TOTAL - EDM=6.61513e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70656e+02 1.81990e-01 9.51015e-04 2.93883e-01 - 2 sg_p1 5.20924e+00 1.80376e-01 2.66180e-03 1.75576e-02 - 3 sg_p2 2.64216e+02 9.79599e+00 1.09853e-03 2.68338e-01 - 4 sg_p3 4.19600e+01 6.09659e+00 1.54906e-03 -8.69463e-02 - 5 sg_p4 6.49014e-01 3.85333e-02 4.14029e-03 -7.85398e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.312e-02 -1.986e-03 -4.776e-01 -2.455e-01 -1.622e-03 - -1.986e-03 3.258e-02 3.816e-01 8.852e-03 3.179e-03 - -4.776e-01 3.816e-01 9.610e+01 5.251e+01 3.182e-01 - -2.455e-01 8.852e-03 5.251e+01 3.722e+01 1.487e-01 - -1.622e-03 3.179e-03 3.182e-01 1.487e-01 1.499e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.26944 1.000 -0.060 -0.268 -0.221 -0.230 - 2 0.57936 -0.060 1.000 0.216 0.008 0.455 - 3 0.95227 -0.268 0.216 1.000 0.878 0.838 - 4 0.90487 -0.221 0.008 0.878 1.000 0.630 - 5 0.89253 -0.230 0.455 0.838 0.630 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6146.33 FROM HESSE STATUS=OK 31 CALLS 247 TOTAL - EDM=6.61792e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.70656e+02 1.81849e-01 1.90203e-04 6.56339e-02 - 2 sg_p1 5.20924e+00 1.80330e-01 1.06472e-04 6.98019e-02 - 3 sg_p2 2.64216e+02 9.67079e+00 2.19705e-04 5.19985e-01 - 4 sg_p3 4.19600e+01 6.02003e+00 6.19622e-05 -2.24759e+00 - 5 sg_p4 6.49014e-01 3.82479e-02 8.28058e-04 -4.15825e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.307e-02 -1.974e-03 -4.664e-01 -2.386e-01 -1.589e-03 - -1.974e-03 3.256e-02 3.740e-01 4.110e-03 3.157e-03 - -4.664e-01 3.740e-01 9.366e+01 5.099e+01 3.108e-01 - -2.386e-01 4.110e-03 5.099e+01 3.629e+01 1.442e-01 - -1.589e-03 3.157e-03 3.108e-01 1.442e-01 1.477e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.26676 1.000 -0.060 -0.265 -0.218 -0.227 - 2 0.57907 -0.060 1.000 0.214 0.004 0.455 - 3 0.95099 -0.265 0.214 1.000 0.875 0.836 - 4 0.90230 -0.218 0.004 0.875 1.000 0.623 - 5 0.89080 -0.227 0.455 0.836 0.623 1.000 -270 -270.656 +- 0.181849 -5.20924 +- 0.18033 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=6345.12 FROM MIGRAD STATUS=INITIATE 18 CALLS 19 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70000e+02 2.00000e+00 2.01358e-01 -2.76463e+02 - 2 sg_p1 5.00000e+00 6.00000e-01 2.01358e-01 -1.12933e+02 - 3 sg_p2 1.79500e+02 3.41000e+01 2.01358e-01 1.61677e+00 - 4 sg_p3 1.55000e+02 2.90000e+01 2.01358e-01 1.12497e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 2.01358e-01 1.04922e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.05988 added to diagonal of error matrix -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (9513.77) to force MIGRAD to back out of this region. Error log follows -Parameter values: sg_p0=269.51, sg_p1=3.81892, sg_p2=26.0784, sg_p3=20.4464, sg_p4=0.504154 -RooAddPdf::signal[ sg_p4 * signalCore + [%] * signalComb ] - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 250.5), !pdfs=(signalCore = 4.16274e-06/9.57261,signalComb = 6.90752e-27/0), !coefficients=(sg_p4 = 0.504154) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 250.5), !pdfs=(signalCore = 4.16274e-06/9.57261,signalComb = 6.90752e-27/0), !coefficients=(sg_p4 = 0.504154) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 253.5), !pdfs=(signalCore = 0.000152629/9.57261,signalComb = 1.36531e-27/0), !coefficients=(sg_p4 = 0.504154) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 253.5), !pdfs=(signalCore = 0.000152629/9.57261,signalComb = 1.36531e-27/0), !coefficients=(sg_p4 = 0.504154) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 256.5), !pdfs=(signalCore = 0.00301916/9.57261,signalComb = 2.64114e-28/0), !coefficients=(sg_p4 = 0.504154) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 256.5), !pdfs=(signalCore = 0.00301916/9.57261,signalComb = 2.64114e-28/0), !coefficients=(sg_p4 = 0.504154) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 259.5), !pdfs=(signalCore = 0.0322202/9.57261,signalComb = 5.00036e-29/0), !coefficients=(sg_p4 = 0.504154) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 259.5), !pdfs=(signalCore = 0.0322202/9.57261,signalComb = 5.00036e-29/0), !coefficients=(sg_p4 = 0.504154) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 262.5), !pdfs=(signalCore = 0.185509/9.57261,signalComb = 9.26534e-30/0), !coefficients=(sg_p4 = 0.504154) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 262.5), !pdfs=(signalCore = 0.185509/9.57261,signalComb = 9.26534e-30/0), !coefficients=(sg_p4 = 0.504154) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 265.5), !pdfs=(signalCore = 0.576226/9.57261,signalComb = 1.68024e-30/0), !coefficients=(sg_p4 = 0.504154) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 265.5), !pdfs=(signalCore = 0.576226/9.57261,signalComb = 1.68024e-30/0), !coefficients=(sg_p4 = 0.504154) - ... (remaining 58 messages suppressed) -RooGaussian::signalComb[ x=x mean=sg_p2 sigma=sg_p3 ] - p.d.f normalization integral is zero or negative @ x=x=250.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=253.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=256.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=259.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=262.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=265.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=268.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=271.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=274.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=277.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=280.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - p.d.f normalization integral is zero or negative @ x=x=283.5, mean=sg_p2=26.0784, sigma=sg_p3=20.4464 - ... (remaining 24 messages suppressed) -RooNLLVar::nll_signal_signalHistogram[ paramSet=(sg_p0,sg_p1,sg_p2,sg_p3,sg_p4) ] - function value is NAN @ paramSet=(sg_p0 = 269.51,sg_p1 = 3.81892,sg_p2 = 26.0784,sg_p3 = 20.4464,sg_p4 = 0.504154) -RooRealIntegral::signalComb_Int[x|NormalizationRangeForfit]_Norm[x][ Int signalComb_Norm(x) d[Ana](x) ] - function value is NAN @ !sumList=(), !intList=(), !anaList=(x = 250.5), !jacList=(), !facList=(), !func=signalComb=6.90752e-27/0, !sumCat=() - - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6295.95 FROM MIGRAD STATUS=CONVERGED 426 CALLS 427 TOTAL - EDM=1.36563e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70665e+02 1.63477e-01 8.78610e-04 2.15233e-02 - 2 sg_p1 4.89880e+00 1.57011e-01 2.44680e-03 2.25239e-02 - 3 sg_p2 2.54654e+02 1.25915e+01 1.24303e-03 5.47392e-03 - 4 sg_p3 4.70832e+01 7.17725e+00 1.51317e-03 2.13001e-03 - 5 sg_p4 6.29901e-01 3.72328e-02 4.32749e-03 -5.67064e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.673e-02 -8.488e-04 -4.087e-01 1.835e-01 -1.095e-03 - -8.488e-04 2.467e-02 2.172e-01 5.764e-02 2.181e-03 - -4.087e-01 2.172e-01 1.589e+02 -8.190e+01 3.873e-01 - 1.835e-01 5.764e-02 -8.190e+01 5.161e+01 -1.691e-01 - -1.095e-03 2.181e-03 3.873e-01 -1.691e-01 1.400e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.20590 1.000 -0.033 -0.198 0.156 -0.179 - 2 0.52321 -0.033 1.000 0.110 0.051 0.371 - 3 0.96127 -0.198 0.110 1.000 -0.904 0.821 - 4 0.92824 0.156 0.051 -0.904 1.000 -0.629 - 5 0.88645 -0.179 0.371 0.821 -0.629 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6295.95 FROM HESSE STATUS=OK 31 CALLS 458 TOTAL - EDM=1.44185e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.70665e+02 1.64298e-01 1.75722e-04 6.65783e-02 - 2 sg_p1 4.89880e+00 1.56830e-01 4.89360e-04 -3.37402e-02 - 3 sg_p2 2.54654e+02 1.43586e+01 4.97213e-05 4.56472e-01 - 4 sg_p3 4.70832e+01 8.20025e+00 6.05269e-05 -7.12260e+00 - 5 sg_p4 6.29901e-01 4.01552e-02 1.73099e-04 -5.01104e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.700e-02 -8.623e-04 -5.225e-01 2.494e-01 -1.344e-03 - -8.623e-04 2.462e-02 2.174e-01 5.502e-02 2.172e-03 - -5.225e-01 2.174e-01 2.068e+02 -1.095e+02 4.928e-01 - 2.494e-01 5.502e-02 -1.095e+02 6.741e+01 -2.303e-01 - -1.344e-03 2.172e-03 4.928e-01 -2.303e-01 1.631e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22790 1.000 -0.033 -0.221 0.185 -0.203 - 2 0.52160 -0.033 1.000 0.096 0.043 0.343 - 3 0.97037 -0.221 0.096 1.000 -0.928 0.849 - 4 0.94554 0.185 0.043 -0.928 1.000 -0.695 - 5 0.90340 -0.203 0.343 0.849 -0.695 1.000 -270 -270.665 +- 0.164298 -4.8988 +- 0.15683 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=5935.06 FROM MIGRAD STATUS=INITIATE 18 CALLS 19 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70000e+02 2.00000e+00 2.01358e-01 -2.61773e+02 - 2 sg_p1 5.00000e+00 6.00000e-01 2.01358e-01 -1.38965e+02 - 3 sg_p2 1.79500e+02 3.41000e+01 2.01358e-01 1.59791e+00 - 4 sg_p3 1.55000e+02 2.90000e+01 2.01358e-01 1.10752e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 2.01358e-01 1.03362e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 5 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 2.28866 added to diagonal of error matrix -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (10056.7) to force MIGRAD to back out of this region. Error log follows -Parameter values: sg_p0=272.549, sg_p1=2.86401, sg_p2=114.179, sg_p3=10.3302, sg_p4=0.609584 -RooGaussian::signalComb[ x=x mean=sg_p2 sigma=sg_p3 ] - p.d.f normalization integral is zero or negative @ x=x=250.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=253.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=256.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=259.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=262.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=265.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=268.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=271.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=274.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=277.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=280.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - p.d.f normalization integral is zero or negative @ x=x=283.5, mean=sg_p2=114.179, sigma=sg_p3=10.3302 - ... (remaining 24 messages suppressed) - - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.08701 added to diagonal of error matrix -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (10056.7) to force MIGRAD to back out of this region. Error log follows -Parameter values: sg_p0=272.29, sg_p1=6.01777, sg_p2=84.8692, sg_p3=12.3721, sg_p4=0.588994 -RooGaussian::signalComb[ x=x mean=sg_p2 sigma=sg_p3 ] - p.d.f normalization integral is zero or negative @ x=x=250.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=253.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=256.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=259.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=262.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=265.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=268.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=271.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=274.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=277.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=280.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - p.d.f normalization integral is zero or negative @ x=x=283.5, mean=sg_p2=84.8692, sigma=sg_p3=12.3721 - ... (remaining 24 messages suppressed) -RooAddPdf::signal[ sg_p4 * signalCore + [%] * signalComb ] - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 250.5), !pdfs=(signalCore = 0.00142225/15.0827,signalComb = 1.20756e-39/0), !coefficients=(sg_p4 = 0.588994) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 250.5), !pdfs=(signalCore = 0.00142225/15.0827,signalComb = 1.20756e-39/0), !coefficients=(sg_p4 = 0.588994) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 253.5), !pdfs=(signalCore = 0.00763766/15.0827,signalComb = 4.56383e-41/0), !coefficients=(sg_p4 = 0.588994) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 253.5), !pdfs=(signalCore = 0.00763766/15.0827,signalComb = 4.56383e-41/0), !coefficients=(sg_p4 = 0.588994) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 256.5), !pdfs=(signalCore = 0.0319897/15.0827,signalComb = 1.62635e-42/0), !coefficients=(sg_p4 = 0.588994) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 256.5), !pdfs=(signalCore = 0.0319897/15.0827,signalComb = 1.62635e-42/0), !coefficients=(sg_p4 = 0.588994) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 259.5), !pdfs=(signalCore = 0.104502/15.0827,signalComb = 5.46463e-44/0), !coefficients=(sg_p4 = 0.588994) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 259.5), !pdfs=(signalCore = 0.104502/15.0827,signalComb = 5.46463e-44/0), !coefficients=(sg_p4 = 0.588994) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 262.5), !pdfs=(signalCore = 0.266262/15.0827,signalComb = 1.7313e-45/0), !coefficients=(sg_p4 = 0.588994) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 262.5), !pdfs=(signalCore = 0.266262/15.0827,signalComb = 1.7313e-45/0), !coefficients=(sg_p4 = 0.588994) - p.d.f value is Not-a-Number (-nan), forcing value to zero @ !refCoefNorm=(x = 265.5), !pdfs=(signalCore = 0.529127/15.0827,signalComb = 5.17191e-47/0), !coefficients=(sg_p4 = 0.588994) - getLogVal() top-level p.d.f evaluates to zero @ !refCoefNorm=(x = 265.5), !pdfs=(signalCore = 0.529127/15.0827,signalComb = 5.17191e-47/0), !coefficients=(sg_p4 = 0.588994) - ... (remaining 58 messages suppressed) -RooNLLVar::nll_signal_signalHistogram[ paramSet=(sg_p0,sg_p1,sg_p2,sg_p3,sg_p4) ] - function value is NAN @ paramSet=(sg_p0 = 272.29,sg_p1 = 6.01777,sg_p2 = 84.8692,sg_p3 = 12.3721,sg_p4 = 0.588994) -RooRealIntegral::signalComb_Int[x|NormalizationRangeForfit]_Norm[x][ Int signalComb_Norm(x) d[Ana](x) ] - function value is NAN @ !sumList=(), !intList=(), !anaList=(x = 250.5), !jacList=(), !facList=(), !func=signalComb=1.20756e-39/0, !sumCat=() - - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -7.5154e-01 8.8570e-03 4.2097e-01 8.1972e-01 4.5020e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 0.756042 TO DIAGONAL. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5882.02 FROM MIGRAD STATUS=CONVERGED 478 CALLS 479 TOTAL - EDM=5.04966e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70677e+02 1.77765e-01 9.15542e-04 3.54204e-02 - 2 sg_p1 5.07405e+00 1.71518e-01 2.53252e-03 -1.40075e-03 - 3 sg_p2 2.62185e+02 9.60022e+00 1.09335e-03 9.09533e-02 - 4 sg_p3 4.23182e+01 5.82557e+00 1.49714e-03 7.35079e-02 - 5 sg_p4 6.47917e-01 3.70971e-02 4.11649e-03 -7.98184e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.160e-02 -2.097e-03 -4.013e-01 1.872e-01 -1.393e-03 - -2.097e-03 2.945e-02 3.055e-01 1.580e-02 2.743e-03 - -4.013e-01 3.055e-01 9.229e+01 -4.866e+01 2.937e-01 - 1.872e-01 1.580e-02 -4.866e+01 3.398e+01 -1.298e-01 - -1.393e-03 2.743e-03 2.937e-01 -1.298e-01 1.388e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.24009 1.000 -0.069 -0.235 0.181 -0.210 - 2 0.54730 -0.069 1.000 0.185 0.016 0.429 - 3 0.94713 -0.235 0.185 1.000 -0.869 0.821 - 4 0.89685 0.181 0.016 -0.869 1.000 -0.598 - 5 0.87877 -0.210 0.429 0.821 -0.598 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=5882.02 FROM HESSE STATUS=OK 31 CALLS 510 TOTAL - EDM=5.00987e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.70677e+02 1.78459e-01 1.83108e-04 6.77551e-02 - 2 sg_p1 5.07405e+00 1.71428e-01 1.01301e-04 2.46861e-02 - 3 sg_p2 2.62185e+02 1.03547e+01 2.18670e-04 5.06313e-01 - 4 sg_p3 4.23182e+01 6.29339e+00 5.98854e-05 -8.90070e-01 - 5 sg_p4 6.47917e-01 3.86762e-02 1.64659e-04 -4.20625e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.185e-02 -2.170e-03 -4.624e-01 2.253e-01 -1.567e-03 - -2.170e-03 2.942e-02 3.193e-01 5.301e-03 2.776e-03 - -4.624e-01 3.193e-01 1.074e+02 -5.800e+01 3.368e-01 - 2.253e-01 5.301e-03 -5.800e+01 3.967e+01 -1.567e-01 - -1.567e-03 2.776e-03 3.368e-01 -1.567e-01 1.510e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25486 1.000 -0.071 -0.250 0.200 -0.226 - 2 0.54662 -0.071 1.000 0.180 0.005 0.416 - 3 0.95474 -0.250 0.180 1.000 -0.889 0.836 - 4 0.91235 0.200 0.005 -0.889 1.000 -0.640 - 5 0.88917 -0.226 0.416 0.836 -0.640 1.000 -270 -270.677 +- 0.178459 -5.07405 +- 0.171428 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=6803.83 FROM MIGRAD STATUS=INITIATE 18 CALLS 19 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70000e+02 2.00000e+00 2.01358e-01 -2.98256e+02 - 2 sg_p1 5.00000e+00 6.00000e-01 2.01358e-01 -1.61883e+02 - 3 sg_p2 1.79500e+02 3.41000e+01 2.01358e-01 1.25354e+00 - 4 sg_p3 1.55000e+02 2.90000e+01 2.01358e-01 1.25340e+01 - 5 sg_p4 7.50000e-01 5.00000e-02 2.01358e-01 1.22208e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6741.9 FROM MIGRAD STATUS=CONVERGED 248 CALLS 249 TOTAL - EDM=5.61336e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.70678e+02 1.67660e-01 9.20230e-04 6.43100e-02 - 2 sg_p1 5.08061e+00 1.61195e-01 2.54959e-03 -4.59615e-02 - 3 sg_p2 2.61887e+02 1.01188e+01 1.11479e-03 1.73033e-01 - 4 sg_p3 4.27760e+01 6.14640e+00 1.50758e-03 -1.30340e-01 - 5 sg_p4 6.44308e-01 3.69099e-02 4.17152e-03 -5.60004e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.811e-02 -1.952e-03 -4.320e-01 -2.124e-01 -1.437e-03 - -1.952e-03 2.601e-02 2.973e-01 2.175e-03 2.487e-03 - -4.320e-01 2.973e-01 1.025e+02 5.575e+01 3.161e-01 - -2.124e-01 2.175e-03 5.575e+01 3.783e+01 1.492e-01 - -1.437e-03 2.487e-03 3.161e-01 1.492e-01 1.375e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25937 1.000 -0.072 -0.254 -0.206 -0.231 - 2 0.54843 -0.072 1.000 0.182 0.002 0.416 - 3 0.95754 -0.254 0.182 1.000 0.895 0.842 - 4 0.91772 -0.206 0.002 0.895 1.000 0.654 - 5 0.89354 -0.231 0.416 0.842 0.654 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=6741.9 FROM HESSE STATUS=OK 31 CALLS 280 TOTAL - EDM=5.55033e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.70678e+02 1.67525e-01 1.84046e-04 6.78347e-02 - 2 sg_p1 5.08061e+00 1.61130e-01 5.09917e-04 2.68728e-02 - 3 sg_p2 2.61887e+02 9.96431e+00 2.22958e-04 5.04317e-01 - 4 sg_p3 4.27760e+01 6.05400e+00 6.03031e-05 -2.25652e+00 - 5 sg_p4 6.44308e-01 3.65699e-02 8.34304e-04 -4.36497e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.807e-02 -1.942e-03 -4.201e-01 -2.053e-01 -1.403e-03 - -1.942e-03 2.599e-02 2.900e-01 -2.123e-03 2.465e-03 - -4.201e-01 2.900e-01 9.944e+01 5.387e+01 3.073e-01 - -2.053e-01 -2.123e-03 5.387e+01 3.670e+01 1.439e-01 - -1.403e-03 2.465e-03 3.073e-01 1.439e-01 1.349e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25646 1.000 -0.072 -0.251 -0.202 -0.228 - 2 0.54791 -0.072 1.000 0.180 -0.002 0.416 - 3 0.95619 -0.251 0.180 1.000 0.892 0.839 - 4 0.91507 -0.202 -0.002 0.892 1.000 0.647 - 5 0.89141 -0.228 0.416 0.839 0.647 1.000 -270 -270.678 +- 0.167525 -5.08061 +- 0.16113 -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 270.677 +- 0.172924 (stat) - 0.207983 + 0.0144814 (syst); -0.225239/+0.0876663 (total) - Uncertainty on sg_p1 = 5.0777 +- 0.166149 (stat) - 0.224251 + 0.131537 (syst); -0.239144/+0.155575 (total) - Uncertainty on sg_p2 = 262.057 +- 10.2016 (stat) - 19.1181 + 8.78082 (syst); -19.7868/+10.1549 (total) - Uncertainty on sg_p3 = 42.5329 +- 6.20016 (stat) - 3.33491 + 8.46362 (syst); -4.55325/+9.01351 (total) - Uncertainty on sg_p4 = 0.6462 +- 0.037707 (stat) - 0.0366379 + 0.017984 (syst); -0.0412043/+0.0260553 (total) - === Baseline plot ===
- norm = 213.048 -JEC lnN 1.01241 - -JER lnN 1.01721 - -btag lnN 1.06825 - -sg_p0 param 270.677 -0.225239/+0.0876663 -sg_p1 param 5.0777 -0.239144/+0.155575 -sg_p2 param 262.057 -19.7868/+10.1549 -sg_p3 param 42.5329 -4.55325/+9.01351 -sg_p4 param 0.6462 -0.0412043/+0.0260553 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_300_crystal_1_285_624/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_300_crystal_1_285_624/data_bkg.log deleted file mode 100644 index 1be2f6e..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_300_crystal_1_285_624/data_bkg.log +++ /dev/null @@ -1,717 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [250,330] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [250,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63590.5 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.69443e-02 5.09000e-01 0.00000e+00 -7.94680e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -8.91126e+00 - 3 par_crystal_2 2.62020e+02 4.00000e+00 1.01181e-01 -1.53451e+00 - 4 par_crystal_3 1.65000e+01 2.70000e+00 0.00000e+00 7.46021e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM MIGRAD STATUS=CONVERGED 482 CALLS 483 TOTAL - EDM=0.000814822 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 4.40594e-01 4.43750e-02 2.48631e-03 2.88668e-01 - 2 par_crystal_1 9.82994e-01 6.48221e-01 2.14269e-02 -5.28345e-03 - 3 par_crystal_2 2.71542e+02 7.41091e-01 7.20683e-03 -9.27818e-02 - 4 par_crystal_3 2.87224e+01 2.18588e+00 3.97473e-02 -6.99277e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.970e-03 -2.333e-02 -5.115e-04 1.392e-02 - -2.333e-02 4.358e-01 4.870e-03 -8.391e-01 - -5.115e-04 4.870e-03 5.496e-01 4.381e-01 - 1.392e-02 -8.391e-01 4.381e-01 5.029e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.88989 1.000 -0.796 -0.016 0.140 - 2 0.92807 -0.796 1.000 0.010 -0.567 - 3 0.40865 -0.016 0.010 1.000 0.264 - 4 0.80948 0.140 -0.567 0.264 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM HESSE STATUS=OK 23 CALLS 506 TOTAL - EDM=0.000711421 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 4.40594e-01 4.64698e-02 4.97262e-04 -9.80558e-01 - 2 par_crystal_1 9.82994e-01 6.55195e-01 8.57075e-04 -6.65795e-01 - 3 par_crystal_2 2.71542e+02 7.38644e-01 1.44137e-03 6.15159e-01 - 4 par_crystal_3 2.87224e+01 2.03002e+00 1.58989e-03 -1.05570e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.160e-03 -2.581e-02 -1.109e-03 1.530e-02 - -2.581e-02 4.456e-01 2.508e-02 -7.234e-01 - -1.109e-03 2.508e-02 5.460e-01 3.687e-01 - 1.530e-02 -7.234e-01 3.687e-01 4.306e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.90014 1.000 -0.832 -0.032 0.159 - 2 0.92960 -0.832 1.000 0.051 -0.522 - 3 0.40186 -0.032 0.051 1.000 0.240 - 4 0.77207 0.159 -0.522 0.240 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63714.2 FROM MIGRAD STATUS=INITIATE 33 CALLS 34 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 2.63122e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -5.45805e+02 - 3 par_gaus_exp_2 6.67498e-01 3.05000e-01 -6.37370e-01 7.03093e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM MIGRAD STATUS=CONVERGED 131 CALLS 132 TOTAL - EDM=6.15917e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.71558e+02 8.05096e-01 6.82817e-03 6.24407e-02 - 2 par_gaus_exp_1 3.06822e+01 1.83071e+00 1.43475e-02 1.11468e-02 - 3 par_gaus_exp_2 3.82770e-01 2.42284e-02 3.05774e-03 -9.77170e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.486e-01 -6.079e-01 -1.588e-03 - -6.079e-01 3.370e+00 3.082e-02 - -1.588e-03 3.082e-02 5.871e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.49876 1.000 -0.411 -0.081 - 2 0.77898 -0.411 1.000 0.693 - 3 0.72797 -0.081 0.693 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM HESSE STATUS=OK 16 CALLS 148 TOTAL - EDM=6.13964e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.71558e+02 8.14214e-01 2.73127e-04 -4.35760e-01 - 2 par_gaus_exp_1 3.06822e+01 1.86973e+00 5.73898e-04 4.10264e-01 - 3 par_gaus_exp_2 3.82770e-01 2.45149e-02 1.22310e-04 -8.97531e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.634e-01 -6.630e-01 -2.137e-03 - -6.630e-01 3.516e+00 3.227e-02 - -2.137e-03 3.227e-02 6.011e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.51526 1.000 -0.434 -0.107 - 2 0.78935 -0.434 1.000 0.702 - 3 0.73544 -0.107 0.702 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,625] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.33953 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.33953) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - ... (remaining 126 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.734607 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.734607) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=317.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=327.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=332.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=342.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=347.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=352.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=357.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=362.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=367.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - ... (remaining 53 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0734613 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0734613 - - FCN=103487 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57093e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.56195e+03 - 3 par_novo_2 -1.33668e+00 2.00000e+01 0.00000e+00 1.53931e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM MIGRAD STATUS=CONVERGED 127 CALLS 128 TOTAL - EDM=3.4171e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.43423e+01 1.81223e-01** at limit ** - 2 par_novo_1 3.86596e+01 2.27294e+00 4.95847e-03 -1.04123e-02 - 3 par_novo_2 -1.27520e+00 7.07738e-02 3.70975e-05 -1.26322e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.231e-09 -8.491e-07 -8.580e-07 - -8.491e-07 5.181e+00 1.547e-01 - -8.580e-07 1.547e-01 5.009e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.53332 1.000 -0.005 -0.154 - 2 0.97096 -0.005 1.000 0.960 - 3 0.97165 -0.154 0.960 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM HESSE STATUS=OK 20 CALLS 148 TOTAL - EDM=3.43726e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.40246e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.86596e+01 2.31421e+00 1.98339e-04 4.46530e-01 - 3 par_novo_2 -1.27520e+00 7.22930e-02 1.48390e-06 -1.27523e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 5.974e-09 2.819e-05 -1.296e-06 - 2.819e-05 5.372e+00 1.502e-01 - -1.296e-06 1.502e-01 5.226e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.85665 1.000 0.157 -0.232 - 2 0.97200 0.157 1.000 0.897 - 3 0.97285 -0.232 0.897 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107513 FROM MIGRAD STATUS=INITIATE 54 CALLS 55 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 1.39168e+03 - 2 par_crystal_1_1 7.96220e-02 5.09000e-01 0.00000e+00 5.33770e+03 - 3 par_crystal_1_2 2.56879e+02 4.00000e+00 -1.56713e-01 -1.96669e+01 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 -8.45862e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.5057e-02 2.3309e-03 4.9678e-02 3.9730e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.029030 TO DIAGONAL. - FCN=103250 FROM MIGRAD STATUS=CONVERGED 436 CALLS 437 TOTAL - EDM=3.52757e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 4.45574e-02 4.37117e-03 3.09465e-04 -4.28177e+00 - 2 par_crystal_1_1 4.36914e+00 6.24106e-01 1.80400e-02 6.63742e-02 - 3 par_crystal_1_2 2.71531e+02 3.44700e+01 5.81266e-02 2.25694e-02 - 4 par_crystal_1_3 3.37290e+00 2.71702e-01 3.13791e-03 -4.26197e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.911e-05 -1.221e-03 2.089e-01 3.572e-04 - -1.221e-03 4.065e-01 -2.690e+01 -6.822e-02 - 2.089e-01 -2.690e+01 3.429e+03 1.167e+01 - 3.572e-04 -6.822e-02 1.167e+01 7.401e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99136 1.000 -0.438 0.816 0.300 - 2 0.97307 -0.438 1.000 -0.720 -0.393 - 3 0.99735 0.816 -0.720 1.000 0.733 - 4 0.98716 0.300 -0.393 0.733 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -8.0089e-04 4.0193e-04 7.1213e-02 3.9292e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.004730 TO DIAGONAL. - FCN=103250 FROM HESSE STATUS=NOT POSDEF 23 CALLS 460 TOTAL - EDM=3.56127e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 4.45574e-02 7.42610e-03 6.18930e-05 -1.40582e+00 - 2 par_crystal_1_1 4.36914e+00 4.67550e-01 7.21602e-04 -3.93511e+00 - 3 par_crystal_1_2 2.71531e+02 3.29814e+01 2.32506e-03 -3.75607e+00 - 4 par_crystal_1_3 3.37290e+00 5.01685e-01 1.25517e-04 -1.80638e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.515e-05 2.851e-04 2.343e-01 -1.699e-03 - 2.851e-04 2.238e-01 -2.528e+00 1.548e-02 - 2.343e-01 -2.528e+00 2.967e+03 1.176e+01 - -1.699e-03 1.548e-02 1.176e+01 2.538e-01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99694 1.000 0.081 0.579 -0.454 - 2 0.94927 0.081 1.000 -0.098 0.065 - 3 0.99687 0.579 -0.098 1.000 0.429 - 4 0.99618 -0.454 0.065 0.429 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 14211 - Background number of gaus_exp_252_330 = 14211 - Background number of novo_285_624 = 17618.3 - Background number of crystal_1_285_624 = 17618.3 - Background number of gaus_bern_285_624 = 17618.3 - Background number of landau_285_624 = 17618.3 -par_crystal_0 param 0.440594 0.0464698 -par_crystal_1 param 0.982994 0.655195 -par_crystal_2 param 271.542 0.738644 -par_crystal_3 param 28.7224 2.03002 -par_crystal_1_0 param 0.0445574 0.0074261 -par_crystal_1_1 param 4.36914 0.46755 -par_crystal_1_2 param 271.531 32.9814 -par_crystal_1_3 param 3.3729 0.501685 -par_gaus_exp_0 param 271.558 0.814214 -par_gaus_exp_1 param 30.6822 1.86973 -par_gaus_exp_2 param 0.38277 0.0245149 -par_novo_0 param 250 34.0246 -par_novo_1 param 38.6596 2.31421 -par_novo_2 param -1.2752 0.072293 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_300_crystal_1_285_624/datacard_300_crystal_1_285_624.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_300_crystal_1_285_624/datacard_300_crystal_1_285_624.txt deleted file mode 100644 index 7be44c6..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_300_crystal_1_285_624/datacard_300_crystal_1_285_624.txt +++ /dev/null @@ -1,30 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_300.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_crystal_1_285_624.root HbbHbb:f_crystal_1 -shapes data_obs HbbHbb w_background_crystal_1_285_624.root HbbHbb:data_obs_crystal_1_285_624 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 304.126 17618.3 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06837 - -JER lnN 1.02029 - -JEC lnN 1.00496 - -trigger lnN 1.10 - -sg_p0 param 300.807 -0.137814/+0.209326 -sg_p1 param 6.67548 -0.208065/+0.115424 -sg_p2 param 286.348 -3.92058/+7.00009 -sg_p3 param 37.0116 -5.30823/+2.45479 -sg_p4 param 0.646423 -0.0121632/+0.0116859 -par_crystal_1_0 param 0.0445574 0.0074261 -par_crystal_1_1 param 4.36914 0.46755 -par_crystal_1_2 param 271.531 32.9814 -par_crystal_1_3 param 3.3729 0.501685 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_300_crystal_1_285_624/signal300_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_300_crystal_1_285_624/signal300_sig.log deleted file mode 100644 index e692189..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_300_crystal_1_285_624/signal300_sig.log +++ /dev/null @@ -1,859 +0,0 @@ - -Processing test.c... -nSignal_init = 292400 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11139.4 FROM MIGRAD STATUS=INITIATE 41 CALLS 42 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.85000e+02 7.00000e+00 0.00000e+00 3.99147e+02 - 2 sg_p1 2.00000e+01 3.00000e+00 0.00000e+00 5.36454e+01 - 3 sg_p2 3.05000e+02 1.10000e+01 0.00000e+00 5.03573e+02 - 4 sg_p3 2.15253e+01 1.20000e+01 -9.40600e-01 -5.65980e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -2.37474e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10983.2 FROM MIGRAD STATUS=CONVERGED 401 CALLS 402 TOTAL - EDM=5.6187e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.88323e+02 4.47990e-01 9.04940e-04 1.11533e-01 - 2 sg_p1 2.05573e+01 3.30978e-01 1.55295e-03 -5.38166e-02 - 3 sg_p2 3.60000e+02 7.01972e+00 3.68073e-02** at limit ** - 4 sg_p3 3.31232e+01 1.31185e+01 9.89999e-03 1.11043e-02 - 5 sg_p4 9.64843e-01 1.04001e-02 1.95930e-03 4.50763e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.007e-01 1.739e-02 -1.190e-04 -7.889e-01 9.394e-04 - 1.739e-02 1.096e-01 -6.312e-05 -5.744e-02 4.186e-04 - -1.190e-04 -6.312e-05 9.525e-05 8.817e-03 -7.777e-06 - -7.889e-01 -5.744e-02 8.817e-03 1.767e+02 -1.200e-01 - 9.394e-04 4.186e-04 -7.777e-06 -1.200e-01 1.083e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23279 1.000 0.117 -0.027 -0.132 0.202 - 2 0.23564 0.117 1.000 -0.020 -0.013 0.122 - 3 0.07829 -0.027 -0.020 1.000 0.068 -0.077 - 4 0.87296 -0.132 -0.013 0.068 1.000 -0.867 - 5 0.87761 0.202 0.122 -0.077 -0.867 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10983.2 FROM HESSE STATUS=OK 31 CALLS 433 TOTAL - EDM=5.61214e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.88323e+02 4.48511e-01 1.80988e-04 9.50767e-02 - 2 sg_p1 2.05573e+01 3.30912e-01 6.21181e-05 3.71642e-02 - 3 sg_p2 3.60000e+02 7.00510e+00 7.36146e-03 1.57114e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 3.31232e+01 1.34621e+01 3.96000e-04 -6.61896e-01 - 5 sg_p4 9.64843e-01 1.06761e-02 3.91861e-04 1.19356e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.012e-01 1.735e-02 -2.672e-05 -8.721e-01 9.990e-04 - 1.735e-02 1.095e-01 -1.383e-05 -7.606e-02 4.303e-04 - -2.672e-05 -1.383e-05 9.505e-05 2.045e-03 -1.786e-06 - -8.721e-01 -7.606e-02 2.045e-03 1.863e+02 -1.276e-01 - 9.990e-04 4.303e-04 -1.786e-06 -1.276e-01 1.141e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23747 1.000 0.117 -0.006 -0.142 0.209 - 2 0.23484 0.117 1.000 -0.004 -0.017 0.122 - 3 0.01751 -0.006 -0.004 1.000 0.015 -0.017 - 4 0.87999 -0.142 -0.017 0.015 1.000 -0.875 - 5 0.88427 0.209 0.122 -0.017 -0.875 1.000 -300 -288.323 +- 0.448511 -20.5573 +- 0.330912 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11021.8 FROM MIGRAD STATUS=INITIATE 44 CALLS 45 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.85000e+02 7.00000e+00 0.00000e+00 -1.23228e+01 - 2 sg_p1 2.00000e+01 3.00000e+00 0.00000e+00 1.69370e+02 - 3 sg_p2 3.05000e+02 1.10000e+01 0.00000e+00 3.59937e+02 - 4 sg_p3 2.91405e+01 1.20000e+01 -7.49116e-01 1.62870e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -1.88730e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10926.7 FROM MIGRAD STATUS=CONVERGED 404 CALLS 405 TOTAL - EDM=7.36709e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.89695e+02 4.48479e-01 9.08525e-04 -1.63756e-02 - 2 sg_p1 2.04912e+01 3.33789e-01 1.55841e-03 3.48244e-02 - 3 sg_p2 3.60000e+02 5.29130e+00 3.12243e-02** at limit ** - 4 sg_p3 2.52611e+01 5.98773e+00 7.97733e-03 1.66965e-02 - 5 sg_p4 9.65128e-01 6.44706e-03 1.81806e-03 6.25824e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.011e-01 1.895e-02 -2.334e-04 -3.465e-01 6.114e-04 - 1.895e-02 1.114e-01 -1.530e-04 -6.771e-02 4.120e-04 - -2.334e-04 -1.530e-04 2.973e-04 6.759e-03 -8.288e-06 - -3.465e-01 -6.771e-02 6.759e-03 3.612e+01 -2.585e-02 - 6.114e-04 4.120e-04 -8.288e-06 -2.585e-02 4.158e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22936 1.000 0.127 -0.030 -0.129 0.211 - 2 0.24516 0.127 1.000 -0.027 -0.034 0.191 - 3 0.08010 -0.030 -0.027 1.000 0.065 -0.075 - 4 0.67399 -0.129 -0.034 0.065 1.000 -0.667 - 5 0.69669 0.211 0.191 -0.075 -0.667 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10926.7 FROM HESSE STATUS=OK 31 CALLS 436 TOTAL - EDM=7.38964e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.89695e+02 4.48441e-01 1.81705e-04 1.34553e-01 - 2 sg_p1 2.04912e+01 3.33683e-01 6.23363e-05 3.27513e-02 - 3 sg_p2 3.60000e+02 5.29001e+00 6.24486e-03 1.57151e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 2.52611e+01 5.99008e+00 3.19093e-04 -8.41506e-01 - 5 sg_p4 9.65128e-01 6.44684e-03 3.63611e-04 1.19511e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.011e-01 1.882e-02 -5.556e-05 -3.514e-01 6.128e-04 - 1.882e-02 1.114e-01 -3.636e-05 -7.207e-02 4.132e-04 - -5.556e-05 -3.636e-05 2.972e-04 1.629e-03 -1.980e-06 - -3.514e-01 -7.207e-02 1.629e-03 3.615e+01 -2.589e-02 - 6.128e-04 4.132e-04 -1.980e-06 -2.589e-02 4.158e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22901 1.000 0.126 -0.007 -0.130 0.212 - 2 0.24394 0.126 1.000 -0.006 -0.036 0.192 - 3 0.01917 -0.007 -0.006 1.000 0.016 -0.018 - 4 0.67426 -0.130 -0.036 0.016 1.000 -0.668 - 5 0.69667 0.212 0.192 -0.018 -0.668 1.000 -300 -289.695 +- 0.448441 -20.4912 +- 0.333683 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10998.6 FROM MIGRAD STATUS=INITIATE 44 CALLS 45 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.85000e+02 7.00000e+00 0.00000e+00 1.82292e+02 - 2 sg_p1 2.00000e+01 3.00000e+00 0.00000e+00 1.71874e+02 - 3 sg_p2 3.05000e+02 1.10000e+01 0.00000e+00 5.32975e+02 - 4 sg_p3 3.07762e+01 1.20000e+01 -7.12504e-01 9.72386e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -2.81076e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10857.4 FROM MIGRAD STATUS=CONVERGED 443 CALLS 444 TOTAL - EDM=4.98868e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.86897e+02 4.50384e-01 9.00651e-04 -4.42030e-02 - 2 sg_p1 2.05381e+01 3.30444e-01 1.54851e-03 -1.71904e-02 - 3 sg_p2 3.60000e+02 4.58768e+00 2.94940e-02** at limit ** - 4 sg_p3 3.22720e+01 1.23522e+01 9.50923e-03 1.52629e-02 - 5 sg_p4 9.64411e-01 1.01122e-02 1.90336e-03 6.66364e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.029e-01 1.643e-02 -6.905e-05 -9.258e-01 1.002e-03 - 1.643e-02 1.092e-01 -3.441e-05 -1.687e-01 4.515e-04 - -6.905e-05 -3.441e-05 5.485e-05 5.168e-03 -4.433e-06 - -9.258e-01 -1.687e-01 5.168e-03 1.563e+02 -1.096e-01 - 1.002e-03 4.515e-04 -4.433e-06 -1.096e-01 1.024e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23805 1.000 0.110 -0.021 -0.164 0.220 - 2 0.21706 0.110 1.000 -0.014 -0.041 0.135 - 3 0.06085 -0.021 -0.014 1.000 0.056 -0.059 - 4 0.87005 -0.164 -0.041 0.056 1.000 -0.866 - 5 0.87483 0.220 0.135 -0.059 -0.866 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10857.4 FROM HESSE STATUS=OK 31 CALLS 475 TOTAL - EDM=4.96344e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.86897e+02 4.51095e-01 1.80130e-04 5.42398e-02 - 2 sg_p1 2.05381e+01 3.30465e-01 6.19404e-05 3.58796e-02 - 3 sg_p2 3.60000e+02 4.57970e+00 5.89879e-03 1.57112e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 3.22720e+01 1.26301e+01 3.80369e-04 -6.80009e-01 - 5 sg_p4 9.64411e-01 1.03457e-02 3.80673e-04 1.19122e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.035e-01 1.650e-02 -1.576e-05 -1.005e+00 1.062e-03 - 1.650e-02 1.092e-01 -7.711e-06 -1.941e-01 4.695e-04 - -1.576e-05 -7.711e-06 5.475e-05 1.202e-03 -1.025e-06 - -1.005e+00 -1.941e-01 1.202e-03 1.636e+02 -1.156e-01 - 1.062e-03 4.695e-04 -1.025e-06 -1.156e-01 1.071e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.24421 1.000 0.111 -0.005 -0.174 0.227 - 2 0.21733 0.111 1.000 -0.003 -0.046 0.137 - 3 0.01376 -0.005 -0.003 1.000 0.013 -0.013 - 4 0.87625 -0.174 -0.046 0.013 1.000 -0.873 - 5 0.88081 0.227 0.137 -0.013 -0.873 1.000 -300 -286.897 +- 0.451095 -20.5381 +- 0.330465 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=9427.95 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 0.00000e+00 1.31464e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 0.00000e+00 -2.82382e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 0.00000e+00 -1.05976e+00 - 4 sg_p3 5.43313e+01 1.20000e+01 -2.64207e-01 7.00043e+00 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -1.45220e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9204.59 FROM MIGRAD STATUS=CONVERGED 229 CALLS 230 TOTAL - EDM=6.66547e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00807e+02 2.06875e-01 9.24958e-04 -7.84006e-02 - 2 sg_p1 6.67548e+00 2.20836e-01 5.66581e-03 -4.55276e-03 - 3 sg_p2 2.86348e+02 3.69244e+00 1.62590e-03 -1.80856e-01 - 4 sg_p3 3.70116e+01 4.47529e+00 3.25190e-03 -7.94138e-02 - 5 sg_p4 6.46423e-01 1.60401e-02 1.99112e-03 -2.02931e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.280e-02 -6.675e-03 3.606e-02 -1.464e-01 -2.452e-04 - -6.675e-03 4.897e-02 -3.892e-01 5.095e-01 1.306e-03 - 3.606e-02 -3.892e-01 1.364e+01 -1.331e+01 -4.368e-04 - -1.464e-01 5.095e-01 -1.331e+01 2.008e+01 -1.514e-03 - -2.452e-04 1.306e-03 -4.368e-04 -1.514e-03 2.574e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23172 1.000 -0.146 0.047 -0.158 -0.074 - 2 0.64662 -0.146 1.000 -0.476 0.514 0.368 - 3 0.81187 0.047 -0.476 1.000 -0.804 -0.007 - 4 0.82962 -0.158 0.514 -0.804 1.000 -0.021 - 5 0.44432 -0.074 0.368 -0.007 -0.021 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9204.59 FROM HESSE STATUS=OK 31 CALLS 261 TOTAL - EDM=6.65624e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00807e+02 2.07041e-01 1.84992e-04 -2.83282e-01 - 2 sg_p1 6.67548e+00 2.24150e-01 2.26632e-04 -1.62980e-01 - 3 sg_p2 2.86348e+02 3.84665e+00 3.25179e-04 2.97108e-01 - 4 sg_p3 3.70116e+01 4.66245e+00 1.30076e-04 -5.82134e-01 - 5 sg_p4 6.46423e-01 1.60428e-02 3.98224e-04 2.97202e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.287e-02 -7.031e-03 4.534e-02 -1.570e-01 -2.475e-04 - -7.031e-03 5.046e-02 -4.308e-01 5.599e-01 1.315e-03 - 4.534e-02 -4.308e-01 1.481e+01 -1.475e+01 -6.186e-04 - -1.570e-01 5.599e-01 -1.475e+01 2.180e+01 -1.240e-03 - -2.475e-04 1.315e-03 -6.186e-04 -1.240e-03 2.575e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23496 1.000 -0.151 0.057 -0.162 -0.074 - 2 0.65975 -0.151 1.000 -0.498 0.534 0.365 - 3 0.82821 0.057 -0.498 1.000 -0.821 -0.010 - 4 0.84430 -0.162 0.534 -0.821 1.000 -0.017 - 5 0.44463 -0.074 0.365 -0.010 -0.017 1.000 -300 -300.807 +- 0.207041 -6.67548 +- 0.22415 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=9324.05 FROM MIGRAD STATUS=INITIATE 18 CALLS 19 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 2.01358e-01 1.26986e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -3.26570e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 2.01358e-01 1.80651e+01 - 4 sg_p3 7.00000e+01 1.20000e+01 2.01358e-01 1.95490e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -1.28150e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 11.1802 added to diagonal of error matrix - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.2302e+00 1.0000e+00 1.0003e+00 1.0996e+00 3.1303e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 1.233367 TO DIAGONAL. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9114.57 FROM MIGRAD STATUS=CONVERGED 289 CALLS 290 TOTAL - EDM=5.54375e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00989e+02 2.12814e-01 9.43941e-04 -9.14080e-04 - 2 sg_p1 6.53035e+00 2.40800e-01 5.98084e-03 4.80647e-03 - 3 sg_p2 2.93079e+02 2.00891e+00 1.26510e-03 8.67004e-03 - 4 sg_p3 3.22426e+01 3.06970e+00 3.13614e-03 5.39262e-03 - 5 sg_p4 6.37280e-01 1.82444e-02 2.01579e-03 -9.05889e-04 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.529e-02 -7.391e-03 -1.667e-02 -9.633e-02 -4.577e-04 - -7.391e-03 5.828e-02 -1.840e-01 4.072e-01 2.575e-03 - -1.667e-02 -1.840e-01 4.036e+00 -3.579e+00 -1.048e-02 - -9.633e-02 4.072e-01 -3.579e+00 9.437e+00 2.200e-02 - -4.577e-04 2.575e-03 -1.048e-02 2.200e-02 3.330e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23364 1.000 -0.144 -0.039 -0.147 -0.118 - 2 0.68293 -0.144 1.000 -0.379 0.549 0.585 - 3 0.60026 -0.039 -0.379 1.000 -0.580 -0.286 - 4 0.69097 -0.147 0.549 -0.580 1.000 0.393 - 5 0.59255 -0.118 0.585 -0.286 0.393 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9114.57 FROM HESSE STATUS=OK 31 CALLS 321 TOTAL - EDM=5.65701e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00989e+02 2.12854e-01 3.77576e-05 -2.70672e-01 - 2 sg_p1 6.53035e+00 2.42646e-01 1.19617e-03 -2.37040e-01 - 3 sg_p2 2.93079e+02 2.03806e+00 2.53019e-04 3.76364e-01 - 4 sg_p3 3.22426e+01 3.11925e+00 1.25446e-04 -6.80639e-01 - 5 sg_p4 6.37280e-01 1.83457e-02 8.06317e-05 2.78131e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.531e-02 -7.562e-03 -1.490e-02 -9.842e-02 -4.666e-04 - -7.562e-03 5.919e-02 -1.948e-01 4.241e-01 2.634e-03 - -1.490e-02 -1.948e-01 4.155e+00 -3.791e+00 -1.116e-02 - -9.842e-02 4.241e-01 -3.791e+00 9.744e+00 2.314e-02 - -4.666e-04 2.634e-03 -1.116e-02 2.314e-02 3.367e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23439 1.000 -0.146 -0.034 -0.148 -0.119 - 2 0.68886 -0.146 1.000 -0.393 0.558 0.590 - 3 0.61521 -0.034 -0.393 1.000 -0.596 -0.298 - 4 0.70278 -0.148 0.558 -0.596 1.000 0.404 - 5 0.59855 -0.119 0.590 -0.298 0.404 1.000 -300 -300.989 +- 0.212854 -6.53035 +- 0.242646 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=9310.64 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 0.00000e+00 1.34333e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 0.00000e+00 -2.36771e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 0.00000e+00 -1.06301e+01 - 4 sg_p3 4.94125e+01 1.20000e+01 -3.50242e-01 -6.56876e+00 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -1.57740e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9074.37 FROM MIGRAD STATUS=CONVERGED 198 CALLS 199 TOTAL - EDM=4.60513e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00716e+02 2.01045e-01 8.96469e-04 2.14226e-01 - 2 sg_p1 6.51517e+00 2.15145e-01 5.62639e-03 1.07423e-02 - 3 sg_p2 2.82932e+02 4.43725e+00 1.74062e-03 -1.31230e-01 - 4 sg_p3 3.77806e+01 4.64318e+00 3.03684e-03 -8.20421e-02 - 5 sg_p4 6.44030e-01 1.61428e-02 1.96449e-03 1.08169e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.042e-02 -6.174e-03 6.288e-02 -1.484e-01 -1.712e-04 - -6.174e-03 4.648e-02 -4.710e-01 4.996e-01 9.943e-04 - 6.288e-02 -4.710e-01 1.971e+01 -1.755e+01 9.466e-03 - -1.484e-01 4.996e-01 -1.755e+01 2.162e+01 -1.284e-02 - -1.712e-04 9.943e-04 9.466e-03 -1.284e-02 2.607e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22609 1.000 -0.142 0.070 -0.159 -0.053 - 2 0.63799 -0.142 1.000 -0.492 0.498 0.286 - 3 0.85697 0.070 -0.492 1.000 -0.850 0.132 - 4 0.86627 -0.159 0.498 -0.850 1.000 -0.171 - 5 0.46460 -0.053 0.286 0.132 -0.171 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9074.37 FROM HESSE STATUS=OK 31 CALLS 230 TOTAL - EDM=4.60124e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00716e+02 2.01266e-01 1.79294e-04 -2.89604e-01 - 2 sg_p1 6.51517e+00 2.18764e-01 1.12528e-03 -2.44853e-01 - 3 sg_p2 2.82932e+02 4.66955e+00 3.48124e-04 2.57637e-01 - 4 sg_p3 3.77806e+01 4.88570e+00 1.21473e-04 -5.66865e-01 - 5 sg_p4 6.44030e-01 1.61620e-02 3.92898e-04 2.92200e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.051e-02 -6.582e-03 7.683e-02 -1.625e-01 -1.645e-04 - -6.582e-03 4.806e-02 -5.290e-01 5.602e-01 9.646e-04 - 7.683e-02 -5.290e-01 2.183e+01 -1.979e+01 1.061e-02 - -1.625e-01 5.602e-01 -1.979e+01 2.394e+01 -1.401e-02 - -1.645e-04 9.646e-04 1.061e-02 -1.401e-02 2.613e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23066 1.000 -0.149 0.082 -0.165 -0.051 - 2 0.65313 -0.149 1.000 -0.516 0.522 0.272 - 3 0.87189 0.082 -0.516 1.000 -0.866 0.140 - 4 0.88014 -0.165 0.522 -0.866 1.000 -0.177 - 5 0.46660 -0.051 0.272 0.140 -0.177 1.000 -300 -300.716 +- 0.201266 -6.51517 +- 0.218764 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=9199.28 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 2.01358e-01 1.31737e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -3.80725e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 2.01358e-01 3.68970e+01 - 4 sg_p3 7.00000e+01 1.20000e+01 2.01358e-01 3.60460e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -9.61061e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=8979.33 FROM MIGRAD STATUS=CONVERGED 286 CALLS 287 TOTAL - EDM=6.06176e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00769e+02 2.16735e-01 9.53991e-04 -5.33757e-02 - 2 sg_p1 6.70308e+00 2.45021e-01 5.89293e-03 -3.95912e-02 - 3 sg_p2 2.87922e+02 3.34063e+00 1.53235e-03 -3.18644e-02 - 4 sg_p3 3.55948e+01 4.26381e+00 3.23155e-03 -4.27157e-03 - 5 sg_p4 6.37600e-01 1.68956e-02 2.00611e-03 2.50190e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.698e-02 -9.160e-03 4.009e-02 1.638e-01 -3.977e-04 - -9.160e-03 6.035e-02 -4.159e-01 -5.898e-01 1.951e-03 - 4.009e-02 -4.159e-01 1.117e+01 1.132e+01 -9.034e-03 - 1.638e-01 -5.898e-01 1.132e+01 1.823e+01 -1.125e-02 - -3.977e-04 1.951e-03 -9.034e-03 -1.125e-02 2.856e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25346 1.000 -0.172 0.055 0.177 -0.109 - 2 0.68892 -0.172 1.000 -0.507 -0.562 0.470 - 3 0.80257 0.055 -0.507 1.000 0.794 -0.160 - 4 0.82438 0.177 -0.562 0.794 1.000 -0.156 - 5 0.48969 -0.109 0.470 -0.160 -0.156 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=8979.33 FROM HESSE STATUS=OK 31 CALLS 318 TOTAL - EDM=6.06043e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00769e+02 2.16688e-01 1.90798e-04 -2.85961e-01 - 2 sg_p1 6.70308e+00 2.44943e-01 1.17859e-03 -1.49009e-01 - 3 sg_p2 2.87922e+02 3.32664e+00 3.06471e-04 3.15452e-01 - 4 sg_p3 3.55948e+01 4.24592e+00 1.29262e-04 -2.53092e+00 - 5 sg_p4 6.37600e-01 1.68934e-02 4.01222e-04 2.78798e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.696e-02 -9.141e-03 3.853e-02 1.617e-01 -3.954e-04 - -9.141e-03 6.031e-02 -4.131e-01 -5.862e-01 1.947e-03 - 3.853e-02 -4.131e-01 1.107e+01 1.120e+01 -8.911e-03 - 1.617e-01 -5.862e-01 1.120e+01 1.807e+01 -1.105e-02 - -3.954e-04 1.947e-03 -8.911e-03 -1.105e-02 2.855e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25265 1.000 -0.172 0.053 0.175 -0.108 - 2 0.68868 -0.172 1.000 -0.506 -0.562 0.469 - 3 0.80070 0.053 -0.506 1.000 0.792 -0.158 - 4 0.82272 0.175 -0.562 0.792 1.000 -0.154 - 5 0.48949 -0.108 0.469 -0.158 -0.154 1.000 -300 -300.769 +- 0.216688 -6.70308 +- 0.244943 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=9528.95 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 2.01358e-01 1.40358e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -2.86077e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 2.01358e-01 4.07742e+01 - 4 sg_p3 7.00000e+01 1.20000e+01 2.01358e-01 3.28657e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -1.55130e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9284.6 FROM MIGRAD STATUS=CONVERGED 275 CALLS 276 TOTAL - EDM=1.0669e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00844e+02 2.01930e-01 9.05593e-04 7.10616e-03 - 2 sg_p1 6.50018e+00 2.20682e-01 5.70172e-03 -1.20796e-03 - 3 sg_p2 2.89404e+02 2.63913e+00 1.40244e-03 7.93444e-03 - 4 sg_p3 3.36229e+01 3.43508e+00 3.08392e-03 -8.78771e-03 - 5 sg_p4 6.54921e-01 1.64524e-02 1.98673e-03 -7.23147e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.078e-02 -6.775e-03 1.130e-02 -1.118e-01 -3.655e-04 - -6.775e-03 4.891e-02 -2.623e-01 4.000e-01 1.828e-03 - 1.130e-02 -2.623e-01 6.967e+00 -6.550e+00 -9.484e-03 - -1.118e-01 4.000e-01 -6.550e+00 1.182e+01 1.315e-02 - -3.655e-04 1.828e-03 -9.484e-03 1.315e-02 2.708e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23688 1.000 -0.152 0.021 -0.161 -0.110 - 2 0.66103 -0.152 1.000 -0.449 0.526 0.502 - 3 0.73398 0.021 -0.449 1.000 -0.722 -0.218 - 4 0.76528 -0.161 0.526 -0.722 1.000 0.232 - 5 0.50584 -0.110 0.502 -0.218 0.232 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9284.6 FROM HESSE STATUS=OK 31 CALLS 307 TOTAL - EDM=1.12622e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00844e+02 2.02032e-01 3.62237e-05 -2.80744e-01 - 2 sg_p1 6.50018e+00 2.23003e-01 2.28069e-04 -2.52587e-01 - 3 sg_p2 2.89404e+02 2.70635e+00 2.80488e-04 3.32825e-01 - 4 sg_p3 3.36229e+01 3.52423e+00 1.23357e-04 -6.93457e+00 - 5 sg_p4 6.54921e-01 1.65063e-02 3.97346e-04 3.15027e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.082e-02 -7.019e-03 1.539e-02 -1.166e-01 -3.746e-04 - -7.019e-03 4.995e-02 -2.818e-01 4.255e-01 1.872e-03 - 1.539e-02 -2.818e-01 7.327e+00 -7.045e+00 -1.028e-02 - -1.166e-01 4.255e-01 -7.045e+00 1.244e+01 1.424e-02 - -3.746e-04 1.872e-03 -1.028e-02 1.424e-02 2.726e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23888 1.000 -0.155 0.028 -0.164 -0.112 - 2 0.66984 -0.155 1.000 -0.466 0.540 0.507 - 3 0.74924 0.028 -0.466 1.000 -0.738 -0.230 - 4 0.77870 -0.164 0.540 -0.738 1.000 0.244 - 5 0.51061 -0.112 0.507 -0.230 0.244 1.000 -300 -300.844 +- 0.202032 -6.50018 +- 0.223003 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=8804.14 FROM MIGRAD STATUS=INITIATE 38 CALLS 39 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 0.00000e+00 1.21619e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 0.00000e+00 -2.50995e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 0.00000e+00 -2.34806e+01 - 4 sg_p3 5.09831e+01 1.20000e+01 -3.22511e-01 -1.58294e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -1.45258e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=8594.18 FROM MIGRAD STATUS=CONVERGED 195 CALLS 196 TOTAL - EDM=0.000103955 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00810e+02 2.13585e-01 9.23962e-04 -3.32389e-01 - 2 sg_p1 6.67466e+00 2.27375e-01 5.64986e-03 -6.39462e-02 - 3 sg_p2 2.86358e+02 3.78706e+00 1.67027e-03 2.10141e-01 - 4 sg_p3 3.68730e+01 4.57772e+00 3.31711e-03 1.33026e-01 - 5 sg_p4 6.48483e-01 1.65693e-02 1.99186e-03 1.18731e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.562e-02 -7.064e-03 3.747e-02 -1.545e-01 -2.634e-04 - -7.064e-03 5.193e-02 -4.091e-01 5.342e-01 1.402e-03 - 3.747e-02 -4.091e-01 1.435e+01 -1.392e+01 -8.150e-04 - -1.545e-01 5.342e-01 -1.392e+01 2.101e+01 -1.176e-03 - -2.634e-04 1.402e-03 -8.150e-04 -1.176e-03 2.747e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23149 1.000 -0.145 0.046 -0.158 -0.074 - 2 0.64493 -0.145 1.000 -0.474 0.511 0.371 - 3 0.80971 0.046 -0.474 1.000 -0.802 -0.013 - 4 0.82741 -0.158 0.511 -0.802 1.000 -0.015 - 5 0.44365 -0.074 0.371 -0.013 -0.015 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=8594.18 FROM HESSE STATUS=OK 31 CALLS 227 TOTAL - EDM=0.000103618 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00810e+02 2.13733e-01 1.84792e-04 -2.83111e-01 - 2 sg_p1 6.67466e+00 2.30409e-01 1.12997e-03 -1.63396e-01 - 3 sg_p2 2.86358e+02 3.92954e+00 3.34054e-04 2.97224e-01 - 4 sg_p3 3.68730e+01 4.75005e+00 6.63422e-04 -5.84901e-01 - 5 sg_p4 6.48483e-01 1.65714e-02 3.98372e-04 3.01515e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.569e-02 -7.400e-03 4.620e-02 -1.644e-01 -2.656e-04 - -7.400e-03 5.333e-02 -4.485e-01 5.817e-01 1.411e-03 - 4.620e-02 -4.485e-01 1.545e+01 -1.528e+01 -1.007e-03 - -1.644e-01 5.817e-01 -1.528e+01 2.263e+01 -8.956e-04 - -2.656e-04 1.411e-03 -1.007e-03 -8.956e-04 2.747e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23430 1.000 -0.150 0.055 -0.162 -0.075 - 2 0.65672 -0.150 1.000 -0.494 0.530 0.369 - 3 0.82472 0.055 -0.494 1.000 -0.817 -0.015 - 4 0.84090 -0.162 0.530 -0.817 1.000 -0.011 - 5 0.44388 -0.075 0.369 -0.015 -0.011 1.000 -300 -300.81 +- 0.213733 -6.67466 +- 0.230409 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10085.1 FROM MIGRAD STATUS=INITIATE 38 CALLS 39 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 0.00000e+00 1.41204e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 0.00000e+00 -3.13147e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 0.00000e+00 9.36393e+00 - 4 sg_p3 5.63011e+01 1.20000e+01 -2.30347e-01 1.74222e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -1.47792e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9847.01 FROM MIGRAD STATUS=CONVERGED 237 CALLS 238 TOTAL - EDM=9.73968e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00804e+02 2.00448e-01 9.27938e-04 -2.66723e-02 - 2 sg_p1 6.67674e+00 2.14181e-01 5.68372e-03 6.00134e-04 - 3 sg_p2 2.86357e+02 3.57965e+00 1.66724e-03 -1.62501e-02 - 4 sg_p3 3.71633e+01 4.35962e+00 3.32473e-03 2.36830e-03 - 5 sg_p4 6.44672e-01 1.55331e-02 1.99195e-03 -8.00555e-04 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.018e-02 -6.290e-03 3.361e-02 -1.381e-01 -2.282e-04 - -6.290e-03 4.605e-02 -3.651e-01 4.812e-01 1.217e-03 - 3.361e-02 -3.651e-01 1.282e+01 -1.255e+01 -7.211e-05 - -1.381e-01 4.812e-01 -1.255e+01 1.905e+01 -1.851e-03 - -2.282e-04 1.217e-03 -7.211e-05 -1.851e-03 2.414e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23182 1.000 -0.146 0.047 -0.158 -0.073 - 2 0.64675 -0.146 1.000 -0.475 0.514 0.365 - 3 0.81111 0.047 -0.475 1.000 -0.803 -0.001 - 4 0.82935 -0.158 0.514 -0.803 1.000 -0.027 - 5 0.44510 -0.073 0.365 -0.001 -0.027 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9847.01 FROM HESSE STATUS=OK 31 CALLS 269 TOTAL - EDM=1.05973e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00804e+02 2.00611e-01 1.85588e-04 -2.83535e-01 - 2 sg_p1 6.67674e+00 2.17452e-01 2.27349e-04 -1.62344e-01 - 3 sg_p2 2.86357e+02 3.73232e+00 3.33449e-04 2.97212e-01 - 4 sg_p3 3.71633e+01 4.54584e+00 1.32989e-04 -5.79108e-01 - 5 sg_p4 6.44672e-01 1.55348e-02 7.96779e-05 2.93540e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.025e-02 -6.630e-03 4.251e-02 -1.483e-01 -2.300e-04 - -6.630e-03 4.748e-02 -4.050e-01 5.298e-01 1.225e-03 - 4.251e-02 -4.050e-01 1.394e+01 -1.395e+01 -2.119e-04 - -1.483e-01 5.298e-01 -1.395e+01 2.072e+01 -1.629e-03 - -2.300e-04 1.225e-03 -2.119e-04 -1.629e-03 2.414e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23512 1.000 -0.152 0.057 -0.162 -0.074 - 2 0.66010 -0.152 1.000 -0.498 0.534 0.362 - 3 0.82785 0.057 -0.498 1.000 -0.821 -0.004 - 4 0.84435 -0.162 0.534 -0.821 1.000 -0.023 - 5 0.44529 -0.074 0.362 -0.004 -0.023 1.000 -300 -300.804 +- 0.200611 -6.67674 +- 0.217452 -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 300.807 +- 0.207041 (stat) - 0.0909738 + 0.181936 (syst); -0.137814/+0.209326 (total) - Uncertainty on sg_p1 = 6.67548 +- 0.22415 (stat) - 0.1753 + 0.0276028 (syst); -0.208065/+0.115424 (total) - Uncertainty on sg_p2 = 286.348 +- 3.84665 (stat) - 3.4164 + 6.73068 (syst); -3.92058/+7.00009 (total) - Uncertainty on sg_p3 = 37.0116 +- 4.66245 (stat) - 4.76893 + 0.769026 (syst); -5.30823/+2.45479 (total) - Uncertainty on sg_p4 = 0.646423 +- 0.0160428 (stat) - 0.00914333 + 0.00849815 (syst); -0.0121632/+0.0116859 (total) - === Baseline plot ===
- norm = 304.126 -JEC lnN 1.00496 - -JER lnN 1.02029 - -btag lnN 1.06837 - -sg_p0 param 300.807 -0.137814/+0.209326 -sg_p1 param 6.67548 -0.208065/+0.115424 -sg_p2 param 286.348 -3.92058/+7.00009 -sg_p3 param 37.0116 -5.30823/+2.45479 -sg_p4 param 0.646423 -0.0121632/+0.0116859 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_300_crystal_252_330/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_300_crystal_252_330/data_bkg.log deleted file mode 100644 index 1be2f6e..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_300_crystal_252_330/data_bkg.log +++ /dev/null @@ -1,717 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [250,330] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [250,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63590.5 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.69443e-02 5.09000e-01 0.00000e+00 -7.94680e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -8.91126e+00 - 3 par_crystal_2 2.62020e+02 4.00000e+00 1.01181e-01 -1.53451e+00 - 4 par_crystal_3 1.65000e+01 2.70000e+00 0.00000e+00 7.46021e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM MIGRAD STATUS=CONVERGED 482 CALLS 483 TOTAL - EDM=0.000814822 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 4.40594e-01 4.43750e-02 2.48631e-03 2.88668e-01 - 2 par_crystal_1 9.82994e-01 6.48221e-01 2.14269e-02 -5.28345e-03 - 3 par_crystal_2 2.71542e+02 7.41091e-01 7.20683e-03 -9.27818e-02 - 4 par_crystal_3 2.87224e+01 2.18588e+00 3.97473e-02 -6.99277e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.970e-03 -2.333e-02 -5.115e-04 1.392e-02 - -2.333e-02 4.358e-01 4.870e-03 -8.391e-01 - -5.115e-04 4.870e-03 5.496e-01 4.381e-01 - 1.392e-02 -8.391e-01 4.381e-01 5.029e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.88989 1.000 -0.796 -0.016 0.140 - 2 0.92807 -0.796 1.000 0.010 -0.567 - 3 0.40865 -0.016 0.010 1.000 0.264 - 4 0.80948 0.140 -0.567 0.264 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM HESSE STATUS=OK 23 CALLS 506 TOTAL - EDM=0.000711421 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 4.40594e-01 4.64698e-02 4.97262e-04 -9.80558e-01 - 2 par_crystal_1 9.82994e-01 6.55195e-01 8.57075e-04 -6.65795e-01 - 3 par_crystal_2 2.71542e+02 7.38644e-01 1.44137e-03 6.15159e-01 - 4 par_crystal_3 2.87224e+01 2.03002e+00 1.58989e-03 -1.05570e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.160e-03 -2.581e-02 -1.109e-03 1.530e-02 - -2.581e-02 4.456e-01 2.508e-02 -7.234e-01 - -1.109e-03 2.508e-02 5.460e-01 3.687e-01 - 1.530e-02 -7.234e-01 3.687e-01 4.306e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.90014 1.000 -0.832 -0.032 0.159 - 2 0.92960 -0.832 1.000 0.051 -0.522 - 3 0.40186 -0.032 0.051 1.000 0.240 - 4 0.77207 0.159 -0.522 0.240 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63714.2 FROM MIGRAD STATUS=INITIATE 33 CALLS 34 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 2.63122e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -5.45805e+02 - 3 par_gaus_exp_2 6.67498e-01 3.05000e-01 -6.37370e-01 7.03093e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM MIGRAD STATUS=CONVERGED 131 CALLS 132 TOTAL - EDM=6.15917e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.71558e+02 8.05096e-01 6.82817e-03 6.24407e-02 - 2 par_gaus_exp_1 3.06822e+01 1.83071e+00 1.43475e-02 1.11468e-02 - 3 par_gaus_exp_2 3.82770e-01 2.42284e-02 3.05774e-03 -9.77170e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.486e-01 -6.079e-01 -1.588e-03 - -6.079e-01 3.370e+00 3.082e-02 - -1.588e-03 3.082e-02 5.871e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.49876 1.000 -0.411 -0.081 - 2 0.77898 -0.411 1.000 0.693 - 3 0.72797 -0.081 0.693 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM HESSE STATUS=OK 16 CALLS 148 TOTAL - EDM=6.13964e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.71558e+02 8.14214e-01 2.73127e-04 -4.35760e-01 - 2 par_gaus_exp_1 3.06822e+01 1.86973e+00 5.73898e-04 4.10264e-01 - 3 par_gaus_exp_2 3.82770e-01 2.45149e-02 1.22310e-04 -8.97531e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.634e-01 -6.630e-01 -2.137e-03 - -6.630e-01 3.516e+00 3.227e-02 - -2.137e-03 3.227e-02 6.011e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.51526 1.000 -0.434 -0.107 - 2 0.78935 -0.434 1.000 0.702 - 3 0.73544 -0.107 0.702 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,625] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.33953 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.33953) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - ... (remaining 126 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.734607 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.734607) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=317.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=327.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=332.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=342.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=347.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=352.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=357.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=362.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=367.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - ... (remaining 53 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0734613 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0734613 - - FCN=103487 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57093e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.56195e+03 - 3 par_novo_2 -1.33668e+00 2.00000e+01 0.00000e+00 1.53931e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM MIGRAD STATUS=CONVERGED 127 CALLS 128 TOTAL - EDM=3.4171e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.43423e+01 1.81223e-01** at limit ** - 2 par_novo_1 3.86596e+01 2.27294e+00 4.95847e-03 -1.04123e-02 - 3 par_novo_2 -1.27520e+00 7.07738e-02 3.70975e-05 -1.26322e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.231e-09 -8.491e-07 -8.580e-07 - -8.491e-07 5.181e+00 1.547e-01 - -8.580e-07 1.547e-01 5.009e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.53332 1.000 -0.005 -0.154 - 2 0.97096 -0.005 1.000 0.960 - 3 0.97165 -0.154 0.960 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM HESSE STATUS=OK 20 CALLS 148 TOTAL - EDM=3.43726e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.40246e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.86596e+01 2.31421e+00 1.98339e-04 4.46530e-01 - 3 par_novo_2 -1.27520e+00 7.22930e-02 1.48390e-06 -1.27523e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 5.974e-09 2.819e-05 -1.296e-06 - 2.819e-05 5.372e+00 1.502e-01 - -1.296e-06 1.502e-01 5.226e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.85665 1.000 0.157 -0.232 - 2 0.97200 0.157 1.000 0.897 - 3 0.97285 -0.232 0.897 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107513 FROM MIGRAD STATUS=INITIATE 54 CALLS 55 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 1.39168e+03 - 2 par_crystal_1_1 7.96220e-02 5.09000e-01 0.00000e+00 5.33770e+03 - 3 par_crystal_1_2 2.56879e+02 4.00000e+00 -1.56713e-01 -1.96669e+01 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 -8.45862e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.5057e-02 2.3309e-03 4.9678e-02 3.9730e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.029030 TO DIAGONAL. - FCN=103250 FROM MIGRAD STATUS=CONVERGED 436 CALLS 437 TOTAL - EDM=3.52757e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 4.45574e-02 4.37117e-03 3.09465e-04 -4.28177e+00 - 2 par_crystal_1_1 4.36914e+00 6.24106e-01 1.80400e-02 6.63742e-02 - 3 par_crystal_1_2 2.71531e+02 3.44700e+01 5.81266e-02 2.25694e-02 - 4 par_crystal_1_3 3.37290e+00 2.71702e-01 3.13791e-03 -4.26197e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.911e-05 -1.221e-03 2.089e-01 3.572e-04 - -1.221e-03 4.065e-01 -2.690e+01 -6.822e-02 - 2.089e-01 -2.690e+01 3.429e+03 1.167e+01 - 3.572e-04 -6.822e-02 1.167e+01 7.401e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99136 1.000 -0.438 0.816 0.300 - 2 0.97307 -0.438 1.000 -0.720 -0.393 - 3 0.99735 0.816 -0.720 1.000 0.733 - 4 0.98716 0.300 -0.393 0.733 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -8.0089e-04 4.0193e-04 7.1213e-02 3.9292e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.004730 TO DIAGONAL. - FCN=103250 FROM HESSE STATUS=NOT POSDEF 23 CALLS 460 TOTAL - EDM=3.56127e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 4.45574e-02 7.42610e-03 6.18930e-05 -1.40582e+00 - 2 par_crystal_1_1 4.36914e+00 4.67550e-01 7.21602e-04 -3.93511e+00 - 3 par_crystal_1_2 2.71531e+02 3.29814e+01 2.32506e-03 -3.75607e+00 - 4 par_crystal_1_3 3.37290e+00 5.01685e-01 1.25517e-04 -1.80638e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.515e-05 2.851e-04 2.343e-01 -1.699e-03 - 2.851e-04 2.238e-01 -2.528e+00 1.548e-02 - 2.343e-01 -2.528e+00 2.967e+03 1.176e+01 - -1.699e-03 1.548e-02 1.176e+01 2.538e-01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99694 1.000 0.081 0.579 -0.454 - 2 0.94927 0.081 1.000 -0.098 0.065 - 3 0.99687 0.579 -0.098 1.000 0.429 - 4 0.99618 -0.454 0.065 0.429 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 14211 - Background number of gaus_exp_252_330 = 14211 - Background number of novo_285_624 = 17618.3 - Background number of crystal_1_285_624 = 17618.3 - Background number of gaus_bern_285_624 = 17618.3 - Background number of landau_285_624 = 17618.3 -par_crystal_0 param 0.440594 0.0464698 -par_crystal_1 param 0.982994 0.655195 -par_crystal_2 param 271.542 0.738644 -par_crystal_3 param 28.7224 2.03002 -par_crystal_1_0 param 0.0445574 0.0074261 -par_crystal_1_1 param 4.36914 0.46755 -par_crystal_1_2 param 271.531 32.9814 -par_crystal_1_3 param 3.3729 0.501685 -par_gaus_exp_0 param 271.558 0.814214 -par_gaus_exp_1 param 30.6822 1.86973 -par_gaus_exp_2 param 0.38277 0.0245149 -par_novo_0 param 250 34.0246 -par_novo_1 param 38.6596 2.31421 -par_novo_2 param -1.2752 0.072293 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_300_crystal_252_330/datacard_300_crystal_252_330.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_300_crystal_252_330/datacard_300_crystal_252_330.txt deleted file mode 100644 index 95360f0..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_300_crystal_252_330/datacard_300_crystal_252_330.txt +++ /dev/null @@ -1,34 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_300.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_crystal_252_330.root HbbHbb:f_crystal -shapes data_obs HbbHbb w_background_crystal_252_330.root HbbHbb:data_obs_crystal_252_330 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 304.126 14211 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06837 - -JER lnN 1.02029 - -JEC lnN 1.00496 - -trigger lnN 1.10 - -sg_p0 param 300.807 -0.137814/+0.209326 -sg_p1 param 6.67548 -0.208065/+0.115424 -sg_p2 param 286.348 -3.92058/+7.00009 -sg_p3 param 37.0116 -5.30823/+2.45479 -sg_p4 param 0.646423 -0.0121632/+0.0116859 -par_crystal_0 param 0.440594 0.0464698 -par_crystal_1 param 0.982994 0.655195 -par_crystal_2 param 271.542 0.738644 -par_crystal_3 param 28.7224 2.03002 -par_crystal_1_0 param 0.0445574 0.0074261 -par_crystal_1_1 param 4.36914 0.46755 -par_crystal_1_2 param 271.531 32.9814 -par_crystal_1_3 param 3.3729 0.501685 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_300_crystal_252_330/signal300_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_300_crystal_252_330/signal300_sig.log deleted file mode 100644 index e692189..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_300_crystal_252_330/signal300_sig.log +++ /dev/null @@ -1,859 +0,0 @@ - -Processing test.c... -nSignal_init = 292400 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11139.4 FROM MIGRAD STATUS=INITIATE 41 CALLS 42 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.85000e+02 7.00000e+00 0.00000e+00 3.99147e+02 - 2 sg_p1 2.00000e+01 3.00000e+00 0.00000e+00 5.36454e+01 - 3 sg_p2 3.05000e+02 1.10000e+01 0.00000e+00 5.03573e+02 - 4 sg_p3 2.15253e+01 1.20000e+01 -9.40600e-01 -5.65980e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -2.37474e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10983.2 FROM MIGRAD STATUS=CONVERGED 401 CALLS 402 TOTAL - EDM=5.6187e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.88323e+02 4.47990e-01 9.04940e-04 1.11533e-01 - 2 sg_p1 2.05573e+01 3.30978e-01 1.55295e-03 -5.38166e-02 - 3 sg_p2 3.60000e+02 7.01972e+00 3.68073e-02** at limit ** - 4 sg_p3 3.31232e+01 1.31185e+01 9.89999e-03 1.11043e-02 - 5 sg_p4 9.64843e-01 1.04001e-02 1.95930e-03 4.50763e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.007e-01 1.739e-02 -1.190e-04 -7.889e-01 9.394e-04 - 1.739e-02 1.096e-01 -6.312e-05 -5.744e-02 4.186e-04 - -1.190e-04 -6.312e-05 9.525e-05 8.817e-03 -7.777e-06 - -7.889e-01 -5.744e-02 8.817e-03 1.767e+02 -1.200e-01 - 9.394e-04 4.186e-04 -7.777e-06 -1.200e-01 1.083e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23279 1.000 0.117 -0.027 -0.132 0.202 - 2 0.23564 0.117 1.000 -0.020 -0.013 0.122 - 3 0.07829 -0.027 -0.020 1.000 0.068 -0.077 - 4 0.87296 -0.132 -0.013 0.068 1.000 -0.867 - 5 0.87761 0.202 0.122 -0.077 -0.867 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10983.2 FROM HESSE STATUS=OK 31 CALLS 433 TOTAL - EDM=5.61214e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.88323e+02 4.48511e-01 1.80988e-04 9.50767e-02 - 2 sg_p1 2.05573e+01 3.30912e-01 6.21181e-05 3.71642e-02 - 3 sg_p2 3.60000e+02 7.00510e+00 7.36146e-03 1.57114e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 3.31232e+01 1.34621e+01 3.96000e-04 -6.61896e-01 - 5 sg_p4 9.64843e-01 1.06761e-02 3.91861e-04 1.19356e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.012e-01 1.735e-02 -2.672e-05 -8.721e-01 9.990e-04 - 1.735e-02 1.095e-01 -1.383e-05 -7.606e-02 4.303e-04 - -2.672e-05 -1.383e-05 9.505e-05 2.045e-03 -1.786e-06 - -8.721e-01 -7.606e-02 2.045e-03 1.863e+02 -1.276e-01 - 9.990e-04 4.303e-04 -1.786e-06 -1.276e-01 1.141e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23747 1.000 0.117 -0.006 -0.142 0.209 - 2 0.23484 0.117 1.000 -0.004 -0.017 0.122 - 3 0.01751 -0.006 -0.004 1.000 0.015 -0.017 - 4 0.87999 -0.142 -0.017 0.015 1.000 -0.875 - 5 0.88427 0.209 0.122 -0.017 -0.875 1.000 -300 -288.323 +- 0.448511 -20.5573 +- 0.330912 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11021.8 FROM MIGRAD STATUS=INITIATE 44 CALLS 45 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.85000e+02 7.00000e+00 0.00000e+00 -1.23228e+01 - 2 sg_p1 2.00000e+01 3.00000e+00 0.00000e+00 1.69370e+02 - 3 sg_p2 3.05000e+02 1.10000e+01 0.00000e+00 3.59937e+02 - 4 sg_p3 2.91405e+01 1.20000e+01 -7.49116e-01 1.62870e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -1.88730e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10926.7 FROM MIGRAD STATUS=CONVERGED 404 CALLS 405 TOTAL - EDM=7.36709e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.89695e+02 4.48479e-01 9.08525e-04 -1.63756e-02 - 2 sg_p1 2.04912e+01 3.33789e-01 1.55841e-03 3.48244e-02 - 3 sg_p2 3.60000e+02 5.29130e+00 3.12243e-02** at limit ** - 4 sg_p3 2.52611e+01 5.98773e+00 7.97733e-03 1.66965e-02 - 5 sg_p4 9.65128e-01 6.44706e-03 1.81806e-03 6.25824e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.011e-01 1.895e-02 -2.334e-04 -3.465e-01 6.114e-04 - 1.895e-02 1.114e-01 -1.530e-04 -6.771e-02 4.120e-04 - -2.334e-04 -1.530e-04 2.973e-04 6.759e-03 -8.288e-06 - -3.465e-01 -6.771e-02 6.759e-03 3.612e+01 -2.585e-02 - 6.114e-04 4.120e-04 -8.288e-06 -2.585e-02 4.158e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22936 1.000 0.127 -0.030 -0.129 0.211 - 2 0.24516 0.127 1.000 -0.027 -0.034 0.191 - 3 0.08010 -0.030 -0.027 1.000 0.065 -0.075 - 4 0.67399 -0.129 -0.034 0.065 1.000 -0.667 - 5 0.69669 0.211 0.191 -0.075 -0.667 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10926.7 FROM HESSE STATUS=OK 31 CALLS 436 TOTAL - EDM=7.38964e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.89695e+02 4.48441e-01 1.81705e-04 1.34553e-01 - 2 sg_p1 2.04912e+01 3.33683e-01 6.23363e-05 3.27513e-02 - 3 sg_p2 3.60000e+02 5.29001e+00 6.24486e-03 1.57151e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 2.52611e+01 5.99008e+00 3.19093e-04 -8.41506e-01 - 5 sg_p4 9.65128e-01 6.44684e-03 3.63611e-04 1.19511e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.011e-01 1.882e-02 -5.556e-05 -3.514e-01 6.128e-04 - 1.882e-02 1.114e-01 -3.636e-05 -7.207e-02 4.132e-04 - -5.556e-05 -3.636e-05 2.972e-04 1.629e-03 -1.980e-06 - -3.514e-01 -7.207e-02 1.629e-03 3.615e+01 -2.589e-02 - 6.128e-04 4.132e-04 -1.980e-06 -2.589e-02 4.158e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22901 1.000 0.126 -0.007 -0.130 0.212 - 2 0.24394 0.126 1.000 -0.006 -0.036 0.192 - 3 0.01917 -0.007 -0.006 1.000 0.016 -0.018 - 4 0.67426 -0.130 -0.036 0.016 1.000 -0.668 - 5 0.69667 0.212 0.192 -0.018 -0.668 1.000 -300 -289.695 +- 0.448441 -20.4912 +- 0.333683 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10998.6 FROM MIGRAD STATUS=INITIATE 44 CALLS 45 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.85000e+02 7.00000e+00 0.00000e+00 1.82292e+02 - 2 sg_p1 2.00000e+01 3.00000e+00 0.00000e+00 1.71874e+02 - 3 sg_p2 3.05000e+02 1.10000e+01 0.00000e+00 5.32975e+02 - 4 sg_p3 3.07762e+01 1.20000e+01 -7.12504e-01 9.72386e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -2.81076e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10857.4 FROM MIGRAD STATUS=CONVERGED 443 CALLS 444 TOTAL - EDM=4.98868e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.86897e+02 4.50384e-01 9.00651e-04 -4.42030e-02 - 2 sg_p1 2.05381e+01 3.30444e-01 1.54851e-03 -1.71904e-02 - 3 sg_p2 3.60000e+02 4.58768e+00 2.94940e-02** at limit ** - 4 sg_p3 3.22720e+01 1.23522e+01 9.50923e-03 1.52629e-02 - 5 sg_p4 9.64411e-01 1.01122e-02 1.90336e-03 6.66364e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.029e-01 1.643e-02 -6.905e-05 -9.258e-01 1.002e-03 - 1.643e-02 1.092e-01 -3.441e-05 -1.687e-01 4.515e-04 - -6.905e-05 -3.441e-05 5.485e-05 5.168e-03 -4.433e-06 - -9.258e-01 -1.687e-01 5.168e-03 1.563e+02 -1.096e-01 - 1.002e-03 4.515e-04 -4.433e-06 -1.096e-01 1.024e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23805 1.000 0.110 -0.021 -0.164 0.220 - 2 0.21706 0.110 1.000 -0.014 -0.041 0.135 - 3 0.06085 -0.021 -0.014 1.000 0.056 -0.059 - 4 0.87005 -0.164 -0.041 0.056 1.000 -0.866 - 5 0.87483 0.220 0.135 -0.059 -0.866 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10857.4 FROM HESSE STATUS=OK 31 CALLS 475 TOTAL - EDM=4.96344e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.86897e+02 4.51095e-01 1.80130e-04 5.42398e-02 - 2 sg_p1 2.05381e+01 3.30465e-01 6.19404e-05 3.58796e-02 - 3 sg_p2 3.60000e+02 4.57970e+00 5.89879e-03 1.57112e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 3.22720e+01 1.26301e+01 3.80369e-04 -6.80009e-01 - 5 sg_p4 9.64411e-01 1.03457e-02 3.80673e-04 1.19122e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.035e-01 1.650e-02 -1.576e-05 -1.005e+00 1.062e-03 - 1.650e-02 1.092e-01 -7.711e-06 -1.941e-01 4.695e-04 - -1.576e-05 -7.711e-06 5.475e-05 1.202e-03 -1.025e-06 - -1.005e+00 -1.941e-01 1.202e-03 1.636e+02 -1.156e-01 - 1.062e-03 4.695e-04 -1.025e-06 -1.156e-01 1.071e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.24421 1.000 0.111 -0.005 -0.174 0.227 - 2 0.21733 0.111 1.000 -0.003 -0.046 0.137 - 3 0.01376 -0.005 -0.003 1.000 0.013 -0.013 - 4 0.87625 -0.174 -0.046 0.013 1.000 -0.873 - 5 0.88081 0.227 0.137 -0.013 -0.873 1.000 -300 -286.897 +- 0.451095 -20.5381 +- 0.330465 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=9427.95 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 0.00000e+00 1.31464e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 0.00000e+00 -2.82382e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 0.00000e+00 -1.05976e+00 - 4 sg_p3 5.43313e+01 1.20000e+01 -2.64207e-01 7.00043e+00 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -1.45220e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9204.59 FROM MIGRAD STATUS=CONVERGED 229 CALLS 230 TOTAL - EDM=6.66547e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00807e+02 2.06875e-01 9.24958e-04 -7.84006e-02 - 2 sg_p1 6.67548e+00 2.20836e-01 5.66581e-03 -4.55276e-03 - 3 sg_p2 2.86348e+02 3.69244e+00 1.62590e-03 -1.80856e-01 - 4 sg_p3 3.70116e+01 4.47529e+00 3.25190e-03 -7.94138e-02 - 5 sg_p4 6.46423e-01 1.60401e-02 1.99112e-03 -2.02931e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.280e-02 -6.675e-03 3.606e-02 -1.464e-01 -2.452e-04 - -6.675e-03 4.897e-02 -3.892e-01 5.095e-01 1.306e-03 - 3.606e-02 -3.892e-01 1.364e+01 -1.331e+01 -4.368e-04 - -1.464e-01 5.095e-01 -1.331e+01 2.008e+01 -1.514e-03 - -2.452e-04 1.306e-03 -4.368e-04 -1.514e-03 2.574e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23172 1.000 -0.146 0.047 -0.158 -0.074 - 2 0.64662 -0.146 1.000 -0.476 0.514 0.368 - 3 0.81187 0.047 -0.476 1.000 -0.804 -0.007 - 4 0.82962 -0.158 0.514 -0.804 1.000 -0.021 - 5 0.44432 -0.074 0.368 -0.007 -0.021 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9204.59 FROM HESSE STATUS=OK 31 CALLS 261 TOTAL - EDM=6.65624e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00807e+02 2.07041e-01 1.84992e-04 -2.83282e-01 - 2 sg_p1 6.67548e+00 2.24150e-01 2.26632e-04 -1.62980e-01 - 3 sg_p2 2.86348e+02 3.84665e+00 3.25179e-04 2.97108e-01 - 4 sg_p3 3.70116e+01 4.66245e+00 1.30076e-04 -5.82134e-01 - 5 sg_p4 6.46423e-01 1.60428e-02 3.98224e-04 2.97202e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.287e-02 -7.031e-03 4.534e-02 -1.570e-01 -2.475e-04 - -7.031e-03 5.046e-02 -4.308e-01 5.599e-01 1.315e-03 - 4.534e-02 -4.308e-01 1.481e+01 -1.475e+01 -6.186e-04 - -1.570e-01 5.599e-01 -1.475e+01 2.180e+01 -1.240e-03 - -2.475e-04 1.315e-03 -6.186e-04 -1.240e-03 2.575e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23496 1.000 -0.151 0.057 -0.162 -0.074 - 2 0.65975 -0.151 1.000 -0.498 0.534 0.365 - 3 0.82821 0.057 -0.498 1.000 -0.821 -0.010 - 4 0.84430 -0.162 0.534 -0.821 1.000 -0.017 - 5 0.44463 -0.074 0.365 -0.010 -0.017 1.000 -300 -300.807 +- 0.207041 -6.67548 +- 0.22415 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=9324.05 FROM MIGRAD STATUS=INITIATE 18 CALLS 19 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 2.01358e-01 1.26986e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -3.26570e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 2.01358e-01 1.80651e+01 - 4 sg_p3 7.00000e+01 1.20000e+01 2.01358e-01 1.95490e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -1.28150e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 11.1802 added to diagonal of error matrix - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.2302e+00 1.0000e+00 1.0003e+00 1.0996e+00 3.1303e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 1.233367 TO DIAGONAL. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9114.57 FROM MIGRAD STATUS=CONVERGED 289 CALLS 290 TOTAL - EDM=5.54375e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00989e+02 2.12814e-01 9.43941e-04 -9.14080e-04 - 2 sg_p1 6.53035e+00 2.40800e-01 5.98084e-03 4.80647e-03 - 3 sg_p2 2.93079e+02 2.00891e+00 1.26510e-03 8.67004e-03 - 4 sg_p3 3.22426e+01 3.06970e+00 3.13614e-03 5.39262e-03 - 5 sg_p4 6.37280e-01 1.82444e-02 2.01579e-03 -9.05889e-04 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.529e-02 -7.391e-03 -1.667e-02 -9.633e-02 -4.577e-04 - -7.391e-03 5.828e-02 -1.840e-01 4.072e-01 2.575e-03 - -1.667e-02 -1.840e-01 4.036e+00 -3.579e+00 -1.048e-02 - -9.633e-02 4.072e-01 -3.579e+00 9.437e+00 2.200e-02 - -4.577e-04 2.575e-03 -1.048e-02 2.200e-02 3.330e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23364 1.000 -0.144 -0.039 -0.147 -0.118 - 2 0.68293 -0.144 1.000 -0.379 0.549 0.585 - 3 0.60026 -0.039 -0.379 1.000 -0.580 -0.286 - 4 0.69097 -0.147 0.549 -0.580 1.000 0.393 - 5 0.59255 -0.118 0.585 -0.286 0.393 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9114.57 FROM HESSE STATUS=OK 31 CALLS 321 TOTAL - EDM=5.65701e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00989e+02 2.12854e-01 3.77576e-05 -2.70672e-01 - 2 sg_p1 6.53035e+00 2.42646e-01 1.19617e-03 -2.37040e-01 - 3 sg_p2 2.93079e+02 2.03806e+00 2.53019e-04 3.76364e-01 - 4 sg_p3 3.22426e+01 3.11925e+00 1.25446e-04 -6.80639e-01 - 5 sg_p4 6.37280e-01 1.83457e-02 8.06317e-05 2.78131e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.531e-02 -7.562e-03 -1.490e-02 -9.842e-02 -4.666e-04 - -7.562e-03 5.919e-02 -1.948e-01 4.241e-01 2.634e-03 - -1.490e-02 -1.948e-01 4.155e+00 -3.791e+00 -1.116e-02 - -9.842e-02 4.241e-01 -3.791e+00 9.744e+00 2.314e-02 - -4.666e-04 2.634e-03 -1.116e-02 2.314e-02 3.367e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23439 1.000 -0.146 -0.034 -0.148 -0.119 - 2 0.68886 -0.146 1.000 -0.393 0.558 0.590 - 3 0.61521 -0.034 -0.393 1.000 -0.596 -0.298 - 4 0.70278 -0.148 0.558 -0.596 1.000 0.404 - 5 0.59855 -0.119 0.590 -0.298 0.404 1.000 -300 -300.989 +- 0.212854 -6.53035 +- 0.242646 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=9310.64 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 0.00000e+00 1.34333e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 0.00000e+00 -2.36771e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 0.00000e+00 -1.06301e+01 - 4 sg_p3 4.94125e+01 1.20000e+01 -3.50242e-01 -6.56876e+00 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -1.57740e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9074.37 FROM MIGRAD STATUS=CONVERGED 198 CALLS 199 TOTAL - EDM=4.60513e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00716e+02 2.01045e-01 8.96469e-04 2.14226e-01 - 2 sg_p1 6.51517e+00 2.15145e-01 5.62639e-03 1.07423e-02 - 3 sg_p2 2.82932e+02 4.43725e+00 1.74062e-03 -1.31230e-01 - 4 sg_p3 3.77806e+01 4.64318e+00 3.03684e-03 -8.20421e-02 - 5 sg_p4 6.44030e-01 1.61428e-02 1.96449e-03 1.08169e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.042e-02 -6.174e-03 6.288e-02 -1.484e-01 -1.712e-04 - -6.174e-03 4.648e-02 -4.710e-01 4.996e-01 9.943e-04 - 6.288e-02 -4.710e-01 1.971e+01 -1.755e+01 9.466e-03 - -1.484e-01 4.996e-01 -1.755e+01 2.162e+01 -1.284e-02 - -1.712e-04 9.943e-04 9.466e-03 -1.284e-02 2.607e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22609 1.000 -0.142 0.070 -0.159 -0.053 - 2 0.63799 -0.142 1.000 -0.492 0.498 0.286 - 3 0.85697 0.070 -0.492 1.000 -0.850 0.132 - 4 0.86627 -0.159 0.498 -0.850 1.000 -0.171 - 5 0.46460 -0.053 0.286 0.132 -0.171 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9074.37 FROM HESSE STATUS=OK 31 CALLS 230 TOTAL - EDM=4.60124e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00716e+02 2.01266e-01 1.79294e-04 -2.89604e-01 - 2 sg_p1 6.51517e+00 2.18764e-01 1.12528e-03 -2.44853e-01 - 3 sg_p2 2.82932e+02 4.66955e+00 3.48124e-04 2.57637e-01 - 4 sg_p3 3.77806e+01 4.88570e+00 1.21473e-04 -5.66865e-01 - 5 sg_p4 6.44030e-01 1.61620e-02 3.92898e-04 2.92200e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.051e-02 -6.582e-03 7.683e-02 -1.625e-01 -1.645e-04 - -6.582e-03 4.806e-02 -5.290e-01 5.602e-01 9.646e-04 - 7.683e-02 -5.290e-01 2.183e+01 -1.979e+01 1.061e-02 - -1.625e-01 5.602e-01 -1.979e+01 2.394e+01 -1.401e-02 - -1.645e-04 9.646e-04 1.061e-02 -1.401e-02 2.613e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23066 1.000 -0.149 0.082 -0.165 -0.051 - 2 0.65313 -0.149 1.000 -0.516 0.522 0.272 - 3 0.87189 0.082 -0.516 1.000 -0.866 0.140 - 4 0.88014 -0.165 0.522 -0.866 1.000 -0.177 - 5 0.46660 -0.051 0.272 0.140 -0.177 1.000 -300 -300.716 +- 0.201266 -6.51517 +- 0.218764 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=9199.28 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 2.01358e-01 1.31737e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -3.80725e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 2.01358e-01 3.68970e+01 - 4 sg_p3 7.00000e+01 1.20000e+01 2.01358e-01 3.60460e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -9.61061e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=8979.33 FROM MIGRAD STATUS=CONVERGED 286 CALLS 287 TOTAL - EDM=6.06176e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00769e+02 2.16735e-01 9.53991e-04 -5.33757e-02 - 2 sg_p1 6.70308e+00 2.45021e-01 5.89293e-03 -3.95912e-02 - 3 sg_p2 2.87922e+02 3.34063e+00 1.53235e-03 -3.18644e-02 - 4 sg_p3 3.55948e+01 4.26381e+00 3.23155e-03 -4.27157e-03 - 5 sg_p4 6.37600e-01 1.68956e-02 2.00611e-03 2.50190e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.698e-02 -9.160e-03 4.009e-02 1.638e-01 -3.977e-04 - -9.160e-03 6.035e-02 -4.159e-01 -5.898e-01 1.951e-03 - 4.009e-02 -4.159e-01 1.117e+01 1.132e+01 -9.034e-03 - 1.638e-01 -5.898e-01 1.132e+01 1.823e+01 -1.125e-02 - -3.977e-04 1.951e-03 -9.034e-03 -1.125e-02 2.856e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25346 1.000 -0.172 0.055 0.177 -0.109 - 2 0.68892 -0.172 1.000 -0.507 -0.562 0.470 - 3 0.80257 0.055 -0.507 1.000 0.794 -0.160 - 4 0.82438 0.177 -0.562 0.794 1.000 -0.156 - 5 0.48969 -0.109 0.470 -0.160 -0.156 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=8979.33 FROM HESSE STATUS=OK 31 CALLS 318 TOTAL - EDM=6.06043e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00769e+02 2.16688e-01 1.90798e-04 -2.85961e-01 - 2 sg_p1 6.70308e+00 2.44943e-01 1.17859e-03 -1.49009e-01 - 3 sg_p2 2.87922e+02 3.32664e+00 3.06471e-04 3.15452e-01 - 4 sg_p3 3.55948e+01 4.24592e+00 1.29262e-04 -2.53092e+00 - 5 sg_p4 6.37600e-01 1.68934e-02 4.01222e-04 2.78798e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.696e-02 -9.141e-03 3.853e-02 1.617e-01 -3.954e-04 - -9.141e-03 6.031e-02 -4.131e-01 -5.862e-01 1.947e-03 - 3.853e-02 -4.131e-01 1.107e+01 1.120e+01 -8.911e-03 - 1.617e-01 -5.862e-01 1.120e+01 1.807e+01 -1.105e-02 - -3.954e-04 1.947e-03 -8.911e-03 -1.105e-02 2.855e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25265 1.000 -0.172 0.053 0.175 -0.108 - 2 0.68868 -0.172 1.000 -0.506 -0.562 0.469 - 3 0.80070 0.053 -0.506 1.000 0.792 -0.158 - 4 0.82272 0.175 -0.562 0.792 1.000 -0.154 - 5 0.48949 -0.108 0.469 -0.158 -0.154 1.000 -300 -300.769 +- 0.216688 -6.70308 +- 0.244943 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=9528.95 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 2.01358e-01 1.40358e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -2.86077e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 2.01358e-01 4.07742e+01 - 4 sg_p3 7.00000e+01 1.20000e+01 2.01358e-01 3.28657e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -1.55130e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9284.6 FROM MIGRAD STATUS=CONVERGED 275 CALLS 276 TOTAL - EDM=1.0669e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00844e+02 2.01930e-01 9.05593e-04 7.10616e-03 - 2 sg_p1 6.50018e+00 2.20682e-01 5.70172e-03 -1.20796e-03 - 3 sg_p2 2.89404e+02 2.63913e+00 1.40244e-03 7.93444e-03 - 4 sg_p3 3.36229e+01 3.43508e+00 3.08392e-03 -8.78771e-03 - 5 sg_p4 6.54921e-01 1.64524e-02 1.98673e-03 -7.23147e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.078e-02 -6.775e-03 1.130e-02 -1.118e-01 -3.655e-04 - -6.775e-03 4.891e-02 -2.623e-01 4.000e-01 1.828e-03 - 1.130e-02 -2.623e-01 6.967e+00 -6.550e+00 -9.484e-03 - -1.118e-01 4.000e-01 -6.550e+00 1.182e+01 1.315e-02 - -3.655e-04 1.828e-03 -9.484e-03 1.315e-02 2.708e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23688 1.000 -0.152 0.021 -0.161 -0.110 - 2 0.66103 -0.152 1.000 -0.449 0.526 0.502 - 3 0.73398 0.021 -0.449 1.000 -0.722 -0.218 - 4 0.76528 -0.161 0.526 -0.722 1.000 0.232 - 5 0.50584 -0.110 0.502 -0.218 0.232 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9284.6 FROM HESSE STATUS=OK 31 CALLS 307 TOTAL - EDM=1.12622e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00844e+02 2.02032e-01 3.62237e-05 -2.80744e-01 - 2 sg_p1 6.50018e+00 2.23003e-01 2.28069e-04 -2.52587e-01 - 3 sg_p2 2.89404e+02 2.70635e+00 2.80488e-04 3.32825e-01 - 4 sg_p3 3.36229e+01 3.52423e+00 1.23357e-04 -6.93457e+00 - 5 sg_p4 6.54921e-01 1.65063e-02 3.97346e-04 3.15027e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.082e-02 -7.019e-03 1.539e-02 -1.166e-01 -3.746e-04 - -7.019e-03 4.995e-02 -2.818e-01 4.255e-01 1.872e-03 - 1.539e-02 -2.818e-01 7.327e+00 -7.045e+00 -1.028e-02 - -1.166e-01 4.255e-01 -7.045e+00 1.244e+01 1.424e-02 - -3.746e-04 1.872e-03 -1.028e-02 1.424e-02 2.726e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23888 1.000 -0.155 0.028 -0.164 -0.112 - 2 0.66984 -0.155 1.000 -0.466 0.540 0.507 - 3 0.74924 0.028 -0.466 1.000 -0.738 -0.230 - 4 0.77870 -0.164 0.540 -0.738 1.000 0.244 - 5 0.51061 -0.112 0.507 -0.230 0.244 1.000 -300 -300.844 +- 0.202032 -6.50018 +- 0.223003 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=8804.14 FROM MIGRAD STATUS=INITIATE 38 CALLS 39 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 0.00000e+00 1.21619e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 0.00000e+00 -2.50995e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 0.00000e+00 -2.34806e+01 - 4 sg_p3 5.09831e+01 1.20000e+01 -3.22511e-01 -1.58294e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -1.45258e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=8594.18 FROM MIGRAD STATUS=CONVERGED 195 CALLS 196 TOTAL - EDM=0.000103955 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00810e+02 2.13585e-01 9.23962e-04 -3.32389e-01 - 2 sg_p1 6.67466e+00 2.27375e-01 5.64986e-03 -6.39462e-02 - 3 sg_p2 2.86358e+02 3.78706e+00 1.67027e-03 2.10141e-01 - 4 sg_p3 3.68730e+01 4.57772e+00 3.31711e-03 1.33026e-01 - 5 sg_p4 6.48483e-01 1.65693e-02 1.99186e-03 1.18731e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.562e-02 -7.064e-03 3.747e-02 -1.545e-01 -2.634e-04 - -7.064e-03 5.193e-02 -4.091e-01 5.342e-01 1.402e-03 - 3.747e-02 -4.091e-01 1.435e+01 -1.392e+01 -8.150e-04 - -1.545e-01 5.342e-01 -1.392e+01 2.101e+01 -1.176e-03 - -2.634e-04 1.402e-03 -8.150e-04 -1.176e-03 2.747e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23149 1.000 -0.145 0.046 -0.158 -0.074 - 2 0.64493 -0.145 1.000 -0.474 0.511 0.371 - 3 0.80971 0.046 -0.474 1.000 -0.802 -0.013 - 4 0.82741 -0.158 0.511 -0.802 1.000 -0.015 - 5 0.44365 -0.074 0.371 -0.013 -0.015 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=8594.18 FROM HESSE STATUS=OK 31 CALLS 227 TOTAL - EDM=0.000103618 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00810e+02 2.13733e-01 1.84792e-04 -2.83111e-01 - 2 sg_p1 6.67466e+00 2.30409e-01 1.12997e-03 -1.63396e-01 - 3 sg_p2 2.86358e+02 3.92954e+00 3.34054e-04 2.97224e-01 - 4 sg_p3 3.68730e+01 4.75005e+00 6.63422e-04 -5.84901e-01 - 5 sg_p4 6.48483e-01 1.65714e-02 3.98372e-04 3.01515e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.569e-02 -7.400e-03 4.620e-02 -1.644e-01 -2.656e-04 - -7.400e-03 5.333e-02 -4.485e-01 5.817e-01 1.411e-03 - 4.620e-02 -4.485e-01 1.545e+01 -1.528e+01 -1.007e-03 - -1.644e-01 5.817e-01 -1.528e+01 2.263e+01 -8.956e-04 - -2.656e-04 1.411e-03 -1.007e-03 -8.956e-04 2.747e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23430 1.000 -0.150 0.055 -0.162 -0.075 - 2 0.65672 -0.150 1.000 -0.494 0.530 0.369 - 3 0.82472 0.055 -0.494 1.000 -0.817 -0.015 - 4 0.84090 -0.162 0.530 -0.817 1.000 -0.011 - 5 0.44388 -0.075 0.369 -0.015 -0.011 1.000 -300 -300.81 +- 0.213733 -6.67466 +- 0.230409 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10085.1 FROM MIGRAD STATUS=INITIATE 38 CALLS 39 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 0.00000e+00 1.41204e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 0.00000e+00 -3.13147e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 0.00000e+00 9.36393e+00 - 4 sg_p3 5.63011e+01 1.20000e+01 -2.30347e-01 1.74222e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -1.47792e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9847.01 FROM MIGRAD STATUS=CONVERGED 237 CALLS 238 TOTAL - EDM=9.73968e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00804e+02 2.00448e-01 9.27938e-04 -2.66723e-02 - 2 sg_p1 6.67674e+00 2.14181e-01 5.68372e-03 6.00134e-04 - 3 sg_p2 2.86357e+02 3.57965e+00 1.66724e-03 -1.62501e-02 - 4 sg_p3 3.71633e+01 4.35962e+00 3.32473e-03 2.36830e-03 - 5 sg_p4 6.44672e-01 1.55331e-02 1.99195e-03 -8.00555e-04 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.018e-02 -6.290e-03 3.361e-02 -1.381e-01 -2.282e-04 - -6.290e-03 4.605e-02 -3.651e-01 4.812e-01 1.217e-03 - 3.361e-02 -3.651e-01 1.282e+01 -1.255e+01 -7.211e-05 - -1.381e-01 4.812e-01 -1.255e+01 1.905e+01 -1.851e-03 - -2.282e-04 1.217e-03 -7.211e-05 -1.851e-03 2.414e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23182 1.000 -0.146 0.047 -0.158 -0.073 - 2 0.64675 -0.146 1.000 -0.475 0.514 0.365 - 3 0.81111 0.047 -0.475 1.000 -0.803 -0.001 - 4 0.82935 -0.158 0.514 -0.803 1.000 -0.027 - 5 0.44510 -0.073 0.365 -0.001 -0.027 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9847.01 FROM HESSE STATUS=OK 31 CALLS 269 TOTAL - EDM=1.05973e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00804e+02 2.00611e-01 1.85588e-04 -2.83535e-01 - 2 sg_p1 6.67674e+00 2.17452e-01 2.27349e-04 -1.62344e-01 - 3 sg_p2 2.86357e+02 3.73232e+00 3.33449e-04 2.97212e-01 - 4 sg_p3 3.71633e+01 4.54584e+00 1.32989e-04 -5.79108e-01 - 5 sg_p4 6.44672e-01 1.55348e-02 7.96779e-05 2.93540e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.025e-02 -6.630e-03 4.251e-02 -1.483e-01 -2.300e-04 - -6.630e-03 4.748e-02 -4.050e-01 5.298e-01 1.225e-03 - 4.251e-02 -4.050e-01 1.394e+01 -1.395e+01 -2.119e-04 - -1.483e-01 5.298e-01 -1.395e+01 2.072e+01 -1.629e-03 - -2.300e-04 1.225e-03 -2.119e-04 -1.629e-03 2.414e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23512 1.000 -0.152 0.057 -0.162 -0.074 - 2 0.66010 -0.152 1.000 -0.498 0.534 0.362 - 3 0.82785 0.057 -0.498 1.000 -0.821 -0.004 - 4 0.84435 -0.162 0.534 -0.821 1.000 -0.023 - 5 0.44529 -0.074 0.362 -0.004 -0.023 1.000 -300 -300.804 +- 0.200611 -6.67674 +- 0.217452 -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 300.807 +- 0.207041 (stat) - 0.0909738 + 0.181936 (syst); -0.137814/+0.209326 (total) - Uncertainty on sg_p1 = 6.67548 +- 0.22415 (stat) - 0.1753 + 0.0276028 (syst); -0.208065/+0.115424 (total) - Uncertainty on sg_p2 = 286.348 +- 3.84665 (stat) - 3.4164 + 6.73068 (syst); -3.92058/+7.00009 (total) - Uncertainty on sg_p3 = 37.0116 +- 4.66245 (stat) - 4.76893 + 0.769026 (syst); -5.30823/+2.45479 (total) - Uncertainty on sg_p4 = 0.646423 +- 0.0160428 (stat) - 0.00914333 + 0.00849815 (syst); -0.0121632/+0.0116859 (total) - === Baseline plot ===
- norm = 304.126 -JEC lnN 1.00496 - -JER lnN 1.02029 - -btag lnN 1.06837 - -sg_p0 param 300.807 -0.137814/+0.209326 -sg_p1 param 6.67548 -0.208065/+0.115424 -sg_p2 param 286.348 -3.92058/+7.00009 -sg_p3 param 37.0116 -5.30823/+2.45479 -sg_p4 param 0.646423 -0.0121632/+0.0116859 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_300_gaus_exp_252_330/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_300_gaus_exp_252_330/data_bkg.log deleted file mode 100644 index 1be2f6e..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_300_gaus_exp_252_330/data_bkg.log +++ /dev/null @@ -1,717 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [250,330] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [250,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63590.5 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.69443e-02 5.09000e-01 0.00000e+00 -7.94680e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -8.91126e+00 - 3 par_crystal_2 2.62020e+02 4.00000e+00 1.01181e-01 -1.53451e+00 - 4 par_crystal_3 1.65000e+01 2.70000e+00 0.00000e+00 7.46021e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM MIGRAD STATUS=CONVERGED 482 CALLS 483 TOTAL - EDM=0.000814822 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 4.40594e-01 4.43750e-02 2.48631e-03 2.88668e-01 - 2 par_crystal_1 9.82994e-01 6.48221e-01 2.14269e-02 -5.28345e-03 - 3 par_crystal_2 2.71542e+02 7.41091e-01 7.20683e-03 -9.27818e-02 - 4 par_crystal_3 2.87224e+01 2.18588e+00 3.97473e-02 -6.99277e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.970e-03 -2.333e-02 -5.115e-04 1.392e-02 - -2.333e-02 4.358e-01 4.870e-03 -8.391e-01 - -5.115e-04 4.870e-03 5.496e-01 4.381e-01 - 1.392e-02 -8.391e-01 4.381e-01 5.029e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.88989 1.000 -0.796 -0.016 0.140 - 2 0.92807 -0.796 1.000 0.010 -0.567 - 3 0.40865 -0.016 0.010 1.000 0.264 - 4 0.80948 0.140 -0.567 0.264 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM HESSE STATUS=OK 23 CALLS 506 TOTAL - EDM=0.000711421 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 4.40594e-01 4.64698e-02 4.97262e-04 -9.80558e-01 - 2 par_crystal_1 9.82994e-01 6.55195e-01 8.57075e-04 -6.65795e-01 - 3 par_crystal_2 2.71542e+02 7.38644e-01 1.44137e-03 6.15159e-01 - 4 par_crystal_3 2.87224e+01 2.03002e+00 1.58989e-03 -1.05570e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.160e-03 -2.581e-02 -1.109e-03 1.530e-02 - -2.581e-02 4.456e-01 2.508e-02 -7.234e-01 - -1.109e-03 2.508e-02 5.460e-01 3.687e-01 - 1.530e-02 -7.234e-01 3.687e-01 4.306e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.90014 1.000 -0.832 -0.032 0.159 - 2 0.92960 -0.832 1.000 0.051 -0.522 - 3 0.40186 -0.032 0.051 1.000 0.240 - 4 0.77207 0.159 -0.522 0.240 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63714.2 FROM MIGRAD STATUS=INITIATE 33 CALLS 34 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 2.63122e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -5.45805e+02 - 3 par_gaus_exp_2 6.67498e-01 3.05000e-01 -6.37370e-01 7.03093e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM MIGRAD STATUS=CONVERGED 131 CALLS 132 TOTAL - EDM=6.15917e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.71558e+02 8.05096e-01 6.82817e-03 6.24407e-02 - 2 par_gaus_exp_1 3.06822e+01 1.83071e+00 1.43475e-02 1.11468e-02 - 3 par_gaus_exp_2 3.82770e-01 2.42284e-02 3.05774e-03 -9.77170e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.486e-01 -6.079e-01 -1.588e-03 - -6.079e-01 3.370e+00 3.082e-02 - -1.588e-03 3.082e-02 5.871e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.49876 1.000 -0.411 -0.081 - 2 0.77898 -0.411 1.000 0.693 - 3 0.72797 -0.081 0.693 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM HESSE STATUS=OK 16 CALLS 148 TOTAL - EDM=6.13964e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.71558e+02 8.14214e-01 2.73127e-04 -4.35760e-01 - 2 par_gaus_exp_1 3.06822e+01 1.86973e+00 5.73898e-04 4.10264e-01 - 3 par_gaus_exp_2 3.82770e-01 2.45149e-02 1.22310e-04 -8.97531e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.634e-01 -6.630e-01 -2.137e-03 - -6.630e-01 3.516e+00 3.227e-02 - -2.137e-03 3.227e-02 6.011e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.51526 1.000 -0.434 -0.107 - 2 0.78935 -0.434 1.000 0.702 - 3 0.73544 -0.107 0.702 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,625] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.33953 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.33953) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - ... (remaining 126 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.734607 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.734607) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=317.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=327.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=332.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=342.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=347.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=352.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=357.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=362.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=367.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - ... (remaining 53 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0734613 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0734613 - - FCN=103487 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57093e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.56195e+03 - 3 par_novo_2 -1.33668e+00 2.00000e+01 0.00000e+00 1.53931e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM MIGRAD STATUS=CONVERGED 127 CALLS 128 TOTAL - EDM=3.4171e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.43423e+01 1.81223e-01** at limit ** - 2 par_novo_1 3.86596e+01 2.27294e+00 4.95847e-03 -1.04123e-02 - 3 par_novo_2 -1.27520e+00 7.07738e-02 3.70975e-05 -1.26322e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.231e-09 -8.491e-07 -8.580e-07 - -8.491e-07 5.181e+00 1.547e-01 - -8.580e-07 1.547e-01 5.009e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.53332 1.000 -0.005 -0.154 - 2 0.97096 -0.005 1.000 0.960 - 3 0.97165 -0.154 0.960 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM HESSE STATUS=OK 20 CALLS 148 TOTAL - EDM=3.43726e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.40246e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.86596e+01 2.31421e+00 1.98339e-04 4.46530e-01 - 3 par_novo_2 -1.27520e+00 7.22930e-02 1.48390e-06 -1.27523e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 5.974e-09 2.819e-05 -1.296e-06 - 2.819e-05 5.372e+00 1.502e-01 - -1.296e-06 1.502e-01 5.226e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.85665 1.000 0.157 -0.232 - 2 0.97200 0.157 1.000 0.897 - 3 0.97285 -0.232 0.897 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107513 FROM MIGRAD STATUS=INITIATE 54 CALLS 55 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 1.39168e+03 - 2 par_crystal_1_1 7.96220e-02 5.09000e-01 0.00000e+00 5.33770e+03 - 3 par_crystal_1_2 2.56879e+02 4.00000e+00 -1.56713e-01 -1.96669e+01 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 -8.45862e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.5057e-02 2.3309e-03 4.9678e-02 3.9730e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.029030 TO DIAGONAL. - FCN=103250 FROM MIGRAD STATUS=CONVERGED 436 CALLS 437 TOTAL - EDM=3.52757e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 4.45574e-02 4.37117e-03 3.09465e-04 -4.28177e+00 - 2 par_crystal_1_1 4.36914e+00 6.24106e-01 1.80400e-02 6.63742e-02 - 3 par_crystal_1_2 2.71531e+02 3.44700e+01 5.81266e-02 2.25694e-02 - 4 par_crystal_1_3 3.37290e+00 2.71702e-01 3.13791e-03 -4.26197e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.911e-05 -1.221e-03 2.089e-01 3.572e-04 - -1.221e-03 4.065e-01 -2.690e+01 -6.822e-02 - 2.089e-01 -2.690e+01 3.429e+03 1.167e+01 - 3.572e-04 -6.822e-02 1.167e+01 7.401e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99136 1.000 -0.438 0.816 0.300 - 2 0.97307 -0.438 1.000 -0.720 -0.393 - 3 0.99735 0.816 -0.720 1.000 0.733 - 4 0.98716 0.300 -0.393 0.733 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -8.0089e-04 4.0193e-04 7.1213e-02 3.9292e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.004730 TO DIAGONAL. - FCN=103250 FROM HESSE STATUS=NOT POSDEF 23 CALLS 460 TOTAL - EDM=3.56127e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 4.45574e-02 7.42610e-03 6.18930e-05 -1.40582e+00 - 2 par_crystal_1_1 4.36914e+00 4.67550e-01 7.21602e-04 -3.93511e+00 - 3 par_crystal_1_2 2.71531e+02 3.29814e+01 2.32506e-03 -3.75607e+00 - 4 par_crystal_1_3 3.37290e+00 5.01685e-01 1.25517e-04 -1.80638e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.515e-05 2.851e-04 2.343e-01 -1.699e-03 - 2.851e-04 2.238e-01 -2.528e+00 1.548e-02 - 2.343e-01 -2.528e+00 2.967e+03 1.176e+01 - -1.699e-03 1.548e-02 1.176e+01 2.538e-01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99694 1.000 0.081 0.579 -0.454 - 2 0.94927 0.081 1.000 -0.098 0.065 - 3 0.99687 0.579 -0.098 1.000 0.429 - 4 0.99618 -0.454 0.065 0.429 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 14211 - Background number of gaus_exp_252_330 = 14211 - Background number of novo_285_624 = 17618.3 - Background number of crystal_1_285_624 = 17618.3 - Background number of gaus_bern_285_624 = 17618.3 - Background number of landau_285_624 = 17618.3 -par_crystal_0 param 0.440594 0.0464698 -par_crystal_1 param 0.982994 0.655195 -par_crystal_2 param 271.542 0.738644 -par_crystal_3 param 28.7224 2.03002 -par_crystal_1_0 param 0.0445574 0.0074261 -par_crystal_1_1 param 4.36914 0.46755 -par_crystal_1_2 param 271.531 32.9814 -par_crystal_1_3 param 3.3729 0.501685 -par_gaus_exp_0 param 271.558 0.814214 -par_gaus_exp_1 param 30.6822 1.86973 -par_gaus_exp_2 param 0.38277 0.0245149 -par_novo_0 param 250 34.0246 -par_novo_1 param 38.6596 2.31421 -par_novo_2 param -1.2752 0.072293 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_300_gaus_exp_252_330/datacard_300_gaus_exp_252_330.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_300_gaus_exp_252_330/datacard_300_gaus_exp_252_330.txt deleted file mode 100644 index e0684c6..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_300_gaus_exp_252_330/datacard_300_gaus_exp_252_330.txt +++ /dev/null @@ -1,29 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_300.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_gaus_exp_252_330.root HbbHbb:f_gaus_exp -shapes data_obs HbbHbb w_background_gaus_exp_252_330.root HbbHbb:data_obs_gaus_exp_252_330 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 304.126 14211 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06837 - -JER lnN 1.02029 - -JEC lnN 1.00496 - -trigger lnN 1.10 - -sg_p0 param 300.807 -0.137814/+0.209326 -sg_p1 param 6.67548 -0.208065/+0.115424 -sg_p2 param 286.348 -3.92058/+7.00009 -sg_p3 param 37.0116 -5.30823/+2.45479 -sg_p4 param 0.646423 -0.0121632/+0.0116859 -par_gaus_exp_0 param 271.558 0.814214 -par_gaus_exp_1 param 30.6822 1.86973 -par_gaus_exp_2 param 0.38277 0.0245149 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_300_gaus_exp_252_330/signal300_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_300_gaus_exp_252_330/signal300_sig.log deleted file mode 100644 index e692189..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_300_gaus_exp_252_330/signal300_sig.log +++ /dev/null @@ -1,859 +0,0 @@ - -Processing test.c... -nSignal_init = 292400 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11139.4 FROM MIGRAD STATUS=INITIATE 41 CALLS 42 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.85000e+02 7.00000e+00 0.00000e+00 3.99147e+02 - 2 sg_p1 2.00000e+01 3.00000e+00 0.00000e+00 5.36454e+01 - 3 sg_p2 3.05000e+02 1.10000e+01 0.00000e+00 5.03573e+02 - 4 sg_p3 2.15253e+01 1.20000e+01 -9.40600e-01 -5.65980e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -2.37474e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10983.2 FROM MIGRAD STATUS=CONVERGED 401 CALLS 402 TOTAL - EDM=5.6187e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.88323e+02 4.47990e-01 9.04940e-04 1.11533e-01 - 2 sg_p1 2.05573e+01 3.30978e-01 1.55295e-03 -5.38166e-02 - 3 sg_p2 3.60000e+02 7.01972e+00 3.68073e-02** at limit ** - 4 sg_p3 3.31232e+01 1.31185e+01 9.89999e-03 1.11043e-02 - 5 sg_p4 9.64843e-01 1.04001e-02 1.95930e-03 4.50763e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.007e-01 1.739e-02 -1.190e-04 -7.889e-01 9.394e-04 - 1.739e-02 1.096e-01 -6.312e-05 -5.744e-02 4.186e-04 - -1.190e-04 -6.312e-05 9.525e-05 8.817e-03 -7.777e-06 - -7.889e-01 -5.744e-02 8.817e-03 1.767e+02 -1.200e-01 - 9.394e-04 4.186e-04 -7.777e-06 -1.200e-01 1.083e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23279 1.000 0.117 -0.027 -0.132 0.202 - 2 0.23564 0.117 1.000 -0.020 -0.013 0.122 - 3 0.07829 -0.027 -0.020 1.000 0.068 -0.077 - 4 0.87296 -0.132 -0.013 0.068 1.000 -0.867 - 5 0.87761 0.202 0.122 -0.077 -0.867 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10983.2 FROM HESSE STATUS=OK 31 CALLS 433 TOTAL - EDM=5.61214e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.88323e+02 4.48511e-01 1.80988e-04 9.50767e-02 - 2 sg_p1 2.05573e+01 3.30912e-01 6.21181e-05 3.71642e-02 - 3 sg_p2 3.60000e+02 7.00510e+00 7.36146e-03 1.57114e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 3.31232e+01 1.34621e+01 3.96000e-04 -6.61896e-01 - 5 sg_p4 9.64843e-01 1.06761e-02 3.91861e-04 1.19356e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.012e-01 1.735e-02 -2.672e-05 -8.721e-01 9.990e-04 - 1.735e-02 1.095e-01 -1.383e-05 -7.606e-02 4.303e-04 - -2.672e-05 -1.383e-05 9.505e-05 2.045e-03 -1.786e-06 - -8.721e-01 -7.606e-02 2.045e-03 1.863e+02 -1.276e-01 - 9.990e-04 4.303e-04 -1.786e-06 -1.276e-01 1.141e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23747 1.000 0.117 -0.006 -0.142 0.209 - 2 0.23484 0.117 1.000 -0.004 -0.017 0.122 - 3 0.01751 -0.006 -0.004 1.000 0.015 -0.017 - 4 0.87999 -0.142 -0.017 0.015 1.000 -0.875 - 5 0.88427 0.209 0.122 -0.017 -0.875 1.000 -300 -288.323 +- 0.448511 -20.5573 +- 0.330912 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11021.8 FROM MIGRAD STATUS=INITIATE 44 CALLS 45 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.85000e+02 7.00000e+00 0.00000e+00 -1.23228e+01 - 2 sg_p1 2.00000e+01 3.00000e+00 0.00000e+00 1.69370e+02 - 3 sg_p2 3.05000e+02 1.10000e+01 0.00000e+00 3.59937e+02 - 4 sg_p3 2.91405e+01 1.20000e+01 -7.49116e-01 1.62870e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -1.88730e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10926.7 FROM MIGRAD STATUS=CONVERGED 404 CALLS 405 TOTAL - EDM=7.36709e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.89695e+02 4.48479e-01 9.08525e-04 -1.63756e-02 - 2 sg_p1 2.04912e+01 3.33789e-01 1.55841e-03 3.48244e-02 - 3 sg_p2 3.60000e+02 5.29130e+00 3.12243e-02** at limit ** - 4 sg_p3 2.52611e+01 5.98773e+00 7.97733e-03 1.66965e-02 - 5 sg_p4 9.65128e-01 6.44706e-03 1.81806e-03 6.25824e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.011e-01 1.895e-02 -2.334e-04 -3.465e-01 6.114e-04 - 1.895e-02 1.114e-01 -1.530e-04 -6.771e-02 4.120e-04 - -2.334e-04 -1.530e-04 2.973e-04 6.759e-03 -8.288e-06 - -3.465e-01 -6.771e-02 6.759e-03 3.612e+01 -2.585e-02 - 6.114e-04 4.120e-04 -8.288e-06 -2.585e-02 4.158e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22936 1.000 0.127 -0.030 -0.129 0.211 - 2 0.24516 0.127 1.000 -0.027 -0.034 0.191 - 3 0.08010 -0.030 -0.027 1.000 0.065 -0.075 - 4 0.67399 -0.129 -0.034 0.065 1.000 -0.667 - 5 0.69669 0.211 0.191 -0.075 -0.667 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10926.7 FROM HESSE STATUS=OK 31 CALLS 436 TOTAL - EDM=7.38964e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.89695e+02 4.48441e-01 1.81705e-04 1.34553e-01 - 2 sg_p1 2.04912e+01 3.33683e-01 6.23363e-05 3.27513e-02 - 3 sg_p2 3.60000e+02 5.29001e+00 6.24486e-03 1.57151e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 2.52611e+01 5.99008e+00 3.19093e-04 -8.41506e-01 - 5 sg_p4 9.65128e-01 6.44684e-03 3.63611e-04 1.19511e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.011e-01 1.882e-02 -5.556e-05 -3.514e-01 6.128e-04 - 1.882e-02 1.114e-01 -3.636e-05 -7.207e-02 4.132e-04 - -5.556e-05 -3.636e-05 2.972e-04 1.629e-03 -1.980e-06 - -3.514e-01 -7.207e-02 1.629e-03 3.615e+01 -2.589e-02 - 6.128e-04 4.132e-04 -1.980e-06 -2.589e-02 4.158e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22901 1.000 0.126 -0.007 -0.130 0.212 - 2 0.24394 0.126 1.000 -0.006 -0.036 0.192 - 3 0.01917 -0.007 -0.006 1.000 0.016 -0.018 - 4 0.67426 -0.130 -0.036 0.016 1.000 -0.668 - 5 0.69667 0.212 0.192 -0.018 -0.668 1.000 -300 -289.695 +- 0.448441 -20.4912 +- 0.333683 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10998.6 FROM MIGRAD STATUS=INITIATE 44 CALLS 45 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.85000e+02 7.00000e+00 0.00000e+00 1.82292e+02 - 2 sg_p1 2.00000e+01 3.00000e+00 0.00000e+00 1.71874e+02 - 3 sg_p2 3.05000e+02 1.10000e+01 0.00000e+00 5.32975e+02 - 4 sg_p3 3.07762e+01 1.20000e+01 -7.12504e-01 9.72386e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -2.81076e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10857.4 FROM MIGRAD STATUS=CONVERGED 443 CALLS 444 TOTAL - EDM=4.98868e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.86897e+02 4.50384e-01 9.00651e-04 -4.42030e-02 - 2 sg_p1 2.05381e+01 3.30444e-01 1.54851e-03 -1.71904e-02 - 3 sg_p2 3.60000e+02 4.58768e+00 2.94940e-02** at limit ** - 4 sg_p3 3.22720e+01 1.23522e+01 9.50923e-03 1.52629e-02 - 5 sg_p4 9.64411e-01 1.01122e-02 1.90336e-03 6.66364e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.029e-01 1.643e-02 -6.905e-05 -9.258e-01 1.002e-03 - 1.643e-02 1.092e-01 -3.441e-05 -1.687e-01 4.515e-04 - -6.905e-05 -3.441e-05 5.485e-05 5.168e-03 -4.433e-06 - -9.258e-01 -1.687e-01 5.168e-03 1.563e+02 -1.096e-01 - 1.002e-03 4.515e-04 -4.433e-06 -1.096e-01 1.024e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23805 1.000 0.110 -0.021 -0.164 0.220 - 2 0.21706 0.110 1.000 -0.014 -0.041 0.135 - 3 0.06085 -0.021 -0.014 1.000 0.056 -0.059 - 4 0.87005 -0.164 -0.041 0.056 1.000 -0.866 - 5 0.87483 0.220 0.135 -0.059 -0.866 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10857.4 FROM HESSE STATUS=OK 31 CALLS 475 TOTAL - EDM=4.96344e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.86897e+02 4.51095e-01 1.80130e-04 5.42398e-02 - 2 sg_p1 2.05381e+01 3.30465e-01 6.19404e-05 3.58796e-02 - 3 sg_p2 3.60000e+02 4.57970e+00 5.89879e-03 1.57112e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 3.22720e+01 1.26301e+01 3.80369e-04 -6.80009e-01 - 5 sg_p4 9.64411e-01 1.03457e-02 3.80673e-04 1.19122e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.035e-01 1.650e-02 -1.576e-05 -1.005e+00 1.062e-03 - 1.650e-02 1.092e-01 -7.711e-06 -1.941e-01 4.695e-04 - -1.576e-05 -7.711e-06 5.475e-05 1.202e-03 -1.025e-06 - -1.005e+00 -1.941e-01 1.202e-03 1.636e+02 -1.156e-01 - 1.062e-03 4.695e-04 -1.025e-06 -1.156e-01 1.071e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.24421 1.000 0.111 -0.005 -0.174 0.227 - 2 0.21733 0.111 1.000 -0.003 -0.046 0.137 - 3 0.01376 -0.005 -0.003 1.000 0.013 -0.013 - 4 0.87625 -0.174 -0.046 0.013 1.000 -0.873 - 5 0.88081 0.227 0.137 -0.013 -0.873 1.000 -300 -286.897 +- 0.451095 -20.5381 +- 0.330465 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=9427.95 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 0.00000e+00 1.31464e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 0.00000e+00 -2.82382e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 0.00000e+00 -1.05976e+00 - 4 sg_p3 5.43313e+01 1.20000e+01 -2.64207e-01 7.00043e+00 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -1.45220e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9204.59 FROM MIGRAD STATUS=CONVERGED 229 CALLS 230 TOTAL - EDM=6.66547e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00807e+02 2.06875e-01 9.24958e-04 -7.84006e-02 - 2 sg_p1 6.67548e+00 2.20836e-01 5.66581e-03 -4.55276e-03 - 3 sg_p2 2.86348e+02 3.69244e+00 1.62590e-03 -1.80856e-01 - 4 sg_p3 3.70116e+01 4.47529e+00 3.25190e-03 -7.94138e-02 - 5 sg_p4 6.46423e-01 1.60401e-02 1.99112e-03 -2.02931e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.280e-02 -6.675e-03 3.606e-02 -1.464e-01 -2.452e-04 - -6.675e-03 4.897e-02 -3.892e-01 5.095e-01 1.306e-03 - 3.606e-02 -3.892e-01 1.364e+01 -1.331e+01 -4.368e-04 - -1.464e-01 5.095e-01 -1.331e+01 2.008e+01 -1.514e-03 - -2.452e-04 1.306e-03 -4.368e-04 -1.514e-03 2.574e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23172 1.000 -0.146 0.047 -0.158 -0.074 - 2 0.64662 -0.146 1.000 -0.476 0.514 0.368 - 3 0.81187 0.047 -0.476 1.000 -0.804 -0.007 - 4 0.82962 -0.158 0.514 -0.804 1.000 -0.021 - 5 0.44432 -0.074 0.368 -0.007 -0.021 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9204.59 FROM HESSE STATUS=OK 31 CALLS 261 TOTAL - EDM=6.65624e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00807e+02 2.07041e-01 1.84992e-04 -2.83282e-01 - 2 sg_p1 6.67548e+00 2.24150e-01 2.26632e-04 -1.62980e-01 - 3 sg_p2 2.86348e+02 3.84665e+00 3.25179e-04 2.97108e-01 - 4 sg_p3 3.70116e+01 4.66245e+00 1.30076e-04 -5.82134e-01 - 5 sg_p4 6.46423e-01 1.60428e-02 3.98224e-04 2.97202e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.287e-02 -7.031e-03 4.534e-02 -1.570e-01 -2.475e-04 - -7.031e-03 5.046e-02 -4.308e-01 5.599e-01 1.315e-03 - 4.534e-02 -4.308e-01 1.481e+01 -1.475e+01 -6.186e-04 - -1.570e-01 5.599e-01 -1.475e+01 2.180e+01 -1.240e-03 - -2.475e-04 1.315e-03 -6.186e-04 -1.240e-03 2.575e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23496 1.000 -0.151 0.057 -0.162 -0.074 - 2 0.65975 -0.151 1.000 -0.498 0.534 0.365 - 3 0.82821 0.057 -0.498 1.000 -0.821 -0.010 - 4 0.84430 -0.162 0.534 -0.821 1.000 -0.017 - 5 0.44463 -0.074 0.365 -0.010 -0.017 1.000 -300 -300.807 +- 0.207041 -6.67548 +- 0.22415 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=9324.05 FROM MIGRAD STATUS=INITIATE 18 CALLS 19 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 2.01358e-01 1.26986e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -3.26570e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 2.01358e-01 1.80651e+01 - 4 sg_p3 7.00000e+01 1.20000e+01 2.01358e-01 1.95490e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -1.28150e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 11.1802 added to diagonal of error matrix - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.2302e+00 1.0000e+00 1.0003e+00 1.0996e+00 3.1303e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 1.233367 TO DIAGONAL. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9114.57 FROM MIGRAD STATUS=CONVERGED 289 CALLS 290 TOTAL - EDM=5.54375e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00989e+02 2.12814e-01 9.43941e-04 -9.14080e-04 - 2 sg_p1 6.53035e+00 2.40800e-01 5.98084e-03 4.80647e-03 - 3 sg_p2 2.93079e+02 2.00891e+00 1.26510e-03 8.67004e-03 - 4 sg_p3 3.22426e+01 3.06970e+00 3.13614e-03 5.39262e-03 - 5 sg_p4 6.37280e-01 1.82444e-02 2.01579e-03 -9.05889e-04 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.529e-02 -7.391e-03 -1.667e-02 -9.633e-02 -4.577e-04 - -7.391e-03 5.828e-02 -1.840e-01 4.072e-01 2.575e-03 - -1.667e-02 -1.840e-01 4.036e+00 -3.579e+00 -1.048e-02 - -9.633e-02 4.072e-01 -3.579e+00 9.437e+00 2.200e-02 - -4.577e-04 2.575e-03 -1.048e-02 2.200e-02 3.330e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23364 1.000 -0.144 -0.039 -0.147 -0.118 - 2 0.68293 -0.144 1.000 -0.379 0.549 0.585 - 3 0.60026 -0.039 -0.379 1.000 -0.580 -0.286 - 4 0.69097 -0.147 0.549 -0.580 1.000 0.393 - 5 0.59255 -0.118 0.585 -0.286 0.393 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9114.57 FROM HESSE STATUS=OK 31 CALLS 321 TOTAL - EDM=5.65701e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00989e+02 2.12854e-01 3.77576e-05 -2.70672e-01 - 2 sg_p1 6.53035e+00 2.42646e-01 1.19617e-03 -2.37040e-01 - 3 sg_p2 2.93079e+02 2.03806e+00 2.53019e-04 3.76364e-01 - 4 sg_p3 3.22426e+01 3.11925e+00 1.25446e-04 -6.80639e-01 - 5 sg_p4 6.37280e-01 1.83457e-02 8.06317e-05 2.78131e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.531e-02 -7.562e-03 -1.490e-02 -9.842e-02 -4.666e-04 - -7.562e-03 5.919e-02 -1.948e-01 4.241e-01 2.634e-03 - -1.490e-02 -1.948e-01 4.155e+00 -3.791e+00 -1.116e-02 - -9.842e-02 4.241e-01 -3.791e+00 9.744e+00 2.314e-02 - -4.666e-04 2.634e-03 -1.116e-02 2.314e-02 3.367e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23439 1.000 -0.146 -0.034 -0.148 -0.119 - 2 0.68886 -0.146 1.000 -0.393 0.558 0.590 - 3 0.61521 -0.034 -0.393 1.000 -0.596 -0.298 - 4 0.70278 -0.148 0.558 -0.596 1.000 0.404 - 5 0.59855 -0.119 0.590 -0.298 0.404 1.000 -300 -300.989 +- 0.212854 -6.53035 +- 0.242646 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=9310.64 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 0.00000e+00 1.34333e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 0.00000e+00 -2.36771e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 0.00000e+00 -1.06301e+01 - 4 sg_p3 4.94125e+01 1.20000e+01 -3.50242e-01 -6.56876e+00 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -1.57740e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9074.37 FROM MIGRAD STATUS=CONVERGED 198 CALLS 199 TOTAL - EDM=4.60513e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00716e+02 2.01045e-01 8.96469e-04 2.14226e-01 - 2 sg_p1 6.51517e+00 2.15145e-01 5.62639e-03 1.07423e-02 - 3 sg_p2 2.82932e+02 4.43725e+00 1.74062e-03 -1.31230e-01 - 4 sg_p3 3.77806e+01 4.64318e+00 3.03684e-03 -8.20421e-02 - 5 sg_p4 6.44030e-01 1.61428e-02 1.96449e-03 1.08169e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.042e-02 -6.174e-03 6.288e-02 -1.484e-01 -1.712e-04 - -6.174e-03 4.648e-02 -4.710e-01 4.996e-01 9.943e-04 - 6.288e-02 -4.710e-01 1.971e+01 -1.755e+01 9.466e-03 - -1.484e-01 4.996e-01 -1.755e+01 2.162e+01 -1.284e-02 - -1.712e-04 9.943e-04 9.466e-03 -1.284e-02 2.607e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22609 1.000 -0.142 0.070 -0.159 -0.053 - 2 0.63799 -0.142 1.000 -0.492 0.498 0.286 - 3 0.85697 0.070 -0.492 1.000 -0.850 0.132 - 4 0.86627 -0.159 0.498 -0.850 1.000 -0.171 - 5 0.46460 -0.053 0.286 0.132 -0.171 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9074.37 FROM HESSE STATUS=OK 31 CALLS 230 TOTAL - EDM=4.60124e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00716e+02 2.01266e-01 1.79294e-04 -2.89604e-01 - 2 sg_p1 6.51517e+00 2.18764e-01 1.12528e-03 -2.44853e-01 - 3 sg_p2 2.82932e+02 4.66955e+00 3.48124e-04 2.57637e-01 - 4 sg_p3 3.77806e+01 4.88570e+00 1.21473e-04 -5.66865e-01 - 5 sg_p4 6.44030e-01 1.61620e-02 3.92898e-04 2.92200e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.051e-02 -6.582e-03 7.683e-02 -1.625e-01 -1.645e-04 - -6.582e-03 4.806e-02 -5.290e-01 5.602e-01 9.646e-04 - 7.683e-02 -5.290e-01 2.183e+01 -1.979e+01 1.061e-02 - -1.625e-01 5.602e-01 -1.979e+01 2.394e+01 -1.401e-02 - -1.645e-04 9.646e-04 1.061e-02 -1.401e-02 2.613e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23066 1.000 -0.149 0.082 -0.165 -0.051 - 2 0.65313 -0.149 1.000 -0.516 0.522 0.272 - 3 0.87189 0.082 -0.516 1.000 -0.866 0.140 - 4 0.88014 -0.165 0.522 -0.866 1.000 -0.177 - 5 0.46660 -0.051 0.272 0.140 -0.177 1.000 -300 -300.716 +- 0.201266 -6.51517 +- 0.218764 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=9199.28 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 2.01358e-01 1.31737e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -3.80725e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 2.01358e-01 3.68970e+01 - 4 sg_p3 7.00000e+01 1.20000e+01 2.01358e-01 3.60460e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -9.61061e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=8979.33 FROM MIGRAD STATUS=CONVERGED 286 CALLS 287 TOTAL - EDM=6.06176e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00769e+02 2.16735e-01 9.53991e-04 -5.33757e-02 - 2 sg_p1 6.70308e+00 2.45021e-01 5.89293e-03 -3.95912e-02 - 3 sg_p2 2.87922e+02 3.34063e+00 1.53235e-03 -3.18644e-02 - 4 sg_p3 3.55948e+01 4.26381e+00 3.23155e-03 -4.27157e-03 - 5 sg_p4 6.37600e-01 1.68956e-02 2.00611e-03 2.50190e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.698e-02 -9.160e-03 4.009e-02 1.638e-01 -3.977e-04 - -9.160e-03 6.035e-02 -4.159e-01 -5.898e-01 1.951e-03 - 4.009e-02 -4.159e-01 1.117e+01 1.132e+01 -9.034e-03 - 1.638e-01 -5.898e-01 1.132e+01 1.823e+01 -1.125e-02 - -3.977e-04 1.951e-03 -9.034e-03 -1.125e-02 2.856e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25346 1.000 -0.172 0.055 0.177 -0.109 - 2 0.68892 -0.172 1.000 -0.507 -0.562 0.470 - 3 0.80257 0.055 -0.507 1.000 0.794 -0.160 - 4 0.82438 0.177 -0.562 0.794 1.000 -0.156 - 5 0.48969 -0.109 0.470 -0.160 -0.156 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=8979.33 FROM HESSE STATUS=OK 31 CALLS 318 TOTAL - EDM=6.06043e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00769e+02 2.16688e-01 1.90798e-04 -2.85961e-01 - 2 sg_p1 6.70308e+00 2.44943e-01 1.17859e-03 -1.49009e-01 - 3 sg_p2 2.87922e+02 3.32664e+00 3.06471e-04 3.15452e-01 - 4 sg_p3 3.55948e+01 4.24592e+00 1.29262e-04 -2.53092e+00 - 5 sg_p4 6.37600e-01 1.68934e-02 4.01222e-04 2.78798e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.696e-02 -9.141e-03 3.853e-02 1.617e-01 -3.954e-04 - -9.141e-03 6.031e-02 -4.131e-01 -5.862e-01 1.947e-03 - 3.853e-02 -4.131e-01 1.107e+01 1.120e+01 -8.911e-03 - 1.617e-01 -5.862e-01 1.120e+01 1.807e+01 -1.105e-02 - -3.954e-04 1.947e-03 -8.911e-03 -1.105e-02 2.855e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25265 1.000 -0.172 0.053 0.175 -0.108 - 2 0.68868 -0.172 1.000 -0.506 -0.562 0.469 - 3 0.80070 0.053 -0.506 1.000 0.792 -0.158 - 4 0.82272 0.175 -0.562 0.792 1.000 -0.154 - 5 0.48949 -0.108 0.469 -0.158 -0.154 1.000 -300 -300.769 +- 0.216688 -6.70308 +- 0.244943 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=9528.95 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 2.01358e-01 1.40358e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -2.86077e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 2.01358e-01 4.07742e+01 - 4 sg_p3 7.00000e+01 1.20000e+01 2.01358e-01 3.28657e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -1.55130e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9284.6 FROM MIGRAD STATUS=CONVERGED 275 CALLS 276 TOTAL - EDM=1.0669e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00844e+02 2.01930e-01 9.05593e-04 7.10616e-03 - 2 sg_p1 6.50018e+00 2.20682e-01 5.70172e-03 -1.20796e-03 - 3 sg_p2 2.89404e+02 2.63913e+00 1.40244e-03 7.93444e-03 - 4 sg_p3 3.36229e+01 3.43508e+00 3.08392e-03 -8.78771e-03 - 5 sg_p4 6.54921e-01 1.64524e-02 1.98673e-03 -7.23147e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.078e-02 -6.775e-03 1.130e-02 -1.118e-01 -3.655e-04 - -6.775e-03 4.891e-02 -2.623e-01 4.000e-01 1.828e-03 - 1.130e-02 -2.623e-01 6.967e+00 -6.550e+00 -9.484e-03 - -1.118e-01 4.000e-01 -6.550e+00 1.182e+01 1.315e-02 - -3.655e-04 1.828e-03 -9.484e-03 1.315e-02 2.708e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23688 1.000 -0.152 0.021 -0.161 -0.110 - 2 0.66103 -0.152 1.000 -0.449 0.526 0.502 - 3 0.73398 0.021 -0.449 1.000 -0.722 -0.218 - 4 0.76528 -0.161 0.526 -0.722 1.000 0.232 - 5 0.50584 -0.110 0.502 -0.218 0.232 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9284.6 FROM HESSE STATUS=OK 31 CALLS 307 TOTAL - EDM=1.12622e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00844e+02 2.02032e-01 3.62237e-05 -2.80744e-01 - 2 sg_p1 6.50018e+00 2.23003e-01 2.28069e-04 -2.52587e-01 - 3 sg_p2 2.89404e+02 2.70635e+00 2.80488e-04 3.32825e-01 - 4 sg_p3 3.36229e+01 3.52423e+00 1.23357e-04 -6.93457e+00 - 5 sg_p4 6.54921e-01 1.65063e-02 3.97346e-04 3.15027e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.082e-02 -7.019e-03 1.539e-02 -1.166e-01 -3.746e-04 - -7.019e-03 4.995e-02 -2.818e-01 4.255e-01 1.872e-03 - 1.539e-02 -2.818e-01 7.327e+00 -7.045e+00 -1.028e-02 - -1.166e-01 4.255e-01 -7.045e+00 1.244e+01 1.424e-02 - -3.746e-04 1.872e-03 -1.028e-02 1.424e-02 2.726e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23888 1.000 -0.155 0.028 -0.164 -0.112 - 2 0.66984 -0.155 1.000 -0.466 0.540 0.507 - 3 0.74924 0.028 -0.466 1.000 -0.738 -0.230 - 4 0.77870 -0.164 0.540 -0.738 1.000 0.244 - 5 0.51061 -0.112 0.507 -0.230 0.244 1.000 -300 -300.844 +- 0.202032 -6.50018 +- 0.223003 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=8804.14 FROM MIGRAD STATUS=INITIATE 38 CALLS 39 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 0.00000e+00 1.21619e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 0.00000e+00 -2.50995e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 0.00000e+00 -2.34806e+01 - 4 sg_p3 5.09831e+01 1.20000e+01 -3.22511e-01 -1.58294e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -1.45258e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=8594.18 FROM MIGRAD STATUS=CONVERGED 195 CALLS 196 TOTAL - EDM=0.000103955 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00810e+02 2.13585e-01 9.23962e-04 -3.32389e-01 - 2 sg_p1 6.67466e+00 2.27375e-01 5.64986e-03 -6.39462e-02 - 3 sg_p2 2.86358e+02 3.78706e+00 1.67027e-03 2.10141e-01 - 4 sg_p3 3.68730e+01 4.57772e+00 3.31711e-03 1.33026e-01 - 5 sg_p4 6.48483e-01 1.65693e-02 1.99186e-03 1.18731e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.562e-02 -7.064e-03 3.747e-02 -1.545e-01 -2.634e-04 - -7.064e-03 5.193e-02 -4.091e-01 5.342e-01 1.402e-03 - 3.747e-02 -4.091e-01 1.435e+01 -1.392e+01 -8.150e-04 - -1.545e-01 5.342e-01 -1.392e+01 2.101e+01 -1.176e-03 - -2.634e-04 1.402e-03 -8.150e-04 -1.176e-03 2.747e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23149 1.000 -0.145 0.046 -0.158 -0.074 - 2 0.64493 -0.145 1.000 -0.474 0.511 0.371 - 3 0.80971 0.046 -0.474 1.000 -0.802 -0.013 - 4 0.82741 -0.158 0.511 -0.802 1.000 -0.015 - 5 0.44365 -0.074 0.371 -0.013 -0.015 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=8594.18 FROM HESSE STATUS=OK 31 CALLS 227 TOTAL - EDM=0.000103618 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00810e+02 2.13733e-01 1.84792e-04 -2.83111e-01 - 2 sg_p1 6.67466e+00 2.30409e-01 1.12997e-03 -1.63396e-01 - 3 sg_p2 2.86358e+02 3.92954e+00 3.34054e-04 2.97224e-01 - 4 sg_p3 3.68730e+01 4.75005e+00 6.63422e-04 -5.84901e-01 - 5 sg_p4 6.48483e-01 1.65714e-02 3.98372e-04 3.01515e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.569e-02 -7.400e-03 4.620e-02 -1.644e-01 -2.656e-04 - -7.400e-03 5.333e-02 -4.485e-01 5.817e-01 1.411e-03 - 4.620e-02 -4.485e-01 1.545e+01 -1.528e+01 -1.007e-03 - -1.644e-01 5.817e-01 -1.528e+01 2.263e+01 -8.956e-04 - -2.656e-04 1.411e-03 -1.007e-03 -8.956e-04 2.747e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23430 1.000 -0.150 0.055 -0.162 -0.075 - 2 0.65672 -0.150 1.000 -0.494 0.530 0.369 - 3 0.82472 0.055 -0.494 1.000 -0.817 -0.015 - 4 0.84090 -0.162 0.530 -0.817 1.000 -0.011 - 5 0.44388 -0.075 0.369 -0.015 -0.011 1.000 -300 -300.81 +- 0.213733 -6.67466 +- 0.230409 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10085.1 FROM MIGRAD STATUS=INITIATE 38 CALLS 39 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 0.00000e+00 1.41204e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 0.00000e+00 -3.13147e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 0.00000e+00 9.36393e+00 - 4 sg_p3 5.63011e+01 1.20000e+01 -2.30347e-01 1.74222e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -1.47792e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9847.01 FROM MIGRAD STATUS=CONVERGED 237 CALLS 238 TOTAL - EDM=9.73968e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00804e+02 2.00448e-01 9.27938e-04 -2.66723e-02 - 2 sg_p1 6.67674e+00 2.14181e-01 5.68372e-03 6.00134e-04 - 3 sg_p2 2.86357e+02 3.57965e+00 1.66724e-03 -1.62501e-02 - 4 sg_p3 3.71633e+01 4.35962e+00 3.32473e-03 2.36830e-03 - 5 sg_p4 6.44672e-01 1.55331e-02 1.99195e-03 -8.00555e-04 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.018e-02 -6.290e-03 3.361e-02 -1.381e-01 -2.282e-04 - -6.290e-03 4.605e-02 -3.651e-01 4.812e-01 1.217e-03 - 3.361e-02 -3.651e-01 1.282e+01 -1.255e+01 -7.211e-05 - -1.381e-01 4.812e-01 -1.255e+01 1.905e+01 -1.851e-03 - -2.282e-04 1.217e-03 -7.211e-05 -1.851e-03 2.414e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23182 1.000 -0.146 0.047 -0.158 -0.073 - 2 0.64675 -0.146 1.000 -0.475 0.514 0.365 - 3 0.81111 0.047 -0.475 1.000 -0.803 -0.001 - 4 0.82935 -0.158 0.514 -0.803 1.000 -0.027 - 5 0.44510 -0.073 0.365 -0.001 -0.027 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9847.01 FROM HESSE STATUS=OK 31 CALLS 269 TOTAL - EDM=1.05973e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00804e+02 2.00611e-01 1.85588e-04 -2.83535e-01 - 2 sg_p1 6.67674e+00 2.17452e-01 2.27349e-04 -1.62344e-01 - 3 sg_p2 2.86357e+02 3.73232e+00 3.33449e-04 2.97212e-01 - 4 sg_p3 3.71633e+01 4.54584e+00 1.32989e-04 -5.79108e-01 - 5 sg_p4 6.44672e-01 1.55348e-02 7.96779e-05 2.93540e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.025e-02 -6.630e-03 4.251e-02 -1.483e-01 -2.300e-04 - -6.630e-03 4.748e-02 -4.050e-01 5.298e-01 1.225e-03 - 4.251e-02 -4.050e-01 1.394e+01 -1.395e+01 -2.119e-04 - -1.483e-01 5.298e-01 -1.395e+01 2.072e+01 -1.629e-03 - -2.300e-04 1.225e-03 -2.119e-04 -1.629e-03 2.414e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23512 1.000 -0.152 0.057 -0.162 -0.074 - 2 0.66010 -0.152 1.000 -0.498 0.534 0.362 - 3 0.82785 0.057 -0.498 1.000 -0.821 -0.004 - 4 0.84435 -0.162 0.534 -0.821 1.000 -0.023 - 5 0.44529 -0.074 0.362 -0.004 -0.023 1.000 -300 -300.804 +- 0.200611 -6.67674 +- 0.217452 -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 300.807 +- 0.207041 (stat) - 0.0909738 + 0.181936 (syst); -0.137814/+0.209326 (total) - Uncertainty on sg_p1 = 6.67548 +- 0.22415 (stat) - 0.1753 + 0.0276028 (syst); -0.208065/+0.115424 (total) - Uncertainty on sg_p2 = 286.348 +- 3.84665 (stat) - 3.4164 + 6.73068 (syst); -3.92058/+7.00009 (total) - Uncertainty on sg_p3 = 37.0116 +- 4.66245 (stat) - 4.76893 + 0.769026 (syst); -5.30823/+2.45479 (total) - Uncertainty on sg_p4 = 0.646423 +- 0.0160428 (stat) - 0.00914333 + 0.00849815 (syst); -0.0121632/+0.0116859 (total) - === Baseline plot ===
- norm = 304.126 -JEC lnN 1.00496 - -JER lnN 1.02029 - -btag lnN 1.06837 - -sg_p0 param 300.807 -0.137814/+0.209326 -sg_p1 param 6.67548 -0.208065/+0.115424 -sg_p2 param 286.348 -3.92058/+7.00009 -sg_p3 param 37.0116 -5.30823/+2.45479 -sg_p4 param 0.646423 -0.0121632/+0.0116859 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_300_novo_285_624/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_300_novo_285_624/data_bkg.log deleted file mode 100644 index 1be2f6e..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_300_novo_285_624/data_bkg.log +++ /dev/null @@ -1,717 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [250,330] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [250,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63590.5 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.69443e-02 5.09000e-01 0.00000e+00 -7.94680e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -8.91126e+00 - 3 par_crystal_2 2.62020e+02 4.00000e+00 1.01181e-01 -1.53451e+00 - 4 par_crystal_3 1.65000e+01 2.70000e+00 0.00000e+00 7.46021e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM MIGRAD STATUS=CONVERGED 482 CALLS 483 TOTAL - EDM=0.000814822 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 4.40594e-01 4.43750e-02 2.48631e-03 2.88668e-01 - 2 par_crystal_1 9.82994e-01 6.48221e-01 2.14269e-02 -5.28345e-03 - 3 par_crystal_2 2.71542e+02 7.41091e-01 7.20683e-03 -9.27818e-02 - 4 par_crystal_3 2.87224e+01 2.18588e+00 3.97473e-02 -6.99277e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.970e-03 -2.333e-02 -5.115e-04 1.392e-02 - -2.333e-02 4.358e-01 4.870e-03 -8.391e-01 - -5.115e-04 4.870e-03 5.496e-01 4.381e-01 - 1.392e-02 -8.391e-01 4.381e-01 5.029e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.88989 1.000 -0.796 -0.016 0.140 - 2 0.92807 -0.796 1.000 0.010 -0.567 - 3 0.40865 -0.016 0.010 1.000 0.264 - 4 0.80948 0.140 -0.567 0.264 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM HESSE STATUS=OK 23 CALLS 506 TOTAL - EDM=0.000711421 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 4.40594e-01 4.64698e-02 4.97262e-04 -9.80558e-01 - 2 par_crystal_1 9.82994e-01 6.55195e-01 8.57075e-04 -6.65795e-01 - 3 par_crystal_2 2.71542e+02 7.38644e-01 1.44137e-03 6.15159e-01 - 4 par_crystal_3 2.87224e+01 2.03002e+00 1.58989e-03 -1.05570e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.160e-03 -2.581e-02 -1.109e-03 1.530e-02 - -2.581e-02 4.456e-01 2.508e-02 -7.234e-01 - -1.109e-03 2.508e-02 5.460e-01 3.687e-01 - 1.530e-02 -7.234e-01 3.687e-01 4.306e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.90014 1.000 -0.832 -0.032 0.159 - 2 0.92960 -0.832 1.000 0.051 -0.522 - 3 0.40186 -0.032 0.051 1.000 0.240 - 4 0.77207 0.159 -0.522 0.240 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63714.2 FROM MIGRAD STATUS=INITIATE 33 CALLS 34 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 2.63122e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -5.45805e+02 - 3 par_gaus_exp_2 6.67498e-01 3.05000e-01 -6.37370e-01 7.03093e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM MIGRAD STATUS=CONVERGED 131 CALLS 132 TOTAL - EDM=6.15917e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.71558e+02 8.05096e-01 6.82817e-03 6.24407e-02 - 2 par_gaus_exp_1 3.06822e+01 1.83071e+00 1.43475e-02 1.11468e-02 - 3 par_gaus_exp_2 3.82770e-01 2.42284e-02 3.05774e-03 -9.77170e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.486e-01 -6.079e-01 -1.588e-03 - -6.079e-01 3.370e+00 3.082e-02 - -1.588e-03 3.082e-02 5.871e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.49876 1.000 -0.411 -0.081 - 2 0.77898 -0.411 1.000 0.693 - 3 0.72797 -0.081 0.693 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM HESSE STATUS=OK 16 CALLS 148 TOTAL - EDM=6.13964e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.71558e+02 8.14214e-01 2.73127e-04 -4.35760e-01 - 2 par_gaus_exp_1 3.06822e+01 1.86973e+00 5.73898e-04 4.10264e-01 - 3 par_gaus_exp_2 3.82770e-01 2.45149e-02 1.22310e-04 -8.97531e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.634e-01 -6.630e-01 -2.137e-03 - -6.630e-01 3.516e+00 3.227e-02 - -2.137e-03 3.227e-02 6.011e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.51526 1.000 -0.434 -0.107 - 2 0.78935 -0.434 1.000 0.702 - 3 0.73544 -0.107 0.702 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,625] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.33953 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.33953) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - ... (remaining 126 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.734607 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.734607) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=317.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=327.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=332.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=342.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=347.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=352.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=357.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=362.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=367.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - ... (remaining 53 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0734613 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0734613 - - FCN=103487 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57093e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.56195e+03 - 3 par_novo_2 -1.33668e+00 2.00000e+01 0.00000e+00 1.53931e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM MIGRAD STATUS=CONVERGED 127 CALLS 128 TOTAL - EDM=3.4171e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.43423e+01 1.81223e-01** at limit ** - 2 par_novo_1 3.86596e+01 2.27294e+00 4.95847e-03 -1.04123e-02 - 3 par_novo_2 -1.27520e+00 7.07738e-02 3.70975e-05 -1.26322e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.231e-09 -8.491e-07 -8.580e-07 - -8.491e-07 5.181e+00 1.547e-01 - -8.580e-07 1.547e-01 5.009e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.53332 1.000 -0.005 -0.154 - 2 0.97096 -0.005 1.000 0.960 - 3 0.97165 -0.154 0.960 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM HESSE STATUS=OK 20 CALLS 148 TOTAL - EDM=3.43726e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.40246e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.86596e+01 2.31421e+00 1.98339e-04 4.46530e-01 - 3 par_novo_2 -1.27520e+00 7.22930e-02 1.48390e-06 -1.27523e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 5.974e-09 2.819e-05 -1.296e-06 - 2.819e-05 5.372e+00 1.502e-01 - -1.296e-06 1.502e-01 5.226e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.85665 1.000 0.157 -0.232 - 2 0.97200 0.157 1.000 0.897 - 3 0.97285 -0.232 0.897 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107513 FROM MIGRAD STATUS=INITIATE 54 CALLS 55 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 1.39168e+03 - 2 par_crystal_1_1 7.96220e-02 5.09000e-01 0.00000e+00 5.33770e+03 - 3 par_crystal_1_2 2.56879e+02 4.00000e+00 -1.56713e-01 -1.96669e+01 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 -8.45862e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.5057e-02 2.3309e-03 4.9678e-02 3.9730e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.029030 TO DIAGONAL. - FCN=103250 FROM MIGRAD STATUS=CONVERGED 436 CALLS 437 TOTAL - EDM=3.52757e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 4.45574e-02 4.37117e-03 3.09465e-04 -4.28177e+00 - 2 par_crystal_1_1 4.36914e+00 6.24106e-01 1.80400e-02 6.63742e-02 - 3 par_crystal_1_2 2.71531e+02 3.44700e+01 5.81266e-02 2.25694e-02 - 4 par_crystal_1_3 3.37290e+00 2.71702e-01 3.13791e-03 -4.26197e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.911e-05 -1.221e-03 2.089e-01 3.572e-04 - -1.221e-03 4.065e-01 -2.690e+01 -6.822e-02 - 2.089e-01 -2.690e+01 3.429e+03 1.167e+01 - 3.572e-04 -6.822e-02 1.167e+01 7.401e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99136 1.000 -0.438 0.816 0.300 - 2 0.97307 -0.438 1.000 -0.720 -0.393 - 3 0.99735 0.816 -0.720 1.000 0.733 - 4 0.98716 0.300 -0.393 0.733 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -8.0089e-04 4.0193e-04 7.1213e-02 3.9292e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.004730 TO DIAGONAL. - FCN=103250 FROM HESSE STATUS=NOT POSDEF 23 CALLS 460 TOTAL - EDM=3.56127e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 4.45574e-02 7.42610e-03 6.18930e-05 -1.40582e+00 - 2 par_crystal_1_1 4.36914e+00 4.67550e-01 7.21602e-04 -3.93511e+00 - 3 par_crystal_1_2 2.71531e+02 3.29814e+01 2.32506e-03 -3.75607e+00 - 4 par_crystal_1_3 3.37290e+00 5.01685e-01 1.25517e-04 -1.80638e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.515e-05 2.851e-04 2.343e-01 -1.699e-03 - 2.851e-04 2.238e-01 -2.528e+00 1.548e-02 - 2.343e-01 -2.528e+00 2.967e+03 1.176e+01 - -1.699e-03 1.548e-02 1.176e+01 2.538e-01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99694 1.000 0.081 0.579 -0.454 - 2 0.94927 0.081 1.000 -0.098 0.065 - 3 0.99687 0.579 -0.098 1.000 0.429 - 4 0.99618 -0.454 0.065 0.429 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 14211 - Background number of gaus_exp_252_330 = 14211 - Background number of novo_285_624 = 17618.3 - Background number of crystal_1_285_624 = 17618.3 - Background number of gaus_bern_285_624 = 17618.3 - Background number of landau_285_624 = 17618.3 -par_crystal_0 param 0.440594 0.0464698 -par_crystal_1 param 0.982994 0.655195 -par_crystal_2 param 271.542 0.738644 -par_crystal_3 param 28.7224 2.03002 -par_crystal_1_0 param 0.0445574 0.0074261 -par_crystal_1_1 param 4.36914 0.46755 -par_crystal_1_2 param 271.531 32.9814 -par_crystal_1_3 param 3.3729 0.501685 -par_gaus_exp_0 param 271.558 0.814214 -par_gaus_exp_1 param 30.6822 1.86973 -par_gaus_exp_2 param 0.38277 0.0245149 -par_novo_0 param 250 34.0246 -par_novo_1 param 38.6596 2.31421 -par_novo_2 param -1.2752 0.072293 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_300_novo_285_624/datacard_300_novo_285_624.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_300_novo_285_624/datacard_300_novo_285_624.txt deleted file mode 100644 index 4007fed..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_300_novo_285_624/datacard_300_novo_285_624.txt +++ /dev/null @@ -1,29 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_300.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_novo_285_624.root HbbHbb:f_novo -shapes data_obs HbbHbb w_background_novo_285_624.root HbbHbb:data_obs_novo_285_624 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 304.126 17618.3 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06837 - -JER lnN 1.02029 - -JEC lnN 1.00496 - -trigger lnN 1.10 - -sg_p0 param 300.807 -0.137814/+0.209326 -sg_p1 param 6.67548 -0.208065/+0.115424 -sg_p2 param 286.348 -3.92058/+7.00009 -sg_p3 param 37.0116 -5.30823/+2.45479 -sg_p4 param 0.646423 -0.0121632/+0.0116859 -par_novo_0 param 250 34.0246 -par_novo_1 param 38.6596 2.31421 -par_novo_2 param -1.2752 0.072293 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_300_novo_285_624/signal300_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_300_novo_285_624/signal300_sig.log deleted file mode 100644 index e692189..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_300_novo_285_624/signal300_sig.log +++ /dev/null @@ -1,859 +0,0 @@ - -Processing test.c... -nSignal_init = 292400 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11139.4 FROM MIGRAD STATUS=INITIATE 41 CALLS 42 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.85000e+02 7.00000e+00 0.00000e+00 3.99147e+02 - 2 sg_p1 2.00000e+01 3.00000e+00 0.00000e+00 5.36454e+01 - 3 sg_p2 3.05000e+02 1.10000e+01 0.00000e+00 5.03573e+02 - 4 sg_p3 2.15253e+01 1.20000e+01 -9.40600e-01 -5.65980e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -2.37474e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10983.2 FROM MIGRAD STATUS=CONVERGED 401 CALLS 402 TOTAL - EDM=5.6187e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.88323e+02 4.47990e-01 9.04940e-04 1.11533e-01 - 2 sg_p1 2.05573e+01 3.30978e-01 1.55295e-03 -5.38166e-02 - 3 sg_p2 3.60000e+02 7.01972e+00 3.68073e-02** at limit ** - 4 sg_p3 3.31232e+01 1.31185e+01 9.89999e-03 1.11043e-02 - 5 sg_p4 9.64843e-01 1.04001e-02 1.95930e-03 4.50763e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.007e-01 1.739e-02 -1.190e-04 -7.889e-01 9.394e-04 - 1.739e-02 1.096e-01 -6.312e-05 -5.744e-02 4.186e-04 - -1.190e-04 -6.312e-05 9.525e-05 8.817e-03 -7.777e-06 - -7.889e-01 -5.744e-02 8.817e-03 1.767e+02 -1.200e-01 - 9.394e-04 4.186e-04 -7.777e-06 -1.200e-01 1.083e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23279 1.000 0.117 -0.027 -0.132 0.202 - 2 0.23564 0.117 1.000 -0.020 -0.013 0.122 - 3 0.07829 -0.027 -0.020 1.000 0.068 -0.077 - 4 0.87296 -0.132 -0.013 0.068 1.000 -0.867 - 5 0.87761 0.202 0.122 -0.077 -0.867 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10983.2 FROM HESSE STATUS=OK 31 CALLS 433 TOTAL - EDM=5.61214e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.88323e+02 4.48511e-01 1.80988e-04 9.50767e-02 - 2 sg_p1 2.05573e+01 3.30912e-01 6.21181e-05 3.71642e-02 - 3 sg_p2 3.60000e+02 7.00510e+00 7.36146e-03 1.57114e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 3.31232e+01 1.34621e+01 3.96000e-04 -6.61896e-01 - 5 sg_p4 9.64843e-01 1.06761e-02 3.91861e-04 1.19356e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.012e-01 1.735e-02 -2.672e-05 -8.721e-01 9.990e-04 - 1.735e-02 1.095e-01 -1.383e-05 -7.606e-02 4.303e-04 - -2.672e-05 -1.383e-05 9.505e-05 2.045e-03 -1.786e-06 - -8.721e-01 -7.606e-02 2.045e-03 1.863e+02 -1.276e-01 - 9.990e-04 4.303e-04 -1.786e-06 -1.276e-01 1.141e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23747 1.000 0.117 -0.006 -0.142 0.209 - 2 0.23484 0.117 1.000 -0.004 -0.017 0.122 - 3 0.01751 -0.006 -0.004 1.000 0.015 -0.017 - 4 0.87999 -0.142 -0.017 0.015 1.000 -0.875 - 5 0.88427 0.209 0.122 -0.017 -0.875 1.000 -300 -288.323 +- 0.448511 -20.5573 +- 0.330912 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11021.8 FROM MIGRAD STATUS=INITIATE 44 CALLS 45 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.85000e+02 7.00000e+00 0.00000e+00 -1.23228e+01 - 2 sg_p1 2.00000e+01 3.00000e+00 0.00000e+00 1.69370e+02 - 3 sg_p2 3.05000e+02 1.10000e+01 0.00000e+00 3.59937e+02 - 4 sg_p3 2.91405e+01 1.20000e+01 -7.49116e-01 1.62870e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -1.88730e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10926.7 FROM MIGRAD STATUS=CONVERGED 404 CALLS 405 TOTAL - EDM=7.36709e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.89695e+02 4.48479e-01 9.08525e-04 -1.63756e-02 - 2 sg_p1 2.04912e+01 3.33789e-01 1.55841e-03 3.48244e-02 - 3 sg_p2 3.60000e+02 5.29130e+00 3.12243e-02** at limit ** - 4 sg_p3 2.52611e+01 5.98773e+00 7.97733e-03 1.66965e-02 - 5 sg_p4 9.65128e-01 6.44706e-03 1.81806e-03 6.25824e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.011e-01 1.895e-02 -2.334e-04 -3.465e-01 6.114e-04 - 1.895e-02 1.114e-01 -1.530e-04 -6.771e-02 4.120e-04 - -2.334e-04 -1.530e-04 2.973e-04 6.759e-03 -8.288e-06 - -3.465e-01 -6.771e-02 6.759e-03 3.612e+01 -2.585e-02 - 6.114e-04 4.120e-04 -8.288e-06 -2.585e-02 4.158e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22936 1.000 0.127 -0.030 -0.129 0.211 - 2 0.24516 0.127 1.000 -0.027 -0.034 0.191 - 3 0.08010 -0.030 -0.027 1.000 0.065 -0.075 - 4 0.67399 -0.129 -0.034 0.065 1.000 -0.667 - 5 0.69669 0.211 0.191 -0.075 -0.667 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10926.7 FROM HESSE STATUS=OK 31 CALLS 436 TOTAL - EDM=7.38964e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.89695e+02 4.48441e-01 1.81705e-04 1.34553e-01 - 2 sg_p1 2.04912e+01 3.33683e-01 6.23363e-05 3.27513e-02 - 3 sg_p2 3.60000e+02 5.29001e+00 6.24486e-03 1.57151e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 2.52611e+01 5.99008e+00 3.19093e-04 -8.41506e-01 - 5 sg_p4 9.65128e-01 6.44684e-03 3.63611e-04 1.19511e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.011e-01 1.882e-02 -5.556e-05 -3.514e-01 6.128e-04 - 1.882e-02 1.114e-01 -3.636e-05 -7.207e-02 4.132e-04 - -5.556e-05 -3.636e-05 2.972e-04 1.629e-03 -1.980e-06 - -3.514e-01 -7.207e-02 1.629e-03 3.615e+01 -2.589e-02 - 6.128e-04 4.132e-04 -1.980e-06 -2.589e-02 4.158e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22901 1.000 0.126 -0.007 -0.130 0.212 - 2 0.24394 0.126 1.000 -0.006 -0.036 0.192 - 3 0.01917 -0.007 -0.006 1.000 0.016 -0.018 - 4 0.67426 -0.130 -0.036 0.016 1.000 -0.668 - 5 0.69667 0.212 0.192 -0.018 -0.668 1.000 -300 -289.695 +- 0.448441 -20.4912 +- 0.333683 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10998.6 FROM MIGRAD STATUS=INITIATE 44 CALLS 45 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.85000e+02 7.00000e+00 0.00000e+00 1.82292e+02 - 2 sg_p1 2.00000e+01 3.00000e+00 0.00000e+00 1.71874e+02 - 3 sg_p2 3.05000e+02 1.10000e+01 0.00000e+00 5.32975e+02 - 4 sg_p3 3.07762e+01 1.20000e+01 -7.12504e-01 9.72386e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -2.81076e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10857.4 FROM MIGRAD STATUS=CONVERGED 443 CALLS 444 TOTAL - EDM=4.98868e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 2.86897e+02 4.50384e-01 9.00651e-04 -4.42030e-02 - 2 sg_p1 2.05381e+01 3.30444e-01 1.54851e-03 -1.71904e-02 - 3 sg_p2 3.60000e+02 4.58768e+00 2.94940e-02** at limit ** - 4 sg_p3 3.22720e+01 1.23522e+01 9.50923e-03 1.52629e-02 - 5 sg_p4 9.64411e-01 1.01122e-02 1.90336e-03 6.66364e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.029e-01 1.643e-02 -6.905e-05 -9.258e-01 1.002e-03 - 1.643e-02 1.092e-01 -3.441e-05 -1.687e-01 4.515e-04 - -6.905e-05 -3.441e-05 5.485e-05 5.168e-03 -4.433e-06 - -9.258e-01 -1.687e-01 5.168e-03 1.563e+02 -1.096e-01 - 1.002e-03 4.515e-04 -4.433e-06 -1.096e-01 1.024e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23805 1.000 0.110 -0.021 -0.164 0.220 - 2 0.21706 0.110 1.000 -0.014 -0.041 0.135 - 3 0.06085 -0.021 -0.014 1.000 0.056 -0.059 - 4 0.87005 -0.164 -0.041 0.056 1.000 -0.866 - 5 0.87483 0.220 0.135 -0.059 -0.866 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10857.4 FROM HESSE STATUS=OK 31 CALLS 475 TOTAL - EDM=4.96344e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 2.86897e+02 4.51095e-01 1.80130e-04 5.42398e-02 - 2 sg_p1 2.05381e+01 3.30465e-01 6.19404e-05 3.58796e-02 - 3 sg_p2 3.60000e+02 4.57970e+00 5.89879e-03 1.57112e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 3.22720e+01 1.26301e+01 3.80369e-04 -6.80009e-01 - 5 sg_p4 9.64411e-01 1.03457e-02 3.80673e-04 1.19122e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.035e-01 1.650e-02 -1.576e-05 -1.005e+00 1.062e-03 - 1.650e-02 1.092e-01 -7.711e-06 -1.941e-01 4.695e-04 - -1.576e-05 -7.711e-06 5.475e-05 1.202e-03 -1.025e-06 - -1.005e+00 -1.941e-01 1.202e-03 1.636e+02 -1.156e-01 - 1.062e-03 4.695e-04 -1.025e-06 -1.156e-01 1.071e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.24421 1.000 0.111 -0.005 -0.174 0.227 - 2 0.21733 0.111 1.000 -0.003 -0.046 0.137 - 3 0.01376 -0.005 -0.003 1.000 0.013 -0.013 - 4 0.87625 -0.174 -0.046 0.013 1.000 -0.873 - 5 0.88081 0.227 0.137 -0.013 -0.873 1.000 -300 -286.897 +- 0.451095 -20.5381 +- 0.330465 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=9427.95 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 0.00000e+00 1.31464e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 0.00000e+00 -2.82382e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 0.00000e+00 -1.05976e+00 - 4 sg_p3 5.43313e+01 1.20000e+01 -2.64207e-01 7.00043e+00 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -1.45220e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9204.59 FROM MIGRAD STATUS=CONVERGED 229 CALLS 230 TOTAL - EDM=6.66547e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00807e+02 2.06875e-01 9.24958e-04 -7.84006e-02 - 2 sg_p1 6.67548e+00 2.20836e-01 5.66581e-03 -4.55276e-03 - 3 sg_p2 2.86348e+02 3.69244e+00 1.62590e-03 -1.80856e-01 - 4 sg_p3 3.70116e+01 4.47529e+00 3.25190e-03 -7.94138e-02 - 5 sg_p4 6.46423e-01 1.60401e-02 1.99112e-03 -2.02931e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.280e-02 -6.675e-03 3.606e-02 -1.464e-01 -2.452e-04 - -6.675e-03 4.897e-02 -3.892e-01 5.095e-01 1.306e-03 - 3.606e-02 -3.892e-01 1.364e+01 -1.331e+01 -4.368e-04 - -1.464e-01 5.095e-01 -1.331e+01 2.008e+01 -1.514e-03 - -2.452e-04 1.306e-03 -4.368e-04 -1.514e-03 2.574e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23172 1.000 -0.146 0.047 -0.158 -0.074 - 2 0.64662 -0.146 1.000 -0.476 0.514 0.368 - 3 0.81187 0.047 -0.476 1.000 -0.804 -0.007 - 4 0.82962 -0.158 0.514 -0.804 1.000 -0.021 - 5 0.44432 -0.074 0.368 -0.007 -0.021 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9204.59 FROM HESSE STATUS=OK 31 CALLS 261 TOTAL - EDM=6.65624e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00807e+02 2.07041e-01 1.84992e-04 -2.83282e-01 - 2 sg_p1 6.67548e+00 2.24150e-01 2.26632e-04 -1.62980e-01 - 3 sg_p2 2.86348e+02 3.84665e+00 3.25179e-04 2.97108e-01 - 4 sg_p3 3.70116e+01 4.66245e+00 1.30076e-04 -5.82134e-01 - 5 sg_p4 6.46423e-01 1.60428e-02 3.98224e-04 2.97202e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.287e-02 -7.031e-03 4.534e-02 -1.570e-01 -2.475e-04 - -7.031e-03 5.046e-02 -4.308e-01 5.599e-01 1.315e-03 - 4.534e-02 -4.308e-01 1.481e+01 -1.475e+01 -6.186e-04 - -1.570e-01 5.599e-01 -1.475e+01 2.180e+01 -1.240e-03 - -2.475e-04 1.315e-03 -6.186e-04 -1.240e-03 2.575e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23496 1.000 -0.151 0.057 -0.162 -0.074 - 2 0.65975 -0.151 1.000 -0.498 0.534 0.365 - 3 0.82821 0.057 -0.498 1.000 -0.821 -0.010 - 4 0.84430 -0.162 0.534 -0.821 1.000 -0.017 - 5 0.44463 -0.074 0.365 -0.010 -0.017 1.000 -300 -300.807 +- 0.207041 -6.67548 +- 0.22415 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=9324.05 FROM MIGRAD STATUS=INITIATE 18 CALLS 19 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 2.01358e-01 1.26986e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -3.26570e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 2.01358e-01 1.80651e+01 - 4 sg_p3 7.00000e+01 1.20000e+01 2.01358e-01 1.95490e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -1.28150e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 11.1802 added to diagonal of error matrix - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.2302e+00 1.0000e+00 1.0003e+00 1.0996e+00 3.1303e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 1.233367 TO DIAGONAL. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9114.57 FROM MIGRAD STATUS=CONVERGED 289 CALLS 290 TOTAL - EDM=5.54375e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00989e+02 2.12814e-01 9.43941e-04 -9.14080e-04 - 2 sg_p1 6.53035e+00 2.40800e-01 5.98084e-03 4.80647e-03 - 3 sg_p2 2.93079e+02 2.00891e+00 1.26510e-03 8.67004e-03 - 4 sg_p3 3.22426e+01 3.06970e+00 3.13614e-03 5.39262e-03 - 5 sg_p4 6.37280e-01 1.82444e-02 2.01579e-03 -9.05889e-04 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.529e-02 -7.391e-03 -1.667e-02 -9.633e-02 -4.577e-04 - -7.391e-03 5.828e-02 -1.840e-01 4.072e-01 2.575e-03 - -1.667e-02 -1.840e-01 4.036e+00 -3.579e+00 -1.048e-02 - -9.633e-02 4.072e-01 -3.579e+00 9.437e+00 2.200e-02 - -4.577e-04 2.575e-03 -1.048e-02 2.200e-02 3.330e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23364 1.000 -0.144 -0.039 -0.147 -0.118 - 2 0.68293 -0.144 1.000 -0.379 0.549 0.585 - 3 0.60026 -0.039 -0.379 1.000 -0.580 -0.286 - 4 0.69097 -0.147 0.549 -0.580 1.000 0.393 - 5 0.59255 -0.118 0.585 -0.286 0.393 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9114.57 FROM HESSE STATUS=OK 31 CALLS 321 TOTAL - EDM=5.65701e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00989e+02 2.12854e-01 3.77576e-05 -2.70672e-01 - 2 sg_p1 6.53035e+00 2.42646e-01 1.19617e-03 -2.37040e-01 - 3 sg_p2 2.93079e+02 2.03806e+00 2.53019e-04 3.76364e-01 - 4 sg_p3 3.22426e+01 3.11925e+00 1.25446e-04 -6.80639e-01 - 5 sg_p4 6.37280e-01 1.83457e-02 8.06317e-05 2.78131e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.531e-02 -7.562e-03 -1.490e-02 -9.842e-02 -4.666e-04 - -7.562e-03 5.919e-02 -1.948e-01 4.241e-01 2.634e-03 - -1.490e-02 -1.948e-01 4.155e+00 -3.791e+00 -1.116e-02 - -9.842e-02 4.241e-01 -3.791e+00 9.744e+00 2.314e-02 - -4.666e-04 2.634e-03 -1.116e-02 2.314e-02 3.367e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23439 1.000 -0.146 -0.034 -0.148 -0.119 - 2 0.68886 -0.146 1.000 -0.393 0.558 0.590 - 3 0.61521 -0.034 -0.393 1.000 -0.596 -0.298 - 4 0.70278 -0.148 0.558 -0.596 1.000 0.404 - 5 0.59855 -0.119 0.590 -0.298 0.404 1.000 -300 -300.989 +- 0.212854 -6.53035 +- 0.242646 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=9310.64 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 0.00000e+00 1.34333e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 0.00000e+00 -2.36771e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 0.00000e+00 -1.06301e+01 - 4 sg_p3 4.94125e+01 1.20000e+01 -3.50242e-01 -6.56876e+00 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -1.57740e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9074.37 FROM MIGRAD STATUS=CONVERGED 198 CALLS 199 TOTAL - EDM=4.60513e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00716e+02 2.01045e-01 8.96469e-04 2.14226e-01 - 2 sg_p1 6.51517e+00 2.15145e-01 5.62639e-03 1.07423e-02 - 3 sg_p2 2.82932e+02 4.43725e+00 1.74062e-03 -1.31230e-01 - 4 sg_p3 3.77806e+01 4.64318e+00 3.03684e-03 -8.20421e-02 - 5 sg_p4 6.44030e-01 1.61428e-02 1.96449e-03 1.08169e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.042e-02 -6.174e-03 6.288e-02 -1.484e-01 -1.712e-04 - -6.174e-03 4.648e-02 -4.710e-01 4.996e-01 9.943e-04 - 6.288e-02 -4.710e-01 1.971e+01 -1.755e+01 9.466e-03 - -1.484e-01 4.996e-01 -1.755e+01 2.162e+01 -1.284e-02 - -1.712e-04 9.943e-04 9.466e-03 -1.284e-02 2.607e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22609 1.000 -0.142 0.070 -0.159 -0.053 - 2 0.63799 -0.142 1.000 -0.492 0.498 0.286 - 3 0.85697 0.070 -0.492 1.000 -0.850 0.132 - 4 0.86627 -0.159 0.498 -0.850 1.000 -0.171 - 5 0.46460 -0.053 0.286 0.132 -0.171 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9074.37 FROM HESSE STATUS=OK 31 CALLS 230 TOTAL - EDM=4.60124e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00716e+02 2.01266e-01 1.79294e-04 -2.89604e-01 - 2 sg_p1 6.51517e+00 2.18764e-01 1.12528e-03 -2.44853e-01 - 3 sg_p2 2.82932e+02 4.66955e+00 3.48124e-04 2.57637e-01 - 4 sg_p3 3.77806e+01 4.88570e+00 1.21473e-04 -5.66865e-01 - 5 sg_p4 6.44030e-01 1.61620e-02 3.92898e-04 2.92200e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.051e-02 -6.582e-03 7.683e-02 -1.625e-01 -1.645e-04 - -6.582e-03 4.806e-02 -5.290e-01 5.602e-01 9.646e-04 - 7.683e-02 -5.290e-01 2.183e+01 -1.979e+01 1.061e-02 - -1.625e-01 5.602e-01 -1.979e+01 2.394e+01 -1.401e-02 - -1.645e-04 9.646e-04 1.061e-02 -1.401e-02 2.613e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23066 1.000 -0.149 0.082 -0.165 -0.051 - 2 0.65313 -0.149 1.000 -0.516 0.522 0.272 - 3 0.87189 0.082 -0.516 1.000 -0.866 0.140 - 4 0.88014 -0.165 0.522 -0.866 1.000 -0.177 - 5 0.46660 -0.051 0.272 0.140 -0.177 1.000 -300 -300.716 +- 0.201266 -6.51517 +- 0.218764 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=9199.28 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 2.01358e-01 1.31737e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -3.80725e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 2.01358e-01 3.68970e+01 - 4 sg_p3 7.00000e+01 1.20000e+01 2.01358e-01 3.60460e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -9.61061e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=8979.33 FROM MIGRAD STATUS=CONVERGED 286 CALLS 287 TOTAL - EDM=6.06176e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00769e+02 2.16735e-01 9.53991e-04 -5.33757e-02 - 2 sg_p1 6.70308e+00 2.45021e-01 5.89293e-03 -3.95912e-02 - 3 sg_p2 2.87922e+02 3.34063e+00 1.53235e-03 -3.18644e-02 - 4 sg_p3 3.55948e+01 4.26381e+00 3.23155e-03 -4.27157e-03 - 5 sg_p4 6.37600e-01 1.68956e-02 2.00611e-03 2.50190e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.698e-02 -9.160e-03 4.009e-02 1.638e-01 -3.977e-04 - -9.160e-03 6.035e-02 -4.159e-01 -5.898e-01 1.951e-03 - 4.009e-02 -4.159e-01 1.117e+01 1.132e+01 -9.034e-03 - 1.638e-01 -5.898e-01 1.132e+01 1.823e+01 -1.125e-02 - -3.977e-04 1.951e-03 -9.034e-03 -1.125e-02 2.856e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25346 1.000 -0.172 0.055 0.177 -0.109 - 2 0.68892 -0.172 1.000 -0.507 -0.562 0.470 - 3 0.80257 0.055 -0.507 1.000 0.794 -0.160 - 4 0.82438 0.177 -0.562 0.794 1.000 -0.156 - 5 0.48969 -0.109 0.470 -0.160 -0.156 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=8979.33 FROM HESSE STATUS=OK 31 CALLS 318 TOTAL - EDM=6.06043e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00769e+02 2.16688e-01 1.90798e-04 -2.85961e-01 - 2 sg_p1 6.70308e+00 2.44943e-01 1.17859e-03 -1.49009e-01 - 3 sg_p2 2.87922e+02 3.32664e+00 3.06471e-04 3.15452e-01 - 4 sg_p3 3.55948e+01 4.24592e+00 1.29262e-04 -2.53092e+00 - 5 sg_p4 6.37600e-01 1.68934e-02 4.01222e-04 2.78798e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.696e-02 -9.141e-03 3.853e-02 1.617e-01 -3.954e-04 - -9.141e-03 6.031e-02 -4.131e-01 -5.862e-01 1.947e-03 - 3.853e-02 -4.131e-01 1.107e+01 1.120e+01 -8.911e-03 - 1.617e-01 -5.862e-01 1.120e+01 1.807e+01 -1.105e-02 - -3.954e-04 1.947e-03 -8.911e-03 -1.105e-02 2.855e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25265 1.000 -0.172 0.053 0.175 -0.108 - 2 0.68868 -0.172 1.000 -0.506 -0.562 0.469 - 3 0.80070 0.053 -0.506 1.000 0.792 -0.158 - 4 0.82272 0.175 -0.562 0.792 1.000 -0.154 - 5 0.48949 -0.108 0.469 -0.158 -0.154 1.000 -300 -300.769 +- 0.216688 -6.70308 +- 0.244943 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=9528.95 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 2.01358e-01 1.40358e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -2.86077e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 2.01358e-01 4.07742e+01 - 4 sg_p3 7.00000e+01 1.20000e+01 2.01358e-01 3.28657e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -1.55130e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9284.6 FROM MIGRAD STATUS=CONVERGED 275 CALLS 276 TOTAL - EDM=1.0669e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00844e+02 2.01930e-01 9.05593e-04 7.10616e-03 - 2 sg_p1 6.50018e+00 2.20682e-01 5.70172e-03 -1.20796e-03 - 3 sg_p2 2.89404e+02 2.63913e+00 1.40244e-03 7.93444e-03 - 4 sg_p3 3.36229e+01 3.43508e+00 3.08392e-03 -8.78771e-03 - 5 sg_p4 6.54921e-01 1.64524e-02 1.98673e-03 -7.23147e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.078e-02 -6.775e-03 1.130e-02 -1.118e-01 -3.655e-04 - -6.775e-03 4.891e-02 -2.623e-01 4.000e-01 1.828e-03 - 1.130e-02 -2.623e-01 6.967e+00 -6.550e+00 -9.484e-03 - -1.118e-01 4.000e-01 -6.550e+00 1.182e+01 1.315e-02 - -3.655e-04 1.828e-03 -9.484e-03 1.315e-02 2.708e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23688 1.000 -0.152 0.021 -0.161 -0.110 - 2 0.66103 -0.152 1.000 -0.449 0.526 0.502 - 3 0.73398 0.021 -0.449 1.000 -0.722 -0.218 - 4 0.76528 -0.161 0.526 -0.722 1.000 0.232 - 5 0.50584 -0.110 0.502 -0.218 0.232 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9284.6 FROM HESSE STATUS=OK 31 CALLS 307 TOTAL - EDM=1.12622e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00844e+02 2.02032e-01 3.62237e-05 -2.80744e-01 - 2 sg_p1 6.50018e+00 2.23003e-01 2.28069e-04 -2.52587e-01 - 3 sg_p2 2.89404e+02 2.70635e+00 2.80488e-04 3.32825e-01 - 4 sg_p3 3.36229e+01 3.52423e+00 1.23357e-04 -6.93457e+00 - 5 sg_p4 6.54921e-01 1.65063e-02 3.97346e-04 3.15027e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.082e-02 -7.019e-03 1.539e-02 -1.166e-01 -3.746e-04 - -7.019e-03 4.995e-02 -2.818e-01 4.255e-01 1.872e-03 - 1.539e-02 -2.818e-01 7.327e+00 -7.045e+00 -1.028e-02 - -1.166e-01 4.255e-01 -7.045e+00 1.244e+01 1.424e-02 - -3.746e-04 1.872e-03 -1.028e-02 1.424e-02 2.726e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23888 1.000 -0.155 0.028 -0.164 -0.112 - 2 0.66984 -0.155 1.000 -0.466 0.540 0.507 - 3 0.74924 0.028 -0.466 1.000 -0.738 -0.230 - 4 0.77870 -0.164 0.540 -0.738 1.000 0.244 - 5 0.51061 -0.112 0.507 -0.230 0.244 1.000 -300 -300.844 +- 0.202032 -6.50018 +- 0.223003 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=8804.14 FROM MIGRAD STATUS=INITIATE 38 CALLS 39 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 0.00000e+00 1.21619e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 0.00000e+00 -2.50995e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 0.00000e+00 -2.34806e+01 - 4 sg_p3 5.09831e+01 1.20000e+01 -3.22511e-01 -1.58294e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -1.45258e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=8594.18 FROM MIGRAD STATUS=CONVERGED 195 CALLS 196 TOTAL - EDM=0.000103955 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00810e+02 2.13585e-01 9.23962e-04 -3.32389e-01 - 2 sg_p1 6.67466e+00 2.27375e-01 5.64986e-03 -6.39462e-02 - 3 sg_p2 2.86358e+02 3.78706e+00 1.67027e-03 2.10141e-01 - 4 sg_p3 3.68730e+01 4.57772e+00 3.31711e-03 1.33026e-01 - 5 sg_p4 6.48483e-01 1.65693e-02 1.99186e-03 1.18731e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.562e-02 -7.064e-03 3.747e-02 -1.545e-01 -2.634e-04 - -7.064e-03 5.193e-02 -4.091e-01 5.342e-01 1.402e-03 - 3.747e-02 -4.091e-01 1.435e+01 -1.392e+01 -8.150e-04 - -1.545e-01 5.342e-01 -1.392e+01 2.101e+01 -1.176e-03 - -2.634e-04 1.402e-03 -8.150e-04 -1.176e-03 2.747e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23149 1.000 -0.145 0.046 -0.158 -0.074 - 2 0.64493 -0.145 1.000 -0.474 0.511 0.371 - 3 0.80971 0.046 -0.474 1.000 -0.802 -0.013 - 4 0.82741 -0.158 0.511 -0.802 1.000 -0.015 - 5 0.44365 -0.074 0.371 -0.013 -0.015 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=8594.18 FROM HESSE STATUS=OK 31 CALLS 227 TOTAL - EDM=0.000103618 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00810e+02 2.13733e-01 1.84792e-04 -2.83111e-01 - 2 sg_p1 6.67466e+00 2.30409e-01 1.12997e-03 -1.63396e-01 - 3 sg_p2 2.86358e+02 3.92954e+00 3.34054e-04 2.97224e-01 - 4 sg_p3 3.68730e+01 4.75005e+00 6.63422e-04 -5.84901e-01 - 5 sg_p4 6.48483e-01 1.65714e-02 3.98372e-04 3.01515e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.569e-02 -7.400e-03 4.620e-02 -1.644e-01 -2.656e-04 - -7.400e-03 5.333e-02 -4.485e-01 5.817e-01 1.411e-03 - 4.620e-02 -4.485e-01 1.545e+01 -1.528e+01 -1.007e-03 - -1.644e-01 5.817e-01 -1.528e+01 2.263e+01 -8.956e-04 - -2.656e-04 1.411e-03 -1.007e-03 -8.956e-04 2.747e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23430 1.000 -0.150 0.055 -0.162 -0.075 - 2 0.65672 -0.150 1.000 -0.494 0.530 0.369 - 3 0.82472 0.055 -0.494 1.000 -0.817 -0.015 - 4 0.84090 -0.162 0.530 -0.817 1.000 -0.011 - 5 0.44388 -0.075 0.369 -0.015 -0.011 1.000 -300 -300.81 +- 0.213733 -6.67466 +- 0.230409 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10085.1 FROM MIGRAD STATUS=INITIATE 38 CALLS 39 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.05000e+02 3.00000e+00 0.00000e+00 1.41204e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 0.00000e+00 -3.13147e+01 - 3 sg_p2 2.60000e+02 1.80000e+01 0.00000e+00 9.36393e+00 - 4 sg_p3 5.63011e+01 1.20000e+01 -2.30347e-01 1.74222e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -1.47792e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9847.01 FROM MIGRAD STATUS=CONVERGED 237 CALLS 238 TOTAL - EDM=9.73968e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.00804e+02 2.00448e-01 9.27938e-04 -2.66723e-02 - 2 sg_p1 6.67674e+00 2.14181e-01 5.68372e-03 6.00134e-04 - 3 sg_p2 2.86357e+02 3.57965e+00 1.66724e-03 -1.62501e-02 - 4 sg_p3 3.71633e+01 4.35962e+00 3.32473e-03 2.36830e-03 - 5 sg_p4 6.44672e-01 1.55331e-02 1.99195e-03 -8.00555e-04 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.018e-02 -6.290e-03 3.361e-02 -1.381e-01 -2.282e-04 - -6.290e-03 4.605e-02 -3.651e-01 4.812e-01 1.217e-03 - 3.361e-02 -3.651e-01 1.282e+01 -1.255e+01 -7.211e-05 - -1.381e-01 4.812e-01 -1.255e+01 1.905e+01 -1.851e-03 - -2.282e-04 1.217e-03 -7.211e-05 -1.851e-03 2.414e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23182 1.000 -0.146 0.047 -0.158 -0.073 - 2 0.64675 -0.146 1.000 -0.475 0.514 0.365 - 3 0.81111 0.047 -0.475 1.000 -0.803 -0.001 - 4 0.82935 -0.158 0.514 -0.803 1.000 -0.027 - 5 0.44510 -0.073 0.365 -0.001 -0.027 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9847.01 FROM HESSE STATUS=OK 31 CALLS 269 TOTAL - EDM=1.05973e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.00804e+02 2.00611e-01 1.85588e-04 -2.83535e-01 - 2 sg_p1 6.67674e+00 2.17452e-01 2.27349e-04 -1.62344e-01 - 3 sg_p2 2.86357e+02 3.73232e+00 3.33449e-04 2.97212e-01 - 4 sg_p3 3.71633e+01 4.54584e+00 1.32989e-04 -5.79108e-01 - 5 sg_p4 6.44672e-01 1.55348e-02 7.96779e-05 2.93540e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.025e-02 -6.630e-03 4.251e-02 -1.483e-01 -2.300e-04 - -6.630e-03 4.748e-02 -4.050e-01 5.298e-01 1.225e-03 - 4.251e-02 -4.050e-01 1.394e+01 -1.395e+01 -2.119e-04 - -1.483e-01 5.298e-01 -1.395e+01 2.072e+01 -1.629e-03 - -2.300e-04 1.225e-03 -2.119e-04 -1.629e-03 2.414e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23512 1.000 -0.152 0.057 -0.162 -0.074 - 2 0.66010 -0.152 1.000 -0.498 0.534 0.362 - 3 0.82785 0.057 -0.498 1.000 -0.821 -0.004 - 4 0.84435 -0.162 0.534 -0.821 1.000 -0.023 - 5 0.44529 -0.074 0.362 -0.004 -0.023 1.000 -300 -300.804 +- 0.200611 -6.67674 +- 0.217452 -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 300.807 +- 0.207041 (stat) - 0.0909738 + 0.181936 (syst); -0.137814/+0.209326 (total) - Uncertainty on sg_p1 = 6.67548 +- 0.22415 (stat) - 0.1753 + 0.0276028 (syst); -0.208065/+0.115424 (total) - Uncertainty on sg_p2 = 286.348 +- 3.84665 (stat) - 3.4164 + 6.73068 (syst); -3.92058/+7.00009 (total) - Uncertainty on sg_p3 = 37.0116 +- 4.66245 (stat) - 4.76893 + 0.769026 (syst); -5.30823/+2.45479 (total) - Uncertainty on sg_p4 = 0.646423 +- 0.0160428 (stat) - 0.00914333 + 0.00849815 (syst); -0.0121632/+0.0116859 (total) - === Baseline plot ===
- norm = 304.126 -JEC lnN 1.00496 - -JER lnN 1.02029 - -btag lnN 1.06837 - -sg_p0 param 300.807 -0.137814/+0.209326 -sg_p1 param 6.67548 -0.208065/+0.115424 -sg_p2 param 286.348 -3.92058/+7.00009 -sg_p3 param 37.0116 -5.30823/+2.45479 -sg_p4 param 0.646423 -0.0121632/+0.0116859 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_350_crystal_1_285_624/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_350_crystal_1_285_624/data_bkg.log deleted file mode 100644 index 1be2f6e..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_350_crystal_1_285_624/data_bkg.log +++ /dev/null @@ -1,717 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [250,330] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [250,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63590.5 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.69443e-02 5.09000e-01 0.00000e+00 -7.94680e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -8.91126e+00 - 3 par_crystal_2 2.62020e+02 4.00000e+00 1.01181e-01 -1.53451e+00 - 4 par_crystal_3 1.65000e+01 2.70000e+00 0.00000e+00 7.46021e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM MIGRAD STATUS=CONVERGED 482 CALLS 483 TOTAL - EDM=0.000814822 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 4.40594e-01 4.43750e-02 2.48631e-03 2.88668e-01 - 2 par_crystal_1 9.82994e-01 6.48221e-01 2.14269e-02 -5.28345e-03 - 3 par_crystal_2 2.71542e+02 7.41091e-01 7.20683e-03 -9.27818e-02 - 4 par_crystal_3 2.87224e+01 2.18588e+00 3.97473e-02 -6.99277e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.970e-03 -2.333e-02 -5.115e-04 1.392e-02 - -2.333e-02 4.358e-01 4.870e-03 -8.391e-01 - -5.115e-04 4.870e-03 5.496e-01 4.381e-01 - 1.392e-02 -8.391e-01 4.381e-01 5.029e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.88989 1.000 -0.796 -0.016 0.140 - 2 0.92807 -0.796 1.000 0.010 -0.567 - 3 0.40865 -0.016 0.010 1.000 0.264 - 4 0.80948 0.140 -0.567 0.264 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM HESSE STATUS=OK 23 CALLS 506 TOTAL - EDM=0.000711421 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 4.40594e-01 4.64698e-02 4.97262e-04 -9.80558e-01 - 2 par_crystal_1 9.82994e-01 6.55195e-01 8.57075e-04 -6.65795e-01 - 3 par_crystal_2 2.71542e+02 7.38644e-01 1.44137e-03 6.15159e-01 - 4 par_crystal_3 2.87224e+01 2.03002e+00 1.58989e-03 -1.05570e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.160e-03 -2.581e-02 -1.109e-03 1.530e-02 - -2.581e-02 4.456e-01 2.508e-02 -7.234e-01 - -1.109e-03 2.508e-02 5.460e-01 3.687e-01 - 1.530e-02 -7.234e-01 3.687e-01 4.306e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.90014 1.000 -0.832 -0.032 0.159 - 2 0.92960 -0.832 1.000 0.051 -0.522 - 3 0.40186 -0.032 0.051 1.000 0.240 - 4 0.77207 0.159 -0.522 0.240 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63714.2 FROM MIGRAD STATUS=INITIATE 33 CALLS 34 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 2.63122e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -5.45805e+02 - 3 par_gaus_exp_2 6.67498e-01 3.05000e-01 -6.37370e-01 7.03093e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM MIGRAD STATUS=CONVERGED 131 CALLS 132 TOTAL - EDM=6.15917e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.71558e+02 8.05096e-01 6.82817e-03 6.24407e-02 - 2 par_gaus_exp_1 3.06822e+01 1.83071e+00 1.43475e-02 1.11468e-02 - 3 par_gaus_exp_2 3.82770e-01 2.42284e-02 3.05774e-03 -9.77170e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.486e-01 -6.079e-01 -1.588e-03 - -6.079e-01 3.370e+00 3.082e-02 - -1.588e-03 3.082e-02 5.871e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.49876 1.000 -0.411 -0.081 - 2 0.77898 -0.411 1.000 0.693 - 3 0.72797 -0.081 0.693 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM HESSE STATUS=OK 16 CALLS 148 TOTAL - EDM=6.13964e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.71558e+02 8.14214e-01 2.73127e-04 -4.35760e-01 - 2 par_gaus_exp_1 3.06822e+01 1.86973e+00 5.73898e-04 4.10264e-01 - 3 par_gaus_exp_2 3.82770e-01 2.45149e-02 1.22310e-04 -8.97531e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.634e-01 -6.630e-01 -2.137e-03 - -6.630e-01 3.516e+00 3.227e-02 - -2.137e-03 3.227e-02 6.011e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.51526 1.000 -0.434 -0.107 - 2 0.78935 -0.434 1.000 0.702 - 3 0.73544 -0.107 0.702 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,625] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.33953 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.33953) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - ... (remaining 126 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.734607 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.734607) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=317.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=327.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=332.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=342.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=347.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=352.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=357.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=362.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=367.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - ... (remaining 53 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0734613 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0734613 - - FCN=103487 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57093e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.56195e+03 - 3 par_novo_2 -1.33668e+00 2.00000e+01 0.00000e+00 1.53931e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM MIGRAD STATUS=CONVERGED 127 CALLS 128 TOTAL - EDM=3.4171e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.43423e+01 1.81223e-01** at limit ** - 2 par_novo_1 3.86596e+01 2.27294e+00 4.95847e-03 -1.04123e-02 - 3 par_novo_2 -1.27520e+00 7.07738e-02 3.70975e-05 -1.26322e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.231e-09 -8.491e-07 -8.580e-07 - -8.491e-07 5.181e+00 1.547e-01 - -8.580e-07 1.547e-01 5.009e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.53332 1.000 -0.005 -0.154 - 2 0.97096 -0.005 1.000 0.960 - 3 0.97165 -0.154 0.960 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM HESSE STATUS=OK 20 CALLS 148 TOTAL - EDM=3.43726e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.40246e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.86596e+01 2.31421e+00 1.98339e-04 4.46530e-01 - 3 par_novo_2 -1.27520e+00 7.22930e-02 1.48390e-06 -1.27523e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 5.974e-09 2.819e-05 -1.296e-06 - 2.819e-05 5.372e+00 1.502e-01 - -1.296e-06 1.502e-01 5.226e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.85665 1.000 0.157 -0.232 - 2 0.97200 0.157 1.000 0.897 - 3 0.97285 -0.232 0.897 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107513 FROM MIGRAD STATUS=INITIATE 54 CALLS 55 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 1.39168e+03 - 2 par_crystal_1_1 7.96220e-02 5.09000e-01 0.00000e+00 5.33770e+03 - 3 par_crystal_1_2 2.56879e+02 4.00000e+00 -1.56713e-01 -1.96669e+01 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 -8.45862e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.5057e-02 2.3309e-03 4.9678e-02 3.9730e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.029030 TO DIAGONAL. - FCN=103250 FROM MIGRAD STATUS=CONVERGED 436 CALLS 437 TOTAL - EDM=3.52757e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 4.45574e-02 4.37117e-03 3.09465e-04 -4.28177e+00 - 2 par_crystal_1_1 4.36914e+00 6.24106e-01 1.80400e-02 6.63742e-02 - 3 par_crystal_1_2 2.71531e+02 3.44700e+01 5.81266e-02 2.25694e-02 - 4 par_crystal_1_3 3.37290e+00 2.71702e-01 3.13791e-03 -4.26197e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.911e-05 -1.221e-03 2.089e-01 3.572e-04 - -1.221e-03 4.065e-01 -2.690e+01 -6.822e-02 - 2.089e-01 -2.690e+01 3.429e+03 1.167e+01 - 3.572e-04 -6.822e-02 1.167e+01 7.401e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99136 1.000 -0.438 0.816 0.300 - 2 0.97307 -0.438 1.000 -0.720 -0.393 - 3 0.99735 0.816 -0.720 1.000 0.733 - 4 0.98716 0.300 -0.393 0.733 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -8.0089e-04 4.0193e-04 7.1213e-02 3.9292e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.004730 TO DIAGONAL. - FCN=103250 FROM HESSE STATUS=NOT POSDEF 23 CALLS 460 TOTAL - EDM=3.56127e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 4.45574e-02 7.42610e-03 6.18930e-05 -1.40582e+00 - 2 par_crystal_1_1 4.36914e+00 4.67550e-01 7.21602e-04 -3.93511e+00 - 3 par_crystal_1_2 2.71531e+02 3.29814e+01 2.32506e-03 -3.75607e+00 - 4 par_crystal_1_3 3.37290e+00 5.01685e-01 1.25517e-04 -1.80638e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.515e-05 2.851e-04 2.343e-01 -1.699e-03 - 2.851e-04 2.238e-01 -2.528e+00 1.548e-02 - 2.343e-01 -2.528e+00 2.967e+03 1.176e+01 - -1.699e-03 1.548e-02 1.176e+01 2.538e-01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99694 1.000 0.081 0.579 -0.454 - 2 0.94927 0.081 1.000 -0.098 0.065 - 3 0.99687 0.579 -0.098 1.000 0.429 - 4 0.99618 -0.454 0.065 0.429 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 14211 - Background number of gaus_exp_252_330 = 14211 - Background number of novo_285_624 = 17618.3 - Background number of crystal_1_285_624 = 17618.3 - Background number of gaus_bern_285_624 = 17618.3 - Background number of landau_285_624 = 17618.3 -par_crystal_0 param 0.440594 0.0464698 -par_crystal_1 param 0.982994 0.655195 -par_crystal_2 param 271.542 0.738644 -par_crystal_3 param 28.7224 2.03002 -par_crystal_1_0 param 0.0445574 0.0074261 -par_crystal_1_1 param 4.36914 0.46755 -par_crystal_1_2 param 271.531 32.9814 -par_crystal_1_3 param 3.3729 0.501685 -par_gaus_exp_0 param 271.558 0.814214 -par_gaus_exp_1 param 30.6822 1.86973 -par_gaus_exp_2 param 0.38277 0.0245149 -par_novo_0 param 250 34.0246 -par_novo_1 param 38.6596 2.31421 -par_novo_2 param -1.2752 0.072293 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_350_crystal_1_285_624/datacard_350_crystal_1_285_624.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_350_crystal_1_285_624/datacard_350_crystal_1_285_624.txt deleted file mode 100644 index 66e6cac..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_350_crystal_1_285_624/datacard_350_crystal_1_285_624.txt +++ /dev/null @@ -1,30 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_350.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_crystal_1_285_624.root HbbHbb:f_crystal_1 -shapes data_obs HbbHbb w_background_crystal_1_285_624.root HbbHbb:data_obs_crystal_1_285_624 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 541.084 17618.3 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06649 - -JER lnN 1.00905 - -JEC lnN 1.0101 - -trigger lnN 1.10 - -sg_p0 param 351.69 -0.33742/+0.289485 -sg_p1 param 8.9999 -0.244659/+0.23626 -sg_p2 param 337.532 -5.30516/+3.56202 -sg_p3 param 35.585 -1.92591/+2.70654 -sg_p4 param 0.703842 -0.0115673/+0.013846 -par_crystal_1_0 param 0.0445574 0.0074261 -par_crystal_1_1 param 4.36914 0.46755 -par_crystal_1_2 param 271.531 32.9814 -par_crystal_1_3 param 3.3729 0.501685 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_350_crystal_1_285_624/signal350_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_350_crystal_1_285_624/signal350_sig.log deleted file mode 100644 index 3cd3455..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_350_crystal_1_285_624/signal350_sig.log +++ /dev/null @@ -1,927 +0,0 @@ - -Processing test.c... -nSignal_init = 300000 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=22528 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.45000e+02 7.00000e+00 2.01358e-01 1.85444e+03 - 2 sg_p1 2.00000e+01 3.00000e+00 2.01358e-01 -1.26556e+01 - 3 sg_p2 3.75000e+02 9.00000e+00 2.01358e-01 1.23451e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -4.81309e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -9.79262e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21380.5 FROM MIGRAD STATUS=CONVERGED 200 CALLS 201 TOTAL - EDM=3.93725e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.34187e+02 4.37520e-01 1.19182e-03 3.04020e-02 - 2 sg_p1 2.26141e+01 4.79817e-01 2.16429e-03 1.96597e-03 - 3 sg_p2 3.30000e+02 7.71533e-01 1.87116e-02** at limit ** - 4 sg_p3 7.15373e+01 5.51063e+00 8.04417e-03 3.88300e-03 - 5 sg_p4 8.94168e-01 1.56675e-02 2.59223e-03 3.19034e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.914e-01 -8.489e-02 -1.235e-06 -8.412e-01 -2.850e-03 - -8.489e-02 2.303e-01 1.528e-06 1.618e+00 5.594e-03 - -1.235e-06 1.528e-06 1.273e-07 1.107e-05 4.780e-08 - -8.412e-01 1.618e+00 1.107e-05 3.054e+01 6.912e-02 - -2.850e-03 5.594e-03 4.780e-08 6.912e-02 2.457e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.43984 1.000 -0.404 -0.008 -0.348 -0.416 - 2 0.75144 -0.404 1.000 0.009 0.610 0.744 - 3 0.01053 -0.008 0.009 1.000 0.006 0.009 - 4 0.79840 -0.348 0.610 0.006 1.000 0.798 - 5 0.86375 -0.416 0.744 0.009 0.798 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21380.5 FROM HESSE STATUS=OK 31 CALLS 232 TOTAL - EDM=4.04441e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.34187e+02 4.38578e-01 4.76728e-05 -3.14089e-01 - 2 sg_p1 2.26141e+01 4.83583e-01 8.65717e-05 1.75170e-01 - 3 sg_p2 3.30000e+02 7.71716e-01 3.74232e-03 -1.57084e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 7.15373e+01 5.57705e+00 3.21767e-04 3.76314e-01 - 5 sg_p4 8.94168e-01 1.58618e-02 5.18445e-04 9.08100e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.924e-01 -8.684e-02 -2.448e-07 -8.666e-01 -2.922e-03 - -8.684e-02 2.339e-01 3.045e-07 1.670e+00 5.743e-03 - -2.448e-07 3.045e-07 1.274e-07 2.232e-06 9.555e-09 - -8.666e-01 1.670e+00 2.232e-06 3.129e+01 7.130e-02 - -2.922e-03 5.743e-03 9.555e-09 7.130e-02 2.518e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.44424 1.000 -0.409 -0.002 -0.353 -0.420 - 2 0.75592 -0.409 1.000 0.002 0.617 0.748 - 3 0.00208 -0.002 0.002 1.000 0.001 0.002 - 4 0.80377 -0.353 0.617 0.001 1.000 0.803 - 5 0.86733 -0.420 0.748 0.002 0.803 1.000 -350 -334.187 +- 0.438578 -22.6141 +- 0.483583 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=22627.8 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.45000e+02 7.00000e+00 2.01358e-01 1.57892e+03 - 2 sg_p1 2.00000e+01 3.00000e+00 2.01358e-01 2.75936e+01 - 3 sg_p2 3.75000e+02 9.00000e+00 2.01358e-01 1.16953e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -3.72010e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -9.99046e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21614.3 FROM MIGRAD STATUS=CONVERGED 179 CALLS 180 TOTAL - EDM=0.000765156 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.35798e+02 4.40505e-01 1.18756e-03 5.85918e-02 - 2 sg_p1 2.30753e+01 4.76357e-01 2.18690e-03 -2.03897e-03 - 3 sg_p2 3.30001e+02 1.45352e+00 2.57988e-02 -9.05792e-02 - 4 sg_p3 7.35354e+01 6.02462e+00 8.88269e-03 -1.01559e-01 - 5 sg_p4 9.01891e-01 1.51622e-02 2.60225e-03 2.64090e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.941e-01 -8.403e-02 -1.778e-04 -9.585e-01 -2.816e-03 - -8.403e-02 2.270e-01 1.870e-04 1.767e+00 5.355e-03 - -1.778e-04 1.870e-04 4.564e-03 5.987e-04 4.935e-06 - -9.585e-01 1.767e+00 5.987e-04 3.656e+01 7.358e-02 - -2.816e-03 5.355e-03 4.935e-06 7.358e-02 2.301e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.44243 1.000 -0.400 -0.006 -0.360 -0.421 - 2 0.74784 -0.400 1.000 0.006 0.613 0.741 - 3 0.00826 -0.006 0.006 1.000 0.001 0.005 - 4 0.80297 -0.360 0.613 0.001 1.000 0.802 - 5 0.86456 -0.421 0.741 0.005 0.802 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21614.3 FROM HESSE STATUS=OK 31 CALLS 211 TOTAL - EDM=0.000770472 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.35798e+02 4.41802e-01 2.37512e-04 -2.66038e-01 - 2 sg_p1 2.30753e+01 4.80609e-01 8.74761e-05 2.06482e-01 - 3 sg_p2 3.30001e+02 1.45505e+00 5.15976e-03 -1.57669e+00 - 4 sg_p3 7.35354e+01 6.11053e+00 3.55307e-04 4.24535e-01 - 5 sg_p4 9.01891e-01 1.53826e-02 1.04090e-04 9.33626e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.952e-01 -8.630e-02 8.428e-05 -9.929e-01 -2.902e-03 - -8.630e-02 2.311e-01 -8.883e-05 1.833e+00 5.520e-03 - 8.428e-05 -8.883e-05 4.569e-03 -2.859e-04 -2.344e-06 - -9.929e-01 1.833e+00 -2.859e-04 3.762e+01 7.631e-02 - -2.902e-03 5.520e-03 -2.344e-06 7.631e-02 2.368e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.44772 1.000 -0.406 0.003 -0.366 -0.427 - 2 0.75302 -0.406 1.000 -0.003 0.622 0.746 - 3 0.00390 0.003 -0.003 1.000 -0.001 -0.002 - 4 0.80914 -0.366 0.622 -0.001 1.000 0.808 - 5 0.86871 -0.427 0.746 -0.002 0.808 1.000 -350 -335.798 +- 0.441802 -23.0753 +- 0.480609 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=22461.8 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.45000e+02 7.00000e+00 2.01358e-01 2.12122e+03 - 2 sg_p1 2.00000e+01 3.00000e+00 2.01358e-01 -1.16373e+02 - 3 sg_p2 3.75000e+02 9.00000e+00 2.01358e-01 1.31911e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -5.79911e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -9.15472e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21165.5 FROM MIGRAD STATUS=CONVERGED 173 CALLS 174 TOTAL - EDM=1.05905e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.32336e+02 4.42443e-01 1.23362e-03 3.68247e-02 - 2 sg_p1 2.24290e+01 4.96251e-01 2.19433e-03 -3.29729e-02 - 3 sg_p2 3.30000e+02 5.15272e-01 1.52593e-02** at limit ** - 4 sg_p3 6.46965e+01 4.49942e+00 6.08111e-03 5.16840e-02 - 5 sg_p4 8.77595e-01 1.81613e-02 2.70062e-03 -5.60533e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.958e-01 -8.688e-02 -6.473e-07 -6.527e-01 -3.215e-03 - -8.688e-02 2.464e-01 8.468e-07 1.363e+00 6.784e-03 - -6.473e-07 8.468e-07 3.789e-08 6.087e-06 3.127e-08 - -6.527e-01 1.363e+00 6.087e-06 2.032e+01 6.625e-02 - -3.215e-03 6.784e-03 3.127e-08 6.625e-02 3.302e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.42501 1.000 -0.396 -0.008 -0.327 -0.400 - 2 0.75928 -0.396 1.000 0.009 0.609 0.752 - 3 0.01018 -0.008 0.009 1.000 0.007 0.009 - 4 0.80887 -0.327 0.609 0.007 1.000 0.809 - 5 0.87457 -0.400 0.752 0.009 0.809 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21165.5 FROM HESSE STATUS=OK 31 CALLS 205 TOTAL - EDM=1.06081e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.32336e+02 4.43146e-01 4.93448e-05 -3.70218e-01 - 2 sg_p1 2.24290e+01 4.99339e-01 8.77732e-05 1.62649e-01 - 3 sg_p2 3.30000e+02 5.15335e-01 3.05186e-03 -1.57077e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 6.46965e+01 4.54231e+00 2.43244e-04 2.17181e-01 - 5 sg_p4 8.77595e-01 1.83407e-02 5.40123e-04 8.55943e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.964e-01 -8.838e-02 -1.326e-07 -6.673e-01 -3.275e-03 - -8.838e-02 2.494e-01 1.746e-07 1.397e+00 6.925e-03 - -1.326e-07 1.746e-07 3.790e-08 1.265e-06 6.465e-09 - -6.673e-01 1.397e+00 1.265e-06 2.071e+01 6.788e-02 - -3.275e-03 6.925e-03 6.465e-09 6.788e-02 3.367e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.42806 1.000 -0.399 -0.002 -0.331 -0.403 - 2 0.76271 -0.399 1.000 0.002 0.615 0.756 - 3 0.00208 -0.002 0.002 1.000 0.001 0.002 - 4 0.81288 -0.331 0.615 0.001 1.000 0.813 - 5 0.87719 -0.403 0.756 0.002 0.813 1.000 -350 -332.336 +- 0.443146 -22.429 +- 0.499339 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17745.4 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 3.81607e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -5.82292e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.35171e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -4.55171e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 5.60829e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.4848e-03 4.4073e-01 9.4874e-01 1.6613e+00 1.9507e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.003435 TO DIAGONAL. - FCN=17037.5 FROM MIGRAD STATUS=CONVERGED 272 CALLS 273 TOTAL - EDM=0.000229841 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51690e+02 3.12909e-01 7.20357e-04 1.50885e-02 - 2 sg_p1 8.99990e+00 2.02072e+00 1.07460e-01 -8.64629e-04 - 3 sg_p2 3.37532e+02 1.70704e+01 8.89534e-04 8.91783e-02 - 4 sg_p3 3.55850e+01 1.57412e+01 2.01445e-03 5.68535e-02 - 5 sg_p4 7.03842e-01 9.36961e-02 8.03918e-03 -4.45853e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.792e-02 9.007e-02 3.977e+00 -3.782e+00 -2.519e-02 - 9.007e-02 1.430e-01 6.397e+00 -5.986e+00 -3.967e-02 - 3.977e+00 6.397e+00 2.927e+02 -2.722e+02 -1.779e+00 - -3.782e+00 -5.986e+00 -2.722e+02 2.551e+02 1.667e+00 - -2.519e-02 -3.967e-02 -1.779e+00 1.667e+00 1.115e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.77487 1.000 0.761 0.743 -0.757 -0.763 - 2 0.99571 0.761 1.000 0.989 -0.991 -0.994 - 3 0.99637 0.743 0.989 1.000 -0.996 -0.985 - 4 0.99713 -0.757 -0.991 -0.996 1.000 0.988 - 5 0.99425 -0.763 -0.994 -0.985 0.988 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17037.5 FROM HESSE STATUS=OK 35 CALLS 308 TOTAL - EDM=2.9509e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51690e+02 2.05801e-01 1.44071e-04 -1.32785e-01 - 2 sg_p1 8.99990e+00 4.72520e-01 4.38435e-01 1.58093e+00 - 3 sg_p2 3.37532e+02 3.63434e+00 1.77907e-04 4.55143e-01 - 4 sg_p3 3.55850e+01 3.20621e+00 8.05779e-05 -6.87361e-01 - 5 sg_p4 7.03842e-01 1.85963e-02 3.21567e-04 -7.64719e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.236e-02 4.581e-04 2.670e-02 -8.569e-02 -6.634e-04 - 4.581e-04 2.023e-04 3.597e-02 -3.336e-02 -2.070e-04 - 2.670e-02 3.597e-02 1.321e+01 -1.062e+01 -4.128e-02 - -8.569e-02 -3.336e-02 -1.062e+01 1.029e+01 3.997e-02 - -6.634e-04 -2.070e-04 -4.128e-02 3.997e-02 3.484e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.27036 1.000 0.157 0.036 -0.130 -0.173 - 2 0.83318 0.157 1.000 0.696 -0.731 -0.780 - 3 0.91590 0.036 0.696 1.000 -0.910 -0.608 - 4 0.92588 -0.130 -0.731 -0.910 1.000 0.668 - 5 0.79489 -0.173 -0.780 -0.608 0.668 1.000 -350 -351.69 +- 0.205801 -8.9999 +- 0.47252 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17980.6 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 3.49987e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -5.98208e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.69170e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -7.83629e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 5.56311e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17292.9 FROM HESSE STATUS=OK 33 CALLS 303 TOTAL - EDM=0.00176494 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51961e+02 2.04460e-01 7.28165e-04 -2.52563e-01 - 2 sg_p1 8.99915e+00 2.30345e-01 4.30116e-02 1.25408e-01 - 3 sg_p2 3.40595e+02 2.15600e+00 8.33185e-04 -5.45844e-01 - 4 sg_p3 3.45143e+01 1.95839e+00 2.03832e-03 -4.14782e-02 - 5 sg_p4 7.03933e-01 1.22162e-02 8.12692e-03 9.35709e-02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=17292.9 FROM MIGRAD STATUS=CONVERGED 313 CALLS 314 TOTAL - EDM=4.59633e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 1.1 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51961e+02 2.04485e-01 4.26699e-06 -6.13016e-02 - 2 sg_p1 9.00000e+00 2.28984e-01 -2.81882e-02 4.39584e-03 - 3 sg_p2 3.40596e+02 2.15817e+00 9.56132e-06 -1.29730e-01 - 4 sg_p3 3.45177e+01 1.95208e+00 6.42863e-05 7.35163e-02 - 5 sg_p4 7.03952e-01 1.21706e-02 1.50864e-04 7.78726e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.182e-02 1.059e-06 -5.711e-02 -6.423e-03 -1.875e-04 - 1.059e-06 9.432e-07 8.505e-05 -8.954e-05 -6.387e-07 - -5.711e-02 8.505e-05 4.658e+00 -3.232e+00 -5.893e-03 - -6.423e-03 -8.954e-05 -3.232e+00 3.812e+00 7.975e-03 - -1.875e-04 -6.387e-07 -5.893e-03 7.975e-03 1.486e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23004 1.000 0.005 -0.129 -0.016 -0.075 - 2 0.06294 0.005 1.000 0.041 -0.047 -0.054 - 3 0.78034 -0.129 0.041 1.000 -0.767 -0.224 - 4 0.79125 -0.016 -0.047 -0.767 1.000 0.335 - 5 0.34635 -0.075 -0.054 -0.224 0.335 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17292.9 FROM HESSE STATUS=OK 33 CALLS 347 TOTAL - EDM=8.75756e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51961e+02 2.04438e-01 7.28075e-04 -1.21874e-01 - 2 sg_p1 9.00000e+00 2.29843e-01 4.29288e-02 1.57180e+00 - 3 sg_p2 3.40596e+02 2.15392e+00 8.34476e-04 4.75922e-01 - 4 sg_p3 3.45177e+01 1.95162e+00 8.15327e-04 -7.07252e-01 - 5 sg_p4 7.03952e-01 1.20329e-02 8.13654e-03 -7.63847e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.180e-02 1.680e-06 -5.851e-02 -5.134e-03 -1.774e-04 - 1.680e-06 9.469e-07 1.234e-04 -1.333e-04 -1.048e-06 - -5.851e-02 1.234e-04 4.640e+00 -3.221e+00 -5.474e-03 - -5.134e-03 -1.333e-04 -3.221e+00 3.811e+00 7.658e-03 - -1.774e-04 -1.048e-06 -5.474e-03 7.658e-03 1.452e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22989 1.000 0.008 -0.133 -0.013 -0.072 - 2 0.10030 0.008 1.000 0.059 -0.070 -0.089 - 3 0.77997 -0.133 0.059 1.000 -0.766 -0.211 - 4 0.79057 -0.013 -0.070 -0.766 1.000 0.326 - 5 0.34225 -0.072 -0.089 -0.211 0.326 1.000 -350 -351.961 +- 0.204438 -9 +- 0.229843 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17556.6 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 4.17830e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -5.68439e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.02939e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -1.22040e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 5.78553e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - MINUIT WARNING IN HESSE - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN HESSE - ============== 1.39906 added to diagonal of error matrix - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16809.1 FROM HESSE STATUS=OK 37 CALLS 272 TOTAL - EDM=0.00897496 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51361e+02 2.01282e-01 7.11370e-04 1.72820e-01 - 2 sg_p1 8.99409e+00 2.54007e+00 1.10453e-01 1.29902e-01 - 3 sg_p2 3.31862e+02 3.59215e+00 1.00989e-03 -2.61406e-01 - 4 sg_p3 3.82944e+01 2.65752e+00 2.00950e-03 -4.58275e-02 - 5 sg_p4 6.99077e-01 1.14579e-02 8.35244e-03 6.96141e-02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16809.1 FROM MIGRAD STATUS=CONVERGED 368 CALLS 369 TOTAL - EDM=2.66923e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51369e+02 2.03042e-01 7.10429e-04 6.65922e-02 - 2 sg_p1 8.93634e+00 2.26538e-01 3.06864e-02 1.49692e-02 - 3 sg_p2 3.32548e+02 4.06056e+00 9.86163e-04 4.21549e-03 - 4 sg_p3 3.77657e+01 3.08320e+00 1.99063e-03 -6.94419e-02 - 5 sg_p4 6.96961e-01 1.39263e-02 8.49674e-03 -1.61305e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.123e-02 -6.678e-03 2.163e-02 -7.188e-02 -4.511e-04 - -6.678e-03 5.527e-02 -5.307e-01 4.156e-01 1.876e-03 - 2.163e-02 -5.307e-01 1.649e+01 -1.137e+01 -1.673e-02 - -7.188e-02 4.156e-01 -1.137e+01 9.516e+00 1.485e-02 - -4.511e-04 1.876e-03 -1.673e-02 1.485e-02 1.948e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25576 1.000 -0.140 0.026 -0.115 -0.159 - 2 0.70688 -0.140 1.000 -0.556 0.573 0.572 - 3 0.91344 0.026 -0.556 1.000 -0.908 -0.295 - 4 0.91579 -0.115 0.573 -0.908 1.000 0.345 - 5 0.58244 -0.159 0.572 -0.295 0.345 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16809.1 FROM HESSE STATUS=OK 31 CALLS 400 TOTAL - EDM=2.70646e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51369e+02 2.03746e-01 1.42086e-04 -1.45765e-01 - 2 sg_p1 8.93634e+00 2.54070e-01 1.22745e-03 1.31782e+00 - 3 sg_p2 3.32548e+02 4.51761e+00 3.94465e-05 4.21778e-01 - 4 sg_p3 3.77657e+01 3.43807e+00 7.96253e-05 -6.47692e-01 - 5 sg_p4 6.96961e-01 1.47151e-02 3.39870e-04 -8.20745e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.151e-02 -8.628e-03 5.304e-02 -9.587e-02 -5.312e-04 - -8.628e-03 6.725e-02 -7.432e-01 5.794e-01 2.412e-03 - 5.304e-02 -7.432e-01 2.041e+01 -1.440e+01 -2.542e-02 - -9.587e-02 5.794e-01 -1.440e+01 1.184e+01 2.153e-02 - -5.312e-04 2.412e-03 -2.542e-02 2.153e-02 2.176e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.26808 1.000 -0.163 0.058 -0.137 -0.177 - 2 0.76639 -0.163 1.000 -0.634 0.650 0.630 - 3 0.93070 0.058 -0.634 1.000 -0.926 -0.381 - 4 0.93289 -0.137 0.650 -0.926 1.000 0.424 - 5 0.63913 -0.177 0.630 -0.381 0.424 1.000 -350 -351.369 +- 0.203746 -8.93634 +- 0.25407 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17593.4 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 3.78939e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -5.82009e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.40055e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -4.92268e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 5.69068e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16875.6 FROM MIGRAD STATUS=CONVERGED 320 CALLS 321 TOTAL - EDM=1.73973e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51639e+02 2.04706e-01 7.22407e-04 -3.09735e-01 - 2 sg_p1 9.00000e+00 1.66126e-01 3.62658e-02 -7.99062e-03 - 3 sg_p2 3.36604e+02 2.77890e+00 9.23538e-04 -8.53328e-02 - 4 sg_p3 3.65924e+01 2.29934e+00 2.05397e-03 -4.59757e-02 - 5 sg_p4 7.00430e-01 1.16607e-02 8.31070e-03 -3.87898e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.191e-02 1.719e-06 -5.416e-02 -1.332e-02 -2.187e-04 - 1.719e-06 1.229e-06 1.227e-04 -1.127e-04 -6.551e-07 - -5.416e-02 1.227e-04 7.723e+00 -5.279e+00 -3.068e-03 - -1.332e-02 -1.127e-04 -5.279e+00 5.290e+00 4.752e-03 - -2.187e-04 -6.551e-07 -3.068e-03 4.752e-03 1.364e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22303 1.000 0.008 -0.095 -0.028 -0.091 - 2 0.06294 0.008 1.000 0.040 -0.044 -0.051 - 3 0.83540 -0.095 0.040 1.000 -0.826 -0.095 - 4 0.83755 -0.028 -0.044 -0.826 1.000 0.177 - 5 0.21502 -0.091 -0.051 -0.095 0.177 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16875.6 FROM HESSE STATUS=OK 31 CALLS 352 TOTAL - EDM=1.75499e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51639e+02 2.04671e-01 1.44481e-04 -1.34847e-01 - 2 sg_p1 9.00000e+00 1.66721e-01 7.25317e-03 1.56945e+00 - 3 sg_p2 3.36604e+02 2.84821e+00 1.84708e-04 4.48885e-01 - 4 sg_p3 3.65924e+01 2.35643e+00 8.21590e-05 -6.68882e-01 - 5 sg_p4 7.00430e-01 1.16522e-02 3.32428e-04 -7.92102e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.189e-02 2.314e-07 -5.503e-02 -1.229e-02 -2.144e-04 - 2.314e-07 1.234e-06 1.775e-05 -1.618e-05 -8.940e-08 - -5.503e-02 1.775e-05 8.113e+00 -5.607e+00 -3.304e-03 - -1.229e-02 -1.618e-05 -5.607e+00 5.556e+00 4.919e-03 - -2.144e-04 -8.940e-08 -3.304e-03 4.919e-03 1.362e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22229 1.000 0.001 -0.094 -0.025 -0.090 - 2 0.00867 0.001 1.000 0.006 -0.006 -0.007 - 3 0.84405 -0.094 0.006 1.000 -0.835 -0.099 - 4 0.84604 -0.025 -0.006 -0.835 1.000 0.179 - 5 0.21170 -0.090 -0.007 -0.099 0.179 1.000 -350 -351.639 +- 0.204671 -9 +- 0.166721 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17828.5 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 3.94800e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -5.62258e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.22820e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -3.94120e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 5.44291e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -6.7726e-02 3.7089e-01 9.5269e-01 1.7434e+00 2.0007e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.069727 TO DIAGONAL. - FCN=17147.5 FROM HESSE STATUS=NOT POSDEF 35 CALLS 251 TOTAL - EDM=1.1309 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51658e+02 3.51659e-01 7.01219e-04 -5.40058e-02 - 2 sg_p1 8.97742e+00 2.95083e+00 6.13915e-02 -2.03655e-01 - 3 sg_p2 3.35380e+02 1.79447e+01 9.83548e-04 6.97732e-01 - 4 sg_p3 3.73975e+01 1.59176e+01 2.11985e-03 1.68496e-01 - 5 sg_p4 7.15638e-01 9.42908e-02 7.30647e-03 -1.11566e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17147.5 FROM MIGRAD STATUS=CONVERGED 369 CALLS 370 TOTAL - EDM=4.09796e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51663e+02 1.99263e-01 7.00634e-04 4.55239e-02 - 2 sg_p1 8.93699e+00 2.96196e-01 2.96808e-02 -1.54899e-02 - 3 sg_p2 3.35749e+02 3.96525e+00 9.64449e-04 -8.88348e-03 - 4 sg_p3 3.70652e+01 3.34839e+00 2.10353e-03 -1.67958e-02 - 5 sg_p4 7.14101e-01 1.63480e-02 7.39271e-03 -2.31381e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.971e-02 9.041e-03 3.441e-02 -8.945e-02 -5.869e-04 - 9.041e-03 7.788e-02 7.343e-01 -6.508e-01 -3.330e-03 - 3.441e-02 7.343e-01 1.573e+01 -1.210e+01 -3.297e-02 - -8.945e-02 -6.508e-01 -1.210e+01 1.123e+01 3.115e-02 - -5.869e-04 -3.330e-03 -3.297e-02 3.115e-02 2.686e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.26818 1.000 0.163 0.044 -0.134 -0.180 - 2 0.81011 0.163 1.000 0.664 -0.696 -0.728 - 3 0.91607 0.044 0.664 1.000 -0.911 -0.507 - 4 0.92336 -0.134 -0.696 -0.911 1.000 0.567 - 5 0.73770 -0.180 -0.728 -0.507 0.567 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17147.5 FROM HESSE STATUS=OK 31 CALLS 401 TOTAL - EDM=3.78098e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51663e+02 1.98626e-01 1.40127e-04 -1.33882e-01 - 2 sg_p1 8.93699e+00 2.60351e-01 1.18723e-03 1.82247e+00 - 3 sg_p2 3.35749e+02 3.94847e+00 3.85780e-05 4.43146e-01 - 4 sg_p3 3.70652e+01 3.31177e+00 8.41412e-05 -6.60300e-01 - 5 sg_p4 7.14101e-01 1.54021e-02 2.95708e-04 -6.86338e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.945e-02 7.419e-03 1.957e-02 -7.558e-02 -4.983e-04 - 7.419e-03 6.823e-02 6.530e-01 -5.744e-01 -2.764e-03 - 1.957e-02 6.530e-01 1.559e+01 -1.191e+01 -2.828e-02 - -7.558e-02 -5.744e-01 -1.191e+01 1.098e+01 2.678e-02 - -4.983e-04 -2.764e-03 -2.828e-02 2.678e-02 2.383e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25680 1.000 0.143 0.025 -0.115 -0.163 - 2 0.77869 0.143 1.000 0.633 -0.664 -0.686 - 3 0.91532 0.025 0.633 1.000 -0.910 -0.464 - 4 0.92158 -0.115 -0.664 -0.910 1.000 0.524 - 5 0.69729 -0.163 -0.686 -0.464 0.524 1.000 -350 -351.663 +- 0.198626 -8.93699 +- 0.260351 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=16599.2 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 3.57504e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -5.44923e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.17494e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -4.08170e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 5.21506e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15939.1 FROM HESSE STATUS=OK 37 CALLS 314 TOTAL - EDM=0.000648585 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51693e+02 2.15714e-01 7.19414e-04 4.43718e-02 - 2 sg_p1 8.99487e+00 3.57548e+00 7.75677e-02 1.91574e-02 - 3 sg_p2 3.37608e+02 4.45408e+00 8.83711e-04 -1.12364e-01 - 4 sg_p3 3.54407e+01 4.01631e+00 2.01394e-03 2.05443e-02 - 5 sg_p4 7.05167e-01 2.51719e-02 7.97965e-03 2.01078e-02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 13.9403 added to diagonal of error matrix - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15939.1 FROM MIGRAD STATUS=CONVERGED 457 CALLS 458 TOTAL - EDM=6.3256e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51693e+02 2.10894e-01 7.19542e-04 -1.67564e-01 - 2 sg_p1 9.00000e+00 3.24335e+00 1.16287e-01** at limit ** - 3 sg_p2 3.37572e+02 3.03107e+00 8.85564e-04 -1.40083e-01 - 4 sg_p3 3.54732e+01 2.61363e+00 2.01712e-03 -2.42748e-02 - 5 sg_p4 7.05375e-01 1.51863e-02 7.98331e-03 2.92592e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.448e-02 6.249e-05 -2.584e-02 -4.146e-02 -4.052e-04 - 6.249e-05 8.943e-06 4.513e-03 -4.212e-03 -2.775e-05 - -2.584e-02 4.513e-03 9.189e+00 -6.814e+00 -1.858e-02 - -4.146e-02 -4.212e-03 -6.814e+00 6.836e+00 1.914e-02 - -4.052e-04 -2.775e-05 -1.858e-02 1.914e-02 2.317e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.24408 1.000 0.099 -0.040 -0.075 -0.126 - 2 0.67618 0.099 1.000 0.498 -0.539 -0.610 - 3 0.86794 -0.040 0.498 1.000 -0.860 -0.403 - 4 0.87833 -0.075 -0.539 -0.860 1.000 0.481 - 5 0.64024 -0.126 -0.610 -0.403 0.481 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15939.1 FROM HESSE STATUS=OK 35 CALLS 493 TOTAL - EDM=7.60914e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51693e+02 2.11707e-01 1.43908e-04 -1.32683e-01 - 2 sg_p1 9.00000e+00 3.40291e-01 4.74451e-01 1.56997e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 3 sg_p2 3.37572e+02 3.47654e+00 1.77113e-04 4.55410e-01 - 4 sg_p3 3.54732e+01 3.03978e+00 8.06848e-05 -6.89429e-01 - 5 sg_p4 7.05375e-01 1.75095e-02 3.19332e-04 -7.52647e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.482e-02 2.743e-05 3.917e-03 -6.861e-02 -5.663e-04 - 2.743e-05 9.504e-07 2.150e-03 -1.992e-03 -1.243e-05 - 3.917e-03 2.150e-03 1.209e+01 -9.464e+00 -3.305e-02 - -6.861e-02 -1.992e-03 -9.464e+00 9.250e+00 3.240e-02 - -5.663e-04 -1.243e-05 -3.305e-02 3.240e-02 3.085e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25843 1.000 0.133 0.005 -0.107 -0.152 - 2 0.78663 0.133 1.000 0.634 -0.672 -0.726 - 3 0.90139 0.005 0.634 1.000 -0.895 -0.541 - 4 0.91165 -0.107 -0.672 -0.895 1.000 0.606 - 5 0.74619 -0.152 -0.726 -0.541 0.606 1.000 -350 -351.693 +- 0.211707 -9 +- 0.340291 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=18950.1 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 4.06912e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -6.21556e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.53873e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -5.05415e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 6.02316e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 2.05452 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - MACHINE ACCURACY LIMITS FURTHER IMPROVEMENT. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -7.6627e-03 4.3650e-01 9.4912e-01 1.6697e+00 1.9524e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.009615 TO DIAGONAL. - FCN=18191.7 FROM MIGRAD STATUS=CONVERGED 438 CALLS 439 TOTAL - EDM=2.38291e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51688e+02 3.06549e-01 7.21716e-04 1.38139e-02 - 2 sg_p1 8.99221e+00 3.97298e+00 7.87824e-02 -1.20842e-03 - 3 sg_p2 3.37548e+02 1.63062e+01 8.85928e-04 1.17278e-02 - 4 sg_p3 3.56395e+01 1.51287e+01 2.01699e-03 1.74046e-02 - 5 sg_p4 7.02105e-01 9.20868e-02 8.19474e-03 -1.20385e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.398e-02 3.866e-01 3.761e+00 -3.594e+00 -2.447e-02 - 3.866e-01 2.690e+00 2.650e+01 -2.493e+01 -1.690e-01 - 3.761e+00 2.650e+01 2.670e+02 -2.495e+02 -1.668e+00 - -3.594e+00 -2.493e+01 -2.495e+02 2.351e+02 1.571e+00 - -2.447e-02 -1.690e-01 -1.668e+00 1.571e+00 1.074e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.78192 1.000 0.769 0.751 -0.765 -0.770 - 2 0.99585 0.769 1.000 0.989 -0.991 -0.994 - 3 0.99631 0.751 0.989 1.000 -0.996 -0.985 - 4 0.99710 -0.765 -0.991 -0.996 1.000 0.989 - 5 0.99443 -0.770 -0.994 -0.985 0.989 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2500 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.2541e-02 4.4218e-01 9.5025e-01 1.6636e+00 1.9565e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.014497 TO DIAGONAL. - FCN=18191.7 FROM HESSE STATUS=NOT POSDEF 37 CALLS 476 TOTAL - EDM=6.23545e-06 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51688e+02 2.98004e-01 1.44343e-04 -1.32867e-01 - 2 sg_p1 8.99221e+00 3.99098e+00 5.00000e-01 1.65911e+00 - 3 sg_p2 3.37548e+02 1.66076e+01 3.54371e-05 4.55246e-01 - 4 sg_p3 3.56395e+01 1.53152e+01 8.06796e-05 -6.86354e-01 - 5 sg_p4 7.02105e-01 8.98453e-02 3.27790e-04 -7.78566e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 8.881e-02 1.322e-01 3.655e+00 -3.473e+00 -2.261e-02 - 1.322e-01 3.453e-01 9.674e+00 -9.044e+00 -5.859e-02 - 3.655e+00 9.674e+00 2.770e+02 -2.574e+02 -1.645e+00 - -3.473e+00 -9.044e+00 -2.574e+02 2.411e+02 1.540e+00 - -2.261e-02 -5.859e-02 -1.645e+00 1.540e+00 1.007e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.76862 1.000 0.755 0.737 -0.751 -0.756 - 2 0.99570 0.755 1.000 0.989 -0.991 -0.994 - 3 0.99646 0.737 0.989 1.000 -0.996 -0.985 - 4 0.99718 -0.751 -0.991 -0.996 1.000 0.988 - 5 0.99409 -0.756 -0.994 -0.985 0.988 1.000 - ERR MATRIX NOT POS-DEF -350 -351.688 +- 0.298004 -8.99221 +- 3.99098 -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 351.69 +- 0.205801 (stat) - 0.321347 + 0.270579 (syst); -0.33742/+0.289485 (total) - Uncertainty on sg_p1 = 8.9999 +- 0.47252 (stat) - 0.0635526 + 0.000102014 (syst); -0.244659/+0.23626 (total) - Uncertainty on sg_p2 = 337.532 +- 3.63434 (stat) - 4.98423 + 3.06364 (syst); -5.30516/+3.56202 (total) - Uncertainty on sg_p3 = 35.585 +- 3.20621 (stat) - 1.06732 + 2.18069 (syst); -1.92591/+2.70654 (total) - Uncertainty on sg_p4 = 0.703842 +- 0.0185963 (stat) - 0.00688091 + 0.0102594 (syst); -0.0115673/+0.013846 (total) - === Baseline plot ===
- norm = 541.084 -JEC lnN 1.0101 - -JER lnN 1.00905 - -btag lnN 1.06649 - -sg_p0 param 351.69 -0.33742/+0.289485 -sg_p1 param 8.9999 -0.244659/+0.23626 -sg_p2 param 337.532 -5.30516/+3.56202 -sg_p3 param 35.585 -1.92591/+2.70654 -sg_p4 param 0.703842 -0.0115673/+0.013846 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_350_crystal_252_330/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_350_crystal_252_330/data_bkg.log deleted file mode 100644 index c704996..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_350_crystal_252_330/data_bkg.log +++ /dev/null @@ -1,717 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [250,330] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [250,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63590.5 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.69443e-02 5.09000e-01 0.00000e+00 -7.94680e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -8.91126e+00 - 3 par_crystal_2 2.62020e+02 4.00000e+00 1.01181e-01 -1.53451e+00 - 4 par_crystal_3 1.65000e+01 2.70000e+00 0.00000e+00 7.46021e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM MIGRAD STATUS=CONVERGED 482 CALLS 483 TOTAL - EDM=0.000814822 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 4.40594e-01 4.43750e-02 2.48631e-03 2.88668e-01 - 2 par_crystal_1 9.82994e-01 6.48221e-01 2.14269e-02 -5.28345e-03 - 3 par_crystal_2 2.71542e+02 7.41091e-01 7.20683e-03 -9.27818e-02 - 4 par_crystal_3 2.87224e+01 2.18588e+00 3.97473e-02 -6.99277e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.970e-03 -2.333e-02 -5.115e-04 1.392e-02 - -2.333e-02 4.358e-01 4.870e-03 -8.391e-01 - -5.115e-04 4.870e-03 5.496e-01 4.381e-01 - 1.392e-02 -8.391e-01 4.381e-01 5.029e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.88989 1.000 -0.796 -0.016 0.140 - 2 0.92807 -0.796 1.000 0.010 -0.567 - 3 0.40865 -0.016 0.010 1.000 0.264 - 4 0.80948 0.140 -0.567 0.264 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM HESSE STATUS=OK 23 CALLS 506 TOTAL - EDM=0.000711421 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 4.40594e-01 4.64698e-02 4.97262e-04 -9.80558e-01 - 2 par_crystal_1 9.82994e-01 6.55195e-01 8.57075e-04 -6.65795e-01 - 3 par_crystal_2 2.71542e+02 7.38644e-01 1.44137e-03 6.15159e-01 - 4 par_crystal_3 2.87224e+01 2.03002e+00 1.58989e-03 -1.05570e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.160e-03 -2.581e-02 -1.109e-03 1.530e-02 - -2.581e-02 4.456e-01 2.508e-02 -7.234e-01 - -1.109e-03 2.508e-02 5.460e-01 3.687e-01 - 1.530e-02 -7.234e-01 3.687e-01 4.306e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.90014 1.000 -0.832 -0.032 0.159 - 2 0.92960 -0.832 1.000 0.051 -0.522 - 3 0.40186 -0.032 0.051 1.000 0.240 - 4 0.77207 0.159 -0.522 0.240 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63714.2 FROM MIGRAD STATUS=INITIATE 33 CALLS 34 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 2.63122e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -5.45805e+02 - 3 par_gaus_exp_2 6.67498e-01 3.05000e-01 -6.37370e-01 7.03093e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM MIGRAD STATUS=CONVERGED 131 CALLS 132 TOTAL - EDM=6.15917e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.71558e+02 8.05096e-01 6.82817e-03 6.24407e-02 - 2 par_gaus_exp_1 3.06822e+01 1.83071e+00 1.43475e-02 1.11468e-02 - 3 par_gaus_exp_2 3.82770e-01 2.42284e-02 3.05774e-03 -9.77170e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.486e-01 -6.079e-01 -1.588e-03 - -6.079e-01 3.370e+00 3.082e-02 - -1.588e-03 3.082e-02 5.871e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.49876 1.000 -0.411 -0.081 - 2 0.77898 -0.411 1.000 0.693 - 3 0.72797 -0.081 0.693 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM HESSE STATUS=OK 16 CALLS 148 TOTAL - EDM=6.13964e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.71558e+02 8.14214e-01 2.73127e-04 -4.35760e-01 - 2 par_gaus_exp_1 3.06822e+01 1.86973e+00 5.73898e-04 4.10264e-01 - 3 par_gaus_exp_2 3.82770e-01 2.45149e-02 1.22310e-04 -8.97531e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.634e-01 -6.630e-01 -2.137e-03 - -6.630e-01 3.516e+00 3.227e-02 - -2.137e-03 3.227e-02 6.011e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.51526 1.000 -0.434 -0.107 - 2 0.78935 -0.434 1.000 0.702 - 3 0.73544 -0.107 0.702 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,625] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.33953 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - ... (remaining 126 messages suppressed) -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.33953) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.734607 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=317.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=327.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=332.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=342.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=347.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=352.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=357.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=362.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=367.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - ... (remaining 53 messages suppressed) -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.734607) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0734613 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0734613 - - FCN=103487 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57093e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.56195e+03 - 3 par_novo_2 -1.33668e+00 2.00000e+01 0.00000e+00 1.53931e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM MIGRAD STATUS=CONVERGED 127 CALLS 128 TOTAL - EDM=3.4171e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.43423e+01 1.81223e-01** at limit ** - 2 par_novo_1 3.86596e+01 2.27294e+00 4.95847e-03 -1.04123e-02 - 3 par_novo_2 -1.27520e+00 7.07738e-02 3.70975e-05 -1.26322e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.231e-09 -8.491e-07 -8.580e-07 - -8.491e-07 5.181e+00 1.547e-01 - -8.580e-07 1.547e-01 5.009e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.53332 1.000 -0.005 -0.154 - 2 0.97096 -0.005 1.000 0.960 - 3 0.97165 -0.154 0.960 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM HESSE STATUS=OK 20 CALLS 148 TOTAL - EDM=3.43726e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.40246e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.86596e+01 2.31421e+00 1.98339e-04 4.46530e-01 - 3 par_novo_2 -1.27520e+00 7.22930e-02 1.48390e-06 -1.27523e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 5.974e-09 2.819e-05 -1.296e-06 - 2.819e-05 5.372e+00 1.502e-01 - -1.296e-06 1.502e-01 5.226e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.85665 1.000 0.157 -0.232 - 2 0.97200 0.157 1.000 0.897 - 3 0.97285 -0.232 0.897 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107513 FROM MIGRAD STATUS=INITIATE 54 CALLS 55 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 1.39168e+03 - 2 par_crystal_1_1 7.96220e-02 5.09000e-01 0.00000e+00 5.33770e+03 - 3 par_crystal_1_2 2.56879e+02 4.00000e+00 -1.56713e-01 -1.96669e+01 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 -8.45862e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.5057e-02 2.3309e-03 4.9678e-02 3.9730e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.029030 TO DIAGONAL. - FCN=103250 FROM MIGRAD STATUS=CONVERGED 436 CALLS 437 TOTAL - EDM=3.52757e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 4.45574e-02 4.37117e-03 3.09465e-04 -4.28177e+00 - 2 par_crystal_1_1 4.36914e+00 6.24106e-01 1.80400e-02 6.63742e-02 - 3 par_crystal_1_2 2.71531e+02 3.44700e+01 5.81266e-02 2.25694e-02 - 4 par_crystal_1_3 3.37290e+00 2.71702e-01 3.13791e-03 -4.26197e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.911e-05 -1.221e-03 2.089e-01 3.572e-04 - -1.221e-03 4.065e-01 -2.690e+01 -6.822e-02 - 2.089e-01 -2.690e+01 3.429e+03 1.167e+01 - 3.572e-04 -6.822e-02 1.167e+01 7.401e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99136 1.000 -0.438 0.816 0.300 - 2 0.97307 -0.438 1.000 -0.720 -0.393 - 3 0.99735 0.816 -0.720 1.000 0.733 - 4 0.98716 0.300 -0.393 0.733 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -8.0089e-04 4.0193e-04 7.1213e-02 3.9292e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.004730 TO DIAGONAL. - FCN=103250 FROM HESSE STATUS=NOT POSDEF 23 CALLS 460 TOTAL - EDM=3.56127e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 4.45574e-02 7.42610e-03 6.18930e-05 -1.40582e+00 - 2 par_crystal_1_1 4.36914e+00 4.67550e-01 7.21602e-04 -3.93511e+00 - 3 par_crystal_1_2 2.71531e+02 3.29814e+01 2.32506e-03 -3.75607e+00 - 4 par_crystal_1_3 3.37290e+00 5.01685e-01 1.25517e-04 -1.80638e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.515e-05 2.851e-04 2.343e-01 -1.699e-03 - 2.851e-04 2.238e-01 -2.528e+00 1.548e-02 - 2.343e-01 -2.528e+00 2.967e+03 1.176e+01 - -1.699e-03 1.548e-02 1.176e+01 2.538e-01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99694 1.000 0.081 0.579 -0.454 - 2 0.94927 0.081 1.000 -0.098 0.065 - 3 0.99687 0.579 -0.098 1.000 0.429 - 4 0.99618 -0.454 0.065 0.429 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 14211 - Background number of gaus_exp_252_330 = 14211 - Background number of novo_285_624 = 17618.3 - Background number of crystal_1_285_624 = 17618.3 - Background number of gaus_bern_285_624 = 17618.3 - Background number of landau_285_624 = 17618.3 -par_crystal_0 param 0.440594 0.0464698 -par_crystal_1 param 0.982994 0.655195 -par_crystal_2 param 271.542 0.738644 -par_crystal_3 param 28.7224 2.03002 -par_crystal_1_0 param 0.0445574 0.0074261 -par_crystal_1_1 param 4.36914 0.46755 -par_crystal_1_2 param 271.531 32.9814 -par_crystal_1_3 param 3.3729 0.501685 -par_gaus_exp_0 param 271.558 0.814214 -par_gaus_exp_1 param 30.6822 1.86973 -par_gaus_exp_2 param 0.38277 0.0245149 -par_novo_0 param 250 34.0246 -par_novo_1 param 38.6596 2.31421 -par_novo_2 param -1.2752 0.072293 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_350_crystal_252_330/datacard_350_crystal_252_330.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_350_crystal_252_330/datacard_350_crystal_252_330.txt deleted file mode 100644 index 6824fb1..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_350_crystal_252_330/datacard_350_crystal_252_330.txt +++ /dev/null @@ -1,34 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_350.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_crystal_252_330.root HbbHbb:f_crystal -shapes data_obs HbbHbb w_background_crystal_252_330.root HbbHbb:data_obs_crystal_252_330 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 541.084 14211 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06649 - -JER lnN 1.00905 - -JEC lnN 1.0101 - -trigger lnN 1.10 - -sg_p0 param 351.69 -0.33742/+0.289485 -sg_p1 param 8.9999 -0.244659/+0.23626 -sg_p2 param 337.532 -5.30516/+3.56202 -sg_p3 param 35.585 -1.92591/+2.70654 -sg_p4 param 0.703842 -0.0115673/+0.013846 -par_crystal_0 param 0.440594 0.0464698 -par_crystal_1 param 0.982994 0.655195 -par_crystal_2 param 271.542 0.738644 -par_crystal_3 param 28.7224 2.03002 -par_crystal_1_0 param 0.0445574 0.0074261 -par_crystal_1_1 param 4.36914 0.46755 -par_crystal_1_2 param 271.531 32.9814 -par_crystal_1_3 param 3.3729 0.501685 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_350_crystal_252_330/signal350_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_350_crystal_252_330/signal350_sig.log deleted file mode 100644 index 3cd3455..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_350_crystal_252_330/signal350_sig.log +++ /dev/null @@ -1,927 +0,0 @@ - -Processing test.c... -nSignal_init = 300000 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=22528 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.45000e+02 7.00000e+00 2.01358e-01 1.85444e+03 - 2 sg_p1 2.00000e+01 3.00000e+00 2.01358e-01 -1.26556e+01 - 3 sg_p2 3.75000e+02 9.00000e+00 2.01358e-01 1.23451e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -4.81309e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -9.79262e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21380.5 FROM MIGRAD STATUS=CONVERGED 200 CALLS 201 TOTAL - EDM=3.93725e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.34187e+02 4.37520e-01 1.19182e-03 3.04020e-02 - 2 sg_p1 2.26141e+01 4.79817e-01 2.16429e-03 1.96597e-03 - 3 sg_p2 3.30000e+02 7.71533e-01 1.87116e-02** at limit ** - 4 sg_p3 7.15373e+01 5.51063e+00 8.04417e-03 3.88300e-03 - 5 sg_p4 8.94168e-01 1.56675e-02 2.59223e-03 3.19034e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.914e-01 -8.489e-02 -1.235e-06 -8.412e-01 -2.850e-03 - -8.489e-02 2.303e-01 1.528e-06 1.618e+00 5.594e-03 - -1.235e-06 1.528e-06 1.273e-07 1.107e-05 4.780e-08 - -8.412e-01 1.618e+00 1.107e-05 3.054e+01 6.912e-02 - -2.850e-03 5.594e-03 4.780e-08 6.912e-02 2.457e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.43984 1.000 -0.404 -0.008 -0.348 -0.416 - 2 0.75144 -0.404 1.000 0.009 0.610 0.744 - 3 0.01053 -0.008 0.009 1.000 0.006 0.009 - 4 0.79840 -0.348 0.610 0.006 1.000 0.798 - 5 0.86375 -0.416 0.744 0.009 0.798 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21380.5 FROM HESSE STATUS=OK 31 CALLS 232 TOTAL - EDM=4.04441e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.34187e+02 4.38578e-01 4.76728e-05 -3.14089e-01 - 2 sg_p1 2.26141e+01 4.83583e-01 8.65717e-05 1.75170e-01 - 3 sg_p2 3.30000e+02 7.71716e-01 3.74232e-03 -1.57084e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 7.15373e+01 5.57705e+00 3.21767e-04 3.76314e-01 - 5 sg_p4 8.94168e-01 1.58618e-02 5.18445e-04 9.08100e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.924e-01 -8.684e-02 -2.448e-07 -8.666e-01 -2.922e-03 - -8.684e-02 2.339e-01 3.045e-07 1.670e+00 5.743e-03 - -2.448e-07 3.045e-07 1.274e-07 2.232e-06 9.555e-09 - -8.666e-01 1.670e+00 2.232e-06 3.129e+01 7.130e-02 - -2.922e-03 5.743e-03 9.555e-09 7.130e-02 2.518e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.44424 1.000 -0.409 -0.002 -0.353 -0.420 - 2 0.75592 -0.409 1.000 0.002 0.617 0.748 - 3 0.00208 -0.002 0.002 1.000 0.001 0.002 - 4 0.80377 -0.353 0.617 0.001 1.000 0.803 - 5 0.86733 -0.420 0.748 0.002 0.803 1.000 -350 -334.187 +- 0.438578 -22.6141 +- 0.483583 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=22627.8 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.45000e+02 7.00000e+00 2.01358e-01 1.57892e+03 - 2 sg_p1 2.00000e+01 3.00000e+00 2.01358e-01 2.75936e+01 - 3 sg_p2 3.75000e+02 9.00000e+00 2.01358e-01 1.16953e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -3.72010e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -9.99046e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21614.3 FROM MIGRAD STATUS=CONVERGED 179 CALLS 180 TOTAL - EDM=0.000765156 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.35798e+02 4.40505e-01 1.18756e-03 5.85918e-02 - 2 sg_p1 2.30753e+01 4.76357e-01 2.18690e-03 -2.03897e-03 - 3 sg_p2 3.30001e+02 1.45352e+00 2.57988e-02 -9.05792e-02 - 4 sg_p3 7.35354e+01 6.02462e+00 8.88269e-03 -1.01559e-01 - 5 sg_p4 9.01891e-01 1.51622e-02 2.60225e-03 2.64090e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.941e-01 -8.403e-02 -1.778e-04 -9.585e-01 -2.816e-03 - -8.403e-02 2.270e-01 1.870e-04 1.767e+00 5.355e-03 - -1.778e-04 1.870e-04 4.564e-03 5.987e-04 4.935e-06 - -9.585e-01 1.767e+00 5.987e-04 3.656e+01 7.358e-02 - -2.816e-03 5.355e-03 4.935e-06 7.358e-02 2.301e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.44243 1.000 -0.400 -0.006 -0.360 -0.421 - 2 0.74784 -0.400 1.000 0.006 0.613 0.741 - 3 0.00826 -0.006 0.006 1.000 0.001 0.005 - 4 0.80297 -0.360 0.613 0.001 1.000 0.802 - 5 0.86456 -0.421 0.741 0.005 0.802 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21614.3 FROM HESSE STATUS=OK 31 CALLS 211 TOTAL - EDM=0.000770472 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.35798e+02 4.41802e-01 2.37512e-04 -2.66038e-01 - 2 sg_p1 2.30753e+01 4.80609e-01 8.74761e-05 2.06482e-01 - 3 sg_p2 3.30001e+02 1.45505e+00 5.15976e-03 -1.57669e+00 - 4 sg_p3 7.35354e+01 6.11053e+00 3.55307e-04 4.24535e-01 - 5 sg_p4 9.01891e-01 1.53826e-02 1.04090e-04 9.33626e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.952e-01 -8.630e-02 8.428e-05 -9.929e-01 -2.902e-03 - -8.630e-02 2.311e-01 -8.883e-05 1.833e+00 5.520e-03 - 8.428e-05 -8.883e-05 4.569e-03 -2.859e-04 -2.344e-06 - -9.929e-01 1.833e+00 -2.859e-04 3.762e+01 7.631e-02 - -2.902e-03 5.520e-03 -2.344e-06 7.631e-02 2.368e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.44772 1.000 -0.406 0.003 -0.366 -0.427 - 2 0.75302 -0.406 1.000 -0.003 0.622 0.746 - 3 0.00390 0.003 -0.003 1.000 -0.001 -0.002 - 4 0.80914 -0.366 0.622 -0.001 1.000 0.808 - 5 0.86871 -0.427 0.746 -0.002 0.808 1.000 -350 -335.798 +- 0.441802 -23.0753 +- 0.480609 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=22461.8 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.45000e+02 7.00000e+00 2.01358e-01 2.12122e+03 - 2 sg_p1 2.00000e+01 3.00000e+00 2.01358e-01 -1.16373e+02 - 3 sg_p2 3.75000e+02 9.00000e+00 2.01358e-01 1.31911e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -5.79911e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -9.15472e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21165.5 FROM MIGRAD STATUS=CONVERGED 173 CALLS 174 TOTAL - EDM=1.05905e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.32336e+02 4.42443e-01 1.23362e-03 3.68247e-02 - 2 sg_p1 2.24290e+01 4.96251e-01 2.19433e-03 -3.29729e-02 - 3 sg_p2 3.30000e+02 5.15272e-01 1.52593e-02** at limit ** - 4 sg_p3 6.46965e+01 4.49942e+00 6.08111e-03 5.16840e-02 - 5 sg_p4 8.77595e-01 1.81613e-02 2.70062e-03 -5.60533e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.958e-01 -8.688e-02 -6.473e-07 -6.527e-01 -3.215e-03 - -8.688e-02 2.464e-01 8.468e-07 1.363e+00 6.784e-03 - -6.473e-07 8.468e-07 3.789e-08 6.087e-06 3.127e-08 - -6.527e-01 1.363e+00 6.087e-06 2.032e+01 6.625e-02 - -3.215e-03 6.784e-03 3.127e-08 6.625e-02 3.302e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.42501 1.000 -0.396 -0.008 -0.327 -0.400 - 2 0.75928 -0.396 1.000 0.009 0.609 0.752 - 3 0.01018 -0.008 0.009 1.000 0.007 0.009 - 4 0.80887 -0.327 0.609 0.007 1.000 0.809 - 5 0.87457 -0.400 0.752 0.009 0.809 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21165.5 FROM HESSE STATUS=OK 31 CALLS 205 TOTAL - EDM=1.06081e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.32336e+02 4.43146e-01 4.93448e-05 -3.70218e-01 - 2 sg_p1 2.24290e+01 4.99339e-01 8.77732e-05 1.62649e-01 - 3 sg_p2 3.30000e+02 5.15335e-01 3.05186e-03 -1.57077e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 6.46965e+01 4.54231e+00 2.43244e-04 2.17181e-01 - 5 sg_p4 8.77595e-01 1.83407e-02 5.40123e-04 8.55943e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.964e-01 -8.838e-02 -1.326e-07 -6.673e-01 -3.275e-03 - -8.838e-02 2.494e-01 1.746e-07 1.397e+00 6.925e-03 - -1.326e-07 1.746e-07 3.790e-08 1.265e-06 6.465e-09 - -6.673e-01 1.397e+00 1.265e-06 2.071e+01 6.788e-02 - -3.275e-03 6.925e-03 6.465e-09 6.788e-02 3.367e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.42806 1.000 -0.399 -0.002 -0.331 -0.403 - 2 0.76271 -0.399 1.000 0.002 0.615 0.756 - 3 0.00208 -0.002 0.002 1.000 0.001 0.002 - 4 0.81288 -0.331 0.615 0.001 1.000 0.813 - 5 0.87719 -0.403 0.756 0.002 0.813 1.000 -350 -332.336 +- 0.443146 -22.429 +- 0.499339 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17745.4 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 3.81607e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -5.82292e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.35171e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -4.55171e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 5.60829e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.4848e-03 4.4073e-01 9.4874e-01 1.6613e+00 1.9507e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.003435 TO DIAGONAL. - FCN=17037.5 FROM MIGRAD STATUS=CONVERGED 272 CALLS 273 TOTAL - EDM=0.000229841 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51690e+02 3.12909e-01 7.20357e-04 1.50885e-02 - 2 sg_p1 8.99990e+00 2.02072e+00 1.07460e-01 -8.64629e-04 - 3 sg_p2 3.37532e+02 1.70704e+01 8.89534e-04 8.91783e-02 - 4 sg_p3 3.55850e+01 1.57412e+01 2.01445e-03 5.68535e-02 - 5 sg_p4 7.03842e-01 9.36961e-02 8.03918e-03 -4.45853e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.792e-02 9.007e-02 3.977e+00 -3.782e+00 -2.519e-02 - 9.007e-02 1.430e-01 6.397e+00 -5.986e+00 -3.967e-02 - 3.977e+00 6.397e+00 2.927e+02 -2.722e+02 -1.779e+00 - -3.782e+00 -5.986e+00 -2.722e+02 2.551e+02 1.667e+00 - -2.519e-02 -3.967e-02 -1.779e+00 1.667e+00 1.115e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.77487 1.000 0.761 0.743 -0.757 -0.763 - 2 0.99571 0.761 1.000 0.989 -0.991 -0.994 - 3 0.99637 0.743 0.989 1.000 -0.996 -0.985 - 4 0.99713 -0.757 -0.991 -0.996 1.000 0.988 - 5 0.99425 -0.763 -0.994 -0.985 0.988 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17037.5 FROM HESSE STATUS=OK 35 CALLS 308 TOTAL - EDM=2.9509e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51690e+02 2.05801e-01 1.44071e-04 -1.32785e-01 - 2 sg_p1 8.99990e+00 4.72520e-01 4.38435e-01 1.58093e+00 - 3 sg_p2 3.37532e+02 3.63434e+00 1.77907e-04 4.55143e-01 - 4 sg_p3 3.55850e+01 3.20621e+00 8.05779e-05 -6.87361e-01 - 5 sg_p4 7.03842e-01 1.85963e-02 3.21567e-04 -7.64719e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.236e-02 4.581e-04 2.670e-02 -8.569e-02 -6.634e-04 - 4.581e-04 2.023e-04 3.597e-02 -3.336e-02 -2.070e-04 - 2.670e-02 3.597e-02 1.321e+01 -1.062e+01 -4.128e-02 - -8.569e-02 -3.336e-02 -1.062e+01 1.029e+01 3.997e-02 - -6.634e-04 -2.070e-04 -4.128e-02 3.997e-02 3.484e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.27036 1.000 0.157 0.036 -0.130 -0.173 - 2 0.83318 0.157 1.000 0.696 -0.731 -0.780 - 3 0.91590 0.036 0.696 1.000 -0.910 -0.608 - 4 0.92588 -0.130 -0.731 -0.910 1.000 0.668 - 5 0.79489 -0.173 -0.780 -0.608 0.668 1.000 -350 -351.69 +- 0.205801 -8.9999 +- 0.47252 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17980.6 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 3.49987e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -5.98208e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.69170e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -7.83629e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 5.56311e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17292.9 FROM HESSE STATUS=OK 33 CALLS 303 TOTAL - EDM=0.00176494 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51961e+02 2.04460e-01 7.28165e-04 -2.52563e-01 - 2 sg_p1 8.99915e+00 2.30345e-01 4.30116e-02 1.25408e-01 - 3 sg_p2 3.40595e+02 2.15600e+00 8.33185e-04 -5.45844e-01 - 4 sg_p3 3.45143e+01 1.95839e+00 2.03832e-03 -4.14782e-02 - 5 sg_p4 7.03933e-01 1.22162e-02 8.12692e-03 9.35709e-02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=17292.9 FROM MIGRAD STATUS=CONVERGED 313 CALLS 314 TOTAL - EDM=4.59633e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 1.1 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51961e+02 2.04485e-01 4.26699e-06 -6.13016e-02 - 2 sg_p1 9.00000e+00 2.28984e-01 -2.81882e-02 4.39584e-03 - 3 sg_p2 3.40596e+02 2.15817e+00 9.56132e-06 -1.29730e-01 - 4 sg_p3 3.45177e+01 1.95208e+00 6.42863e-05 7.35163e-02 - 5 sg_p4 7.03952e-01 1.21706e-02 1.50864e-04 7.78726e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.182e-02 1.059e-06 -5.711e-02 -6.423e-03 -1.875e-04 - 1.059e-06 9.432e-07 8.505e-05 -8.954e-05 -6.387e-07 - -5.711e-02 8.505e-05 4.658e+00 -3.232e+00 -5.893e-03 - -6.423e-03 -8.954e-05 -3.232e+00 3.812e+00 7.975e-03 - -1.875e-04 -6.387e-07 -5.893e-03 7.975e-03 1.486e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23004 1.000 0.005 -0.129 -0.016 -0.075 - 2 0.06294 0.005 1.000 0.041 -0.047 -0.054 - 3 0.78034 -0.129 0.041 1.000 -0.767 -0.224 - 4 0.79125 -0.016 -0.047 -0.767 1.000 0.335 - 5 0.34635 -0.075 -0.054 -0.224 0.335 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17292.9 FROM HESSE STATUS=OK 33 CALLS 347 TOTAL - EDM=8.75756e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51961e+02 2.04438e-01 7.28075e-04 -1.21874e-01 - 2 sg_p1 9.00000e+00 2.29843e-01 4.29288e-02 1.57180e+00 - 3 sg_p2 3.40596e+02 2.15392e+00 8.34476e-04 4.75922e-01 - 4 sg_p3 3.45177e+01 1.95162e+00 8.15327e-04 -7.07252e-01 - 5 sg_p4 7.03952e-01 1.20329e-02 8.13654e-03 -7.63847e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.180e-02 1.680e-06 -5.851e-02 -5.134e-03 -1.774e-04 - 1.680e-06 9.469e-07 1.234e-04 -1.333e-04 -1.048e-06 - -5.851e-02 1.234e-04 4.640e+00 -3.221e+00 -5.474e-03 - -5.134e-03 -1.333e-04 -3.221e+00 3.811e+00 7.658e-03 - -1.774e-04 -1.048e-06 -5.474e-03 7.658e-03 1.452e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22989 1.000 0.008 -0.133 -0.013 -0.072 - 2 0.10030 0.008 1.000 0.059 -0.070 -0.089 - 3 0.77997 -0.133 0.059 1.000 -0.766 -0.211 - 4 0.79057 -0.013 -0.070 -0.766 1.000 0.326 - 5 0.34225 -0.072 -0.089 -0.211 0.326 1.000 -350 -351.961 +- 0.204438 -9 +- 0.229843 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17556.6 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 4.17830e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -5.68439e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.02939e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -1.22040e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 5.78553e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - MINUIT WARNING IN HESSE - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN HESSE - ============== 1.39906 added to diagonal of error matrix - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16809.1 FROM HESSE STATUS=OK 37 CALLS 272 TOTAL - EDM=0.00897496 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51361e+02 2.01282e-01 7.11370e-04 1.72820e-01 - 2 sg_p1 8.99409e+00 2.54007e+00 1.10453e-01 1.29902e-01 - 3 sg_p2 3.31862e+02 3.59215e+00 1.00989e-03 -2.61406e-01 - 4 sg_p3 3.82944e+01 2.65752e+00 2.00950e-03 -4.58275e-02 - 5 sg_p4 6.99077e-01 1.14579e-02 8.35244e-03 6.96141e-02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16809.1 FROM MIGRAD STATUS=CONVERGED 368 CALLS 369 TOTAL - EDM=2.66923e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51369e+02 2.03042e-01 7.10429e-04 6.65922e-02 - 2 sg_p1 8.93634e+00 2.26538e-01 3.06864e-02 1.49692e-02 - 3 sg_p2 3.32548e+02 4.06056e+00 9.86163e-04 4.21549e-03 - 4 sg_p3 3.77657e+01 3.08320e+00 1.99063e-03 -6.94419e-02 - 5 sg_p4 6.96961e-01 1.39263e-02 8.49674e-03 -1.61305e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.123e-02 -6.678e-03 2.163e-02 -7.188e-02 -4.511e-04 - -6.678e-03 5.527e-02 -5.307e-01 4.156e-01 1.876e-03 - 2.163e-02 -5.307e-01 1.649e+01 -1.137e+01 -1.673e-02 - -7.188e-02 4.156e-01 -1.137e+01 9.516e+00 1.485e-02 - -4.511e-04 1.876e-03 -1.673e-02 1.485e-02 1.948e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25576 1.000 -0.140 0.026 -0.115 -0.159 - 2 0.70688 -0.140 1.000 -0.556 0.573 0.572 - 3 0.91344 0.026 -0.556 1.000 -0.908 -0.295 - 4 0.91579 -0.115 0.573 -0.908 1.000 0.345 - 5 0.58244 -0.159 0.572 -0.295 0.345 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16809.1 FROM HESSE STATUS=OK 31 CALLS 400 TOTAL - EDM=2.70646e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51369e+02 2.03746e-01 1.42086e-04 -1.45765e-01 - 2 sg_p1 8.93634e+00 2.54070e-01 1.22745e-03 1.31782e+00 - 3 sg_p2 3.32548e+02 4.51761e+00 3.94465e-05 4.21778e-01 - 4 sg_p3 3.77657e+01 3.43807e+00 7.96253e-05 -6.47692e-01 - 5 sg_p4 6.96961e-01 1.47151e-02 3.39870e-04 -8.20745e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.151e-02 -8.628e-03 5.304e-02 -9.587e-02 -5.312e-04 - -8.628e-03 6.725e-02 -7.432e-01 5.794e-01 2.412e-03 - 5.304e-02 -7.432e-01 2.041e+01 -1.440e+01 -2.542e-02 - -9.587e-02 5.794e-01 -1.440e+01 1.184e+01 2.153e-02 - -5.312e-04 2.412e-03 -2.542e-02 2.153e-02 2.176e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.26808 1.000 -0.163 0.058 -0.137 -0.177 - 2 0.76639 -0.163 1.000 -0.634 0.650 0.630 - 3 0.93070 0.058 -0.634 1.000 -0.926 -0.381 - 4 0.93289 -0.137 0.650 -0.926 1.000 0.424 - 5 0.63913 -0.177 0.630 -0.381 0.424 1.000 -350 -351.369 +- 0.203746 -8.93634 +- 0.25407 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17593.4 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 3.78939e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -5.82009e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.40055e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -4.92268e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 5.69068e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16875.6 FROM MIGRAD STATUS=CONVERGED 320 CALLS 321 TOTAL - EDM=1.73973e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51639e+02 2.04706e-01 7.22407e-04 -3.09735e-01 - 2 sg_p1 9.00000e+00 1.66126e-01 3.62658e-02 -7.99062e-03 - 3 sg_p2 3.36604e+02 2.77890e+00 9.23538e-04 -8.53328e-02 - 4 sg_p3 3.65924e+01 2.29934e+00 2.05397e-03 -4.59757e-02 - 5 sg_p4 7.00430e-01 1.16607e-02 8.31070e-03 -3.87898e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.191e-02 1.719e-06 -5.416e-02 -1.332e-02 -2.187e-04 - 1.719e-06 1.229e-06 1.227e-04 -1.127e-04 -6.551e-07 - -5.416e-02 1.227e-04 7.723e+00 -5.279e+00 -3.068e-03 - -1.332e-02 -1.127e-04 -5.279e+00 5.290e+00 4.752e-03 - -2.187e-04 -6.551e-07 -3.068e-03 4.752e-03 1.364e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22303 1.000 0.008 -0.095 -0.028 -0.091 - 2 0.06294 0.008 1.000 0.040 -0.044 -0.051 - 3 0.83540 -0.095 0.040 1.000 -0.826 -0.095 - 4 0.83755 -0.028 -0.044 -0.826 1.000 0.177 - 5 0.21502 -0.091 -0.051 -0.095 0.177 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16875.6 FROM HESSE STATUS=OK 31 CALLS 352 TOTAL - EDM=1.75499e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51639e+02 2.04671e-01 1.44481e-04 -1.34847e-01 - 2 sg_p1 9.00000e+00 1.66721e-01 7.25317e-03 1.56945e+00 - 3 sg_p2 3.36604e+02 2.84821e+00 1.84708e-04 4.48885e-01 - 4 sg_p3 3.65924e+01 2.35643e+00 8.21590e-05 -6.68882e-01 - 5 sg_p4 7.00430e-01 1.16522e-02 3.32428e-04 -7.92102e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.189e-02 2.314e-07 -5.503e-02 -1.229e-02 -2.144e-04 - 2.314e-07 1.234e-06 1.775e-05 -1.618e-05 -8.940e-08 - -5.503e-02 1.775e-05 8.113e+00 -5.607e+00 -3.304e-03 - -1.229e-02 -1.618e-05 -5.607e+00 5.556e+00 4.919e-03 - -2.144e-04 -8.940e-08 -3.304e-03 4.919e-03 1.362e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22229 1.000 0.001 -0.094 -0.025 -0.090 - 2 0.00867 0.001 1.000 0.006 -0.006 -0.007 - 3 0.84405 -0.094 0.006 1.000 -0.835 -0.099 - 4 0.84604 -0.025 -0.006 -0.835 1.000 0.179 - 5 0.21170 -0.090 -0.007 -0.099 0.179 1.000 -350 -351.639 +- 0.204671 -9 +- 0.166721 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17828.5 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 3.94800e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -5.62258e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.22820e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -3.94120e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 5.44291e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -6.7726e-02 3.7089e-01 9.5269e-01 1.7434e+00 2.0007e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.069727 TO DIAGONAL. - FCN=17147.5 FROM HESSE STATUS=NOT POSDEF 35 CALLS 251 TOTAL - EDM=1.1309 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51658e+02 3.51659e-01 7.01219e-04 -5.40058e-02 - 2 sg_p1 8.97742e+00 2.95083e+00 6.13915e-02 -2.03655e-01 - 3 sg_p2 3.35380e+02 1.79447e+01 9.83548e-04 6.97732e-01 - 4 sg_p3 3.73975e+01 1.59176e+01 2.11985e-03 1.68496e-01 - 5 sg_p4 7.15638e-01 9.42908e-02 7.30647e-03 -1.11566e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17147.5 FROM MIGRAD STATUS=CONVERGED 369 CALLS 370 TOTAL - EDM=4.09796e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51663e+02 1.99263e-01 7.00634e-04 4.55239e-02 - 2 sg_p1 8.93699e+00 2.96196e-01 2.96808e-02 -1.54899e-02 - 3 sg_p2 3.35749e+02 3.96525e+00 9.64449e-04 -8.88348e-03 - 4 sg_p3 3.70652e+01 3.34839e+00 2.10353e-03 -1.67958e-02 - 5 sg_p4 7.14101e-01 1.63480e-02 7.39271e-03 -2.31381e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.971e-02 9.041e-03 3.441e-02 -8.945e-02 -5.869e-04 - 9.041e-03 7.788e-02 7.343e-01 -6.508e-01 -3.330e-03 - 3.441e-02 7.343e-01 1.573e+01 -1.210e+01 -3.297e-02 - -8.945e-02 -6.508e-01 -1.210e+01 1.123e+01 3.115e-02 - -5.869e-04 -3.330e-03 -3.297e-02 3.115e-02 2.686e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.26818 1.000 0.163 0.044 -0.134 -0.180 - 2 0.81011 0.163 1.000 0.664 -0.696 -0.728 - 3 0.91607 0.044 0.664 1.000 -0.911 -0.507 - 4 0.92336 -0.134 -0.696 -0.911 1.000 0.567 - 5 0.73770 -0.180 -0.728 -0.507 0.567 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17147.5 FROM HESSE STATUS=OK 31 CALLS 401 TOTAL - EDM=3.78098e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51663e+02 1.98626e-01 1.40127e-04 -1.33882e-01 - 2 sg_p1 8.93699e+00 2.60351e-01 1.18723e-03 1.82247e+00 - 3 sg_p2 3.35749e+02 3.94847e+00 3.85780e-05 4.43146e-01 - 4 sg_p3 3.70652e+01 3.31177e+00 8.41412e-05 -6.60300e-01 - 5 sg_p4 7.14101e-01 1.54021e-02 2.95708e-04 -6.86338e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.945e-02 7.419e-03 1.957e-02 -7.558e-02 -4.983e-04 - 7.419e-03 6.823e-02 6.530e-01 -5.744e-01 -2.764e-03 - 1.957e-02 6.530e-01 1.559e+01 -1.191e+01 -2.828e-02 - -7.558e-02 -5.744e-01 -1.191e+01 1.098e+01 2.678e-02 - -4.983e-04 -2.764e-03 -2.828e-02 2.678e-02 2.383e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25680 1.000 0.143 0.025 -0.115 -0.163 - 2 0.77869 0.143 1.000 0.633 -0.664 -0.686 - 3 0.91532 0.025 0.633 1.000 -0.910 -0.464 - 4 0.92158 -0.115 -0.664 -0.910 1.000 0.524 - 5 0.69729 -0.163 -0.686 -0.464 0.524 1.000 -350 -351.663 +- 0.198626 -8.93699 +- 0.260351 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=16599.2 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 3.57504e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -5.44923e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.17494e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -4.08170e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 5.21506e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15939.1 FROM HESSE STATUS=OK 37 CALLS 314 TOTAL - EDM=0.000648585 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51693e+02 2.15714e-01 7.19414e-04 4.43718e-02 - 2 sg_p1 8.99487e+00 3.57548e+00 7.75677e-02 1.91574e-02 - 3 sg_p2 3.37608e+02 4.45408e+00 8.83711e-04 -1.12364e-01 - 4 sg_p3 3.54407e+01 4.01631e+00 2.01394e-03 2.05443e-02 - 5 sg_p4 7.05167e-01 2.51719e-02 7.97965e-03 2.01078e-02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 13.9403 added to diagonal of error matrix - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15939.1 FROM MIGRAD STATUS=CONVERGED 457 CALLS 458 TOTAL - EDM=6.3256e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51693e+02 2.10894e-01 7.19542e-04 -1.67564e-01 - 2 sg_p1 9.00000e+00 3.24335e+00 1.16287e-01** at limit ** - 3 sg_p2 3.37572e+02 3.03107e+00 8.85564e-04 -1.40083e-01 - 4 sg_p3 3.54732e+01 2.61363e+00 2.01712e-03 -2.42748e-02 - 5 sg_p4 7.05375e-01 1.51863e-02 7.98331e-03 2.92592e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.448e-02 6.249e-05 -2.584e-02 -4.146e-02 -4.052e-04 - 6.249e-05 8.943e-06 4.513e-03 -4.212e-03 -2.775e-05 - -2.584e-02 4.513e-03 9.189e+00 -6.814e+00 -1.858e-02 - -4.146e-02 -4.212e-03 -6.814e+00 6.836e+00 1.914e-02 - -4.052e-04 -2.775e-05 -1.858e-02 1.914e-02 2.317e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.24408 1.000 0.099 -0.040 -0.075 -0.126 - 2 0.67618 0.099 1.000 0.498 -0.539 -0.610 - 3 0.86794 -0.040 0.498 1.000 -0.860 -0.403 - 4 0.87833 -0.075 -0.539 -0.860 1.000 0.481 - 5 0.64024 -0.126 -0.610 -0.403 0.481 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15939.1 FROM HESSE STATUS=OK 35 CALLS 493 TOTAL - EDM=7.60914e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51693e+02 2.11707e-01 1.43908e-04 -1.32683e-01 - 2 sg_p1 9.00000e+00 3.40291e-01 4.74451e-01 1.56997e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 3 sg_p2 3.37572e+02 3.47654e+00 1.77113e-04 4.55410e-01 - 4 sg_p3 3.54732e+01 3.03978e+00 8.06848e-05 -6.89429e-01 - 5 sg_p4 7.05375e-01 1.75095e-02 3.19332e-04 -7.52647e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.482e-02 2.743e-05 3.917e-03 -6.861e-02 -5.663e-04 - 2.743e-05 9.504e-07 2.150e-03 -1.992e-03 -1.243e-05 - 3.917e-03 2.150e-03 1.209e+01 -9.464e+00 -3.305e-02 - -6.861e-02 -1.992e-03 -9.464e+00 9.250e+00 3.240e-02 - -5.663e-04 -1.243e-05 -3.305e-02 3.240e-02 3.085e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25843 1.000 0.133 0.005 -0.107 -0.152 - 2 0.78663 0.133 1.000 0.634 -0.672 -0.726 - 3 0.90139 0.005 0.634 1.000 -0.895 -0.541 - 4 0.91165 -0.107 -0.672 -0.895 1.000 0.606 - 5 0.74619 -0.152 -0.726 -0.541 0.606 1.000 -350 -351.693 +- 0.211707 -9 +- 0.340291 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=18950.1 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 4.06912e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -6.21556e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.53873e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -5.05415e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 6.02316e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 2.05452 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - MACHINE ACCURACY LIMITS FURTHER IMPROVEMENT. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -7.6627e-03 4.3650e-01 9.4912e-01 1.6697e+00 1.9524e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.009615 TO DIAGONAL. - FCN=18191.7 FROM MIGRAD STATUS=CONVERGED 438 CALLS 439 TOTAL - EDM=2.38291e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51688e+02 3.06549e-01 7.21716e-04 1.38139e-02 - 2 sg_p1 8.99221e+00 3.97298e+00 7.87824e-02 -1.20842e-03 - 3 sg_p2 3.37548e+02 1.63062e+01 8.85928e-04 1.17278e-02 - 4 sg_p3 3.56395e+01 1.51287e+01 2.01699e-03 1.74046e-02 - 5 sg_p4 7.02105e-01 9.20868e-02 8.19474e-03 -1.20385e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.398e-02 3.866e-01 3.761e+00 -3.594e+00 -2.447e-02 - 3.866e-01 2.690e+00 2.650e+01 -2.493e+01 -1.690e-01 - 3.761e+00 2.650e+01 2.670e+02 -2.495e+02 -1.668e+00 - -3.594e+00 -2.493e+01 -2.495e+02 2.351e+02 1.571e+00 - -2.447e-02 -1.690e-01 -1.668e+00 1.571e+00 1.074e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.78192 1.000 0.769 0.751 -0.765 -0.770 - 2 0.99585 0.769 1.000 0.989 -0.991 -0.994 - 3 0.99631 0.751 0.989 1.000 -0.996 -0.985 - 4 0.99710 -0.765 -0.991 -0.996 1.000 0.989 - 5 0.99443 -0.770 -0.994 -0.985 0.989 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2500 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.2541e-02 4.4218e-01 9.5025e-01 1.6636e+00 1.9565e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.014497 TO DIAGONAL. - FCN=18191.7 FROM HESSE STATUS=NOT POSDEF 37 CALLS 476 TOTAL - EDM=6.23545e-06 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51688e+02 2.98004e-01 1.44343e-04 -1.32867e-01 - 2 sg_p1 8.99221e+00 3.99098e+00 5.00000e-01 1.65911e+00 - 3 sg_p2 3.37548e+02 1.66076e+01 3.54371e-05 4.55246e-01 - 4 sg_p3 3.56395e+01 1.53152e+01 8.06796e-05 -6.86354e-01 - 5 sg_p4 7.02105e-01 8.98453e-02 3.27790e-04 -7.78566e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 8.881e-02 1.322e-01 3.655e+00 -3.473e+00 -2.261e-02 - 1.322e-01 3.453e-01 9.674e+00 -9.044e+00 -5.859e-02 - 3.655e+00 9.674e+00 2.770e+02 -2.574e+02 -1.645e+00 - -3.473e+00 -9.044e+00 -2.574e+02 2.411e+02 1.540e+00 - -2.261e-02 -5.859e-02 -1.645e+00 1.540e+00 1.007e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.76862 1.000 0.755 0.737 -0.751 -0.756 - 2 0.99570 0.755 1.000 0.989 -0.991 -0.994 - 3 0.99646 0.737 0.989 1.000 -0.996 -0.985 - 4 0.99718 -0.751 -0.991 -0.996 1.000 0.988 - 5 0.99409 -0.756 -0.994 -0.985 0.988 1.000 - ERR MATRIX NOT POS-DEF -350 -351.688 +- 0.298004 -8.99221 +- 3.99098 -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 351.69 +- 0.205801 (stat) - 0.321347 + 0.270579 (syst); -0.33742/+0.289485 (total) - Uncertainty on sg_p1 = 8.9999 +- 0.47252 (stat) - 0.0635526 + 0.000102014 (syst); -0.244659/+0.23626 (total) - Uncertainty on sg_p2 = 337.532 +- 3.63434 (stat) - 4.98423 + 3.06364 (syst); -5.30516/+3.56202 (total) - Uncertainty on sg_p3 = 35.585 +- 3.20621 (stat) - 1.06732 + 2.18069 (syst); -1.92591/+2.70654 (total) - Uncertainty on sg_p4 = 0.703842 +- 0.0185963 (stat) - 0.00688091 + 0.0102594 (syst); -0.0115673/+0.013846 (total) - === Baseline plot ===
- norm = 541.084 -JEC lnN 1.0101 - -JER lnN 1.00905 - -btag lnN 1.06649 - -sg_p0 param 351.69 -0.33742/+0.289485 -sg_p1 param 8.9999 -0.244659/+0.23626 -sg_p2 param 337.532 -5.30516/+3.56202 -sg_p3 param 35.585 -1.92591/+2.70654 -sg_p4 param 0.703842 -0.0115673/+0.013846 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_350_gaus_exp_252_330/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_350_gaus_exp_252_330/data_bkg.log deleted file mode 100644 index 1be2f6e..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_350_gaus_exp_252_330/data_bkg.log +++ /dev/null @@ -1,717 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [250,330] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [250,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63590.5 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.69443e-02 5.09000e-01 0.00000e+00 -7.94680e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -8.91126e+00 - 3 par_crystal_2 2.62020e+02 4.00000e+00 1.01181e-01 -1.53451e+00 - 4 par_crystal_3 1.65000e+01 2.70000e+00 0.00000e+00 7.46021e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM MIGRAD STATUS=CONVERGED 482 CALLS 483 TOTAL - EDM=0.000814822 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 4.40594e-01 4.43750e-02 2.48631e-03 2.88668e-01 - 2 par_crystal_1 9.82994e-01 6.48221e-01 2.14269e-02 -5.28345e-03 - 3 par_crystal_2 2.71542e+02 7.41091e-01 7.20683e-03 -9.27818e-02 - 4 par_crystal_3 2.87224e+01 2.18588e+00 3.97473e-02 -6.99277e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.970e-03 -2.333e-02 -5.115e-04 1.392e-02 - -2.333e-02 4.358e-01 4.870e-03 -8.391e-01 - -5.115e-04 4.870e-03 5.496e-01 4.381e-01 - 1.392e-02 -8.391e-01 4.381e-01 5.029e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.88989 1.000 -0.796 -0.016 0.140 - 2 0.92807 -0.796 1.000 0.010 -0.567 - 3 0.40865 -0.016 0.010 1.000 0.264 - 4 0.80948 0.140 -0.567 0.264 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM HESSE STATUS=OK 23 CALLS 506 TOTAL - EDM=0.000711421 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 4.40594e-01 4.64698e-02 4.97262e-04 -9.80558e-01 - 2 par_crystal_1 9.82994e-01 6.55195e-01 8.57075e-04 -6.65795e-01 - 3 par_crystal_2 2.71542e+02 7.38644e-01 1.44137e-03 6.15159e-01 - 4 par_crystal_3 2.87224e+01 2.03002e+00 1.58989e-03 -1.05570e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.160e-03 -2.581e-02 -1.109e-03 1.530e-02 - -2.581e-02 4.456e-01 2.508e-02 -7.234e-01 - -1.109e-03 2.508e-02 5.460e-01 3.687e-01 - 1.530e-02 -7.234e-01 3.687e-01 4.306e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.90014 1.000 -0.832 -0.032 0.159 - 2 0.92960 -0.832 1.000 0.051 -0.522 - 3 0.40186 -0.032 0.051 1.000 0.240 - 4 0.77207 0.159 -0.522 0.240 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63714.2 FROM MIGRAD STATUS=INITIATE 33 CALLS 34 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 2.63122e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -5.45805e+02 - 3 par_gaus_exp_2 6.67498e-01 3.05000e-01 -6.37370e-01 7.03093e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM MIGRAD STATUS=CONVERGED 131 CALLS 132 TOTAL - EDM=6.15917e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.71558e+02 8.05096e-01 6.82817e-03 6.24407e-02 - 2 par_gaus_exp_1 3.06822e+01 1.83071e+00 1.43475e-02 1.11468e-02 - 3 par_gaus_exp_2 3.82770e-01 2.42284e-02 3.05774e-03 -9.77170e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.486e-01 -6.079e-01 -1.588e-03 - -6.079e-01 3.370e+00 3.082e-02 - -1.588e-03 3.082e-02 5.871e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.49876 1.000 -0.411 -0.081 - 2 0.77898 -0.411 1.000 0.693 - 3 0.72797 -0.081 0.693 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM HESSE STATUS=OK 16 CALLS 148 TOTAL - EDM=6.13964e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.71558e+02 8.14214e-01 2.73127e-04 -4.35760e-01 - 2 par_gaus_exp_1 3.06822e+01 1.86973e+00 5.73898e-04 4.10264e-01 - 3 par_gaus_exp_2 3.82770e-01 2.45149e-02 1.22310e-04 -8.97531e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.634e-01 -6.630e-01 -2.137e-03 - -6.630e-01 3.516e+00 3.227e-02 - -2.137e-03 3.227e-02 6.011e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.51526 1.000 -0.434 -0.107 - 2 0.78935 -0.434 1.000 0.702 - 3 0.73544 -0.107 0.702 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,625] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.33953 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.33953) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - ... (remaining 126 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.734607 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.734607) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=317.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=327.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=332.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=342.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=347.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=352.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=357.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=362.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=367.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - ... (remaining 53 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0734613 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0734613 - - FCN=103487 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57093e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.56195e+03 - 3 par_novo_2 -1.33668e+00 2.00000e+01 0.00000e+00 1.53931e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM MIGRAD STATUS=CONVERGED 127 CALLS 128 TOTAL - EDM=3.4171e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.43423e+01 1.81223e-01** at limit ** - 2 par_novo_1 3.86596e+01 2.27294e+00 4.95847e-03 -1.04123e-02 - 3 par_novo_2 -1.27520e+00 7.07738e-02 3.70975e-05 -1.26322e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.231e-09 -8.491e-07 -8.580e-07 - -8.491e-07 5.181e+00 1.547e-01 - -8.580e-07 1.547e-01 5.009e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.53332 1.000 -0.005 -0.154 - 2 0.97096 -0.005 1.000 0.960 - 3 0.97165 -0.154 0.960 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM HESSE STATUS=OK 20 CALLS 148 TOTAL - EDM=3.43726e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.40246e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.86596e+01 2.31421e+00 1.98339e-04 4.46530e-01 - 3 par_novo_2 -1.27520e+00 7.22930e-02 1.48390e-06 -1.27523e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 5.974e-09 2.819e-05 -1.296e-06 - 2.819e-05 5.372e+00 1.502e-01 - -1.296e-06 1.502e-01 5.226e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.85665 1.000 0.157 -0.232 - 2 0.97200 0.157 1.000 0.897 - 3 0.97285 -0.232 0.897 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107513 FROM MIGRAD STATUS=INITIATE 54 CALLS 55 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 1.39168e+03 - 2 par_crystal_1_1 7.96220e-02 5.09000e-01 0.00000e+00 5.33770e+03 - 3 par_crystal_1_2 2.56879e+02 4.00000e+00 -1.56713e-01 -1.96669e+01 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 -8.45862e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.5057e-02 2.3309e-03 4.9678e-02 3.9730e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.029030 TO DIAGONAL. - FCN=103250 FROM MIGRAD STATUS=CONVERGED 436 CALLS 437 TOTAL - EDM=3.52757e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 4.45574e-02 4.37117e-03 3.09465e-04 -4.28177e+00 - 2 par_crystal_1_1 4.36914e+00 6.24106e-01 1.80400e-02 6.63742e-02 - 3 par_crystal_1_2 2.71531e+02 3.44700e+01 5.81266e-02 2.25694e-02 - 4 par_crystal_1_3 3.37290e+00 2.71702e-01 3.13791e-03 -4.26197e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.911e-05 -1.221e-03 2.089e-01 3.572e-04 - -1.221e-03 4.065e-01 -2.690e+01 -6.822e-02 - 2.089e-01 -2.690e+01 3.429e+03 1.167e+01 - 3.572e-04 -6.822e-02 1.167e+01 7.401e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99136 1.000 -0.438 0.816 0.300 - 2 0.97307 -0.438 1.000 -0.720 -0.393 - 3 0.99735 0.816 -0.720 1.000 0.733 - 4 0.98716 0.300 -0.393 0.733 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -8.0089e-04 4.0193e-04 7.1213e-02 3.9292e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.004730 TO DIAGONAL. - FCN=103250 FROM HESSE STATUS=NOT POSDEF 23 CALLS 460 TOTAL - EDM=3.56127e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 4.45574e-02 7.42610e-03 6.18930e-05 -1.40582e+00 - 2 par_crystal_1_1 4.36914e+00 4.67550e-01 7.21602e-04 -3.93511e+00 - 3 par_crystal_1_2 2.71531e+02 3.29814e+01 2.32506e-03 -3.75607e+00 - 4 par_crystal_1_3 3.37290e+00 5.01685e-01 1.25517e-04 -1.80638e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.515e-05 2.851e-04 2.343e-01 -1.699e-03 - 2.851e-04 2.238e-01 -2.528e+00 1.548e-02 - 2.343e-01 -2.528e+00 2.967e+03 1.176e+01 - -1.699e-03 1.548e-02 1.176e+01 2.538e-01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99694 1.000 0.081 0.579 -0.454 - 2 0.94927 0.081 1.000 -0.098 0.065 - 3 0.99687 0.579 -0.098 1.000 0.429 - 4 0.99618 -0.454 0.065 0.429 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 14211 - Background number of gaus_exp_252_330 = 14211 - Background number of novo_285_624 = 17618.3 - Background number of crystal_1_285_624 = 17618.3 - Background number of gaus_bern_285_624 = 17618.3 - Background number of landau_285_624 = 17618.3 -par_crystal_0 param 0.440594 0.0464698 -par_crystal_1 param 0.982994 0.655195 -par_crystal_2 param 271.542 0.738644 -par_crystal_3 param 28.7224 2.03002 -par_crystal_1_0 param 0.0445574 0.0074261 -par_crystal_1_1 param 4.36914 0.46755 -par_crystal_1_2 param 271.531 32.9814 -par_crystal_1_3 param 3.3729 0.501685 -par_gaus_exp_0 param 271.558 0.814214 -par_gaus_exp_1 param 30.6822 1.86973 -par_gaus_exp_2 param 0.38277 0.0245149 -par_novo_0 param 250 34.0246 -par_novo_1 param 38.6596 2.31421 -par_novo_2 param -1.2752 0.072293 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_350_gaus_exp_252_330/datacard_350_gaus_exp_252_330.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_350_gaus_exp_252_330/datacard_350_gaus_exp_252_330.txt deleted file mode 100644 index ead162c..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_350_gaus_exp_252_330/datacard_350_gaus_exp_252_330.txt +++ /dev/null @@ -1,29 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_350.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_gaus_exp_252_330.root HbbHbb:f_gaus_exp -shapes data_obs HbbHbb w_background_gaus_exp_252_330.root HbbHbb:data_obs_gaus_exp_252_330 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 541.084 14211 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06649 - -JER lnN 1.00905 - -JEC lnN 1.0101 - -trigger lnN 1.10 - -sg_p0 param 351.69 -0.33742/+0.289485 -sg_p1 param 8.9999 -0.244659/+0.23626 -sg_p2 param 337.532 -5.30516/+3.56202 -sg_p3 param 35.585 -1.92591/+2.70654 -sg_p4 param 0.703842 -0.0115673/+0.013846 -par_gaus_exp_0 param 271.558 0.814214 -par_gaus_exp_1 param 30.6822 1.86973 -par_gaus_exp_2 param 0.38277 0.0245149 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_350_gaus_exp_252_330/signal350_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_350_gaus_exp_252_330/signal350_sig.log deleted file mode 100644 index 3cd3455..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_350_gaus_exp_252_330/signal350_sig.log +++ /dev/null @@ -1,927 +0,0 @@ - -Processing test.c... -nSignal_init = 300000 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=22528 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.45000e+02 7.00000e+00 2.01358e-01 1.85444e+03 - 2 sg_p1 2.00000e+01 3.00000e+00 2.01358e-01 -1.26556e+01 - 3 sg_p2 3.75000e+02 9.00000e+00 2.01358e-01 1.23451e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -4.81309e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -9.79262e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21380.5 FROM MIGRAD STATUS=CONVERGED 200 CALLS 201 TOTAL - EDM=3.93725e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.34187e+02 4.37520e-01 1.19182e-03 3.04020e-02 - 2 sg_p1 2.26141e+01 4.79817e-01 2.16429e-03 1.96597e-03 - 3 sg_p2 3.30000e+02 7.71533e-01 1.87116e-02** at limit ** - 4 sg_p3 7.15373e+01 5.51063e+00 8.04417e-03 3.88300e-03 - 5 sg_p4 8.94168e-01 1.56675e-02 2.59223e-03 3.19034e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.914e-01 -8.489e-02 -1.235e-06 -8.412e-01 -2.850e-03 - -8.489e-02 2.303e-01 1.528e-06 1.618e+00 5.594e-03 - -1.235e-06 1.528e-06 1.273e-07 1.107e-05 4.780e-08 - -8.412e-01 1.618e+00 1.107e-05 3.054e+01 6.912e-02 - -2.850e-03 5.594e-03 4.780e-08 6.912e-02 2.457e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.43984 1.000 -0.404 -0.008 -0.348 -0.416 - 2 0.75144 -0.404 1.000 0.009 0.610 0.744 - 3 0.01053 -0.008 0.009 1.000 0.006 0.009 - 4 0.79840 -0.348 0.610 0.006 1.000 0.798 - 5 0.86375 -0.416 0.744 0.009 0.798 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21380.5 FROM HESSE STATUS=OK 31 CALLS 232 TOTAL - EDM=4.04441e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.34187e+02 4.38578e-01 4.76728e-05 -3.14089e-01 - 2 sg_p1 2.26141e+01 4.83583e-01 8.65717e-05 1.75170e-01 - 3 sg_p2 3.30000e+02 7.71716e-01 3.74232e-03 -1.57084e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 7.15373e+01 5.57705e+00 3.21767e-04 3.76314e-01 - 5 sg_p4 8.94168e-01 1.58618e-02 5.18445e-04 9.08100e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.924e-01 -8.684e-02 -2.448e-07 -8.666e-01 -2.922e-03 - -8.684e-02 2.339e-01 3.045e-07 1.670e+00 5.743e-03 - -2.448e-07 3.045e-07 1.274e-07 2.232e-06 9.555e-09 - -8.666e-01 1.670e+00 2.232e-06 3.129e+01 7.130e-02 - -2.922e-03 5.743e-03 9.555e-09 7.130e-02 2.518e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.44424 1.000 -0.409 -0.002 -0.353 -0.420 - 2 0.75592 -0.409 1.000 0.002 0.617 0.748 - 3 0.00208 -0.002 0.002 1.000 0.001 0.002 - 4 0.80377 -0.353 0.617 0.001 1.000 0.803 - 5 0.86733 -0.420 0.748 0.002 0.803 1.000 -350 -334.187 +- 0.438578 -22.6141 +- 0.483583 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=22627.8 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.45000e+02 7.00000e+00 2.01358e-01 1.57892e+03 - 2 sg_p1 2.00000e+01 3.00000e+00 2.01358e-01 2.75936e+01 - 3 sg_p2 3.75000e+02 9.00000e+00 2.01358e-01 1.16953e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -3.72010e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -9.99046e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21614.3 FROM MIGRAD STATUS=CONVERGED 179 CALLS 180 TOTAL - EDM=0.000765156 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.35798e+02 4.40505e-01 1.18756e-03 5.85918e-02 - 2 sg_p1 2.30753e+01 4.76357e-01 2.18690e-03 -2.03897e-03 - 3 sg_p2 3.30001e+02 1.45352e+00 2.57988e-02 -9.05792e-02 - 4 sg_p3 7.35354e+01 6.02462e+00 8.88269e-03 -1.01559e-01 - 5 sg_p4 9.01891e-01 1.51622e-02 2.60225e-03 2.64090e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.941e-01 -8.403e-02 -1.778e-04 -9.585e-01 -2.816e-03 - -8.403e-02 2.270e-01 1.870e-04 1.767e+00 5.355e-03 - -1.778e-04 1.870e-04 4.564e-03 5.987e-04 4.935e-06 - -9.585e-01 1.767e+00 5.987e-04 3.656e+01 7.358e-02 - -2.816e-03 5.355e-03 4.935e-06 7.358e-02 2.301e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.44243 1.000 -0.400 -0.006 -0.360 -0.421 - 2 0.74784 -0.400 1.000 0.006 0.613 0.741 - 3 0.00826 -0.006 0.006 1.000 0.001 0.005 - 4 0.80297 -0.360 0.613 0.001 1.000 0.802 - 5 0.86456 -0.421 0.741 0.005 0.802 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21614.3 FROM HESSE STATUS=OK 31 CALLS 211 TOTAL - EDM=0.000770472 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.35798e+02 4.41802e-01 2.37512e-04 -2.66038e-01 - 2 sg_p1 2.30753e+01 4.80609e-01 8.74761e-05 2.06482e-01 - 3 sg_p2 3.30001e+02 1.45505e+00 5.15976e-03 -1.57669e+00 - 4 sg_p3 7.35354e+01 6.11053e+00 3.55307e-04 4.24535e-01 - 5 sg_p4 9.01891e-01 1.53826e-02 1.04090e-04 9.33626e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.952e-01 -8.630e-02 8.428e-05 -9.929e-01 -2.902e-03 - -8.630e-02 2.311e-01 -8.883e-05 1.833e+00 5.520e-03 - 8.428e-05 -8.883e-05 4.569e-03 -2.859e-04 -2.344e-06 - -9.929e-01 1.833e+00 -2.859e-04 3.762e+01 7.631e-02 - -2.902e-03 5.520e-03 -2.344e-06 7.631e-02 2.368e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.44772 1.000 -0.406 0.003 -0.366 -0.427 - 2 0.75302 -0.406 1.000 -0.003 0.622 0.746 - 3 0.00390 0.003 -0.003 1.000 -0.001 -0.002 - 4 0.80914 -0.366 0.622 -0.001 1.000 0.808 - 5 0.86871 -0.427 0.746 -0.002 0.808 1.000 -350 -335.798 +- 0.441802 -23.0753 +- 0.480609 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=22461.8 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.45000e+02 7.00000e+00 2.01358e-01 2.12122e+03 - 2 sg_p1 2.00000e+01 3.00000e+00 2.01358e-01 -1.16373e+02 - 3 sg_p2 3.75000e+02 9.00000e+00 2.01358e-01 1.31911e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -5.79911e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -9.15472e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21165.5 FROM MIGRAD STATUS=CONVERGED 173 CALLS 174 TOTAL - EDM=1.05905e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.32336e+02 4.42443e-01 1.23362e-03 3.68247e-02 - 2 sg_p1 2.24290e+01 4.96251e-01 2.19433e-03 -3.29729e-02 - 3 sg_p2 3.30000e+02 5.15272e-01 1.52593e-02** at limit ** - 4 sg_p3 6.46965e+01 4.49942e+00 6.08111e-03 5.16840e-02 - 5 sg_p4 8.77595e-01 1.81613e-02 2.70062e-03 -5.60533e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.958e-01 -8.688e-02 -6.473e-07 -6.527e-01 -3.215e-03 - -8.688e-02 2.464e-01 8.468e-07 1.363e+00 6.784e-03 - -6.473e-07 8.468e-07 3.789e-08 6.087e-06 3.127e-08 - -6.527e-01 1.363e+00 6.087e-06 2.032e+01 6.625e-02 - -3.215e-03 6.784e-03 3.127e-08 6.625e-02 3.302e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.42501 1.000 -0.396 -0.008 -0.327 -0.400 - 2 0.75928 -0.396 1.000 0.009 0.609 0.752 - 3 0.01018 -0.008 0.009 1.000 0.007 0.009 - 4 0.80887 -0.327 0.609 0.007 1.000 0.809 - 5 0.87457 -0.400 0.752 0.009 0.809 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21165.5 FROM HESSE STATUS=OK 31 CALLS 205 TOTAL - EDM=1.06081e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.32336e+02 4.43146e-01 4.93448e-05 -3.70218e-01 - 2 sg_p1 2.24290e+01 4.99339e-01 8.77732e-05 1.62649e-01 - 3 sg_p2 3.30000e+02 5.15335e-01 3.05186e-03 -1.57077e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 6.46965e+01 4.54231e+00 2.43244e-04 2.17181e-01 - 5 sg_p4 8.77595e-01 1.83407e-02 5.40123e-04 8.55943e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.964e-01 -8.838e-02 -1.326e-07 -6.673e-01 -3.275e-03 - -8.838e-02 2.494e-01 1.746e-07 1.397e+00 6.925e-03 - -1.326e-07 1.746e-07 3.790e-08 1.265e-06 6.465e-09 - -6.673e-01 1.397e+00 1.265e-06 2.071e+01 6.788e-02 - -3.275e-03 6.925e-03 6.465e-09 6.788e-02 3.367e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.42806 1.000 -0.399 -0.002 -0.331 -0.403 - 2 0.76271 -0.399 1.000 0.002 0.615 0.756 - 3 0.00208 -0.002 0.002 1.000 0.001 0.002 - 4 0.81288 -0.331 0.615 0.001 1.000 0.813 - 5 0.87719 -0.403 0.756 0.002 0.813 1.000 -350 -332.336 +- 0.443146 -22.429 +- 0.499339 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17745.4 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 3.81607e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -5.82292e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.35171e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -4.55171e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 5.60829e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.4848e-03 4.4073e-01 9.4874e-01 1.6613e+00 1.9507e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.003435 TO DIAGONAL. - FCN=17037.5 FROM MIGRAD STATUS=CONVERGED 272 CALLS 273 TOTAL - EDM=0.000229841 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51690e+02 3.12909e-01 7.20357e-04 1.50885e-02 - 2 sg_p1 8.99990e+00 2.02072e+00 1.07460e-01 -8.64629e-04 - 3 sg_p2 3.37532e+02 1.70704e+01 8.89534e-04 8.91783e-02 - 4 sg_p3 3.55850e+01 1.57412e+01 2.01445e-03 5.68535e-02 - 5 sg_p4 7.03842e-01 9.36961e-02 8.03918e-03 -4.45853e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.792e-02 9.007e-02 3.977e+00 -3.782e+00 -2.519e-02 - 9.007e-02 1.430e-01 6.397e+00 -5.986e+00 -3.967e-02 - 3.977e+00 6.397e+00 2.927e+02 -2.722e+02 -1.779e+00 - -3.782e+00 -5.986e+00 -2.722e+02 2.551e+02 1.667e+00 - -2.519e-02 -3.967e-02 -1.779e+00 1.667e+00 1.115e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.77487 1.000 0.761 0.743 -0.757 -0.763 - 2 0.99571 0.761 1.000 0.989 -0.991 -0.994 - 3 0.99637 0.743 0.989 1.000 -0.996 -0.985 - 4 0.99713 -0.757 -0.991 -0.996 1.000 0.988 - 5 0.99425 -0.763 -0.994 -0.985 0.988 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17037.5 FROM HESSE STATUS=OK 35 CALLS 308 TOTAL - EDM=2.9509e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51690e+02 2.05801e-01 1.44071e-04 -1.32785e-01 - 2 sg_p1 8.99990e+00 4.72520e-01 4.38435e-01 1.58093e+00 - 3 sg_p2 3.37532e+02 3.63434e+00 1.77907e-04 4.55143e-01 - 4 sg_p3 3.55850e+01 3.20621e+00 8.05779e-05 -6.87361e-01 - 5 sg_p4 7.03842e-01 1.85963e-02 3.21567e-04 -7.64719e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.236e-02 4.581e-04 2.670e-02 -8.569e-02 -6.634e-04 - 4.581e-04 2.023e-04 3.597e-02 -3.336e-02 -2.070e-04 - 2.670e-02 3.597e-02 1.321e+01 -1.062e+01 -4.128e-02 - -8.569e-02 -3.336e-02 -1.062e+01 1.029e+01 3.997e-02 - -6.634e-04 -2.070e-04 -4.128e-02 3.997e-02 3.484e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.27036 1.000 0.157 0.036 -0.130 -0.173 - 2 0.83318 0.157 1.000 0.696 -0.731 -0.780 - 3 0.91590 0.036 0.696 1.000 -0.910 -0.608 - 4 0.92588 -0.130 -0.731 -0.910 1.000 0.668 - 5 0.79489 -0.173 -0.780 -0.608 0.668 1.000 -350 -351.69 +- 0.205801 -8.9999 +- 0.47252 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17980.6 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 3.49987e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -5.98208e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.69170e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -7.83629e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 5.56311e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17292.9 FROM HESSE STATUS=OK 33 CALLS 303 TOTAL - EDM=0.00176494 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51961e+02 2.04460e-01 7.28165e-04 -2.52563e-01 - 2 sg_p1 8.99915e+00 2.30345e-01 4.30116e-02 1.25408e-01 - 3 sg_p2 3.40595e+02 2.15600e+00 8.33185e-04 -5.45844e-01 - 4 sg_p3 3.45143e+01 1.95839e+00 2.03832e-03 -4.14782e-02 - 5 sg_p4 7.03933e-01 1.22162e-02 8.12692e-03 9.35709e-02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=17292.9 FROM MIGRAD STATUS=CONVERGED 313 CALLS 314 TOTAL - EDM=4.59633e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 1.1 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51961e+02 2.04485e-01 4.26699e-06 -6.13016e-02 - 2 sg_p1 9.00000e+00 2.28984e-01 -2.81882e-02 4.39584e-03 - 3 sg_p2 3.40596e+02 2.15817e+00 9.56132e-06 -1.29730e-01 - 4 sg_p3 3.45177e+01 1.95208e+00 6.42863e-05 7.35163e-02 - 5 sg_p4 7.03952e-01 1.21706e-02 1.50864e-04 7.78726e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.182e-02 1.059e-06 -5.711e-02 -6.423e-03 -1.875e-04 - 1.059e-06 9.432e-07 8.505e-05 -8.954e-05 -6.387e-07 - -5.711e-02 8.505e-05 4.658e+00 -3.232e+00 -5.893e-03 - -6.423e-03 -8.954e-05 -3.232e+00 3.812e+00 7.975e-03 - -1.875e-04 -6.387e-07 -5.893e-03 7.975e-03 1.486e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23004 1.000 0.005 -0.129 -0.016 -0.075 - 2 0.06294 0.005 1.000 0.041 -0.047 -0.054 - 3 0.78034 -0.129 0.041 1.000 -0.767 -0.224 - 4 0.79125 -0.016 -0.047 -0.767 1.000 0.335 - 5 0.34635 -0.075 -0.054 -0.224 0.335 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17292.9 FROM HESSE STATUS=OK 33 CALLS 347 TOTAL - EDM=8.75756e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51961e+02 2.04438e-01 7.28075e-04 -1.21874e-01 - 2 sg_p1 9.00000e+00 2.29843e-01 4.29288e-02 1.57180e+00 - 3 sg_p2 3.40596e+02 2.15392e+00 8.34476e-04 4.75922e-01 - 4 sg_p3 3.45177e+01 1.95162e+00 8.15327e-04 -7.07252e-01 - 5 sg_p4 7.03952e-01 1.20329e-02 8.13654e-03 -7.63847e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.180e-02 1.680e-06 -5.851e-02 -5.134e-03 -1.774e-04 - 1.680e-06 9.469e-07 1.234e-04 -1.333e-04 -1.048e-06 - -5.851e-02 1.234e-04 4.640e+00 -3.221e+00 -5.474e-03 - -5.134e-03 -1.333e-04 -3.221e+00 3.811e+00 7.658e-03 - -1.774e-04 -1.048e-06 -5.474e-03 7.658e-03 1.452e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22989 1.000 0.008 -0.133 -0.013 -0.072 - 2 0.10030 0.008 1.000 0.059 -0.070 -0.089 - 3 0.77997 -0.133 0.059 1.000 -0.766 -0.211 - 4 0.79057 -0.013 -0.070 -0.766 1.000 0.326 - 5 0.34225 -0.072 -0.089 -0.211 0.326 1.000 -350 -351.961 +- 0.204438 -9 +- 0.229843 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17556.6 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 4.17830e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -5.68439e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.02939e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -1.22040e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 5.78553e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - MINUIT WARNING IN HESSE - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN HESSE - ============== 1.39906 added to diagonal of error matrix - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16809.1 FROM HESSE STATUS=OK 37 CALLS 272 TOTAL - EDM=0.00897496 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51361e+02 2.01282e-01 7.11370e-04 1.72820e-01 - 2 sg_p1 8.99409e+00 2.54007e+00 1.10453e-01 1.29902e-01 - 3 sg_p2 3.31862e+02 3.59215e+00 1.00989e-03 -2.61406e-01 - 4 sg_p3 3.82944e+01 2.65752e+00 2.00950e-03 -4.58275e-02 - 5 sg_p4 6.99077e-01 1.14579e-02 8.35244e-03 6.96141e-02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16809.1 FROM MIGRAD STATUS=CONVERGED 368 CALLS 369 TOTAL - EDM=2.66923e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51369e+02 2.03042e-01 7.10429e-04 6.65922e-02 - 2 sg_p1 8.93634e+00 2.26538e-01 3.06864e-02 1.49692e-02 - 3 sg_p2 3.32548e+02 4.06056e+00 9.86163e-04 4.21549e-03 - 4 sg_p3 3.77657e+01 3.08320e+00 1.99063e-03 -6.94419e-02 - 5 sg_p4 6.96961e-01 1.39263e-02 8.49674e-03 -1.61305e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.123e-02 -6.678e-03 2.163e-02 -7.188e-02 -4.511e-04 - -6.678e-03 5.527e-02 -5.307e-01 4.156e-01 1.876e-03 - 2.163e-02 -5.307e-01 1.649e+01 -1.137e+01 -1.673e-02 - -7.188e-02 4.156e-01 -1.137e+01 9.516e+00 1.485e-02 - -4.511e-04 1.876e-03 -1.673e-02 1.485e-02 1.948e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25576 1.000 -0.140 0.026 -0.115 -0.159 - 2 0.70688 -0.140 1.000 -0.556 0.573 0.572 - 3 0.91344 0.026 -0.556 1.000 -0.908 -0.295 - 4 0.91579 -0.115 0.573 -0.908 1.000 0.345 - 5 0.58244 -0.159 0.572 -0.295 0.345 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16809.1 FROM HESSE STATUS=OK 31 CALLS 400 TOTAL - EDM=2.70646e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51369e+02 2.03746e-01 1.42086e-04 -1.45765e-01 - 2 sg_p1 8.93634e+00 2.54070e-01 1.22745e-03 1.31782e+00 - 3 sg_p2 3.32548e+02 4.51761e+00 3.94465e-05 4.21778e-01 - 4 sg_p3 3.77657e+01 3.43807e+00 7.96253e-05 -6.47692e-01 - 5 sg_p4 6.96961e-01 1.47151e-02 3.39870e-04 -8.20745e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.151e-02 -8.628e-03 5.304e-02 -9.587e-02 -5.312e-04 - -8.628e-03 6.725e-02 -7.432e-01 5.794e-01 2.412e-03 - 5.304e-02 -7.432e-01 2.041e+01 -1.440e+01 -2.542e-02 - -9.587e-02 5.794e-01 -1.440e+01 1.184e+01 2.153e-02 - -5.312e-04 2.412e-03 -2.542e-02 2.153e-02 2.176e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.26808 1.000 -0.163 0.058 -0.137 -0.177 - 2 0.76639 -0.163 1.000 -0.634 0.650 0.630 - 3 0.93070 0.058 -0.634 1.000 -0.926 -0.381 - 4 0.93289 -0.137 0.650 -0.926 1.000 0.424 - 5 0.63913 -0.177 0.630 -0.381 0.424 1.000 -350 -351.369 +- 0.203746 -8.93634 +- 0.25407 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17593.4 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 3.78939e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -5.82009e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.40055e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -4.92268e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 5.69068e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16875.6 FROM MIGRAD STATUS=CONVERGED 320 CALLS 321 TOTAL - EDM=1.73973e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51639e+02 2.04706e-01 7.22407e-04 -3.09735e-01 - 2 sg_p1 9.00000e+00 1.66126e-01 3.62658e-02 -7.99062e-03 - 3 sg_p2 3.36604e+02 2.77890e+00 9.23538e-04 -8.53328e-02 - 4 sg_p3 3.65924e+01 2.29934e+00 2.05397e-03 -4.59757e-02 - 5 sg_p4 7.00430e-01 1.16607e-02 8.31070e-03 -3.87898e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.191e-02 1.719e-06 -5.416e-02 -1.332e-02 -2.187e-04 - 1.719e-06 1.229e-06 1.227e-04 -1.127e-04 -6.551e-07 - -5.416e-02 1.227e-04 7.723e+00 -5.279e+00 -3.068e-03 - -1.332e-02 -1.127e-04 -5.279e+00 5.290e+00 4.752e-03 - -2.187e-04 -6.551e-07 -3.068e-03 4.752e-03 1.364e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22303 1.000 0.008 -0.095 -0.028 -0.091 - 2 0.06294 0.008 1.000 0.040 -0.044 -0.051 - 3 0.83540 -0.095 0.040 1.000 -0.826 -0.095 - 4 0.83755 -0.028 -0.044 -0.826 1.000 0.177 - 5 0.21502 -0.091 -0.051 -0.095 0.177 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16875.6 FROM HESSE STATUS=OK 31 CALLS 352 TOTAL - EDM=1.75499e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51639e+02 2.04671e-01 1.44481e-04 -1.34847e-01 - 2 sg_p1 9.00000e+00 1.66721e-01 7.25317e-03 1.56945e+00 - 3 sg_p2 3.36604e+02 2.84821e+00 1.84708e-04 4.48885e-01 - 4 sg_p3 3.65924e+01 2.35643e+00 8.21590e-05 -6.68882e-01 - 5 sg_p4 7.00430e-01 1.16522e-02 3.32428e-04 -7.92102e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.189e-02 2.314e-07 -5.503e-02 -1.229e-02 -2.144e-04 - 2.314e-07 1.234e-06 1.775e-05 -1.618e-05 -8.940e-08 - -5.503e-02 1.775e-05 8.113e+00 -5.607e+00 -3.304e-03 - -1.229e-02 -1.618e-05 -5.607e+00 5.556e+00 4.919e-03 - -2.144e-04 -8.940e-08 -3.304e-03 4.919e-03 1.362e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22229 1.000 0.001 -0.094 -0.025 -0.090 - 2 0.00867 0.001 1.000 0.006 -0.006 -0.007 - 3 0.84405 -0.094 0.006 1.000 -0.835 -0.099 - 4 0.84604 -0.025 -0.006 -0.835 1.000 0.179 - 5 0.21170 -0.090 -0.007 -0.099 0.179 1.000 -350 -351.639 +- 0.204671 -9 +- 0.166721 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17828.5 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 3.94800e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -5.62258e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.22820e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -3.94120e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 5.44291e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -6.7726e-02 3.7089e-01 9.5269e-01 1.7434e+00 2.0007e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.069727 TO DIAGONAL. - FCN=17147.5 FROM HESSE STATUS=NOT POSDEF 35 CALLS 251 TOTAL - EDM=1.1309 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51658e+02 3.51659e-01 7.01219e-04 -5.40058e-02 - 2 sg_p1 8.97742e+00 2.95083e+00 6.13915e-02 -2.03655e-01 - 3 sg_p2 3.35380e+02 1.79447e+01 9.83548e-04 6.97732e-01 - 4 sg_p3 3.73975e+01 1.59176e+01 2.11985e-03 1.68496e-01 - 5 sg_p4 7.15638e-01 9.42908e-02 7.30647e-03 -1.11566e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17147.5 FROM MIGRAD STATUS=CONVERGED 369 CALLS 370 TOTAL - EDM=4.09796e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51663e+02 1.99263e-01 7.00634e-04 4.55239e-02 - 2 sg_p1 8.93699e+00 2.96196e-01 2.96808e-02 -1.54899e-02 - 3 sg_p2 3.35749e+02 3.96525e+00 9.64449e-04 -8.88348e-03 - 4 sg_p3 3.70652e+01 3.34839e+00 2.10353e-03 -1.67958e-02 - 5 sg_p4 7.14101e-01 1.63480e-02 7.39271e-03 -2.31381e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.971e-02 9.041e-03 3.441e-02 -8.945e-02 -5.869e-04 - 9.041e-03 7.788e-02 7.343e-01 -6.508e-01 -3.330e-03 - 3.441e-02 7.343e-01 1.573e+01 -1.210e+01 -3.297e-02 - -8.945e-02 -6.508e-01 -1.210e+01 1.123e+01 3.115e-02 - -5.869e-04 -3.330e-03 -3.297e-02 3.115e-02 2.686e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.26818 1.000 0.163 0.044 -0.134 -0.180 - 2 0.81011 0.163 1.000 0.664 -0.696 -0.728 - 3 0.91607 0.044 0.664 1.000 -0.911 -0.507 - 4 0.92336 -0.134 -0.696 -0.911 1.000 0.567 - 5 0.73770 -0.180 -0.728 -0.507 0.567 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17147.5 FROM HESSE STATUS=OK 31 CALLS 401 TOTAL - EDM=3.78098e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51663e+02 1.98626e-01 1.40127e-04 -1.33882e-01 - 2 sg_p1 8.93699e+00 2.60351e-01 1.18723e-03 1.82247e+00 - 3 sg_p2 3.35749e+02 3.94847e+00 3.85780e-05 4.43146e-01 - 4 sg_p3 3.70652e+01 3.31177e+00 8.41412e-05 -6.60300e-01 - 5 sg_p4 7.14101e-01 1.54021e-02 2.95708e-04 -6.86338e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.945e-02 7.419e-03 1.957e-02 -7.558e-02 -4.983e-04 - 7.419e-03 6.823e-02 6.530e-01 -5.744e-01 -2.764e-03 - 1.957e-02 6.530e-01 1.559e+01 -1.191e+01 -2.828e-02 - -7.558e-02 -5.744e-01 -1.191e+01 1.098e+01 2.678e-02 - -4.983e-04 -2.764e-03 -2.828e-02 2.678e-02 2.383e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25680 1.000 0.143 0.025 -0.115 -0.163 - 2 0.77869 0.143 1.000 0.633 -0.664 -0.686 - 3 0.91532 0.025 0.633 1.000 -0.910 -0.464 - 4 0.92158 -0.115 -0.664 -0.910 1.000 0.524 - 5 0.69729 -0.163 -0.686 -0.464 0.524 1.000 -350 -351.663 +- 0.198626 -8.93699 +- 0.260351 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=16599.2 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 3.57504e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -5.44923e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.17494e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -4.08170e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 5.21506e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15939.1 FROM HESSE STATUS=OK 37 CALLS 314 TOTAL - EDM=0.000648585 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51693e+02 2.15714e-01 7.19414e-04 4.43718e-02 - 2 sg_p1 8.99487e+00 3.57548e+00 7.75677e-02 1.91574e-02 - 3 sg_p2 3.37608e+02 4.45408e+00 8.83711e-04 -1.12364e-01 - 4 sg_p3 3.54407e+01 4.01631e+00 2.01394e-03 2.05443e-02 - 5 sg_p4 7.05167e-01 2.51719e-02 7.97965e-03 2.01078e-02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 13.9403 added to diagonal of error matrix - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15939.1 FROM MIGRAD STATUS=CONVERGED 457 CALLS 458 TOTAL - EDM=6.3256e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51693e+02 2.10894e-01 7.19542e-04 -1.67564e-01 - 2 sg_p1 9.00000e+00 3.24335e+00 1.16287e-01** at limit ** - 3 sg_p2 3.37572e+02 3.03107e+00 8.85564e-04 -1.40083e-01 - 4 sg_p3 3.54732e+01 2.61363e+00 2.01712e-03 -2.42748e-02 - 5 sg_p4 7.05375e-01 1.51863e-02 7.98331e-03 2.92592e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.448e-02 6.249e-05 -2.584e-02 -4.146e-02 -4.052e-04 - 6.249e-05 8.943e-06 4.513e-03 -4.212e-03 -2.775e-05 - -2.584e-02 4.513e-03 9.189e+00 -6.814e+00 -1.858e-02 - -4.146e-02 -4.212e-03 -6.814e+00 6.836e+00 1.914e-02 - -4.052e-04 -2.775e-05 -1.858e-02 1.914e-02 2.317e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.24408 1.000 0.099 -0.040 -0.075 -0.126 - 2 0.67618 0.099 1.000 0.498 -0.539 -0.610 - 3 0.86794 -0.040 0.498 1.000 -0.860 -0.403 - 4 0.87833 -0.075 -0.539 -0.860 1.000 0.481 - 5 0.64024 -0.126 -0.610 -0.403 0.481 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15939.1 FROM HESSE STATUS=OK 35 CALLS 493 TOTAL - EDM=7.60914e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51693e+02 2.11707e-01 1.43908e-04 -1.32683e-01 - 2 sg_p1 9.00000e+00 3.40291e-01 4.74451e-01 1.56997e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 3 sg_p2 3.37572e+02 3.47654e+00 1.77113e-04 4.55410e-01 - 4 sg_p3 3.54732e+01 3.03978e+00 8.06848e-05 -6.89429e-01 - 5 sg_p4 7.05375e-01 1.75095e-02 3.19332e-04 -7.52647e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.482e-02 2.743e-05 3.917e-03 -6.861e-02 -5.663e-04 - 2.743e-05 9.504e-07 2.150e-03 -1.992e-03 -1.243e-05 - 3.917e-03 2.150e-03 1.209e+01 -9.464e+00 -3.305e-02 - -6.861e-02 -1.992e-03 -9.464e+00 9.250e+00 3.240e-02 - -5.663e-04 -1.243e-05 -3.305e-02 3.240e-02 3.085e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25843 1.000 0.133 0.005 -0.107 -0.152 - 2 0.78663 0.133 1.000 0.634 -0.672 -0.726 - 3 0.90139 0.005 0.634 1.000 -0.895 -0.541 - 4 0.91165 -0.107 -0.672 -0.895 1.000 0.606 - 5 0.74619 -0.152 -0.726 -0.541 0.606 1.000 -350 -351.693 +- 0.211707 -9 +- 0.340291 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=18950.1 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 4.06912e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -6.21556e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.53873e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -5.05415e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 6.02316e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 2.05452 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - MACHINE ACCURACY LIMITS FURTHER IMPROVEMENT. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -7.6627e-03 4.3650e-01 9.4912e-01 1.6697e+00 1.9524e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.009615 TO DIAGONAL. - FCN=18191.7 FROM MIGRAD STATUS=CONVERGED 438 CALLS 439 TOTAL - EDM=2.38291e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51688e+02 3.06549e-01 7.21716e-04 1.38139e-02 - 2 sg_p1 8.99221e+00 3.97298e+00 7.87824e-02 -1.20842e-03 - 3 sg_p2 3.37548e+02 1.63062e+01 8.85928e-04 1.17278e-02 - 4 sg_p3 3.56395e+01 1.51287e+01 2.01699e-03 1.74046e-02 - 5 sg_p4 7.02105e-01 9.20868e-02 8.19474e-03 -1.20385e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.398e-02 3.866e-01 3.761e+00 -3.594e+00 -2.447e-02 - 3.866e-01 2.690e+00 2.650e+01 -2.493e+01 -1.690e-01 - 3.761e+00 2.650e+01 2.670e+02 -2.495e+02 -1.668e+00 - -3.594e+00 -2.493e+01 -2.495e+02 2.351e+02 1.571e+00 - -2.447e-02 -1.690e-01 -1.668e+00 1.571e+00 1.074e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.78192 1.000 0.769 0.751 -0.765 -0.770 - 2 0.99585 0.769 1.000 0.989 -0.991 -0.994 - 3 0.99631 0.751 0.989 1.000 -0.996 -0.985 - 4 0.99710 -0.765 -0.991 -0.996 1.000 0.989 - 5 0.99443 -0.770 -0.994 -0.985 0.989 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2500 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.2541e-02 4.4218e-01 9.5025e-01 1.6636e+00 1.9565e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.014497 TO DIAGONAL. - FCN=18191.7 FROM HESSE STATUS=NOT POSDEF 37 CALLS 476 TOTAL - EDM=6.23545e-06 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51688e+02 2.98004e-01 1.44343e-04 -1.32867e-01 - 2 sg_p1 8.99221e+00 3.99098e+00 5.00000e-01 1.65911e+00 - 3 sg_p2 3.37548e+02 1.66076e+01 3.54371e-05 4.55246e-01 - 4 sg_p3 3.56395e+01 1.53152e+01 8.06796e-05 -6.86354e-01 - 5 sg_p4 7.02105e-01 8.98453e-02 3.27790e-04 -7.78566e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 8.881e-02 1.322e-01 3.655e+00 -3.473e+00 -2.261e-02 - 1.322e-01 3.453e-01 9.674e+00 -9.044e+00 -5.859e-02 - 3.655e+00 9.674e+00 2.770e+02 -2.574e+02 -1.645e+00 - -3.473e+00 -9.044e+00 -2.574e+02 2.411e+02 1.540e+00 - -2.261e-02 -5.859e-02 -1.645e+00 1.540e+00 1.007e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.76862 1.000 0.755 0.737 -0.751 -0.756 - 2 0.99570 0.755 1.000 0.989 -0.991 -0.994 - 3 0.99646 0.737 0.989 1.000 -0.996 -0.985 - 4 0.99718 -0.751 -0.991 -0.996 1.000 0.988 - 5 0.99409 -0.756 -0.994 -0.985 0.988 1.000 - ERR MATRIX NOT POS-DEF -350 -351.688 +- 0.298004 -8.99221 +- 3.99098 -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 351.69 +- 0.205801 (stat) - 0.321347 + 0.270579 (syst); -0.33742/+0.289485 (total) - Uncertainty on sg_p1 = 8.9999 +- 0.47252 (stat) - 0.0635526 + 0.000102014 (syst); -0.244659/+0.23626 (total) - Uncertainty on sg_p2 = 337.532 +- 3.63434 (stat) - 4.98423 + 3.06364 (syst); -5.30516/+3.56202 (total) - Uncertainty on sg_p3 = 35.585 +- 3.20621 (stat) - 1.06732 + 2.18069 (syst); -1.92591/+2.70654 (total) - Uncertainty on sg_p4 = 0.703842 +- 0.0185963 (stat) - 0.00688091 + 0.0102594 (syst); -0.0115673/+0.013846 (total) - === Baseline plot ===
- norm = 541.084 -JEC lnN 1.0101 - -JER lnN 1.00905 - -btag lnN 1.06649 - -sg_p0 param 351.69 -0.33742/+0.289485 -sg_p1 param 8.9999 -0.244659/+0.23626 -sg_p2 param 337.532 -5.30516/+3.56202 -sg_p3 param 35.585 -1.92591/+2.70654 -sg_p4 param 0.703842 -0.0115673/+0.013846 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_350_novo_285_624/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_350_novo_285_624/data_bkg.log deleted file mode 100644 index 1be2f6e..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_350_novo_285_624/data_bkg.log +++ /dev/null @@ -1,717 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [250,330] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [250,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63590.5 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.69443e-02 5.09000e-01 0.00000e+00 -7.94680e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -8.91126e+00 - 3 par_crystal_2 2.62020e+02 4.00000e+00 1.01181e-01 -1.53451e+00 - 4 par_crystal_3 1.65000e+01 2.70000e+00 0.00000e+00 7.46021e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM MIGRAD STATUS=CONVERGED 482 CALLS 483 TOTAL - EDM=0.000814822 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 4.40594e-01 4.43750e-02 2.48631e-03 2.88668e-01 - 2 par_crystal_1 9.82994e-01 6.48221e-01 2.14269e-02 -5.28345e-03 - 3 par_crystal_2 2.71542e+02 7.41091e-01 7.20683e-03 -9.27818e-02 - 4 par_crystal_3 2.87224e+01 2.18588e+00 3.97473e-02 -6.99277e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.970e-03 -2.333e-02 -5.115e-04 1.392e-02 - -2.333e-02 4.358e-01 4.870e-03 -8.391e-01 - -5.115e-04 4.870e-03 5.496e-01 4.381e-01 - 1.392e-02 -8.391e-01 4.381e-01 5.029e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.88989 1.000 -0.796 -0.016 0.140 - 2 0.92807 -0.796 1.000 0.010 -0.567 - 3 0.40865 -0.016 0.010 1.000 0.264 - 4 0.80948 0.140 -0.567 0.264 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM HESSE STATUS=OK 23 CALLS 506 TOTAL - EDM=0.000711421 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 4.40594e-01 4.64698e-02 4.97262e-04 -9.80558e-01 - 2 par_crystal_1 9.82994e-01 6.55195e-01 8.57075e-04 -6.65795e-01 - 3 par_crystal_2 2.71542e+02 7.38644e-01 1.44137e-03 6.15159e-01 - 4 par_crystal_3 2.87224e+01 2.03002e+00 1.58989e-03 -1.05570e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.160e-03 -2.581e-02 -1.109e-03 1.530e-02 - -2.581e-02 4.456e-01 2.508e-02 -7.234e-01 - -1.109e-03 2.508e-02 5.460e-01 3.687e-01 - 1.530e-02 -7.234e-01 3.687e-01 4.306e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.90014 1.000 -0.832 -0.032 0.159 - 2 0.92960 -0.832 1.000 0.051 -0.522 - 3 0.40186 -0.032 0.051 1.000 0.240 - 4 0.77207 0.159 -0.522 0.240 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63714.2 FROM MIGRAD STATUS=INITIATE 33 CALLS 34 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 2.63122e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -5.45805e+02 - 3 par_gaus_exp_2 6.67498e-01 3.05000e-01 -6.37370e-01 7.03093e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM MIGRAD STATUS=CONVERGED 131 CALLS 132 TOTAL - EDM=6.15917e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.71558e+02 8.05096e-01 6.82817e-03 6.24407e-02 - 2 par_gaus_exp_1 3.06822e+01 1.83071e+00 1.43475e-02 1.11468e-02 - 3 par_gaus_exp_2 3.82770e-01 2.42284e-02 3.05774e-03 -9.77170e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.486e-01 -6.079e-01 -1.588e-03 - -6.079e-01 3.370e+00 3.082e-02 - -1.588e-03 3.082e-02 5.871e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.49876 1.000 -0.411 -0.081 - 2 0.77898 -0.411 1.000 0.693 - 3 0.72797 -0.081 0.693 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM HESSE STATUS=OK 16 CALLS 148 TOTAL - EDM=6.13964e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.71558e+02 8.14214e-01 2.73127e-04 -4.35760e-01 - 2 par_gaus_exp_1 3.06822e+01 1.86973e+00 5.73898e-04 4.10264e-01 - 3 par_gaus_exp_2 3.82770e-01 2.45149e-02 1.22310e-04 -8.97531e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.634e-01 -6.630e-01 -2.137e-03 - -6.630e-01 3.516e+00 3.227e-02 - -2.137e-03 3.227e-02 6.011e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.51526 1.000 -0.434 -0.107 - 2 0.78935 -0.434 1.000 0.702 - 3 0.73544 -0.107 0.702 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,625] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.33953 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.33953) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - ... (remaining 126 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.734607 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.734607) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=317.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=327.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=332.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=342.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=347.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=352.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=357.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=362.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=367.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - ... (remaining 53 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0734613 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0734613 - - FCN=103487 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57093e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.56195e+03 - 3 par_novo_2 -1.33668e+00 2.00000e+01 0.00000e+00 1.53931e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM MIGRAD STATUS=CONVERGED 127 CALLS 128 TOTAL - EDM=3.4171e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.43423e+01 1.81223e-01** at limit ** - 2 par_novo_1 3.86596e+01 2.27294e+00 4.95847e-03 -1.04123e-02 - 3 par_novo_2 -1.27520e+00 7.07738e-02 3.70975e-05 -1.26322e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.231e-09 -8.491e-07 -8.580e-07 - -8.491e-07 5.181e+00 1.547e-01 - -8.580e-07 1.547e-01 5.009e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.53332 1.000 -0.005 -0.154 - 2 0.97096 -0.005 1.000 0.960 - 3 0.97165 -0.154 0.960 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM HESSE STATUS=OK 20 CALLS 148 TOTAL - EDM=3.43726e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.40246e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.86596e+01 2.31421e+00 1.98339e-04 4.46530e-01 - 3 par_novo_2 -1.27520e+00 7.22930e-02 1.48390e-06 -1.27523e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 5.974e-09 2.819e-05 -1.296e-06 - 2.819e-05 5.372e+00 1.502e-01 - -1.296e-06 1.502e-01 5.226e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.85665 1.000 0.157 -0.232 - 2 0.97200 0.157 1.000 0.897 - 3 0.97285 -0.232 0.897 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107513 FROM MIGRAD STATUS=INITIATE 54 CALLS 55 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 1.39168e+03 - 2 par_crystal_1_1 7.96220e-02 5.09000e-01 0.00000e+00 5.33770e+03 - 3 par_crystal_1_2 2.56879e+02 4.00000e+00 -1.56713e-01 -1.96669e+01 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 -8.45862e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.5057e-02 2.3309e-03 4.9678e-02 3.9730e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.029030 TO DIAGONAL. - FCN=103250 FROM MIGRAD STATUS=CONVERGED 436 CALLS 437 TOTAL - EDM=3.52757e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 4.45574e-02 4.37117e-03 3.09465e-04 -4.28177e+00 - 2 par_crystal_1_1 4.36914e+00 6.24106e-01 1.80400e-02 6.63742e-02 - 3 par_crystal_1_2 2.71531e+02 3.44700e+01 5.81266e-02 2.25694e-02 - 4 par_crystal_1_3 3.37290e+00 2.71702e-01 3.13791e-03 -4.26197e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.911e-05 -1.221e-03 2.089e-01 3.572e-04 - -1.221e-03 4.065e-01 -2.690e+01 -6.822e-02 - 2.089e-01 -2.690e+01 3.429e+03 1.167e+01 - 3.572e-04 -6.822e-02 1.167e+01 7.401e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99136 1.000 -0.438 0.816 0.300 - 2 0.97307 -0.438 1.000 -0.720 -0.393 - 3 0.99735 0.816 -0.720 1.000 0.733 - 4 0.98716 0.300 -0.393 0.733 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -8.0089e-04 4.0193e-04 7.1213e-02 3.9292e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.004730 TO DIAGONAL. - FCN=103250 FROM HESSE STATUS=NOT POSDEF 23 CALLS 460 TOTAL - EDM=3.56127e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 4.45574e-02 7.42610e-03 6.18930e-05 -1.40582e+00 - 2 par_crystal_1_1 4.36914e+00 4.67550e-01 7.21602e-04 -3.93511e+00 - 3 par_crystal_1_2 2.71531e+02 3.29814e+01 2.32506e-03 -3.75607e+00 - 4 par_crystal_1_3 3.37290e+00 5.01685e-01 1.25517e-04 -1.80638e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.515e-05 2.851e-04 2.343e-01 -1.699e-03 - 2.851e-04 2.238e-01 -2.528e+00 1.548e-02 - 2.343e-01 -2.528e+00 2.967e+03 1.176e+01 - -1.699e-03 1.548e-02 1.176e+01 2.538e-01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99694 1.000 0.081 0.579 -0.454 - 2 0.94927 0.081 1.000 -0.098 0.065 - 3 0.99687 0.579 -0.098 1.000 0.429 - 4 0.99618 -0.454 0.065 0.429 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 14211 - Background number of gaus_exp_252_330 = 14211 - Background number of novo_285_624 = 17618.3 - Background number of crystal_1_285_624 = 17618.3 - Background number of gaus_bern_285_624 = 17618.3 - Background number of landau_285_624 = 17618.3 -par_crystal_0 param 0.440594 0.0464698 -par_crystal_1 param 0.982994 0.655195 -par_crystal_2 param 271.542 0.738644 -par_crystal_3 param 28.7224 2.03002 -par_crystal_1_0 param 0.0445574 0.0074261 -par_crystal_1_1 param 4.36914 0.46755 -par_crystal_1_2 param 271.531 32.9814 -par_crystal_1_3 param 3.3729 0.501685 -par_gaus_exp_0 param 271.558 0.814214 -par_gaus_exp_1 param 30.6822 1.86973 -par_gaus_exp_2 param 0.38277 0.0245149 -par_novo_0 param 250 34.0246 -par_novo_1 param 38.6596 2.31421 -par_novo_2 param -1.2752 0.072293 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_350_novo_285_624/datacard_350_novo_285_624.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_350_novo_285_624/datacard_350_novo_285_624.txt deleted file mode 100644 index 74b581a..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_350_novo_285_624/datacard_350_novo_285_624.txt +++ /dev/null @@ -1,29 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_350.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_novo_285_624.root HbbHbb:f_novo -shapes data_obs HbbHbb w_background_novo_285_624.root HbbHbb:data_obs_novo_285_624 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 541.084 17618.3 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06649 - -JER lnN 1.00905 - -JEC lnN 1.0101 - -trigger lnN 1.10 - -sg_p0 param 351.69 -0.33742/+0.289485 -sg_p1 param 8.9999 -0.244659/+0.23626 -sg_p2 param 337.532 -5.30516/+3.56202 -sg_p3 param 35.585 -1.92591/+2.70654 -sg_p4 param 0.703842 -0.0115673/+0.013846 -par_novo_0 param 250 34.0246 -par_novo_1 param 38.6596 2.31421 -par_novo_2 param -1.2752 0.072293 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_350_novo_285_624/signal350_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_350_novo_285_624/signal350_sig.log deleted file mode 100644 index 3cd3455..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_350_novo_285_624/signal350_sig.log +++ /dev/null @@ -1,927 +0,0 @@ - -Processing test.c... -nSignal_init = 300000 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=22528 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.45000e+02 7.00000e+00 2.01358e-01 1.85444e+03 - 2 sg_p1 2.00000e+01 3.00000e+00 2.01358e-01 -1.26556e+01 - 3 sg_p2 3.75000e+02 9.00000e+00 2.01358e-01 1.23451e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -4.81309e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -9.79262e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21380.5 FROM MIGRAD STATUS=CONVERGED 200 CALLS 201 TOTAL - EDM=3.93725e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.34187e+02 4.37520e-01 1.19182e-03 3.04020e-02 - 2 sg_p1 2.26141e+01 4.79817e-01 2.16429e-03 1.96597e-03 - 3 sg_p2 3.30000e+02 7.71533e-01 1.87116e-02** at limit ** - 4 sg_p3 7.15373e+01 5.51063e+00 8.04417e-03 3.88300e-03 - 5 sg_p4 8.94168e-01 1.56675e-02 2.59223e-03 3.19034e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.914e-01 -8.489e-02 -1.235e-06 -8.412e-01 -2.850e-03 - -8.489e-02 2.303e-01 1.528e-06 1.618e+00 5.594e-03 - -1.235e-06 1.528e-06 1.273e-07 1.107e-05 4.780e-08 - -8.412e-01 1.618e+00 1.107e-05 3.054e+01 6.912e-02 - -2.850e-03 5.594e-03 4.780e-08 6.912e-02 2.457e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.43984 1.000 -0.404 -0.008 -0.348 -0.416 - 2 0.75144 -0.404 1.000 0.009 0.610 0.744 - 3 0.01053 -0.008 0.009 1.000 0.006 0.009 - 4 0.79840 -0.348 0.610 0.006 1.000 0.798 - 5 0.86375 -0.416 0.744 0.009 0.798 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21380.5 FROM HESSE STATUS=OK 31 CALLS 232 TOTAL - EDM=4.04441e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.34187e+02 4.38578e-01 4.76728e-05 -3.14089e-01 - 2 sg_p1 2.26141e+01 4.83583e-01 8.65717e-05 1.75170e-01 - 3 sg_p2 3.30000e+02 7.71716e-01 3.74232e-03 -1.57084e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 7.15373e+01 5.57705e+00 3.21767e-04 3.76314e-01 - 5 sg_p4 8.94168e-01 1.58618e-02 5.18445e-04 9.08100e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.924e-01 -8.684e-02 -2.448e-07 -8.666e-01 -2.922e-03 - -8.684e-02 2.339e-01 3.045e-07 1.670e+00 5.743e-03 - -2.448e-07 3.045e-07 1.274e-07 2.232e-06 9.555e-09 - -8.666e-01 1.670e+00 2.232e-06 3.129e+01 7.130e-02 - -2.922e-03 5.743e-03 9.555e-09 7.130e-02 2.518e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.44424 1.000 -0.409 -0.002 -0.353 -0.420 - 2 0.75592 -0.409 1.000 0.002 0.617 0.748 - 3 0.00208 -0.002 0.002 1.000 0.001 0.002 - 4 0.80377 -0.353 0.617 0.001 1.000 0.803 - 5 0.86733 -0.420 0.748 0.002 0.803 1.000 -350 -334.187 +- 0.438578 -22.6141 +- 0.483583 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=22627.8 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.45000e+02 7.00000e+00 2.01358e-01 1.57892e+03 - 2 sg_p1 2.00000e+01 3.00000e+00 2.01358e-01 2.75936e+01 - 3 sg_p2 3.75000e+02 9.00000e+00 2.01358e-01 1.16953e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -3.72010e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -9.99046e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21614.3 FROM MIGRAD STATUS=CONVERGED 179 CALLS 180 TOTAL - EDM=0.000765156 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.35798e+02 4.40505e-01 1.18756e-03 5.85918e-02 - 2 sg_p1 2.30753e+01 4.76357e-01 2.18690e-03 -2.03897e-03 - 3 sg_p2 3.30001e+02 1.45352e+00 2.57988e-02 -9.05792e-02 - 4 sg_p3 7.35354e+01 6.02462e+00 8.88269e-03 -1.01559e-01 - 5 sg_p4 9.01891e-01 1.51622e-02 2.60225e-03 2.64090e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.941e-01 -8.403e-02 -1.778e-04 -9.585e-01 -2.816e-03 - -8.403e-02 2.270e-01 1.870e-04 1.767e+00 5.355e-03 - -1.778e-04 1.870e-04 4.564e-03 5.987e-04 4.935e-06 - -9.585e-01 1.767e+00 5.987e-04 3.656e+01 7.358e-02 - -2.816e-03 5.355e-03 4.935e-06 7.358e-02 2.301e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.44243 1.000 -0.400 -0.006 -0.360 -0.421 - 2 0.74784 -0.400 1.000 0.006 0.613 0.741 - 3 0.00826 -0.006 0.006 1.000 0.001 0.005 - 4 0.80297 -0.360 0.613 0.001 1.000 0.802 - 5 0.86456 -0.421 0.741 0.005 0.802 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21614.3 FROM HESSE STATUS=OK 31 CALLS 211 TOTAL - EDM=0.000770472 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.35798e+02 4.41802e-01 2.37512e-04 -2.66038e-01 - 2 sg_p1 2.30753e+01 4.80609e-01 8.74761e-05 2.06482e-01 - 3 sg_p2 3.30001e+02 1.45505e+00 5.15976e-03 -1.57669e+00 - 4 sg_p3 7.35354e+01 6.11053e+00 3.55307e-04 4.24535e-01 - 5 sg_p4 9.01891e-01 1.53826e-02 1.04090e-04 9.33626e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.952e-01 -8.630e-02 8.428e-05 -9.929e-01 -2.902e-03 - -8.630e-02 2.311e-01 -8.883e-05 1.833e+00 5.520e-03 - 8.428e-05 -8.883e-05 4.569e-03 -2.859e-04 -2.344e-06 - -9.929e-01 1.833e+00 -2.859e-04 3.762e+01 7.631e-02 - -2.902e-03 5.520e-03 -2.344e-06 7.631e-02 2.368e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.44772 1.000 -0.406 0.003 -0.366 -0.427 - 2 0.75302 -0.406 1.000 -0.003 0.622 0.746 - 3 0.00390 0.003 -0.003 1.000 -0.001 -0.002 - 4 0.80914 -0.366 0.622 -0.001 1.000 0.808 - 5 0.86871 -0.427 0.746 -0.002 0.808 1.000 -350 -335.798 +- 0.441802 -23.0753 +- 0.480609 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=22461.8 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.45000e+02 7.00000e+00 2.01358e-01 2.12122e+03 - 2 sg_p1 2.00000e+01 3.00000e+00 2.01358e-01 -1.16373e+02 - 3 sg_p2 3.75000e+02 9.00000e+00 2.01358e-01 1.31911e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -5.79911e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -9.15472e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21165.5 FROM MIGRAD STATUS=CONVERGED 173 CALLS 174 TOTAL - EDM=1.05905e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.32336e+02 4.42443e-01 1.23362e-03 3.68247e-02 - 2 sg_p1 2.24290e+01 4.96251e-01 2.19433e-03 -3.29729e-02 - 3 sg_p2 3.30000e+02 5.15272e-01 1.52593e-02** at limit ** - 4 sg_p3 6.46965e+01 4.49942e+00 6.08111e-03 5.16840e-02 - 5 sg_p4 8.77595e-01 1.81613e-02 2.70062e-03 -5.60533e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.958e-01 -8.688e-02 -6.473e-07 -6.527e-01 -3.215e-03 - -8.688e-02 2.464e-01 8.468e-07 1.363e+00 6.784e-03 - -6.473e-07 8.468e-07 3.789e-08 6.087e-06 3.127e-08 - -6.527e-01 1.363e+00 6.087e-06 2.032e+01 6.625e-02 - -3.215e-03 6.784e-03 3.127e-08 6.625e-02 3.302e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.42501 1.000 -0.396 -0.008 -0.327 -0.400 - 2 0.75928 -0.396 1.000 0.009 0.609 0.752 - 3 0.01018 -0.008 0.009 1.000 0.007 0.009 - 4 0.80887 -0.327 0.609 0.007 1.000 0.809 - 5 0.87457 -0.400 0.752 0.009 0.809 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21165.5 FROM HESSE STATUS=OK 31 CALLS 205 TOTAL - EDM=1.06081e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.32336e+02 4.43146e-01 4.93448e-05 -3.70218e-01 - 2 sg_p1 2.24290e+01 4.99339e-01 8.77732e-05 1.62649e-01 - 3 sg_p2 3.30000e+02 5.15335e-01 3.05186e-03 -1.57077e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 6.46965e+01 4.54231e+00 2.43244e-04 2.17181e-01 - 5 sg_p4 8.77595e-01 1.83407e-02 5.40123e-04 8.55943e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.964e-01 -8.838e-02 -1.326e-07 -6.673e-01 -3.275e-03 - -8.838e-02 2.494e-01 1.746e-07 1.397e+00 6.925e-03 - -1.326e-07 1.746e-07 3.790e-08 1.265e-06 6.465e-09 - -6.673e-01 1.397e+00 1.265e-06 2.071e+01 6.788e-02 - -3.275e-03 6.925e-03 6.465e-09 6.788e-02 3.367e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.42806 1.000 -0.399 -0.002 -0.331 -0.403 - 2 0.76271 -0.399 1.000 0.002 0.615 0.756 - 3 0.00208 -0.002 0.002 1.000 0.001 0.002 - 4 0.81288 -0.331 0.615 0.001 1.000 0.813 - 5 0.87719 -0.403 0.756 0.002 0.813 1.000 -350 -332.336 +- 0.443146 -22.429 +- 0.499339 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17745.4 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 3.81607e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -5.82292e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.35171e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -4.55171e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 5.60829e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.4848e-03 4.4073e-01 9.4874e-01 1.6613e+00 1.9507e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.003435 TO DIAGONAL. - FCN=17037.5 FROM MIGRAD STATUS=CONVERGED 272 CALLS 273 TOTAL - EDM=0.000229841 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51690e+02 3.12909e-01 7.20357e-04 1.50885e-02 - 2 sg_p1 8.99990e+00 2.02072e+00 1.07460e-01 -8.64629e-04 - 3 sg_p2 3.37532e+02 1.70704e+01 8.89534e-04 8.91783e-02 - 4 sg_p3 3.55850e+01 1.57412e+01 2.01445e-03 5.68535e-02 - 5 sg_p4 7.03842e-01 9.36961e-02 8.03918e-03 -4.45853e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.792e-02 9.007e-02 3.977e+00 -3.782e+00 -2.519e-02 - 9.007e-02 1.430e-01 6.397e+00 -5.986e+00 -3.967e-02 - 3.977e+00 6.397e+00 2.927e+02 -2.722e+02 -1.779e+00 - -3.782e+00 -5.986e+00 -2.722e+02 2.551e+02 1.667e+00 - -2.519e-02 -3.967e-02 -1.779e+00 1.667e+00 1.115e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.77487 1.000 0.761 0.743 -0.757 -0.763 - 2 0.99571 0.761 1.000 0.989 -0.991 -0.994 - 3 0.99637 0.743 0.989 1.000 -0.996 -0.985 - 4 0.99713 -0.757 -0.991 -0.996 1.000 0.988 - 5 0.99425 -0.763 -0.994 -0.985 0.988 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17037.5 FROM HESSE STATUS=OK 35 CALLS 308 TOTAL - EDM=2.9509e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51690e+02 2.05801e-01 1.44071e-04 -1.32785e-01 - 2 sg_p1 8.99990e+00 4.72520e-01 4.38435e-01 1.58093e+00 - 3 sg_p2 3.37532e+02 3.63434e+00 1.77907e-04 4.55143e-01 - 4 sg_p3 3.55850e+01 3.20621e+00 8.05779e-05 -6.87361e-01 - 5 sg_p4 7.03842e-01 1.85963e-02 3.21567e-04 -7.64719e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.236e-02 4.581e-04 2.670e-02 -8.569e-02 -6.634e-04 - 4.581e-04 2.023e-04 3.597e-02 -3.336e-02 -2.070e-04 - 2.670e-02 3.597e-02 1.321e+01 -1.062e+01 -4.128e-02 - -8.569e-02 -3.336e-02 -1.062e+01 1.029e+01 3.997e-02 - -6.634e-04 -2.070e-04 -4.128e-02 3.997e-02 3.484e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.27036 1.000 0.157 0.036 -0.130 -0.173 - 2 0.83318 0.157 1.000 0.696 -0.731 -0.780 - 3 0.91590 0.036 0.696 1.000 -0.910 -0.608 - 4 0.92588 -0.130 -0.731 -0.910 1.000 0.668 - 5 0.79489 -0.173 -0.780 -0.608 0.668 1.000 -350 -351.69 +- 0.205801 -8.9999 +- 0.47252 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17980.6 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 3.49987e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -5.98208e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.69170e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -7.83629e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 5.56311e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17292.9 FROM HESSE STATUS=OK 33 CALLS 303 TOTAL - EDM=0.00176494 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51961e+02 2.04460e-01 7.28165e-04 -2.52563e-01 - 2 sg_p1 8.99915e+00 2.30345e-01 4.30116e-02 1.25408e-01 - 3 sg_p2 3.40595e+02 2.15600e+00 8.33185e-04 -5.45844e-01 - 4 sg_p3 3.45143e+01 1.95839e+00 2.03832e-03 -4.14782e-02 - 5 sg_p4 7.03933e-01 1.22162e-02 8.12692e-03 9.35709e-02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=17292.9 FROM MIGRAD STATUS=CONVERGED 313 CALLS 314 TOTAL - EDM=4.59633e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 1.1 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51961e+02 2.04485e-01 4.26699e-06 -6.13016e-02 - 2 sg_p1 9.00000e+00 2.28984e-01 -2.81882e-02 4.39584e-03 - 3 sg_p2 3.40596e+02 2.15817e+00 9.56132e-06 -1.29730e-01 - 4 sg_p3 3.45177e+01 1.95208e+00 6.42863e-05 7.35163e-02 - 5 sg_p4 7.03952e-01 1.21706e-02 1.50864e-04 7.78726e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.182e-02 1.059e-06 -5.711e-02 -6.423e-03 -1.875e-04 - 1.059e-06 9.432e-07 8.505e-05 -8.954e-05 -6.387e-07 - -5.711e-02 8.505e-05 4.658e+00 -3.232e+00 -5.893e-03 - -6.423e-03 -8.954e-05 -3.232e+00 3.812e+00 7.975e-03 - -1.875e-04 -6.387e-07 -5.893e-03 7.975e-03 1.486e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23004 1.000 0.005 -0.129 -0.016 -0.075 - 2 0.06294 0.005 1.000 0.041 -0.047 -0.054 - 3 0.78034 -0.129 0.041 1.000 -0.767 -0.224 - 4 0.79125 -0.016 -0.047 -0.767 1.000 0.335 - 5 0.34635 -0.075 -0.054 -0.224 0.335 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17292.9 FROM HESSE STATUS=OK 33 CALLS 347 TOTAL - EDM=8.75756e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51961e+02 2.04438e-01 7.28075e-04 -1.21874e-01 - 2 sg_p1 9.00000e+00 2.29843e-01 4.29288e-02 1.57180e+00 - 3 sg_p2 3.40596e+02 2.15392e+00 8.34476e-04 4.75922e-01 - 4 sg_p3 3.45177e+01 1.95162e+00 8.15327e-04 -7.07252e-01 - 5 sg_p4 7.03952e-01 1.20329e-02 8.13654e-03 -7.63847e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.180e-02 1.680e-06 -5.851e-02 -5.134e-03 -1.774e-04 - 1.680e-06 9.469e-07 1.234e-04 -1.333e-04 -1.048e-06 - -5.851e-02 1.234e-04 4.640e+00 -3.221e+00 -5.474e-03 - -5.134e-03 -1.333e-04 -3.221e+00 3.811e+00 7.658e-03 - -1.774e-04 -1.048e-06 -5.474e-03 7.658e-03 1.452e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22989 1.000 0.008 -0.133 -0.013 -0.072 - 2 0.10030 0.008 1.000 0.059 -0.070 -0.089 - 3 0.77997 -0.133 0.059 1.000 -0.766 -0.211 - 4 0.79057 -0.013 -0.070 -0.766 1.000 0.326 - 5 0.34225 -0.072 -0.089 -0.211 0.326 1.000 -350 -351.961 +- 0.204438 -9 +- 0.229843 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17556.6 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 4.17830e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -5.68439e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.02939e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -1.22040e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 5.78553e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - MINUIT WARNING IN HESSE - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN HESSE - ============== 1.39906 added to diagonal of error matrix - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16809.1 FROM HESSE STATUS=OK 37 CALLS 272 TOTAL - EDM=0.00897496 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51361e+02 2.01282e-01 7.11370e-04 1.72820e-01 - 2 sg_p1 8.99409e+00 2.54007e+00 1.10453e-01 1.29902e-01 - 3 sg_p2 3.31862e+02 3.59215e+00 1.00989e-03 -2.61406e-01 - 4 sg_p3 3.82944e+01 2.65752e+00 2.00950e-03 -4.58275e-02 - 5 sg_p4 6.99077e-01 1.14579e-02 8.35244e-03 6.96141e-02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16809.1 FROM MIGRAD STATUS=CONVERGED 368 CALLS 369 TOTAL - EDM=2.66923e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51369e+02 2.03042e-01 7.10429e-04 6.65922e-02 - 2 sg_p1 8.93634e+00 2.26538e-01 3.06864e-02 1.49692e-02 - 3 sg_p2 3.32548e+02 4.06056e+00 9.86163e-04 4.21549e-03 - 4 sg_p3 3.77657e+01 3.08320e+00 1.99063e-03 -6.94419e-02 - 5 sg_p4 6.96961e-01 1.39263e-02 8.49674e-03 -1.61305e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.123e-02 -6.678e-03 2.163e-02 -7.188e-02 -4.511e-04 - -6.678e-03 5.527e-02 -5.307e-01 4.156e-01 1.876e-03 - 2.163e-02 -5.307e-01 1.649e+01 -1.137e+01 -1.673e-02 - -7.188e-02 4.156e-01 -1.137e+01 9.516e+00 1.485e-02 - -4.511e-04 1.876e-03 -1.673e-02 1.485e-02 1.948e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25576 1.000 -0.140 0.026 -0.115 -0.159 - 2 0.70688 -0.140 1.000 -0.556 0.573 0.572 - 3 0.91344 0.026 -0.556 1.000 -0.908 -0.295 - 4 0.91579 -0.115 0.573 -0.908 1.000 0.345 - 5 0.58244 -0.159 0.572 -0.295 0.345 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16809.1 FROM HESSE STATUS=OK 31 CALLS 400 TOTAL - EDM=2.70646e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51369e+02 2.03746e-01 1.42086e-04 -1.45765e-01 - 2 sg_p1 8.93634e+00 2.54070e-01 1.22745e-03 1.31782e+00 - 3 sg_p2 3.32548e+02 4.51761e+00 3.94465e-05 4.21778e-01 - 4 sg_p3 3.77657e+01 3.43807e+00 7.96253e-05 -6.47692e-01 - 5 sg_p4 6.96961e-01 1.47151e-02 3.39870e-04 -8.20745e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.151e-02 -8.628e-03 5.304e-02 -9.587e-02 -5.312e-04 - -8.628e-03 6.725e-02 -7.432e-01 5.794e-01 2.412e-03 - 5.304e-02 -7.432e-01 2.041e+01 -1.440e+01 -2.542e-02 - -9.587e-02 5.794e-01 -1.440e+01 1.184e+01 2.153e-02 - -5.312e-04 2.412e-03 -2.542e-02 2.153e-02 2.176e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.26808 1.000 -0.163 0.058 -0.137 -0.177 - 2 0.76639 -0.163 1.000 -0.634 0.650 0.630 - 3 0.93070 0.058 -0.634 1.000 -0.926 -0.381 - 4 0.93289 -0.137 0.650 -0.926 1.000 0.424 - 5 0.63913 -0.177 0.630 -0.381 0.424 1.000 -350 -351.369 +- 0.203746 -8.93634 +- 0.25407 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17593.4 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 3.78939e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -5.82009e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.40055e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -4.92268e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 5.69068e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16875.6 FROM MIGRAD STATUS=CONVERGED 320 CALLS 321 TOTAL - EDM=1.73973e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51639e+02 2.04706e-01 7.22407e-04 -3.09735e-01 - 2 sg_p1 9.00000e+00 1.66126e-01 3.62658e-02 -7.99062e-03 - 3 sg_p2 3.36604e+02 2.77890e+00 9.23538e-04 -8.53328e-02 - 4 sg_p3 3.65924e+01 2.29934e+00 2.05397e-03 -4.59757e-02 - 5 sg_p4 7.00430e-01 1.16607e-02 8.31070e-03 -3.87898e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.191e-02 1.719e-06 -5.416e-02 -1.332e-02 -2.187e-04 - 1.719e-06 1.229e-06 1.227e-04 -1.127e-04 -6.551e-07 - -5.416e-02 1.227e-04 7.723e+00 -5.279e+00 -3.068e-03 - -1.332e-02 -1.127e-04 -5.279e+00 5.290e+00 4.752e-03 - -2.187e-04 -6.551e-07 -3.068e-03 4.752e-03 1.364e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22303 1.000 0.008 -0.095 -0.028 -0.091 - 2 0.06294 0.008 1.000 0.040 -0.044 -0.051 - 3 0.83540 -0.095 0.040 1.000 -0.826 -0.095 - 4 0.83755 -0.028 -0.044 -0.826 1.000 0.177 - 5 0.21502 -0.091 -0.051 -0.095 0.177 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16875.6 FROM HESSE STATUS=OK 31 CALLS 352 TOTAL - EDM=1.75499e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51639e+02 2.04671e-01 1.44481e-04 -1.34847e-01 - 2 sg_p1 9.00000e+00 1.66721e-01 7.25317e-03 1.56945e+00 - 3 sg_p2 3.36604e+02 2.84821e+00 1.84708e-04 4.48885e-01 - 4 sg_p3 3.65924e+01 2.35643e+00 8.21590e-05 -6.68882e-01 - 5 sg_p4 7.00430e-01 1.16522e-02 3.32428e-04 -7.92102e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.189e-02 2.314e-07 -5.503e-02 -1.229e-02 -2.144e-04 - 2.314e-07 1.234e-06 1.775e-05 -1.618e-05 -8.940e-08 - -5.503e-02 1.775e-05 8.113e+00 -5.607e+00 -3.304e-03 - -1.229e-02 -1.618e-05 -5.607e+00 5.556e+00 4.919e-03 - -2.144e-04 -8.940e-08 -3.304e-03 4.919e-03 1.362e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22229 1.000 0.001 -0.094 -0.025 -0.090 - 2 0.00867 0.001 1.000 0.006 -0.006 -0.007 - 3 0.84405 -0.094 0.006 1.000 -0.835 -0.099 - 4 0.84604 -0.025 -0.006 -0.835 1.000 0.179 - 5 0.21170 -0.090 -0.007 -0.099 0.179 1.000 -350 -351.639 +- 0.204671 -9 +- 0.166721 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17828.5 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 3.94800e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -5.62258e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.22820e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -3.94120e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 5.44291e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -6.7726e-02 3.7089e-01 9.5269e-01 1.7434e+00 2.0007e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.069727 TO DIAGONAL. - FCN=17147.5 FROM HESSE STATUS=NOT POSDEF 35 CALLS 251 TOTAL - EDM=1.1309 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51658e+02 3.51659e-01 7.01219e-04 -5.40058e-02 - 2 sg_p1 8.97742e+00 2.95083e+00 6.13915e-02 -2.03655e-01 - 3 sg_p2 3.35380e+02 1.79447e+01 9.83548e-04 6.97732e-01 - 4 sg_p3 3.73975e+01 1.59176e+01 2.11985e-03 1.68496e-01 - 5 sg_p4 7.15638e-01 9.42908e-02 7.30647e-03 -1.11566e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17147.5 FROM MIGRAD STATUS=CONVERGED 369 CALLS 370 TOTAL - EDM=4.09796e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51663e+02 1.99263e-01 7.00634e-04 4.55239e-02 - 2 sg_p1 8.93699e+00 2.96196e-01 2.96808e-02 -1.54899e-02 - 3 sg_p2 3.35749e+02 3.96525e+00 9.64449e-04 -8.88348e-03 - 4 sg_p3 3.70652e+01 3.34839e+00 2.10353e-03 -1.67958e-02 - 5 sg_p4 7.14101e-01 1.63480e-02 7.39271e-03 -2.31381e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.971e-02 9.041e-03 3.441e-02 -8.945e-02 -5.869e-04 - 9.041e-03 7.788e-02 7.343e-01 -6.508e-01 -3.330e-03 - 3.441e-02 7.343e-01 1.573e+01 -1.210e+01 -3.297e-02 - -8.945e-02 -6.508e-01 -1.210e+01 1.123e+01 3.115e-02 - -5.869e-04 -3.330e-03 -3.297e-02 3.115e-02 2.686e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.26818 1.000 0.163 0.044 -0.134 -0.180 - 2 0.81011 0.163 1.000 0.664 -0.696 -0.728 - 3 0.91607 0.044 0.664 1.000 -0.911 -0.507 - 4 0.92336 -0.134 -0.696 -0.911 1.000 0.567 - 5 0.73770 -0.180 -0.728 -0.507 0.567 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17147.5 FROM HESSE STATUS=OK 31 CALLS 401 TOTAL - EDM=3.78098e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51663e+02 1.98626e-01 1.40127e-04 -1.33882e-01 - 2 sg_p1 8.93699e+00 2.60351e-01 1.18723e-03 1.82247e+00 - 3 sg_p2 3.35749e+02 3.94847e+00 3.85780e-05 4.43146e-01 - 4 sg_p3 3.70652e+01 3.31177e+00 8.41412e-05 -6.60300e-01 - 5 sg_p4 7.14101e-01 1.54021e-02 2.95708e-04 -6.86338e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.945e-02 7.419e-03 1.957e-02 -7.558e-02 -4.983e-04 - 7.419e-03 6.823e-02 6.530e-01 -5.744e-01 -2.764e-03 - 1.957e-02 6.530e-01 1.559e+01 -1.191e+01 -2.828e-02 - -7.558e-02 -5.744e-01 -1.191e+01 1.098e+01 2.678e-02 - -4.983e-04 -2.764e-03 -2.828e-02 2.678e-02 2.383e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25680 1.000 0.143 0.025 -0.115 -0.163 - 2 0.77869 0.143 1.000 0.633 -0.664 -0.686 - 3 0.91532 0.025 0.633 1.000 -0.910 -0.464 - 4 0.92158 -0.115 -0.664 -0.910 1.000 0.524 - 5 0.69729 -0.163 -0.686 -0.464 0.524 1.000 -350 -351.663 +- 0.198626 -8.93699 +- 0.260351 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=16599.2 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 3.57504e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -5.44923e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.17494e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -4.08170e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 5.21506e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15939.1 FROM HESSE STATUS=OK 37 CALLS 314 TOTAL - EDM=0.000648585 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51693e+02 2.15714e-01 7.19414e-04 4.43718e-02 - 2 sg_p1 8.99487e+00 3.57548e+00 7.75677e-02 1.91574e-02 - 3 sg_p2 3.37608e+02 4.45408e+00 8.83711e-04 -1.12364e-01 - 4 sg_p3 3.54407e+01 4.01631e+00 2.01394e-03 2.05443e-02 - 5 sg_p4 7.05167e-01 2.51719e-02 7.97965e-03 2.01078e-02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 13.9403 added to diagonal of error matrix - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15939.1 FROM MIGRAD STATUS=CONVERGED 457 CALLS 458 TOTAL - EDM=6.3256e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51693e+02 2.10894e-01 7.19542e-04 -1.67564e-01 - 2 sg_p1 9.00000e+00 3.24335e+00 1.16287e-01** at limit ** - 3 sg_p2 3.37572e+02 3.03107e+00 8.85564e-04 -1.40083e-01 - 4 sg_p3 3.54732e+01 2.61363e+00 2.01712e-03 -2.42748e-02 - 5 sg_p4 7.05375e-01 1.51863e-02 7.98331e-03 2.92592e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.448e-02 6.249e-05 -2.584e-02 -4.146e-02 -4.052e-04 - 6.249e-05 8.943e-06 4.513e-03 -4.212e-03 -2.775e-05 - -2.584e-02 4.513e-03 9.189e+00 -6.814e+00 -1.858e-02 - -4.146e-02 -4.212e-03 -6.814e+00 6.836e+00 1.914e-02 - -4.052e-04 -2.775e-05 -1.858e-02 1.914e-02 2.317e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.24408 1.000 0.099 -0.040 -0.075 -0.126 - 2 0.67618 0.099 1.000 0.498 -0.539 -0.610 - 3 0.86794 -0.040 0.498 1.000 -0.860 -0.403 - 4 0.87833 -0.075 -0.539 -0.860 1.000 0.481 - 5 0.64024 -0.126 -0.610 -0.403 0.481 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15939.1 FROM HESSE STATUS=OK 35 CALLS 493 TOTAL - EDM=7.60914e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51693e+02 2.11707e-01 1.43908e-04 -1.32683e-01 - 2 sg_p1 9.00000e+00 3.40291e-01 4.74451e-01 1.56997e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 3 sg_p2 3.37572e+02 3.47654e+00 1.77113e-04 4.55410e-01 - 4 sg_p3 3.54732e+01 3.03978e+00 8.06848e-05 -6.89429e-01 - 5 sg_p4 7.05375e-01 1.75095e-02 3.19332e-04 -7.52647e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.482e-02 2.743e-05 3.917e-03 -6.861e-02 -5.663e-04 - 2.743e-05 9.504e-07 2.150e-03 -1.992e-03 -1.243e-05 - 3.917e-03 2.150e-03 1.209e+01 -9.464e+00 -3.305e-02 - -6.861e-02 -1.992e-03 -9.464e+00 9.250e+00 3.240e-02 - -5.663e-04 -1.243e-05 -3.305e-02 3.240e-02 3.085e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25843 1.000 0.133 0.005 -0.107 -0.152 - 2 0.78663 0.133 1.000 0.634 -0.672 -0.726 - 3 0.90139 0.005 0.634 1.000 -0.895 -0.541 - 4 0.91165 -0.107 -0.672 -0.895 1.000 0.606 - 5 0.74619 -0.152 -0.726 -0.541 0.606 1.000 -350 -351.693 +- 0.211707 -9 +- 0.340291 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=18950.1 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.55000e+02 5.00000e+00 2.01358e-01 4.06912e+03 - 2 sg_p1 7.00000e+00 4.00000e-01 2.01358e-01 -6.21556e+02 - 3 sg_p2 2.65000e+02 3.30000e+01 2.01358e-01 -2.53873e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -5.05415e+01 - 5 sg_p4 8.25000e-01 3.50000e-02 2.01358e-01 6.02316e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 2.05452 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - MACHINE ACCURACY LIMITS FURTHER IMPROVEMENT. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -7.6627e-03 4.3650e-01 9.4912e-01 1.6697e+00 1.9524e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.009615 TO DIAGONAL. - FCN=18191.7 FROM MIGRAD STATUS=CONVERGED 438 CALLS 439 TOTAL - EDM=2.38291e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.51688e+02 3.06549e-01 7.21716e-04 1.38139e-02 - 2 sg_p1 8.99221e+00 3.97298e+00 7.87824e-02 -1.20842e-03 - 3 sg_p2 3.37548e+02 1.63062e+01 8.85928e-04 1.17278e-02 - 4 sg_p3 3.56395e+01 1.51287e+01 2.01699e-03 1.74046e-02 - 5 sg_p4 7.02105e-01 9.20868e-02 8.19474e-03 -1.20385e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.398e-02 3.866e-01 3.761e+00 -3.594e+00 -2.447e-02 - 3.866e-01 2.690e+00 2.650e+01 -2.493e+01 -1.690e-01 - 3.761e+00 2.650e+01 2.670e+02 -2.495e+02 -1.668e+00 - -3.594e+00 -2.493e+01 -2.495e+02 2.351e+02 1.571e+00 - -2.447e-02 -1.690e-01 -1.668e+00 1.571e+00 1.074e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.78192 1.000 0.769 0.751 -0.765 -0.770 - 2 0.99585 0.769 1.000 0.989 -0.991 -0.994 - 3 0.99631 0.751 0.989 1.000 -0.996 -0.985 - 4 0.99710 -0.765 -0.991 -0.996 1.000 0.989 - 5 0.99443 -0.770 -0.994 -0.985 0.989 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2500 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.2541e-02 4.4218e-01 9.5025e-01 1.6636e+00 1.9565e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.014497 TO DIAGONAL. - FCN=18191.7 FROM HESSE STATUS=NOT POSDEF 37 CALLS 476 TOTAL - EDM=6.23545e-06 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.51688e+02 2.98004e-01 1.44343e-04 -1.32867e-01 - 2 sg_p1 8.99221e+00 3.99098e+00 5.00000e-01 1.65911e+00 - 3 sg_p2 3.37548e+02 1.66076e+01 3.54371e-05 4.55246e-01 - 4 sg_p3 3.56395e+01 1.53152e+01 8.06796e-05 -6.86354e-01 - 5 sg_p4 7.02105e-01 8.98453e-02 3.27790e-04 -7.78566e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 8.881e-02 1.322e-01 3.655e+00 -3.473e+00 -2.261e-02 - 1.322e-01 3.453e-01 9.674e+00 -9.044e+00 -5.859e-02 - 3.655e+00 9.674e+00 2.770e+02 -2.574e+02 -1.645e+00 - -3.473e+00 -9.044e+00 -2.574e+02 2.411e+02 1.540e+00 - -2.261e-02 -5.859e-02 -1.645e+00 1.540e+00 1.007e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.76862 1.000 0.755 0.737 -0.751 -0.756 - 2 0.99570 0.755 1.000 0.989 -0.991 -0.994 - 3 0.99646 0.737 0.989 1.000 -0.996 -0.985 - 4 0.99718 -0.751 -0.991 -0.996 1.000 0.988 - 5 0.99409 -0.756 -0.994 -0.985 0.988 1.000 - ERR MATRIX NOT POS-DEF -350 -351.688 +- 0.298004 -8.99221 +- 3.99098 -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 351.69 +- 0.205801 (stat) - 0.321347 + 0.270579 (syst); -0.33742/+0.289485 (total) - Uncertainty on sg_p1 = 8.9999 +- 0.47252 (stat) - 0.0635526 + 0.000102014 (syst); -0.244659/+0.23626 (total) - Uncertainty on sg_p2 = 337.532 +- 3.63434 (stat) - 4.98423 + 3.06364 (syst); -5.30516/+3.56202 (total) - Uncertainty on sg_p3 = 35.585 +- 3.20621 (stat) - 1.06732 + 2.18069 (syst); -1.92591/+2.70654 (total) - Uncertainty on sg_p4 = 0.703842 +- 0.0185963 (stat) - 0.00688091 + 0.0102594 (syst); -0.0115673/+0.013846 (total) - === Baseline plot ===
- norm = 541.084 -JEC lnN 1.0101 - -JER lnN 1.00905 - -btag lnN 1.06649 - -sg_p0 param 351.69 -0.33742/+0.289485 -sg_p1 param 8.9999 -0.244659/+0.23626 -sg_p2 param 337.532 -5.30516/+3.56202 -sg_p3 param 35.585 -1.92591/+2.70654 -sg_p4 param 0.703842 -0.0115673/+0.013846 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_400_crystal_1_285_624/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_400_crystal_1_285_624/data_bkg.log deleted file mode 100644 index c704996..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_400_crystal_1_285_624/data_bkg.log +++ /dev/null @@ -1,717 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [250,330] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [250,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63590.5 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.69443e-02 5.09000e-01 0.00000e+00 -7.94680e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -8.91126e+00 - 3 par_crystal_2 2.62020e+02 4.00000e+00 1.01181e-01 -1.53451e+00 - 4 par_crystal_3 1.65000e+01 2.70000e+00 0.00000e+00 7.46021e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM MIGRAD STATUS=CONVERGED 482 CALLS 483 TOTAL - EDM=0.000814822 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 4.40594e-01 4.43750e-02 2.48631e-03 2.88668e-01 - 2 par_crystal_1 9.82994e-01 6.48221e-01 2.14269e-02 -5.28345e-03 - 3 par_crystal_2 2.71542e+02 7.41091e-01 7.20683e-03 -9.27818e-02 - 4 par_crystal_3 2.87224e+01 2.18588e+00 3.97473e-02 -6.99277e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.970e-03 -2.333e-02 -5.115e-04 1.392e-02 - -2.333e-02 4.358e-01 4.870e-03 -8.391e-01 - -5.115e-04 4.870e-03 5.496e-01 4.381e-01 - 1.392e-02 -8.391e-01 4.381e-01 5.029e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.88989 1.000 -0.796 -0.016 0.140 - 2 0.92807 -0.796 1.000 0.010 -0.567 - 3 0.40865 -0.016 0.010 1.000 0.264 - 4 0.80948 0.140 -0.567 0.264 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM HESSE STATUS=OK 23 CALLS 506 TOTAL - EDM=0.000711421 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 4.40594e-01 4.64698e-02 4.97262e-04 -9.80558e-01 - 2 par_crystal_1 9.82994e-01 6.55195e-01 8.57075e-04 -6.65795e-01 - 3 par_crystal_2 2.71542e+02 7.38644e-01 1.44137e-03 6.15159e-01 - 4 par_crystal_3 2.87224e+01 2.03002e+00 1.58989e-03 -1.05570e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.160e-03 -2.581e-02 -1.109e-03 1.530e-02 - -2.581e-02 4.456e-01 2.508e-02 -7.234e-01 - -1.109e-03 2.508e-02 5.460e-01 3.687e-01 - 1.530e-02 -7.234e-01 3.687e-01 4.306e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.90014 1.000 -0.832 -0.032 0.159 - 2 0.92960 -0.832 1.000 0.051 -0.522 - 3 0.40186 -0.032 0.051 1.000 0.240 - 4 0.77207 0.159 -0.522 0.240 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63714.2 FROM MIGRAD STATUS=INITIATE 33 CALLS 34 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 2.63122e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -5.45805e+02 - 3 par_gaus_exp_2 6.67498e-01 3.05000e-01 -6.37370e-01 7.03093e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM MIGRAD STATUS=CONVERGED 131 CALLS 132 TOTAL - EDM=6.15917e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.71558e+02 8.05096e-01 6.82817e-03 6.24407e-02 - 2 par_gaus_exp_1 3.06822e+01 1.83071e+00 1.43475e-02 1.11468e-02 - 3 par_gaus_exp_2 3.82770e-01 2.42284e-02 3.05774e-03 -9.77170e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.486e-01 -6.079e-01 -1.588e-03 - -6.079e-01 3.370e+00 3.082e-02 - -1.588e-03 3.082e-02 5.871e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.49876 1.000 -0.411 -0.081 - 2 0.77898 -0.411 1.000 0.693 - 3 0.72797 -0.081 0.693 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM HESSE STATUS=OK 16 CALLS 148 TOTAL - EDM=6.13964e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.71558e+02 8.14214e-01 2.73127e-04 -4.35760e-01 - 2 par_gaus_exp_1 3.06822e+01 1.86973e+00 5.73898e-04 4.10264e-01 - 3 par_gaus_exp_2 3.82770e-01 2.45149e-02 1.22310e-04 -8.97531e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.634e-01 -6.630e-01 -2.137e-03 - -6.630e-01 3.516e+00 3.227e-02 - -2.137e-03 3.227e-02 6.011e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.51526 1.000 -0.434 -0.107 - 2 0.78935 -0.434 1.000 0.702 - 3 0.73544 -0.107 0.702 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,625] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.33953 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - ... (remaining 126 messages suppressed) -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.33953) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.734607 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=317.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=327.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=332.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=342.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=347.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=352.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=357.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=362.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=367.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - ... (remaining 53 messages suppressed) -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.734607) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0734613 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0734613 - - FCN=103487 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57093e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.56195e+03 - 3 par_novo_2 -1.33668e+00 2.00000e+01 0.00000e+00 1.53931e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM MIGRAD STATUS=CONVERGED 127 CALLS 128 TOTAL - EDM=3.4171e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.43423e+01 1.81223e-01** at limit ** - 2 par_novo_1 3.86596e+01 2.27294e+00 4.95847e-03 -1.04123e-02 - 3 par_novo_2 -1.27520e+00 7.07738e-02 3.70975e-05 -1.26322e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.231e-09 -8.491e-07 -8.580e-07 - -8.491e-07 5.181e+00 1.547e-01 - -8.580e-07 1.547e-01 5.009e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.53332 1.000 -0.005 -0.154 - 2 0.97096 -0.005 1.000 0.960 - 3 0.97165 -0.154 0.960 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM HESSE STATUS=OK 20 CALLS 148 TOTAL - EDM=3.43726e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.40246e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.86596e+01 2.31421e+00 1.98339e-04 4.46530e-01 - 3 par_novo_2 -1.27520e+00 7.22930e-02 1.48390e-06 -1.27523e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 5.974e-09 2.819e-05 -1.296e-06 - 2.819e-05 5.372e+00 1.502e-01 - -1.296e-06 1.502e-01 5.226e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.85665 1.000 0.157 -0.232 - 2 0.97200 0.157 1.000 0.897 - 3 0.97285 -0.232 0.897 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107513 FROM MIGRAD STATUS=INITIATE 54 CALLS 55 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 1.39168e+03 - 2 par_crystal_1_1 7.96220e-02 5.09000e-01 0.00000e+00 5.33770e+03 - 3 par_crystal_1_2 2.56879e+02 4.00000e+00 -1.56713e-01 -1.96669e+01 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 -8.45862e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.5057e-02 2.3309e-03 4.9678e-02 3.9730e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.029030 TO DIAGONAL. - FCN=103250 FROM MIGRAD STATUS=CONVERGED 436 CALLS 437 TOTAL - EDM=3.52757e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 4.45574e-02 4.37117e-03 3.09465e-04 -4.28177e+00 - 2 par_crystal_1_1 4.36914e+00 6.24106e-01 1.80400e-02 6.63742e-02 - 3 par_crystal_1_2 2.71531e+02 3.44700e+01 5.81266e-02 2.25694e-02 - 4 par_crystal_1_3 3.37290e+00 2.71702e-01 3.13791e-03 -4.26197e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.911e-05 -1.221e-03 2.089e-01 3.572e-04 - -1.221e-03 4.065e-01 -2.690e+01 -6.822e-02 - 2.089e-01 -2.690e+01 3.429e+03 1.167e+01 - 3.572e-04 -6.822e-02 1.167e+01 7.401e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99136 1.000 -0.438 0.816 0.300 - 2 0.97307 -0.438 1.000 -0.720 -0.393 - 3 0.99735 0.816 -0.720 1.000 0.733 - 4 0.98716 0.300 -0.393 0.733 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -8.0089e-04 4.0193e-04 7.1213e-02 3.9292e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.004730 TO DIAGONAL. - FCN=103250 FROM HESSE STATUS=NOT POSDEF 23 CALLS 460 TOTAL - EDM=3.56127e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 4.45574e-02 7.42610e-03 6.18930e-05 -1.40582e+00 - 2 par_crystal_1_1 4.36914e+00 4.67550e-01 7.21602e-04 -3.93511e+00 - 3 par_crystal_1_2 2.71531e+02 3.29814e+01 2.32506e-03 -3.75607e+00 - 4 par_crystal_1_3 3.37290e+00 5.01685e-01 1.25517e-04 -1.80638e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.515e-05 2.851e-04 2.343e-01 -1.699e-03 - 2.851e-04 2.238e-01 -2.528e+00 1.548e-02 - 2.343e-01 -2.528e+00 2.967e+03 1.176e+01 - -1.699e-03 1.548e-02 1.176e+01 2.538e-01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99694 1.000 0.081 0.579 -0.454 - 2 0.94927 0.081 1.000 -0.098 0.065 - 3 0.99687 0.579 -0.098 1.000 0.429 - 4 0.99618 -0.454 0.065 0.429 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 14211 - Background number of gaus_exp_252_330 = 14211 - Background number of novo_285_624 = 17618.3 - Background number of crystal_1_285_624 = 17618.3 - Background number of gaus_bern_285_624 = 17618.3 - Background number of landau_285_624 = 17618.3 -par_crystal_0 param 0.440594 0.0464698 -par_crystal_1 param 0.982994 0.655195 -par_crystal_2 param 271.542 0.738644 -par_crystal_3 param 28.7224 2.03002 -par_crystal_1_0 param 0.0445574 0.0074261 -par_crystal_1_1 param 4.36914 0.46755 -par_crystal_1_2 param 271.531 32.9814 -par_crystal_1_3 param 3.3729 0.501685 -par_gaus_exp_0 param 271.558 0.814214 -par_gaus_exp_1 param 30.6822 1.86973 -par_gaus_exp_2 param 0.38277 0.0245149 -par_novo_0 param 250 34.0246 -par_novo_1 param 38.6596 2.31421 -par_novo_2 param -1.2752 0.072293 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_400_crystal_1_285_624/datacard_400_crystal_1_285_624.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_400_crystal_1_285_624/datacard_400_crystal_1_285_624.txt deleted file mode 100644 index 21ca104..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_400_crystal_1_285_624/datacard_400_crystal_1_285_624.txt +++ /dev/null @@ -1,30 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_400.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_crystal_1_285_624.root HbbHbb:f_crystal_1 -shapes data_obs HbbHbb w_background_crystal_1_285_624.root HbbHbb:data_obs_crystal_1_285_624 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 790.651 17618.3 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06523 - -JER lnN 1.01925 - -JEC lnN 1.00381 - -trigger lnN 1.10 - -sg_p0 param 403.031 -0.393186/+0.517221 -sg_p1 param 9.12153 -0.182675/+0.229073 -sg_p2 param 399.298 -1.13534/+0.652569 -sg_p3 param 21.4947 -0.582718/+0.966802 -sg_p4 param 0.642062 -0.0211457/+0.049893 -par_crystal_1_0 param 0.0445574 0.0074261 -par_crystal_1_1 param 4.36914 0.46755 -par_crystal_1_2 param 271.531 32.9814 -par_crystal_1_3 param 3.3729 0.501685 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_400_crystal_1_285_624/signal400_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_400_crystal_1_285_624/signal400_sig.log deleted file mode 100644 index 9acbb71..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_400_crystal_1_285_624/signal400_sig.log +++ /dev/null @@ -1,869 +0,0 @@ - -Processing test.c... -nSignal_init = 299800 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=33249 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.95000e+02 7.00000e+00 2.01358e-01 2.15243e+03 - 2 sg_p1 2.15000e+01 3.70000e+00 2.01358e-01 1.37205e+02 - 3 sg_p2 4.15000e+02 9.00000e+00 2.01358e-01 1.80805e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -7.17737e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -9.38307e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31857.3 FROM MIGRAD STATUS=CONVERGED 163 CALLS 164 TOTAL - EDM=1.96152e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.85506e+02 3.78343e-01 1.28380e-03 -1.79696e-02 - 2 sg_p1 2.16205e+01 3.35235e-01 1.80013e-03 -1.11987e-02 - 3 sg_p2 3.70000e+02 1.32448e-01 9.45540e-03** at limit ** - 4 sg_p3 6.22011e+01 2.14887e+00 4.32821e-03 3.71767e-02 - 5 sg_p4 7.86673e-01 1.32740e-02 2.60376e-03 -4.77327e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.431e-01 -3.809e-02 -1.363e-08 -2.470e-01 -1.694e-03 - -3.809e-02 1.124e-01 1.303e-09 3.035e-01 2.581e-03 - -1.363e-08 1.303e-09 4.343e-10 9.091e-11 -1.595e-10 - -2.470e-01 3.035e-01 9.091e-11 4.621e+00 1.948e-02 - -1.694e-03 2.581e-03 -1.595e-10 1.948e-02 1.763e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.37324 1.000 -0.300 -0.002 -0.304 -0.337 - 2 0.59095 -0.300 1.000 0.000 0.421 0.580 - 3 0.00218 -0.002 0.000 1.000 0.000 -0.001 - 4 0.68717 -0.304 0.421 0.000 1.000 0.682 - 5 0.75833 -0.337 0.580 -0.001 0.682 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31857.3 FROM HESSE STATUS=OK 31 CALLS 195 TOTAL - EDM=1.96284e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.85506e+02 3.78550e-01 5.13518e-05 -2.74710e-01 - 2 sg_p1 2.16205e+01 3.35880e-01 7.20051e-05 6.51457e-03 - 3 sg_p2 3.70000e+02 1.32456e-01 1.89108e-03 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 6.22011e+01 2.15536e+00 1.73128e-04 1.60716e-01 - 5 sg_p4 7.86673e-01 1.33169e-02 5.20752e-04 6.10583e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.433e-01 -3.844e-02 -2.714e-09 -2.490e-01 -1.705e-03 - -3.844e-02 1.128e-01 2.582e-10 3.070e-01 2.603e-03 - -2.714e-09 2.582e-10 4.343e-10 2.856e-11 -3.187e-11 - -2.490e-01 3.070e-01 2.856e-11 4.649e+00 1.966e-02 - -1.705e-03 2.603e-03 -3.187e-11 1.966e-02 1.774e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.37450 1.000 -0.302 -0.000 -0.305 -0.338 - 2 0.59306 -0.302 1.000 0.000 0.424 0.582 - 3 0.00043 -0.000 0.000 1.000 0.000 -0.000 - 4 0.68946 -0.305 0.424 0.000 1.000 0.685 - 5 0.76013 -0.338 0.582 -0.000 0.685 1.000 -400 -385.506 +- 0.37855 -21.6205 +- 0.33588 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=33081 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.95000e+02 7.00000e+00 2.01358e-01 1.81151e+03 - 2 sg_p1 2.15000e+01 3.70000e+00 2.01358e-01 2.25726e+02 - 3 sg_p2 4.15000e+02 9.00000e+00 2.01358e-01 1.70388e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -5.66591e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -9.95873e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31839.3 FROM MIGRAD STATUS=CONVERGED 160 CALLS 161 TOTAL - EDM=5.64365e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.87437e+02 3.85764e-01 1.26589e-03 -5.15663e-01 - 2 sg_p1 2.16839e+01 3.35523e-01 1.79115e-03 1.07532e-01 - 3 sg_p2 3.70000e+02 1.39833e-01 9.73370e-03** at limit ** - 4 sg_p3 6.08508e+01 2.10095e+00 4.12758e-03 3.24347e-02 - 5 sg_p4 7.89007e-01 1.33639e-02 2.62549e-03 -2.60744e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.488e-01 -4.305e-02 -2.519e-07 -2.764e-01 -1.946e-03 - -4.305e-02 1.126e-01 -9.366e-09 3.008e-01 2.619e-03 - -2.519e-07 -9.366e-09 1.704e-07 -3.173e-07 -6.072e-09 - -2.764e-01 3.008e-01 -3.173e-07 4.417e+00 1.920e-02 - -1.946e-03 2.619e-03 -6.072e-09 1.920e-02 1.787e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.41597 1.000 -0.333 -0.002 -0.341 -0.377 - 2 0.59692 -0.333 1.000 -0.000 0.427 0.584 - 3 0.00247 -0.002 -0.000 1.000 -0.000 -0.001 - 4 0.68971 -0.341 0.427 -0.000 1.000 0.684 - 5 0.76090 -0.377 0.584 -0.001 0.684 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31839.3 FROM HESSE STATUS=OK 31 CALLS 192 TOTAL - EDM=5.65901e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.87437e+02 3.86035e-01 2.53178e-04 -2.17803e-01 - 2 sg_p1 2.16839e+01 3.36156e-01 7.16461e-05 9.94233e-03 - 3 sg_p2 3.70000e+02 1.39842e-01 1.94674e-03 -1.57091e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 6.08508e+01 2.10696e+00 1.65103e-04 1.30388e-01 - 5 sg_p4 7.89007e-01 1.34047e-02 5.25097e-04 6.16292e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.490e-01 -4.342e-02 -4.545e-08 -2.786e-01 -1.959e-03 - -4.342e-02 1.130e-01 -1.794e-09 3.041e-01 2.641e-03 - -4.545e-08 -1.794e-09 1.704e-07 -5.759e-08 -1.102e-09 - -2.786e-01 3.041e-01 -5.759e-08 4.443e+00 1.938e-02 - -1.959e-03 2.641e-03 -1.102e-09 1.938e-02 1.798e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.41736 1.000 -0.335 -0.000 -0.342 -0.378 - 2 0.59895 -0.335 1.000 -0.000 0.429 0.586 - 3 0.00045 -0.000 -0.000 1.000 -0.000 -0.000 - 4 0.69187 -0.342 0.429 -0.000 1.000 0.686 - 5 0.76259 -0.378 0.586 -0.000 0.686 1.000 -400 -387.437 +- 0.386035 -21.6839 +- 0.336156 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=33253.4 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.95000e+02 7.00000e+00 2.01358e-01 2.45970e+03 - 2 sg_p1 2.15000e+01 3.70000e+00 2.01358e-01 2.71903e+00 - 3 sg_p2 4.15000e+02 9.00000e+00 2.01358e-01 1.91853e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -8.75244e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -8.55185e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31693.5 FROM MIGRAD STATUS=CONVERGED 158 CALLS 159 TOTAL - EDM=3.35227e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.83669e+02 3.75050e-01 1.31711e-03 2.71422e-01 - 2 sg_p1 2.15657e+01 3.35007e-01 1.81860e-03 2.93721e-01 - 3 sg_p2 3.70000e+02 1.18706e-01 8.94035e-03** at limit ** - 4 sg_p3 6.23837e+01 2.11611e+00 4.26491e-03 6.14124e-02 - 5 sg_p4 7.79157e-01 1.33723e-02 2.61066e-03 -1.92762e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.407e-01 -3.293e-02 -8.781e-08 -2.099e-01 -1.470e-03 - -3.293e-02 1.122e-01 1.601e-08 2.882e-01 2.545e-03 - -8.781e-08 1.601e-08 1.802e-08 1.177e-07 -2.465e-10 - -2.099e-01 2.882e-01 1.177e-07 4.481e+00 1.922e-02 - -1.470e-03 2.545e-03 -2.465e-10 1.922e-02 1.789e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.32654 1.000 -0.262 -0.002 -0.264 -0.293 - 2 0.57704 -0.262 1.000 0.000 0.406 0.568 - 3 0.00196 -0.002 0.000 1.000 0.000 -0.000 - 4 0.68265 -0.264 0.406 0.000 1.000 0.679 - 5 0.75308 -0.293 0.568 -0.000 0.679 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31693.5 FROM HESSE STATUS=OK 31 CALLS 190 TOTAL - EDM=3.3512e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.83669e+02 3.75180e-01 2.63421e-04 -3.29696e-01 - 2 sg_p1 2.15657e+01 3.35505e-01 3.63719e-04 3.55092e-03 - 3 sg_p2 3.70000e+02 1.18712e-01 1.78807e-03 -1.57084e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 6.23837e+01 2.12217e+00 1.70597e-04 1.64828e-01 - 5 sg_p4 7.79157e-01 1.34121e-02 5.22132e-04 5.92353e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.408e-01 -3.318e-02 -1.693e-08 -2.114e-01 -1.478e-03 - -3.318e-02 1.126e-01 3.095e-09 2.911e-01 2.564e-03 - -1.693e-08 3.095e-09 1.803e-08 2.290e-08 -4.701e-11 - -2.114e-01 2.911e-01 2.290e-08 4.507e+00 1.940e-02 - -1.478e-03 2.564e-03 -4.701e-11 1.940e-02 1.799e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.32749 1.000 -0.264 -0.000 -0.265 -0.294 - 2 0.57875 -0.264 1.000 0.000 0.409 0.570 - 3 0.00038 -0.000 0.000 1.000 0.000 -0.000 - 4 0.68487 -0.265 0.409 0.000 1.000 0.681 - 5 0.75478 -0.294 0.570 -0.000 0.681 1.000 -400 -383.669 +- 0.37518 -21.5657 +- 0.335505 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=24472.6 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.00000e+02 6.00000e+00 2.01358e-01 -3.05856e+03 - 2 sg_p1 9.00000e+00 1.20000e+00 2.01358e-01 -2.09033e+02 - 3 sg_p2 3.35000e+02 2.30000e+01 2.01358e-01 -1.48368e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -1.94112e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -7.96270e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24016.6 FROM MIGRAD STATUS=CONVERGED 509 CALLS 510 TOTAL - EDM=2.5866e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.03031e+02 2.26519e-01 7.06422e-04 -6.24953e-01 - 2 sg_p1 9.12153e+00 3.63993e-01 2.95185e-03 -8.05301e-02 - 3 sg_p2 3.99298e+02 7.10621e-01 6.21816e-04 1.57926e-02 - 4 sg_p3 2.14947e+01 1.13267e+00 1.39396e-03 -1.73297e-02 - 5 sg_p4 6.42062e-01 4.06347e-02 2.84361e-03 2.63915e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 5.131e-02 -2.172e-02 2.774e-02 -8.091e-02 -2.646e-03 - -2.172e-02 1.327e-01 1.233e-01 3.176e-01 1.317e-02 - 2.774e-02 1.233e-01 5.050e-01 3.697e-01 1.525e-02 - -8.091e-02 3.176e-01 3.697e-01 1.283e+00 4.116e-02 - -2.646e-03 1.317e-02 1.525e-02 4.116e-02 1.655e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.49329 1.000 -0.263 0.172 -0.315 -0.287 - 2 0.89097 -0.263 1.000 0.476 0.770 0.889 - 3 0.62717 0.172 0.476 1.000 0.459 0.527 - 4 0.89690 -0.315 0.770 0.459 1.000 0.893 - 5 0.94977 -0.287 0.889 0.527 0.893 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24016.6 FROM HESSE STATUS=OK 31 CALLS 541 TOTAL - EDM=2.57939e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.03031e+02 2.26798e-01 1.41284e-04 1.01207e-01 - 2 sg_p1 9.12153e+00 3.64169e-01 5.90369e-04 2.02560e-02 - 3 sg_p2 3.99298e+02 7.06750e-01 2.48726e-05 2.54828e+00 - 4 sg_p3 2.14947e+01 1.13406e+00 5.57583e-05 -9.89569e-01 - 5 sg_p4 6.42062e-01 4.06652e-02 5.68723e-04 2.88093e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 5.144e-02 -2.202e-02 2.804e-02 -8.193e-02 -2.679e-03 - -2.202e-02 1.328e-01 1.208e-01 3.183e-01 1.319e-02 - 2.804e-02 1.208e-01 4.995e-01 3.614e-01 1.495e-02 - -8.193e-02 3.183e-01 3.614e-01 1.286e+00 4.125e-02 - -2.679e-03 1.319e-02 1.495e-02 4.125e-02 1.658e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.49518 1.000 -0.266 0.175 -0.319 -0.290 - 2 0.89108 -0.266 1.000 0.469 0.770 0.889 - 3 0.62183 0.175 0.469 1.000 0.451 0.520 - 4 0.89717 -0.319 0.770 0.451 1.000 0.893 - 5 0.94985 -0.290 0.889 0.520 0.893 1.000 -400 -403.031 +- 0.226798 -9.12153 +- 0.364169 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=24696.6 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.00000e+02 6.00000e+00 2.01358e-01 -3.50567e+03 - 2 sg_p1 9.00000e+00 1.20000e+00 2.01358e-01 -2.99560e+02 - 3 sg_p2 3.35000e+02 2.30000e+01 2.01358e-01 -1.90457e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -2.28000e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -7.50850e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24177.3 FROM MIGRAD STATUS=CONVERGED 461 CALLS 462 TOTAL - EDM=2.05098e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.03536e+02 2.36042e-01 7.27613e-04 1.38133e-01 - 2 sg_p1 9.26052e+00 3.88073e-01 3.03064e-03 3.06014e-03 - 3 sg_p2 3.99846e+02 7.05843e-01 6.16081e-04 4.24773e-01 - 4 sg_p3 2.13604e+01 1.14532e+00 1.37198e-03 1.42343e-01 - 5 sg_p4 6.36255e-01 4.36783e-02 2.89979e-03 -2.83285e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 5.572e-02 -2.634e-02 2.796e-02 -9.283e-02 -3.232e-03 - -2.634e-02 1.508e-01 1.325e-01 3.480e-01 1.525e-02 - 2.796e-02 1.325e-01 4.982e-01 3.683e-01 1.636e-02 - -9.283e-02 3.480e-01 3.683e-01 1.312e+00 4.510e-02 - -3.232e-03 1.525e-02 1.636e-02 4.510e-02 1.913e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.51806 1.000 -0.287 0.168 -0.343 -0.313 - 2 0.90009 -0.287 1.000 0.483 0.782 0.898 - 3 0.63614 0.168 0.483 1.000 0.456 0.530 - 4 0.90455 -0.343 0.782 0.456 1.000 0.900 - 5 0.95487 -0.313 0.898 0.530 0.900 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24177.3 FROM HESSE STATUS=OK 31 CALLS 493 TOTAL - EDM=2.03888e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.03536e+02 2.36409e-01 1.45523e-04 1.18130e-01 - 2 sg_p1 9.26052e+00 3.89977e-01 1.21225e-04 4.34340e-02 - 3 sg_p2 3.99846e+02 7.03519e-01 1.23216e-04 2.54251e+00 - 4 sg_p3 2.13604e+01 1.15130e+00 5.48791e-05 -9.93073e-01 - 5 sg_p4 6.36255e-01 4.39145e-02 5.79958e-04 2.76000e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 5.589e-02 -2.689e-02 2.803e-02 -9.446e-02 -3.293e-03 - -2.689e-02 1.523e-01 1.317e-01 3.524e-01 1.543e-02 - 2.803e-02 1.317e-01 4.949e-01 3.651e-01 1.624e-02 - -9.446e-02 3.524e-01 3.651e-01 1.326e+00 4.564e-02 - -3.293e-03 1.543e-02 1.624e-02 4.564e-02 1.934e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.52024 1.000 -0.291 0.169 -0.347 -0.317 - 2 0.90112 -0.291 1.000 0.480 0.784 0.899 - 3 0.63303 0.169 0.480 1.000 0.451 0.525 - 4 0.90559 -0.347 0.784 0.451 1.000 0.901 - 5 0.95536 -0.317 0.899 0.525 0.901 1.000 -400 -403.536 +- 0.236409 -9.26052 +- 0.389977 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=24015.5 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.00000e+02 6.00000e+00 2.01358e-01 -2.73383e+03 - 2 sg_p1 9.00000e+00 1.20000e+00 2.01358e-01 -1.14601e+02 - 3 sg_p2 3.35000e+02 2.30000e+01 2.01358e-01 -1.01620e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -1.59452e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -8.70364e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23589.1 FROM MIGRAD STATUS=CONVERGED 571 CALLS 572 TOTAL - EDM=2.11975e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.02655e+02 2.13288e-01 6.62907e-04 -4.46168e-01 - 2 sg_p1 9.23949e+00 3.37872e-01 2.75680e-03 -1.32311e-01 - 3 sg_p2 3.98219e+02 8.68178e-01 7.02928e-04 2.98040e-01 - 4 sg_p3 2.22778e+01 1.33749e+00 1.59705e-03 -1.34034e-01 - 5 sg_p4 6.87624e-01 3.80009e-02 2.77016e-03 9.90234e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.549e-02 -1.871e-02 2.077e-02 -9.028e-02 -2.314e-03 - -1.871e-02 1.143e-01 1.614e-01 3.481e-01 1.139e-02 - 2.077e-02 1.614e-01 7.538e-01 6.352e-01 2.015e-02 - -9.028e-02 3.481e-01 6.352e-01 1.790e+00 4.538e-02 - -2.314e-03 1.139e-02 2.015e-02 4.538e-02 1.447e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.48247 1.000 -0.259 0.112 -0.316 -0.285 - 2 0.88740 -0.259 1.000 0.550 0.770 0.886 - 3 0.68165 0.112 0.550 1.000 0.547 0.610 - 4 0.89573 -0.316 0.770 0.547 1.000 0.892 - 5 0.94802 -0.285 0.886 0.610 0.892 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23589.1 FROM HESSE STATUS=OK 31 CALLS 603 TOTAL - EDM=2.11621e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.02655e+02 2.13549e-01 1.32581e-04 8.86008e-02 - 2 sg_p1 9.23949e+00 3.38145e-01 5.51360e-04 3.99260e-02 - 3 sg_p2 3.98219e+02 8.63799e-01 1.40586e-04 2.55955e+00 - 4 sg_p3 2.22778e+01 1.33974e+00 6.38820e-05 -9.69500e-01 - 5 sg_p4 6.87624e-01 3.80543e-02 5.54033e-04 3.84665e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.560e-02 -1.897e-02 2.093e-02 -9.145e-02 -2.344e-03 - -1.897e-02 1.145e-01 1.594e-01 3.492e-01 1.142e-02 - 2.093e-02 1.594e-01 7.462e-01 6.264e-01 1.990e-02 - -9.145e-02 3.492e-01 6.264e-01 1.796e+00 4.554e-02 - -2.344e-03 1.142e-02 1.990e-02 4.554e-02 1.451e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.48441 1.000 -0.263 0.113 -0.320 -0.288 - 2 0.88760 -0.263 1.000 0.545 0.770 0.886 - 3 0.67765 0.113 0.545 1.000 0.541 0.605 - 4 0.89610 -0.320 0.770 0.541 1.000 0.892 - 5 0.94817 -0.288 0.886 0.605 0.892 1.000 -400 -402.655 +- 0.213549 -9.23949 +- 0.338145 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=23933.8 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.00000e+02 6.00000e+00 2.01358e-01 -3.00563e+03 - 2 sg_p1 9.00000e+00 1.20000e+00 2.01358e-01 -2.26149e+02 - 3 sg_p2 3.35000e+02 2.30000e+01 2.01358e-01 -1.57290e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -1.98719e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -7.58184e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=23482 FROM MIGRAD STATUS=CONVERGED 425 CALLS 426 TOTAL - EDM=1.98551e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 2.6 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.03064e+02 2.30766e-01 4.51369e-05 5.86157e-01 - 2 sg_p1 9.18055e+00 3.67314e-01 -4.43730e-04 8.55470e-03 - 3 sg_p2 3.99566e+02 7.08192e-01 -8.00128e-05 -4.66991e-01 - 4 sg_p3 2.13892e+01 1.12890e+00 4.69804e-04 -1.79727e-01 - 5 sg_p4 6.36669e-01 4.03843e-02 7.38905e-05 1.36445e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 5.325e-02 -2.904e-02 2.726e-02 -9.686e-02 -3.527e-03 - -2.904e-02 1.351e-01 1.202e-01 3.188e-01 1.315e-02 - 2.726e-02 1.202e-01 5.015e-01 3.501e-01 1.456e-02 - -9.686e-02 3.188e-01 3.501e-01 1.275e+00 4.101e-02 - -3.527e-03 1.315e-02 1.456e-02 4.101e-02 1.635e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.56644 1.000 -0.342 0.167 -0.372 -0.378 - 2 0.88731 -0.342 1.000 0.462 0.768 0.885 - 3 0.64043 0.167 0.462 1.000 0.438 0.509 - 4 0.90083 -0.372 0.768 0.438 1.000 0.898 - 5 0.95189 -0.378 0.885 0.509 0.898 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23482 FROM HESSE STATUS=OK 35 CALLS 461 TOTAL - EDM=5.54045e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.03064e+02 2.33269e-01 7.19455e-04 1.02309e-01 - 2 sg_p1 9.18055e+00 3.92591e-01 3.01012e-03 3.00958e-02 - 3 sg_p2 3.99566e+02 7.11832e-01 6.13401e-04 2.54546e+00 - 4 sg_p3 2.13892e+01 1.16905e+00 1.37125e-03 -9.92320e-01 - 5 sg_p4 6.36669e-01 4.39485e-02 2.87997e-03 2.76861e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 5.442e-02 -2.298e-02 3.133e-02 -8.326e-02 -2.828e-03 - -2.298e-02 1.543e-01 1.349e-01 3.609e-01 1.554e-02 - 3.133e-02 1.349e-01 5.067e-01 3.816e-01 1.648e-02 - -8.326e-02 3.609e-01 3.816e-01 1.367e+00 4.638e-02 - -2.828e-03 1.554e-02 1.648e-02 4.638e-02 1.937e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.49395 1.000 -0.251 0.189 -0.305 -0.275 - 2 0.90095 -0.251 1.000 0.482 0.786 0.899 - 3 0.63094 0.189 0.482 1.000 0.459 0.526 - 4 0.90514 -0.305 0.786 0.459 1.000 0.901 - 5 0.95480 -0.275 0.899 0.526 0.901 1.000 -400 -403.064 +- 0.233269 -9.18055 +- 0.392591 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=24885.4 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.00000e+02 6.00000e+00 2.01358e-01 -3.11264e+03 - 2 sg_p1 9.00000e+00 1.20000e+00 2.01358e-01 -1.79480e+02 - 3 sg_p2 3.35000e+02 2.30000e+01 2.01358e-01 -1.39340e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -1.92985e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -8.63355e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24409.7 FROM MIGRAD STATUS=CONVERGED 428 CALLS 429 TOTAL - EDM=7.26443e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.02955e+02 2.19114e-01 6.87184e-04 -4.52991e-01 - 2 sg_p1 9.16571e+00 3.57674e-01 2.86480e-03 -1.28599e-01 - 3 sg_p2 3.99199e+02 7.40925e-01 6.46031e-04 5.84783e-01 - 4 sg_p3 2.16431e+01 1.21207e+00 1.45003e-03 -5.04696e-01 - 5 sg_p4 6.62907e-01 4.05793e-02 2.83164e-03 1.71367e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.801e-02 -2.192e-02 2.514e-02 -8.718e-02 -2.692e-03 - -2.192e-02 1.281e-01 1.292e-01 3.393e-01 1.300e-02 - 2.514e-02 1.292e-01 5.490e-01 4.252e-01 1.618e-02 - -8.718e-02 3.393e-01 4.252e-01 1.470e+00 4.429e-02 - -2.692e-03 1.300e-02 1.618e-02 4.429e-02 1.651e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.49883 1.000 -0.280 0.155 -0.328 -0.302 - 2 0.89599 -0.280 1.000 0.487 0.782 0.894 - 3 0.63326 0.155 0.487 1.000 0.473 0.538 - 4 0.90259 -0.328 0.782 0.473 1.000 0.899 - 5 0.95237 -0.302 0.894 0.538 0.899 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24409.7 FROM HESSE STATUS=OK 31 CALLS 460 TOTAL - EDM=7.27657e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.02955e+02 2.19385e-01 1.37437e-04 9.86503e-02 - 2 sg_p1 9.16571e+00 3.58424e-01 5.72960e-04 2.76226e-02 - 3 sg_p2 3.99199e+02 7.37765e-01 1.29206e-04 2.54932e+00 - 4 sg_p3 2.16431e+01 1.21551e+00 2.90006e-04 -9.85719e-01 - 5 sg_p4 6.62907e-01 4.06836e-02 5.66328e-04 3.31874e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.813e-02 -2.225e-02 2.533e-02 -8.836e-02 -2.729e-03 - -2.225e-02 1.286e-01 1.275e-01 3.414e-01 1.307e-02 - 2.533e-02 1.275e-01 5.443e-01 4.191e-01 1.598e-02 - -8.836e-02 3.414e-01 4.191e-01 1.478e+00 4.455e-02 - -2.729e-03 1.307e-02 1.598e-02 4.455e-02 1.659e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.50069 1.000 -0.283 0.157 -0.331 -0.305 - 2 0.89645 -0.283 1.000 0.482 0.783 0.895 - 3 0.62918 0.157 0.482 1.000 0.467 0.532 - 4 0.90317 -0.331 0.783 0.467 1.000 0.900 - 5 0.95262 -0.305 0.895 0.532 0.900 1.000 -400 -402.955 +- 0.219385 -9.16571 +- 0.358424 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=22933.4 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.00000e+02 6.00000e+00 2.01358e-01 -2.87100e+03 - 2 sg_p1 9.00000e+00 1.20000e+00 2.01358e-01 -1.93992e+02 - 3 sg_p2 3.35000e+02 2.30000e+01 2.01358e-01 -1.39002e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -1.82300e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -7.50242e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=22503.6 FROM MIGRAD STATUS=CONVERGED 449 CALLS 450 TOTAL - EDM=1.18063e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.03032e+02 2.33943e-01 7.06213e-04 9.04520e-02 - 2 sg_p1 9.10686e+00 3.76352e-01 2.94856e-03 -2.29097e-02 - 3 sg_p2 3.99344e+02 7.27483e-01 6.18170e-04 -1.42732e-01 - 4 sg_p3 2.14204e+01 1.15968e+00 1.38769e-03 7.24703e-02 - 5 sg_p4 6.41123e-01 4.21101e-02 2.84478e-03 -3.40374e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 5.473e-02 -2.306e-02 3.001e-02 -8.509e-02 -2.816e-03 - -2.306e-02 1.418e-01 1.295e-01 3.363e-01 1.412e-02 - 3.001e-02 1.295e-01 5.292e-01 3.838e-01 1.605e-02 - -8.509e-02 3.363e-01 3.838e-01 1.345e+00 4.369e-02 - -2.816e-03 1.412e-02 1.605e-02 4.369e-02 1.778e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.49289 1.000 -0.262 0.176 -0.314 -0.285 - 2 0.89116 -0.262 1.000 0.473 0.770 0.889 - 3 0.62460 0.176 0.473 1.000 0.455 0.523 - 4 0.89709 -0.314 0.770 0.455 1.000 0.893 - 5 0.94991 -0.285 0.889 0.523 0.893 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=22503.6 FROM HESSE STATUS=OK 31 CALLS 481 TOTAL - EDM=1.18704e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.03032e+02 2.34247e-01 1.41243e-04 1.01255e-01 - 2 sg_p1 9.10686e+00 3.78028e-01 1.17943e-04 1.78107e-02 - 3 sg_p2 3.99344e+02 7.25174e-01 1.23634e-04 2.54779e+00 - 4 sg_p3 2.14204e+01 1.16522e+00 5.55076e-05 -9.91505e-01 - 5 sg_p4 6.41123e-01 4.23208e-02 5.68957e-04 2.86134e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 5.487e-02 -2.352e-02 3.007e-02 -8.655e-02 -2.868e-03 - -2.352e-02 1.431e-01 1.286e-01 3.403e-01 1.427e-02 - 3.007e-02 1.286e-01 5.259e-01 3.804e-01 1.593e-02 - -8.655e-02 3.403e-01 3.804e-01 1.358e+00 4.417e-02 - -2.868e-03 1.427e-02 1.593e-02 4.417e-02 1.796e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.49488 1.000 -0.265 0.177 -0.317 -0.289 - 2 0.89218 -0.265 1.000 0.469 0.772 0.890 - 3 0.62148 0.177 0.469 1.000 0.450 0.519 - 4 0.89813 -0.317 0.772 0.450 1.000 0.894 - 5 0.95042 -0.289 0.890 0.519 0.894 1.000 -400 -403.032 +- 0.234247 -9.10686 +- 0.378028 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=26088.1 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.00000e+02 6.00000e+00 2.01358e-01 -3.25521e+03 - 2 sg_p1 9.00000e+00 1.20000e+00 2.01358e-01 -2.24913e+02 - 3 sg_p2 3.35000e+02 2.30000e+01 2.01358e-01 -1.58204e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -2.06494e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -8.44374e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.85098 added to diagonal of error matrix -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (43592.9) to force MIGRAD to back out of this region. Error log follows -Parameter values: sg_p0=411.751, sg_p1=10.1393, sg_p2=221.646, sg_p3=12.3173, sg_p4=0.392797 -RooGaussian::signalComb[ x=x mean=sg_p2 sigma=sg_p3 ] - p.d.f normalization integral is zero or negative @ x=x=352.5, mean=sg_p2=221.646, sigma=sg_p3=12.3173 - p.d.f normalization integral is zero or negative @ x=x=355.5, mean=sg_p2=221.646, sigma=sg_p3=12.3173 - p.d.f normalization integral is zero or negative @ x=x=358.5, mean=sg_p2=221.646, sigma=sg_p3=12.3173 - p.d.f normalization integral is zero or negative @ x=x=361.5, mean=sg_p2=221.646, sigma=sg_p3=12.3173 - p.d.f normalization integral is zero or negative @ x=x=364.5, mean=sg_p2=221.646, sigma=sg_p3=12.3173 - p.d.f normalization integral is zero or negative @ x=x=367.5, mean=sg_p2=221.646, sigma=sg_p3=12.3173 - p.d.f normalization integral is zero or negative @ x=x=370.5, mean=sg_p2=221.646, sigma=sg_p3=12.3173 - p.d.f normalization integral is zero or negative @ x=x=373.5, mean=sg_p2=221.646, sigma=sg_p3=12.3173 - p.d.f normalization integral is zero or negative @ x=x=376.5, mean=sg_p2=221.646, sigma=sg_p3=12.3173 - p.d.f normalization integral is zero or negative @ x=x=379.5, mean=sg_p2=221.646, sigma=sg_p3=12.3173 - p.d.f normalization integral is zero or negative @ x=x=382.5, mean=sg_p2=221.646, sigma=sg_p3=12.3173 - p.d.f normalization integral is zero or negative @ x=x=385.5, mean=sg_p2=221.646, sigma=sg_p3=12.3173 - ... (remaining 23 messages suppressed) - - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=25604.6 FROM MIGRAD STATUS=CONVERGED 410 CALLS 411 TOTAL - EDM=8.53169e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.03032e+02 2.19508e-01 7.06641e-04 2.77604e-01 - 2 sg_p1 9.13654e+00 3.52245e-01 2.95146e-03 6.85002e-02 - 3 sg_p2 3.99251e+02 6.94391e-01 6.24869e-04 -5.23482e-02 - 4 sg_p3 2.15673e+01 1.10701e+00 1.40379e-03 1.05606e-01 - 5 sg_p4 6.42963e-01 3.92422e-02 2.83913e-03 -5.31174e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.818e-02 -2.053e-02 2.561e-02 -7.720e-02 -2.495e-03 - -2.053e-02 1.242e-01 1.174e-01 3.004e-01 1.231e-02 - 2.561e-02 1.174e-01 4.822e-01 3.562e-01 1.450e-02 - -7.720e-02 3.004e-01 3.562e-01 1.226e+00 3.884e-02 - -2.495e-03 1.231e-02 1.450e-02 3.884e-02 1.543e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.49407 1.000 -0.265 0.168 -0.318 -0.289 - 2 0.89076 -0.265 1.000 0.480 0.770 0.889 - 3 0.62968 0.168 0.480 1.000 0.463 0.531 - 4 0.89677 -0.318 0.770 0.463 1.000 0.893 - 5 0.94966 -0.289 0.889 0.531 0.893 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=25604.6 FROM HESSE STATUS=OK 31 CALLS 442 TOTAL - EDM=8.53668e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.03032e+02 2.19804e-01 1.41328e-04 1.01235e-01 - 2 sg_p1 9.13654e+00 3.53820e-01 1.18058e-04 2.27585e-02 - 3 sg_p2 3.99251e+02 6.92171e-01 1.24974e-04 2.54877e+00 - 4 sg_p3 2.15673e+01 1.11233e+00 5.61518e-05 -9.87685e-01 - 5 sg_p4 6.42963e-01 3.94399e-02 5.67827e-04 2.89973e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.831e-02 -2.094e-02 2.565e-02 -7.854e-02 -2.542e-03 - -2.094e-02 1.253e-01 1.167e-01 3.040e-01 1.244e-02 - 2.565e-02 1.167e-01 4.791e-01 3.532e-01 1.440e-02 - -7.854e-02 3.040e-01 3.532e-01 1.238e+00 3.927e-02 - -2.542e-03 1.244e-02 1.440e-02 3.927e-02 1.559e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.49612 1.000 -0.269 0.169 -0.321 -0.293 - 2 0.89179 -0.269 1.000 0.476 0.772 0.890 - 3 0.62659 0.169 0.476 1.000 0.459 0.527 - 4 0.89781 -0.321 0.772 0.459 1.000 0.894 - 5 0.95017 -0.293 0.890 0.527 0.894 1.000 -400 -403.032 +- 0.219804 -9.13654 +- 0.35382 -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 403.031 +- 0.226798 (stat) - 0.376479 + 0.504637 (syst); -0.393186/+0.517221 (total) - Uncertainty on sg_p1 = 9.12153 +- 0.364169 (stat) - 0.014669 + 0.138994 (syst); -0.182675/+0.229073 (total) - Uncertainty on sg_p2 = 399.298 +- 0.70675 (stat) - 1.07894 + 0.548609 (syst); -1.13534/+0.652569 (total) - Uncertainty on sg_p3 = 21.4947 +- 1.13406 (stat) - 0.134294 + 0.783059 (syst); -0.582718/+0.966802 (total) - Uncertainty on sg_p4 = 0.642062 +- 0.0406652 (stat) - 0.00580743 + 0.0455621 (syst); -0.0211457/+0.049893 (total) - === Baseline plot ===
- norm = 790.651 -JEC lnN 1.00381 - -JER lnN 1.01925 - -btag lnN 1.06523 - -sg_p0 param 403.031 -0.393186/+0.517221 -sg_p1 param 9.12153 -0.182675/+0.229073 -sg_p2 param 399.298 -1.13534/+0.652569 -sg_p3 param 21.4947 -0.582718/+0.966802 -sg_p4 param 0.642062 -0.0211457/+0.049893 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_400_novo_285_624/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_400_novo_285_624/data_bkg.log deleted file mode 100644 index 1be2f6e..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_400_novo_285_624/data_bkg.log +++ /dev/null @@ -1,717 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [250,330] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [250,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63590.5 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.69443e-02 5.09000e-01 0.00000e+00 -7.94680e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -8.91126e+00 - 3 par_crystal_2 2.62020e+02 4.00000e+00 1.01181e-01 -1.53451e+00 - 4 par_crystal_3 1.65000e+01 2.70000e+00 0.00000e+00 7.46021e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM MIGRAD STATUS=CONVERGED 482 CALLS 483 TOTAL - EDM=0.000814822 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 4.40594e-01 4.43750e-02 2.48631e-03 2.88668e-01 - 2 par_crystal_1 9.82994e-01 6.48221e-01 2.14269e-02 -5.28345e-03 - 3 par_crystal_2 2.71542e+02 7.41091e-01 7.20683e-03 -9.27818e-02 - 4 par_crystal_3 2.87224e+01 2.18588e+00 3.97473e-02 -6.99277e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.970e-03 -2.333e-02 -5.115e-04 1.392e-02 - -2.333e-02 4.358e-01 4.870e-03 -8.391e-01 - -5.115e-04 4.870e-03 5.496e-01 4.381e-01 - 1.392e-02 -8.391e-01 4.381e-01 5.029e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.88989 1.000 -0.796 -0.016 0.140 - 2 0.92807 -0.796 1.000 0.010 -0.567 - 3 0.40865 -0.016 0.010 1.000 0.264 - 4 0.80948 0.140 -0.567 0.264 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM HESSE STATUS=OK 23 CALLS 506 TOTAL - EDM=0.000711421 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 4.40594e-01 4.64698e-02 4.97262e-04 -9.80558e-01 - 2 par_crystal_1 9.82994e-01 6.55195e-01 8.57075e-04 -6.65795e-01 - 3 par_crystal_2 2.71542e+02 7.38644e-01 1.44137e-03 6.15159e-01 - 4 par_crystal_3 2.87224e+01 2.03002e+00 1.58989e-03 -1.05570e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.160e-03 -2.581e-02 -1.109e-03 1.530e-02 - -2.581e-02 4.456e-01 2.508e-02 -7.234e-01 - -1.109e-03 2.508e-02 5.460e-01 3.687e-01 - 1.530e-02 -7.234e-01 3.687e-01 4.306e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.90014 1.000 -0.832 -0.032 0.159 - 2 0.92960 -0.832 1.000 0.051 -0.522 - 3 0.40186 -0.032 0.051 1.000 0.240 - 4 0.77207 0.159 -0.522 0.240 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63714.2 FROM MIGRAD STATUS=INITIATE 33 CALLS 34 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 2.63122e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -5.45805e+02 - 3 par_gaus_exp_2 6.67498e-01 3.05000e-01 -6.37370e-01 7.03093e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM MIGRAD STATUS=CONVERGED 131 CALLS 132 TOTAL - EDM=6.15917e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.71558e+02 8.05096e-01 6.82817e-03 6.24407e-02 - 2 par_gaus_exp_1 3.06822e+01 1.83071e+00 1.43475e-02 1.11468e-02 - 3 par_gaus_exp_2 3.82770e-01 2.42284e-02 3.05774e-03 -9.77170e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.486e-01 -6.079e-01 -1.588e-03 - -6.079e-01 3.370e+00 3.082e-02 - -1.588e-03 3.082e-02 5.871e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.49876 1.000 -0.411 -0.081 - 2 0.77898 -0.411 1.000 0.693 - 3 0.72797 -0.081 0.693 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM HESSE STATUS=OK 16 CALLS 148 TOTAL - EDM=6.13964e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.71558e+02 8.14214e-01 2.73127e-04 -4.35760e-01 - 2 par_gaus_exp_1 3.06822e+01 1.86973e+00 5.73898e-04 4.10264e-01 - 3 par_gaus_exp_2 3.82770e-01 2.45149e-02 1.22310e-04 -8.97531e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.634e-01 -6.630e-01 -2.137e-03 - -6.630e-01 3.516e+00 3.227e-02 - -2.137e-03 3.227e-02 6.011e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.51526 1.000 -0.434 -0.107 - 2 0.78935 -0.434 1.000 0.702 - 3 0.73544 -0.107 0.702 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,625] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.33953 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.33953) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - ... (remaining 126 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.734607 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.734607) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=317.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=327.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=332.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=342.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=347.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=352.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=357.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=362.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=367.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - ... (remaining 53 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0734613 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0734613 - - FCN=103487 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57093e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.56195e+03 - 3 par_novo_2 -1.33668e+00 2.00000e+01 0.00000e+00 1.53931e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM MIGRAD STATUS=CONVERGED 127 CALLS 128 TOTAL - EDM=3.4171e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.43423e+01 1.81223e-01** at limit ** - 2 par_novo_1 3.86596e+01 2.27294e+00 4.95847e-03 -1.04123e-02 - 3 par_novo_2 -1.27520e+00 7.07738e-02 3.70975e-05 -1.26322e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.231e-09 -8.491e-07 -8.580e-07 - -8.491e-07 5.181e+00 1.547e-01 - -8.580e-07 1.547e-01 5.009e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.53332 1.000 -0.005 -0.154 - 2 0.97096 -0.005 1.000 0.960 - 3 0.97165 -0.154 0.960 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM HESSE STATUS=OK 20 CALLS 148 TOTAL - EDM=3.43726e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.40246e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.86596e+01 2.31421e+00 1.98339e-04 4.46530e-01 - 3 par_novo_2 -1.27520e+00 7.22930e-02 1.48390e-06 -1.27523e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 5.974e-09 2.819e-05 -1.296e-06 - 2.819e-05 5.372e+00 1.502e-01 - -1.296e-06 1.502e-01 5.226e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.85665 1.000 0.157 -0.232 - 2 0.97200 0.157 1.000 0.897 - 3 0.97285 -0.232 0.897 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107513 FROM MIGRAD STATUS=INITIATE 54 CALLS 55 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 1.39168e+03 - 2 par_crystal_1_1 7.96220e-02 5.09000e-01 0.00000e+00 5.33770e+03 - 3 par_crystal_1_2 2.56879e+02 4.00000e+00 -1.56713e-01 -1.96669e+01 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 -8.45862e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.5057e-02 2.3309e-03 4.9678e-02 3.9730e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.029030 TO DIAGONAL. - FCN=103250 FROM MIGRAD STATUS=CONVERGED 436 CALLS 437 TOTAL - EDM=3.52757e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 4.45574e-02 4.37117e-03 3.09465e-04 -4.28177e+00 - 2 par_crystal_1_1 4.36914e+00 6.24106e-01 1.80400e-02 6.63742e-02 - 3 par_crystal_1_2 2.71531e+02 3.44700e+01 5.81266e-02 2.25694e-02 - 4 par_crystal_1_3 3.37290e+00 2.71702e-01 3.13791e-03 -4.26197e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.911e-05 -1.221e-03 2.089e-01 3.572e-04 - -1.221e-03 4.065e-01 -2.690e+01 -6.822e-02 - 2.089e-01 -2.690e+01 3.429e+03 1.167e+01 - 3.572e-04 -6.822e-02 1.167e+01 7.401e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99136 1.000 -0.438 0.816 0.300 - 2 0.97307 -0.438 1.000 -0.720 -0.393 - 3 0.99735 0.816 -0.720 1.000 0.733 - 4 0.98716 0.300 -0.393 0.733 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -8.0089e-04 4.0193e-04 7.1213e-02 3.9292e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.004730 TO DIAGONAL. - FCN=103250 FROM HESSE STATUS=NOT POSDEF 23 CALLS 460 TOTAL - EDM=3.56127e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 4.45574e-02 7.42610e-03 6.18930e-05 -1.40582e+00 - 2 par_crystal_1_1 4.36914e+00 4.67550e-01 7.21602e-04 -3.93511e+00 - 3 par_crystal_1_2 2.71531e+02 3.29814e+01 2.32506e-03 -3.75607e+00 - 4 par_crystal_1_3 3.37290e+00 5.01685e-01 1.25517e-04 -1.80638e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.515e-05 2.851e-04 2.343e-01 -1.699e-03 - 2.851e-04 2.238e-01 -2.528e+00 1.548e-02 - 2.343e-01 -2.528e+00 2.967e+03 1.176e+01 - -1.699e-03 1.548e-02 1.176e+01 2.538e-01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99694 1.000 0.081 0.579 -0.454 - 2 0.94927 0.081 1.000 -0.098 0.065 - 3 0.99687 0.579 -0.098 1.000 0.429 - 4 0.99618 -0.454 0.065 0.429 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 14211 - Background number of gaus_exp_252_330 = 14211 - Background number of novo_285_624 = 17618.3 - Background number of crystal_1_285_624 = 17618.3 - Background number of gaus_bern_285_624 = 17618.3 - Background number of landau_285_624 = 17618.3 -par_crystal_0 param 0.440594 0.0464698 -par_crystal_1 param 0.982994 0.655195 -par_crystal_2 param 271.542 0.738644 -par_crystal_3 param 28.7224 2.03002 -par_crystal_1_0 param 0.0445574 0.0074261 -par_crystal_1_1 param 4.36914 0.46755 -par_crystal_1_2 param 271.531 32.9814 -par_crystal_1_3 param 3.3729 0.501685 -par_gaus_exp_0 param 271.558 0.814214 -par_gaus_exp_1 param 30.6822 1.86973 -par_gaus_exp_2 param 0.38277 0.0245149 -par_novo_0 param 250 34.0246 -par_novo_1 param 38.6596 2.31421 -par_novo_2 param -1.2752 0.072293 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_400_novo_285_624/datacard_400_novo_285_624.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_400_novo_285_624/datacard_400_novo_285_624.txt deleted file mode 100644 index 727e855..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_400_novo_285_624/datacard_400_novo_285_624.txt +++ /dev/null @@ -1,29 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_400.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_novo_285_624.root HbbHbb:f_novo -shapes data_obs HbbHbb w_background_novo_285_624.root HbbHbb:data_obs_novo_285_624 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 790.651 17618.3 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06523 - -JER lnN 1.01925 - -JEC lnN 1.00381 - -trigger lnN 1.10 - -sg_p0 param 403.031 -0.393186/+0.517221 -sg_p1 param 9.12153 -0.182675/+0.229073 -sg_p2 param 399.298 -1.13534/+0.652569 -sg_p3 param 21.4947 -0.582718/+0.966802 -sg_p4 param 0.642062 -0.0211457/+0.049893 -par_novo_0 param 250 34.0246 -par_novo_1 param 38.6596 2.31421 -par_novo_2 param -1.2752 0.072293 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_400_novo_285_624/signal400_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_400_novo_285_624/signal400_sig.log deleted file mode 100644 index 9acbb71..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_400_novo_285_624/signal400_sig.log +++ /dev/null @@ -1,869 +0,0 @@ - -Processing test.c... -nSignal_init = 299800 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=33249 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.95000e+02 7.00000e+00 2.01358e-01 2.15243e+03 - 2 sg_p1 2.15000e+01 3.70000e+00 2.01358e-01 1.37205e+02 - 3 sg_p2 4.15000e+02 9.00000e+00 2.01358e-01 1.80805e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -7.17737e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -9.38307e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31857.3 FROM MIGRAD STATUS=CONVERGED 163 CALLS 164 TOTAL - EDM=1.96152e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.85506e+02 3.78343e-01 1.28380e-03 -1.79696e-02 - 2 sg_p1 2.16205e+01 3.35235e-01 1.80013e-03 -1.11987e-02 - 3 sg_p2 3.70000e+02 1.32448e-01 9.45540e-03** at limit ** - 4 sg_p3 6.22011e+01 2.14887e+00 4.32821e-03 3.71767e-02 - 5 sg_p4 7.86673e-01 1.32740e-02 2.60376e-03 -4.77327e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.431e-01 -3.809e-02 -1.363e-08 -2.470e-01 -1.694e-03 - -3.809e-02 1.124e-01 1.303e-09 3.035e-01 2.581e-03 - -1.363e-08 1.303e-09 4.343e-10 9.091e-11 -1.595e-10 - -2.470e-01 3.035e-01 9.091e-11 4.621e+00 1.948e-02 - -1.694e-03 2.581e-03 -1.595e-10 1.948e-02 1.763e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.37324 1.000 -0.300 -0.002 -0.304 -0.337 - 2 0.59095 -0.300 1.000 0.000 0.421 0.580 - 3 0.00218 -0.002 0.000 1.000 0.000 -0.001 - 4 0.68717 -0.304 0.421 0.000 1.000 0.682 - 5 0.75833 -0.337 0.580 -0.001 0.682 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31857.3 FROM HESSE STATUS=OK 31 CALLS 195 TOTAL - EDM=1.96284e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.85506e+02 3.78550e-01 5.13518e-05 -2.74710e-01 - 2 sg_p1 2.16205e+01 3.35880e-01 7.20051e-05 6.51457e-03 - 3 sg_p2 3.70000e+02 1.32456e-01 1.89108e-03 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 6.22011e+01 2.15536e+00 1.73128e-04 1.60716e-01 - 5 sg_p4 7.86673e-01 1.33169e-02 5.20752e-04 6.10583e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.433e-01 -3.844e-02 -2.714e-09 -2.490e-01 -1.705e-03 - -3.844e-02 1.128e-01 2.582e-10 3.070e-01 2.603e-03 - -2.714e-09 2.582e-10 4.343e-10 2.856e-11 -3.187e-11 - -2.490e-01 3.070e-01 2.856e-11 4.649e+00 1.966e-02 - -1.705e-03 2.603e-03 -3.187e-11 1.966e-02 1.774e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.37450 1.000 -0.302 -0.000 -0.305 -0.338 - 2 0.59306 -0.302 1.000 0.000 0.424 0.582 - 3 0.00043 -0.000 0.000 1.000 0.000 -0.000 - 4 0.68946 -0.305 0.424 0.000 1.000 0.685 - 5 0.76013 -0.338 0.582 -0.000 0.685 1.000 -400 -385.506 +- 0.37855 -21.6205 +- 0.33588 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=33081 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.95000e+02 7.00000e+00 2.01358e-01 1.81151e+03 - 2 sg_p1 2.15000e+01 3.70000e+00 2.01358e-01 2.25726e+02 - 3 sg_p2 4.15000e+02 9.00000e+00 2.01358e-01 1.70388e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -5.66591e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -9.95873e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31839.3 FROM MIGRAD STATUS=CONVERGED 160 CALLS 161 TOTAL - EDM=5.64365e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.87437e+02 3.85764e-01 1.26589e-03 -5.15663e-01 - 2 sg_p1 2.16839e+01 3.35523e-01 1.79115e-03 1.07532e-01 - 3 sg_p2 3.70000e+02 1.39833e-01 9.73370e-03** at limit ** - 4 sg_p3 6.08508e+01 2.10095e+00 4.12758e-03 3.24347e-02 - 5 sg_p4 7.89007e-01 1.33639e-02 2.62549e-03 -2.60744e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.488e-01 -4.305e-02 -2.519e-07 -2.764e-01 -1.946e-03 - -4.305e-02 1.126e-01 -9.366e-09 3.008e-01 2.619e-03 - -2.519e-07 -9.366e-09 1.704e-07 -3.173e-07 -6.072e-09 - -2.764e-01 3.008e-01 -3.173e-07 4.417e+00 1.920e-02 - -1.946e-03 2.619e-03 -6.072e-09 1.920e-02 1.787e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.41597 1.000 -0.333 -0.002 -0.341 -0.377 - 2 0.59692 -0.333 1.000 -0.000 0.427 0.584 - 3 0.00247 -0.002 -0.000 1.000 -0.000 -0.001 - 4 0.68971 -0.341 0.427 -0.000 1.000 0.684 - 5 0.76090 -0.377 0.584 -0.001 0.684 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31839.3 FROM HESSE STATUS=OK 31 CALLS 192 TOTAL - EDM=5.65901e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.87437e+02 3.86035e-01 2.53178e-04 -2.17803e-01 - 2 sg_p1 2.16839e+01 3.36156e-01 7.16461e-05 9.94233e-03 - 3 sg_p2 3.70000e+02 1.39842e-01 1.94674e-03 -1.57091e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 6.08508e+01 2.10696e+00 1.65103e-04 1.30388e-01 - 5 sg_p4 7.89007e-01 1.34047e-02 5.25097e-04 6.16292e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.490e-01 -4.342e-02 -4.545e-08 -2.786e-01 -1.959e-03 - -4.342e-02 1.130e-01 -1.794e-09 3.041e-01 2.641e-03 - -4.545e-08 -1.794e-09 1.704e-07 -5.759e-08 -1.102e-09 - -2.786e-01 3.041e-01 -5.759e-08 4.443e+00 1.938e-02 - -1.959e-03 2.641e-03 -1.102e-09 1.938e-02 1.798e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.41736 1.000 -0.335 -0.000 -0.342 -0.378 - 2 0.59895 -0.335 1.000 -0.000 0.429 0.586 - 3 0.00045 -0.000 -0.000 1.000 -0.000 -0.000 - 4 0.69187 -0.342 0.429 -0.000 1.000 0.686 - 5 0.76259 -0.378 0.586 -0.000 0.686 1.000 -400 -387.437 +- 0.386035 -21.6839 +- 0.336156 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=33253.4 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.95000e+02 7.00000e+00 2.01358e-01 2.45970e+03 - 2 sg_p1 2.15000e+01 3.70000e+00 2.01358e-01 2.71903e+00 - 3 sg_p2 4.15000e+02 9.00000e+00 2.01358e-01 1.91853e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -8.75244e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -8.55185e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31693.5 FROM MIGRAD STATUS=CONVERGED 158 CALLS 159 TOTAL - EDM=3.35227e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 3.83669e+02 3.75050e-01 1.31711e-03 2.71422e-01 - 2 sg_p1 2.15657e+01 3.35007e-01 1.81860e-03 2.93721e-01 - 3 sg_p2 3.70000e+02 1.18706e-01 8.94035e-03** at limit ** - 4 sg_p3 6.23837e+01 2.11611e+00 4.26491e-03 6.14124e-02 - 5 sg_p4 7.79157e-01 1.33723e-02 2.61066e-03 -1.92762e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.407e-01 -3.293e-02 -8.781e-08 -2.099e-01 -1.470e-03 - -3.293e-02 1.122e-01 1.601e-08 2.882e-01 2.545e-03 - -8.781e-08 1.601e-08 1.802e-08 1.177e-07 -2.465e-10 - -2.099e-01 2.882e-01 1.177e-07 4.481e+00 1.922e-02 - -1.470e-03 2.545e-03 -2.465e-10 1.922e-02 1.789e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.32654 1.000 -0.262 -0.002 -0.264 -0.293 - 2 0.57704 -0.262 1.000 0.000 0.406 0.568 - 3 0.00196 -0.002 0.000 1.000 0.000 -0.000 - 4 0.68265 -0.264 0.406 0.000 1.000 0.679 - 5 0.75308 -0.293 0.568 -0.000 0.679 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31693.5 FROM HESSE STATUS=OK 31 CALLS 190 TOTAL - EDM=3.3512e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 3.83669e+02 3.75180e-01 2.63421e-04 -3.29696e-01 - 2 sg_p1 2.15657e+01 3.35505e-01 3.63719e-04 3.55092e-03 - 3 sg_p2 3.70000e+02 1.18712e-01 1.78807e-03 -1.57084e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 6.23837e+01 2.12217e+00 1.70597e-04 1.64828e-01 - 5 sg_p4 7.79157e-01 1.34121e-02 5.22132e-04 5.92353e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.408e-01 -3.318e-02 -1.693e-08 -2.114e-01 -1.478e-03 - -3.318e-02 1.126e-01 3.095e-09 2.911e-01 2.564e-03 - -1.693e-08 3.095e-09 1.803e-08 2.290e-08 -4.701e-11 - -2.114e-01 2.911e-01 2.290e-08 4.507e+00 1.940e-02 - -1.478e-03 2.564e-03 -4.701e-11 1.940e-02 1.799e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.32749 1.000 -0.264 -0.000 -0.265 -0.294 - 2 0.57875 -0.264 1.000 0.000 0.409 0.570 - 3 0.00038 -0.000 0.000 1.000 0.000 -0.000 - 4 0.68487 -0.265 0.409 0.000 1.000 0.681 - 5 0.75478 -0.294 0.570 -0.000 0.681 1.000 -400 -383.669 +- 0.37518 -21.5657 +- 0.335505 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=24472.6 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.00000e+02 6.00000e+00 2.01358e-01 -3.05856e+03 - 2 sg_p1 9.00000e+00 1.20000e+00 2.01358e-01 -2.09033e+02 - 3 sg_p2 3.35000e+02 2.30000e+01 2.01358e-01 -1.48368e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -1.94112e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -7.96270e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24016.6 FROM MIGRAD STATUS=CONVERGED 509 CALLS 510 TOTAL - EDM=2.5866e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.03031e+02 2.26519e-01 7.06422e-04 -6.24953e-01 - 2 sg_p1 9.12153e+00 3.63993e-01 2.95185e-03 -8.05301e-02 - 3 sg_p2 3.99298e+02 7.10621e-01 6.21816e-04 1.57926e-02 - 4 sg_p3 2.14947e+01 1.13267e+00 1.39396e-03 -1.73297e-02 - 5 sg_p4 6.42062e-01 4.06347e-02 2.84361e-03 2.63915e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 5.131e-02 -2.172e-02 2.774e-02 -8.091e-02 -2.646e-03 - -2.172e-02 1.327e-01 1.233e-01 3.176e-01 1.317e-02 - 2.774e-02 1.233e-01 5.050e-01 3.697e-01 1.525e-02 - -8.091e-02 3.176e-01 3.697e-01 1.283e+00 4.116e-02 - -2.646e-03 1.317e-02 1.525e-02 4.116e-02 1.655e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.49329 1.000 -0.263 0.172 -0.315 -0.287 - 2 0.89097 -0.263 1.000 0.476 0.770 0.889 - 3 0.62717 0.172 0.476 1.000 0.459 0.527 - 4 0.89690 -0.315 0.770 0.459 1.000 0.893 - 5 0.94977 -0.287 0.889 0.527 0.893 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24016.6 FROM HESSE STATUS=OK 31 CALLS 541 TOTAL - EDM=2.57939e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.03031e+02 2.26798e-01 1.41284e-04 1.01207e-01 - 2 sg_p1 9.12153e+00 3.64169e-01 5.90369e-04 2.02560e-02 - 3 sg_p2 3.99298e+02 7.06750e-01 2.48726e-05 2.54828e+00 - 4 sg_p3 2.14947e+01 1.13406e+00 5.57583e-05 -9.89569e-01 - 5 sg_p4 6.42062e-01 4.06652e-02 5.68723e-04 2.88093e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 5.144e-02 -2.202e-02 2.804e-02 -8.193e-02 -2.679e-03 - -2.202e-02 1.328e-01 1.208e-01 3.183e-01 1.319e-02 - 2.804e-02 1.208e-01 4.995e-01 3.614e-01 1.495e-02 - -8.193e-02 3.183e-01 3.614e-01 1.286e+00 4.125e-02 - -2.679e-03 1.319e-02 1.495e-02 4.125e-02 1.658e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.49518 1.000 -0.266 0.175 -0.319 -0.290 - 2 0.89108 -0.266 1.000 0.469 0.770 0.889 - 3 0.62183 0.175 0.469 1.000 0.451 0.520 - 4 0.89717 -0.319 0.770 0.451 1.000 0.893 - 5 0.94985 -0.290 0.889 0.520 0.893 1.000 -400 -403.031 +- 0.226798 -9.12153 +- 0.364169 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=24696.6 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.00000e+02 6.00000e+00 2.01358e-01 -3.50567e+03 - 2 sg_p1 9.00000e+00 1.20000e+00 2.01358e-01 -2.99560e+02 - 3 sg_p2 3.35000e+02 2.30000e+01 2.01358e-01 -1.90457e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -2.28000e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -7.50850e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24177.3 FROM MIGRAD STATUS=CONVERGED 461 CALLS 462 TOTAL - EDM=2.05098e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.03536e+02 2.36042e-01 7.27613e-04 1.38133e-01 - 2 sg_p1 9.26052e+00 3.88073e-01 3.03064e-03 3.06014e-03 - 3 sg_p2 3.99846e+02 7.05843e-01 6.16081e-04 4.24773e-01 - 4 sg_p3 2.13604e+01 1.14532e+00 1.37198e-03 1.42343e-01 - 5 sg_p4 6.36255e-01 4.36783e-02 2.89979e-03 -2.83285e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 5.572e-02 -2.634e-02 2.796e-02 -9.283e-02 -3.232e-03 - -2.634e-02 1.508e-01 1.325e-01 3.480e-01 1.525e-02 - 2.796e-02 1.325e-01 4.982e-01 3.683e-01 1.636e-02 - -9.283e-02 3.480e-01 3.683e-01 1.312e+00 4.510e-02 - -3.232e-03 1.525e-02 1.636e-02 4.510e-02 1.913e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.51806 1.000 -0.287 0.168 -0.343 -0.313 - 2 0.90009 -0.287 1.000 0.483 0.782 0.898 - 3 0.63614 0.168 0.483 1.000 0.456 0.530 - 4 0.90455 -0.343 0.782 0.456 1.000 0.900 - 5 0.95487 -0.313 0.898 0.530 0.900 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24177.3 FROM HESSE STATUS=OK 31 CALLS 493 TOTAL - EDM=2.03888e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.03536e+02 2.36409e-01 1.45523e-04 1.18130e-01 - 2 sg_p1 9.26052e+00 3.89977e-01 1.21225e-04 4.34340e-02 - 3 sg_p2 3.99846e+02 7.03519e-01 1.23216e-04 2.54251e+00 - 4 sg_p3 2.13604e+01 1.15130e+00 5.48791e-05 -9.93073e-01 - 5 sg_p4 6.36255e-01 4.39145e-02 5.79958e-04 2.76000e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 5.589e-02 -2.689e-02 2.803e-02 -9.446e-02 -3.293e-03 - -2.689e-02 1.523e-01 1.317e-01 3.524e-01 1.543e-02 - 2.803e-02 1.317e-01 4.949e-01 3.651e-01 1.624e-02 - -9.446e-02 3.524e-01 3.651e-01 1.326e+00 4.564e-02 - -3.293e-03 1.543e-02 1.624e-02 4.564e-02 1.934e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.52024 1.000 -0.291 0.169 -0.347 -0.317 - 2 0.90112 -0.291 1.000 0.480 0.784 0.899 - 3 0.63303 0.169 0.480 1.000 0.451 0.525 - 4 0.90559 -0.347 0.784 0.451 1.000 0.901 - 5 0.95536 -0.317 0.899 0.525 0.901 1.000 -400 -403.536 +- 0.236409 -9.26052 +- 0.389977 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=24015.5 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.00000e+02 6.00000e+00 2.01358e-01 -2.73383e+03 - 2 sg_p1 9.00000e+00 1.20000e+00 2.01358e-01 -1.14601e+02 - 3 sg_p2 3.35000e+02 2.30000e+01 2.01358e-01 -1.01620e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -1.59452e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -8.70364e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23589.1 FROM MIGRAD STATUS=CONVERGED 571 CALLS 572 TOTAL - EDM=2.11975e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.02655e+02 2.13288e-01 6.62907e-04 -4.46168e-01 - 2 sg_p1 9.23949e+00 3.37872e-01 2.75680e-03 -1.32311e-01 - 3 sg_p2 3.98219e+02 8.68178e-01 7.02928e-04 2.98040e-01 - 4 sg_p3 2.22778e+01 1.33749e+00 1.59705e-03 -1.34034e-01 - 5 sg_p4 6.87624e-01 3.80009e-02 2.77016e-03 9.90234e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.549e-02 -1.871e-02 2.077e-02 -9.028e-02 -2.314e-03 - -1.871e-02 1.143e-01 1.614e-01 3.481e-01 1.139e-02 - 2.077e-02 1.614e-01 7.538e-01 6.352e-01 2.015e-02 - -9.028e-02 3.481e-01 6.352e-01 1.790e+00 4.538e-02 - -2.314e-03 1.139e-02 2.015e-02 4.538e-02 1.447e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.48247 1.000 -0.259 0.112 -0.316 -0.285 - 2 0.88740 -0.259 1.000 0.550 0.770 0.886 - 3 0.68165 0.112 0.550 1.000 0.547 0.610 - 4 0.89573 -0.316 0.770 0.547 1.000 0.892 - 5 0.94802 -0.285 0.886 0.610 0.892 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23589.1 FROM HESSE STATUS=OK 31 CALLS 603 TOTAL - EDM=2.11621e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.02655e+02 2.13549e-01 1.32581e-04 8.86008e-02 - 2 sg_p1 9.23949e+00 3.38145e-01 5.51360e-04 3.99260e-02 - 3 sg_p2 3.98219e+02 8.63799e-01 1.40586e-04 2.55955e+00 - 4 sg_p3 2.22778e+01 1.33974e+00 6.38820e-05 -9.69500e-01 - 5 sg_p4 6.87624e-01 3.80543e-02 5.54033e-04 3.84665e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.560e-02 -1.897e-02 2.093e-02 -9.145e-02 -2.344e-03 - -1.897e-02 1.145e-01 1.594e-01 3.492e-01 1.142e-02 - 2.093e-02 1.594e-01 7.462e-01 6.264e-01 1.990e-02 - -9.145e-02 3.492e-01 6.264e-01 1.796e+00 4.554e-02 - -2.344e-03 1.142e-02 1.990e-02 4.554e-02 1.451e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.48441 1.000 -0.263 0.113 -0.320 -0.288 - 2 0.88760 -0.263 1.000 0.545 0.770 0.886 - 3 0.67765 0.113 0.545 1.000 0.541 0.605 - 4 0.89610 -0.320 0.770 0.541 1.000 0.892 - 5 0.94817 -0.288 0.886 0.605 0.892 1.000 -400 -402.655 +- 0.213549 -9.23949 +- 0.338145 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=23933.8 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.00000e+02 6.00000e+00 2.01358e-01 -3.00563e+03 - 2 sg_p1 9.00000e+00 1.20000e+00 2.01358e-01 -2.26149e+02 - 3 sg_p2 3.35000e+02 2.30000e+01 2.01358e-01 -1.57290e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -1.98719e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -7.58184e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=23482 FROM MIGRAD STATUS=CONVERGED 425 CALLS 426 TOTAL - EDM=1.98551e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 2.6 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.03064e+02 2.30766e-01 4.51369e-05 5.86157e-01 - 2 sg_p1 9.18055e+00 3.67314e-01 -4.43730e-04 8.55470e-03 - 3 sg_p2 3.99566e+02 7.08192e-01 -8.00128e-05 -4.66991e-01 - 4 sg_p3 2.13892e+01 1.12890e+00 4.69804e-04 -1.79727e-01 - 5 sg_p4 6.36669e-01 4.03843e-02 7.38905e-05 1.36445e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 5.325e-02 -2.904e-02 2.726e-02 -9.686e-02 -3.527e-03 - -2.904e-02 1.351e-01 1.202e-01 3.188e-01 1.315e-02 - 2.726e-02 1.202e-01 5.015e-01 3.501e-01 1.456e-02 - -9.686e-02 3.188e-01 3.501e-01 1.275e+00 4.101e-02 - -3.527e-03 1.315e-02 1.456e-02 4.101e-02 1.635e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.56644 1.000 -0.342 0.167 -0.372 -0.378 - 2 0.88731 -0.342 1.000 0.462 0.768 0.885 - 3 0.64043 0.167 0.462 1.000 0.438 0.509 - 4 0.90083 -0.372 0.768 0.438 1.000 0.898 - 5 0.95189 -0.378 0.885 0.509 0.898 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23482 FROM HESSE STATUS=OK 35 CALLS 461 TOTAL - EDM=5.54045e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.03064e+02 2.33269e-01 7.19455e-04 1.02309e-01 - 2 sg_p1 9.18055e+00 3.92591e-01 3.01012e-03 3.00958e-02 - 3 sg_p2 3.99566e+02 7.11832e-01 6.13401e-04 2.54546e+00 - 4 sg_p3 2.13892e+01 1.16905e+00 1.37125e-03 -9.92320e-01 - 5 sg_p4 6.36669e-01 4.39485e-02 2.87997e-03 2.76861e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 5.442e-02 -2.298e-02 3.133e-02 -8.326e-02 -2.828e-03 - -2.298e-02 1.543e-01 1.349e-01 3.609e-01 1.554e-02 - 3.133e-02 1.349e-01 5.067e-01 3.816e-01 1.648e-02 - -8.326e-02 3.609e-01 3.816e-01 1.367e+00 4.638e-02 - -2.828e-03 1.554e-02 1.648e-02 4.638e-02 1.937e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.49395 1.000 -0.251 0.189 -0.305 -0.275 - 2 0.90095 -0.251 1.000 0.482 0.786 0.899 - 3 0.63094 0.189 0.482 1.000 0.459 0.526 - 4 0.90514 -0.305 0.786 0.459 1.000 0.901 - 5 0.95480 -0.275 0.899 0.526 0.901 1.000 -400 -403.064 +- 0.233269 -9.18055 +- 0.392591 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=24885.4 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.00000e+02 6.00000e+00 2.01358e-01 -3.11264e+03 - 2 sg_p1 9.00000e+00 1.20000e+00 2.01358e-01 -1.79480e+02 - 3 sg_p2 3.35000e+02 2.30000e+01 2.01358e-01 -1.39340e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -1.92985e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -8.63355e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24409.7 FROM MIGRAD STATUS=CONVERGED 428 CALLS 429 TOTAL - EDM=7.26443e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.02955e+02 2.19114e-01 6.87184e-04 -4.52991e-01 - 2 sg_p1 9.16571e+00 3.57674e-01 2.86480e-03 -1.28599e-01 - 3 sg_p2 3.99199e+02 7.40925e-01 6.46031e-04 5.84783e-01 - 4 sg_p3 2.16431e+01 1.21207e+00 1.45003e-03 -5.04696e-01 - 5 sg_p4 6.62907e-01 4.05793e-02 2.83164e-03 1.71367e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.801e-02 -2.192e-02 2.514e-02 -8.718e-02 -2.692e-03 - -2.192e-02 1.281e-01 1.292e-01 3.393e-01 1.300e-02 - 2.514e-02 1.292e-01 5.490e-01 4.252e-01 1.618e-02 - -8.718e-02 3.393e-01 4.252e-01 1.470e+00 4.429e-02 - -2.692e-03 1.300e-02 1.618e-02 4.429e-02 1.651e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.49883 1.000 -0.280 0.155 -0.328 -0.302 - 2 0.89599 -0.280 1.000 0.487 0.782 0.894 - 3 0.63326 0.155 0.487 1.000 0.473 0.538 - 4 0.90259 -0.328 0.782 0.473 1.000 0.899 - 5 0.95237 -0.302 0.894 0.538 0.899 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24409.7 FROM HESSE STATUS=OK 31 CALLS 460 TOTAL - EDM=7.27657e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.02955e+02 2.19385e-01 1.37437e-04 9.86503e-02 - 2 sg_p1 9.16571e+00 3.58424e-01 5.72960e-04 2.76226e-02 - 3 sg_p2 3.99199e+02 7.37765e-01 1.29206e-04 2.54932e+00 - 4 sg_p3 2.16431e+01 1.21551e+00 2.90006e-04 -9.85719e-01 - 5 sg_p4 6.62907e-01 4.06836e-02 5.66328e-04 3.31874e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.813e-02 -2.225e-02 2.533e-02 -8.836e-02 -2.729e-03 - -2.225e-02 1.286e-01 1.275e-01 3.414e-01 1.307e-02 - 2.533e-02 1.275e-01 5.443e-01 4.191e-01 1.598e-02 - -8.836e-02 3.414e-01 4.191e-01 1.478e+00 4.455e-02 - -2.729e-03 1.307e-02 1.598e-02 4.455e-02 1.659e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.50069 1.000 -0.283 0.157 -0.331 -0.305 - 2 0.89645 -0.283 1.000 0.482 0.783 0.895 - 3 0.62918 0.157 0.482 1.000 0.467 0.532 - 4 0.90317 -0.331 0.783 0.467 1.000 0.900 - 5 0.95262 -0.305 0.895 0.532 0.900 1.000 -400 -402.955 +- 0.219385 -9.16571 +- 0.358424 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=22933.4 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.00000e+02 6.00000e+00 2.01358e-01 -2.87100e+03 - 2 sg_p1 9.00000e+00 1.20000e+00 2.01358e-01 -1.93992e+02 - 3 sg_p2 3.35000e+02 2.30000e+01 2.01358e-01 -1.39002e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -1.82300e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -7.50242e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=22503.6 FROM MIGRAD STATUS=CONVERGED 449 CALLS 450 TOTAL - EDM=1.18063e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.03032e+02 2.33943e-01 7.06213e-04 9.04520e-02 - 2 sg_p1 9.10686e+00 3.76352e-01 2.94856e-03 -2.29097e-02 - 3 sg_p2 3.99344e+02 7.27483e-01 6.18170e-04 -1.42732e-01 - 4 sg_p3 2.14204e+01 1.15968e+00 1.38769e-03 7.24703e-02 - 5 sg_p4 6.41123e-01 4.21101e-02 2.84478e-03 -3.40374e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 5.473e-02 -2.306e-02 3.001e-02 -8.509e-02 -2.816e-03 - -2.306e-02 1.418e-01 1.295e-01 3.363e-01 1.412e-02 - 3.001e-02 1.295e-01 5.292e-01 3.838e-01 1.605e-02 - -8.509e-02 3.363e-01 3.838e-01 1.345e+00 4.369e-02 - -2.816e-03 1.412e-02 1.605e-02 4.369e-02 1.778e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.49289 1.000 -0.262 0.176 -0.314 -0.285 - 2 0.89116 -0.262 1.000 0.473 0.770 0.889 - 3 0.62460 0.176 0.473 1.000 0.455 0.523 - 4 0.89709 -0.314 0.770 0.455 1.000 0.893 - 5 0.94991 -0.285 0.889 0.523 0.893 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=22503.6 FROM HESSE STATUS=OK 31 CALLS 481 TOTAL - EDM=1.18704e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.03032e+02 2.34247e-01 1.41243e-04 1.01255e-01 - 2 sg_p1 9.10686e+00 3.78028e-01 1.17943e-04 1.78107e-02 - 3 sg_p2 3.99344e+02 7.25174e-01 1.23634e-04 2.54779e+00 - 4 sg_p3 2.14204e+01 1.16522e+00 5.55076e-05 -9.91505e-01 - 5 sg_p4 6.41123e-01 4.23208e-02 5.68957e-04 2.86134e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 5.487e-02 -2.352e-02 3.007e-02 -8.655e-02 -2.868e-03 - -2.352e-02 1.431e-01 1.286e-01 3.403e-01 1.427e-02 - 3.007e-02 1.286e-01 5.259e-01 3.804e-01 1.593e-02 - -8.655e-02 3.403e-01 3.804e-01 1.358e+00 4.417e-02 - -2.868e-03 1.427e-02 1.593e-02 4.417e-02 1.796e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.49488 1.000 -0.265 0.177 -0.317 -0.289 - 2 0.89218 -0.265 1.000 0.469 0.772 0.890 - 3 0.62148 0.177 0.469 1.000 0.450 0.519 - 4 0.89813 -0.317 0.772 0.450 1.000 0.894 - 5 0.95042 -0.289 0.890 0.519 0.894 1.000 -400 -403.032 +- 0.234247 -9.10686 +- 0.378028 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=26088.1 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.00000e+02 6.00000e+00 2.01358e-01 -3.25521e+03 - 2 sg_p1 9.00000e+00 1.20000e+00 2.01358e-01 -2.24913e+02 - 3 sg_p2 3.35000e+02 2.30000e+01 2.01358e-01 -1.58204e+02 - 4 sg_p3 8.00000e+01 1.40000e+01 2.01358e-01 -2.06494e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -8.44374e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.85098 added to diagonal of error matrix -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (43592.9) to force MIGRAD to back out of this region. Error log follows -Parameter values: sg_p0=411.751, sg_p1=10.1393, sg_p2=221.646, sg_p3=12.3173, sg_p4=0.392797 -RooGaussian::signalComb[ x=x mean=sg_p2 sigma=sg_p3 ] - p.d.f normalization integral is zero or negative @ x=x=352.5, mean=sg_p2=221.646, sigma=sg_p3=12.3173 - p.d.f normalization integral is zero or negative @ x=x=355.5, mean=sg_p2=221.646, sigma=sg_p3=12.3173 - p.d.f normalization integral is zero or negative @ x=x=358.5, mean=sg_p2=221.646, sigma=sg_p3=12.3173 - p.d.f normalization integral is zero or negative @ x=x=361.5, mean=sg_p2=221.646, sigma=sg_p3=12.3173 - p.d.f normalization integral is zero or negative @ x=x=364.5, mean=sg_p2=221.646, sigma=sg_p3=12.3173 - p.d.f normalization integral is zero or negative @ x=x=367.5, mean=sg_p2=221.646, sigma=sg_p3=12.3173 - p.d.f normalization integral is zero or negative @ x=x=370.5, mean=sg_p2=221.646, sigma=sg_p3=12.3173 - p.d.f normalization integral is zero or negative @ x=x=373.5, mean=sg_p2=221.646, sigma=sg_p3=12.3173 - p.d.f normalization integral is zero or negative @ x=x=376.5, mean=sg_p2=221.646, sigma=sg_p3=12.3173 - p.d.f normalization integral is zero or negative @ x=x=379.5, mean=sg_p2=221.646, sigma=sg_p3=12.3173 - p.d.f normalization integral is zero or negative @ x=x=382.5, mean=sg_p2=221.646, sigma=sg_p3=12.3173 - p.d.f normalization integral is zero or negative @ x=x=385.5, mean=sg_p2=221.646, sigma=sg_p3=12.3173 - ... (remaining 23 messages suppressed) - - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=25604.6 FROM MIGRAD STATUS=CONVERGED 410 CALLS 411 TOTAL - EDM=8.53169e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.03032e+02 2.19508e-01 7.06641e-04 2.77604e-01 - 2 sg_p1 9.13654e+00 3.52245e-01 2.95146e-03 6.85002e-02 - 3 sg_p2 3.99251e+02 6.94391e-01 6.24869e-04 -5.23482e-02 - 4 sg_p3 2.15673e+01 1.10701e+00 1.40379e-03 1.05606e-01 - 5 sg_p4 6.42963e-01 3.92422e-02 2.83913e-03 -5.31174e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.818e-02 -2.053e-02 2.561e-02 -7.720e-02 -2.495e-03 - -2.053e-02 1.242e-01 1.174e-01 3.004e-01 1.231e-02 - 2.561e-02 1.174e-01 4.822e-01 3.562e-01 1.450e-02 - -7.720e-02 3.004e-01 3.562e-01 1.226e+00 3.884e-02 - -2.495e-03 1.231e-02 1.450e-02 3.884e-02 1.543e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.49407 1.000 -0.265 0.168 -0.318 -0.289 - 2 0.89076 -0.265 1.000 0.480 0.770 0.889 - 3 0.62968 0.168 0.480 1.000 0.463 0.531 - 4 0.89677 -0.318 0.770 0.463 1.000 0.893 - 5 0.94966 -0.289 0.889 0.531 0.893 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=25604.6 FROM HESSE STATUS=OK 31 CALLS 442 TOTAL - EDM=8.53668e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.03032e+02 2.19804e-01 1.41328e-04 1.01235e-01 - 2 sg_p1 9.13654e+00 3.53820e-01 1.18058e-04 2.27585e-02 - 3 sg_p2 3.99251e+02 6.92171e-01 1.24974e-04 2.54877e+00 - 4 sg_p3 2.15673e+01 1.11233e+00 5.61518e-05 -9.87685e-01 - 5 sg_p4 6.42963e-01 3.94399e-02 5.67827e-04 2.89973e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.831e-02 -2.094e-02 2.565e-02 -7.854e-02 -2.542e-03 - -2.094e-02 1.253e-01 1.167e-01 3.040e-01 1.244e-02 - 2.565e-02 1.167e-01 4.791e-01 3.532e-01 1.440e-02 - -7.854e-02 3.040e-01 3.532e-01 1.238e+00 3.927e-02 - -2.542e-03 1.244e-02 1.440e-02 3.927e-02 1.559e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.49612 1.000 -0.269 0.169 -0.321 -0.293 - 2 0.89179 -0.269 1.000 0.476 0.772 0.890 - 3 0.62659 0.169 0.476 1.000 0.459 0.527 - 4 0.89781 -0.321 0.772 0.459 1.000 0.894 - 5 0.95017 -0.293 0.890 0.527 0.894 1.000 -400 -403.032 +- 0.219804 -9.13654 +- 0.35382 -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 403.031 +- 0.226798 (stat) - 0.376479 + 0.504637 (syst); -0.393186/+0.517221 (total) - Uncertainty on sg_p1 = 9.12153 +- 0.364169 (stat) - 0.014669 + 0.138994 (syst); -0.182675/+0.229073 (total) - Uncertainty on sg_p2 = 399.298 +- 0.70675 (stat) - 1.07894 + 0.548609 (syst); -1.13534/+0.652569 (total) - Uncertainty on sg_p3 = 21.4947 +- 1.13406 (stat) - 0.134294 + 0.783059 (syst); -0.582718/+0.966802 (total) - Uncertainty on sg_p4 = 0.642062 +- 0.0406652 (stat) - 0.00580743 + 0.0455621 (syst); -0.0211457/+0.049893 (total) - === Baseline plot ===
- norm = 790.651 -JEC lnN 1.00381 - -JER lnN 1.01925 - -btag lnN 1.06523 - -sg_p0 param 403.031 -0.393186/+0.517221 -sg_p1 param 9.12153 -0.182675/+0.229073 -sg_p2 param 399.298 -1.13534/+0.652569 -sg_p3 param 21.4947 -0.582718/+0.966802 -sg_p4 param 0.642062 -0.0211457/+0.049893 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_450_crystal_1_285_624/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_450_crystal_1_285_624/data_bkg.log deleted file mode 100644 index 1be2f6e..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_450_crystal_1_285_624/data_bkg.log +++ /dev/null @@ -1,717 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [250,330] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [250,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63590.5 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.69443e-02 5.09000e-01 0.00000e+00 -7.94680e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -8.91126e+00 - 3 par_crystal_2 2.62020e+02 4.00000e+00 1.01181e-01 -1.53451e+00 - 4 par_crystal_3 1.65000e+01 2.70000e+00 0.00000e+00 7.46021e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM MIGRAD STATUS=CONVERGED 482 CALLS 483 TOTAL - EDM=0.000814822 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 4.40594e-01 4.43750e-02 2.48631e-03 2.88668e-01 - 2 par_crystal_1 9.82994e-01 6.48221e-01 2.14269e-02 -5.28345e-03 - 3 par_crystal_2 2.71542e+02 7.41091e-01 7.20683e-03 -9.27818e-02 - 4 par_crystal_3 2.87224e+01 2.18588e+00 3.97473e-02 -6.99277e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.970e-03 -2.333e-02 -5.115e-04 1.392e-02 - -2.333e-02 4.358e-01 4.870e-03 -8.391e-01 - -5.115e-04 4.870e-03 5.496e-01 4.381e-01 - 1.392e-02 -8.391e-01 4.381e-01 5.029e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.88989 1.000 -0.796 -0.016 0.140 - 2 0.92807 -0.796 1.000 0.010 -0.567 - 3 0.40865 -0.016 0.010 1.000 0.264 - 4 0.80948 0.140 -0.567 0.264 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM HESSE STATUS=OK 23 CALLS 506 TOTAL - EDM=0.000711421 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 4.40594e-01 4.64698e-02 4.97262e-04 -9.80558e-01 - 2 par_crystal_1 9.82994e-01 6.55195e-01 8.57075e-04 -6.65795e-01 - 3 par_crystal_2 2.71542e+02 7.38644e-01 1.44137e-03 6.15159e-01 - 4 par_crystal_3 2.87224e+01 2.03002e+00 1.58989e-03 -1.05570e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.160e-03 -2.581e-02 -1.109e-03 1.530e-02 - -2.581e-02 4.456e-01 2.508e-02 -7.234e-01 - -1.109e-03 2.508e-02 5.460e-01 3.687e-01 - 1.530e-02 -7.234e-01 3.687e-01 4.306e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.90014 1.000 -0.832 -0.032 0.159 - 2 0.92960 -0.832 1.000 0.051 -0.522 - 3 0.40186 -0.032 0.051 1.000 0.240 - 4 0.77207 0.159 -0.522 0.240 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63714.2 FROM MIGRAD STATUS=INITIATE 33 CALLS 34 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 2.63122e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -5.45805e+02 - 3 par_gaus_exp_2 6.67498e-01 3.05000e-01 -6.37370e-01 7.03093e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM MIGRAD STATUS=CONVERGED 131 CALLS 132 TOTAL - EDM=6.15917e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.71558e+02 8.05096e-01 6.82817e-03 6.24407e-02 - 2 par_gaus_exp_1 3.06822e+01 1.83071e+00 1.43475e-02 1.11468e-02 - 3 par_gaus_exp_2 3.82770e-01 2.42284e-02 3.05774e-03 -9.77170e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.486e-01 -6.079e-01 -1.588e-03 - -6.079e-01 3.370e+00 3.082e-02 - -1.588e-03 3.082e-02 5.871e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.49876 1.000 -0.411 -0.081 - 2 0.77898 -0.411 1.000 0.693 - 3 0.72797 -0.081 0.693 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM HESSE STATUS=OK 16 CALLS 148 TOTAL - EDM=6.13964e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.71558e+02 8.14214e-01 2.73127e-04 -4.35760e-01 - 2 par_gaus_exp_1 3.06822e+01 1.86973e+00 5.73898e-04 4.10264e-01 - 3 par_gaus_exp_2 3.82770e-01 2.45149e-02 1.22310e-04 -8.97531e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.634e-01 -6.630e-01 -2.137e-03 - -6.630e-01 3.516e+00 3.227e-02 - -2.137e-03 3.227e-02 6.011e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.51526 1.000 -0.434 -0.107 - 2 0.78935 -0.434 1.000 0.702 - 3 0.73544 -0.107 0.702 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,625] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.33953 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.33953) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - ... (remaining 126 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.734607 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.734607) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=317.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=327.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=332.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=342.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=347.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=352.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=357.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=362.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=367.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - ... (remaining 53 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0734613 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0734613 - - FCN=103487 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57093e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.56195e+03 - 3 par_novo_2 -1.33668e+00 2.00000e+01 0.00000e+00 1.53931e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM MIGRAD STATUS=CONVERGED 127 CALLS 128 TOTAL - EDM=3.4171e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.43423e+01 1.81223e-01** at limit ** - 2 par_novo_1 3.86596e+01 2.27294e+00 4.95847e-03 -1.04123e-02 - 3 par_novo_2 -1.27520e+00 7.07738e-02 3.70975e-05 -1.26322e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.231e-09 -8.491e-07 -8.580e-07 - -8.491e-07 5.181e+00 1.547e-01 - -8.580e-07 1.547e-01 5.009e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.53332 1.000 -0.005 -0.154 - 2 0.97096 -0.005 1.000 0.960 - 3 0.97165 -0.154 0.960 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM HESSE STATUS=OK 20 CALLS 148 TOTAL - EDM=3.43726e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.40246e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.86596e+01 2.31421e+00 1.98339e-04 4.46530e-01 - 3 par_novo_2 -1.27520e+00 7.22930e-02 1.48390e-06 -1.27523e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 5.974e-09 2.819e-05 -1.296e-06 - 2.819e-05 5.372e+00 1.502e-01 - -1.296e-06 1.502e-01 5.226e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.85665 1.000 0.157 -0.232 - 2 0.97200 0.157 1.000 0.897 - 3 0.97285 -0.232 0.897 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107513 FROM MIGRAD STATUS=INITIATE 54 CALLS 55 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 1.39168e+03 - 2 par_crystal_1_1 7.96220e-02 5.09000e-01 0.00000e+00 5.33770e+03 - 3 par_crystal_1_2 2.56879e+02 4.00000e+00 -1.56713e-01 -1.96669e+01 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 -8.45862e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.5057e-02 2.3309e-03 4.9678e-02 3.9730e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.029030 TO DIAGONAL. - FCN=103250 FROM MIGRAD STATUS=CONVERGED 436 CALLS 437 TOTAL - EDM=3.52757e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 4.45574e-02 4.37117e-03 3.09465e-04 -4.28177e+00 - 2 par_crystal_1_1 4.36914e+00 6.24106e-01 1.80400e-02 6.63742e-02 - 3 par_crystal_1_2 2.71531e+02 3.44700e+01 5.81266e-02 2.25694e-02 - 4 par_crystal_1_3 3.37290e+00 2.71702e-01 3.13791e-03 -4.26197e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.911e-05 -1.221e-03 2.089e-01 3.572e-04 - -1.221e-03 4.065e-01 -2.690e+01 -6.822e-02 - 2.089e-01 -2.690e+01 3.429e+03 1.167e+01 - 3.572e-04 -6.822e-02 1.167e+01 7.401e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99136 1.000 -0.438 0.816 0.300 - 2 0.97307 -0.438 1.000 -0.720 -0.393 - 3 0.99735 0.816 -0.720 1.000 0.733 - 4 0.98716 0.300 -0.393 0.733 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -8.0089e-04 4.0193e-04 7.1213e-02 3.9292e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.004730 TO DIAGONAL. - FCN=103250 FROM HESSE STATUS=NOT POSDEF 23 CALLS 460 TOTAL - EDM=3.56127e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 4.45574e-02 7.42610e-03 6.18930e-05 -1.40582e+00 - 2 par_crystal_1_1 4.36914e+00 4.67550e-01 7.21602e-04 -3.93511e+00 - 3 par_crystal_1_2 2.71531e+02 3.29814e+01 2.32506e-03 -3.75607e+00 - 4 par_crystal_1_3 3.37290e+00 5.01685e-01 1.25517e-04 -1.80638e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.515e-05 2.851e-04 2.343e-01 -1.699e-03 - 2.851e-04 2.238e-01 -2.528e+00 1.548e-02 - 2.343e-01 -2.528e+00 2.967e+03 1.176e+01 - -1.699e-03 1.548e-02 1.176e+01 2.538e-01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99694 1.000 0.081 0.579 -0.454 - 2 0.94927 0.081 1.000 -0.098 0.065 - 3 0.99687 0.579 -0.098 1.000 0.429 - 4 0.99618 -0.454 0.065 0.429 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 14211 - Background number of gaus_exp_252_330 = 14211 - Background number of novo_285_624 = 17618.3 - Background number of crystal_1_285_624 = 17618.3 - Background number of gaus_bern_285_624 = 17618.3 - Background number of landau_285_624 = 17618.3 -par_crystal_0 param 0.440594 0.0464698 -par_crystal_1 param 0.982994 0.655195 -par_crystal_2 param 271.542 0.738644 -par_crystal_3 param 28.7224 2.03002 -par_crystal_1_0 param 0.0445574 0.0074261 -par_crystal_1_1 param 4.36914 0.46755 -par_crystal_1_2 param 271.531 32.9814 -par_crystal_1_3 param 3.3729 0.501685 -par_gaus_exp_0 param 271.558 0.814214 -par_gaus_exp_1 param 30.6822 1.86973 -par_gaus_exp_2 param 0.38277 0.0245149 -par_novo_0 param 250 34.0246 -par_novo_1 param 38.6596 2.31421 -par_novo_2 param -1.2752 0.072293 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_450_crystal_1_285_624/datacard_450_crystal_1_285_624.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_450_crystal_1_285_624/datacard_450_crystal_1_285_624.txt deleted file mode 100644 index 5e69bce..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_450_crystal_1_285_624/datacard_450_crystal_1_285_624.txt +++ /dev/null @@ -1,30 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_450.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_crystal_1_285_624.root HbbHbb:f_crystal_1 -shapes data_obs HbbHbb w_background_crystal_1_285_624.root HbbHbb:data_obs_crystal_1_285_624 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 1083.26 17618.3 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06507 - -JER lnN 1.01521 - -JEC lnN 1.00732 - -trigger lnN 1.10 - -sg_p0 param 453.121 -0.497337/+0.712236 -sg_p1 param 13.2664 -0.387695/+0.262907 -sg_p2 param 441.85 -2.76371/+2.88009 -sg_p3 param 39.952 -2.5136/+2.92847 -sg_p4 param 0.869549 -0.0148009/+0.0189113 -par_crystal_1_0 param 0.0445574 0.0074261 -par_crystal_1_1 param 4.36914 0.46755 -par_crystal_1_2 param 271.531 32.9814 -par_crystal_1_3 param 3.3729 0.501685 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_450_crystal_1_285_624/signal450_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_450_crystal_1_285_624/signal450_sig.log deleted file mode 100644 index 758dffb..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_450_crystal_1_285_624/signal450_sig.log +++ /dev/null @@ -1,849 +0,0 @@ - -Processing test.c... -nSignal_init = 100000 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=15106.7 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.45000e+02 7.00000e+00 2.01358e-01 9.40956e+02 - 2 sg_p1 1.90000e+01 3.20000e+00 2.01358e-01 -1.15795e+02 - 3 sg_p2 4.50000e+02 8.00000e+00 2.01358e-01 5.60158e+02 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -7.43253e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -2.02042e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14616.9 FROM MIGRAD STATUS=CONVERGED 237 CALLS 238 TOTAL - EDM=3.59834e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.33700e+02 5.20779e-01 1.28024e-03 -4.50888e-02 - 2 sg_p1 2.45512e+01 4.32325e-01 2.13929e-03 2.15071e-02 - 3 sg_p2 4.10000e+02 7.56422e-01 1.62500e-02** at limit ** - 4 sg_p3 9.59075e+01 9.76509e+00 3.57927e-02 -4.80697e-03 - 5 sg_p4 8.98300e-01 1.09856e-02 2.31920e-03 1.35348e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.712e-01 -3.295e-02 -7.320e-06 -1.029e+00 -1.066e-03 - -3.295e-02 1.870e-01 4.421e-06 1.512e+00 2.106e-03 - -7.320e-06 4.421e-06 3.900e-05 3.605e-04 1.357e-07 - -1.029e+00 1.512e+00 3.605e-04 1.055e+02 6.647e-02 - -1.066e-03 2.106e-03 1.357e-07 6.647e-02 1.207e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22083 1.000 -0.146 -0.002 -0.192 -0.186 - 2 0.45738 -0.146 1.000 0.002 0.340 0.443 - 3 0.00601 -0.002 0.002 1.000 0.006 0.002 - 4 0.60064 -0.192 0.340 0.006 1.000 0.589 - 5 0.64515 -0.186 0.443 0.002 0.589 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14616.9 FROM HESSE STATUS=OK 31 CALLS 269 TOTAL - EDM=3.62828e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.33700e+02 5.22464e-01 2.56047e-04 -3.28756e-01 - 2 sg_p1 2.45512e+01 4.36897e-01 8.55715e-05 3.54316e-01 - 3 sg_p2 4.10000e+02 7.56439e-01 3.24999e-03 -1.56999e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 9.59075e+01 1.00551e+01 1.43171e-03 1.14101e+00 - 5 sg_p4 8.98300e-01 1.13202e-02 4.63840e-04 9.21649e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.730e-01 -3.575e-02 -2.151e-06 -1.151e+00 -1.179e-03 - -3.575e-02 1.909e-01 1.441e-06 1.696e+00 2.279e-03 - -2.151e-06 1.441e-06 3.900e-05 1.093e-04 4.737e-08 - -1.151e+00 1.696e+00 1.093e-04 1.126e+02 7.452e-02 - -1.179e-03 2.279e-03 4.737e-08 7.452e-02 1.282e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23428 1.000 -0.157 -0.001 -0.208 -0.199 - 2 0.47504 -0.157 1.000 0.001 0.366 0.461 - 3 0.00175 -0.001 0.001 1.000 0.002 0.001 - 4 0.63167 -0.208 0.366 0.002 1.000 0.620 - 5 0.67100 -0.199 0.461 0.001 0.620 1.000 -450 -433.7 +- 0.522464 -24.5512 +- 0.436897 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=14967 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.45000e+02 7.00000e+00 2.01358e-01 7.30094e+02 - 2 sg_p1 1.90000e+01 3.20000e+00 2.01358e-01 -7.17086e+01 - 3 sg_p2 4.50000e+02 8.00000e+00 2.01358e-01 4.92262e+02 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 1.24799e+00 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -2.52207e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14568.3 FROM MIGRAD STATUS=CONVERGED 225 CALLS 226 TOTAL - EDM=1.40963e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.35880e+02 5.28453e-01 1.25742e-03 3.65467e-02 - 2 sg_p1 2.47804e+01 4.36143e-01 2.15058e-03 8.90109e-02 - 3 sg_p2 4.10000e+02 8.41699e-01 1.71227e-02** at limit ** - 4 sg_p3 9.34154e+01 9.89175e+00 2.81029e-02 3.92610e-03 - 5 sg_p4 9.04757e-01 1.10728e-02 2.34320e-03 -1.13912e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.793e-01 -4.062e-02 -3.574e-06 -1.243e+00 -1.334e-03 - -4.062e-02 1.903e-01 1.963e-06 1.596e+00 2.205e-03 - -3.574e-06 1.963e-06 1.004e-05 1.505e-04 5.291e-08 - -1.243e+00 1.596e+00 1.505e-04 1.043e+02 6.945e-02 - -1.334e-03 2.205e-03 5.291e-08 6.945e-02 1.227e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.26417 1.000 -0.176 -0.002 -0.230 -0.228 - 2 0.47132 -0.176 1.000 0.001 0.358 0.457 - 3 0.00513 -0.002 0.001 1.000 0.005 0.002 - 4 0.62620 -0.230 0.358 0.005 1.000 0.614 - 5 0.66724 -0.228 0.457 0.002 0.614 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14568.3 FROM HESSE STATUS=OK 31 CALLS 257 TOTAL - EDM=1.45125e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.35880e+02 5.30103e-01 2.51483e-04 -2.63606e-01 - 2 sg_p1 2.47804e+01 4.39593e-01 4.30116e-04 3.69632e-01 - 3 sg_p2 4.10000e+02 8.41739e-01 3.42455e-03 -1.57118e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 9.34154e+01 1.01144e+01 1.12412e-03 1.02300e+00 - 5 sg_p4 9.04757e-01 1.13218e-02 9.37280e-05 9.43325e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.810e-01 -4.308e-02 -6.126e-07 -1.344e+00 -1.432e-03 - -4.308e-02 1.933e-01 3.606e-07 1.730e+00 2.336e-03 - -6.126e-07 3.606e-07 1.004e-05 2.633e-05 1.041e-08 - -1.344e+00 1.730e+00 2.633e-05 1.094e+02 7.528e-02 - -1.432e-03 2.336e-03 1.041e-08 7.528e-02 1.282e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.27490 1.000 -0.185 -0.000 -0.242 -0.238 - 2 0.48405 -0.185 1.000 0.000 0.376 0.469 - 3 0.00087 -0.000 0.000 1.000 0.001 0.000 - 4 0.64751 -0.242 0.376 0.001 1.000 0.636 - 5 0.68509 -0.238 0.469 0.000 0.636 1.000 -450 -435.88 +- 0.530103 -24.7804 +- 0.439593 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=14989.3 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.45000e+02 7.00000e+00 2.01358e-01 1.09913e+03 - 2 sg_p1 1.90000e+01 3.20000e+00 2.01358e-01 -1.79281e+02 - 3 sg_p2 4.50000e+02 8.00000e+00 2.01358e-01 6.15691e+02 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -1.35305e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -1.43184e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14396.8 FROM MIGRAD STATUS=CONVERGED 259 CALLS 260 TOTAL - EDM=2.88948e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.31562e+02 5.09368e-01 1.30052e-03 -5.36209e-02 - 2 sg_p1 2.44193e+01 3.99415e-01 2.10037e-03 1.06473e-02 - 3 sg_p2 4.10000e+02 7.22690e-01 1.57718e-02** at limit ** - 4 sg_p3 1.00000e+02 1.55471e+01 7.04637e-02** at limit ** - 5 sg_p4 8.97810e-01 8.75371e-03 2.28074e-03 2.04575e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.595e-01 -1.470e-02 -3.574e-07 3.497e-04 -3.281e-04 - -1.470e-02 1.596e-01 -3.286e-08 -5.660e-04 1.020e-03 - -3.574e-07 -3.286e-08 5.312e-07 -1.926e-08 -7.103e-09 - 3.497e-04 -5.660e-04 -1.926e-08 1.262e-03 -2.615e-05 - -3.281e-04 1.020e-03 -7.103e-09 -2.615e-05 7.665e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.09157 1.000 -0.072 -0.001 0.019 -0.074 - 2 0.29639 -0.072 1.000 -0.000 -0.040 0.292 - 3 0.00174 -0.001 -0.000 1.000 -0.001 -0.001 - 4 0.08650 0.019 -0.040 -0.001 1.000 -0.084 - 5 0.30486 -0.074 0.292 -0.001 -0.084 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14396.8 FROM HESSE STATUS=OK 31 CALLS 291 TOTAL - EDM=2.76365e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.31562e+02 5.09297e-01 2.60104e-04 -3.94063e-01 - 2 sg_p1 2.44193e+01 3.99210e-01 8.40147e-05 3.45541e-01 - 3 sg_p2 4.10000e+02 7.22718e-01 3.15436e-03 -1.57070e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 1.00000e+02 1.57628e+01 1.40927e-02 1.56988e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 5 sg_p4 8.97810e-01 8.72528e-03 9.12295e-05 9.20031e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.594e-01 -1.474e-02 -7.385e-08 6.324e-05 -3.205e-04 - -1.474e-02 1.594e-01 -8.717e-09 -1.029e-04 1.011e-03 - -7.385e-08 -8.717e-09 5.312e-07 -7.301e-10 -1.575e-09 - 6.324e-05 -1.029e-04 -7.301e-10 1.280e-03 -4.742e-06 - -3.205e-04 1.011e-03 -1.575e-09 -4.742e-06 7.615e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.09005 1.000 -0.072 -0.000 0.003 -0.072 - 2 0.29480 -0.072 1.000 -0.000 -0.007 0.290 - 3 0.00033 -0.000 -0.000 1.000 -0.000 -0.000 - 4 0.01563 0.003 -0.007 -0.000 1.000 -0.015 - 5 0.29498 -0.072 0.290 -0.000 -0.015 1.000 -450 -431.562 +- 0.509297 -24.4193 +- 0.39921 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=12740.9 FROM MIGRAD STATUS=INITIATE 45 CALLS 46 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.50000e+02 6.00000e+00 0.00000e+00 -8.59626e+02 - 2 sg_p1 1.40000e+01 2.20000e+00 0.00000e+00 2.90307e+02 - 3 sg_p2 4.35000e+02 1.10000e+01 0.00000e+00 -9.30862e+02 - 4 sg_p3 3.11611e+01 1.40000e+01 -7.72180e-01 1.25776e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -5.90098e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12371.9 FROM MIGRAD STATUS=CONVERGED 204 CALLS 205 TOTAL - EDM=1.72857e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.53121e+02 3.12103e-01 7.60916e-04 -1.37805e-01 - 2 sg_p1 1.32664e+01 3.51765e-01 1.66864e-03 -1.59663e-01 - 3 sg_p2 4.41850e+02 2.88341e+00 3.42150e-03 -4.30161e-02 - 4 sg_p3 3.99520e+01 3.27521e+00 2.78644e-03 -1.95155e-02 - 5 sg_p4 8.69549e-01 2.03464e-02 2.42525e-03 7.02356e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.741e-02 -2.019e-02 -5.897e-02 -2.380e-01 -1.352e-03 - -2.019e-02 1.238e-01 -4.014e-01 6.784e-01 5.251e-03 - -5.897e-02 -4.014e-01 8.322e+00 -4.133e+00 -2.949e-02 - -2.380e-01 6.784e-01 -4.133e+00 1.074e+01 5.122e-02 - -1.352e-03 5.251e-03 -2.949e-02 5.122e-02 4.145e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.32114 1.000 -0.184 -0.066 -0.233 -0.213 - 2 0.73542 -0.184 1.000 -0.395 0.588 0.733 - 3 0.54335 -0.066 -0.395 1.000 -0.437 -0.502 - 4 0.77539 -0.233 0.588 -0.437 1.000 0.768 - 5 0.85259 -0.213 0.733 -0.502 0.768 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12371.9 FROM HESSE STATUS=OK 31 CALLS 236 TOTAL - EDM=1.73002e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.53121e+02 3.12202e-01 1.52183e-04 1.04231e-01 - 2 sg_p1 1.32664e+01 3.54275e-01 3.33728e-04 -6.67445e-02 - 3 sg_p2 4.41850e+02 2.90658e+00 6.84300e-04 1.24877e-01 - 4 sg_p3 3.99520e+01 3.31061e+00 1.11458e-04 -6.09081e-01 - 5 sg_p4 8.69549e-01 2.05823e-02 4.85050e-04 8.31731e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.747e-02 -2.060e-02 -5.492e-02 -2.421e-01 -1.378e-03 - -2.060e-02 1.256e-01 -4.183e-01 6.988e-01 5.382e-03 - -5.492e-02 -4.183e-01 8.456e+00 -4.334e+00 -3.074e-02 - -2.421e-01 6.988e-01 -4.334e+00 1.097e+01 5.275e-02 - -1.378e-03 5.382e-03 -3.074e-02 5.275e-02 4.242e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.32202 1.000 -0.186 -0.060 -0.234 -0.214 - 2 0.73982 -0.186 1.000 -0.406 0.595 0.738 - 3 0.55356 -0.060 -0.406 1.000 -0.450 -0.513 - 4 0.78084 -0.234 0.595 -0.450 1.000 0.773 - 5 0.85624 -0.214 0.738 -0.513 0.773 1.000 -450 -453.121 +- 0.312202 -13.2664 +- 0.354275 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=12831.2 FROM MIGRAD STATUS=INITIATE 47 CALLS 48 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.50000e+02 6.00000e+00 0.00000e+00 -9.71963e+02 - 2 sg_p1 1.40000e+01 2.20000e+00 0.00000e+00 2.47720e+02 - 3 sg_p2 4.35000e+02 1.10000e+01 0.00000e+00 -9.59810e+02 - 4 sg_p3 3.20356e+01 1.40000e+01 -7.54886e-01 1.25318e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -5.92447e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12439.7 FROM MIGRAD STATUS=CONVERGED 195 CALLS 196 TOTAL - EDM=5.05245e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.53816e+02 3.21132e-01 7.83772e-04 -7.95633e-02 - 2 sg_p1 1.33997e+01 3.69195e-01 1.71799e-03 1.80096e-01 - 3 sg_p2 4.44337e+02 2.53515e+00 3.11461e-03 -5.82291e-02 - 4 sg_p3 3.80604e+01 2.91065e+00 2.47607e-03 7.49358e-02 - 5 sg_p4 8.58912e-01 2.26324e-02 2.50700e-03 -6.85706e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.031e-01 -2.126e-02 -8.734e-02 -2.148e-01 -1.521e-03 - -2.126e-02 1.364e-01 -3.383e-01 6.405e-01 6.246e-03 - -8.734e-02 -3.383e-01 6.432e+00 -2.789e+00 -2.624e-02 - -2.148e-01 6.405e-01 -2.789e+00 8.480e+00 5.167e-02 - -1.521e-03 6.246e-03 -2.624e-02 5.167e-02 5.129e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.33218 1.000 -0.179 -0.107 -0.230 -0.209 - 2 0.74782 -0.179 1.000 -0.361 0.596 0.747 - 3 0.50601 -0.107 -0.361 1.000 -0.378 -0.457 - 4 0.78747 -0.230 0.596 -0.378 1.000 0.784 - 5 0.86569 -0.209 0.747 -0.457 0.784 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12439.7 FROM HESSE STATUS=OK 31 CALLS 227 TOTAL - EDM=5.14272e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.53816e+02 3.21170e-01 1.56754e-04 1.27552e-01 - 2 sg_p1 1.33997e+01 3.71529e-01 3.43597e-04 -5.45997e-02 - 3 sg_p2 4.44337e+02 2.55137e+00 6.22923e-04 1.70589e-01 - 4 sg_p3 3.80604e+01 2.93737e+00 9.90429e-05 -6.42423e-01 - 5 sg_p4 8.58912e-01 2.28649e-02 5.01401e-04 8.00670e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.032e-01 -2.159e-02 -8.447e-02 -2.173e-01 -1.542e-03 - -2.159e-02 1.381e-01 -3.519e-01 6.569e-01 6.381e-03 - -8.447e-02 -3.519e-01 6.514e+00 -2.922e+00 -2.730e-02 - -2.173e-01 6.569e-01 -2.922e+00 8.636e+00 5.298e-02 - -1.542e-03 6.381e-03 -2.730e-02 5.298e-02 5.236e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.33250 1.000 -0.181 -0.103 -0.230 -0.210 - 2 0.75151 -0.181 1.000 -0.371 0.602 0.750 - 3 0.51526 -0.103 -0.371 1.000 -0.390 -0.467 - 4 0.79182 -0.230 0.602 -0.390 1.000 0.788 - 5 0.86862 -0.210 0.750 -0.467 0.788 1.000 -450 -453.816 +- 0.32117 -13.3997 +- 0.371529 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=12450.5 FROM MIGRAD STATUS=INITIATE 45 CALLS 46 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.50000e+02 6.00000e+00 0.00000e+00 -7.89096e+02 - 2 sg_p1 1.40000e+01 2.20000e+00 0.00000e+00 3.29312e+02 - 3 sg_p2 4.35000e+02 1.10000e+01 0.00000e+00 -9.41083e+02 - 4 sg_p3 2.97404e+01 1.40000e+01 -8.00916e-01 5.32420e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -5.78505e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12082.3 FROM MIGRAD STATUS=CONVERGED 217 CALLS 218 TOTAL - EDM=9.81901e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.52649e+02 2.99257e-01 7.27117e-04 -1.85651e-01 - 2 sg_p1 1.29215e+01 3.26230e-01 1.60240e-03 -1.04599e-01 - 3 sg_p2 4.39500e+02 3.30234e+00 3.79402e-03 -2.47036e-02 - 4 sg_p3 4.23678e+01 3.70551e+00 3.18328e-03 -2.16927e-02 - 5 sg_p4 8.78387e-01 1.75288e-02 2.31775e-03 5.63843e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 8.956e-02 -1.634e-02 -3.809e-02 -2.386e-01 -1.021e-03 - -1.634e-02 1.065e-01 -4.382e-01 6.785e-01 4.010e-03 - -3.809e-02 -4.382e-01 1.092e+01 -5.893e+00 -3.008e-02 - -2.386e-01 6.785e-01 -5.893e+00 1.375e+01 4.755e-02 - -1.021e-03 4.010e-03 -3.008e-02 4.755e-02 3.076e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.29182 1.000 -0.167 -0.039 -0.215 -0.195 - 2 0.70607 -0.167 1.000 -0.406 0.561 0.701 - 3 0.56523 -0.039 -0.406 1.000 -0.481 -0.519 - 4 0.74887 -0.215 0.561 -0.481 1.000 0.731 - 5 0.82206 -0.195 0.701 -0.519 0.731 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12082.3 FROM HESSE STATUS=OK 31 CALLS 249 TOTAL - EDM=9.82123e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.52649e+02 2.99376e-01 1.45423e-04 8.84175e-02 - 2 sg_p1 1.29215e+01 3.28560e-01 3.20481e-04 -9.82038e-02 - 3 sg_p2 4.39500e+02 3.33339e+00 7.58805e-04 8.19031e-02 - 4 sg_p3 4.23678e+01 3.74990e+00 1.27331e-04 -5.67592e-01 - 5 sg_p4 8.78387e-01 1.77374e-02 4.63550e-04 8.58362e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 8.963e-02 -1.673e-02 -3.321e-02 -2.436e-01 -1.045e-03 - -1.673e-02 1.080e-01 -4.573e-01 7.011e-01 4.116e-03 - -3.321e-02 -4.573e-01 1.113e+01 -6.187e+00 -3.140e-02 - -2.436e-01 7.011e-01 -6.187e+00 1.408e+01 4.914e-02 - -1.045e-03 4.116e-03 -3.140e-02 4.914e-02 3.149e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.29306 1.000 -0.170 -0.033 -0.217 -0.197 - 2 0.71107 -0.170 1.000 -0.417 0.569 0.706 - 3 0.57630 -0.033 -0.417 1.000 -0.494 -0.531 - 4 0.75573 -0.217 0.569 -0.494 1.000 0.738 - 5 0.82667 -0.197 0.706 -0.531 0.738 1.000 -450 -452.649 +- 0.299376 -12.9215 +- 0.32856 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=12485 FROM MIGRAD STATUS=INITIATE 47 CALLS 48 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.50000e+02 6.00000e+00 0.00000e+00 -8.28524e+02 - 2 sg_p1 1.40000e+01 2.20000e+00 0.00000e+00 2.76932e+02 - 3 sg_p2 4.35000e+02 1.10000e+01 0.00000e+00 -9.07179e+02 - 4 sg_p3 3.15199e+01 1.40000e+01 -7.65049e-01 1.17013e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -5.75418e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12126.6 FROM MIGRAD STATUS=CONVERGED 206 CALLS 207 TOTAL - EDM=8.2003e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.53041e+02 3.16233e-01 7.67663e-04 -4.53747e-01 - 2 sg_p1 1.34606e+01 3.60067e-01 1.68094e-03 -2.56821e-01 - 3 sg_p2 4.42647e+02 3.03755e+00 3.65255e-03 -7.93949e-02 - 4 sg_p3 4.13701e+01 3.70699e+00 3.03411e-03 -1.62102e-02 - 5 sg_p4 8.74490e-01 2.02974e-02 2.42550e-03 1.44185e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.000e-01 -1.902e-02 -8.059e-02 -2.487e-01 -1.247e-03 - -1.902e-02 1.297e-01 -4.096e-01 8.024e-01 5.385e-03 - -8.059e-02 -4.096e-01 9.236e+00 -4.749e+00 -2.911e-02 - -2.487e-01 8.024e-01 -4.749e+00 1.376e+01 5.850e-02 - -1.247e-03 5.385e-03 -2.911e-02 5.850e-02 4.125e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.30405 1.000 -0.167 -0.084 -0.212 -0.194 - 2 0.73858 -0.167 1.000 -0.374 0.601 0.736 - 3 0.51688 -0.084 -0.374 1.000 -0.421 -0.472 - 4 0.78361 -0.212 0.601 -0.421 1.000 0.776 - 5 0.85381 -0.194 0.736 -0.472 0.776 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12126.6 FROM HESSE STATUS=OK 31 CALLS 238 TOTAL - EDM=8.28097e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.53041e+02 3.16314e-01 1.53533e-04 1.01529e-01 - 2 sg_p1 1.34606e+01 3.62947e-01 3.36188e-04 -4.90533e-02 - 3 sg_p2 4.42647e+02 3.06302e+00 7.30509e-04 1.39482e-01 - 4 sg_p3 4.13701e+01 3.75314e+00 1.21364e-04 -5.84588e-01 - 5 sg_p4 8.74490e-01 2.05612e-02 4.85100e-04 8.46520e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.001e-01 -1.944e-02 -7.634e-02 -2.533e-01 -1.273e-03 - -1.944e-02 1.318e-01 -4.295e-01 8.293e-01 5.535e-03 - -7.634e-02 -4.295e-01 9.392e+00 -5.013e+00 -3.054e-02 - -2.533e-01 8.293e-01 -5.013e+00 1.411e+01 6.046e-02 - -1.273e-03 5.535e-03 -3.054e-02 6.046e-02 4.233e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.30482 1.000 -0.169 -0.079 -0.213 -0.196 - 2 0.74343 -0.169 1.000 -0.386 0.608 0.741 - 3 0.52851 -0.079 -0.386 1.000 -0.436 -0.484 - 4 0.78960 -0.213 0.608 -0.436 1.000 0.782 - 5 0.85785 -0.196 0.741 -0.484 0.782 1.000 -450 -453.041 +- 0.316314 -13.4606 +- 0.362947 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=12831.1 FROM MIGRAD STATUS=INITIATE 45 CALLS 46 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.50000e+02 6.00000e+00 0.00000e+00 -9.34152e+02 - 2 sg_p1 1.40000e+01 2.20000e+00 0.00000e+00 2.79811e+02 - 3 sg_p2 4.35000e+02 1.10000e+01 0.00000e+00 -1.07673e+03 - 4 sg_p3 2.91978e+01 1.40000e+01 -8.12117e-01 -1.15313e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -5.79673e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12442.9 FROM MIGRAD STATUS=CONVERGED 214 CALLS 215 TOTAL - EDM=2.54338e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.53203e+02 3.05272e-01 7.48199e-04 1.37509e-01 - 2 sg_p1 1.33442e+01 3.36784e-01 1.63030e-03 -1.73887e-01 - 3 sg_p2 4.40023e+02 3.36501e+00 3.85092e-03 -4.69572e-02 - 4 sg_p3 4.14043e+01 3.72019e+00 3.17044e-03 -1.58965e-02 - 5 sg_p4 8.85415e-01 1.84477e-02 2.39174e-03 8.69592e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.319e-02 -1.886e-02 -3.146e-02 -2.700e-01 -1.210e-03 - -1.886e-02 1.135e-01 -4.902e-01 7.251e-01 4.482e-03 - -3.146e-02 -4.902e-01 1.134e+01 -6.160e+00 -3.421e-02 - -2.700e-01 7.251e-01 -6.160e+00 1.386e+01 5.193e-02 - -1.210e-03 4.482e-03 -3.421e-02 5.193e-02 3.407e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.31564 1.000 -0.183 -0.031 -0.238 -0.215 - 2 0.72421 -0.183 1.000 -0.432 0.578 0.721 - 3 0.58870 -0.031 -0.432 1.000 -0.491 -0.551 - 4 0.76796 -0.238 0.578 -0.491 1.000 0.756 - 5 0.84414 -0.215 0.721 -0.551 0.756 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12442.9 FROM HESSE STATUS=OK 31 CALLS 246 TOTAL - EDM=2.55427e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.53203e+02 3.05429e-01 1.49640e-04 1.06973e-01 - 2 sg_p1 1.33442e+01 3.39511e-01 3.26061e-04 -5.96515e-02 - 3 sg_p2 4.40023e+02 3.39967e+00 7.70184e-04 9.14550e-02 - 4 sg_p3 4.14043e+01 3.76783e+00 1.26818e-04 -5.84003e-01 - 5 sg_p4 8.85415e-01 1.86940e-02 4.78349e-04 8.80144e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.329e-02 -1.935e-02 -2.553e-02 -2.761e-01 -1.241e-03 - -1.935e-02 1.153e-01 -5.124e-01 7.508e-01 4.612e-03 - -2.553e-02 -5.124e-01 1.157e+01 -6.480e+00 -3.578e-02 - -2.761e-01 7.508e-01 -6.480e+00 1.422e+01 5.377e-02 - -1.241e-03 4.612e-03 -3.578e-02 5.377e-02 3.499e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.31711 1.000 -0.187 -0.025 -0.240 -0.217 - 2 0.72945 -0.187 1.000 -0.444 0.586 0.726 - 3 0.59988 -0.025 -0.444 1.000 -0.505 -0.562 - 4 0.77464 -0.240 0.586 -0.505 1.000 0.762 - 5 0.84859 -0.217 0.726 -0.562 0.762 1.000 -450 -453.203 +- 0.305429 -13.3442 +- 0.339511 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11934 FROM MIGRAD STATUS=INITIATE 45 CALLS 46 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.50000e+02 6.00000e+00 0.00000e+00 -8.21817e+02 - 2 sg_p1 1.40000e+01 2.20000e+00 0.00000e+00 2.66012e+02 - 3 sg_p2 4.35000e+02 1.10000e+01 0.00000e+00 -9.28921e+02 - 4 sg_p3 3.02910e+01 1.40000e+01 -7.89682e-01 6.24982e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -5.41964e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11588.1 FROM MIGRAD STATUS=CONVERGED 204 CALLS 205 TOTAL - EDM=3.59163e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.53125e+02 3.22437e-01 7.59830e-04 3.14030e-01 - 2 sg_p1 1.32568e+01 3.64776e-01 1.66662e-03 1.31711e-01 - 3 sg_p2 4.41914e+02 2.96380e+00 3.40318e-03 -1.73168e-02 - 4 sg_p3 3.96954e+01 3.35557e+00 2.76524e-03 -2.51020e-02 - 5 sg_p4 8.69980e-01 2.12003e-02 2.43138e-03 2.99659e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.040e-01 -2.192e-02 -6.249e-02 -2.549e-01 -1.475e-03 - -2.192e-02 1.331e-01 -4.296e-01 7.236e-01 5.697e-03 - -6.249e-02 -4.296e-01 8.793e+00 -4.343e+00 -3.167e-02 - -2.549e-01 7.236e-01 -4.343e+00 1.127e+01 5.485e-02 - -1.475e-03 5.697e-03 -3.167e-02 5.485e-02 4.500e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.32406 1.000 -0.186 -0.065 -0.235 -0.216 - 2 0.73815 -0.186 1.000 -0.397 0.591 0.736 - 3 0.54427 -0.065 -0.397 1.000 -0.436 -0.503 - 4 0.77722 -0.235 0.591 -0.436 1.000 0.770 - 5 0.85485 -0.216 0.736 -0.503 0.770 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11588.1 FROM HESSE STATUS=OK 31 CALLS 236 TOTAL - EDM=3.63213e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.53125e+02 3.22540e-01 1.51966e-04 1.04341e-01 - 2 sg_p1 1.32568e+01 3.67383e-01 3.33325e-04 -6.76154e-02 - 3 sg_p2 4.41914e+02 2.98753e+00 6.80636e-04 1.26049e-01 - 4 sg_p3 3.96954e+01 3.39157e+00 1.10610e-04 -6.13558e-01 - 5 sg_p4 8.69980e-01 2.14457e-02 4.86276e-04 8.33011e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.040e-01 -2.236e-02 -5.816e-02 -2.592e-01 -1.503e-03 - -2.236e-02 1.350e-01 -4.476e-01 7.452e-01 5.838e-03 - -5.816e-02 -4.476e-01 8.934e+00 -4.553e+00 -3.300e-02 - -2.592e-01 7.452e-01 -4.553e+00 1.152e+01 5.647e-02 - -1.503e-03 5.838e-03 -3.300e-02 5.647e-02 4.605e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.32494 1.000 -0.189 -0.060 -0.237 -0.217 - 2 0.74250 -0.189 1.000 -0.408 0.598 0.740 - 3 0.55442 -0.060 -0.408 1.000 -0.449 -0.514 - 4 0.78258 -0.237 0.598 -0.449 1.000 0.775 - 5 0.85843 -0.217 0.740 -0.514 0.775 1.000 -450 -453.125 +- 0.32254 -13.2568 +- 0.367383 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=13588.6 FROM MIGRAD STATUS=INITIATE 45 CALLS 46 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.50000e+02 6.00000e+00 0.00000e+00 -9.01194e+02 - 2 sg_p1 1.40000e+01 2.20000e+00 0.00000e+00 3.14820e+02 - 3 sg_p2 4.35000e+02 1.10000e+01 0.00000e+00 -9.36931e+02 - 4 sg_p3 3.19529e+01 1.40000e+01 -7.56508e-01 1.83311e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -6.40586e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=13194.8 FROM MIGRAD STATUS=CONVERGED 205 CALLS 206 TOTAL - EDM=2.9635e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.53119e+02 3.02295e-01 7.61866e-04 -3.75062e-01 - 2 sg_p1 1.32780e+01 3.39541e-01 1.67011e-03 -9.46376e-02 - 3 sg_p2 4.41784e+02 2.80838e+00 3.43889e-03 -7.54198e-02 - 4 sg_p3 4.02094e+01 3.20169e+00 2.80752e-03 5.20848e-02 - 5 sg_p4 8.69165e-01 1.95466e-02 2.41927e-03 -3.07790e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.139e-02 -1.864e-02 -5.556e-02 -2.229e-01 -1.243e-03 - -1.864e-02 1.153e-01 -3.761e-01 6.379e-01 4.851e-03 - -5.556e-02 -3.761e-01 7.894e+00 -3.947e+00 -2.754e-02 - -2.229e-01 6.379e-01 -3.947e+00 1.026e+01 4.798e-02 - -1.243e-03 4.851e-03 -2.754e-02 4.798e-02 3.825e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.31836 1.000 -0.182 -0.065 -0.230 -0.210 - 2 0.73280 -0.182 1.000 -0.394 0.586 0.730 - 3 0.54277 -0.065 -0.394 1.000 -0.439 -0.501 - 4 0.77378 -0.230 0.586 -0.439 1.000 0.766 - 5 0.85046 -0.210 0.730 -0.501 0.766 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=13194.8 FROM HESSE STATUS=OK 31 CALLS 237 TOTAL - EDM=2.98129e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.53119e+02 3.02390e-01 1.52373e-04 1.04142e-01 - 2 sg_p1 1.32780e+01 3.41962e-01 3.34022e-04 -6.56836e-02 - 3 sg_p2 4.41784e+02 2.83105e+00 6.87778e-04 1.23663e-01 - 4 sg_p3 4.02094e+01 3.23660e+00 1.12301e-04 -6.04605e-01 - 5 sg_p4 8.69165e-01 1.97739e-02 4.83854e-04 8.30589e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.144e-02 -1.903e-02 -5.175e-02 -2.268e-01 -1.268e-03 - -1.903e-02 1.170e-01 -3.920e-01 6.571e-01 4.973e-03 - -5.175e-02 -3.920e-01 8.022e+00 -4.140e+00 -2.871e-02 - -2.268e-01 6.571e-01 -4.140e+00 1.049e+01 4.942e-02 - -1.268e-03 4.973e-03 -2.871e-02 4.942e-02 3.915e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.31924 1.000 -0.184 -0.060 -0.232 -0.212 - 2 0.73725 -0.184 1.000 -0.405 0.593 0.735 - 3 0.55306 -0.060 -0.405 1.000 -0.451 -0.512 - 4 0.77932 -0.232 0.593 -0.451 1.000 0.771 - 5 0.85417 -0.212 0.735 -0.512 0.771 1.000 -450 -453.119 +- 0.30239 -13.278 +- 0.341962 -35.9 fb^{-1} (13 TeV) -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 23 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 72 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 80 has zero error, setting residual to zero - Uncertainty on sg_p0 = 453.121 +- 0.312202 (stat) - 0.472204 + 0.694919 (syst); -0.497337/+0.712236 (total) - Uncertainty on sg_p1 = 13.2664 +- 0.354275 (stat) - 0.344861 + 0.194275 (syst); -0.387695/+0.262907 (total) - Uncertainty on sg_p2 = 441.85 +- 2.90658 (stat) - 2.35076 + 2.48654 (syst); -2.76371/+2.88009 (total) - Uncertainty on sg_p3 = 39.952 +- 3.31061 (stat) - 1.8916 + 2.41576 (syst); -2.5136/+2.92847 (total) - Uncertainty on sg_p4 = 0.869549 +- 0.0205823 (stat) - 0.0106377 + 0.015866 (syst); -0.0148009/+0.0189113 (total) - === Baseline plot ===
- norm = 1083.26 -JEC lnN 1.00732 - -JER lnN 1.01521 - -btag lnN 1.06507 - -sg_p0 param 453.121 -0.497337/+0.712236 -sg_p1 param 13.2664 -0.387695/+0.262907 -sg_p2 param 441.85 -2.76371/+2.88009 -sg_p3 param 39.952 -2.5136/+2.92847 -sg_p4 param 0.869549 -0.0148009/+0.0189113 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_450_novo_285_624/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_450_novo_285_624/data_bkg.log deleted file mode 100644 index c704996..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_450_novo_285_624/data_bkg.log +++ /dev/null @@ -1,717 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [250,330] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [250,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63590.5 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.69443e-02 5.09000e-01 0.00000e+00 -7.94680e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -8.91126e+00 - 3 par_crystal_2 2.62020e+02 4.00000e+00 1.01181e-01 -1.53451e+00 - 4 par_crystal_3 1.65000e+01 2.70000e+00 0.00000e+00 7.46021e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM MIGRAD STATUS=CONVERGED 482 CALLS 483 TOTAL - EDM=0.000814822 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 4.40594e-01 4.43750e-02 2.48631e-03 2.88668e-01 - 2 par_crystal_1 9.82994e-01 6.48221e-01 2.14269e-02 -5.28345e-03 - 3 par_crystal_2 2.71542e+02 7.41091e-01 7.20683e-03 -9.27818e-02 - 4 par_crystal_3 2.87224e+01 2.18588e+00 3.97473e-02 -6.99277e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.970e-03 -2.333e-02 -5.115e-04 1.392e-02 - -2.333e-02 4.358e-01 4.870e-03 -8.391e-01 - -5.115e-04 4.870e-03 5.496e-01 4.381e-01 - 1.392e-02 -8.391e-01 4.381e-01 5.029e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.88989 1.000 -0.796 -0.016 0.140 - 2 0.92807 -0.796 1.000 0.010 -0.567 - 3 0.40865 -0.016 0.010 1.000 0.264 - 4 0.80948 0.140 -0.567 0.264 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM HESSE STATUS=OK 23 CALLS 506 TOTAL - EDM=0.000711421 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 4.40594e-01 4.64698e-02 4.97262e-04 -9.80558e-01 - 2 par_crystal_1 9.82994e-01 6.55195e-01 8.57075e-04 -6.65795e-01 - 3 par_crystal_2 2.71542e+02 7.38644e-01 1.44137e-03 6.15159e-01 - 4 par_crystal_3 2.87224e+01 2.03002e+00 1.58989e-03 -1.05570e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.160e-03 -2.581e-02 -1.109e-03 1.530e-02 - -2.581e-02 4.456e-01 2.508e-02 -7.234e-01 - -1.109e-03 2.508e-02 5.460e-01 3.687e-01 - 1.530e-02 -7.234e-01 3.687e-01 4.306e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.90014 1.000 -0.832 -0.032 0.159 - 2 0.92960 -0.832 1.000 0.051 -0.522 - 3 0.40186 -0.032 0.051 1.000 0.240 - 4 0.77207 0.159 -0.522 0.240 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63714.2 FROM MIGRAD STATUS=INITIATE 33 CALLS 34 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 2.63122e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -5.45805e+02 - 3 par_gaus_exp_2 6.67498e-01 3.05000e-01 -6.37370e-01 7.03093e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM MIGRAD STATUS=CONVERGED 131 CALLS 132 TOTAL - EDM=6.15917e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.71558e+02 8.05096e-01 6.82817e-03 6.24407e-02 - 2 par_gaus_exp_1 3.06822e+01 1.83071e+00 1.43475e-02 1.11468e-02 - 3 par_gaus_exp_2 3.82770e-01 2.42284e-02 3.05774e-03 -9.77170e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.486e-01 -6.079e-01 -1.588e-03 - -6.079e-01 3.370e+00 3.082e-02 - -1.588e-03 3.082e-02 5.871e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.49876 1.000 -0.411 -0.081 - 2 0.77898 -0.411 1.000 0.693 - 3 0.72797 -0.081 0.693 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM HESSE STATUS=OK 16 CALLS 148 TOTAL - EDM=6.13964e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.71558e+02 8.14214e-01 2.73127e-04 -4.35760e-01 - 2 par_gaus_exp_1 3.06822e+01 1.86973e+00 5.73898e-04 4.10264e-01 - 3 par_gaus_exp_2 3.82770e-01 2.45149e-02 1.22310e-04 -8.97531e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.634e-01 -6.630e-01 -2.137e-03 - -6.630e-01 3.516e+00 3.227e-02 - -2.137e-03 3.227e-02 6.011e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.51526 1.000 -0.434 -0.107 - 2 0.78935 -0.434 1.000 0.702 - 3 0.73544 -0.107 0.702 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,625] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.33953 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - ... (remaining 126 messages suppressed) -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.33953) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.734607 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=317.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=327.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=332.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=342.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=347.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=352.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=357.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=362.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=367.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - ... (remaining 53 messages suppressed) -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.734607) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0734613 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0734613 - - FCN=103487 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57093e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.56195e+03 - 3 par_novo_2 -1.33668e+00 2.00000e+01 0.00000e+00 1.53931e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM MIGRAD STATUS=CONVERGED 127 CALLS 128 TOTAL - EDM=3.4171e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.43423e+01 1.81223e-01** at limit ** - 2 par_novo_1 3.86596e+01 2.27294e+00 4.95847e-03 -1.04123e-02 - 3 par_novo_2 -1.27520e+00 7.07738e-02 3.70975e-05 -1.26322e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.231e-09 -8.491e-07 -8.580e-07 - -8.491e-07 5.181e+00 1.547e-01 - -8.580e-07 1.547e-01 5.009e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.53332 1.000 -0.005 -0.154 - 2 0.97096 -0.005 1.000 0.960 - 3 0.97165 -0.154 0.960 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM HESSE STATUS=OK 20 CALLS 148 TOTAL - EDM=3.43726e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.40246e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.86596e+01 2.31421e+00 1.98339e-04 4.46530e-01 - 3 par_novo_2 -1.27520e+00 7.22930e-02 1.48390e-06 -1.27523e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 5.974e-09 2.819e-05 -1.296e-06 - 2.819e-05 5.372e+00 1.502e-01 - -1.296e-06 1.502e-01 5.226e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.85665 1.000 0.157 -0.232 - 2 0.97200 0.157 1.000 0.897 - 3 0.97285 -0.232 0.897 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107513 FROM MIGRAD STATUS=INITIATE 54 CALLS 55 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 1.39168e+03 - 2 par_crystal_1_1 7.96220e-02 5.09000e-01 0.00000e+00 5.33770e+03 - 3 par_crystal_1_2 2.56879e+02 4.00000e+00 -1.56713e-01 -1.96669e+01 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 -8.45862e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.5057e-02 2.3309e-03 4.9678e-02 3.9730e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.029030 TO DIAGONAL. - FCN=103250 FROM MIGRAD STATUS=CONVERGED 436 CALLS 437 TOTAL - EDM=3.52757e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 4.45574e-02 4.37117e-03 3.09465e-04 -4.28177e+00 - 2 par_crystal_1_1 4.36914e+00 6.24106e-01 1.80400e-02 6.63742e-02 - 3 par_crystal_1_2 2.71531e+02 3.44700e+01 5.81266e-02 2.25694e-02 - 4 par_crystal_1_3 3.37290e+00 2.71702e-01 3.13791e-03 -4.26197e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.911e-05 -1.221e-03 2.089e-01 3.572e-04 - -1.221e-03 4.065e-01 -2.690e+01 -6.822e-02 - 2.089e-01 -2.690e+01 3.429e+03 1.167e+01 - 3.572e-04 -6.822e-02 1.167e+01 7.401e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99136 1.000 -0.438 0.816 0.300 - 2 0.97307 -0.438 1.000 -0.720 -0.393 - 3 0.99735 0.816 -0.720 1.000 0.733 - 4 0.98716 0.300 -0.393 0.733 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -8.0089e-04 4.0193e-04 7.1213e-02 3.9292e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.004730 TO DIAGONAL. - FCN=103250 FROM HESSE STATUS=NOT POSDEF 23 CALLS 460 TOTAL - EDM=3.56127e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 4.45574e-02 7.42610e-03 6.18930e-05 -1.40582e+00 - 2 par_crystal_1_1 4.36914e+00 4.67550e-01 7.21602e-04 -3.93511e+00 - 3 par_crystal_1_2 2.71531e+02 3.29814e+01 2.32506e-03 -3.75607e+00 - 4 par_crystal_1_3 3.37290e+00 5.01685e-01 1.25517e-04 -1.80638e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.515e-05 2.851e-04 2.343e-01 -1.699e-03 - 2.851e-04 2.238e-01 -2.528e+00 1.548e-02 - 2.343e-01 -2.528e+00 2.967e+03 1.176e+01 - -1.699e-03 1.548e-02 1.176e+01 2.538e-01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99694 1.000 0.081 0.579 -0.454 - 2 0.94927 0.081 1.000 -0.098 0.065 - 3 0.99687 0.579 -0.098 1.000 0.429 - 4 0.99618 -0.454 0.065 0.429 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 14211 - Background number of gaus_exp_252_330 = 14211 - Background number of novo_285_624 = 17618.3 - Background number of crystal_1_285_624 = 17618.3 - Background number of gaus_bern_285_624 = 17618.3 - Background number of landau_285_624 = 17618.3 -par_crystal_0 param 0.440594 0.0464698 -par_crystal_1 param 0.982994 0.655195 -par_crystal_2 param 271.542 0.738644 -par_crystal_3 param 28.7224 2.03002 -par_crystal_1_0 param 0.0445574 0.0074261 -par_crystal_1_1 param 4.36914 0.46755 -par_crystal_1_2 param 271.531 32.9814 -par_crystal_1_3 param 3.3729 0.501685 -par_gaus_exp_0 param 271.558 0.814214 -par_gaus_exp_1 param 30.6822 1.86973 -par_gaus_exp_2 param 0.38277 0.0245149 -par_novo_0 param 250 34.0246 -par_novo_1 param 38.6596 2.31421 -par_novo_2 param -1.2752 0.072293 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_450_novo_285_624/datacard_450_novo_285_624.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_450_novo_285_624/datacard_450_novo_285_624.txt deleted file mode 100644 index cd59f2a..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_450_novo_285_624/datacard_450_novo_285_624.txt +++ /dev/null @@ -1,29 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_450.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_novo_285_624.root HbbHbb:f_novo -shapes data_obs HbbHbb w_background_novo_285_624.root HbbHbb:data_obs_novo_285_624 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 1083.26 17618.3 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06507 - -JER lnN 1.01521 - -JEC lnN 1.00732 - -trigger lnN 1.10 - -sg_p0 param 453.121 -0.497337/+0.712236 -sg_p1 param 13.2664 -0.387695/+0.262907 -sg_p2 param 441.85 -2.76371/+2.88009 -sg_p3 param 39.952 -2.5136/+2.92847 -sg_p4 param 0.869549 -0.0148009/+0.0189113 -par_novo_0 param 250 34.0246 -par_novo_1 param 38.6596 2.31421 -par_novo_2 param -1.2752 0.072293 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_450_novo_285_624/signal450_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_450_novo_285_624/signal450_sig.log deleted file mode 100644 index 758dffb..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_450_novo_285_624/signal450_sig.log +++ /dev/null @@ -1,849 +0,0 @@ - -Processing test.c... -nSignal_init = 100000 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=15106.7 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.45000e+02 7.00000e+00 2.01358e-01 9.40956e+02 - 2 sg_p1 1.90000e+01 3.20000e+00 2.01358e-01 -1.15795e+02 - 3 sg_p2 4.50000e+02 8.00000e+00 2.01358e-01 5.60158e+02 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -7.43253e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -2.02042e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14616.9 FROM MIGRAD STATUS=CONVERGED 237 CALLS 238 TOTAL - EDM=3.59834e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.33700e+02 5.20779e-01 1.28024e-03 -4.50888e-02 - 2 sg_p1 2.45512e+01 4.32325e-01 2.13929e-03 2.15071e-02 - 3 sg_p2 4.10000e+02 7.56422e-01 1.62500e-02** at limit ** - 4 sg_p3 9.59075e+01 9.76509e+00 3.57927e-02 -4.80697e-03 - 5 sg_p4 8.98300e-01 1.09856e-02 2.31920e-03 1.35348e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.712e-01 -3.295e-02 -7.320e-06 -1.029e+00 -1.066e-03 - -3.295e-02 1.870e-01 4.421e-06 1.512e+00 2.106e-03 - -7.320e-06 4.421e-06 3.900e-05 3.605e-04 1.357e-07 - -1.029e+00 1.512e+00 3.605e-04 1.055e+02 6.647e-02 - -1.066e-03 2.106e-03 1.357e-07 6.647e-02 1.207e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22083 1.000 -0.146 -0.002 -0.192 -0.186 - 2 0.45738 -0.146 1.000 0.002 0.340 0.443 - 3 0.00601 -0.002 0.002 1.000 0.006 0.002 - 4 0.60064 -0.192 0.340 0.006 1.000 0.589 - 5 0.64515 -0.186 0.443 0.002 0.589 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14616.9 FROM HESSE STATUS=OK 31 CALLS 269 TOTAL - EDM=3.62828e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.33700e+02 5.22464e-01 2.56047e-04 -3.28756e-01 - 2 sg_p1 2.45512e+01 4.36897e-01 8.55715e-05 3.54316e-01 - 3 sg_p2 4.10000e+02 7.56439e-01 3.24999e-03 -1.56999e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 9.59075e+01 1.00551e+01 1.43171e-03 1.14101e+00 - 5 sg_p4 8.98300e-01 1.13202e-02 4.63840e-04 9.21649e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.730e-01 -3.575e-02 -2.151e-06 -1.151e+00 -1.179e-03 - -3.575e-02 1.909e-01 1.441e-06 1.696e+00 2.279e-03 - -2.151e-06 1.441e-06 3.900e-05 1.093e-04 4.737e-08 - -1.151e+00 1.696e+00 1.093e-04 1.126e+02 7.452e-02 - -1.179e-03 2.279e-03 4.737e-08 7.452e-02 1.282e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23428 1.000 -0.157 -0.001 -0.208 -0.199 - 2 0.47504 -0.157 1.000 0.001 0.366 0.461 - 3 0.00175 -0.001 0.001 1.000 0.002 0.001 - 4 0.63167 -0.208 0.366 0.002 1.000 0.620 - 5 0.67100 -0.199 0.461 0.001 0.620 1.000 -450 -433.7 +- 0.522464 -24.5512 +- 0.436897 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=14967 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.45000e+02 7.00000e+00 2.01358e-01 7.30094e+02 - 2 sg_p1 1.90000e+01 3.20000e+00 2.01358e-01 -7.17086e+01 - 3 sg_p2 4.50000e+02 8.00000e+00 2.01358e-01 4.92262e+02 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 1.24799e+00 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -2.52207e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14568.3 FROM MIGRAD STATUS=CONVERGED 225 CALLS 226 TOTAL - EDM=1.40963e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.35880e+02 5.28453e-01 1.25742e-03 3.65467e-02 - 2 sg_p1 2.47804e+01 4.36143e-01 2.15058e-03 8.90109e-02 - 3 sg_p2 4.10000e+02 8.41699e-01 1.71227e-02** at limit ** - 4 sg_p3 9.34154e+01 9.89175e+00 2.81029e-02 3.92610e-03 - 5 sg_p4 9.04757e-01 1.10728e-02 2.34320e-03 -1.13912e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.793e-01 -4.062e-02 -3.574e-06 -1.243e+00 -1.334e-03 - -4.062e-02 1.903e-01 1.963e-06 1.596e+00 2.205e-03 - -3.574e-06 1.963e-06 1.004e-05 1.505e-04 5.291e-08 - -1.243e+00 1.596e+00 1.505e-04 1.043e+02 6.945e-02 - -1.334e-03 2.205e-03 5.291e-08 6.945e-02 1.227e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.26417 1.000 -0.176 -0.002 -0.230 -0.228 - 2 0.47132 -0.176 1.000 0.001 0.358 0.457 - 3 0.00513 -0.002 0.001 1.000 0.005 0.002 - 4 0.62620 -0.230 0.358 0.005 1.000 0.614 - 5 0.66724 -0.228 0.457 0.002 0.614 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14568.3 FROM HESSE STATUS=OK 31 CALLS 257 TOTAL - EDM=1.45125e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.35880e+02 5.30103e-01 2.51483e-04 -2.63606e-01 - 2 sg_p1 2.47804e+01 4.39593e-01 4.30116e-04 3.69632e-01 - 3 sg_p2 4.10000e+02 8.41739e-01 3.42455e-03 -1.57118e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 9.34154e+01 1.01144e+01 1.12412e-03 1.02300e+00 - 5 sg_p4 9.04757e-01 1.13218e-02 9.37280e-05 9.43325e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.810e-01 -4.308e-02 -6.126e-07 -1.344e+00 -1.432e-03 - -4.308e-02 1.933e-01 3.606e-07 1.730e+00 2.336e-03 - -6.126e-07 3.606e-07 1.004e-05 2.633e-05 1.041e-08 - -1.344e+00 1.730e+00 2.633e-05 1.094e+02 7.528e-02 - -1.432e-03 2.336e-03 1.041e-08 7.528e-02 1.282e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.27490 1.000 -0.185 -0.000 -0.242 -0.238 - 2 0.48405 -0.185 1.000 0.000 0.376 0.469 - 3 0.00087 -0.000 0.000 1.000 0.001 0.000 - 4 0.64751 -0.242 0.376 0.001 1.000 0.636 - 5 0.68509 -0.238 0.469 0.000 0.636 1.000 -450 -435.88 +- 0.530103 -24.7804 +- 0.439593 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=14989.3 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.45000e+02 7.00000e+00 2.01358e-01 1.09913e+03 - 2 sg_p1 1.90000e+01 3.20000e+00 2.01358e-01 -1.79281e+02 - 3 sg_p2 4.50000e+02 8.00000e+00 2.01358e-01 6.15691e+02 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -1.35305e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -1.43184e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14396.8 FROM MIGRAD STATUS=CONVERGED 259 CALLS 260 TOTAL - EDM=2.88948e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.31562e+02 5.09368e-01 1.30052e-03 -5.36209e-02 - 2 sg_p1 2.44193e+01 3.99415e-01 2.10037e-03 1.06473e-02 - 3 sg_p2 4.10000e+02 7.22690e-01 1.57718e-02** at limit ** - 4 sg_p3 1.00000e+02 1.55471e+01 7.04637e-02** at limit ** - 5 sg_p4 8.97810e-01 8.75371e-03 2.28074e-03 2.04575e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.595e-01 -1.470e-02 -3.574e-07 3.497e-04 -3.281e-04 - -1.470e-02 1.596e-01 -3.286e-08 -5.660e-04 1.020e-03 - -3.574e-07 -3.286e-08 5.312e-07 -1.926e-08 -7.103e-09 - 3.497e-04 -5.660e-04 -1.926e-08 1.262e-03 -2.615e-05 - -3.281e-04 1.020e-03 -7.103e-09 -2.615e-05 7.665e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.09157 1.000 -0.072 -0.001 0.019 -0.074 - 2 0.29639 -0.072 1.000 -0.000 -0.040 0.292 - 3 0.00174 -0.001 -0.000 1.000 -0.001 -0.001 - 4 0.08650 0.019 -0.040 -0.001 1.000 -0.084 - 5 0.30486 -0.074 0.292 -0.001 -0.084 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14396.8 FROM HESSE STATUS=OK 31 CALLS 291 TOTAL - EDM=2.76365e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.31562e+02 5.09297e-01 2.60104e-04 -3.94063e-01 - 2 sg_p1 2.44193e+01 3.99210e-01 8.40147e-05 3.45541e-01 - 3 sg_p2 4.10000e+02 7.22718e-01 3.15436e-03 -1.57070e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 1.00000e+02 1.57628e+01 1.40927e-02 1.56988e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 5 sg_p4 8.97810e-01 8.72528e-03 9.12295e-05 9.20031e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.594e-01 -1.474e-02 -7.385e-08 6.324e-05 -3.205e-04 - -1.474e-02 1.594e-01 -8.717e-09 -1.029e-04 1.011e-03 - -7.385e-08 -8.717e-09 5.312e-07 -7.301e-10 -1.575e-09 - 6.324e-05 -1.029e-04 -7.301e-10 1.280e-03 -4.742e-06 - -3.205e-04 1.011e-03 -1.575e-09 -4.742e-06 7.615e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.09005 1.000 -0.072 -0.000 0.003 -0.072 - 2 0.29480 -0.072 1.000 -0.000 -0.007 0.290 - 3 0.00033 -0.000 -0.000 1.000 -0.000 -0.000 - 4 0.01563 0.003 -0.007 -0.000 1.000 -0.015 - 5 0.29498 -0.072 0.290 -0.000 -0.015 1.000 -450 -431.562 +- 0.509297 -24.4193 +- 0.39921 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=12740.9 FROM MIGRAD STATUS=INITIATE 45 CALLS 46 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.50000e+02 6.00000e+00 0.00000e+00 -8.59626e+02 - 2 sg_p1 1.40000e+01 2.20000e+00 0.00000e+00 2.90307e+02 - 3 sg_p2 4.35000e+02 1.10000e+01 0.00000e+00 -9.30862e+02 - 4 sg_p3 3.11611e+01 1.40000e+01 -7.72180e-01 1.25776e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -5.90098e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12371.9 FROM MIGRAD STATUS=CONVERGED 204 CALLS 205 TOTAL - EDM=1.72857e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.53121e+02 3.12103e-01 7.60916e-04 -1.37805e-01 - 2 sg_p1 1.32664e+01 3.51765e-01 1.66864e-03 -1.59663e-01 - 3 sg_p2 4.41850e+02 2.88341e+00 3.42150e-03 -4.30161e-02 - 4 sg_p3 3.99520e+01 3.27521e+00 2.78644e-03 -1.95155e-02 - 5 sg_p4 8.69549e-01 2.03464e-02 2.42525e-03 7.02356e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.741e-02 -2.019e-02 -5.897e-02 -2.380e-01 -1.352e-03 - -2.019e-02 1.238e-01 -4.014e-01 6.784e-01 5.251e-03 - -5.897e-02 -4.014e-01 8.322e+00 -4.133e+00 -2.949e-02 - -2.380e-01 6.784e-01 -4.133e+00 1.074e+01 5.122e-02 - -1.352e-03 5.251e-03 -2.949e-02 5.122e-02 4.145e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.32114 1.000 -0.184 -0.066 -0.233 -0.213 - 2 0.73542 -0.184 1.000 -0.395 0.588 0.733 - 3 0.54335 -0.066 -0.395 1.000 -0.437 -0.502 - 4 0.77539 -0.233 0.588 -0.437 1.000 0.768 - 5 0.85259 -0.213 0.733 -0.502 0.768 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12371.9 FROM HESSE STATUS=OK 31 CALLS 236 TOTAL - EDM=1.73002e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.53121e+02 3.12202e-01 1.52183e-04 1.04231e-01 - 2 sg_p1 1.32664e+01 3.54275e-01 3.33728e-04 -6.67445e-02 - 3 sg_p2 4.41850e+02 2.90658e+00 6.84300e-04 1.24877e-01 - 4 sg_p3 3.99520e+01 3.31061e+00 1.11458e-04 -6.09081e-01 - 5 sg_p4 8.69549e-01 2.05823e-02 4.85050e-04 8.31731e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.747e-02 -2.060e-02 -5.492e-02 -2.421e-01 -1.378e-03 - -2.060e-02 1.256e-01 -4.183e-01 6.988e-01 5.382e-03 - -5.492e-02 -4.183e-01 8.456e+00 -4.334e+00 -3.074e-02 - -2.421e-01 6.988e-01 -4.334e+00 1.097e+01 5.275e-02 - -1.378e-03 5.382e-03 -3.074e-02 5.275e-02 4.242e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.32202 1.000 -0.186 -0.060 -0.234 -0.214 - 2 0.73982 -0.186 1.000 -0.406 0.595 0.738 - 3 0.55356 -0.060 -0.406 1.000 -0.450 -0.513 - 4 0.78084 -0.234 0.595 -0.450 1.000 0.773 - 5 0.85624 -0.214 0.738 -0.513 0.773 1.000 -450 -453.121 +- 0.312202 -13.2664 +- 0.354275 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=12831.2 FROM MIGRAD STATUS=INITIATE 47 CALLS 48 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.50000e+02 6.00000e+00 0.00000e+00 -9.71963e+02 - 2 sg_p1 1.40000e+01 2.20000e+00 0.00000e+00 2.47720e+02 - 3 sg_p2 4.35000e+02 1.10000e+01 0.00000e+00 -9.59810e+02 - 4 sg_p3 3.20356e+01 1.40000e+01 -7.54886e-01 1.25318e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -5.92447e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12439.7 FROM MIGRAD STATUS=CONVERGED 195 CALLS 196 TOTAL - EDM=5.05245e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.53816e+02 3.21132e-01 7.83772e-04 -7.95633e-02 - 2 sg_p1 1.33997e+01 3.69195e-01 1.71799e-03 1.80096e-01 - 3 sg_p2 4.44337e+02 2.53515e+00 3.11461e-03 -5.82291e-02 - 4 sg_p3 3.80604e+01 2.91065e+00 2.47607e-03 7.49358e-02 - 5 sg_p4 8.58912e-01 2.26324e-02 2.50700e-03 -6.85706e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.031e-01 -2.126e-02 -8.734e-02 -2.148e-01 -1.521e-03 - -2.126e-02 1.364e-01 -3.383e-01 6.405e-01 6.246e-03 - -8.734e-02 -3.383e-01 6.432e+00 -2.789e+00 -2.624e-02 - -2.148e-01 6.405e-01 -2.789e+00 8.480e+00 5.167e-02 - -1.521e-03 6.246e-03 -2.624e-02 5.167e-02 5.129e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.33218 1.000 -0.179 -0.107 -0.230 -0.209 - 2 0.74782 -0.179 1.000 -0.361 0.596 0.747 - 3 0.50601 -0.107 -0.361 1.000 -0.378 -0.457 - 4 0.78747 -0.230 0.596 -0.378 1.000 0.784 - 5 0.86569 -0.209 0.747 -0.457 0.784 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12439.7 FROM HESSE STATUS=OK 31 CALLS 227 TOTAL - EDM=5.14272e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.53816e+02 3.21170e-01 1.56754e-04 1.27552e-01 - 2 sg_p1 1.33997e+01 3.71529e-01 3.43597e-04 -5.45997e-02 - 3 sg_p2 4.44337e+02 2.55137e+00 6.22923e-04 1.70589e-01 - 4 sg_p3 3.80604e+01 2.93737e+00 9.90429e-05 -6.42423e-01 - 5 sg_p4 8.58912e-01 2.28649e-02 5.01401e-04 8.00670e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.032e-01 -2.159e-02 -8.447e-02 -2.173e-01 -1.542e-03 - -2.159e-02 1.381e-01 -3.519e-01 6.569e-01 6.381e-03 - -8.447e-02 -3.519e-01 6.514e+00 -2.922e+00 -2.730e-02 - -2.173e-01 6.569e-01 -2.922e+00 8.636e+00 5.298e-02 - -1.542e-03 6.381e-03 -2.730e-02 5.298e-02 5.236e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.33250 1.000 -0.181 -0.103 -0.230 -0.210 - 2 0.75151 -0.181 1.000 -0.371 0.602 0.750 - 3 0.51526 -0.103 -0.371 1.000 -0.390 -0.467 - 4 0.79182 -0.230 0.602 -0.390 1.000 0.788 - 5 0.86862 -0.210 0.750 -0.467 0.788 1.000 -450 -453.816 +- 0.32117 -13.3997 +- 0.371529 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=12450.5 FROM MIGRAD STATUS=INITIATE 45 CALLS 46 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.50000e+02 6.00000e+00 0.00000e+00 -7.89096e+02 - 2 sg_p1 1.40000e+01 2.20000e+00 0.00000e+00 3.29312e+02 - 3 sg_p2 4.35000e+02 1.10000e+01 0.00000e+00 -9.41083e+02 - 4 sg_p3 2.97404e+01 1.40000e+01 -8.00916e-01 5.32420e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -5.78505e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12082.3 FROM MIGRAD STATUS=CONVERGED 217 CALLS 218 TOTAL - EDM=9.81901e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.52649e+02 2.99257e-01 7.27117e-04 -1.85651e-01 - 2 sg_p1 1.29215e+01 3.26230e-01 1.60240e-03 -1.04599e-01 - 3 sg_p2 4.39500e+02 3.30234e+00 3.79402e-03 -2.47036e-02 - 4 sg_p3 4.23678e+01 3.70551e+00 3.18328e-03 -2.16927e-02 - 5 sg_p4 8.78387e-01 1.75288e-02 2.31775e-03 5.63843e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 8.956e-02 -1.634e-02 -3.809e-02 -2.386e-01 -1.021e-03 - -1.634e-02 1.065e-01 -4.382e-01 6.785e-01 4.010e-03 - -3.809e-02 -4.382e-01 1.092e+01 -5.893e+00 -3.008e-02 - -2.386e-01 6.785e-01 -5.893e+00 1.375e+01 4.755e-02 - -1.021e-03 4.010e-03 -3.008e-02 4.755e-02 3.076e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.29182 1.000 -0.167 -0.039 -0.215 -0.195 - 2 0.70607 -0.167 1.000 -0.406 0.561 0.701 - 3 0.56523 -0.039 -0.406 1.000 -0.481 -0.519 - 4 0.74887 -0.215 0.561 -0.481 1.000 0.731 - 5 0.82206 -0.195 0.701 -0.519 0.731 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12082.3 FROM HESSE STATUS=OK 31 CALLS 249 TOTAL - EDM=9.82123e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.52649e+02 2.99376e-01 1.45423e-04 8.84175e-02 - 2 sg_p1 1.29215e+01 3.28560e-01 3.20481e-04 -9.82038e-02 - 3 sg_p2 4.39500e+02 3.33339e+00 7.58805e-04 8.19031e-02 - 4 sg_p3 4.23678e+01 3.74990e+00 1.27331e-04 -5.67592e-01 - 5 sg_p4 8.78387e-01 1.77374e-02 4.63550e-04 8.58362e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 8.963e-02 -1.673e-02 -3.321e-02 -2.436e-01 -1.045e-03 - -1.673e-02 1.080e-01 -4.573e-01 7.011e-01 4.116e-03 - -3.321e-02 -4.573e-01 1.113e+01 -6.187e+00 -3.140e-02 - -2.436e-01 7.011e-01 -6.187e+00 1.408e+01 4.914e-02 - -1.045e-03 4.116e-03 -3.140e-02 4.914e-02 3.149e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.29306 1.000 -0.170 -0.033 -0.217 -0.197 - 2 0.71107 -0.170 1.000 -0.417 0.569 0.706 - 3 0.57630 -0.033 -0.417 1.000 -0.494 -0.531 - 4 0.75573 -0.217 0.569 -0.494 1.000 0.738 - 5 0.82667 -0.197 0.706 -0.531 0.738 1.000 -450 -452.649 +- 0.299376 -12.9215 +- 0.32856 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=12485 FROM MIGRAD STATUS=INITIATE 47 CALLS 48 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.50000e+02 6.00000e+00 0.00000e+00 -8.28524e+02 - 2 sg_p1 1.40000e+01 2.20000e+00 0.00000e+00 2.76932e+02 - 3 sg_p2 4.35000e+02 1.10000e+01 0.00000e+00 -9.07179e+02 - 4 sg_p3 3.15199e+01 1.40000e+01 -7.65049e-01 1.17013e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -5.75418e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12126.6 FROM MIGRAD STATUS=CONVERGED 206 CALLS 207 TOTAL - EDM=8.2003e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.53041e+02 3.16233e-01 7.67663e-04 -4.53747e-01 - 2 sg_p1 1.34606e+01 3.60067e-01 1.68094e-03 -2.56821e-01 - 3 sg_p2 4.42647e+02 3.03755e+00 3.65255e-03 -7.93949e-02 - 4 sg_p3 4.13701e+01 3.70699e+00 3.03411e-03 -1.62102e-02 - 5 sg_p4 8.74490e-01 2.02974e-02 2.42550e-03 1.44185e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.000e-01 -1.902e-02 -8.059e-02 -2.487e-01 -1.247e-03 - -1.902e-02 1.297e-01 -4.096e-01 8.024e-01 5.385e-03 - -8.059e-02 -4.096e-01 9.236e+00 -4.749e+00 -2.911e-02 - -2.487e-01 8.024e-01 -4.749e+00 1.376e+01 5.850e-02 - -1.247e-03 5.385e-03 -2.911e-02 5.850e-02 4.125e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.30405 1.000 -0.167 -0.084 -0.212 -0.194 - 2 0.73858 -0.167 1.000 -0.374 0.601 0.736 - 3 0.51688 -0.084 -0.374 1.000 -0.421 -0.472 - 4 0.78361 -0.212 0.601 -0.421 1.000 0.776 - 5 0.85381 -0.194 0.736 -0.472 0.776 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12126.6 FROM HESSE STATUS=OK 31 CALLS 238 TOTAL - EDM=8.28097e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.53041e+02 3.16314e-01 1.53533e-04 1.01529e-01 - 2 sg_p1 1.34606e+01 3.62947e-01 3.36188e-04 -4.90533e-02 - 3 sg_p2 4.42647e+02 3.06302e+00 7.30509e-04 1.39482e-01 - 4 sg_p3 4.13701e+01 3.75314e+00 1.21364e-04 -5.84588e-01 - 5 sg_p4 8.74490e-01 2.05612e-02 4.85100e-04 8.46520e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.001e-01 -1.944e-02 -7.634e-02 -2.533e-01 -1.273e-03 - -1.944e-02 1.318e-01 -4.295e-01 8.293e-01 5.535e-03 - -7.634e-02 -4.295e-01 9.392e+00 -5.013e+00 -3.054e-02 - -2.533e-01 8.293e-01 -5.013e+00 1.411e+01 6.046e-02 - -1.273e-03 5.535e-03 -3.054e-02 6.046e-02 4.233e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.30482 1.000 -0.169 -0.079 -0.213 -0.196 - 2 0.74343 -0.169 1.000 -0.386 0.608 0.741 - 3 0.52851 -0.079 -0.386 1.000 -0.436 -0.484 - 4 0.78960 -0.213 0.608 -0.436 1.000 0.782 - 5 0.85785 -0.196 0.741 -0.484 0.782 1.000 -450 -453.041 +- 0.316314 -13.4606 +- 0.362947 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=12831.1 FROM MIGRAD STATUS=INITIATE 45 CALLS 46 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.50000e+02 6.00000e+00 0.00000e+00 -9.34152e+02 - 2 sg_p1 1.40000e+01 2.20000e+00 0.00000e+00 2.79811e+02 - 3 sg_p2 4.35000e+02 1.10000e+01 0.00000e+00 -1.07673e+03 - 4 sg_p3 2.91978e+01 1.40000e+01 -8.12117e-01 -1.15313e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -5.79673e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12442.9 FROM MIGRAD STATUS=CONVERGED 214 CALLS 215 TOTAL - EDM=2.54338e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.53203e+02 3.05272e-01 7.48199e-04 1.37509e-01 - 2 sg_p1 1.33442e+01 3.36784e-01 1.63030e-03 -1.73887e-01 - 3 sg_p2 4.40023e+02 3.36501e+00 3.85092e-03 -4.69572e-02 - 4 sg_p3 4.14043e+01 3.72019e+00 3.17044e-03 -1.58965e-02 - 5 sg_p4 8.85415e-01 1.84477e-02 2.39174e-03 8.69592e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.319e-02 -1.886e-02 -3.146e-02 -2.700e-01 -1.210e-03 - -1.886e-02 1.135e-01 -4.902e-01 7.251e-01 4.482e-03 - -3.146e-02 -4.902e-01 1.134e+01 -6.160e+00 -3.421e-02 - -2.700e-01 7.251e-01 -6.160e+00 1.386e+01 5.193e-02 - -1.210e-03 4.482e-03 -3.421e-02 5.193e-02 3.407e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.31564 1.000 -0.183 -0.031 -0.238 -0.215 - 2 0.72421 -0.183 1.000 -0.432 0.578 0.721 - 3 0.58870 -0.031 -0.432 1.000 -0.491 -0.551 - 4 0.76796 -0.238 0.578 -0.491 1.000 0.756 - 5 0.84414 -0.215 0.721 -0.551 0.756 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12442.9 FROM HESSE STATUS=OK 31 CALLS 246 TOTAL - EDM=2.55427e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.53203e+02 3.05429e-01 1.49640e-04 1.06973e-01 - 2 sg_p1 1.33442e+01 3.39511e-01 3.26061e-04 -5.96515e-02 - 3 sg_p2 4.40023e+02 3.39967e+00 7.70184e-04 9.14550e-02 - 4 sg_p3 4.14043e+01 3.76783e+00 1.26818e-04 -5.84003e-01 - 5 sg_p4 8.85415e-01 1.86940e-02 4.78349e-04 8.80144e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.329e-02 -1.935e-02 -2.553e-02 -2.761e-01 -1.241e-03 - -1.935e-02 1.153e-01 -5.124e-01 7.508e-01 4.612e-03 - -2.553e-02 -5.124e-01 1.157e+01 -6.480e+00 -3.578e-02 - -2.761e-01 7.508e-01 -6.480e+00 1.422e+01 5.377e-02 - -1.241e-03 4.612e-03 -3.578e-02 5.377e-02 3.499e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.31711 1.000 -0.187 -0.025 -0.240 -0.217 - 2 0.72945 -0.187 1.000 -0.444 0.586 0.726 - 3 0.59988 -0.025 -0.444 1.000 -0.505 -0.562 - 4 0.77464 -0.240 0.586 -0.505 1.000 0.762 - 5 0.84859 -0.217 0.726 -0.562 0.762 1.000 -450 -453.203 +- 0.305429 -13.3442 +- 0.339511 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11934 FROM MIGRAD STATUS=INITIATE 45 CALLS 46 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.50000e+02 6.00000e+00 0.00000e+00 -8.21817e+02 - 2 sg_p1 1.40000e+01 2.20000e+00 0.00000e+00 2.66012e+02 - 3 sg_p2 4.35000e+02 1.10000e+01 0.00000e+00 -9.28921e+02 - 4 sg_p3 3.02910e+01 1.40000e+01 -7.89682e-01 6.24982e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -5.41964e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11588.1 FROM MIGRAD STATUS=CONVERGED 204 CALLS 205 TOTAL - EDM=3.59163e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.53125e+02 3.22437e-01 7.59830e-04 3.14030e-01 - 2 sg_p1 1.32568e+01 3.64776e-01 1.66662e-03 1.31711e-01 - 3 sg_p2 4.41914e+02 2.96380e+00 3.40318e-03 -1.73168e-02 - 4 sg_p3 3.96954e+01 3.35557e+00 2.76524e-03 -2.51020e-02 - 5 sg_p4 8.69980e-01 2.12003e-02 2.43138e-03 2.99659e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.040e-01 -2.192e-02 -6.249e-02 -2.549e-01 -1.475e-03 - -2.192e-02 1.331e-01 -4.296e-01 7.236e-01 5.697e-03 - -6.249e-02 -4.296e-01 8.793e+00 -4.343e+00 -3.167e-02 - -2.549e-01 7.236e-01 -4.343e+00 1.127e+01 5.485e-02 - -1.475e-03 5.697e-03 -3.167e-02 5.485e-02 4.500e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.32406 1.000 -0.186 -0.065 -0.235 -0.216 - 2 0.73815 -0.186 1.000 -0.397 0.591 0.736 - 3 0.54427 -0.065 -0.397 1.000 -0.436 -0.503 - 4 0.77722 -0.235 0.591 -0.436 1.000 0.770 - 5 0.85485 -0.216 0.736 -0.503 0.770 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11588.1 FROM HESSE STATUS=OK 31 CALLS 236 TOTAL - EDM=3.63213e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.53125e+02 3.22540e-01 1.51966e-04 1.04341e-01 - 2 sg_p1 1.32568e+01 3.67383e-01 3.33325e-04 -6.76154e-02 - 3 sg_p2 4.41914e+02 2.98753e+00 6.80636e-04 1.26049e-01 - 4 sg_p3 3.96954e+01 3.39157e+00 1.10610e-04 -6.13558e-01 - 5 sg_p4 8.69980e-01 2.14457e-02 4.86276e-04 8.33011e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.040e-01 -2.236e-02 -5.816e-02 -2.592e-01 -1.503e-03 - -2.236e-02 1.350e-01 -4.476e-01 7.452e-01 5.838e-03 - -5.816e-02 -4.476e-01 8.934e+00 -4.553e+00 -3.300e-02 - -2.592e-01 7.452e-01 -4.553e+00 1.152e+01 5.647e-02 - -1.503e-03 5.838e-03 -3.300e-02 5.647e-02 4.605e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.32494 1.000 -0.189 -0.060 -0.237 -0.217 - 2 0.74250 -0.189 1.000 -0.408 0.598 0.740 - 3 0.55442 -0.060 -0.408 1.000 -0.449 -0.514 - 4 0.78258 -0.237 0.598 -0.449 1.000 0.775 - 5 0.85843 -0.217 0.740 -0.514 0.775 1.000 -450 -453.125 +- 0.32254 -13.2568 +- 0.367383 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=13588.6 FROM MIGRAD STATUS=INITIATE 45 CALLS 46 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.50000e+02 6.00000e+00 0.00000e+00 -9.01194e+02 - 2 sg_p1 1.40000e+01 2.20000e+00 0.00000e+00 3.14820e+02 - 3 sg_p2 4.35000e+02 1.10000e+01 0.00000e+00 -9.36931e+02 - 4 sg_p3 3.19529e+01 1.40000e+01 -7.56508e-01 1.83311e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -6.40586e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=13194.8 FROM MIGRAD STATUS=CONVERGED 205 CALLS 206 TOTAL - EDM=2.9635e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.53119e+02 3.02295e-01 7.61866e-04 -3.75062e-01 - 2 sg_p1 1.32780e+01 3.39541e-01 1.67011e-03 -9.46376e-02 - 3 sg_p2 4.41784e+02 2.80838e+00 3.43889e-03 -7.54198e-02 - 4 sg_p3 4.02094e+01 3.20169e+00 2.80752e-03 5.20848e-02 - 5 sg_p4 8.69165e-01 1.95466e-02 2.41927e-03 -3.07790e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.139e-02 -1.864e-02 -5.556e-02 -2.229e-01 -1.243e-03 - -1.864e-02 1.153e-01 -3.761e-01 6.379e-01 4.851e-03 - -5.556e-02 -3.761e-01 7.894e+00 -3.947e+00 -2.754e-02 - -2.229e-01 6.379e-01 -3.947e+00 1.026e+01 4.798e-02 - -1.243e-03 4.851e-03 -2.754e-02 4.798e-02 3.825e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.31836 1.000 -0.182 -0.065 -0.230 -0.210 - 2 0.73280 -0.182 1.000 -0.394 0.586 0.730 - 3 0.54277 -0.065 -0.394 1.000 -0.439 -0.501 - 4 0.77378 -0.230 0.586 -0.439 1.000 0.766 - 5 0.85046 -0.210 0.730 -0.501 0.766 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=13194.8 FROM HESSE STATUS=OK 31 CALLS 237 TOTAL - EDM=2.98129e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.53119e+02 3.02390e-01 1.52373e-04 1.04142e-01 - 2 sg_p1 1.32780e+01 3.41962e-01 3.34022e-04 -6.56836e-02 - 3 sg_p2 4.41784e+02 2.83105e+00 6.87778e-04 1.23663e-01 - 4 sg_p3 4.02094e+01 3.23660e+00 1.12301e-04 -6.04605e-01 - 5 sg_p4 8.69165e-01 1.97739e-02 4.83854e-04 8.30589e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.144e-02 -1.903e-02 -5.175e-02 -2.268e-01 -1.268e-03 - -1.903e-02 1.170e-01 -3.920e-01 6.571e-01 4.973e-03 - -5.175e-02 -3.920e-01 8.022e+00 -4.140e+00 -2.871e-02 - -2.268e-01 6.571e-01 -4.140e+00 1.049e+01 4.942e-02 - -1.268e-03 4.973e-03 -2.871e-02 4.942e-02 3.915e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.31924 1.000 -0.184 -0.060 -0.232 -0.212 - 2 0.73725 -0.184 1.000 -0.405 0.593 0.735 - 3 0.55306 -0.060 -0.405 1.000 -0.451 -0.512 - 4 0.77932 -0.232 0.593 -0.451 1.000 0.771 - 5 0.85417 -0.212 0.735 -0.512 0.771 1.000 -450 -453.119 +- 0.30239 -13.278 +- 0.341962 -35.9 fb^{-1} (13 TeV) -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 23 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 72 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 80 has zero error, setting residual to zero - Uncertainty on sg_p0 = 453.121 +- 0.312202 (stat) - 0.472204 + 0.694919 (syst); -0.497337/+0.712236 (total) - Uncertainty on sg_p1 = 13.2664 +- 0.354275 (stat) - 0.344861 + 0.194275 (syst); -0.387695/+0.262907 (total) - Uncertainty on sg_p2 = 441.85 +- 2.90658 (stat) - 2.35076 + 2.48654 (syst); -2.76371/+2.88009 (total) - Uncertainty on sg_p3 = 39.952 +- 3.31061 (stat) - 1.8916 + 2.41576 (syst); -2.5136/+2.92847 (total) - Uncertainty on sg_p4 = 0.869549 +- 0.0205823 (stat) - 0.0106377 + 0.015866 (syst); -0.0148009/+0.0189113 (total) - === Baseline plot ===
- norm = 1083.26 -JEC lnN 1.00732 - -JER lnN 1.01521 - -btag lnN 1.06507 - -sg_p0 param 453.121 -0.497337/+0.712236 -sg_p1 param 13.2664 -0.387695/+0.262907 -sg_p2 param 441.85 -2.76371/+2.88009 -sg_p3 param 39.952 -2.5136/+2.92847 -sg_p4 param 0.869549 -0.0148009/+0.0189113 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_500_crystal_1_285_624/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_500_crystal_1_285_624/data_bkg.log deleted file mode 100644 index 1be2f6e..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_500_crystal_1_285_624/data_bkg.log +++ /dev/null @@ -1,717 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [250,330] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [250,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63590.5 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.69443e-02 5.09000e-01 0.00000e+00 -7.94680e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -8.91126e+00 - 3 par_crystal_2 2.62020e+02 4.00000e+00 1.01181e-01 -1.53451e+00 - 4 par_crystal_3 1.65000e+01 2.70000e+00 0.00000e+00 7.46021e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM MIGRAD STATUS=CONVERGED 482 CALLS 483 TOTAL - EDM=0.000814822 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 4.40594e-01 4.43750e-02 2.48631e-03 2.88668e-01 - 2 par_crystal_1 9.82994e-01 6.48221e-01 2.14269e-02 -5.28345e-03 - 3 par_crystal_2 2.71542e+02 7.41091e-01 7.20683e-03 -9.27818e-02 - 4 par_crystal_3 2.87224e+01 2.18588e+00 3.97473e-02 -6.99277e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.970e-03 -2.333e-02 -5.115e-04 1.392e-02 - -2.333e-02 4.358e-01 4.870e-03 -8.391e-01 - -5.115e-04 4.870e-03 5.496e-01 4.381e-01 - 1.392e-02 -8.391e-01 4.381e-01 5.029e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.88989 1.000 -0.796 -0.016 0.140 - 2 0.92807 -0.796 1.000 0.010 -0.567 - 3 0.40865 -0.016 0.010 1.000 0.264 - 4 0.80948 0.140 -0.567 0.264 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM HESSE STATUS=OK 23 CALLS 506 TOTAL - EDM=0.000711421 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 4.40594e-01 4.64698e-02 4.97262e-04 -9.80558e-01 - 2 par_crystal_1 9.82994e-01 6.55195e-01 8.57075e-04 -6.65795e-01 - 3 par_crystal_2 2.71542e+02 7.38644e-01 1.44137e-03 6.15159e-01 - 4 par_crystal_3 2.87224e+01 2.03002e+00 1.58989e-03 -1.05570e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.160e-03 -2.581e-02 -1.109e-03 1.530e-02 - -2.581e-02 4.456e-01 2.508e-02 -7.234e-01 - -1.109e-03 2.508e-02 5.460e-01 3.687e-01 - 1.530e-02 -7.234e-01 3.687e-01 4.306e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.90014 1.000 -0.832 -0.032 0.159 - 2 0.92960 -0.832 1.000 0.051 -0.522 - 3 0.40186 -0.032 0.051 1.000 0.240 - 4 0.77207 0.159 -0.522 0.240 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63714.2 FROM MIGRAD STATUS=INITIATE 33 CALLS 34 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 2.63122e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -5.45805e+02 - 3 par_gaus_exp_2 6.67498e-01 3.05000e-01 -6.37370e-01 7.03093e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM MIGRAD STATUS=CONVERGED 131 CALLS 132 TOTAL - EDM=6.15917e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.71558e+02 8.05096e-01 6.82817e-03 6.24407e-02 - 2 par_gaus_exp_1 3.06822e+01 1.83071e+00 1.43475e-02 1.11468e-02 - 3 par_gaus_exp_2 3.82770e-01 2.42284e-02 3.05774e-03 -9.77170e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.486e-01 -6.079e-01 -1.588e-03 - -6.079e-01 3.370e+00 3.082e-02 - -1.588e-03 3.082e-02 5.871e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.49876 1.000 -0.411 -0.081 - 2 0.77898 -0.411 1.000 0.693 - 3 0.72797 -0.081 0.693 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM HESSE STATUS=OK 16 CALLS 148 TOTAL - EDM=6.13964e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.71558e+02 8.14214e-01 2.73127e-04 -4.35760e-01 - 2 par_gaus_exp_1 3.06822e+01 1.86973e+00 5.73898e-04 4.10264e-01 - 3 par_gaus_exp_2 3.82770e-01 2.45149e-02 1.22310e-04 -8.97531e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.634e-01 -6.630e-01 -2.137e-03 - -6.630e-01 3.516e+00 3.227e-02 - -2.137e-03 3.227e-02 6.011e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.51526 1.000 -0.434 -0.107 - 2 0.78935 -0.434 1.000 0.702 - 3 0.73544 -0.107 0.702 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,625] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.33953 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.33953) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - ... (remaining 126 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.734607 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.734607) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=317.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=327.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=332.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=342.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=347.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=352.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=357.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=362.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=367.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - ... (remaining 53 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0734613 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0734613 - - FCN=103487 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57093e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.56195e+03 - 3 par_novo_2 -1.33668e+00 2.00000e+01 0.00000e+00 1.53931e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM MIGRAD STATUS=CONVERGED 127 CALLS 128 TOTAL - EDM=3.4171e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.43423e+01 1.81223e-01** at limit ** - 2 par_novo_1 3.86596e+01 2.27294e+00 4.95847e-03 -1.04123e-02 - 3 par_novo_2 -1.27520e+00 7.07738e-02 3.70975e-05 -1.26322e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.231e-09 -8.491e-07 -8.580e-07 - -8.491e-07 5.181e+00 1.547e-01 - -8.580e-07 1.547e-01 5.009e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.53332 1.000 -0.005 -0.154 - 2 0.97096 -0.005 1.000 0.960 - 3 0.97165 -0.154 0.960 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM HESSE STATUS=OK 20 CALLS 148 TOTAL - EDM=3.43726e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.40246e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.86596e+01 2.31421e+00 1.98339e-04 4.46530e-01 - 3 par_novo_2 -1.27520e+00 7.22930e-02 1.48390e-06 -1.27523e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 5.974e-09 2.819e-05 -1.296e-06 - 2.819e-05 5.372e+00 1.502e-01 - -1.296e-06 1.502e-01 5.226e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.85665 1.000 0.157 -0.232 - 2 0.97200 0.157 1.000 0.897 - 3 0.97285 -0.232 0.897 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107513 FROM MIGRAD STATUS=INITIATE 54 CALLS 55 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 1.39168e+03 - 2 par_crystal_1_1 7.96220e-02 5.09000e-01 0.00000e+00 5.33770e+03 - 3 par_crystal_1_2 2.56879e+02 4.00000e+00 -1.56713e-01 -1.96669e+01 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 -8.45862e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.5057e-02 2.3309e-03 4.9678e-02 3.9730e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.029030 TO DIAGONAL. - FCN=103250 FROM MIGRAD STATUS=CONVERGED 436 CALLS 437 TOTAL - EDM=3.52757e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 4.45574e-02 4.37117e-03 3.09465e-04 -4.28177e+00 - 2 par_crystal_1_1 4.36914e+00 6.24106e-01 1.80400e-02 6.63742e-02 - 3 par_crystal_1_2 2.71531e+02 3.44700e+01 5.81266e-02 2.25694e-02 - 4 par_crystal_1_3 3.37290e+00 2.71702e-01 3.13791e-03 -4.26197e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.911e-05 -1.221e-03 2.089e-01 3.572e-04 - -1.221e-03 4.065e-01 -2.690e+01 -6.822e-02 - 2.089e-01 -2.690e+01 3.429e+03 1.167e+01 - 3.572e-04 -6.822e-02 1.167e+01 7.401e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99136 1.000 -0.438 0.816 0.300 - 2 0.97307 -0.438 1.000 -0.720 -0.393 - 3 0.99735 0.816 -0.720 1.000 0.733 - 4 0.98716 0.300 -0.393 0.733 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -8.0089e-04 4.0193e-04 7.1213e-02 3.9292e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.004730 TO DIAGONAL. - FCN=103250 FROM HESSE STATUS=NOT POSDEF 23 CALLS 460 TOTAL - EDM=3.56127e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 4.45574e-02 7.42610e-03 6.18930e-05 -1.40582e+00 - 2 par_crystal_1_1 4.36914e+00 4.67550e-01 7.21602e-04 -3.93511e+00 - 3 par_crystal_1_2 2.71531e+02 3.29814e+01 2.32506e-03 -3.75607e+00 - 4 par_crystal_1_3 3.37290e+00 5.01685e-01 1.25517e-04 -1.80638e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.515e-05 2.851e-04 2.343e-01 -1.699e-03 - 2.851e-04 2.238e-01 -2.528e+00 1.548e-02 - 2.343e-01 -2.528e+00 2.967e+03 1.176e+01 - -1.699e-03 1.548e-02 1.176e+01 2.538e-01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99694 1.000 0.081 0.579 -0.454 - 2 0.94927 0.081 1.000 -0.098 0.065 - 3 0.99687 0.579 -0.098 1.000 0.429 - 4 0.99618 -0.454 0.065 0.429 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 14211 - Background number of gaus_exp_252_330 = 14211 - Background number of novo_285_624 = 17618.3 - Background number of crystal_1_285_624 = 17618.3 - Background number of gaus_bern_285_624 = 17618.3 - Background number of landau_285_624 = 17618.3 -par_crystal_0 param 0.440594 0.0464698 -par_crystal_1 param 0.982994 0.655195 -par_crystal_2 param 271.542 0.738644 -par_crystal_3 param 28.7224 2.03002 -par_crystal_1_0 param 0.0445574 0.0074261 -par_crystal_1_1 param 4.36914 0.46755 -par_crystal_1_2 param 271.531 32.9814 -par_crystal_1_3 param 3.3729 0.501685 -par_gaus_exp_0 param 271.558 0.814214 -par_gaus_exp_1 param 30.6822 1.86973 -par_gaus_exp_2 param 0.38277 0.0245149 -par_novo_0 param 250 34.0246 -par_novo_1 param 38.6596 2.31421 -par_novo_2 param -1.2752 0.072293 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_500_crystal_1_285_624/datacard_500_crystal_1_285_624.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_500_crystal_1_285_624/datacard_500_crystal_1_285_624.txt deleted file mode 100644 index 12fc437..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_500_crystal_1_285_624/datacard_500_crystal_1_285_624.txt +++ /dev/null @@ -1,30 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_500.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_crystal_1_285_624.root HbbHbb:f_crystal_1 -shapes data_obs HbbHbb w_background_crystal_1_285_624.root HbbHbb:data_obs_crystal_1_285_624 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 1319.62 17618.3 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06496 - -JER lnN 1.01686 - -JEC lnN 1.00347 - -trigger lnN 1.10 - -sg_p0 param 503.541 -0.717957/+0.695495 -sg_p1 param 16.4684 -0.412882/+0.314547 -sg_p2 param 454.55 -10.3364/+13.4131 -sg_p3 param 135.056 -25.6003/+15.0508 -sg_p4 param 0.927449 -0.00368502/+0.00494853 -par_crystal_1_0 param 0.0445574 0.0074261 -par_crystal_1_1 param 4.36914 0.46755 -par_crystal_1_2 param 271.531 32.9814 -par_crystal_1_3 param 3.3729 0.501685 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_500_crystal_1_285_624/signal500_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_500_crystal_1_285_624/signal500_sig.log deleted file mode 100644 index 3014dec..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_500_crystal_1_285_624/signal500_sig.log +++ /dev/null @@ -1,916 +0,0 @@ - -Processing test.c... -nSignal_init = 100000 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=18297.2 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.90000e+02 6.00000e+00 2.01358e-01 4.88508e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 7.52283e+01 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 1.04492e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -1.27139e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -3.31849e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17871.1 FROM MIGRAD STATUS=CONVERGED 270 CALLS 271 TOTAL - EDM=0.000209103 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.82781e+02 4.91816e-01 1.54936e-03 4.63902e-01 - 2 sg_p1 2.77322e+01 3.77130e-01 2.11298e-03 -7.95545e-04 - 3 sg_p2 4.00000e+02 7.22234e+00 3.62181e-02 1.52038e-02 - 4 sg_p3 9.99995e+01 7.83688e+00 5.52124e-02 -1.33082e-02 - 5 sg_p4 9.49597e-01 5.34566e-03 2.17525e-03 3.38347e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.419e-01 -1.201e-02 7.239e-06 6.832e-04 -2.726e-04 - -1.201e-02 1.423e-01 -5.971e-04 4.705e-05 4.980e-04 - 7.239e-06 -5.971e-04 7.635e-03 -3.089e-06 -2.189e-05 - 6.832e-04 4.705e-05 -3.089e-06 1.671e-02 2.174e-06 - -2.726e-04 4.980e-04 -2.189e-05 2.174e-06 2.858e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.11194 1.000 -0.065 0.000 0.011 -0.104 - 2 0.25018 -0.065 1.000 -0.018 0.001 0.247 - 3 0.04761 0.000 -0.018 1.000 -0.000 -0.047 - 4 0.01159 0.011 0.001 -0.000 1.000 0.003 - 5 0.26559 -0.104 0.247 -0.047 0.003 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17871.1 FROM HESSE STATUS=OK 31 CALLS 302 TOTAL - EDM=0.000214101 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.82781e+02 4.91810e-01 3.09872e-04 -2.43026e-01 - 2 sg_p1 2.77322e+01 3.77150e-01 8.45194e-05 2.59399e-01 - 3 sg_p2 4.00000e+02 7.23045e+00 7.24363e-03 -1.56845e+00 - 4 sg_p3 9.99995e+01 7.86694e+00 1.10425e-02 1.56600e+00 - 5 sg_p4 9.49597e-01 5.34101e-03 4.35051e-04 1.11793e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.419e-01 -1.221e-02 2.317e-06 2.181e-05 -2.728e-04 - -1.221e-02 1.423e-01 -1.751e-04 1.477e-06 4.978e-04 - 2.317e-06 -1.751e-04 7.644e-03 -2.852e-08 -6.407e-06 - 2.181e-05 1.477e-06 -2.852e-08 1.678e-02 6.944e-08 - -2.728e-04 4.978e-04 -6.407e-06 6.944e-08 2.853e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.11182 1.000 -0.066 0.000 0.000 -0.104 - 2 0.25038 -0.066 1.000 -0.005 0.000 0.247 - 3 0.01394 0.000 -0.005 1.000 -0.000 -0.014 - 4 0.00037 0.000 0.000 -0.000 1.000 0.000 - 5 0.26252 -0.104 0.247 -0.014 0.000 1.000 -500 -482.781 +- 0.49181 -27.7322 +- 0.37715 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=18169.3 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.90000e+02 6.00000e+00 2.01358e-01 3.31882e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 8.82382e+01 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 9.40789e+02 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -1.28474e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -3.45518e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17775 FROM MIGRAD STATUS=CONVERGED 298 CALLS 299 TOTAL - EDM=6.02039e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.84762e+02 4.94191e-01 1.52434e-03 1.30913e-01 - 2 sg_p1 2.76557e+01 3.74902e-01 2.09728e-03 4.83776e-02 - 3 sg_p2 4.00000e+02 4.37949e+00 2.80592e-02** at limit ** - 4 sg_p3 9.99992e+01 6.41285e+01 1.21382e-01 2.55150e-03 - 5 sg_p4 9.47779e-01 5.38139e-03 2.15294e-03 -2.62881e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.442e-01 -1.391e-02 1.965e-06 1.328e-02 -2.985e-04 - -1.391e-02 1.406e-01 -2.130e-05 -8.696e-04 4.743e-04 - 1.965e-06 -2.130e-05 4.142e-05 -4.503e-06 -8.642e-07 - 1.328e-02 -8.696e-04 -4.503e-06 1.378e-01 3.311e-05 - -2.985e-04 4.743e-04 -8.642e-07 3.311e-05 2.896e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.14334 1.000 -0.075 0.001 0.072 -0.112 - 2 0.24021 -0.075 1.000 -0.009 -0.006 0.235 - 3 0.02528 0.001 -0.009 1.000 -0.002 -0.025 - 4 0.07681 0.072 -0.006 -0.002 1.000 0.017 - 5 0.25571 -0.112 0.235 -0.025 0.017 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17775 FROM HESSE STATUS=OK 35 CALLS 334 TOTAL - EDM=5.16959e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.84762e+02 5.00293e-01 3.04869e-04 -1.75493e-01 - 2 sg_p1 2.76557e+01 3.74977e-01 8.38911e-05 2.54605e-01 - 3 sg_p2 4.00000e+02 4.38207e+00 5.61185e-03 -1.57057e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 9.99992e+01 1.55865e+01 4.95239e-01 1.57658e+00 - 5 sg_p4 9.47779e-01 5.38465e-03 4.30589e-04 1.10968e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.503e-01 -1.437e-02 -1.054e-07 1.912e-02 -2.821e-04 - -1.437e-02 1.406e-01 -4.527e-06 -8.788e-04 4.745e-04 - -1.054e-07 -4.527e-06 4.144e-05 -1.618e-06 -1.856e-07 - 1.912e-02 -8.788e-04 -1.618e-06 4.993e-02 5.148e-05 - -2.821e-04 4.745e-04 -1.856e-07 5.148e-05 2.900e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.21046 1.000 -0.077 -0.000 0.171 -0.105 - 2 0.24099 -0.077 1.000 -0.002 -0.010 0.235 - 3 0.00549 -0.000 -0.002 1.000 -0.001 -0.005 - 4 0.18195 0.171 -0.010 -0.001 1.000 0.043 - 5 0.25791 -0.105 0.235 -0.005 0.043 1.000 -500 -484.762 +- 0.500293 -27.6557 +- 0.374977 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=18067.3 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.90000e+02 6.00000e+00 2.01358e-01 6.30906e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 6.68366e+01 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 1.15954e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -1.16092e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -3.26605e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17575.8 FROM MIGRAD STATUS=CONVERGED 279 CALLS 280 TOTAL - EDM=3.64156e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.80603e+02 4.87655e-01 1.55641e-03 1.00438e-01 - 2 sg_p1 2.73597e+01 3.75999e-01 2.07241e-03 -3.88766e-02 - 3 sg_p2 4.00000e+02 7.70615e+00 3.73444e-02 -1.20875e-02 - 4 sg_p3 9.99999e+01 9.07676e+00 5.91616e-02 4.30185e-03 - 5 sg_p4 9.52020e-01 5.29904e-03 2.18424e-03 -2.42849e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.378e-01 -1.252e-02 1.605e-06 3.978e-04 -2.735e-04 - -1.252e-02 1.414e-01 -4.268e-04 1.441e-06 5.110e-04 - 1.605e-06 -4.268e-04 5.890e-03 -4.600e-07 -1.533e-05 - 3.978e-04 1.441e-06 -4.600e-07 2.758e-03 4.935e-07 - -2.735e-04 5.110e-04 -1.533e-05 4.935e-07 2.809e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.11523 1.000 -0.068 0.000 0.016 -0.106 - 2 0.25980 -0.068 1.000 -0.015 0.000 0.256 - 3 0.03828 0.000 -0.015 1.000 -0.000 -0.038 - 4 0.01591 0.016 0.000 -0.000 1.000 0.002 - 5 0.27342 -0.106 0.256 -0.038 0.002 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17575.8 FROM HESSE STATUS=OK 31 CALLS 311 TOTAL - EDM=3.66903e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.80603e+02 4.87622e-01 3.11281e-04 -3.18584e-01 - 2 sg_p1 2.73597e+01 3.76029e-01 8.28962e-05 2.36108e-01 - 3 sg_p2 4.00000e+02 7.72173e+00 7.46888e-03 -1.57279e+00 - 4 sg_p3 9.99999e+01 9.11980e+00 1.18323e-02 1.57260e+00 - 5 sg_p4 9.52020e-01 5.29594e-03 8.73698e-05 1.12913e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.378e-01 -1.272e-02 2.233e-07 9.824e-05 -2.737e-04 - -1.272e-02 1.414e-01 -4.487e-05 2.340e-07 5.111e-04 - 2.233e-07 -4.487e-05 5.902e-03 -1.148e-08 -1.609e-06 - 9.824e-05 2.340e-07 -1.148e-08 2.771e-03 1.224e-07 - -2.737e-04 5.111e-04 -1.609e-06 1.224e-07 2.805e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.11467 1.000 -0.069 0.000 0.004 -0.106 - 2 0.26008 -0.069 1.000 -0.002 0.000 0.257 - 3 0.00402 0.000 -0.002 1.000 -0.000 -0.004 - 4 0.00392 0.004 0.000 -0.000 1.000 0.000 - 5 0.27142 -0.106 0.257 -0.004 0.000 1.000 -500 -480.603 +- 0.487622 -27.3597 +- 0.376029 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=16835.6 FROM MIGRAD STATUS=INITIATE 46 CALLS 47 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.00000e+02 4.00000e+00 0.00000e+00 -3.93448e+02 - 2 sg_p1 1.85000e+01 2.30000e+00 0.00000e+00 4.78837e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 0.00000e+00 -1.66272e+02 - 4 sg_p3 4.24477e+01 1.40000e+01 -5.66239e-01 4.08068e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -6.94465e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16163.1 FROM HESSE STATUS=OK 31 CALLS 270 TOTAL - EDM=0.0123886 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.03549e+02 3.01469e-01 1.32569e-03 7.22248e-02 - 2 sg_p1 1.64694e+01 2.69674e-01 1.82958e-03 1.11175e-01 - 3 sg_p2 4.52623e+02 1.84688e+01 1.67733e-02 -5.64013e-01 - 4 sg_p3 1.31659e+02 2.60244e+01 4.76520e-02 -2.04899e-01 - 5 sg_p4 9.27815e-01 7.08262e-03 2.04007e-03 -6.32432e-02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=16163.1 FROM MIGRAD STATUS=CONVERGED 293 CALLS 294 TOTAL - EDM=1.39803e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 9.0 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.03541e+02 3.02714e-01 -6.04564e-05 -2.41635e-02 - 2 sg_p1 1.64684e+01 2.71856e-01 1.82456e-04 2.35248e-02 - 3 sg_p2 4.54550e+02 1.81378e+01 -3.71817e-04 2.34305e-03 - 4 sg_p3 1.35056e+02 2.96709e+01 1.70336e-02 -8.15967e-03 - 5 sg_p4 9.27449e-01 7.04529e-03 2.19134e-05 -1.27756e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.164e-02 -7.657e-03 -1.012e-01 -1.679e+00 -7.191e-05 - -7.657e-03 7.392e-02 -1.518e+00 2.592e+00 7.352e-04 - -1.012e-01 -1.518e+00 3.340e+02 -8.231e+01 -5.363e-02 - -1.679e+00 2.592e+00 -8.231e+01 1.069e+03 -1.492e-03 - -7.191e-05 7.352e-04 -5.363e-02 -1.492e-03 4.965e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.18907 1.000 -0.093 -0.018 -0.170 -0.034 - 2 0.49868 -0.093 1.000 -0.305 0.292 0.384 - 3 0.45946 -0.018 -0.305 1.000 -0.138 -0.416 - 4 0.36545 -0.170 0.292 -0.138 1.000 -0.006 - 5 0.51683 -0.034 0.384 -0.416 -0.006 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16163.1 FROM HESSE STATUS=OK 39 CALLS 333 TOTAL - EDM=4.95712e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.03541e+02 3.01948e-01 1.32548e-03 1.78010e-01 - 2 sg_p1 1.64684e+01 2.69373e-01 1.82921e-03 -1.77589e-01 - 3 sg_p2 4.54550e+02 1.88889e+01 1.71373e-02 -4.39830e-01 - 4 sg_p3 1.35056e+02 2.91667e+01 5.83968e-02 9.05144e-01 - 5 sg_p4 9.27449e-01 7.08973e-03 2.04457e-03 1.02536e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.118e-02 -6.694e-03 -1.967e-01 -1.492e+00 -6.118e-05 - -6.694e-03 7.258e-02 -1.499e+00 2.192e+00 7.371e-04 - -1.967e-01 -1.499e+00 3.627e+02 -4.939e+01 -5.738e-02 - -1.492e+00 2.192e+00 -4.939e+01 1.025e+03 -5.946e-03 - -6.118e-05 7.371e-04 -5.738e-02 -5.946e-03 5.028e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.17693 1.000 -0.082 -0.034 -0.154 -0.029 - 2 0.48331 -0.082 1.000 -0.292 0.254 0.386 - 3 0.45514 -0.034 -0.292 1.000 -0.081 -0.425 - 4 0.32411 -0.154 0.254 -0.081 1.000 -0.026 - 5 0.52326 -0.029 0.386 -0.425 -0.026 1.000 -500 -503.541 +- 0.301948 -16.4684 +- 0.269373 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=16739.6 FROM MIGRAD STATUS=INITIATE 45 CALLS 46 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.00000e+02 4.00000e+00 0.00000e+00 -4.55651e+02 - 2 sg_p1 1.85000e+01 2.30000e+00 0.00000e+00 4.48786e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 0.00000e+00 -2.68451e+02 - 4 sg_p3 4.32221e+01 1.40000e+01 -5.53184e-01 1.18283e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -6.96034e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16081.3 FROM MIGRAD STATUS=CONVERGED 313 CALLS 314 TOTAL - EDM=8.68132e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.04220e+02 3.07707e-01 1.35237e-03 1.08303e-01 - 2 sg_p1 1.66795e+01 2.77507e-01 1.84894e-03 6.94551e-02 - 3 sg_p2 4.62822e+02 1.91078e+01 1.68854e-02 -1.14748e-02 - 4 sg_p3 1.35582e+02 3.03789e+01 6.57946e-02 1.08838e-02 - 5 sg_p4 9.28230e-01 7.23504e-03 2.06982e-03 -3.02724e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.469e-02 -7.947e-03 -3.583e-01 -1.715e+00 -8.078e-05 - -7.947e-03 7.703e-02 -1.315e+00 2.634e+00 8.091e-04 - -3.583e-01 -1.315e+00 3.708e+02 4.728e+01 -6.075e-02 - -1.715e+00 2.634e+00 4.728e+01 1.145e+03 2.032e-03 - -8.078e-05 8.091e-04 -6.075e-02 2.032e-03 5.236e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.18853 1.000 -0.093 -0.060 -0.165 -0.036 - 2 0.50124 -0.093 1.000 -0.246 0.281 0.403 - 3 0.46006 -0.060 -0.246 1.000 0.073 -0.436 - 4 0.34759 -0.165 0.281 0.073 1.000 0.008 - 5 0.53639 -0.036 0.403 -0.436 0.008 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16081.3 FROM HESSE STATUS=OK 31 CALLS 345 TOTAL - EDM=9.10947e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.04220e+02 3.08377e-01 2.70474e-04 2.12615e-01 - 2 sg_p1 1.66795e+01 2.80568e-01 3.69788e-04 -1.58971e-01 - 3 sg_p2 4.62822e+02 1.90695e+01 6.75418e-04 -3.45556e-01 - 4 sg_p3 1.35582e+02 3.07077e+01 2.63178e-03 9.17410e-01 - 5 sg_p4 9.28230e-01 7.23811e-03 4.13965e-04 1.02837e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.510e-02 -8.877e-03 -3.212e-01 -1.872e+00 -9.078e-05 - -8.877e-03 7.873e-02 -1.370e+00 3.011e+00 8.254e-04 - -3.212e-01 -1.370e+00 3.693e+02 2.368e+01 -6.065e-02 - -1.872e+00 3.011e+00 2.368e+01 1.177e+03 7.626e-03 - -9.078e-05 8.254e-04 -6.065e-02 7.626e-03 5.240e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.19932 1.000 -0.103 -0.054 -0.177 -0.041 - 2 0.51720 -0.103 1.000 -0.254 0.313 0.406 - 3 0.45661 -0.054 -0.254 1.000 0.036 -0.436 - 4 0.36806 -0.177 0.313 0.036 1.000 0.031 - 5 0.53695 -0.041 0.406 -0.436 0.031 1.000 -500 -504.22 +- 0.308377 -16.6795 +- 0.280568 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=16548.5 FROM MIGRAD STATUS=INITIATE 40 CALLS 41 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.00000e+02 4.00000e+00 0.00000e+00 -3.23108e+02 - 2 sg_p1 1.85000e+01 2.30000e+00 0.00000e+00 5.18946e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 0.00000e+00 -1.42436e+02 - 4 sg_p3 4.43542e+01 1.40000e+01 -5.34286e-01 2.49400e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -7.66244e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15889.1 FROM HESSE STATUS=OK 37 CALLS 242 TOTAL - EDM=0.000693776 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.02838e+02 2.97826e-01 1.28795e-03 -1.05531e-02 - 2 sg_p1 1.60782e+01 2.67978e-01 1.80577e-03 2.44112e-02 - 3 sg_p2 4.64332e+02 1.37627e+01 1.17387e-02 2.07821e-01 - 4 sg_p3 1.14468e+02 2.01486e+01 2.64964e-02 5.48597e-02 - 5 sg_p4 9.27839e-01 7.15691e-03 2.03796e-03 1.57814e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=15889.1 FROM MIGRAD STATUS=CONVERGED 254 CALLS 255 TOTAL - EDM=9.17556e-06 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 2.8 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.02840e+02 2.97434e-01 8.32709e-05 -7.82024e-03 - 2 sg_p1 1.60782e+01 2.67892e-01 -2.85162e-06 4.43301e-03 - 3 sg_p2 4.63894e+02 1.38330e+01 -4.87307e-03 -3.70669e-03 - 4 sg_p3 1.14016e+02 1.92315e+01 -7.40995e-03 -1.25650e-02 - 5 sg_p4 9.27892e-01 7.16442e-03 2.06750e-04 1.26344e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 8.847e-02 -6.452e-03 -2.568e-01 -8.771e-01 -8.776e-05 - -6.452e-03 7.178e-02 -9.238e-01 1.447e+00 8.030e-04 - -2.568e-01 -9.238e-01 1.929e+02 9.107e+00 -4.221e-02 - -8.771e-01 1.447e+00 9.107e+00 3.827e+02 1.223e-02 - -8.776e-05 8.030e-04 -4.221e-02 1.223e-02 5.134e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.17624 1.000 -0.081 -0.062 -0.151 -0.041 - 2 0.49356 -0.081 1.000 -0.248 0.276 0.418 - 3 0.44761 -0.062 -0.248 1.000 0.034 -0.424 - 4 0.31902 -0.151 0.276 0.034 1.000 0.087 - 5 0.53440 -0.041 0.418 -0.424 0.087 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15889.1 FROM HESSE STATUS=OK 39 CALLS 294 TOTAL - EDM=3.03558e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.02840e+02 2.97751e-01 5.15179e-04 1.42457e-01 - 2 sg_p1 1.60782e+01 2.68158e-01 7.22309e-04 -2.12184e-01 - 3 sg_p2 4.63894e+02 1.36806e+01 1.19116e-02 -3.33579e-01 - 4 sg_p3 1.14016e+02 1.97620e+01 2.70009e-02 5.07434e-01 - 5 sg_p4 9.27892e-01 7.16159e-03 2.03722e-03 1.02707e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 8.866e-02 -6.740e-03 -2.651e-01 -9.501e-01 -8.838e-05 - -6.740e-03 7.192e-02 -8.846e-01 1.490e+00 8.010e-04 - -2.651e-01 -8.846e-01 1.886e+02 2.011e+01 -4.167e-02 - -9.501e-01 1.490e+00 2.011e+01 4.049e+02 1.100e-02 - -8.838e-05 8.010e-04 -4.167e-02 1.100e-02 5.130e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.18198 1.000 -0.084 -0.065 -0.159 -0.041 - 2 0.49512 -0.084 1.000 -0.240 0.276 0.417 - 3 0.45379 -0.065 -0.240 1.000 0.073 -0.424 - 4 0.33483 -0.159 0.276 0.073 1.000 0.076 - 5 0.53499 -0.041 0.417 -0.424 0.076 1.000 -500 -502.84 +- 0.297751 -16.0782 +- 0.268158 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=16477.8 FROM MIGRAD STATUS=INITIATE 46 CALLS 47 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.00000e+02 4.00000e+00 0.00000e+00 -3.86200e+02 - 2 sg_p1 1.85000e+01 2.30000e+00 0.00000e+00 4.57301e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 0.00000e+00 -1.88126e+02 - 4 sg_p3 4.29079e+01 1.40000e+01 -5.58468e-01 8.72628e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -6.83965e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15837 FROM HESSE STATUS=OK 33 CALLS 278 TOTAL - EDM=0.00228562 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.03601e+02 3.08955e-01 1.34585e-03 3.00627e-01 - 2 sg_p1 1.67537e+01 2.75890e-01 1.84217e-03 1.71804e-01 - 3 sg_p2 4.49584e+02 2.10318e+01 1.89093e-02 -1.86124e-01 - 4 sg_p3 1.37208e+02 2.92076e+01 6.33389e-02 -7.21712e-02 - 5 sg_p4 9.31031e-01 7.12595e-03 2.05778e-03 -2.05034e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=15837 FROM MIGRAD STATUS=CONVERGED 290 CALLS 291 TOTAL - EDM=9.94244e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 5.2 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.03597e+02 3.10422e-01 -2.20880e-04 7.26010e-03 - 2 sg_p1 1.67527e+01 2.74763e-01 -8.54234e-05 -2.36066e-02 - 3 sg_p2 4.50350e+02 1.99263e+01 9.15141e-03 7.10266e-03 - 4 sg_p3 1.38778e+02 3.01976e+01 4.00555e-02 -1.66420e-02 - 5 sg_p4 9.30902e-01 7.07722e-03 -5.07201e-04 -3.19630e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.637e-02 -7.329e-03 -9.169e-02 -1.905e+00 -5.097e-05 - -7.329e-03 7.551e-02 -1.688e+00 2.407e+00 7.425e-04 - -9.169e-02 -1.688e+00 4.048e+02 -1.012e+02 -6.013e-02 - -1.905e+00 2.407e+00 -1.012e+02 1.218e+03 -1.228e-02 - -5.097e-05 7.425e-04 -6.013e-02 -1.228e-02 5.010e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.19304 1.000 -0.086 -0.015 -0.176 -0.023 - 2 0.48229 -0.086 1.000 -0.305 0.251 0.382 - 3 0.47089 -0.015 -0.305 1.000 -0.144 -0.422 - 4 0.36202 -0.176 0.251 -0.144 1.000 -0.050 - 5 0.52945 -0.023 0.382 -0.422 -0.050 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15837 FROM HESSE STATUS=OK 41 CALLS 332 TOTAL - EDM=6.005e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.03597e+02 3.09136e-01 1.34573e-03 1.80817e-01 - 2 sg_p1 1.67527e+01 2.75606e-01 1.84171e-03 -1.52530e-01 - 3 sg_p2 4.50350e+02 2.12182e+01 1.91941e-02 -4.89291e-01 - 4 sg_p3 1.38778e+02 3.03916e+01 7.62661e-02 9.96701e-01 - 5 sg_p4 9.30902e-01 7.12819e-03 2.05809e-03 1.03882e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.557e-02 -6.148e-03 -1.876e-01 -1.605e+00 -4.622e-05 - -6.148e-03 7.597e-02 -1.916e+00 2.306e+00 7.753e-04 - -1.876e-01 -1.916e+00 4.602e+02 -1.123e+02 -6.665e-02 - -1.605e+00 2.306e+00 -1.123e+02 1.240e+03 -9.523e-03 - -4.622e-05 7.753e-04 -6.665e-02 -9.523e-03 5.082e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.17020 1.000 -0.072 -0.028 -0.147 -0.021 - 2 0.48615 -0.072 1.000 -0.324 0.238 0.395 - 3 0.48715 -0.028 -0.324 1.000 -0.149 -0.436 - 4 0.33778 -0.147 0.238 -0.149 1.000 -0.038 - 5 0.53739 -0.021 0.395 -0.436 -0.038 1.000 -500 -503.597 +- 0.309136 -16.7527 +- 0.275606 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=16981.8 FROM MIGRAD STATUS=INITIATE 47 CALLS 48 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.00000e+02 4.00000e+00 0.00000e+00 -4.05566e+02 - 2 sg_p1 1.85000e+01 2.30000e+00 0.00000e+00 4.79846e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 0.00000e+00 -2.38683e+02 - 4 sg_p3 3.85734e+01 1.40000e+01 -6.33300e-01 -1.09954e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -6.06818e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16302.6 FROM HESSE STATUS=OK 33 CALLS 261 TOTAL - EDM=0.000884701 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.03638e+02 2.96476e-01 1.30613e-03 -5.89524e-02 - 2 sg_p1 1.61908e+01 2.68536e-01 1.81793e-03 -9.06324e-02 - 3 sg_p2 4.64623e+02 1.46357e+01 1.25261e-02 2.17668e-01 - 4 sg_p3 1.18516e+02 2.19593e+01 3.03884e-02 5.10539e-02 - 5 sg_p4 9.27881e-01 7.13588e-03 2.04703e-03 7.03448e-02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=16302.6 FROM MIGRAD STATUS=CONVERGED 273 CALLS 274 TOTAL - EDM=1.35619e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 3.1 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.03639e+02 2.96022e-01 9.77721e-05 -9.91628e-03 - 2 sg_p1 1.61919e+01 2.69186e-01 9.95735e-05 3.66259e-03 - 3 sg_p2 4.64075e+02 1.47143e+01 -6.09837e-03 -4.10999e-03 - 4 sg_p3 1.17996e+02 2.09578e+01 -8.86611e-03 -1.33437e-02 - 5 sg_p4 9.27974e-01 7.15584e-03 3.61873e-04 3.29176e-06 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 8.764e-02 -6.654e-03 -2.734e-01 -9.694e-01 -8.441e-05 - -6.654e-03 7.247e-02 -1.035e+00 1.644e+00 8.204e-04 - -2.734e-01 -1.035e+00 2.185e+02 1.062e+01 -4.631e-02 - -9.694e-01 1.644e+00 1.062e+01 4.592e+02 1.234e-02 - -8.441e-05 8.204e-04 -4.631e-02 1.234e-02 5.122e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.17873 1.000 -0.083 -0.062 -0.153 -0.040 - 2 0.50630 -0.083 1.000 -0.260 0.285 0.426 - 3 0.46142 -0.062 -0.260 1.000 0.034 -0.438 - 4 0.32893 -0.153 0.285 0.034 1.000 0.080 - 5 0.54522 -0.040 0.426 -0.438 0.080 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16302.6 FROM HESSE STATUS=OK 41 CALLS 315 TOTAL - EDM=4.81522e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.03639e+02 2.96371e-01 1.30576e-03 1.82991e-01 - 2 sg_p1 1.61919e+01 2.68611e-01 1.81691e-03 -2.02075e-01 - 3 sg_p2 4.64075e+02 1.45352e+01 1.27410e-02 -3.31572e-01 - 4 sg_p3 1.17996e+02 2.14738e+01 3.10172e-02 5.73772e-01 - 5 sg_p4 9.27974e-01 7.13651e-03 2.04596e-03 1.02738e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 8.784e-02 -6.886e-03 -2.835e-01 -1.054e+00 -8.375e-05 - -6.886e-03 7.217e-02 -9.670e-01 1.646e+00 8.068e-04 - -2.835e-01 -9.670e-01 2.131e+02 2.545e+01 -4.521e-02 - -1.054e+00 1.646e+00 2.545e+01 4.832e+02 9.584e-03 - -8.375e-05 8.068e-04 -4.521e-02 9.584e-03 5.094e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.18509 1.000 -0.086 -0.066 -0.162 -0.040 - 2 0.50306 -0.086 1.000 -0.247 0.279 0.421 - 3 0.46399 -0.066 -0.247 1.000 0.079 -0.434 - 4 0.34172 -0.162 0.279 0.079 1.000 0.061 - 5 0.54250 -0.040 0.421 -0.434 0.061 1.000 -500 -503.639 +- 0.296371 -16.1919 +- 0.268611 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=15760.3 FROM MIGRAD STATUS=INITIATE 46 CALLS 47 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.00000e+02 4.00000e+00 0.00000e+00 -3.68945e+02 - 2 sg_p1 1.85000e+01 2.30000e+00 0.00000e+00 4.51251e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 0.00000e+00 -1.65516e+02 - 4 sg_p3 4.28306e+01 1.40000e+01 -5.59769e-01 7.96964e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -6.63393e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15131 FROM HESSE STATUS=OK 31 CALLS 270 TOTAL - EDM=0.00917808 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.03544e+02 3.11234e-01 1.32359e-03 3.99151e-02 - 2 sg_p1 1.64644e+01 2.78325e-01 1.82583e-03 8.26169e-02 - 3 sg_p2 4.53596e+02 1.89196e+01 1.66163e-02 -4.74680e-01 - 4 sg_p3 1.30948e+02 2.69531e+01 4.74560e-02 -1.69826e-01 - 5 sg_p4 9.28806e-01 7.28371e-03 2.04213e-03 -7.21183e-02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=15131 FROM MIGRAD STATUS=CONVERGED 292 CALLS 293 TOTAL - EDM=1.59446e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 8.3 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.03538e+02 3.12525e-01 -4.41178e-05 -1.54585e-02 - 2 sg_p1 1.64635e+01 2.80799e-01 1.36626e-04 1.03835e-02 - 3 sg_p2 4.55327e+02 1.85938e+01 -2.83276e-04 1.31641e-03 - 4 sg_p3 1.33880e+02 3.06660e+01 1.19135e-02 -8.53961e-03 - 5 sg_p4 9.28489e-01 7.24733e-03 2.34109e-05 -1.19312e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.768e-02 -8.237e-03 -1.269e-01 -1.811e+00 -7.804e-05 - -8.237e-03 7.886e-02 -1.583e+00 2.810e+00 7.851e-04 - -1.269e-01 -1.583e+00 3.512e+02 -7.894e+01 -5.706e-02 - -1.811e+00 2.810e+00 -7.894e+01 1.142e+03 2.159e-04 - -7.804e-05 7.851e-04 -5.706e-02 2.159e-04 5.254e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.19100 1.000 -0.094 -0.022 -0.171 -0.034 - 2 0.50054 -0.094 1.000 -0.301 0.296 0.386 - 3 0.45764 -0.022 -0.301 1.000 -0.125 -0.420 - 4 0.36350 -0.171 0.296 -0.125 1.000 0.001 - 5 0.51853 -0.034 0.386 -0.420 0.001 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15131 FROM HESSE STATUS=OK 39 CALLS 332 TOTAL - EDM=8.18863e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.03538e+02 3.11671e-01 1.32357e-03 1.77834e-01 - 2 sg_p1 1.64635e+01 2.78053e-01 1.82591e-03 -1.78022e-01 - 3 sg_p2 4.55327e+02 1.93050e+01 1.69364e-02 -4.30811e-01 - 4 sg_p3 1.33880e+02 2.97612e+01 5.65680e-02 8.78399e-01 - 5 sg_p4 9.28489e-01 7.28924e-03 2.04602e-03 1.02938e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.715e-02 -7.165e-03 -2.210e-01 -1.574e+00 -6.699e-05 - -7.165e-03 7.733e-02 -1.562e+00 2.322e+00 7.859e-04 - -2.210e-01 -1.562e+00 3.791e+02 -4.296e+01 -6.069e-02 - -1.574e+00 2.322e+00 -4.296e+01 1.061e+03 -4.723e-03 - -6.699e-05 7.859e-04 -6.069e-02 -4.723e-03 5.315e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.17762 1.000 -0.083 -0.036 -0.155 -0.029 - 2 0.48429 -0.083 1.000 -0.289 0.256 0.388 - 3 0.45436 -0.036 -0.289 1.000 -0.068 -0.428 - 4 0.32111 -0.155 0.256 -0.068 1.000 -0.020 - 5 0.52435 -0.029 0.388 -0.428 -0.020 1.000 -500 -503.538 +- 0.311671 -16.4635 +- 0.278053 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17965.7 FROM MIGRAD STATUS=INITIATE 46 CALLS 47 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.00000e+02 4.00000e+00 0.00000e+00 -4.19180e+02 - 2 sg_p1 1.85000e+01 2.30000e+00 0.00000e+00 5.07558e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 0.00000e+00 -1.66310e+02 - 4 sg_p3 4.20660e+01 1.40000e+01 -5.72713e-01 -5.27926e+00 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -7.26010e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17247.2 FROM HESSE STATUS=OK 31 CALLS 273 TOTAL - EDM=0.0158866 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.03553e+02 2.92162e-01 1.32752e-03 1.92047e-01 - 2 sg_p1 1.64746e+01 2.61492e-01 1.83264e-03 9.93853e-02 - 3 sg_p2 4.51603e+02 1.81044e+01 1.70017e-02 -6.77062e-01 - 4 sg_p3 1.32529e+02 2.52771e+01 4.84704e-02 -2.30017e-01 - 5 sg_p4 9.26851e-01 6.88981e-03 2.03844e-03 -1.42588e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=17247.2 FROM MIGRAD STATUS=CONVERGED 294 CALLS 295 TOTAL - EDM=4.77096e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 9.6 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.03545e+02 2.93438e-01 -5.87528e-05 -3.40309e-02 - 2 sg_p1 1.64727e+01 2.63670e-01 1.74859e-04 2.14591e-02 - 3 sg_p2 4.53798e+02 1.77853e+01 -4.09286e-04 3.31652e-04 - 4 sg_p3 1.35998e+02 2.90570e+01 1.70332e-02 -1.52432e-02 - 5 sg_p4 9.26443e-01 6.85608e-03 1.63285e-05 -2.74842e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 8.611e-02 -7.218e-03 -7.462e-02 -1.599e+00 -6.663e-05 - -7.218e-03 6.953e-02 -1.469e+00 2.461e+00 6.909e-04 - -7.462e-02 -1.469e+00 3.210e+02 -8.810e+01 -5.081e-02 - -1.599e+00 2.461e+00 -8.810e+01 1.030e+03 -2.764e-03 - -6.663e-05 6.909e-04 -5.081e-02 -2.764e-03 4.702e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.18896 1.000 -0.093 -0.014 -0.170 -0.033 - 2 0.49890 -0.093 1.000 -0.311 0.291 0.382 - 3 0.46311 -0.014 -0.311 1.000 -0.153 -0.414 - 4 0.37220 -0.170 0.291 -0.153 1.000 -0.013 - 5 0.51605 -0.033 0.382 -0.414 -0.013 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17247.2 FROM HESSE STATUS=OK 37 CALLS 332 TOTAL - EDM=2.5481e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.03545e+02 2.92634e-01 1.32733e-03 1.78200e-01 - 2 sg_p1 1.64727e+01 2.61019e-01 1.83240e-03 -1.77216e-01 - 3 sg_p2 4.53798e+02 1.84402e+01 1.73428e-02 -4.48601e-01 - 4 sg_p3 1.35998e+02 2.83987e+01 6.04366e-02 9.27242e-01 - 5 sg_p4 9.26443e-01 6.89823e-03 2.04324e-03 1.02149e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 8.564e-02 -6.233e-03 -1.752e-01 -1.395e+00 -5.632e-05 - -6.233e-03 6.814e-02 -1.435e+00 2.042e+00 6.927e-04 - -1.752e-01 -1.435e+00 3.454e+02 -5.423e+01 -5.416e-02 - -1.395e+00 2.042e+00 -5.423e+01 9.726e+02 -6.753e-03 - -5.632e-05 6.927e-04 -5.416e-02 -6.753e-03 4.760e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.17564 1.000 -0.082 -0.032 -0.153 -0.028 - 2 0.48195 -0.082 1.000 -0.296 0.251 0.385 - 3 0.45633 -0.032 -0.296 1.000 -0.094 -0.422 - 4 0.32602 -0.153 0.251 -0.094 1.000 -0.031 - 5 0.52240 -0.028 0.385 -0.422 -0.031 1.000 -500 -503.545 +- 0.292634 -16.4727 +- 0.261019 -35.9 fb^{-1} (13 TeV) -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 37 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 57 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 59 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 110 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 113 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 115 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 116 has zero error, setting residual to zero - Uncertainty on sg_p0 = 503.541 +- 0.301948 (stat) - 0.701904 + 0.678912 (syst); -0.717957/+0.695495 (total) - Uncertainty on sg_p1 = 16.4684 +- 0.269373 (stat) - 0.390296 + 0.284252 (syst); -0.412882/+0.314547 (total) - Uncertainty on sg_p2 = 454.55 +- 18.8889 (stat) - 4.20037 + 9.52429 (syst); -10.3364/+13.4131 (total) - Uncertainty on sg_p3 = 135.056 +- 29.1667 (stat) - 21.0404 + 3.7219 (syst); -25.6003/+15.0508 (total) - Uncertainty on sg_p4 = 0.927449 +- 0.00708973 (stat) - 0.00100662 + 0.0034528 (syst); -0.00368502/+0.00494853 (total) - === Baseline plot ===
- norm = 1319.62 -JEC lnN 1.00347 - -JER lnN 1.01686 - -btag lnN 1.06496 - -sg_p0 param 503.541 -0.717957/+0.695495 -sg_p1 param 16.4684 -0.412882/+0.314547 -sg_p2 param 454.55 -10.3364/+13.4131 -sg_p3 param 135.056 -25.6003/+15.0508 -sg_p4 param 0.927449 -0.00368502/+0.00494853 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_500_novo_285_624/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_500_novo_285_624/data_bkg.log deleted file mode 100644 index 1be2f6e..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_500_novo_285_624/data_bkg.log +++ /dev/null @@ -1,717 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [250,330] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [250,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63590.5 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.69443e-02 5.09000e-01 0.00000e+00 -7.94680e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -8.91126e+00 - 3 par_crystal_2 2.62020e+02 4.00000e+00 1.01181e-01 -1.53451e+00 - 4 par_crystal_3 1.65000e+01 2.70000e+00 0.00000e+00 7.46021e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM MIGRAD STATUS=CONVERGED 482 CALLS 483 TOTAL - EDM=0.000814822 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 4.40594e-01 4.43750e-02 2.48631e-03 2.88668e-01 - 2 par_crystal_1 9.82994e-01 6.48221e-01 2.14269e-02 -5.28345e-03 - 3 par_crystal_2 2.71542e+02 7.41091e-01 7.20683e-03 -9.27818e-02 - 4 par_crystal_3 2.87224e+01 2.18588e+00 3.97473e-02 -6.99277e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.970e-03 -2.333e-02 -5.115e-04 1.392e-02 - -2.333e-02 4.358e-01 4.870e-03 -8.391e-01 - -5.115e-04 4.870e-03 5.496e-01 4.381e-01 - 1.392e-02 -8.391e-01 4.381e-01 5.029e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.88989 1.000 -0.796 -0.016 0.140 - 2 0.92807 -0.796 1.000 0.010 -0.567 - 3 0.40865 -0.016 0.010 1.000 0.264 - 4 0.80948 0.140 -0.567 0.264 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM HESSE STATUS=OK 23 CALLS 506 TOTAL - EDM=0.000711421 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 4.40594e-01 4.64698e-02 4.97262e-04 -9.80558e-01 - 2 par_crystal_1 9.82994e-01 6.55195e-01 8.57075e-04 -6.65795e-01 - 3 par_crystal_2 2.71542e+02 7.38644e-01 1.44137e-03 6.15159e-01 - 4 par_crystal_3 2.87224e+01 2.03002e+00 1.58989e-03 -1.05570e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.160e-03 -2.581e-02 -1.109e-03 1.530e-02 - -2.581e-02 4.456e-01 2.508e-02 -7.234e-01 - -1.109e-03 2.508e-02 5.460e-01 3.687e-01 - 1.530e-02 -7.234e-01 3.687e-01 4.306e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.90014 1.000 -0.832 -0.032 0.159 - 2 0.92960 -0.832 1.000 0.051 -0.522 - 3 0.40186 -0.032 0.051 1.000 0.240 - 4 0.77207 0.159 -0.522 0.240 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63714.2 FROM MIGRAD STATUS=INITIATE 33 CALLS 34 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 2.63122e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -5.45805e+02 - 3 par_gaus_exp_2 6.67498e-01 3.05000e-01 -6.37370e-01 7.03093e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM MIGRAD STATUS=CONVERGED 131 CALLS 132 TOTAL - EDM=6.15917e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.71558e+02 8.05096e-01 6.82817e-03 6.24407e-02 - 2 par_gaus_exp_1 3.06822e+01 1.83071e+00 1.43475e-02 1.11468e-02 - 3 par_gaus_exp_2 3.82770e-01 2.42284e-02 3.05774e-03 -9.77170e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.486e-01 -6.079e-01 -1.588e-03 - -6.079e-01 3.370e+00 3.082e-02 - -1.588e-03 3.082e-02 5.871e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.49876 1.000 -0.411 -0.081 - 2 0.77898 -0.411 1.000 0.693 - 3 0.72797 -0.081 0.693 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM HESSE STATUS=OK 16 CALLS 148 TOTAL - EDM=6.13964e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.71558e+02 8.14214e-01 2.73127e-04 -4.35760e-01 - 2 par_gaus_exp_1 3.06822e+01 1.86973e+00 5.73898e-04 4.10264e-01 - 3 par_gaus_exp_2 3.82770e-01 2.45149e-02 1.22310e-04 -8.97531e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.634e-01 -6.630e-01 -2.137e-03 - -6.630e-01 3.516e+00 3.227e-02 - -2.137e-03 3.227e-02 6.011e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.51526 1.000 -0.434 -0.107 - 2 0.78935 -0.434 1.000 0.702 - 3 0.73544 -0.107 0.702 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,625] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.33953 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.33953) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - ... (remaining 126 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.734607 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.734607) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=317.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=327.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=332.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=342.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=347.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=352.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=357.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=362.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=367.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - ... (remaining 53 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0734613 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0734613 - - FCN=103487 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57093e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.56195e+03 - 3 par_novo_2 -1.33668e+00 2.00000e+01 0.00000e+00 1.53931e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM MIGRAD STATUS=CONVERGED 127 CALLS 128 TOTAL - EDM=3.4171e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.43423e+01 1.81223e-01** at limit ** - 2 par_novo_1 3.86596e+01 2.27294e+00 4.95847e-03 -1.04123e-02 - 3 par_novo_2 -1.27520e+00 7.07738e-02 3.70975e-05 -1.26322e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.231e-09 -8.491e-07 -8.580e-07 - -8.491e-07 5.181e+00 1.547e-01 - -8.580e-07 1.547e-01 5.009e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.53332 1.000 -0.005 -0.154 - 2 0.97096 -0.005 1.000 0.960 - 3 0.97165 -0.154 0.960 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM HESSE STATUS=OK 20 CALLS 148 TOTAL - EDM=3.43726e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.40246e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.86596e+01 2.31421e+00 1.98339e-04 4.46530e-01 - 3 par_novo_2 -1.27520e+00 7.22930e-02 1.48390e-06 -1.27523e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 5.974e-09 2.819e-05 -1.296e-06 - 2.819e-05 5.372e+00 1.502e-01 - -1.296e-06 1.502e-01 5.226e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.85665 1.000 0.157 -0.232 - 2 0.97200 0.157 1.000 0.897 - 3 0.97285 -0.232 0.897 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107513 FROM MIGRAD STATUS=INITIATE 54 CALLS 55 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 1.39168e+03 - 2 par_crystal_1_1 7.96220e-02 5.09000e-01 0.00000e+00 5.33770e+03 - 3 par_crystal_1_2 2.56879e+02 4.00000e+00 -1.56713e-01 -1.96669e+01 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 -8.45862e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.5057e-02 2.3309e-03 4.9678e-02 3.9730e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.029030 TO DIAGONAL. - FCN=103250 FROM MIGRAD STATUS=CONVERGED 436 CALLS 437 TOTAL - EDM=3.52757e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 4.45574e-02 4.37117e-03 3.09465e-04 -4.28177e+00 - 2 par_crystal_1_1 4.36914e+00 6.24106e-01 1.80400e-02 6.63742e-02 - 3 par_crystal_1_2 2.71531e+02 3.44700e+01 5.81266e-02 2.25694e-02 - 4 par_crystal_1_3 3.37290e+00 2.71702e-01 3.13791e-03 -4.26197e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.911e-05 -1.221e-03 2.089e-01 3.572e-04 - -1.221e-03 4.065e-01 -2.690e+01 -6.822e-02 - 2.089e-01 -2.690e+01 3.429e+03 1.167e+01 - 3.572e-04 -6.822e-02 1.167e+01 7.401e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99136 1.000 -0.438 0.816 0.300 - 2 0.97307 -0.438 1.000 -0.720 -0.393 - 3 0.99735 0.816 -0.720 1.000 0.733 - 4 0.98716 0.300 -0.393 0.733 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -8.0089e-04 4.0193e-04 7.1213e-02 3.9292e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.004730 TO DIAGONAL. - FCN=103250 FROM HESSE STATUS=NOT POSDEF 23 CALLS 460 TOTAL - EDM=3.56127e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 4.45574e-02 7.42610e-03 6.18930e-05 -1.40582e+00 - 2 par_crystal_1_1 4.36914e+00 4.67550e-01 7.21602e-04 -3.93511e+00 - 3 par_crystal_1_2 2.71531e+02 3.29814e+01 2.32506e-03 -3.75607e+00 - 4 par_crystal_1_3 3.37290e+00 5.01685e-01 1.25517e-04 -1.80638e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.515e-05 2.851e-04 2.343e-01 -1.699e-03 - 2.851e-04 2.238e-01 -2.528e+00 1.548e-02 - 2.343e-01 -2.528e+00 2.967e+03 1.176e+01 - -1.699e-03 1.548e-02 1.176e+01 2.538e-01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99694 1.000 0.081 0.579 -0.454 - 2 0.94927 0.081 1.000 -0.098 0.065 - 3 0.99687 0.579 -0.098 1.000 0.429 - 4 0.99618 -0.454 0.065 0.429 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 14211 - Background number of gaus_exp_252_330 = 14211 - Background number of novo_285_624 = 17618.3 - Background number of crystal_1_285_624 = 17618.3 - Background number of gaus_bern_285_624 = 17618.3 - Background number of landau_285_624 = 17618.3 -par_crystal_0 param 0.440594 0.0464698 -par_crystal_1 param 0.982994 0.655195 -par_crystal_2 param 271.542 0.738644 -par_crystal_3 param 28.7224 2.03002 -par_crystal_1_0 param 0.0445574 0.0074261 -par_crystal_1_1 param 4.36914 0.46755 -par_crystal_1_2 param 271.531 32.9814 -par_crystal_1_3 param 3.3729 0.501685 -par_gaus_exp_0 param 271.558 0.814214 -par_gaus_exp_1 param 30.6822 1.86973 -par_gaus_exp_2 param 0.38277 0.0245149 -par_novo_0 param 250 34.0246 -par_novo_1 param 38.6596 2.31421 -par_novo_2 param -1.2752 0.072293 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_500_novo_285_624/datacard_500_novo_285_624.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_500_novo_285_624/datacard_500_novo_285_624.txt deleted file mode 100644 index 236cb5a..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_500_novo_285_624/datacard_500_novo_285_624.txt +++ /dev/null @@ -1,29 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_500.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_novo_285_624.root HbbHbb:f_novo -shapes data_obs HbbHbb w_background_novo_285_624.root HbbHbb:data_obs_novo_285_624 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 1319.62 17618.3 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06496 - -JER lnN 1.01686 - -JEC lnN 1.00347 - -trigger lnN 1.10 - -sg_p0 param 503.541 -0.717957/+0.695495 -sg_p1 param 16.4684 -0.412882/+0.314547 -sg_p2 param 454.55 -10.3364/+13.4131 -sg_p3 param 135.056 -25.6003/+15.0508 -sg_p4 param 0.927449 -0.00368502/+0.00494853 -par_novo_0 param 250 34.0246 -par_novo_1 param 38.6596 2.31421 -par_novo_2 param -1.2752 0.072293 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_500_novo_285_624/signal500_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_500_novo_285_624/signal500_sig.log deleted file mode 100644 index 3014dec..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_500_novo_285_624/signal500_sig.log +++ /dev/null @@ -1,916 +0,0 @@ - -Processing test.c... -nSignal_init = 100000 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=18297.2 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.90000e+02 6.00000e+00 2.01358e-01 4.88508e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 7.52283e+01 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 1.04492e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -1.27139e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -3.31849e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17871.1 FROM MIGRAD STATUS=CONVERGED 270 CALLS 271 TOTAL - EDM=0.000209103 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.82781e+02 4.91816e-01 1.54936e-03 4.63902e-01 - 2 sg_p1 2.77322e+01 3.77130e-01 2.11298e-03 -7.95545e-04 - 3 sg_p2 4.00000e+02 7.22234e+00 3.62181e-02 1.52038e-02 - 4 sg_p3 9.99995e+01 7.83688e+00 5.52124e-02 -1.33082e-02 - 5 sg_p4 9.49597e-01 5.34566e-03 2.17525e-03 3.38347e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.419e-01 -1.201e-02 7.239e-06 6.832e-04 -2.726e-04 - -1.201e-02 1.423e-01 -5.971e-04 4.705e-05 4.980e-04 - 7.239e-06 -5.971e-04 7.635e-03 -3.089e-06 -2.189e-05 - 6.832e-04 4.705e-05 -3.089e-06 1.671e-02 2.174e-06 - -2.726e-04 4.980e-04 -2.189e-05 2.174e-06 2.858e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.11194 1.000 -0.065 0.000 0.011 -0.104 - 2 0.25018 -0.065 1.000 -0.018 0.001 0.247 - 3 0.04761 0.000 -0.018 1.000 -0.000 -0.047 - 4 0.01159 0.011 0.001 -0.000 1.000 0.003 - 5 0.26559 -0.104 0.247 -0.047 0.003 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17871.1 FROM HESSE STATUS=OK 31 CALLS 302 TOTAL - EDM=0.000214101 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.82781e+02 4.91810e-01 3.09872e-04 -2.43026e-01 - 2 sg_p1 2.77322e+01 3.77150e-01 8.45194e-05 2.59399e-01 - 3 sg_p2 4.00000e+02 7.23045e+00 7.24363e-03 -1.56845e+00 - 4 sg_p3 9.99995e+01 7.86694e+00 1.10425e-02 1.56600e+00 - 5 sg_p4 9.49597e-01 5.34101e-03 4.35051e-04 1.11793e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.419e-01 -1.221e-02 2.317e-06 2.181e-05 -2.728e-04 - -1.221e-02 1.423e-01 -1.751e-04 1.477e-06 4.978e-04 - 2.317e-06 -1.751e-04 7.644e-03 -2.852e-08 -6.407e-06 - 2.181e-05 1.477e-06 -2.852e-08 1.678e-02 6.944e-08 - -2.728e-04 4.978e-04 -6.407e-06 6.944e-08 2.853e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.11182 1.000 -0.066 0.000 0.000 -0.104 - 2 0.25038 -0.066 1.000 -0.005 0.000 0.247 - 3 0.01394 0.000 -0.005 1.000 -0.000 -0.014 - 4 0.00037 0.000 0.000 -0.000 1.000 0.000 - 5 0.26252 -0.104 0.247 -0.014 0.000 1.000 -500 -482.781 +- 0.49181 -27.7322 +- 0.37715 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=18169.3 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.90000e+02 6.00000e+00 2.01358e-01 3.31882e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 8.82382e+01 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 9.40789e+02 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -1.28474e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -3.45518e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17775 FROM MIGRAD STATUS=CONVERGED 298 CALLS 299 TOTAL - EDM=6.02039e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.84762e+02 4.94191e-01 1.52434e-03 1.30913e-01 - 2 sg_p1 2.76557e+01 3.74902e-01 2.09728e-03 4.83776e-02 - 3 sg_p2 4.00000e+02 4.37949e+00 2.80592e-02** at limit ** - 4 sg_p3 9.99992e+01 6.41285e+01 1.21382e-01 2.55150e-03 - 5 sg_p4 9.47779e-01 5.38139e-03 2.15294e-03 -2.62881e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.442e-01 -1.391e-02 1.965e-06 1.328e-02 -2.985e-04 - -1.391e-02 1.406e-01 -2.130e-05 -8.696e-04 4.743e-04 - 1.965e-06 -2.130e-05 4.142e-05 -4.503e-06 -8.642e-07 - 1.328e-02 -8.696e-04 -4.503e-06 1.378e-01 3.311e-05 - -2.985e-04 4.743e-04 -8.642e-07 3.311e-05 2.896e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.14334 1.000 -0.075 0.001 0.072 -0.112 - 2 0.24021 -0.075 1.000 -0.009 -0.006 0.235 - 3 0.02528 0.001 -0.009 1.000 -0.002 -0.025 - 4 0.07681 0.072 -0.006 -0.002 1.000 0.017 - 5 0.25571 -0.112 0.235 -0.025 0.017 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17775 FROM HESSE STATUS=OK 35 CALLS 334 TOTAL - EDM=5.16959e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.84762e+02 5.00293e-01 3.04869e-04 -1.75493e-01 - 2 sg_p1 2.76557e+01 3.74977e-01 8.38911e-05 2.54605e-01 - 3 sg_p2 4.00000e+02 4.38207e+00 5.61185e-03 -1.57057e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 9.99992e+01 1.55865e+01 4.95239e-01 1.57658e+00 - 5 sg_p4 9.47779e-01 5.38465e-03 4.30589e-04 1.10968e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.503e-01 -1.437e-02 -1.054e-07 1.912e-02 -2.821e-04 - -1.437e-02 1.406e-01 -4.527e-06 -8.788e-04 4.745e-04 - -1.054e-07 -4.527e-06 4.144e-05 -1.618e-06 -1.856e-07 - 1.912e-02 -8.788e-04 -1.618e-06 4.993e-02 5.148e-05 - -2.821e-04 4.745e-04 -1.856e-07 5.148e-05 2.900e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.21046 1.000 -0.077 -0.000 0.171 -0.105 - 2 0.24099 -0.077 1.000 -0.002 -0.010 0.235 - 3 0.00549 -0.000 -0.002 1.000 -0.001 -0.005 - 4 0.18195 0.171 -0.010 -0.001 1.000 0.043 - 5 0.25791 -0.105 0.235 -0.005 0.043 1.000 -500 -484.762 +- 0.500293 -27.6557 +- 0.374977 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=18067.3 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.90000e+02 6.00000e+00 2.01358e-01 6.30906e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 6.68366e+01 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 1.15954e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -1.16092e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -3.26605e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17575.8 FROM MIGRAD STATUS=CONVERGED 279 CALLS 280 TOTAL - EDM=3.64156e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 4.80603e+02 4.87655e-01 1.55641e-03 1.00438e-01 - 2 sg_p1 2.73597e+01 3.75999e-01 2.07241e-03 -3.88766e-02 - 3 sg_p2 4.00000e+02 7.70615e+00 3.73444e-02 -1.20875e-02 - 4 sg_p3 9.99999e+01 9.07676e+00 5.91616e-02 4.30185e-03 - 5 sg_p4 9.52020e-01 5.29904e-03 2.18424e-03 -2.42849e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.378e-01 -1.252e-02 1.605e-06 3.978e-04 -2.735e-04 - -1.252e-02 1.414e-01 -4.268e-04 1.441e-06 5.110e-04 - 1.605e-06 -4.268e-04 5.890e-03 -4.600e-07 -1.533e-05 - 3.978e-04 1.441e-06 -4.600e-07 2.758e-03 4.935e-07 - -2.735e-04 5.110e-04 -1.533e-05 4.935e-07 2.809e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.11523 1.000 -0.068 0.000 0.016 -0.106 - 2 0.25980 -0.068 1.000 -0.015 0.000 0.256 - 3 0.03828 0.000 -0.015 1.000 -0.000 -0.038 - 4 0.01591 0.016 0.000 -0.000 1.000 0.002 - 5 0.27342 -0.106 0.256 -0.038 0.002 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17575.8 FROM HESSE STATUS=OK 31 CALLS 311 TOTAL - EDM=3.66903e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 4.80603e+02 4.87622e-01 3.11281e-04 -3.18584e-01 - 2 sg_p1 2.73597e+01 3.76029e-01 8.28962e-05 2.36108e-01 - 3 sg_p2 4.00000e+02 7.72173e+00 7.46888e-03 -1.57279e+00 - 4 sg_p3 9.99999e+01 9.11980e+00 1.18323e-02 1.57260e+00 - 5 sg_p4 9.52020e-01 5.29594e-03 8.73698e-05 1.12913e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.378e-01 -1.272e-02 2.233e-07 9.824e-05 -2.737e-04 - -1.272e-02 1.414e-01 -4.487e-05 2.340e-07 5.111e-04 - 2.233e-07 -4.487e-05 5.902e-03 -1.148e-08 -1.609e-06 - 9.824e-05 2.340e-07 -1.148e-08 2.771e-03 1.224e-07 - -2.737e-04 5.111e-04 -1.609e-06 1.224e-07 2.805e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.11467 1.000 -0.069 0.000 0.004 -0.106 - 2 0.26008 -0.069 1.000 -0.002 0.000 0.257 - 3 0.00402 0.000 -0.002 1.000 -0.000 -0.004 - 4 0.00392 0.004 0.000 -0.000 1.000 0.000 - 5 0.27142 -0.106 0.257 -0.004 0.000 1.000 -500 -480.603 +- 0.487622 -27.3597 +- 0.376029 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=16835.6 FROM MIGRAD STATUS=INITIATE 46 CALLS 47 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.00000e+02 4.00000e+00 0.00000e+00 -3.93448e+02 - 2 sg_p1 1.85000e+01 2.30000e+00 0.00000e+00 4.78837e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 0.00000e+00 -1.66272e+02 - 4 sg_p3 4.24477e+01 1.40000e+01 -5.66239e-01 4.08068e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -6.94465e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16163.1 FROM HESSE STATUS=OK 31 CALLS 270 TOTAL - EDM=0.0123886 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.03549e+02 3.01469e-01 1.32569e-03 7.22248e-02 - 2 sg_p1 1.64694e+01 2.69674e-01 1.82958e-03 1.11175e-01 - 3 sg_p2 4.52623e+02 1.84688e+01 1.67733e-02 -5.64013e-01 - 4 sg_p3 1.31659e+02 2.60244e+01 4.76520e-02 -2.04899e-01 - 5 sg_p4 9.27815e-01 7.08262e-03 2.04007e-03 -6.32432e-02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=16163.1 FROM MIGRAD STATUS=CONVERGED 293 CALLS 294 TOTAL - EDM=1.39803e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 9.0 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.03541e+02 3.02714e-01 -6.04564e-05 -2.41635e-02 - 2 sg_p1 1.64684e+01 2.71856e-01 1.82456e-04 2.35248e-02 - 3 sg_p2 4.54550e+02 1.81378e+01 -3.71817e-04 2.34305e-03 - 4 sg_p3 1.35056e+02 2.96709e+01 1.70336e-02 -8.15967e-03 - 5 sg_p4 9.27449e-01 7.04529e-03 2.19134e-05 -1.27756e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.164e-02 -7.657e-03 -1.012e-01 -1.679e+00 -7.191e-05 - -7.657e-03 7.392e-02 -1.518e+00 2.592e+00 7.352e-04 - -1.012e-01 -1.518e+00 3.340e+02 -8.231e+01 -5.363e-02 - -1.679e+00 2.592e+00 -8.231e+01 1.069e+03 -1.492e-03 - -7.191e-05 7.352e-04 -5.363e-02 -1.492e-03 4.965e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.18907 1.000 -0.093 -0.018 -0.170 -0.034 - 2 0.49868 -0.093 1.000 -0.305 0.292 0.384 - 3 0.45946 -0.018 -0.305 1.000 -0.138 -0.416 - 4 0.36545 -0.170 0.292 -0.138 1.000 -0.006 - 5 0.51683 -0.034 0.384 -0.416 -0.006 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16163.1 FROM HESSE STATUS=OK 39 CALLS 333 TOTAL - EDM=4.95712e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.03541e+02 3.01948e-01 1.32548e-03 1.78010e-01 - 2 sg_p1 1.64684e+01 2.69373e-01 1.82921e-03 -1.77589e-01 - 3 sg_p2 4.54550e+02 1.88889e+01 1.71373e-02 -4.39830e-01 - 4 sg_p3 1.35056e+02 2.91667e+01 5.83968e-02 9.05144e-01 - 5 sg_p4 9.27449e-01 7.08973e-03 2.04457e-03 1.02536e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.118e-02 -6.694e-03 -1.967e-01 -1.492e+00 -6.118e-05 - -6.694e-03 7.258e-02 -1.499e+00 2.192e+00 7.371e-04 - -1.967e-01 -1.499e+00 3.627e+02 -4.939e+01 -5.738e-02 - -1.492e+00 2.192e+00 -4.939e+01 1.025e+03 -5.946e-03 - -6.118e-05 7.371e-04 -5.738e-02 -5.946e-03 5.028e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.17693 1.000 -0.082 -0.034 -0.154 -0.029 - 2 0.48331 -0.082 1.000 -0.292 0.254 0.386 - 3 0.45514 -0.034 -0.292 1.000 -0.081 -0.425 - 4 0.32411 -0.154 0.254 -0.081 1.000 -0.026 - 5 0.52326 -0.029 0.386 -0.425 -0.026 1.000 -500 -503.541 +- 0.301948 -16.4684 +- 0.269373 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=16739.6 FROM MIGRAD STATUS=INITIATE 45 CALLS 46 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.00000e+02 4.00000e+00 0.00000e+00 -4.55651e+02 - 2 sg_p1 1.85000e+01 2.30000e+00 0.00000e+00 4.48786e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 0.00000e+00 -2.68451e+02 - 4 sg_p3 4.32221e+01 1.40000e+01 -5.53184e-01 1.18283e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -6.96034e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16081.3 FROM MIGRAD STATUS=CONVERGED 313 CALLS 314 TOTAL - EDM=8.68132e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.04220e+02 3.07707e-01 1.35237e-03 1.08303e-01 - 2 sg_p1 1.66795e+01 2.77507e-01 1.84894e-03 6.94551e-02 - 3 sg_p2 4.62822e+02 1.91078e+01 1.68854e-02 -1.14748e-02 - 4 sg_p3 1.35582e+02 3.03789e+01 6.57946e-02 1.08838e-02 - 5 sg_p4 9.28230e-01 7.23504e-03 2.06982e-03 -3.02724e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.469e-02 -7.947e-03 -3.583e-01 -1.715e+00 -8.078e-05 - -7.947e-03 7.703e-02 -1.315e+00 2.634e+00 8.091e-04 - -3.583e-01 -1.315e+00 3.708e+02 4.728e+01 -6.075e-02 - -1.715e+00 2.634e+00 4.728e+01 1.145e+03 2.032e-03 - -8.078e-05 8.091e-04 -6.075e-02 2.032e-03 5.236e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.18853 1.000 -0.093 -0.060 -0.165 -0.036 - 2 0.50124 -0.093 1.000 -0.246 0.281 0.403 - 3 0.46006 -0.060 -0.246 1.000 0.073 -0.436 - 4 0.34759 -0.165 0.281 0.073 1.000 0.008 - 5 0.53639 -0.036 0.403 -0.436 0.008 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16081.3 FROM HESSE STATUS=OK 31 CALLS 345 TOTAL - EDM=9.10947e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.04220e+02 3.08377e-01 2.70474e-04 2.12615e-01 - 2 sg_p1 1.66795e+01 2.80568e-01 3.69788e-04 -1.58971e-01 - 3 sg_p2 4.62822e+02 1.90695e+01 6.75418e-04 -3.45556e-01 - 4 sg_p3 1.35582e+02 3.07077e+01 2.63178e-03 9.17410e-01 - 5 sg_p4 9.28230e-01 7.23811e-03 4.13965e-04 1.02837e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.510e-02 -8.877e-03 -3.212e-01 -1.872e+00 -9.078e-05 - -8.877e-03 7.873e-02 -1.370e+00 3.011e+00 8.254e-04 - -3.212e-01 -1.370e+00 3.693e+02 2.368e+01 -6.065e-02 - -1.872e+00 3.011e+00 2.368e+01 1.177e+03 7.626e-03 - -9.078e-05 8.254e-04 -6.065e-02 7.626e-03 5.240e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.19932 1.000 -0.103 -0.054 -0.177 -0.041 - 2 0.51720 -0.103 1.000 -0.254 0.313 0.406 - 3 0.45661 -0.054 -0.254 1.000 0.036 -0.436 - 4 0.36806 -0.177 0.313 0.036 1.000 0.031 - 5 0.53695 -0.041 0.406 -0.436 0.031 1.000 -500 -504.22 +- 0.308377 -16.6795 +- 0.280568 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=16548.5 FROM MIGRAD STATUS=INITIATE 40 CALLS 41 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.00000e+02 4.00000e+00 0.00000e+00 -3.23108e+02 - 2 sg_p1 1.85000e+01 2.30000e+00 0.00000e+00 5.18946e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 0.00000e+00 -1.42436e+02 - 4 sg_p3 4.43542e+01 1.40000e+01 -5.34286e-01 2.49400e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -7.66244e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15889.1 FROM HESSE STATUS=OK 37 CALLS 242 TOTAL - EDM=0.000693776 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.02838e+02 2.97826e-01 1.28795e-03 -1.05531e-02 - 2 sg_p1 1.60782e+01 2.67978e-01 1.80577e-03 2.44112e-02 - 3 sg_p2 4.64332e+02 1.37627e+01 1.17387e-02 2.07821e-01 - 4 sg_p3 1.14468e+02 2.01486e+01 2.64964e-02 5.48597e-02 - 5 sg_p4 9.27839e-01 7.15691e-03 2.03796e-03 1.57814e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=15889.1 FROM MIGRAD STATUS=CONVERGED 254 CALLS 255 TOTAL - EDM=9.17556e-06 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 2.8 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.02840e+02 2.97434e-01 8.32709e-05 -7.82024e-03 - 2 sg_p1 1.60782e+01 2.67892e-01 -2.85162e-06 4.43301e-03 - 3 sg_p2 4.63894e+02 1.38330e+01 -4.87307e-03 -3.70669e-03 - 4 sg_p3 1.14016e+02 1.92315e+01 -7.40995e-03 -1.25650e-02 - 5 sg_p4 9.27892e-01 7.16442e-03 2.06750e-04 1.26344e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 8.847e-02 -6.452e-03 -2.568e-01 -8.771e-01 -8.776e-05 - -6.452e-03 7.178e-02 -9.238e-01 1.447e+00 8.030e-04 - -2.568e-01 -9.238e-01 1.929e+02 9.107e+00 -4.221e-02 - -8.771e-01 1.447e+00 9.107e+00 3.827e+02 1.223e-02 - -8.776e-05 8.030e-04 -4.221e-02 1.223e-02 5.134e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.17624 1.000 -0.081 -0.062 -0.151 -0.041 - 2 0.49356 -0.081 1.000 -0.248 0.276 0.418 - 3 0.44761 -0.062 -0.248 1.000 0.034 -0.424 - 4 0.31902 -0.151 0.276 0.034 1.000 0.087 - 5 0.53440 -0.041 0.418 -0.424 0.087 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15889.1 FROM HESSE STATUS=OK 39 CALLS 294 TOTAL - EDM=3.03558e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.02840e+02 2.97751e-01 5.15179e-04 1.42457e-01 - 2 sg_p1 1.60782e+01 2.68158e-01 7.22309e-04 -2.12184e-01 - 3 sg_p2 4.63894e+02 1.36806e+01 1.19116e-02 -3.33579e-01 - 4 sg_p3 1.14016e+02 1.97620e+01 2.70009e-02 5.07434e-01 - 5 sg_p4 9.27892e-01 7.16159e-03 2.03722e-03 1.02707e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 8.866e-02 -6.740e-03 -2.651e-01 -9.501e-01 -8.838e-05 - -6.740e-03 7.192e-02 -8.846e-01 1.490e+00 8.010e-04 - -2.651e-01 -8.846e-01 1.886e+02 2.011e+01 -4.167e-02 - -9.501e-01 1.490e+00 2.011e+01 4.049e+02 1.100e-02 - -8.838e-05 8.010e-04 -4.167e-02 1.100e-02 5.130e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.18198 1.000 -0.084 -0.065 -0.159 -0.041 - 2 0.49512 -0.084 1.000 -0.240 0.276 0.417 - 3 0.45379 -0.065 -0.240 1.000 0.073 -0.424 - 4 0.33483 -0.159 0.276 0.073 1.000 0.076 - 5 0.53499 -0.041 0.417 -0.424 0.076 1.000 -500 -502.84 +- 0.297751 -16.0782 +- 0.268158 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=16477.8 FROM MIGRAD STATUS=INITIATE 46 CALLS 47 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.00000e+02 4.00000e+00 0.00000e+00 -3.86200e+02 - 2 sg_p1 1.85000e+01 2.30000e+00 0.00000e+00 4.57301e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 0.00000e+00 -1.88126e+02 - 4 sg_p3 4.29079e+01 1.40000e+01 -5.58468e-01 8.72628e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -6.83965e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15837 FROM HESSE STATUS=OK 33 CALLS 278 TOTAL - EDM=0.00228562 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.03601e+02 3.08955e-01 1.34585e-03 3.00627e-01 - 2 sg_p1 1.67537e+01 2.75890e-01 1.84217e-03 1.71804e-01 - 3 sg_p2 4.49584e+02 2.10318e+01 1.89093e-02 -1.86124e-01 - 4 sg_p3 1.37208e+02 2.92076e+01 6.33389e-02 -7.21712e-02 - 5 sg_p4 9.31031e-01 7.12595e-03 2.05778e-03 -2.05034e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=15837 FROM MIGRAD STATUS=CONVERGED 290 CALLS 291 TOTAL - EDM=9.94244e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 5.2 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.03597e+02 3.10422e-01 -2.20880e-04 7.26010e-03 - 2 sg_p1 1.67527e+01 2.74763e-01 -8.54234e-05 -2.36066e-02 - 3 sg_p2 4.50350e+02 1.99263e+01 9.15141e-03 7.10266e-03 - 4 sg_p3 1.38778e+02 3.01976e+01 4.00555e-02 -1.66420e-02 - 5 sg_p4 9.30902e-01 7.07722e-03 -5.07201e-04 -3.19630e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.637e-02 -7.329e-03 -9.169e-02 -1.905e+00 -5.097e-05 - -7.329e-03 7.551e-02 -1.688e+00 2.407e+00 7.425e-04 - -9.169e-02 -1.688e+00 4.048e+02 -1.012e+02 -6.013e-02 - -1.905e+00 2.407e+00 -1.012e+02 1.218e+03 -1.228e-02 - -5.097e-05 7.425e-04 -6.013e-02 -1.228e-02 5.010e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.19304 1.000 -0.086 -0.015 -0.176 -0.023 - 2 0.48229 -0.086 1.000 -0.305 0.251 0.382 - 3 0.47089 -0.015 -0.305 1.000 -0.144 -0.422 - 4 0.36202 -0.176 0.251 -0.144 1.000 -0.050 - 5 0.52945 -0.023 0.382 -0.422 -0.050 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15837 FROM HESSE STATUS=OK 41 CALLS 332 TOTAL - EDM=6.005e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.03597e+02 3.09136e-01 1.34573e-03 1.80817e-01 - 2 sg_p1 1.67527e+01 2.75606e-01 1.84171e-03 -1.52530e-01 - 3 sg_p2 4.50350e+02 2.12182e+01 1.91941e-02 -4.89291e-01 - 4 sg_p3 1.38778e+02 3.03916e+01 7.62661e-02 9.96701e-01 - 5 sg_p4 9.30902e-01 7.12819e-03 2.05809e-03 1.03882e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.557e-02 -6.148e-03 -1.876e-01 -1.605e+00 -4.622e-05 - -6.148e-03 7.597e-02 -1.916e+00 2.306e+00 7.753e-04 - -1.876e-01 -1.916e+00 4.602e+02 -1.123e+02 -6.665e-02 - -1.605e+00 2.306e+00 -1.123e+02 1.240e+03 -9.523e-03 - -4.622e-05 7.753e-04 -6.665e-02 -9.523e-03 5.082e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.17020 1.000 -0.072 -0.028 -0.147 -0.021 - 2 0.48615 -0.072 1.000 -0.324 0.238 0.395 - 3 0.48715 -0.028 -0.324 1.000 -0.149 -0.436 - 4 0.33778 -0.147 0.238 -0.149 1.000 -0.038 - 5 0.53739 -0.021 0.395 -0.436 -0.038 1.000 -500 -503.597 +- 0.309136 -16.7527 +- 0.275606 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=16981.8 FROM MIGRAD STATUS=INITIATE 47 CALLS 48 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.00000e+02 4.00000e+00 0.00000e+00 -4.05566e+02 - 2 sg_p1 1.85000e+01 2.30000e+00 0.00000e+00 4.79846e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 0.00000e+00 -2.38683e+02 - 4 sg_p3 3.85734e+01 1.40000e+01 -6.33300e-01 -1.09954e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -6.06818e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16302.6 FROM HESSE STATUS=OK 33 CALLS 261 TOTAL - EDM=0.000884701 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.03638e+02 2.96476e-01 1.30613e-03 -5.89524e-02 - 2 sg_p1 1.61908e+01 2.68536e-01 1.81793e-03 -9.06324e-02 - 3 sg_p2 4.64623e+02 1.46357e+01 1.25261e-02 2.17668e-01 - 4 sg_p3 1.18516e+02 2.19593e+01 3.03884e-02 5.10539e-02 - 5 sg_p4 9.27881e-01 7.13588e-03 2.04703e-03 7.03448e-02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=16302.6 FROM MIGRAD STATUS=CONVERGED 273 CALLS 274 TOTAL - EDM=1.35619e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 3.1 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.03639e+02 2.96022e-01 9.77721e-05 -9.91628e-03 - 2 sg_p1 1.61919e+01 2.69186e-01 9.95735e-05 3.66259e-03 - 3 sg_p2 4.64075e+02 1.47143e+01 -6.09837e-03 -4.10999e-03 - 4 sg_p3 1.17996e+02 2.09578e+01 -8.86611e-03 -1.33437e-02 - 5 sg_p4 9.27974e-01 7.15584e-03 3.61873e-04 3.29176e-06 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 8.764e-02 -6.654e-03 -2.734e-01 -9.694e-01 -8.441e-05 - -6.654e-03 7.247e-02 -1.035e+00 1.644e+00 8.204e-04 - -2.734e-01 -1.035e+00 2.185e+02 1.062e+01 -4.631e-02 - -9.694e-01 1.644e+00 1.062e+01 4.592e+02 1.234e-02 - -8.441e-05 8.204e-04 -4.631e-02 1.234e-02 5.122e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.17873 1.000 -0.083 -0.062 -0.153 -0.040 - 2 0.50630 -0.083 1.000 -0.260 0.285 0.426 - 3 0.46142 -0.062 -0.260 1.000 0.034 -0.438 - 4 0.32893 -0.153 0.285 0.034 1.000 0.080 - 5 0.54522 -0.040 0.426 -0.438 0.080 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16302.6 FROM HESSE STATUS=OK 41 CALLS 315 TOTAL - EDM=4.81522e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.03639e+02 2.96371e-01 1.30576e-03 1.82991e-01 - 2 sg_p1 1.61919e+01 2.68611e-01 1.81691e-03 -2.02075e-01 - 3 sg_p2 4.64075e+02 1.45352e+01 1.27410e-02 -3.31572e-01 - 4 sg_p3 1.17996e+02 2.14738e+01 3.10172e-02 5.73772e-01 - 5 sg_p4 9.27974e-01 7.13651e-03 2.04596e-03 1.02738e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 8.784e-02 -6.886e-03 -2.835e-01 -1.054e+00 -8.375e-05 - -6.886e-03 7.217e-02 -9.670e-01 1.646e+00 8.068e-04 - -2.835e-01 -9.670e-01 2.131e+02 2.545e+01 -4.521e-02 - -1.054e+00 1.646e+00 2.545e+01 4.832e+02 9.584e-03 - -8.375e-05 8.068e-04 -4.521e-02 9.584e-03 5.094e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.18509 1.000 -0.086 -0.066 -0.162 -0.040 - 2 0.50306 -0.086 1.000 -0.247 0.279 0.421 - 3 0.46399 -0.066 -0.247 1.000 0.079 -0.434 - 4 0.34172 -0.162 0.279 0.079 1.000 0.061 - 5 0.54250 -0.040 0.421 -0.434 0.061 1.000 -500 -503.639 +- 0.296371 -16.1919 +- 0.268611 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=15760.3 FROM MIGRAD STATUS=INITIATE 46 CALLS 47 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.00000e+02 4.00000e+00 0.00000e+00 -3.68945e+02 - 2 sg_p1 1.85000e+01 2.30000e+00 0.00000e+00 4.51251e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 0.00000e+00 -1.65516e+02 - 4 sg_p3 4.28306e+01 1.40000e+01 -5.59769e-01 7.96964e+01 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -6.63393e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15131 FROM HESSE STATUS=OK 31 CALLS 270 TOTAL - EDM=0.00917808 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.03544e+02 3.11234e-01 1.32359e-03 3.99151e-02 - 2 sg_p1 1.64644e+01 2.78325e-01 1.82583e-03 8.26169e-02 - 3 sg_p2 4.53596e+02 1.89196e+01 1.66163e-02 -4.74680e-01 - 4 sg_p3 1.30948e+02 2.69531e+01 4.74560e-02 -1.69826e-01 - 5 sg_p4 9.28806e-01 7.28371e-03 2.04213e-03 -7.21183e-02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=15131 FROM MIGRAD STATUS=CONVERGED 292 CALLS 293 TOTAL - EDM=1.59446e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 8.3 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.03538e+02 3.12525e-01 -4.41178e-05 -1.54585e-02 - 2 sg_p1 1.64635e+01 2.80799e-01 1.36626e-04 1.03835e-02 - 3 sg_p2 4.55327e+02 1.85938e+01 -2.83276e-04 1.31641e-03 - 4 sg_p3 1.33880e+02 3.06660e+01 1.19135e-02 -8.53961e-03 - 5 sg_p4 9.28489e-01 7.24733e-03 2.34109e-05 -1.19312e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.768e-02 -8.237e-03 -1.269e-01 -1.811e+00 -7.804e-05 - -8.237e-03 7.886e-02 -1.583e+00 2.810e+00 7.851e-04 - -1.269e-01 -1.583e+00 3.512e+02 -7.894e+01 -5.706e-02 - -1.811e+00 2.810e+00 -7.894e+01 1.142e+03 2.159e-04 - -7.804e-05 7.851e-04 -5.706e-02 2.159e-04 5.254e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.19100 1.000 -0.094 -0.022 -0.171 -0.034 - 2 0.50054 -0.094 1.000 -0.301 0.296 0.386 - 3 0.45764 -0.022 -0.301 1.000 -0.125 -0.420 - 4 0.36350 -0.171 0.296 -0.125 1.000 0.001 - 5 0.51853 -0.034 0.386 -0.420 0.001 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15131 FROM HESSE STATUS=OK 39 CALLS 332 TOTAL - EDM=8.18863e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.03538e+02 3.11671e-01 1.32357e-03 1.77834e-01 - 2 sg_p1 1.64635e+01 2.78053e-01 1.82591e-03 -1.78022e-01 - 3 sg_p2 4.55327e+02 1.93050e+01 1.69364e-02 -4.30811e-01 - 4 sg_p3 1.33880e+02 2.97612e+01 5.65680e-02 8.78399e-01 - 5 sg_p4 9.28489e-01 7.28924e-03 2.04602e-03 1.02938e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.715e-02 -7.165e-03 -2.210e-01 -1.574e+00 -6.699e-05 - -7.165e-03 7.733e-02 -1.562e+00 2.322e+00 7.859e-04 - -2.210e-01 -1.562e+00 3.791e+02 -4.296e+01 -6.069e-02 - -1.574e+00 2.322e+00 -4.296e+01 1.061e+03 -4.723e-03 - -6.699e-05 7.859e-04 -6.069e-02 -4.723e-03 5.315e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.17762 1.000 -0.083 -0.036 -0.155 -0.029 - 2 0.48429 -0.083 1.000 -0.289 0.256 0.388 - 3 0.45436 -0.036 -0.289 1.000 -0.068 -0.428 - 4 0.32111 -0.155 0.256 -0.068 1.000 -0.020 - 5 0.52435 -0.029 0.388 -0.428 -0.020 1.000 -500 -503.538 +- 0.311671 -16.4635 +- 0.278053 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17965.7 FROM MIGRAD STATUS=INITIATE 46 CALLS 47 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.00000e+02 4.00000e+00 0.00000e+00 -4.19180e+02 - 2 sg_p1 1.85000e+01 2.30000e+00 0.00000e+00 5.07558e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 0.00000e+00 -1.66310e+02 - 4 sg_p3 4.20660e+01 1.40000e+01 -5.72713e-01 -5.27926e+00 - 5 sg_p4 5.00000e-01 1.00000e-01 0.00000e+00 -7.26010e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17247.2 FROM HESSE STATUS=OK 31 CALLS 273 TOTAL - EDM=0.0158866 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.03553e+02 2.92162e-01 1.32752e-03 1.92047e-01 - 2 sg_p1 1.64746e+01 2.61492e-01 1.83264e-03 9.93853e-02 - 3 sg_p2 4.51603e+02 1.81044e+01 1.70017e-02 -6.77062e-01 - 4 sg_p3 1.32529e+02 2.52771e+01 4.84704e-02 -2.30017e-01 - 5 sg_p4 9.26851e-01 6.88981e-03 2.03844e-03 -1.42588e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=17247.2 FROM MIGRAD STATUS=CONVERGED 294 CALLS 295 TOTAL - EDM=4.77096e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 9.6 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.03545e+02 2.93438e-01 -5.87528e-05 -3.40309e-02 - 2 sg_p1 1.64727e+01 2.63670e-01 1.74859e-04 2.14591e-02 - 3 sg_p2 4.53798e+02 1.77853e+01 -4.09286e-04 3.31652e-04 - 4 sg_p3 1.35998e+02 2.90570e+01 1.70332e-02 -1.52432e-02 - 5 sg_p4 9.26443e-01 6.85608e-03 1.63285e-05 -2.74842e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 8.611e-02 -7.218e-03 -7.462e-02 -1.599e+00 -6.663e-05 - -7.218e-03 6.953e-02 -1.469e+00 2.461e+00 6.909e-04 - -7.462e-02 -1.469e+00 3.210e+02 -8.810e+01 -5.081e-02 - -1.599e+00 2.461e+00 -8.810e+01 1.030e+03 -2.764e-03 - -6.663e-05 6.909e-04 -5.081e-02 -2.764e-03 4.702e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.18896 1.000 -0.093 -0.014 -0.170 -0.033 - 2 0.49890 -0.093 1.000 -0.311 0.291 0.382 - 3 0.46311 -0.014 -0.311 1.000 -0.153 -0.414 - 4 0.37220 -0.170 0.291 -0.153 1.000 -0.013 - 5 0.51605 -0.033 0.382 -0.414 -0.013 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17247.2 FROM HESSE STATUS=OK 37 CALLS 332 TOTAL - EDM=2.5481e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.03545e+02 2.92634e-01 1.32733e-03 1.78200e-01 - 2 sg_p1 1.64727e+01 2.61019e-01 1.83240e-03 -1.77216e-01 - 3 sg_p2 4.53798e+02 1.84402e+01 1.73428e-02 -4.48601e-01 - 4 sg_p3 1.35998e+02 2.83987e+01 6.04366e-02 9.27242e-01 - 5 sg_p4 9.26443e-01 6.89823e-03 2.04324e-03 1.02149e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 8.564e-02 -6.233e-03 -1.752e-01 -1.395e+00 -5.632e-05 - -6.233e-03 6.814e-02 -1.435e+00 2.042e+00 6.927e-04 - -1.752e-01 -1.435e+00 3.454e+02 -5.423e+01 -5.416e-02 - -1.395e+00 2.042e+00 -5.423e+01 9.726e+02 -6.753e-03 - -5.632e-05 6.927e-04 -5.416e-02 -6.753e-03 4.760e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.17564 1.000 -0.082 -0.032 -0.153 -0.028 - 2 0.48195 -0.082 1.000 -0.296 0.251 0.385 - 3 0.45633 -0.032 -0.296 1.000 -0.094 -0.422 - 4 0.32602 -0.153 0.251 -0.094 1.000 -0.031 - 5 0.52240 -0.028 0.385 -0.422 -0.031 1.000 -500 -503.545 +- 0.292634 -16.4727 +- 0.261019 -35.9 fb^{-1} (13 TeV) -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 37 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 57 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 59 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 110 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 113 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 115 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 116 has zero error, setting residual to zero - Uncertainty on sg_p0 = 503.541 +- 0.301948 (stat) - 0.701904 + 0.678912 (syst); -0.717957/+0.695495 (total) - Uncertainty on sg_p1 = 16.4684 +- 0.269373 (stat) - 0.390296 + 0.284252 (syst); -0.412882/+0.314547 (total) - Uncertainty on sg_p2 = 454.55 +- 18.8889 (stat) - 4.20037 + 9.52429 (syst); -10.3364/+13.4131 (total) - Uncertainty on sg_p3 = 135.056 +- 29.1667 (stat) - 21.0404 + 3.7219 (syst); -25.6003/+15.0508 (total) - Uncertainty on sg_p4 = 0.927449 +- 0.00708973 (stat) - 0.00100662 + 0.0034528 (syst); -0.00368502/+0.00494853 (total) - === Baseline plot ===
- norm = 1319.62 -JEC lnN 1.00347 - -JER lnN 1.01686 - -btag lnN 1.06496 - -sg_p0 param 503.541 -0.717957/+0.695495 -sg_p1 param 16.4684 -0.412882/+0.314547 -sg_p2 param 454.55 -10.3364/+13.4131 -sg_p3 param 135.056 -25.6003/+15.0508 -sg_p4 param 0.927449 -0.00368502/+0.00494853 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_550_crystal_1_285_624/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_550_crystal_1_285_624/data_bkg.log deleted file mode 100644 index c704996..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_550_crystal_1_285_624/data_bkg.log +++ /dev/null @@ -1,717 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [250,330] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [250,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63590.5 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.69443e-02 5.09000e-01 0.00000e+00 -7.94680e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -8.91126e+00 - 3 par_crystal_2 2.62020e+02 4.00000e+00 1.01181e-01 -1.53451e+00 - 4 par_crystal_3 1.65000e+01 2.70000e+00 0.00000e+00 7.46021e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM MIGRAD STATUS=CONVERGED 482 CALLS 483 TOTAL - EDM=0.000814822 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 4.40594e-01 4.43750e-02 2.48631e-03 2.88668e-01 - 2 par_crystal_1 9.82994e-01 6.48221e-01 2.14269e-02 -5.28345e-03 - 3 par_crystal_2 2.71542e+02 7.41091e-01 7.20683e-03 -9.27818e-02 - 4 par_crystal_3 2.87224e+01 2.18588e+00 3.97473e-02 -6.99277e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.970e-03 -2.333e-02 -5.115e-04 1.392e-02 - -2.333e-02 4.358e-01 4.870e-03 -8.391e-01 - -5.115e-04 4.870e-03 5.496e-01 4.381e-01 - 1.392e-02 -8.391e-01 4.381e-01 5.029e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.88989 1.000 -0.796 -0.016 0.140 - 2 0.92807 -0.796 1.000 0.010 -0.567 - 3 0.40865 -0.016 0.010 1.000 0.264 - 4 0.80948 0.140 -0.567 0.264 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM HESSE STATUS=OK 23 CALLS 506 TOTAL - EDM=0.000711421 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 4.40594e-01 4.64698e-02 4.97262e-04 -9.80558e-01 - 2 par_crystal_1 9.82994e-01 6.55195e-01 8.57075e-04 -6.65795e-01 - 3 par_crystal_2 2.71542e+02 7.38644e-01 1.44137e-03 6.15159e-01 - 4 par_crystal_3 2.87224e+01 2.03002e+00 1.58989e-03 -1.05570e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.160e-03 -2.581e-02 -1.109e-03 1.530e-02 - -2.581e-02 4.456e-01 2.508e-02 -7.234e-01 - -1.109e-03 2.508e-02 5.460e-01 3.687e-01 - 1.530e-02 -7.234e-01 3.687e-01 4.306e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.90014 1.000 -0.832 -0.032 0.159 - 2 0.92960 -0.832 1.000 0.051 -0.522 - 3 0.40186 -0.032 0.051 1.000 0.240 - 4 0.77207 0.159 -0.522 0.240 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63714.2 FROM MIGRAD STATUS=INITIATE 33 CALLS 34 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 2.63122e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -5.45805e+02 - 3 par_gaus_exp_2 6.67498e-01 3.05000e-01 -6.37370e-01 7.03093e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM MIGRAD STATUS=CONVERGED 131 CALLS 132 TOTAL - EDM=6.15917e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.71558e+02 8.05096e-01 6.82817e-03 6.24407e-02 - 2 par_gaus_exp_1 3.06822e+01 1.83071e+00 1.43475e-02 1.11468e-02 - 3 par_gaus_exp_2 3.82770e-01 2.42284e-02 3.05774e-03 -9.77170e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.486e-01 -6.079e-01 -1.588e-03 - -6.079e-01 3.370e+00 3.082e-02 - -1.588e-03 3.082e-02 5.871e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.49876 1.000 -0.411 -0.081 - 2 0.77898 -0.411 1.000 0.693 - 3 0.72797 -0.081 0.693 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM HESSE STATUS=OK 16 CALLS 148 TOTAL - EDM=6.13964e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.71558e+02 8.14214e-01 2.73127e-04 -4.35760e-01 - 2 par_gaus_exp_1 3.06822e+01 1.86973e+00 5.73898e-04 4.10264e-01 - 3 par_gaus_exp_2 3.82770e-01 2.45149e-02 1.22310e-04 -8.97531e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.634e-01 -6.630e-01 -2.137e-03 - -6.630e-01 3.516e+00 3.227e-02 - -2.137e-03 3.227e-02 6.011e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.51526 1.000 -0.434 -0.107 - 2 0.78935 -0.434 1.000 0.702 - 3 0.73544 -0.107 0.702 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,625] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.33953 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - ... (remaining 126 messages suppressed) -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.33953) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.734607 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=317.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=327.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=332.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=342.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=347.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=352.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=357.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=362.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=367.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - ... (remaining 53 messages suppressed) -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.734607) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0734613 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0734613 - - FCN=103487 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57093e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.56195e+03 - 3 par_novo_2 -1.33668e+00 2.00000e+01 0.00000e+00 1.53931e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM MIGRAD STATUS=CONVERGED 127 CALLS 128 TOTAL - EDM=3.4171e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.43423e+01 1.81223e-01** at limit ** - 2 par_novo_1 3.86596e+01 2.27294e+00 4.95847e-03 -1.04123e-02 - 3 par_novo_2 -1.27520e+00 7.07738e-02 3.70975e-05 -1.26322e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.231e-09 -8.491e-07 -8.580e-07 - -8.491e-07 5.181e+00 1.547e-01 - -8.580e-07 1.547e-01 5.009e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.53332 1.000 -0.005 -0.154 - 2 0.97096 -0.005 1.000 0.960 - 3 0.97165 -0.154 0.960 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM HESSE STATUS=OK 20 CALLS 148 TOTAL - EDM=3.43726e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.40246e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.86596e+01 2.31421e+00 1.98339e-04 4.46530e-01 - 3 par_novo_2 -1.27520e+00 7.22930e-02 1.48390e-06 -1.27523e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 5.974e-09 2.819e-05 -1.296e-06 - 2.819e-05 5.372e+00 1.502e-01 - -1.296e-06 1.502e-01 5.226e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.85665 1.000 0.157 -0.232 - 2 0.97200 0.157 1.000 0.897 - 3 0.97285 -0.232 0.897 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107513 FROM MIGRAD STATUS=INITIATE 54 CALLS 55 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 1.39168e+03 - 2 par_crystal_1_1 7.96220e-02 5.09000e-01 0.00000e+00 5.33770e+03 - 3 par_crystal_1_2 2.56879e+02 4.00000e+00 -1.56713e-01 -1.96669e+01 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 -8.45862e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.5057e-02 2.3309e-03 4.9678e-02 3.9730e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.029030 TO DIAGONAL. - FCN=103250 FROM MIGRAD STATUS=CONVERGED 436 CALLS 437 TOTAL - EDM=3.52757e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 4.45574e-02 4.37117e-03 3.09465e-04 -4.28177e+00 - 2 par_crystal_1_1 4.36914e+00 6.24106e-01 1.80400e-02 6.63742e-02 - 3 par_crystal_1_2 2.71531e+02 3.44700e+01 5.81266e-02 2.25694e-02 - 4 par_crystal_1_3 3.37290e+00 2.71702e-01 3.13791e-03 -4.26197e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.911e-05 -1.221e-03 2.089e-01 3.572e-04 - -1.221e-03 4.065e-01 -2.690e+01 -6.822e-02 - 2.089e-01 -2.690e+01 3.429e+03 1.167e+01 - 3.572e-04 -6.822e-02 1.167e+01 7.401e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99136 1.000 -0.438 0.816 0.300 - 2 0.97307 -0.438 1.000 -0.720 -0.393 - 3 0.99735 0.816 -0.720 1.000 0.733 - 4 0.98716 0.300 -0.393 0.733 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -8.0089e-04 4.0193e-04 7.1213e-02 3.9292e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.004730 TO DIAGONAL. - FCN=103250 FROM HESSE STATUS=NOT POSDEF 23 CALLS 460 TOTAL - EDM=3.56127e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 4.45574e-02 7.42610e-03 6.18930e-05 -1.40582e+00 - 2 par_crystal_1_1 4.36914e+00 4.67550e-01 7.21602e-04 -3.93511e+00 - 3 par_crystal_1_2 2.71531e+02 3.29814e+01 2.32506e-03 -3.75607e+00 - 4 par_crystal_1_3 3.37290e+00 5.01685e-01 1.25517e-04 -1.80638e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.515e-05 2.851e-04 2.343e-01 -1.699e-03 - 2.851e-04 2.238e-01 -2.528e+00 1.548e-02 - 2.343e-01 -2.528e+00 2.967e+03 1.176e+01 - -1.699e-03 1.548e-02 1.176e+01 2.538e-01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99694 1.000 0.081 0.579 -0.454 - 2 0.94927 0.081 1.000 -0.098 0.065 - 3 0.99687 0.579 -0.098 1.000 0.429 - 4 0.99618 -0.454 0.065 0.429 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 14211 - Background number of gaus_exp_252_330 = 14211 - Background number of novo_285_624 = 17618.3 - Background number of crystal_1_285_624 = 17618.3 - Background number of gaus_bern_285_624 = 17618.3 - Background number of landau_285_624 = 17618.3 -par_crystal_0 param 0.440594 0.0464698 -par_crystal_1 param 0.982994 0.655195 -par_crystal_2 param 271.542 0.738644 -par_crystal_3 param 28.7224 2.03002 -par_crystal_1_0 param 0.0445574 0.0074261 -par_crystal_1_1 param 4.36914 0.46755 -par_crystal_1_2 param 271.531 32.9814 -par_crystal_1_3 param 3.3729 0.501685 -par_gaus_exp_0 param 271.558 0.814214 -par_gaus_exp_1 param 30.6822 1.86973 -par_gaus_exp_2 param 0.38277 0.0245149 -par_novo_0 param 250 34.0246 -par_novo_1 param 38.6596 2.31421 -par_novo_2 param -1.2752 0.072293 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_550_crystal_1_285_624/datacard_550_crystal_1_285_624.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_550_crystal_1_285_624/datacard_550_crystal_1_285_624.txt deleted file mode 100644 index 0bc45dd..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_550_crystal_1_285_624/datacard_550_crystal_1_285_624.txt +++ /dev/null @@ -1,30 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_550.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_crystal_1_285_624.root HbbHbb:f_crystal_1 -shapes data_obs HbbHbb w_background_crystal_1_285_624.root HbbHbb:data_obs_crystal_1_285_624 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 1470.79 17618.3 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06585 - -JER lnN 1.01675 - -JEC lnN 1.0002 - -trigger lnN 1.10 - -sg_p0 param 554.818 -0.962884/+1.00345 -sg_p1 param 17.6653 -0.406141/+0.201469 -sg_p2 param 524.916 -3.25944/+5.80057 -sg_p3 param 75.7816 -3.8388/+5.30509 -sg_p4 param 0.915383 -0.00789935/+0.00487649 -par_crystal_1_0 param 0.0445574 0.0074261 -par_crystal_1_1 param 4.36914 0.46755 -par_crystal_1_2 param 271.531 32.9814 -par_crystal_1_3 param 3.3729 0.501685 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_550_crystal_1_285_624/signal550_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_550_crystal_1_285_624/signal550_sig.log deleted file mode 100644 index 31e7a79..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_550_crystal_1_285_624/signal550_sig.log +++ /dev/null @@ -1,872 +0,0 @@ - -Processing test.c... -nSignal_init = 100000 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=20474.1 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.45000e+02 7.00000e+00 2.01358e-01 5.07174e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 5.94014e+01 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 -9.02149e+02 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 3.92576e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -5.54746e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20087.2 FROM MIGRAD STATUS=CONVERGED 293 CALLS 294 TOTAL - EDM=2.38221e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.31487e+02 5.32162e-01 1.51230e-03 1.42028e-02 - 2 sg_p1 2.98204e+01 4.47933e-01 2.42219e-03 7.73048e-03 - 3 sg_p2 4.57724e+02 1.56211e+01 1.09347e-02 -8.53008e-03 - 4 sg_p3 8.95652e+01 1.08014e+01 3.54792e-02 1.21216e-02 - 5 sg_p4 9.54096e-01 8.70766e-03 2.37118e-03 -9.01545e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.832e-01 -4.050e-02 7.504e-01 -1.728e+00 -9.374e-04 - -4.050e-02 2.007e-01 -3.095e+00 6.692e-01 2.076e-03 - 7.504e-01 -3.095e+00 2.467e+02 -1.356e+01 -1.062e-01 - -1.728e+00 6.692e-01 -1.356e+01 1.226e+02 1.630e-02 - -9.374e-04 2.076e-03 -1.062e-01 1.630e-02 7.587e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.34824 1.000 -0.170 0.090 -0.293 -0.202 - 2 0.53901 -0.170 1.000 -0.440 0.135 0.532 - 3 0.78111 0.090 -0.440 1.000 -0.078 -0.776 - 4 0.32107 -0.293 0.135 -0.078 1.000 0.169 - 5 0.81348 -0.202 0.532 -0.776 0.169 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20087.2 FROM HESSE STATUS=OK 31 CALLS 325 TOTAL - EDM=2.38806e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.31487e+02 5.34249e-01 6.04920e-05 -3.96390e-01 - 2 sg_p1 2.98204e+01 4.49790e-01 9.68875e-05 3.93104e-01 - 3 sg_p2 4.57724e+02 1.57210e+01 4.37390e-04 -4.03212e-01 - 4 sg_p3 8.95652e+01 1.08586e+01 1.41917e-03 8.75892e-01 - 5 sg_p4 9.54096e-01 8.77545e-03 4.74236e-04 1.13895e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.854e-01 -4.220e-02 8.178e-01 -1.810e+00 -9.783e-04 - -4.220e-02 2.024e-01 -3.172e+00 7.162e-01 2.121e-03 - 8.178e-01 -3.172e+00 2.499e+02 -1.585e+01 -1.082e-01 - -1.810e+00 7.162e-01 -1.585e+01 1.240e+02 1.767e-02 - -9.783e-04 2.121e-03 -1.082e-01 1.767e-02 7.705e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.35795 1.000 -0.176 0.097 -0.304 -0.209 - 2 0.54441 -0.176 1.000 -0.446 0.143 0.537 - 3 0.78430 0.097 -0.446 1.000 -0.090 -0.780 - 4 0.33330 -0.304 0.143 -0.090 1.000 0.181 - 5 0.81668 -0.209 0.537 -0.780 0.181 1.000 -550 -531.487 +- 0.534249 -29.8204 +- 0.44979 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=20306.4 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.45000e+02 7.00000e+00 2.01358e-01 3.00053e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 7.48703e+01 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 -9.55356e+02 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 2.98032e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -6.39572e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19957.6 FROM MIGRAD STATUS=CONVERGED 292 CALLS 293 TOTAL - EDM=4.51479e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.33845e+02 5.50540e-01 1.48402e-03 3.91502e-02 - 2 sg_p1 2.97723e+01 4.71570e-01 2.44878e-03 2.61411e-02 - 3 sg_p2 4.60591e+02 1.38428e+01 8.85082e-03 -6.68765e-03 - 4 sg_p3 8.05212e+01 8.20745e+00 2.03850e-02 9.33536e-03 - 5 sg_p4 9.47592e-01 1.00547e-02 2.37122e-03 -3.27058e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.031e-01 -5.910e-02 9.827e-01 -1.368e+00 -1.430e-03 - -5.910e-02 2.224e-01 -3.125e+00 3.654e-01 2.724e-03 - 9.827e-01 -3.125e+00 1.932e+02 9.312e+00 -1.123e-01 - -1.368e+00 3.654e-01 9.312e+00 6.849e+01 4.927e-03 - -1.430e-03 2.724e-03 -1.123e-01 4.927e-03 1.012e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.39978 1.000 -0.228 0.128 -0.300 -0.258 - 2 0.58300 -0.228 1.000 -0.477 0.094 0.574 - 3 0.81557 0.128 -0.477 1.000 0.081 -0.803 - 4 0.35284 -0.300 0.094 0.081 1.000 0.059 - 5 0.84274 -0.258 0.574 -0.803 0.059 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19957.6 FROM HESSE STATUS=OK 31 CALLS 324 TOTAL - EDM=4.5264e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.33845e+02 5.51808e-01 2.96804e-04 -3.24384e-01 - 2 sg_p1 2.97723e+01 4.73610e-01 9.79512e-05 3.89948e-01 - 3 sg_p2 4.60591e+02 1.39421e+01 3.54033e-04 -3.70629e-01 - 4 sg_p3 8.05212e+01 8.22375e+00 8.15398e-04 6.03025e-01 - 5 sg_p4 9.47592e-01 1.01305e-02 4.74244e-04 1.10884e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.045e-01 -6.047e-02 1.021e+00 -1.394e+00 -1.460e-03 - -6.047e-02 2.244e-01 -3.200e+00 3.711e-01 2.779e-03 - 1.021e+00 -3.200e+00 1.960e+02 9.327e+00 -1.144e-01 - -1.394e+00 3.711e-01 9.327e+00 6.877e+01 5.012e-03 - -1.460e-03 2.779e-03 -1.144e-01 5.012e-03 1.027e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.40458 1.000 -0.231 0.132 -0.305 -0.261 - 2 0.58785 -0.231 1.000 -0.483 0.094 0.579 - 3 0.81850 0.132 -0.483 1.000 0.080 -0.806 - 4 0.35705 -0.305 0.094 0.080 1.000 0.060 - 5 0.84530 -0.261 0.579 -0.806 0.060 1.000 -550 -533.845 +- 0.551808 -29.7723 +- 0.47361 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=20361.9 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.45000e+02 7.00000e+00 2.01358e-01 7.00402e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 2.42051e+01 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 -8.13221e+02 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 4.85542e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -4.37084e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - MINUIT WARNING IN HESSE - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN HESSE - ============== 1.70671 added to diagonal of error matrix - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19935.7 FROM HESSE STATUS=OK 37 CALLS 258 TOTAL - EDM=0.0234896 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.29061e+02 5.14520e-01 1.55758e-03 2.24394e-02 - 2 sg_p1 2.98860e+01 4.23991e-01 2.39855e-03 -1.26397e-01 - 3 sg_p2 4.50244e+02 1.76938e+01 1.40698e-02 -3.32037e-01 - 4 sg_p3 9.92707e+01 5.23923e+01 1.16245e-01 -1.87665e-01 - 5 sg_p4 9.58893e-01 7.41282e-03 2.32468e-03 -2.84571e-02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19935.7 FROM MIGRAD STATUS=CONVERGED 353 CALLS 354 TOTAL - EDM=3.50844e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.29115e+02 5.27512e-01 1.55654e-03 5.63178e-02 - 2 sg_p1 2.98537e+01 4.31194e-01 2.39683e-03 -4.86594e-03 - 3 sg_p2 4.52810e+02 1.71881e+01 1.26957e-02 -2.51152e-02 - 4 sg_p3 9.42149e+01 1.22791e+01 5.42279e-02 -7.82994e-03 - 5 sg_p4 9.57905e-01 7.92585e-03 2.33854e-03 -5.94545e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.783e-01 -2.926e-02 6.244e-01 2.021e+00 -6.669e-04 - -2.926e-02 1.860e-01 -3.058e+00 -6.317e-01 1.675e-03 - 6.244e-01 -3.058e+00 2.995e+02 2.884e+01 -1.049e-01 - 2.021e+00 -6.317e-01 2.884e+01 1.696e+02 -1.694e-02 - -6.669e-04 1.675e-03 -1.049e-01 -1.694e-02 6.285e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.33042 1.000 -0.129 0.068 0.294 -0.159 - 2 0.49650 -0.129 1.000 -0.410 -0.112 0.490 - 3 0.76815 0.068 -0.410 1.000 0.128 -0.765 - 4 0.31895 0.294 -0.112 0.128 1.000 -0.164 - 5 0.79426 -0.159 0.490 -0.765 -0.164 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19935.7 FROM HESSE STATUS=OK 31 CALLS 385 TOTAL - EDM=3.65774e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.29115e+02 5.25382e-01 3.11308e-04 -4.71083e-01 - 2 sg_p1 2.98537e+01 4.32758e-01 9.58731e-05 3.95290e-01 - 3 sg_p2 4.52810e+02 1.73342e+01 5.07828e-04 -4.60177e-01 - 4 sg_p3 9.42149e+01 1.23119e+01 2.16911e-03 2.08346e+00 - 5 sg_p4 9.57905e-01 7.98860e-03 4.67708e-04 1.15752e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.761e-01 -3.020e-02 7.182e-01 1.927e+00 -6.928e-04 - -3.020e-02 1.873e-01 -3.149e+00 -7.080e-01 1.713e-03 - 7.182e-01 -3.149e+00 3.047e+02 3.675e+01 -1.073e-01 - 1.927e+00 -7.080e-01 3.675e+01 1.706e+02 -1.945e-02 - -6.928e-04 1.713e-03 -1.073e-01 -1.945e-02 6.385e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.31928 1.000 -0.133 0.078 0.281 -0.165 - 2 0.50194 -0.133 1.000 -0.417 -0.125 0.495 - 3 0.77268 0.078 -0.417 1.000 0.161 -0.769 - 4 0.31887 0.281 -0.125 0.161 1.000 -0.186 - 5 0.79789 -0.165 0.495 -0.769 -0.186 1.000 -550 -529.115 +- 0.525382 -29.8537 +- 0.432758 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=19951.1 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.45000e+02 7.00000e+00 2.01358e-01 -1.82283e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 5.71398e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 -1.74238e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -4.44109e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -1.77604e+03 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18314.7 FROM MIGRAD STATUS=CONVERGED 211 CALLS 212 TOTAL - EDM=2.97149e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.54818e+02 3.19097e-01 8.63536e-04 -3.36904e-01 - 2 sg_p1 1.76653e+01 2.93110e-01 1.48879e-03 2.40235e-04 - 3 sg_p2 5.24916e+02 6.40830e+00 5.54557e-03 -1.03056e-02 - 4 sg_p3 7.57816e+01 6.01449e+00 1.24041e-02 -3.47693e-02 - 5 sg_p4 9.15383e-01 8.76094e-03 2.18461e-03 2.17805e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.018e-01 -7.952e-03 2.184e-01 -3.767e-01 -2.239e-04 - -7.952e-03 8.592e-02 5.369e-01 4.736e-01 1.353e-03 - 2.184e-01 5.369e-01 4.114e+01 -3.542e+00 2.620e-02 - -3.767e-01 4.736e-01 -3.542e+00 3.645e+01 1.672e-02 - -2.239e-04 1.353e-03 2.620e-02 1.672e-02 7.678e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23180 1.000 -0.085 0.107 -0.196 -0.080 - 2 0.54417 -0.085 1.000 0.286 0.268 0.527 - 3 0.54552 0.107 0.286 1.000 -0.091 0.466 - 4 0.45297 -0.196 0.268 -0.091 1.000 0.316 - 5 0.66946 -0.080 0.527 0.466 0.316 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18314.7 FROM HESSE STATUS=OK 31 CALLS 243 TOTAL - EDM=2.96981e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.54818e+02 3.19404e-01 1.72707e-04 2.84322e-01 - 2 sg_p1 1.76653e+01 2.93042e-01 5.95515e-05 -3.61434e-01 - 3 sg_p2 5.24916e+02 6.41299e+00 1.10911e-03 2.82124e+00 - 4 sg_p3 7.57816e+01 6.04287e+00 4.96162e-04 4.80037e-01 - 5 sg_p4 9.15383e-01 8.75334e-03 8.73843e-05 9.80484e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.020e-01 -8.145e-03 2.258e-01 -3.874e-01 -2.275e-04 - -8.145e-03 8.588e-02 5.267e-01 4.756e-01 1.350e-03 - 2.258e-01 5.267e-01 4.120e+01 -4.152e+00 2.584e-02 - -3.874e-01 4.756e-01 -4.152e+00 3.680e+01 1.675e-02 - -2.275e-04 1.350e-03 2.584e-02 1.675e-02 7.665e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23569 1.000 -0.087 0.110 -0.200 -0.081 - 2 0.54387 -0.087 1.000 0.280 0.268 0.526 - 3 0.54648 0.110 0.280 1.000 -0.107 0.460 - 4 0.46089 -0.200 0.268 -0.107 1.000 0.315 - 5 0.66874 -0.081 0.526 0.460 0.315 1.000 -550 -554.818 +- 0.319404 -17.6653 +- 0.293042 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=19898.5 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.45000e+02 7.00000e+00 2.01358e-01 -1.95168e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 4.81948e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 -1.76540e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -4.98194e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -1.74417e+03 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18245.4 FROM MIGRAD STATUS=CONVERGED 196 CALLS 197 TOTAL - EDM=1.01176e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.55808e+02 3.25659e-01 8.83901e-04 -1.63522e-01 - 2 sg_p1 1.77469e+01 3.01241e-01 1.51845e-03 -1.82594e-02 - 3 sg_p2 5.26122e+02 6.31840e+00 5.51012e-03 -4.30688e-02 - 4 sg_p3 7.70352e+01 6.10785e+00 1.27318e-02 -4.97405e-03 - 5 sg_p4 9.08807e-01 9.02494e-03 2.18610e-03 -1.94192e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.061e-01 -1.054e-02 -2.294e-01 -4.229e-01 -2.862e-04 - -1.054e-02 9.076e-02 -4.904e-01 5.133e-01 1.441e-03 - -2.294e-01 -4.904e-01 3.999e+01 5.524e+00 -2.505e-02 - -4.229e-01 5.133e-01 5.524e+00 3.761e+01 1.706e-02 - -2.862e-04 1.441e-03 -2.505e-02 1.706e-02 8.148e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.24854 1.000 -0.107 -0.111 -0.212 -0.097 - 2 0.54949 -0.107 1.000 -0.257 0.278 0.530 - 3 0.54187 -0.111 -0.257 1.000 0.142 -0.439 - 4 0.47566 -0.212 0.278 0.142 1.000 0.308 - 5 0.66453 -0.097 0.530 -0.439 0.308 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18245.4 FROM HESSE STATUS=OK 31 CALLS 228 TOTAL - EDM=1.00847e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.55808e+02 3.25832e-01 1.76780e-04 3.13943e-01 - 2 sg_p1 1.77469e+01 3.02069e-01 6.07379e-05 -3.56157e-01 - 3 sg_p2 5.26122e+02 6.32494e+00 1.10202e-03 6.61694e+00 - 4 sg_p3 7.70352e+01 6.12320e+00 5.09272e-04 5.11714e-01 - 5 sg_p4 9.08807e-01 9.06729e-03 8.74438e-05 9.57256e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.062e-01 -1.081e-02 -2.268e-01 -4.286e-01 -2.938e-04 - -1.081e-02 9.126e-02 -4.992e-01 5.258e-01 1.460e-03 - -2.268e-01 -4.992e-01 4.007e+01 5.270e+00 -2.536e-02 - -4.286e-01 5.258e-01 5.270e+00 3.780e+01 1.761e-02 - -2.938e-04 1.460e-03 -2.536e-02 1.761e-02 8.224e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25053 1.000 -0.110 -0.110 -0.214 -0.099 - 2 0.55296 -0.110 1.000 -0.261 0.283 0.533 - 3 0.54324 -0.110 -0.261 1.000 0.135 -0.442 - 4 0.47947 -0.214 0.283 0.135 1.000 0.316 - 5 0.66843 -0.099 0.533 -0.442 0.316 1.000 -550 -555.808 +- 0.325832 -17.7469 +- 0.302069 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=19728.7 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.45000e+02 7.00000e+00 2.01358e-01 -1.67505e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 6.63661e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 -1.67995e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -4.03919e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -1.77879e+03 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18112.5 FROM MIGRAD STATUS=CONVERGED 209 CALLS 210 TOTAL - EDM=1.24678e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.53868e+02 3.10680e-01 8.32651e-04 -2.62603e-02 - 2 sg_p1 1.72866e+01 2.81268e-01 1.45728e-03 8.07767e-02 - 3 sg_p2 5.24887e+02 6.75798e+00 5.96660e-03 -3.92394e-02 - 4 sg_p3 7.92365e+01 6.79795e+00 1.48996e-02 6.90285e-03 - 5 sg_p4 9.17534e-01 8.29708e-03 2.15408e-03 -1.06137e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.652e-02 -6.967e-03 2.218e-01 -3.867e-01 -1.900e-04 - -6.967e-03 7.912e-02 4.748e-01 5.229e-01 1.170e-03 - 2.218e-01 4.748e-01 4.576e+01 -5.306e+00 2.407e-02 - -3.867e-01 5.229e-01 -5.306e+00 4.672e+01 1.731e-02 - -1.900e-04 1.170e-03 2.407e-02 1.731e-02 6.886e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.21574 1.000 -0.080 0.106 -0.182 -0.074 - 2 0.52328 -0.080 1.000 0.250 0.272 0.501 - 3 0.51581 0.106 0.250 1.000 -0.115 0.429 - 4 0.44943 -0.182 0.272 -0.115 1.000 0.305 - 5 0.64010 -0.074 0.501 0.429 0.305 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18112.5 FROM HESSE STATUS=OK 31 CALLS 241 TOTAL - EDM=1.27405e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.53868e+02 3.10987e-01 1.66530e-04 2.56169e-01 - 2 sg_p1 1.72866e+01 2.81269e-01 2.91456e-04 -3.86094e-01 - 3 sg_p2 5.24887e+02 6.76745e+00 1.19332e-03 2.82155e+00 - 4 sg_p3 7.92365e+01 6.83832e+00 5.95982e-04 5.68761e-01 - 5 sg_p4 9.17534e-01 8.29250e-03 8.61633e-05 9.88256e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.672e-02 -7.180e-03 2.301e-01 -3.999e-01 -1.942e-04 - -7.180e-03 7.912e-02 4.628e-01 5.278e-01 1.169e-03 - 2.301e-01 4.628e-01 4.588e+01 -6.142e+00 2.369e-02 - -3.999e-01 5.278e-01 -6.142e+00 4.728e+01 1.742e-02 - -1.942e-04 1.169e-03 2.369e-02 1.742e-02 6.879e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22006 1.000 -0.082 0.109 -0.187 -0.075 - 2 0.52328 -0.082 1.000 0.243 0.273 0.501 - 3 0.51782 0.109 0.243 1.000 -0.132 0.422 - 4 0.45946 -0.187 0.273 -0.132 1.000 0.305 - 5 0.63959 -0.075 0.501 0.422 0.305 1.000 -550 -553.868 +- 0.310987 -17.2866 +- 0.281269 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=19523.7 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.45000e+02 7.00000e+00 2.01358e-01 -1.78246e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 5.48227e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 -1.72744e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -4.53463e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -1.73440e+03 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17921.7 FROM MIGRAD STATUS=CONVERGED 220 CALLS 221 TOTAL - EDM=1.1296e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.54743e+02 3.23108e-01 8.67838e-04 1.02910e-02 - 2 sg_p1 1.78036e+01 2.93560e-01 1.48809e-03 3.64244e-02 - 3 sg_p2 5.29749e+02 7.02376e+00 6.17425e-03 3.49463e-03 - 4 sg_p3 8.01422e+01 7.11749e+00 1.53333e-02 4.67692e-03 - 5 sg_p4 9.16151e-01 8.68122e-03 2.20244e-03 -2.64886e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.044e-01 -5.800e-03 3.107e-01 -4.077e-01 -1.462e-04 - -5.800e-03 8.619e-02 4.716e-01 5.708e-01 1.298e-03 - 3.107e-01 4.716e-01 4.944e+01 -9.571e+00 2.482e-02 - -4.077e-01 5.708e-01 -9.571e+00 5.129e+01 1.933e-02 - -1.462e-04 1.298e-03 2.482e-02 1.933e-02 7.539e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.21481 1.000 -0.061 0.137 -0.176 -0.052 - 2 0.52839 -0.061 1.000 0.228 0.271 0.509 - 3 0.54059 0.137 0.228 1.000 -0.190 0.407 - 4 0.49556 -0.176 0.271 -0.190 1.000 0.311 - 5 0.64950 -0.052 0.509 0.407 0.311 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17921.7 FROM HESSE STATUS=OK 31 CALLS 252 TOTAL - EDM=1.13732e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.54743e+02 3.23491e-01 3.47135e-05 2.82090e-01 - 2 sg_p1 1.78036e+01 2.93564e-01 5.95236e-05 -3.52489e-01 - 3 sg_p2 5.29749e+02 7.04856e+00 2.46970e-04 2.76712e+00 - 4 sg_p3 8.01422e+01 7.18360e+00 6.13332e-04 5.92835e-01 - 5 sg_p4 9.16151e-01 8.67262e-03 4.40487e-04 9.83249e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.046e-01 -6.090e-03 3.230e-01 -4.265e-01 -1.522e-04 - -6.090e-03 8.619e-02 4.539e-01 5.786e-01 1.296e-03 - 3.230e-01 4.539e-01 4.979e+01 -1.084e+01 2.423e-02 - -4.265e-01 5.786e-01 -1.084e+01 5.225e+01 1.948e-02 - -1.522e-04 1.296e-03 2.423e-02 1.948e-02 7.524e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22000 1.000 -0.064 0.142 -0.182 -0.054 - 2 0.52841 -0.064 1.000 0.219 0.273 0.509 - 3 0.54519 0.142 0.219 1.000 -0.213 0.396 - 4 0.50912 -0.182 0.273 -0.213 1.000 0.311 - 5 0.64862 -0.054 0.509 0.396 0.311 1.000 -550 -554.743 +- 0.323491 -17.8036 +- 0.293564 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=20158.4 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.45000e+02 7.00000e+00 2.01358e-01 -1.85494e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 6.04709e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 -1.75210e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -4.33590e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -1.81352e+03 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18466.6 FROM MIGRAD STATUS=CONVERGED 201 CALLS 202 TOTAL - EDM=7.37276e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.54870e+02 3.11615e-01 8.46985e-04 -5.92156e-02 - 2 sg_p1 1.73495e+01 2.85260e-01 1.47111e-03 7.67177e-02 - 3 sg_p2 5.24331e+02 6.05754e+00 5.28257e-03 4.53885e-03 - 4 sg_p3 7.34136e+01 5.53118e+00 1.12466e-02 -1.10576e-02 - 5 sg_p4 9.15605e-01 8.65240e-03 2.17248e-03 -7.85532e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.711e-02 -7.947e-03 1.826e-01 -3.420e-01 -2.412e-04 - -7.947e-03 8.138e-02 5.038e-01 4.162e-01 1.294e-03 - 1.826e-01 5.038e-01 3.675e+01 -2.414e+00 2.461e-02 - -3.420e-01 4.162e-01 -2.414e+00 3.078e+01 1.542e-02 - -2.412e-04 1.294e-03 2.461e-02 1.542e-02 7.489e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23325 1.000 -0.089 0.097 -0.198 -0.089 - 2 0.54079 -0.089 1.000 0.291 0.263 0.524 - 3 0.54052 0.097 0.291 1.000 -0.072 0.469 - 4 0.44504 -0.198 0.263 -0.072 1.000 0.321 - 5 0.66858 -0.089 0.524 0.469 0.321 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18466.6 FROM HESSE STATUS=OK 31 CALLS 233 TOTAL - EDM=7.38816e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.54870e+02 3.11900e-01 1.69397e-04 2.85889e-01 - 2 sg_p1 1.73495e+01 2.85061e-01 2.94222e-04 -3.81980e-01 - 3 sg_p2 5.24331e+02 6.05810e+00 2.11303e-04 2.82772e+00 - 4 sg_p3 7.34136e+01 5.55334e+00 4.49864e-04 4.21567e-01 - 5 sg_p4 9.15605e-01 8.63836e-03 4.34496e-04 9.81281e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.728e-02 -8.106e-03 1.896e-01 -3.508e-01 -2.439e-04 - -8.106e-03 8.127e-02 4.931e-01 4.161e-01 1.289e-03 - 1.896e-01 4.931e-01 3.676e+01 -2.963e+00 2.422e-02 - -3.508e-01 4.161e-01 -2.963e+00 3.103e+01 1.537e-02 - -2.439e-04 1.289e-03 2.422e-02 1.537e-02 7.465e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23692 1.000 -0.091 0.100 -0.202 -0.091 - 2 0.53988 -0.091 1.000 0.285 0.262 0.523 - 3 0.54066 0.100 0.285 1.000 -0.088 0.462 - 4 0.45196 -0.202 0.262 -0.088 1.000 0.319 - 5 0.66723 -0.091 0.523 0.462 0.319 1.000 -550 -554.87 +- 0.3119 -17.3495 +- 0.285061 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=18671.1 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.45000e+02 7.00000e+00 2.01358e-01 -1.70584e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 5.36049e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 -1.63312e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -4.13435e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -1.66463e+03 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17136.3 FROM MIGRAD STATUS=CONVERGED 203 CALLS 204 TOTAL - EDM=1.02695e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.54811e+02 3.29767e-01 8.63223e-04 -1.93001e-01 - 2 sg_p1 1.76648e+01 3.03153e-01 1.48879e-03 3.74125e-02 - 3 sg_p2 5.25130e+02 6.59118e+00 5.51974e-03 -1.87163e-03 - 4 sg_p3 7.53402e+01 6.16780e+00 1.22242e-02 -1.30639e-02 - 5 sg_p4 9.15918e-01 9.07192e-03 2.19004e-03 -5.75224e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.088e-01 -8.558e-03 2.332e-01 -4.008e-01 -2.433e-04 - -8.558e-03 9.191e-02 5.712e-01 5.058e-01 1.454e-03 - 2.332e-01 5.712e-01 4.352e+01 -3.716e+00 2.786e-02 - -4.008e-01 5.058e-01 -3.716e+00 3.834e+01 1.804e-02 - -2.433e-04 1.454e-03 2.786e-02 1.804e-02 8.233e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23278 1.000 -0.086 0.107 -0.196 -0.081 - 2 0.54570 -0.086 1.000 0.286 0.269 0.529 - 3 0.54594 0.107 0.286 1.000 -0.091 0.465 - 4 0.45689 -0.196 0.269 -0.091 1.000 0.321 - 5 0.67171 -0.081 0.529 0.465 0.321 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17136.3 FROM HESSE STATUS=OK 31 CALLS 235 TOTAL - EDM=1.02452e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.54811e+02 3.30104e-01 1.72645e-04 2.84116e-01 - 2 sg_p1 1.76648e+01 3.03000e-01 5.95517e-05 -3.61468e-01 - 3 sg_p2 5.25130e+02 6.59509e+00 2.20790e-04 2.81886e+00 - 4 sg_p3 7.53402e+01 6.19835e+00 4.88968e-04 4.69011e-01 - 5 sg_p4 9.15918e-01 9.05834e-03 4.38009e-04 9.82408e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.090e-01 -8.764e-03 2.421e-01 -4.127e-01 -2.470e-04 - -8.764e-03 9.182e-02 5.581e-01 5.069e-01 1.449e-03 - 2.421e-01 5.581e-01 4.357e+01 -4.454e+00 2.739e-02 - -4.127e-01 5.069e-01 -4.454e+00 3.873e+01 1.802e-02 - -2.470e-04 1.449e-03 2.739e-02 1.802e-02 8.208e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23689 1.000 -0.088 0.111 -0.201 -0.083 - 2 0.54504 -0.088 1.000 0.279 0.269 0.528 - 3 0.54671 0.111 0.279 1.000 -0.108 0.458 - 4 0.46512 -0.201 0.269 -0.108 1.000 0.320 - 5 0.67048 -0.083 0.528 0.458 0.320 1.000 -550 -554.811 +- 0.330104 -17.6648 +- 0.303 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=21296.1 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.45000e+02 7.00000e+00 2.01358e-01 -1.94576e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 6.08481e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 -1.85706e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -4.76455e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -1.89298e+03 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19553.2 FROM MIGRAD STATUS=CONVERGED 208 CALLS 209 TOTAL - EDM=3.34483e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.54825e+02 3.08932e-01 8.64414e-04 -3.40457e-01 - 2 sg_p1 1.76653e+01 2.83564e-01 1.49117e-03 -1.87292e-01 - 3 sg_p2 5.24710e+02 6.23394e+00 5.56281e-03 -3.21417e-03 - 4 sg_p3 7.62214e+01 5.87300e+00 1.25436e-02 -2.96877e-02 - 5 sg_p4 9.14864e-01 8.46661e-03 2.18261e-03 1.16509e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.544e-02 -7.404e-03 2.048e-01 -3.550e-01 -2.065e-04 - -7.404e-03 8.042e-02 5.052e-01 4.449e-01 1.260e-03 - 2.048e-01 5.052e-01 3.892e+01 -3.380e+00 2.466e-02 - -3.550e-01 4.449e-01 -3.380e+00 3.475e+01 1.555e-02 - -2.065e-04 1.260e-03 2.466e-02 1.555e-02 7.171e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23094 1.000 -0.085 0.106 -0.195 -0.079 - 2 0.54280 -0.085 1.000 0.286 0.266 0.525 - 3 0.54506 0.106 0.286 1.000 -0.092 0.467 - 4 0.44944 -0.195 0.266 -0.092 1.000 0.312 - 5 0.66734 -0.079 0.525 0.467 0.312 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19553.2 FROM HESSE STATUS=OK 31 CALLS 240 TOTAL - EDM=3.3454e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.54825e+02 3.09247e-01 1.72883e-04 2.84530e-01 - 2 sg_p1 1.76653e+01 2.83385e-01 2.98233e-04 -3.61435e-01 - 3 sg_p2 5.24710e+02 6.23786e+00 2.22512e-04 2.82352e+00 - 4 sg_p3 7.62214e+01 5.90192e+00 5.01743e-04 4.91089e-01 - 5 sg_p4 9.14864e-01 8.45305e-03 4.36523e-04 9.78619e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.564e-02 -7.578e-03 2.127e-01 -3.656e-01 -2.095e-04 - -7.578e-03 8.032e-02 4.934e-01 4.455e-01 1.255e-03 - 2.127e-01 4.934e-01 3.897e+01 -4.053e+00 2.424e-02 - -3.656e-01 4.455e-01 -4.053e+00 3.509e+01 1.551e-02 - -2.095e-04 1.255e-03 2.424e-02 1.551e-02 7.148e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23507 1.000 -0.086 0.110 -0.200 -0.080 - 2 0.54198 -0.086 1.000 0.279 0.265 0.524 - 3 0.54588 0.110 0.279 1.000 -0.110 0.459 - 4 0.45781 -0.200 0.265 -0.110 1.000 0.310 - 5 0.66600 -0.080 0.524 0.459 0.310 1.000 -550 -554.825 +- 0.309247 -17.6653 +- 0.283385 -35.9 fb^{-1} (13 TeV) -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 24 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 25 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 31 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 34 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 38 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 39 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 40 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 47 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 112 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 113 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 114 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 115 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 116 has zero error, setting residual to zero - Uncertainty on sg_p0 = 554.818 +- 0.319404 (stat) - 0.949548 + 0.990665 (syst); -0.962884/+1.00345 (total) - Uncertainty on sg_p1 = 17.6653 +- 0.293042 (stat) - 0.37879 + 0.13828 (syst); -0.406141/+0.201469 (total) - Uncertainty on sg_p2 = 524.916 +- 6.41299 (stat) - 0.585115 + 4.83374 (syst); -3.25944/+5.80057 (total) - Uncertainty on sg_p3 = 75.7816 +- 6.04287 (stat) - 2.36797 + 4.36061 (syst); -3.8388/+5.30509 (total) - Uncertainty on sg_p4 = 0.915383 +- 0.00875334 (stat) - 0.00657606 + 0.00215055 (syst); -0.00789935/+0.00487649 (total) - === Baseline plot ===
- norm = 1470.79 -JEC lnN 1.0002 - -JER lnN 1.01675 - -btag lnN 1.06585 - -sg_p0 param 554.818 -0.962884/+1.00345 -sg_p1 param 17.6653 -0.406141/+0.201469 -sg_p2 param 524.916 -3.25944/+5.80057 -sg_p3 param 75.7816 -3.8388/+5.30509 -sg_p4 param 0.915383 -0.00789935/+0.00487649 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_550_novo_285_624/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_550_novo_285_624/data_bkg.log deleted file mode 100644 index 1be2f6e..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_550_novo_285_624/data_bkg.log +++ /dev/null @@ -1,717 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [250,330] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [250,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63590.5 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.69443e-02 5.09000e-01 0.00000e+00 -7.94680e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -8.91126e+00 - 3 par_crystal_2 2.62020e+02 4.00000e+00 1.01181e-01 -1.53451e+00 - 4 par_crystal_3 1.65000e+01 2.70000e+00 0.00000e+00 7.46021e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM MIGRAD STATUS=CONVERGED 482 CALLS 483 TOTAL - EDM=0.000814822 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 4.40594e-01 4.43750e-02 2.48631e-03 2.88668e-01 - 2 par_crystal_1 9.82994e-01 6.48221e-01 2.14269e-02 -5.28345e-03 - 3 par_crystal_2 2.71542e+02 7.41091e-01 7.20683e-03 -9.27818e-02 - 4 par_crystal_3 2.87224e+01 2.18588e+00 3.97473e-02 -6.99277e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.970e-03 -2.333e-02 -5.115e-04 1.392e-02 - -2.333e-02 4.358e-01 4.870e-03 -8.391e-01 - -5.115e-04 4.870e-03 5.496e-01 4.381e-01 - 1.392e-02 -8.391e-01 4.381e-01 5.029e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.88989 1.000 -0.796 -0.016 0.140 - 2 0.92807 -0.796 1.000 0.010 -0.567 - 3 0.40865 -0.016 0.010 1.000 0.264 - 4 0.80948 0.140 -0.567 0.264 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM HESSE STATUS=OK 23 CALLS 506 TOTAL - EDM=0.000711421 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 4.40594e-01 4.64698e-02 4.97262e-04 -9.80558e-01 - 2 par_crystal_1 9.82994e-01 6.55195e-01 8.57075e-04 -6.65795e-01 - 3 par_crystal_2 2.71542e+02 7.38644e-01 1.44137e-03 6.15159e-01 - 4 par_crystal_3 2.87224e+01 2.03002e+00 1.58989e-03 -1.05570e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.160e-03 -2.581e-02 -1.109e-03 1.530e-02 - -2.581e-02 4.456e-01 2.508e-02 -7.234e-01 - -1.109e-03 2.508e-02 5.460e-01 3.687e-01 - 1.530e-02 -7.234e-01 3.687e-01 4.306e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.90014 1.000 -0.832 -0.032 0.159 - 2 0.92960 -0.832 1.000 0.051 -0.522 - 3 0.40186 -0.032 0.051 1.000 0.240 - 4 0.77207 0.159 -0.522 0.240 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63714.2 FROM MIGRAD STATUS=INITIATE 33 CALLS 34 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 2.63122e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -5.45805e+02 - 3 par_gaus_exp_2 6.67498e-01 3.05000e-01 -6.37370e-01 7.03093e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM MIGRAD STATUS=CONVERGED 131 CALLS 132 TOTAL - EDM=6.15917e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.71558e+02 8.05096e-01 6.82817e-03 6.24407e-02 - 2 par_gaus_exp_1 3.06822e+01 1.83071e+00 1.43475e-02 1.11468e-02 - 3 par_gaus_exp_2 3.82770e-01 2.42284e-02 3.05774e-03 -9.77170e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.486e-01 -6.079e-01 -1.588e-03 - -6.079e-01 3.370e+00 3.082e-02 - -1.588e-03 3.082e-02 5.871e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.49876 1.000 -0.411 -0.081 - 2 0.77898 -0.411 1.000 0.693 - 3 0.72797 -0.081 0.693 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM HESSE STATUS=OK 16 CALLS 148 TOTAL - EDM=6.13964e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.71558e+02 8.14214e-01 2.73127e-04 -4.35760e-01 - 2 par_gaus_exp_1 3.06822e+01 1.86973e+00 5.73898e-04 4.10264e-01 - 3 par_gaus_exp_2 3.82770e-01 2.45149e-02 1.22310e-04 -8.97531e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.634e-01 -6.630e-01 -2.137e-03 - -6.630e-01 3.516e+00 3.227e-02 - -2.137e-03 3.227e-02 6.011e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.51526 1.000 -0.434 -0.107 - 2 0.78935 -0.434 1.000 0.702 - 3 0.73544 -0.107 0.702 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,625] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.33953 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.33953) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - ... (remaining 126 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.734607 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.734607) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=317.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=327.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=332.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=342.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=347.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=352.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=357.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=362.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=367.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - ... (remaining 53 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0734613 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0734613 - - FCN=103487 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57093e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.56195e+03 - 3 par_novo_2 -1.33668e+00 2.00000e+01 0.00000e+00 1.53931e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM MIGRAD STATUS=CONVERGED 127 CALLS 128 TOTAL - EDM=3.4171e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.43423e+01 1.81223e-01** at limit ** - 2 par_novo_1 3.86596e+01 2.27294e+00 4.95847e-03 -1.04123e-02 - 3 par_novo_2 -1.27520e+00 7.07738e-02 3.70975e-05 -1.26322e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.231e-09 -8.491e-07 -8.580e-07 - -8.491e-07 5.181e+00 1.547e-01 - -8.580e-07 1.547e-01 5.009e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.53332 1.000 -0.005 -0.154 - 2 0.97096 -0.005 1.000 0.960 - 3 0.97165 -0.154 0.960 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM HESSE STATUS=OK 20 CALLS 148 TOTAL - EDM=3.43726e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.40246e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.86596e+01 2.31421e+00 1.98339e-04 4.46530e-01 - 3 par_novo_2 -1.27520e+00 7.22930e-02 1.48390e-06 -1.27523e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 5.974e-09 2.819e-05 -1.296e-06 - 2.819e-05 5.372e+00 1.502e-01 - -1.296e-06 1.502e-01 5.226e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.85665 1.000 0.157 -0.232 - 2 0.97200 0.157 1.000 0.897 - 3 0.97285 -0.232 0.897 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107513 FROM MIGRAD STATUS=INITIATE 54 CALLS 55 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 1.39168e+03 - 2 par_crystal_1_1 7.96220e-02 5.09000e-01 0.00000e+00 5.33770e+03 - 3 par_crystal_1_2 2.56879e+02 4.00000e+00 -1.56713e-01 -1.96669e+01 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 -8.45862e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.5057e-02 2.3309e-03 4.9678e-02 3.9730e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.029030 TO DIAGONAL. - FCN=103250 FROM MIGRAD STATUS=CONVERGED 436 CALLS 437 TOTAL - EDM=3.52757e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 4.45574e-02 4.37117e-03 3.09465e-04 -4.28177e+00 - 2 par_crystal_1_1 4.36914e+00 6.24106e-01 1.80400e-02 6.63742e-02 - 3 par_crystal_1_2 2.71531e+02 3.44700e+01 5.81266e-02 2.25694e-02 - 4 par_crystal_1_3 3.37290e+00 2.71702e-01 3.13791e-03 -4.26197e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.911e-05 -1.221e-03 2.089e-01 3.572e-04 - -1.221e-03 4.065e-01 -2.690e+01 -6.822e-02 - 2.089e-01 -2.690e+01 3.429e+03 1.167e+01 - 3.572e-04 -6.822e-02 1.167e+01 7.401e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99136 1.000 -0.438 0.816 0.300 - 2 0.97307 -0.438 1.000 -0.720 -0.393 - 3 0.99735 0.816 -0.720 1.000 0.733 - 4 0.98716 0.300 -0.393 0.733 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -8.0089e-04 4.0193e-04 7.1213e-02 3.9292e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.004730 TO DIAGONAL. - FCN=103250 FROM HESSE STATUS=NOT POSDEF 23 CALLS 460 TOTAL - EDM=3.56127e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 4.45574e-02 7.42610e-03 6.18930e-05 -1.40582e+00 - 2 par_crystal_1_1 4.36914e+00 4.67550e-01 7.21602e-04 -3.93511e+00 - 3 par_crystal_1_2 2.71531e+02 3.29814e+01 2.32506e-03 -3.75607e+00 - 4 par_crystal_1_3 3.37290e+00 5.01685e-01 1.25517e-04 -1.80638e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.515e-05 2.851e-04 2.343e-01 -1.699e-03 - 2.851e-04 2.238e-01 -2.528e+00 1.548e-02 - 2.343e-01 -2.528e+00 2.967e+03 1.176e+01 - -1.699e-03 1.548e-02 1.176e+01 2.538e-01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99694 1.000 0.081 0.579 -0.454 - 2 0.94927 0.081 1.000 -0.098 0.065 - 3 0.99687 0.579 -0.098 1.000 0.429 - 4 0.99618 -0.454 0.065 0.429 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 14211 - Background number of gaus_exp_252_330 = 14211 - Background number of novo_285_624 = 17618.3 - Background number of crystal_1_285_624 = 17618.3 - Background number of gaus_bern_285_624 = 17618.3 - Background number of landau_285_624 = 17618.3 -par_crystal_0 param 0.440594 0.0464698 -par_crystal_1 param 0.982994 0.655195 -par_crystal_2 param 271.542 0.738644 -par_crystal_3 param 28.7224 2.03002 -par_crystal_1_0 param 0.0445574 0.0074261 -par_crystal_1_1 param 4.36914 0.46755 -par_crystal_1_2 param 271.531 32.9814 -par_crystal_1_3 param 3.3729 0.501685 -par_gaus_exp_0 param 271.558 0.814214 -par_gaus_exp_1 param 30.6822 1.86973 -par_gaus_exp_2 param 0.38277 0.0245149 -par_novo_0 param 250 34.0246 -par_novo_1 param 38.6596 2.31421 -par_novo_2 param -1.2752 0.072293 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_550_novo_285_624/datacard_550_novo_285_624.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_550_novo_285_624/datacard_550_novo_285_624.txt deleted file mode 100644 index ab03e79..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_550_novo_285_624/datacard_550_novo_285_624.txt +++ /dev/null @@ -1,29 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_550.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_novo_285_624.root HbbHbb:f_novo -shapes data_obs HbbHbb w_background_novo_285_624.root HbbHbb:data_obs_novo_285_624 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 1470.79 17618.3 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06585 - -JER lnN 1.01675 - -JEC lnN 1.0002 - -trigger lnN 1.10 - -sg_p0 param 554.818 -0.962884/+1.00345 -sg_p1 param 17.6653 -0.406141/+0.201469 -sg_p2 param 524.916 -3.25944/+5.80057 -sg_p3 param 75.7816 -3.8388/+5.30509 -sg_p4 param 0.915383 -0.00789935/+0.00487649 -par_novo_0 param 250 34.0246 -par_novo_1 param 38.6596 2.31421 -par_novo_2 param -1.2752 0.072293 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_550_novo_285_624/signal550_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_550_novo_285_624/signal550_sig.log deleted file mode 100644 index 31e7a79..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_550_novo_285_624/signal550_sig.log +++ /dev/null @@ -1,872 +0,0 @@ - -Processing test.c... -nSignal_init = 100000 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=20474.1 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.45000e+02 7.00000e+00 2.01358e-01 5.07174e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 5.94014e+01 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 -9.02149e+02 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 3.92576e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -5.54746e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20087.2 FROM MIGRAD STATUS=CONVERGED 293 CALLS 294 TOTAL - EDM=2.38221e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.31487e+02 5.32162e-01 1.51230e-03 1.42028e-02 - 2 sg_p1 2.98204e+01 4.47933e-01 2.42219e-03 7.73048e-03 - 3 sg_p2 4.57724e+02 1.56211e+01 1.09347e-02 -8.53008e-03 - 4 sg_p3 8.95652e+01 1.08014e+01 3.54792e-02 1.21216e-02 - 5 sg_p4 9.54096e-01 8.70766e-03 2.37118e-03 -9.01545e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.832e-01 -4.050e-02 7.504e-01 -1.728e+00 -9.374e-04 - -4.050e-02 2.007e-01 -3.095e+00 6.692e-01 2.076e-03 - 7.504e-01 -3.095e+00 2.467e+02 -1.356e+01 -1.062e-01 - -1.728e+00 6.692e-01 -1.356e+01 1.226e+02 1.630e-02 - -9.374e-04 2.076e-03 -1.062e-01 1.630e-02 7.587e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.34824 1.000 -0.170 0.090 -0.293 -0.202 - 2 0.53901 -0.170 1.000 -0.440 0.135 0.532 - 3 0.78111 0.090 -0.440 1.000 -0.078 -0.776 - 4 0.32107 -0.293 0.135 -0.078 1.000 0.169 - 5 0.81348 -0.202 0.532 -0.776 0.169 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20087.2 FROM HESSE STATUS=OK 31 CALLS 325 TOTAL - EDM=2.38806e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.31487e+02 5.34249e-01 6.04920e-05 -3.96390e-01 - 2 sg_p1 2.98204e+01 4.49790e-01 9.68875e-05 3.93104e-01 - 3 sg_p2 4.57724e+02 1.57210e+01 4.37390e-04 -4.03212e-01 - 4 sg_p3 8.95652e+01 1.08586e+01 1.41917e-03 8.75892e-01 - 5 sg_p4 9.54096e-01 8.77545e-03 4.74236e-04 1.13895e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.854e-01 -4.220e-02 8.178e-01 -1.810e+00 -9.783e-04 - -4.220e-02 2.024e-01 -3.172e+00 7.162e-01 2.121e-03 - 8.178e-01 -3.172e+00 2.499e+02 -1.585e+01 -1.082e-01 - -1.810e+00 7.162e-01 -1.585e+01 1.240e+02 1.767e-02 - -9.783e-04 2.121e-03 -1.082e-01 1.767e-02 7.705e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.35795 1.000 -0.176 0.097 -0.304 -0.209 - 2 0.54441 -0.176 1.000 -0.446 0.143 0.537 - 3 0.78430 0.097 -0.446 1.000 -0.090 -0.780 - 4 0.33330 -0.304 0.143 -0.090 1.000 0.181 - 5 0.81668 -0.209 0.537 -0.780 0.181 1.000 -550 -531.487 +- 0.534249 -29.8204 +- 0.44979 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=20306.4 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.45000e+02 7.00000e+00 2.01358e-01 3.00053e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 7.48703e+01 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 -9.55356e+02 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 2.98032e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -6.39572e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19957.6 FROM MIGRAD STATUS=CONVERGED 292 CALLS 293 TOTAL - EDM=4.51479e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.33845e+02 5.50540e-01 1.48402e-03 3.91502e-02 - 2 sg_p1 2.97723e+01 4.71570e-01 2.44878e-03 2.61411e-02 - 3 sg_p2 4.60591e+02 1.38428e+01 8.85082e-03 -6.68765e-03 - 4 sg_p3 8.05212e+01 8.20745e+00 2.03850e-02 9.33536e-03 - 5 sg_p4 9.47592e-01 1.00547e-02 2.37122e-03 -3.27058e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.031e-01 -5.910e-02 9.827e-01 -1.368e+00 -1.430e-03 - -5.910e-02 2.224e-01 -3.125e+00 3.654e-01 2.724e-03 - 9.827e-01 -3.125e+00 1.932e+02 9.312e+00 -1.123e-01 - -1.368e+00 3.654e-01 9.312e+00 6.849e+01 4.927e-03 - -1.430e-03 2.724e-03 -1.123e-01 4.927e-03 1.012e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.39978 1.000 -0.228 0.128 -0.300 -0.258 - 2 0.58300 -0.228 1.000 -0.477 0.094 0.574 - 3 0.81557 0.128 -0.477 1.000 0.081 -0.803 - 4 0.35284 -0.300 0.094 0.081 1.000 0.059 - 5 0.84274 -0.258 0.574 -0.803 0.059 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19957.6 FROM HESSE STATUS=OK 31 CALLS 324 TOTAL - EDM=4.5264e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.33845e+02 5.51808e-01 2.96804e-04 -3.24384e-01 - 2 sg_p1 2.97723e+01 4.73610e-01 9.79512e-05 3.89948e-01 - 3 sg_p2 4.60591e+02 1.39421e+01 3.54033e-04 -3.70629e-01 - 4 sg_p3 8.05212e+01 8.22375e+00 8.15398e-04 6.03025e-01 - 5 sg_p4 9.47592e-01 1.01305e-02 4.74244e-04 1.10884e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.045e-01 -6.047e-02 1.021e+00 -1.394e+00 -1.460e-03 - -6.047e-02 2.244e-01 -3.200e+00 3.711e-01 2.779e-03 - 1.021e+00 -3.200e+00 1.960e+02 9.327e+00 -1.144e-01 - -1.394e+00 3.711e-01 9.327e+00 6.877e+01 5.012e-03 - -1.460e-03 2.779e-03 -1.144e-01 5.012e-03 1.027e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.40458 1.000 -0.231 0.132 -0.305 -0.261 - 2 0.58785 -0.231 1.000 -0.483 0.094 0.579 - 3 0.81850 0.132 -0.483 1.000 0.080 -0.806 - 4 0.35705 -0.305 0.094 0.080 1.000 0.060 - 5 0.84530 -0.261 0.579 -0.806 0.060 1.000 -550 -533.845 +- 0.551808 -29.7723 +- 0.47361 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=20361.9 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.45000e+02 7.00000e+00 2.01358e-01 7.00402e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 2.42051e+01 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 -8.13221e+02 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 4.85542e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -4.37084e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - MINUIT WARNING IN HESSE - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN HESSE - ============== 1.70671 added to diagonal of error matrix - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19935.7 FROM HESSE STATUS=OK 37 CALLS 258 TOTAL - EDM=0.0234896 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.29061e+02 5.14520e-01 1.55758e-03 2.24394e-02 - 2 sg_p1 2.98860e+01 4.23991e-01 2.39855e-03 -1.26397e-01 - 3 sg_p2 4.50244e+02 1.76938e+01 1.40698e-02 -3.32037e-01 - 4 sg_p3 9.92707e+01 5.23923e+01 1.16245e-01 -1.87665e-01 - 5 sg_p4 9.58893e-01 7.41282e-03 2.32468e-03 -2.84571e-02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19935.7 FROM MIGRAD STATUS=CONVERGED 353 CALLS 354 TOTAL - EDM=3.50844e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.29115e+02 5.27512e-01 1.55654e-03 5.63178e-02 - 2 sg_p1 2.98537e+01 4.31194e-01 2.39683e-03 -4.86594e-03 - 3 sg_p2 4.52810e+02 1.71881e+01 1.26957e-02 -2.51152e-02 - 4 sg_p3 9.42149e+01 1.22791e+01 5.42279e-02 -7.82994e-03 - 5 sg_p4 9.57905e-01 7.92585e-03 2.33854e-03 -5.94545e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.783e-01 -2.926e-02 6.244e-01 2.021e+00 -6.669e-04 - -2.926e-02 1.860e-01 -3.058e+00 -6.317e-01 1.675e-03 - 6.244e-01 -3.058e+00 2.995e+02 2.884e+01 -1.049e-01 - 2.021e+00 -6.317e-01 2.884e+01 1.696e+02 -1.694e-02 - -6.669e-04 1.675e-03 -1.049e-01 -1.694e-02 6.285e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.33042 1.000 -0.129 0.068 0.294 -0.159 - 2 0.49650 -0.129 1.000 -0.410 -0.112 0.490 - 3 0.76815 0.068 -0.410 1.000 0.128 -0.765 - 4 0.31895 0.294 -0.112 0.128 1.000 -0.164 - 5 0.79426 -0.159 0.490 -0.765 -0.164 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19935.7 FROM HESSE STATUS=OK 31 CALLS 385 TOTAL - EDM=3.65774e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.29115e+02 5.25382e-01 3.11308e-04 -4.71083e-01 - 2 sg_p1 2.98537e+01 4.32758e-01 9.58731e-05 3.95290e-01 - 3 sg_p2 4.52810e+02 1.73342e+01 5.07828e-04 -4.60177e-01 - 4 sg_p3 9.42149e+01 1.23119e+01 2.16911e-03 2.08346e+00 - 5 sg_p4 9.57905e-01 7.98860e-03 4.67708e-04 1.15752e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.761e-01 -3.020e-02 7.182e-01 1.927e+00 -6.928e-04 - -3.020e-02 1.873e-01 -3.149e+00 -7.080e-01 1.713e-03 - 7.182e-01 -3.149e+00 3.047e+02 3.675e+01 -1.073e-01 - 1.927e+00 -7.080e-01 3.675e+01 1.706e+02 -1.945e-02 - -6.928e-04 1.713e-03 -1.073e-01 -1.945e-02 6.385e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.31928 1.000 -0.133 0.078 0.281 -0.165 - 2 0.50194 -0.133 1.000 -0.417 -0.125 0.495 - 3 0.77268 0.078 -0.417 1.000 0.161 -0.769 - 4 0.31887 0.281 -0.125 0.161 1.000 -0.186 - 5 0.79789 -0.165 0.495 -0.769 -0.186 1.000 -550 -529.115 +- 0.525382 -29.8537 +- 0.432758 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=19951.1 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.45000e+02 7.00000e+00 2.01358e-01 -1.82283e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 5.71398e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 -1.74238e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -4.44109e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -1.77604e+03 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18314.7 FROM MIGRAD STATUS=CONVERGED 211 CALLS 212 TOTAL - EDM=2.97149e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.54818e+02 3.19097e-01 8.63536e-04 -3.36904e-01 - 2 sg_p1 1.76653e+01 2.93110e-01 1.48879e-03 2.40235e-04 - 3 sg_p2 5.24916e+02 6.40830e+00 5.54557e-03 -1.03056e-02 - 4 sg_p3 7.57816e+01 6.01449e+00 1.24041e-02 -3.47693e-02 - 5 sg_p4 9.15383e-01 8.76094e-03 2.18461e-03 2.17805e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.018e-01 -7.952e-03 2.184e-01 -3.767e-01 -2.239e-04 - -7.952e-03 8.592e-02 5.369e-01 4.736e-01 1.353e-03 - 2.184e-01 5.369e-01 4.114e+01 -3.542e+00 2.620e-02 - -3.767e-01 4.736e-01 -3.542e+00 3.645e+01 1.672e-02 - -2.239e-04 1.353e-03 2.620e-02 1.672e-02 7.678e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23180 1.000 -0.085 0.107 -0.196 -0.080 - 2 0.54417 -0.085 1.000 0.286 0.268 0.527 - 3 0.54552 0.107 0.286 1.000 -0.091 0.466 - 4 0.45297 -0.196 0.268 -0.091 1.000 0.316 - 5 0.66946 -0.080 0.527 0.466 0.316 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18314.7 FROM HESSE STATUS=OK 31 CALLS 243 TOTAL - EDM=2.96981e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.54818e+02 3.19404e-01 1.72707e-04 2.84322e-01 - 2 sg_p1 1.76653e+01 2.93042e-01 5.95515e-05 -3.61434e-01 - 3 sg_p2 5.24916e+02 6.41299e+00 1.10911e-03 2.82124e+00 - 4 sg_p3 7.57816e+01 6.04287e+00 4.96162e-04 4.80037e-01 - 5 sg_p4 9.15383e-01 8.75334e-03 8.73843e-05 9.80484e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.020e-01 -8.145e-03 2.258e-01 -3.874e-01 -2.275e-04 - -8.145e-03 8.588e-02 5.267e-01 4.756e-01 1.350e-03 - 2.258e-01 5.267e-01 4.120e+01 -4.152e+00 2.584e-02 - -3.874e-01 4.756e-01 -4.152e+00 3.680e+01 1.675e-02 - -2.275e-04 1.350e-03 2.584e-02 1.675e-02 7.665e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23569 1.000 -0.087 0.110 -0.200 -0.081 - 2 0.54387 -0.087 1.000 0.280 0.268 0.526 - 3 0.54648 0.110 0.280 1.000 -0.107 0.460 - 4 0.46089 -0.200 0.268 -0.107 1.000 0.315 - 5 0.66874 -0.081 0.526 0.460 0.315 1.000 -550 -554.818 +- 0.319404 -17.6653 +- 0.293042 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=19898.5 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.45000e+02 7.00000e+00 2.01358e-01 -1.95168e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 4.81948e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 -1.76540e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -4.98194e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -1.74417e+03 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18245.4 FROM MIGRAD STATUS=CONVERGED 196 CALLS 197 TOTAL - EDM=1.01176e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.55808e+02 3.25659e-01 8.83901e-04 -1.63522e-01 - 2 sg_p1 1.77469e+01 3.01241e-01 1.51845e-03 -1.82594e-02 - 3 sg_p2 5.26122e+02 6.31840e+00 5.51012e-03 -4.30688e-02 - 4 sg_p3 7.70352e+01 6.10785e+00 1.27318e-02 -4.97405e-03 - 5 sg_p4 9.08807e-01 9.02494e-03 2.18610e-03 -1.94192e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.061e-01 -1.054e-02 -2.294e-01 -4.229e-01 -2.862e-04 - -1.054e-02 9.076e-02 -4.904e-01 5.133e-01 1.441e-03 - -2.294e-01 -4.904e-01 3.999e+01 5.524e+00 -2.505e-02 - -4.229e-01 5.133e-01 5.524e+00 3.761e+01 1.706e-02 - -2.862e-04 1.441e-03 -2.505e-02 1.706e-02 8.148e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.24854 1.000 -0.107 -0.111 -0.212 -0.097 - 2 0.54949 -0.107 1.000 -0.257 0.278 0.530 - 3 0.54187 -0.111 -0.257 1.000 0.142 -0.439 - 4 0.47566 -0.212 0.278 0.142 1.000 0.308 - 5 0.66453 -0.097 0.530 -0.439 0.308 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18245.4 FROM HESSE STATUS=OK 31 CALLS 228 TOTAL - EDM=1.00847e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.55808e+02 3.25832e-01 1.76780e-04 3.13943e-01 - 2 sg_p1 1.77469e+01 3.02069e-01 6.07379e-05 -3.56157e-01 - 3 sg_p2 5.26122e+02 6.32494e+00 1.10202e-03 6.61694e+00 - 4 sg_p3 7.70352e+01 6.12320e+00 5.09272e-04 5.11714e-01 - 5 sg_p4 9.08807e-01 9.06729e-03 8.74438e-05 9.57256e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.062e-01 -1.081e-02 -2.268e-01 -4.286e-01 -2.938e-04 - -1.081e-02 9.126e-02 -4.992e-01 5.258e-01 1.460e-03 - -2.268e-01 -4.992e-01 4.007e+01 5.270e+00 -2.536e-02 - -4.286e-01 5.258e-01 5.270e+00 3.780e+01 1.761e-02 - -2.938e-04 1.460e-03 -2.536e-02 1.761e-02 8.224e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.25053 1.000 -0.110 -0.110 -0.214 -0.099 - 2 0.55296 -0.110 1.000 -0.261 0.283 0.533 - 3 0.54324 -0.110 -0.261 1.000 0.135 -0.442 - 4 0.47947 -0.214 0.283 0.135 1.000 0.316 - 5 0.66843 -0.099 0.533 -0.442 0.316 1.000 -550 -555.808 +- 0.325832 -17.7469 +- 0.302069 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=19728.7 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.45000e+02 7.00000e+00 2.01358e-01 -1.67505e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 6.63661e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 -1.67995e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -4.03919e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -1.77879e+03 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18112.5 FROM MIGRAD STATUS=CONVERGED 209 CALLS 210 TOTAL - EDM=1.24678e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.53868e+02 3.10680e-01 8.32651e-04 -2.62603e-02 - 2 sg_p1 1.72866e+01 2.81268e-01 1.45728e-03 8.07767e-02 - 3 sg_p2 5.24887e+02 6.75798e+00 5.96660e-03 -3.92394e-02 - 4 sg_p3 7.92365e+01 6.79795e+00 1.48996e-02 6.90285e-03 - 5 sg_p4 9.17534e-01 8.29708e-03 2.15408e-03 -1.06137e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.652e-02 -6.967e-03 2.218e-01 -3.867e-01 -1.900e-04 - -6.967e-03 7.912e-02 4.748e-01 5.229e-01 1.170e-03 - 2.218e-01 4.748e-01 4.576e+01 -5.306e+00 2.407e-02 - -3.867e-01 5.229e-01 -5.306e+00 4.672e+01 1.731e-02 - -1.900e-04 1.170e-03 2.407e-02 1.731e-02 6.886e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.21574 1.000 -0.080 0.106 -0.182 -0.074 - 2 0.52328 -0.080 1.000 0.250 0.272 0.501 - 3 0.51581 0.106 0.250 1.000 -0.115 0.429 - 4 0.44943 -0.182 0.272 -0.115 1.000 0.305 - 5 0.64010 -0.074 0.501 0.429 0.305 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18112.5 FROM HESSE STATUS=OK 31 CALLS 241 TOTAL - EDM=1.27405e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.53868e+02 3.10987e-01 1.66530e-04 2.56169e-01 - 2 sg_p1 1.72866e+01 2.81269e-01 2.91456e-04 -3.86094e-01 - 3 sg_p2 5.24887e+02 6.76745e+00 1.19332e-03 2.82155e+00 - 4 sg_p3 7.92365e+01 6.83832e+00 5.95982e-04 5.68761e-01 - 5 sg_p4 9.17534e-01 8.29250e-03 8.61633e-05 9.88256e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.672e-02 -7.180e-03 2.301e-01 -3.999e-01 -1.942e-04 - -7.180e-03 7.912e-02 4.628e-01 5.278e-01 1.169e-03 - 2.301e-01 4.628e-01 4.588e+01 -6.142e+00 2.369e-02 - -3.999e-01 5.278e-01 -6.142e+00 4.728e+01 1.742e-02 - -1.942e-04 1.169e-03 2.369e-02 1.742e-02 6.879e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22006 1.000 -0.082 0.109 -0.187 -0.075 - 2 0.52328 -0.082 1.000 0.243 0.273 0.501 - 3 0.51782 0.109 0.243 1.000 -0.132 0.422 - 4 0.45946 -0.187 0.273 -0.132 1.000 0.305 - 5 0.63959 -0.075 0.501 0.422 0.305 1.000 -550 -553.868 +- 0.310987 -17.2866 +- 0.281269 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=19523.7 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.45000e+02 7.00000e+00 2.01358e-01 -1.78246e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 5.48227e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 -1.72744e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -4.53463e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -1.73440e+03 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17921.7 FROM MIGRAD STATUS=CONVERGED 220 CALLS 221 TOTAL - EDM=1.1296e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.54743e+02 3.23108e-01 8.67838e-04 1.02910e-02 - 2 sg_p1 1.78036e+01 2.93560e-01 1.48809e-03 3.64244e-02 - 3 sg_p2 5.29749e+02 7.02376e+00 6.17425e-03 3.49463e-03 - 4 sg_p3 8.01422e+01 7.11749e+00 1.53333e-02 4.67692e-03 - 5 sg_p4 9.16151e-01 8.68122e-03 2.20244e-03 -2.64886e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.044e-01 -5.800e-03 3.107e-01 -4.077e-01 -1.462e-04 - -5.800e-03 8.619e-02 4.716e-01 5.708e-01 1.298e-03 - 3.107e-01 4.716e-01 4.944e+01 -9.571e+00 2.482e-02 - -4.077e-01 5.708e-01 -9.571e+00 5.129e+01 1.933e-02 - -1.462e-04 1.298e-03 2.482e-02 1.933e-02 7.539e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.21481 1.000 -0.061 0.137 -0.176 -0.052 - 2 0.52839 -0.061 1.000 0.228 0.271 0.509 - 3 0.54059 0.137 0.228 1.000 -0.190 0.407 - 4 0.49556 -0.176 0.271 -0.190 1.000 0.311 - 5 0.64950 -0.052 0.509 0.407 0.311 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17921.7 FROM HESSE STATUS=OK 31 CALLS 252 TOTAL - EDM=1.13732e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.54743e+02 3.23491e-01 3.47135e-05 2.82090e-01 - 2 sg_p1 1.78036e+01 2.93564e-01 5.95236e-05 -3.52489e-01 - 3 sg_p2 5.29749e+02 7.04856e+00 2.46970e-04 2.76712e+00 - 4 sg_p3 8.01422e+01 7.18360e+00 6.13332e-04 5.92835e-01 - 5 sg_p4 9.16151e-01 8.67262e-03 4.40487e-04 9.83249e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.046e-01 -6.090e-03 3.230e-01 -4.265e-01 -1.522e-04 - -6.090e-03 8.619e-02 4.539e-01 5.786e-01 1.296e-03 - 3.230e-01 4.539e-01 4.979e+01 -1.084e+01 2.423e-02 - -4.265e-01 5.786e-01 -1.084e+01 5.225e+01 1.948e-02 - -1.522e-04 1.296e-03 2.423e-02 1.948e-02 7.524e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.22000 1.000 -0.064 0.142 -0.182 -0.054 - 2 0.52841 -0.064 1.000 0.219 0.273 0.509 - 3 0.54519 0.142 0.219 1.000 -0.213 0.396 - 4 0.50912 -0.182 0.273 -0.213 1.000 0.311 - 5 0.64862 -0.054 0.509 0.396 0.311 1.000 -550 -554.743 +- 0.323491 -17.8036 +- 0.293564 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=20158.4 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.45000e+02 7.00000e+00 2.01358e-01 -1.85494e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 6.04709e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 -1.75210e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -4.33590e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -1.81352e+03 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18466.6 FROM MIGRAD STATUS=CONVERGED 201 CALLS 202 TOTAL - EDM=7.37276e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.54870e+02 3.11615e-01 8.46985e-04 -5.92156e-02 - 2 sg_p1 1.73495e+01 2.85260e-01 1.47111e-03 7.67177e-02 - 3 sg_p2 5.24331e+02 6.05754e+00 5.28257e-03 4.53885e-03 - 4 sg_p3 7.34136e+01 5.53118e+00 1.12466e-02 -1.10576e-02 - 5 sg_p4 9.15605e-01 8.65240e-03 2.17248e-03 -7.85532e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.711e-02 -7.947e-03 1.826e-01 -3.420e-01 -2.412e-04 - -7.947e-03 8.138e-02 5.038e-01 4.162e-01 1.294e-03 - 1.826e-01 5.038e-01 3.675e+01 -2.414e+00 2.461e-02 - -3.420e-01 4.162e-01 -2.414e+00 3.078e+01 1.542e-02 - -2.412e-04 1.294e-03 2.461e-02 1.542e-02 7.489e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23325 1.000 -0.089 0.097 -0.198 -0.089 - 2 0.54079 -0.089 1.000 0.291 0.263 0.524 - 3 0.54052 0.097 0.291 1.000 -0.072 0.469 - 4 0.44504 -0.198 0.263 -0.072 1.000 0.321 - 5 0.66858 -0.089 0.524 0.469 0.321 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18466.6 FROM HESSE STATUS=OK 31 CALLS 233 TOTAL - EDM=7.38816e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.54870e+02 3.11900e-01 1.69397e-04 2.85889e-01 - 2 sg_p1 1.73495e+01 2.85061e-01 2.94222e-04 -3.81980e-01 - 3 sg_p2 5.24331e+02 6.05810e+00 2.11303e-04 2.82772e+00 - 4 sg_p3 7.34136e+01 5.55334e+00 4.49864e-04 4.21567e-01 - 5 sg_p4 9.15605e-01 8.63836e-03 4.34496e-04 9.81281e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.728e-02 -8.106e-03 1.896e-01 -3.508e-01 -2.439e-04 - -8.106e-03 8.127e-02 4.931e-01 4.161e-01 1.289e-03 - 1.896e-01 4.931e-01 3.676e+01 -2.963e+00 2.422e-02 - -3.508e-01 4.161e-01 -2.963e+00 3.103e+01 1.537e-02 - -2.439e-04 1.289e-03 2.422e-02 1.537e-02 7.465e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23692 1.000 -0.091 0.100 -0.202 -0.091 - 2 0.53988 -0.091 1.000 0.285 0.262 0.523 - 3 0.54066 0.100 0.285 1.000 -0.088 0.462 - 4 0.45196 -0.202 0.262 -0.088 1.000 0.319 - 5 0.66723 -0.091 0.523 0.462 0.319 1.000 -550 -554.87 +- 0.3119 -17.3495 +- 0.285061 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=18671.1 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.45000e+02 7.00000e+00 2.01358e-01 -1.70584e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 5.36049e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 -1.63312e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -4.13435e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -1.66463e+03 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17136.3 FROM MIGRAD STATUS=CONVERGED 203 CALLS 204 TOTAL - EDM=1.02695e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.54811e+02 3.29767e-01 8.63223e-04 -1.93001e-01 - 2 sg_p1 1.76648e+01 3.03153e-01 1.48879e-03 3.74125e-02 - 3 sg_p2 5.25130e+02 6.59118e+00 5.51974e-03 -1.87163e-03 - 4 sg_p3 7.53402e+01 6.16780e+00 1.22242e-02 -1.30639e-02 - 5 sg_p4 9.15918e-01 9.07192e-03 2.19004e-03 -5.75224e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.088e-01 -8.558e-03 2.332e-01 -4.008e-01 -2.433e-04 - -8.558e-03 9.191e-02 5.712e-01 5.058e-01 1.454e-03 - 2.332e-01 5.712e-01 4.352e+01 -3.716e+00 2.786e-02 - -4.008e-01 5.058e-01 -3.716e+00 3.834e+01 1.804e-02 - -2.433e-04 1.454e-03 2.786e-02 1.804e-02 8.233e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23278 1.000 -0.086 0.107 -0.196 -0.081 - 2 0.54570 -0.086 1.000 0.286 0.269 0.529 - 3 0.54594 0.107 0.286 1.000 -0.091 0.465 - 4 0.45689 -0.196 0.269 -0.091 1.000 0.321 - 5 0.67171 -0.081 0.529 0.465 0.321 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17136.3 FROM HESSE STATUS=OK 31 CALLS 235 TOTAL - EDM=1.02452e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.54811e+02 3.30104e-01 1.72645e-04 2.84116e-01 - 2 sg_p1 1.76648e+01 3.03000e-01 5.95517e-05 -3.61468e-01 - 3 sg_p2 5.25130e+02 6.59509e+00 2.20790e-04 2.81886e+00 - 4 sg_p3 7.53402e+01 6.19835e+00 4.88968e-04 4.69011e-01 - 5 sg_p4 9.15918e-01 9.05834e-03 4.38009e-04 9.82408e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.090e-01 -8.764e-03 2.421e-01 -4.127e-01 -2.470e-04 - -8.764e-03 9.182e-02 5.581e-01 5.069e-01 1.449e-03 - 2.421e-01 5.581e-01 4.357e+01 -4.454e+00 2.739e-02 - -4.127e-01 5.069e-01 -4.454e+00 3.873e+01 1.802e-02 - -2.470e-04 1.449e-03 2.739e-02 1.802e-02 8.208e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23689 1.000 -0.088 0.111 -0.201 -0.083 - 2 0.54504 -0.088 1.000 0.279 0.269 0.528 - 3 0.54671 0.111 0.279 1.000 -0.108 0.458 - 4 0.46512 -0.201 0.269 -0.108 1.000 0.320 - 5 0.67048 -0.083 0.528 0.458 0.320 1.000 -550 -554.811 +- 0.330104 -17.6648 +- 0.303 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=21296.1 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.45000e+02 7.00000e+00 2.01358e-01 -1.94576e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 6.08481e+02 - 3 sg_p2 4.95000e+02 1.90000e+01 2.01358e-01 -1.85706e+03 - 4 sg_p3 5.50000e+01 9.00000e+00 2.01358e-01 -4.76455e+02 - 5 sg_p4 5.00000e-01 1.00000e-01 2.01358e-01 -1.89298e+03 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19553.2 FROM MIGRAD STATUS=CONVERGED 208 CALLS 209 TOTAL - EDM=3.34483e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.54825e+02 3.08932e-01 8.64414e-04 -3.40457e-01 - 2 sg_p1 1.76653e+01 2.83564e-01 1.49117e-03 -1.87292e-01 - 3 sg_p2 5.24710e+02 6.23394e+00 5.56281e-03 -3.21417e-03 - 4 sg_p3 7.62214e+01 5.87300e+00 1.25436e-02 -2.96877e-02 - 5 sg_p4 9.14864e-01 8.46661e-03 2.18261e-03 1.16509e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.544e-02 -7.404e-03 2.048e-01 -3.550e-01 -2.065e-04 - -7.404e-03 8.042e-02 5.052e-01 4.449e-01 1.260e-03 - 2.048e-01 5.052e-01 3.892e+01 -3.380e+00 2.466e-02 - -3.550e-01 4.449e-01 -3.380e+00 3.475e+01 1.555e-02 - -2.065e-04 1.260e-03 2.466e-02 1.555e-02 7.171e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23094 1.000 -0.085 0.106 -0.195 -0.079 - 2 0.54280 -0.085 1.000 0.286 0.266 0.525 - 3 0.54506 0.106 0.286 1.000 -0.092 0.467 - 4 0.44944 -0.195 0.266 -0.092 1.000 0.312 - 5 0.66734 -0.079 0.525 0.467 0.312 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19553.2 FROM HESSE STATUS=OK 31 CALLS 240 TOTAL - EDM=3.3454e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.54825e+02 3.09247e-01 1.72883e-04 2.84530e-01 - 2 sg_p1 1.76653e+01 2.83385e-01 2.98233e-04 -3.61435e-01 - 3 sg_p2 5.24710e+02 6.23786e+00 2.22512e-04 2.82352e+00 - 4 sg_p3 7.62214e+01 5.90192e+00 5.01743e-04 4.91089e-01 - 5 sg_p4 9.14864e-01 8.45305e-03 4.36523e-04 9.78619e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 9.564e-02 -7.578e-03 2.127e-01 -3.656e-01 -2.095e-04 - -7.578e-03 8.032e-02 4.934e-01 4.455e-01 1.255e-03 - 2.127e-01 4.934e-01 3.897e+01 -4.053e+00 2.424e-02 - -3.656e-01 4.455e-01 -4.053e+00 3.509e+01 1.551e-02 - -2.095e-04 1.255e-03 2.424e-02 1.551e-02 7.148e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.23507 1.000 -0.086 0.110 -0.200 -0.080 - 2 0.54198 -0.086 1.000 0.279 0.265 0.524 - 3 0.54588 0.110 0.279 1.000 -0.110 0.459 - 4 0.45781 -0.200 0.265 -0.110 1.000 0.310 - 5 0.66600 -0.080 0.524 0.459 0.310 1.000 -550 -554.825 +- 0.309247 -17.6653 +- 0.283385 -35.9 fb^{-1} (13 TeV) -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 24 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 25 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 31 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 34 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 38 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 39 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 40 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 47 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 112 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 113 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 114 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 115 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 116 has zero error, setting residual to zero - Uncertainty on sg_p0 = 554.818 +- 0.319404 (stat) - 0.949548 + 0.990665 (syst); -0.962884/+1.00345 (total) - Uncertainty on sg_p1 = 17.6653 +- 0.293042 (stat) - 0.37879 + 0.13828 (syst); -0.406141/+0.201469 (total) - Uncertainty on sg_p2 = 524.916 +- 6.41299 (stat) - 0.585115 + 4.83374 (syst); -3.25944/+5.80057 (total) - Uncertainty on sg_p3 = 75.7816 +- 6.04287 (stat) - 2.36797 + 4.36061 (syst); -3.8388/+5.30509 (total) - Uncertainty on sg_p4 = 0.915383 +- 0.00875334 (stat) - 0.00657606 + 0.00215055 (syst); -0.00789935/+0.00487649 (total) - === Baseline plot ===
- norm = 1470.79 -JEC lnN 1.0002 - -JER lnN 1.01675 - -btag lnN 1.06585 - -sg_p0 param 554.818 -0.962884/+1.00345 -sg_p1 param 17.6653 -0.406141/+0.201469 -sg_p2 param 524.916 -3.25944/+5.80057 -sg_p3 param 75.7816 -3.8388/+5.30509 -sg_p4 param 0.915383 -0.00789935/+0.00487649 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_600_crystal_1_285_624/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_600_crystal_1_285_624/data_bkg.log deleted file mode 100644 index c704996..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_600_crystal_1_285_624/data_bkg.log +++ /dev/null @@ -1,717 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [250,330] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [250,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63590.5 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.69443e-02 5.09000e-01 0.00000e+00 -7.94680e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -8.91126e+00 - 3 par_crystal_2 2.62020e+02 4.00000e+00 1.01181e-01 -1.53451e+00 - 4 par_crystal_3 1.65000e+01 2.70000e+00 0.00000e+00 7.46021e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM MIGRAD STATUS=CONVERGED 482 CALLS 483 TOTAL - EDM=0.000814822 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 4.40594e-01 4.43750e-02 2.48631e-03 2.88668e-01 - 2 par_crystal_1 9.82994e-01 6.48221e-01 2.14269e-02 -5.28345e-03 - 3 par_crystal_2 2.71542e+02 7.41091e-01 7.20683e-03 -9.27818e-02 - 4 par_crystal_3 2.87224e+01 2.18588e+00 3.97473e-02 -6.99277e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.970e-03 -2.333e-02 -5.115e-04 1.392e-02 - -2.333e-02 4.358e-01 4.870e-03 -8.391e-01 - -5.115e-04 4.870e-03 5.496e-01 4.381e-01 - 1.392e-02 -8.391e-01 4.381e-01 5.029e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.88989 1.000 -0.796 -0.016 0.140 - 2 0.92807 -0.796 1.000 0.010 -0.567 - 3 0.40865 -0.016 0.010 1.000 0.264 - 4 0.80948 0.140 -0.567 0.264 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM HESSE STATUS=OK 23 CALLS 506 TOTAL - EDM=0.000711421 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 4.40594e-01 4.64698e-02 4.97262e-04 -9.80558e-01 - 2 par_crystal_1 9.82994e-01 6.55195e-01 8.57075e-04 -6.65795e-01 - 3 par_crystal_2 2.71542e+02 7.38644e-01 1.44137e-03 6.15159e-01 - 4 par_crystal_3 2.87224e+01 2.03002e+00 1.58989e-03 -1.05570e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.160e-03 -2.581e-02 -1.109e-03 1.530e-02 - -2.581e-02 4.456e-01 2.508e-02 -7.234e-01 - -1.109e-03 2.508e-02 5.460e-01 3.687e-01 - 1.530e-02 -7.234e-01 3.687e-01 4.306e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.90014 1.000 -0.832 -0.032 0.159 - 2 0.92960 -0.832 1.000 0.051 -0.522 - 3 0.40186 -0.032 0.051 1.000 0.240 - 4 0.77207 0.159 -0.522 0.240 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63714.2 FROM MIGRAD STATUS=INITIATE 33 CALLS 34 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 2.63122e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -5.45805e+02 - 3 par_gaus_exp_2 6.67498e-01 3.05000e-01 -6.37370e-01 7.03093e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM MIGRAD STATUS=CONVERGED 131 CALLS 132 TOTAL - EDM=6.15917e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.71558e+02 8.05096e-01 6.82817e-03 6.24407e-02 - 2 par_gaus_exp_1 3.06822e+01 1.83071e+00 1.43475e-02 1.11468e-02 - 3 par_gaus_exp_2 3.82770e-01 2.42284e-02 3.05774e-03 -9.77170e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.486e-01 -6.079e-01 -1.588e-03 - -6.079e-01 3.370e+00 3.082e-02 - -1.588e-03 3.082e-02 5.871e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.49876 1.000 -0.411 -0.081 - 2 0.77898 -0.411 1.000 0.693 - 3 0.72797 -0.081 0.693 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM HESSE STATUS=OK 16 CALLS 148 TOTAL - EDM=6.13964e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.71558e+02 8.14214e-01 2.73127e-04 -4.35760e-01 - 2 par_gaus_exp_1 3.06822e+01 1.86973e+00 5.73898e-04 4.10264e-01 - 3 par_gaus_exp_2 3.82770e-01 2.45149e-02 1.22310e-04 -8.97531e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.634e-01 -6.630e-01 -2.137e-03 - -6.630e-01 3.516e+00 3.227e-02 - -2.137e-03 3.227e-02 6.011e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.51526 1.000 -0.434 -0.107 - 2 0.78935 -0.434 1.000 0.702 - 3 0.73544 -0.107 0.702 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,625] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.33953 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - ... (remaining 126 messages suppressed) -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.33953) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.734607 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=317.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=327.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=332.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=342.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=347.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=352.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=357.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=362.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=367.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - ... (remaining 53 messages suppressed) -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.734607) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0734613 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0734613 - - FCN=103487 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57093e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.56195e+03 - 3 par_novo_2 -1.33668e+00 2.00000e+01 0.00000e+00 1.53931e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM MIGRAD STATUS=CONVERGED 127 CALLS 128 TOTAL - EDM=3.4171e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.43423e+01 1.81223e-01** at limit ** - 2 par_novo_1 3.86596e+01 2.27294e+00 4.95847e-03 -1.04123e-02 - 3 par_novo_2 -1.27520e+00 7.07738e-02 3.70975e-05 -1.26322e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.231e-09 -8.491e-07 -8.580e-07 - -8.491e-07 5.181e+00 1.547e-01 - -8.580e-07 1.547e-01 5.009e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.53332 1.000 -0.005 -0.154 - 2 0.97096 -0.005 1.000 0.960 - 3 0.97165 -0.154 0.960 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM HESSE STATUS=OK 20 CALLS 148 TOTAL - EDM=3.43726e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.40246e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.86596e+01 2.31421e+00 1.98339e-04 4.46530e-01 - 3 par_novo_2 -1.27520e+00 7.22930e-02 1.48390e-06 -1.27523e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 5.974e-09 2.819e-05 -1.296e-06 - 2.819e-05 5.372e+00 1.502e-01 - -1.296e-06 1.502e-01 5.226e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.85665 1.000 0.157 -0.232 - 2 0.97200 0.157 1.000 0.897 - 3 0.97285 -0.232 0.897 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107513 FROM MIGRAD STATUS=INITIATE 54 CALLS 55 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 1.39168e+03 - 2 par_crystal_1_1 7.96220e-02 5.09000e-01 0.00000e+00 5.33770e+03 - 3 par_crystal_1_2 2.56879e+02 4.00000e+00 -1.56713e-01 -1.96669e+01 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 -8.45862e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.5057e-02 2.3309e-03 4.9678e-02 3.9730e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.029030 TO DIAGONAL. - FCN=103250 FROM MIGRAD STATUS=CONVERGED 436 CALLS 437 TOTAL - EDM=3.52757e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 4.45574e-02 4.37117e-03 3.09465e-04 -4.28177e+00 - 2 par_crystal_1_1 4.36914e+00 6.24106e-01 1.80400e-02 6.63742e-02 - 3 par_crystal_1_2 2.71531e+02 3.44700e+01 5.81266e-02 2.25694e-02 - 4 par_crystal_1_3 3.37290e+00 2.71702e-01 3.13791e-03 -4.26197e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.911e-05 -1.221e-03 2.089e-01 3.572e-04 - -1.221e-03 4.065e-01 -2.690e+01 -6.822e-02 - 2.089e-01 -2.690e+01 3.429e+03 1.167e+01 - 3.572e-04 -6.822e-02 1.167e+01 7.401e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99136 1.000 -0.438 0.816 0.300 - 2 0.97307 -0.438 1.000 -0.720 -0.393 - 3 0.99735 0.816 -0.720 1.000 0.733 - 4 0.98716 0.300 -0.393 0.733 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -8.0089e-04 4.0193e-04 7.1213e-02 3.9292e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.004730 TO DIAGONAL. - FCN=103250 FROM HESSE STATUS=NOT POSDEF 23 CALLS 460 TOTAL - EDM=3.56127e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 4.45574e-02 7.42610e-03 6.18930e-05 -1.40582e+00 - 2 par_crystal_1_1 4.36914e+00 4.67550e-01 7.21602e-04 -3.93511e+00 - 3 par_crystal_1_2 2.71531e+02 3.29814e+01 2.32506e-03 -3.75607e+00 - 4 par_crystal_1_3 3.37290e+00 5.01685e-01 1.25517e-04 -1.80638e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.515e-05 2.851e-04 2.343e-01 -1.699e-03 - 2.851e-04 2.238e-01 -2.528e+00 1.548e-02 - 2.343e-01 -2.528e+00 2.967e+03 1.176e+01 - -1.699e-03 1.548e-02 1.176e+01 2.538e-01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99694 1.000 0.081 0.579 -0.454 - 2 0.94927 0.081 1.000 -0.098 0.065 - 3 0.99687 0.579 -0.098 1.000 0.429 - 4 0.99618 -0.454 0.065 0.429 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 14211 - Background number of gaus_exp_252_330 = 14211 - Background number of novo_285_624 = 17618.3 - Background number of crystal_1_285_624 = 17618.3 - Background number of gaus_bern_285_624 = 17618.3 - Background number of landau_285_624 = 17618.3 -par_crystal_0 param 0.440594 0.0464698 -par_crystal_1 param 0.982994 0.655195 -par_crystal_2 param 271.542 0.738644 -par_crystal_3 param 28.7224 2.03002 -par_crystal_1_0 param 0.0445574 0.0074261 -par_crystal_1_1 param 4.36914 0.46755 -par_crystal_1_2 param 271.531 32.9814 -par_crystal_1_3 param 3.3729 0.501685 -par_gaus_exp_0 param 271.558 0.814214 -par_gaus_exp_1 param 30.6822 1.86973 -par_gaus_exp_2 param 0.38277 0.0245149 -par_novo_0 param 250 34.0246 -par_novo_1 param 38.6596 2.31421 -par_novo_2 param -1.2752 0.072293 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_600_crystal_1_285_624/datacard_600_crystal_1_285_624.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_600_crystal_1_285_624/datacard_600_crystal_1_285_624.txt deleted file mode 100644 index c3b4ca6..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_600_crystal_1_285_624/datacard_600_crystal_1_285_624.txt +++ /dev/null @@ -1,30 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_600.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_crystal_1_285_624.root HbbHbb:f_crystal_1 -shapes data_obs HbbHbb w_background_crystal_1_285_624.root HbbHbb:data_obs_crystal_1_285_624 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 1712.99 17618.3 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06714 - -JER lnN 1.01626 - -JEC lnN 1.00275 - -trigger lnN 1.10 - -sg_p0 param 606.507 -1.40207/+1.4263 -sg_p1 param 17.4848 -0.433147/+0.398968 -sg_p2 param 599.858 -0.911028/+1.31674 -sg_p3 param 35.1205 -1.67663/+1.56849 -sg_p4 param 0.769875 -0.0510934/+0.0296057 -par_crystal_1_0 param 0.0445574 0.0074261 -par_crystal_1_1 param 4.36914 0.46755 -par_crystal_1_2 param 271.531 32.9814 -par_crystal_1_3 param 3.3729 0.501685 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_600_crystal_1_285_624/signal600_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_600_crystal_1_285_624/signal600_sig.log deleted file mode 100644 index 3215894..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_600_crystal_1_285_624/signal600_sig.log +++ /dev/null @@ -1,843 +0,0 @@ - -Processing test.c... -nSignal_init = 100000 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=24280 FROM MIGRAD STATUS=INITIATE 43 CALLS 44 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 0.00000e+00 3.58677e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 -1.18368e+03 - 3 sg_p2 5.75000e+02 1.50000e+01 0.00000e+00 1.42384e+03 - 4 sg_p3 4.21820e+01 1.20000e+01 -4.82092e-01 -6.03718e-01 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 7.69925e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23075.2 FROM MIGRAD STATUS=CONVERGED 442 CALLS 443 TOTAL - EDM=3.37608e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.88137e+02 2.17401e+00 1.57187e-03 5.45097e-02 - 2 sg_p1 2.90958e+01 6.86009e-01 3.13675e-03 7.79119e-02 - 3 sg_p2 5.59880e+02 5.00457e+00 1.98829e-03 -7.62283e-02 - 4 sg_p3 3.62716e+01 3.18321e+00 2.14823e-03 9.85100e-02 - 5 sg_p4 7.00002e-01 2.12576e-01 1.12952e-01 2.90847e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.731e+00 -1.030e+00 -9.979e+00 -6.388e+00 -2.483e-04 - -1.030e+00 4.709e-01 2.213e+00 1.252e+00 1.258e-04 - -9.979e+00 2.213e+00 2.508e+01 1.471e+01 -7.877e-04 - -6.388e+00 1.252e+00 1.471e+01 1.015e+01 1.142e-06 - -2.483e-04 1.258e-04 -7.877e-04 1.142e-06 1.239e-06 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.95782 1.000 -0.690 -0.916 -0.922 -0.103 - 2 0.73673 -0.690 1.000 0.644 0.573 0.165 - 3 0.96060 -0.916 0.644 1.000 0.922 -0.141 - 4 0.94775 -0.922 0.573 0.922 1.000 0.000 - 5 0.62405 -0.103 0.165 -0.141 0.000 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23075.2 FROM HESSE STATUS=OK 35 CALLS 478 TOTAL - EDM=0.000121989 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.88137e+02 3.29842e+00 3.14373e-04 -3.84102e-01 - 2 sg_p1 2.90958e+01 1.12225e+00 1.25470e-04 3.45999e-01 - 3 sg_p2 5.59880e+02 4.99521e+00 3.97658e-04 -2.02989e-01 - 4 sg_p3 3.62716e+01 3.76792e+00 8.59293e-05 -5.96971e-01 - 5 sg_p4 7.00002e-01 2.43034e-01 4.60846e-01 -1.56553e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.090e+01 -3.238e+00 -9.781e+00 -1.140e+01 -3.564e-03 - -3.238e+00 1.262e+00 2.139e+00 3.042e+00 1.285e-03 - -9.781e+00 2.139e+00 2.499e+01 1.455e+01 -2.935e-04 - -1.140e+01 3.042e+00 1.455e+01 1.422e+01 2.841e-03 - -3.564e-03 1.285e-03 -2.935e-04 2.841e-03 2.063e-06 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.98192 1.000 -0.873 -0.593 -0.915 -0.752 - 2 0.91068 -0.873 1.000 0.381 0.718 0.797 - 3 0.96045 -0.593 0.381 1.000 0.772 -0.041 - 4 0.96302 -0.915 0.718 0.772 1.000 0.524 - 5 0.96908 -0.752 0.797 -0.041 0.524 1.000 -600 -588.137 +- 3.29842 -29.0958 +- 1.12225 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=23767.1 FROM MIGRAD STATUS=INITIATE 42 CALLS 43 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 0.00000e+00 3.17349e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 -1.02365e+03 - 3 sg_p2 5.75000e+02 1.50000e+01 0.00000e+00 1.16298e+03 - 4 sg_p3 4.39845e+01 1.20000e+01 -4.48474e-01 4.93391e+01 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 6.61691e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=22821.9 FROM MIGRAD STATUS=CONVERGED 329 CALLS 330 TOTAL - EDM=4.72305e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.92012e+02 1.51134e+00 1.46358e-03 1.14647e-01 - 2 sg_p1 2.81327e+01 6.59039e-01 2.96171e-03 -1.30179e-01 - 3 sg_p2 5.58427e+02 3.47970e+00 1.93226e-03 6.71315e-02 - 4 sg_p3 3.58696e+01 2.45943e+00 2.12007e-03 3.27001e-02 - 5 sg_p4 7.00002e-01 6.59449e-02 8.47138e-02 5.69759e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.285e+00 -7.049e-01 -4.524e+00 -3.253e+00 -8.515e-05 - -7.049e-01 4.346e-01 1.539e+00 9.868e-01 4.573e-05 - -4.524e+00 1.539e+00 1.212e+01 7.552e+00 -3.909e-04 - -3.253e+00 9.868e-01 7.552e+00 6.054e+00 -5.215e-05 - -8.515e-05 4.573e-05 -3.909e-04 -5.215e-05 5.765e-07 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.91672 1.000 -0.707 -0.860 -0.875 -0.074 - 2 0.73205 -0.707 1.000 0.671 0.608 0.091 - 3 0.92123 -0.860 0.671 1.000 0.882 -0.148 - 4 0.91302 -0.875 0.608 0.882 1.000 -0.028 - 5 0.44297 -0.074 0.091 -0.148 -0.028 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=22821.9 FROM HESSE STATUS=OK 37 CALLS 367 TOTAL - EDM=3.83352e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.92012e+02 1.96656e+00 2.92716e-04 -2.92785e-01 - 2 sg_p1 2.81327e+01 8.71252e-01 5.92343e-04 2.84598e-01 - 3 sg_p2 5.58427e+02 3.77659e+00 3.86452e-04 -2.22807e-01 - 4 sg_p3 3.58696e+01 2.54070e+00 8.48026e-05 -6.05095e-01 - 5 sg_p4 7.00002e-01 1.87580e-01 5.00000e-01 -1.56561e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.870e+00 -1.423e+00 -2.748e+00 -4.031e+00 -1.028e-03 - -1.423e+00 7.598e-01 7.297e-01 1.337e+00 4.676e-04 - -2.748e+00 7.297e-01 1.428e+01 6.747e+00 -1.238e-03 - -4.031e+00 1.337e+00 6.747e+00 6.461e+00 4.747e-04 - -1.028e-03 4.676e-04 -1.238e-03 4.747e-04 6.718e-07 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.95171 1.000 -0.830 -0.370 -0.806 -0.637 - 2 0.85706 -0.830 1.000 0.222 0.604 0.654 - 3 0.93356 -0.370 0.222 1.000 0.703 -0.400 - 4 0.91874 -0.806 0.604 0.703 1.000 0.228 - 5 0.94267 -0.637 0.654 -0.400 0.228 1.000 -600 -592.012 +- 1.96656 -28.1327 +- 0.871252 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=24394 FROM MIGRAD STATUS=INITIATE 42 CALLS 43 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 0.00000e+00 3.94278e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 -1.29909e+03 - 3 sg_p2 5.75000e+02 1.50000e+01 0.00000e+00 1.67228e+03 - 4 sg_p3 4.09440e+01 1.20000e+01 -5.05526e-01 -7.57306e+01 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 8.58548e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=22933.1 FROM MIGRAD STATUS=CONVERGED 638 CALLS 639 TOTAL - EDM=8.42969e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.78603e+02 5.64911e-01 1.40473e-03 3.72907e-01 - 2 sg_p1 3.20881e+01 4.06669e-01 2.67756e-03 1.44036e-01 - 3 sg_p2 5.00002e+02 1.10618e+02 1.52750e-01 -2.88106e-03 - 4 sg_p3 6.94039e+01 2.89324e+01 3.44374e-02 -1.04731e-02 - 5 sg_p4 9.76772e-01 7.03168e-03 5.92623e-03 -8.42769e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.191e-01 -1.408e-02 3.587e-02 -7.029e+00 1.364e-04 - -1.408e-02 1.654e-01 -3.289e-02 -2.769e+00 1.295e-03 - 3.587e-02 -3.289e-02 6.513e-01 -1.947e+00 -1.609e-03 - -7.029e+00 -2.769e+00 -1.947e+00 9.115e+02 -1.280e-01 - 1.364e-04 1.295e-03 -1.609e-03 -1.280e-01 4.957e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.49930 1.000 -0.061 0.079 -0.412 0.034 - 2 0.46165 -0.061 1.000 -0.100 -0.225 0.452 - 3 0.43169 0.079 -0.100 1.000 -0.080 -0.283 - 4 0.75355 -0.412 -0.225 -0.080 1.000 -0.602 - 5 0.76469 0.034 0.452 -0.283 -0.602 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=22933.1 FROM HESSE STATUS=OK 35 CALLS 674 TOTAL - EDM=8.36581e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.78603e+02 5.65787e-01 2.80946e-04 -6.26852e-01 - 2 sg_p1 3.20881e+01 4.25746e-01 5.35511e-04 5.47427e-01 - 3 sg_p2 5.00002e+02 9.83339e+01 5.00000e-01 -1.57791e+00 - 4 sg_p3 6.94039e+01 2.99669e+01 6.88747e-03 -9.93577e-03 - 5 sg_p4 9.76772e-01 9.53722e-03 1.18525e-03 1.00684e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.201e-01 -1.400e-02 1.487e-02 -7.254e+00 1.740e-04 - -1.400e-02 1.813e-01 -8.069e-02 -3.550e+00 2.110e-03 - 1.487e-02 -8.069e-02 3.935e-01 2.133e+00 -4.095e-03 - -7.254e+00 -3.550e+00 2.133e+00 9.846e+02 -1.706e-01 - 1.740e-04 2.110e-03 -4.095e-03 -1.706e-01 9.139e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.50162 1.000 -0.058 0.042 -0.409 0.032 - 2 0.53111 -0.058 1.000 -0.302 -0.266 0.518 - 3 0.77391 0.042 -0.302 1.000 0.108 -0.683 - 4 0.77455 -0.409 -0.266 0.108 1.000 -0.569 - 5 0.88021 0.032 0.518 -0.683 -0.569 1.000 -600 -578.603 +- 0.565787 -32.0881 +- 0.425746 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=21188 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 0.00000e+00 -4.10915e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 7.89680e+02 - 3 sg_p2 5.75000e+02 1.50000e+01 0.00000e+00 -1.48216e+02 - 4 sg_p3 5.20622e+01 1.20000e+01 -3.03606e-01 1.51172e+00 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -1.90966e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20995.9 FROM MIGRAD STATUS=CONVERGED 266 CALLS 267 TOTAL - EDM=3.97173e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.06507e+02 4.54842e-01 7.93051e-04 2.28694e-01 - 2 sg_p1 1.74848e+01 6.42892e-01 1.87527e-03 -5.26219e-03 - 3 sg_p2 5.99858e+02 1.64781e+00 1.84882e-03 3.91300e-02 - 4 sg_p3 3.51205e+01 2.40944e+00 1.97487e-03 -2.11296e-02 - 5 sg_p4 7.69875e-01 4.95303e-02 1.12811e-02 5.41517e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.069e-01 -1.274e-01 -9.667e-02 -5.293e-01 -1.089e-02 - -1.274e-01 4.136e-01 -4.310e-01 1.196e+00 2.909e-02 - -9.667e-02 -4.310e-01 2.716e+00 -1.523e+00 -3.888e-02 - -5.293e-01 1.196e+00 -1.523e+00 5.810e+00 1.117e-01 - -1.089e-02 2.909e-02 -3.888e-02 1.117e-01 2.589e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.62100 1.000 -0.435 -0.129 -0.483 -0.470 - 2 0.89410 -0.435 1.000 -0.407 0.772 0.889 - 3 0.60904 -0.129 -0.407 1.000 -0.383 -0.464 - 4 0.91664 -0.483 0.772 -0.383 1.000 0.910 - 5 0.95959 -0.470 0.889 -0.464 0.910 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20995.9 FROM HESSE STATUS=OK 31 CALLS 298 TOTAL - EDM=3.94319e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.06507e+02 4.49294e-01 1.58610e-04 3.34861e-02 - 2 sg_p1 1.74848e+01 6.23965e-01 7.50107e-05 -3.73160e-01 - 3 sg_p2 5.99858e+02 1.64758e+00 3.69764e-04 3.37830e-01 - 4 sg_p3 3.51205e+01 2.33871e+00 7.89949e-05 -6.20356e-01 - 5 sg_p4 7.69875e-01 4.80150e-02 4.51245e-04 -5.63520e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.019e-01 -1.162e-01 -1.057e-01 -4.868e-01 -9.943e-03 - -1.162e-01 3.895e-01 -4.147e-01 1.106e+00 2.709e-02 - -1.057e-01 -4.147e-01 2.715e+00 -1.465e+00 -3.762e-02 - -4.868e-01 1.106e+00 -1.465e+00 5.474e+00 1.042e-01 - -9.943e-03 2.709e-02 -3.762e-02 1.042e-01 2.425e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.60859 1.000 -0.414 -0.143 -0.463 -0.449 - 2 0.88716 -0.414 1.000 -0.403 0.757 0.881 - 3 0.60890 -0.143 -0.403 1.000 -0.380 -0.464 - 4 0.91127 -0.463 0.757 -0.380 1.000 0.905 - 5 0.95679 -0.449 0.881 -0.464 0.905 1.000 -600 -606.507 +- 0.449294 -17.4848 +- 0.623965 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=20985 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 2.01358e-01 -6.03053e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 7.30191e+02 - 3 sg_p2 5.75000e+02 1.50000e+01 2.01358e-01 -5.66899e+01 - 4 sg_p3 7.00000e+01 1.20000e+01 2.01358e-01 -3.40682e+00 - 5 sg_p4 8.50000e-01 3.00000e-02 2.01358e-01 -1.90294e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20801.6 FROM MIGRAD STATUS=CONVERGED 278 CALLS 279 TOTAL - EDM=1.57711e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.07915e+02 5.09392e-01 8.36892e-04 -1.25909e-01 - 2 sg_p1 1.72285e+01 7.70692e-01 2.00532e-03 -9.85888e-02 - 3 sg_p2 6.00885e+02 1.55983e+00 1.61488e-03 1.97987e-02 - 4 sg_p3 3.39190e+01 2.23203e+00 1.72499e-03 -5.63339e-02 - 5 sg_p4 7.24773e-01 5.61261e-02 1.85033e-02 4.35514e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.595e-01 -1.965e-01 -2.282e-02 -6.210e-01 -1.671e-02 - -1.965e-01 5.945e-01 -6.118e-01 1.389e+00 4.341e-02 - -2.282e-02 -6.118e-01 2.433e+00 -1.664e+00 -5.404e-02 - -6.210e-01 1.389e+00 -1.664e+00 4.986e+00 1.270e-01 - -1.671e-02 4.341e-02 -5.404e-02 1.270e-01 3.808e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.67158 1.000 -0.500 -0.029 -0.546 -0.531 - 2 0.91709 -0.500 1.000 -0.509 0.807 0.912 - 3 0.68224 -0.029 -0.509 1.000 -0.478 -0.561 - 4 0.92836 -0.546 0.807 -0.478 1.000 0.922 - 5 0.96819 -0.531 0.912 -0.561 0.922 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20801.6 FROM HESSE STATUS=OK 31 CALLS 310 TOTAL - EDM=1.26117e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.07915e+02 4.85233e-01 1.67378e-04 6.48251e-02 - 2 sg_p1 1.72285e+01 6.67550e-01 4.01065e-04 -3.89892e-01 - 3 sg_p2 6.00885e+02 1.49623e+00 3.22976e-04 3.52384e-01 - 4 sg_p3 3.39190e+01 1.92936e+00 6.89997e-05 -6.45190e-01 - 5 sg_p4 7.24773e-01 4.89776e-02 7.40132e-04 -9.87850e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.355e-01 -1.368e-01 -9.181e-02 -4.464e-01 -1.164e-02 - -1.368e-01 4.459e-01 -4.412e-01 9.559e-01 3.085e-02 - -9.181e-02 -4.412e-01 2.239e+00 -1.168e+00 -3.968e-02 - -4.464e-01 9.559e-01 -1.168e+00 3.724e+00 9.043e-02 - -1.164e-02 3.085e-02 -3.968e-02 9.043e-02 2.749e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.62849 1.000 -0.422 -0.126 -0.477 -0.457 - 2 0.88775 -0.422 1.000 -0.442 0.742 0.881 - 3 0.64733 -0.126 -0.442 1.000 -0.405 -0.506 - 4 0.90281 -0.477 0.742 -0.405 1.000 0.894 - 5 0.95565 -0.457 0.881 -0.506 0.894 1.000 -600 -607.915 +- 0.485233 -17.2285 +- 0.66755 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=21050.7 FROM MIGRAD STATUS=INITIATE 55 CALLS 56 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 0.00000e+00 -2.45953e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 7.88326e+02 - 3 sg_p2 5.75000e+02 1.50000e+01 0.00000e+00 -2.88080e+02 - 4 sg_p3 4.00581e+01 1.20000e+01 8.28277e-02 -3.70864e-02 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -1.79687e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20847.8 FROM MIGRAD STATUS=CONVERGED 330 CALLS 331 TOTAL - EDM=4.39005e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05123e+02 4.29424e-01 7.69738e-04 2.63328e-01 - 2 sg_p1 1.74149e+01 6.34617e-01 1.82227e-03 -3.70681e-04 - 3 sg_p2 5.99738e+02 1.64211e+00 1.95138e-03 3.85233e-02 - 4 sg_p3 3.56367e+01 2.67089e+00 2.08773e-03 1.43347e-02 - 5 sg_p4 7.87200e-01 4.88787e-02 1.01395e-02 6.65902e-04 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.844e-01 -1.102e-01 -1.471e-01 -5.033e-01 -9.306e-03 - -1.102e-01 4.030e-01 -3.214e-01 1.334e+00 2.833e-02 - -1.471e-01 -3.214e-01 2.697e+00 -1.302e+00 -2.911e-02 - -5.033e-01 1.334e+00 -1.302e+00 7.141e+00 1.227e-01 - -9.306e-03 2.833e-02 -2.911e-02 1.227e-01 2.499e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.58762 1.000 -0.404 -0.209 -0.439 -0.433 - 2 0.89717 -0.404 1.000 -0.308 0.786 0.893 - 3 0.53678 -0.209 -0.308 1.000 -0.297 -0.355 - 4 0.92270 -0.439 0.786 -0.297 1.000 0.918 - 5 0.96074 -0.433 0.893 -0.355 0.918 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20847.8 FROM HESSE STATUS=OK 31 CALLS 362 TOTAL - EDM=4.37345e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.05123e+02 4.25719e-01 1.53948e-04 2.72521e-03 - 2 sg_p1 1.74149e+01 6.21639e-01 7.28909e-05 -3.77714e-01 - 3 sg_p2 5.99738e+02 1.64785e+00 3.90277e-04 3.36136e-01 - 4 sg_p3 3.56367e+01 2.61918e+00 8.35094e-05 -6.09822e-01 - 5 sg_p4 7.87200e-01 4.78840e-02 4.05579e-04 -4.31980e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.812e-01 -1.028e-01 -1.491e-01 -4.715e-01 -8.683e-03 - -1.028e-01 3.866e-01 -3.221e-01 1.267e+00 2.701e-02 - -1.491e-01 -3.221e-01 2.716e+00 -1.312e+00 -2.930e-02 - -4.715e-01 1.267e+00 -1.312e+00 6.867e+00 1.173e-01 - -8.683e-03 2.701e-02 -2.930e-02 1.173e-01 2.394e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.57780 1.000 -0.388 -0.212 -0.423 -0.417 - 2 0.89257 -0.388 1.000 -0.314 0.777 0.888 - 3 0.54137 -0.212 -0.314 1.000 -0.304 -0.363 - 4 0.91948 -0.423 0.777 -0.304 1.000 0.915 - 5 0.95897 -0.417 0.888 -0.363 0.915 1.000 -600 -605.123 +- 0.425719 -17.4149 +- 0.621639 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=20832.1 FROM MIGRAD STATUS=INITIATE 35 CALLS 36 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 0.00000e+00 -4.10122e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 7.39759e+02 - 3 sg_p2 5.75000e+02 1.50000e+01 0.00000e+00 -1.41911e+02 - 4 sg_p3 5.22092e+01 1.20000e+01 -3.01040e-01 -3.82741e+00 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -1.79614e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20660.5 FROM MIGRAD STATUS=CONVERGED 248 CALLS 249 TOTAL - EDM=2.70998e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.06501e+02 4.51807e-01 7.97409e-04 -7.03207e-02 - 2 sg_p1 1.77334e+01 6.52405e-01 1.87706e-03 -1.65059e-02 - 3 sg_p2 5.99469e+02 1.79002e+00 1.94437e-03 -5.75168e-02 - 4 sg_p3 3.61659e+01 2.58390e+00 2.08852e-03 2.55527e-02 - 5 sg_p4 7.77016e-01 4.86366e-02 1.06632e-02 -1.67483e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.041e-01 -1.198e-01 -9.305e-02 -5.364e-01 -9.937e-03 - -1.198e-01 4.259e-01 -5.231e-01 1.301e+00 2.891e-02 - -9.305e-02 -5.231e-01 3.205e+00 -1.947e+00 -4.507e-02 - -5.364e-01 1.301e+00 -1.947e+00 6.683e+00 1.171e-01 - -9.937e-03 2.891e-02 -4.507e-02 1.171e-01 2.483e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.60028 1.000 -0.406 -0.115 -0.459 -0.441 - 2 0.89400 -0.406 1.000 -0.448 0.771 0.889 - 3 0.63123 -0.115 -0.448 1.000 -0.421 -0.505 - 4 0.91499 -0.459 0.771 -0.421 1.000 0.909 - 5 0.95914 -0.441 0.889 -0.505 0.909 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20660.5 FROM HESSE STATUS=OK 31 CALLS 280 TOTAL - EDM=2.68748e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.06501e+02 4.47624e-01 1.59482e-04 3.33576e-02 - 2 sg_p1 1.77334e+01 6.37778e-01 7.50826e-05 -3.57025e-01 - 3 sg_p2 5.99469e+02 1.79219e+00 3.88875e-04 3.32337e-01 - 4 sg_p3 3.61659e+01 2.52790e+00 8.35409e-05 -5.99103e-01 - 5 sg_p4 7.77016e-01 4.75332e-02 4.26528e-04 -5.08149e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.004e-01 -1.112e-01 -1.007e-01 -5.017e-01 -9.233e-03 - -1.112e-01 4.070e-01 -5.109e-01 1.227e+00 2.742e-02 - -1.007e-01 -5.109e-01 3.213e+00 -1.905e+00 -4.423e-02 - -5.017e-01 1.227e+00 -1.905e+00 6.396e+00 1.113e-01 - -9.233e-03 2.742e-02 -4.423e-02 1.113e-01 2.366e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.59019 1.000 -0.389 -0.126 -0.443 -0.424 - 2 0.88878 -0.389 1.000 -0.447 0.760 0.884 - 3 0.63238 -0.126 -0.447 1.000 -0.420 -0.507 - 4 0.91099 -0.443 0.760 -0.420 1.000 0.904 - 5 0.95708 -0.424 0.884 -0.507 0.904 1.000 -600 -606.501 +- 0.447624 -17.7334 +- 0.637778 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=21392 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 0.00000e+00 -4.65951e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 8.31252e+02 - 3 sg_p2 5.75000e+02 1.50000e+01 0.00000e+00 -2.10216e+02 - 4 sg_p3 4.66234e+01 1.20000e+01 -4.00208e-01 -5.49343e-01 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -1.97937e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21176.8 FROM MIGRAD STATUS=CONVERGED 269 CALLS 270 TOTAL - EDM=8.82705e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.06547e+02 4.53645e-01 7.81411e-04 -3.17610e-01 - 2 sg_p1 1.71843e+01 6.39064e-01 1.86421e-03 -1.15499e-01 - 3 sg_p2 5.99736e+02 1.60177e+00 1.78744e-03 -2.73906e-01 - 4 sg_p3 3.43642e+01 2.28667e+00 1.90587e-03 -2.99641e-02 - 5 sg_p4 7.67062e-01 4.97568e-02 1.14541e-02 2.14855e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.058e-01 -1.334e-01 -7.609e-02 -5.233e-01 -1.147e-02 - -1.334e-01 4.086e-01 -4.283e-01 1.132e+00 2.917e-02 - -7.609e-02 -4.283e-01 2.566e+00 -1.449e+00 -3.913e-02 - -5.233e-01 1.132e+00 -1.449e+00 5.233e+00 1.065e-01 - -1.147e-02 2.917e-02 -3.913e-02 1.065e-01 2.619e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.63674 1.000 -0.460 -0.105 -0.504 -0.494 - 2 0.89676 -0.460 1.000 -0.418 0.774 0.892 - 3 0.61833 -0.105 -0.418 1.000 -0.395 -0.477 - 4 0.91625 -0.504 0.774 -0.395 1.000 0.910 - 5 0.96016 -0.494 0.892 -0.477 0.910 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21176.8 FROM HESSE STATUS=OK 31 CALLS 301 TOTAL - EDM=8.5019e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.06547e+02 4.46977e-01 1.56282e-04 3.43777e-02 - 2 sg_p1 1.71843e+01 6.16688e-01 3.72843e-04 -3.92793e-01 - 3 sg_p2 5.99736e+02 1.59872e+00 3.57489e-04 3.36110e-01 - 4 sg_p3 3.43642e+01 2.20755e+00 7.62346e-05 -6.35935e-01 - 5 sg_p4 7.67062e-01 4.79510e-02 4.58166e-04 -5.85865e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.998e-01 -1.203e-01 -8.781e-02 -4.759e-01 -1.035e-02 - -1.203e-01 3.805e-01 -4.057e-01 1.032e+00 2.680e-02 - -8.781e-02 -4.057e-01 2.556e+00 -1.372e+00 -3.733e-02 - -4.759e-01 1.032e+00 -1.372e+00 4.877e+00 9.814e-02 - -1.035e-02 2.680e-02 -3.733e-02 9.814e-02 2.422e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.62255 1.000 -0.436 -0.123 -0.482 -0.470 - 2 0.88865 -0.436 1.000 -0.411 0.757 0.883 - 3 0.61643 -0.123 -0.411 1.000 -0.389 -0.474 - 4 0.90983 -0.482 0.757 -0.389 1.000 0.903 - 5 0.95684 -0.470 0.883 -0.474 0.903 1.000 -600 -606.547 +- 0.446977 -17.1843 +- 0.616688 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=19809.1 FROM MIGRAD STATUS=INITIATE 40 CALLS 41 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 0.00000e+00 -3.98661e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 7.36177e+02 - 3 sg_p2 5.75000e+02 1.50000e+01 0.00000e+00 -1.54710e+02 - 4 sg_p3 5.02879e+01 1.20000e+01 -3.34752e-01 5.32152e-01 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -1.78206e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19628.4 FROM MIGRAD STATUS=CONVERGED 302 CALLS 303 TOTAL - EDM=4.9436e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.06510e+02 4.72659e-01 7.94140e-04 3.55653e-02 - 2 sg_p1 1.74543e+01 6.69157e-01 1.87997e-03 6.61865e-02 - 3 sg_p2 5.99840e+02 1.69608e+00 1.82702e-03 -5.88858e-02 - 4 sg_p3 3.49426e+01 2.46655e+00 1.95035e-03 5.14767e-02 - 5 sg_p4 7.67921e-01 5.16557e-02 1.14960e-02 -1.52477e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.234e-01 -1.390e-01 -9.895e-02 -5.678e-01 -1.194e-02 - -1.390e-01 4.481e-01 -4.692e-01 1.277e+00 3.171e-02 - -9.895e-02 -4.692e-01 2.877e+00 -1.630e+00 -4.248e-02 - -5.678e-01 1.277e+00 -1.630e+00 6.089e+00 1.197e-01 - -1.194e-02 3.171e-02 -4.248e-02 1.197e-01 2.834e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.62474 1.000 -0.439 -0.123 -0.487 -0.474 - 2 0.89528 -0.439 1.000 -0.413 0.773 0.890 - 3 0.61443 -0.123 -0.413 1.000 -0.390 -0.470 - 4 0.91716 -0.487 0.773 -0.390 1.000 0.911 - 5 0.96008 -0.474 0.890 -0.470 0.911 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19628.4 FROM HESSE STATUS=OK 31 CALLS 334 TOTAL - EDM=4.86529e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.06510e+02 4.66252e-01 1.58828e-04 3.35643e-02 - 2 sg_p1 1.74543e+01 6.46362e-01 3.75994e-04 -3.75146e-01 - 3 sg_p2 5.99840e+02 1.69368e+00 3.65403e-04 3.37581e-01 - 4 sg_p3 3.49426e+01 2.38364e+00 7.80141e-05 -6.24005e-01 - 5 sg_p4 7.67921e-01 4.98421e-02 4.59842e-04 -5.79010e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.174e-01 -1.255e-01 -1.108e-01 -5.172e-01 -1.078e-02 - -1.255e-01 4.180e-01 -4.460e-01 1.166e+00 2.921e-02 - -1.108e-01 -4.460e-01 2.869e+00 -1.550e+00 -4.066e-02 - -5.172e-01 1.166e+00 -1.550e+00 5.686e+00 1.105e-01 - -1.078e-02 2.921e-02 -4.066e-02 1.105e-01 2.627e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.61109 1.000 -0.416 -0.140 -0.465 -0.451 - 2 0.88728 -0.416 1.000 -0.407 0.756 0.881 - 3 0.61300 -0.140 -0.407 1.000 -0.384 -0.468 - 4 0.91100 -0.465 0.756 -0.384 1.000 0.904 - 5 0.95686 -0.451 0.881 -0.468 0.904 1.000 -600 -606.51 +- 0.466252 -17.4543 +- 0.646362 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=22637.7 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 0.00000e+00 -4.51042e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 8.38232e+02 - 3 sg_p2 5.75000e+02 1.50000e+01 0.00000e+00 -1.64920e+02 - 4 sg_p3 5.14784e+01 1.20000e+01 -3.13819e-01 -6.61183e-01 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -2.02962e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=22433.8 FROM MIGRAD STATUS=CONVERGED 257 CALLS 258 TOTAL - EDM=0.000145317 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.06503e+02 4.37713e-01 7.91387e-04 5.04043e-01 - 2 sg_p1 1.75196e+01 6.16845e-01 1.86865e-03 2.85731e-01 - 3 sg_p2 5.99868e+02 1.60326e+00 1.87702e-03 4.97177e-02 - 4 sg_p3 3.53013e+01 2.35156e+00 2.00555e-03 -3.27558e-01 - 5 sg_p4 7.72033e-01 4.73986e-02 1.10014e-02 3.49818e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.916e-01 -1.162e-01 -9.469e-02 -4.921e-01 -9.894e-03 - -1.162e-01 3.807e-01 -3.958e-01 1.117e+00 2.658e-02 - -9.469e-02 -3.958e-01 2.571e+00 -1.422e+00 -3.558e-02 - -4.921e-01 1.117e+00 -1.422e+00 5.534e+00 1.039e-01 - -9.894e-03 2.658e-02 -3.558e-02 1.039e-01 2.357e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.61676 1.000 -0.430 -0.135 -0.478 -0.466 - 2 0.89248 -0.430 1.000 -0.400 0.769 0.887 - 3 0.60372 -0.135 -0.400 1.000 -0.377 -0.457 - 4 0.91576 -0.478 0.769 -0.377 1.000 0.910 - 5 0.95892 -0.466 0.887 -0.457 0.910 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=22433.8 FROM HESSE STATUS=OK 31 CALLS 289 TOTAL - EDM=0.000143345 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.06503e+02 4.32589e-01 1.58277e-04 3.34012e-02 - 2 sg_p1 1.75196e+01 5.99409e-01 3.73730e-04 -3.70891e-01 - 3 sg_p2 5.99868e+02 1.60399e+00 3.75403e-04 3.37969e-01 - 4 sg_p3 3.53013e+01 2.28660e+00 4.01111e-04 -6.16657e-01 - 5 sg_p4 7.72033e-01 4.60130e-02 4.40057e-04 -5.46595e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.871e-01 -1.064e-01 -1.024e-01 -4.539e-01 -9.063e-03 - -1.064e-01 3.595e-01 -3.824e-01 1.036e+00 2.483e-02 - -1.024e-01 -3.824e-01 2.573e+00 -1.376e+00 -3.459e-02 - -4.539e-01 1.036e+00 -1.376e+00 5.232e+00 9.734e-02 - -9.063e-03 2.483e-02 -3.459e-02 9.734e-02 2.215e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.60467 1.000 -0.410 -0.148 -0.459 -0.445 - 2 0.88572 -0.410 1.000 -0.398 0.756 0.880 - 3 0.60420 -0.148 -0.398 1.000 -0.375 -0.458 - 4 0.91066 -0.459 0.756 -0.375 1.000 0.904 - 5 0.95622 -0.445 0.880 -0.458 0.904 1.000 -600 -606.503 +- 0.432589 -17.5196 +- 0.599409 -35.9 fb^{-1} (13 TeV) -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 81 has zero error, setting residual to zero - Uncertainty on sg_p0 = 606.507 +- 0.449294 (stat) - 1.38396 + 1.4085 (syst); -1.40207/+1.4263 (total) - Uncertainty on sg_p1 = 17.4848 +- 0.623965 (stat) - 0.300472 + 0.248681 (syst); -0.433147/+0.398968 (total) - Uncertainty on sg_p2 = 599.858 +- 1.64758 (stat) - 0.389024 + 1.02722 (syst); -0.911028/+1.31674 (total) - Uncertainty on sg_p3 = 35.1205 +- 2.33871 (stat) - 1.20153 + 1.04536 (syst); -1.67663/+1.56849 (total) - Uncertainty on sg_p4 = 0.769875 +- 0.048015 (stat) - 0.0451018 + 0.0173244 (syst); -0.0510934/+0.0296057 (total) - === Baseline plot ===
- norm = 1712.99 -JEC lnN 1.00275 - -JER lnN 1.01626 - -btag lnN 1.06714 - -sg_p0 param 606.507 -1.40207/+1.4263 -sg_p1 param 17.4848 -0.433147/+0.398968 -sg_p2 param 599.858 -0.911028/+1.31674 -sg_p3 param 35.1205 -1.67663/+1.56849 -sg_p4 param 0.769875 -0.0510934/+0.0296057 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_600_novo_285_624/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_600_novo_285_624/data_bkg.log deleted file mode 100644 index 1be2f6e..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_600_novo_285_624/data_bkg.log +++ /dev/null @@ -1,717 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [250,330] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [250,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63590.5 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.69443e-02 5.09000e-01 0.00000e+00 -7.94680e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -8.91126e+00 - 3 par_crystal_2 2.62020e+02 4.00000e+00 1.01181e-01 -1.53451e+00 - 4 par_crystal_3 1.65000e+01 2.70000e+00 0.00000e+00 7.46021e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM MIGRAD STATUS=CONVERGED 482 CALLS 483 TOTAL - EDM=0.000814822 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 4.40594e-01 4.43750e-02 2.48631e-03 2.88668e-01 - 2 par_crystal_1 9.82994e-01 6.48221e-01 2.14269e-02 -5.28345e-03 - 3 par_crystal_2 2.71542e+02 7.41091e-01 7.20683e-03 -9.27818e-02 - 4 par_crystal_3 2.87224e+01 2.18588e+00 3.97473e-02 -6.99277e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.970e-03 -2.333e-02 -5.115e-04 1.392e-02 - -2.333e-02 4.358e-01 4.870e-03 -8.391e-01 - -5.115e-04 4.870e-03 5.496e-01 4.381e-01 - 1.392e-02 -8.391e-01 4.381e-01 5.029e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.88989 1.000 -0.796 -0.016 0.140 - 2 0.92807 -0.796 1.000 0.010 -0.567 - 3 0.40865 -0.016 0.010 1.000 0.264 - 4 0.80948 0.140 -0.567 0.264 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM HESSE STATUS=OK 23 CALLS 506 TOTAL - EDM=0.000711421 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 4.40594e-01 4.64698e-02 4.97262e-04 -9.80558e-01 - 2 par_crystal_1 9.82994e-01 6.55195e-01 8.57075e-04 -6.65795e-01 - 3 par_crystal_2 2.71542e+02 7.38644e-01 1.44137e-03 6.15159e-01 - 4 par_crystal_3 2.87224e+01 2.03002e+00 1.58989e-03 -1.05570e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.160e-03 -2.581e-02 -1.109e-03 1.530e-02 - -2.581e-02 4.456e-01 2.508e-02 -7.234e-01 - -1.109e-03 2.508e-02 5.460e-01 3.687e-01 - 1.530e-02 -7.234e-01 3.687e-01 4.306e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.90014 1.000 -0.832 -0.032 0.159 - 2 0.92960 -0.832 1.000 0.051 -0.522 - 3 0.40186 -0.032 0.051 1.000 0.240 - 4 0.77207 0.159 -0.522 0.240 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63714.2 FROM MIGRAD STATUS=INITIATE 33 CALLS 34 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 2.63122e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -5.45805e+02 - 3 par_gaus_exp_2 6.67498e-01 3.05000e-01 -6.37370e-01 7.03093e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM MIGRAD STATUS=CONVERGED 131 CALLS 132 TOTAL - EDM=6.15917e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.71558e+02 8.05096e-01 6.82817e-03 6.24407e-02 - 2 par_gaus_exp_1 3.06822e+01 1.83071e+00 1.43475e-02 1.11468e-02 - 3 par_gaus_exp_2 3.82770e-01 2.42284e-02 3.05774e-03 -9.77170e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.486e-01 -6.079e-01 -1.588e-03 - -6.079e-01 3.370e+00 3.082e-02 - -1.588e-03 3.082e-02 5.871e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.49876 1.000 -0.411 -0.081 - 2 0.77898 -0.411 1.000 0.693 - 3 0.72797 -0.081 0.693 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM HESSE STATUS=OK 16 CALLS 148 TOTAL - EDM=6.13964e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.71558e+02 8.14214e-01 2.73127e-04 -4.35760e-01 - 2 par_gaus_exp_1 3.06822e+01 1.86973e+00 5.73898e-04 4.10264e-01 - 3 par_gaus_exp_2 3.82770e-01 2.45149e-02 1.22310e-04 -8.97531e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.634e-01 -6.630e-01 -2.137e-03 - -6.630e-01 3.516e+00 3.227e-02 - -2.137e-03 3.227e-02 6.011e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.51526 1.000 -0.434 -0.107 - 2 0.78935 -0.434 1.000 0.702 - 3 0.73544 -0.107 0.702 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,625] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.33953 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.33953) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - ... (remaining 126 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.734607 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.734607) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=317.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=327.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=332.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=342.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=347.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=352.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=357.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=362.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=367.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - ... (remaining 53 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0734613 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0734613 - - FCN=103487 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57093e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.56195e+03 - 3 par_novo_2 -1.33668e+00 2.00000e+01 0.00000e+00 1.53931e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM MIGRAD STATUS=CONVERGED 127 CALLS 128 TOTAL - EDM=3.4171e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.43423e+01 1.81223e-01** at limit ** - 2 par_novo_1 3.86596e+01 2.27294e+00 4.95847e-03 -1.04123e-02 - 3 par_novo_2 -1.27520e+00 7.07738e-02 3.70975e-05 -1.26322e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.231e-09 -8.491e-07 -8.580e-07 - -8.491e-07 5.181e+00 1.547e-01 - -8.580e-07 1.547e-01 5.009e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.53332 1.000 -0.005 -0.154 - 2 0.97096 -0.005 1.000 0.960 - 3 0.97165 -0.154 0.960 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM HESSE STATUS=OK 20 CALLS 148 TOTAL - EDM=3.43726e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.40246e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.86596e+01 2.31421e+00 1.98339e-04 4.46530e-01 - 3 par_novo_2 -1.27520e+00 7.22930e-02 1.48390e-06 -1.27523e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 5.974e-09 2.819e-05 -1.296e-06 - 2.819e-05 5.372e+00 1.502e-01 - -1.296e-06 1.502e-01 5.226e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.85665 1.000 0.157 -0.232 - 2 0.97200 0.157 1.000 0.897 - 3 0.97285 -0.232 0.897 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107513 FROM MIGRAD STATUS=INITIATE 54 CALLS 55 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 1.39168e+03 - 2 par_crystal_1_1 7.96220e-02 5.09000e-01 0.00000e+00 5.33770e+03 - 3 par_crystal_1_2 2.56879e+02 4.00000e+00 -1.56713e-01 -1.96669e+01 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 -8.45862e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.5057e-02 2.3309e-03 4.9678e-02 3.9730e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.029030 TO DIAGONAL. - FCN=103250 FROM MIGRAD STATUS=CONVERGED 436 CALLS 437 TOTAL - EDM=3.52757e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 4.45574e-02 4.37117e-03 3.09465e-04 -4.28177e+00 - 2 par_crystal_1_1 4.36914e+00 6.24106e-01 1.80400e-02 6.63742e-02 - 3 par_crystal_1_2 2.71531e+02 3.44700e+01 5.81266e-02 2.25694e-02 - 4 par_crystal_1_3 3.37290e+00 2.71702e-01 3.13791e-03 -4.26197e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.911e-05 -1.221e-03 2.089e-01 3.572e-04 - -1.221e-03 4.065e-01 -2.690e+01 -6.822e-02 - 2.089e-01 -2.690e+01 3.429e+03 1.167e+01 - 3.572e-04 -6.822e-02 1.167e+01 7.401e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99136 1.000 -0.438 0.816 0.300 - 2 0.97307 -0.438 1.000 -0.720 -0.393 - 3 0.99735 0.816 -0.720 1.000 0.733 - 4 0.98716 0.300 -0.393 0.733 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -8.0089e-04 4.0193e-04 7.1213e-02 3.9292e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.004730 TO DIAGONAL. - FCN=103250 FROM HESSE STATUS=NOT POSDEF 23 CALLS 460 TOTAL - EDM=3.56127e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 4.45574e-02 7.42610e-03 6.18930e-05 -1.40582e+00 - 2 par_crystal_1_1 4.36914e+00 4.67550e-01 7.21602e-04 -3.93511e+00 - 3 par_crystal_1_2 2.71531e+02 3.29814e+01 2.32506e-03 -3.75607e+00 - 4 par_crystal_1_3 3.37290e+00 5.01685e-01 1.25517e-04 -1.80638e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.515e-05 2.851e-04 2.343e-01 -1.699e-03 - 2.851e-04 2.238e-01 -2.528e+00 1.548e-02 - 2.343e-01 -2.528e+00 2.967e+03 1.176e+01 - -1.699e-03 1.548e-02 1.176e+01 2.538e-01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99694 1.000 0.081 0.579 -0.454 - 2 0.94927 0.081 1.000 -0.098 0.065 - 3 0.99687 0.579 -0.098 1.000 0.429 - 4 0.99618 -0.454 0.065 0.429 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 14211 - Background number of gaus_exp_252_330 = 14211 - Background number of novo_285_624 = 17618.3 - Background number of crystal_1_285_624 = 17618.3 - Background number of gaus_bern_285_624 = 17618.3 - Background number of landau_285_624 = 17618.3 -par_crystal_0 param 0.440594 0.0464698 -par_crystal_1 param 0.982994 0.655195 -par_crystal_2 param 271.542 0.738644 -par_crystal_3 param 28.7224 2.03002 -par_crystal_1_0 param 0.0445574 0.0074261 -par_crystal_1_1 param 4.36914 0.46755 -par_crystal_1_2 param 271.531 32.9814 -par_crystal_1_3 param 3.3729 0.501685 -par_gaus_exp_0 param 271.558 0.814214 -par_gaus_exp_1 param 30.6822 1.86973 -par_gaus_exp_2 param 0.38277 0.0245149 -par_novo_0 param 250 34.0246 -par_novo_1 param 38.6596 2.31421 -par_novo_2 param -1.2752 0.072293 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_600_novo_285_624/datacard_600_novo_285_624.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_600_novo_285_624/datacard_600_novo_285_624.txt deleted file mode 100644 index 49b85fb..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_600_novo_285_624/datacard_600_novo_285_624.txt +++ /dev/null @@ -1,29 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_600.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_novo_285_624.root HbbHbb:f_novo -shapes data_obs HbbHbb w_background_novo_285_624.root HbbHbb:data_obs_novo_285_624 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 1712.99 17618.3 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06714 - -JER lnN 1.01626 - -JEC lnN 1.00275 - -trigger lnN 1.10 - -sg_p0 param 606.507 -1.40207/+1.4263 -sg_p1 param 17.4848 -0.433147/+0.398968 -sg_p2 param 599.858 -0.911028/+1.31674 -sg_p3 param 35.1205 -1.67663/+1.56849 -sg_p4 param 0.769875 -0.0510934/+0.0296057 -par_novo_0 param 250 34.0246 -par_novo_1 param 38.6596 2.31421 -par_novo_2 param -1.2752 0.072293 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_600_novo_285_624/signal600_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_600_novo_285_624/signal600_sig.log deleted file mode 100644 index 3215894..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_600_novo_285_624/signal600_sig.log +++ /dev/null @@ -1,843 +0,0 @@ - -Processing test.c... -nSignal_init = 100000 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=24280 FROM MIGRAD STATUS=INITIATE 43 CALLS 44 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 0.00000e+00 3.58677e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 -1.18368e+03 - 3 sg_p2 5.75000e+02 1.50000e+01 0.00000e+00 1.42384e+03 - 4 sg_p3 4.21820e+01 1.20000e+01 -4.82092e-01 -6.03718e-01 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 7.69925e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23075.2 FROM MIGRAD STATUS=CONVERGED 442 CALLS 443 TOTAL - EDM=3.37608e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.88137e+02 2.17401e+00 1.57187e-03 5.45097e-02 - 2 sg_p1 2.90958e+01 6.86009e-01 3.13675e-03 7.79119e-02 - 3 sg_p2 5.59880e+02 5.00457e+00 1.98829e-03 -7.62283e-02 - 4 sg_p3 3.62716e+01 3.18321e+00 2.14823e-03 9.85100e-02 - 5 sg_p4 7.00002e-01 2.12576e-01 1.12952e-01 2.90847e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 4.731e+00 -1.030e+00 -9.979e+00 -6.388e+00 -2.483e-04 - -1.030e+00 4.709e-01 2.213e+00 1.252e+00 1.258e-04 - -9.979e+00 2.213e+00 2.508e+01 1.471e+01 -7.877e-04 - -6.388e+00 1.252e+00 1.471e+01 1.015e+01 1.142e-06 - -2.483e-04 1.258e-04 -7.877e-04 1.142e-06 1.239e-06 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.95782 1.000 -0.690 -0.916 -0.922 -0.103 - 2 0.73673 -0.690 1.000 0.644 0.573 0.165 - 3 0.96060 -0.916 0.644 1.000 0.922 -0.141 - 4 0.94775 -0.922 0.573 0.922 1.000 0.000 - 5 0.62405 -0.103 0.165 -0.141 0.000 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23075.2 FROM HESSE STATUS=OK 35 CALLS 478 TOTAL - EDM=0.000121989 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.88137e+02 3.29842e+00 3.14373e-04 -3.84102e-01 - 2 sg_p1 2.90958e+01 1.12225e+00 1.25470e-04 3.45999e-01 - 3 sg_p2 5.59880e+02 4.99521e+00 3.97658e-04 -2.02989e-01 - 4 sg_p3 3.62716e+01 3.76792e+00 8.59293e-05 -5.96971e-01 - 5 sg_p4 7.00002e-01 2.43034e-01 4.60846e-01 -1.56553e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.090e+01 -3.238e+00 -9.781e+00 -1.140e+01 -3.564e-03 - -3.238e+00 1.262e+00 2.139e+00 3.042e+00 1.285e-03 - -9.781e+00 2.139e+00 2.499e+01 1.455e+01 -2.935e-04 - -1.140e+01 3.042e+00 1.455e+01 1.422e+01 2.841e-03 - -3.564e-03 1.285e-03 -2.935e-04 2.841e-03 2.063e-06 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.98192 1.000 -0.873 -0.593 -0.915 -0.752 - 2 0.91068 -0.873 1.000 0.381 0.718 0.797 - 3 0.96045 -0.593 0.381 1.000 0.772 -0.041 - 4 0.96302 -0.915 0.718 0.772 1.000 0.524 - 5 0.96908 -0.752 0.797 -0.041 0.524 1.000 -600 -588.137 +- 3.29842 -29.0958 +- 1.12225 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=23767.1 FROM MIGRAD STATUS=INITIATE 42 CALLS 43 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 0.00000e+00 3.17349e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 -1.02365e+03 - 3 sg_p2 5.75000e+02 1.50000e+01 0.00000e+00 1.16298e+03 - 4 sg_p3 4.39845e+01 1.20000e+01 -4.48474e-01 4.93391e+01 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 6.61691e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=22821.9 FROM MIGRAD STATUS=CONVERGED 329 CALLS 330 TOTAL - EDM=4.72305e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.92012e+02 1.51134e+00 1.46358e-03 1.14647e-01 - 2 sg_p1 2.81327e+01 6.59039e-01 2.96171e-03 -1.30179e-01 - 3 sg_p2 5.58427e+02 3.47970e+00 1.93226e-03 6.71315e-02 - 4 sg_p3 3.58696e+01 2.45943e+00 2.12007e-03 3.27001e-02 - 5 sg_p4 7.00002e-01 6.59449e-02 8.47138e-02 5.69759e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.285e+00 -7.049e-01 -4.524e+00 -3.253e+00 -8.515e-05 - -7.049e-01 4.346e-01 1.539e+00 9.868e-01 4.573e-05 - -4.524e+00 1.539e+00 1.212e+01 7.552e+00 -3.909e-04 - -3.253e+00 9.868e-01 7.552e+00 6.054e+00 -5.215e-05 - -8.515e-05 4.573e-05 -3.909e-04 -5.215e-05 5.765e-07 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.91672 1.000 -0.707 -0.860 -0.875 -0.074 - 2 0.73205 -0.707 1.000 0.671 0.608 0.091 - 3 0.92123 -0.860 0.671 1.000 0.882 -0.148 - 4 0.91302 -0.875 0.608 0.882 1.000 -0.028 - 5 0.44297 -0.074 0.091 -0.148 -0.028 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=22821.9 FROM HESSE STATUS=OK 37 CALLS 367 TOTAL - EDM=3.83352e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.92012e+02 1.96656e+00 2.92716e-04 -2.92785e-01 - 2 sg_p1 2.81327e+01 8.71252e-01 5.92343e-04 2.84598e-01 - 3 sg_p2 5.58427e+02 3.77659e+00 3.86452e-04 -2.22807e-01 - 4 sg_p3 3.58696e+01 2.54070e+00 8.48026e-05 -6.05095e-01 - 5 sg_p4 7.00002e-01 1.87580e-01 5.00000e-01 -1.56561e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.870e+00 -1.423e+00 -2.748e+00 -4.031e+00 -1.028e-03 - -1.423e+00 7.598e-01 7.297e-01 1.337e+00 4.676e-04 - -2.748e+00 7.297e-01 1.428e+01 6.747e+00 -1.238e-03 - -4.031e+00 1.337e+00 6.747e+00 6.461e+00 4.747e-04 - -1.028e-03 4.676e-04 -1.238e-03 4.747e-04 6.718e-07 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.95171 1.000 -0.830 -0.370 -0.806 -0.637 - 2 0.85706 -0.830 1.000 0.222 0.604 0.654 - 3 0.93356 -0.370 0.222 1.000 0.703 -0.400 - 4 0.91874 -0.806 0.604 0.703 1.000 0.228 - 5 0.94267 -0.637 0.654 -0.400 0.228 1.000 -600 -592.012 +- 1.96656 -28.1327 +- 0.871252 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=24394 FROM MIGRAD STATUS=INITIATE 42 CALLS 43 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 0.00000e+00 3.94278e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 -1.29909e+03 - 3 sg_p2 5.75000e+02 1.50000e+01 0.00000e+00 1.67228e+03 - 4 sg_p3 4.09440e+01 1.20000e+01 -5.05526e-01 -7.57306e+01 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 8.58548e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=22933.1 FROM MIGRAD STATUS=CONVERGED 638 CALLS 639 TOTAL - EDM=8.42969e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.78603e+02 5.64911e-01 1.40473e-03 3.72907e-01 - 2 sg_p1 3.20881e+01 4.06669e-01 2.67756e-03 1.44036e-01 - 3 sg_p2 5.00002e+02 1.10618e+02 1.52750e-01 -2.88106e-03 - 4 sg_p3 6.94039e+01 2.89324e+01 3.44374e-02 -1.04731e-02 - 5 sg_p4 9.76772e-01 7.03168e-03 5.92623e-03 -8.42769e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.191e-01 -1.408e-02 3.587e-02 -7.029e+00 1.364e-04 - -1.408e-02 1.654e-01 -3.289e-02 -2.769e+00 1.295e-03 - 3.587e-02 -3.289e-02 6.513e-01 -1.947e+00 -1.609e-03 - -7.029e+00 -2.769e+00 -1.947e+00 9.115e+02 -1.280e-01 - 1.364e-04 1.295e-03 -1.609e-03 -1.280e-01 4.957e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.49930 1.000 -0.061 0.079 -0.412 0.034 - 2 0.46165 -0.061 1.000 -0.100 -0.225 0.452 - 3 0.43169 0.079 -0.100 1.000 -0.080 -0.283 - 4 0.75355 -0.412 -0.225 -0.080 1.000 -0.602 - 5 0.76469 0.034 0.452 -0.283 -0.602 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=22933.1 FROM HESSE STATUS=OK 35 CALLS 674 TOTAL - EDM=8.36581e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.78603e+02 5.65787e-01 2.80946e-04 -6.26852e-01 - 2 sg_p1 3.20881e+01 4.25746e-01 5.35511e-04 5.47427e-01 - 3 sg_p2 5.00002e+02 9.83339e+01 5.00000e-01 -1.57791e+00 - 4 sg_p3 6.94039e+01 2.99669e+01 6.88747e-03 -9.93577e-03 - 5 sg_p4 9.76772e-01 9.53722e-03 1.18525e-03 1.00684e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.201e-01 -1.400e-02 1.487e-02 -7.254e+00 1.740e-04 - -1.400e-02 1.813e-01 -8.069e-02 -3.550e+00 2.110e-03 - 1.487e-02 -8.069e-02 3.935e-01 2.133e+00 -4.095e-03 - -7.254e+00 -3.550e+00 2.133e+00 9.846e+02 -1.706e-01 - 1.740e-04 2.110e-03 -4.095e-03 -1.706e-01 9.139e-05 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.50162 1.000 -0.058 0.042 -0.409 0.032 - 2 0.53111 -0.058 1.000 -0.302 -0.266 0.518 - 3 0.77391 0.042 -0.302 1.000 0.108 -0.683 - 4 0.77455 -0.409 -0.266 0.108 1.000 -0.569 - 5 0.88021 0.032 0.518 -0.683 -0.569 1.000 -600 -578.603 +- 0.565787 -32.0881 +- 0.425746 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=21188 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 0.00000e+00 -4.10915e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 7.89680e+02 - 3 sg_p2 5.75000e+02 1.50000e+01 0.00000e+00 -1.48216e+02 - 4 sg_p3 5.20622e+01 1.20000e+01 -3.03606e-01 1.51172e+00 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -1.90966e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20995.9 FROM MIGRAD STATUS=CONVERGED 266 CALLS 267 TOTAL - EDM=3.97173e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.06507e+02 4.54842e-01 7.93051e-04 2.28694e-01 - 2 sg_p1 1.74848e+01 6.42892e-01 1.87527e-03 -5.26219e-03 - 3 sg_p2 5.99858e+02 1.64781e+00 1.84882e-03 3.91300e-02 - 4 sg_p3 3.51205e+01 2.40944e+00 1.97487e-03 -2.11296e-02 - 5 sg_p4 7.69875e-01 4.95303e-02 1.12811e-02 5.41517e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.069e-01 -1.274e-01 -9.667e-02 -5.293e-01 -1.089e-02 - -1.274e-01 4.136e-01 -4.310e-01 1.196e+00 2.909e-02 - -9.667e-02 -4.310e-01 2.716e+00 -1.523e+00 -3.888e-02 - -5.293e-01 1.196e+00 -1.523e+00 5.810e+00 1.117e-01 - -1.089e-02 2.909e-02 -3.888e-02 1.117e-01 2.589e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.62100 1.000 -0.435 -0.129 -0.483 -0.470 - 2 0.89410 -0.435 1.000 -0.407 0.772 0.889 - 3 0.60904 -0.129 -0.407 1.000 -0.383 -0.464 - 4 0.91664 -0.483 0.772 -0.383 1.000 0.910 - 5 0.95959 -0.470 0.889 -0.464 0.910 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20995.9 FROM HESSE STATUS=OK 31 CALLS 298 TOTAL - EDM=3.94319e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.06507e+02 4.49294e-01 1.58610e-04 3.34861e-02 - 2 sg_p1 1.74848e+01 6.23965e-01 7.50107e-05 -3.73160e-01 - 3 sg_p2 5.99858e+02 1.64758e+00 3.69764e-04 3.37830e-01 - 4 sg_p3 3.51205e+01 2.33871e+00 7.89949e-05 -6.20356e-01 - 5 sg_p4 7.69875e-01 4.80150e-02 4.51245e-04 -5.63520e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.019e-01 -1.162e-01 -1.057e-01 -4.868e-01 -9.943e-03 - -1.162e-01 3.895e-01 -4.147e-01 1.106e+00 2.709e-02 - -1.057e-01 -4.147e-01 2.715e+00 -1.465e+00 -3.762e-02 - -4.868e-01 1.106e+00 -1.465e+00 5.474e+00 1.042e-01 - -9.943e-03 2.709e-02 -3.762e-02 1.042e-01 2.425e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.60859 1.000 -0.414 -0.143 -0.463 -0.449 - 2 0.88716 -0.414 1.000 -0.403 0.757 0.881 - 3 0.60890 -0.143 -0.403 1.000 -0.380 -0.464 - 4 0.91127 -0.463 0.757 -0.380 1.000 0.905 - 5 0.95679 -0.449 0.881 -0.464 0.905 1.000 -600 -606.507 +- 0.449294 -17.4848 +- 0.623965 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=20985 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 2.01358e-01 -6.03053e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 7.30191e+02 - 3 sg_p2 5.75000e+02 1.50000e+01 2.01358e-01 -5.66899e+01 - 4 sg_p3 7.00000e+01 1.20000e+01 2.01358e-01 -3.40682e+00 - 5 sg_p4 8.50000e-01 3.00000e-02 2.01358e-01 -1.90294e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20801.6 FROM MIGRAD STATUS=CONVERGED 278 CALLS 279 TOTAL - EDM=1.57711e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.07915e+02 5.09392e-01 8.36892e-04 -1.25909e-01 - 2 sg_p1 1.72285e+01 7.70692e-01 2.00532e-03 -9.85888e-02 - 3 sg_p2 6.00885e+02 1.55983e+00 1.61488e-03 1.97987e-02 - 4 sg_p3 3.39190e+01 2.23203e+00 1.72499e-03 -5.63339e-02 - 5 sg_p4 7.24773e-01 5.61261e-02 1.85033e-02 4.35514e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.595e-01 -1.965e-01 -2.282e-02 -6.210e-01 -1.671e-02 - -1.965e-01 5.945e-01 -6.118e-01 1.389e+00 4.341e-02 - -2.282e-02 -6.118e-01 2.433e+00 -1.664e+00 -5.404e-02 - -6.210e-01 1.389e+00 -1.664e+00 4.986e+00 1.270e-01 - -1.671e-02 4.341e-02 -5.404e-02 1.270e-01 3.808e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.67158 1.000 -0.500 -0.029 -0.546 -0.531 - 2 0.91709 -0.500 1.000 -0.509 0.807 0.912 - 3 0.68224 -0.029 -0.509 1.000 -0.478 -0.561 - 4 0.92836 -0.546 0.807 -0.478 1.000 0.922 - 5 0.96819 -0.531 0.912 -0.561 0.922 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20801.6 FROM HESSE STATUS=OK 31 CALLS 310 TOTAL - EDM=1.26117e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.07915e+02 4.85233e-01 1.67378e-04 6.48251e-02 - 2 sg_p1 1.72285e+01 6.67550e-01 4.01065e-04 -3.89892e-01 - 3 sg_p2 6.00885e+02 1.49623e+00 3.22976e-04 3.52384e-01 - 4 sg_p3 3.39190e+01 1.92936e+00 6.89997e-05 -6.45190e-01 - 5 sg_p4 7.24773e-01 4.89776e-02 7.40132e-04 -9.87850e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.355e-01 -1.368e-01 -9.181e-02 -4.464e-01 -1.164e-02 - -1.368e-01 4.459e-01 -4.412e-01 9.559e-01 3.085e-02 - -9.181e-02 -4.412e-01 2.239e+00 -1.168e+00 -3.968e-02 - -4.464e-01 9.559e-01 -1.168e+00 3.724e+00 9.043e-02 - -1.164e-02 3.085e-02 -3.968e-02 9.043e-02 2.749e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.62849 1.000 -0.422 -0.126 -0.477 -0.457 - 2 0.88775 -0.422 1.000 -0.442 0.742 0.881 - 3 0.64733 -0.126 -0.442 1.000 -0.405 -0.506 - 4 0.90281 -0.477 0.742 -0.405 1.000 0.894 - 5 0.95565 -0.457 0.881 -0.506 0.894 1.000 -600 -607.915 +- 0.485233 -17.2285 +- 0.66755 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=21050.7 FROM MIGRAD STATUS=INITIATE 55 CALLS 56 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 0.00000e+00 -2.45953e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 7.88326e+02 - 3 sg_p2 5.75000e+02 1.50000e+01 0.00000e+00 -2.88080e+02 - 4 sg_p3 4.00581e+01 1.20000e+01 8.28277e-02 -3.70864e-02 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -1.79687e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20847.8 FROM MIGRAD STATUS=CONVERGED 330 CALLS 331 TOTAL - EDM=4.39005e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05123e+02 4.29424e-01 7.69738e-04 2.63328e-01 - 2 sg_p1 1.74149e+01 6.34617e-01 1.82227e-03 -3.70681e-04 - 3 sg_p2 5.99738e+02 1.64211e+00 1.95138e-03 3.85233e-02 - 4 sg_p3 3.56367e+01 2.67089e+00 2.08773e-03 1.43347e-02 - 5 sg_p4 7.87200e-01 4.88787e-02 1.01395e-02 6.65902e-04 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.844e-01 -1.102e-01 -1.471e-01 -5.033e-01 -9.306e-03 - -1.102e-01 4.030e-01 -3.214e-01 1.334e+00 2.833e-02 - -1.471e-01 -3.214e-01 2.697e+00 -1.302e+00 -2.911e-02 - -5.033e-01 1.334e+00 -1.302e+00 7.141e+00 1.227e-01 - -9.306e-03 2.833e-02 -2.911e-02 1.227e-01 2.499e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.58762 1.000 -0.404 -0.209 -0.439 -0.433 - 2 0.89717 -0.404 1.000 -0.308 0.786 0.893 - 3 0.53678 -0.209 -0.308 1.000 -0.297 -0.355 - 4 0.92270 -0.439 0.786 -0.297 1.000 0.918 - 5 0.96074 -0.433 0.893 -0.355 0.918 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20847.8 FROM HESSE STATUS=OK 31 CALLS 362 TOTAL - EDM=4.37345e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.05123e+02 4.25719e-01 1.53948e-04 2.72521e-03 - 2 sg_p1 1.74149e+01 6.21639e-01 7.28909e-05 -3.77714e-01 - 3 sg_p2 5.99738e+02 1.64785e+00 3.90277e-04 3.36136e-01 - 4 sg_p3 3.56367e+01 2.61918e+00 8.35094e-05 -6.09822e-01 - 5 sg_p4 7.87200e-01 4.78840e-02 4.05579e-04 -4.31980e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.812e-01 -1.028e-01 -1.491e-01 -4.715e-01 -8.683e-03 - -1.028e-01 3.866e-01 -3.221e-01 1.267e+00 2.701e-02 - -1.491e-01 -3.221e-01 2.716e+00 -1.312e+00 -2.930e-02 - -4.715e-01 1.267e+00 -1.312e+00 6.867e+00 1.173e-01 - -8.683e-03 2.701e-02 -2.930e-02 1.173e-01 2.394e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.57780 1.000 -0.388 -0.212 -0.423 -0.417 - 2 0.89257 -0.388 1.000 -0.314 0.777 0.888 - 3 0.54137 -0.212 -0.314 1.000 -0.304 -0.363 - 4 0.91948 -0.423 0.777 -0.304 1.000 0.915 - 5 0.95897 -0.417 0.888 -0.363 0.915 1.000 -600 -605.123 +- 0.425719 -17.4149 +- 0.621639 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=20832.1 FROM MIGRAD STATUS=INITIATE 35 CALLS 36 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 0.00000e+00 -4.10122e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 7.39759e+02 - 3 sg_p2 5.75000e+02 1.50000e+01 0.00000e+00 -1.41911e+02 - 4 sg_p3 5.22092e+01 1.20000e+01 -3.01040e-01 -3.82741e+00 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -1.79614e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20660.5 FROM MIGRAD STATUS=CONVERGED 248 CALLS 249 TOTAL - EDM=2.70998e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.06501e+02 4.51807e-01 7.97409e-04 -7.03207e-02 - 2 sg_p1 1.77334e+01 6.52405e-01 1.87706e-03 -1.65059e-02 - 3 sg_p2 5.99469e+02 1.79002e+00 1.94437e-03 -5.75168e-02 - 4 sg_p3 3.61659e+01 2.58390e+00 2.08852e-03 2.55527e-02 - 5 sg_p4 7.77016e-01 4.86366e-02 1.06632e-02 -1.67483e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.041e-01 -1.198e-01 -9.305e-02 -5.364e-01 -9.937e-03 - -1.198e-01 4.259e-01 -5.231e-01 1.301e+00 2.891e-02 - -9.305e-02 -5.231e-01 3.205e+00 -1.947e+00 -4.507e-02 - -5.364e-01 1.301e+00 -1.947e+00 6.683e+00 1.171e-01 - -9.937e-03 2.891e-02 -4.507e-02 1.171e-01 2.483e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.60028 1.000 -0.406 -0.115 -0.459 -0.441 - 2 0.89400 -0.406 1.000 -0.448 0.771 0.889 - 3 0.63123 -0.115 -0.448 1.000 -0.421 -0.505 - 4 0.91499 -0.459 0.771 -0.421 1.000 0.909 - 5 0.95914 -0.441 0.889 -0.505 0.909 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20660.5 FROM HESSE STATUS=OK 31 CALLS 280 TOTAL - EDM=2.68748e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.06501e+02 4.47624e-01 1.59482e-04 3.33576e-02 - 2 sg_p1 1.77334e+01 6.37778e-01 7.50826e-05 -3.57025e-01 - 3 sg_p2 5.99469e+02 1.79219e+00 3.88875e-04 3.32337e-01 - 4 sg_p3 3.61659e+01 2.52790e+00 8.35409e-05 -5.99103e-01 - 5 sg_p4 7.77016e-01 4.75332e-02 4.26528e-04 -5.08149e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.004e-01 -1.112e-01 -1.007e-01 -5.017e-01 -9.233e-03 - -1.112e-01 4.070e-01 -5.109e-01 1.227e+00 2.742e-02 - -1.007e-01 -5.109e-01 3.213e+00 -1.905e+00 -4.423e-02 - -5.017e-01 1.227e+00 -1.905e+00 6.396e+00 1.113e-01 - -9.233e-03 2.742e-02 -4.423e-02 1.113e-01 2.366e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.59019 1.000 -0.389 -0.126 -0.443 -0.424 - 2 0.88878 -0.389 1.000 -0.447 0.760 0.884 - 3 0.63238 -0.126 -0.447 1.000 -0.420 -0.507 - 4 0.91099 -0.443 0.760 -0.420 1.000 0.904 - 5 0.95708 -0.424 0.884 -0.507 0.904 1.000 -600 -606.501 +- 0.447624 -17.7334 +- 0.637778 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=21392 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 0.00000e+00 -4.65951e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 8.31252e+02 - 3 sg_p2 5.75000e+02 1.50000e+01 0.00000e+00 -2.10216e+02 - 4 sg_p3 4.66234e+01 1.20000e+01 -4.00208e-01 -5.49343e-01 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -1.97937e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21176.8 FROM MIGRAD STATUS=CONVERGED 269 CALLS 270 TOTAL - EDM=8.82705e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.06547e+02 4.53645e-01 7.81411e-04 -3.17610e-01 - 2 sg_p1 1.71843e+01 6.39064e-01 1.86421e-03 -1.15499e-01 - 3 sg_p2 5.99736e+02 1.60177e+00 1.78744e-03 -2.73906e-01 - 4 sg_p3 3.43642e+01 2.28667e+00 1.90587e-03 -2.99641e-02 - 5 sg_p4 7.67062e-01 4.97568e-02 1.14541e-02 2.14855e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.058e-01 -1.334e-01 -7.609e-02 -5.233e-01 -1.147e-02 - -1.334e-01 4.086e-01 -4.283e-01 1.132e+00 2.917e-02 - -7.609e-02 -4.283e-01 2.566e+00 -1.449e+00 -3.913e-02 - -5.233e-01 1.132e+00 -1.449e+00 5.233e+00 1.065e-01 - -1.147e-02 2.917e-02 -3.913e-02 1.065e-01 2.619e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.63674 1.000 -0.460 -0.105 -0.504 -0.494 - 2 0.89676 -0.460 1.000 -0.418 0.774 0.892 - 3 0.61833 -0.105 -0.418 1.000 -0.395 -0.477 - 4 0.91625 -0.504 0.774 -0.395 1.000 0.910 - 5 0.96016 -0.494 0.892 -0.477 0.910 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=21176.8 FROM HESSE STATUS=OK 31 CALLS 301 TOTAL - EDM=8.5019e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.06547e+02 4.46977e-01 1.56282e-04 3.43777e-02 - 2 sg_p1 1.71843e+01 6.16688e-01 3.72843e-04 -3.92793e-01 - 3 sg_p2 5.99736e+02 1.59872e+00 3.57489e-04 3.36110e-01 - 4 sg_p3 3.43642e+01 2.20755e+00 7.62346e-05 -6.35935e-01 - 5 sg_p4 7.67062e-01 4.79510e-02 4.58166e-04 -5.85865e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.998e-01 -1.203e-01 -8.781e-02 -4.759e-01 -1.035e-02 - -1.203e-01 3.805e-01 -4.057e-01 1.032e+00 2.680e-02 - -8.781e-02 -4.057e-01 2.556e+00 -1.372e+00 -3.733e-02 - -4.759e-01 1.032e+00 -1.372e+00 4.877e+00 9.814e-02 - -1.035e-02 2.680e-02 -3.733e-02 9.814e-02 2.422e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.62255 1.000 -0.436 -0.123 -0.482 -0.470 - 2 0.88865 -0.436 1.000 -0.411 0.757 0.883 - 3 0.61643 -0.123 -0.411 1.000 -0.389 -0.474 - 4 0.90983 -0.482 0.757 -0.389 1.000 0.903 - 5 0.95684 -0.470 0.883 -0.474 0.903 1.000 -600 -606.547 +- 0.446977 -17.1843 +- 0.616688 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=19809.1 FROM MIGRAD STATUS=INITIATE 40 CALLS 41 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 0.00000e+00 -3.98661e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 7.36177e+02 - 3 sg_p2 5.75000e+02 1.50000e+01 0.00000e+00 -1.54710e+02 - 4 sg_p3 5.02879e+01 1.20000e+01 -3.34752e-01 5.32152e-01 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -1.78206e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19628.4 FROM MIGRAD STATUS=CONVERGED 302 CALLS 303 TOTAL - EDM=4.9436e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.06510e+02 4.72659e-01 7.94140e-04 3.55653e-02 - 2 sg_p1 1.74543e+01 6.69157e-01 1.87997e-03 6.61865e-02 - 3 sg_p2 5.99840e+02 1.69608e+00 1.82702e-03 -5.88858e-02 - 4 sg_p3 3.49426e+01 2.46655e+00 1.95035e-03 5.14767e-02 - 5 sg_p4 7.67921e-01 5.16557e-02 1.14960e-02 -1.52477e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.234e-01 -1.390e-01 -9.895e-02 -5.678e-01 -1.194e-02 - -1.390e-01 4.481e-01 -4.692e-01 1.277e+00 3.171e-02 - -9.895e-02 -4.692e-01 2.877e+00 -1.630e+00 -4.248e-02 - -5.678e-01 1.277e+00 -1.630e+00 6.089e+00 1.197e-01 - -1.194e-02 3.171e-02 -4.248e-02 1.197e-01 2.834e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.62474 1.000 -0.439 -0.123 -0.487 -0.474 - 2 0.89528 -0.439 1.000 -0.413 0.773 0.890 - 3 0.61443 -0.123 -0.413 1.000 -0.390 -0.470 - 4 0.91716 -0.487 0.773 -0.390 1.000 0.911 - 5 0.96008 -0.474 0.890 -0.470 0.911 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19628.4 FROM HESSE STATUS=OK 31 CALLS 334 TOTAL - EDM=4.86529e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.06510e+02 4.66252e-01 1.58828e-04 3.35643e-02 - 2 sg_p1 1.74543e+01 6.46362e-01 3.75994e-04 -3.75146e-01 - 3 sg_p2 5.99840e+02 1.69368e+00 3.65403e-04 3.37581e-01 - 4 sg_p3 3.49426e+01 2.38364e+00 7.80141e-05 -6.24005e-01 - 5 sg_p4 7.67921e-01 4.98421e-02 4.59842e-04 -5.79010e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.174e-01 -1.255e-01 -1.108e-01 -5.172e-01 -1.078e-02 - -1.255e-01 4.180e-01 -4.460e-01 1.166e+00 2.921e-02 - -1.108e-01 -4.460e-01 2.869e+00 -1.550e+00 -4.066e-02 - -5.172e-01 1.166e+00 -1.550e+00 5.686e+00 1.105e-01 - -1.078e-02 2.921e-02 -4.066e-02 1.105e-01 2.627e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.61109 1.000 -0.416 -0.140 -0.465 -0.451 - 2 0.88728 -0.416 1.000 -0.407 0.756 0.881 - 3 0.61300 -0.140 -0.407 1.000 -0.384 -0.468 - 4 0.91100 -0.465 0.756 -0.384 1.000 0.904 - 5 0.95686 -0.451 0.881 -0.468 0.904 1.000 -600 -606.51 +- 0.466252 -17.4543 +- 0.646362 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=22637.7 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 0.00000e+00 -4.51042e+02 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 8.38232e+02 - 3 sg_p2 5.75000e+02 1.50000e+01 0.00000e+00 -1.64920e+02 - 4 sg_p3 5.14784e+01 1.20000e+01 -3.13819e-01 -6.61183e-01 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -2.02962e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=22433.8 FROM MIGRAD STATUS=CONVERGED 257 CALLS 258 TOTAL - EDM=0.000145317 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.06503e+02 4.37713e-01 7.91387e-04 5.04043e-01 - 2 sg_p1 1.75196e+01 6.16845e-01 1.86865e-03 2.85731e-01 - 3 sg_p2 5.99868e+02 1.60326e+00 1.87702e-03 4.97177e-02 - 4 sg_p3 3.53013e+01 2.35156e+00 2.00555e-03 -3.27558e-01 - 5 sg_p4 7.72033e-01 4.73986e-02 1.10014e-02 3.49818e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.916e-01 -1.162e-01 -9.469e-02 -4.921e-01 -9.894e-03 - -1.162e-01 3.807e-01 -3.958e-01 1.117e+00 2.658e-02 - -9.469e-02 -3.958e-01 2.571e+00 -1.422e+00 -3.558e-02 - -4.921e-01 1.117e+00 -1.422e+00 5.534e+00 1.039e-01 - -9.894e-03 2.658e-02 -3.558e-02 1.039e-01 2.357e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.61676 1.000 -0.430 -0.135 -0.478 -0.466 - 2 0.89248 -0.430 1.000 -0.400 0.769 0.887 - 3 0.60372 -0.135 -0.400 1.000 -0.377 -0.457 - 4 0.91576 -0.478 0.769 -0.377 1.000 0.910 - 5 0.95892 -0.466 0.887 -0.457 0.910 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=22433.8 FROM HESSE STATUS=OK 31 CALLS 289 TOTAL - EDM=0.000143345 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.06503e+02 4.32589e-01 1.58277e-04 3.34012e-02 - 2 sg_p1 1.75196e+01 5.99409e-01 3.73730e-04 -3.70891e-01 - 3 sg_p2 5.99868e+02 1.60399e+00 3.75403e-04 3.37969e-01 - 4 sg_p3 3.53013e+01 2.28660e+00 4.01111e-04 -6.16657e-01 - 5 sg_p4 7.72033e-01 4.60130e-02 4.40057e-04 -5.46595e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.871e-01 -1.064e-01 -1.024e-01 -4.539e-01 -9.063e-03 - -1.064e-01 3.595e-01 -3.824e-01 1.036e+00 2.483e-02 - -1.024e-01 -3.824e-01 2.573e+00 -1.376e+00 -3.459e-02 - -4.539e-01 1.036e+00 -1.376e+00 5.232e+00 9.734e-02 - -9.063e-03 2.483e-02 -3.459e-02 9.734e-02 2.215e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.60467 1.000 -0.410 -0.148 -0.459 -0.445 - 2 0.88572 -0.410 1.000 -0.398 0.756 0.880 - 3 0.60420 -0.148 -0.398 1.000 -0.375 -0.458 - 4 0.91066 -0.459 0.756 -0.375 1.000 0.904 - 5 0.95622 -0.445 0.880 -0.458 0.904 1.000 -600 -606.503 +- 0.432589 -17.5196 +- 0.599409 -35.9 fb^{-1} (13 TeV) -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 81 has zero error, setting residual to zero - Uncertainty on sg_p0 = 606.507 +- 0.449294 (stat) - 1.38396 + 1.4085 (syst); -1.40207/+1.4263 (total) - Uncertainty on sg_p1 = 17.4848 +- 0.623965 (stat) - 0.300472 + 0.248681 (syst); -0.433147/+0.398968 (total) - Uncertainty on sg_p2 = 599.858 +- 1.64758 (stat) - 0.389024 + 1.02722 (syst); -0.911028/+1.31674 (total) - Uncertainty on sg_p3 = 35.1205 +- 2.33871 (stat) - 1.20153 + 1.04536 (syst); -1.67663/+1.56849 (total) - Uncertainty on sg_p4 = 0.769875 +- 0.048015 (stat) - 0.0451018 + 0.0173244 (syst); -0.0510934/+0.0296057 (total) - === Baseline plot ===
- norm = 1712.99 -JEC lnN 1.00275 - -JER lnN 1.01626 - -btag lnN 1.06714 - -sg_p0 param 606.507 -1.40207/+1.4263 -sg_p1 param 17.4848 -0.433147/+0.398968 -sg_p2 param 599.858 -0.911028/+1.31674 -sg_p3 param 35.1205 -1.67663/+1.56849 -sg_p4 param 0.769875 -0.0510934/+0.0296057 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_650_crystal_1_285_624/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_650_crystal_1_285_624/data_bkg.log deleted file mode 100644 index 1be2f6e..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_650_crystal_1_285_624/data_bkg.log +++ /dev/null @@ -1,717 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [250,330] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [250,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63590.5 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.69443e-02 5.09000e-01 0.00000e+00 -7.94680e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -8.91126e+00 - 3 par_crystal_2 2.62020e+02 4.00000e+00 1.01181e-01 -1.53451e+00 - 4 par_crystal_3 1.65000e+01 2.70000e+00 0.00000e+00 7.46021e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM MIGRAD STATUS=CONVERGED 482 CALLS 483 TOTAL - EDM=0.000814822 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 4.40594e-01 4.43750e-02 2.48631e-03 2.88668e-01 - 2 par_crystal_1 9.82994e-01 6.48221e-01 2.14269e-02 -5.28345e-03 - 3 par_crystal_2 2.71542e+02 7.41091e-01 7.20683e-03 -9.27818e-02 - 4 par_crystal_3 2.87224e+01 2.18588e+00 3.97473e-02 -6.99277e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.970e-03 -2.333e-02 -5.115e-04 1.392e-02 - -2.333e-02 4.358e-01 4.870e-03 -8.391e-01 - -5.115e-04 4.870e-03 5.496e-01 4.381e-01 - 1.392e-02 -8.391e-01 4.381e-01 5.029e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.88989 1.000 -0.796 -0.016 0.140 - 2 0.92807 -0.796 1.000 0.010 -0.567 - 3 0.40865 -0.016 0.010 1.000 0.264 - 4 0.80948 0.140 -0.567 0.264 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM HESSE STATUS=OK 23 CALLS 506 TOTAL - EDM=0.000711421 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 4.40594e-01 4.64698e-02 4.97262e-04 -9.80558e-01 - 2 par_crystal_1 9.82994e-01 6.55195e-01 8.57075e-04 -6.65795e-01 - 3 par_crystal_2 2.71542e+02 7.38644e-01 1.44137e-03 6.15159e-01 - 4 par_crystal_3 2.87224e+01 2.03002e+00 1.58989e-03 -1.05570e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.160e-03 -2.581e-02 -1.109e-03 1.530e-02 - -2.581e-02 4.456e-01 2.508e-02 -7.234e-01 - -1.109e-03 2.508e-02 5.460e-01 3.687e-01 - 1.530e-02 -7.234e-01 3.687e-01 4.306e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.90014 1.000 -0.832 -0.032 0.159 - 2 0.92960 -0.832 1.000 0.051 -0.522 - 3 0.40186 -0.032 0.051 1.000 0.240 - 4 0.77207 0.159 -0.522 0.240 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63714.2 FROM MIGRAD STATUS=INITIATE 33 CALLS 34 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 2.63122e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -5.45805e+02 - 3 par_gaus_exp_2 6.67498e-01 3.05000e-01 -6.37370e-01 7.03093e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM MIGRAD STATUS=CONVERGED 131 CALLS 132 TOTAL - EDM=6.15917e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.71558e+02 8.05096e-01 6.82817e-03 6.24407e-02 - 2 par_gaus_exp_1 3.06822e+01 1.83071e+00 1.43475e-02 1.11468e-02 - 3 par_gaus_exp_2 3.82770e-01 2.42284e-02 3.05774e-03 -9.77170e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.486e-01 -6.079e-01 -1.588e-03 - -6.079e-01 3.370e+00 3.082e-02 - -1.588e-03 3.082e-02 5.871e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.49876 1.000 -0.411 -0.081 - 2 0.77898 -0.411 1.000 0.693 - 3 0.72797 -0.081 0.693 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM HESSE STATUS=OK 16 CALLS 148 TOTAL - EDM=6.13964e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.71558e+02 8.14214e-01 2.73127e-04 -4.35760e-01 - 2 par_gaus_exp_1 3.06822e+01 1.86973e+00 5.73898e-04 4.10264e-01 - 3 par_gaus_exp_2 3.82770e-01 2.45149e-02 1.22310e-04 -8.97531e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.634e-01 -6.630e-01 -2.137e-03 - -6.630e-01 3.516e+00 3.227e-02 - -2.137e-03 3.227e-02 6.011e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.51526 1.000 -0.434 -0.107 - 2 0.78935 -0.434 1.000 0.702 - 3 0.73544 -0.107 0.702 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,625] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.33953 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.33953) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - ... (remaining 126 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.734607 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.734607) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=317.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=327.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=332.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=342.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=347.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=352.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=357.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=362.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=367.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - ... (remaining 53 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0734613 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0734613 - - FCN=103487 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57093e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.56195e+03 - 3 par_novo_2 -1.33668e+00 2.00000e+01 0.00000e+00 1.53931e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM MIGRAD STATUS=CONVERGED 127 CALLS 128 TOTAL - EDM=3.4171e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.43423e+01 1.81223e-01** at limit ** - 2 par_novo_1 3.86596e+01 2.27294e+00 4.95847e-03 -1.04123e-02 - 3 par_novo_2 -1.27520e+00 7.07738e-02 3.70975e-05 -1.26322e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.231e-09 -8.491e-07 -8.580e-07 - -8.491e-07 5.181e+00 1.547e-01 - -8.580e-07 1.547e-01 5.009e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.53332 1.000 -0.005 -0.154 - 2 0.97096 -0.005 1.000 0.960 - 3 0.97165 -0.154 0.960 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM HESSE STATUS=OK 20 CALLS 148 TOTAL - EDM=3.43726e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.40246e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.86596e+01 2.31421e+00 1.98339e-04 4.46530e-01 - 3 par_novo_2 -1.27520e+00 7.22930e-02 1.48390e-06 -1.27523e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 5.974e-09 2.819e-05 -1.296e-06 - 2.819e-05 5.372e+00 1.502e-01 - -1.296e-06 1.502e-01 5.226e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.85665 1.000 0.157 -0.232 - 2 0.97200 0.157 1.000 0.897 - 3 0.97285 -0.232 0.897 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107513 FROM MIGRAD STATUS=INITIATE 54 CALLS 55 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 1.39168e+03 - 2 par_crystal_1_1 7.96220e-02 5.09000e-01 0.00000e+00 5.33770e+03 - 3 par_crystal_1_2 2.56879e+02 4.00000e+00 -1.56713e-01 -1.96669e+01 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 -8.45862e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.5057e-02 2.3309e-03 4.9678e-02 3.9730e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.029030 TO DIAGONAL. - FCN=103250 FROM MIGRAD STATUS=CONVERGED 436 CALLS 437 TOTAL - EDM=3.52757e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 4.45574e-02 4.37117e-03 3.09465e-04 -4.28177e+00 - 2 par_crystal_1_1 4.36914e+00 6.24106e-01 1.80400e-02 6.63742e-02 - 3 par_crystal_1_2 2.71531e+02 3.44700e+01 5.81266e-02 2.25694e-02 - 4 par_crystal_1_3 3.37290e+00 2.71702e-01 3.13791e-03 -4.26197e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.911e-05 -1.221e-03 2.089e-01 3.572e-04 - -1.221e-03 4.065e-01 -2.690e+01 -6.822e-02 - 2.089e-01 -2.690e+01 3.429e+03 1.167e+01 - 3.572e-04 -6.822e-02 1.167e+01 7.401e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99136 1.000 -0.438 0.816 0.300 - 2 0.97307 -0.438 1.000 -0.720 -0.393 - 3 0.99735 0.816 -0.720 1.000 0.733 - 4 0.98716 0.300 -0.393 0.733 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -8.0089e-04 4.0193e-04 7.1213e-02 3.9292e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.004730 TO DIAGONAL. - FCN=103250 FROM HESSE STATUS=NOT POSDEF 23 CALLS 460 TOTAL - EDM=3.56127e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 4.45574e-02 7.42610e-03 6.18930e-05 -1.40582e+00 - 2 par_crystal_1_1 4.36914e+00 4.67550e-01 7.21602e-04 -3.93511e+00 - 3 par_crystal_1_2 2.71531e+02 3.29814e+01 2.32506e-03 -3.75607e+00 - 4 par_crystal_1_3 3.37290e+00 5.01685e-01 1.25517e-04 -1.80638e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.515e-05 2.851e-04 2.343e-01 -1.699e-03 - 2.851e-04 2.238e-01 -2.528e+00 1.548e-02 - 2.343e-01 -2.528e+00 2.967e+03 1.176e+01 - -1.699e-03 1.548e-02 1.176e+01 2.538e-01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99694 1.000 0.081 0.579 -0.454 - 2 0.94927 0.081 1.000 -0.098 0.065 - 3 0.99687 0.579 -0.098 1.000 0.429 - 4 0.99618 -0.454 0.065 0.429 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 14211 - Background number of gaus_exp_252_330 = 14211 - Background number of novo_285_624 = 17618.3 - Background number of crystal_1_285_624 = 17618.3 - Background number of gaus_bern_285_624 = 17618.3 - Background number of landau_285_624 = 17618.3 -par_crystal_0 param 0.440594 0.0464698 -par_crystal_1 param 0.982994 0.655195 -par_crystal_2 param 271.542 0.738644 -par_crystal_3 param 28.7224 2.03002 -par_crystal_1_0 param 0.0445574 0.0074261 -par_crystal_1_1 param 4.36914 0.46755 -par_crystal_1_2 param 271.531 32.9814 -par_crystal_1_3 param 3.3729 0.501685 -par_gaus_exp_0 param 271.558 0.814214 -par_gaus_exp_1 param 30.6822 1.86973 -par_gaus_exp_2 param 0.38277 0.0245149 -par_novo_0 param 250 34.0246 -par_novo_1 param 38.6596 2.31421 -par_novo_2 param -1.2752 0.072293 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_650_crystal_1_285_624/datacard_650_crystal_1_285_624.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_650_crystal_1_285_624/datacard_650_crystal_1_285_624.txt deleted file mode 100644 index a16d92d..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_650_crystal_1_285_624/datacard_650_crystal_1_285_624.txt +++ /dev/null @@ -1,30 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_650.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_crystal_1_285_624.root HbbHbb:f_crystal_1 -shapes data_obs HbbHbb w_background_crystal_1_285_624.root HbbHbb:data_obs_crystal_1_285_624 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 1859.61 17618.3 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06919 - -JER lnN 1.01327 - -JEC lnN 1.0047 - -trigger lnN 1.10 - -sg_p0 param 650 -0.00949226/+0.00949226 -sg_p1 param 21.9547 -1.37689/+0.62656 -sg_p2 param 650 -0.561993/+0.561993 -sg_p3 param 53.5044 -10.3824/+3.81258 -sg_p4 param 0.902474 -0.0610726/+0.0174217 -par_crystal_1_0 param 0.0445574 0.0074261 -par_crystal_1_1 param 4.36914 0.46755 -par_crystal_1_2 param 271.531 32.9814 -par_crystal_1_3 param 3.3729 0.501685 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_650_crystal_1_285_624/signal650_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_650_crystal_1_285_624/signal650_sig.log deleted file mode 100644 index 1f5e75e..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_650_crystal_1_285_624/signal650_sig.log +++ /dev/null @@ -1,883 +0,0 @@ - -Processing test.c... -nSignal_init = 49200 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=13508.9 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 2.01358e-01 -2.87056e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 -1.46321e+03 - 3 sg_p2 5.75000e+02 1.50000e+01 2.01358e-01 -5.56470e+02 - 4 sg_p3 7.00000e+01 1.20000e+01 2.01358e-01 -3.42658e+02 - 5 sg_p4 8.50000e-01 3.00000e-02 2.01358e-01 2.11139e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12287.8 FROM MIGRAD STATUS=CONVERGED 597 CALLS 598 TOTAL - EDM=4.72558e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.31550e+02 1.07438e+00 1.68730e-03 -2.23582e-01 - 2 sg_p1 3.53137e+01 1.11870e+00 4.47963e-03 6.27366e-02 - 3 sg_p2 5.77635e+02 4.62466e+01 1.24400e-02 1.02159e-02 - 4 sg_p3 6.47572e+01 2.35273e+01 1.70525e-02 -3.15130e-03 - 5 sg_p4 9.66896e-01 3.39852e-02 6.34455e-03 -3.92355e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.155e+00 -4.604e-01 -1.111e+01 1.243e+01 -1.676e-02 - -4.604e-01 1.255e+00 2.645e+01 -9.584e+00 2.747e-02 - -1.111e+01 2.645e+01 2.484e+03 4.016e+02 1.548e+00 - 1.243e+01 -9.584e+00 4.016e+02 5.848e+02 -3.604e-02 - -1.676e-02 2.747e-02 1.548e+00 -3.604e-02 1.209e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.66627 1.000 -0.382 -0.207 0.478 -0.449 - 2 0.79846 -0.382 1.000 0.474 -0.354 0.705 - 3 0.96990 -0.207 0.474 1.000 0.333 0.893 - 4 0.84189 0.478 -0.354 0.333 1.000 -0.043 - 5 0.97425 -0.449 0.705 0.893 -0.043 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12287.8 FROM HESSE STATUS=OK 31 CALLS 629 TOTAL - EDM=4.61535e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.31550e+02 1.06668e+00 3.37461e-04 6.31053e-01 - 2 sg_p1 3.53137e+01 1.12240e+00 1.79185e-04 7.98026e-01 - 3 sg_p2 5.77635e+02 4.57102e+01 2.48799e-03 3.10645e+00 - 4 sg_p3 6.47572e+01 2.27278e+01 6.82099e-04 3.22908e+00 - 5 sg_p4 9.66896e-01 3.40601e-02 1.26891e-03 8.93554e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.138e+00 -4.570e-01 -1.213e+01 1.173e+01 -1.703e-02 - -4.570e-01 1.264e+00 2.725e+01 -9.434e+00 2.793e-02 - -1.213e+01 2.725e+01 2.417e+03 3.349e+02 1.539e+00 - 1.173e+01 -9.434e+00 3.349e+02 5.436e+02 -5.744e-02 - -1.703e-02 2.793e-02 1.539e+00 -5.744e-02 1.215e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.66019 1.000 -0.381 -0.231 0.472 -0.458 - 2 0.79995 -0.381 1.000 0.493 -0.360 0.713 - 3 0.96905 -0.231 0.493 1.000 0.292 0.898 - 4 0.82847 0.472 -0.360 0.292 1.000 -0.071 - 5 0.97437 -0.458 0.713 0.898 -0.071 1.000 -650 -631.55 +- 1.06668 -35.3137 +- 1.1224 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=13608.2 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 2.01358e-01 -3.05846e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 -1.60421e+03 - 3 sg_p2 5.75000e+02 1.50000e+01 2.01358e-01 -6.11096e+02 - 4 sg_p3 7.00000e+01 1.20000e+01 2.01358e-01 -3.92754e+02 - 5 sg_p4 8.50000e-01 3.00000e-02 2.01358e-01 2.53615e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12183.3 FROM MIGRAD STATUS=CONVERGED 366 CALLS 367 TOTAL - EDM=4.73777e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.34937e+02 1.20416e+00 1.88745e-03 1.06307e-02 - 2 sg_p1 3.54255e+01 1.33397e+00 4.75405e-03 -6.42739e-03 - 3 sg_p2 5.82190e+02 3.67116e+01 1.00364e-02 4.55135e-03 - 4 sg_p3 6.30056e+01 1.66588e+01 1.25710e-02 4.37361e-03 - 5 sg_p4 9.54564e-01 4.17481e-02 6.34242e-03 8.71212e-04 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.451e+00 -7.734e-01 -1.793e+01 -1.063e+01 -3.042e-02 - -7.734e-01 1.788e+00 3.000e+01 1.060e+01 4.484e-02 - -1.793e+01 3.000e+01 1.473e+03 -4.482e+01 1.490e+00 - -1.063e+01 1.060e+01 -4.482e+01 2.851e+02 1.993e-01 - -3.042e-02 4.484e-02 1.490e+00 1.993e-01 1.838e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.72232 1.000 -0.480 -0.388 -0.523 -0.589 - 2 0.84648 -0.480 1.000 0.585 0.469 0.782 - 3 0.96726 -0.388 0.585 1.000 -0.069 0.905 - 4 0.81721 -0.523 0.469 -0.069 1.000 0.275 - 5 0.97806 -0.589 0.782 0.905 0.275 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12183.3 FROM HESSE STATUS=OK 31 CALLS 398 TOTAL - EDM=4.49878e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.34937e+02 1.17331e+00 7.54981e-05 7.27855e-01 - 2 sg_p1 3.54255e+01 1.28807e+00 1.90162e-04 8.07781e-01 - 3 sg_p2 5.82190e+02 3.82291e+01 2.00727e-03 3.04558e+00 - 4 sg_p3 6.30056e+01 1.76697e+01 5.02840e-04 -1.16840e-01 - 5 sg_p4 9.54564e-01 4.07959e-02 2.53697e-04 7.71340e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.377e+00 -6.709e-01 -1.351e+01 -1.025e+01 -2.563e-02 - -6.709e-01 1.666e+00 2.684e+01 9.073e+00 4.040e-02 - -1.351e+01 2.684e+01 1.611e+03 -1.944e+02 1.503e+00 - -1.025e+01 9.073e+00 -1.944e+02 3.218e+02 7.926e-02 - -2.563e-02 4.040e-02 1.503e+00 7.926e-02 1.751e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.70445 1.000 -0.443 -0.287 -0.487 -0.522 - 2 0.83419 -0.443 1.000 0.518 0.392 0.748 - 3 0.97010 -0.287 0.518 1.000 -0.270 0.895 - 4 0.84000 -0.487 0.392 -0.270 1.000 0.106 - 5 0.97695 -0.522 0.748 0.895 0.106 1.000 -650 -634.937 +- 1.17331 -35.4255 +- 1.28807 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=13336.9 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 2.01358e-01 -2.61029e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 -1.30706e+03 - 3 sg_p2 5.75000e+02 1.50000e+01 2.01358e-01 -4.94508e+02 - 4 sg_p3 7.00000e+01 1.20000e+01 2.01358e-01 -2.82439e+02 - 5 sg_p4 8.50000e-01 3.00000e-02 2.01358e-01 1.69237e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 5 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 2.26189 added to diagonal of error matrix - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -3.9054e-01 1.0008e+00 1.0126e+00 1.3098e+00 2.0673e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 0.392608 TO DIAGONAL. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12331.2 FROM MIGRAD STATUS=CONVERGED 434 CALLS 435 TOTAL - EDM=9.27116e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.29363e+02 1.94289e+00 1.61110e-03 -6.12714e-02 - 2 sg_p1 3.39915e+01 1.39941e+00 4.02767e-03 1.41131e-02 - 3 sg_p2 5.86998e+02 3.80498e+01 5.91384e-03 1.10012e-02 - 4 sg_p3 4.52433e+01 9.31868e+00 5.76920e-03 6.15069e-03 - 5 sg_p4 9.32822e-01 8.73169e-02 7.58377e-03 -1.49983e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.778e+00 -2.106e+00 -5.004e+01 -2.088e+00 -1.541e-01 - -2.106e+00 1.966e+00 3.539e+01 6.357e-01 1.083e-01 - -5.004e+01 3.539e+01 1.597e+03 -2.131e+02 3.640e+00 - -2.088e+00 6.357e-01 -2.131e+02 8.769e+01 -2.781e-01 - -1.541e-01 1.083e-01 3.640e+00 -2.781e-01 9.342e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.91269 1.000 -0.773 -0.644 -0.115 -0.820 - 2 0.87908 -0.773 1.000 0.631 0.048 0.799 - 3 0.98973 -0.644 0.631 1.000 -0.569 0.942 - 4 0.89773 -0.115 0.048 -0.569 1.000 -0.307 - 5 0.99185 -0.820 0.799 0.942 -0.307 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12331.2 FROM HESSE STATUS=OK 31 CALLS 466 TOTAL - EDM=1.05015e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.29363e+02 1.77740e+00 3.22219e-04 5.72091e-01 - 2 sg_p1 3.39915e+01 1.30671e+00 1.61107e-04 6.89109e-01 - 3 sg_p2 5.86998e+02 4.00071e+01 2.36554e-04 2.98093e+00 - 4 sg_p3 4.52433e+01 1.08302e+01 2.30768e-04 -4.25319e-01 - 5 sg_p4 9.32822e-01 8.54732e-02 1.51675e-03 5.84938e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.161e+00 -1.710e+00 -4.134e+01 -1.168e+00 -1.264e-01 - -1.710e+00 1.714e+00 3.071e+01 -2.615e-01 9.187e-02 - -4.134e+01 3.071e+01 1.786e+03 -3.269e+02 3.736e+00 - -1.168e+00 -2.615e-01 -3.269e+02 1.189e+02 -4.766e-01 - -1.264e-01 9.187e-02 3.736e+00 -4.766e-01 8.856e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.89467 1.000 -0.735 -0.550 -0.060 -0.756 - 2 0.85981 -0.735 1.000 0.555 -0.018 0.746 - 3 0.99083 -0.550 0.555 1.000 -0.709 0.939 - 4 0.92564 -0.060 -0.018 -0.709 1.000 -0.465 - 5 0.99140 -0.756 0.746 0.939 -0.465 1.000 -650 -629.363 +- 1.7774 -33.9915 +- 1.30671 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11100.7 FROM MIGRAD STATUS=INITIATE 80 CALLS 81 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.49976e+02 9.00000e+00 0.00000e+00 -3.31148e+01 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 1.41635e+02 - 3 sg_p2 6.49999e+02 1.50000e+01 0.00000e+00 -3.52712e-01 - 4 sg_p3 4.45955e+01 1.20000e+01 -4.37204e-01 -1.45659e-01 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -1.61763e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11089.2 FROM MIGRAD STATUS=CONVERGED 189 CALLS 190 TOTAL - EDM=4.42251e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.50000e+02 1.89844e-02 2.11173e-03** at limit ** - 2 sg_p1 2.19547e+01 6.26260e-01 1.90248e-03 -1.39894e-01 - 3 sg_p2 6.50000e+02 1.12485e+00 1.24593e-02** at limit ** - 4 sg_p3 5.35044e+01 7.53715e+00 5.15003e-03 -5.48748e-02 - 5 sg_p4 9.02474e-01 3.44307e-02 8.35217e-03 4.98005e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 6.624e-10 1.398e-08 -1.474e-12 -5.092e-09 1.406e-10 - 1.398e-08 3.924e-01 9.759e-05 2.732e+00 1.581e-02 - -1.474e-12 9.759e-05 5.173e-05 1.252e-03 7.811e-06 - -5.092e-09 2.732e+00 1.252e-03 5.713e+01 2.196e-01 - 1.406e-10 1.581e-02 7.811e-06 2.196e-01 1.210e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00112 1.000 0.001 -0.000 -0.000 0.000 - 2 0.72732 0.001 1.000 0.022 0.577 0.725 - 3 0.03176 -0.000 0.022 1.000 0.023 0.031 - 4 0.83627 -0.000 0.577 0.023 1.000 0.835 - 5 0.88688 0.000 0.725 0.031 0.835 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11089.2 FROM HESSE STATUS=OK 31 CALLS 221 TOTAL - EDM=4.36793e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.50000e+02 1.89845e-02 4.22346e-04 1.57078e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 sg_p1 2.19547e+01 6.28139e-01 3.80496e-04 -9.37931e-02 - 3 sg_p2 6.50000e+02 1.12399e+00 2.49187e-03 1.57135e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 5.35044e+01 7.59176e+00 2.06001e-04 -2.78513e-01 - 5 sg_p4 9.02474e-01 3.46722e-02 1.67043e-03 3.57388e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 6.624e-10 2.583e-09 -7.268e-14 -1.074e-09 2.545e-11 - 2.583e-09 3.948e-01 2.619e-05 2.775e+00 1.601e-02 - -7.268e-14 2.619e-05 5.169e-05 3.372e-04 2.097e-06 - -1.074e-09 2.775e+00 3.372e-04 5.797e+01 2.235e-01 - 2.545e-11 1.601e-02 2.097e-06 2.235e-01 1.227e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00021 1.000 0.000 -0.000 -0.000 0.000 - 2 0.72925 0.000 1.000 0.006 0.580 0.727 - 3 0.00847 -0.000 0.006 1.000 0.006 0.008 - 4 0.83884 -0.000 0.580 0.006 1.000 0.838 - 5 0.88859 0.000 0.727 0.008 0.838 1.000 -650 -650 +- 0.0189845 -21.9547 +- 0.628139 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10989.9 FROM MIGRAD STATUS=INITIATE 82 CALLS 83 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.49981e+02 9.00000e+00 0.00000e+00 -3.26253e+01 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 1.05547e+02 - 3 sg_p2 6.50000e+02 1.50000e+01 0.00000e+00** at limit ** - 4 sg_p3 4.52220e+01 1.20000e+01 -4.25709e-01 -2.16544e-01 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -1.30632e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10983 FROM MIGRAD STATUS=CONVERGED 188 CALLS 189 TOTAL - EDM=6.98216e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.50000e+02 1.75977e-02 2.02403e-03** at limit ** - 2 sg_p1 2.24968e+01 6.83255e-01 1.97163e-03 -2.42215e-01 - 3 sg_p2 6.50000e+02 1.00518e+00 1.16864e-02** at limit ** - 4 sg_p3 5.38609e+01 8.09997e+00 5.22641e-03 -7.25959e-02 - 5 sg_p4 9.04199e-01 3.73923e-02 8.57345e-03 6.68076e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.162e-10 9.099e-09 -3.513e-14 -1.065e-10 1.081e-10 - 9.099e-09 4.671e-01 8.095e-06 3.376e+00 1.946e-02 - -3.513e-14 8.095e-06 3.071e-07 1.055e-04 6.207e-07 - -1.065e-10 3.376e+00 1.055e-04 6.604e+01 2.615e-01 - 1.081e-10 1.946e-02 6.207e-07 2.615e-01 1.433e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00119 1.000 0.001 -0.000 -0.000 0.000 - 2 0.75475 0.001 1.000 0.021 0.608 0.752 - 3 0.02982 -0.000 0.021 1.000 0.023 0.030 - 4 0.85148 -0.000 0.608 0.023 1.000 0.850 - 5 0.90043 0.000 0.752 0.030 0.850 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10983 FROM HESSE STATUS=OK 31 CALLS 220 TOTAL - EDM=6.97303e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.50000e+02 1.75977e-02 4.04806e-04 1.57081e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 sg_p1 2.24968e+01 6.85707e-01 3.94326e-04 -6.08350e-02 - 3 sg_p2 6.50000e+02 1.00444e+00 2.33727e-03 1.57075e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 5.38609e+01 8.16623e+00 2.09056e-04 -2.72339e-01 - 5 sg_p4 9.04199e-01 3.76884e-02 1.71469e-03 3.69689e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.162e-10 1.898e-09 -1.580e-15 -1.792e-10 2.195e-11 - 1.898e-09 4.705e-01 1.591e-06 3.436e+00 1.974e-02 - -1.580e-15 1.591e-06 3.069e-07 2.082e-05 1.221e-07 - -1.792e-10 3.436e+00 2.082e-05 6.714e+01 2.666e-01 - 2.195e-11 1.974e-02 1.221e-07 2.666e-01 1.456e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00025 1.000 0.000 -0.000 -0.000 0.000 - 2 0.75678 0.000 1.000 0.004 0.611 0.754 - 3 0.00582 -0.000 0.004 1.000 0.005 0.006 - 4 0.85409 -0.000 0.611 0.005 1.000 0.853 - 5 0.90212 0.000 0.754 0.006 0.853 1.000 -650 -650 +- 0.0175977 -22.4968 +- 0.685707 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11116.3 FROM MIGRAD STATUS=INITIATE 85 CALLS 86 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.49937e+02 9.00000e+00 0.00000e+00 -4.29903e+01 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 1.78823e+02 - 3 sg_p2 6.50000e+02 1.50000e+01 0.00000e+00 1.70769e-01 - 4 sg_p3 4.20694e+01 1.20000e+01 -4.84211e-01 8.96725e+00 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -1.70161e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11098.1 FROM MIGRAD STATUS=CONVERGED 198 CALLS 199 TOTAL - EDM=6.95645e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.50000e+02 2.30525e-02 2.32852e-03** at limit ** - 2 sg_p1 2.06141e+01 7.27095e-01 1.91751e-03 -1.78455e-02 - 3 sg_p2 6.50000e+02 5.67699e-01 8.96583e-03** at limit ** - 4 sg_p3 4.38408e+01 4.74866e+00 3.33807e-03 1.68221e-02 - 5 sg_p4 8.43914e-01 5.09939e-02 1.01808e-02 4.65599e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.079e-09 1.526e-08 -3.653e-13 -1.193e-07 -8.752e-10 - 1.526e-08 5.290e-01 4.594e-06 2.209e+00 3.042e-02 - -3.653e-13 4.594e-06 1.090e-07 2.852e-05 4.142e-07 - -1.193e-07 2.209e+00 2.852e-05 2.261e+01 2.103e-01 - -8.752e-10 3.042e-02 4.142e-07 2.103e-01 2.707e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00135 1.000 0.000 -0.000 -0.001 -0.000 - 2 0.80823 0.000 1.000 0.019 0.639 0.804 - 3 0.02454 -0.000 0.019 1.000 0.018 0.024 - 4 0.85317 -0.001 0.639 0.018 1.000 0.850 - 5 0.91509 -0.000 0.804 0.024 0.850 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11098.1 FROM HESSE STATUS=OK 31 CALLS 230 TOTAL - EDM=6.98393e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.50000e+02 2.30527e-02 4.65704e-04 1.57083e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 sg_p1 2.06141e+01 7.25563e-01 7.67004e-05 -1.75808e-01 - 3 sg_p2 6.50000e+02 5.67438e-01 1.79317e-03 1.57076e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 4.38408e+01 4.74709e+00 1.33523e-04 -4.51134e-01 - 5 sg_p4 8.43914e-01 5.09413e-02 4.07231e-04 -4.05850e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.079e-09 3.367e-09 -1.567e-14 -2.669e-08 -1.963e-10 - 3.367e-09 5.268e-01 8.847e-07 2.198e+00 3.029e-02 - -1.567e-14 8.847e-07 1.089e-07 5.498e-06 7.992e-08 - -2.669e-08 2.198e+00 5.498e-06 2.259e+01 2.099e-01 - -1.963e-10 3.029e-02 7.992e-08 2.099e-01 2.702e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00030 1.000 0.000 -0.000 -0.000 -0.000 - 2 0.80732 0.000 1.000 0.004 0.637 0.803 - 3 0.00474 -0.000 0.004 1.000 0.004 0.005 - 4 0.85306 -0.000 0.637 0.004 1.000 0.850 - 5 0.91490 -0.000 0.803 0.005 0.850 1.000 -650 -650 +- 0.0230527 -20.6141 +- 0.725563 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10944.8 FROM MIGRAD STATUS=INITIATE 77 CALLS 78 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.49942e+02 9.00000e+00 0.00000e+00 -4.99582e+01 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 1.21408e+02 - 3 sg_p2 6.49999e+02 1.50000e+01 0.00000e+00 -3.15963e-01 - 4 sg_p3 4.09782e+01 1.20000e+01 -5.04874e-01 -3.48354e+01 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -7.37019e+00 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10932.1 FROM MIGRAD STATUS=CONVERGED 199 CALLS 200 TOTAL - EDM=1.73549e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.50000e+02 1.97234e-02 2.13705e-03** at limit ** - 2 sg_p1 2.20280e+01 6.30629e-01 1.91154e-03 1.91770e-02 - 3 sg_p2 6.50000e+02 1.15642e+00 1.26706e-02** at limit ** - 4 sg_p3 5.38442e+01 7.62585e+00 5.23371e-03 -3.81562e-02 - 5 sg_p4 9.01968e-01 3.44467e-02 8.30135e-03 1.18530e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.307e-08 5.762e-08 -8.280e-13 -3.348e-08 5.240e-10 - 5.762e-08 3.979e-01 1.192e-05 2.762e+00 1.584e-02 - -8.280e-13 1.192e-05 8.864e-07 1.536e-04 9.534e-07 - -3.348e-08 2.762e+00 1.536e-04 5.849e+01 2.220e-01 - 5.240e-10 1.584e-02 9.534e-07 2.220e-01 1.211e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00104 1.000 0.001 -0.000 -0.000 0.000 - 2 0.72341 0.001 1.000 0.020 0.573 0.721 - 3 0.02963 -0.000 0.020 1.000 0.021 0.029 - 4 0.83506 -0.000 0.573 0.021 1.000 0.834 - 5 0.88553 0.000 0.721 0.029 0.834 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10932.1 FROM HESSE STATUS=OK 31 CALLS 231 TOTAL - EDM=1.74019e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.50000e+02 1.97235e-02 4.27410e-04 1.57071e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 sg_p1 2.20280e+01 6.32975e-01 7.64616e-05 -8.93298e-02 - 3 sg_p2 6.50000e+02 1.15565e+00 2.53411e-03 1.57087e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 5.38442e+01 7.69157e+00 2.09349e-04 -2.72628e-01 - 5 sg_p4 9.01968e-01 3.47361e-02 3.32054e-04 3.53784e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.307e-08 7.480e-09 -2.394e-14 -4.978e-09 6.545e-11 - 7.480e-09 4.009e-01 2.527e-06 2.817e+00 1.609e-02 - -2.394e-14 2.527e-06 8.858e-07 3.272e-05 2.022e-07 - -4.978e-09 2.817e+00 3.272e-05 5.951e+01 2.267e-01 - 6.545e-11 1.609e-02 2.022e-07 2.267e-01 1.232e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00014 1.000 0.000 -0.000 -0.000 0.000 - 2 0.72585 0.000 1.000 0.004 0.577 0.724 - 3 0.00624 -0.000 0.004 1.000 0.005 0.006 - 4 0.83815 -0.000 0.577 0.005 1.000 0.837 - 5 0.88759 0.000 0.724 0.006 0.837 1.000 -650 -650 +- 0.0197235 -22.028 +- 0.632975 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11266.8 FROM MIGRAD STATUS=INITIATE 82 CALLS 83 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.49945e+02 9.00000e+00 0.00000e+00 -5.09816e+01 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 1.59572e+02 - 3 sg_p2 6.50000e+02 1.50000e+01 0.00000e+00 -1.69501e-01 - 4 sg_p3 4.29297e+01 1.20000e+01 -4.68077e-01 -5.58269e+00 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -1.53081e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11251.6 FROM MIGRAD STATUS=CONVERGED 192 CALLS 193 TOTAL - EDM=6.51945e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.50000e+02 1.82842e-02 2.08842e-03** at limit ** - 2 sg_p1 2.14609e+01 6.40975e-01 1.89354e-03 -6.53789e-02 - 3 sg_p2 6.50000e+02 8.30067e-01 1.08933e-02** at limit ** - 4 sg_p3 5.04392e+01 6.38127e+00 4.50073e-03 -1.04974e-02 - 5 sg_p4 8.87574e-01 3.78194e-02 8.69382e-03 5.77855e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.336e-12 7.879e-10 -3.359e-14 -1.419e-09 2.261e-12 - 7.879e-10 4.111e-01 2.684e-05 2.430e+00 1.837e-02 - -3.359e-14 2.684e-05 4.386e-06 2.767e-04 2.208e-06 - -1.419e-09 2.430e+00 2.767e-04 4.089e+01 2.045e-01 - 2.261e-12 1.837e-02 2.208e-06 2.045e-01 1.464e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00119 1.000 0.001 -0.000 -0.000 0.000 - 2 0.75133 0.001 1.000 0.020 0.593 0.749 - 3 0.02792 -0.000 0.020 1.000 0.021 0.028 - 4 0.83716 -0.000 0.593 0.021 1.000 0.836 - 5 0.89303 0.000 0.749 0.028 0.836 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11251.6 FROM HESSE STATUS=OK 31 CALLS 224 TOTAL - EDM=6.57565e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.50000e+02 1.82843e-02 4.17684e-04 1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 sg_p1 2.14609e+01 6.41983e-01 3.78708e-04 -1.23899e-01 - 3 sg_p2 6.50000e+02 8.29559e-01 2.17866e-03 1.57098e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 5.04392e+01 6.41541e+00 1.80029e-04 -3.32084e-01 - 5 sg_p4 8.87574e-01 3.80027e-02 3.47753e-04 2.53193e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.336e-12 1.574e-10 -1.584e-15 -3.026e-10 3.527e-13 - 1.574e-10 4.124e-01 6.128e-06 2.455e+00 1.851e-02 - -1.584e-15 6.128e-06 4.383e-06 6.343e-05 5.049e-07 - -3.026e-10 2.455e+00 6.343e-05 4.133e+01 2.070e-01 - 3.527e-13 1.851e-02 5.049e-07 2.070e-01 1.478e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00024 1.000 0.000 -0.000 -0.000 0.000 - 2 0.75224 0.000 1.000 0.005 0.595 0.750 - 3 0.00636 -0.000 0.005 1.000 0.005 0.006 - 4 0.83906 -0.000 0.595 0.005 1.000 0.838 - 5 0.89415 0.000 0.750 0.006 0.838 1.000 -650 -650 +- 0.0182843 -21.4609 +- 0.641983 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10353.9 FROM MIGRAD STATUS=INITIATE 80 CALLS 81 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.49972e+02 9.00000e+00 0.00000e+00 -3.38302e+01 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 1.33664e+02 - 3 sg_p2 6.49999e+02 1.50000e+01 0.00000e+00 -3.20039e-01 - 4 sg_p3 4.45271e+01 1.20000e+01 -4.38463e-01 -2.07423e-02 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -1.51988e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10342.9 FROM MIGRAD STATUS=CONVERGED 189 CALLS 190 TOTAL - EDM=3.70488e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.50000e+02 2.03479e-02 2.11149e-03** at limit ** - 2 sg_p1 2.19227e+01 6.48242e-01 1.90022e-03 -1.27252e-01 - 3 sg_p2 6.50000e+02 1.19398e+00 1.24007e-02** at limit ** - 4 sg_p3 5.33695e+01 7.75365e+00 5.12507e-03 -4.78312e-02 - 5 sg_p4 9.02088e-01 3.57133e-02 8.36019e-03 4.34979e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.234e-10 1.014e-08 -1.058e-12 -4.315e-09 9.944e-11 - 1.014e-08 4.204e-01 1.012e-04 2.912e+00 1.700e-02 - -1.058e-12 1.012e-04 5.221e-05 1.288e-03 8.107e-06 - -4.315e-09 2.912e+00 1.288e-03 6.049e+01 2.345e-01 - 9.944e-11 1.700e-02 8.107e-06 2.345e-01 1.304e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00113 1.000 0.001 -0.000 -0.000 0.000 - 2 0.72806 0.001 1.000 0.022 0.577 0.726 - 3 0.03161 -0.000 0.022 1.000 0.023 0.031 - 4 0.83617 -0.000 0.577 0.023 1.000 0.835 - 5 0.88699 0.000 0.726 0.031 0.835 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10342.9 FROM HESSE STATUS=OK 31 CALLS 221 TOTAL - EDM=3.65925e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.50000e+02 2.03480e-02 4.22297e-04 1.57078e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 sg_p1 2.19227e+01 6.50158e-01 3.80043e-04 -9.57392e-02 - 3 sg_p2 6.50000e+02 1.19307e+00 2.48014e-03 1.57134e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 5.33695e+01 7.80905e+00 2.05003e-04 -2.80852e-01 - 5 sg_p4 9.02088e-01 3.59600e-02 1.67204e-03 3.54640e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.234e-10 1.922e-09 -5.339e-14 -9.335e-10 1.841e-11 - 1.922e-09 4.229e-01 2.702e-05 2.958e+00 1.722e-02 - -5.339e-14 2.702e-05 5.217e-05 3.453e-04 2.166e-06 - -9.335e-10 2.958e+00 3.453e-04 6.136e+01 2.386e-01 - 1.841e-11 1.722e-02 2.166e-06 2.386e-01 1.322e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00022 1.000 0.000 -0.000 -0.000 0.000 - 2 0.72996 0.000 1.000 0.006 0.581 0.728 - 3 0.00839 -0.000 0.006 1.000 0.006 0.008 - 4 0.83871 -0.000 0.581 0.006 1.000 0.838 - 5 0.88867 0.000 0.728 0.008 0.838 1.000 -650 -650 +- 0.020348 -21.9227 +- 0.650158 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11888.7 FROM MIGRAD STATUS=INITIATE 80 CALLS 81 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.49914e+02 9.00000e+00 0.00000e+00 -6.82601e+01 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 1.48309e+02 - 3 sg_p2 6.49999e+02 1.50000e+01 0.00000e+00 -3.99059e-01 - 4 sg_p3 4.46355e+01 1.20000e+01 -4.36469e-01 -2.16258e-01 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -1.69494e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11875.1 FROM MIGRAD STATUS=CONVERGED 189 CALLS 190 TOTAL - EDM=4.23148e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.50000e+02 1.77338e-02 2.11221e-03** at limit ** - 2 sg_p1 2.19855e+01 6.05458e-01 1.90519e-03 -1.38620e-01 - 3 sg_p2 6.50000e+02 1.06015e+00 1.25262e-02** at limit ** - 4 sg_p3 5.36334e+01 7.33056e+00 5.16765e-03 -5.62178e-02 - 5 sg_p4 9.02830e-01 3.32252e-02 8.34638e-03 5.03701e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 5.580e-10 1.247e-08 -1.236e-12 -3.833e-09 1.281e-10 - 1.247e-08 3.667e-01 8.771e-05 2.567e+00 1.472e-02 - -1.236e-12 8.771e-05 4.483e-05 1.134e-03 7.012e-06 - -3.833e-09 2.567e+00 1.134e-03 5.403e+01 2.060e-01 - 1.281e-10 1.472e-02 7.012e-06 2.060e-01 1.125e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00113 1.000 0.001 -0.000 -0.000 0.000 - 2 0.72667 0.001 1.000 0.022 0.577 0.725 - 3 0.03177 -0.000 0.022 1.000 0.023 0.031 - 4 0.83644 -0.000 0.577 0.023 1.000 0.835 - 5 0.88683 0.000 0.725 0.031 0.835 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11875.1 FROM HESSE STATUS=OK 31 CALLS 221 TOTAL - EDM=4.17857e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.50000e+02 1.77339e-02 4.22443e-04 1.57078e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 sg_p1 2.19855e+01 6.07305e-01 3.81037e-04 -9.19155e-02 - 3 sg_p2 6.50000e+02 1.05933e+00 2.50525e-03 1.57133e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 5.36334e+01 7.38443e+00 2.06706e-04 -2.76278e-01 - 5 sg_p4 9.02830e-01 3.34620e-02 1.66928e-03 3.59921e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 5.580e-10 2.310e-09 -6.277e-14 -8.650e-10 2.316e-11 - 2.310e-09 3.690e-01 2.329e-05 2.608e+00 1.491e-02 - -6.277e-14 2.329e-05 4.479e-05 3.022e-04 1.863e-06 - -8.650e-10 2.608e+00 3.022e-04 5.483e+01 2.097e-01 - 2.316e-11 1.491e-02 1.863e-06 2.097e-01 1.142e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00021 1.000 0.000 -0.000 -0.000 0.000 - 2 0.72864 0.000 1.000 0.006 0.580 0.727 - 3 0.00839 -0.000 0.006 1.000 0.006 0.008 - 4 0.83905 -0.000 0.580 0.006 1.000 0.838 - 5 0.88856 0.000 0.727 0.008 0.838 1.000 -650 -650 +- 0.0177339 -21.9855 +- 0.607305 -35.9 fb^{-1} (13 TeV) -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 17 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 18 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 20 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 21 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 22 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 23 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 24 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 26 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 31 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 35 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 41 has zero error, setting residual to zero - Uncertainty on sg_p0 = 650 +- 0.0189845 (stat) - 1.56965e-07 + 8.69034e-09 (syst); -0.00949226/+0.00949226 (total) - Uncertainty on sg_p1 = 21.9547 +- 0.628139 (stat) - 1.34059 + 0.54216 (syst); -1.37689/+0.62656 (total) - Uncertainty on sg_p2 = 650 +- 1.12399 (stat) - 0 + 1.14208e-05 (syst); -0.561993/+0.561993 (total) - Uncertainty on sg_p3 = 53.5044 +- 7.59176 (stat) - 9.66364 + 0.356475 (syst); -10.3824/+3.81258 (total) - Uncertainty on sg_p4 = 0.902474 +- 0.0346722 (stat) - 0.0585604 + 0.00172451 (syst); -0.0610726/+0.0174217 (total) - === Baseline plot ===
- norm = 1859.61 -JEC lnN 1.0047 - -JER lnN 1.01327 - -btag lnN 1.06919 - -sg_p0 param 650 -0.00949226/+0.00949226 -sg_p1 param 21.9547 -1.37689/+0.62656 -sg_p2 param 650 -0.561993/+0.561993 -sg_p3 param 53.5044 -10.3824/+3.81258 -sg_p4 param 0.902474 -0.0610726/+0.0174217 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_650_novo_285_624/data_bkg.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_650_novo_285_624/data_bkg.log deleted file mode 100644 index 1be2f6e..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_650_novo_285_624/data_bkg.log +++ /dev/null @@ -1,717 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [252,330] --> [250,330] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [250,330] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63590.5 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 9.69443e-02 5.09000e-01 0.00000e+00 -7.94680e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -8.91126e+00 - 3 par_crystal_2 2.62020e+02 4.00000e+00 1.01181e-01 -1.53451e+00 - 4 par_crystal_3 1.65000e+01 2.70000e+00 0.00000e+00 7.46021e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM MIGRAD STATUS=CONVERGED 482 CALLS 483 TOTAL - EDM=0.000814822 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 4.40594e-01 4.43750e-02 2.48631e-03 2.88668e-01 - 2 par_crystal_1 9.82994e-01 6.48221e-01 2.14269e-02 -5.28345e-03 - 3 par_crystal_2 2.71542e+02 7.41091e-01 7.20683e-03 -9.27818e-02 - 4 par_crystal_3 2.87224e+01 2.18588e+00 3.97473e-02 -6.99277e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.970e-03 -2.333e-02 -5.115e-04 1.392e-02 - -2.333e-02 4.358e-01 4.870e-03 -8.391e-01 - -5.115e-04 4.870e-03 5.496e-01 4.381e-01 - 1.392e-02 -8.391e-01 4.381e-01 5.029e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.88989 1.000 -0.796 -0.016 0.140 - 2 0.92807 -0.796 1.000 0.010 -0.567 - 3 0.40865 -0.016 0.010 1.000 0.264 - 4 0.80948 0.140 -0.567 0.264 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63509.5 FROM HESSE STATUS=OK 23 CALLS 506 TOTAL - EDM=0.000711421 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 4.40594e-01 4.64698e-02 4.97262e-04 -9.80558e-01 - 2 par_crystal_1 9.82994e-01 6.55195e-01 8.57075e-04 -6.65795e-01 - 3 par_crystal_2 2.71542e+02 7.38644e-01 1.44137e-03 6.15159e-01 - 4 par_crystal_3 2.87224e+01 2.03002e+00 1.58989e-03 -1.05570e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.160e-03 -2.581e-02 -1.109e-03 1.530e-02 - -2.581e-02 4.456e-01 2.508e-02 -7.234e-01 - -1.109e-03 2.508e-02 5.460e-01 3.687e-01 - 1.530e-02 -7.234e-01 3.687e-01 4.306e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.90014 1.000 -0.832 -0.032 0.159 - 2 0.92960 -0.832 1.000 0.051 -0.522 - 3 0.40186 -0.032 0.051 1.000 0.240 - 4 0.77207 0.159 -0.522 0.240 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_gaus_exp) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [252,330] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=63714.2 FROM MIGRAD STATUS=INITIATE 33 CALLS 34 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.80000e+02 4.00000e+00 0.00000e+00 2.63122e+02 - 2 par_gaus_exp_1 2.45000e+01 3.10000e+00 0.00000e+00 -5.45805e+02 - 3 par_gaus_exp_2 6.67498e-01 3.05000e-01 -6.37370e-01 7.03093e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM MIGRAD STATUS=CONVERGED 131 CALLS 132 TOTAL - EDM=6.15917e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 2.71558e+02 8.05096e-01 6.82817e-03 6.24407e-02 - 2 par_gaus_exp_1 3.06822e+01 1.83071e+00 1.43475e-02 1.11468e-02 - 3 par_gaus_exp_2 3.82770e-01 2.42284e-02 3.05774e-03 -9.77170e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.486e-01 -6.079e-01 -1.588e-03 - -6.079e-01 3.370e+00 3.082e-02 - -1.588e-03 3.082e-02 5.871e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.49876 1.000 -0.411 -0.081 - 2 0.77898 -0.411 1.000 0.693 - 3 0.72797 -0.081 0.693 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=63510.7 FROM HESSE STATUS=OK 16 CALLS 148 TOTAL - EDM=6.13964e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 2.71558e+02 8.14214e-01 2.73127e-04 -4.35760e-01 - 2 par_gaus_exp_1 3.06822e+01 1.86973e+00 5.73898e-04 4.10264e-01 - 3 par_gaus_exp_2 3.82770e-01 2.45149e-02 1.22310e-04 -8.97531e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.634e-01 -6.630e-01 -2.137e-03 - -6.630e-01 3.516e+00 3.227e-02 - -2.137e-03 3.227e-02 6.011e-04 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.51526 1.000 -0.434 -0.107 - 2 0.78935 -0.434 1.000 0.702 - 3 0.73544 -0.107 0.702 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_novo) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [285,625] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=7.33953 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 7.33953) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - p.d.f normalization integral is zero or negative @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=287.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=292.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=297.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=302.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=307.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - p.d.f normalization integral is zero or negative @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=7.33953 - ... (remaining 126 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.734607 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 275.5,par_novo_1 = 27,par_novo_2 = 0.734607) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=312.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=317.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=322.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=327.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=332.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=337.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=342.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=347.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=352.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=357.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=362.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - getLogVal() top-level p.d.f evaluates to zero @ x=x=367.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.734607 - ... (remaining 53 messages suppressed) - -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (313207) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=275.5, par_novo_1=27, par_novo_2=0.0734613 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=622.5, width=par_novo_1=27, peak=par_novo_0=275.5, tail=par_novo_2=0.0734613 - - FCN=103487 FROM MIGRAD STATUS=INITIATE 49 CALLS 50 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 5.10000e+00 -1.57093e+00** at limit ** - 2 par_novo_1 2.70000e+01 5.40000e+00 0.00000e+00 -1.56195e+03 - 3 par_novo_2 -1.33668e+00 2.00000e+01 0.00000e+00 1.53931e+05 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM MIGRAD STATUS=CONVERGED 127 CALLS 128 TOTAL - EDM=3.4171e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 2.50000e+02 3.43423e+01 1.81223e-01** at limit ** - 2 par_novo_1 3.86596e+01 2.27294e+00 4.95847e-03 -1.04123e-02 - 3 par_novo_2 -1.27520e+00 7.07738e-02 3.70975e-05 -1.26322e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 6.231e-09 -8.491e-07 -8.580e-07 - -8.491e-07 5.181e+00 1.547e-01 - -8.580e-07 1.547e-01 5.009e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.53332 1.000 -0.005 -0.154 - 2 0.97096 -0.005 1.000 0.960 - 3 0.97165 -0.154 0.960 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=103251 FROM HESSE STATUS=OK 20 CALLS 148 TOTAL - EDM=3.43726e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 2.50000e+02 3.40246e+01 5.00000e-01 -1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 par_novo_1 3.86596e+01 2.31421e+00 1.98339e-04 4.46530e-01 - 3 par_novo_2 -1.27520e+00 7.22930e-02 1.48390e-06 -1.27523e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 5.974e-09 2.819e-05 -1.296e-06 - 2.819e-05 5.372e+00 1.502e-01 - -1.296e-06 1.502e-01 5.226e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.85665 1.000 0.157 -0.232 - 2 0.97200 0.157 1.000 0.897 - 3 0.97285 -0.232 0.897 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(f_crystal_1) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [285,624] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=107513 FROM MIGRAD STATUS=INITIATE 54 CALLS 55 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 2.55500e+00 5.09000e-01 0.00000e+00 1.39168e+03 - 2 par_crystal_1_1 7.96220e-02 5.09000e-01 0.00000e+00 5.33770e+03 - 3 par_crystal_1_2 2.56879e+02 4.00000e+00 -1.56713e-01 -1.96669e+01 - 4 par_crystal_1_3 1.65000e+01 2.70000e+00 0.00000e+00 -8.45862e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.5057e-02 2.3309e-03 4.9678e-02 3.9730e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.029030 TO DIAGONAL. - FCN=103250 FROM MIGRAD STATUS=CONVERGED 436 CALLS 437 TOTAL - EDM=3.52757e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 4.45574e-02 4.37117e-03 3.09465e-04 -4.28177e+00 - 2 par_crystal_1_1 4.36914e+00 6.24106e-01 1.80400e-02 6.63742e-02 - 3 par_crystal_1_2 2.71531e+02 3.44700e+01 5.81266e-02 2.25694e-02 - 4 par_crystal_1_3 3.37290e+00 2.71702e-01 3.13791e-03 -4.26197e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.911e-05 -1.221e-03 2.089e-01 3.572e-04 - -1.221e-03 4.065e-01 -2.690e+01 -6.822e-02 - 2.089e-01 -2.690e+01 3.429e+03 1.167e+01 - 3.572e-04 -6.822e-02 1.167e+01 7.401e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99136 1.000 -0.438 0.816 0.300 - 2 0.97307 -0.438 1.000 -0.720 -0.393 - 3 0.99735 0.816 -0.720 1.000 0.733 - 4 0.98716 0.300 -0.393 0.733 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -8.0089e-04 4.0193e-04 7.1213e-02 3.9292e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.004730 TO DIAGONAL. - FCN=103250 FROM HESSE STATUS=NOT POSDEF 23 CALLS 460 TOTAL - EDM=3.56127e-05 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 4.45574e-02 7.42610e-03 6.18930e-05 -1.40582e+00 - 2 par_crystal_1_1 4.36914e+00 4.67550e-01 7.21602e-04 -3.93511e+00 - 3 par_crystal_1_2 2.71531e+02 3.29814e+01 2.32506e-03 -3.75607e+00 - 4 par_crystal_1_3 3.37290e+00 5.01685e-01 1.25517e-04 -1.80638e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.515e-05 2.851e-04 2.343e-01 -1.699e-03 - 2.851e-04 2.238e-01 -2.528e+00 1.548e-02 - 2.343e-01 -2.528e+00 2.967e+03 1.176e+01 - -1.699e-03 1.548e-02 1.176e+01 2.538e-01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99694 1.000 0.081 0.579 -0.454 - 2 0.94927 0.081 1.000 -0.098 0.065 - 3 0.99687 0.579 -0.098 1.000 0.429 - 4 0.99618 -0.454 0.065 0.429 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_1) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:InputArguments -- RooAbsData::plotOn(pred_2) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_252_330): fit range of variable x expanded to nearest bin boundaries: [250,330] --> [250,330] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_285_624): fit range of variable x expanded to nearest bin boundaries: [285,625] --> [285,625] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_252_330 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_285_624 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_252_330 = 14211 - Background number of gaus_exp_252_330 = 14211 - Background number of novo_285_624 = 17618.3 - Background number of crystal_1_285_624 = 17618.3 - Background number of gaus_bern_285_624 = 17618.3 - Background number of landau_285_624 = 17618.3 -par_crystal_0 param 0.440594 0.0464698 -par_crystal_1 param 0.982994 0.655195 -par_crystal_2 param 271.542 0.738644 -par_crystal_3 param 28.7224 2.03002 -par_crystal_1_0 param 0.0445574 0.0074261 -par_crystal_1_1 param 4.36914 0.46755 -par_crystal_1_2 param 271.531 32.9814 -par_crystal_1_3 param 3.3729 0.501685 -par_gaus_exp_0 param 271.558 0.814214 -par_gaus_exp_1 param 30.6822 1.86973 -par_gaus_exp_2 param 0.38277 0.0245149 -par_novo_0 param 250 34.0246 -par_novo_1 param 38.6596 2.31421 -par_novo_2 param -1.2752 0.072293 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_650_novo_285_624/datacard_650_novo_285_624.txt b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_650_novo_285_624/datacard_650_novo_285_624.txt deleted file mode 100644 index 9547b3f..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_650_novo_285_624/datacard_650_novo_285_624.txt +++ /dev/null @@ -1,29 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_650.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_novo_285_624.root HbbHbb:f_novo -shapes data_obs HbbHbb w_background_novo_285_624.root HbbHbb:data_obs_novo_285_624 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 1859.61 17618.3 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06919 - -JER lnN 1.01327 - -JEC lnN 1.0047 - -trigger lnN 1.10 - -sg_p0 param 650 -0.00949226/+0.00949226 -sg_p1 param 21.9547 -1.37689/+0.62656 -sg_p2 param 650 -0.561993/+0.561993 -sg_p3 param 53.5044 -10.3824/+3.81258 -sg_p4 param 0.902474 -0.0610726/+0.0174217 -par_novo_0 param 250 34.0246 -par_novo_1 param 38.6596 2.31421 -par_novo_2 param -1.2752 0.072293 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_650_novo_285_624/signal650_sig.log b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_650_novo_285_624/signal650_sig.log deleted file mode 100644 index 1f5e75e..0000000 --- a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/fit/5GeV/LMR_650_novo_285_624/signal650_sig.log +++ /dev/null @@ -1,883 +0,0 @@ - -Processing test.c... -nSignal_init = 49200 -test -test -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=13508.9 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 2.01358e-01 -2.87056e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 -1.46321e+03 - 3 sg_p2 5.75000e+02 1.50000e+01 2.01358e-01 -5.56470e+02 - 4 sg_p3 7.00000e+01 1.20000e+01 2.01358e-01 -3.42658e+02 - 5 sg_p4 8.50000e-01 3.00000e-02 2.01358e-01 2.11139e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12287.8 FROM MIGRAD STATUS=CONVERGED 597 CALLS 598 TOTAL - EDM=4.72558e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.31550e+02 1.07438e+00 1.68730e-03 -2.23582e-01 - 2 sg_p1 3.53137e+01 1.11870e+00 4.47963e-03 6.27366e-02 - 3 sg_p2 5.77635e+02 4.62466e+01 1.24400e-02 1.02159e-02 - 4 sg_p3 6.47572e+01 2.35273e+01 1.70525e-02 -3.15130e-03 - 5 sg_p4 9.66896e-01 3.39852e-02 6.34455e-03 -3.92355e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.155e+00 -4.604e-01 -1.111e+01 1.243e+01 -1.676e-02 - -4.604e-01 1.255e+00 2.645e+01 -9.584e+00 2.747e-02 - -1.111e+01 2.645e+01 2.484e+03 4.016e+02 1.548e+00 - 1.243e+01 -9.584e+00 4.016e+02 5.848e+02 -3.604e-02 - -1.676e-02 2.747e-02 1.548e+00 -3.604e-02 1.209e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.66627 1.000 -0.382 -0.207 0.478 -0.449 - 2 0.79846 -0.382 1.000 0.474 -0.354 0.705 - 3 0.96990 -0.207 0.474 1.000 0.333 0.893 - 4 0.84189 0.478 -0.354 0.333 1.000 -0.043 - 5 0.97425 -0.449 0.705 0.893 -0.043 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12287.8 FROM HESSE STATUS=OK 31 CALLS 629 TOTAL - EDM=4.61535e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.31550e+02 1.06668e+00 3.37461e-04 6.31053e-01 - 2 sg_p1 3.53137e+01 1.12240e+00 1.79185e-04 7.98026e-01 - 3 sg_p2 5.77635e+02 4.57102e+01 2.48799e-03 3.10645e+00 - 4 sg_p3 6.47572e+01 2.27278e+01 6.82099e-04 3.22908e+00 - 5 sg_p4 9.66896e-01 3.40601e-02 1.26891e-03 8.93554e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.138e+00 -4.570e-01 -1.213e+01 1.173e+01 -1.703e-02 - -4.570e-01 1.264e+00 2.725e+01 -9.434e+00 2.793e-02 - -1.213e+01 2.725e+01 2.417e+03 3.349e+02 1.539e+00 - 1.173e+01 -9.434e+00 3.349e+02 5.436e+02 -5.744e-02 - -1.703e-02 2.793e-02 1.539e+00 -5.744e-02 1.215e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.66019 1.000 -0.381 -0.231 0.472 -0.458 - 2 0.79995 -0.381 1.000 0.493 -0.360 0.713 - 3 0.96905 -0.231 0.493 1.000 0.292 0.898 - 4 0.82847 0.472 -0.360 0.292 1.000 -0.071 - 5 0.97437 -0.458 0.713 0.898 -0.071 1.000 -650 -631.55 +- 1.06668 -35.3137 +- 1.1224 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=13608.2 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 2.01358e-01 -3.05846e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 -1.60421e+03 - 3 sg_p2 5.75000e+02 1.50000e+01 2.01358e-01 -6.11096e+02 - 4 sg_p3 7.00000e+01 1.20000e+01 2.01358e-01 -3.92754e+02 - 5 sg_p4 8.50000e-01 3.00000e-02 2.01358e-01 2.53615e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12183.3 FROM MIGRAD STATUS=CONVERGED 366 CALLS 367 TOTAL - EDM=4.73777e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.34937e+02 1.20416e+00 1.88745e-03 1.06307e-02 - 2 sg_p1 3.54255e+01 1.33397e+00 4.75405e-03 -6.42739e-03 - 3 sg_p2 5.82190e+02 3.67116e+01 1.00364e-02 4.55135e-03 - 4 sg_p3 6.30056e+01 1.66588e+01 1.25710e-02 4.37361e-03 - 5 sg_p4 9.54564e-01 4.17481e-02 6.34242e-03 8.71212e-04 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.451e+00 -7.734e-01 -1.793e+01 -1.063e+01 -3.042e-02 - -7.734e-01 1.788e+00 3.000e+01 1.060e+01 4.484e-02 - -1.793e+01 3.000e+01 1.473e+03 -4.482e+01 1.490e+00 - -1.063e+01 1.060e+01 -4.482e+01 2.851e+02 1.993e-01 - -3.042e-02 4.484e-02 1.490e+00 1.993e-01 1.838e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.72232 1.000 -0.480 -0.388 -0.523 -0.589 - 2 0.84648 -0.480 1.000 0.585 0.469 0.782 - 3 0.96726 -0.388 0.585 1.000 -0.069 0.905 - 4 0.81721 -0.523 0.469 -0.069 1.000 0.275 - 5 0.97806 -0.589 0.782 0.905 0.275 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12183.3 FROM HESSE STATUS=OK 31 CALLS 398 TOTAL - EDM=4.49878e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.34937e+02 1.17331e+00 7.54981e-05 7.27855e-01 - 2 sg_p1 3.54255e+01 1.28807e+00 1.90162e-04 8.07781e-01 - 3 sg_p2 5.82190e+02 3.82291e+01 2.00727e-03 3.04558e+00 - 4 sg_p3 6.30056e+01 1.76697e+01 5.02840e-04 -1.16840e-01 - 5 sg_p4 9.54564e-01 4.07959e-02 2.53697e-04 7.71340e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.377e+00 -6.709e-01 -1.351e+01 -1.025e+01 -2.563e-02 - -6.709e-01 1.666e+00 2.684e+01 9.073e+00 4.040e-02 - -1.351e+01 2.684e+01 1.611e+03 -1.944e+02 1.503e+00 - -1.025e+01 9.073e+00 -1.944e+02 3.218e+02 7.926e-02 - -2.563e-02 4.040e-02 1.503e+00 7.926e-02 1.751e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.70445 1.000 -0.443 -0.287 -0.487 -0.522 - 2 0.83419 -0.443 1.000 0.518 0.392 0.748 - 3 0.97010 -0.287 0.518 1.000 -0.270 0.895 - 4 0.84000 -0.487 0.392 -0.270 1.000 0.106 - 5 0.97695 -0.522 0.748 0.895 0.106 1.000 -650 -634.937 +- 1.17331 -35.4255 +- 1.28807 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=13336.9 FROM MIGRAD STATUS=INITIATE 20 CALLS 21 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 9.00000e+00 2.01358e-01 -2.61029e+03 - 2 sg_p1 2.35000e+01 3.30000e+00 2.01358e-01 -1.30706e+03 - 3 sg_p2 5.75000e+02 1.50000e+01 2.01358e-01 -4.94508e+02 - 4 sg_p3 7.00000e+01 1.20000e+01 2.01358e-01 -2.82439e+02 - 5 sg_p4 8.50000e-01 3.00000e-02 2.01358e-01 1.69237e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 5 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 2.26189 added to diagonal of error matrix - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -3.9054e-01 1.0008e+00 1.0126e+00 1.3098e+00 2.0673e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 0.392608 TO DIAGONAL. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12331.2 FROM MIGRAD STATUS=CONVERGED 434 CALLS 435 TOTAL - EDM=9.27116e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.29363e+02 1.94289e+00 1.61110e-03 -6.12714e-02 - 2 sg_p1 3.39915e+01 1.39941e+00 4.02767e-03 1.41131e-02 - 3 sg_p2 5.86998e+02 3.80498e+01 5.91384e-03 1.10012e-02 - 4 sg_p3 4.52433e+01 9.31868e+00 5.76920e-03 6.15069e-03 - 5 sg_p4 9.32822e-01 8.73169e-02 7.58377e-03 -1.49983e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.778e+00 -2.106e+00 -5.004e+01 -2.088e+00 -1.541e-01 - -2.106e+00 1.966e+00 3.539e+01 6.357e-01 1.083e-01 - -5.004e+01 3.539e+01 1.597e+03 -2.131e+02 3.640e+00 - -2.088e+00 6.357e-01 -2.131e+02 8.769e+01 -2.781e-01 - -1.541e-01 1.083e-01 3.640e+00 -2.781e-01 9.342e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.91269 1.000 -0.773 -0.644 -0.115 -0.820 - 2 0.87908 -0.773 1.000 0.631 0.048 0.799 - 3 0.98973 -0.644 0.631 1.000 -0.569 0.942 - 4 0.89773 -0.115 0.048 -0.569 1.000 -0.307 - 5 0.99185 -0.820 0.799 0.942 -0.307 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=12331.2 FROM HESSE STATUS=OK 31 CALLS 466 TOTAL - EDM=1.05015e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.29363e+02 1.77740e+00 3.22219e-04 5.72091e-01 - 2 sg_p1 3.39915e+01 1.30671e+00 1.61107e-04 6.89109e-01 - 3 sg_p2 5.86998e+02 4.00071e+01 2.36554e-04 2.98093e+00 - 4 sg_p3 4.52433e+01 1.08302e+01 2.30768e-04 -4.25319e-01 - 5 sg_p4 9.32822e-01 8.54732e-02 1.51675e-03 5.84938e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.161e+00 -1.710e+00 -4.134e+01 -1.168e+00 -1.264e-01 - -1.710e+00 1.714e+00 3.071e+01 -2.615e-01 9.187e-02 - -4.134e+01 3.071e+01 1.786e+03 -3.269e+02 3.736e+00 - -1.168e+00 -2.615e-01 -3.269e+02 1.189e+02 -4.766e-01 - -1.264e-01 9.187e-02 3.736e+00 -4.766e-01 8.856e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.89467 1.000 -0.735 -0.550 -0.060 -0.756 - 2 0.85981 -0.735 1.000 0.555 -0.018 0.746 - 3 0.99083 -0.550 0.555 1.000 -0.709 0.939 - 4 0.92564 -0.060 -0.018 -0.709 1.000 -0.465 - 5 0.99140 -0.756 0.746 0.939 -0.465 1.000 -650 -629.363 +- 1.7774 -33.9915 +- 1.30671 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11100.7 FROM MIGRAD STATUS=INITIATE 80 CALLS 81 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.49976e+02 9.00000e+00 0.00000e+00 -3.31148e+01 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 1.41635e+02 - 3 sg_p2 6.49999e+02 1.50000e+01 0.00000e+00 -3.52712e-01 - 4 sg_p3 4.45955e+01 1.20000e+01 -4.37204e-01 -1.45659e-01 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -1.61763e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11089.2 FROM MIGRAD STATUS=CONVERGED 189 CALLS 190 TOTAL - EDM=4.42251e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.50000e+02 1.89844e-02 2.11173e-03** at limit ** - 2 sg_p1 2.19547e+01 6.26260e-01 1.90248e-03 -1.39894e-01 - 3 sg_p2 6.50000e+02 1.12485e+00 1.24593e-02** at limit ** - 4 sg_p3 5.35044e+01 7.53715e+00 5.15003e-03 -5.48748e-02 - 5 sg_p4 9.02474e-01 3.44307e-02 8.35217e-03 4.98005e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 6.624e-10 1.398e-08 -1.474e-12 -5.092e-09 1.406e-10 - 1.398e-08 3.924e-01 9.759e-05 2.732e+00 1.581e-02 - -1.474e-12 9.759e-05 5.173e-05 1.252e-03 7.811e-06 - -5.092e-09 2.732e+00 1.252e-03 5.713e+01 2.196e-01 - 1.406e-10 1.581e-02 7.811e-06 2.196e-01 1.210e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00112 1.000 0.001 -0.000 -0.000 0.000 - 2 0.72732 0.001 1.000 0.022 0.577 0.725 - 3 0.03176 -0.000 0.022 1.000 0.023 0.031 - 4 0.83627 -0.000 0.577 0.023 1.000 0.835 - 5 0.88688 0.000 0.725 0.031 0.835 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11089.2 FROM HESSE STATUS=OK 31 CALLS 221 TOTAL - EDM=4.36793e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.50000e+02 1.89845e-02 4.22346e-04 1.57078e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 sg_p1 2.19547e+01 6.28139e-01 3.80496e-04 -9.37931e-02 - 3 sg_p2 6.50000e+02 1.12399e+00 2.49187e-03 1.57135e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 5.35044e+01 7.59176e+00 2.06001e-04 -2.78513e-01 - 5 sg_p4 9.02474e-01 3.46722e-02 1.67043e-03 3.57388e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 6.624e-10 2.583e-09 -7.268e-14 -1.074e-09 2.545e-11 - 2.583e-09 3.948e-01 2.619e-05 2.775e+00 1.601e-02 - -7.268e-14 2.619e-05 5.169e-05 3.372e-04 2.097e-06 - -1.074e-09 2.775e+00 3.372e-04 5.797e+01 2.235e-01 - 2.545e-11 1.601e-02 2.097e-06 2.235e-01 1.227e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00021 1.000 0.000 -0.000 -0.000 0.000 - 2 0.72925 0.000 1.000 0.006 0.580 0.727 - 3 0.00847 -0.000 0.006 1.000 0.006 0.008 - 4 0.83884 -0.000 0.580 0.006 1.000 0.838 - 5 0.88859 0.000 0.727 0.008 0.838 1.000 -650 -650 +- 0.0189845 -21.9547 +- 0.628139 - fit done -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10989.9 FROM MIGRAD STATUS=INITIATE 82 CALLS 83 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.49981e+02 9.00000e+00 0.00000e+00 -3.26253e+01 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 1.05547e+02 - 3 sg_p2 6.50000e+02 1.50000e+01 0.00000e+00** at limit ** - 4 sg_p3 4.52220e+01 1.20000e+01 -4.25709e-01 -2.16544e-01 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -1.30632e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10983 FROM MIGRAD STATUS=CONVERGED 188 CALLS 189 TOTAL - EDM=6.98216e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.50000e+02 1.75977e-02 2.02403e-03** at limit ** - 2 sg_p1 2.24968e+01 6.83255e-01 1.97163e-03 -2.42215e-01 - 3 sg_p2 6.50000e+02 1.00518e+00 1.16864e-02** at limit ** - 4 sg_p3 5.38609e+01 8.09997e+00 5.22641e-03 -7.25959e-02 - 5 sg_p4 9.04199e-01 3.73923e-02 8.57345e-03 6.68076e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.162e-10 9.099e-09 -3.513e-14 -1.065e-10 1.081e-10 - 9.099e-09 4.671e-01 8.095e-06 3.376e+00 1.946e-02 - -3.513e-14 8.095e-06 3.071e-07 1.055e-04 6.207e-07 - -1.065e-10 3.376e+00 1.055e-04 6.604e+01 2.615e-01 - 1.081e-10 1.946e-02 6.207e-07 2.615e-01 1.433e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00119 1.000 0.001 -0.000 -0.000 0.000 - 2 0.75475 0.001 1.000 0.021 0.608 0.752 - 3 0.02982 -0.000 0.021 1.000 0.023 0.030 - 4 0.85148 -0.000 0.608 0.023 1.000 0.850 - 5 0.90043 0.000 0.752 0.030 0.850 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10983 FROM HESSE STATUS=OK 31 CALLS 220 TOTAL - EDM=6.97303e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.50000e+02 1.75977e-02 4.04806e-04 1.57081e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 sg_p1 2.24968e+01 6.85707e-01 3.94326e-04 -6.08350e-02 - 3 sg_p2 6.50000e+02 1.00444e+00 2.33727e-03 1.57075e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 5.38609e+01 8.16623e+00 2.09056e-04 -2.72339e-01 - 5 sg_p4 9.04199e-01 3.76884e-02 1.71469e-03 3.69689e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.162e-10 1.898e-09 -1.580e-15 -1.792e-10 2.195e-11 - 1.898e-09 4.705e-01 1.591e-06 3.436e+00 1.974e-02 - -1.580e-15 1.591e-06 3.069e-07 2.082e-05 1.221e-07 - -1.792e-10 3.436e+00 2.082e-05 6.714e+01 2.666e-01 - 2.195e-11 1.974e-02 1.221e-07 2.666e-01 1.456e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00025 1.000 0.000 -0.000 -0.000 0.000 - 2 0.75678 0.000 1.000 0.004 0.611 0.754 - 3 0.00582 -0.000 0.004 1.000 0.005 0.006 - 4 0.85409 -0.000 0.611 0.005 1.000 0.853 - 5 0.90212 0.000 0.754 0.006 0.853 1.000 -650 -650 +- 0.0175977 -22.4968 +- 0.685707 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11116.3 FROM MIGRAD STATUS=INITIATE 85 CALLS 86 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.49937e+02 9.00000e+00 0.00000e+00 -4.29903e+01 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 1.78823e+02 - 3 sg_p2 6.50000e+02 1.50000e+01 0.00000e+00 1.70769e-01 - 4 sg_p3 4.20694e+01 1.20000e+01 -4.84211e-01 8.96725e+00 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -1.70161e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11098.1 FROM MIGRAD STATUS=CONVERGED 198 CALLS 199 TOTAL - EDM=6.95645e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.50000e+02 2.30525e-02 2.32852e-03** at limit ** - 2 sg_p1 2.06141e+01 7.27095e-01 1.91751e-03 -1.78455e-02 - 3 sg_p2 6.50000e+02 5.67699e-01 8.96583e-03** at limit ** - 4 sg_p3 4.38408e+01 4.74866e+00 3.33807e-03 1.68221e-02 - 5 sg_p4 8.43914e-01 5.09939e-02 1.01808e-02 4.65599e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.079e-09 1.526e-08 -3.653e-13 -1.193e-07 -8.752e-10 - 1.526e-08 5.290e-01 4.594e-06 2.209e+00 3.042e-02 - -3.653e-13 4.594e-06 1.090e-07 2.852e-05 4.142e-07 - -1.193e-07 2.209e+00 2.852e-05 2.261e+01 2.103e-01 - -8.752e-10 3.042e-02 4.142e-07 2.103e-01 2.707e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00135 1.000 0.000 -0.000 -0.001 -0.000 - 2 0.80823 0.000 1.000 0.019 0.639 0.804 - 3 0.02454 -0.000 0.019 1.000 0.018 0.024 - 4 0.85317 -0.001 0.639 0.018 1.000 0.850 - 5 0.91509 -0.000 0.804 0.024 0.850 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11098.1 FROM HESSE STATUS=OK 31 CALLS 230 TOTAL - EDM=6.98393e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.50000e+02 2.30527e-02 4.65704e-04 1.57083e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 sg_p1 2.06141e+01 7.25563e-01 7.67004e-05 -1.75808e-01 - 3 sg_p2 6.50000e+02 5.67438e-01 1.79317e-03 1.57076e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 4.38408e+01 4.74709e+00 1.33523e-04 -4.51134e-01 - 5 sg_p4 8.43914e-01 5.09413e-02 4.07231e-04 -4.05850e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.079e-09 3.367e-09 -1.567e-14 -2.669e-08 -1.963e-10 - 3.367e-09 5.268e-01 8.847e-07 2.198e+00 3.029e-02 - -1.567e-14 8.847e-07 1.089e-07 5.498e-06 7.992e-08 - -2.669e-08 2.198e+00 5.498e-06 2.259e+01 2.099e-01 - -1.963e-10 3.029e-02 7.992e-08 2.099e-01 2.702e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00030 1.000 0.000 -0.000 -0.000 -0.000 - 2 0.80732 0.000 1.000 0.004 0.637 0.803 - 3 0.00474 -0.000 0.004 1.000 0.004 0.005 - 4 0.85306 -0.000 0.637 0.004 1.000 0.850 - 5 0.91490 -0.000 0.803 0.005 0.850 1.000 -650 -650 +- 0.0230527 -20.6141 +- 0.725563 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10944.8 FROM MIGRAD STATUS=INITIATE 77 CALLS 78 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.49942e+02 9.00000e+00 0.00000e+00 -4.99582e+01 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 1.21408e+02 - 3 sg_p2 6.49999e+02 1.50000e+01 0.00000e+00 -3.15963e-01 - 4 sg_p3 4.09782e+01 1.20000e+01 -5.04874e-01 -3.48354e+01 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -7.37019e+00 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10932.1 FROM MIGRAD STATUS=CONVERGED 199 CALLS 200 TOTAL - EDM=1.73549e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.50000e+02 1.97234e-02 2.13705e-03** at limit ** - 2 sg_p1 2.20280e+01 6.30629e-01 1.91154e-03 1.91770e-02 - 3 sg_p2 6.50000e+02 1.15642e+00 1.26706e-02** at limit ** - 4 sg_p3 5.38442e+01 7.62585e+00 5.23371e-03 -3.81562e-02 - 5 sg_p4 9.01968e-01 3.44467e-02 8.30135e-03 1.18530e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.307e-08 5.762e-08 -8.280e-13 -3.348e-08 5.240e-10 - 5.762e-08 3.979e-01 1.192e-05 2.762e+00 1.584e-02 - -8.280e-13 1.192e-05 8.864e-07 1.536e-04 9.534e-07 - -3.348e-08 2.762e+00 1.536e-04 5.849e+01 2.220e-01 - 5.240e-10 1.584e-02 9.534e-07 2.220e-01 1.211e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00104 1.000 0.001 -0.000 -0.000 0.000 - 2 0.72341 0.001 1.000 0.020 0.573 0.721 - 3 0.02963 -0.000 0.020 1.000 0.021 0.029 - 4 0.83506 -0.000 0.573 0.021 1.000 0.834 - 5 0.88553 0.000 0.721 0.029 0.834 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10932.1 FROM HESSE STATUS=OK 31 CALLS 231 TOTAL - EDM=1.74019e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.50000e+02 1.97235e-02 4.27410e-04 1.57071e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 sg_p1 2.20280e+01 6.32975e-01 7.64616e-05 -8.93298e-02 - 3 sg_p2 6.50000e+02 1.15565e+00 2.53411e-03 1.57087e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 5.38442e+01 7.69157e+00 2.09349e-04 -2.72628e-01 - 5 sg_p4 9.01968e-01 3.47361e-02 3.32054e-04 3.53784e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 1.307e-08 7.480e-09 -2.394e-14 -4.978e-09 6.545e-11 - 7.480e-09 4.009e-01 2.527e-06 2.817e+00 1.609e-02 - -2.394e-14 2.527e-06 8.858e-07 3.272e-05 2.022e-07 - -4.978e-09 2.817e+00 3.272e-05 5.951e+01 2.267e-01 - 6.545e-11 1.609e-02 2.022e-07 2.267e-01 1.232e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00014 1.000 0.000 -0.000 -0.000 0.000 - 2 0.72585 0.000 1.000 0.004 0.577 0.724 - 3 0.00624 -0.000 0.004 1.000 0.005 0.006 - 4 0.83815 -0.000 0.577 0.005 1.000 0.837 - 5 0.88759 0.000 0.724 0.006 0.837 1.000 -650 -650 +- 0.0197235 -22.028 +- 0.632975 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11266.8 FROM MIGRAD STATUS=INITIATE 82 CALLS 83 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.49945e+02 9.00000e+00 0.00000e+00 -5.09816e+01 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 1.59572e+02 - 3 sg_p2 6.50000e+02 1.50000e+01 0.00000e+00 -1.69501e-01 - 4 sg_p3 4.29297e+01 1.20000e+01 -4.68077e-01 -5.58269e+00 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -1.53081e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11251.6 FROM MIGRAD STATUS=CONVERGED 192 CALLS 193 TOTAL - EDM=6.51945e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.50000e+02 1.82842e-02 2.08842e-03** at limit ** - 2 sg_p1 2.14609e+01 6.40975e-01 1.89354e-03 -6.53789e-02 - 3 sg_p2 6.50000e+02 8.30067e-01 1.08933e-02** at limit ** - 4 sg_p3 5.04392e+01 6.38127e+00 4.50073e-03 -1.04974e-02 - 5 sg_p4 8.87574e-01 3.78194e-02 8.69382e-03 5.77855e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.336e-12 7.879e-10 -3.359e-14 -1.419e-09 2.261e-12 - 7.879e-10 4.111e-01 2.684e-05 2.430e+00 1.837e-02 - -3.359e-14 2.684e-05 4.386e-06 2.767e-04 2.208e-06 - -1.419e-09 2.430e+00 2.767e-04 4.089e+01 2.045e-01 - 2.261e-12 1.837e-02 2.208e-06 2.045e-01 1.464e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00119 1.000 0.001 -0.000 -0.000 0.000 - 2 0.75133 0.001 1.000 0.020 0.593 0.749 - 3 0.02792 -0.000 0.020 1.000 0.021 0.028 - 4 0.83716 -0.000 0.593 0.021 1.000 0.836 - 5 0.89303 0.000 0.749 0.028 0.836 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11251.6 FROM HESSE STATUS=OK 31 CALLS 224 TOTAL - EDM=6.57565e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.50000e+02 1.82843e-02 4.17684e-04 1.57080e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 sg_p1 2.14609e+01 6.41983e-01 3.78708e-04 -1.23899e-01 - 3 sg_p2 6.50000e+02 8.29559e-01 2.17866e-03 1.57098e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 5.04392e+01 6.41541e+00 1.80029e-04 -3.32084e-01 - 5 sg_p4 8.87574e-01 3.80027e-02 3.47753e-04 2.53193e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 2.336e-12 1.574e-10 -1.584e-15 -3.026e-10 3.527e-13 - 1.574e-10 4.124e-01 6.128e-06 2.455e+00 1.851e-02 - -1.584e-15 6.128e-06 4.383e-06 6.343e-05 5.049e-07 - -3.026e-10 2.455e+00 6.343e-05 4.133e+01 2.070e-01 - 3.527e-13 1.851e-02 5.049e-07 2.070e-01 1.478e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00024 1.000 0.000 -0.000 -0.000 0.000 - 2 0.75224 0.000 1.000 0.005 0.595 0.750 - 3 0.00636 -0.000 0.005 1.000 0.005 0.006 - 4 0.83906 -0.000 0.595 0.005 1.000 0.838 - 5 0.89415 0.000 0.750 0.006 0.838 1.000 -650 -650 +- 0.0182843 -21.4609 +- 0.641983 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10353.9 FROM MIGRAD STATUS=INITIATE 80 CALLS 81 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.49972e+02 9.00000e+00 0.00000e+00 -3.38302e+01 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 1.33664e+02 - 3 sg_p2 6.49999e+02 1.50000e+01 0.00000e+00 -3.20039e-01 - 4 sg_p3 4.45271e+01 1.20000e+01 -4.38463e-01 -2.07423e-02 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -1.51988e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10342.9 FROM MIGRAD STATUS=CONVERGED 189 CALLS 190 TOTAL - EDM=3.70488e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.50000e+02 2.03479e-02 2.11149e-03** at limit ** - 2 sg_p1 2.19227e+01 6.48242e-01 1.90022e-03 -1.27252e-01 - 3 sg_p2 6.50000e+02 1.19398e+00 1.24007e-02** at limit ** - 4 sg_p3 5.33695e+01 7.75365e+00 5.12507e-03 -4.78312e-02 - 5 sg_p4 9.02088e-01 3.57133e-02 8.36019e-03 4.34979e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.234e-10 1.014e-08 -1.058e-12 -4.315e-09 9.944e-11 - 1.014e-08 4.204e-01 1.012e-04 2.912e+00 1.700e-02 - -1.058e-12 1.012e-04 5.221e-05 1.288e-03 8.107e-06 - -4.315e-09 2.912e+00 1.288e-03 6.049e+01 2.345e-01 - 9.944e-11 1.700e-02 8.107e-06 2.345e-01 1.304e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00113 1.000 0.001 -0.000 -0.000 0.000 - 2 0.72806 0.001 1.000 0.022 0.577 0.726 - 3 0.03161 -0.000 0.022 1.000 0.023 0.031 - 4 0.83617 -0.000 0.577 0.023 1.000 0.835 - 5 0.88699 0.000 0.726 0.031 0.835 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10342.9 FROM HESSE STATUS=OK 31 CALLS 221 TOTAL - EDM=3.65925e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.50000e+02 2.03480e-02 4.22297e-04 1.57078e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 sg_p1 2.19227e+01 6.50158e-01 3.80043e-04 -9.57392e-02 - 3 sg_p2 6.50000e+02 1.19307e+00 2.48014e-03 1.57134e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 5.33695e+01 7.80905e+00 2.05003e-04 -2.80852e-01 - 5 sg_p4 9.02088e-01 3.59600e-02 1.67204e-03 3.54640e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 3.234e-10 1.922e-09 -5.339e-14 -9.335e-10 1.841e-11 - 1.922e-09 4.229e-01 2.702e-05 2.958e+00 1.722e-02 - -5.339e-14 2.702e-05 5.217e-05 3.453e-04 2.166e-06 - -9.335e-10 2.958e+00 3.453e-04 6.136e+01 2.386e-01 - 1.841e-11 1.722e-02 2.166e-06 2.386e-01 1.322e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00022 1.000 0.000 -0.000 -0.000 0.000 - 2 0.72996 0.000 1.000 0.006 0.581 0.728 - 3 0.00839 -0.000 0.006 1.000 0.006 0.008 - 4 0.83871 -0.000 0.581 0.006 1.000 0.838 - 5 0.88867 0.000 0.728 0.008 0.838 1.000 -650 -650 +- 0.020348 -21.9227 +- 0.650158 -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. - ********** - ** 13 **MIGRAD 2500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11888.7 FROM MIGRAD STATUS=INITIATE 80 CALLS 81 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.49914e+02 9.00000e+00 0.00000e+00 -6.82601e+01 - 2 sg_p1 2.35000e+01 3.30000e+00 0.00000e+00 1.48309e+02 - 3 sg_p2 6.49999e+02 1.50000e+01 0.00000e+00 -3.99059e-01 - 4 sg_p3 4.46355e+01 1.20000e+01 -4.36469e-01 -2.16258e-01 - 5 sg_p4 8.50000e-01 3.00000e-02 0.00000e+00 -1.69494e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11875.1 FROM MIGRAD STATUS=CONVERGED 189 CALLS 190 TOTAL - EDM=4.23148e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.50000e+02 1.77338e-02 2.11221e-03** at limit ** - 2 sg_p1 2.19855e+01 6.05458e-01 1.90519e-03 -1.38620e-01 - 3 sg_p2 6.50000e+02 1.06015e+00 1.25262e-02** at limit ** - 4 sg_p3 5.36334e+01 7.33056e+00 5.16765e-03 -5.62178e-02 - 5 sg_p4 9.02830e-01 3.32252e-02 8.34638e-03 5.03701e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 5.580e-10 1.247e-08 -1.236e-12 -3.833e-09 1.281e-10 - 1.247e-08 3.667e-01 8.771e-05 2.567e+00 1.472e-02 - -1.236e-12 8.771e-05 4.483e-05 1.134e-03 7.012e-06 - -3.833e-09 2.567e+00 1.134e-03 5.403e+01 2.060e-01 - 1.281e-10 1.472e-02 7.012e-06 2.060e-01 1.125e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00113 1.000 0.001 -0.000 -0.000 0.000 - 2 0.72667 0.001 1.000 0.022 0.577 0.725 - 3 0.03177 -0.000 0.022 1.000 0.023 0.031 - 4 0.83644 -0.000 0.577 0.023 1.000 0.835 - 5 0.88683 0.000 0.725 0.031 0.835 1.000 - ********** - ** 18 **HESSE 2500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11875.1 FROM HESSE STATUS=OK 31 CALLS 221 TOTAL - EDM=4.17857e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.50000e+02 1.77339e-02 4.22443e-04 1.57078e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 2 sg_p1 2.19855e+01 6.07305e-01 3.81037e-04 -9.19155e-02 - 3 sg_p2 6.50000e+02 1.05933e+00 2.50525e-03 1.57133e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 4 sg_p3 5.36334e+01 7.38443e+00 2.06706e-04 -2.76278e-01 - 5 sg_p4 9.02830e-01 3.34620e-02 1.66928e-03 3.59921e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5 - 5.580e-10 2.310e-09 -6.277e-14 -8.650e-10 2.316e-11 - 2.310e-09 3.690e-01 2.329e-05 2.608e+00 1.491e-02 - -6.277e-14 2.329e-05 4.479e-05 3.022e-04 1.863e-06 - -8.650e-10 2.608e+00 3.022e-04 5.483e+01 2.097e-01 - 2.316e-11 1.491e-02 1.863e-06 2.097e-01 1.142e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 5 - 1 0.00021 1.000 0.000 -0.000 -0.000 0.000 - 2 0.72864 0.000 1.000 0.006 0.580 0.727 - 3 0.00839 -0.000 0.006 1.000 0.006 0.008 - 4 0.83905 -0.000 0.580 0.006 1.000 0.838 - 5 0.88856 0.000 0.727 0.008 0.838 1.000 -650 -650 +- 0.0177339 -21.9855 +- 0.607305 -35.9 fb^{-1} (13 TeV) -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 17 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 18 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 20 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 21 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 22 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 23 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 24 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 26 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 31 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 35 has zero error, setting residual to zero -[#0] WARNING:Plotting -- RooHist::makeResisHist(h_signalHistogram) WARNING: point 41 has zero error, setting residual to zero - Uncertainty on sg_p0 = 650 +- 0.0189845 (stat) - 1.56965e-07 + 8.69034e-09 (syst); -0.00949226/+0.00949226 (total) - Uncertainty on sg_p1 = 21.9547 +- 0.628139 (stat) - 1.34059 + 0.54216 (syst); -1.37689/+0.62656 (total) - Uncertainty on sg_p2 = 650 +- 1.12399 (stat) - 0 + 1.14208e-05 (syst); -0.561993/+0.561993 (total) - Uncertainty on sg_p3 = 53.5044 +- 7.59176 (stat) - 9.66364 + 0.356475 (syst); -10.3824/+3.81258 (total) - Uncertainty on sg_p4 = 0.902474 +- 0.0346722 (stat) - 0.0585604 + 0.00172451 (syst); -0.0610726/+0.0174217 (total) - === Baseline plot ===
- norm = 1859.61 -JEC lnN 1.0047 - -JER lnN 1.01327 - -btag lnN 1.06919 - -sg_p0 param 650 -0.00949226/+0.00949226 -sg_p1 param 21.9547 -1.37689/+0.62656 -sg_p2 param 650 -0.561993/+0.561993 -sg_p3 param 53.5044 -10.3824/+3.81258 -sg_p4 param 0.902474 -0.0610726/+0.0174217 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/save/Histograms_BTagall.root b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/save/Histograms_BTagall.root deleted file mode 100644 index fd6148e27f20dbe995cba07e38a62c55e6d13ee1..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 65525 zcmeFZ2UJt*)-@aw5?UxyLobSm^rj#kEGQ@-C>;Vw3oU?14G_ADf}+x!jow70L+Bt? zL27`2^xk{<1A4sooO{px{(J8G{@?qL@jAxF&4_OHUUNQkuC<=EadvdP4*<*w004k{ z0Km}({`i1DSH>R%_~SO=kCV02001-`KroSt?v_b8H5J96Tsaz0xrG1p|J9$Tfa43@ z(X)(u2#`9tGXAFl0ATH_Hg*;aDmE_n9j%;A?OjZiv`wu{?d$}dkMHYGKLCJ_uY^Ay z0RSY&_j?F zH4xxV-~xw_nZxhH;rrE?MGS_c8bchYfN8~Gs%PU(Vs(I=XlE8^n3^Vs2S*(F+ebUx z5%u*LLh1rXIDo*C2okIYxy8W?r3RA`kn}vNd(>(MNzNk$k%2(p<@4UY+8CQN{Io9; zd%=WqBLE7>M~mt!u)?zynBEfc06v=*WIeZQnU}|XBpau)dv)haohV$T5{b?6eoZsY zrnHWJC<521wT21-j0Br7k3z|zU`&%Ge0hj>isCgv3aLUO9?ScGy$PI3k)_XiUeMFi#Vr3Y)u8Sy<&F7GXJ5! zXcK?XYU^`o5Yt5W^ExKx)3REuLH^sb5&B?husI04)h)~lwi*$>#=&rT2l(W+Dclqv zcA^U!EuJf`f(D1Mn{l}zyNa*;`xF=jk_8MEpb(1l!t`esFc=NMgJjxAAU;Kkdpbw~ z)iyp}NCs!mtvm+BPkp|CXMJc8Ncn8vEmKPDqzoJjo8Y)D*B6Q=rz@sfZ1jG+7-UFN;g~RVX z0`h`B^ea4yF#+lsLe)4#_8<@{VJA2|x&}jXW1NGlTDxYOcCa8Tnk3mRcnD3ZKY@!)`rdZDgpKWrJ4 za39gcVh2wi(C2RjfGXj$4fXmnT^1xc3BFc z;bpPJ4mXJVBF)aI)YKfXhD!6z;N49N|{f@vdhuUvA8ey zXZ@}z#RPP6ZH+bb%J-4<(96_|1?bVlS&vGf>FZ!>iAo;BW(tGr@d~OwF!BxH zQN4nWn!ibtOU@NuZXD{pY^j#ML7!Q)LSJxyb=UV>(;SwYGM9VM(nG>%Y?UlyGCr+e4iuO_2dBsJu-${Rm!atLK;0wI;gLd)K@703v zb8w3H{2oLhdN6l5IDCQ6Cv|*{lczfuB`+)jIoE;#ys2inSA#|?Mxg1Y5gdSec8IVd zz0*k2XI%c0Pr%fx8nCewO{zO9ujLwjm0QDLU3-tg9A`jL#Hw1Z+a$fQmr&Mftao=k zpPpGz)UYvy(B?}WnOqsK(Gq`=>Vm=zKdWhZkUA@xC=vUOOeT>TiWecG7*N3>D4WRXfVF-=tTn_C(9ljDm<)jq8%cW*x zxHh(p&j!w}aYdWma*pr9^c{OjEsS~GDpzAaTx{bj)u~aPv3@wkaGI=xHA-5>%j)KG znCBEOJpqGjJ`Ae<-mnGsP&D2@IGU1weXTd0^O$5n+5HU!4HL(}m}cbb(&_bGk?z(`EkOr;EjZMwkB@ zmHE%;;;~QxO*ZgbKTB|LS8w<*PG45!*5>QDgUZDAeh8i3>K@CTGJj39e^U&26GeAg`AQ2==je`QT z`VIXNMg=;U@_vJ^{w9nj0KD0Z>B7_G%n41%Pm*Ba<0P2E^cPJikCR|$3#-3Rf#(PS z1r}ljLY=xtO_Izi`$nx-B+a6ohNSvdj zH-Wok`9j*L0*%Z%mA9Y#3sKRPEGbK9+}*Pd_x&LI%kE3foMQ~*X-mxc9OWN+9hF}{ z2CWfmEJhmjb4h7WMef{RJbPN=mB{ zr$B>ox~wW*H&fz9F7+y`@f%7iK@!RM?W2U^VU^4Dr6EmbrWDp&gS*m=J(TnbDVHM2 z!52>NZe71Na>;ppjM>2VHqJAPdDpeRr!q^KFIUN{1Z;nwMSq;<E+LX$+JP^VcyHVc|5+sA(_Gw-A_<5ul5YH~BFX6=i=_VvX)Y{!m&95y zz#RU3o#3A5)WX(eR~Rh5+qb=9Z?mZjL}Tvv0SXoVL&dsp3ZS`v%I(b!NO;a^GMWA$ zLHEyl-0rKHgzn{`Hp`Mqt0Yu6z~bM{b&%p`oB!fJ|CEr27}=;6q&p;}zSYGCz-C*CA(fgrs*kog4y(UD4)?8OU(0Te3er3h;>eu=?-9mU|NhcLL;lyAuyVTSk7AGsndiH3Yv<}I+8TN;!e^T1DPLO8`k0b}^Pl-8C%k@FuRnV?0RF}@-(bPe?uGqV z-JE$;fPYm@jaaBs-2m_7eF17OW)6O4t<%jnsR(R{EFGAjji}s`~H07TY~Ng zQ1eBO*mFl`^bd+&Ow{loSSbjZr1G8u>K|y*aWfHlSX!TD$~6;zQqQ$EdZh<*^=xW? zu|=bvC?Y&R=ynU6zIAr4joC!-Mz;Ui7o21fixpBY1%d#CcR*5b(T87gh zc;y(mziHrGfBvoNqSnE)SBw67bVUOET;{(bYajP5jM8|+rGJ-+aF$! z6IeP1hrE!#m1dPI)LkA!GLdZkQB0m@hcp?D1 z$W!YGh>={tW=qhg3ZQ@o#mxg?wjKMdJY*wYd1xfKRBeDL&GoG!Lq=_z>CiQQdc=<~kgnP;8Q?dp+Iz7(!F}1yFZ**~RnPW@T!F zzNP0?p~^~HfrolC6U&NRq7`p5HD&Y1u6Vij%olQcN$}c!Gg{}HFUhf7w|Xt=BzQRT z9_{?L|L&U|L-7fPqf8j(Znui>Y{Z?g^+rmG@_jk0zDQw;5cL6h_P4dYVz(Q(uLY7z9`~VZ_5_x^fjfRKw>dxXC~O+}&C{%MeYt@pWb@&yJjEt*{XWfpgJd?> znI&ql0(&G;sKGbgXCSUK4>C*GF(!OWC_KOfm4AetKIP9~KS?r!euMqCswz;E_VB70 z`(yrrE7k7|(-ecIxjvLfo>t^z_{tTiXm;cD{mvAA9;8mUlE05aC;O?W?14i2Z{}0) z?@%Rp-T8X|%WJWCU(AyU zDQO#XRJeQ%-(DJNUaRITzRarhnx!}>YCRYZzA}N!n9KcDMcMwO3~R#TN5{X-WWdzg6zJz~03q@3}*}bBA9Lp~f|-FNNvCsopMA zFL~Am-&K?9ZN(U-nh9Q1Wo5pSsU+pQz+0tu|N6%uHUXA%O^IC~*^bNVPRU0DVHCSh zk70xrxn`nxz;#HIDQb#wX*2Ul@tau+`P%P=&15q8G35W_yS`xs^{6I z8>b7u25)*3Wq%2zM{w=vUR(92dRxv=L&vFr^Sj~oO?>o&Ef2x1c*5*1zBw1?(jz7j z)|q-)zCIscZEXL}n<|2-Ed)0nz3(UJF`i_9;>Xz^%;Xn(G}b1{T6cf-K=J24nxO9q z0E|DIp!62U?*75@*xfbm{pRje?V)ZI6l=eAK?y#5Cuj6~BngAXyjCDR?nOKQt{1I# z+=~{*_o6SJ^rFxF>_z7TJ0-!%9;CsfHak~H_0qZPNhe~s8A&BRr*l7)xNz0;{UuWH z$~VqJ(g&ms5YokTQ-w%vm@W(kJ3_a0eK7V;Xn7@nwQF)N#U~h8)jxj*K|t*bNibp+^-55zl-q# zb!tAm~W^CFrm%Dg6*GlkW`P1P$EBYdP!M%i4)VVjJ zfVpW@bV7}*?8c?p6viKSYvCc%j!XgBqn-Kc(p8?E*-w*t`VfIhf@JSB#R{;JG)^NlBAb?9h ztAnS{HKs@I6GqI`u#sKWOiX>MX)hO<;d3bWCq2c}5aAU`Odde_1q5h}5?Cr9JY!xS zH(y?{K$z=QAS$>zV02WUd3q@}D)&x6RQUjNN7bmjOb6J)Jtx+w+QnZcz-mSs+<`ME zPkbc;PW%idNd!t!B!;Qd${07CbvI1-jB`@ssy1KpfrJNCvAc`53IU{;0X8@M@pAl+ zE0_(xZ}sN@pJZ2m0pOee!3sY6KM3Ic`_+)-H!M6;C}3=O^7r*v`6%^SCvg`wS>6=q z-G8CdYxb=ms3sG!`^A^@tCdSF^G5d$yXL-w_;PnCC5(Zs%rd=q+m^$m`*6ITQq|vY z4-kYi(!gY%e-d?{c9wF_8@5DNeZX%oy|W1L+FOEby)A++_JlBEC*H!a{e_HJ;~6&`nCo$+e0-i2@8Rs5R`I%S zmY+WS3V!0l<|jUE`OAmfLftmWUDkgYvC|mdh(G@@;v2_C4EaYR{@bSTx!*R0ft@no z2=u>W#BY8xV)E|a8}YjzM*R36jF|OY&=}@M1gQUaTT55|V8l(wMjZMVjriIBEhC20 zhVtW49{(fCoGt$vR(uL4PHkPG?{OND})LHmOKuK9c_AI(o>nQ9seH6;koeo3O-w{z|m z5kO~A>II(PcTb)@^>00ab1uK0o!DB(!p6$_z6#lozd2O!-{C{SNB~Iv84Bap<51K! z9Z%vVH~pH#dv+=@HYQPXteQN9PR36rnTrB)_5HaBrQ?ab_`jdXLyQ02L>>vjlY8)N zm8>RyO8{x+&rv5;gq~1kyG0B88=JKa4f!Sj74x|_;O=L@IyjC4Xm0wIqE8_6%s0_I zX~l*?U(83svtxckAI`_>LZF`*D7JC}78>4Ki7udYdA}oby<5)Ie-I)%+u--D+B!O5 z^dkrqzyadpx`3k=zRDDazNKtVN9zQA%7G=QBY{G1omXH1)^+)9GlBvNE>T$lR`el| zC?Wi|{rO4Z;_K|DNWD*f)fUtmhRkUmv=J;oz!Zx%9X_g2CsBQW5>>HdM)5ZPLsZpB ze@0c!(G4F|0|LPN--23q5>(7dP%-}y)LL)~o%d=B8u25yoAtxzc8HVQu9GdF|+NbaeRL~`SS%nITA09;7cw=yrTmIDtx9kH_&E`QuC2iEkvU7qS{Ve@B z4|p|!x{D%Fcs)Nko1GGLvD%FhdsomLNn=oryQJq|eMbhr&G`frpy~_?AoBtRtSNHb zg2R#Y=5VAZQ5{NQ9taHvE0lvm$zd=SKRaPdKY;aYz-llh7!cNiz|W)-WSqb-^2xJV{1W%yw73dz;SYpN5+-_F!&Rh%JySq?tMN%ru7#xFHf0h zP@5P=#3Xz+(s&&alM1i|z5Fqb`2yH)$3gxNI-q8XBYggVLop24AmZ-+fDs* z`cgUQ<33kVR`+wWKh9@@$?-#(H?l6>Zl00^>97NVNT ztZ+*)m6hhn`vTCLhLwZFb`PSByDaz-z}pS~WD-ZEmWr_kn7lp?sC!BSgTts)Q#nD3|9Aljkp4o7%-ZCdg@dk%y{U`K@g##d0YHTfze&CDCI3dP1}y|9pKfn< zDbzJ1;GRYv3jA_7g*)!ei`!6Epr!RGE^a2$O7u1%MP=wVb*2B1p<%s?gOf^Jb@lZ_ zt>O~dE#%Q;X0;;wQ}m#}mEQ%H9hGl@Di6AA&2}(#9zBTE`e^ZK)(DhxBSN(wj4bRe z3wgnyl8X71b#35VqG6DyTys|z-L3Ct#l`%ut9Q6$o<4v46v}2shOC@--x}W$kQ`)m zyCrYJzJ6n<<+@JJ=FRgLugCD1C*64*Z#cMpaC<+y!D|$r*yk^O0jii z~Jx!0hFcX4&Od{zp?7SK~bgU2c%5~fX^uq zkZSzd>5&PJS&XOm^RI=Fa4LzKHYqW7>e-7rz>D!8ySxCr6Ml~VyHQvUxDS{%{dff+I5hKM z5kEAa{;tM@>utQ(wTZu~+`e^#KjT(LHaJ83=gjfl+}}^UiYcBIiCgWCn1&0&<|#z z>PrZqlEn*GEBXsDIeM!S2$=6S1#3iR9lTCHBmZ-42{xDrL|~HL(h7Rfv>NXLcG_sfoI|GAvzW78$;}x3VYJgNz;7_0RjF`aK(NN7) zpuX@X@qby8qZu6X9vDvAS`or6kIJol_S(25=2#?Zk?UpCRsMOr%H3(_x_f)lr`oR3 zAiu_`I!JiXYbe{w0y!J0DkFBJ4nLH+UyB=FiK&+LCJHF)v4Oa?Q$vcpP*8`#Kp6Ht z-ahzt@TTJuQhl=ke{=>{Z?xdI#vhYHbK)F?i*Fg=r)ut_t0lVdgEIMk)psJ%)ps!H z>Iqv=Kub0lDoDg8T%2_aj*O|p@03HwQ-L!aL=XlL$1B1QL3nL*@W$Xl_j`mN&I1BZ zpr1T}{$#FSr1BT^__=;O^d?Aan`8Jp2mq5m;rIOE^*>%^X#cg4VvgabHi>xF40tj2 zg90Et1+M%91++!*6rlUvTz|5^XlL3sA~~jzlnK945({_zVHFvLSqvsqA11=TeBAL& zW5350O8(*tkjeDEpVo?7=;NGZ&AfhC&!(N#!pt(|;11+TsbD;78Ey8Pr(Z;AxOI3&D%?b5)9#<}f&U*puA9*+bu z^_9}`s`|Ns7Z%1v?`+E#9it~VE`M#AyRu7`d$A~{Ty8&qbvJgaeJ(X2zSl&P-4W6& z<9OE6)p4@lphAz^!KCMowcz4jD~IEQ7E;Gg?hwbjJ>J@$2mp4 zW|gXvCQP=2{hd-EtvHy1eDVvx@A>A_g08&oN0h=bqhyOro)2vM#!Q_ckj!U;4Jb}nZGS|imbubbe z6V(H$)=7{KnYH_L$YZ%5+`(!7B2mG>s3fWCdTC2a!xful-V28E4-t%&86`G1Ns+aO z2e$fB1?nF;jRKFWN*#H2-rDI$u z;!kincPz>hy1#HCI>811t_XfzRuTf@De$PYy|TCdc88_Wcd%Q)D*dIlh7*m6BuV^T z_&blq3eCGhOlK4e`#uA8DqxqzpNy%$kGU-91sCcT)HBmJHM2PNAWn9>#!N0;v_!k7 zhsNO4_UB#ijw2SgvLQHJ^P1ez($c7x&lL8k0-BKU#ayBt(WqA;7H1~0Z~iStqFczp zKsYnoCFP5CUhIIuw=--!szV%K+%xak`2>t4#jtJXz{43WLGPBhu}-w&COQ^ zA9OA*H7(BBc-wCcG>mm+BMh{YUdYGy-(!yRxq*^>ndy*mKF9ji#M%^#4B6Z$)q30n zGfpj+u^arv;KKtsgRiYt400{PxT^W4J$Z2od% zr={U2J(OnQd9~!S zuCx7go1uQX!(SIQ9A5Q!a;Aa>)b>>`fP>XfC=B-0e^Ib%@qi{@u1j(3^t9Z422a@T zsL`r%pL#jFY$(0rA*E^5i~ZBrwR{&=S?$i6fP}OR zLMn+nsMac`l6ZVb?%Z5gxF}=w$`{JUWBgPwV4^NlapZv1d4_uZlsgrDfOm##;P%;d zHg^DhwLMZQ&4$LlFI2|d^ zJBq0Vs45m1R9Dw0$9k@w)8U_}*o`soEKn@CL(>&tsj=VhLu>LW@Io@ElfewJ%lzH8 zEI_@&C4E5!)vweUZR>j~Jf*QqckRP`hXZ(L+R6Zau2s8&=mOevfpd|f1TnCb49MU! zCP^S@yTdlOO1wj3jfP4_=%f7nB+CPYrRHPZ!+WZ zb}3oxTUQ-Yl!pS_HFeje4h`p{9p4

b%|E zE}R#{8JiD$CSC*REzh4_k+6Bb>3!3q?(>+&oAIb5R@+3V47SU$e)*lOlOt=4(f z?PW}USITg@+8tT&k>R76dVW`c>({BTx`oq^&#Q-h3(x%U-mnEdMx1W)G_}(ieIwjc zKVQ)GeBgv3Q(Df%zRUQjInB%sa{m-vLWMNHq>%MNt4#7_nO=}PjkXifiqt<`|@f|yEj=rWeUX6 zsZl>CRQz~uAKe6Ldzb8#giL2g(jO?c*>#@b(%)0MH<66~A~)ZtXFF2SE~QhA0xMTf zpw$UDVTR%tag_6uUsnvJOtSr7um{^3SobJ@9rw9M7pR(dna1o2xSI+t4yFqYz-3R( zy_*fyYiE7`{o3T$hW5KJWKX#RzPHVUWg8EJd#@FIDV&Paia9G01Ctj@yLmNsKbEiDseCT^?Q(i&e@1?TJ zr5j=gt@LbauRXX>p-Aw3+2=6UxIO)`d;|e7J@`pCS#kxVb<(!PdLFs#7yrck-+C%ddURxmm@d!MmkV!1*s&cG)LK8ufyJrs+_&jC6}bro^BT5naepJ8oqf>S(cI> zE^ABa=;77vzw8SSxi+Lx9I)7X+20MJGub3B|8+G7JY+8 z%Q=iBe8l?8$T#UC(Rn%ZuZx+5WpYYy_O8XfBkJA0^4(MYU_1Sy!CI1C19|*PRhzl` zROhbqO*Z|_IcwiF-PMVn#M=iIM(-GO(&p8aZy&Cz{`X^Vf?r^QjZ%v9Qrdr5Jx6K@6U)LUzRyG8Y8&Id5yfznR zQZ2l~iA!8dicpm>aT9^=DQ?{-ri(og@y@}P>>J;w+N8Ga@X_9qAzq4n%(~1uoihSK zvF9oZm6JG1Mfp+=5$D$OJ&WqpQ5-S7SSqy&EG1vE=(}9bWE3J7loMY1XxnBQcp%rK zoca;7L`c^%x{^kjEFep_ zBbPR%u{IL2p1gYw6Pd^Q$#3_;<;gc#t7#AMS?Z5;r3x#ex%w9G*qA7TEkQZM^Hld6Ls!oO;`1gRsM(vXO;^+p)^BC? zmQt5Iu0%YVx*Bfi)R)Sb3+lwtX{b13!i2k0J*K0UxVBRS)%UC+5*tAkc9tRw z1qU^9+%oK(J-d0i-Me?#uamg$08Ol-r}^GFJy#~PF`6P>V>$9|;qxy)wfsd{xeEUi zf<9VKrEo9sUS)lF16^g4?RQ>CsX2&eex|v3UaeY7uquMfam+h|&b&=K@!ay*7yXU7 z{5~3W_f@gLoiEB~H_rEdua!=)Nm5K~domFbmwP}rroBoP68+$#WqaEpF�HzhU{!Dr{APKF(5KIX2s3>Sp2DISZ?Mb5WmL zdS5n1%^r;$xj8BveL4c}Vd>7}?daqUNHF3g`xZFPz7=|YsUH-tekvwrrgo+d<`%~i zNI(EUfKPf%@S7)Z`HPyKyiH*C+nfWgIdp3|RQ*Ql^;Xqe7J$#rCvUxL1Mt+h=L zcxO0Vw-x`sHA?aLeQUj+uM*rPW%_K9-uw+*xblrHxR7*!lsHE-+h5S1S(8~OAu(1b zlhK6rb|x;72_mlXb7Q7YS75Hbx5RG8T-?5rZI(!n+ze##(eFV5z)Tp~6qqk;b5b;m z1!>0XkvN}i%B|CfY;rca|LCsbTj_K+`9Y9vviWul?QyS(pZJZ4HokvDESkqPc1pRL z7y3*S{e=ofP7p=~0Mzy07ytlR?&D1Z9I1a2HlgFNDUtsSo9I;vYZLq9Y7*}prY;`# z$AOb!0q949@m}!t&537APU-}+Yp+-Dyj`rlO(+`pR*n|G6y)Kgjb>H=!RrbTp zD&PHl-~9byq3kF-r=jwrs82SB`fCe9@~ublKFfoLu%t5igB9Ps4&Mnkd6W0-N4*E^ z`%xWHzPs#4qrL~bI8SW0db4cgI4-duKQ8&aOG6;vx+q^6Yr zI7QL^JheS0rDxs^T++QSo{ZkRnAiUN-LRCSZyfh{G`sn?QvJw5OOQ+GzP41mSV*w{ zu3?GG#5C9^#Ak69F>=;9c$X^enHTZ;ZRsGvh}0?66IrXYaIhC{Uio_}0l7B-G{-z; zRW#>rB{(lDT9aK3S#)0ZqNZ(&Q%4J|$SsH;pxXlvaRx=z(kY0Ca-#IeBg zE?eyTif^TRA58Y7A_sQ8mcB=`Sh-zEusOcVvWt0@9>a&Xm*ThN0&|iZWX#%GfD)cf z2_Ufv)RTh^qr{zBABug*GwDyo9kFXDYmnP>FN&LzfeVL5J?6<#muwebhZIvrbrSg$ zku6Z>Fw2u$;}*%Y94p%f6KjtC$3VGg`#-xT?Qh5X- zv5Hl6pcs^LUXPrs6|pN3oa00WyA!tx^w?V?+8EnuQpn2mO{fPO)Im(!07#FXNcUhO zb;l^}E{3H9;%tQfrvV1KO3c%Yh&FyHLQg-vYP}xw>R6Zf7~6`CjhFIgobjnTY7921 zus|z0(p}k66=Hba_xd=?M^n=DT;JgNgCAH`Iu38>I>xyg2uC`gr9_B4(;~|PQGL#; zJzB+(-R30x%}MmE=UK@TO?L4v8(^fIixfJjDCo8xb~n?EB+YzCbtJ_{XUmzvO~KiR zsS|U+tUGdPsfw(ttO<%6Dtc)y8^Xzt_E3<2w$|MwCN>>pj$=d2o7BLj`+Xv1w(isA zK2+}WOzUbXk?K@MF;JwCMd^37_>ji;e@n!Qe0-7w5nm>NX05@S;wBT4Kw^Hfwv%YDtTO> z>Q1~)-Rx@0UK~?*q4Rx>h7Sp-0b!^Z8=7QlyTU*zDY}wNx)~94t`#8ZgAL=>={0g z!(PnoDP*l7oEj#GnHD>p<#?BxqD4MNjuslWX&QrP7?!CN? zDoYe;(ehXE@R94~gu5|3>*}M~TysxQJ?og;d2)e*%X`XK7DwF%6x6kBXUi0Xc0L_n zSI!T;v7qkJWnSUPB?c#M1#vAUCK|YtMRkIA;q1ns9jWyg%_Qm$Q|Ne+SLl4|tZ5?u zs1%aH>S3|EJ*C?iC37xx3lJ=$6(Vkn}pVD`16hK>!a8#G-@CL0QT4E__ zt9_3hSYl8AQLidcu(Q!SxuKF$%bhG$e}p=U3pFQWo>UOt7FFDXN63vdt7K0~hR_+? zSV`Gk5+Dh2wx0%0P4ir1-86-weiMT|%d^YF9iy;lN-bP=Ep_lC7qj7`0p&wf!az0x z+ssy6Mrq!5-p4A_X^9)jP*Q~HSMEDxF?hP452M-1wjZ$=Vpz{le5`E7O#O2SwDSxf zYA-kJA<0{x2ngyW)oOV3#HS=~Z}YC)mRc36k9Q|?9Hs4}DU#T8StxQD$8ob{UY$o& zU2!&_*vk-Da#qK~$#ic4uU6P9w5y!V)XlX+kEvGw3&K{D7_X{e)o7sX`t8$+wJ!Dc zsLz#T*usQ`f?J0x*J$)ydZ{JjHe!7(Ph(|#x>cS`xmxoiuR`a?=12@J7Cc@ zQQG}^r-ys_`{r5s*;{S#aC%_|T_L)V%a#OU@W+$aBH8f@LvBGT4-+QtI(o;^ zxom2|)t^Y^6IucbpG0MaqnX6~D{Zf|SAE-+SYauqoSr-X)r}9N#^iQ^GWp|t0?mQZP%J#~3ieU#Q1=(?$u z?f7uUYyU-)XPH$~tQhwCp#(o#I<&h{A)yl0Bx~z)rI3|-3`?JC3QwWbk|eSON+BFa^?e)7Zkl-Zcx=XQun3ws z&+WT6@6t-Dj-+PTyRBJS*9!2XE3s9Fn_663tbCglA5^4^DUPz~f!h6rCgmRlm> zy!POC!&|&gaRlS;N2uu5zhs3WTAVkXG!aZbvA_viWedSo{Q*MN&un_{u}fx>jwROS@8Pqx8X;GM>iR zBFbKjTCun9(RTW#(ZSHe5+~AlBc=B2qos65y)Di{S05*$s%q3aO*1Rshe;WU#n|(= ztz;qXTHhUd)}N<_H2I`SZ2Y#62krDm4mKxqJ-$zQE|njUHx;35TitD?0Iy)NbPMb2{YqWR6l4Hk#v2-2%Rj30E~zr`Gk(c_Z9&2x6g9D8N4 z7d~AuSV6Vx1;cp;D;fvgag{WDl=~GZQ|$0mn<^2-36F=CxFNfyaGHHM&L> zcd)kD*!hirz_OZKDtU@&ayd3}>CAJUqM^uwxsjw{>ZFWU!y6aBu5G8UVpj||>~G3| z7cUXDhoj{V`9l;aC454#%Jp*3T$=ZO$mYS8PPyB#d;xBuWzTp@H)?|$TUpmw^-_iX zpp|G<$dt4>+a=_Z$0WpKcRFP2AZmVwwN?uTbQ3_kbn7`zHIcuR*1k6aUNj|NcX>dn z%F&qgjxzOU0wK4wn%L+$Sbk({4RTD1i7YzYsB-kjQX7lDIlP)(lqj`l5Dk<{mfvYq ze~4}C&ma5bn=LEhBYj{pMdQW_DvVNig5^baXxMtTr%-mMKN}p=>M29o9;Z^2aNJz{ zsQp?`3Yqei;X~^83LP$r>?K7=(x_#ow4~a7i=*v`rX7PTv*u0xjc1>Uq1;KZF60LC zUY?N#M_UJ2#l`H&NzOSJ{G-?%G-j2A>}z{?7Hl26-w5WC$w2wc!jO>O+N7gthJ+JE zYfvgCi{n}cEX~Q1q~nV7TmLSwb_)Va9oEv-ln`FmF@D@blvURB?kjB*SxieH^=M5I;fT9F>>g^*Od+nQ8ho(RyB0 z@YF!$cZXSQy(cuPldiEYn`i2`0I#_WUnoeXYz1y+nHq>OKONPcr*6(?ucgKBG^rNf z#V+c7SOQw5Ik8uCpw}=)E*uvLJ@J{1%QR?;6793AtCgCRC}jw=nz2BU+y9KP$x-{q zjz?Pn7B7q?{NOYWR$%;NARaUA7sH6>ZUJvjD40#(!*)T@Bv zmsIyTxA}1Y!k%0!`Y_es1#e;!BEDyT*p>HzSIY~xp$f0><*t^LE`A=ugr0pSK#Amr zL*12EeZeKpb?dS|H^yZQYfJiiu!=$+KIUoB2j-CyQ=bxxvcgBD!d{NF7v3?*XfVo> z8kG1=_d_@xOAl6adi!15Vq-8YrgBur31>P-5oM~vk!`lg`LEZWN*DXKgzIUYra%u& z4EeM(6-UW&x$&cAsy5_05)%bGF9u!+8|95SJsI|MNfe>l;~eJfO{mNAGEqsA;7PE@ zY%8&4HFeVnaECJt>{hA$)Ms~B$al%p?!)`xAX{A}gh_{(`7}Go>fzE>PU@3GVxU{tR>;l5^+ovuDg{YfwH-of3H1q#G^WuPs*Y9)SS z*}*qMVrwmbYx8ZAL5hJTV*bAGJLM-#fizbu>FBD@KW7KsZFewcyM3?n~sauG3i{Daj%jF!8k-bM{mxpCF;`p8?)xcK6E8G2hcb6Wsogd+L?$xpe zSvi`Lc7Hu`eIHR3tPIc5m@+i6Z4Vn|Nh=`QZK6c)i(qS%7p5*BLdQ$OM{sJJKkj(D zyv3_szG3%}@*%3)D+J}9V;CnH{BE-qj97OyC0@^y3o1ztIe5o4MN#vqjoZ_ln=((-_(LGU1*?EVrF2LLI%UitD(V&@>cJv?*L+ ze$v;Vgu@dUm4`Q3N-+i_As2+1lPSm3*%7|iu|&JK(0a~f%E^v#0ABzLJrhFJYce-QtX}YBRD=z7Xir2X1Gp;Z{Sh zt#_o58@W>q4wZELD8T1hXVyM>9N}9w?sIiH*0xD*Rg=@K!`U%p^C^_^OXu4kB1z1@ z;D31u;Vib=Q%Bf0IIk_mzKvD&o8+}b`Q8*WostFbI9WFr2gGlw$cUbMZ}|}~)HLpj zeNQ)>J&h)PD}`*mKrT>399{MRy`xB8iYY09QFjzh;%o4yZ0*K~D($zo64?+P=m9E8 z7cwnHiUtMwe8(SGgrk;}D;DtO;-@}~1C0``u}VZ8uP~)#8KEWd)byJR!S;viFPErC znbNw5;+cUZC0turU{!Ujr@=GX^+FzepQ9v@_dZ(Axx4+hUWV_**wy!I9Um$Wlq*)` zo|SZghYzU+6cX81@!YLT*QJgz#jD7MNT>2siHh}VRhTU*T|#zGI8ZPiF~akyKE5f* z5xNhNotFZwpGw7`vVO}?`)g$Sf-W3+g!1NR9z1V~OFg8DK6M#}P)|6xz`Uu~VH(Ff z$Qm*ZZ=op~*6J}Y4(3G$U#j}@Eml^-dHq9@?aJaQk=N8ta5z4v@;vU}QvsUn~t zAfVC&1*D6J^aMoYMx-dxO9T|8NR>{ANE1PV(pv%|y?2ljs&s<%9(spBC`lk8Z@iyp z|Bk))^B26wu|M#EBye3>*Q_~b&N*imgC2RrF$Gn~U!lsSjel#7@_%cNR>A)%)pC+c zwf`kx1=%=Qd#by7c)Yd!@b=B$;^Sj-=hG!})pjp#(24EE^)BSkN52Kee(2M*iI_M? zy?Q41X}sm(}#U%2~?#xpI7p_;=`wtzvbx9kE zM`#5Y))`)j6$kcQ0C`t)0iRn2K`usqbP_5WY7hrz&|4VY^7r4_y) zrf7B;ov{EHUdp~DAd1B@JT)=yEQ)ew*uqa+rQmnDKbNLAhBQe@TuEcSR^6-c`tr{x z`8VlJ0z0aoL1y_G(XnE8cLd_I0fJ>)s5q!(C+2n#wL?zr3sY^}R<8rA(49A9A)OSF zqk6-6o36w5JU!x`lVNibkL@-M(NnQ>m)eOxGvjYZF}>*x6Ti{(;E0>3Zdkd*NyGiMGN7d@Urb;Wj%r~)5kWiQXspFFyGIj zr`~|p2+s??bKRFRaxWOzQAe5=XxNsnoE+77DgCOUMo^SK=@%fML%{j3R_ebr)c^Kq zS(8ojzctk4@d#uSB+qC69|kx@Ls9rwxm%Oy^e&OCoGNQje)uDIng!UD{7L3c5}%$LFvhgWHB)I)-mc7kR{OlfZsPNo%hM5`X<06@ zk3?)@5%6;>=uR+U*ahEA+BpMFg6EM-^SM=wjm5vG^CKTkq*%WFE8I=}+W1CG+tXIN zn~)fgR4X9`Y;vAnK4p*My!n2m*lx_yQII$LY7LNOeEOcBPGp6nuu|2yHvn$1YU7aq z)oQxdV+(T_w*LFEW`8Q)iE-4$B5<~5?`jKLxhfSAh&`TGLKLJ0{P`5FfWW$pJ?VOt zE0fcD12H!$eO9Mfm2+_%g;WG5=uS#Jukch9Z+83Ys#t;~tYMhVRRkgqX)eu|RmqQD zDM30`)NHkdT}6CgN0e%v#f<5c01&EgqqgIABV@Q-vqu}pc5b#f3ipd}WYS$4d?t1~ z*ab&<5h`<#X6i@vJXp-y`n9CL@ErA?8=v#D;wDPPNYGQc4()^M&T?YtkM9qdc0-?i zVlMl5#?&@zwy{N*d z9pCu?47@~iqljrMxLdNbyOJs6b)ki0s@`~FvsO0Tall()*HU&P<|B|=h4Nf=!`ND? zq7;9vuz~N>{u;%Z3b*I4AeTziK_Bfu zEB&e2^!H7~(I0CqDj8eRKwCw9xhKMKFOGvusAqh9dS-`bv)Ele3LadG&t&P#TrgiW zO1^5`I z3gkFeQZp>@vZql|MiH+yMkcVHW-7dMZp1q&RMrm~s9pKwJ?rq(p;-mm4Ie+e{75g62C%|C5 z-tM`mbqwY`<+!Z26;-OBZioLSc_O@${`e~6U@~0=FSaOm!8g2G))%u985)9LTI z&pztx76yTR4Y7SQ?kc%f<&ioyI=3U|%VmOUNML1ix|gT_T;KPod8rUov3g8n|| zf2b#TLbwR7mK!=cVrz0dV4nr{qYDtzK z#`uiql;)yNmQp9-d+z)<0a9t*7gJnE`F_n6Lc}uvS~;nqS@_1MHk~HQG4d*9fS*+j2e)*3eMC&T`ddV3l-MIu|}OR@unE;?FmML{WJxsnwF)W39p0z-f><@n0d5s3S|H6LZa}-Q?t3GBTSI z@}!M0jSXX#$L_0s}Q1MCS>!= zT1|MZ9=w);Vn-xPNLBZn2qswk8+)sZP(+W!gQtO*fe;lv%ex@uf5bm_(vz}AsCp!4 zczAzCrN4>=c%+_cINrJzajH+z@bvuA&0L5a?af1e!R`E0ogSJLarO0Tst3HPb}Btr zQbg5xzi+)-1s?G0Z33Uh%V=g?`JtFy-L2De=fSrxr}b#{-#!1RN~rJW+}2RN#NL^6 zN*AjvtKO`t>&x<}CXHJ^c7BX!Ok#0 z&iGAud0nK;DtAFys~kOQ<7$FmqCiNfta$04mcn+6HNyqt?svw-?Zz^rT-RvQW~-Dy zYJUzHpBesde17-yKZf`hpZ{u^|EC%D|2IAl#{ZYHx$M1}_Fa23oZ99a#@x$Szdq>m zh96y*d~i!zd}L~!v0j{8^6}oDsfajN%g-^^D7KczxdwKrsYB0Y`Y&s5o1ecF|9t=6 zroqWM5D7-wdtUOK38LEqi4*t1P&m>S!$I)(KLZ!VV;>)6F8>KibJFGzvat_rQe$TO|TKDOL z@Nue!%BIT)sofBtr5im*{Qj49SrK&bYubiM8}i(DNn_o@pAnx{KFw^nrPed6M8P6D zIzgFvf3n?TbcQQ z?Z!68Ji6pvPiyz-be_^+NjE>7>orw$uzO}I=2r4$g?biI{5g&%2y>4E)ImXrw!b^W z45UCHs1SnRcJ~gwg3QC9*1&^v5ds6I7l}3Aq#XwxH4qwKGZuf6d>8IAMTu;CN1V&jGB6FBLT8uhKBGjGhM>nlp)rHTj zB-~}+!EKcBQh!)B`CkQysT5ist2{)AX@LF4`yq@Pub*CA$zPzR-sOU?htaoiWT*0z z{Q0nW3$GIm;Q-C-)EqqKkvjGDEUtsQ6|b7j^yl&N5q)LN6_cXXbYC*3F@?hL^-NvA zw7i>F^Fg#2j;x99@Y0BMq#@SF1KepiAfDU&#+%xmt0zxI@+%vZMeh8Tm+)DyXQqO* zqr?8s)H_%8pWFDIM|y=Xw^Wy!J>CUBmHe`h^k;Rqr8M91JH<>m(Q*L5t zD%Hbh(@w5%Ce4@^<`Q$ZhnR;>A9IhHhxfQOFKw$o0%fg|J|u}9e+cRX#SFx@>j|D~6T-jBR zJ^ZiJf&SMBmIKbIj9?Leax1vWwWqfE|J@ASc_;jn!3}}`?ybMUPeCystzSezq4@W3 zI@-8*|1PP@-z9Y=|NNW$J$TCfe`=op=c4|jNb&Ap1$4b$zOz%@dQD-W_UtA1sJN%x z#cIsE?P}iSNf+A9TYG{`zNQazNcg92q&ys@x_MnV=1uTz`+DJaS{9C& z{ezfa0L}FS&ta1vpYELCySOSa^M0Oi&wUaacGTnrkNzwyu#m8$AiUgfuvbUg0j35O z=^*fEU5Ex8VtbZ1`;a(v%ykCLK&9p)&ZLMD2vQyd>q-wf$C4J2q&E1)1?oHwh&zHD z0WYe6=PN*h9tj5(G9-;}$psw&Gu1DE8YowyE9PS6IL!^w_3=eMA9<)q68vO>L(5Hk^b3B7&V|*@7Nc&P3Gl)YZ zaREh8B4J4cX#G`C3hG4{;)mFBHE?$1{Feh1PGEM?yO;&e#gXnV;6c78LnH;gr}fal zK}k-j(?&?|hWSQa(D(%uQuD334hg{_2oT5ynwU*m!b=6ANdzfUFM(q&U(Eo{xkkEt7Cc2;wCE zC}@7EhrxtW>@{uiNA_|mqt^fT%l})0|3BElK@e?_j~`^g^sni*-k}XDoQio4eq_*t2)o^ZJ!+zV*lC zZ{bb*d%A;frTHJGK(5GR&C)Zp)6P&OcJdWy{=|p}Y#4$pm^bqIaC*4mi#7qCL6rv0 z$luIB^#0I35nGR(M|v8lkH2!MUZtdK>5U1{uz+HO9F!iv(pvGS8vIn8n76&G<6Z>o4x(vONVRVmAu|Evq0U>5_3X? z-*~|rI@xrgS73K+q9Rk^+Gp~A?Mm8nCW)7xmFtMOLCjbUW!8%zs|RR2a~GBvQ}U7B zx1^PL#jv*5A#gLk8C%4ubg}Lr8p>#;W`54&u~J&efKAOWF-bgsTDouGh-9C<9WlBJ zxhk+If9!4+$W-y!U#Q?0V!KLtpvTbiB%a6V_W~a|xPudIo8WM3+I{wX1#Z$l3SDZf zV0qx^Dna~R*k;snGIoJ(?TIW(_1-&wQ)cd};P^vV3&Y+&Ph9??tBg8l&od!`GdSz8 zKc(1eOql$1r+J%O5cQf~cZ^XE#dWS^WAhTW4o3NL^F|?z4qlKSD8Hmnm4ApXl-6`)yf0UjwOPmAR=*})j zAugNG7;;oQ_y>K@coUWnq9eaz;>MmEnyzAe@txaft_aNYky32%pQnI`6+G`mA zTJ8FZavz~@nRndg_26E9e62SD+KhxYXaY_E>h|#T%OM#t1c@PG5z| zOKg50VvA{e&Tu12;AIL|}ROK)~0pfGjQ-x~@h(TK^#$>MHS#&n{e&P8G? zJk-!cu@05<%JNoezgg+VU$2HR_`BEBZ|+9jk^f?E8)REUWy;wnVG~hA9Q(`XanP*uP>Y>wVE8mDzX|cz9*6ToI2y-31#9pB? z2~nvLi$HS_bQ(lFC#^VZbhwpG!gTbn`7DCMPJZhszMzI8ehLmp`dGT6x!vFRzaOVT zJ@|HM-*%{b0=!v@-hnZzbo-GV)4gjlxpcPu8v&hxb%46Ajxa zB1svW3PzXoMWM2i4a^pk0M?vqx4ph}yWU*sK=IYLgNG`}QBGZh11t3yw{@guXL{Lk zY43__>ifOq$T)Q^kpZ5%ttUHoBd zu6?}|fc6Pu*|yPmEo}Cv@GCm9S?JNUMslcZ)@_^J5f(G@o&>X{J3i~yitx7~yAiO8 zWQ+57lElIULtqSpaw>H_)lmuQY;L*iv8gXX@cp6FeyC{^p%BU=EwT{5A@_|irETm^ zb#avL{fw#6yAutQINFusKf{#H*t(b1gP{p}^IEM#?GMKm%gCgrXY)J{3UOkV0w#@N z85s4h)*os2SFS2_dTny8EWalkG_IUVNAP16a{9r*su29fqTVOKZ__d&OOprEb3(FN za=8dMfql|dVZRt!zmh6TH{F0@Y5eN@Ed8w~a~IQ{JbCYHD#q4Z&F2}2O?-Zy+zb4? zi=Q#q{;=hyz;A?a4D4MHg%YW( zNGhL%IT?7cNBP3owk83QmhLZ!saVU=LP_~k5WKP5prI1#;kF7U`=)x4 zgLguXEoO<EVO>cxCXch1~3Y%Awm}6_DfUf&+{6* zu}bu-!fSHV>e#5LGc@|_7Y2VI z9FuXP%t(jVh94f(t@b+X+xonY)N`1&bc@Tppl~0xG@dp!2`!%Xxg&jIGTv$o4&+-a zd~`bGke_A0O+1W=@-Sbx1A%C|uPU_FG}-PowYN+z9VX2#e7T{^!K z+j+xU`Z!;LseEo(OHZ3lO2~?j@w}f_P>-kH+{w>5kzhSOd4>qes=&4E4RJW{^yeZM zR!vJ&{2{Nz&N!cs__DAydmrbEnyYYb?^~+M9vCN3FB#0AbRCw83Objx?mjyyMq>QG9(}u56Bv@H6zts`AU4OLy;MBaYL=lf!)4IjIzu3++kQ;57bA zY4_>f9tZNtW2#!w4I$;14@{Ql?04hpBN{uq7uw-r4&{3DW!PdgFLC>hOUdliQIX9_ z$BPbnD-KD*-tR~zrv95gqnpMqt9?>joVX5#Ks$y5EJD9*VWjOr#K+WRPkH?L+y-~I zxN9GM1$8pmqYz@G;?sHY5l-u2uhy`rS9xHP8K}%01CF;C8|jwxXDw|PcpjN8o~bG8 zPUltS#@Zv%?pIES&lJo{B~Fu_5a1**+iss*S=#?#!CKff6IzK?x&%13Si}7db6+sb zA^(64*jPM;h3(w68grWaNl zmsVk{xZ_7lvD}Hjs%`^LnYpEvTk~A|l7qSqGZLbBsw0)&45l{}c$V}sypVE18K(u} zWZ&cCmMOC@aJI#j#v9-U<1nV;R{LCvDwd;Mtjps;RvE;G(c1Oy1;6i>XU`)t*j>L= z7@Mxa_1dMuHXdo>h~V;7qbxxj@yQit$@VBW)}eMac?NSp2)DFfkh!6hG(jMJ)U`71 zK4Z~=u1TnH7JWo@oOp5oH~L4t#1})Z^LKkFAfaRutz7e3%emQTOhq?M??YM7ceSnG<*z%wz069=l@Y>-IeTZQk*cJ!QbN7~g06-!BBtnK*Cjc?hi9Y!;CCNB+da#^EOy*o_I$(< zHZkcvmGYzVKC4mAKQwmAb{;!b=gK~k>)fQf_mAS-bc-5dEdRVoqLJ+!<7RWq+wXRL zV1pTJt14^NNT#VbOb!d7fHJ2Z+!b%Xo6cG@ySQl@mREj>2I!FzH)&nL!QvtXVKpBlxTlXclN!;ykcigPbX9 zc)#2UL{`qeP6=@1z26I@UvU*Y=^Dzcqt{-qAU_3PmLS1aS!*^XayO3eCFS#V0r7S% z++%r$DpeP@%>Y&o%6;)zc&N}l5SpbqrHp50VxUNJ|A!U0BI$$XnuZP~I6fx3{+Zqkg)7gW0o{jO*EE||@e};cw@q5j&38Y^o2jSbj zaY_rm3jrv1gBFt7oH&BsVDh7i=70nBXD8-_5=D=%P~`++=U$Zuw)5Fd3StKZVy#!Y zbj{8K#|d3%dUxr`fk*Q6aoc5;1Equw^2#UHo<8p4Jlq(t291E;=(Ve5=6PQRC(&@L z6sdxz^P&qvgfB@wX8TgcBX`=)VnD~#PTqJ%OUZ!4yWFh8&DaT42G%vIoI&D!SDZ~2 zlhQix>McG#_oi&X-o)_*7$Y4MkEggo?MZ$X2}f_7|J{~&OJ^2QXvs?Ceu6oo19g= zBEMw7-I87@o%F?4vaB*KQ+{23C3z*TUPGR-s_s{@=0eEMYl@Pzi!wK=*eiK6Zd;adB=OiPfEHZd&^q95M5i47=PmfghR4;BvUjgOdu?xZRy0vG?LM zHosX`EH^QgycGFqp$2DTtjKl+@b>4hDZQvb_mUh#?nVZ&(q0emujZi!sbC*3@2R(1 z!^ZZB-%Op}JgIw;he9HDbT=WKGB11ojjPol*jnLg#6GuIo|-MAmz=a?2h_Ic$Z^hHBuR z;k1KcQZyJt1FU7|xTVSV_QLX3UYTG_WmWmlu#J`~)ly&o&lPcQtoaFiX74SdrYwsH zMfc}}Y{!EbG7|1J8)6(?ze)ol%*f#`ev~0_fuVZo1T>hydj4Dz!>$?BJh*c-hbPJ< zIojA~ylE3x&OriR?^mo&QSW~1TajuPY#Yi#*!XY0j}){$9Tgn|kGUC-!`D3NPO4Oi zQ3nYJcVF?G-X4z12u-{J_K!(PLXd`jd6yR0cR$(`3Q`WOiFyi8J-U}b4=QX51I&K-|w5?BQWI&@5HmQ_HNq-eB& zzbn!ZMbOaKG4a+|x20P`Tt-~a2Pa8;f#|1}jq%DG>B`a#eGq<<#-iVxwgfROZ*}vI z6c<_(D0>VG3pt2Segl2XW*6M#yt``Xt%c~NS}st}J&$s3-1~73q|P}dUH!IWOXgCj zX_M200M2LZ=($vx2*U@rNq!vHyDempdC|<3i-LQmiF2umDwGi_OdnSOxTx0sEIOFw zOG0Bb=#3nuw$8Y%eX##oVztxRm=(=_+ei_7-CdG>v}m=FozWr#^I(jxfW@3u>b(14KpXt#?TzQ~O|F|?lO)018` z@LX<5Je|gl>skljh@`{P!L-EgH9}JL?spxW=!#b2oS<#sDI<6+eH1h*3=qQJJ^v0s zDqdba@LLymo76HHU4}Oz12miEKls8LIp)|95_xTs7<1@b7g7L4p1jB8zSx!0Vl4YJ zoJnw**!}&IDbu}E#Gc1_dhdQ!-A`y3!dn@+RaRGDpNt(qD`|Tz*(T8hENRHUjYjge z^Nu3y2noAF>0vX*W0j~08gN3Hzhi;vgYHrRO`eMvzAW`ScUzI|ca`b;x)(mN+34{o z@*yfpF-c=ojk@mTCG=m&(fX2t1R$XF!lHc5e&(-lR|`%A)UFHK>Cm_jEC?0d*d=j% zGN+y1Xh6OPwD+|rY2!Y)yIK?fhp3;0kkm1)4{tIVdR*4 z%%HpZm}fLEv7TNyI3PcZnNjj4u=iz^kX%164K6!Veu0^f>A7WuP-8dlps4&qC`{+# z*k3AP{|DA!?j80gkJv$q*s$5Y@K$TIo6V4!nGK;*djr0a-e0s_64I>tem7X_RD8f; znw>6~$DK9txPmiy{u6Uddz31(`&wyl9Ef(GYPCRxkpy*PS){0$;tZZK=xzz9Cy50I z1!AU5-?gjNU*1`aQ`)vHtHeo2=OjjX&_8^yV`6wTcC;cXI*2YY6VlJa{2L2d2D`_k zcHWLLjpI|&x+_D+>CHoMI;--avt~IE4hBadT#T2a@^nKoc z0Gws&(TMt`dsW+|frt)mm)C(WUW~z!cP?O_&a?nJ+HFX;)1zcDCeQIVSe{xD4oc3d ze*yXYR+Wuae7D?SBVh1%Y zv`j)lKaoLr(G{=7t&-+Wo@3(6MJC^~f(^-KP!3qDw09&TC)`Th0xY#`_>Ss=(*aqD zrr9Mg)9PESWwQu?p-P@mFgwhEpx$?!|&Y248AjNwI`c!OZD6d)+Cw9+fYuk*kprew zDgxMkXdA8aNWM9L6A?oW5GsYmG<`G)gGU2W?w>>wvTkG61rka*dOUOFM^}IdAhi4vh5dSz)h&d`2`7Il znH9(2=o%R#^Lwps!1_x-KU0o(Nvm)X1%%{u$ybZu4m&sj!4(KPCSgu=C(<1Q?t>VE zvH(EjdDusG&P0@q=90i-+(wL$egrfuFL!$g1MRIcHd+!?@O9%@lxk0+@*%#gXHbq( z#=ca49>kXF_AFMo8@$@!)OQ1(zCA0deW8`y$g!lC!I+VX6ST!=l`J2&&f5+o=?(gd zN-C`bRv~FH=J~BAcAPZ(BHE3pV#lG-SwfHTdDY~|v{Xjlb=<{`1c%!WrP$x6w_g(A zX4N!xWcSp=?f$50waTBb?8~#)3gi!9T`Ul3$$@+WYmu}#V2Z6OQ%A2GB9x@sm6qSB4?dz#|B|vE9zr5ZiLp9ywvEtaM zoAGQiUOJ7ZH^DV^@wSN}v#Wa49Qa+v)5k*r1dbn;qCG1l9LRZbb!<*HLF}8a%26_D z^KmEIUtj12g-PtGc^C6T_R*}0Zr$R~do9=MhMGqlURVXb6M~OY@F_|FTopNue@*KC zf>!N0IL&Ej z{S>`arCvMdP1}O37Qu;V#CJiY%W{lPzU7fNUU=#D7?G^Pd0BsXEH*o)aWRde?(#wA z{=FEh!11n&k~5)Fx9>oD%_VW=6Cam8x>5&2b#8x2xzcK*?Sy^umLk_`N+_zR<)t;} zGt7RsS;{(*@%>zRW4F!nyy-VV7nA1p&;DJ;-zG;oddJ@kxRo5f(RNBmG}^E~S`u3l zhz(#_px><&B*uw1cTN>rt{DVew;EwJz=r9A=e(|M4;2wiGb7HlZab1>8nBVz;=hI5`Z7nCzDM*19~nV>Q#iR10m$CP zkvM6FMW$prY<8oOFvB-+F2%Zf0HX2!t#Ml~8p6RrUI>>g-csLf3W8Q<-u~HRKtodX z*tIy)+nHa`1tIS5c`-N6;}cW0^mTTv4mYn&z2T%(A_wWB6s`{D%HGOd&~z}FeEmhG zW0%fi2kj_!cU-r*;2`@I_6b;&f{ViJ09G2jYnn_KLr9`(T#h}x+jx1bjt1=3WdQR1 zhG5wJ=|gp>mB~T6mp)3;HuV_mu$3b7U}P-cz3*ReXYv8;O>b~E1=7ctb$x76wDGFR zh-)P-Y->H+%Yd81UjAg`;~KfNdS{E798HPpd$#W+p=K7PQl-1PdcUSbHEZn8Y{;*( zk?wwm-n5?p{o?bY!|#3+iamd95++QhYtlnCrbb$ND#h|6vNr_C+1i2tGz^&66#*K> zSk(JpXa$Ye4zx+Mt0jjCxzXK&!wev39BJi6(&ekQrQ^7?>XHx`#=OybgnvE$VvUY` z8?R}tMDAa>Dnx#lOkOHDM^<5aBOn9QfSmW0xQ`j-ch{pe zW2`XtOWy&Fbj4JDs?5YOGC%JIVz6H#b4&RPAq1btY#dAX^r0n^=iDuNOSIch(!Y0EQYN;}iGSIGAz5#q% zUgV}DUio_a@TfS&u$*M2&||-_BxKFra&3r8>4$flR?r@eqvXvF19b`RX2f&Iw|Sb~ zRDi4(+7!^dsz-GweV8MzV1tQM)zMxA(d;j$9JtX1^DZ}>A6^tKK-f~{$H#b?OE|jX z%5w!dUd)6~tfJ*{g)hz$K!?c@M-^1?5Gq$khI;6a%1_s7TrT_Fj~w(QuJX# z$wtOn2M-N-$6)VTjEHig>|f4>YREHm0Z)8UZws@7CSRyDB61O4N>?LNHS=(lwu5(E z24?H1;NPjR5L9=4O-r^7)8Ql_f(0a-9k;CGz27ipidjLuIEce(7F$#RPb*AHRrxD(?{yZo&p zDkh6TV}qtU_+-#G>Cw~|HjXyNmH|!ZZ*e%!3EsC(W%|g4;IuFy@@;&)1E4Ru&uE|J zE8eV)!OaCcE8U;J&KH_D&;|-k%!H9SWb%OI-ACI63Jel^>2q-lN1||Ya$qn?2|QIg zOug_JH9Q_;#nlAt?h5+*ewoC{N~rO)d$O*E5tCYFApi*mcZkfYN3vfpyG zm*-gbxV?jYeKj7sA*m8Ge-dwI5#YLeC{YvaL?-;@B(y;<+Mpb81BlRDr5!!;E+VTN z@Q%;!OR*>Efr%|&nrlQ`9K$`m$@$UF#Ew9?0bm{6H=}c!Owc%um#*13UNSq26F;YA z(nbr!N;TcpjG6CLDRN_7Y`MP8WOLHx+HDG`anozp(3iCFrz8k)hl<$lru$ncq0G#> zb`itOjr1i>iu+lA;27oQf110D;U#4G3;XL*`2o883|c;!`aWIy`kauNK_TTk{@|}S!gx|vkwasnP96Y7jG8HMK4tEh|l#@ zH!b)rUvU-BPyUX=S!?ItvM=pxr8_stNnZ#R^JKk^W6m9WR5DQNgEwIU|3?y#`>M;N z)vC}y#<=P-x%}G@jei@?s6$AUCK(msVXJ&$ac)`{;*2PoKykmbDL&kI2ykcLX+8f1 zH$G%n&{G(%+JNI-zN0JI!t7HC9cqsw2j4;3#g)hDGO)M3Y#TU?`wb#9{rAXEf<+l=1CtuQ9oGF=r#p%f!U55cwj6UOYLm2^p zUb@k**}`^~7GtHR+0#&zknyy-M_zT6_<3-$qRr`)z$=NwIn&#aXME;L&|3##tuTQ) zhT}FMy-qT%y!bnn7&N)A;O{Z^hfWIUc)c#s5$EYa3zL=U4`8lgwL*K*CAJo z($FX8cRx~njU73ypT#4X(mm2A+CzWOH-abNZD0NN<~PtQljAYPt$8`EIBbT3z$Fi? zpN$-?Fe7Q(r_=DLPyq@KMJmhmJCQAPH~?mkHz@l`Y>#=@95c^)uIf$*dNB_(AQh>2 z83nS&IM|z>bS*5IP99Gihw<})<2;V3J?w+gA(pHMuO~8!%6otxfGx_M#g?A)46E?+SvKQX^otua|{sYy!dT9C@bzQC>XczcBhiR6^k#bI8ID$F9 z;FkiT&iS~F?`VGU6(7nJAbd(@S`S65xj?Dm;mcyM4+q_&zh57qcf#W>#STnG4qEX1 zlRuvhYLEX`{yzHkg+B+k!0k=>*OhmQ(DTD?6?q5-7061rO) zJD8Fm$VE|)J)G8(&l?9!`Oq~+amyYpl5dL4=b4|;neL~=ah)eb+4H=uD~7+>^6Ndz zofGA|5K$ltsGusvBYlK5#p4nbq1aTo9&y)w#O;W(YJR7a%)t zbQ89`mTY*-D#;aSu3^mqOe)}XreVYHAP=xpK^>!jO%p#~x*JQkOYdHDzG#EA=#(-Y zeWN!1C;L}@1j=+73)mh~iD}$uGnQP~5Y-J--k6dgSi!N~0fn^-a^z5&W7&j z$i0ZmH@>XXW!-(0r77ug&

{jAO{y3;{jj5W41@zP2ZFfe5ugSkiEEYl6F!5ETU7}hhw?=kgtG0kBl z_w!s>nH-ANQ)O4p&Q?D&p1}@zi!kO0v4xr(W;yy!lk&N)<)k%jI8TuwL$j^)p)g;lhEUISfRQg>%HC=(5J;n;ZN{Vj;@sUeM0x4VONo3P`#p zYt*Ca59*aM_r(}LTSNe#1AGhm2(=c29y$L58V)mB)YQ+skgN;jkPey#3w5>0oPRU8 z=FL*a@OG`cH1)f%oqa4S)Crqytl+;>r?;D)SDbCMhyr{0%mus(WCt<|x7PKTrVD#$u511a7-mk8EVhSqOSp4q|k@YnAf7xK0Jl{DzEM%@3<7> z^@IKzK+q6FG-UEnOcEiEHfcy640Iruu0Bf9$a#Ts(TPHh4Ca~xDhf8Zi9==kzy!-` z&d=r>?Vwdxo)aYz@9{C8f9AA~Zl966h3g#O&pdJW}9Yl+FCkxkE5Ktj}6a^G&NlQC*_BF?C!_mGg z0Mtc|*`h;;ScM6yMFZ!H=fEICCP~=*FTr(yF55Hh<#PisY?H0nL4)YQJ1a-sKEOzB z4Aqa-b6O~h?p7#xttCO(k0FJd>81&2#VDY#h2rlm9Y4&Mjj9-)4;xJop{)X|@ zCMbDxm5~FY)>?j940SWoXl=_{D3Y;FL=s>FzSivuD*#6M%QHRlCgWx=QLXg0@OEwW z0d7i=C~N!etPEYKy!{}H3?&E@RwwBB12gWK=y-@%spyfmE?uG)Ed*7{Z0 z|9dNG7@wTVJikQdLmKWKv>?z>4+)U-K!TnNmVJ!C0iCb-36*$`k;{6^)MyvYTszc- z=3DdSm9;jzkxPNa^`-sqbs_98Z2La*~1&;e%w)((xKO>n;Jfs zC|j9+X(FaxxZz+at(<<+icQ+W`c@0+yX;P@2r9JRH4bs588^DOXwdEO7|#ynAkD%K z7hD4(&dE?+sM^nItLtdgH=$&F^~fSG;Z79lSdH(|X++=bh&-HJLZyG+$P~?n1mbXr~n~%bM&`>9T4A~DLxT< zZ~Y;E%d99|HSd%^sF^L%pjNYNr7xl6)?fKlO9R<;zj7aRm^V?bCFHK&;M7AVH)11w zdJ2@j+*!x79A*6_W!|?=ae>uKx1VS*;}6|H#NRf2hCxkn{t0^xpZPx&mJ)6QG1)LL z&;|#Yq zmCPnyYsPTc=xRq34{V!IG6&-zFZR)XeiwP4ylwQmh`*wDb=n0vZCU7BK1<7nR9DCC zp}w}7)r$1KuQl0x*pfOP)zSjj2<|}LDCDfC%p9Woh5@71yf9Vi;kUfNZTS_SqI&1? zYo7ZnLqR||aCIJqlslF%T8uDWOdFuA(E-uFLS^HF5|C!{x+hDsc3@j7ux$ zVxy%_aS@F`PJz4(Wfn{uG*6)Q+kzW^%a6?2t@5C3QcIqp<@EWCx856zlT|0pc)e)7 ztBD~Xl`fR$*dKF0o1q&ko=^Wj_TD@!$+g=9uB>d7W-ApeODjuDa~7zqtTd@Ct(+>S z%qiy)%-W@8LT05nkvY#L&I48sIG{KyPN=9jqaXqT@}Yb0-gobP-t(RF{dcbGyGRsT zzx#gHde(D4EbjGND_gnH_Ks=(9Rb7yOzuPymkPX!h{BWDwdJjw%F?NZH}c#P?$k|Y zSiJ4q5P1`?TQ4l;O%Tk78rM^S!c-IGj|P5J9<|V`rG8^I!z0BPbk}T z`n$+f>?s0#Cc$*KMrSB1bU9%_$RnnZLp;)7c`x93@PN_TnFPd>fnoeID(%43jEQi7 z{yjyQVpM3x>;RIS>?&i77_HwI;2a&y>hN!qWXjB9R$UVlu}+2P44-n*&5M6LBC6R3 z=qS&L*jgJva6UPCxmhbNc~FOV@b?iJHwO^~^4YPcadjqrcim`(T3==>5@aOZP`og| zcJjveJ?V-j6I`~A|LAHSs@)!TBpRMEW?3#;7WlDRvS3;ZVQG;vA(O%ps2$t}x&nd}e`Bz(~mF8r{WC{JM0C2B{h68huE<;oKtclf`E&5Tx|1l3W=Sv=fEs5Z*4} zq{1iA4*?mpI00_9xT0$%M_4%OX{yQ;Yq1y6P!hD<65viw@OQDEihI)lDIvzJ_%m`H zv|4g`50U56&U1o&Qy^c5dYJ?k?qL^TnU36nB_MQO0JZRc{$g^LKpJP_n-!E0s( z@S;mvg-X&)0%6uT=mHQ$M-|abEXcMiBrJCF7H>7UVYR9A28h`PME~LsJOYEt;<^h) zcs53ZZN`K6NCp5*(cvr^vb#%Gwo`-(3aJzXGM+p-gKID&C$UQXZCNYMVt0JdjBdyG zS#n$%+2`0`KbOIFqZj6_17$q3U9$Y>8Y|QUQ?hO#2(yIwN?!42+LvcuBSO-2xp3ID zXVhgXhdSo$`2X|6gr`tw#QzK2sQ(KGI*7k9C=hk-TKpg+_#Ry)_!_RVQBSO}QPWUs z{wzf#?4!5Zg#7o$ZS*y34FBNsGHoBYKX~xodZla84%bFIZzpu;QkNYp(s? z89p)4LG|6?v50f~#6@;rA>abnt~by)eR@Gz*w9z+FAaU8p1*Rv_r%rXyrX}9(8H|f z1?!&M-~LydqV~+6-+zAp&IUOA_K7(>C0vEiM5$T;m@hKdehXB(f6fiIM%d`t{pa1t zJP{Ec+3u@9j~S$|*VsIw_~?`fccWDqUv$T7DfI`1nQvr2trcNy@U(sK1}N%?_Yo5?oO9i@q>F_)uw)byy@+$HJ3N7S@Xc?JX2Vh0&SL~Gk{)gV}n|o?14n)UnOsl%Ia|6INJa32H&PeY8 zf}i23_xCp+O4=sEAY6<*)ZS5fsc47cCKrw76HB7&)O4aR9PY_~EED)ScIv?w(*M{h}UxOPYI zi2>`lxd*{uzWQ1#1iC43NF1|8##T1FkG(vGHt34{xEATB`}S%@$TD-?#W7j9u2b%3 zwHB%*>ojAN6x8>#eePBI!w|vfX+(-2-6tu@I39&!7qV(Roe>#z+$AF)%V}ME_=Se2 z0}h(vYkkAG3`37j{jx0kqNm~yk6uJ#6}&O72zJx)Vcs`r0}HAq(%OMzl5b zve)4jl@?i7+HQ?t>M__ooPC1)MsCBxg&0(?U&ju+mZ_76GwTerlDndwoz3cGIh_0{ zxJrl|Xm+3p>d}bKJPX?lyUg-r%(n?z?N&=Q?hWxmkNb&Ii``iyt*o?+SC0)EeM+(U zd1Y;r2Mj2#O(~;hs2P0=Eox#$tGpfmDkssjb%Zj0n<4QDovALo+~ig~NhE&NlU7@& zXDHl3azk;<-G=Y88xA=CrB(Kz-_Tsk{>O46 zA{+S{E>Gq$<@>~-fU&Rn?vh%fM4zvnn`NaOgXD&I=iweWgq=zrroP%`X@DhaLt;WKa6JHxY}>NZl&M+=h{CT zjvtEIiHQk2fcb#FI~`+j`$LrJ`>3C5Zda|E@YW_PY~TmwiuJig`yB0N&DD}to2!NW(OgY(3lO-a{v0;2^~AQ{n~uN9%lu2z@g1v8$0zmI3OlC-|LUBU z^z+!K|IUJe{Rbkyh|1PH+wk!0t1Y4%H=f^UbTRY6u`8834(#2(M`#?KBuz=7aW1W{ zMlSy{PR@mYH_pG+WcYnyTJfk&YuC8^v3NIHuPolVHY%DjuTO;jV*h}#XqB{><8onK6VabS5 zPC#n*pj{;KE(3XvB4nzp*9$}?r~~6pP4S`jLS|YHGm}+D8{Z^%hsgWV^FFMXdJp}wthwJ5OYpSCkp}T^ zTnwn-ZQqT>Ds^33xO99(jz6~vuM(L)Ip4=F&o~&+a(>3SX)>M7#Ln|L~2QfQw;EC9+1RX zBm?QCIS}4*K}&;GH1 zi5pMm9sBR@;f}B7{+`0M3{Aluxn?dkP_OGPwkRl2eeX9R)yD4MHN@dnqKEc z#$OY5pMc(0W6u@+s2;&l&g+gjF6XCTJB5^hxP2B}>8}F#F30Ef1bnCHAw}KpyLE7y zXHm=2Zn zNo{>Dm?r_{(*sEu%n`)Mv?(zqRyw3pO*@GNe zTMq8!?O#d}o`56nb%hKqMGYnK{Zr$9;S7rQLU}bqOUl{Z%G{f99kehJ5Z%=%>>-qB z@&XpeZDCb5=>)ODeIk`L0LzWD4C)EiOI^WKEWS^z2yhF4@m=Q08dxknyBV~E@&=8? zY=@_%Kv_q`grm3s*dyo=-!bduyIxsSVJP1!G)CL41;yG5>OasWcracW7px3*nJc+L zL?!elSTqr=TYj6pSHME9VyMZ$PnTGAXY;NQyok3K=x&3Jgf&E`-2?D=EN* zLrv!MX$i24-c|GGC(jQPU;*^;ixtJ@9m`%vG^a&C;NkI$!YB5(fIb=R$!03`2Zv|v zp{3|Cenyd|)BXY5ej_XHtOd^ zFyp4KAl}7YX32CWuKA^IMUm*3uw*6PnVBY%=C<&3>t^71nUUhs0*YY>_!&}5RHljh zFZ7A_R8$PXpP`8SFDRhU^N@fqF95#K#g-rfsi`r>-}$ueG=NC4pRD8h+ta~r$#b}T zk3eGIYX~6-y(}HqIxl=X&Lq$lO8lmxfAbrmDz(JV^-VO>I&e@Nr zMMv|Myhd68M`)C+we(Zu1HyB+AFsO~%&rQ0iC?;v54`tT6dsL;(Q1{z6`h2xGx}OR;EdqkqNopPzkDk z5l}Mk5FNx7i_JiFiR%U&6YH3uFsp+Wp?3x@vvdK|(a!gAIZpQ_&7K~t80jhuEVR#& z==Vw;xG}I);62uDJH@k|GHn|`W8t%QjOz`sQo-d>;wOzFB1skC=D5dck?YtV_iFM3 zT&(~0(8uj%%y|4Q2mP~ZbQb(<3a+rRQgD23qBL?Bo)R*aSb@2mcJE{&@ zdTMK<`N#6Ze&y+7@@Rxva~Wc^w+wN;wG3h1$nzwfCoz>KtOKH-7CNA&uab6>jIDL8 zVGVKNU`0QpMMDzGO0m}5-TyjUoOG2$w5kZ>4-f-(FPEiz#wqep)3nf;zAxQe56B^I z#PoI&)H*dPizEGmdduZ@Dyj+9Pf&MayOT7dogYh56pNwqG4ppjV%l<_Ue$cH53A|$gQz^9 zTc#0<%@&&M=?6WE?5F&bIo*A4?Hhs4n;UC< zTf!}`7M1Oa=zV(9s5JDqtFjI%_&6*(5nIF&d({9jq~GmtzwNu{N#0aPq}TZYSEaZ_ zodVy{Y;=yaUjwIJ<&;8$pZQ|X%@-fz{0qO~x7#03r@QUyAvI^t#$?!tMXyyxg0I#P zJxrYE!^{_sWOkm1DYb<>#2NN~?o%~@Ox^3#_}oDXCro}s=f*wyJX&g6%&}w6>zd0r zxTUqwI^8aVEZRTDncIFVt896bJnxouR13wNep27)HC6Mr$-y&jA&+}2x7YrbnQNfJ z{p+kchWtA#LTjAI=b%(`>Q%|Pwb=CE+1t{bBF1=-1V z$MPn>X-n?98sxMMIa3St*OK#_(Eg;io0lq@BvE+xeLUd)TT#fBzONF(6jk$WJ|#XO zLvpc=C4ge5lXc&U(6KW=oVAHb$!b13vJU~y`0p@KgKaYquR9=tePj)#_3T zqNn1nXHE5@4>nx)E6J~!S?Xt;jXlI^OY7>GjYHetdTUy>M`RY(8o4Kd*Xa86@GTKf zM);$C9$FLAq|v;w*l^(# zYHgakiw)5pk7teyBz9jO@RDJw-I5=0NytwyU$7J$TE6`FE+(|~fD)s(#d+K`%qy9- ziz^<$mr(!6dVBvVzhAG~X5bvBxSK$8DmEdV`!62f#|FL&)`D`&QrD~zTeliOb*u(Z zt2NBaYkvh$!WyZo0n|T(^vdmPI{pZ!g3WCAzN+XpvNSpU=%x7{?Z?OLjvvjsX&44@+DW#K8i3$S7v-^@vz+b`=F?q2Wy*R}(|nf1PL&Zjsx*51nZJAgoie zDW`%-b+$nC>LN`GXQ0mh7S-+rwM?T0m5dv4yatLS@n=jcC21bt^q8k2Y*MSNnqh0i zoJnDN(1nTl+@3w;|{=QXCy2n<8b^DkBELHNx@*S)#j51jL|n; z(Ut+@YR%4{$>%Bp5hDDJ3O(EB^tSC+?5R#@K-5Z1>QE|QOihU}>38zUBVhpZnfXxU z_z#KLiq4(od`PMsdD=UivK={R(kH4`8lZR1d$MnGeg;{YE=d=|Yf!yP0!q0WY~imU zN^Ev1*`<&&19bLg(cJo=2EKHW4Yy>So$myf5nWhp{Qwl#&#jSm{2e_oeUU{y2ne8_Ja6z$7wlD3sV+q;#0r{b@pefl*6WA4LSWV4+L7fXSGb z<|x)Bf3NWdu8pE!hA+~mYevMakrC%r3R_-IM-sJ&)VIX77z`K)9aI+{x>9W!;dMny z?KDGEA*d`ReIBf2*dAFv88}i>L!j>tSxAyGNE@T9sR;@Ci9Inh2{!& z`v#b-#DmFWK7>l5-q;}ZC{)g;LWh_jK&J0#gml}6)8=CzgryMTQc-bSWe~sCmfV-| z+Rx10?am=3?kEv3cC<;d4`e0w4l2iHSckBB$7*?HfXUB-=ToU7t^t$JNX+TAzySMH zUHGh52EJuyigTu}*&^p2QSerVgYm-n#isy+#V|`FL(Yr7Y8sb8e5$rVe{{bn8h~Ln z@_j58&KK5AeMY&Ajj+TQ*WQXKCP_e;P79DSardfX5R+ZLNs9ldKavQS5lnnloYjFY zun7%uwIFY)1;X_h_$`c2T0?nih!_x4W?v4{W~ynTW)HH^5^*K%oW!YA9iXQ7q5;_3 zJxorF$bG~ALX4Sq8)UdtWc2Hb-U{-Ir$B^ZlJ{aAJXObHc&;zRPf0X5ZfPN5U}J?S zt5U9sFASoFUbLg;)kXc{6>Gso;@v8u@Ep2dGiGV}^->kdnUEmx&B23fbz%HkyiarB zbOgMLlNuyuCAPqpcDn?2dFR*BrPl~G-jxDn76JSyz?-@;n(X$63QLBfQhv4yIc}X$ zL2HC&J3d80oBIVtY-xX~3zPEpA0`A5%fApMM<{sycf9683dm()A!MAEQEWj-QSeJt z(41@u;3=RX-Q@)`@GpBrwG0|DQ{YrU)h z50a6Vl~~=`36IyM(e%%dc?@7Do~YpP4ne5yYXP;t=EXdoyafO=hIXeY@V}?ZkQw6? zClTBJAni%|a-Uonhj>B!tTyC|ng3ETF$S&f+ocifT@gA!BeUBkefm?Kms+9ib_;~P zUtcpI!9jk$q_K*sQOH7ySgqe1M7v=j3F_wkxsK|#$7joWV3fxE`6U%5cn6cMQB@~W zIvn?D7*acRVWB^(to8ijZ@7ql=-wW1_Ehh39tO z4&pQD${e}$*5i?X7Kf_oOb9`gQS-dpiIaxnF)B1u4{DEXXW2aumt{Mjw&8E)5f!&Q zN+xsmK&N7Esx?}qaZ-14f8^}7f}C#ZsMhWG8_j9g7FH?sXBa=Ru(w8z4p1+|`gQu@ zx>zPNhzzrU&hqR$r()IxK=y(*wo|KXnHr@wWtx#xdV^}71$Xb5VYTO@KMs*I_+uXr zu%4&o_LVCb3lOJt zZ&Tp=BCJ2k;KEu*!|?8(LJbd!#ehhhB9aZ2I>UQT!rI_@Cqpxpv?h|VXK9gqwWMPC z#_602bngS30LSJ&S*)H^;Q^;Jy-z&*2=uY(oOAM2>Nd=2Za!(Vay8<~;(HPU303uP zA&fkhn=rJE*iq0(+)qw>b=en7=G-B(*{(h#c3p*Ym5 zlo^MpN6}BNw;a{NxLT-Zt6Xws9U}+TgyqD1QOg>W#64Mbl>*`H9+z)XjMbOah|&R{ zz}lJ|TUJrFvv{gC2RIZV>mUOuixj4q#+b+legPjJUK4!9WLmacjcG)7P8 zo*AZea^yUXoS8S{&R*!)o8zq{%#~3M$0>y`MxyhE-DL|%MAFj-MkFF(LnVb-{5Xm9 z;1k$06B40y&DOugu$!6vTjfpyH7zKw{0bJ9R|W-LlxIZ|hRpX96RkNF8G0QvsqUr7t1YTO z*%h^`O{0U!VHA$M0p;g;D$t((D5@7^c9Ph)VAN@ZYvz6R#iEDBmCrfDC%S53v#3~! z4s}WIijnyZ6&BXGqA*f7A?8+&t3I*@AnFN>K9z?c?nf)?0e2fARC9}?n=I9;!_n~L zvH?FFre!T`A1-2fBM9rq$wJ07HLA-;{VSvPWXG8oOJJjH6++EktYTy4$5?!}RI#d0 zAMZ;zRJFnB<3lBhj?`uCP{c^j%Y%Credm?@;|aJuk{x$vMV(`Sc3Uh?HTk?k7Ui7^ zPac1J622|Xkasf+ws=+(njnH@Y-EDdH4CfoS=jZ9!CeUu?UH~NiM1AEPc6QAmZc48 zyS$4v@%6E|;QIY!Yn&{eNV>rpC!7K>YVGjuO*M7(B(a4Efb9@H6$yOjt>6$VZvcDU zfp>LcXckfwBL-)*9wNr)<&wrwOeohfxV1UOr5FM^G2zX zSop_@^IPAvna%{=jeaGPWDLaRDaEPgD8slXvuA9@H(OVoOE_piy$Vpi{^m!TxoV18 zL?qp($HiOy5cR6B%Neo4J(#0(+xG@;-4#UN#KxKew;rnJg=lKu<)(T&Oxjw}pRk|P ziFxDa7aT39(}AjrTPm`4Vwlx&F@8GtdDpw7~>Zg2rROIYz zUc>6`-DVED?BfNGc+FS6eB9G_EhZveZ(E|p!jN2iUPFtaWm?SDZ&yu?vy$@6H0G!; z!k2ztipdA~U?)>1Zs(X`;c=fzZ~K4JY&+XFtjClq*rk%X*G0u1Z%!xXlU*5~GB9VS zGEI#Y=gqz`va)!Ltn&748Tb6saC+69!}{`IXY=&I6E!8Cz10}vv5cDx|FPn3S1#Y& z!P(t$AVm<9)yT@dZ^)$i<*W8~&HQ^T@%ys=)m4HG4I2?35=MZxRwKZs)d)~=Ws|m{ z{#OJj_Im_)>yO-sm7TPMVr!ay5B*GnV~zLXy&N;XU6Z((c&$2NkE7nHn;AwDGjZtd z&Yp&|S9=#ODBHElwn?mYW^M#+Iea+(&6S-Xv17-EUj$z{zD0EY(4H{JrhUwz!EoH( z^T!~;f_&BzoY7bxqY>VQKGKH3m@&wL{N<_KE-%^Rdte4INJLZJ#NgHm4~-+vEP|0fzDd;Q0yV*W6C_S zijG&6v*s`yXEKm|ZhBk55~Bns7skq1f``MaCW56KQT7gJ;`sd{@+*3=ER5Z&`(H<^lB&>nR!|JpF_ zNq~KfZvzl|zwbCS(w=vS3ebSAbFM!G&AUB6_j&k5!kZxa6Qp47>k{bLJ9^mp(V*xz zK{d$YVUZVa7QoZXNiIy#!K|7W#jbM*Y8Jwj!lpT%usHFK{@#rzIuB?#M82eLj8Icg z=bba0k6U-#kZMlVLwcd=50Qs>1Ew0?osQ`O1AM9LsQ&<9PZT|tt*e4Wmia|ZI!}$& z(6EO{#-EgXBinr&Yqo^}u5?xGsj1S7H-{>NR2oO9t_s6=y#< z6Gz{%HXt$>CX&wf^@kLZl3S0FHQc5fRSe2MsdZG`l^!)2N|>zp!D&RQ?JXSh#E~_8 zFk&&B;P8MDsvGK4X~2)EDt0JP@ByC&5G^J@pPJBH-X0eK|K1y8C<>18^)vNKkYP5@ z*jccFuL6Ad%stJ84BNJUiOF3>NOk z5sQ)j>K>LLdX7xa@gPFXNT5H?8@fQE_>}7T){j&B07Rf5ScbFkBHXK-8t!$ymdZa3 zrHxXubztzx?_`>$x<{?0!Q}Js;WF6bvt`QxQ89C=G2Vm7Am8z!k(=U8rtPFr=HMB` zM|`oI=Hdmj;TBj7R|()TXE6kaj9dZkr!IY+I!A{LE*Glf@L}aQg8Ts5O<+qXJ;z;& zWof=t-b;yi>3ar+8~H&JjnRC%Ad-Vx-bE!;`Y%{3_HC8A0^b4VELZ~;bWxxtV45(# zJxxx6sQJ3j1&>^Ux(%lQ5KE_FBjd%QF7JptH3yXa;uTz$ZUK%cHeHn(o(?M+6eEkf z%@3eakappA+q7DfuGH|ti#Em1z}>n;@b|j_sLz6}IZqlMoPY|BgEx!zSEp&C)tSS6 zT4ti}MTb+w5KEVu_~@KZumcxi;L}apQvhyXLBlWZtM3jn6u$@yaBqRdN|}pGadkjp zTqQ+#U5X-eDF6Bs@@^k#?nM;Tb?I6A%NH(Alg|iv{sat&n8b5yIH}^?(x!$)eW|63 z;Fu*O5C3kF--gl{YOjV#fj;*`{XT;@(mr8^;)!B0+TIt()>uN8#&uya5Q45GFie{l z7LLMzhf(}N!hxw>C{7d17c+jIUN(ExckH659LS)LZ_q0!x@>kj91pJz+6`(yhh*vE zB}c+Vz1Axs+>tY;RTFqFI+>+C`D_NPgHbiWZ0~fY+BRMF`2h;ROwg=%xebfXw~0f$ zYsx{)9(A`G*2r?WJ3$JHYG2z@tvQ>b5Gi`6yJ^bjTq#Hr>9fvx${;daeWD!?GgH^} zj@gZPudpBoatLs~;_g6+gB3ALWkek)hZHBZv-o^D1IT`U-)?9yw)>9-KtP4_rrHF^e#%W<$(Vg9 zPJI%bDj8v*r{Kzy_Bh9Tuuys4{XmcmqOVO|^E5Y5d-1&F5iufSP0CUwbt^x!R$JO5 z61vo@E~@J;JybjIya%QN^&7hC!%mrq1c0vq=WFM6-)b&~AfbhW;qNrQr&eOXJ9dIK z)iv3fSIpj(NPAdH3XM`pwylzT*e9(i#r{GzZVSDhdx_CCU8{Sn}q z+MWQ#V1zp7>5hP^{g|qG-Nb>jP|Y1+$+yc_C87Hn^RS<(D1R(N=nYoucJF|<4`JSQ zA`E0FY?yeBacCNF-ma(xDn2e^kWqTiWht<2@{35ygl(wv9sX611Ss7bWj8Mz;Qn%+ zccv)jQ^Zb9gEmplC&RI|u>7I4v3Su5uk;x0cm6vBMwW{kQ%Y%hez9pj1tql0Qwbs@ z;}Q0c&>FdkIo-tN%q!*h7;0KH_eLGiJHLy_3cPX6#-;+6)|57OY<{0@BSr;m6E}ihJr%L)2%Wf8!cw+UHKSGw?bbe7Lt0=)oJANvlard1bN-M|W5Ko63mEf`cKQ|yf z5kdL_!g_%(9Y?~wY8SBk|E_-8CCl4<6;SuQT)q`IwVCa zV(sz}PxPmpH8c!evvfCmA~SBD)_^;u+=#M*M%;_*;3iL-XQMxghf?=sO_cI}W8bw|rb^9de?ZULp*xggIonU!^kgUR zR6C`C_dwLZRYUAT-Bcl;?nyOZ8DFMtl|s;=R{OX~(baLS#wI2X5!1gB&W4_>LpGeW zfrKd5Ws<*4A14{y`y>^y)84%xGM=eKK#swbIE=eR$FRP7O3~KGlri@xHi!_DS%rJT zjnJl7cV1JF%GsP*rV1jBfeV4N(w&0a07oPNJzm$6@Q!&)+ zcv7;MNKA6hhV&Yz*_|QvowLD;fo&7rWR&$gV2-`E^8n+oeI4$(i`x6tB#KpjW)_V` zTiEj37OmxG%=DE%oP(hqP34T7QQk{O#Npcu@e8&G( zon!mFTfyB=+pR-SYV?rwk#`=uFhZ?8f%OORVHhkU@A(WkNFLH)&;Jx|^-4#VqS=EQda}Ceb#xdPI zSJj+;UB+TsuIn0q=o-Jk_EXNpvuX2hU=LGV% zMw&7*bHLSInG2`<^IBhcXLKAY^{`~`dE)h8{>zUDV`{xw+?N9#-6zVw%uU-;wC@Gc z<9-`MeS0r|^Ss@3ol;&^BPvG%W!pw-;}gWQh2O$sxo>;Jt&@l1)o=w{Xhu?_P`zE8U z7Mb>CQzkV1(8QDsWgsRWvh|xW;T{TBA3K6EvM={m>nxYE-C-tN^Y^19V;{b?23)Qv zg&oLj^39j6F7bJMSV`YF#5p1IXyWW;H`xhugIL2xGd*VrPa2zDT?)~%9MS*jG;pNx zG7sB6(WI`oe0faML?zmT%$&>=$CeAzS``aOT5yeWo5olb=LE09rRaW34@oGwzs~vr|SDg~~T8$O3ft(&8j3;BrA1cQOUebb8Q9?zqP=FOQye z2C6j&yc)jjJMiZ&m94LcKvbA0Bux9=4*PpV*(1z%{i84P9}(q+e~T!^xBnSYnx!TQ zb2BmX39=tGK( zQ6=BkG|}GC`zpF8p1UK9`tRgYe~O24Zuv%(<6xQU8Nz^)7mr5;2;DjXkMkXzdLi!w z_ZEDVE!K{WXhjP44c$@W&3TFUEyPtC53q?5xTHs#CL<^0m!7W#l=HjrhNn~9%g*Aw z?@$yoz6lf7?}4%DG=xr0I7YjeWL%Jl&YH{TP2Nhnc~}e};5u8dmz`%1;+8{2XaVf1 zYKk-H)5*YUJ97p9ZyJk1f8LK*zSkXmOFoB7#$CV-xH#Vt%tUgeO z_x^wz-1d8fe3(EqB%1z32Es?)Irctc!2#jn4jl3yytLG(||+laBy0x=fNH4(%wCTE@ZGPx5x z#_el&i}QJP9xtgDvG8GnXrAh3Uuy}WQ?wc8Iizr^n?N{e5M*)497Fdl^ft%ZQq%On zvpVJA5v^SnXkX+)f&sG#8z_SdI1>?U%KEA=;DSsAXTGph(6=xGjnF$@buH zM^-_HAXj1#Aci_WRi_{28^elV2gQhDxuDJ3{8Yh1RAn26lf9^}Ir&X=v4%GiFAPwA zyZ|jMEz(Z-(iQOXl32@WBKZ7d;B+(`{(b7RFm4)Zi_jGA_%_*>0a-~3oNpjs_vw$z z)2|`p=Z0TA1uRuBv8O+3_JynSBSqmOiY%No)7wIUsm?5h`a+DSKNe3^mPdw^HIyl6 z?vV1RwMEd;mQ7Rdf`C#Gzt0N%B9QhKpvSm4e6ktiJGbyM1;Xr>zXD`7w?uGr0Si?m zdB$$h1Tn$;+j06pk4OpNTh=q%*=_)aC=TiFz?AItN~T-UUn_fw!$7lpnbQ&FpDT4y zNOh0%1BIzF7)~?gMPHD*$GOSV;#_GY(SN))K>=Q?L*x-ExuK8_Sh5&jm_7>jf2Wzv za&3gZQuD9`FWm?#j-`Uyl(nyz_leA(hAjpvF~UI}bA;Ez?9kV>aTB_5_x80z6gYUG z52M*`ZE(81&XAp~P!e1Q3UsEAi=P>f)))pBi)usse#jYMZdAAd=^H)b#~3>B$!bWu z91N+D}=iKd8A4D21rn zkK(W&5Ks`!MOfL;p>>zxVlH%vTv9s&p+5BxJ~U*yDkVmB4kbLnpZ`3 z?F}NHiLcZpzm&2|;c4t;SehG40^ti-(R1!CL2{tqXg}`;X%C3=g4?I+o+eVG>2EOD5*UUTZ3&!f zJ1u&CAx-o!9(6_gu;wI1R|+z(aIw%xxM$nOQ;_nnx~o`|fDt(l+5fYV93+Dxf9$Fb zkI+#6BC6w^UOJ$?#rZ5o^MP@>o&Q_gEgRpK>=^i}2Y;Hip-!YLs=}OqpX>Muk>yb^ ziHHV^GQVdRr&O2H4_Dk1?(#Y1A&@V-CX_|H@4Qm)PU?Mvz;bi)%_DFj8y5GD=*)MG`$%s*BGb7Ehfp^K$W>4Nx3A@tybsLv7qSkhl`5Xt{5(M z=;fFm%UFx{bQ$!DD#4PY>bo&C#^eQw_S^IZ0=8MG7?L9hnTtGfV>|IlQ-zbT^;hG` zM(4)NS)O7e!qG-~j{(j#(J(fm5iyj?84=X#dvOy;FhZgf8f?2Lf~7@)on>Q(d+;GP zlNsG!gsOn1=@grfq;MNp^zr2n=ptKQX16Wj1M52WsIr~2a=5D2WTs>XKML)x33c*J zAt_+tHYhasVZr0%gOf>1TWwI0$6=gFuUK>u*k)2D_DQXR((aUl5mCoMjiCsm?BRAa zR+(|ChjSnGT28lIEYi%eph4dw>CSd$n9~E#m)wX0=}3Cw&TDSP=*jeoJS9%LOB{Mq zp0!Jv8D{Ra>wfHz#4D}F#G7%xlP8;|wvpY*>>+#RJ=3AA&Znk~>kg!|ojL3}k4{+m zt9{|Psyme5NLy#+ZI}&SO-le>8#(&`_M3Qp96e4At8I67YEGk)@g#tq7f|s-c0Bi4yj%xu-!{k;5m#KEg&Dx8$^Kdv_}u6g~db=;;HEwXSn` zVB@nr>N3Y#Ay(W(qxFtcwoKuI+1E&R;OI#SSype%qXbRa>k~4uC!-rVK6TBEEl(`y zjXj*BLOsQ6|%$d@;ZgN;Um~!iQybag?M>H@)7c1Dw7W_ZUBhBD_a8 z{k++bGwqP*a3|I!(xSx5#=oUO?dNh1bx(bc(bslm0~q#&%T$b+yd?ULP1;!GhLb$? zs!#`;8*%8k#ckD~VzCd&@EWz-P;gStL#Jqs?H2iqM;lW+bP!IXMp@ePHc7}PU_#DK z517=n-E6KYRi*go{R%6np`KG|94}Mc&(+6lf=q~y+%Rf6whx?t5K(rEd?X`oIxbJM zp}six1$gFu@#%O>*d^Ne$t(5#7n_d5Ddfm2 zva9OMZnn$K&)gq5z6GEgde?B?b6a^!EUX|HBCbsmn>jcq4W55VP&*DV(2T{34V@P$ zsC+8@tsn;rJl%UQSuUb$DJiz?i$v(K2F5oapTT=GB)RuVV0P!TbjtVwd67P z8fQ!r)ehfl+Mb}Jyx9`z`6Z>Xa4L^;znC7y-&Bwv)0=-JLXm$2CyyV=0J_RtTi<06 zS#>x`AdNgL14}5!Q()L9QHKQ4Rv28fqb+E(+ z{gT#t!*5qj%s5Qw$7b!918&WpJV=*iN^i6ga}Erj)E^%BQdQNQ={3=s&sp?&gcXPs z$Dxx)^+R$-qoVKGcjD|PitqF=2|aO_s0C2_^8E3FT!itA9V_aC+Usa{;ysUWSD5as zdnwE>Zt-4e^cV)ojkQkp&bjAmpxf9x3Y6%d@nwCDD`Sp0EFf$jAu3Xo=gp>UAritM z%9vQ=RbJutd!paJzD@h?t2zf=x=xxC(v~-_gi|7||JtCV+W!itHa@n{@o;zBBz%&# zad7q$ZqPNYUDNspff9mWAyArDt`I1tEB_=={`j<$W_te?VeOGUt*-QjK)U3%xB54w zRnDnOTsg|nlMV?9+ehHZ-xc2EAfNP2gd^|Q?fd%t-50{bLi^!&>yD?cJCwTF z;Q{UC$J_f7pC^vSw+`R16MJ{oIL__8@sq3HVzV}@Y88F=^!7fcE;p9+Y)`Px_MxDI zKSgeR-y^yHeM8l*qK}Ci71Yh2*(h}ftO@H56!C0GfBfjcX>{3BZ>Rn>u5T#klbd1Z zdh8e}!z9_D{gR53&Vo%JT>L+#VnwfjglzKPNR^r4d}pvPI!=uhXa2 z*0CM#uCHIe4KjtUK9`5@tY5!lW#WO|yS4G;!*RQ$u?YFEoYc}Vuc)@0$RWHz3 z*`}RvS@D7mw=df{Sc_k=b8~mLb$#gQW^v*6L)(WA4hpW$&hA2qHA=#tg%$9+T|)5d zHS#OqHNr9ge?;UPbeuh$+<$)-(o#KFMW3#Uu2vFQJN8RdSV_Q1=g~E5cQ@f%>maLs z30Rd>S{YQt^q1t$#}-d-!(6SbT`h#-Pj6eCSwU$29kC(mKOf0AF(c`fVj@_W+%ll+RtYjJ;<-xvR%(Rk;jIY*GdbGY_uwr@~@M5%cD@VNc#)|CDx_`+k{7Vs` ztko?GTWhB)j~=baa#v*64X?_s7Hm+g{57tyV8iuGw}mg)t&$?b81xsr>!lC9j;Z_~R(o(^e$KVpb(r8R{x`e@O}%>Ox6jT^8Yp zVSgV{Q}>sgaPBKgzeZgC`-ocIza&>iRQhAY)wOfOlhv75%blF-{3RzWcXH*5#iNG~ z51lNnh3`tb3kTg0et%VXH4Es%_CJJ`F0XuNyP}bB7lXy;wPhjnq|f^_BBv z9{6i)@l~x>^#2=iWX+ll;;YC0yWLj3;-PSyKdx5cmA7h*f1uXA{`+h;62DL@v;A(H zf8aK3`TJ~-6Mx}WW?Qk;KTvB8S5OEIy|4#su3~cjsT1*H=3;-)A0C)k_S>JCQR~0@x_IeZB*mdHh ztxM?;`onRO#&%0l6I#ZOVDieeFgN+VXQ@ZM!TqE3@W~*mWngB_(Bh|0QxDFMQ!mbUCtyTWD56)Z z9F3r*Q`R55aG|LC@&td*;>eV5-S*b8^n>2nnT6AMfH6{(0fwB8x6IH_k%sdV0)1y1 zI&ZU_BQcupR4gxYY{v?SXa>hEINFv16A1u==$Sg@PNH5U4d=%MM^EGQ*+nOEtw9A8 z@eOr>0U>f{>O_}N8=|fQN%v4!gF#Z{u)c0Z^Y5V^fm+Z+X$Q5&HwMu+GGqz&#mzNQ zl}j2L*doXA1c-?C+K+qA)tYs7?iM9VP42VQeF`mmakMRiH7|6QJ*%QSUStqe>!huq zwn)SIX~7*&gFHbw8*O(J+qA0a^Gr>p~{|SjfCN!2(lz zi)YMm<(v~n^!u-${Uy2*^`rbumXB-@6TWHOnhoX34ema`IfCnLUNpA1MEEPrjXg z*bqf%{X;z#<+mcrrxRF+(gaJ5evFSorh(#?K%d#V)Xh>D1!g(YOYmBH*)_v3J@&@+ zlYjl)>y2x!8#47kJ-Hv$od(t>fzoEqGdF=j`|aD zqE0<_W+rI>yd;KvI1z$iW8yRqdhndOZ|l)Y+6wUh4317cr>|!IGHC{pDPZ?y!4{n7 zEZwVBOIE;emTOhvrbD=nl<@(QsoK^F^uXD$eh$@R{fvozZb{J4K|e1=YTbDKn`h7? zK;SHWce{WWgh6bOodMZjiZP&Dd9SbnL9++!u@G)wg!bm&T4Ab;VJ*MfUW}0pS zO*2vSh#9P6r96E5EB`>(8s1pK8*Ig2ZKjD;!!$jsv|S<%cTb77k0$&R(V!joiW%t# z`{HZXvL8U*6>9@cm~uYamVCJ42fV6O6k3|8yIY|xM4MQf6Q?-jxnV5@yh0Pw~tYed)@ZKSJ9An*16~q1l0-HFw5nJh&Ip;5zDc zf;*$CX!hZxM@k~fi6XoOe5(`cHk4}W>_sXn+|$ST?x-%|(P6xF3P+}>crpkYqq zhth+iV4p8rt{WcN^2sH~3&*GC4jKof+m=x3zS3&jwML z2}|LQ5p}SIT_O$Vc>9ovtNQFkbHfQo7Im)liWQavXD#wMh<^yjA91uT`Qi*-GKk7` z8oYse8<-`5S^BtPE(*-W4+ZnQQesFNWQwQbLun=U+p}hH!L~yyx@&xDa&mIQmz%>f zElXygmsiXHt1Kp|Yc2b%!OlJ6rh>mJ@T+1&C)4nI8U9J960O`Bqp$PzM+0sv@GAly zPnUbr;Ct-T9;Ut(j-20$D&i-Qa*sMtwJv=Xj^Hgrf->2*JWU$zVn2}CwqV;A)~f5H zML#lKeW6z60A}5CmRBMsvD_=aqO_W zkWS_Rb*)bOeu3H}4d)dBejp9pXJb;XPale5F-tIAd9t*eH{Bq^2}wpM?SwM1XTiR( z#vG5VAOqkp2PSak0n6BNoDQj8Z^8GYKGssi=J@+-q~W|SqR*#A@3-e`o^0sDdyhS= z-eBfACBYonjlcDA8_5^l^eTESv;q#yzJ!ClSKHDj$&LvFdpb3%mq^3if(#_Heh=8Q zHQTlVj*bV_wI0UdaUXRSG`yA}L2_9s4xSh2cypOaXB8CO*rn7MF6-D{2Ag_GMuh=P z;@DQ$LcAhOpj{y?4M))i5^ais7fHk2rZA9MjE9ij@)nTMIvoVCiqFP|5U<48<#MhI zI&sQaL#!b112&Nz!>JK~pEz+EJ)>8j`-M5=U#m;ZpMODT39D5FoUQmGtM(r!_l@3C8_vE+T>*gipn5*PC&nsw(~)J%&1y(@d7>N zd&jYLXsp+Wh_HP}Vo)L_PSS;uWnzPGa|+K2oH9>{eK=%4iMnO!E&0A{5Y^Q(xpz0EWlOfLUv!t%v0tRnwKOy^*Zw(V@oFA&k-nmb_^T7lJRw*e3 z_F$xZ6kJm8pV1x;y7y1b4tfB2Q&L$_k z`}89^wuuwoG%ma;jsZHIDp*Bi4C%1`-t-vyZI(+?eh1@RA2{T!GQN=@O~W#i7_o-B zZAsF8w!%y6E8_wNVtonVZ~~YpjZr#7vJ}!~(hQ;}#X2)P&Hfl^9x?2&jgu_ty8vqC ztuuaLFb0Y@^f$#@`HUrYm}i6-6(v;KgJwLN5{kpMAr8}aiGw7Xm_?a1pk5a8GP^yV z+U3=AmbVOn44*KiR`Y>A%CkEyGwto&xCQXZ}cf#^@|4*!tiqE6m^Ip-yLF%?!P*8 zh#^U~7(;Swoy)=O-%*d*zqt+joZcpty9WF89@>L_dbgQ<=8oC#z-4lu!v3(GB+t87 zL5D!1f)r4fdSH$Y)nkt0&x!kznE-?9#U5;)-WhxAB}mWwypOib&p+Go12;w2(EwX6 zoa4AWGr4$AIW~1{&Z+8KnS<>=R;%wg)F_Qj4L$0^~ZWTFX0u_~(-fW$gUYhur@HRHvq`|wvqyGZ< zI9~_=002V(1ONa43Rz~GiU2tP0RRC1vH$=8WCc`4X>4T|NNIC)Z)b90ZF65jRAFaf VY-}!aZ*Oz}00961|Mhn@lmH^I*&pMA~~J8NqP0AP~|000;Q;1k{f0L~Y%$3d_g z0_;|T2)ly=z=tgZ0O+XzxPsFnPPl_dt1$%MYUlmyc45!{mwxsDcW?AgwF}t+UQ?=Va<&ZKY@}CZ=fp?1hdL z6FVoXj+LIBowc(L8;7EiGLxmAA?$@VZ0I=Z!E^zj`x(f!n z4!XKm(1x9c26AY_gSUbW-3<-UjRc)9D)1D(b|CZ*l5*s(_fQEpuC{U0deY~)#S$4(tg;NLf*dHBG z=*zAyNUHlokT@NM2GFTjoEu@$wIwiDg0_TZ5v|nU%&sd|XR~B(3V;M+dFtw;ixDAw zK(-Hmh=PnPgslA1g1pOjyrJD#caK&M&K}^@${h_`WBdK8f8MW}{%+Oq;=ix@;Ts(* zVSRBU2YUc)(NS=KpT91eyQyKVq2XDu@3gP4P=fEH2fjXWzP|n(l>B{=4u;b7SUB1i zXhS4=NEkRxn{w}txw19wWH$pJUPvkBy@iM5ROOgz9hz}I)5 zY)p`8vt_i>;@sewW!>Wq6g5@~eH0)%dYmp#fZSFt{P;suwQO}{^nC&#m(w$!gasQZt>wlN z9dw|IdtRRArDo6kN1D@&;4VyX5mmKVeaAyED;sk92e?=MkOzJ!tq!zT(LA1mTXet> z5rLg>^aA^_ORpEPH#^%vl;>?`NDl-bA|d!B&P|=`hUUaZ25!;_!*RiNVdP!Fr}p{^9D@*a4$?LO0Ka+n zRT%Ln?(&G3f1gM8yF4Od|DMN3Z**)FW$X-%>~vtsv{BSyyUS-X0w5pp7Z9uU+~w2b z(|taZe#@sYD`g#db3H9}DeVj_spM2M;c(yI`ul#OLrq6-H%6c{_IhY&%f{;4yhTDN z*wF0jtA~m}6JCN4?Dy6OnY}=nO4$(KoB<%EKpT_~%u-@i6zgJN`>?2!E~ zC(ZOaw~%dsL+PiD48|bhmz2ha#)gJ7OpDOJ1^*WOJ@}hG`VgXnxb+w%CwzTV0b9&; zxXwy`Q!ROO>d{|RVswGhEsrecSfVv15BJ7Qyqxfj111s{xODZPq$jB4}4TY~Ca$ zs}Ev(x27tM=W@@mH>KM0NhD00@CRO8O*_L2OY;oz$6zi^F0aX&Zf>$1=T4_CL2KWI z*zN;c#tR)ys3Jh9kg_~9`X1YM1-Dh=p}H1|%O5|(!kbV)?4P5bUBtPA)5k}pOf}2K zDbz9qAOoT;6wrv-Z?CSCg*E5Vb{%VzNx!a+Ffm1CI|tPq^|+Kbp#_E$8!tAY)bYHf z?$#+2c|J&?cpz&QatT5Svw5D6#KFvi7&r52`nhwpKi8=CIsB*yFb@w6U4P^~7<`%F z?qDPG&fni^@&p(KMhO%J(sZ2=KvY+bU%5>k+820dMqGPV=J-Qx@hb6lPavwD9wn!F zXm+gGgHt=ZuB}3cGv>z0k(ZzkUr(>hyCR)gJ89J`Yi&OY52WMJkSux#28)LK;>BkB z06y2V0>p7ALWT~x^A)w%585dkqZ0Q^83MmncIDHZFcUCHXgZO_?-psgf0gjQAdPuC z{3NEpGE?&dc3tJ#-hS1C?h?nFFLB7+mV{YM>MUX9kZ{#C(Jve|SXgeCY;cQ& zZ&HVH3*aPBXNEC*>W|Du+4}p;X1`;0>Oarypg+fK`TrJXZ;+-iN}|##0GwiQ-&fNM z?dYr6FiG?<&>?42j7S&s36_m{13r!U!Z!4$W72xKJUN0+e(;~Oqu~%P0-8ROVvuKo zH9f7Ii!17(^V#Lgem^fnL-RQ5$?SuB9Ht^OXwC;;tu!_$jd7e}s|U$*YMwLl`Znpk*ceW5Y~=vqkMt;fzm{JtD5zO@&^N#yh=k#X z!7aiJL^Ea?X3%gS)9aliPDbia24(aq>0CI#S2ry=(rHIpp@Jn@J@%YtTqy!~Jkg}d z=DpT_UM!$39%I@8r8eU&oeB7Cz7st2-uiq4P0e20qv@R^0~+b&ep5HH00#7D{2)o| z1>=HIB$H&@Ho`MA-QIYMMF?LsMyxoy=YiABC$BDdYG)~yM_(t|kiZ2R9_yQ%NN@&L zNyjim{ z0iKOHhq_wD+c^Q0a_!nDC*F&>-o6n!W#zep9~}ThT9?#|SOp3Ff!y2$7hkxI zS3xLu(bB)f}nR-uM}O9%t8eFjor!m>}*Icv33bz6^D2F8Aahx7cA1E%Ox3GjV2! zkelzwZMmfIIAU-rxIO_t02lHNc?cpxV$1!l-en_QqkMpl@gNQ7c1u8-ev&)k?Nl9v zsMHa3R%-ZT(& zHNFMB1>wJ9QfTYb zLn09QYy!sjZm()v?I%2vycu&;Z>;+B7$RQt~@o< zHh=h6DQDY{hadspeHSP#u}Aq8KS*tCdyT8Odm^wa1F8t`VoJi{$$8$kUSR*~pt!^6woGy-Vl*1pHz zcG^~bsT{-)R9rP!y{&L~fL7Jnce%51mHBg6Hh(5cM`(Qcx(JEcy{N8QlIQ7s1lM9n zh#J(4K**AEm5kwiVsbKuy>_8sXC;egynS_kLGdNf+~jf~rngbewO5lXJ<+LPn8y-) zGM!aCI&6wu9v8XVDj}WfZjo?w8^irjDH}50Gvqi`o7TABU2M_T^no$-JoIa5Mo$+= zrDk&ejryn6v7x~&+8-z5Y&I$ZX)%L9(bFLw;72Wt(05^>;9Nx<+fD(m#{jt?RC>XGH^N*556?>#wIp{dcl)pphZup=HPkHSuwE7*!s&;?(1(&MZICIr{y*fM!Vsp z<(u|lz1}Zb!Pq-RKn1VEB;M<}IN@7`6%@M{!$7StmYxIlFo!pCmT%T{w$@}#dW|^J zo{yx~RBT}co+$=4mS^G)$M!;SZF@X48gm!IH4gX9(ofL>KZq2ukYcPtsNzgZdiyVz z!*y3Yt&{u%gqI32M0YCOAa8M1ENUOQ4^#YH&3oit79m`)R>B26{7lMAz;MNEH@Q6L zWnc7CaRP|qYzuWY=W7IkfQR%<;7`kQd*3QwN5=F(x1{qgg+ph7(cO98XH>V`u?#=v z)@qz5p)YfCKU4U0K?{ zqFJOnba=uxCdXx4IfkoyR&!*E(Z-a0$0m4YV*4vq-PC!`HQXwnmUALap4RfzE?XaD z)2Y0;>pioHZ!M$rZGHz&Vpoil`qg&2Liw#>=K3TJw=1uhLy_c>9lKQQT(g5g5l+{X zdngGDqdhNa$4++!IQR=z%bINO+Heo5s)3YGhyMozQy9+_Ki$n>52yE8%70b zrx5{9E^j2}L6rXmG){WTND>h9T_zL8CqCzLMPUAtfyr9Xi8=k0LQkaq-;OGo|`gMVRtU|1X z#UNu%sj3czqY=FkYX5kKaz`FUm&(q`(ABq1Uq=={sH4h|;`g~UoSSzD1h#Ba-crRg z+Nu8J&5>Vy6WoLz6^QDc9}kw4b;Qw2l$-lW;auq4H9`VB=D0?ZCnn(eZ2#^^T}_n- z*Rh_jkmG$n#U!2O;L7D|U`PJ5iR-Q~2$g9%QUY`05?0rh*>ux25zq@i`)k+DDH!n; z_tYen!NS~izV0|eA3w^ZR?dkM$tIYPSKL6!$$e4xljh;k{1beX_yZD5_Ot`g(RHSZ zbfw0U?$0XYZMHTYAUktDy3^i1gf_ih#e@Ize9Be&?eY034rs~$OvKo^&OV%B@~jNv z=#M~i%JZn~5)SA`T{%;w_4I^{pZT>tu5Q8YjFp=`JZtF--|Nxzta$zRI%E0I;<+f# zRo`9*K7BVp^A7!Fx4L^olGD^DOE`0T)~vifo-+-4v)J6hPrp{w(0sBE^}i|o1WakB zY;Qo7R1ySq>JS1bQMIJEvmGlfb5}dFly>O9oy{n@iWlY_e8tR5h$GPoJq)QX*&wd2 zu*tL6W5sr!xy~GP-6-?y)w3>1#EU9}p!GUCy5(JVXMJbu&uUr&d#<1SlP zg*>)Bv9GCAA1$;qO*AM@&TkrwWdbJ0YLT`8mB1d-@jH9$=VksJZK8oAni`iYq&!bomRwoUU}*=X`(hxqN={ zxgOm4Tt@%E=W1p9_w>0Gl1X4b7x+duC$0q1zp0Rqgr<%&*sAPova)brE*S_Hyfs?GSOLI6=j>k{CY63FIo)zlO_`(T^@L&1#-&Va*Xe!0*~WK&h2+bz>3e-B(9?P7Q(GR z?@iYXcTlLv|;_2^x@y96xCdToS}Frcdyaf?Ikj9K6!$(IXA8q)mFm-g+iCRi3-6ODCG(EM$xI< zKw$loN)vWVyMm~BnfPk;S?Ij++~}dkEqF}T?0Z0s_OkAPBI8k&*d&ytpr+y(kjYZUeDr6&kI$*bq&tgK1MmDAZ(aDf74+GLuIh8Yj?oq1dSygZ>#sNaYN z!C&vKf6C23`NKm75Fu3ppXchd9hQOtwhjK&BDsz4a&OqR1n4ErC|`-5f(_R6ZNTkA zdw+!d9AI^vwcqu&HBEG0<&y60yM5s0OB&?M(L)ikUG-euThpT1^WY$`jg9UU-?F?5 z67Bw-8?1nb<#RxQEExPkbiUoYH$QShlgN-s6LR{!iWkD&V>CWL$P7uo)@1y$p&4tv z!JV8P>0mYH)dVpqj49qYQ8d}FiIFBFluQ8f=h}R!z4)Y1Jt>+g9s{455Hg$Saf-{s zCS9><$cVextm-+tKb-fttzHxrWG&VO={*W@&~&^CH5mLz)t1CW0@_?H=jr@T&C|+z zKKI>eFMzVE)&RJjSq2Gu%g)VMEzpyywvgAfG$j})!tG89zXK{7EeS8}%Xcp9tJSug zJ>P(9Hwk6Ac@77-`XuiGV{`c**-YI1_t<>zZh8H)Y=(JTe}>Kf4&GK)-LYc?FQ`@QLd_4c7(aN;u7+NTJ)zN+ce*B@6k z^TQ&W5>kdWlI!&BRj*!{IB8hcHSxC9n&JDQfig7D%1=TKl7vTJy_!)Kc^GJn`6(r6 z3@eac=dtg1>j0q0$LqMRw~rx98LJ{E+NjQAVfy06V-`!{CBenu;@N2m`fr|JF8XZ( z=iudP$4$^cFRIjvSV*>=_l71b-1|qdP(}ya$lmr`%<0;T+PogwWdU;X7%LmeOwH+5 zYEN7iJd5$~d2CrX%*PL$m@Q#;=l)^)lP(FnaziG<->geJ^oRo<_XZQv6*dUboL|bT zaK#7Vw0p9Q`xYM@bi+Kb!M!+7u32Jpj=V|=)FfN=swT>xZ`e(Fs#WyH*S}rHekSqh zLm+&ahVU#~=~%gp_&MpJ2poRZNit^b^;J&`)K}@;MEB(iJjw~#3uPxf8&{OFu*i&< zXdARY^y&*+kXq&DwChg_Q%o|+E~YlptUY~)7hti;_ySWh23^@9CVpHpm;~)HYquqWoXFp|@3qe?0Mqm{UKEz11j z9KOB?7!C5*yIropP;teUc03_-3P!a2Y4^8Ql4{z|^R+R;jv1r?J?vVLiS76G0gQx*#)vJN4U-gDYC6gbFj0`lCUG>gVO zC)6}xV)YE3Xp&$^&E|kT?w6;#SSQvWg%1^Q0+;PWC%s*-XZ4(>9WNs&qgYkOS%TD1 z^e0X5I+|KWnAELxPB|vLei-sdqQ9Dysi`JtMeaY5!gPVV{_;o~)?{z`BYP;Ie~&%) z-q3sae^SE2oS{F%o__~t$PBGO0u;?spiML1I9G6VIC`ZeJsv9AnDfD<`2^CMu$NFXWj#?V0ql(#uP2Li zv@JkaM#pqqv15&XU(R^5zMA6Yet9)Y;sP4_;go@k@&)q!YV(pB>%3WrLVBD=W2Qss zN_+1^aflLVton%XBO@s&miyz$LA|5TdE?EbYxFpe06VzAby&UGV%{gj8*5M6iwsc( zg}}Q$|H*EPabZF;?G8Y7=zuA(K3 zlR+f`s1g4(fk7DUj}WGM`}ZJxZ;K4T{gV)enIeA%!v6-Qh_EkUj2bu|=0$sLq-)du zMW@BVb=^3yDSn46{&dbK%>pO>XK)V=5ax;G`2T8&yf%QudObXr;iq1mYg1~jw;tw3 zDYxEWIaJw%jCneDEG{cJvGQDa+@#0W0y`fmd_cl|3jY2!x}0Y>c7?o3^kh2B{UdNI zWISwa+SRv98Rebkq<}~uuI|AJ8DdT3EDEIIjPf1wh3a25&Sz*HrZlJ*6%(&|I;bo9 zf`z=_E$+}rfR^)|!SsgeJQk7DtGX&lffir=+gs7d>pcC_7>mGsT*w^=1{h<=QYkc74(^BtU&yq>NeY^Do^ zQ>M#p-;r74hEOU#Kk!1x$!|=Mh$)5o)ujO7HF-hc0M=vr^@avnfKxK=`%75A+Td^c z)tEw@SOpw77MZN?6P3t$gy1BUx_sbn8s}R>k;BtKd0E5{+NO+cDkhEtTz}-3Hw|Y6 z+ivHIg7VCI%x8KWj{dq+jgp1$ZqNUS=IzftU5J%<&E+6jw5MzOa& zP`~Bg3mkb&?#Fo@UH#=vr=L_!b%b`4x}YPEtvCYSwbU zLK|s0=;`TqmWrY0ZS(S4idu2k7?)fm;~7H-v_5|^kdyTQIDtHVU2HE+spbl@RwJ5- zQdNNF+BfzU)MQH)OzTAk4ZV(`jpFZtXd|mUQ`PoAZ7;X2+9sWJNWE)iZ9S+=wwL7N zx0^Y3;}xoGqX#pDk)_GTS0FhttK2Bb`*zx0wPPYfzSBn93ryuiB<$NE16=Tc3CJSM zL4xo8BaG>k{}GJutI@E30mk}&0>*UzMlg;>AQy#bDpU>T%yrM%l%^?M?u$GR>|$nQ zYOJ;-W$rzHrNM3+J*vxnZ#-9`HgWRuP^Y<6@P!yW8BejqX9JT9H=ER(mcdT0FiV# zX&U!tN^U}La@52tGa-%cuBTxbPuj70HmG-jT88Mt2>xYy@7}K=LT0tam9G0pA&vki zYC7vJowvLqEpg!ushw<}JDR5Giwigp7!(~T?gbf>B|2V{fj3|B+dF-Stb@oshAWR6 zfvdo3|6a6HZ~GaYrgaZCt)J(U!8QcGIuXpsnKBhGzewAyM@QR2ptEz?uBV~#a-O8^ z;{Yn&Z4DTfJO7Af#wY&>%l9SP$A1CK#(x6K4F5)0mJg371m*2(aXquqx2aHH=o%<= zt!y$qp7id{lW_pkZ+NF#tggelkPREZG$BDCPR|}4Dw9Ag;t9q;eMmrn=x8O619Q~$ zB$rT2YIT~^{#U$uQtk}t2eGzCKZGy0IT}X!Z(V z5V#_WS==5ef3t}J>A0}L_BplYUlnAu++*Vo^c@?2Vu4*cmY|{NQ7b7(~@d zM*~&_eTlDZ??!WcR4QdBH)QA3FW@rMva`-lu&K!r6Ru^%+@A0sa&VI zez2!oVE%-X28LvzuqCnoY*%Lf%lzAaA};RBrGI5t*8A6y983G}gXD|%_u}HJdVBWh zJ9J*$t(37?rM#(ZxvGXeK?}&hE+x(ni6{Fj-+v*z^itc?naXiJC`r-3H>B!5-nf4@yH^I!o z{jQa>sU0qZBEIqVpbech*WmVByYJd^mR0QQAB2w+?WuXX6+xYRp1h>|Bs`yg>PJkS-ZZKQel>_x4=6RZpxt+s|{G+ ze0_43^hHLAwRBVxCFq%1zHVqn*SjtZ(6hC*=%|m1Y;WKau+0Dn@a>6KGqb09`{J#6 z$hc`YYE-Tw4o7kpdKuKD5=?Tp?2=BeqYgX$^?T76Zn*o5Wo(nasciA`IOiR{XJlF( zY^fqQK>!qIub%wAE7#l$WzIXH%vSOHu8ap0%2LWge^JV?KYo$QA@G2j-=s41UMh#( zOXaxVrSdb%nQ^Y}{@=B7bMT#3Ui?KXBf+#X@!!ng-)rT+%;2Z~K7%iKh%1Op|4(S; zkH2eW*}v7w(Z6VArvIpwQ*hrSFbDw+|3)hl{6Q;I+-YTs|I^C>^8Y-N|4%Oe1G&sj{J$fYqr!HGU~umF zBb>S9{xO{I1#{@X0%w?F{+HqWUsufk^Kkw@#rzKx^PB$_#ay(wjQpSN&D@XwF_`Z) z^S`t=!$kAH3g&-8H2;r-`Ts=oKM>9LTl4>hXr>0P!H)34eZJe95n}H}GxeQl=H31s z&IoT5Ucr&WhAxfa0I>+L(~PwdwGs$ISS_>5*dGh`atdpne9V$Zm1B2)WDb21PEHX1 zrl6o8Sb5Ym)2|efO7($0opOKYZNmt=)7O`|&0N(47%m?JtPUpQJc~JYD_+heH9P{d z5aR1%0|hjh!yUO|2uQ=s@TJX^7`g*XcKF%4D88vf{PL;*7$0ns<&~&=1vAvlIh_O{ zVbA6~V)auUPQv5Ka(cUucYuyQE4jF1h0@&-;HO9<5#3JS=Eg}17@d8uIh7*~i)#hg z7R@(1TXJo09`$K_>sm(=yDTmD#IbM;%~{bFm}ny%Ly8q#xf~^=9WTkFz-kb9GWzlm zNKPC=wNxFfkKuIwxbIVK+WU3A`jVg|K0E8p33KC?;^(UbH`ot@lPC|`uim>DCg8pf zS*vB9uOY`&JfT#aY3He=CJ{6W$o)i2v|Ovu2od_?$$jYa_GnF&433g(k%VodlI(dV z)@@GxlVxwMWYD$w-LT#5eNGbYb3%8Q6Mo;{bAs|l#mLm;jl+FjdH{fgyS%`TN+;dd zE@vO_YnKnd)h_;gl)TS5_|o3W!O=GTa%lLjU@`lff<+AW@^-^H#E3?6xp1tXAmsn* zacMe1bY!3`F$vP=CSx_~tZ3iqheZuH2%P5R`oJ-!oUg$~4Z8001rzWV9NZswn(zFb z7p%luk8!vB&~t;v8f3$fv28!{`cSaZvldVQ0JZPIW-v(d-Y-A%FAWa?pWm1N;Me7g zq5TpDaxqviU79=|427MDjkCFLLy9yb7lC3E-%@x0S$8iT8L0CQU>pA=1Vke3E zYwRSgonfJ)g9Bvz7P{v9&^6qLuHip~t_dj>&*PxW*9=TZ8243h!^eU%+-xOA5TD@Z zgOpfL1cV3a5LQ-0b{qKDdf~KU58gaMFc;AmF=j)MRsHoqxvKo%ROD3nMkBXQ7 z(#*ku9X7uQmtZtP@gVC*a4{51UcSWD``XzO%OTiIV} zYl)OUgdN~_wh^w5Bpgt3^&}v7C_+ErpgRIRfOvT*qM4Y4l1~8%<8+8sD&-+PIwLyz zhuemgH-8Ih=6gs#<3$RBHl*UTHl~vj5~4QjM7*$7p>EgOLd`SEa;0t&eBM0q@Pw!x z{}PiNn+FEacEm}#5Ber}?b668RKFey$4bc(^br!+2uFAg!M_@JGwp)D|J~}91Pr6X zW-zrd5L3>Y0H%abngju#^90BA;IMcA`v|(>aO0tZWod9&XoAZ=`mCksuPn z4~-d@44V8X-WQhb_fN?UYMiS|;Y1Rdb*6uE!+u&=5?Pd)%e2MlX~DR?6{X+e*OI<8 z#U+=ns=6PEl!Qj9>LCbYdsk3QkU*%$( z&22I-Rp1K%93qzBpSU~IZU}lNCbc}0UVCy5xtWa;K0UJNj-Dg=$M5ZXOSOke zzo{|_05I6yA%KnOo{0Ad5Xt^)1Q^Qem>5}!>FeJifR6z{#CC@OHxoqyXwj;U?8}#r z!pR{f;pk6NGu#Ccsa6y0dxMq|>FVU!N!2X*8i9hfX)5=Q_)Rsff1-$&0gl1~&`VD}$j&5703+V$KDcufk}~Leff) zxNh@tWNGBnXTu}U76-&Vc&X_l~YfSHD+@%ZNhk*g!hGc)i+ z_$*cG0aNqZcvc@@;P&l%xf`{cw1fN)7uWUew=!4dPg0H@f4<}j*suR~sG@5A&FE+l z=gfNZ+63u`(c?0d)lv5zZ*lcxRgPMh+dg}8oe$iCF~Q|`5CMBPO2ASQH^&@3@U1fZdW0dzQh1F!L13O6~96R!M? zwaYul2YZM^=E%dC2!l9vGH?mY1xy83V#uDD7PIeSxX#FR33$1#9av#@G80E%Hw#>% zsP<(~q(cFpmwQUPIsceVjI6>GNQ)A5# z9!TVi)PB)HN;*N~|ANolaN5gDCAiC6Ffz*eUYrFkUSR-h5KUx`fVd*%AeAURAP3Pf zhFEY*E6)Qs>4imz%c{~pid49{(QYsD*d<-|IR*=$?XZb0gp$PfQ2zAA%y+~fSpMw;sQ zeb(rH>`&E(h!!(s6u!f#k?Wm}zVK1zd~#_>h^}%TWwlEVi}3V@U7^6yk8VzDaw_@A(~%~x+oHc`a?Px>K$e{Z?!3+~^B*ZpGp@&N z5>kl1P3sx7`uTZOnS(Y6Zupumnlx$`PHn_}_;sC6?en5lWi|$^cQ44wYNsCB_;HGo z^WdHI(!TpJiV3*7GMLQx3^bH16Tj)vYtV>8a1$74oM~a$HROtccS`N{OadcLJZsf^ z6{svEY!mtJ$E>vMt=HI?l`6hXX!t^1PDjCRakdnW1k#%=9YzCN9Kdu!*MydHGhDDO zUbMtJzmaZ&efdByK>5`k>8K8ZS{<=N?KOV5-M4KcOb6eDe63U>2V|{5^AN7Xk3t&K zpZH}P5!+=dAK!e*-aI>SvVH!+M|2RBIppno@!oxs!-Q=9Ta*_CQ zpBy{NDXU{Yt7{(Rn?RHKhIfx>lqWsLSY~EDtPpqzgG4}O(LiK>mMo#;;@7%1X?zvT zhFB+2Yp6kkd-N7~+8J5}1WQ3-U&nB6kH`P((FegrXq^w$>Q^-dnmvG6q z&g6CbOAp8!pDZB!RH>;vbMa&vY29+? z@?*A=C7|KG#D%`75EkXwW+&tjEoC;;gfj?bimaBxXrPMZ+dc4iVa?%;xKv|=Z)JCl z%Q!jFEjn#GQcDzM4VBt^j6;Z&;}-WLr%FV(Q|IMn=2zTqZh01(Oc|ejxJ(j0i5A_W zCoB^7ib#yF@FR%cy={ot@W?cD=2N|}lf=~&c!;m3Qeq*7Q!wO=JD)2t%q}-{zE*G@AxB}XeyLjjuEo#j==;^nbCd$FvQ^^D z5Wd*T?$<2%-M-5|+M+3CnEgczFB@K`(iX^ygTcM$j~JD?m%a0X{Em$?okNbF>gLpJ z7D4x13r>pBRm|pD7hkmr1#!ZuXszt1DKg3h;z?k&R72>u zwS7AS{tDdKw=Hf){%QSlwp9=SLC<7&AIA5FthMsvGHXJR&d>no@HU{0*DQy5V(WNy zu1B@73YnQt>-pE}S5P4_kELcON*kZu$BxTf4daxKeHw1UHdQ%ova==V%xZM@YLW7r zPJFJ`U&8!CG%cZdxwK1LgG47PZhY;NnDW0p0Kk%MPb#x*mPx`A%xj#2T0 zj2EC%?XsURB|5hv*`uoFfS_pyDz^gnBj#yd2gLV5{26$7#6x4?xWr`-6|~rFK4H@- zt0rewaM>|hE3g4hRiSp*l3F%V;~8h1c9<0{n+f_~CmuW&24zd*`_ENAKY%Jd=G$9q zKfsX8M=GBoLn{h1g_b6SX4C~eSy228wfs2k*wxQ$6JlUsIQJg0kEo4dRqXNJ z1s#!t<4Z)|-s#=V;BlbU(5{559Gi>!q|%IaKU`l@1r@cw!5rIY2}B%wh5GH<4jgYkM695qy4ar(LcuP$H2O{ z`CdgwvE=LsqV_auE_2+Exng;T8=BXCI+EL$=XH{M5pj78T5<^WQ)nG1M_4XDW)#MB z$WXN-pFM&4cF)!B%Eu>fIPJ+V=!4f&P`%iNL}b|0pc(_#x*-MvXFu&qG}RaU8%Ev+ zaqRTYnQtDy%rqqQxLV9$n0N~faaZyx@?Qx1 zjG^UGfyTX7lxKY_RAr3rFCI*L96Sn3#A`RT=KVT<(FY#W+9s#G2zD8Cx}_W zwOlG=$f+;0H7wSN9$*WFUGb7qq${N6>r#@veO^jEd)@JX!t6(peS{qrx6zY5Whden z7g71gM^3`A=hq+`!H$;qYf-XvoMv@MgZ*4!bwZGebCszL?qii#ue9O^w5Nn(2?cw|N4P{iJX1Hd zjwarMxkRK&W6_&7vfMejT+PV(-ejK^>#Q+hba561O`zE#tze+NHo}rXeYKzK9kw9z zrh|(lR#!XdbdU*S zKWD}YA3JTlNm>>XLp52xSsDet_HTN37+_8DO|{}GFcLXkbLAZRO&K+d!XlOjGFD`LqPhqPW@W_504 z^^i#Ba`$TF9By5RYX)h9@kOgIT!5JyUHjC?t&`sYkll@Bl1rN;pc~CvJTsn>{LrXz z(a@f(-A1)!%>>UcH^xuKZTt;|giLVAYL$SYv@IFSgKFe)B+xRvrcyZDAZs_BC4flk z@|m{6vEYu>Ww6?&L3pvf+34FHoOWfeqXptsl=jM&k%JG?ghe^PSDGcL0bAe4MK2#m zhI{TpcHxD56Gj$G{XRcx=hxutAtFbG_|h-gl;RpDKbh6t|Lk~+pAgrkMNxisu@_zs zT)ODRxT#r2tNc75X*^;cp3^XX(Z-8qw^V6}`F{4Dg*Z#3db4@ES8ej*!U%PHmRi|^ zDG?0FY8YKM8uN?Z4*{k@T4+lr@3k~yYY`yBC4FAEHHeiZotzLgP6(8)BTDGORb>}t3?MIvZ4P)kZPgdh*;=M-)^a(q48?K11EyT}-B$~pl zIXKSTevsJBM(w8BoB8oln9jR$Bey@^!A+AO@|kK{WN0hqqlm%U)g2%TfX{$=&)oFhoEqV*lTg|r$h%cI@YTT6R56J%wdv>St){ssWhr5)Jv`1MWpq74H4wZveA^Wo)xnNkH*_U=Y=*6H|M?U&)z1!IKorq$c! zaAO=K5wAD|wFoB(acBBhAS_*+;|Z6MEzumQ8t>e|yIR>_@!JiB^C*1H?1)8kJuMno zH|r#qvC}Cv<7QgwUt`%zsel=ZNz{*)_lYW~W4Mf^l|4tsH- zm=F^(&qDUnmMnm=KWoGtfv{*xd4yY$l49_66rEfFGJ9E&*#3vA7wTu-cqF%)V%r0I zD%FKJ@|=B~?eym_Hd0j;1wNtE9S;&z{J5q#4{a(|amXiE+cP#!)J3I|Xx(OBDGEgV z2&Efl&>^?&p^>Ilz{Q4a_ZE10p?3tJj#CTpQp`()s(XGGXx6DCCGXEb4nCrGSQV!s zw-Q>=ryIo#I?RyqY~97!A4nz(J1u$f!S`%^`^6&GW&~3%KRYUlw`1Of+DapIb%dmg z)NoF>15xGtN-xN9yP*AK&(EJWEka=uPJfA1dTi{QP`a7lOZMs4LE;B;!7@t$?Wy1y z(n)OcgS@Y$mUj~Kc7jZgtNeUL%L8f(vJi^4`_0p;ujVpUscIjg~#HhWxF61 z72ew%Dbp{V#&Xa*UKj60Jj;1SV*y8$`(3>0V6UL74?lJ z4khBPgUCKD0{o94n|H-L6l-}NIoDTO54JRpcv*4*Ud|fsEd-B!!sffm*PY>^tDmJo zRi20*`b{m*zECyLJXyXNxrU!>3dQHVdJ5%{U24Q%f$VuaYr4=)C$3>4_O{3-LE+LL zU6C!s-mB!!D%_ve+RIRvsA6_UtZ8Gvy&BLSz4Vis{xS@`M9=rIw#GZ#@FFWaL_@Nk z?=tb)!c|Q^H5MPr&);+nnxw;@nnl>zU9DWLclMPq@2^bz=rxxVOR4UYWadTe3#q= z_Vs}B>-gbP&1GmDCxu~?rLfKOrCZ{{nJ_J3`D9T`7sOt44~_s%ZQWawtF@P@0u_?Q zph~491WnGCC2!S8l$eMgTjlOr(3YZz_0~Srf>DML4OcIOsqUk?OI{Wvlk4y}8q`$X z!-;9GWEteG2t0ZdL@nt4VlTZV9$&#m&y5wiI;NAwu%?>M0hHfQ?|TO;*%mg@mx@^Y zhLa}iBnc=DbY>KU|K%H0Pa(6`^+d|%bL{H`nOmeX1R{UD&Fj{Yy?DP_QT~E)B8M_@ z21JW9nXFp=WMur+k8S?aCcavjrE`baCIvq$njNec0je6}Zr;zx5W7A(74u;i>E^v` z@%q$3$|xoM@rt|t=C;Orbx>jPk?wF$2@#W{U!_KC=Wf1E!$Pm}1c5=QuF~-3*Nm^o zxx_id6NW#aU!(e{o!=pK6J#5h%J9P*^l%6%ToLQK9?6Z4QPLDBPCo7S{D#q8l*xm^ zsRJ)ze=*@T{fbqgx*g)Y4@da_XnV`xI+i7CR7@6Hk_8qsvt%)|#bhxvGcz+YGcz-j zgGu(Lf|_u>oL z$&Oivc8YBitpF4Bn7r$C*T*XOK9PmDw-icpd-LYNn=8gxI%(ByVv~1?)%EXgfqm`k zesvF$OpLLeg7~WOQ}8;H_32Z?A9Sb*0NVHhP|$ODa9I%nx@OmAlA)U)=v5}p=)wp- z>$?65meL%_M1VpP2C*K`GP5o@eVhS7xeHb1G~}m8(=*Z=h$mmaM(rHPPht^?#{WhQj(>zY$qRSpp8#5YN87` zS9u_hQ3j;n$Ya{ZcKp=cwXnAY&IcG5RUhis>UuBoA_$P`r;<&~Gk%p}bC3agt6A-oR03cU|a^p|%6}Rh0a=(>el$#fg?d^ZXJ> ziniWvS!aD17+{|@N8wL1X9rriF7t^pMCbyY4xNAx@po$6-XitAUB5PQWF4g z-CD;X7=Q%&t&~-nVGg_|Vrp6yzwm};Ez=h326Q>O{wlHot8?L^7`eyuUOm}#oZyg% zd3fB9e)^6Hx@(v?T0>x^tyQsHv|@36a$<$t)|x!$(~Ol~KShl!Beyvd2A>WztMKD= zZyN|l9Vt~~6S(3RTJt3$RvoYS@gHofV8^ZGT#_+z? zSMPy5xp{>`;1krbqpJiz*WZK|?1k=t%PI}le0-qlHi-feaR_Z{hY8sw90j`$Li5&R zz6P7eWtDsQ?uD-~Pk}FdSKS;XyIez^M$76%H2Dz=@V5j3ax#h1Sy%Nbin|FAl^mdji~uSZ)|$LJE8=X9r^n zMr_3yOdU6Sa9oIA6`juJg?Zo4i9=#ee(+L`52p_7P!y9(YP6)+0v(^j;b0AE`qE!GAG6;we}oT4{3{@zF!IfULBNv_8g-R z3n%)gS9gG8mN6ETd$45#SWnx}9)3o9)y0?6qe4+U;9AnCNCFqY8B+Juab?e9pE4*6 zLo&oZz~gFtWQuvY(KhqVBg{(wd^K!){I2gok>Ugo>$`f-QCKojiua?OvlNFIR9uxQ zuYVLRJDNESKlT|`-$Fe>p+SNV|BZK>s}}dM%gVN6>k$*BN&FjG)DNH9zVj5-M6qZ~ zkA4=*Iv}~+sJo4AqG+uOYmNGR?_9ziE{v3wY?QLQpnjsMt^*oyC*eclI70Jd)g;mz={1cT4ZE(4gcH&rMlT zkG@PhP+c?!-(`$1Qd-Bx!9qt0i-;7?eINO@{dIzq1EHSNi1p#vH@$`C3+W7wobXfMJ6qQoUV1_9Udr# z3&J|*FU>%4I!{~Rha$S2n16M@M^Qngo$5Pha)HMhFlFAjG4KtFNWPBFp&+I{yiFM% zLu2(Zay*hYdCUBAnqd6piHKZG=fG|amcRP)vd)hRWlP5WVz-Efg7!t7GvUtrBB@5T z6do=(wTJ|6@7|ZrONph;kOqp<=CW~o$#3<rEM%*n->@5~bu-AXfJJr`+u@Sl=uYBItt0p}}|aGl^pI>!qrH*d0;P}F{FQ8Wn1fp&(?4(U*bcSNPo zl*ZtIc|FFJC@ERkDRJZ%7kXu)n;#i!P$%$laj_-l%R^i=;e00Lz6bJxCSI%HLlewv zWS^EI2H60F-5(5wcXOMGCk^iGx~^_r3j;W{W0hz zJ2j&4ypUP1bljQa6>7X!h4qe>kzjC>G@raARd#o<$0KEHyq8Spmmj&qgAbu~A>ojXs=dx>{+i+u)E>thMLPx>iO52RVDwm1v5cc!|z-7`2m-?21HD_Rs^;D4IzG6LeL_G^aPiOG`ZvqDd_MX zqV09%q~fz<&`zBhf_&LvSMNPA^lu_TP#DibRM0fY2YJQd#587X$Y@GekQxY5StLks?Nw!(DMcr91ne|*3}zG_jKehFeNc&Pv=X*$XL)$2 zTC+^O4t;HCf(T8-ub55+Qii9QNI6S5!mb`cd#Wi^)N{AUQyMS+d+zH)#IP@=^`U(D z)CjW5tDNGchd167bv+gh>q7VEHLz8)`4P1xz zzzFOvDe!Xx>cT@~IC-r=lJ=##xTPGXA*sRChv|}t?B72R!6u!3BcV=t4-hVdNd5c( zA?$VvXr2qRL}%WVf(U-o6}g*Dsz1 z?pJn-T(loeAUuS%Z<%YMdlBb4*D#>m*?9p5@PgWTWp>J)j!=}G>mdnx>D3aUE8#Z3l3^Vez2TwJ41g@za1LvwO?Fwq~*S}z`Rh&ayW4a)$0=kZ#NQ# zTfu11sk$a)b`!(}EU~~Ue3=2!*-e!8COE)a#yTHFbqKYdh?Uq&X+L z`@oEQ`=oTRxk(vUYfrBGt!$?`tO0(bJayoV5%jTVO_;Ow7DdYusaJj|a`WZ;`F5wL z((55L_4!e20O|hXm4}!aC$iIb>G#)gH1nd%O-12Xw?$a5^EY2yn2fRCF5wYXV8zO^I;@7KPqLv4s;D@Y4Y5!oeH;vjooEf|gILN1Mt<*!Q+|6PW{DxQP^m^6-#NUC_}8Wr z(Q%FO{L~__mZ*+c1?8Un_ECiCS~J2DD+6g$yQ-MM;h@k-5897Go)aL2-HI*GaE zZRBSj;hD6ArQNdc3c04D#!mDeh`sQ%B4p@(`KOh!syBN=(!-6|{nNMS~zanM+dMi4< z$tt&`pBlftN&3`KE?POp8_Q>&vg?d5z)%-M)N!E~%aUa9rqq3L_T|!Q!nVC#C~~#6 z3(?E<27J;VYcOk$&T|LJkF@XL(yS6_)nGf|B5H8c4Ic6`gIII*V-N)))T-x=G{wd! zpOf3H*Pm9XXzL3k+vU@FQu9(GXx4B^53^S0W}QE3W#M^`5&OucP|I2K@u6pWs#$m# z&B!*0v}F22D>m+U=m4Af4l6aN&cjM6tGF6ek+M~P&~1i|uNoP=?YlR%!GMi+G66iT zX+MqAf_1SaHMji-gQFUII4G4!jffZy3+&y1YR_!4@npa1=mveTq>e+CetBwka6#W{ zwRixrVY!E2h!A`^`aSlAiw9KM)4q0sj&%7OJ}4!`iLNT6%b1787dzLD?(YF!dXeVe z+l4rQtxRLO!?|jcLlS*|U^5J+W3f0x&V6Y=3&1x##1+B?9l!eafznP)4CNskCx~p; z;T&hjx?VjUSi&8-1IH42XyQt4xaxvQ?UW(VVZ}e?mrZTlm;l$XM$7-u8Id=oYH2^I z`fZKp8j4H2AbTn;_fSy??06Daq=`i+2cAQ17B$_^)NmVcxh$-}KCy&hNXCMM1ruDuWGWC#he>!RE!_Dp$rwV0>%90zt1&8N zU~<8pA>s1}5=v%0q8}wNwoQ@(?6-2FZ(^{uqD7(^`m2gcyz;P zNHbOF2%e&bVthxC`bWt8;$u$`FYd98>sEl4kK6g(F&@3iYz6v#L!fk@%zYXaG=*~a zw}Z#szFo;JBMOYF^rQcl;(VW#;_Q-_ayJm{zsQHl{n;LTNRT)sH6S3k=k!xIUNIIO zMu&7TK>#2nYqwo63UtMg;maae@O83_9C;F*4G?HSC>Xo)Ynx9PFW2?>CswC*pfX~! z5bW?89u7~7h`P+Ocs@iU@`9>va4K$(;72-^jYUpkGOj7f*Sho&G|5mwjCRuN=fYsa zMuzR?A_iGC`^d`z9K7_(SE5Xc0_3R(Q^D6Gb^;OUcve~8;NCB`f`>MOSif;djJ-;c zgd8}6RkL7w2aZW~B;I0%r_}LBBDqLPX;%>8-&6eU2@yr=g+d6Ki3J0r;d^)rcpnKM z3Fc;^s(+=Bj8#D(5~CUg@3>2W#n=Z8r!GtNPp=ZjZ}8wB#;zlg_<{Q`7YzAJ? z6d|Ptac$*9qV_N=iIOFCk%UJnA+Cs|1nXUpghWtk_|J+$^pGC%L7|5u{_gV%9v>aQ z6uSb`$3pXN)Fk(9c_Pno6psabb%zX3D}$={q`KM)b9cUGKub-S=%ro5w)WEX(e@gH zuuFNa-cNwlvefixmjZhj!~NP$Kh=MZr|6seP0X0Rlk^q>1L}7NN%gKigj2HxJ_mm2 zA{#1%AAyIz@lX1mPLZ^1+C%Rz-%2kHi;!2zS|ntQ5RhOx*rE$f;hx}h0c0}pJT(2t z)28s%pZgA{)~v7flf|2&qfGrc7J)2&X<&Q2?7!J3UwMG+6JljPfkJG5I&Q&y|LV9U z`O|Z4gY~bDTX177Ng;(ly|yr*K)(OP)R+7v;iuXAr_~+rKU&>WkuFX!dx22)|3cA= z0e^P4ga4QA_T*2t7Zk=%B!S9bNCK#TA_4j4e24i*qi&YtQyB$CrVz-y0wuH|0ncm+Ree>+`aRw#^&%-@XBD$;yS(f z@#zF;-6{5uwjnDXGEK+-Obr`;WZl_7+ip1bGib=+;AO%|5)w7=%Mw?kFg!m) z4?|l7E}Joz)E5nQo*q8yR=!Fn;XKfxEIp)iN((IifQj$N`sA#aQupEPXhoadi};;+ z7lD4D($U4|fl%O(g%|`uaK{{2$#d%4Ebq3}2*bP^g%0SSEW+TmV-Y<93^_g+t5-Td9ah2i&IhOji;D+TzdSRWOk+^r*Mm!vELGmi;5&w~UHT%ZK6JNdzOS*_J*pq^vwRj<;+wRaw8J^2I94DW7DMbDro+4pgNnGIF)j^VWzR zM4F`HT5F|>3yRBFdA{!*c(j$ZUC4$(5eg5CqZeZ6nKoe5GWS2YAv3;TMjfnWKHP9m z)=eI`tUtVfZ_7xq@}5p28R6-F-J%PlcjIrSNhu+akQkqcM$hr7YHeb>qjOFYs0hPSBoGDYyZQz$>~#CFoE~c!Yj|LxVpe9kJmn{i=9Z8^hPy(R zFpZY_)@$A`AiU7zKhWs+aW-IDgqoI={8t|dv_iK00egF6&Eq-*thmcZ&gIgy>7J~I z3G~|``?as*Dt^G&n5){PT3F_ zvZ4Uxi(HEY^8E6iBh}ft@Zm@mo|Z-wJ?Jzi9nEGiOpRByB$cKCgRZ|rlHZzq3) zm{G*8n&uET*<^0u*cLRo!VXnKbL{PDZlg%+9DLbc4$p%c=vjPX!AgKyJ0>O4iPRN% z&5hK3P~WRso5adJ>j&W1$`?plw5ZN6F9og0Lt0&vll^4XT=+QlsbQ@QT*vbUdgI>^ zX1Ut}6gASS)hl|h`H>RaY5TVkER;{ndnzz0lV2{G44=*i>j6j-GodyScBF;&g{-OS z;TXBGM4sC9$JXw#6hW;a_YuK3BI-mEX_R4G8BimD|5mdH>S>)&KunmG{rO>HNv);i>iK&g&CW z7LNFN_o+7Q#2gRw@$pRXUo>$)5oiCVknHC?^EahRKRy1Y1mdU1-xOB+^!S^4O`jfr zQyJ#d<8KL9eA@plYWz?8zs1S@2~Yc5EX1Goe~a?<)BbPsf`0n^Z4$;$pTA9Z_uq~4 zKhcW)Yn=Z?dh&x5|1Z`D=ih^TfBxIw21kGT z{9RD+r_28W;`;f5{%u6&-@)#EhTgxCb$nX=n_H~Ux9$1YJdg4p^SsCQ=hOcy^Sq}v z5Rf;>pLsqU>Cf!``EH5-j1DgU*XVz31^?Lm6F&U875odgYW-Ipbqxe05B?8)|DDkv zDfCza?LRctM%rNfc-n^Ao10_7PSWFH!L(31K;r*E3g`QLqOuA8LS=&@i;i{r0E0<= zqOx!Q zBC-$Qjz-#{IG@yb-~6Z0DX`Gd|7_@O0&_M|0*8ycjiJH=frO!efV7qP?mj+l?El9+ z^Y46d;Ojr{9CZ4xyp{IP*Z9ZE{+Iqd#3whLgS{Qp=MSEtxs}tWz&-pQbE25P%z6Kq zdxQS@MBoY%CU*9)^7gg{Iu-`DVwQ$hUj?lkbj@Ax%uOuK4D>%QcJ`lp_<=7#F+`sq zZcb&*3TqCPhvVKAxyo#(Uknc=xe)OyDSl&)0ulINq#m(_D4AyW)5Pg{IG3~IU`k4a zMYaJk4lln#L4`uj_3S&SqE_f^X|BmnT-6ef(s;CI0OYew!hJxI_|Zi=2S=vL{C#DP zXvh3&8)K)P*Ms}I-2}S*M_POlR*uPP4je|j+XIWL2@4EWogsJ;*9s};8@U$5G*_n@Unz$7~9Dc=_J}C?WVOg35 zIJc8>w9jwQ=t!vI%5$ZHeaS}(w?-2glt-PMJv>F$2Fp$to)@Ced>6C3r(&GlIOHQh zeo{keMu$K1bG)RoFQf$yEDG(EbB?6ut_g-5%e{k1Y}P`|)|9k`LAvo;=d)LB!tFjy zg{^Oyq_Q+@2^KJeeF!>pXy|wa&lUU*34{gu8z@z9woPrLb@!{=&wFoib+H1K>4+2I zg(IwBa~BxKzOE-JB?&6fm?Ud|!4^TrBUrZNIbmBknLj$>(33m1%`#X+qpL$(Xtl^b z5142-Qgj#!gUwa-s|OGNW^z~sbMC`rxt?j8YyE2}#6Eba;#fyt_)bRa-j9N>$;JVG zxW8)!(QsNiAjRz~m9?qcQ9K4sx=nBJ`{UV6*Wh$7bvuybG-bsp%KA1g3(0D~bAT%# z$v+S>)**yUYn$0g;^nTkt+Xw&3F=uR&}1fk<82@9Xh@QJ@egOKccH)eef6E76}Q}@4*B>S8BPKpkIN?$usnZgHB%L#acvL>z*Q2-KnZ8 zu}h`2R7Urybp1#3(1tXRc`SkXo4i2GwHy9k7&MiriBG{k`=Ak@d`-PDpu>#Ep$<#f zMO4W}HsqqT}i1sq1YkW8VrVjp>e;^OKz+Y#hU}6@S%F1`SD8ho^lE7LbMg$#BGRh%7vyr4?%54pibwfZ14^&+UaBSC*Any$!9Kg@La zPAlQ+5lL^2SXcW)< zDa}YY7J_lSYcM#L0G@grb?_JS0o%1pK1p`;YOrpZjkU+LD)QU`ohsyf8hi3C}C?L#(i z7z?e`TB-d%A!G~q2HfZ^f$TK3CqAllXrRUdq``0GsQROs0QqBASM`W5XXK2mMk_g} zT-Ms|=H}+JNojt%i3W@S$}fgMq_Bhz6)suC#RF)8_tdyFkHA50W%REO)7DL7?Dm{+ zT^U90U}H6R9pjDXQmjpt z!1SfBbDG3(P9q5VxvKi$IvtIia@T}2b4Dl3+#8A1MxOY(fsVkagM!pB@x)jjM3M@8 ze3Gk4Jup=ZTkd!R)V%}>h%hrb{DU(C)s$@v)uH`UE$7Dedex->XCY(G*g~7MTpI&j zX|;OGtK|R^J(cz%?XU({3oFj!9}-QLAt6*Po+vi=O9|*4KK7j8C4GS|`FtNI_bu5!wi^?pWU4rgvOHUZVp&HNjpIsPd#AHFp>MUh?m=MLIPd zdWjd*g}}%@ypdaVTFjZGHvZBrkzY`#%E9(W z2B+sOTloT!V}1FSq0giV(N67tj_quL69vD!YlHm4p^Lx{vdKQqV0rai79k2JfP8(=)(X9QQhbG~eBCJyN`LH3r8@<_ZbxSZJ+~ zw%w8i#rHCwI}qzzD>o;y^F%uLjb;mn zlzqK4l)Yrd00V^5k_*X@(#PV_1n`nbfg1&*f_ZjR)S9p|!(QqQN$DDtAK$df1g(CD zOTg?{j>XhzQ9u#1@eY35pV)z$Q14p8e7=EK?nBHR!H^|^b4v1W?=zA7Uacq-O0|mM z*bhuG0s}>jRb^U%=zyfEpjU727*AhLvTR-->Z%_8?OO5|>mK?6h>39Ba$E`3H@#A2 zi!e#_f(92ni{b_sumO@$!pVW}v#-}yA)NCRT-uc|l1KBCkvySyje1|z*}@34EKmo4 zNUF)+t!nAuTZ5Wch-6!KHw>%N>J4+J&9dRqejc(-TR+qvu65S0-z^!j(POBGT|XwW zS7Xx#RM}SWV7hS)nmtt(8vvtm$_IX_o%ngl7x}M(R<=3wnr#A7Yw7Oo8K* z#O=_>x74;p`tyi(%XBPbCZ>m)lqXg@M6xk6fFJbP^NGKTd4FNRns%^*SJG>p-e2}* z?!)>n_Bq_E&w!MnfPARX+=M!#CB9V_aGfIyTO)J)2|Y8s351+*j2sEpc^t!i|2cqv zRW1NikUGG;Q339ArKBrK{}ETRpeF+hF%<^#98sT%u(={Io~i^q(|my~M6nQ_g_x6@ z?#rGjSg9`mg>Y1`XJ9`x4V4v@B^bMzsB37k@h;J0gE<%z4t2gfIErA$AVd30=`qgnt|NVwF+Ms?2TN9bg1*lgbw@l?tdW!Dn5!IjI;Jto z75Q;1!cJnoq+}B%hAV%jJZReOuqlOxt-`5H50i73fR5WF+kB8Ij;tooW-So~^c0+MK&@{6Xg-GEWSFBN!-r=8lV7^-urMk9{5S7qmy>W@bQ#{# zZrdP=3Vo)UK15)B1-;y99HyNm-CS09jNNLNFjg|tP*nv{&|?D~O_CSGnM$h6n)WAS zo&E%$9KwG1W*6hsBdqFy>PDro9hupr@1W}EljjO=B$OQq0d)e&u%GHLqHq^8ubPo{MB5i2 zseJa*0-OYArgy@uB#@!5iV54k~)5Cuw$VFW^pGiHDd_s-48&M#DgUS8jPx1*3Z zxjp=!Sho)Ql+GD1l3%bNwKe6NdGtxOL|W1Kf_MphQDl;AwQ-#pYo+o4swA1`Ohs?I1YJ znvYYJ0D)DDUDABXr0CMWUgQ@G)nXJ7gOiArzu(U?MhnIL;CQQsj?eo5LE~N)`b--b z{$v9X%m0zEg(LmvgiVzGUo=A>pK=!v|47){2LEt8nf~M8YvNxVPbo+jI_Ozx%Iaf4 z@&Axp5d-}^{1W;vhhKkawBqSM6E^VwoUqYX@mu~QQwwx6O(v0vfC2pi3cABnElzzh zu+U=uq{n2@iE|8@0-+0PQ187gkHzUjgvh$f;ca3LCPRX3UPl)?o`9FeH$ghjP@Tv3 zZP5!TX3+=KakSJ}7lRH~i`9G$*fFH9Q1Zre$xFw2vDl^HV#m%wWFQ?p7r$3M5?R$t zC4R$#gN`1e99}q&jR!75+NsjdLcsafcMt_~W+cgNE%FOH>&+UIeu~#rPlej~!M-s! zWKo6|Ya$h$?PbS#eaz2?G`~qnJk@&@5%~(2FSu;}bMaQO*R!_4 z3-B{sUhM#UmfqqEr+vAg#|H`|?(#eM5K@x;Bo#XjqED`nma|HG(XQM?!X)gS==IwS z1NIfFAc?(q$P1oJ*4<2x9_I_DFoE}0oVWvE9e9->kHiMtBub+sSrwnCIQ-``kT{nL%uLa?7nT1L7KZ@-0X!qp=bPQM!r8$AOtXe9!lAH=bDy ztX}wP90N2|C#a3CT(P(CHot{b4NJ;nd#rZY`+h2v=B-T^qWe6vF$Ty3>B>Z|^Ajxd z3mQ~Odw1JrWTg z#2a0tuW5BTurzOOo0BD+kG)YWrNmJ$963Kq7uj84r!#mivJz8N*@bp~%!oOGgzbE! z%M2C4ct-MQmD{a8=8xK-c@YOj1qA~ECBb290s$e~{D~OS^1mX6>`(q2CGf9^fi%|o zjF^8EICv3(%1J-tYX8ygnI)34aL+c|Ez9 zsK}JHF`^ih7?}XE82@h>G8=I=jGK>*r^=7#$%CWT`8Uo7yRONX z&Pml1RksFjzzC@*FIfz<4qh-lSjgQFgQqVd(*1)q(>;_UzA`kDZ+}yChW-=3IrN8J zBB}6Y4O>5+@}M-hZ!nRdiU?+!f$S-RzqbD`!EOqZ&^&tLMZysSE+MzjsIr(Qco9-w z#QZ3%hDwKX5BimEu)MuX!C4h;R!*Gdg7=;94%Vmm7 zg3Itv56q0m@>)jTw#PYM;jKB3nBXf&0vNVlh5dPg}_Y&)8Jo(E|-y6<_AFZE{ETW|l3fzRvUXj&g`0u+~! z(3!}*m0i;%W@>yFw%%I;kassdW2iS+yiam4h;FaMy}M0Pir{k`8nne_jW8 z5|Y?~*Ro!FrHxpU7l%Sf4I{m6ewzP8WQKq>h<*EhX5W1&19*ff1xwzKOmi`1MKsns z2Img30(k>QE1QS}p-Y;aCu2l}=;#NpQ|%4pqqO+A%l)a=!}@E&?p_uYa3Xd0m{N~j z|D%K)a$FhaSuf0ySA{v5+FoA1Ssx;h$1;6CR};Z?;dWXaz%65iX!5nG6~5Kc1LNfG zn_te{3_LlgB%s7;!s@piXhsCRWZr!P2zDRClzJyNn(d4HK6j#B%J9X`L@$yOmvH z$}&XB01FcN+e$n#4#gXaC3G0ZZCK%`cPl=go9hYnFLB)xW1WF9_@IGTUuVEe_jtMR zu8)yB$FsRXP|@-aeD9IwvXmOvz&e)CAq!R9d{{V!s2kWYU`LM6D)(u?-pX=aD--Us zZJuIQ2fD+0xzL^QE@)2ewqcJ)$C#Q2`ntqK~;T6-!e31PW&$ zBgcVeh{4mYaP4{DHyd8Rvm-@o+PUZEYkxO};r@P|asx%S@SWwwavrQAz(G&gG=c9* zr!1CZ4m6IUd3=4cKi+Q&1 za(tAFq7wrz_335zblNDdPs@dzh8yQ0g%UA+S&&bm!bV;5JR*uB*0RLHo?obgw!1P1 z+-zdODi$LJC>h8>uOT{#_csRaqy`0y-IxTk9tsf|*d$LhG%Q%Xmv56Ac?QrhGp4^R zweVoBrNkp*MKruW_Qsgy9p`}@ltUeDX5?k4)AR|W6=22pkmaPC#DJD)k(QO)w{~0 zI}PrQpYHQUQ`4bDB85Rd(WSPr*MbRkZGM>}F~M6|Hv0XlgDr}%bSuqq0i`fA9#sX4 z;s?-arbeO%LdkF-9XPM|Ej66%m`}$-FIYlSik1hP7HN}o2ruQ$Hq#GFB0|t`P(Jm4US?TM zQH})}5vMRZlV^PH;u{(AEJc{P4mni@Q)F`{lE%9>TlwB6e7yWOj)XXMUT*_*SCn`1M$0$eE)e zg!uv*U)Td3IXD(fW5#b84dT8SmRHj?#PIS20Xx6$cB zS%`PIAGlsxFpDUB5qHKB+L&9Vs8&Bo3!iFf5d^(v0pC)43^IH2n4>H`JR4wfB)7*x?rwDinmot#u z)a&?anrjPBEUAXWXCBONSH9$f2!z^6!X2ykq#uWyvD!*x~*}w;O!AuXK!(dUUb;2 z$pEO#=3VU6DTe~Tf?#MMPy*c*Vj&>rSQ~H(Ufe|IYe=#j+kDC9E-L`iv8k`?PxI9j z)jUJTL+9M0g+DITw+Oe?%?@qO8kLSFU*&vuZfwjh3z(BmIK(yu1q-Jcm%jc=1BoQ) z+D6ui;GtkWgN&@3ZTW(+PUP|J{)t)Bkw|;i{-H6SjTG=gR%F3(LGQh2d$9ytrn70K z#h7bc6#=10!GiSEop#W-qp4Q20*hz~d!n%wKe^W>d`nUm&ZHK%fQz__7V~r~&kc2a zdjCj&0rm?a&#Cj4AV6NmEmi}6xxWB<)2&(3DxEz*yBSs%)v>okE-Il1F~XygNFYv2nQEb=I?Xvj5v>|8Qkz#!}~C@zZ^469ne7^!J@d_ z;)SwtxSn2`$X1zrTJ>=ER)4?nzsB-$&6I4-7Qixn-QCn8XZix?FYuG+#AzkyV85X( z1K2}X6r7nBVm7bN0FUh^?P?WTW)z-R#;jhg4>)X2}wQ98ZnX=~(#z+SU0bvl!Gn7GOoZGavfZ?{WA4n4Go$qV4#Sgrv zvEQ1y+%rDzTc6*Qa4^PQ>s}Brj;n4T=$n8oU1q79G&{2cxbE}$ z^RWz!2W7&4dGibR{-Ct#Y?KuFmWetb13Uq88Id3YF`AwMOizWIqR$wnpX;h*$Q=Fb&L(5}bDli4UoIGJ!g;UCgB|Q8~2XxEuU6OQ#&|r_DGp23^y$remj4q;Bj%As6E8x z>xl@Q&RZ|T>G}OPNa&@_tA!xz-4r(GwFWcvlJg;X^fUCUirz0I*n(`X7Q|Xx5|a-yyzD+hKO+0Sh}t;6=CCfFF+&jMg(^mvuHV;b0O|@6ty265tK}R_4n?Q0+y|jvh4? z6_=q0)~Bm2J85nitN7NJX(V=y_@!={ifdNk#^omka*T-cTUUEwz6a_genO;rTS@vO z5%|K(X^A=j!1B*RqC8H>VQUjqyj_#xx@Ocbb8T)ly=KL_eNXK$%&-FvFhUmGz=T>_F1B1{69-{S)bw-|It$+%J8oe9T4chQ=&up|5T!rt?>Q7 zRidN%t3;Rk&k~*TKT33JB0aO%AA1M>94rdl)Sb?*A3h=U+75J><4-2W?yYv%u+1Dl z?_1LC0qT_=6#iGCepl1y)&_~R@QHG1??>d^4s;*&AATQ|0`M$x=p(3ETz1xosjUww z9vOaXxzpofl0UFc+e+7=*KF)A8>6nfR6KfnhIo_RDw+fR76f_bqL8rQJ4e`@Xk8?& zp+?*ardaHX1dOv{nw-?i1f0b#Q)a3vIs89FA6u$v7xCL=w*ZZ|fdp0$=LtvS+UD^WT-|^qllV^`-?_hW3KaSu<-~ww)86a(6aPT}eBmexxhE zIkDF~&2bn=QrnfLJC2e!^!1fYD6X0GBncLAl_9WZv=pD)&lLcU(r;Ca66YY(mtJw$ z*S;<|?(@`*9trkp6dky|bF9gvY}*?jxfb1VBylK$-rbRW*fMBcZ~S(QE8R(H@rWEU zK*xHR;M#NUFv-Zf>W_+aEQ`l}i3(s-@@l&Fj;>CYOS-v3#n%RTs4 z$o#3%G5oVe$MCNjoeO9D$%+?1&{1WFDX=D@U%9T|V@-}IKbMR;mY7_vHa^w7B)VWf zIG0SU=qs@Wsfj!p1@&@z9)X%3?Fq-u>!4d{T}RjCg~x{1DtFeC=EB4B`2oiyCu1fg z)SbI8BosJ?FD?{+>ZZ;|4H_;V)a6TgOXb8WhL08t}H3`3ESl8c*}q-Cr|(Y%^>@+5E40I$aj& zGdMM@RbK6zQ9(klRj_)L0NA0QLyjP9LMoueLEd@wq+%J8`^u~`?Ob-*xQzQp%H!Ic z)IV*$kM3+QtQ^SiKa-8y8L(MUXGhtOH@i{6K=H(9%w?4LDBG$f(IArY5-CsI@_A8+ z2It>qXC2|4FKFDb*8%0zgr_^1#exi+$iMh2;R4Gg^g_n!G6uUP{L%=?>8@v@{xyn= z%=gSlZs=SFL6*3>Hkabh=g_#*@@)=0`*k#*W5D)z_Cl#bEuK4aF_mjpq3_edSY| zLECR|w?c6Vg`x$DI|M6M+`UL~E$;4Gw79z!cW7~UcMom>f^&HEJ?9@dpWd0BOy>TO zd$N1&?oW2F3&8`ua)W+?%t`t9na`LgC!U#*ZdL(FEc5Btz{o~G@4q06p+& za#RBC&)xl2F~=iD4%On!MDYn?T3>^t!g^0mVXEEvUOYw_Z1o0)IjhJFefzYKA~wfh z`LJ+0UO>^p-?PTnz8s0<*Sn}Cm}@co?k}hzIj+YR(XTH{pV{|k6w<+M0Kv$U^)d#m z*4=6Sk7Z=$hwu;T1#89-oYaW8(f-+=J+};?Q?#V3VK238~9y*heV*Y3L<0dCQQlhltriX4XWK z+H)8_M*;MLBh~T(&T_)Bq9TrDU{CMsA1npYCKs3vJy(ulmiI$QQZ7Sb1z%+HhHA}k zJFBI9IXqBzr-Rza<$va+4?n7Y9(reL>d`!bUIrfxOvOB^%m(#r^&Fi*yp}?m) z_&OFxYmi(?1$6EM+t)&-9Mfbt^9ct1t6>g`#F~9EjdNzj#Vc&yS`U$K4r&RrW{eVv zbKzgo${>#%TBGy_cg5*cYLg}r)FK2DQr{&t)Fb)$qrmDq5c78v3PyS|lj6ap-q|_7 zX={X=6*b9k+J7V2m#*YNGz%?#3T^Nz!W$)Z?z+e(+P#0$oLN9V?q8~G&v396qRv^? z?9g{tvVLd~uz_gOzS-*CkeifM9kUBo2ZUvRUF}xE!+zaNqks1k0Lv@QZpU?>Gp`j- zo;r1Myl{AI8B2@g7j=48oZOTN`nx*6^Suy_?r>w`I%7PD;>$U+@%m&ysmWGJqI;dl zgNL7UJ`_7{6t#|k#0sD$aota(V2thFW#xoWh*5yRT~#Xp#YL7z*OlhChD$7x?bkyz z0SdouuzIZU??lwVx=-`D>-CQ$vCMU_hclR7^o?UcD0O~gw;lhWM#Jh**9rVKS(y#y zh%Z1!=5!*#`bcDR{^G{tm{@W1Ue)@#4@W%RdiDJk1IYSj)KTJ=3%I9CMrT+{QG`!J zZ1V;!LVRr83zkli+pEzv)OnI~8;NQs$d!??$Ffs8KNk{3PtUI%dh5U?tVqevcpd_u zmtP*Dv>yGd_rO={xrlK)xlc#!LEgHeyTO)$%)qj_bHS2H^aO&#Jsrf|K%m{3CZQaL|e$-+CC;0G1i;Si`*K?U)4!4pQ3z|)Gj5WLN7t@EKBq}Z+R_+^)9DnB4FBk?uE4}W(~&FDr_`aX;J(P29$^S-5H6a&9a(P;LYVs5h;`ZY~D()@d|5HHMAoLOhuWO zJL-CnDy0)L^CZY_y#vOjv<}k>B4Uh{bQKL(h>&SivSC4#Kp+07F^3Msq=yRKD;Ce- zAUJD=PVjr{1Dy3U1i%(-{z6|Y9v6_Kp<;6U1~Nm%D>-KYV%LuhC(m82&K9cC0U;1X zD24E5*aNNvLb+3)zi(ZR>ytSVF;`b6YBcALK9e(z28pL9!Pgp_+9tJ z_?->R<=H1^1Ny*YN1U(&&JWoiTFzXVJ)GQLJE%%* z`aJfqp!B*g6WGoj`Z_dmSgSn5TvtF&Wx|rcd5sGfe1tGf3L|xk5x4frOVfowG4!fe z1sv~qZSUXN;~*Oy$Jh?5yMY_?yECJd6hZV}BYgNXpNklNtefyIl;bSa9iL-THQXI2uY7M+KV$0aAClgU`Z)EmGd%iREZ`?>8Ut>8Z zPt*G*hb}{v6(ByZEfU!kD{{`2iyJzP>xM$@7iKrOPeHK0g@B_lEOY7c`|`x_#UNN* z)UR}(bN~G7%Y|<_06Pd?(qa)%BM_WTB!!TDu-jae=*GLV3t zW#m(*OFHdEE=f53IZDx9R23zQKR!C}dZ#7__q`e3-u5p{V2zErY%Xq^-$Mcna zsS-3iE>K5Z>x|Hyr^d~|#!tFGZitz)*$@^4-Tm!&N4A4RG`u!zkk+~LiI2e<-Gz>V z4zuRSLNDKN*PZP!+*)>^|;n^ip zd8~e-G#(p%Gai=L#ZC^`k*KhDSP(o3*L1T>q2;n@iD8#xzZm|>eX{d_LqVn2<6z3i zlY0ZdZjlw;7o2$!n+|t*OHuna}6k~J>AJ3omERJfKLoc_Y188F<}db$IuD(JUj>CoJCu+{w9W$cJDTEh zTL{Z}ssHvJkPA3#Vb6wR>>zY@Uzi3ns>XBtP7HrP>nzkQfakzdT8f!p>or+lL+)Z5 z7RaLUV{41ey~NE9iLyuo*x<`j(ODV!WFm!a0z@th4&9tP?9g;WVsR>V?vCZHRE%eY zg)qN2EM!3YM%W%~ybbV08s~oA?aO~~^|93H5x%)(qr*UwK*E*C7!kx` zr4>TG5L!QnUu+Ra^Pu_iCjVT0MtA{b_~&#{^AU2E$yGhS&I%K#)Pc%`(eMN!Y}-ly4-a!8f9xEjdC8I&&+3VSW;L-H%dGB+!p z*7y=ciFFNRGaB__dE9VpH0Y)qJ#ESW;2>V?66EoecF^%K6P=o)fOj47!!io<#+G)P zWTyD^kTxyQ_Iee?*B148Z<|K)YCRa2Ywt*pTFjz8grLmwGWn&$wa>wklH3`s4De<( z7V4%4nn&(oqqb8$y?5pI!9*oIdKKhOZZj)!LHF!tQqm0IKvsL<+eb<#@Jb)Knc`ac zgh!||e&ZWkQayzK-Brqwr&pK5g`eVn>E&8YzIm~u#_ii6IUW=3NHnEypc8Q46ByFB zc>ibbl|B!9Nx1dm)sPpJU3eG+5Gz8pu>au-3UoNN!?AH8_l@m}elGTo6l8o=Mk^3n zOXr`-o9IOd9%J5m(B&}LjBe&aQW|{YL;)Y(Z!1-0(GWS0u2DH|H9s^?f$1$Kfng2=*=x-8(l!1|QG11lshEW*MX8uB~xqjmL8Djm7MD^Do^8lXQx?XX_Xo0uqdxPrjw2_l2qRP z;Sv=$l^ZT*LP|s*92^WH+yafyrGo6iEt`CPEhOZG6*a7Pu%9>=G~;dXtEkDPrf=kYHIcHLE`fF zEE?8`EfDCl3mnS!=UmD*5B5)DL;D|8;{y}&xp)%reWg&b_Gk+buLMt2q-C$X58`CB zyRbA05ih8Ec2tUyuAY^LB(?;Wf{KFJMC`xp&W!(Zz3VI*A$&cAZ0IiiO*Hk=G7YJi zcV05ECG7Kfjh4bzy5hQd$sddUnm(%SYsGqxntGTU+VaxAH9;VIpN*Gb<3@5u6z>`! zY7kf{?19}}=Qb}U6Bs%%zS8p1i%7!o>_KnrdBE!Gd5;fY*zy&TB>yZEt!!U~fRY~d zYuyTa82cA8D5Nar3zA&hY?=ZB&j8ot(3m5-vVpK(=VvY?y>eNZcy7M!CygYMuNv#( zDMh;?og_#Em|6xFu}7d*FWZ7_JJwb?CnpCSj69vbWKYA6u*iNZEH`;p3GVR-&Y#>- zKd;;+Ds_#cuc0#K3*$r}%b6OQYzHH!a<5w5CB-18tG^=aD{4{(qYUmQGI=Aj7FD7T zd;zM28>~DynU3o%*{j9CD_a)lq>0tJp0;81Z`ZPngQ{I=Dy;kw-@souZlr64} zI|d9S*xJ;-wBigrwCpVIdbrV|PeCnP-%7Y8JM}G>>>O|x>wl?Y4C2Z@6t*Un6K$LA zU!i;}?*}y}6xQ~eJnJYg`_21qVE-@*Y(*|YcJ}k-VajC?rRCu{pk4VOXWMLrdRG)o zvtbnj2g}0^Jx}=*%h5d;e-uuc;FP<-QZS~b=T{cYw4d0ao@|N{j$61T)I(0=$f(oX308FAH3y<2lV{%?s{wVFHXS(Ob z7Y<)DlZM*{fuB^;B6Lxu^TVkeU38)>ovc=9lD_H;j9Ba`r+g$qf}N}9Hjar84zMd8 zi#4J_Su-PE^F{vfGojS3!@3foJpz-R$rcy1vQaeul>&$Enk9?#%<%`UlB||SK3g6} zFIZM$H63==S^Mf%o{E6arWT$R6W+v0)op!*X361`XkFLo3)~UBQx)C$`g-Ny4xx&q zLX8bqxiL;_li(pbe*DFsSC2Uq+GKU$b-~7twdOahQYdhcR$o(h3 zkd4@tCT8YaX}xRJ0!+6!XFu)D2&hkdco*5hh&n2Dz@S3G(lS0>`CpB^8*XM{?ZX^liU3&|s!`G(Phj=$Q>8*{u(&L`uwfpED= zPkyRP6m+~f)Jf9c7Q}jUaI<{}0;Bw*Usq1Qzh-iqLUskl3oCV0FUPB(o z1uY&R2&(bk9Bo=c%64KgS+6igNrG-5RDk@iG%(NB-^m^>a455)6)Qa^t0_6_OVroI zQ&j#;P{4S;XOn|ho3_^yO;9#l)>ZkclZih=e(kbc;mGn9K-pZClX*9_^3%zZ7#2I{ zXOl%(4CXOY(%O%s3}xU*XH{tBjA~``ul--`c`;h<%6W~LWsRz$Hpjx^2$vhmw2c?^ z)oA0Y`sRWSS8ngP`aW*!HSm=2h+^4!X6DnR%Jth=rvLu1fCyy(_k4Sgbj&%iUAZV! zG3*^Szn)^>+RAuznI_`VgkPuH1qw~o6_~0;PLiwtmWhuQIe-9cG6>>wHXMYmq5BtA z#&J2qQ)_u459ofP%M1!v(8!mGW1yaY4 zV)cay@218JyQVCXJo#~>gG)0&I65^PvY6Kq75j8+M`(hsT(sD|E41GAL96|v5q(e^ zIy)<0t0g-!%tVUF-5%rQcAlF$aO##Yep_S6S)Moehh9h%qRA)Bfapx#xNpaS^8{F| zPoan-8YW`Pf88`SgfM~z(8kT|K1A}FG7_cOacauJ< zq~sUtw?9Edto}6;s-q>paC1H|AdbSkXZ0hhqXPm5sZ9~#lb+@}v)AfeO~C<%(6bKD z=83f`51I5#CCiuDwa)wGFnB$b+B$pyMXO-?08Ut3kFLYzB({FA4WdGR9re zG?SO)V8QS55~lsXB;=WrKdTGUVm1`<;=|f3m)^ayr8^1SE&s{AqC1vvnM(H|Ic+jt zo(?iyoThv^k9Cvq=2vDJq{v>9bT@qzJ|9(iInOG89uZ`DIvwr$n{>(bD!gFFjTo`< zQhHe39!J`F?Hf(KJNn`^i1Rjp1SEBAq@?AeS~fdfrs-5|h001~_XQw?8PRvW9hprsgM_>( zf&P?F#tKOymc{ie|4(H|frmelGwtufJwtxf9Kb)DpE7{jdRYY0Qo(jrEg9#`P`Ry5 zf4^{$tpRu0FqkDd3wHNiCmP{m3)?33)Uh++_#T)S^8#}SkQ?(N?TzJcteDZ=;qm%F z{_o!dpgt|2`Yq;SlJq6sKZxAT*Szk_dLhNdWK3`Fcz5dW`@e{V$8FTw-Qo8Dv02Qn zE6{u%T18Y>c|ZPDup!0XTWnmV&^glUMmld~5sY3^#(gzK!G3f(Ec$Ewt83}|*51Eg z^yf7QfOi~S;xnE2+_s8t!eVEIZ!7b1bPTi9m&#}YAv$XZ&N)nW;f(*dnU=xEbQdx+ zdgLzL=Osw0uVVfNVyp8w#cKOCeN{t-pa}S9+dO9hY)5RpA3@QaV?>xDjcikME$eF$ zi1T(@{q2OefmwSd%k_5O2z0VF13twM8JSTHFwuB`Qwl3G6~aXQ>z_`Nk4$kVfs`|O zHD30MXaECgn`Xw6qUn1}Ytg%iyi9FQw~CXLT!{MPp}-fFmx+E6j=si?DGCFPfUlPY z6O0``cWfX5(H}noAI_Xvz~_R5RJ{a$bl++jn;y*z4E^6fV0y~d ziRnaHni4luFMZX< zk1v*Zh8|Vau6p3UN&YwZDDVM&#rWG*#zRKd6d-jfJXm_0I{a zm);Bv>oV8lYR0|1F26}uI9r-i>ewYJD-72EH1@Q_er{BR?+mw$6k=$t) z1Ln5mILX9u3LmLdKa}|s@d#-DBtIH*tu==^X^V`4dWi$NBB6@Z5cXXIIt}vS3xz5P zPC(}=9T)eGR?=Rsc{V)t=e)4159fT{6JGC}OY{lm|NZ_=UoAiZM*6RQ%TBR4PJE|_ zwPU@w{dJS>4g~bDZM*X$x2&nvI%_6idj@C2G(0}4DS8HliR|#aED&HgQG?ax@%#JO zLLyRkIc_0B15p?ii6qU~$1?XgcMIoe$u!?dl!!EInL)))im=u3ej7;9v0gEp#Bup& zAeOsOR}UbBgdm7u__0!MuMGCc&2@V=u*)j8g3NIA>h!xHAlyLoB2v*OqxSZ3NdP;R zA9q6_`FY9VxA4Cw`V%*@->h%v+_BH7?~%5Mxw?)$Q`B>8rf_vci`#hu&)HL4^1O4U zD#YjQ{(y$){I1pjqZQib^_uzsKQ)dJGw*3m$x7JPQQ5~Zyi?2G2Z$jy6ghi#BxGEY z(fhz|IT~SVEWcLicG%_cPN#vw)#wgHgazX8+;3T|{CM7%ObFE!#4?{Q7G^D@8*Fd07lca9GpZk|ew5ab;CJ z*vpPPE+Z$<&UW)vPTzy{qJ2ombTQg0hb$e6rUM2wJ)SaEy#)~qWK$l`bgcTIxR%8W zT3a#;rMH8`3cdsO4pl)F3^&|J^_05Lp0a}{hW4Moq^q4uE}U}JyGE)+mhYF&i+I@H zJ;_WE%{3SCg}H<|pL0#lMmhXIMpzfBd!&i?`EWc4_3u3G`XG>dtAn9p8%LQS2{aIRGhe(iHBDStXP8VuT|K5=Mh`6jUE z7q78)yWY6~BG_@%nliU`uJ6G%O_&r!%vik_Jl+zBaP-oWkGuyEhpLYHce_Zn!z>Js zPpH#hOiB44lbCE)rMgysZhQ4(9&n zj))C<)*4^((XZeSBpl8b90#p-5IetbN3*khXOzw48Kx{Zt4i zHLeFC4?Wf?{A|en@5uE^0fe;)mVCq0*%!*8n`UrJ%}d70V{D;!g(YeT>EZ!gCHU<0 zw@yL}gqRPktV9-4ioT+ZS`1jWqGLb!jFq(h5~8qHl5U&-hF{PLg$kMvgA5}k&f0Qe zbcMtCb2Dc(zclk{1RRL%6%fF+9ATv>&Q>i9CK&eT*mp9YSrHdl0O_g-H^AP9Ga&5c zt_9oeUQ1%6oqsLNZ=b%IfG{-f2H&IprvoApFBPlSo1F7AtnElKPmE-5*Di|A@x+5) zksf0*f)s;eXqhQ&u!CBU%q`CC0F!bjaa*`MAE1EU@}4nQG*Zklu4@8JuKSnjaTdbC zaq0KFn(qb&J$|e}c%%7!iNr8#U@?4wXzIDSSe z@VChi9vHhED<6K$eDDfoBM0qY36`2VYQ0W^c+t0}cnJ8Kl>45S+ua$aVjJtq4)ijc znQbhB`QD-5jBnZj&rWX9Z93P;SZZ!XhD>87zms;(Ne z$B5%RfW(ODMxQ}H@}>gPlg{}?lu{TCcF5e#HP4<-lHB}jyFQhIVZN*J#tq|yai8nV z>|*JEeN0BWQYsHbzA>A&3t?-{mld9`Y+V+Y66%HKZ;8_8Oa_aYyE89 zJ{^-Pb?2>k@h3al7=qa{X(HwK?c_HZggAPiefHW!!UC~@Pa_e#bh;S4YHU>&zB6Am zM4xBARO^D=gdKA386RFAI?nLH4O(+Ee-^O(S>%ISu`3t-jdy4er@(>Ca&{!2b;+f$ z8oim7eE()wVI?nAzgJkOZXHv|WXrU_*G0MKj6n}~@3VKV3i8TM1Z;resX1%g#&w7P zj7*t1@uyAS8S7NTX3IiXH44wF3|uHaf- zxKcMmM-$O3+yWgNLN+Z(`+L!&V9&LQo$A12EFy4wLhR&oA2t0?Ru-LUXxpuX-RIlw zv^g1M-lx0e89IE_RPBb)*+>=HJA8mrx6%g7u){&8Y1WN^LS5RG+77mFnZy(hS|0HL z-+vJEpI9_M#rcnOVH9@W&#+EfWZGpNLDphO!j$t> za0=m=;EOMs$ttdmcc}u@bC5-v;;7QWCyx(v4a-NoUZ09jIAi)&8w~sKIH2`+A*u)h zhPy8(5WJ-amjXY|qr{#d0Qo)--lqQ0Ln{a}Tvv+5qEo}YhJtS}H@ zwE0WcJMmd9>CbKRq9XYqbh9{}U^N1|A!l}DO zEhi);n^57uFjE9Z3YFqPL4Pt@mjH-?>&W> zhtJ_fMWPeR&+RaR(4{pCVzpf#*44iKsT){wdJ00}ZsYUjXY{6!ebbMxM&;4*Myp*q zfADs5`u(=69wEy@0a}?G4V2`=(wUR;pMOI_v~67G@(5%_W7~nDFzrLlX_kgQv}M)k z3g_KicJ6IYiB?r<2YjGmGu+pJ4K7H2>V*IYeG9^x-Q)mZM!X}tiM+=enz7HqE9?Mq zGE#NUFtyW{k)t@A6Je8quGGb(%dfz8tz7*gcAb8wuVVjNq5ORl0VZ+9I5+PWDLO2W znX_!)cl|oY`hk?sj79XIw@;#hrExZ5PE4?y)N>|IQ7|#)p|8Kv9;i)jBH{VfdM4cO zw?yn;OrMG(hi0BI+D_&Q_b&j^72B5HsKRrR!oszTKlZ1((p@_OkO!a!q7cS0AvL66 zCtZj>Zt{LDrM$WW8ilb5DVQ&>YdSLnUAe#cXGf2{fd?v{T)>#%3RCCc`(bbnur+@{ zxIc>|goRS}-0OJ8B?t}l<+_#2aYj?|`fyI7It9RXE+me6+e2FqL89Scdd+yFN3^>+b{KJHwSOPxvsi6F6(#-Cpfk55mJ) zy??^zqd2_!J3^J#WgT})P7GyBs`5neZk;<}r(C|N<~Bbl)cv!~{(1ut_cSIJDt_+m z_n7-se}7E9r+`Urv6(;d9hb?MG2ZKQSh?fJ0&NX4lZnZf85&Og@4Z)-R>s6lHndc_ zdJXXRb=`2s(?ogCwljhA2ribV7K{yz*Xw^k`eQ9i*$)s1Xii{`Z!mED^XUy?L$i_V zgiOM0D9n(1qZXLiN#DZBx^~J*y@BFCTmXRZ0)e&HE+48}j1Fphhg~IaONskiS5F0H z+qIH0jm$`-wrnbhVUIA{z1TZI9iN;kZMlUfY)lwK%QMD*f=GorL0f)n`wdKE37w{h zE!6Fv1Q+ukoTH*03l0nM&mctbsV*x|OdtrUe{+2tK6uo|>aYddehaH|@4*dekzeHj zcC|M3RRNOU{x_a2PyM-?opByx$J6F&v?g;^Dg08XOVtYw{FN?v;!1~nV9$Sde*j`v zG;{O!sd;{)xuh0;E7Tp|K+?BCrCi_+Nq~{Gp5;nL)YN*M)>UW+TG$Ll1n#|l`nWduSdwwT zgL&Cp#L^mzFBpa@4SK&u68rSlv69zVDFB*tNquSp#&`g2(bNRb^*7h8)h)R>`lH zJlO-_SYA>vQPInz5VjU6u}j=IcQ8|`e9FNyxR^!Cd@8dlVXW%xsGcj}tm|`-MV|pa zH>p8@n|;-NfYP;lk@WqPnKs?d)ecG(-}^(an(rO0@4SVo4gsCacHfU`Vy0$e{s;SK z69BY^GPhz-&`EgJLz!!g8 zr&kwj%y^Q~&YnN`m5DSHS*XCa^#Yx_4CJYwF281b;qbYdC7uuqk3s?P}=kw(NYw z^t~hUHf}5$8ee`hqHi$Aq#4Z7ebK^N(mUDuG9cWXAD#Z4E9DEg&4X_RBT7@~;uLU& zL89uLmAhY(rZLZFqWu_z5pB}!)!fh^B3(sg0N&R8cjWyM76I6PYN5>H${B4!&GQ_Y zZu-JnMh4=@^AB`y)Yj#UEf=Fqw; zuy1kGv#dw$Z_b%SOjK>HtLfgR?qCXL4O;-gcS{UG1+~ z`%98&2y+|<@f52IReq`PfA|>yL59HZWW|&)uak-y3%W^*}SRltLV3A8+U$#k{~?724I~xX$$DH`3ns^DVlhK)-6&GvezTrSU*i z^+kbCS%2;C-`2A-xyp4z1hH(-&QoE@&w&hfzKBWJ^^ECflqF_zIU~4eQay_ z4vI!q8kc`5o-X2KpVURC%JyoxSk&@{8N!ZQgHYUP*#XWTZqb~L`$?HI`g6vL`YV&U z?d|-z9?ZL%i<{X#su4d>=i&8=2;`0f`wTsr>>-UZ>D(t%YmPqI$}f+=3@p$wFrg!L zkHc%lCm;Edk3D5&H{&)a9<}bP0Jz_ux=A#t|IF#N5|z9(l8X-FoXtf{eO(^_OJ#OU z>vQdHaKxTTReJ4x>&X%cNqk%uJE}Njz8pDl>@{xsbmZnxOyFnlFq1H!U@mZGe^&R? ziF~iKx|{muoKQ6Jrh=G2m#}lE2`*3Y+zPVFVwdwxamAu)WLtHGbB>a|KAaCUf?7DDLnBzhw>7$}XO_&{_8y|bkmk;$<2Y^h2;~K|Urf!Nakj=%Q5QYl7&rgsDpshgO%!=7SF}_1wF%_vQJ1Z%*%6Zd7 zq^Z5jcC!3ytt^t;b6Ks&`a10s`bs-;qE4B>jB_5CjkGbS-JfCe0Y8e2C z_QB`Gq4tMPnO50{*lT~Cgq*-p3W12jZl*~x&N9ldl(Mc15%laRVGDcu%PO&3??7Iq z+wnm(UYW6xPG4?P38nQSI+^DzC7YXz-chU3W}H2KRjJb^Wi#V8lAUKO!-(VMx%-iv z@1fgz8$MB2R(7Z<`CoN_8y2WrY~y6eQl18z=Zy#{b~RSr(Ipd)Zn7pMkN{JLoU4Gj8+}^F~#OA~1^9TPQ0Rk|^5PGxi*L2rXOD z^4ROET@4RQZnRZ?b?gUb91(RE_%k8zJSvph2W_n&)F$>umclB(m>MnKsGz=i-t<2O z3LX{RWMaHJIuUz0#hNP7^C7+bp=6<^Gsg|TGEAn^&*~Z&Xp1L)^Ii)+>Gar`>m6Nf ztunW+C0I;I7m#X_`)rQ;k=@my%6`0zMzrGNH5pEFdA8$4R z(%g7D%D_MuALo*3%avOQG-}6dT0j6@@>G``jod^0nulI?IsMUH^|86oEZXC%?DmdP zLa_Kr;oYBu-L+C-jh@CA|DOEyV2))xbbYGe_v3#S1VT1%3Upx+2>2xDyea)AWZ!$b z2(Tme@hn&(HK2I$AO$u~oe4@8dn#lPPrvDOx93;IKu#+as9un3A>k^M zY#*mzDY#P96PTg5InY%5Cy#6&!Us;40voQbdHoY{#gUTGM zrN241Dl8;P)KzO31AAWe$NY~VymTCzOXFV$Hw41c#*@bjA;c|*5xK@#>|Q-haM(asov+q!jfZyBQnanVBkt{Blf13^)w~7!;9;k?~ z0kTxpd-PD^UyTJK@t)8E9eBANPvOx9IoerE8fklOX!q)FZG?$(+NbO=fL&~EgWYJ? zf>reDxw6TJJqP-cVwrZheAP2{F7w$4(ho7jjn~kG?nD&CmsRtlk72g6JkUH?xcH$2 z0xkV-&FI)_&^EKrG1ZQ568&g2Reb?BM%i6yucAK(Xbyo#s;_hv#Oa^;hhv4!kT@$2g&sYVCl@$I5Y<*3M+-YmZEotRSn< z3JkR_E~X*>s0rG-^9AD^le68<2C>A`4?_=_^i5iH?Y<@-ccj6geGEqNz&^pQr?B$iQMzSLL2y|NEO)5^*EH## zY2TeY+&288j~#Zs`p%4gVF1`RSGk?m72U@4?5?JP*s1He@u}Ny9HMMfp)u_q{F%#g zYd_P8oTKdi1?~ZMFt*d>wR@ZA%!Be#Bod{%;qXz;hQcX+9t$v)Tz8M#aR3<=WcA$S z=ooi@?-^Z}w=;VBW7%1-<2*O?D+$sJIE_6^)6?gN|8_VxI3%dWul-@)BWC;)-E~p) zC(8*8g$ZbjjJ+?Dr1II;P?Abxumi@$TzOJuCB8=Cx$}D`jM*P^p-;!hdHMM$3xMrI znjMXGGmyjT@n+;bzE}J2()(Ge$VBK*1H;vv(TQqG+5_cnbmKQbM9KfD&g8>}9snVn zj72+g4!7$Dur&P<&9j+p6%e;nYfzSj^nWp+H}35Y3*4wT8$D0X1>qIy?YVI7n@u3s zP6g9o@Xy?oGRQUx*~n%Kr;UEr|C}-InP)n1&NCpoU$uu+KI2T}5NM>J5>gc^XLIuT z8Ut-a3rrgV)-=L?WxGbmd>tgsta{7)vwDNwL*;;F>Kq$rZMJrUdmz99IqDaHd+=%h zJ-iK?fn49G5B&`hB(D|s-2Bbc*2EI_x3i%I>W}yFMFTk4LaNr7Z!>3lY;J5q|9jZq`l;JT-FtUzU!R>T+#?^YA_aya{)vLLmw=CmEv`C2%`9WAC>j;^uvjgwTCR_)Ow3&lvq1!L6r{48Tcb``7zs| zZI4(S9iK^4t$M-2R+nyG=wVdpnLZ(5`>4h&!V3 zS7TkK4E)7S)@52@Hy{q2bg;lwoyDTJv|?IFKvDdtK5MNp@ST%2%AMt4jw%@$k#zfBhvz(UeU%!h8o8kl6b7V=J;UT!^h+039Mutfl-tomb zDuV`fLlWCoJfy&2L!kR&jmM}Mer?`-^N}Vp$jwTTy^=|-B}Q?!^5_S23pP*Xb&>-Y zjdIH2oORh;=@T-+esO!b%+42mEi0Fqa}_fVhxO!qV86>0qBF)95ud395mRdbUW-TT zY6MVmHb*0xy$40uR$p|n=MoJ;{P#ouZWh{mFI}UbN^Qd&A=L!B1~m%8pOAaKZJBfn zGB*4M^BkXCnE0wKoA$=*#h@bleYd%{U8dRJ-yjB<>)G4tZt>R#y0Ew9@IkHzi%wGKnxav=uFP*)(j1305kr&QeFGYtVh|>^p)z0SIFh+`r$19(< z@st*?wFOF}%`a#VTkBcEo<5`5o}J2iRPnf z0JB|9h1uox2XuQGxo$Y#AE(jocC*xv?nT(*sGIvk50fpn%k#vhd)j;QAy~VqV5gqm zZL*Fwb3qMDA!}c@YvG{&el~L)-8EBJ8fsy)$)WJ~%GqIZ%AMu#g^(h@2(!6hBA7GT z-u^3Nxy<_Ti=9!ny200Tm0j-c$%U-sF`8cw3~hmgLWI!^U`P^^ThM>QwF4G-v@ydj z$xCs!{!+L%18suh3!oWGf85EU4{S>2WA!5=2-=s^6ou!UA$hAHzrk3|U3ruE;-Yxf zoV6A+?C@3{DaDwjpeF7PxK`HiV=bZ$Q<1cN^=5QLUtH4O6WX3dUhovO6&XEq3iO2{ zjuhE4UtFK@KPR&w->n;%XL5&iYOI4V_zc=KTkX2(lv~tD2jKz*ZRd*4EhM;w$vcxM%7I+P++$LLQ-8iVFz1sH5{X>9=v8s zCvabpZdYwCKhk*=_nqfL3fPUmK+#-ibm8ctz)im2M%56Ud~4~gRPM|A;jqt^)^9f% zzHq{rzzNADe==3u`5!t>*9M@w-LF5~%CCV#&fGt)up75WiNoPiYyVAS0N!DFKCisy z{nFfOiE>reqg9@OPCb+s;#OS31#!N^V?9}`aeMHYo%G^{Y9{|fY`dQq<9@iKU+4=$ zKr^L1n!3sLetgShxjz&BtnVJ{(RI9n0uFM6;O5ZjewM@uzt{7Osgt(m!x>c z{u6(NLTfyYAL`$}UelB8MD~^KdN;Z1y2WsdphF|P2TtmKYbL}E(Oq=?G$sF?s2*s` zWUYCP=OF_x%VMZHCOBR~gT#Or2UPD!`qlNtcCGB-q+H(BTQ|%<_qpNf2cu$p>SL`( zlU`isVQ*d%H_=%uXzHbXEEUyBaH9AzI3WK?Jklq7ndU_T4rb~>ltFuy)~hqYHm{Ay zyIO9Fk$a&I2`0QeR;8b9&rPE4vG3Nm@5lXr)b2N|2S)fm?7jCtTmSz)t~#`|)fQFM zs6J~JwQGe|Rcp`KwA5bJh#jf6C|b0&XYCP$+JdxduONsOsTqXC4kCQ=e9iY?@crR? zd;M~L$@wAYaqf@nKCbIJkCmOm@``Qkvb99DWma@iJ+GwO)~BBg8VI9Y2{Zy@t;NFWWE&dj$CCpfmZ7UUw|1OF;mfEXQr74C=UVsuCGWZQQIB zmad9!7B#PI5XD|`gnY^#ydKgr7`|dsQCm3K5(Gjoup74It+RC#a?%3T`x{Vh27&DD|!+3`mKMV-sOV*h8HA@tpX?#ZJ8 z7^=>p@$xmy=4LF%AWazY7k$i4m@|=0gg~$1m26t|H$nLPPgF!O{>Lt5sNF|j`@)Eg z<_u%r4)@mPeH8r?>A-~I1CGZACIF;AEfG45HD%o7H5KfH16-|tK;5rl1{1#r*qDa6 z;$O$FtBj7(@TF>vtNnn6y@;)xQ#3~ z;a@7J&A6L%U-HLeKFOB}oa_Ek19x`OZ18JvuMwbq-tC}iy+MC?dnY6_#$Du5!YfR- z&7*7(_enGEPGSY7-}`4YaR~n*vBi?hCQewnaOqKv zN7qN^wY+z)(A(XPJiGoe$s>InNJhF2%la;w4o5Ad*){yv9U9XJ|5D?Z$=9u|#pNp} z`H?Fu0VAL70>+(X#NsleCKl+=7bV;ED)g$&StaMpUwG7RzA5r@=XYGbCG|z}zTMfJ zc6mwP51Mq(YuDl)T&8k2-iIc`(Fpym zZ)#XP?`o6h)s7#* zJF)wp+?eAd8kwD*yiM^k>?h zt1s@r7S2(!t<-M~6;ei&Pc}Vh!)O%JBL{4)69@A=6!ortz3_IEn*Uz^@hS-EgCf>) za%=duORJN01o-Mov+turR1NHAu7A3JY*w_KQzP9+F31lna@gG3e-ZWK zO7OFESpQM(NwCb|g+*ACj$U)yYnlSQo456(5yRx58~D9AB;++i6ZDB~d)ORU=hLH6 zAIjG|H}7|gSXl~;Im_(#1+n=2K9<5=p693lqZocz)4dYInO3!Q{=`fz05a_0pJJ39 zTH}XzDM}PJL&*9H#as?vlkRA-MQzviZR%bLN?m~r$nn^XL=DzhsXNSW6AZ0+hHY&r zJ-Zbl87l#pi-axVXp^g{o;P0lrd_nW$=11lId`Z07U8SD;nD%tTeRaBewqjTPlL(Y=73hViP=R>&|13(2 z6@!Fwgt$@0LVccC{SdTAG;%NQfm#CsnzoM$EYQb062nv?Z(HX5yGPAF>)(#+LY?_= z%fCSG=c(L_-!$)Dko|afNr3ZdMd%{N%bySIm&NI#_LI}S+bp^%Gf@4| zP`X#B2W(z}#K*q!qZTdsAl8(s=thvWs^6z=)Y0VoSB~g zTR}>V5q9F9xs)JN(I^MvVIMbt9QGV3ht9P4eCaSz9+$!vTGJ_qj3eF-Y^GBBJ4e9)Y%V*pCrEP7pyVPv0>LrKbg?8{qvNBw~ zsF;HQYaPSx%p&@DY<0ASdDs~r^kT(0e3f#@;$4H?%$VE$I6QT;3?2P2Ubf}N$Y@kW zutMFTc?*{fuhoX-bJ4g~oXp`%lR)<~B~!ZvFGmL9d@-rAkjGb!sNXfb+9#e+n~l&~ zzrd?UsSU$nK}@SBq(IjVGU0w9MRO$(zyx6J$Yg(FCVq*lmZr3eW3L;vIy}5(wxoR& ztTEkhTk^rh#_k@3BP7k8Zte@H&#J}#?{dd-RVDOj5HyssWEX3Lbsw zr1>M7n%T2+ck0@bXywu52#F4|Ztk3;q6$dXtoiZO|4XtlLbZbGtR3&-d9jz0xAzNN zPY@6tt#mSZ#fxD7PWJQ(nO33ocXKl6v&-z2oJfZ9cw1H`)7x-Rp2OO1Dp*PodOaOe??!z zin6T1Td$vQv{>?p*e%4nHgq{Bze_U9j_?Z7`1q%{c_qnST4=4g8Rp0P*w;^`b#3K&X7MV5UVu%I5`YN3pqB{?B_eewx!=Jz<5>hR)vf&VfG#^)rO&^uDgfX z4yQ3$g>EctE{8unctG6FfAcpb&69bcmYk`k>~r*Ok){e* zMXZlLT-s5&W<%xI`{dYoJffwj4{-u$Q=7C2ksJR_j9GLSA*6e|F%G>!7mldubfapukG+WUrN5?&pQk*se6}HmE?=8G`yK39kQxiC{cn% zGGQ_$evuX{?b^u|_rx)!R^gQzD|Z#k`6F@9a&Rqml9zO1ul(6=ypbO> zC~FIsc-y>PM_sG&otvk5udK>%rxRZtHt}~64+!WFaOYI>S7=Q3pBGp^v#w9hKSO*q zeeSE2_ws&}-_ug6|1j6K+j8u#3$(UxJc858{0G1hkHyP&7qPc(D$ku_dYC%8ut2T^lm9N#OLJz1n6`_pSOpLoC)yA&s zbjRFg>Aiv%UE&Sat1q*iZ=u28H!PLmC%mFS{Uryu35FEt6<4Js|EIU9=ysyKleX#dd*E@G*7;U{imeSG?jT z17o#@dg65A2({+uv!ddY$2)S%LTxK;6ZNXss+g{>k{tMqhn@>6$DcQJNp`P`OxS3X zZT&){-8O`yV~Tio3ozWufy*}OkXuaTb z-YhUdp+3Ywy)Wg~!8)6(F%wr_72?0aCw_3URG#_woS)&mS{YgHUXId^GnVt>ZyW99 zA8xU?eh4ycJ@+!&5E5A1BT? zL=HkE=eT1p2gXk|@S;960IKp9^jw-eHKdp<2o$?X*GHJHW+mP$*Dk6VksPdkUyC3x zgnw?+SKW_UAk62SNi=pr`eW@xul{unz?0b8ya9sHnAP~yh9BeRP0VGRS{Q-%0z-%R zuRB@q6H)$mcAl&wyaaX?k2qp=#02TKVk}xk_oZj(_&5w(_pO#dK=Bi^#P8-r5Z`3V zu_^xd&VLLi#Y}1=VZJb6{TNrP#tPuPv&7Z%b{DO;GvR$aV>5criqK<*>q!fWzC!}m zqCz+CdzS=%r4j17_k;%fa>em12KUoF6~m;Du4_ zdwqp((rr0ZK8z@TXY@4SC0vsIbnMyOulySmyfRRXBa1*<<#3XV@t1h<(;bhD_b*%O zV`_tL!}n^~aaTF~DH-3;_-H#z_(r$iAH1M15fpLiq&U)dCUCHuSdOZ z<%JL@MRyC8e&hT0mOU*?X(kLB5k+i0&%Uf}Ffn^O*zds{{r8KXS2sgtXk085cxgT< z&&{O!q&lL@=Rfw-R&_dCl{()5spPlCFXlQWyg9}y_=qyg!@i)KPV(5bnwf9QOYN$! z0fTS*amKgRaQZjACg!1U6mZO}$>sWT&_^a+!zK(b4=)UQHZ`A%N<>Olf8o`X<$dBF za@CSjWqtcE6|RDq&$n7_A6A>gt4X9O_w|d!(hxY~6D7PJ&P@;hKHUi6S+t{s>}9@- zO+=B^CJGuLN%4aWRvt4-c85HyGuIN3nWJ%U|H>t)N799coHXYO8YxY>0SwRN;O&~2DJmvZ;i)d}?aEbSx>DO!~^Us$=uJD;ydst%N z{j@P+)xVjeQ&W1r?Mt3bT{J`4Fkj2o>)`?QPlfv<^L&!}<3Um@krdE^`qM8PQO-t5 zFj&&}6xmnL9{*+d83b-RZTqF}+H>Dd|0cuuVP!aMgxuroq3a#^b43wI{lOqV>>1&YN$oet3;ty8F@cH`JBx zM-8^F+7T*Fu?tEMnEZD#Qm4P>a7brKdJ$T@bE+oTgroM&Fd@_Bdl(ku{DpE+TUX<( z*8L-p>IaHX$-7_AJ_`9m6U;0lJS&0|=jIJI=fFX1=jRByXr{igtFI1&`lZu93lCfG zA++OxN(K9@>bO&(U3?)6kZSbC{B;rTz{|H!R7}b`a zldK5yWr=~jcj39?#NrX7X(PW|KpRNwlCahZcOUZ&FkT;5TuQ%8FNHdd93R+73C zPqHc}T)ubY+dN9EU|=;CneB}m8nt%24RC4k3;N~OfA;zDj(L~OWg$iLI#(}k8G%su zxBZsuT+;G|HOrY}V z#^%)W*<1HgzPXu~>z(^;CzXu4UK=5GL9Nx#bl{DE2M1d6%D+I~;E%Tu9e=$*DsPx! zi;Tfv+>iuIJ6UTt?!Q(gjKu>Ivjo$X94t>&1K`SmrqpGEQK}Jx(7iKt*E z7xKt3`?pHwC3Z8hM;2n`n#_`+EEiuuBsJoY`0!sc*UiLyW@!SPE?(%KO4_= zuwxz8b2pY1 z4O!UZ>U=6VOl_G}%IERydR%u&x-`3L>OuV2{9<@X(v$KzE4t_ij}-EEKwcGOmruX% z((n@pM7Khz+3Aa?#!BoATN6Pl%RgxGG>0DA&X($+S&}}1(s09(_svcxzg{dpKPoi zU8^~=pNa@YzCJ;SY5$hBW#|X+?pBg)bAwd)dTh##O{vt7G3By<4Gd^S+|Sc!x{q1{ z-R^1CGt?p6y{mr8K?!qf1&Ms+V}JS71-rUBdND+`Xm)>4_pne>bDFB%>iXK3VK?rh z-FH@FtV+~&jQ{_BN#iFpj;=dd|N3;j{U4p+m_gy^i)JFGLsor#op{TR#3XXd2H#}8Yz=ap?8owR{cbg{ zgp>dddtK?jQTgUfysxKxY2_~UM+3`ydzX!fO6Ghwj}eRqc8mhyeTWPe;1-K!P=E~TMz^n|Y__3N0$&o}rp z8np?+V7Fo1l^K}5q)-Zz!+*szs`u&U`@5Ns>{9H&F?_?kW{<9){$2=Mu_&5Y7CboN z;|)@w9t5_Yz$$i7JPbcN*({WK$k?JY!*iU;%&jjQWBCH7bCFpL+DO7m!*U+2h?x36 zrePWjUsjz_d;q2tK~LF^-I?Pr>r2f1X@6}P(6};_`(FBz8OG!>u$HmbHllPX%q2uk z9cH!b|8ZP1$=%agX7AM0=UOJoNhQdo1RussK)lNaz=CYMe>@PD`dozLYRdKuK%6o3 z{68j8oE>c_49Y}gI+?&(Sp~aeFU3W<9g~0z!^c=x{oTVp`qfi+lHMO*k<-(->E|(D zjrhYEpYNCZAocHveb5r_55-lZ9^7*HB$*D0O4v7m2wxZ0(27~Jx>%4-BI;-G58ZS>>_ZY8=2!=u zb=>_C#o6ypNEmrn?VKklZW@Pyk`BG5$oH0x{vzMopE&XFybD&c7VV1JNUCbPf}UDe zy}l~z!wRax)jXxYZ=v0H98Nz)T_@=$E0gzBq2sKzMH~5#Rc|U0u&(57BevGds*X_4 zC>6Q+aC6m6~!g&)u7`4^HWhZd&K^Wst~g4vlr9#k02Z6*m`;Sc*q0{!3R zUzNoFj~3!sm!9*1>*yqpW$W|bnXOt!ay?Nf+Tij_!QiOfOBGeI;y8X0Y_cl6=EMf8 za2`rA{#j{xQ1~b+eFkiQ?%DzQl2FBN^ zZW|TZo@FcZU!14OI@Cq1PdOrPBzWByvtd5$8M*Y2+oAPu`EQcMS6DO(DnqA^Hf|&wWbnek?Z6ei&BB5K5V`n>bGh^vHz_aoW0I`=G+PCoUaRR z2iiF+`)UL_=&!0}VPA2W@L;~>-F{B~y_bhOXDGABHa;Dt%P3>o|AS_~4MAqU1|+sk zuY>IoCOAR2G^xY-*BSuB-&m(@pKPF#aI$Sa^kk-FjZ=;!R-OGZR8TciHN`PvwaQIJ zPqy`YbDQ_WjoPn4%qd1g4+V?5BZCwr@6l?`7W%bek~5g6x%#j<7L=JPv?CnHa++As z)OuKy%{5w1)HqaqpX+p(T`meqQqWu`eM44MaqBfD_2D8F=`UJ0(D$ZU{ZR}*mIj&} z#${&sdC8NmolSzUmxXd4O$2^Ed{H@4!2_Gv`W4O5GPHO>#cz~jApwY3^G~nK_vy&Y z2(bXM`J?*us3ryWUW%)ekVgU3d9pxV++)m1?5h{VaPjepm+%_NL~9VB8N)^9vDv|Pv&@?a*RbsM6~VYGh%ao@!_17%HS8}%#9;76zi z6as4QzWtdk@tw%KY{3k!&@^~4_5-ijiM0zZN~|UXy$B538G3s%nN=p$qLY2VHNDJ1 zAOy$tXx?slo}+%DSLvR=9oBn=NW{mo&6Xx2i0xV#M@7w|;C;;~I(q2mxAtoePHwJvfx5KTWxH(r?ZZid15v`)Y3s#eFvQKICo8(A zc+_1o#n>zQ>M`vczhebz(BxC4qRpq|^dGp~=tAr4;3k8qM-QF+iAnptJ(C&Kni8eF@6Ad@-4gmx+sl`@=7{>A=;+zA-YV+4 z7!8#r_+ota%1*m#b&Yldin56wGT7K9s?$5w04_g=ls#`5?P*j3WjcIZNR(-HASQx)6trM zzOuyEYv&WEqvzrIX-8^~4 zV%Lkff=lHBoib(gN__HUj&h%B32&*AE|SNMdNVcHCU*U<1Q#bZ3Dg-4jSb9DOacZj zY7AO=;79ioS+pub$B|ZZv&@pTeY$gwRdq9nT*fv@sBzDIlcjN`ooNW;iI)E1A$>9FLEA5?fUCFB_2CN=I3^Ao+fZr$ZV%kbo zHl=pQM*djtKK89o2tC^CK2<)m7wYAHV&VSBSyFK6X}QwcBJ1uGVo+&?A?{(Labh&g zWZVlqyY>92AhhAJqMYe`u4)zuPR&g>RrJYe61Xizz2Uus#F&HtO&zTP)06db*iAcV zbD+h`j!)JVqW;I4FR$cfG*4=7uG}OBJ*tWrlOm@cPP0ngL&>_F_^n;!+axmy73g+I z4?NCElyh@&YC`KreU4l@mLMMqInBeq4pv{2}G`Djjlzy^r6urDJNlN}$dlJ=6L-ON(Oe6}1WR zBQ}pzQ{5lJrfMh&!&Ch>cT_PxyxOycR<(x(98RhhwWxzk5Awuu6@PX~f~qDrEg^B9 z8S_lSpH3gfiFm7pp)g|$nOlB#;aF4{LYwZ`F1XW9<`Mk=KChHM2D zh)KJ%mgO?}!Q8v%L(_3ad*#^r94S6Mff>5!pYGKkFFR!EVyy)zd1 z&s0UF4{BchfgWhfQ+L?#DkcRcpQ3@d0eE@NTYl$(F;FTe)QKp<=1)0IPXo--q586*PTIOJj&Vbru`e6 ztVS!2`p}YmmMc0cb-!MQ#~rqUOPIC06ru)#?zmwoC z`ZZ|o#$^AKIp&#)GWTB5ZH-gVmhorwN7wYlE4&pG!DrV2T7mbiQ>nIa_*}dshYBJBl+L()`1-N_@;{_-1lS!Bwpd94&BG43K;*$tNNH zyn;Z>&h(Rq(*4l5(t}PbR&?!8Nj<36-{^BGU_?9h6e-%U7IiFbw)@j5I!0`5Fj#8* z5b3b8$mWBW@vQ5Id{!y@Ep$r(-ekk6Si55g*+j(+ zEBUL83-qQ?ABYv)BamZsZu6R%QR^-A5RUf;RY+)E?3|Wp4K-kMha!4x7QfOu632IUIca5Jd7d~KsixocC&WPPFpzkVhB}^-g-MyoB z$GA($)32nvP&RQxk{qlR>`pt^>ejlKJOl`x7W?O0nV??_ejRrt9)kRC;YNN~ef1Z5 zdpNbO7~@QHIMF>ACO~mu;~%iQO6Wey|dd@{*61HJZV4}b^%M|bV5!5ty?(5tEKNXqh*lFS4 zYxb!#-9IVcb_~fo11B4dijLJD45;h}5cd7*CktAHX*zEpm486D`7o`|)YmhAT+Z8d zO^Ju-kvv#9lpHJk*XT@MDYQJ|s9?kFq%Kibn=rB6sD~8>^L6|q20NmNihrj^&^cD@ zFML+HoJoVpOO=6^#2~c@3S)*Q=XidX!ac%=`XQxcW$Q;41>x;_g zc$Hl{xtof=*;v*pidAu5=toy^cO<;lPpC7MLe-Wzagp7o-*>P=WwfZ?gEnVXiG(L_6()AaTPxbDc+)YHJ|grbksG_Q zmaQ^QYhPf`#*P1p^CT7nBnvrvZDoLPRh&@M!*x)?4O`>^p`5ya*ddc|JFUvL=|=X8 z=~yF#{<(B(9a6ncssdS|z;3)hc4MH)QOgqyV0Gw#dt&-1zeX|$ z)w~H4vb~ED;tjJ2!Lvbk@Q5eq-8BuX^0l2vSC2It0ptcXHVNGPflXyf+1qGS=TusJ z&ocj9FtqM4D01&_KG)7D0bl&{4n2{ z`z8X(g(>;|Sg;@v{)L@-J(&zA8IWlXEB#DA8eld&ILB&Dy6!Bnoy58EH=g}Q_E|yV zm7KePRq(F~t;%Y{AU6fi(g$<0jzC$m{o2vKkw$)(%iaKk@1MHWXoUC_u}B;TrX8zU z&1Ut>I@@9lI9s-&w7@F0&w#*+{J7Im3i)lrDZQuAGIhkHF)ATS(!_~Ee62huI7>eL zA{9^Hh;#19_libYJH%DV6MFB4O(_Z)Q$o7fz$?X>#xtF);bjL?v6;HVwxBE!t@!Ls zNjEacx=o9BFn#oWS0YId{KWJbz;&P)YZkT?Q)*@+8-84rbU`rA@I|_0Ru8<$&HF%& z+f`v~H|iNerJgiYFxAim8!z{KrE=(TR>|3$vBc1j0w+~unmW|_+Q~Y;O2m|X+KV=~ z(UfQnHDL%184vnX7hXvE7?dnJ7jbtDyQ~@B3@YgH%x=Ub_*@~o{)`qE2%W1I2F{7l ziYq1Zl&3-7TJ*NbNUKyItJJ&{TJX5Zz04}MYkKR@i*ZAq5Yi=e^&bVty-!Uh!m#Dy zogokW$0^xyWqq@W#1bt?ak(lf{iu-}Mk($~P*K%+G=~)NC~5ST3G`kxGWKG^xg}DY z3%~MQ1(I#mH!{FJ6Cd9GVhbG^&L3HWHl)hAW*gyd!Fag(rDX~G_REdU9NBe&b*6;G z_X7lL@+W>Er0BzqayBVJtQSZwunU<#p~s^#;N#=PsGioSS_x z_Rmh}x^=+(V*twaZ8rXf)H(X1%>m;%|?$Le#?FzzO@km=ou7U zL&(=|A#GG}5&@5tcxRS(Wj!e(nh(L@HaoRrE89;9BTHi7gH%0BXt|@~XJ$jR<2M~# zv8^oI*4IE}kzHJHnHTB`y3<16!c3mqLl&VlG8wnZRnydRp)k$)O%P?CxTY8o7Rr?F zG!@bsrhxenS$l5?s$ZPBVdvl3M|qs(9LSluV1~rDHGEKk;ayF4xUi_mXCqIqa#5lS+F;QpOx5TkeONH!%u>>Vli_Zj)_y^cm<1s zp8Zy^$AlB1(CL?etqS=9qQ(mzXl|vw_n@)chuwAln^Sp`-$tqZ8!Kb@Q1k0*VE?Ep zM`Ex<;|^NU4?8*PZ2XZMhOfM&7kh&iFBbG#Oy&+K^I6PthU@a$0z!jJzd5ffw^U@Y zkWI_Yw}rpS*LZQ_%YbUorjuw>r>}1FzJ0JNaHeUVvw7TTq`8RA+~b4&$hWemrqIe< zp7Oj{&mxQD=20E7q|kYeUEC!FoK;3X(cQL^f8iL}!l>9;Iu)r-G9@4b ze~TExVLTbzFgC!v5rk}g-hCwUcg^V&7Fc&%a$-wE;fVKbeiHE+Z1$rpV>Aq;9;aA2C|Ry#V6H;3&Vi6` z8c$5P4LM3l%!pDq))1KLjop) zyh!w(hY#^&4?uu1C8lg0(*U$|6ltQraQCSAK8m@yX-;$ugDEfRFCh(2!3F`a6 zbrsf-O=Bf^g13C*^pe$S<(Mx~zfg=Ct&v0?8qiYMd{;Mcx^VmEKKf#T;POdkmV7$6 zHVwKTHKt6y-r`3cH-67vSIJo?n#;}0UVUTyzOg-8w$w5&=iNBY3mcsOdCeE1C!CY) za=P_C`dEm3jDc1t(9WRkek|&??EyN*8Tb41r$eWLlD{HSY8?WX6+?y|`Kv(7QhGC4 z1HT=L8=c6}y4Ke(8HHYM7#8Sqx5Q#_$GW)Q`BZZM3G>6!h zChVUIqU~_I@e0X8HN^C(+mwXN`U>|(^-P#=rJFute3XkuZe%*fn13M@iOS(g^cw53 z7*F8HSI#M0&)7DIY1wqFyn)*r`Ht3RJIaL_XDsc@yPg5T2q}?B%g*Nho>IIuV(pEMMEVM}0Nmt=36ZSXtxY^bfG35Pth!TOWx6BCB7 zS@k;}w2=pj-Jm^MW3b2oKJgGbb11zNt9z#_T_|Mc#vZRskC(9vDe43eHB4R|sx+M1 z3%awh?mkOW@GSH$;;)*LQhofA7gAu$8*aWw(Zy8YA1@LxwvRTBtOk&i5_U1DnmM$0 zxi*Zdnc9+Ddr*GG5+{!52;FCK;yr7WHJsJ698ywsH!oq1>w7!{vkN^_8a5 zyrVA9(Jm{^rZ~^eLfUZ__=J=6)8J=;+jj3-djXBJ!z;XS$v7LwQgveB;uaQ-x@i5pSU4b0C{aCX6`pUv=73I6N3j{>r1 zFFP@^jDK>up2E5}D#i(oIfPt-H02j?Q1ravb)Cy6C+*Cb3Uu!vy8H+|U%Q1p6D?Y+ zQzdaBCDfv0pY2!3cfBp9| z@)riDQG2eJ5U`tz*&3{Snpy3JPX@Tn*mv1J@tkDGLOclfIM%WWb$j3)sS<3TNd$) zMyEb}nRI&Fb&a97yqfWfw0rw{Q?+p8Y)9|ys_v5Mf(!Sz;QnBI)Zd%-y1_2NCUa7# zs>4%nT|5zjhiO%9TPII!^t#jyB~U^?0kfsbGbN`$Lm}+Xa=djUHwdA9Cf%O^z|3r( zdd`+c-Rmmbw>7)$M7-{qBFuxQmb233PPZG|MrgmHvhvm|fhSZiYZ)U#-O|2-ExhVmKLi&^0{^HsY9o;jqglxGV8nsc|je=jxolWWZ2U<=9<@xAy*Y|7r2Tc9Hw z`sVdS{OuIzeK4&zA)I5K89(J20F;jO%8Re8OogmU5SvF-B-|l~8Kf!YQJtPZ%vblJ z4cUQKemiM$f>x-1N$9K$Zn2FNq!WedaWfDnTeCMhCh!Bi?PWcV%c`L;F9uL+H4&!V z!>LFxf(^-!fd;KqORZohile_^VqE=}78;-IUhXRh;r;pEWw-RS8zORb8dqm$D7|7E zf=U$APImRgK#wdyx&d~#C#X7In2;#3nUQb***>!>;U6(Bl+(|2=$!u{uGQxar;%si zAn9J*CPrR{)1xaowR%uog*{HVY(SL+JSZM4wFzy=tgg>Mp52eSbb{xF5w+hZ+U8W+ zn9eYtf~Qz1Y6^#bV&h4Gj%fgoHJEwTpkh;K z;$xVZiOx^R)WMTG1G*>eZbwVb(Vp1|o<8!Mvz~gkZu?bY1IJI3xfw3o9Da%Q>;|c( zOn0T*C;yEpBsPP#15s?Y9@P^1eY69hR8*U@pgXxUFV8B~8X3AbHXep8 zjFHolStXBM!2#_vrxsX-J>zXAl*oO*nkFR9ltTjGtrCnvtOa+Vfnx`Hjdwwv0>|+n z$j!iTxmktb(nip?$!z~8j!+75|AbJNL5}9NkhPUYErUV{jU`C^iH2Ct-2iTBIhyx% zY_jrKyU!Ry_q2a$R30=``>u8>s7!j$Cg`f%9;zo(kT&c_>Z`SocC$8y#|Y@x8Xb5G z!53_4R)L?9z!S%DZQ;q_bibNsBXd&#QGT*gcp)nKS7hRYhHq`9GmdMKnx|zG z8HBPAQ{*Xdu<_=Aw_BfQc6z|?vsF`8hm~Xat}H*STLzm)a@yXP#v~*7*Ns}(u6}eV z$xzAL8`!e%WCQiu=sy)HB=Tb3`%H?se7LYX`>z&Hg`V+9m|~(iK9+o#9aZA~e%wzL zm6jV79Vj;t3l7+zY|pxkKXRq~u}UtdlOupE$MjF zdl_bd)85@Z@=pN#_#q`?lK~FUvr}NK$P1u|SM+e(GoXGjxaG>n6i+F4V ze%t(OO|w_du9rEdB-dbwV+1VbiS*48EL_h)eA^s}yZMxoPB$vMfa zHiOD$^=qNWjS;Nga~3Z#rjg;8pVB|LPbxhl$IK!sBYfY^7AVOi;D&=Ou-U@X$HzjfImo=DKMg>!ZLnnVc^@q2Ap zq&r)?z?Qm|)25kDQ3=cr>2n1o_cry;1UG?b8Eq5AYOr~amt6*Qc$7wYT%?W#1)CGCo*S- z>;xh-(|jl-Nz_iF@9qWI(80|q)~$TBCYB*-q$yHj3)3Rqe`M+iNut~bOiTBo-S*zT zO}m7oP@c#RKu{~(hP2&Kk^o<0b6!)YX%T6ZaCG1#bkI<%+?F^gB!bOg*0#lQ{iiaFyqgp7v$~RJ zRbNl7kGNGfrN`d9ROz5$OD*0XH_uI}GAkKrTk;!hah>j!ZUx1YV%|hII^_i4rln2m z0D3p>grJJ*k?!e2L|1WJejn>h?S~Noy-H4%7g-K{!Jg61Q_&Y`^q}QK+f`VFSwut$ zlyq-fK+o7D&g04fe=kljU;9#l|8z+kPL_5qpuX_>q%*j3QcuGq@b_M>V&IVgZwNl&PvV(PgEJT%H!EsBKv3E z$BssoBjxu#UfE*>Ps$XGLpAOmSv$UQ%{Dc4={gs#vfUy#KH-F4*Np?5{@^!O2|_Ga z_Z}$NNP4G((oKVGn_S~+l$#2^DhLJvga8wRlj%YAq_X%JfB}-a9BTGl9l~j_`XTo& z2)=4xpHaCrqr9?pTvMO+m!rkA|0(o)Z7@ zrc&s&E{cYVOB*{mfFK3=uFLhW>09GAMc(|X9|W)_LJX?nT3%tsmiAUH0doGCiR6fp zHOMJOPu0InrXir0kd%db=X3)u>#)mAe+Kbn7e!XGWFzS zRXQSNzrSc(xgIoyG7*`tC80(mX>-Vi&GWtkU*SvXL2zkfjr$oh%E8B$hgs$&34Ji( z35Rh(A&{weQ5?c#MYfBr`aWsT;$ZsTIv{%ExK7w#U-4yc%JpT7#5QuWp@~}k@{V(g ze*)voZFmaH(mEiEqkgvZAiW=DvckT@z4YKVuA$y zw7_X8c+25zW-;HA-m= zx$A1OMK5(97QMIGK*#H-b?k-tebhe)dH*jFDrn=ig}+n95_k&)5E~1%XDsZL3Sep?|1; z{xMHQweCO_?%dWT2>F(3_-G2Aajra3Je39`*WJczS87tSAImcLYbVA9}-MKyUq|szl zJYt7VxP1`8(mjm1xipr|IpE8G$kW)bWvy8xzI6Dkzxv*|{;e4~*C#FAy-d5s^H3ut zWpAHLRoVBrlv$PitqOi)0zp~*+JA}5^4lP|&7`&K;yFupdUKAn++#Jf@wNh`ooYfW zc^!Yw}`)3sn;guTXIE#COFP3PxTxI@Gay{kT3m)`^(dZc3cVj-=Q!M{^ zZ*#sc=t;7#-7i58$A6@U$O>8u7P$j+c`KfDA*-yHa=4&Rer>UhL9=h(1;+>KoFDlj ze}%}iB>C2Rnmzm~#!?&1*H!thq^nkcd%|x4I>ns+on^Qk1lZT~WntK9kZVY2E$@k{*M$A7A<3jKJhK3GS#^`4ybba#QduUwzJmb-y@ zboL%>mi&LG$+N2MYMpY6M*a}$LhAARRr((P$2ZciQOvcbycug$?vYQr@=2HV)V{vP ztT#Vxp##z=YSR zVf-J+RNc~zJ@QZP*TpURP*H4a8f9FiOhB`59!WyC7Vec_3IEW9mHAUyzpn8;Ec8;9 zefdQAo%t#9p#uHb0-At@e%tXCfT_sPns+yH*|?pd>b?N}m0z&;@gK%r_N}uOp?*zJ z=1F#pZ8XG2|1kL7cwa zh7nAt2PsmZN>TU}h~klu6>}x|pkRQO(Ub(CP!T}XVK9WnF0^6HNU{p}FX(64A99?0 zU)=Csw%<;>1T4ZS!4#aD$~OcQM^S=&%@s>2RtLig0!$RF?S+ICB#i9?FGF8n>*r++ zE-5m{3o)d=p_pvul!7T<7E-B7iu>b}3quU#h|iaC-g|xpP%&`Pj>tgCMas;dAaIeN zX)4KCD@69+`@p5)pH3ACM^m73jl7ENFQ&Y$spPBxd&m)^zfdGnTYH*N&M=fP%Rvn1 z{Y<@g0Yye;n;U;S#gI^ADPEaoj^y45Cg8zR?b4&UJ2bfcBpE(RcopP379ziPv%D~3 zl@i3QHGUlEn04>}&d;%P2HYL+y6&3Wj?J5c%HEf~INLHy=f9nEXGVVYBlpL%?WRQ= zY>omt691@fR|i!Fp0}eW4l`8+!kS<2>@G+R8ufX9)3jm=xR+h4NE6FP{D>`JkRxLV znhWDi-+`PK9??p1O;0GUN;V3|s#}(Y+G+4r0yEX|=+$4P2^wP3od1v@hm?XRT8R2`5+O zcY;R)XmyL6HKpSRU{#)1hE)dt+(=%^de5z&<LUx>UIj9(G=&S` zcJ!6V8)1F-D`{mX;S^lgPCeaPj&R?#@Y`}Y9q~>S)6FR}x?h<5!_rXz*nL%_yHS%4 z$XAer`?E#{;ge-`t$80Dp__WH{1nhVnrg1b_7#uED2zAo#VUxPS<_bn3Bopjn=bix z4)6%&LtS*d}aHzuc>Nm2Mpb4v!K# ztd`_J=ah{}AOqr+W8pPe0YvqEc`ywB=4f6RoZlx86g%IH0)-Jrg7MY<|Qn81t z2IAg!!l(;1I`VfLCd1k$>m)a1vF8gUufc2)!??qVJ+al19kSt@ zgh-AZVXx612`gZKTYkII|GD@|1mP$_N@&7v=p-hdH5&|fmxgn|*OEzXstivH0A);0 zMzl$xB4TMJyGX+tuR1vpdHP0gKW2blGszpY!9PAS+PyvS>;R{O86QE)Vfyvk4|H$Q zs^EnykR78tdIZ?4Ui%jfo7RCpuS-w;6E?q*FvEa!B}MsiWXMo!97CHC@#<72>`T-6 z-rA_4eL^zO%K}@w7A;VZE9E3!xhUq=yFwcI<;L5#vkUm;lD0y5O&^eOw<>jR4Jl`e z{H8K%q;D4>=($Z^{b3JroAEnbdvuA)3m@!nlz1C8VJ z>zN`C(+6OPD4@UsBO}`}6oOR?0|ALAE2E7OkO_J*pJA|n#oczd+0FTVx142btLpja zsOs#vneM|ObdG@FBUEYyLm+^p>>qV=2>TO=paON9rMrjCJv~GI!eM2lVOrdC>*&KD zD2PDv{5TM9(41>(H z&Fy;wPcpOX*PB4^6HG3F;5|fa9ePsWb-22S=Um0E-sV8;=n@+?5Fz9^7!9-Dzr>d& zfDk~uapIfi1Io_r2B|gNmvWUh*m0l;|MGqY{LQm5`6J0B2fiM!%%lWqjBWy#?+XOC zXlHkA(=xhf@sT#`5HTt#3N(cqSDIGh8GYw||8fFt{=G{EvA<+@r&R$I?$cv!a-oYP zvg$dkH`^WIN%VvUT7p}3}kglVDmDq%Jtb*QS#mobc=)A(wQ;Vbk)zZ;2VoOO;>=!(Wj4g1s{yKHw zz^9)t>o+g?0?c~9pdhA$UoO?cEi1za9J1uSXE!GU5bA)m&ZQcV7#KIE-HD2EN|p8# zj|sVXc2t)YS>HduFVh~K2|j<+rm|P01<2~71?ct7HlMw?vgd6B;4G`n`{0%1e}hBs z$=n5x@sPbO8R88*QirGDd&Yd7?GtrZLTqQQZjxPAG{Bne2%8mSaF&BNWOW%jkQ_-O z@KEoV0cWSHSnf#dfL@!pPoE+}hV_oylJ*lFhF%X@+M7RM`NG4Mf9Smhrc{ZPzh_t& z(5gN2E3g5`v_=a$YfSU2zyhgNvin&+MZ8UCAm?pt`>dF+S%f=}6wipO&=@*&&aU-K0m&?H=~U0jfIL2EwkKMFa!U9~Tijs+oRtdR zl=+axLm36*%E*FRAGT&qutNJao`my@TCnEPxGj$USn4C$@R%-k!3%6vJvv?(6VJCF z&u^vt06ZFEg5nuM`#U&a_nOkf&+9s=Qn_C-{Dy;GxyopUz{qu*p3x!>z+=1YKPEpE z7_nGjB8Lv>JP2N={Q=G2>E{0)f8&`ywR%Lmwgj+=xa^IJO!J?`qBngaG1Aw_Oo{a) zfj>23Nery(249TkFloHwEMJg&g#Hx=u<}IvQuU7KZwk@FkueFf83&w}W&5}FXO(_O zRSh2o{x3E$H99nm^UI(&6JUQW51%-L3oi!v1x*p^(`>UhwTrOqGyxYROs^DrlyPZ0 zU>K>^AOe-nSU557VY7`1*5_Kh)R6tLX`Hovi@C3{c)*@pS{+5=<%Ydzn6mTjZvjsc* z*?X&?P;W>6t&twZ7B7mkoaPgKj%(n?59p_2t4)GV*%^NF+BoC441ABHOn{>=m3R+o z5MUvhA>356r9c@*j>BvA7|uj!S{7#8pe}BX&+ZS-3NKk4ONVCw^LWvYG7udgTAt{5 z&$ssh4Oi8mH#IMUw5@E-dji(YDgF^XW?k;sRw&R!w;t78x9Ei(xGGWgqd&qZZBj# z&Op({_T3$>I$Duc+sUN?R37EBApez-FWM|alaT-^MERaf_@|0sgT*h`&j|owLCa@g zOvhg(pV_$bU4ZE!qvXf{%6!L{$|)Q{1o-L!>qAaiAuZ@zQz;6xFoX9!C52>sO{`Q0 zqQJksl6nvDBT0a4S6||71;C_A6*wjjRtRVam-%>7KRV=sFwg9Ed4%iIckG|995U1Uk)$@=8sX@rj$QYz4%{)btZ(z+)*TZ@a0^G zbs;}ANGU7c6RqUDBD(jjqZzd9xg6-!O=z{$0PFa&rTj)7i5%F&vIOh-^(p;!Nu5I< z+kkjG#qZ3A0|8EY{oRzgT477{X*Ld=B0qdz2AaMKr9)jR-;q_URxV_E+A zkg&P7I{uxmFx|=eNCZv(Sk`X~z%Chl$qRiFg|1<*Z$gwZ2s`IwgLGv9-Yqxw7M+;m zD^VVl>Y_x?8mfnfiewkw$!-%4+!3Lk)ZRBIug}LhZ@`3wRBsp(J@`Z38M%0xVG6=eMMMtJup`Kvc zO>@2k3SsUIV{w%v7xS`|#?yp?cXBtIn~_=OXHKAbpF{w?ousN{>~MF71)=@@J^f!u z%Fa@*>WJbWCi$(`E_?8sNapE3AyV%~iD7<{f%e|{a=sIi2s3Dv@xKOzhL~wU)jHe# zC2ZUjS=GlrUAQ3buVT^j2RB7jzBZ1Q>z=5BwEz zl{?ktV`qit(oQTDpQC}y+h;U~=#I%Q@cekh!<^)}O)bT&-WffR6+S%EhTlDkJ{7xd zs`_PecCvlGJG$%Wj?{gPR-+YwARZ-~=$o58ob%itddU>y9PKR5Twjskd)T}cQEA%g9&MiSc;m|Di^fv&20QpMPja-;{ZjE= zJj_o*s}HV*Qgkp!@2B~Z6mA#mc`Ro2SoAQ;iMOQZpHbdGU;JQ;W{0eN@Vb8H4u94_ zzh?jyx;{-UF=HmAqde=tUgevCa=-jk3wO`FYkds$XyKnubnUKkUeoHpU3{X^SDXy) zp#*quuU6vxeEFl__ogopb>E&oQpbK0Mb@soCPm6gE<7!+Y!4ntH-E5kcpu>201Ev+ zJQd{aH=Abe+RnaG@A7s4RkHYiBXoYu*blZY`ds$4!F&IC*ajqkz!dtOR>rqIrs{{& z$HxRX@a1aWV1(Ab1zNCzioK9Xeyf0f0%V+TF<yjQFlsC8)i?uxv9mxC?BdAWL;<{DETKX7r!pB24&@K zJs3*~-Y`b2jAPjf-9=xZPg&=fosAx1LDlB4BA--m=*_;nsTncF-00vq<%z?&g=F_j zDU2B&ZeQU9564Rc=xl@Qzc;MIx7`SSIty^F1lsIwys(B)mjv< z_qlt~f-+5BTHH%FSHw%UZW=#c4ZZdGTC|Q{*AYR2Esq@y|Ee!W;1gC>z3Q&6wGnwxS@WoobxsVrCfWX! zU{<~J9_cGeEl`gpT{?}#=x)}-pGxLihsj(scZVQOHVU^fvj(!$I-gLNW>Jo(@qmnV z#%Z?~xYS!d*f^FIm*@<`SpYOrp`qJ9Wwj>`pUm$Ajms)C~@z;;fN0VLb7`Y3sT zQU|<;;wd;I(i3@wU&JvXesDpSzMM3*c>W7ZPj?kk@b53{22tVQ8g8c!?#GVcU}x^a zb3;hxd7VJg?GHm4%0clp>k*_OHGkIA-Zb1-II5qua0+9M4K2XQoNwPDDmm0-`nMe+lqF~D-L*=0c3A(J|b<+0bZU128glr`weRHzVB&g90@DOYDRdPp$6k?1#J&kqKBk;bf9> z2sJjL-%NIbx4TX6TqH!Z48aJ4<}h#Y2kL9M03We)3*s}`?Hlp|Mr_movanI@-QR6B zBzMA5y<6>X*%-8&pq1=a3KYV;%DIo&ZsA1m+30{*v7pS|>;$M6h}JXG{SRkZ3inMi z{qsVG2nS5;A*u-JD`_HKI>U6udHuyp%LH~CK@6ip7BXpFD8!Ni4=sb;83&eML817$ zVB|!3DbCMrQBsQ{2PZ5T3QG3GR-YNeAvzs8B&^W_R+E**ANy~w=DW^fx-oblljz$6 z%{~|;=CT0C_30ux$HH{;puj2$EX-HtJ``T(xfz%Z3kA3xP|h5%)#N+?P&|qf(gn?0 z3(L{f1^hE$A#a`fHTS8|!Ld`}GBs%dN>!fC@wh)qe(jXLP8hRjB+U(VAfX1+3I{+M zlpEFiTLJ4yVMUgUk0+_d=qkM{j7Q7R&ElHdJR?YDDXzYAd4M{(Gj;Rf7T*$GAM*29S$nGZ#*J$lL#eJcL0NC%8Dtjj)^-@FhOB8 zR%1GRPJl9|-Tcr-vt8~ACM=Zn4H-7@8^)b|0{A0)<(w4ny^GbqPI&Ubh?15?>kFRY z7oN;>7m7!<`wMhEgwJMTg{6=AU5`MufuLx{^Ktp<9BSqA4aODgeb#)j;*PxbzG9u- z-W3s)(y+rz`Pv`X&4#Vge_s6@nHN=D^kspMxS7T+r>d}b!V^Eo;%n+f87S*u#~rru z{b1eJJrh>}7yektG`|mzXMD<^{Un`jbmw&M=XHPES^caA@VoBosllH8t&f1+|Lp zm9vxc74$H({m_2)IookIopTE$2u;Z1KR-j<>`#y$9D1RgKqhG3*C9%?AAwv{qT~=w zqIHp#oru&$$@XeV0sR;v-?Mr7uW84!n5v?I$Y(z zN~7hN;K@O;P&ToI#cS7N91MgIllpj~I+Ub3dLiFTU;0%TbNRtSx#yQfV4hs-S6`yc z$|7L=+Keg?`D}_z(HY42Ro?{e<;$oTsdHD~G{>R!D(%TM`UloM(b?zeTh)n`z3vKn za|qn09k>5z<;SCA=s})|C_R{+-|zHxI9_I?pM#OcXb(S@=lQvknOuM`=7o@9cVMhe zmARiHe*vQ}rlHtLCYIwKmZAW;e9f$KXZQ_5hJDKwb?xP%zTI#h?G$kHz}2MZ9zy>= zi*z-C5i$BMF;2ZFoj|+6Bc3j)`2GgUu;QuckgG0MYbc7I0lGevyox*-W`q}@Ymp7cu z3P{WJbUwGHYj@z~GaU9BbX?t>4Vr2maOwYTZ#zw8&yMdA1_1>;7n|L1_h_zhqdj

L~g{ zPJSCGe@e@aUH3B3=27a-wS?yFmB(Rc^@a6087l?>uH>JWXNGF{j`7+iW9j^Y2I%L$ zq9QDg4)QznW4pMcKXd=2q$|$?*w0`6IlmS4^9URpTc>vDqOH?(?y3@?SNClIy0l_n zo|$IaoDw{sNc_=cgb$+q&DC(v8UX@M=TF5nR;YjMB2=k3Dn#$n1w>OZF#qsK*<>7S zFN+x|a}22O`D|h7r|AB`C$DDLH|M_ap2(!FCr|_nN8zp^K*%taco~GgaY;@Y5zw!` z&LU_07*KC1H@}w`v3=5>Nm!da5M40#r2`FscE?Ck>ONHeFv;&=`uX4@jYWnqR&2{IC z;>dqnf`o`&`ujHWQ=5tMq=T;e$zf)JAp1mFo^3d~SM_~vv9Mt~2k)e?f-y>H`fV#Y zbz`txr_@N!OgJ5B->>a1l4L9y$+?^n49m1e`MhQ)pk^P zy?0Gg&EG{c&@&v3d9iI8>SGgS^|{h>dKNnP9!f=DoVBYh5|$23#pqEGkRtt5WP1HZ z52X*Lb>9E!0v13319=KlFL^il-wnf@>0H9h$Qt zN|D^{@(+*ndo*VFN;75UlXqePbW^Jz?%*ziu zh~^7%X*(16KIh3;F3re{>#oCV|$H`Kx44 z(9(4*QLfCKM7$yII0q$BaF@=w-VX_Ld|S?z4^ig(*_{y6z1u(9QjQe4b4WtakPy>^ zj68&evx9XyZ#({0ge;tU0yfl4a-c&X5p#slqfOYsOb*>b*GgbBRF5=`MUOOQ%g|w^ zrL5SY3`l;{*(hTeMg6-L+-+}dDB(rp6*&V(uk7{6i0qVOL^F^Sbkn`zRC8KpD;#r? zubb-;a5OCMuYoOBgX9OV^+h{wR)?MNwKsV6Q37NSE`I;W0Hw?mKiI7pzCe;Wl&^4( zf2RWFh1HVa9_1q;VS30R_US1|ZK+j!v$w0QY1fSW^c)JQJEYSp*{qM7efN z&IxoB5og~d5xI%PR8&MjC>II+!>a<5{R0h!MNk?L8Vd7?h>%398$dy^kxJ-f5i0D` zjD1E)lBPc&@?LhM&CG7xX5B7$z1*H>dn7FK%3kA@R`Y`s3e!>W&xQ~IBasrcd$tFh zJ@OwM-EL6{*#HLys?dOi&8p=90E~B*g0@&%rYL5%2SG~Zjx&o zYqleQsT6RUgn}Y_Y~CVLPI|R>P1|*fJ9atA3kLn&Q{#)7t&O+YKE{vsd1R{i zLqEfTT|Ty5cp!PVpHZ#rE`I>HBd)!Q@E9}Vqb?Xo4 zvIpCzHSL+j^>pC3?4eGel~RF`pR8b&6dRO|XLH3x2TkOzQk>+Ilz?J{@K$XGcG0@1 zH-RQzq|l9N7A@+E!XIrD%#Z|Diev(e_XB<2NH{8n8#VF#Xe;i%peIV4CNlff!_qN| zU83Gq@j;B1-Bz?TTv6j}I=0GRwlS4kJm|UnG+{>2a3Hx-(?Y1EYqZuKP%Jpgxpvj3 z0T*dDhPkL11i}oTi?mTZDm8hW%-cm6D_z5_ZR+x(C1+wCr#&VTTO!kF_6Xu%mjz;c z9=7I8&CTALa)1|FeGP3Ngdi?h&}T0%Qv^ff!>2MKES5C2&akz&B0iLPZ!dUOg@ME4 zTk1A!MGM|NUk|S3MWzw+=WY1h3iPi*SAUpXRJ?LmpN~Trv2ea9iB*Z9SS^E?9(~zF zl-*k5EUwoSq<1Pd=r4G&*lD#fN*>^zSV!6E741cO$XyLT;%o$!^+b0%vc?J^r(2za zC(2!v1gafF&@yK<4d>b^f=jz-j$P1o#E+gd#mvuRxy)#8K6GS+V`6-Dnq6oz*LEI% z_&kZQ)XclYDAZl>0Yv-%9d85ET&N@uDO0pIeSnq%kA(+JpCr3+CtSE zufP-#%WdA?*``{)f_J*a$_^n*l!^!oJzm&f?G_Gs7FW#bdlg%c056X!ew)ZuGA^C7 zuY{BzbvUP$KPntbU@WO2>^*?ABo)tE#U?A-ebtUMu|-~Bd7qDU%Q{ieUh~w;SSMnc zxhxeDZH}k(UGz07Mb50ii+`Nih}sk*)J~$~&Nt{3-*he0V8OHK+v<@+bUBl1P-lC| zH@y??Nfd@(aF>%(_nG;{(wMpfZL(|r`1+|+G_x?C?T+JWx#BphETO?WJuU*xfy2t z$NEQ6#jJKu%o1dQ;3T&>r3MfSdjl1PXDcRC8}$;39E-^5q~*y-=OJO^p>Tyl1O6O7 zZRuT$V=ZVa=$M@fYrG!1izV3|5A$ga9VA(eP`Tl2V@M0iMJS5T71h1Sy7H!HsC1&d z$hI*F<=Y)o}VAGm$QSu>nnm;2#hI*o7fGpPNRr!W) z0#4*Q@AS0~Hz%M|__O-r1G4$&7$f~G6kjh) zic`^XudJ*n+g$9iuwDrxUdMaIBM5|P@VbgdPEUNLW2szf)KMHujej?{cA z{V{*=H*PMMD=3A764l&RyjTa08R%IT;<&kXw#uJq{E^AB>lvF0A;~Sy6j1SHhv;DC zBS`N!qx7hPZd^Wu3DDotg{qQ9&Q>eLpm4Cq3bKJa#-IO$@&YvkfinUo!xudx>= z(8N8O1~OQb5lR9L-Il++p(<A5U`Muu9GjJP=(g=cG>k&OY!v>a?<^vIFk%# z+>|OSp02iW9;J;HhEFZGCxgB?JdRBeUYc?jy3fHgV_yL&(mmx`|5;X7Fxy7uu^dML zH3J*s`VmCY;c!s<+JsU;Ome4Esu}$76GmKc8gun_f_hJ`+kX|Ah4t@q_AMjAm%`^I z$uT?vpOQUptx+ph*w51CXy^iZA2Pxkwcskem{MJ{_C_hFJBpunE5l9jWI%B(arcXf^M$YOXmW&Wv$SnH&NR}?pQ`29K;hO!d z3w#zy=PJCLbG52Vq(ISiFf1RS#}3H>^MpwTHkd#0&gPUI*e4lFqJhyU1kv9j9tA( z*l2G4dz0o=SFphP`?VKFnNt5YaW2WFEMHP`ZniNQ)UpmYJ)!}Hrt5&K%MdRFi4q*k zHk&E*89y+N@4OxI>bl2nL=&aiw9os|It!xxdM2MFiPK3VrYR;{M6hpI>U(j}+I*ui zz3&YQwx&ljfi}$IcQxnLvG+co^Xl86ejdSn&V>7pR)5D{yR%`!-%xsrrEgQUOAFVH zRQ6uMh+}**I;W|tP}N7-yxbt?7c5Ans7`K3FU15_SpjK|pK;4^-Dpz5NUU7N&&-CF zX5K>!Yq2P41r;JydtyXRz~5;-S-^LHc}L7=q*?r`5G=?~xoCyr1~*r>?ptoWcJr9` zBytVOB8Ig#D99=(ZT8dRognEO=|2E0Xbr${fqq@O(qKTw{RJN)|gccUj82 za-C7kAXx_1YTU7;v0IuqV`3uoLc9Ou0dd`!tYVov+zxh)e(EMW@>h6&0E-GELSX^h zmR^L(FYrk=(5PST1NK{qN20YE*Nou-Z#KT^c+F_KAwpy!MCF zCHgqT;Z*Oi=DRiV6tSOYf)rT5}$cj`?mw zhl^#3U{DZO7l?&?C(4^Z7Ers5`?drWcE+yOWqaoM7&Xp(+akQXogR@Zw<|3Y=gZ0O zvi#wFHI~L)H_NH~2KCbI%?6c^@VvnGW3lY#&gNE9i%*KDnBX|AMz7$&dn z$At|hyDGhxgZHD3*bf^p2b#8NBj8p0Ij<>Sl4nkOJMPI0wLsJ=q^yE`=0R8)pHa{8 zI%(#pPlUs1l!$@`ucc;nXMjwJ)t({w_d$auBvsyw5qfKP?|?u--fU|F1(Y zU~&0E@;tqrPkUWeZ?c|lhX2uX+dQ2H2q~|Wxz8{}PhE`A++qR-qG?p_OWNTS5*ZyP zZtNxfn31nI@2+X@!2X)5v1J&(;tqR2_)M3a2oJkKRUJ~q1E*j*KI=q!fx=*4R}RC9 zaYX*UEzwd}c(n&}kg-mWj9P4$aO#{i$zwip#(a0W2srK#I@P3c)3b)5YMZ}%4kMY+ zV3LHfGZkYGYpk(6Gr2uo$Q6tv!M9>n_|H)miPr*dW7T@54D<}~8$MfN5ZnfdgB_Np z^G>de+=s+0tThoNWzaDDXlnYFRKhm8boh!98E4N-ly%Jwae#OlGCw-w;RTH>90D!U zwR2SQZd3m=UnaM&)mm zKTAtQXi=gNO@=^>k`ts+=wb#=A9#jq1#)CIs^pXSDH007pc|%3!q&${5e8DM8B7OE z3AWt=r3_TzSF036cCWOI67C{sBDnp^;+ErsK~U@Vt-%zuTr#DjGs8t6X^F4+ClP;v zsNKa1C?jh-j*?%OFS;1XA@-k)bfVlRoycY-nuIL$@LQuZWQWPXikxy$@ z-&-PyV0^atkaJ3n&EvR?xyQS(4!gVEbqpBv#!(_8S|WaO+%KOQ#sz60=-aR0kY#BQ zKJDoiuRzmpWd9zmfV*=W0TW`U=oRJRI}AOZ#=eyBJJQ4R6s}j_M#^O~{(-C{T!^16 zxBeTr(e7iH@`}SyP0TlU(tIdoJMO`CO6i0hg&6s?3H<;q{8kEc2Rv4f!`{cZ@q0`F zyBIcao!nT;$ryWERSr{~7hyxRfUZC;M&nsa9$0qhRHIqY2|1JzfGWx0 zFAJifhtlnsVFz>Mgq2;W*G{2CU_S#PleB8+p-B5Lk_-^4a2aJB;Uvyk?Oh=9HsKG* zGwK^=aSzd-;G6=!@Ix6d9JU$6VBGB!sQZ_3;TM=232GU<*1zc}>@k9Bql85oae_5Y z22Ppu=*EyGE`AcqoDd6V;Di)@Va5f?Lf!M^gdtFRAa_D%xwD}cP|Kozn&O-}?5it% zNY1(UWS0FP7Oppg-LYrFMp&KGf6eEdJ(7+!5xyN-<$k*%c&DlP;(-@H6LqkGRO9rX z^1o=3)55-PfA?Li?j-&CmV=#FdwOSrkUbd`m_g+4H z_I^Hkzxchbed04UWgFrXkJ5 zPtw)5&$A3k*;e(QbX6t|t_tZPXcGKZCFT$f{f>U&Bocj#8ddqMV-yZCg1UY3vmxsg zHt@he(e>NAd&vs<(#wQo>qeH3iy|8^F1rr#=7vgQA~K;xr*5O+e*K^`^TN z6+Ki_#0$!c)|;~b{p44w1Td@3 zto#jlH?Lr~ewtqhg*8HDK1vl^*uei3Gq4zB{^@j>ikg{X&Y0pfTO-!s{Do zilY7Q-GrK{^3K1l#29VbKu!O~cbb3V#%Ak6E1%#TMgd0))lZ67Ra9IyBfdmhhwYu! zm|&eOtCVs=pb__kH_0wi1(8v?;4jv!F{|f#st0R+W8)Q5R1~0=T(B^-7Gmz?w-YJ~ zoQ0sC{X&tJ5l1pfNlx;LnmL6PteaZ2a3~VpQJhMb86sP`m!=a{y0{?dbcBACh~nwm zbAgaKU3y_Bk5RButQH$FO~q1sO2dWC>ffp9K?|#i*lxe3nnsVyX}&Fs&(F|<=Ar_g zG-b);&>(3j#V-%;5*Dbfv)*LytD>wmzx`6aWVeuZ$`E?tHFd9Y%Ka!RCxeYJC;x|^S^G)c5b z8{@nk_Z3swWUp3)yi!37YscJ`_&0S?sCa6wK+}Of3eD+QxsGLM_gWhn0}NOGyl=Yi zwp18(%fJ^Gh3C4>#pNszFY=zJkC=6$8%z(gYr5wYR#AD0=1V*UG}^%KkrA^<_BQ{? zcQ}CkU8R|ud^*jei{fp6cH4kiqW?H~*TaR1;qWzIAmVrwK`#(Hn2Am!z!X$Bg@ z)E!zfLmE3RgkfL3*0w*-kcor5n~~sO-8Mo#Ir*iqNbqpFguBSVz^xd>VQ=eR{GuGZXGv{bWs;)LWc{i&j1Y3) z*YjrZ9v$ZtUB-FVOOqCcXF`g($3`cmbDAuXjocTp|0Vxq5V?lMU$td*>PgBPF!h^Z ze6gKcI{?NEp|I=W+Ap?fqgm^S`u&aG zm;8cjR{Ei7wQjlY-lDF*sEGu6lobh#emoxav~b6)hkE+3KQw;hHd+CBcOW9^daeWF z`{;5LNo0JF5xgt%B|SE0f6&J8L<<@QN-rqB70<^G!u}C%9cJmk*XZsPmPbwCoG2Yp z6T%Xm#(t~MFYQk#xmQ?34dP_YhEXXYtAD{1&P*M7lRSIOm@W8wQ^{*}F)HvoQrRWt zAn@!YrrGCIZ`xnaQul0=ZZ?c>E8yUel%*+Fa6hYacv@135r1l&9{LgSC2aQe8Xc?A zg6x}8$gA^eT-Txj=Cis{wX+TMW4YVa=UusBmSf(cx6NlS)G53gt@zEwS?7oD~bN$_zC4Z+;AS%cXR z%2?{;gHhAsUVPi+O|kM|h|K)lM(SGfMpJ1u;=OY|Vk>pj1l2Z_@D^xnUdPMs)Iq{82FM#ifWDZ8Y6EX949r6&3l5(bx7cW6v08~Kp(MI;sphJN0Rj(v-hSV+C{{KI$hbjAZXpNO{kg#rwrU2JGKgxafJ z!0TDC`Y2;z|3E%1Ep8(P&j<=M$liI+Gp37W@&b$B>Ie;NAY{FCp%j|P`mC7+#X^L4 zQ(xZ?Y5kO>lXnM#gm|49w3P#MK0w??QVtz9UEyw^QcQ34aC_ z>UH?=HYO!r+GT~tKD=$MY><{F!sj=729A4)a%fo2P(%Fgt!08M9k44>n)Z?w9gMJj zbhi)+7LH$+w1d4}B}9*(;^hdKz-DP21@Mfz(uAwCBGp|!{Aqtg9oE{p(xV}Qn#WnA z;kInGA`Jm?sYTtndW6H(RxUb(K8b^J3}F3G$kTYWzG36)TpIuYVhaD}9tbVr|I9sj z|B-vR2>oa7!6b%bu4nU)osWO%9|I>3oBx@8{E7hxZ$WSeyxIX*L77+u*e8UbC@)V} z)D{_zPG{UkLqw)BorXl6)?{qOLXgwZVYd-JU_+nde; zuWi5By5zR2x?HWf$eiOfyHr_wtUo1BlYr4szGOrazLzJDV5Cl1PW+wllfVy#6cJG} z7XJqqEBNEZzcc`>Ahr?uY9C1mkQ(B@mLPWmrCk^j-^S3lVaPBYEgx`J< zf7N6XkJ~vC#-YUwZ{!c8Qigh?sVJGO)~RR9h10KuPFyVMW9zN>8)ak@4XGH3aveXD z)hmW;QA9P7@YNekPZyi?MLr#5v@H^1xJ<)+-}TCay}B0YSAM-sY45Yo{5P|?Kkw5e z-`C7@-;QVW_HUo*KXXqfK>-(2{4QUN@r_=ypH&I4T&=vwN+eganeskJN7^k75Gt(K z%&ziTC#+q+wthP^Oxx}E-J8GJ5hwOl`&Ai%{U9fAKJBj6hd zK!O)R*{L-99jtvs`!8ef|NBSmcYzA<^)FG~z&-2$9{_+-0pOdl`mjx8Q_l-JF#OBL zR!;~3i6+!qs_n=(Vq%}<|MtL{A4G zSS_WU;Z!}3Y!?21S*Ho$0TpVeqM48G#|KTR03wYHOp9t6n`24;bIgB7j*<*OK{wK7 zbv|ej3*H!UNr!RNK`oosrv-i>7!{gw!Tfd&uhd2Evqg{eAh_@&(ia|M$lG_MkN01< z=&z#(h^)z)?OFMGBCj+G?I%~=m}1P1HHGd&wH&Y)Fq5~^(s}e&pLU`WCxqoY5ei8C&X_j`Tea-87{-I&$HD%a;V8AWHf5C z;}0i)@8On6_`iKseqIv#GydydKd}H5YO37DeJN9y$N`qO8=;Wu_fk_$xPOVY=}0Te zUHDh^HTD*ciQ|nw=+Xcie?T8BZx=Gzjak<>>)&SeOj`-+dh&zh$!k2muONZ=87;CK zN9426aky8V@15v3j<5-5;9eILlmW}2`oD(1M+DHw zwX>Q znaLRY->%^x0u)$ED)NJZhoHm>~d;^Y#<~(5|yPoKNHY@&K#M+)EZxhN8(3A*RyiY%FSVe;ACt!K8EHq40Eb z^ggUwtYV8a!-_*>r$UkqSdaF!z;`R=RnG9VcJ@ssU!PsUd%e7C0{Xzly~wg}TKi_^ zUE^&OS2141s+TxY|MjZ;a04OS@|I{U>EGObi{w`mT2LzPp{X1gm4eY2xXb{zilMf8 zssWt6t43jE>-1``*^tyf#FAVZC$7WYk(Jh3Y`MxEzhBj z_a^MMqP9$PxJZB33TU)gKU81Hd^h&-Lm!U<{z=*Cu)~E!GE1J+{8Q7zfd5}_*?u3S z|J7;)^%1!P!R_a&km>AK+jgLJ&}+)pcl&E}z;y7%%ph?y-gtoF{WlgSnctT8{l|s? ztDEGnZBR6or(bwif2NwSkKMZ|o#Gp&m=Tfxwet9O0{lNrz4b%Xee*p`DIh5*9gCDo zceet9fGC~P9ZN4=f}p@6-6$a4-AXRq-MPR53oPtX3lI0_zOMWE{<43-`!zc==gc`X zMdzQ&`OO2bCC?-g%pH>mTdz$2=4#0^`5{kV1) zSJ}AJ@Ovz~(Gc)nm6VhgN;+*_N&DzVX z$KzCR-cV5(L|jQ6UqStXUEc;7jbyL+o4O)R=qJCDM}}IrFZ==URGW-bx_UUDNZfyJ z$nBq@Bguy<4c5Nqukukp$ukb1S|rAo)36rxuvwpajoQqx0Sf;A3FprmJ4TeW0^C*8 zQEu&NxS5x9))9g4Je+|f{FFppxAsRcr(m$Dap+HMdC4`^pzvC~LZC6LGVM9_rzy=+ zYD>k6Akq5Kd(kv^;W{cW33-RyN=#*+yJ^sptMSMq3icq=ev=sz=o3d-I=p|MDEH5! z;IXn!k(4$PSs~cjkK>3(($e&#`7TJqyU01Q;9v3^#=>@lBSWP)3qSBvd|T{x6plIW zPa6B{w{D$Un*u)a5%cjm=?(@^L41*bfMhNL`JU|Qe(WBvcML(FjrUh9#0{bG7hCCa zsU{KnC~5t;M~v)w*=On6=yTB|NF# z*dZu}l9a3?EXrk+0e-=E8--3i0WWo2TF0kcLJ~)@$Nt+sE+e;gt~c)}V(yE`!tKZ#ac9jQqFmKbd%jChM<9DmyofldNV0Cg z^f+hjW;+S@U6<%mF;CFLKPKHqu0Cw|@Q-aR&`2&Oa_gTmEr27t*s92!vF6f=ozKVh zSf^>k_Kr(VzS=9^Pu(>gI3n(Ua!#mhmu!=5Eo1Bn&gR^rN@2llHXT8iiUgvX0Dr>f zdr!abqGer)sb{K%K_>PYhAjx3YI-v4A-~F#>G%K71#+1W82L8j{md@nU zIg)p0K4tmKMaCixH6GI74P~ zi}(Ol94d$`L1|yWqZJ}xKa?tGtIQ)SDFJH_hdPFT8Ns62wP&sC6F9(gjP4o6dFD-Y&Dbqw{4lkB7M#;==`MAJr*Fk!sSR& zQHwUDl|7c~M!wap2|7C)S!ab(FEV~SxI%=T>l@s!l39jvSgDNhu1OFdk#udssQYH= z%BRRI?Gz4-*$E0OgMz&sChvYQDZzs3!+WyrXgfA8e*Ym6XQ&ROPzoejcC}x6OIYMf zC^l6cRvKZl00piGy{A&`=SZ>W; z)zRFi^kXhe&uNs0Hn;6!o{qB8DbC&xp(cc+EtB@2`+k&>w~<(D@SPo{BHnED>*^mP zv>b{n$aW{lzuIozzmOva5Ouj7YogB)cV?2dQ?E+Q4Z3OqX?c}HoWeKEpOy1vL{wUdF0F@3%q zY^sE%EnE940Ie_1Yw66rvRKTe0ILi4Xy=%%h^l)XvbP{Tcc8W<3#=TEiWO1oiIC)$ zwKLj_dtsevP1D0UgM!yZOhmKO@C!ZZ?m>=bxnojC+WF)PRze)Bn9TJOJQ`BLhU z?A4WGr*Qmm<0wP;M#`?2M52w%SMq2e{;GInq+?+V^L%-TWq@0EUPI@xbdn3=(lgkXi#O#r z0)lFs1919X2EdRaxIsmdls~BqhLun`qiWF`?r(yzwl_6zBKKZ;3h^Gh<8H8=>5;He zHmV!v-%!eWB%3DQb`x_)h-ZNwY(kj@B5gv9-hJ`2(F4+0w)0*5Sktb~ULyd{N}eC{ ziruq(YYRly5-qrt1idi#d57Oqwz{X&DxN1s{1R!fqvw{sAqfLW?NmFnGh@ERzE4h3 zqc)~r_x00G1q!(lcQoJkCfl%*I6|G$XWI+$#Y%p=|FY7N&2V7OXSp9^g=X{tCn}#Y+u}H%<%Dm^~SMF_Ps&~ zTl!}ru^@f@3HuIJsuru-{7ZZ8HF^&g`QhM8?0%VjI^2r#+Uv~4h=~dM?*9hsy(^~j zWm_!0=#N*nkHHdc1fG5a0k9^326w*l>l~;*;ETXQ^-o?992zW!fRzsk$W(%YYtDMO zSu;EQ=!{Vz!<%iAiW-t;kLA8_&^8hQpyd?KQQS(S#`tEDjspmBWl_-5kZ0wrBml9~ zQh1}TDC_^rVFmUUa&2cYldf|B=acslfr(Mq4j@L5t=1+6Eb7>aS>b6;=JkDf_@sZY z3BRWIMPKB53J;WIsFP~3S`KCr){t0R*Ru5(u2k%~bQPvp+1|l*Lj89XD*IW38tu0H z|IO5qPh|aly*f|7kNU}u=EX;{m(1~rlOq=X9C#8BmHDR@?DKja4uTN9uZa@S)Yz@t z_7c>5Cl{ef^U0u%W-+>L0p_;8wXI;1E3MulOzbpo7}cD}maLU-@#)Q{GHaRj%JWY9 zvQ-}J{Zi-bFEe8@OmjN}pRA<_77~t}$4pr&mi9zRW$xE$L89!l&+%7ET2seM!pqnx z%Zk%kW`%fUXWYwX@TJcD5i=w47G8V?N5CZFS&*I@M@5}h=q8;6(doiOk4jAft({3;H z*;aIo6*Aj__w{2Zir|vw&LQFp-$}_)2eRYXU@O?|^7nXYzSI;*&$*I>Qw`&9pzA3< z*FfM${D6$7#=S(WvnMAlk?icC@wPSx@(uZ6{9%Mdy6Tmg#_p0W``(O|#n7#Jnmf`cmz0f{?R9Fvf=?aJLg9VMG zahWFlJJXoyRsws6L+ZfZV7KVM6oBmABU#%ZFRK7t#adj5jLdM=ZV#_=N~cS1ViC6a zP^T$Ij^UhN8S_G+im(ueu=+4=+E)K72Hkt9wCVM%l#7;M^m<=Mn#kk3;yvHxrKWNm zf46>d;u3T5EgoT9(=6p8{BA>*CcegPn}UzTG9b=bV&24$sgUicd;i+6M?(Dv2U zoq1yZ{NTIH`C!WbK~m6@KNbSa1XDAP*-;>t;JOg^N*z_v5kX~Jt6iTsGr_Hv190=! zdQvj`FcV_`q>eVnXyKO-%DSzT8yUI17%SY@uD8he3vL{=D&O9Lk$pNgFW-@qDtX@# zFxD$hN#^(yocdG&=@)#vnObOgG0+0*{$e;r!(V2pl}C7`4)phBH0UZMMhk2<)_|!` zL!VkZ#E`t!nEE!Q13o=|4`puTC%pnVD+L$g@Q+e)F1yJa<%GB%{|OXOh>a~R#p(V1 zq*Qpm7T}^+Q1c#r`_blZ=tQXinhvw?``;t~(RhZ@(K{(la5Ny6zcA*I?**1k*8lqM z{)#S(jAf>(R3IYhj{tm0wVk-i+{o66dgeu@&H(D3;<7PdBJ3$P$SAmN_blIYiMol( z474y1GV?w%GsZ6MY5AFvY;f1P+gNl0#Jw|6TM2~^4JM%xgCv>B{$?lPY)=o%56-tL zoxU+JKy9!ex7iBE{sb!fEFXT}`FtknzEQSwG2kw{fBBS{o(2dgz3?cHiVpie7sAnE z1hwt3#$T8?5mR(?~M+e*CApo3nk+<<<~SEL$c-L!qos%#3F_V6IVXTf2x zNT*F0)77nKg^_XWa+oe(`4oht^7L7KDJ``68fRulrTR||lMT6lfpI2hJSk&h=1~xQ z;?~^X+lG?yK&FuR9W2cosVr?|jqM9_-owl~r`3P&-M5}r&jLJLMXr>Ui?z;Ap0n$En)d_%ONB5(l(mZ#5h(` z*uoB1c^PPL9!9DQZpkMx^L95k3Vgk;o#t9&Ql6F+z$8X``E1{3#&wZ1WGIEvu#Lb* z&bBD=`|9ZUWANid2anku1{P^wncQ*`)vXqlvo^2uklo|V3S?+>w@oX3wb>&J^t9ac#Mh=YN~8LZoH<*^RBH9H(nzi)9ChE?3I~&}*#xQ8Xyljp zx9waUJq7D?&mEiznSRaTcegylkJt_K9~%`Jep=1lXT|K7qb5kP1yG}&Cx4h_)f_;%1?o@o-ic^g&X_p!&5HO3)1SI@Ks>UhzVepE*cg?Fe4 z&jhZu&vWbQ7tPktl|vhGLWGLFmkmo9PjG1tV~HpuF|T^EQfA5K%FLw%TI**ADanK4 z3BV?=jNWdX4UHivH@fWpfu18+xhHtXP6In2-StQ@)BT@Wj|Z)84=r-27O~{!46{mn z^^Kt}JYS6|*=Fsst?|1ml#D;!)tM$VrwBOJ>pPfXzeasT7s^=IUk{1D&XO9YropwU zHmrU}=5~x8{rfl2P>e78Lg~YCZ`5WJnBI=su(M)5Zg>CnM#Cp)5dme7KcvX?CE8UT zkWXYNUSbjKYc%7kAi{2(rwl>N1e;|sSMY-CM~drn;!3UAPDXZYrs#Tk2`ePlt@by{ zsK%RuH3~A4)i2a1@V;p)OFB&>n?)Z^^$6^1`Zkh$Pd&N7dd5^qc_BPO801cWsS?7? z_?S1Ho++=ZS;W&OlO3R^=)|By2b62VlEBoEHjWpAG10s%@#+HUf>Kl#+ zqpwsVQ^ZJizh0Re>DWxguc$8q&m_;CeiMLPx+m9PTwsZ%kEsa5_ccq+0ha9aYmKWA z%5Y-iUE#)Uy@A*L#I4bO3J1hP@x<9r!82$21xxCjN4U{%C(S}xnP;^bT%<=c`$DHz zig-W0`Tp(bTdGXiV!&s>FNHC$U5YZQF=cv>X3q^g0~-S4!}C)g4HARMCSn4jNMly$ zM!!+#E4n0#4OtPKkrq9XI3k7sNbMx$in%K#=ckRuW#MWTz!`Lx1o;5D(g9}F0jx9 zO67uhATL`%`zIWm;y2u^iMxd(uO9(5jZ&OB0%iGgQ-@B^sln3t z-_H+vWcz|!caKHHNENlY82Q0%HrWyvwhzlhp2g$xcp`1~F6&r2gR(9+#Krn64Ya47 zitw+b%>mC;vLSzzo zI(04ZKPrGF^B#E-xnasBf$Xs&nIl`AB8F+x6+0>-Xe&-Hj&_pQzEe3h{Unm2Qeru@zyc=+Z!BP#d~&`OO5yyl$Czwp0z^t zca#dnU@v?H4lORa3682fUKFM98<-S_bh*vFVo(Ll4g2}{+v4E88YFL{-Pd*V%eo}q z&YUwC02W4lPvy~LLz#d=F|VRV+G{pvNX~7$=6=kq)!vs43p@+Aj&{)9{ejR!4inC( znSPLNb`yq#hMXHHz4wDN-*_ofe0nbfq*-D8L&;#hIuyGcl%jw7A!?quS)xD+mc<0m z(jCnbvB&N{=>Jl-e{1yiMqzYvhW!XxYi_&Qd9p zX?GPqixaru$moVfk2or-dKLtD(}ja6g&Z7Y?nfLxldi^Q35+HTaF8th3x9&%VdTe3 z2RQE=#o7jF`Or!DxIf(Z5&knWRjlK?2rcPFz9*rqY~O$2G<$9g)lpCgTpE{R(SOdL zOpH>damd;sc6W*__PBy)?WGM<SXD~z?wZuGa)w-%h}qcj4qvFg(I*^STfMO{b0 z5v(U?&T#}{Cfhf$nq9Yf+X26RnuMsoT;|VcR*2ivE zF@qJ(MXyy?zwNjMDz01+vZR$6d+XWbok>Ki6<=>Rua^Yt(x$wr`Vlp1JY*AvmZRA- zlD|CjKdrEOy1VaAiuA<|0Kj`cs=LQ9TqgIR8IL5c83P+Ny;zU8RWJP7_xx?~`^67S z5{%^9NMar;=FiL7NOB3=g0Ne&{TnATs`7|ROuWTR7++Cjg>|_o3*C1Q4z0uq`BSeB-}zb$j7EKPqaB>yF4=kCl4tJyM&`^hGbkP{WV|FZfl zg3EGg|Mnu`?-fG|++}8vKdP;8Lv8EVj+gr%9v_Ljx}UQFvf_SASG*E@>PR~pkhl~( z?6nzaIxCseGVZm3RRR#_Wi+b2<8_J|QANNxyan(;y4NTPO>F(B&&rwwy zSC`~$qf;(ExRzq-SoJi`bEA3F7nG4Bi5WLd3egL?2oosLGAu|0kc*|%Gq)*z{K});>LCe}MMC*UXNp!X!a0h(g!O@a zNr#5|r(0uSg!v?@`kOzNn7FzL>vlsM{8Y<|82{6n+DuM16bm26%6@aD*^*IxvG~Lb z_b~;rXA&cKlPBRx;8VrZMD=N*}K9sZ(P_MDX`b=`bmi|_q|-4jt=FJKfRbHun} zE-5w^DB(E|^NDC%GbsY`L`ceb2nF0<4Z&eXX_F%L0e~!0NMAPkS#@$*r!>?$mb@#t z(&&7;JBiScbL9NZRG}9jCT+6e=W`IrT#Qt01Dpj~*2jz7P^E&zwssUCUjbKe@KK=$ z#|%mxk<=m}kGxMCWh@(S+8e^&uODq#3=EMCpzvxrL`7b9{VALi7TP@T1${$6_}{Jh zzKAY!_~k1QBkIO@BOTV58jtF1b#603vnnBM->n)7mw8n_uTw!nktS{@WTl&rAT4i` z@rLfDS&r}quMpM}t$cMRA6QRHD~7qH+!=Bjtlmh`!b6cgqABPM%o?`#Y zJg5kIgnVOye zb~B=EY31Xf5ehOtc$%ky(eL=SA}*`2ocOlMJYDa7rd105$-{)4Y`(}hd1~LJ*!QyI zJdWPSMO&_YklEH$`9o-$+SZ|XI*P5ot|}U5)DQNI8Tg{cJbe=jSkd|2sL7+)HX&ky z0k_aKzhkdiZ8Q7qv0KG+L>$EhB@|+UeOy>K_;Iv!cXsI^$@y<$^`-#8qk6M?f6dZ?%AB2XD4E_+$4H0s z0NOLUiE&{|Q-RpskgnR{JQ#|)np+L2>~xoynXyQF$5M??Ahu5&llL1O@JkUFDIG8Q zct0flY#&8E3+|kATvd{Q;Q3LV80`*GJW(GKr`Y|;z%EcV6nInUoGPjH+C%jiy z*vp4s%2=;fFK$7`BF#|K)+?CIWqDli-u^=@(jrFksA~znYinGK(<_}YxxZmfl`l7E zKr`~7uV^{-99RtbzfPLpRE?%{op^{QJFOHi@b9G82agrM!%cI=vZ3^3nrbUPF}P5_ zzsnvkzU8~E!lO=7*2$6 zCGe6|i5cH^Xh2*z_$@NY7Z{t3Y~QPUyMvubRyK4ZGQ;NJPFuWchq#)9EpoNeU%RU! z3NH2gFI`E$=lNx3zX(whSxXi4ADqMi6P>HJbM5H8+o0*s>URa#f9@_YgJH>O!kpBt zyosOTpSmw5pxHt3pRmW`QMSF-kKf(IS?Wz4xG*G}B0thadY4M~fVYDfT0}O@y>L#@ z=`(s2CMoixD;qZjc>^uZH83uC_R~5>E++I(D;ShsznXiv;`nSlTavMkI|$Lhs*fAn zJYA=^RtmmYaJadhQ0tMra)NTVKYpi=_I^yHrrM6PAYe7}tC>(a(x1j(BK>zfQ2o$& z%Y}7z|IwRD1L~UarjsN|r(eTjq+Z|4Jw$@@j?!6|eu-+!ul z1Y1jmy{DC(xwSm9_+qDB$}(nw`$f=aK#sdmqWhi+e zGtoap@yioKyx_K*^>AjU%w0>SiN22LVtRs578Y~QXZrWwd5SrMk|&05X2tz0#F1xJ z&)i}q*;v{YU%3VDU!VP?G~fp`8dGN|W_u4X+gHx%0@JtTk8jy`=otesX2x5UGMXHO zRRK)JUdP%sf$@fK?|;64X5ui0aSI251IkJhkj|-$!!$D|4SN~(1k|neJWk6ht(|86 zaT6I8(Ll(4rkB7k7Eq->$1(EEY_}{BZJ&@~;Fl2a=hKt~L@XUI>S6Qq7#;0@hCYYn zaE*Zo{wmvZe4C*!gr%rc1c%Go&$_H+Fu9|R@lxEabi)*&5ezu<2YS^^tfLN~Zuqno zDl%pe-(uzZkuL++ul(|g?NFy>^D>%iJD!P^IN@`jDkX{8Kxi6zblF`t`$>i*G+DZD z+}}WcvsEYTJLfz){mk{)~$-=LmBLt+OZn}n` zgo~VqZ7c1o=_A{IIEXkNL)q21$`)}JhjQl9q>}`!Tu%2hbhG%fMvK%c#s7iVb#{W_ zl3AfIV~w4aALr`i>V*oTYLS=@V1#eL>)XhCX|}Qz{x@hn4F^52fSlK@1s^f(@9*kC z(@|e8w~UG4$Cf=24|5X6#U+ooMLIHIh6P~Lj0JwFjhVe~01+sb;=baR&D~ACxMw+- zpM4v3> z^taA(NVM!o`)D{#Hl+erRl%#v3!WKFVwGMVYLD0^DBap(>*>li0Yc^5`L6_w7k+gx z7!R!hgK-)g7j{`RdVMvbp4r+C{EJ{0Re^vCSD6NdRBF}= z%Q9_Ur|9xg-|FME;UrjVL8jKg*gVFsLd(2=1A6RUS-w$3n#cgaeM}n@Q`^7zw*Aqy z6YU(1BDlS)UFEy&7Pb;xW^-W0hTgk#$=adyToDbw@mA`?D_*0o^rl%5FQu@=tcGGkCX6@rwC_2@^;sV>Jv zgk?10jTns9dYj@4(2tpm)a^UZnc3`(z-z3_#{LP{-ZrumZq=uCt}&cPukqfdco(^) zFhR%Ex>;AK)8&vr;l9YdT5~D)QRJfleu!^>i{;EFo8Wuo5^|P@dhi{2>hc`CvgQL(uo zK-NXexPc;;*l)w~Q8fUpdbyc#Hay`9pW7>N1>&v-HTl-%1o30OPR?#|reQ~JeOmTC ziutWw!?@=JwW=^_oOt|!{_9ujm9JlLbSrUTzENm9KND6wTACEG^U$B5KPe_|tq|U7 z^#_(uZ~DNNgc0Tsh0);tD^)y^AONpD;;g^o;%$+}cBu0Rym}k2Ajcp*tabbnGtlH} z@g~-;AnbK}Kmqo)q_?~y{A)+Wwvlg^K|;=b;~mGEs9Xw?45Vo&$_gIxHu(NgWdO zpFdHG`Sw{3FT2yuNKjwbiC|UBCtFlHi`T)`z5n9*Sl9!uE~_@_R3$GPVY&%*KMPJ0 z|{$I7D-qF`5W3dAgxmBHL802eWp*B-ooPs@!m+x3*F39{{<#ZZ+Rux%dYleT zd;Ju}yrpSLoy^%X`#KjtOfI|+>;X?g14B|7;zv94^ zM>W!s=%wWR?gV$GWQ&|06D$3^yNv!AyDhm<7>}PJT1rgAT5tncuc@mawy1qWXFx{S zHKN_?td{`&^1MPD2-E>?ocD3SyfOrbWyV;N>8)&V*;zsvV z#nEv!6P7gbyeOxHGS;BBW{nx9Wgt`J7V~X@U64VSg~nJ6XZbtGEmDugKtl(&!$i(J zqu}Y7_cx%g<(+x>m)YKT1~g z9|0=QD~y^;SgCw%YG^jy0#C82Zw)=FeJhmTab<{s@yu=! z_T+6lDyDpyx`}szbGPQFC?SYv8jM;X8Mr>!82o{#{1K2xv(qZUV5v6{b9Zz>`?&To z4^Krh-IH()3)m8Y*;8<{x|r8P3SUuJrPaPgySWj=5R*&3qx*2V^aY63&*?s zY;n_S^S@zV%;<`io73ANH?1EfnQfk%{FPVKH2kgJ;43YbP^rckl#1Qq5>qe+LFno~ zx|smVWD7U(h<@(!x?&ik6dnerz2k6%{g{;bPaeJTAerlJK)j&s` z91ox+Ghn4)A)gH)w?0M%I~qs|ua#1hdtF6ocxG~KWWaYOXzlEud63139RrJG?bSN@ zV2Ep#^M;9KXVjW2yZ%~ah;E;QBK_XyQJN*`HQ%#(d`s2F3O|$7FMHu39F1Uf$)P4I zcg`z|QHlq9d0kwus!omLeDfGEWV30(IGxVuH0riPy*Glxx!r311tuSM*72L*NhjA% z@~329323L#-=lD5)taxH-N@ZW2d4)L7GFmo3t2%y*ogBiaYBNH3GCman}B9!4{r_) zWWSEjTR&$@fK6bn(>I)CuH~lWmA0(|C^+qTE&uO1t9_qzR%Mwc%G25JB`{KlIh~!7 zO5*kB|59?YA^5?=eTvWb{@M}aEl^;?kOG?UxgPImeUZb^RNS+${_G|xE5V!nk}&_k zsMFfPc&LA%OV~~NBL(@n$dO2!uV|(l2IW^{PdSDv5_s-oqbI8YF%a2dk9#E%|b6J#WDZZ2tFa|pw(o^i6p!zlm6CE$^KIlV+O$D`!em#zPQE$@j6QN3y%6 zDdXnWEO}zt*7W&Ag^ftZj0bUFXWK!pPe=Q+D+U`A5U4)vTv5MM&j@#SC;aHYxIU;7 zgXI-Enr6m)-&jsebm^CYgJKzhm6Y|$0sE|-kuLt})X;HD(uiFH_SzuFFCUGE-gUHM zh0kUn(i90k7th&rom#J;6P-v7@^rrP$cj`hq=WBKcvbP#CfZ^w0Y`AFqAG{D-m zUDG>Kb^T~XZ>bM++Z)8-p3 zpMZL3Xfdw-1^h^5L1tZ>{Q+B!h$Q;g7P`|L6tWi8V7rxQSjZK0wwe=iVA^%QYL20b z5DIDn4Nlul&C8=yjqUdUtWda=$_TA`>pR(1b}k?1SCp5BFYAlz9f>ScV}Y?W8oL3; zUHkQ{&=&5@Ep`p}NBhI}Pg>ua%Zw15`K=wD8@7Tyla91>?L-tG1`WiRpWrR$t=;y0 z2t!;eNc8EK`=LI)K-@0Le>rr&@%7D_ri0(Y;H^Jts!%<=rL01W(XYXde z3dL@th~u82GBrz5DnbB1fk{v1ute9rdorjE_f^QZ{!qUAZ2j96jJ_TOkCq`jV*F1V z`b|EnALedhUG@{vZ5EE26Ez%G>Rx2gI(!%+OYGGu`y2Lxz}`?)uB^Ar659p8r_)q= zX}enViE^W^ouCULb}{vHgWe`EG@v%J{CriAj^8j7ffu0EF_vnqnrsJ&rtdJ3^(fN6 z$&;69==pO<)W7H-8jdieb^I6<6fAV@x-k{D#I{X$2kgFZqH6dM>6H=+Q1oR(mJ)}6!Il^*kf+TnKl_b)|D#` z<+fZE9T@PsWkCO?AZEA{1kdC#I64J4NQJCfC6RqxBXCf%%dh;qg%m&gjTCK?2nkebrrWa7N@JIsOL0b>oFsZrU zvOgMc!4wPf40PW3VP~1OvDUrVoXJzP9YgWnbFPI;xja2qu+|3PZC~kn_1=B9ZtZaC zs4xnFy|HOBw4SkjJN+nZ#<(;?K~W`#40aDdb-G#hcGJ0azFOiS8rlUEZbND)5D@o1 zWK6~=GDSA}{%3;Aw}iFw*jF8PPf9&aX)so`sN8Z{#Z0}db5Sp{pKf)PObZy6fY-RL zpT!IOcH$v*YaN0|PFdrh91%IGtCJ&oBPuC#Tc|byf*pHy5F~gN-zqg;bY`$jnUbe! zMhw`9WZC7?7~e$4UwdbHu$g23lb>%%@Pbt)bv7N#FW$+Db2Ux~`9%oJ9@Ky`m~Bd6 zXOFFh?)HUBz{v(zXWOG4=7F0-c`00DDzfwZ2N#+FG_(5h=2=_rzq<5Ba3G_cIst>0 zrf2?VZ(?TH%mtRu2MmfUE2bVpjB8N}IS#vJEGGv;A4?tOS}G7)Xf;AmP;%0@C4#f| z&aTmY6Fy5cKL|&_ftVTj$+P)-vYLV5N#VRaayFA{3_t0OC+vtIO%q>a?E>%F7XI@i zrATK7f|AV@dm~P{Zcs9~zHzrXDyv8G!^(G$K-cKZtrQfMfSDn{!AFmw(V>O@4Uv=M zCrqdqyW)u|v!-<3^t&Wx=vMMZ|{c9xpbDxai zD9T!2)?1yP^W+B)gYQM=Eh@dS{bRw}vk~ho&#yzx=F&zs0-zxK8TAaetbw}^2{VPX zJ@F_H(93}Lu?Z--?=Q2??8FrOh|Mwm*-xNPN0%;ywE2eQt@*Dn~t$6WbUjYIU!{bTqiC)RZSo znfO`G3$H+<{;&Ar+_Ijpm~0L)b!yYNJQ_y~Q!otmMBK(_(z^%Ty9b{?R-J|^r;|(~ zRBt+8+}M}+YLC1l4HxdySozKWK%)SNEU$$s^Pd+U>HTXclF`So)OVsGYU=Z^#Dshr z;%2CjBD7SNNVL;r!y;q8r~0J6-1h?71rIuj)9GZFpF_*}>_WF3{!Vz2X7|k8g71ll z8^)zFXcP#=!KnCEd@lfWeQGT&$1;Q2eN+ly|cZs@z=sNO9K8?8g7V1ofpX%u^ujxTWT?g8-UhOt*52Y)tpw=RpHw z=+(Z)yGe$vq2$xFZA2K}^TUEN8%cqfmp?4&ckb=#3F$PEowZJxw~OiJb@<5ax0e9? zNE7`1{I#luuHt{@rZs<(FC4Z50%MTafw4}_F?4Az>v#KOgFrx;l)!qdh|}zAxuRE6 zscw;F0=RT%Q0ex_G=q|0c5N^Xb0q< zR(||)z?*xpuW$Dbgl`!XxSPQL){zo%sZ|+u;KW0dEUS0e^;_e8Ps{G3ZMuq2&6+_q zGS5?t*eZCtX|$S6YAYIPE!T7w*SJQoIu9@MHa$g00$UCM1ZgnO`lnZcvI$#CyNSq| zv=nXe>w+m`pj07;hA!Q+x5Sqt9-loL*p13|MGU+4?Z;f`@+n1}W!k?CxJd8*<5~PO zMv75v8Wpual$ryC^Pq4ZHkqG%8BQ4rLSugE;B0bxf~bE@k$a$X@Ovs}6usS)oY^_P zK$(bLj*4X;gRMGGmbQ%;WaVgXt1aKs@0tVR2$T=wA7>a1h&fsJcRk_}J8ONd9YItv z`osOWnfz*&^N4s-_y#SV{kf;*L+8D3LG-!1wBClM5+8R1)W4cUb6uZ+;IQ!^I0a3?MN!F6hy4zwHoEIf!x9B%#`=<1a!$q4Hd`n zB@KzHFAeHt7so>=f(+rPuUE3O0_}$yhfnao%=_*F<)m!W!w(g*czxc^I_W!QYtJhN zYNS_+itZ=2<5)T|B=Okwj=v%0Ox8MM=m{Q{jVHSu$F7OiyA~1DZ7e)@mrC2*eUc;M z^-apt{hS?k9==`Zp>2v^xxd(d8p?|4GYG!99okTplx$v@QrtBi zy`HQ(`~!`u+e`;tm3Q|ERj%y%?1<1K{;{yFM?MKQ&)0_v?nbWW0dON7hmP)+*xu~X zkUujfh&RpM2(FaSmv)Lzee6~n@_dqnUl615yxXQtfCXA*?{YJ&V+kl#NNSpEhxom_ zvXM~Wh}u%{@4LO|=O1XkZh>a%hEE-Dqd%j3!&f|CbXIO5T&)x=&a&~aW$q6Rbp$b= z5w$9=ic{nHqq>~h7^6^D7fC`=;@V$>38{=s>U)f`f?nRnkn6kbWO~=xUaityw#QP! z4tHgR{1wg5)pUl*hv|rnZNTmy94}2;HypA2Zfw?4xF>I`XZDw0m;(HphI* zCN06;?HvVQ0M&zJAXIXpGiC_}Y+3xDFY{g%3qaL*N4gMuH6u;lR^CvTmdz+8(r#gt zK`K&y^_MH7b=)V6DzYqBhlCz=Z68RC2kjz*wrvY;1=SPV6&$pC<3F7f@Sp?tId5`4Db(eGvRY*%s zsn(jvcRi>LvMnBzCaE+mwNR<@)}>aZDbm;c+;n|}AxTym*MZbm?xIhcp8R`vNn6j+Q&#T3fciO=+VP(;9mffnEa!PMuROeB$S zg{sziGc${R6_xOEeRQ-#obP$)Hz4<%X;;+(HrjSth%lNQ6W0Fbq#c)%UZmUV&8{=N zHq*HnxOQZT_9`&XIgvSP-FeSf&0nN46{v>~+)}+-nY;7D?zpB|$ls7T>;MrF4)kYS z2u+)aKxh6Z3<1bs0Yq|4??;K)WSZ}}aJN(7Bh5924s;*h9(6Kip@RCEX3OvEKbIe6 z-+K)O)yuWHTD$kXEWfe$!s+N`MEDxIFP@%q!FKt#rC{s<*`AkE5hHVNKD;YU#OLat z3w4K!CUxTN20j81rskZIXCFjU+p766r7TmN?C_~sB_#zBo_ zI@s56r{na+-B{F^Z{EU(*im!no3N9s^>kM>ojd7b!|S8*OHQ3Uji2i|hfVk;KL*$@myl6f7r{PysV-;2=p6jt@IU#e4{rA* zTeT)vK-l3YhZ*8+T$y$TJFd-AXe2=Vq;xo2K1_Vc+Zrd+Lc?B)E7sO!>*C8Zu5B`| zx`TGiB>t_)Jop%Ja0C3#=oo(e{*TQF@?DS`5;&_!Y3HIms@YC`e>>^1tF)5S#@+!- zL|ShzU)y?jj{51ZXZ3pv@=dhRv*0YRw%@!IQ<|x=LBx9+*FW7M8=fY!?gFQ4M~p7@WCRKTs>qz zuqD$UU54oNl7&Yk&BeBrRFqP@Z=kjq3mx|#?H|V^w7mZQ66SPFP;*v~y9OkAP9Bs% zu%5w9dlumj7XWV8ktM6@8BaaF^KUs3&Yb#xwQ~f2Hhl~Gkjd^cgBZVRLLV;QerDP? zs}G*I-=GsURd?}6uvy+a8X`ucSvMsCt&6dzN=5-p*H=sQW!F*}0N9na-aeIQcGddX z$-GvLX>Cgt>PVw(8^(CH8iv$}_`+MK{y?CNX4*nr0Z!|4Tht&8oS+BYt>qf~(5c;E z{#A#dhA#e@ImzybHoy3i_DqA1)5q%E8uj4=>4=#$l;-{0$ihq=0jgz(fS>az&@w3Z ztbxCx#D)XOI&SNiBi(yf49IoCqwMT4TcWT3HG(|+hDbh=y>2_q9at4d$hPcxS3xLl}PCY@acE^PnQ zdu{rF(H-ZCHy7rusVVJO>096XL6vLaKeaOpfpr<9WIicZh`~A=54LBn*hLh+M?Nm< zqefBR<{~wwo-O+ICYz$J?(jrR{J36ZjwdF5lsBhA zy1UHv9l&oTH>0|rq;o9pj!yJ{?p75n(wkM&&dO`4!*qA-=9L5AgMR(=5p(+R_(~|} zsxq>;g{GtCo@5LaE7a(WW{Unon6k(bZ5V|i7Illv{p-pHJ(`tQak z3r9Vgu~HmRXWoj5%Z?x-*R1<**6xwDT$(_Ce#7;$I^TanQX)WjZ8Ag$ zVI1mVGZv4Sfrk~)hq$x>`!lz`>!l>ERMj3yJ+Ryy|$(-UQE*fSBh5hzh-RpdvLOZk8GSNXHny zlB51AhfnZnKJ?fH#XN?_*~*V@$A-AKJXN}eSMPjwTk)i)P&eZ6zxo zN<{i&Dc|y>$NMuRvEtiGqncS-5m_Uaa#Z3PCYnE>m$_|MfurU6boAgh_O5nUy~KHv z8gp9bR#9Gg$1zP#&?m3(N7vB^bBv%ERD2pOc zLI|n4b->O>PsqMoXU@vaSX~YN9I;EfWE9u3L^M`n_hO!4{p;KZtYHBfPwl+lqT6`a z=sN|TCK9bB7CksAUTblCPH49~WACqyP}BDVgFJoK7j&0oUQ;bH#x4@NyYjNYgNn}g zR%Qs;zz210`pa1E)me=J$-V~~uvc~`{ein2J$L5WX65b1ZN9*|3jI(=r=6xF0xFuw zI*Ct4qd76T7Z1KG@m*n!M7NeRK*8E(d4P45_)@J4hgaJ%Qy_O1sD_$gZfvzzR;5y4 zB4N@awy;#D?;jox<58dt=7;c|OlQf7uu-~vc*C)8&b_-FnAEqz;{)g{@H*3>ZOJe8 zVIRhiHB6eNB2d*lv80H5si49PssPx{X27=NdKmaLHLyv?KkWNSf zgb*MEPW+YsIdh)p%=z?wc;|g)n9OkJPO|T7uWRkK*S^-?;#>fHEi>dIm%No5!x9c~ zDDt*Mcva-=E4FW$V%cx*9pStJ_>>GPc{813cK5;SPgC6YmZZKKAJIzY;=OwYdSC01 z*0;;y4tLqKmPL+>_!c&fb)v#zV%}XleR>nT|FdTTgjrps?bKjM>1y3^-fimSPUOe+ zW0zjBupYbg$wrebz^Kw0Nq@bW%IWYz-1MCc^18@)PIQ( zoV&Ocq`I!(jnY6@Rrx1YBCK^Y_I5v9{R^H~n(N1%JKli#Co-sNxTvr1H;-}!8~DC( zkF2A`G&dLq>>c+6Qyj2gl)-WR18ejj>bPev_c19&VAKsl13;culD0eh!N6wD8#hT! zog5#O0%i`LI`ASELDLp4+DN#^!5{wMQU|WGT3z`25f4}oIaQ?&2DW#ZHj3iLulo91 zry9ce2b=3=EzsL`qqJmKnV0y3q6cJEr~T3G=FI&1AEc_=<7hxut8cfU;(ZC+t^M!d zsZGP-(QaTEJT{eF6l(|6S!l>7@7=_Q^uPYo?aYVE*VA+z%(q3U6Bt?JmM5ozCd1V8 z-R|3QyDrLOgaxfSH#kr!I{4w~=nebrn!|Ryxr|@G5p|w(VEAj0{*QWZB?$Nl0O{p&ky zaD^JhYaOh(*o2Cr^L}d`FeDKuuPWk9N@nW|~MFzDhK2GURG-L8lYV=Rw zC03V;;hw0DI446GniHkAaaxn*(2>)cnQN>s8CIP_*z|3RZ3upFxp#P`?OAU-Y$q6I zV{V;>=;N>K6Gg+wHMec3xE<^X@RQ|ksA#@kcin+6c;q;{D^H*h?TF};fzi1*;dlZB zR|S64{rsQ4KQ?zcv)3@zGoT>WPzaEJ?Q6xd1~PRWl09faM?!NSXWxDqQ9BF_LJ}o| zb$mN+>4VxD&gTy6#>04)*6*>C-yL|mLR(sQ>=zIAVsBrS-d~+o*@;j;XMy`@*%$mw zE1P>@^yAT!(TTr3RMy|0 z=9nhgl{YO?%K4G*5|U?S_VdD&v%HE{{^88-(v(u6`Wx1gCvD)pilyksmy5BXIryqo^=WuqPMIHVz z&0~9xtX-?tN^{fFga_v{Gr}4bHbZ{d&W_ai_V^JO=sa?z>CWdzSI3W&z<8u zYE+jl<4>hwq^AdfMn^)b74;vF+@jFasY-3#A8ixct)%O&T(pY3BFn22UK7BnL{r zgYWEkgbt}Ln~c-j9{44G3K-;O+~*d{S;=cZuTGwIvqNMQ&>4q!(Ap!Nk}nJ0`PEMb z`sq8sW@D#b629Cf25k^zNCBhty2hf(ovGjH@&7);wD4&o>;88u^6HdM&!H|`tGvO4 zW|3Iq>zQsZM$tAkIYZ5t@K^m zOFV2gNNg6*Iu6DuWm5;0!_^ZR>ROYA#F|UgrU}2=Q1RKZ&T{40E?&{U{V~&T8ED#1 zO*QJJ=&0v=aEdCF-`4FDtX_|cNojSg@NY+!+{(C<5mP=REv=@Nf(u%IKffD~(E|S{cQf7! zIE%w9$O9RuNtx=Ms<`O#Q#fVWZ$T;G33pLgUR+mwkb7%oTv;E&nvN7;{CHeyX@e;Z zny#Fo_Ej*RtNmk#UJJ*?q;~tS!cXelK*os^85Rn3KdLx#Cz1V+Ph$S)egi8GMwqH9 znc7kUKno(+?+C%>kV91sLzVV!|G6ocwd(@d@zH{E1{|NBHX-Cf$!cR4B|lcJwd$J~ zz!~3i+WA$bu48k%ws{($4kYPVUHoU*z2p^iDAyBG-$|gJjn2@L`SfpN8cQ-A*mzy6K(Hiu2KJHL(29s;YAQ%HN-9vbvmE5{A-qOGpf` zxDl`Q&*gs|z~8;ayw!@e%hqInw@>!l-wyaMg#X)@*H?~-<;>CP>RdNkj+vbK=l0j| z{8zVC9uzP66;jC)Dq9@?AoeeV|CjvxI{Ua7r4ubIDQHx2_h812xkK+Z`lM{o{*NQ8 z%Kr^^|K+Lw>G=N#y#I5{e@xuK_ONWlXGOXa6iXjG9-m3Iz0lQja?EnHt*ABe>-%$Cygm-$O|AD~h1}opBQpJ<& z4rh;?-nKmEJg3VY4$_uedgNuiXo?34$*d$E_%wczXxOx$f^P}FE;rZwycm*E;tHH( zTGFelnFFT;d{^?z-M-T+(T0m#zs|89OHF;%67Q5gaU$X&bByi_I>hz)AgM-&D}Yol z>kTMA&b+2~h->@VtMc1zwrgKaHDYwNs`wMIyK@R6y-^5w!>jt;50_sxp-nXplN5s_ zXnI-VoCfoIJ(0|Ir%JH~)|>W^m065_U}0tB6bl%&2}dce2PEhVfJgYOM;{8btxoqcX}@;Ri%(y53ccpNTfhpD^GhC_g(=QGQJ430Ymi*rD)D z{tL;F6!YU(0~g{7e|4#CgmW`HNY-96OFQc2aK5n?pz!R%R672GmYnn`@H)@>j4ITI zBarlI@lIS|uVp%syHK(oq``JXE&F}ZVZ-ODj;A%JhdH)k{`Q|UWWVV+T~|h!w8mxB z5Tx=FjJIKgK*=rTD0HY9QUbPxMP>Rwm8MsTjui}WOx{$FKVSi>D5(Y6xV?K z=J48X1|Vy1ua}mc`uQoeL7%eJY0jC)=+w^EI3WEoG09(R3O0fh1nY z&fZ>o)%LtL997y@E;&T$?vy0)?J!P3+M>^!YSuXUs6~-AF#8@G`=LM zOk>`Sy-066ghc?E1JY)AEpN?Ame+u1{G; zF2N#!@MkL=WRT~xjh}Z}UYBcYX33}(e;xS|Ugp5o^T>B&gj`o^Fj;P2~&ox zBEy1IejpKyE<`1Rhznn}7+a>?0Gx-#%);t{_RKFkDEo<*eL4LT%PFg%bnMa^hST}c z_?3(f9{&-a;0t;ERs5?#A{wSzNirz}MM6-9ww~LsUCub%(;Uh9FZ+F|9Q?3qR3j0o zm~WS8GBYnMrDyldhlg+L!QV|ZmCQ_}3*A6UiLD~9Y9;B?b7dOzhf$AMdt+SGnU4P?w4n>DAfQNPtA1gJstS#~!xv_y)f z-_WA&)djq8ICo?}m~~}jFU7Rdl4HAz(J0AE6@AI5pc88t#zF2Bb)h!&EqRqMy!?FhsyD95vvJ(r zrDi>~BNXCCcSTvW`tM_xjOtm7@Wtti5gg;SE#+zUfME4H>#T&ZUyMLs<1CV;_-@R- zhEv*Sa#NJX&BholaQ<~IvCTw6AZFPH-s6-fQ|ri0Zk(-*OYd(g zxA*o_dHF;y3i!=uQ@fV|D9p7$ePI{skJl34K;7w}C9kM`jZTxPv~llRGBFNsK&F|* zaQNwMO;{Kc!uim*(YIFM^GZ9^Gfc9Y%4EK;U@a|)^*WgEu=(JClK%=3q-BBTZ^<8dd zU4_v2!0Fu}{7BJsnrz&swR)hs-;vXbYOF}G=%O-guF^@w3cJ9oVW;O9!yS#yu+O+2 z-ynrnC)a!-Lq?;-iFawVkieG#P;S(07Q1}IkSh6Bp67H{uz{`nf%+B$__CH|D8sk= zxV>-}vk0SaB9`ew7C4>f-Ve7F59TtWp$jfgQC42gVZvGSf$N3dZ?wu~!rPC1uV zn)02ng4-1mjkhnH`L5APes2$Bw4Tw-+&&`bi|^ZeVH$8?ONJO%UsNJJ6EE-kR6N`H zBOO$L%>hHIh;^ZN8ro#@K1~Zas?t;I&H?udKOxuo{GY!TG`-i>QR!q_aZhv}iq^TD zAmwq3)a*Vghyk1Shme4ayh0iPn1-C?h8L|isa!DM%qZtrKCIs4F7~-lX@)w}@PW)0 zEVFaKU#xd}0O*#D?wG8#nsYn7B52s6q<`;IEh6d>(ZhLh&P8+1H=hLPIw%cXNx)6Y zl6DuyvvdF!rh={(n-K`$UK-!$XSEL-jEo;67Uq`5?XOI^bi*BV^O@(yX4zy8S-Yqqkowt{)Ob8(>Q$U%oyczto@S(uXlfm-m-hLtfW zIus6$REu`4G<0NBlj}jcuFaEixfJ8hFOkH$Jp5j2ci;}2$f&HV@c}McNhv?uEJH>{ znU`{#IqvfSG}SubWF;NC$)4Ky&PWLe3~;0EsQVz5M9T>rfQ3d;r?`NZA9go|5uZ*9 zOEzq&i@<)vfN$^F$#+~~Q}sv>#@Z*D$0e;7s)aF(X(U>*&$KB#$;T*q-hVkL))zBS z499yHpeE-#J~KW0@O$e>)p53w5ynqLw)uW$N;}_9^L_{OSjzCdqQyEplb_pl;cC_C zVC0ZRkE6yfKel~pbr5WFCF&H3R(;29e`GU6pPXY%z?Ty&-gfDy31CcaHJld%xkb?( zcQbWs2-VvQ{^@6nCQ5rB$KO-2%@)y~q|NdUBSU4Q2}u8LUS)c4eu)q*7qLjuPOAbJ z7TC?#JNnz?+|l2PK*6Bm25Rgw>k-C(#${8@XWEkoB}HV^5YfB~9f+KLb#JlCWNvF* z559RYL96#A{1jaA`LS6Hot-DD({uXyx5O5 z(A>uTf~&H^SnW!G3+6MUJYeW69r6u8zs?+O`>v?=5B~@+<`6q*E1hcz8CfA%13Rc* zxnX)^MUS^2X474dq}~UNFwgK@3V9q3U$AW>FhnbkG#Cos%aT?6HV`-{{ul|bdMKwtrH0Kr# zYZ`K9VLz@VK4lRxd_YK{;7r>_0y?P+6MY65Thipk;WU$A1?j=|LUBQVz$a0S?2G}-@P-AP|* z+WEf7wT8UjQ$P)@a>YkF^r2Rz0&SP5s?KcJi{k|t$YKEU(dYX>}W}b z7POsMceH-Faf?C%;c(-N>TObPC7DhgFdMbJ`Adkg##_o}baAjAcCipgf#3)Ovq$K2T_+T%)w^B&K(2>f3lPr2;a4ni3_GI*oTYFlwmuYl!{Q)V|sTaWk3Zs;bpjn%lv@m)+}UZ%KQZwkpu3 zAhg&Qxi3q%vv|4#zc$) zJx!Pr#_k@#7k}(-Ebl^UYr(l+KXa;4vC9X5ViNl=KA9q zLt8>b&I6X$L!wXP0-n|_j#iK&pJ1v?Eq~50(C_V3rWJpRTTq-Oaq32x_~r^=vo|vM zzUs)nSZRg`i&OLN7QxDu9$HcDzZZ7}Z#lbn?icNn4tTumO%cz-csVZESrD)ph_zw+ zSfk&kxZGUR8D-U3?=ki!8~WUFqu@mI{pw30s?^U8LkTuqu0o?zr^=&)JHhmn3AKxu z#4_x*jQnmDU%0hTrHgiGqADsKt9>|K0b7|K%vT|fUGFQ;U}j)b)n6A=z8+7vF&&Qc z45*?Y2n-L#R4QdIxI^F*Sz^Q{6eJ2iL zCGMB!RPA$MesHZ^5FJPWUbj}b;T>ljuyTA<>Y*#U}~`4JS~;JU;jnA#$?|K z1faP9b`t!YDcybbA>zEZ&|nxOJjgc~7R(H8m~+gZo~Fn}!Bwf17M%r!Zlpbaa;cWp z{i0`I{xE}qmUkuUaTU$M6f#`Re%T7vthgh<+#rKoDf?jLFv7Gq$edhS5Icpg{W3}% z&Ac^E-3|avJ(rhWPZ-%AFIw?y)3=Tvv{~24aFyqyrI`CzsL1xgHxBd3x+Psnw<&5C zMrX~9c97CK+J|YjDXu*m0_c(TRasC-+QC9wncE9{oj@JW54LZ?uJccSl^y zA=(iqvB5?;v-X31DH&#XHOUfXg+$Of!tc5vqAjsVVKA0)N`Cm$V|^yEjGOk>`8G7a z1x5uw>_n8Ixqnqi4*232;^a~PT$rLJy>C3z&ayE-@)RI*?%l-=!bTYD!qm(hB!1V` zi!E}O4rUgyS_HnmWy-tA8A>jrd9&yP@!TJ}2pO%^f zT>xw_%Tc}qm?_(h<*aouU3_nS3RlT6l!ZNbJHEL(`PrhdBD@F$hf>q5?hw>r=Ygm$ z=W??{o_dzQHc#SAx-f!<);C)tO3Oy^f*%dKC<23XTvKjSGpln#rDkh;=T>-M3d)F< zsuOJ-NQC(j?GuNNY@9QC+pvJ<*Ahvl8%$a0)C}4lR`za_N7+E3z2NG@cEwIuYQK>% z8+AP2SVL`f6B5t2@wOI>{9IjInp?aSDp=Co0G7xb@Q~GR>cu)gGX;6#{gx-Okf`du z2A8yzZG+*e@t{pJ)J|Q%Os*9<>_W~GZr>uU<_F(c{f8t+n&0~mOfFyW1GQdX*bynmJ8AmD~YxT!@{bRdIHCOS&={2ZCd>%>0qjF7d)yAUHsDr zLz0=V@|6+fBJGXwA_os&jgN)jQo82ifFt9R*bkDGl!tA_7mE8c8p|D5gxwoO&8FM@ zFXUwZjQ-RavX=aZ80^f~N$kQIp~8Etk9SoB_(l-uoUA1%>8 zOH@Y`l7pFHrQD@a+k{Sda;=8Uf%*dE1j>GyhIbjkGm;8vDuL^{jxLnYVvR9*l=J~dwS~6r)j#>6qwegpLbeAcSWHq#7E7Vh${Mqmxuf@Q zj!JmXc(^0h6L&+ZN1K2SBlNbe6(0)9V%X-szCphs#rN6_h^^#ihY1l%XAo5qH!=}d_;;N#31j%fs^x2(gm^Vw9{QO63U7?y$8E>FG*7s1M;(@TTVG!5 znn7>W^8>$<8?JqVX^E^EYG1$El%o|MP53r)SL?D#f5h5zW^6<#`L)4Jjc=v&$QN?| z8I69QH=2kBtCUN~%WGz3Xk^Zi>!({cB>ifdeYpf>?Oh4_MiW%;a7@APIcp~eYe{i$ z#L(#bQakerEkT}vZ-pb7KsCgNt(Q5NYx(FMu#NREKO$t>#JxnJqi(%FWrZH5Br`bV zs-ptInM>hlL;RTUMGekWI!^;TTHK9SorBV5;Uoj9Hwd$!F7 zmUmZbL6Kr|WzC+)=r>{kJ^yA4(0OawAZpiNeGBh+@1wlIgfy?^iWNh{veM;%lSDZr&JaeOr_)K;2S$iYw`;Fk5>^@}H!J9$Z1} zv_x4Db*wPGc$g7A)NE*K3%)#VN4asZG{Z-NH}28kc|SQHy1L_w!CG?m1xtm7F4!<$ z9%kmW(Y$}fWXslqu@hHO82A-{eSc>@PN?A$0YB}fah3eiw8Iuy^~*I0>gaFh9mL}) zFBSz!JpB5g=v8*!JUrrfAn}*%Tvqce<@Vr;$oaqy-n#zOYO&`FL0kcdIv_ewBn7&< zqJRnoP9P;WAAz+*=*fW#mSc+#Y+xxx1(=>-xi$qrPQ}WCU8Czr&)XvOj;gyd4io64 zErqz-WgqCU@`4S3vh&WlZiA)W>QF`O_;vHHw=AwuHM!j-fPHbpu727?A)NK=mAp-v z{d_fb?qS48@v6M)Mua$bkwB#`J!dZIV93idch!P~4qsYN?Bom*H`K*zx%7j75^LUkvrXNnp$Jhn38uUdJ;)>N(Xh^8`a2VztZEaH%ZfW>8}*m zDWrV~wGC`YbBvo%HEt-Hau`wCt8?A_eK9;h>B+j~-dsfW%J5?!YziFo*1wP5?LmmH z(&v?*^N`H!;+IO0Vm`WJo*r&kbJ zWy5wy8nm9#bqlo<^!+m!1EaAR{fhzHj@*hN@UkgWcM^Mgi~db{)&q`1mCN$QVk+5F z+|pY;mb+8@YUBQZXJ}OPMGhe#iCf(5x8n-kDg0<;#2uxfQPtH5Q#77ka@!WPXF5IT zvl2i%d|mYEfP;G~zsCsPqtAs$%{}^q=+;FK`H}{+0pU8iyp~Ce-pi)EknWSj3sZVF z)m&wu;sw0BQR}y={#9jtBXW%HGnj`TzRXom6F$uXyms|zRtZr#Zj$WtX} zT_waEsF!2B&ce&~1wBF1kh7)&;DSIviqFImJ{=XLo-J2 z`}KPN0NJ_M1l0~%pqu9brHyV;aaNdnMDs`1$$KrH-*noZs{xgZLM#kFn&L`IR)e%; zo&e2l7fq(6*em^K1rWPRuD(N+V|W5vR88m0t-e|goL6M0{>rD|$x%4C?2AxZ!OpB~ zh4g@cMrHM~wiVf=!PMAL=4NdcpvrX=MoGDha)iG0?^XX=msI72E+RjN1Vy6R12d*krz?DV`S#3J?uS(zAJfX#}1I%_%Jg->^WyN zJovbeqjJ^-6qU<frv9$b$<`^2txFM1-c21UvT;p)U7}ZLaXUOm>jSC+9Tw zUcHgDkE@IqsNFiY)2oO9?X9oy1rW}65US}s{i|Mgm6#eh&6y)|$dKBM+~zEWv8z1( zpeQm&n$>Va-z+K6h_dNDzHqM9&w;*>*GPV}}-FrP_T1TabtnvV0L` z7v@gJjp{6KGiSV?zITRu1irpg8DPTyLbX6}^e76Gyq!m{*A^%6ORm2uCUdAne7nxI z(^}_lUX&gB!u|)>-U=sSWjU_GV~rhWH|yda^ffe)q1=;%m*!0!y!$$g7TCU8M;JUc zMU8?~$*v(rppH=ZTA4YDe25Sq#ynL6@uKL*@9Qg8B_)$G2Vp{k)!z~FTgxlB zJ(4GmSly$B^vhv75*kqKSxPP1NxroFIzedv3}R+!S7+CuI6FU)au4CdSOvCc3r#r0 zS(!Df?HiSQbD-Q1RY-{DK;#4s5sRCZ5`hIw%qGZ&0She>EGd626ESlK0WP4%te*+J zmE-F#OwpY7-n+c`vMN*B4PJ9Xr~uI`Bfw8MgPdka|ycfoUnpK2E+aPVyvzcyh{ z3To>?TiW0m26w&jFSmb*^4x@edo#8BMCBCM=xV4`>_!U@uy{|oAscPSl;(oR7F0B~ z(k+zH`;uqTDQUnAe+^1roz+byPpp;{ zV5=9Fc8WZT#pmlzPuoDZ60s@*Xwt~Nx2nQ8{PkDfLV>hf*&qm8tjO)~S zf4$yUk*dzkKU(HGS`IuP*q&N<1&Q(flM`FRaMVZ~*bZ8~ZpXrGUTdQi-7zMUQPxVh z9}ixq^F1uHSuv*-^v!BfX#%ofLZuS><3i2f%EoxTBjZ%0tU;w`{*Y zAaa+%$llu28|?!SirdZe$Ah=DADbW6Pr8u8n7D6ktDvQ~r*-)Jq{~^=eKAONEgTqD zJl?oB;5V=pA0F7o2zt*dy`13Zp6F-q=?(%W?ujH*Fm=fH_d%9-wgG%ld$2^>$R%o*07p5$jP^E^KxCKL7NTrfnc>?S`QOJ|8%jGsh zo|r}#PXI0tO)lQRO*zz8<<=HkmjdnIM(tiBC=G}!ET@NRZ;rn89Cs`Zo$amb*>=y^ zcXm*A+cHdPH~Ti;r+o|2y8Cv_xiV%Gruo;*K;_n>7GX?|A$L zt5@I=9`9y9i2LKh@uPFRV27e7eT;}V+>{%Fd$l(%NZU5)ALf9OpeowI z=NsqeUI>E9$kF8Eg;~v~PMW4k3g1y8I84%zskYp3_%echB zm!`#oN@7Zv5w?zP^5AkhjlO0-M_$t@J*m2oAJN>{vi+Z2o^~6F*qgy>!ZugX#xg0p2w^>wdqY^c!ofR3Fx7^vH&gN*+=v$&SFMF(gQex4 zx)p38Q*u7-+Do`>K8oS5gCqT{3XSs`WmcX|YWO7s!0NjwZ7#MW@_smj!q<2U@LxIZ z-6LgFVL`6m?)sJLfwBZZI|)2gV*&fZ;9qbj%%-{5jHb>aRle8jNRcTYxhjQQpe_a)}eET{R!6Gr%2SsY@{UO9l3WWd*thZK5kh0@neO( zXS=hW0nHM$&OlTAtrwqIXTjFscZsf!f(4%_`xb+aocdF*R;qvHGS(UOU5K&D2{A0oaY>^RbE}s_3V< z&;0OeX0ZN)PBM4HEb6Q6l`WdDMBmN(L83z*Ztd7K4X)B{UxR(+A<^zPF_kEsS-|7Z zyk(f#ExR}Z-2j-rr{hPQo>E{V{rY5Y_v|;HeS5H*w4S=sF{b`%m_F;tdE02Oc*7vd zgh>I&#CHQ;A63rjR-%cT3Kw&mswYN^FAVgWxqi#7*CvttyXL@peNo9)WXHz*(9r6n z#m%IEjiT3id(>o|yc6y_h5m8}!^7+QHv$`XDL3>G)?&Zo&sr z^@k|S+(t&)6rrtb592J)J;O6nfs#)H@!1i*f!Ft0-5)O%W)9!(Qxx&teFF7xcc?Zm z1lLsg;d6#FRZ3FuvaaPi4LF?-8usMAXy@NRAC&Fp8*zmlYl95am*WDUwEWDsvZ;x{ z!lRZi@WMkWw+w7&RigY>{0j>bpkkM#A9R}f)T29OMbUNS0vJTy@r%8>_mR_LPc-i? z(|A(jsCd#Rrib>l_>8u@e2~5f?JN9xZlN(&*{@+p)&om5!nuj`Bxj{bZUiHTpb+UE<)}-K7jVWiP+{W@sbIYu z8_`bwE^r<*;>jJgF{{g%Eu(g%03MLMKLtv^{o&w1`@<|k!rLbbq&Yd}QWrB6^f-Ef z1M>CtP?atl@h5ES%5G$e>R&(JbJnQo0tm2Bth0YU`1i1yu1HQ~@meK{QAQ$B>0j=ScWtd0Ib5 z3|tw+^Q2`D{$qLK`uM$RGY&Du!C-)SEU}=Yl0+Xv&VLxg1cvs)YQ#W1v555YiA9h# zeAAsMNrpYdUnJN7DR*{y>n%{opX#9^27y0GAjZl;dJHH#_u&ns#qjrVh7ty^a?Vd^ z<4=B=vw-5N)Yr>{RmRGea2P@i?v}5pAiN`!lnn^^b>tEiZgdp-eQw?@xby@AF+!r03^Jt zl%$otv1y3jhM;^RKw{&|HSz^_rkWs_m9PJx`b|~dRBp7IBwy9AfF;lRoCh?ORk|pF zYP)I{a;mmR!LLpUDVA-E1c?FplhwYKpc;MlZi~p!AI}Vkq$QfZToNG?>soG?mC9C= zWw9S|aO}qFc3xnf-jwg^*te!lfpPOE5p*T?82*j-r2u7N5&6A?;GH=M(T7Yy8Zi3R zZ;8bkj9F})Yd=&&yqHSZy0C)|9$#;l5c5fyBl3m)SrAZlNIMj_ouR)s#GBBHvZ{8MxAhj|fu% z_!^%3>bhM*FxQ1Ok0{5m@^YQ+in_p#pp^=u$&74u%I$y%2y%GYbWr%ibs;1Fba6*J z_nc35Sw$J^1$HRvRj}R9egz)JL&JP`A1HQ{;wD^*Z2E{5{7XlmsKREOqfuCDr$*Yc zZO9J20mA7FD*llgTwYf~GKHvY4e&?J?EI+l1_k?BBru5Y1(x?h;~$#J(|7wl;Yi1* zmOik(tTJ=G&NTsPc8`l<^DyM-!BXp=U=1yq`7FmrRd-%I>nr3GbNQtR0grqLX@>@z zOv=;G(LBFWy4It_OU7%bzVG2U7};-3bRW)-l-875aG97+j471NdOV6YruW{& zDDiA9J=UPjD+&LRuu#~BSL^<}rcvpTUSpYw#w9YNgyT5foD;^L-MP*!q)?cx#qNHj!zzR#VC_S>)>E7hJY$5c$ zt5dSHC1PVSTt=*;+-hoP${pM0DZLRj<{r{}!)qK8dG!x|d72;Xt9_LLl0(S%spQmS zMHfC}tKxhMA*8#XXJo|d-Ae0yIKm4tJ$-+x7=Wd(>fq4%55;zuEl(LcPm+14-7kRk zSCki&qbZEQDhM_{#xa4fUa5m2F4B8}Jm%?h?`6`HQ4}dZkf!7=Qrb-s=wALarkCq# zin|KYY`^2w{Y!zU%sPn%Gh|ch3=NgR+#F+5d1^;zmv~DhZ|RFYE|-u^?xn2zPf})8 zRz?tMRbO7BGVc31?8M%HAUq(~U{!v+SiWRydLBbd-vn8>H(Co-auI`> zy#9b@wWCVk_jIUxnYBatOW?(qJtB^&Rlvdz%Na`UY-X~Ap`Slp42r+yo;^sIrN3#3 zx_XLPP6K7-5QsJV)i4UMT(gBf`~H);xIN1uR_h%_W{FNo)y{WFS0X`DX{SRx=;JC2 zW1~nA$s4C57(WY<6|AqUK*?k;8ycjYWv=bP4&{a>Lp6#j)^}P~Bag}ySR~eS_ZknY zEYR;y?n0x0X3+{6N89UE>AY2hcSttgizcg>NhtE;pJmF6tQ^w8>5DqCgYJlIQXz7t zBOIf%|mSstFVWAo9@(K@v%#?2G2@u zp*MVr^ZMDw$V3}@OO@jQ9GSQFaf89A4mF3iTO~O(YOMY>iCR7D#ZcXQ``h;WSq$DR zaYt?==_6;1%WKLS1e2md1FHHGUCIC4u=JV_`oHGrp z+WK$R&ujSGR}bxCX7Nd4&KW$LfwOOX`i5aUT#{=5DsTm7b)G35GSCbL?&qMdN=!&} z-uq9*ks?1^tVy8}c~6O-7AgNvwcbCXY9Q)W_KGd2ihP*BG|O^(&Bszm6*}#W+W%ka z(tlBMGp$C1&X)cGnw7cy1JmmF{rcZ^UjMfLzkJ|--uOQdl5O&_Jz;#?7dIA`!<8&Y zSXemIo^*44Vv%Aw#KOut$HKz${D|43TMth-+q=4WJaqAObauJTVy$-!ewZbVlO^B~ z=;?HNXVX$s)91b>Qd85Vwx(n6G@E*wnwn$IWTYi6##?GN>bLYA^I z&6PxZRx8^RdY5j|j~+d(IN#LN-`;fm8kc7FrOTOCCyIGL@FumDaUh)vAtD^tIjjmr zI5dBlg1B{W$MD9!zSDZ~5Vhdux0^R_?jI%$m)QlSb;oNw99ke`!9Fctx?}W^(|O|f zrK5-0c`tCr_&rtcjqJYX-~ZpHy@H{A1n@q73I2uu{RXSMvWfyqHB>Ghq)b_R-VcwQw*E8Pc9oK zRuwOd`aK%5gWGxK*WY)T!^H^)ObE0j2n1aUted=CLwWxmq7!q!Df|6KEr->~#y}rI z{?TuW+Y{ENzd^=7n+X}-{T|$+?1ltw*5d-=C;f|U_EFbrm7grZYDUb0I+}f6kgi@w zpJo5ZPBqC@@fGah?Fu-*rL1%zwEj5`dcEcDqV12aj0Jmv3Lzr>0=T~UZn%`z<}6g4 zU5UWSZxf*_VAjXGSJCy;>vVSg)^H?!fZ|5tWxP$(^nBMPhR|m-ov%09WlIlV(Xx-^4!L-!K__Qqu@yDrKt#`t}W@;}h%gTjK0=g@F;jz!=`?4NsnP7whYf z%sTXM38Ob}&f9S{eQLV=^gwAMuo=b5E->izj7}qYmYe|aO|zQ4_=S%9ZCkvh|GKN) z#4VMP@*!Cg`avQ+AO{S1^U*n?L3n4+r!_+&j@F}mL{^z}YxDxX2RZ&58^E*9mOX4*5uDq26O|9kt=LeZ=f=|aa3%Ob)2+93a8zzFdId?oZpc?d#a>;h4cN|zTjc(AB+eFEX% zZ)xfE)GYbg!CJ_>x1D*IEteRNSGF@vbK9&B#=$m)IE{YAr}j-M9R~fLl229v&))wFA)7y>Jv#6gX|Mkw?a`$Fke1Eao=Mj~Y`t-a zW#H&vY<;TI{fDhZy??Q_=Ra&sK9iC9xs!!w;V+s#J~ZZbiLFQG^$qEx*FPl&A3l8S ztJ2MzJh#1AAG>@KdvwhC*kM;K2dx*k!rp|1y}8{lms!DanDg-AS&eU3qzG-;TDKiX zIrm1P750lq91c5GyizuOb>W1-m1j5faIarq=5`Y=>%RCz@^1VaTLUH~X>a~tlw4zO zJyUm>NlC4g1xDFH%k(!RiVnVGvFhZa$js+KZFMK-9!t!+Y$#EvMf`6brT>2NZa(|#@-~11>+G>a^r&(A^5C09cUGE>DTRZ;%o%!=$pf9KX0s3M_Y|@j}RC}}7WZN&vEi7iO%}qaf z*i4Q+FMk~?i#}3Tb0JaFVT;x7FKR^ARD|Uc&MemTqO|SRwzTb3VKN_m{Ew@E1-r~&- zw%XJu-AyF6i=GFE9yqX{{3V6R{@~O!4ShX%F)^F{diyK3XL6w&|6o=8RP51@(-(O! z@LXnLxu2^nz`}Bz{s)|>j=#VW`vcDLGyegH-Pzv#iM^@GA3(Z}vvfo;0U=I6%;HAQ zv8OTR>rXLq zBdU*I$md^yjC_8PtMvFH@<7G2VHW)|^J(p(ay9M9u52)X>zeLE5JS;`l;xI{Wp2Iv z%0&jn|D<}4?&xyM#s0RVn0TPA$=y*e&r5iQ)`KWYf?)A}Yjf7%+uZ7dw_$2^}(9yvKQ*3clGS0Lx29ZU5_;h=GSE@IkN4!XZ2NAxNcuQ`QSiq5@FeS*FEd* z=lL_2eVz473V}aM?^D0{HO9N!6_6+)o}>KZSu;P2#`#F3eIw|niJCQzZred1VeUD0Ks{?Kw6gbae~iqvEb(@8_M+F+&L}?rur_*= z^9+Yxxa?V374M%0f(g}t`$iO_$@YeHb|b>Z$s zxVtc+w|!SN@NKU{EBr!ZiT{-c!gMX*@_8=x5RM{*L*6de!?-4j_)%bvkxTCvDT8y1 zMq`^3g$pef0yo15%)LR60s1&kRFXD?B~O}H9`$bnKYVr|FG=bsn<|Y^d?4j&==fRK z7c-2jT&r|ga=8U$?e$%HQoE)ScJ@%fM2bJ;CAlN!t#B7VUxN(Kk2H>qL&jfZG5{I7 zi*t7V4|neB;uB|s1y@4z*=l}*`X^(o)M25gSENQ7Os^a$G@27fl<$6L?@~zTpX~kcQ$^xCiswYcTZW6`|I%Y$+ak9}#JB}juU7SN@ zs>nz6XL&7qMxtJKVMfyaFZSLtsIG0>7RG{vV8J0k@ZiDS-QC??7p}n_LU0cd+}+*X z-Q8LE!g=hRefGQGc~{Q)>fZP3Rn1y8Yt^hdt48l*jMiIky${SUycs|i>iV$huC*Rn zJhL?n4hJI=m@Q#vbG19FzQf(=_G^Qhz*VPkNnJJnSLi~vjo0*AYfC0UdGFrY= zGU2zpD&hP%5Mle7Im%J*R_UY$gqfOUv&S5Ns9*&k*CQDWM|-$L<`lS!=yZ76-?RSy zr>WO6b#1jzOPkqd6DV@~o!seT?(W`4e%nqSJhKnHU(&o!SdRs|{p>*|%0y`@v;z*P zw~I7RE4p7VuR7LO#%;fOurk7%^uygr z3?37aixNyCR3y>PZLx4pKAN07L=n6g6W2gfcv~?*+_QpZ$8s_<(ZbzdTt!Wo8M?gq zV)C4R`r^VWzIt)@x;s5L%>~DW1dfc2K=rI~&LyEJ{pU*f$6~1Y{#!$zW7cjq=F8eo zLOso1GS5xWPx$X(aQ}l>2RtfY6z<54&-IM^VeIWAi~Ej;E(%U;$EyMums7;An+`f6 za0nP{7?2Tn0T+*EN_W}@%ShNF_~yIiq$(|zYE?i-#)e9ZSyv@CFs>3z8)dqkIYoGf z)^N={bul@&ykhh{DYf90VM5AqCCMl*^$1zCwrq%AX6;TjJhlIBn&-gO5yC=ld5*e! z4#qImt-)-DW-?p(V1i=GfJ1qUMX`}_w}c|(Lam_g0;R34F((sO=ITmb?@()B^#X$N ziPg8vQ>t0#x@T5t(_|jag|T7pItS}3brBfDO4RBFh)Adex-g?n6J{ym+W7RkLesHV zx8%khM|$g5SF$uplQB$zWWlhv6RMXgJ7vCkY~fa(r@(l(+tcVY>j#@CD^}Dfp&!vU zY|M}LPf*`eri4YDj|y0)C2Rytk3(-urG^)m0X#7`M#syVWeSw zz5lPPxmuc=DYnvsqB16d2LD7R30$FTAKbGgPQTUss(lNA>Y?Lk6B0n>oG@~eglrw{ zxeliidx-mfoeEyU?);+mCV)2@S=kqv-GwL9pEZZ}(#ss`^gW%~yc9&fBp&kW%`vkI z*0^8A(P!Av@t_+y;^qC!Yp|x>vDX%i_23R057*V%41(dg^72w|gHLsA>tw)^Z{wXo zE>w3s1p1MN6zi|8uvEjTeAgmJz*4su0CJl-K3mx`Wh-O=Ldtau5F&K2wyN6iqrgjQ z_2(*xhcigY*@8B9oL6>mSSI@y0H+!AAJgE;2TE@>p~#dQu8SwyZ4Rd<6H4sczi?#; zZ-@#(CXs@Hy+8a7{bqkdKbAkBAL@s{pdb35(C`05#zpVJW`6_0RS&huMI5kmI!D5s z=B%EvU#Xf+l(UbtjU?toMdFkwfnvP{Si&Y80uphOB-GqJD^!jjy|=uKL+8%BHs5qNZ~QFUa90lE)^x{viWDuFs8}-;vLl2=mAOHM zG3oiO!AdiJdj65j$!*NhEmdTlhG|{2wt1rd`}eFW?xx#%oqc}IuLGkx>(xIwX5Q<( zK6UY~Q}6IrVP{r++}3>$gxYrQv+P~A!_r*665eERo70|?Tq^8Hx3-BoW|@_u@j z5nqVeX-7@R%};9fqUuWbc}{Sc=(g_)s|&t*2-Ffp>qmbVcMl(S)(7g=Q{P*JLl)hv zV5OTBMq9v97L8eu%K`372Gb>3^`l$NUv7*S2Q;mw=ye5Qn19hRIo%1OK5|xLBnIKK zor~m__FM>@#Il;J8T#_PH3Bc!iU=2a?(47yZ^ADCZAIsMIh1GRT|XG*R-zX)-%rv_ z1^e`5$SRlk3?g>FAldT#kgDu|aXw7!Lr@mVi0BHFP^MyP$kHd!z=;qMAyts4*e!@J z0zIC&4OjZiq+`*7y`9-{J&Ew(Blv71Uv!xF-mF1+QO{5g199mpHcq*L8;8VtXsk*_ zm^;1PmIjv@V>A*(z+OcE)+#nZWi5#lUHW+MF(QhB54Bj4FiX9EQpkCh>r9;(XPLIv zvRwd9x=)#aU<1=H57pCw+bQwqh3(_~P(+nTPR}6#9~~%6oH-d>9*N~2v>7{}rg)DZ zx#ASY9F&}M(N|)L`<`?2=cOWQHZAAYhG&2K@Ns^Q&dE!JIXnD>W17-B;r@2TD;@r_ z?7h&&wVKBp7K*n(FgH;SS1PwB1HZ7{cYhj#8^D>Nr=Iqbj$KOD+TM=i|s@6ki7 ztdFzO7W};#R6eV58-5bCwf;8y)! zWN|J$@;N-pIJ+iX1l!I$A9UK@f5D~P|90v#pKOE)z(zl{%1G>S?7q$L5%W&0z|l!~ z_l50@AwVMeUu8ME2R!>W;{PpHudkKy8N)|tG zRm-&;aViBXY{5a+7|wOWbglYLNIKT(g@F8i3s)m6RF_6gEGG6woU-E|P|EVMRV=q# zou^EsFsjLO4_n|44jyy`ERi%6VaVnwqX@)(OjMFP*^7IiX50THpXP(%x%~ zYVu))lNh}$6T)bf1)e)MrW1R?#Z-#V{Fe_F67LbosjfD3w$~mMTi1p%@pON&omQBE z&#-F~{AkyldDeq>T23?DZ^*Q3$vtzt z6sCR!+Gg$Y1w=oiu8zs~VS6WYc~f}f7kk@F$8o8x74SfE{z?Ys ztyuq5>=D!yj%_sGytH8E0x4>6qn$ug}AmjY%`2}~;th38U+C)`LQaxf! zrmoqHX8C#~g>;pBG;dk7dinliNuMbXl?;VZzhhnnYPCvLiLgcqUn?F}6Mp9B^ywUT@tMNM$`hgv-1=;=6NSa$DR^XLWQBY96oOU{rwXSeJ1wL4VEu<^qW zok?BK>t~ZDJdp8Mru|;X0v8S%W-RV#J*dwX1MEMF+E3n6n|*ca0v|M_&tijp49xTo zT71--ss+btcB8*le?^yo(%kr-pfDr77-WwqpACXDQI-larT}CSS<>N@VPsf`N0Ao) zyf{(bd{mC*g~_mP{}O?#q`cW#L~BMt02Uw9XO@%_@?xp+)A&J8&9x0)cM;9=5y#(Y zi_=tw$n?zE9yka&jEc$p`7s6e4kO|H@nWW15C)6Jf~_Nj>p}_IYOI}2-j0wwLBfK2 zn8Bu2fJ$J6)2q6x5?#y8GI2_82V{A~?4+f3TCf*Lyq57O*(?#hapNn_*$3GtkcD#ml@PeU`?v=d}z{kIV?)Yz@ z`}Gf?i+A%E&_((?(6w`NFn4rg{)6kR0tXxa8`n8XDJ+i$w&C;)h&Q5!hF)nzaWL77 zBXMGoJL7|^fBMA*?gkB6{+T%09n1~VgeIErhX*C9`c#t5<% zgznLvg?n6;red=>4fKqfSJbIg6NXp&be=cNSQI+>l$z!M@*1Gssk6iyoUpPqO|EdX z+2uI%9zA#29jmci=ShzSH??(wj1>ymIT`ZxsIg+ZljA*Hp{z}m**{;a^5$mIL_ z$M6;E^65+s3-?$KrksYgXN{LT43wL_jmm^hQ8zoDXS!go40ab?&r#r*yd%Ez6M6T? zO~Ah4)5w~(4O6V{`drwN_3>I17&rtJEb?c*Z~wD5ZSTTDCJ&xlYI)Xc*73_cZ80m! z|J85$zM|iO1q$$J|9hq;*!Yi3{q;XLbqxFeGxdL~@&DUQ-Mq=81_lN}@sG2baQHtm zHT@r^KL2Z0^Gd47V}YIT&pySzHyDi(3}|9jU74PlGLlp15+*#yBcXbyOKj&zxfB@m zGpLP^P1us)^8*+^4Z2^k>sY+%z$cs!BtH9rfJ~3G?kldRJQog%44*KSum{Nxze3yWapt7&BEGyE7d7RHU-bZf3)4-UlNZXqnGG`OZ=5%wjpLLv59Xs#L)AprT zBCTC&Hya2DG|8=(Ts@CA4Krhn9Dki_P{c_*e63o18Oe3ODLxS`cXX_-^_ikZ^*%;a zd~R_vmflN z$WwuVL81PmqY(e^{NFz;|Gy;>OOSsq|Es5xO8jUr8|tG~Xe53i5-mvtGe4zB;C07B z0!Z|4$+C)5`%FxxOyE+)aiGzSvBkyYOp?)+bFdG;m6N6joW4U49w=a>Emm(Pxvk|N-!GJ0PlvSi+2&b{Z(;hau-Li zC2`waI~&3QapCdvnr@2&sqtqsrJgcecRh)C4gv>Q3xk0^!=*SlvIJ~}0Mv`YII<1QXtJR(rwuzX+;$lp4Ypa#?$sfW8$ z%e?RpSHMC)p9z3myia&2c$_IIEpBU7K{(}6oOolV zxoUqY-=316$UBbRPQzHN2qI4%#Imox1H_N+_ju35%geuV#Ks)jERUgCw>8*WO63t; zphqJ7DBU-);7(RyUYiQu3kT--;*VZhPil=UQ{~+PUEGgbNjz>+OOU)yk0{w27cM}a zlf3Xe&vTm~satNm^n95@uAkeHIpzF5unQ!7+?z4w56*Uy!3R0cySc+<2}2b~e+~*5 z)Mqeo*pbiRM;7p6urkTFnDU^tsRTvOrFCDJ-^2E|C;l66ea%rfB1TPViQ6^GpQhT_ z&SQbuum-RrO5jWOKpfH!dBwn-jDxEqjWlsO^a6Iu(Qs^SQxUWxOZ&VTq)XmtEbO?g zW~P(DjRSV(@{yfITvnF48bo+ChfamaTrUZl<$}41NUFzpC)eu3q!d(BiH92Tkx=^G zINRKsCKm&p2#Qrw{tPnxV z%CO|%LZOCozYBxQM-UNx-RNQpR}sZ~CnzCg8gTGUC0i^zL=xGBkr34mTM7;ub^>8) zq5&M*QK$Y2M_5`aw}irSEGGgmW)Q-Ph=RJH#PkR6()5SIxHjU~XF#K)% zmscWmX%fNCF)A81Dmp%%Z9m*Q1sU0OSw)haz7z$2XhO!_Yi7WA`>xsJfUl_C$*}Fg zmL|*q0nV{6Hu73`7L4A)6HE8U_mhkm<9NhzYJi|m`5-Y(wmCQ3#zRi8=l+Hj-e&1( zsaSX_!@#^i0hrTX2jbrA#sM~3EsyhWrifAVpGq1ZRk==|hq%a2q}wB&#XqBEClnl10_Le9&EA6yreAA2>jjp}NC=`*!$pAR+d zXCnHY2>&v;-tZN$8R7TJIl3(nPiN9 z3Ad=>iTy>Li%}=8PUqvC>`K3s^CzrS{YN}T#x-TTPK!bt9R=PKK>n10eMInl)O?^) z!ciX{)e3j_h={=HDN6BsBeQe{)9vMD>=YNgOPY+X?X2!m(9p-KpOVP*$Q@$xtw;YX~_b1(I`Un0w}6Bgl360?PEaMxwYrmat6er|5{vD8yy$IWKt zIcyH+4-xmsDvalpZrgWzD`Vim0JYDG$Fq9%O&%ia->nZq3OJJ&6dm$p$QIp~gNk{=>S~i|<6|ym zCvobUhg;0K%%P3{E4%ZSFG)K4+#5TI#WN-G!zd;|2FSet<@At`k$m_eQoIe<0zUIG z*f0N)ew?`9ai6g8;=JVe@~rX!wYL}gqUH?trm2cpSy_&`&P}hE0^$$^&}yGSC(TD)=xUa+pSSvM zmcyR+%oW=f4*eyg)IUF&8`gO1saRxXfWjdR^OpCB+fcE}p2DJ7(nb1a!#0{b{f3!GGnH2mT19Z=B`UG{_;rSMxbkfNnH}!t+A;csV9gbpD}-T<#r_Mb zE^La7$*x-5Ko7m}$Iret;7pOYN-x~&-2B-8lUd;ZgIQ>SgNWE3Vb39#EuH5wZ{HV= z_5@N07=Cosh6p)n#eGR;G4P=t)F9m(u|8C%ZpsY)hLqFGUZZnAz?}P4g|Y8MQZZ?E z0_$n}qJuDdisP>p-)13GTpNUtVT`dO>d7o=roDs%sCiDwsRYG%0A&xzvN2_9%& zoaCnb*#Pk+P`Xw#TiuWm0j4q}#d7J>UQW$TWS0KY!W2rNkd?>~uV4jP1x{G|(q|Ea zVr@mWW}@4b{3WlLU@kkl>5p*T_~w0EfxV_s-LVWp>k*>4mE;Kv*aq6>1k^smVv7FJ zbDqGb$oA^8wQ=$w>8Ct_14bm@#}ee1?eVRYIvwDUlJyG95ww7aqyFlN+Q8CC%yk=_ zkzjdPEp6CiJ@Y;1etG1?9Jw3qjL>MHQ4TCqgNOdZdd+xXFLx|bW(lmNIqg15yT+q8 z->)J(_~o%sOM{-JLt}#%$AFd;!d}z0X@KlLmP#w~DJ0`Lzc>twQ(HxF9)75ke8}s= zXO^EjoQUHM;nL268E2$>Atw%)0D1%eY?%>elu&)$=8T4(aKJ)CnZ`(O2(L$c_&uF) zNl}x3Zt!lq(p9^b;8X(pxkj;?bx`c8Ihr4-p{%4FNIFUX=g_tCy?-Gx-A&ZcHl{I}opzMKO1 z_%6(;N+m1}IJ11Zo&pZo;MGeUgwKx|5({JaiF-c6bP6Fyc%RWYrhnIc{090tfg-E> zYEe5QHPnlzT6ySQDG2-t5l{H6O~M~?#_f7;izpL^m|*jYiPY?6TF80)J;R6VAR0;Y zrTi1wN0w=g3o&~+=dQ|ZbUcVso7Wbqtq6kph!U!C?i+g@mVz#9%JZ^Po}M^+rKdAuA!@eYs^OX{95Q#09>{ zYcezT@eX;lIv=|col|D~0`PgBb=d+UWa#RUso^}Rl=u?n=L`6KF&e!2M^ono^ZF>&_d2o+-mzK zIGDjy=HnKHjz+rS+Mk89LB}!t0 zu@rU^-cK(-6{+5Ijg-Yc8udR!tdA1Z4~hp{nJBY}X#79vR-ac4YDyTI^yqL-73Iaq zL;ff;<(R6N9lQY=kK|1jqX`B?$T)RGH8r z9>`)2fi1mUM2+3_ZFMQNK)Mj&v%YeAs<=64Gxp}SxtIgFWxD;^qJfdi@@w<4)V{JM>+Zcz3vj&^$s4o}QL?L75ViR1hT=^47Oeg^hNA!J%Q{~9 zzd>~>9QZsI-%KUm0zcjDJf;&R32tPf=}9cdDDc*OHZIMgD_#eZ@5ZIi2n4DVRPFd5 z7aSO25-i&X(kkQUY@b17{*dd>XSLozG`?~hYQw@;(i`Pvcl2*>diXFtB)xCGUw*k0 zugzs4idB9TwT+vhaJg0WMd$ncC~uk5?&FL{<6Ooah8J@A5^68qC&#@+WZ!k+!z9o8Y1__T@R#cd?U}4HlOyXMoO_<$0({ zHC+xS-Uou;feo(l; z!G~Hw#PAEuz=hwx?PVb)TdMdhEcmG{5G@d`UR+Pl5bWNa0fd7e=S<5Whzup+4?bE) zFeiJGb$tE-`|A^&IC*T+F(o+Vx1=9J7WMNs?Ra@7?@|bP);9T3@Hbh)i5J{Y*0pkA z>t1ZjBm+De%4PKeqC^`Mp_Z5WlPL;>N#OJ&;fIe>a@&)v=;MnGU&_u4e%5xF5H(4a zGwe~JU8AaJT9EX}vgK{HM_^N8DOSwA)+E~n`dv;?HN3QK09oN5+nEemTF_%f0%JEq zYlmP&tzhwGwH1V=9r~d2^Z8936~EMIoCCVG+Mf)y2xWiq;Cn4!YdGa+-#ka55X?Q{Z*(5{J&74Q321YF!pBJlKXf3_@SD=+$ss z7bHGX$ql3s4&9#TuMmG6Mv=oKYu7=&DFLGwEmt zt0?x#qFH0}7oFDytOqI8>;$iWI^zyVcp0>=Yz@JM4XZgev&Tv#T9xL3c56ew zDutMOv4viP*%N5lOyj#tufTBz%6yLQT8wGO8tlwOqYtr_3fopcF2NKW#R!^7Qlt?s zKW@Y2nxttfur$e0q2~`QVVi!^i3&5VYDu3NwRbMvLbn6~jQJXsqO{CxB zUG|`Y`YwsBxS7TfPZ5Y;kH-Wn5zoe3NHu~sk2{TTlVlvU&CuTTL1c!l!$0C{>IY~ zTp&MmdDhl7=DcoGJPfYd_Eco-jKaa{V40QIC=}iI?3uaI27cj-VmxK+4-IJXVozy; zORT3Q)G-*@x&r)~(W(PgZ(O+UoIz`#rCdbxkV#y*Gavxvc(R~HMv#83_Yk{5e`F

sJ1d)d&2u|1xB%hi_JeWw|O$d!YlbeMdAPl+$xX{yVF z#D|=SYriLmB1{nvG?U)i%b&I0k`LP-SeTd(ZC~9to#`(Kps&-Ln;l-bpP+0vr5JDM z^#t?RN-(1rN8A$%U`DSD!(As-fg6rRVSKOd)ir0I?Rfxg@LeVtVP;SoYo-^&?a2F~ zkgqx5{v{AJ{X7uBdPxFiIYD{s135?Mb=(e&``6MSMBR0}(-xmpq+G#%&1NRv&8!Q% zr^Ti-I=GJvkz(}aS|U)d@H{A+R4|dV5a$=eW=Fqz@s1o<>(O{6?1OYP^X73I; z+$TK%OAUP)b)1i;OZ4vO+=6FcPd^n1N;L+w z=NydHyN<@nieE!1PDfJG+fG8C#1?hElowx&S<#%B?_{;NLFlYH!&3p$?AnK5B9gv$ z;BX`2^dIP7&IGGzH20jy7qg!g%=KtnD0Wa8e8jnz@x$LYfem^8?KtDp1_yJ_^^gi| z8C;Em^%hzCou1?RZubTv^QPKW6z-Jlao5fVP1rD7h zBC8;ij;zLw`rfv%3pA5c;PZ%Oeq8D-m(Y__*3}D#%1-IwWe>47hsg93I4DV_2+_nU zBJ-_(Nb2ZYEYk1bRe{h4DnRi_VO#Y%Bzs~@IS>+2`+m^9M32Y8Sf5Iz7!ebCF*jqL9 z?@)T~Hwt0>Lk+?Q`4&l6hbel`G+VZ_Ll}OJdwb> ziJcikqveIPbG@7Z9M>l(0#Z^XNO_8DOrV9f}r?Nx>LldU(%Z3ZQk0Y@8e`Sn^prO6*@9FIBa5 zUawUgwBQOYSdD_`JT~P`DNl4ijZ7_${X-;@C}Z(Jj3JsQd|y^D*b zSDX2(e#7N+RtWdMEKhmT_2p%&<7a#G0M>u>0D*V^g$Mi=5P<&jfObnX{x=VBVb7t5 z3wd9cC#FBO_~4J1x}ZiO_I)G!bAuSk(K`ne!e8iU9-RUcKKu&eFHpFeRFh<322^8K z4d3VkM}1>#F-+FSMq5F*#dRrYvTMTR!q0?=xgm!KJ5 zN4dL?(&auJmu-~?5n5Cp0MCl2oJV%iZF+^dqS^sN1LAV({!Ok->SALW)5ytqT&hw3 z!NT5$&8M6~MNC`m^g+$MZ9buW(`NhIlVQ;Iel+z++GFK?4GER~i!lqiS1e-`g;vw+u)#8S;>qkh1CV=atyd*j;Y~+?!=&id=%`NvQnKa-wz@h| zPqkVAT3=7yAJ)>B-JdQ-mQCTU`~5v0D;TA%P68nQR1$UYU}AY9onFmP@chfx`@0n3 zpO7TI{@@E^!^v6BpG%CrbwLts17ciAee1A;Dw<7=?H;72`d2>Q@k(|MPr0o87Pvrt z{YSSE;`%S#=C_>S9P;lA$FroOJQmD3xmo00hGGH&FVO7!f2rv2^n3O&519yD(V?p_EHG{IifN(G2NaEf4l;7`uEA)9 zZ9_Rb18tZrFySZ&tr!f8cw0mDi*05fN|VbpYaTQgg)5WTFo^U8Ci4XX*ZMRSb2qg!t*7@M&5*uu+O}MEM@0_mLu5rpA2q|aXYU@CUHqx$!Rt>T09>YATtE}!*fjgj|hWzEx; zI5^?Q#;|MMCB|=8Gm<8H5&584BnQP6Ox;^VUE<|KOqB(kD}{i5t3bCp*FCev+_?i0|vZF}jt;qCFFjc%OprQA2m{{?n7-bgcMCIeY4K z7AgJMoM@9s<_jezEb9o*G+swFPI_gpOrj<=3ZgfmLMNe~s zcDeiG0f#JcHx`C}mIB*W+@RYdIGcQ~uDR$Q+`mTx=;i%5Q|w1-YePVP7b78fc`cv~PK8yV6Mt}lY{ z8wr}mMYsYJl$B$M@y8`GVSact{sip>VbwtNWzbw(JW`>fg-H>BmN5-5&JAj7=KTco z;x=&dOl24#Wrj*D5R^QGWv{#PRUa#SpEbxv2L-2rj3Z$7KcfU)Q`Bw8NjxQpxLLSA7NZ^@n{>GZ&1XpwzjMnuT!f^72H-m(Mw;~ zY99%-Odd*Nh?wN|+8$nW!|WePM?Trg;l85x!O8?s(E)-J?8y&cyh+ig^ii-yvVG10 z{`jBzd6U|ozYsXTjy)az+-v9c+~_7CdsN5oL(%D%2GRN9wydODQDSSk?Ccy>^X!5wqF#f&f)R$ZxEN)*Jrl#+Mqlo1*@eICM zOLarxBRc%ViDOuL+c*AWK~%C9bF@fQrn~ObuN2oj9!o{5x)EgCh=~=#6lO15#pqsv z6mra7J_DjE4hMZ7qA5x~(fAZ{UzTkPr6rmFqOutEeQA-k&>1r2pJxTga|})2lY zekEW+w@i>!J~Okf@_I?w@ni~XO}y@{uQl6!?0twEaM{>varPjOR$e>%6NF z+z-=qGIKYslNYz8!2#M#ybxx*6TaNVr#9VO(OJbegg;B z_ctPCP3MV>z_&wz(k-jin0TExr}p+DgW8%S7iG}z5AC{VT~ZG40?yDtY*dY(`mbqQ zC-Q6kj`=g5i8AB$6c~ZmciScUnKsiaYrSwPU7w`MbSsbw?1Ol$wU2iyYwZjhU1So` z_;)e!Nh}Qc2hq~uhTJQ3(`(oFs;SX#{U0t%ex5_F>?gZ%3~V(_$;~TAHZq$OP20}B%5d8=$I_ZlOMafr8q5{U{aVJ>DvqYa<FM=JnGc1uhD9a>KR6p@5ln88=(MZI8EpCUREW&n_yN zB!uXR8^u`yfOSLWQbHj6iGmRqe<9 z-UEU0M&?bF=`c-jI%L=rXRfx>$%I$er>3sFUY%6h;Ediq^W%oArtDstPF0Z;%-cvb z{!<=v5k-oqnwJ8OFTb{hKaPnis?i^YT*vHxGg(9j4heKuPAJMf$C~UBgRohiIKid2 zZbhG<0(6_c z{NIxTa9uzQe4UF}e6F9nvRxwJIEV)d3Y*D5$QFYM%_a-ruLSbuk9#{!wQM0)5B z1tpw-CaSp+On2wTIF;Se>p-d-wELh6Z*Q0tKlcOY!VcLugo8Hg_a@M19TcL1cIAr_ zY!^<@W0l)FylI#S%#7}QDCUqwb9y1lyWNXJ#>hN}1TCc0>M4HJ^DTY*2lCgX1+kd? zZyhDiQ-eetYn6ZI7t(QLuD$!13fzB|HUx+J{+v$Hg3>5> z_Yhmr>fGXOy-Gpwy)>kOvIR$yQhaY|b<>L+CxlzNwvXPY z3o3&Hh*`{MB4}djqFLlbem?avtZ79$_6Mc9(aZIcYR1@l5ffUzX_864Fe$;_+J2n z-#Pv1cYgwdRS&tDKXUr(L#fIr16XLrq;iDN@|_~z&lZ_|e-JA0eKg{)MscI0x;(EW zj^IZ^?sY&$CMED?D2xk3!%8u_>k>oHKKX`fSV70gf8#Rd>7v6JoJ5mN6nTCx$pSd*=-do@e@Wl`e(U}|-Hm#o}ejW~OA=%2AheXncYhf4V+*me+UNQO%@WvWv?p(=a7 z_2J&28g8xHn=6j|t)_7{sv*ond6DplW3&XZ22;P$IrQD%LyA{7@Hu)XfcyCVCpb{^ z*~BAR6q&Y6eKkRK6xrrg?*!eoM(xxoj{6Lz5ji}ZJZ9|0F*rz{4p*z35WPj=)=nOtgH`;_WBXP(p+%~- zsmE@y%E>a-T}@$qsxMy!O&q@87@exujK~WG#p_bWtMD7SQjJ@lvgk4}ta|p>{|viH zFPfL0pdy)8c82W5jE*%ADsicl6LG(S`BAdxUM;GqMdX5^MfAKicQQFfgroSilHn?i z6`NH=`jdwVOk}#VVb0YaWQpu&=Bt`0@~iM*)O*cr&`oh+S!~f zeDN1zIhZk)U%iJu?AdG1!=9@cYxNDh_tI2rf8<(a$qLby2)V`KPFctU4Bm3X3#Wj1 zkEQw=6_E~r%M3LcyGiAG^QI{9)>mvm5kXr(32Ba&cdzK!66KK<&GfDyd=kTbnU{4e z%eect=KOv7Ev`m>sCxfRgrWY}uSm@YjQU?*q*Fa9$*ZRd3Cu8q>LBdIpoC>vuKK() zb<@0)R;!yy`+K{a66-Yi$(`Wr&9n9|ZgWr81KK86*`8XSGXK|->Te<2`7bd0G>UxC z-HiLJ_@f|9lqUhD9~Q)`DmdA?w#XzdFr?o_DU?Qvt5=iZNAGF!*~cQ=_?-o>FYJ?= zgyyoYB#j1DDpNO_Z9C^DkUw@5JVJH(>UT(~R4WDMXk_4*Xm~0K18s7>`O*QVVbZ3r zG9WT7a^pSXIme;Qk71)`hjAS5i>Zx<3IuCbA3j_2&Ir(oCREeT<2V4;`4;18YZzR} z@ty&^mfFpJ5?*V01*y)C6CF`Un9}((x;X_kdKAKKM?#aUojqP#Vo{8m>aGV~8oX4Y zH%_MtUZOi_-Cy=K3f#F{b-fU2grz;gMM8-NE*9oX3Rn`Ig!UOb$HDRQ@%9lwtqMX( zw;{Xp(p~)?Qa&3cg~pQlfgM}suIH+YAhKaqFmsY#ovn7+% zQm9C*)p4nqFW%9EWa)PvPh4|WZZF%f@7?f6CsF@xu>Dso{Qn8T|DAu&A$-91ArAEa zJyKdF>A%<#epf2~XQXr$r}_UQrT+=O@Lwt``ri-#w~^8inEc#t-B<#DvjzXA5uaMh zUmoyhBR+vY1QAN_|7^sU?xr@gi_!06HE06+Asm7M76*A%&C^Jp&9ou_S*%I#7qSKI zPrraFxGf|(NO^k%VbY&UGpRTl5ZUrZdUYFq*vJ+d^xfb56+V7g7;*F=7N~I@K5E?G zb=yn3;$8=}06jC3@2_AOaEq|fjflqRyT9v4V4*K&S{2eq>{See9884xcraE4k>zA_ z2(HELMi0vs4#1bJkcUG8D(Drr|k~nzZRyy8t z=*$p~kTdp`((8TBbI&~Q{Ot^Ub?Wu%W8f#c=5Ve*5rb6RmR|QG zqD%q-b^Eg|*GWF-aK69L%fl7C&r8Lw&yYSt08J7~Q3G6=C&h6X6+@DSm)^sPpa+!H zWANl-gsGfh7;EL6_;YgTI}&pmSyt8nMFrOk zN@PESH_a(^l+}t2k!LMft)b32!L|d`O>=FLR0kG&?u-0YE#`rAwkuBdV zqoeNgQ2VWx9l!E*V~!eNghkKCXU!T$kIIR=!63A!JsfhZ87YlVZnGQTWd){BE)q<6 zOionMYG^+ZFcnZECuPyq$b4vYYz`Byrt0;6v7(9E3bd9r4;A$SPF!)kD`c~9aJVU= z>6~yX>f?KbA{b4zR(44r`Cqkt1yo&0wl*%oJ-8FW-91Q<00|o0T`#V|9fG?PAh^4` zySux)^IzzmbieL5vu0-fZ!PZS%J z9YbnjC`*jUIPXOO;jX$AV<}C)fH8ik-%xCWfm*R8;CA1^AOxDIryQOzFZS&~Zhc8pHs`jkt1LH%R)HHU23*A$d zQ`4f-`c39-YYv}fm*Njrt}k_El?(S6UCL-rdE91i<0zwYY|j&xDNSvLM#+u^dvc&;!(2d$bSm{RiMrex{f6*8l1-r)kDWON;&R5}!QMe*9#ro2;X@ODMlZ5+QwuJ=aAZ(=UaVA*HOjB&r7xE z`A=|!X{DI9H_-bC+BG;6OJkIn$v7<&L^v}#yRF@gDa=ul^r|rFQg3P%xq6^aO0ZA~ z8k!Yuy$bX%nFqseLhuZet!{EZKUKb^Bs1^eUeX&v3b_7c)9XsDJP~FU=Y1Qg{jR8s zC>wyn(I0pxANqNBSl-GoWrH5ON_QkMd7(R9tUKS&&0*sG!{{r0mnjV%1prE1dOmkv zUla$^6?$IGWx`z>Iw1gQOknWI80GNmwXowSZFa(Ws>bijDDA$JGM7?P`C2P_j*;CC zT!fh+2Q_aNB99byj@VB&_fT+eR0f3J+Eks?P6n|_Xg@t(Ig(ibg0DPiDI<9dm}{8X zDT0wqTZA_7!F~)LY>|le+hzI`32h(djl_HaoTkErZ$6|r>oSWz6@d9=*%tK`u0P51 zZh5lAG#B{@ADKW0y+R$T$vvxy4_b>E7u}9H4m~+MG8dJ#>ywCBK*?buhNo0W@ZRIP zV&x(W0DZ$Zjg3=(m6ukD@Y7Qfr~chHd?xd51VJW^$w6mf^MxlaeZLbi?8b7ngRIhz zN>5E>!<~7sJCqwwi&t>zl67SVHZx0gNBj@NVH(q%*IS4DT_cUWejuWU*NS+t573es z^dG*#AiFz3q()T@*7im>WJ_P#QGnq4e9Zu^_%GdrShN0Pw0#DG{@=cN)B&#A+y-?@ zNfpHK8oDi~i!>sU2{5BvH$Z5p&53sVVfI|LfWh&0OY>%RZ^ck1|A0CBOp#Hv1=@eY z1Cq|bqZ08+gfvjRxZIGNrkgF4%aCZ$EkwwC20TptKnPT70+O=@cB+fE6-ffEWPezW z>dXbg`wX8h&7SL!W7?M-ZV0wKu}kxlG<34QGURMW1)FI;D~;k!&~l9@J{Z!20M}=0 zevOXKw4D4e8dlt3eX6x1cY#Fix6=#ubm{n4&}P0Jm4?%Rw=hL4%4;EIfRjBV0_Ud= zp?#jAw#%MEHqA72)wNoPLCE*9ThUa-xZIFVzK^(654Z%ExH5q77wy>0!6tw(cC2 zAmABEg#{#vo%BRp6z5X&w-lKNb7#KVM_~y)b7Z}ev>xj9E=})0Gc$sn4?=Pulk0IL==C9h2OcLSBjWz*J=#Blcn~xXGcqA79 zXd@MbKC6Jpn|TNNUap66E8RnYeGmih!fQkn%s7<=UXQ2Bt##%PKWJ90{TkB1;*=Lx zccFvTjN76Z39W^nT!yW>irfY^j>D@X`)Xi{WOsW2ewWnCOf&+CO5O}9O|DomNI}Kt z!Hw>-&9h^sCs*JV>Uk|`z&LP+$9x{Du^HZR6F)~Wr<_IFo#I>j721oZkKEn&*27yH zDb{Yadu`+(fr_5KPOEL~2=WeG4;G)&zr4(5{=@U@u@J%)BEl$x2N;`6@iGbhlO&)v zP@DYsTUNhI0t)=sZP8ctM3diK@Zw+eje8t5I;vTXX)Ez=}W42oei z{1E&uip@eypfaVeA*p1>Vc*|I5|OmTw-e#;2N5Alm(Y!3VrqGVnA;`Qb$YkQj$DO1 zY;m;RG@d0D%`d5zqi{RSu!DXTRV?54SUodd@~p^VR^E#X1v)rpH1+OrS4}v z(huBd`}S`X58=DfLrt!i(Hscd>j-8Wn!?>HQv`b3VlXXjq*0v=+j_0NYR4(F9Qq)J zS*(Dv(`rygP$H07bH&o;HY?|sf{9ev;nORG_5Z5};{E z+&k-3hRiSt2MblSGYj2a66Y4gZGOIEBK%sgI3t64sin3T|HaHQ7n=WE?Q6io2+lsM z3qYv9+aV`E%kT+93jE^Jry%F8AY4CagMC8_UFnS3pIk-?7`Zd5L-T~`?(eS<6;iB1 zgvJK@t5*bA4cHPL7BXUm+B{C(>%@aonP>Wo=8NH(v+h*x^&DTF>K)SBDkodj9#kP7V({s!vQr#jM#YaCWq3yZLrN3y@ zRn^SE6a>pVYOzhZALp_+w~N#}Z0}VfRQJl$r>>J(^^OP9rdMl_Tu3%e_XK&bM7t`r zhw7;y7m^~U%-BjZeUgsJxr??e%>@P#W}ou}st)T8my<7L+i*B+GJ4T0c(~G4d-g*K za&XoBYYqpnRlYvWB(tdi=_|F)cB9bj>8%8gEn1ORG7A&t&TUw{8ISgN7c3DA!^OGe zHb)zh1}qlqnN*FCM(mW_;>fCedo%dDQM~M(Nji^C0hu16wJ90F8Dkl(S-A; ztN55V#hg3Dh<8uCvYu+O;Y?@fc@YtlU?tOeyv3Dzkhb-W_0ZS51Ogkw=c-ji>^GBD zy2`|aOqqk}5Ad<2+Y)oX-UqIqan;>U4MZs2Y*ig74o-R<2yEY1MaWN*L~a>#f{o(4 zK&lWr?VF1o08{ooL89Bx`ycvHo;r#S7SflX5-}y$ zsh5|=ZcMI_Y5#%`RdK$O_n4mQ4_Oyf_)N;n*7&ACfaFmmbRJL`9JJCl1@w`tlHsoknB?v_9~ z>EXeWZFRQNvZ#2qE{aJYX}aV#qyBh>$@-WJbKt-} zcBv9G1TNExx8VcWKNiV#GEHGM?0{*OFTBxdNW8Jd1Xv$+ip#R+I?r^6E!04L6(w2jPH_7 zqq%XDCDjEz-ygN!HkftQqo3NQ+;j3ki`?D@y<;I%gpy{sbb+C*vav_`$=eC#l01#W zgT}!!C#FIG&4Q6W8ZH=RHZ zt4UljS%6%==N)kjzRelr@G?QwT$pB>P0iYIuD9ymt}lU~{HNV;1(hSyD`Lhm*PT;E z=e;|oD&FAFw)Pu5!^PQl{$WMSa$D~4*a>A&h+67$SCw69Jf$~MW++iBPG%NM6znkCN=5XJnT zF6JOmj?$e(DDtZ5$BlnL8&JDyUu9SGT&PQd#4Bu9i9gnWo}k5m?x+>9#^rwe2JsjT zCOtH# zm%IzWYB*Juc~%XS!uWRFJ1|<7(c2z83bW_2mr6gPJh@qLfZ(2z#XoxhS*)>ARlM4) zd5m`9$#+3tYRT)lu)SaWD(Wt9gnk?se{8eallg0D2}j-C_sDjQ6FZj?t8-N@9cws< zmEhNy97yv?_Ow%{7w|ENLf~pbhXC{$&$Jsmvz6RTSZ@IS; z7Oq}7E7VVn`Is-M*A zY~%|4;jH~_W3hjc77u(xg&4gVA>l(za%YhZPKiZ}o%6vP)7LhYucxY#TM9S{J|1Di z^?Exu?CsjCETCUWiSctb(%c&Bt!`7}7yv53itrl(3NeuAYg!0!x@KBtsc@MPl%U^v zSXbK}f)tw7fSgH%cz1}H^}*vx+N8P+d{mm_y>gi$AU%s1?m=sQGT~ri68R=ov0uZE z8}qg$H`;g~sPs>CTU~8s_N2SQOIv=L@!bs6T6VGz$+JIIjjrt)1uG+#(=}YJ5 zFZZMsQ7BFA>{`}7MvrpkOY@%0S;FwT!KcfHwDgwgsSs#I&kF?Gi4U_(fpyW`ipJZ8 zETGT^FYi@-zy!~S_O#nNa|&Q6hhF+ANLJ)-3*mnMV7NB6{O<6v8L;IwjQsLA5skfh!Dgc*W75}-|II!6W5Pz1s3z`$up;PIZuYR!$A z!#t7jv=*>ZHZ~goAnIqU5+4M7+n;&Ash*A05@Giw!|it~3GKE*-huPRwYxgP*g~s_w~Pgz)8%|<+(rSsj|s`r0Vdup&iE;U)PybW6}`9HbEGlKki#TF43Wbl6~W~)l3QPxy`vFef44*#%dcO)t#Lc)Qu!ScmAAw8|NFcud3 z=O&Cc)2BAJLsi4tVJ7+yD5RvaQdfJ3abj^ZP6_52_SVU5^!823*%gy@i@=BL0q^bJ zT(`4La+pA8gm==?+SazYQEhV4LGi;Q|xRwS2*5?*%a{vEHr}p zcZM;aC#eOxz}jp&e#}<$QAp*zRV2W-)yG%mHQ;${TkSqr^4v5{$Z5K2@MPsPQ&oQIKo7;iVtM#gC@f-AX8uJi;L)epji?-;CsS}$z`N1)jC|z~qv%gyMjUIhyc2oDz#z|RWm3c_s?$Lq zC9G7H)(Kp-ABQ;xCE{&gT$wM+;>XG{4ujy zSpCCBba?(xTQTV&yk6UYmEs$sx3uDm6Z%9{CUi{(KJZ*tfD!ZK5HFkv>o?x*jyZFY zowSKPB0{XHp*f`CfYgB*DpC0xC?=@MkU`2V!Qji26hsmF;X`#olNfE^QtDg4E{O~O zcjcybqxFzCTMLVkyLw*IbGzpc6>xYtPTR6o#7dt-$%-yrwLb@w66$8To{a?azM5v6 z6L9#DpYaHs=x3I@9s+R4Pbl;!I<7X>$kv8u*CwZ0*@vfH9lE0D6&8%sh zMn(uBEZ7y3NyPcIR4KhTr?4ovJ?2aY*rs2KIRqa#Gn3?Sk+y=LUvMido>~8~M+Wz} z%LmwoeH?#dBPe*1){iZdSm;pX2!AoizXzYLKEp0OG@~yI_|c^+@NhW-O{#Unt#<5# z78VDn*09rJR)!jXdR?W?U8MX#RP0xBe+ZRu*{h7){su#0FR;jYjRsfX3_Vc&u%_V> zP>Xk0MJV7OxKiZ=%(QFs+5IRBWPA^)I(f)}l~$zckJ+1hl_Cg4GN(A{F?Azo)FTH( zYRPD~L+k2P3G)F^$o4ly|NrmL$4}^dJ~Em*giRG{=UEShNDZeAc`(5rmsK&o*^;Bp zG?@A$3jl9}{Pt@=&Z%oNQtWle8Bb>#|c+qod zLm^dDpN9fIq%-An?(yyhACu%g`j>ms6RjR4uCzR9a)?=W_UR8b#XWUhEirRSo-Pz-;( z=FUKN215|C^owJgywAWSHTZH56^%3tqQ(!pjZH7XHMOn^WgIZ7adHqP?P3A`sTkoK zZDSSskhcS^2S(}Oa#_1N6DD`@y*nY!yDc69*se-a6L;D&HLj|i!s~|bo9qe|#5ocw zXkN3`{#)^s31r5NG*UWuCUBoF^T-~WqZdrn#|6l@C>S~b%bVB7*=wsckSkakia+PZ zEMZEk;TsVOjvbl>U~b3+6SuTA5c)3tnkXR<-vw)*5ofj{5h%rrcM_CbO*h&v;J9(a z&BKgvKh}R9a21%VFwp4vlS?W7&sZtm{vsx|-uNw+{Dx%+}5<@-!b)^U0S3@4{@;bQ6^d5%sO>3w**QtrZ-eMCOW9&o8k)0ZxyETcXI?R%OUh9L3Nl?OfCz-x+~vAo$$@(`zIRhU z0tR~gJ2R*kjJ+GgBZN{MTMlp*W%JirlwIIoXHf!w5(41FJTvB4U7j0;a8r<-*LHHzOlRHh?KhZuY?A@A=o&A22uM-w1$tE4w#f;&K<0n@_ zk=V(6lCnaZH0F`AQLJG_WUj*vNG}=I>So?#i;A!9O!gctWWh~m9R?+$4W`I$B=pE@l zTI|{l^INM*kLcQKg45h2C+1LL*HY^|PDVat(v2 z-ln$aXCDc=oeHRq{V#+7eG$8=2&?7o>{M9baisNDP zs(CT8-aZNwWY`$~ITxuK^ThZF>vgpYEJsOx2WP_b4ERcr71(upbt+>*2LOP)vng`0 z>DYU>#r0}r=0J{os+1hiA9>F3&bEEUz^sHRM@k4Lrrd7nbEk?XU$KvnnS{Y@VhV36 z3UncIsp%;#%(uKubzG7TaSP=hC1ji~&Qu>+i&7o)Y$!=9*mF2?<+bO0JzJv<8NVbH z`n2W}5_84+&U%%5<(}Z>nlCax_})DpJ4c&#w`_44A?}{Eo8>}{Q*5bM1a=Dz&U4uJ z;&`p5tWCvNhVg4I--JcXMPI^BJ< z9`|j(M7sR`K2wYmkzkg}+HU+izwVtRcjumwV8^5KW1zRXSs!QCq}Psi!Eac3{*9 zrg6P_@IedRWqD%e{NCVwK`GL$Tx`c5k0oGwJvhirTAud4l#RDopn8bCGH=APqsD}g zY~O9TBpW_Ww1}v^&(k*?_MLApc>vE_0&Hs)Q$F6wA(F_N1@4K5)MIubRha7WfGBVE zQz^oC$G6~0puLYaVP&;eUf)MzP6IdLuFQL+Sf?rTs?;h4vm-KUj&C|7F@91l8@A7T>v2)1FCBS`M`C$aGICd10NfggI46q}6u)h&|`V zMZXAg_Ypjr7Z6e_XW|-Z!X2{OfcY^NooOLx|CT9t1b;)W2uVzKLzzQvJa39q#Pz9t zbRh~@`JJbuy4}No#0x>2ij)J=ccu5HD7nze+q<;Ax_d-ZPE7rje!ipQeXh}K_HPNU zQbtwhbct9$A<3wAP~HY?Iut4t-a32I_5To~B(0`wj$$ARRPnRxrmxH$livKg~_(924Gtsw6bCMZir(?HaWU zkw&kgDbB1$ojs`myhl3PT?3e zi8}r8fS&1<46+P~Hu6AiR14i@S^p0IxYuReA4g{^;m-&u(l)(Es<|dW037;j_n>*i z2Bm0^eJ99SW)dP(2h~;HSCCUdF4BzrxCKlU zEe)z=LUs;UUF}!z!BiNVI+kPSv_dF;{zPUUfEQrM zZsr{{=jn;fQ;5Cd(kL3l4*1l^3+`;4@_ zT$AL#9o4rHogEDAN{{L=%Dyf@J4-|H7w>@itgTF63hJ&F)ADmtGHj@4wqujZqe?!U z&9_GU3wnjVjPG=!kbUAF$zTiVrUFa=4j502ut!($m<{vQ8rH5>&J;C$0C*-`gZiLX z&D97Xz+pRp+vKqlCS$ED(0Caj1<93_QjlWFkSWI^#r%{Psg)~dSZY@@POu>#$YE73n2qAF=qlRnFqj9*z@wn zw%eq;u?c|Gk5lsKGU!<|P}L~Td(KmOX6izOzbN5=(28gxUFd?y?v?CDn=-UAaPBiC z1;V9Mz_Tt_JbjvgG$Z8%Twwl-QsBRS+vx261Zt$p3`~UqhVne=0w4Wj>B=2A=lcBy zFO-40pp7*E2KYpzXJT##T)LV81sVN44Kh#Ha~foowwHX)ASLb$U-|IC_~4-sq3AH*A2c@~uka#! z*^^=FU+ZATe3NMEYJOD`iJcpZ@HPigelsN!L*;X1TnyspH(-^7+brKXY=`Rm!~5Iu zzI#c4gJ+P1gJBkXd{6H`KOZOg4)!hwj5r4tm>@e}lROIYCy}8;PC1)wJUH1v)K=np z)Ys1@`ovzoFAXLc6aslt7q~|8$27!AgyTza-=% zvt9nSQ2IVz5lTXW77v{W(Q;ktL7s(Pq4^^_mq!WjN=n9gn-pMvNRKUks4{*$R?k{P z3to{p$Y7ww@!2}#m3NnwiUYd za9Kjx_aGxQ;-LMmKz&}}Y0UHxz5i3nwLu+$0S#wcQS#u@l! zeg6yv6Z-{)HBdJb)DqLR1^_<-pM6F`0P}kT3uSmlLZJRaq8O-K$Vyr1=vt`*;TE#$ z^v{g>zcQfr|2c!uKFt;r~jYfU%ck|E1tmfpW&Z<25b8(p19?o;h#MQ zgZnF<%p%2SO403l9{K6Z|6otEqvnU)mb1|F4{P^8bqS>^E5N zUpZ7H|BCbC``_%){L!cWm%6?9|C^oq7k{2JaDvePq3Q|@w-J<-=l{bY;G5q(8hWYS zpIA&DziRitvR-@|_$!N5=3ld3y!x9h4uXHpdiD!6^4S)6?2BLI&wgr;4uYf0$wK~AU&{!AF!kWm? zjOgVxu&cbN3CaKFD%Gjng9UsLrSY>3-s787GAJIxqrs$ zd{)=jH51j+0)7b2{)~n2c)?OUmurdl3kzwWE-57YjQa6{@_9kM43gGzzfizI5{Oc_ zFfe>ZGCU)pW?#nn7i7@OI1eE!N-qpViqik1mdKXR$T#^f$hXgyLj`}83EYSPL|VMq zX8dc3DdoR#&m}VaDpC8dC8lrvLOz$s@LP#6FSJl;$Du%-&jzmf3+t2$Ds3U?YCp|Hy(=XGw;vV zltq8l5_oFA9I3ytV4R;>aNRF;AXqKq_*D-wT!dnQ9~OJC#8g z?|&Y}zmY-7pY1|^c_F{_DOZhOc7Z+MrSJdNS1Mj=nDl~tZdov}^?9}Ft)7Z}*}fv{&3{xb?3_^S_Wm=`fo=<{DF;CKr}{jI{Vch8)V zKkc!B{o^F~eUHs&U?KlaW@KQE{-ZQ={~Mlg`IiTO$xB2B{Ng`Lcm*6h{-eA{Apc=f z6krQ=yd2FxrPcdan&iOp|6}>re+;i7f7&YjZ-})4Y5$GF7x0MvHwsTc$Nn3k7vS;x zZ?=K|Z-?aH*edw%?l1fALV*9nkcj_q?H}m!e{$6dyqZaS?wD^WUxo(0=K&;iJm;PNtuGp4ceeK7H?q+*a#t`l`1?KlMm1qA7gECKajqrAv|AR zRN(SO!MN=kYJ6mNPH4;7+L$~0p`Yd1JimODoR)kImrPjTYYrtt4bG_TgW2Q~?`Ywc z=xEtQ2}+tSfKv8#!{9Y(Qt9LL&6&_b4D0n4e4)hMAhkK6WYcz1Tr#gWmLjPTw#M*| zy*T^>x?wdh@vvQH+8N6jd;YL>ww6PfHm5w_hp}q2)`?1t*f0<}zryi%c3=-+Kqv*9 zBTn`Z4M&(ULMI;zuQb+cA`-jWPu3_6#H+I@5=fTJY@+l4MKxCKYouW$L8{lN;?ND9 zNKhl<*m|%>fw*}j?_-$Yi@ig%VUbY|DhaO=^O*Pg_a*7yF*^*F9>Tqz3CuIa&38yE zTUWwZI3e-O`TE8byFm!&Pzvr)5r@@$h)t%tY5fC7`#AS%k z-IBYOr|4s`9>3Ok7il-!z$-?1Q>M8w$3^&EqHh)Cy>XfH4(4dIgG)AwR;cU`H{RJ; zZ{Xnupl0w+KCUI(zj-L-4=BC}wGrw)@`|LTC?@&=8;x`JIt5A+yhGB%Z0`PN!VkJv z{Z^SV%N6IP#y*-rZO0|4$BQd-CRe~x>QCs^o`;-5_zNe2u>r&Q(PDHdFq34K-AEMcp{Pchv_Zjp}FioEmU0?uopmHKQR@4;?5>i zend5d3VWw#uPA6LQzF_9?Am zoYC+GIM=B(COG!$(@cqaU!+dX$+(?w3Q{x%!F(Q}1Y1(v)tSz=^x!of>%V~lL+DY; zlX6KmeZ#Te!LoG*N>jupqwNCMf3gO}1U4l|Vwo9D|T1DPi>VCy5Bs;><>tQJ0 zGlDgJI4fMWMo+TgGWIjC#n!Z=ogm5k0elus3XM_} z5V99?EXj%zVhVmWQn$7QDK@p47cH zlxg;?q(wLr`$KYSOV+XPq-UN+3Z-%(F2N$xO!%6&c0`$P$o46ri;2qQCGw=4})K?4Nf(}114P{SlP8wn+kF)Tnfx)jiMj1Vd}@YHBUq0%Q;3pi^WPo z%36Slm6n#)e2lN4Rx~-|a9^Ju$QyW4n*#C_@|+H=+DU3cnmbTmCtUh_xzXct5)Nw; zgr|F0--#n~Ly z<8wSb;%m7*G1LlLZukN?y@Yaz(6a=+gR%oPr>^uhF#Olx7Dl!^H89dnN{8*4B-dz! z)^5jxsYhx%j4|RRbWRA|spX9)MyjWZ;>-q6(Ufc+-mdPKQPSIj?byHie3A0nO1Thm zdh0%w!#8#sN%%T@hhr!{5oWuxem|r=M)~^4Fmw<0SPoMgI42is-zilhm1o~8nt z`}86Jt*~|ziiGb5I&qk}PdCE>W{RaHTY>>D$JnNJh5MYqu$mU`_`z_Q2Uoa;#YVcN zRZOGMgo^qg3s;AY_}%Nwq+wOVbq^QUC&;C~z#+|8;8w*E^x;xvAi|lpersFs1gqa+P%#eLc5Uf4Hh5lzwIM(auHYMZnXhHZ zmC@WS85RL6@@bcRgD6h&rY>>ZgHvVDKAbQ_MIuGp#=ZzFhLvX_%)Wms zgn0<5s2c1OKR+vJK zqf`O>@ES7rOFEi()<`F&2_H7zJ&|74el#X~-vG61QR0;h^g1+P5np0YHN_7~HL$t7vqNI`Eny12=kZ+8&L7So0%J8Ue1AIE*${R+S9 zA*&*5F|ZQ|#_d5HiC%j`z)$2QY4#Mxb{f4>#)|zy%4oqOftA@V0;ckP<$Ga*OEKzL z6w4GvKKtghXlvE@CQ`oXf(lix{ARo*oWmVeY(-H^Nm80h@J~xo#_tRPkqj#qDUl`F zh+deh(XYmdjNa>%{V=MYtpx7is1K89!1GLJ^h?GVHqX3pM%G7?GnR*xh-kEf|EWUi zD&Q4h^=j81wZ=-4I*1Al5-WkyOny0XhUjuN{GPz2Z&LZxWr`?wN=~ut6HYRi65J)! z1%00p-y}nqjE?nHKDLq_EQb-dz2%3h$~57+x77irz1|DmN{cq&`{Ov zhOKYOhy{&_YJ#BYG{lPYZ5#Gk<542b%XtL|rM&Doue+A-lWR{0T~?Ej$cR#9#klrc z-d@UBd~7(<yO*$*-G^tA3|C+%BA2D#+<- z*ViWVU~LiI)jk3*!p7+Rw2%(M4%1%pInJ$VmbmR6xKRQWQVmQHDMI8xtR5=)TjUrw4iumAZTgyV)~-;LDv3Ep4%Ts1|>F^ioS1t{{lZ#{n4)iJXL;? zV+|S#vs~PE$eSeHFJ9bcdV5w zJSpnZ&TOEEW6-Zd@k18PH+jxNYL?uQHrc)J1Z}N2MjK!_AW%^kE<`lAs?{X(3J#>GAtR2VuWYR@=&0QM;+Pz|-;O^S_wZ?#s!@+v;=WfD} zv;w5OHBSzsa^YxM5U^=7`xpqRD0K!0leD)TMKx)eP!v7yoX$ck;J^tVIUhXQnEByorg75eB~yo8VZ$+SHLnIH7Thc_@Yn@o1T(x zAEg*+iz=8VG3&3VyJ{L8eBhQUfl8VQo-aYgU@(*+ru(z@B=vq#2Bl^qIU2Tj72q2j zy@eRKJXm-wFjZ^1xwyRA1-2@&j+Vk{QqE(ii1!q9Jjptn2(b1Pd4fydmOWg!7bIv%0YwM|cL)-k5Q4kAySqCHAxI#&Yk*+Ey|4hmCAho0>sN4P z`ri3Y4J(9;1hQ<#J3Fo%!UV)3&Z7W^CcpuhbueeDD8FBGKGjo1P(gI@6d zuR*^M6hurd3`Ipv?H#O*?Q|{ewcl7cLcbNP1syHS-`MFonL1coDOih&Dp<1$YD>~F zzhu<5(zUa*cGhNMQ7}}Zv(zQ%P=FKGS1Z7xKUpo+bsDv!o6`Y8X6>>oy(cTV$e_Up*1As9? zLJX2Xlmb(sKSn@ zam=FS#UGnngdR&c;-D@T2$|t-+`RTUW z$7(Dt^jR$%i8ql{QT5;q%Y7hUo&uH1P1$<$W~6Wh2kffAuG1^$CNK)-okCL&bVnP*P#v$<(2cverYxHDT} zietGyq*yp}(CS<2)ZZqxeq;XdB!17E)8JcBV}8%XLR!VUqt2Q-x>IXV^l-{cXN&50+n(_IpNDy!{O=W6QgRb6OaRtV|AOLcB-{;{l>^Z z6F^_-R|LHUOxx44GvHY{|lT| zd+#&r5&4kWl;1Kd#7Nc%Zfl|>ub`ZTrWgEtHUj2LfWL1f6>1iGrx6^Lkr#@AEfb?} z+xAleen^|IuP!Rwi->Z#_kICBh|DEQ&y@`D%xM6U@|5q2fq9CI3ZmT%a-CvyR7#Zn zv|Tb^WToidel2AhVo@Bhk;WK?Pe^Nlv_K%|m=&;dl4R2D87(E~5aWtSZohO*wXyg4(^D1@o@Cg|D;IFPZfV*?(b5wUAe!{`wC29gjP7p0ndOJi z+T1-3bW5JyPGh>8dET!dn-7C1*fczEi%n95?$%1G9c%Z9YUdiuy0|hI25wsm2Df_Q zf=6%V2QhZgh}1YnaC%aeI9avsM%_hvThng`<3o#I_!F63bBb5K3+9aGaq05p?3_qH zp3f5x(<~-JH8yE$aB&_=kGRTczYTr~`oMaX=n@-9m`^NKT`rxb@ z%wu%>RgUMq?v1avrr!jgOXdq+=__+RKlg03^Ky<63T-QUx0HebTnM!=#B|!=KIiF- zPPOh{!YZ2MC3lFe6M|qqiTY8kf|QC;cKMvPkrQ4#fMbnbYXK`QPWF0ZoC;}99ou7O zVg)o!FLtv(GrTgtpKgWMy=jKDCQTKDS@p`MULYq=EJI1KugLACN4IS`-qj!6g0+Row4`b{cDli@iK}u!L6qcMAdXv-1hlQ27 zZ2?fquFEuBhuH6xAJNCgE7ysUU^{+RcNkI}2Y+Ar5c{D!unm_!F?YXOg0FNodn5dd zc>csQ{IytajpN2$XIb{?y=NxlOD+2sp-1w*t$kCgXdK1PdG@>5pB;8Ntmc!}Eta-7 z%(u4dHQH2rzI3Rz9Yqa?=X&;`qkNLWTvq1XNif<|(D=SpZfO@QzqO(+#l&2doMU$F zl)u1iFXqkB(N)bg_+EcO>c#uYrLeVLYi=p+@}7eOQp}EId}59wO|vx>`I^2`t2Gbf zs@N(R90!vqD7B~mOl_pIzfW!Edupfu^VEL#*QhP`-$Lz8qBL3wR7!b(Q!GwM9ksx& zp0W*{crOhVVm|4pR7pR7<+wK>a@-esZ>JcS(#7E};CJ$ajn0pOfx8TBwKOde2Nm6k zcgNjDH7~e{hNlEfz`r?b;=X(JUURYfZnS|)TXO>Q_Zv5q+N88s(sqk$N-+9xsG#G1 zc#w2`?s9~J+uCS-l?U*Kq3$$yv)4hTn$|(}E|@r&yqTs+$;xH1gi?}=-0Ki6IIzGj z;V5&Cqo-;hPs=IRFZ<-mo-i2s$Ga|Flz3roVe)6!9%7Ry)VK=IdEoEQ(~RR zex!GrkjLu0%NN>Z`P}Irr4RaMb_689{$eL;zh0EECBGJ-zulPX&aDjvef2C8x8QDUf&SbyP7P;Sha{bX!7wNl9 zZO)TE%V6+UX9&TO1yU89xr8-en4Qg(Ypdf#peB&m@~V66^R;c};EY1QxdMMy)RCh4}&3TD&o5a8Zaodu`;dMUVP2 zt?t5N&s@jq@$E2Xt}#VbvXdp({K!wE#d6C7?_3l|aw%+z6ldnj+hqfsijJ=IfY!H8 z9hxsloQz&XuBl2%S+gV)IP`O*R4Uuo*KWUCnwyA9I)80JWPQ`;gu~+saa|Rp2apM= zi9oqM@n>$M4gY;^v)pq#!gw#NBY{ALxGg?{uoKTsH=+#5 zqJ~XR<5oism!p2BP${xbD2puk?4wE~A)FFMNSewLOHSh^BBPlgJS>3>tAHvgC9e_T zN774u?`>z6H81Cnm0D&Rwza% zAkoFzW-D&cO|aXASJ$K$hi|8E&rGIAiV%=L=s;0qRAv$KNSGMG6k)?v99iV!K>h~> zcNCOTvNvxG1}L&C z>kjJZhn1dKMiGskSM-pg*}d&C6s)1z%fr;6G2%)F;`GkkvJ+Q{Uhfl!!cfP^k0l3Z zfPf**6#HBkyl*MnLAS+5JtCL_u}uZoE{zh7o_8ql{lJO(m+haPw*>{wZ=(!-pNff& zu-h{-{8q5rvFB#UoD0TD)gj!mon7{25Z^C%PFLsV0hx}4%OzwAOy5hQ6$##Bv% zMD;10(wq3Q2^JDU6fYgCDJ<5WWdkI85+B6|fswm(blN9-BSd`*-isJIFl4?f06YdqUNznJ85k{ONBkZLZoZbpI1f61#Ci#T|b$q z*eJ$_cwP|uotG02$Cco*pNE-Fwy9zbAB1PBj>3qwU##HI z^}rq4o;r-wZP#65+2kX!90oga@{_S!zYOOvx^E9DKgkSUi`^p&$qwhzRDhdn>TSvEix9TQ=>(zqDx=h9mJy z*;bR588+lF`?sEas?BZSP6qYjW>>yFOL0p2dAjp)^6Uc=#dn`*CWr|ml0Y0dZd?_Z zx92P|GVRcto^~d%986>Z{Aj@&_=~e zy!xs$lmSRX%XhpIC}peiZDVcm+^-6FduiSaCOBveI}`ou2*~W*$Xh;+t2JHl?g#N_<1J9g5l+!ZbfWJ(v@qbN#T!gA`aGgqIq z3@%~Va9;7;26@!3sD^XZaJY~p<#NqkR0%;6dp6A5Z#g-%lBv$(O1qk6wZ_;lG~W4> z$2zI%H0AlzbQHnmuc3k*T9wNh)!4e4IfQK1+N5KEBJF7QyE`{4I^QR&>i6U${Iww0 z71@X3pioPaLXC#5PJ!&ks{W#x?*gvDRCC!KNiP3Ik3YX#}^^XE2FYUV$wWfmVnYu6lVFkpoN-RDtY zA0qo%@>HEsbqU{wL!O%1j-AJey>g^|nTF=wakZON(@s8J*6yKuyK8KN>Yiq;*lpeO z&Kt+U2D{O~4WO|5c1X%V)GpV^`K@om#$`KNZw|j|TK25pBiOSbW#YxeckWWrHUK~+TDu?0 z=$t=q)!1HtpV4ghj5h!086ExC7_Ink!028GVuU=XsCT7iN3CPt=A_C@^}Td)rk0QF z*ous4N7xIq&!k(+_x=f$zR$gZ0@dNAWgsJxILEuYZ>qo}*aE8_i!LXXXabx^#PPc& z!kjm3ch^%u@g_X94(|gSl|zc2We3ZI))vKr0EP=>uAU*)>I|c>+}1YL>$R7uH=6?+ zEFD);pHhXQmXGUJ`#?ZN@d;+KdNKU1 zctH?HoVXIpH@c~LoptM~uW1%_{sOnwHMe1xho?l0eaqixLU*V0mCy;pt& zx&ssH{PDHxESJ+5U#@me($gay1e)ct#ny2!J`oA1P0^l*U^$xaFkv7ez0X_>x6YyF zU~K553HPjm+-8>Co-~btKpZL7V~Z!wHaZr3XS%pYq(~xNi;lLd!1Z)f?{U{PZE*nv zq*YLdaeOM_HlK#4*N1|@=G*=cCD%V`2{wt&=_Q*+Tts31AhC6X)4P}Cw=})tMC(G9 zS8DQK)YT;9NjUzjYZ_Dh@^)}Vz1cg1M$aFjCosH&P;wP08plXKkjR&@7MJ7DGy9*&s|1E8omV&hIh{ zo$4|>ik8B@_Rs^ltxGs;Tt+w;jp`l7Ri3Vb`S|7<+czuykFs6@<&L~KOW+ZkHLRU2 z(hK4Gxvj5^Qh83zU9?)-h@P3Zz@()M%|TgO{J_$}2Oo^_-Uq{f{yR%C?|m>kL*u`7 z!JOa#g}=FAT@Nl;%7Y6Q^P3Ci&j)qEvMAYj{=)entbB&xSc#h4<43-a6iADrV=hg!H|rOpE~&ZafA$8F7>;_g%LLv@fo zV|s>Js9ST!9VU%=R}{4h>;%gh&s1RpH?8617d3f629FiiW>Q$%1tzz~lAiEcb9_k( zXI}QgT?W$_SoUO;eHY;9Zg&U^_498*yr7s!Be>#Q`_u@U%ASXiD5xr2slnj=09yRq zN@W{q@;MkZMVfN=BjOuN@OvB%hNEFrgn^;-)&)dUIz$&Z+w!I^ZXNCl2Nz^%`gOm= zrHHlXVWOY0Y^3)xOrqBt^z37}yhs{zALV>WJG+&1OEoQP&EjbNBNcFK|@(#F;<#xxJR9|J`uxQS;fTPpUcF@DZ(6P&)4YHORu+boKnK@8ze)eXH zB$p_c(b91ww8ut+xvFPS#OZxz$dGGru-RLnarq4qd7C{*ONENdVJ~H=li5D|rbdgfvK4UKxDVd9WIz3BX6-*M!ow=FfB`{EzzgPjr27wtW6sxe5>G#9HB~Dd7>Pi?uM+Z>CW`C<$`x! zslh3hNT{gQf*6cK*%ih~Ey3vQa9XSj@1cvcZt2^#tQq9J@lJg@=;9I8BT;?z@ zTT#*K!v+(fcS3DaMbe;K7~n$eh&!k29>;mk+kB!1{DpazyHPXGGE*S1vC&rK=~EDG zWjU3j@D{hq_7*PBY3oRH&!B5*N4h#Nr%HK;gROVE`HOv+qrj{gQiJx1_KVagn*r9T z)x$PNKY!u+?;)8r(x7NG<}kB(QI2)-!;LF-278%)_x#TsFS`VkbnUzrcaebK!by1D zBc5zQaOsLw95tE+mciV6T)rqkSVhMPw^}rii|86@3+G9|4tJtht zB@GATC30nAwK2y&k`4Zjlx)eJF;f-SU4%c}@VC>a&U9PTu0|#1*tOF!%@=p& zuln$D4+sDI3*+Q)`kM9WCtUp#MWkJ-24mXBqfi40I96mo8MUz(&DJzZ#S0!ki0u&W zm~qq#%eDT_X{EBZS$&!8x74Ot6J}_~6gFzV#<{KO+$_7gBHoeo9QcN4%o-TmSIbo& zJ-IVaRXVK;D-^Ffhbz6kf^@fW&7y} zF;_r`gRjSG^~Ja{Kuu8m5tO)EeZ5TOA)Tybg$qTs63%8>A-A6j zbJK}o$zn{wcX9EcI087i?|{r^5WKFRj-K&EQ;b$x7j4$O3@5io3{nSvFek4#ezvF* z7wzN@_NCh?UNAXctTXk7IA@Q0Ug?G;Ahvb+nJ?!r6A!-wEZ#u9DXhrIQ*eX`w@ zvR4$VvJAlYVczEZA(4t-51_ZYlhe9T>>xt83Kttnh4;>&>F7mD0Cz%AB^3DqKePz| zWT-o3Pi{=?HL@1+K9S(3hb5pujO;NV1Ib>!%)>D%H+bu86)_!zJ6J!l@>&vpiSoqz@c zl3cEt{2<)1(RFHS6>dEN<8w-UQYh!H92jlv>YgHmvYqZb=61@_?=UGrLGP{~o&@ydzK8e^SLlouj|9E&e+=M_g3U z;~u3061&H0E%POU8^xXYTEuTwNy6TCvt)v>L%O9E^0Z$uG9i8iiuiLPx4<_)4_g7- zoSMc6#0LqTPDpAA;?+QpU+NgBq#5i@Mr}4tHQXlBb@jR@{fph z>u|N~MBTNnw(_=s!HmU4g|CMcfiTY1>Ru{db~er~o4l?!=tx)APgkWIUv)RTP;Esg zYv}?LVln$dh_vCUV6&c5{C zz-FFjg)q^Euj}^oU}R(l2{hoTe@CiCy9D7xLfVDjXtURdJKS6SY1MQg*xXpEon2;@ z3tM{&vjnF}{Wo|w#^IthyI#>a&**u*UR3&lOFaS2`%r3a%)6h%c`SgN`+U}Ea^`k0 z@5nhc>cslx3y}?>u(Hu*&dZk!HVSduE0opSWn^g5K0@;10iNm=u|jL!?Cu|NPZ+0m zo)(l7jeLCBdZDO#Q0b1}-f|v208r$dvV@|R;m@djp7!@p`{0k9!u*q{g}Nhu1-1VM z?ugJV92B+RNP2Ns4Rvffxt6^27TO;Nld*?a_T`_iP!=~GKi>8+cacy%x;_bq#9$$7VW2hGQo=R6IN?E$0lqkgj^)j8TVZI!8#N@~q-twFt18 zeGk&6Ap_6TF zr}(7q88MH0Zzw>!1p-jQL4*X4{m{Qc6cFIkt^;BAMbej~8sMbp`#vN;4!^dqzkJ^F zzJjM^p}V6jj0;zsD2(BiMbp^|TJUZe+BQu)=A`-8FG%rLb6LZNe37b{trT1+06_g< zKGY(Ig*?Ee=Al$)y)V@%pf=mDtykD4+CuV5zxS*_U;omy;tva``L$f1`0-G#Cq9(x zk-wGeLL6kXoE$yBb*;d6hP^ZZP%rA}7=*x5!9)9!e#HN6UlQYeUsCIRUlRX)UsB|+ zeM#R@`Im5fR;dW6vsUn_46lqFt;rWm8_kT=)jk+j>?F#o`8xN z%oCl7*n)+R5d5{9xTGF}r zdO;2^5F{l(y>%Qw0eY2Zt@!viC+5GAu*c_6nG!o9agW^8IVifObDw&S^kzl55`7gN zShT@*U~XUl@{lt7`uY4-J84qx(0W>2gwU6sA9Rn`YKT60xmQWmb}UAGN`YW87;Q#W zjodopR5-U#4neA$oz4zVK5^;m`F^-P%F*LBqRI~%=SQnG zU#|~`EMIHlcD4iVx+jF8`0e>KeyPI$5q=-)*YJM1YY4WdaFA}=i0B9^>4rS>g83C-4C6f5y*&&%wOZ{K7~2Lao8 zlE25)e+C-zp!+6!>k(1oOE^kI*xP>Tt9P-9dFC(VpSj)h4AVK-Xm~F*tM>#nS=B+l zD}T2+KoeOp{^KT~we6+rRFeNRkF36FhahvRVI#)>SyX`VNI80s4hyTlU> zilb|rnkVwhW?Ez$tCf39ofCjQ?44OCmVf*i%e3nM2+I#8-N%0c%SL|z%QXK!SZ2q5 zxEGf);NE#1SqNRFra{& zUJx0>GDc`3+M>{q&xOd%D65Y>#?fZ|qHKMU2*WX$xTfX2@+cjc?3lCVA*nz#dEwop zMK``VAQwAbPtVbkt~k=5ap_(qRAx~6hMd7)$Xp)n=vlZzFy6<)yRn};HYQy=I{R_o zAnDn3N*-gkLcrd$so8ghQ@aDFCGu|H~@Wi5qqr_isZgOBbkBxA0hdn ze2V-RkgWT!BRP)p-v`O7Cvf05oEq+Kr6$Jq{;h1mXdNtQJRqlOyr_y)>b;Up{nDlO zv8Ma3x!;cKY$@MelHt{?GYOiQl!0Ps^BJrryXH$4T*@y_*Sd*flFd`vo^Gr#-YHx~ zu3UTq4%2I6l~j#7#I-pbUHI8Y5xL=2B%Q4m*_wEASWawb)&P5*oM5``XSrBCCT#MZ zCDVjvx|Gl8r~4hhXlCU#{CqQhsOz(-X?Mj9K-;# zkLZAeT)obeOSN{Y&Vdy|C(kRfNN=9G&~h*`A~To3%Hv}B96mv0w6#*a`amiM2cyiE zs93Z!?5;ugg4oe8U&m>pcXp9E&^cRtG)$X5Cmg?~^MJ=@fwQjtLVNAmnstU!pEHFp zH%amNe7$|g+cnFv6prFN&GmZO)3l?6P24^jCtin?V&aYZP__xzvsSvktMDCLFK;H2 zWeb2^^#N2(z_vc1x&A>Tv)^lErla4{j0@Gsl1c*qA(Ej#{GyTrU;*{NspRGdl^p({ zlH-3@$*g3v6EAxPf0xN^@9$;u(l0U@0V^%9DYRVe?lgI z{9Pu?{81*y{34U-{NhXut%Vg63lga;2nVk8*B9m=tCt;xw z?*B7{Su6iBgdc=*#J>Vzs8aryA^cxg%K!5a{y(Ms50tXV|B_PXbKFgW!nya)aDEy1 zkKz2FmBaoOI77wqzYOR9x>)`nhx7l5<-aeM2mhDE@~ZK=FBHs!e+Dy`+&>2MgIxaf zuYehAP3!Pc02K*Pm7=w(7sF)7(g5xbn>x5u2c+804J%NoKWaFAzhnT+joUiYS%>gQuOh+s0i7Hl2|jj`Ca`^?xl=WE(8}T0OP%#Mh5=a_HkA3HfM!^Ey37#)5mk$+tLXKWjtLo z89UcxbE}ux9!Nu)w{hOdeL>1>>MwunR_kX1%0xZqzQ?VYXv*iI#K8=b!)9PKFvjVx z!k`H8pwI?B>QnC{3k;C8OvDZ>v1Kg`C=d#O#&MYrx$)nYAevaQs(nbAs2NL00RVLp4t^*oIUkmv`>_0ngATsx-+(g> zehC9u6dDXDMy~;Y++QQ1)pK9MwRPSPo2PaDK5QQOC?z32MRu_nBOUjZ&#Sa&Ktz!o z$_T;xq4T7_9Xj`A{hOh46qt_&I)$QNJ86vos0EBAjEs!8aN=gF42^w;-6WZ&M<+6T zodB$-l$i)4k+5w#^I%wg-J$!{KmW;G!Y%N9${SJ+PqFAT^Nl(|1rfaxAGpC!;|uVY zy1IGx{=I&a&}92i@JrX|-v^|b7oaoposf`s7zUh-+!#UuJ^*?UyvzxR6ExzJdI`RG(Ff>BfF;HJ6Hf9i@az^t%CW(DI9|_ULJ+ zosJV>5b}FiASMAp5(N`uwGB68HT5eU8~rLB8}SVt8~Ll2`C4y8|AJV6fA;%wDQ-k3XLA7d8|1a1few8L^wdM3A8ZCe z=mFiYM{%gou2~0ddmB@8Lo^!)u&EXJ;WaeYk}!a&Ut`_acOPqm9}lta`90R3A8E@x z*4BuKPyV4PlMxZ03owHFY|F^V{Mt7fcESRT(Zk?NOOHqq@q4@_bfLU;df=_hue`NH zC?0tn=y$#up@tw7SbqI1@axDYy}-ksPw0V!DWSHkl-pfjq!aH7 z6a1Ll26`WXpP~xYGsf+dLQH%9>kRomVu?88dTzlc5Y`YR9_NrbwQG9c#G`}+?cwK2#sB= z&yzKT)<~E1rhlYiZPtA?C4TOf@X5sE)W{+#6v9ZvgN-+>43G1Zq^i4W2HUm`xaiyn z9&1m;(GAqM#9WZD+Gq9bo)m?M3=AfJ4REw5t#gtt{={#@93?jP+6a4Ma9VhDhotAV z+RU`BJ~Gu$)%^B?FJLh4j{GLGQ>BFCOo!GCp#=+4b=- zZs*b;eQgI43v`vYazq5YT7YrkJVvW*6;|xl*Z6V9Al=#&SL+`nD9h z61h$GrfSFT_f2w6x70sp5jY44tez_Wb$;^XJ@ z42)`g<#p1S+sKu>nZ#%Hvryg9UAgyob0c2+Y&%}9tQN^c!Nr6f@G*`7gKS^`dB7s= z_DgwWP|$nw&f)%1mI1!$wvOPS$xh)i-_es|*w4o21(miTKP)rSZ)h^J24zf_SQS4> zv`Wxr--_LlXW|`S)t@1}v41ZXahuLGn^DQk`AHyt`_~(BZK=KO zbqY8qXVsf_?%><7i`d-CPT7u>Ywk&H*xkGQJ7@BN0pV*j?fs^O7uW5^IBcOunBnhp zHm|kyZex+WZ7J=&yYF~lFeLYz7;A2y8ZBz~G-03JQI5~O2gj+q-6aSz?%f5ZIt^pd zPHi}gkSQj)Iq(5X2<(de%1ViK1S2++QnQ*^hF8DWbwisWv+)d!@`JZ zc4p62)dmL3T^%>ZfY`<96j7jeHx-}iW@TL0kW5ZC2>rGC>$@9t4bzwGsl|l3*Bnt4 zNALX+$M?QtL}nZNthn`jpj2ki(O<9&YAdsP@qF?oUsY%L zqSNk(qu6^&T-7Dj$qa(&^LmS^R8^FO9bJ;!fptZ8l`rO;HxFJ6fvoO;UJAh8y0vKh zxt70kvNNZ@5b->}fcnW%G}Tdx+6VqOaMx}dGh#+e{96Yv@^|*1%)iZcjj*r9!5I;8 z=>5sb&njytFbzSkR^#U5#c+Ymux1bD(0GF6_H$!C@`wWRraBiYyxSa8+8jfV_nfHFiFR(axP%AJKys-D!;^+!;(OVLDR%()s+|Uf0Eo`6|qJmo@fN&ntY+&%gQm z`~XpwGp7`(dLVz=`!VYjr2s108-fvvN~=~_(`Hmh8B(2cLZUqMpOza|iQa{!R550A ztA7Xglfyr{(pF!F*6Px3lF3-~PbxbMrNyuNrkubGwR5E$GCM*|_}bIh+cE&V|%dP&MIq z>@xSLmV_?N?YLyIxER@h`#98PR7D_`>a^>|k$hl~rDo;!h_3U5lf59D#WyD*sd$s0 z*u;vZG@&vV z6Ni05h{HWm^h|{1BFb$y=CtE~^L@o|g9n|fpfo>0uHV-Lb%-i@7om6Qd#bD>`SxkB>X zG+n$>bsS<)2!%josuvtF_b&G32143Q$7@f051%igX84{bSfQ^j=?2A!!CR?Ci_A+p zGRLpC!qE}s3S24bUK52j@wuMQ=z%&fzerMfBIsOJ>UZlvco`KHcm~!s;VHDW996s= z5ot|c$L;gNEv;K$8lHCRxU@kgrOA;b6knnDbX+u-3$dQo&p#)4zf)m1^aF0VbqM>} zH#Ppv1{;!BIf&mcO9?gAOm!9&&J}z_o=W%)uS}ge__b3_W^Q<)>oj8Zo*pDp#0B~6 zuM`mT6QecQAAZG+t1lAex@8$*7vrbZ5NT zef?%L1#YXjVLNawsd;=&rgb3i5u>x}k&&}Ed|ginyRE@b-}WIvY)v_G6=JQsQuYa0 zqoUjB_h;eF?1kg<8M6S3ZiJ+d^%9WFcg-x#t8a8PiJjI=N$^#&es;~8nImoaef)|G z^wLQlsG#?*M4^ou?&+5VAqeRgx>7W&l&pM>P*=o+*~0vRKa{oFtZS4SA(zEEK8eD6 zQzYzHsP}A*>a0wsFkw(uV;ckL*p2##j|H;(4CG|BiO^xwU7b9t4mltZNnmqK4Pr(b_mY(38onj6(7M1-Z5L9>Gb);TSQtf1lz4E7jh=)?M$~{C0WpJwGXv z4b}N7UfC|D)b|#n!tAqV&sPD>LSwKR%wugTH>tiemH0|s+Le%9O7WvCXsDf`Z&cu(6lZ61@;fR`+@wmvm_H`n=o!`Gw!w3q=3j2}N9$1A zqyawKKjtJRC%8b@cvB63OWEi5G;-S0?F_Yg^0h0-P7Jo{pU@qpUV}D(ULaYmqeEhrRG^s(cH|HF)Kje)2A!Fumm^+P^&V%_%uScd;Lrh;J|j z^h1&}4^e;2(>k6W4Vk{(*Wh;h!kGc8$5vonQ6GY2H-0>;m~-4`Clz;>412wqAwA#pQZC2I6XrUJVBLTEd$V(artp%r)_%d`hAojLM6V^f z1?He&a9Xmy{rRrezPgwFU>-f_+6w6qAJ7HowUUmmkSW2rN3exu9+l%JLZZvp zU&`N7!Y5m?jGvfewP?vm?bMwT3YPsit1xmDm={)YQ5YaY);%E5r+ym1V+Z$9y5K44 zcHb2Y%S|TM@hi`qrYsm(hN}x)ybAt(<2&pOVb*|A?dqEPe%KbSC#iM{szRNP&gNH! zvdAc$Re2Sk;ZA?3Vrg2}gST^yPaX$93vie6FnZ*Tncn)+`;`W&&j5y_>Xt1xX@;?K zKFyUD@@H3@?MyV3g&5$Jsui1H8}QowZhL>gZW6iU{tugI9nBY(44ozAogwH+^V|HZ} zW0k%r{Iom6C_JUmIPM+*mvLA;rZjaO@J_EZwA0@eYlm+>_z5iO51B>>iA5G+kKT94 zA>qMsul8o8J$$h?K4I_gN3*vn$S0lcq5FR6;zk*R4n&v;Ob%sYz+ts2pLt%tVQX8j zG~6TE@+WxRm*U5Y`EJ(j=8Nw-%sVf4(q~Rz9_d-LNF$~^3XTimv)>IR!s<@qtgo!W z)-&MEV~(2;n4TJ2q&lM@mFfyujM~Fwa&&G4HEzH%RlvH*_KbmVsmZxW2S^q#Qktmt z9{G+>65mA~je&PX#*BjIS>Gitd<@&~^-&Rv_dOYu#Jc;jX5?gs_Pm<6z%^S5<)EFt zfAp~wzur72@5N&wQHbT8!m7+vO-0ONK^&O#)V{lZQCW0+t1C})7WwT$!Uwsb4jpZN z*Cy=)rSUO3svb#sgsWXXK7Hq8+{eX~*6e1lkh&5J7TFDI1cnH6>6IrP$5Zvzj3=E) zKJ|U9aHwhwzKKcFCzraA7t zTS!!i?yl=Hd|83TC$DVWkWGWEkunPA1l05{?Uv#ni_%m%euyCl-x$#so&sq^*WAYP z9L{mGPU?^Q*|mZ~(=umnwu`j@saixnY2ix_F3nyMkn~4%w<%PcALRp zxz+;vQ|u#Z+B`bz7g!AfDNY@J&iHPRTKna!DUcR4(?gcR_zV#5WH~L!;NnTp*99q- zNb6o4(C>XgFtE2Nx1&h$Pf9(zPWs*?aC%bqXwpe8q9JuQvi*Q;+09d&gLMnwO51m4 z%y8{DUApXAnM)O+S>dLCoyyD*L$6m&;m#_lS_=hFpJZ(KOJ-pqiLT_b{ui{s+r|YF5+RK6_JM5 zEi$ST$#U6%q2Kj%Xt3^xqe_}aL5;@}+VaoJ@i!l?1RCkoTQWjG%V;afvm%;&t`prD zt=d3-ul?eSpNqp0i8!tF2a7Lp&m0@a76dv|ag!rGE#Lx?t}ADT2ZR0g6$!C>g=9+9 z90lhKIC0`Cek7m~1zeMlwtb5;rCgpZrg|pU-r#5Md@LcD{!P^+-Hl_J0ltREyNT#f zT4d*aT8i^gSGXSitwK_eydm1cYZ;kEf})k@a2JG9w#WXHGULt@2PKOrlrk9Eo>uiw zQT9pa!++VtkRtlVIr##rMfs@e(MPKs%`t5M?^S<*2+;(Wk|U|Fl{%~Ti}`Bzke6A;x$okaf?n-NM;gVtkn%Ov zfj5I6FV8AXa@pvjEsGEFpE!9_jw_Vpa6Ex?eW4oMrMh{!nOr`5eL%mAu|9ig^aOAb zRvE~EI>+zzaYb|?40Gg!$Z>;G9B#SndF?j?5t*GF?psf4L{xMnt(zrc6xU>Z5eCpx z@YuUBn{YlPSI%6e$}1BgFG%iG-B2dDAAZv+)Qz9lxj6kPKHaj}2>&tKCf5r_nk`M$ z&hW{|q0$#PcCngg&v~AK_lnxwByI#cxli_cCK-I{6G=JYhLRPyKXa03iU!vUO?-TW zdlHdL_A}LP2J2A#>-ep3kKn9VLS?2HH+awXuJHY?aHr;Yu1;@0JM;~SbOv^y8D~h6PDS*`MCv0j^L_WOv6O+2 z$Jg?z-ne_h9F}q@&rIwSdScKtoLLw#xNPaBO+(DgS~R|~mKuy+8kwF0ek6*C@wDPG zYH)N5Hlgp-FsWiXXpfEAFWQE))M@;dF2_7(oX}q9$MC(oWef7TY@iaGBR}RK1GGrueR;os#bFVN< z@zK@wzV!?ATuGmvXyRchl6XecoxBnb+~-?JDDwTnO@u9R)=H{GyDYb!#w_eHuGe~a z{ZiOcQ-;Tp=4l4dE26PM5G^t+IpoEc$em6;p2JWh3M`^e?x`6uz{tucVb1W@{L#ps zCgbw>@Am1ntLx?w7Z@k$QXwTXq{nzw4nH&bnX50+69T8gx60y}iByGUHuq)^!`MpDHj! zJ)9TOdr!#9OwwWgO!8R6=p7hd%|T?QAT2w^{lpZ0>=JU8X7v0>+-twajN@^737SVR z-wUHkbl?6S3W~BE{rMwa?>JIz5|5yij+Laelrf?=Mkv7i>&LCA-ahE(MPm}>Z`pmU z)xBJOE>QMK#gzg=ihcJK#xfljxb_=QXBSlQxLqhbPDZ^2Z*Hp{EIMvpKi$7E=@)k% zBC22ADi$sM|7d&1@XEGsTR65|v6HIUwry5y+eXE%q+;8spkmv$ZJXb!+V9!tp7Z0o z?>_h5KPxNA=xgSgGkuKF`sl5-O235*tgPjVxy|Ph{l~&?tjFR=R%VgK0L%rc)J?yM z&0%J1zJ@tqts>!uU>f&;q(wd}*Il?SCgW|)2Sm$DxG_hjnhiJ`m~KAbLHmH63`2y8 zwfL?bah(qXE9BGlhK?szATC?(KU1noB;?OeFkW8t3`qU9w! zM`Q2nzhG?YF*i)e<^ri!Mt)7t&~=S(s1%RMBBZCI@_l{_hdcmwyz|3Vt?oc+t0r*= zJMHilcD{MitGekdzB{C6M{K^Ks#XoKZrE~t>td|7q$$zipnbry#rsQV$d7>6u#`Xko zu7##TU4rIL1O6)4iA-{OUmFV=VnZ<1^q%s9B;(H3w^t(*5x!&#jLSZ2BnZP1*equ0 z{mySGWGw+#nCgc(fhxWXv0eCV_(^ttDoGDT4r%W6cTfEax;P*vClK+8Oo*MmH=&AU zV0_8mXl-n7H5k;``zI~F>tG`f5{hsaHUTM}?n^#VQhMGl*}M0^sPtdId!+Vg1CtL8 zY=9+u`WSu^*E5TNr6P8il9t%i(!YbMB-!D3a;i`Q`Uj z);wr~9VB?!b?lveJ~}{4)1D`ZeLdwUU?~lxYYckUEvduyWOqoO zP?NyI?q{^WkFD3klM=7r30IoA7A=Utbix8#W6$`#?gg#^lU~uSEjlj=5uxINJ1MI! zh)~&n72Sp{*rO&J*$)E{QRV`Ss~?hj3Auaf!;T1p#n*8qWqh4=&L*uhG3eq=dogI| z9Ft3pb`|9=pob~dIs}?Bh5ZlIRiAHO{KhTIaGaT51k}E`=d}gkn+BgQm*%fQfu zwfJrm;B!@PWikvo`6HTYoL3fp@TUIao^u7EQ~`U-{@8%uDg8~-_Y}>{4snHrW(IiA z>1MIgG~JKPX6W;$2GA5~Popy{0<&PG!}KP4tjn<|J}Wo)WhTBLk_1ftDq;6(xl#zd zJw5lA1cG9+6sk;%H>l^2R+Nz|7=^48GM9fMrvZSyBl3-`;NQL0EK z0JpHx(fnZupKWU85&lyH%|*11hTfJDoJR9`c$u#tJBPzAFXf2L?B_>uqo)~_Su2sN zZBc&|%fQGu4a8%hL$zjMXaY5om>hQkz7OmQtbPUK8VH&;N<(y{SU_Qx!IVA+k9@`y zRkU3tFpYhT#`2uVWP6OKk}+aHH=*tk2+RAItm^b8 z%z>-0OoUmu%9|IuKL6q8`b{<(IRWR-v$r?>a@m~hjz_aH9`f~)<|z(1;PpuLD-uw{4`K4I_jrwWKzp7uadvV$EOBS-|?TJ_$f z&&ct+H!zuoSkTN>Hd7t$g3G^q=oGo!@DW}|>nJZWLhf$k-{8WY0qu1+9)_Xl$Wz+B z6ym~{SnHoWH#{_Y33VCt-n3AxY8uEKXuHd0Gaqyl^erR4JrF=E#QNf1#VjagFUxsNRir`e1;+^G8qu&+k$PUpn9z$C zgw&QnD%=q2T-^>3H}lV5E}1M)oDF%@W+xeco5zPMMCr*RL|{4 z>@G00=9@|OFAJ8s>((R=rG3VQ#!&}iKo#vk_z*^FNcZZtrGwe_oS`enN{951-nPxd zi3yPQ!3vZkI`LGDU>VE#O0{J76AbLx z0PfLt(J!>O@3}wLl~B=rRxr*OxAD5wn#F>H-;2u?VPFzI)|#%FLU@czoEb?l1tN=o zxOvxOjvnN>P3;I$M+X$Y;5xmF4!%=_qUvc6f@Pw3NlSBd6gqv!G~KK{16W~BDU}r; zp%Z(jCdc&P6Oy#Ic@f192nwpEN_52n{~-O)-Q*N>EIlV*^&Kgnm5K~fL@lTuUIKm1 zt0wF#i)U#%$|8Stx=pT#02*oYc#N4tR3Njvw{fc|IHUFh&M`#dhs?cgPEOG}NH)qH zOy7s#$A(;!(ofic56oZ1Ad=?U+qxW+1krC_l^nXGKIVPHzH2AG>#lz6ex?}#O*r-L zcpvs3`u;>G$07Q;2rSs_ts+PKd%VLU5#nlEpkC4xNwv2;-0hJ}Lf4*5!fBiZy`%4~ ztCl2@Cy%-gAL1%C8)Z{wmaAk_7FdggiyP?&I_-LOj*;hk@Hpg)zs4c{tgHu$OVBhu zfhM#FDwiI^B@<;qzJO3EM|s*Vzwr&kA@fdfmn*aUg^I{v(UqXDF%$O&4!?K-7pe(U zST*}B|0E=}fYrUJf$Ixx_s%6!mjWkf(l=Qo2TSR1CtYb^H>|Ykv89BpGGHhzx{^rU zCu~r`O>4q-RX91DX5z{FH%PoyJfW{c6W9IotaQr6oY%=*Q*BkNtgirRA zwj}fY(Ile%?82s=V9M|c6J>#RikhzPyah14kW zUj<Ty2T)<{_N40^q|gKM|q3a`Z0egAI|^X{Eay4Z#;KhcvpyYB5POO=e1#dnfxXLv zi{MbMCk&OOozBUvGj`%h$IFm@kCwg46r#|MoXlXCQZ{nO%Gg>DwP>%()#c3;9% zQIpA&dYPLfV}UtFNf1s#QJWmOMJ@J@!$W@n&tu!ATV&Cv)}b=uM3O8rbuZw)b5IiKa$ zW9mG+avYXPTb)PeBx%N)ir<#<9JXZblk>zkWu}scWot$)HbQ}rT`)V7tRRI3&tTn& zJ9jbVQORKP^b9YBt1nE|^CNj69XLXLU64;?J$Ft?(@YzM-jttvUlwmbS`*6ld)YwU zg!m|{u-?|A8MTfZ$jydXFK*Ryb?lHS_3JZ7VxIc8brnUmd^-#VY+~o?4y}5>5zNg~ zW+#`{N%eCcB{l7SFuKD`wNDDudZiC6ReO5x$|uH}VRVW}Rn?mAlPL9_6_M6FC#FQF zt*&_+7Ol(O)a*cGY@*R>jCQ+Q^Vz$YqeuVP2zZcW+Zt5MWPdY-mc=^iwD)AOXV}A|ojmB5 zfIGO{%129InDw7YU$f&7BO3pi-GfdMvz;5vt0iq290PB@wKHL}z0;C#l|!=sc=*Jq zHTHp=M6lOG(S~ysHj5-3rMJ`kwZ*<5owQP&zF*CUW-}rn>e1>RN2^0I9OwSWHdBK2 zqTRq1V+Nmnwulx|n=Rl>@YU6hNLxnPtphgG!aC;MZR zMDB~%OA9EfL`9(eIwAeBq$(b^Vk^$#siZi6NnC<|8?5XUL+bo&E&jHOi$d!|2;EMQ z|GMyyA1uiYjnSXK{s=Mcc0w#sY)u}vr{i$YCpazsJu}~El}I9%(3#gEEyk&X~yWxn#!i#XA)1MwNTlYIRvSQHtTxcv??iTHHl>F@6xVWhp{ z27DAv@l)Tv$${i6yb(=zI>VYfb7Ydz@sLK*LB`S2#7Kzgt4`OQqK7f{NbKwo<+tb3 z9}V_NEAk%3izf9*lvz@U_pJHs($1abZ!IvOTyTqHi=uxwc}Ng{O^vE^vLu!L-#kRYJ#7510>*nb3)=?rVH^|H?kJh#_X<_Jr)qDYiK= zD)oqJ$nEo)B{HOHc5A)L>(M_C#HTd`@?osK2hTVC@(oIKHNWZ`!8%Xy%Lv~lOx4IE z=MHwIHgXTVFi2&CRaX%%nLWz}omcpD1mdZOKdh1NR&E2%W5SwHdaD}3f$G#|cNi$U zw-euZ7+(w`-T3A$3~jn=#;1V>z8+v`fyEbX5QGHUz9B`5nh%A}t`)ADGIdZFcb3pV zKEA&Bv@bPEvtp;%?`UbV)&nkVA`IMafhxM{2Jllf>SOgtmOLumsdzo=Z`!zt6RbVY z1?TErP2eLiI0kREZR(F2(Cf`}xK!8Gn|Qn_$v5h7CTrmg6FN$xE zMb4wAt*AE`9Ru8TrVKNwO#4fPkw?u?w<6|HwaJPbsHSv=srRbVsP4c#MhXMcx=5+D zSVBA$;FCR-^vtfs_+ui1#eDCS&4jU0yuqhpw&^;#>y2lJU7g&=mal$^!P@c! zNIw*h}drA(GZ7U6dt0%XKh&`&TsQ`zmLxx4jV?=@bX54YB*ql}wb2%6!vn(&b7!%Fj7Y3apKf4>}jdFhw>B|;-Ant@*PI*}l zWu`r{#?51{R#h7%Q!n1${Hkb8d*R_F5S~LtrSLt(45gbij79?!q4yP0{_1Q{onTq) z%{dXNn;&}61S>IUrn?bYVI-WDE=g@5>mW}Z^iv@k$!#`D-&!%hNq~a*7zoKQ9&BA7 zKgt>I9MQbmVr*BBIqA|*Jo}Si5(Zj@T{N5^>b|!rlVBaAWu|Xn;T6btiYyG=?VwlW z`Gn8f0lgvHvfCtg>7pOxz}B!la^>d9L@9mPq%wC&4>gF(?k6zYGHArjRz0CPEA`?- z6Y+=f@I)T)vZyqD7hzXxPrZ)3=D8;fBv&`taQ2;3pi`y16kmMIQJGGcL#0aL?8ju0 zqcFmIq0ZRt4+@YNl4S^&yRo((H(|HUfiSO{S<{nAadMU1aO|HXVB_NDq?n)h zh%k7okele5!l>pjdXpl6g=^$6uO16|uI`;dr>cnpi(i=p(&y>O#*I{wk}`NvYrKs^ zD;EP}8Ij3bZ8IoJ9dW}9bV;^BEQzNWu7m8@(?r!Naml04u83q$qL3*Nyog~CiHToq z$n7TuLnyZ+$bRyvpokch3C|PI=JLBzC|ng}u(wqUQzp`&WVRkU~j_lq3iWt3R5JvXJO@&L$(*XIw;AT<=3?tHQC6M#XGs0V zDgCjv1pN(XPg@;n^2Rn4EX6xg;TN^A>Qx@QBOAK>FkzG{k$~zS9l)xkvI3?MB554kIZ@8XvSbfzSM(_jFS43a6`4jxC<8g1Bd?5YE-<&hj}Ym2#l5! z?DE7{A144lv2C5SPLQ(OAlysRM4&(c|6Hgyh z_@6ECsmK>6*xf*A`+vCg62O42ckutx^_~pS8$e?MunaW*uneI7#WF|&nI!#JPdf-Y z1O@~|zptLL=6pnz8ysAeeyy8<%NG3>n}+YJ?RiwbCWfD#~*l^ zVAs}mXi!dW?{l0@TSrVG6j|ZtHri@OcCMoQW2|@*AyRJ{d@pbaoVY3R-D8(-4Lz(s z7RzKOOt{J$-R-VmbE*)SF7Dkv)X|P6>$_w=dp;0{Ja2m9R`FzVpzU)cbIV~mh`%+{ zWxu{4hPcJE6q!i*IzllrJuo&^?QPyw2{47!_IB;jUhq|fm>`ThlWz#F7jYfhglW!y zG>vo-drn(dt-v5?W^%fJ9d5%_{>1)^W5tC73db{L!m)Kfn_Z&(al?WYvdgw(1Ivkv z{qlUCuPuF}OJKj_%DyQ9@;*!FL-T{97x-K^_yvTC4X4dn&sM#N^tJ$$+~(t#{d=8V z9_;`)AoHNP^y|i4j`G^xECwc~Z;{@?M56!r*@0#{3yekj zI_4q!-FoXT+U@eX#By%0M8aN~p~*Y?fVH4zbmee!^z^V4uE~6rlaZ_D*(9%Ps*qVX zLx>dQ?P*ICr@%dDHGcYq9@7m~sPzX&c$bffOM~}8-QB&?%-!kN)rpl~<7Qw(M4&If zVr)7e@9_#R>8qu5yA3z6KOli5v5D9L`Sh24Lhzq_`eQli)b@8i0W2p0`J`)SX8t>; z96^DCf9F)alBIm4KAO+3vxcv<5y(u^56ccilwXE2$1)W@2Y$~tw=^m=hD47rW(bm` z6d|)_pk*=q)v#u3IGmgyH9VfIMf^*Wwh0G2P3q*ur5DTRai^8(zGsK(xaFlZN~{#QRF zj;+b{s4zyN)KGP6$z@WB1CFL?3#ade z+`(~OPW@?x$?Jpm?

-GKy5crQJENMRb@x3CCQ$m(E`*u+;Lax8)nU8Rq`bBcxyyC{mFqae4(@DRuL z`{)kXzy$ajCLCZX{YpovdCiw0Jk%y+hh5R+-`Sig1W)|GyYyvPWB6BQQ!s3lp*uDC zyZ?H85lF%~G<>Xvty`AARACNG#LWJ|u^XVeIbH1J4pFZ_hOe=+nEeEWpJdAwSh%wB zwgL}oM!sPzGF$K0U(vYTtHxIx=PZvofs?abK;&Yu3sfAHU{+|#TI{fIW}J7*&tu8G z!S%sY>|NQREvFGES;JuFxQ566re{c8)`dTtc-E^58ag0mRx?bt7A$c|I` zu7sx;S{d;?l-NVf&qD4FOokDslxqK+IRzz~v;K1KssKe^S9;U5pImT^s~~r8n4?%9 z-ZhPH2$}ir&RQb{jQNZxu)g^zo8jnWzir%KQ|K66=R|h0xzhX>&I~AL!`m@=7u=+F z#QWjK9aQn2d6w=iFT|HsN1@C*^kQ!+$J8glb(Pife?>tKKPp==af96EPWu0P$n;y+ zm)NW+U~$U0S|ZYaoNS|~`yp2DZGYi`Y{G@1H$KZbx*5E4uScbm?CaB+aX$vKmieEOte3snh|BuA?0ptIX<~M-J_K#GI0pscZ``=HR{r3{_-^>750KWkF#{!~&n13wV2#EQ| z;&_0Ve=I`=i1{CgJprO7{@k_yMI!2dudf4$`X9)c0HXc}dJ%x!{oj-F0Z;Sa6O60C(Hx_dg8~+JDaTK2m`1 z|DVkBK0`o2epbKd`AE;-vpeA4lKs9qxYD1i|Je)v9`i4{F<>wFhvI7Y2VY$S0V#q1 zB?xe5`rC8;yRn`tz$V*N4@{6y&qQx?b2QXdZY&~{4oV+L@-Jp_zCVD;P5g(+4T>s0 z+U^ewCJSJ4-~Pr}QhzWO(q9;>CN&_~LBqnqS-{$>K19DFpaCSnQn~DtE}ml9W+pbo zZ25oqQGffde$?f_fBdK&<$wUd%c=V>w{h}CiEc{SQZNqaT{;6A&=&}!);CC`Fg$j> zU*+NC0E^lOa2Hd(@Zb8T7~iI_zTjeE0sKvo?SpeR(SiqyJI$aXgMmb$fPnN=1@1mR zZXEyQ_5Uvb{U?tc_~!TLflmL~fYbe1fDQk?=@0-ZIcFzFD8LJ$iIuG@5D*-~@8P6z ze}?n_9`5%C|AH$^n>#weDLFY9>suQ;NZ6Rzq6phM8(6s$TAABe8XEz=I647#@qMsB zaioAJH>a^?i#vzT$93<4T4lM@D?x~sT!@51LDZ0=ObXr~ZAfM$>ZkI zpOO+~oo!5p&o8K4P@$Z2J^K!-q8mP2nrkjapjqNwnt=H{3HdDl<36ZJ^5`O+iz`!O z{=PCtylsB9g{j@q_rVLW!^d*^NJ}Wf%`soif&Y}?`M|1a&I&_aYXV-xvqHiB#$e4B zDoU@db11N(#u@QR<@scyZqN&i?7Jec-i&B=R*8h;9_?7RD!z` z|MM_F8(|>L^iV24$5%G{LQd$wy3kQQ=SX($ns~sa+%J^eel5&$O;t}6q?53DK6}+Z z(h)FJ)b5s9HcQ)qcmX@qpSV4TmY!euTsiQNSX8LDo=O9M+rlB%V86Qcy!)2G05@2j zo($mk7i9~VyTCY#vYw=xB&`_<^T$jPaP`hQGzq?Stv2Nr0YJVS3d>*qyZtVOjn@2ODN zo@#oKxmU``W^|s))qOM$Y{>CheJ8ehQxb~1_9WVifTk8V_b=Gz>^Buqs;Lv5Y_sHZ zuEiDg*9g01Y)#a$AETGPXnT5j>Ui7A*tf+`W4`0(ZX#ew$nnuNYo?M>!cN>4$);@r zZ|&~)s8A8-X>Ar@j)7)l@IjEBHK#N+`3}(;kvj;9N({wGF6;OUa-!s=0iPzn9_S;h zcdq2%)^H??VvLXx{B(=HQH;$E%uPu5^FmzU}TWO8kJkJbF1F@bN2YpiF zrs1|D4A+@DV|K}-g3zM!tNbE!dNs7y`R5GmB8sZk7u0f%&e;uvFON#E##FxN-C+9@ zRLORzJB$J=CFBM^#2Rtm{S52Cj0281a%^7wZH~*0=Gd_(5ii&DwPhy)-HyO2r6YQN z>}t$VJBmWSyMHxj3?FCDWa-VY5oKQ+xf`@N0rHV&cjxr)iXs0Fk>3|g+(6u$iD@7< z(+e{lxzkLtdPLq`BeQ9O~Y7e;?%@EFzER z?J7J~wYF~x$7q#}MH_@da+s!G1$%;e5AFA09g(CI!(S7bOls+NZn6ggRhs%_06FI@ z!`1=&w@(YrG`gw1QVNxtvWZ$c37H_0l)n zcrL}=)Cf*rLYdPcgLfT9G|JU90@rVA;8wgQnVB;^Vd33Kq%rj&G6;47M(-DRz`xE$r0?I>8qw{VXO}CooYHab26+hopcj1{6Gl*9 z(5TD7_J{kY=WUt=f>FN*2rNUN$&p~5I!cZ1Y=M)8zI*9`sNvH`;f2^|A7`+>`Yel) zMiN85ztKzs7{f<(+3ZO*3R&xguJ!|Dwq>etAXC=+nUxAB&L9c9idf|yIdgml2FI|G66_3TQ zHp!+VP0r&=T+j>}+c1?p8_P*vpj7XEp2FZ@_0$v9fIAaM8t4$oz>7@*`OxflQsr;i zsIbR!L_#XOUYaOevVQ`b45#}nB2U5aosc$&pIjE)G!z}or}N8Cb9NTEOTz(K1LN}J zn`ZftRUG&q*lo+-vGtpj(Io8sLf`hsci_jhI+n1XZxGabkTQoqDUidvCVgw|F_*!q zR*?^_rYy$^`In)2QDCp|)QNaG5rLeuVsNmW{%N$#{|HUg&9A;+}cL*3z8d)@lok|_tn zC#{I<$3)I*JX%t{u_rA3wMSapi8)+bOh(+b(s8MpUKfx?IUwMWjQ-$gLz)C(Z}G@O zY;%Yya3b>f9fpLapDoef_{2Nq+m^8t)5Fcn6RVx0IanCM4|<#gBwr=`U>R|zogEQW z4V$O;mjhUOaB(C6mwWZ^lQj`i3Ky9h*J83Evdsdnbz$XbU`aS(U_mg4P!x?*B*#6E zXT0w{pA=kG48j(s39@QXh6k*a^d;$R@g)m}@^BDS5g^Y|b(x5pD?($bs=zai7kDCH z79z8da&prHI5UMSwUl5vFymsn-7Exakkt`=DlB>x(dsS;VF!f!}WZOGc@#SbwRyc zgkQGDI6Rs>9y#JcBRpmd=o6qFU@E9w1%a@&wu*flD)Lv59!F$Na6L!8XypP1E>PUo zM-;7z36MH|1G?GD_WYPW&W->wak`WnVJ9N)0nDg7l9>_>+^oku z3B4H`NxI=HsgCs*mDR2t?G{_&x|0FyS;bOx0;SDWB#9Y&Z1Z<>im^+Qnyt8DG%Z~7Ax7s~|ozfy)Q&}AJ*jQhO{KaIZ zk~*`d^~p@X_lJKDQWEVk3mSn26(@zI5{*$+a7=M{5Q!zV(VG(bcI722x<*I0A?vx> zPx}b zaiPovbl(vVW#)YK-0(!7W%A|i*V>=pTi8K-#b4_M+qFAX$?bJOL3EzA8lx@&0;`s|q=n7=(qVMHC@2xG%OoTLFa2HVem~0$Go0Xq>#Z6(A@2hO zlXqDJ02>&7qXCHJ|3qw&o_~V}0Adqo_*;_b9Rz3@;xEM3(*Ii&%HppRvGKn}p;C}9 z^s%zi)U`%|68O29AMPHz}MSoD2ky0~*PxNrQ?5CR`Exr09_v|f#cn~3DxF!*@L-=;e<9exP z=*vg!C9L<#s~%nd682BMnVEcaI^ax(_0itCKh6%!cwvlrKy<`S|ER}i@Lk*69KGE- z#7F^0pe1ma_M}kfe8h@)*X89I?OG6)dwHuOLjZP^cBOzC;Q00mwOm(D*G2SmL+Sn8 zm^Wn6?-{PkPz`UpUa<9Cdd49%!p;iy^=^WQqrLvnX9O+e_RY2%kzmhx(9L0SuuDM~c*HWb`1#MaE>N?SXVuC!_E5*#>>orUAdpoV!D{5`$aZ#Y&ooYv zFEN3&>jyl+-i!$Ma;|sl%O)3kNv`c*&)#GqYd6Yb>?=#`=x>eO@>#l)&yiWDX#hwc z$w*HG%@}J-z&_D|d#&rR*R6bEXp($Mf<$e6$YMyV$e~BMsCkb;HeM!^%NkSX+=*|$ zgQ@2`mMOx%?|3;*G^gct0~e%l3#ZsUfx|tNxrY!0M3XhFE{{04W#Se2}4o-Ct)am!{?atzY_-X zPs03F;OIgEDyIOX%b6xL^N*9~k5~pl;qS})Dc0n-yj5sqWD*HAqf-o|LbIx9Inolv z!tssDXj|fnin$7@XxO8M3DT}B2OSR_MUE{8z8B9Q3!D#?>uvK7p8Xp)trPFzy%jKF1?;Ll*;7k7o;8t`AtAeZTh03=ek_>?s&kg0V0LjE z3ZVrwtCRW>3PQ^sD_HbPvW!h4m3NJIWdgsFDzSX8+MzA8`<@CCe1xxg}HmS`O=-B#(lI z@dVKOXx849{bZnm8E-WBPY{GQ7K7sh4bY_VV(}tu(cJ)=FgB*eaX@fUi0jMVS3;|j zw4AGW2Jw?{Qe%!R;F7DSqpmoK?A7lNjC7^&`S%1BUscn9zm)Rg=w56?6mVww{AgfT zul~ug#7T|ao9s3qR2aqIu%>n}bViZAtFu-&cm+mjMRUE9vj!x|a>BBhjgsGRm}Ujl zj9{UI@X9$h#6Pa#+8@{gG-$H~bJ}G@D5q)Gq1gy$)H3dotgxIr=+Xwt0({YerfAi z-5Qqzu?r9Ridc(1*>!kDE{wtOkfgxi)1Af3XX43Sc0<*aWr$rFN5_3^e6Y5)#D^?0 zPX9!!iYFO1)5&6##)Q;uFl>UVpY1I!$aNFSL1bR&5cOR31Q!K;{)yu2wb{S5 z^7!l3BsDv_)58#XqYO^g5QCB>pk0cZl<`k*EJIM@<(lUvKceKx!LuHJ?> zRzlCq$NWMT)b5c;12}wNwh1#Gqt@uBUCH^S2Jb7#p9*Tdm;-a!IyU#hly=C)L-Eh| z7zKgBUJH+E^~TvI^h;LuBk;4ha?a6jt8ia1ZTLiG>A;*(iGfu9L~41ijtY)+oEJ$SzX}Yc10O4i)z9f1Hv^So zPQZZ*gV#bI_-D-deQDhUcu;^7bYE6X;Aos$mR$fkdS4le6)*76mB^!LAr1ew8I}nq z6Xe!?y+K2veRXokX#-Oa0%;;t)5S2fXkJ!@+PKUzBy76mH|7BkezV23u8=dZL9fY< zv!-k2LAY^bOlAzQxG!ViqYe0k=PCHw#tmQ?w)R#Vg``j@lEAj;$2$JG7M;_LB~^qv zZ685#MbSb!D0U4hB_2BJgMnbK5Js9Cj%7I;zVKj$hN&=_tYN zoWN-L6hyNeXp79etU`&`X6u^!v4JCYDz=yN+)g?y_Cqr3GM#|G#?sDNi||lq-+9{* z^DyXsCH5!RUP0^z< zOR!7NDAzNdI#8a`FXP->K#`oMUp+CR?NruZFW zbKrkxRU$M08J3V1j*QoP0T{N_mP2ewB(L&x;6`k*bt;>oMYjSI=xbg@#7YQ)sPF0v z+Je>hCeZTWRtFIn{LVLM;RA`3+%S)|5mB6{$)s7a;j|11GtNYJm*KB4cBTc*>yFpp zx%Mf>%TG6*1`qny$1MeiC$vsO`z(gC#cC5;?3}4O!Tdb-^9vS^;!dE)%{DWS?Xln1 z*{pT@&g9-0(e4aJ+kbG%)ovYJfET}DuI?$eWKB`Pn0l+#u5`uPM~z-PPG;Nozqay;P3f8JGM$)VRHHi{C7L zlEwfl(;Vq+mD*P0k{^f_wCrb}ij6gbu-w z9BeE9RLky3uqh%rw&lJLjm@2O=FBZo4g{23#ETcMBDS|JNrT(O4n|eff+e$SzV~AU z;dnWH{0jBRD)F#->K5nk8Hx^k?kZAn74OkM^V2pQ~Kw?EF1orv#%C6 z81jeDSwu)VkesQ$Jhqc7Y9eglY_YLRK5^jB&AyugYhSCNb+AaL+^0q~)fTS5=p6QnzBBYGpjIW`=G?&SklC0zo`a6WlcJB6&hGzdLV3tfgkfjHYv6AjhD zd3e_oWxwF!7QD~fB_+pzlSI{M(glyV-CQ*#*G@JbLiBgZ)dYJ0t+!3VmK8|tco)$Z z4!(5x=^~kI8~5NK$mneZ(=93;L#^kngb(FAvKuqw6=8F3C74L17b=D?7@hS_vBWK| zli+3vja0kmBl9Lv1U+zu><}NBz5c?XUHtII<;~RblM>c7ki4c&*FyFmsinS*n`cj7 zO9kNb8dSQ_BiZXHB2dVzw*XflXE?c%Y>nu4E_8-GKem zozUa-E3Fn`c~n`Oft^dghZep{I8_3!eW4(^YSmZ29TF6~-Ef3--1$(ZTDI-YwuZ&7 z9+VD;>h2|8RrV=oGKA})u1_?3jSh0;?HA>t`te9E)#sgY6RLWsMNw|9vGmcKivckW z&0B_22U}6LU+vP(SjP9={Ft~jE{`TO*=4>W67-!t^5>K5tS7~^eRVa2-%??xK457$ z!|nofS6*(B(^(m01)?U3>FpGyE}nSdB#P^NOWFYlEOS9x!rX1Sjl(aBZvgcKleonf zqK?l}^={KG)2kiPM5>Ti*G;IkZd=mbpDsmhP0LvQY=F42#u~u&7oF7W3)8q0Pp)%9 z9NnAn`_*-k-F^qA)A#U6sE@f7cCWj8I5GL9i4-H=zE{WMR$pED0VBFaRIn_E*{g2%TQm|C)Jq*6m7SOX{)r;x zm>Wpqk>w?KCbY7fB3i48PLF1j;2!jSz4{W4(8aT4vS~#G`9oD;S)$G492Ypng==@wBM?2j16UF@prPFf>8{lkxV{F3 zUSZ0=&H(vV>CVK$3uL#@c*i*Dny9V~h0#HH>b$n{aNhcp{D1({0{rRg5&JSG6?``j zn}Dwy$aFbV4(STK>~le$-%HM6{;`#C(;QeFs&%Nf5+TjNv?W3+b&@}s;Cr@(%clgI zWiyvOiX;X84@M}-J&>2hnd}~#V2{kteg}%idJZ`JLe~=6?^9S&B`iQv;=t9SZ~+ZZ z?DR#eftV8_$OY4&B0dOyWbv+MUOr;M0!+tLV3$(aIhgB*V=@@bWC}3vwM~9a25^Hb z;PL}$t10SrJ5HbB-;VRl4*T#z=R@}M+CU=sAFv5h$KUpzP9tx8F*Nlh2s@l#oxCBY z@)N;0FGca4vCVyZEKxz)S{_WCo(12>Ly2sC`y#s$X8nK%RzKlfr_D+9cpGENA9AAZQW1Y^6||Vr zzvA50yNt~gi@181Z@ry7A#|cAk1F(3uE-^#b3~>$x0^AXI;u5VfI=a%!FoEqvYgYbYug z&@n{sU_drYoxc2 zpewRt`@u`u;#AjUYKJ7<$C!6EXgcP5+QWmPEnwzU%jnzyra%SK0F(%s|9gorJM-^~ z$L|s$5?hA}s$?A{_cxiLmcaiBQKGO;(S7(ItDO<}*dx zaP!5Ue;9+FGd=d$lew8!vm;)DqKj4*8`o&pqeJ=d+wvL$M0}9132mh_{nnhfrT*xl z-t`PXr|?Y&l8P+NcnkIx4_CdMO?$V@q1tnoQ-7&p2tk$tK72l;&EZm~tn2Y^iyG3m zqDkz1;MMU`&gXq?m~Nu$!B%4y4uUMiFQSTo(}|1oo29hw4^NX6q1o|u-Zft;yzT{` zWVPy+H6s5Q7MuG9tdMU~IF+yj8N0EajCvsYqYT-&*Nmx8puT9O~eR-czU zPP7|@fc1BvQ=@1gFvJ(UbML=wA~i3+?PjD+;CAP7@)Q|4aDCIhv)XNI=<1Twe!l9j zWkulCj~puk^JQ-=#`Dl_su}7c@*4A{>VZWVzww+~NQU81Kc&TFEnnW!dz@yg)ts8@ zsy04q`vtqfeyGiNFq8B;+C_Nz%Ewa#1zC?{S|wVs=^8u3`E=B_3EV8UDE@2mFLwlm z1pRN2eHz0G_l}u6!y`(#6kaa&t2X4PjlTNHJ3Bo?vRbs`vgwYy8M7(0T54r*m&J?q~x5PZ1yoerD7E5%Qk7j@I%%Qma=abAgO*-y{Q+PAjTE!fi<{@l48 zkd2w5g!HvSStsYc7h zWoB!(*u53R+XS@x8KfB+-;r+uWS$r%$AdR~H^USy@TQs$WiR}YY26lhR0HY|LD9(NWWLP=@YZJe=P?=LW-^EJq+`!n6Sh%J31qH#k#Hew832H zAZC|PP7i7|FOIq@$H(p#vZP=Os$A0v-e1^}Ui~~@{8Zz`ipn>qV%K>}nfXVNBjB{x zu*Dhi_;S%gv+1BnbNgeE*YHMbMB@G^DU-7J!3%4a7f!q;ij2G3T1@yQ0sj%EL*Y>8 zt~G#l;Z&$fiEAlA!en_C1|3{hI9Rf59d)!iR^g^|8?>MY>2O?|X?jkcB`}P(JSSq(mbiFB1;9 zTu>{%F>;W?G)31Ub|aU^memB_)&G z_l<_&cJc>v{!v)R?iwWZ`Zo?PE}jlmLdQQxN@}6T(8}xLThY?5q8v*i4*Ui8=nChV zqc)##3hO=8E0aGxdmW4>jQS4=ZAPfknxrDCScrx#?azJY$orb_MeoF#g;#cxr@bBd z^b7^3?&&w}xYNF5XG}WH<7Xk7E5Sq1Y<)9-Em>UJD%WSuPBOR5xg+!BtEC>Zbym-3 z5PvMYLb(|wSulyWzAh-QSa4ZPobGZz@R!c~W{qES%ia6lWWByyZ%PE$#vk5MB{u{k%(_1E|>ZR%e^3#gpP`y6X!w}mZ@ z+Z(agcdxuEI#nya$eI4y%Usz81vix@S3j*;d5WxG=i|j3)W@@LH$<6{HAoERwe2)x zDl_kKaLY~#yyI4K%~pb@gvQgQXZCq3d3G0ja@S&uUB?+PrRuCUl#X*-+;h>{oFlHnT82AmVaK!yH7GdV3BklTN!oC0a@usyB6_>(d%~&ZvCU0Q~hP(=rPYrMU2h-Jd}vO$N(uC#Kk=TWWe;pH~eNpN_$wcBwb{)%%EH zG1bL|CYpG9qobG^cF(WEKI_fi6p56ar(iu03I{SXB|*KQNkls}t`Q?T9~Uw1KsydY z*bN+86(w5H^Dt3WTPtz2)ssf-^8lx$jCUej5c=VZ)pNKN1W7%X3(d4? z`S-UH-{`ZG6MTdSH7G%ww7g47rTvaDuF{dU46obNhvq?i$(U%MQdh^;z8}IjOYDH{xt%`}8{zTd zfD*q#yNJxL1Zu>Oon_H356#MKUh*xMFBs?Te}C`1q;;HB6@sRZ!xdDKR5j)^>scEA zs=I|{?wW-{zM?W>Mo4(t&)YXkB*0G`{FvFtp=nAj-OLlrfzKBUML?Z26>$;QJ4>~v zLBJX~uR|S?_RoY@_LU(H__@p1DDf-p}f#EPx`1_~?b@p#R6^Hg$|C&-FB^bN)4jkx*r74BwXyzXFm zzofw7gfA723B_OZ)asX_-6iqu#Ao7b(ll)04z9@*y9b?nGZNh2wD3R*O$um&1Fvf0jyS!$#;~9U`QSpc zSWr^Fpr_ZRcf}8K7?y-oGh*VtP(@Vj&4!bY&jYS&SAdhd+8^W*9r9#u!t6+A0!Cd} zU0uV%vQaHiwn&G-34j(;C)PzVm-}`3;oW6WqbB>i{F9b|)^PI(i{BR?zYG@K_cELg zfv3&dF|k8!Q}eD@sJG!qVj2_kwOcd)Ot@U5+rg+A!}*Ywf+!Y&FFmONVTJWHQ;M#< z&pn{uTp2Q=`A}zfVuCbUpW{Y(c5ohJbwgkmH0#@Lz&az-?6Jb7jZTno+dh`G`(ndY?)7DoW;@HH(IJ?GQy@#TY~e} z-m=}oG5miA*$W*=Ilv298iIhGwb}5%HF*)Y?L-2;9U`AqwTO#+w}J^9;J`fa?e(c~ zuV?Qyfd;~^l5j?6AS1xT$I?%L&Da<11b7$b9}~+tKDlLBbGdxQFFzNGkzH^?#!2?&&`_ZSwA}YGK{NCFwU;W#?rvrC);J+4E_-frO*7p~9cyM*&Kt^< z6MOW7eFTgfTRzqkZ?PhevcDop*rOSZfNB7oaRYtaHyb^9-(!C&x%jk!ze8RaSj-A7 zK2n&7MzB$1e&XTWc2qOrh@*x1e`MBz?Mn2>vs3jAzPT%=(dtq#$W%MhSM&nJDdv%6 z#1;@Rio0SwnFU4IR`g}}wH=%*wplYvh(!L(nvOQt+{)<=lmjze{jc zJ|(_VN0|arA;|>M% zC6r@iiKi6Go=k~l)rwj>T{N8x-Wk|z$O!FuimyiAq4e&wPbBkF!QfTP302mDpHCOj zlS@yD)Uc5?O~o9oW-whGp@ct4h6m~C8gJPv=&7kkmObkUu)fl5!%CF>rBPvIrydGEGmX_j zKb`Ip4=?+Ksa;2HpU{Gan4vgeZcp2Q84{V82Z8@CN?<`hhtW8AC-GFK(N>iDH+yvb zA>Bi8YZ-B=&oG!(g}u&Ho#u|1W00>ASppcqXxc+zVkshim>8ELO0-OwKFj=qt` zSGBa;nD4@r*)c}`@xp(&g`o)h-QaGy4dQm3LmqsLfC0lH^|y;8PSt5U`{vAW{-gqZ z)q6O&E=*ZHmVcjm&B@REv}Lr@uWX2DVbKrnoq3lo9@Y~{F;2#A+i`OGQ9}Z@=q;lx zoQ%KP%={&U`qXLebO9J2liWBOU+Oi9Ty4REBAp?-kYNpd_Ie3M#3p+2+Zw7iT@Zve zy#HucqLDeq44wyW_nkCz(xOt_8n-|8nvoBfy*oI)r}9+i5L{S*pcq_J16XjcvWoqc zuBE*`KW1D?H*dOb(p-3agAfC~U3lC)F6;mm{u*|w9a};`eD?l_9zpE*PZ1T&H;IT zX!AircEobiK&!~B4Io+?s1G~+MjR~%89@y8B+z7B^=qzj~# zW694&Gocx6h`Hpyl3huvA2>SNI@|${7hhtj`4~7PI1XS$jtsX z)=5QehbCn&&9v_9cQkFXr7F1#Y=S4&L$!oYTeL(jLz_dfCBr44CkJlKyhMA{keeq^ z_v#dF@k0S^W3@sj zp*RMQ8d2KFBUYYy+O<>Bcg)=W*^#7T{D2q1_!YvEI~Ju*lWpSjxudvI7H(08ktJ{mrHN?tYc6L&0*({Es`e}SHY#XI?II1{49rLF2I|mB#ULMdcy0d1v8{vPLRjHkqZ_ZXli>?y%8Qw9I6A% z#kW3JaNSxyE@+6$Hpt0fm`v?7{jIQ`FpI3%-QnAe^|Rrca-R=S+|_7TdHS8Q5-UQm z)08>rDymn|<%^rd<7`@W`jl0<<(A83x(Ba+{3@5QN??2YMUW7KFPIIUHEHqOQZ*=zFU47ons~G=%Okv1MjmF zEzdpau(%nTUN>!~JtST%Ff;kr@{yJ~JpcTmHcRMvkR#ywbV5Kw+7YX(-3UyY>U`e&_!27%-LL$mU!vZI~O@wyQ z*5ph8V_7@swA<`i^7?h_)^Xk$Q^ioqLI8tym;+T|!k7o?F?TeZM*LTpMH-y90eLay z){2gcULmHzX|uoIv&f|JC#tm$}Lkx zSjug{cwu($UUV?y=x*`c>zXCoG_(Q7M706}?$O2Y%c|YA{vw-KilA$${UT|%wAj5C z&7MAPn3imJq^~z*GawLs7_t(4fC*9gTd;JFmsJ|k^%PfpkS^2klt9={lMVXtcuy*3gK*k!1kbVQd(d9S z%{8z4Zyh4*UM}fop@?G2}yucKuwL2PMG-0X>bPZ9Xk!V*@-kiN~F z%@MhbiL8IM7*;P7mx5N9Of|q-h4?FbH8!K3xJ|eQ(>e%a;o^KRCNxNV?7LRq zFwCI2*jaF&?akN=k#%0UXy|uJosRp$wOcYiDMH&6r9wdh(&Y#m6oiZDXM)*%;XoB} zH6!1uOP){pq&R;}p@7=Sj_v#;;o+1keBX zKOC@GC8!ePG?gK@5aqziO%#g>c+)};79svx{7ZBJpcD0&B_pt;4hd=t`P!rP=ttTc zLmQUEUm3UGoZZ*m@kwE!8{HatOR&iTX>hjE3hB~j$TnV?+bY%=as#ciK5?i?^w7j8 z0E<2Q)xfK_f2AD!HuMNbAhe&t`p~m1VPiS#54&b+K7&VMa8@R0@^?!Zs^@n&l0}!o za0MHz8Z~i803=GK@f-w1*wY8{Kx_8?5Ayg=vvjx3e-kroQYe;&cKgT)gc5 z!5;l#5Z=vbo{*>OaNn_HS9mUHC<~1H0}Cf2c`Y`fpfgyD%QM)c@m*rzu|J-{K)kO9 zfsoKp#<1Tq5~;qKhUaVd3+6#kTVSXnX)oJTT_@+ z9tP0MFuT@MnT5gI>)7U&++)Uj{>gJl(ABeW^XpO62z^R`dh!nU@O{Q+EctLO|ATPN z?LujCmA`eODKPH&Zi{oFhta#v#~1oHo$|0{w2D}nzjf&ZT* z@IZ+8D=o#Yd!XjM4q}AgKz34RywU@rf^&Jl#vJ|jD*1}c?&YzR{&zZ7Sq;g8&aiZQ zS`Y6CsTA@bJr)j#OZVm28z@EH_mwg7$I%nO>YkYJ%J!T7ULt3+--$lCgzh_;_8Fjz zw9l$)*!kaY3VQd4O#F`2ev>utT}*bx&^UN$_{q{P3cHsU;^{d;DIodIN8@`q6kXtd z&P9M8L6;E|L36PnhzZ38;M)m_5ZSAl?0{?G9@fG7dFK;gXjb|&itcG2;yInwE>t^q6I2Gfz07LOSt z6TUT(aGsXo$`mT??Xl~4zHF^RUJfW85yES!!qr{;76PH(ed-@N((*U`Hmos3NHgC| zdweD$uz3;a&?FT=RwZ!czZz8S-PIx>)7dg(7@$y0YInIZCOTbqIapI#?JZcM&I;tK zBrG$i&4XL!s;fKxQwcC3`R@xV|6N23v^{&tKt@^1Kf_O*)fdLjq4;?QSCVp$8;@#1 zHfYuEt52n?%Aa_zKy2!lsFnat-L@|Cu`poo*ekKicKg*93a+RamtCNz;rKSdjYQSm z5Y#Iirq;{s>TJ<1{jqi}Q)@?e9VyQH_91^Fq|K!JrnT+-vC$qc;lEe(E(j?vIPge;R6`@U@Q0lLA zJlZdq3wB*jvPNQpyZ3-$ z;2`MF24*(xK@l%9k!~K2J1Ppk0mnjiqt05QP7U37yHF4cApSWo`B)ILlDVjT(%;|q zMKQWS%%)j;KMqEJqfxP+HXRcq=9}_o(SY#CO1d6r{TkTSYGJlWII_F&m&tczs2i$`X~!mCKr&V133 zR`W)}F(0Q+fTA-aYkUHW9YV5Qr#mt4a2lV17q^gO6fM1-z)<0T1o$DtR0D`)!Zk}l z6BMl{oB#zXDnpXFY1+EEdl-t=F;JRFV}Np!F!uR1cOouMZePVaW~G6%XW zq(2{ky`Xn4?k>{**qWesWXMFl)s>48!#3vhWPC4^%+5f#QAm$UU!Ok+FujLxbV@a; zd3GWqD_+OtYQ$l0%VS}ohuM2Db9$nd ze0@G9cVFXbB@{jF1tTo6|Emj|xDYC)`+JG`hWC({y!MeAuw@Dm#x+#1qeD6;%`GY4 zbof`#%Ch0tgKk3Z84`G1Nh+RK$|z&M7j6%uD${)|aW#I&$Ks4)d)fb8(fYhB5E*+z z8yn5!CQKI3dVDvK2buY&qQ*C_yX7Rv*!s6@u0(Z@ey$UCo_oXmxeuL0f7Wtc+R~ar$A=t0kD_1lqu9rXYFUownHN6&-?29Prm&-XabedLd* zO<+2LcizjN`4eZJ9)jdDyGoMD19f^T`pQqP-UCJ1aac{!rjLFspVcoF}zxcRscRtdk9bVI(|c|bMbH9jNyyD$f{ zY2TQ+>Dz4)>`5HB#g&ra>=R%MBak&Kbz|n)OLUW99h|ud=uQNhQi6!`4~Ps=jh-TK zXpqgwHy(}fsmF2I6RQ^Mv)n#IOU87EpI#~t#&mTE*l(nU3n)53@6WtTAe`fUbO z&Ds@NJ3JH~rjZUGH2+LwKO9O~I195zb69=3{AH&}N4EtRnOt>q+#(Yhu|_j$wy=SH zMa{8TUV7rHw&CF|bDz-7`*7!`jl))@@!nAMrgRTSFQm993)j)p?(({X=TYQD&ICiY z(NizSq9|`SIymLw_L=J8#TD+Nxeowy8C0^%@Z;0Jn&t;XW@Yu>wY2X_s`)T-OfTFE z>TYtLvS6)f-RC|D#5a(C7P8udfoUX&x8*ONJBcR42b|>WD-LtUxo5W4&9@0q33s}l ziXm%uLnUMDbJ;%?snn7TACU8VuP%a$yB@l{5t1b<8uv4u2=+!Xx!2@C=H#{$8o7#A zH~cH84XrH*Slgf3ecJ|q$p|a+;eh?DgNkW$duG}+P+Fy1%8mvMLWZy!#k#vr_6u7IMAKvF+!oMvrc1SYT3?Ql`DJlC$T4QbYhkTdvJ8gVt{epcwl&NGa{0W zk5^EG!&f*qiq!GaC@x0$p9eBIGx!42`C)6=I|~EzXhT*K2j?YWl6(4(4>P3&wk!7Q zeZ@MzMSa0%7rEEp?H~&*XPu^2@o&}^+OB5DvR!m`QnQ~ltB$3c=1qA2d(j2I3|Sze z)bypP+implB*sr$vd>F*idMNXpw68W303rV<{;qWM4F-cV+9lIW6*l=QWb$e9-M?2 zN5hPZoOnvEKb+(co^yyM3bF>a)3SFbK3N zy7kMHC3g}@KOk3s^o3~H5O-~urb~fj{K`ux%y(x1HdpcC(o2ZC1D6Gbuj3di|HCCX zNgi-j%&FY0O*T~0SCOC=F}(tFfpl0QyF(!k8&zREiF&emJrP@>fuzD@?QhL}(o&zD z2ySN>$kDz(IkkKH{Q0lZ{}dNw&a~$ zWDxtnfXnPOJ>F`H`yNYejpCmd!`c5wIYd_*VZ|{!1ir#4o*LEuUc`&X9 ziwOK~{)nDiXYW?~bwL&3z>!1+SZsVfkm_$uwDKogr50S>k2>~}VBVuDYrZe@H$3)| znMd95y8A@jx_*9dW$vcYTY>z9>LC5@K~AuCI^90$s+TqY(qCasv`Nx1gP0!nGb3ba zWLpnglkVW8`6pS;lJ|b#(T6)@l>V38q0@#?^&?vy?b`iCimqH&9dKE>;lDy4;@mjO zNw`<%D~Pq`#>e58&ATgfUqLKnP)y8P%}3s5^PPuoe_puxh5ICAyOP%WuJ9l%8t^CQ zrh<+32EcgN{LSL%Q5#vDO;|xS4cCJriZBlzRSd~!ba0fW^2zlX(r;)ma~6CwQnl7- zlt~&;P)BI$uGri&0=TB%MUKsBuEJs1ea3RD-gplC0(6w~^rla)1wZ~yBJWlV@|3&j zTP8uGqd6RBNq>7`Q_k`4wi!eCkcRzUZ9bpku+o8$`2u?Mz5S!P5o50)P-DIh(}0KfZwgE0+U%$JlX%Fw5S(O-KQ8SHijwSLxC=QFjf#!epCN zVD_aH`!Me--vVaC%FJNbw#O$}B4Q;yPaSgrX>R_E{?&KZ<`lJB+T1vv|a zRRKjhOyc?PV{I@)6pA0_?dUE89&Wjx zrE%a%@u7T>hOR8gj4eiF=7o~3KQ%wX7X!oZ<|ki_h$^NPwXxE0Ikh6SfbSn*C!xuo zbTjIC+5LYJ6J3Em1eME^wD)1%3gufnY;yn1U|K%HWq~8Ojy+~le3U7C_}-8@_1%SG zf`|&}YF+P7p^xiAtO@>x1r0+U2bV`v>69>1t75S_>bh~b*KNi!Jbn57qZc!J!Ie}{ zoQIIOP~12@z4qYmK4ejG8YV10`@o!cUMqaAQp&!0Z3kxmWe^!Y-hJ&Xie}oqK7Rq} zxQOORJND|G7yRD#%7pz$NqVk^s5x--ufIuM%Ql z|Ie{lbi*a#^&}lQvU9CGflKr!7}=?#L^6GHAWm%(j8#f%{O?5<0&HuTo9@mum-O`? zkH#{14jFDX4@gUC7@A&)TQOl+1LNR%!RttD1pgO^sOj4<)p>s|M};3nqzaT|(OG$C zdy|P*Wj<>gD$*!nw-#CnUkky+`|({`o`8#2wBLdyqet=|060R->(wfEJmcESj(#K> z7#CA=AQ@?_ny}vvNeTx~4E!={KYKZqd|D9U5LwwJ<-4TIk`B72r?a#5nO^;QQlXob zh12ju7^uJL5XZUw;CYKh)dGo`pt(Oc&iZeROn0#eA86@!6A7uH{T6+p(T7i3x78?y zkbJ*7-aJ+WhSLe7(o{cV*@hNbaIi3Glq8Zt_2oYyp7;lnHmsO)f*gu=vfyjJ+~rxL zMAziD1gP4{K#hAb@VDQS`3mIszbiaBl?h$}KWnRFI%>4syZsP`5`5z7cuT&MIbiP=zLKY5RuI7jyf-J|)UDj%{P8Gbdg@vJ^n;@vTw-lrz?JU} zb&p|UQw(Cp-;oc861Ib#&Oee>=W8GcGkP@aayR=7Pz0Z8;!&%Mo11@|Ej4-lSh-B9 zeE7y?e2oFuY#hf}vR2W_Igm78{tN1VcsU;@Fo!UWax<6lvbUGo4QU&sB}_y{w96_@ z#DL@!xZ8wNrE@&(v^cpKx0&X@@d*KGWGnD192yu8d=pvA|D}|%Hnkz^j$NpGb-Ut5 zK$(4=8IV8iHn^lw1fyly-S^6)KQF|r++({TcmPH0!Q|hidX?>Lb&r~!Ha7KG1aor7 zA;2VnvYTJyId(+@`M3}h6wStH2nnOrtDpB*p3H1>2K)RL4-HPiU!{yz{u{0avH*n> z*7nt(8b5^u=|Efm>v#nnCtoisHRGECaAEub^rPp&pKm)p!Acm6y& zkMLcV`{(6Pk;*I~H^!qWmV-JiU##}U3-j=h1Z?ebDVh#;=G4%TF_#@2#D|U4;BuGd zUU4OH zX4et0n76vEZw!>WO-?%bZP9Bw(J*Z@^ zp~C+~oe(f@XHbbRmEV@l5toI%$sAGdk-SoKMhu)dfB&6ZjWEwPFiV zGeygSyO6`$o)$Z>BDEos*EFV0&r$*O+bk^SF=-$AtDIW@J&!=aff#Z|mPW*+mPT(2 zHDgj>|GVCJleKI9%MfiVi_gVG7?v}}kZQ z`bEU6>=l3i7Vcm$#MPS4MmC-gBAZ|7LhjojqN2UGfq$N5vU0v}r1WaqpUl3tWq=e_QSqnobh*_t&(njdwYn@3INPE?-f-Ud=8!;hHc8oW7Thl2NPunXTx`G z-3D~bmvANVLW8c%tVka-xc?T-zJ$iyLDzn9I+TlTKd7uGyj8~D4MdriuW1p$SE7SVX5{^QAIzmqZ{1$Rw$P!ow z=EX;Zpx}e;K?Qh0)RRYI#00vYtVx#n_Rl8Wyxs-}f#!yXo{}nyT#eKB_oSo=D|3H& zhv9-v`}1BzpTEj4z%cz%zMO8m`0eG|}Tm8TQJ6 zSL>l^88x-jnsBTWoldXu)UTWA<^}X~RY@olB(`;Aba2f5~TJT_$&S{uPkl54PuYB~xz$r*R_>Iu5@*&3a`CMgLS|BjZ(hIg2zBS7RIZx~%MR&C$I!IM2%=oQSo(|E< zC^M0%XoeGDk*e06YqDd3-h^ui#gVdadK}azLgW90u+E#?<_-1A$mhjMM{CPU!yf0O zs}A;-;WBtm8gakFmu8^JAfLC!x*bD2e-M7Y{%9_?-4Gt2{5|o{!-~h-`Ui>jJxx_Cr>HL z-n|nc=5G4Z_%zI222PKdekN5*4JJS--=Xp}X}c66=!s(k zx4SvAL}Pz94%qkCi8TsQm(0W#+gE$TM7E$*C`>w$S)~zbzY`IItGf)}YAtxCebiYF zVhXKaQu7-WT|=YDykYkEl@u?aMoS%Nz&K81B!6Al7c;5<6!nXnV0}7$7XCXBadhvC zqFIZ}lS0jR>D4NnjJ*mLZIpNp$|^F`=I`%_7E zY@CecFL4%fG;e66#!Wt2o-^jgw75JW}VlH&n0tf^b&UA&7)RG!E6@&Z6Y zjQ;_Z+TAV4cY1L^0GIW9h8?bIG-JuFf%u<>=L( zubk@`$W1uCT4iz(zy*_J8m!-z99BX(j!W2pB!NHifMzK=w>k?p$g6cNE|O~ZCffh6 zclsM33qfUO%~G)z_3R;xxqI)nd1r^TuGH*2ceP*~Hy%{t7%-pGedH51OC{U7S+DF^ zwRqtSchpl=j2J^O>+Y4m^MjaJiQWvJ)JCx6ns$+e$N#+VinuQg2U-hvqu`pK(l~!i z38RQ`PiW3Ftx7rH_1T?^E7=IZkCkC6|as!@-3YAWZn)m4vch~1RgO$BH; z!aGMO)Dl|v!8^gg^*pp>gMvMOoJo7TzR}-zD@1~DVc8tCxiSesXxBc3QWJVpVs zI%^xiEageVe5I}I!K~u@!>7`&jg)J0hL0c`B{Msb@J|G5V$bx|>v~)$OW+(}Txx|7 z(W~bLRC@CYk{|Qw=6He`91kv6S~=)^J9VoU{Fg0a`79F7?&9Ab1^v#LsPn@t_e>51 z*k%r>LpBa`HWQv6_)B~9yr^=Uf8^p@FNIKK!?Nm-HxSq~KdGUgsA%b$7G_c3Ux4M@t% z-#bW7zRrHtcP=C3K5EA}4v_HJi)|H5_#V{X6a2ekvtse&tFApymVa5j)qyxbY03#8 zdQyDzz)I)p?FqDUfx7C0U-t51F5S{qf5zL5E?;<#AbSYoG{wmb`4w~J>?<TE;@?CE}lO#6-IWMwrPXUL~!Vz*q-D+H~pHhzObgoqElVCHIgDqh!II z0#o)N#b-H=B;cLbx)h$n3XfzPZjmg@ig0yXjx+HaiNG$~1Ix}clH`%TC^1x<2Sgo~ zv>dDbOd_4;A49fl>`TkgZ0P2zOM;tbuoXT_bNNKKZfx(ZK@(d4sM&SI6STGiT=fLs z1Pko^0=@p>DKe=w^fQGPyMf)TOYpd%fZZb;y>8SaH}B`v9Y025<*LwmJyV&#P2)$h zu#2SWcah_|0e2q@=pPUY%ejw>-@d>sbPnTkTw!b@bTDUqulk8QQss3NCij8e!S|So zzV7=c@0JKjoIdf@#xie~KDPhz$pLVX$}LC)A7#IWR{7Wxyl1#E=?&C_AtQqh&c)V5 zGN;x!ave@9+l5mz$4>(UNReaME1DcQ{bcX^;}f*7vre+5qrd2R4U~6(f}L&EKVfCr zc6z!Y`Sm)^#C2kNHlL*+8iM2ho~%a^Tt3#`r_TwCJUG+YZdLg3jR%1Mslg3yItfqMatOb@ z{~H}W=pqJwQ(xP6;4Ji#9K}t{x%J0d zt@jn7P^;tZb>~WkUHeK-p1FjeuBWhjLdIL@>Ah=*gz#Cn9@e@se_nmKHLtSaBDWhN zm?~Caw}(^7b{Wm}A048Ixt43-DS^l)KaunB$rT*xll~#|!HHMpIk&_6(Lp>ZCE0t2 z{T_8Z`T&pFuXMIJL9*FR3pM3f$KDd(@8=CLtJM$B5f27W&u3zXZB|xV-B#D9qU~OW zI%yK#lfPHQhx>8vw|62%H(>?ud5!`Pub0eR`gtuq0;aQ0>5+CFHojYgp%M@4kNW3w z>b8;g5bqlBzwkXqk%D3>_8>no@RDNAo{(t>@4xhLLj~kvwOHzj);uCBpKLSEPbT!5lU#7atYwi zM0_)?wmh}d0P}5VY>p+!K|rQ#j>n!L50n#aY7vLYW)(@Na^UjZ~2PD*c!0Rr`XcNM&lh+L|0t2 zr5ahGExo{9aCWVl{j5`q2U)mX??5<<>bkUj(KFRzl&i3Y<-Ah@4XecF_ynuSX42u1 z*8q}h6pgo15$YPg(m~Z4$o=qZV2Eu#`Lj}jV_;W1^!2%cMbxqd4NZ2HlxqiHZ#%lF z(pVhnT<013yth$(lKf>e$^L+&#M_^zn7AlW?$M~Y_8dpUvC4Bezpe*HzfIO7yIXCu zu;(2HvY91Q5J%h*bB~UUsBwoh*H{APKU~k~Uxzg2gn7EfNO^|^?)4q|X*xhSmrv!2 zRGC4X*Z)T~@G6($Sr@(r26vFWc9(vBFDyIA8S>XJKpzSeQ*w~A>i`+FpG$Z)LVrqj zX!kOIviT&oQ1@pHncq|N{1Z03@b0e0aa2O zlTU_w=INfFt9b{H4iA7UAwg#71k53Rv+8hHZJRRS{j*zr;Sf^@ z(x)tc*wE--w2|LhM>rVV8v@{!)d>EZwEeZI4RJG`uYAX5F3$$x^g4Z4d8SMqhIs30 z_*kS#p`}PSbp@RovZ&2*F8*LGGcJ&S<0cHfEQ{OK!V6FNDN#7a)ARJ%vsATrC&;yn z97VT-BIdlxn2XQcRaYLQ%`=G7*kW`jRQh;r&;3L6C3`%attON?_7{aXquhq z>NL$m8o)^_g$%dgdsB#Ik@h*t&7JS)gg<|8V%IOL%x?pEy1ov!NZkGF545>|^FLMRHcf?ca zw~pSQnA12Bd;hH<2!vXJIlRvw$BI2Cf-LGT_6D-AU#Tuo8GbCO_K<7xt!lcMRGb`g^2Q zd(}vEk_4LCT1KdMyz2>g{(T|C#8JE%%Q4YUhzD1066i1F`g_z##VUa5kukUFz z_h!&id7vD76kxKX%(sbCAL)gD1VazHLTIfT>b&`X*n7{fCbzA9SVcrp!2+TnMcqgf z5Rp!(B1-Q_7mzL>9Rh?VARwU9yY!yWdr^vXLXQNJNDUB@&_W0y@XJ2W+2?uwfcMKg z#`%&D85#FjnfIJ?U30GMnyUk{2rhm9<_l)*>zk?bm8tSNyl|_mmr(VTPs8R&TSfGF zyiC`z@7LK|T4-VYk*72c&egCvhW}-ZsR^H}djyE@!Pjs%hOV~LBmz|?gSAA|P5T(8 zKhf=u(B?w;r%2_MgJuNNdeol8;h9=)67Z1jRxyYgwaNux@mTjoshFpV%vTV8cb@z@T@+uX2ZeKFqE zM9vaWjG~JrYF?i+g>WSPC&9~H4VCnah$OpFM@*}Q%9v%u{g(1&*ci! zwI-d$t)ew3GXW((sWUc9y$@!adn!Tqxmnw+#}&#xT59xBD(&K)t4O3dF^sx)_H z%`POjyqqD~fMQpK6|Uh-(LvrUir@tOSJMI@F19IAt|d`b{%ZnTQv;%zi4oacq=@sS zCtSj~O1zfD?Df;j=hn8(MsT?$=(n`&!N1{7mjTOd8qqQC{~~ zJ5Q*!@41o8)gRQJ$`Ofs=U7L)47-h4ZfyI`+Z?pR6XDeR1wg3!MS?q>tjs zBW*9>9q%GfVY_@F;D zP+s~14__1p-#q-A$Q1FHcZTr@>Alm6$p2|lae;iORI3B+Yg46WrXK?)2o+=T;_ekc z6qc#lB}cPr_Ru<5gP8DGB+#bJ*ztV^T!r^&mqyPO_p!#lm8%_Sx8Fm^eo2`udW|vf zhPYqnkRONzqhqEDQ&l_c6c?A;96Hsh(h#3sHTV+HM2a8cy6w5xO@8J5fALv-z+r5?$NA$QKo@0 z-RQEiFeZ){~^h+1Iyi}^V7p2)$eP~_uwq-I!hwhQnld1(C`iNU_UWseX8CG9;Wrkf}p+VaNzKQ`*|r$?aw11kv^UL<;Z zj|->kz;pAzQ#Ra<-d!k?4E&6Thp#P!9jRlUEf}DMcGg}%JFMnKeo?78`n<`js%Ak? zc`mgh5ON&_s*|)esFcZ{WhnBZ|O>r=u6R9jLMDPkJ2`0N03&C zII#NRoaWx6MD)n?0XejVgFM zsE@cFD_Jfu^73c1-M@`JH?;n^l|$9U)#E>8OWqyKMJ}Y5=_2ht3nH5XF&|CD3qY|b zzOeDY*AieW1Bmd5)s+`@NL3!Z-Ws=;CMs2|5M9M@bi}%^Tfy|sD&hU$mL@S{z}Pv+ zA%P|MY-clm9&v^9{M16hqf-^{(>2Nx2Vi;Azw9_hy#JRs<>~3xhCs#sgHKBdg#!I* zj9*v`UFC8TwCT6AUF3PcuaqrmZ0V`riA|e}6?(+|!aZ+{jLGV{LP2ZtvKn*eCBTd{ zvY5@@YG}Z;c1C|==%fZ@k3pDKRqFJkkh>vKxB+^i;azyTvhK=Z9gnW}{f5H1EMF8% z3}B2j&C|WkG*tb_=!FQE$%oaK-B52!=l8og+_sW7b81tPcKz3M#1A=KwC;Wy-DFw< zB|lgL9>ED#Xs$(7QvzRFpI?ar$Oc3RY+Cm|Eh8n+2flgblW7yOqkM6-1X8=b$akU7 zZqzSeDnP#f*UC51pEE1)sR!8+Pw^@T?inc=eiLCh&V`e*CgZn6_1vVI+~I}EO0n(ST_|yH#vNsV%2&%Am3bXdSm{UbQeGU2Ehp} zBn=LH+z5U#U{~%MXed1q+65~W$XZKQ{pi2B3n3?yo`^h=1O76C$KI7pY$!MMrl%(~ z=K!erwgsK+B=Leu2``cpDWNbkL*BFopK$AJbFO+;Nz*xwiVq*=L%GrE~9#+f}7(5PHyoGMT+yOQxpWZ?(N&7X8`uiC{TeM^Z56L_4l zm?E?15kxQ5d-B)5^oPEuZcFI$U537i@+>QKniLnux~E{JoIu}elsP^?wNX1~aEwZb)RFw)8xeW&mO9^3SuUl^nTSwl50}4D9mpHX~)pDvgO$LZ~Z! zLB@GAp*~Npt5;nPEgK=%R%35gTXHz4FEIW?@BMLBcMhQ~Bqv_ZO?Jq;skiV~wQIf) z{A1Y3=R2;xQqjEk4;6R8^eeXrhkX;@&2V~bH$O#m z$2zHU(c`3{AK0%B52<=CyWh}TGp~nR9R!B;S)wAGdT&JVkd&n{su9228|U@dQt^zj zY#YM--acHvj0p*i^wfqvS-d7UfO;_1o1{I>^{P`Y_%-Ru$3&iEcLDJLZ$#MLD(tft zvip)EHA2(km=$hbU`tH^NpwbVXOW)8#k%B*-u+abyJLTj4!;nUV>- zMuH-N#rRkmW#FWT6MK#?4bVf0v;qWa8e^u>qfeiu7Y@*`EoUKUR0ry7%t+4;(pjvY z6n*yxAjssG&GIBVCs%Oy(ClepurufLU!s2rYgG;JNnDvCPcoNG6N=yE zm0PW3d2liNh>Lw#{Rn)$&nq$gL5@7l_eL(yzAl(2M|CT3?QPE3K~VG;on}*I*%_H| zCWuLM#jN!M{K?OfcI-n1z59BtF9FhtNq1!Rg+E3PE?pP?WP2IK@YkBMC+h@R@cnGz z^bKPrZ`_uw8ohU@d34O};sMgrsHaJJF-gsFT>I+LuWtskziLgnX$`>5D~FAj{(Ov@ zyG{A3k7or0oLg2TKFa&}p>HriKT?`6;R~={pHF zOy$62@ZkWxZ?n^j5dvG}UlRG4m_+0YV;3!GJMeey_Cd2ZyVqrOm1tOks3v1W-t+8n zh>3>$Lez&H!b}PwI!2%} z;v^HZ7nWZF*IuQp-7y_V;}WrC&8SIUBMZ9HFQZfS*vCJ#`r2@t-m) z^8(ki?YiYg33krs0TakWuF`wEQ10))Z!MI3lVEorT=*@*v6|^Z{#|5(~MSOZDE_2VXrJ{N=B#?jM3Zl4^<; zv*NC2z2D=qpHwFJQ3cg{%1}QwNd$`#=0%XfP1U=-=i ze1&t?CL8W8EhulJD--z>Z!CZGG$FNEoAinelYsva8UBQroa-}c>$E4@HUb`5oBGVR zWbRHIoz<^#aZsvUzDW%<(@gFk$9zqEGw2uF<_e3?9eJDb^zd!4wANLpcAzMGTCu-- z?Woi%Sm%9U-d(MMz~v-%z!E(Teq@pO3_R}FtAP7#WXLZ2rt2KjEF1RsK>1#)ar-aq zc;N~Iq89cnNb=P^r>R~w=-rdT_Ua0UUstg7mpEde7SArm4qHGL-b4$RU_u+a+TuG^ zFYgmbG(0f^Ousrk+m>H)b)E%&h0^xWDJ^{}mPmSd89^s3yrKlyct_kHKaOvUtr3fRDLMyMmoy7wp9q)Wc%39FPtD0e=l#=$fs zy@b_asArkS>}0)bAI6%4kUADbX#pZ<_>WOhCbz#-1x{H7g^$+{8QZ1f^%!sOaaqZ` zH!6v_(GE?VoFm40FQNloj_z}6U4F7e2XI(j2>@EkpV8GJ(YDg6UO^oC|Fp|wF8`2N zIgkhwXzkuIQIvIg5l}2o)tzv$OOZDd481#M%PN!$gme>WhR}X1?|WwBHUkVBAuq%{ z3Rbcbc1Li08^?=PQgOL#UO`-|Lb}L(L^&&D6%bpAS3~#GTdA*%CP*nb=b6wsm(A_I z^-J`neFUG}HA#HpvAP!Y(r;7EE`H$p5iqG@$w-bkF~Ky&{UZCKH$u!#c4) z8v875lvnv9s8~IS)Aw-o(+J*0f_=i?$ngcwsWq|Q3+rr&H z5*ZY~+P{SrluXFK%6S?5ri1GZ1<1uwf1ILn-OzlmvC5h~t9&mu#$Hz+@41CNl3g_# zzWe5^;3@dl@YUZwi#-5KB{`xx1(Q#p9Lb8{8;0%Q<=92 zo?DGUHRE^pel^3%qzuj?RNlHcp=BaBk;bF4YWI5YJ^$t7-6?|U6Q*>tkl4@p=yw+8 zr^}|%mj}&0teas#_k+ybZ|?NxaC2gRLaHb9~SX&|xQ zlMN{bv&GoMX)j&<)NyP6Eag#TpbYTMjit6J_UQsQ-*<*2Pm_VnDW6xQ@CH$iihw7B z(dX4$Ps3?AA%cNm=Cq8*x_^s)+B zKT^068FGEmcyKR(z(hZ7^8$Us{+5_rYE9g1v#}KGUGs{%d4qeqZ6*$^--Qy$nwm3r zeCe%CeowyZ-p>;1IsSV%^+8Z7*y_-&W-Ry;fThY|N(l8l74jWZ>p?P|A-QmyDOIax4#bq0?!`fA(i-gox$76apD6Azwti{RDqhuX`SQjMXf^fxmu%? zKpM$cVi|2uXFis}_5*mgydC>H-sW@Y)kQIMruOX-(hL3(!%+2AFHF`FJ92xSUC!@0 zxHBM1F;20(^}vWW?1eSsc{rtlG6RRFG~G|O&Y~ID{Jv78tNpUbzlO`uAjCIm<>>H0 zCM<(644?M-aowpw>AZId^5sCY#n93K~I#HL^aNF>uk_#+EvkT z(nVr(kuus);&9*u#UsM#=8KTS&}~7@(Fc`we{P;p@s?=A_7QglWkqMAXr1Y?X!zZ9 zoSSLWPa2!wa-Uyg|2h~Tj+7plpG4G&)Ke~d*~~R=8pm%E9|FjU+lqh-_Zj`=?II=D zV)JWXUcF33{2z$&29=rLnD;jK&5TGulfnJ9VogOGYso)#TPPY-!no~RS1WHe)F$>n zvKQft3cI9=ag(uKx>s%O7@`GN!^Kv0Hw|W^!OF8xgXw*O1!dFU5nfRiB!dl;XAO5` zl@JnA{zT*9U#t=lBARDV)4u!}h}n?iwcYo*!WcOc_O83HyReo&PhRqLuUE-Sn&aA2 z{}S9xYNRXn@N-&2;IvJ28cj(6s^>ny)K z_t=fu)!#Tu$Z216yOM)4^FOtLGzNK5I}lT28yODw`6_KQcFU)@|JG=|GSNY*MR&=6 zzw6r^l*0DJN;|#FuIOi>c9>%rBJOi(PbggxvXO!y@fxZ@F~nd%UE4%1Bp=1dde47@ zYia*~eewiNtI&ZDh)h*W=)SF!`KCk0Ea7s1(?G`LFp9(|$GPLKwn=m=k^tN?=?eV9 zI;eH1i*;EZAu+`c#@_5KeW{?Km9_k9fMgTTM9;5{FeeJKM`LALuscR=j9}+@i98`o zUB-_=E1A8R5T;ng~%1v_|fn*Xby8`Fe1E;P1+U(|`T` zhw6BsR34q(LZt2ZLNor3!k6}p;4^`)z0od3I&a|* zriiSSy1K&`bk^hLXIhhg-u*|C9HM{zi{+4Mf9mN{{%NwT@om)kA*IBt47yK7DdtP3IZH3h+Wz3=n!?LwUgo;h^xj%B_&U?V=Ebeb3QHxJwGbBkw&> zddX}1f%``yq2(#VUs=-LY9oIX0z$m9jvpx9Kcgv1BCu@Rld4{-bqgfdPk}m8UaDN7 zrS?64BFSP=(MkfZ8pSU^FIW+8^?Ez-cqv;a?Ef$>F;rEXth8e;XDO(V3w)PNriJb5 zw@Xmi81QEWEG?N%r9T7nn0~~8J5p5V{SA+~pa%$T!f|X}Mb|Ha!q&>^o|bK!wtN#P zn-rzbh15Z)x?f`F918}DJkt17if$W;;8DMSbX5uYmCtZJc|W|vh|U83B%j>hcE?pN zOQ>(3S{9R1g^9mMu294O%V9Hz&(GWkqg&-mEMR&9mlfiH*PSIUC+BICj9)>LG^p%s z<4KRaW6nY3wOtJYm8wmWeZ_e{Mxz6|7w``tJx2@5Irj?ZcDCU*ep(Sr5Xa%zd3mpC%Nzo+}*B z@?suey)Y5L-G3|ER6VUODBv~Ur`D=MId@69gbgcHdzn%cCw1jI*ZjK8UAgH3FkVrN zPh-x_vr3xcL@5m3k?ev#O?5%pKziEq))@2KoeHGlXz0?53#pZ+8hO>3&Ed0>$+(Hl*p&VY>OR??n4|qpx(CIUTVSY zUCK9v`K?yPBiHujv%+8PifK4JG1im0;R>AOm5TyL{E82p+0czfrkD*jdB{@3Yq3dgTfq@za|M zRr0~^!N$@dguNl~&CHeOH=wxH`N)J7aBr4QA@-yDKq;3eOLfy5`LwrYXB? z`wSCa>MG5Tv0$eW78gy$shtF9<%KqoSm4TZ`-?{m$@}A&ANphT@q;MgbGvH;*5@-Z z=3MPfU7meFqfX``iFUI}B^m2S%&$1)Dlx6T=~dl~B+ZJ*xPAl7Owz{OsG8|Ah!PRll%FGMOBNNoq?a8o5{UHAV=G>2T8Bna=aK-jPL{=LaQ z#0ii;b!-NPGH1$skl2u`u&2{%FsObs<;Bxhnx5$qq^wg{BGB^S8sKbcvAURzLxF>@ zdEM>{jTN+%OFqT;Jur=Svp4fPEaYE~RwO2K&xf_R(ejbyw`K}9-uR%k;5t!$EFZ1) z8zS36X4Qmp7meqWdyCkR<_pGIV6vE66TtHejxH+*r(SHC4U`Y!cn4E$H<&T^Tf?ZU zZGsx)N*_K)lhvH56G)OxqTQk;CXC|$Ir!dbzH^R*E+P6od3UyOQ-Rg?OGlCfQu-ON1D_ zCD$tbOyvB6{L|Y{d-|f&+>9gHx0K8|d1}eM%AoGm9rCJB{tJxLxbSKG1C7!Zl`d%` z`0@W8Y|?S=Qy?RLu0Mz3hq{8`%xh?VwnSxYDlFO6j5d1v!Xx6CYsS>fS=t}>s5HQ4JL{mNI= z7li-mz*2`);ID*wlIG?PBxwe%{Ou3?UE+OYPGc0sD^!hihRBKdp zk!^@^OzGJsJEKZO?3F+Mc(Wjx>1Lg~sQq?e87kYQ3ylaw+CK?4I0(#^ zUvC4$2-2`tBynM^HODJwAG8pl{L38%)08qEfFXw%5qeu9oYn1xJ`^F_CxUIK`>bMS zWXFLNV=$03oRm-qFvb!B_%Y_}rwuEPexne`9a3S1UqK!6_k_1Mo(b=7?dlpRVt>-P z50&h$@%Z#8^xTEZT%kWuJl{vja-id-$9zatow;Auy$;L-1{S!HQCi;!CpM3Kc0HkW z89is_)eZfP%lSfR#TYGA^tU*(G}0q>pR>b7}0@J}okyzp)xaOzBpuIPOk>Y>R2zvmXxwK6|POX5KtW4m4-K{5iwOrgcs0d-%Ur zbnXJ$Twz`;A`Nmshb&{t9@65l%ERXncn-^cdN`>(H;-E%H~x;Q`!iaIJ3KR;jA4lP z?cST7I`hfiw>w)z<$OvP5hS)^k&nY(e5OYV{-4fpcG_bRvbt{-RgKEq_cB>8b#K{{t|48o+ zjvD5dro@imv^^M#I-6Yu4>vYZd7gXFhM94SJ1(#;#1J23*98n5RAnjkALv{dcHTc| z5{4Pg;?O9qj`AHME~U|?C#I$c(crMNRd^aA$2b}+*W&J(B`619BrS7XZ8w-rPzS?r zwGNVZ&P>g$f>=>p?+?0tgBU*lk7q?b`Mzx;lZcZf`7w;cpvh!Vr#6DFumT9xHfe4m zpOU6{`aAbetDByEV`MD-T-5|+wi#Ui~A%MF%bu=J~(E_!k9{KXpz)Q`mr zrp;WPt1ekjc)n++w5K(ZJ1VB-EXu2lRGiKCPVS-ed^@sDtld+{qUtVIAjq->EEc^blwGzXoX$!di~3}xs=b~zcH3RXQZ{Du^CC~6`}*Tib7HqrOHTxo-s$|05vY%Kzo9b+`+C*K zY_^`=lt9Cu@5jHr=f8&duOa>?F8>=J|BZ$J#=`$su@L4Z z_?C2(OyFD6@8f9x{W`)$+p^4%#FZB%+8tD9Xlnk>CQjF+dWsc%rGxt*RQqdzhTUOzx)5SA$Ei>w?s)S`c?E+5G(t$L3T$(&n;xJO&Vp1egA!Pc23(s zJ$7c+4?FE^VU6mO6v69R$P41xWwM%bF^Aa>T?L07OYgji#g!iKFq}do4I$j5cLM; z@w2(u@GVwSeMB<;gsu_ z2gLjL#qh29r|SEu^*8wOZAA8Kks+yS-iWnr4AJ?$zDlRrhScnkms(^6Sikhexv;a; z(6)}eBV)O*u@s#@gf9hT&DsI|qkUt(tz!?``09eq@MHkY|} zP&agbeEBpTe9LFS1AgD(+L-BYRQW>jvitANdAY2%a60=ekxNe`iqT#4ttB0|w2oTl zu7ebHU77<9b6hP%#!_>!a;uN1wW7fH!8%RsBi@p!1zPsk+6=(r@BT=+Q>g#pW*2*2 zVAItK0XY9=A2YlyCmfac=U8g(vETOTEKW?AByprpv^Nz!z2wjlu7)`6j|pFP0C!80%8EGoN3d)Uv>}jm6`bUckad zJE*Me5|LkMOBirf@V&X$$x$6?yuNg}n34Ll&d>tbX=7mRK-ypP^|~-Md&G%`eMv)_ zGaq=%(7yZ711gtwl3GPo0WuL+O4vWQK0M9MHfLRYTM%F{Y z0*|CojTy_|RDo#!rWDg{6R5b)#T!S&i=KI~j7AQU)$!5%xDwsz2Z(ykP}eZ9PnPk3 zO{&1tnnWKANxdN6f)aEkX+oK`z-#)l17Lw;oi02>x$?NiZG3^U7TB+R24n>s7%!=| zU&G{R%C%Dcf_Rm;MLVA;NAI5JK4z&|AHx6sW$adGevOEXf;8r9FwC!NX zky7OKwkfAPu))M9Lar2jAl|sNx+Tj<$_J|VlNqe*Y{M>7@_RKC9-KiwDVm5+bktrn zD{((q_KgMW|C$l4q@6EDm*hf{Kfq(pPBcp`-<1Epjw52Pj_iIGz{dLhJA7~G1Z|Au ziZ;6K3U19GRtew+7`L0G@vl6Vfd@&pkMH>Zg{prgL%qtRbv@Q1m-zYVhvl4cxyRj; z2Nz)TDZsZCn~5Dou?`?b!Xlc-dP zJ^Hg>=BVt=_a{aN*th7dg(j#AG>V5FuC1$R68pKmcT*qM%Gr)Ny~+6Zn{$y~mkHtB z!l>tfd@OxaT>6XJ)MU3^2Ajrt)T zmh%@+@16Id6xu7Q>X}0~wajY)7qZ(h2&R4TN8rJMp+90Ic{#8eQ5yPFTcF{Xl?U3_ zqxHn-&GO(PsvyG}-dUPreEiN!Nbe<-8LY0FW{A>V2Y6$_CvoVm#~~By_MIAm5Ml64 z)*eyhlUGL%lenD%Hztk?1h&RzEk?=-k!$qdYK`K43|U)=vb= zfo%zAO@3x~AijTJe^UMow~DFVOq20RO44cm;nnKE@ORkzT}(b6zrA&W(DAW=V>BGT zt3X`^o*4gZ3^9J$=embFOLs_k$dc)Dm)q|t(S7&{Y zQQr*Z5rUd<_ARQv1j=mA<$Tr|-qY6MxOal@w3^Rb4>sO7I$*=5&z^{RjZcU3n|XGZ z+Rn|2)fBW^HIT8I8ODB%>fMHNyCs09;No096I1KrJ5F!EwIb_RastZG}@_J15$A!e=8$QclBu_AiCO59%WVdt~Po!se0$&wG z{pxMxqXg4Jo%w!}f5);*C?ihB+>7}umKBpY5!LNRbD}P~^d@^%F|OAL zji!-fHJHN^`Nx2=iF<t8J4ZP4r-=iMTU~!#QWQk?l7h?&wmN!b$u5!|`jF zP~@0?{+S=*mi}^PxF-|2lH9JS)%|Tf#2F^GTsH|GIZ16>u|}x1U~Xoq!U?IH5qEf7 ztiGj8y-)X1=|{ll2C6#Eno~UFAu~%`D>;;Gy-vBR%9=TPIw@Mf>1`fB0|0bQRv!|Rg zb4tuh`R$yKaBw$5n2s@Lh`sUv8isA+&_Tl+=4u|z4D~>$c~OSEtRtG=GnRY`o%Qv# zlUaWsn``uts!>kdZb}W#zy}Mln|t(8Q5H8?f|#t8MTKnR+UH#*-<)`h>i5Mv!4Hv= zB%*Xl4KuA}mLtq4t>=!a)1NX!dIZc8fecXp$vMEcNiQE5R16C-vQEq-2=$9G7;eE9 zG=k7{Y_sSifs!uaJzwsoyze_KYHxN`WHNp?MKD$j*xF-<-2&Z>N}Yx0MO>v*o4Zng zuCCKs?W0w3Lnu#3ZMnt7qw&*Llriv)h(xm=oZ3VFV11=5aL&J2K0qHwn1}}Rykz&Y zhY&d7KC5IyxQ^+p7*c>6dL|{pwg^3+?ZNvukiMk@<21{5{zWfj`4eZnh_%a+E!J|z z)ghnZ#Uw>4kFR(!Ou8q!dNqRgqGq}LJCq(~@pIeMeT(iak;}jl`5QbyU+VLy2S&PN z`MM~`R>ijFdY3_WcXkP9Qm;9}1>H$A*JzgDGn~4{J(Z~bZKaTAIJu( z!AE{3>rnPb%AMcFvI}*~@P`7YE5n=8qs?_c_5=U^wE(hQ=UlS#oB^yWl$rhz+TKM^ zl2S?(*3{ASEIHnc~TwuZ7#UNl3mCMRT1rp3fw3to833>cIb9VkP*fj7KeB>mJbML zmS#&^VB0!P(u95GMRii#EdnNc&iGg7<|Bzy5ma=N8hVS2{Bz&zb!S`)M)$n%Zy#)kl^!7@!+9Ktng}apBn5ha&TrC0d7{xIfv-Gms<%r-aFhMi-qGV8)t6loj1X&&`g3`F^lebz7hsqMSj z+yqrE>+E|G#JI;QXYF==j&VCi^v1dg% z8vBe#6y~RO6s9+iiDgcsP3sG)|CJs>j1>@WA@dnwI2Um!wK~zmkfgAwo5h9MZLH$v zOEXx#M3#k(2Id+6l809BUBp~XepaA(e;nZ9n=WE42M<+@x2q;#cg$3}%>FcYjlOVw zHCkH%>C`f_g0CXaCN^T`%6zJQ4k&QenkAR|v*d9;=`YhJX2X2~hiNyrd{2OtmY+>9 zdO=eQz6q#faYmOoE5jtKkf|&BFTs`t+0=weeGUB_W;wnQOm;bdYS2!xcO|D~sBz~OT#I-}YO_%{G3^R{@QS@_ zdsRKi`Hw?s>PkR^o;6 zCxu%JK0b_Q6_!b3V!3*pzIlny9czm}W@L%g^oYwq=b2_PzNI*e3Y6e_#}>OE+LP+*g`vGH()if@A9v%_AhrwwvGn;yRH>~u&KKAA$CE;@e6CB)b7&scl z%?MJ+;;{Jsu@BQww67s!m8caw==|PCge<(k1VKhtWkG+Le_h$bY0Fn* za_c?ovNBI;t^{MJ0`-TLyZ~tS(!Wci+)yCkAonDW#b2!hDqaD-v8d9|2q0$s! znV(fZQwa)JQup@tob_`qyA(8~oPmfo5re%mfeE&&oBfiQIUKiOYH<3-kV;aqmgm$z z)OMOv7aQPTS;;p_8Zs8}tR@Kx+KK%xvFHNLVcqRrtexs#+Ffsx#IsKsO(Lq=)aUrB z;hvfp1X8YKb`^G!Ry%#2cwp=S4&Oj_WKp#-ej8Yh=5>L_K}vVul-Lmt zT2+#7k4&Xro5{Q%*z)k@wW)NYaxJh0e-rsOy=QA)JMd6f^<3D#zJh?yR~v>o4+Mvy z8chjN;C(7Q1f|oiz4S9Lqt0wD*a*RnuW%SyM6G23o126szmXTjdXrD=?YO(ejWY~` zncIpIl#p7m@nK9=I)F2s(qwqOCe!#{mN6`@752ug%8Vto*|`~GJ==|^PJX)wo{g4y zQ*7>9ZK(ojjt#kGbG^kiVdxCIB3U_KrBnIZ07)>24JnBsI+H(Jz_ViWPR=;_mqSff zBq+KPRZn9$LY^1IN~va^ejE@?6sn*CWZ|p4&sRT*(qb(gw_@MCZMA*fU&)J|^7o1F zo@6KgEd7R>*mO4&Lm<4N!SUdJkULk+(Hf+fn(SMh0B8CknSx4Sx06$X%)5O51ST zDtFb_$N(G``3PEwRwg0_qNrtZsY0B4DTJ7tq11%iO^|XWIKJsGmnqhxTw3tatdQ1n z$r64>0CC6hf1kM&31xR=?zBmqvOF^X3dI_kD%`9jbalAYX%a%jTNU+<_?LdV&DHDY zHT;tI?!41^8bNrwIX_IjnilvxsI|^Cz6qFG?k2X~IR>%eYm@+>M!UpqV28 z_7b`s>@x2OW2$|8H(Sd+0=$IFHbh$SQ|@lt^A0eAR(x}V-;Q9ehmXZw@PQv>=kve3 zNnN4-l8~NGUvX(xijv&vK8Wv_-*^O))&?<2etIHPY1WI{7I|K#-{Cvj{R-pGKrK+% zs#)!Lc+p$eee-6IhVL1nSp$e4DYp1#n_C$EiV=1C9M9iAXP>XM;=6d9UXq=RMvEb4 z;Ng)fxWzOx@n~`p9a{MWR(n5EuthCPCMvy_bq-&VIKX1)UoFGDvw){Rwhd!%mSCrs zb{-B}LTzS2k+2ns%zf}fA%PN0D?yRhXGGPA^(VTc=w|*BgD#BV^-QaI(M0JBm$T0< zYy}|Hk@W_!zQB~4;HKNgM{|0yvIi+HDrC;>biHPc`mGSa?g&_6mqL9vsOPTPE^J~eDWi7O}RRzMG?gQJ^#qM*2 zHqd*TcCc|?rrmIY#jwl7F4PnC(%qLiw99;*5siIJ>8aeIcAN!stL zO{|VuYA#=xSuY8$*=Sc|7c;KqHs*8Cy4vp(U?2r^YbICSSs0UPc1X!`nc5!`O5G+ zooVe1Rtu{4KzbkMc;<41&5LGajOJTYQPr(3_}(-VyF)anyVhH`p8)@!L*O?V1Ev@p z3HX`C&!H+Q*eJ|kjf^=P4d?7319P=FF|qyxCp=vj(BJH{lf*(WsBhk`&DMm1WRX;y z2V?+^Ite`A7wZ@2-;pY}fw}tZ{ZBPfv-N(RvdzIv5-;yUfS_pQdfge-DC)CjaX_SH;3Ma;K(khv%iwc^{{^+3#Fj*VO))To7Z{So1|JInfJ1@A_Nl5E^IVq45OxMvNP|}Ld_z9 z;7p&p(3@a#ynBaWW}+47_P%hU6}Hs}xL$QhY!Asj_PKN3IdeCLdEwZ$nuu_n6=+wE zmTsE+DlNgkG5%~Wf{|nPdz!r7%r>+1Q-nl99hH7G5Jn zJl^mei_w^BTIHwTT(4ZE-%kONUy9P9WSZWnU{2hqdnE!7QfD3sa%yheiPX-P=3i(MF`ec$RmHI+mO`Ok9Nqei4l!WW-cUKanTwrMzM{>4u-_rY6J$R(Q_V)% z&*gpzLl%Ca)X(k@@^e4NeZXfKEmTd)xZ?G~goBE6_b<(R5CUtf{N$;ftRplnlRqzN z|1{kG`{#S>vdaffe*1xqwLm1$@CV+V_wf&JCk3?v>X^l`meHX`^+>x*COHflUWtZ2 z0l@@7BWA;3t3YIZU);k z4}1}g&cp7l8214U*`PmO;3+fCMrzhn#71bWF@+qwFqKQwFPe%xcOfJq^cXiBXa#ss z71#E}rP9q#bv{~m^)j)0Et~;kyuae4*2y^+d#6-p6)KTpIq(Xku?dtEE2(eX4 z!4?~_1(|`aWY@n{HKESJS3DXQTW)F@3^NDc78_Xw38PgbHC`JfjkLoDnoP?Y_$q%5 zY`j6Iz@0PDF`0g6lCGVD6l7$ELtoST_9u?|M_aJ$mOIg^Qa;p5L{gr1wfjIt<+0o{ zK!zK3th;%;UCM*qUl>n`E~7)>Z@lp{-;Gj=z1Zq?h(3*ibCkpZw}1k85ke{Aa^uOJjPd$;`Mp)=tsu?MY<>yU4L!#qMU_HMq`U0YoRK8q!`t;n z_IrisJI%+`v1PL%{DTbI%*oIRG%d+>8Uz$$ z5|HZ_g6zWGmeHj_E_=^zQNKoK>}E(XAXJtHoOb>ED03Ac1!H3oQc*ZUv_H-oqvdSB~mrt^3gE zxl5CNul;P=z%{x_SU56uW#M`$GQ!;a^K)uo#Z|s=ZF8ReRG&GVrETcezx|z|&HQtu zLY5Z`arxuANzOa9HR*OhP=ACZs71N)-Q^x|)Y|SUz9d7K))`c)CFoz&Vf~%HxN_a- zoTJvBH^a4vyY&pOWz%5X-?9FmrJ%#YYO8EokErcuiLJkcYJ%n)3h&gHG5Xsx=sL-IV>ZIwQgTF z8OwUG$2=d4uSqpl`-3klKRJ7}O|?l4hT`nT&DX$Syl+P<+I1Ti8V}`m*J{OScdqs% z+FH49v>Dn*tk7-+4jMqBJ3>F_3(r6X1|J`5SkG)z7oP>AyxqCAhZX|2Qg4US1S5is z_bUeEvss(_wieKT_e_bEmLYS~hOl`v2ZP^bz2b+j;Pv7tiIKoOrxNjJIKIY8tCyJ>w-cRhIi`mXf+#WZ7|i+myLvQ589HDzp)a zqt5WB^$CTB_X7ICGXrUq`g4Z(hzo?f<9g7#pTT+BZ7VuU{4?*$Gg=~~?3^L!GpJy= zm583o;Ro1opWRp$WGpOe$p*NogXU7^TFaje<^hnX*NexL22G4N>3IZq0MhdNf@-(h zC8d*%9*&ldp}liXFQD(7hyb;Mb)q5L9Wi&+9Ocru>REUWgL|zvsb(Lmpz)o}W6-*z zBf%9Q6RxpswMtJ!bWh|IC4%kWqwMd`nGSO$gWF$?RKTna@f!ZqJ>UiT%sU}!O+U90(i=q+RTBG;*P&<0$%C?&=ro|eL(t@4b^Kl8m_EE)Xm zqiu58aYn!~wYGHJ|3I8c#2HZkG3a-mbZL9s&6#%6X;B|Fl?Fza*m9m-Ns>WstlUy^nlU>m_K$M(tFVd&Rex z+bhxg6I+ZHG}2rKctFFj-Klmb=~{J-7AE%H zB*2%{pPRKiNe5cf>Lu|lIcdGumFfJ*u~X9AWoL&`Tk5&p^u+(5`1q%;_d^=Gy0Y^< zU}~3Dz&$bL3x8jo;(rzI2s!XrFOZ1Ou=jgyQ&DN+foO6=Ie(N{rMu((q+?F`FM7tE zE0*Z=d__2YL3&{jln%HCt#hOH@Yt~iL;G-+Q=UpTu%V!hL)dT#Y?#nauO zP{#AR{9l9jhLr}xeT2`&`}8ew&WHO2XNUlS%AR4HJzDhy`l63)1uJ!i46DOh~mm6$FBfK<=ws$W@3T=D* zZ9)qNtvf5(#V5s|-ir4&sHhFQi@#^eB?*%n*hI%7#q<@Lp{HqFHvuKb=&kKp6h=9x zrMVkYgmmpnu!R~7h21&PWka4JI4x|O9eKb`H7)Jql;rmXiQ;peXX2}tK?g>=N$J9_ zS&8_Rjh(-a&zN$D8;6F8mxh|hwrjSY8&CEBX&BflXYK8m&|yMNhCS2=ULYhXY2kf_ z8&gl(s`7 zvAf%k(X~}pWURBcoowlS=C^=ekBsj0UeVOhKUUT<(x2M{&pnPi=o?%*fys*lpTdjt znb4g>-P*Ozd-8+G|NIzSl_RpcIDeiTiJ8?2PiWz_aAj2A=yhHy@oGz3+se z&VOYInu{+|_$Ru58C|w6$?A1+IPVU;8T=nB))yz3q*nWS4@29HESI5H;O6%HRHM3i zopO>}8-Eu)*;t2&V|@N?p8f52sT9tlKaE`{^U7Kb?h2hR6Lb4>@t*(!LM+)~M1Nz= z(eAjk^QC#Q9p1HHs8KJmT{rNg`}0d@v*|%iuDEH+9CS&9nz{Gh8Q<$j=Y-;3_VcKN z^mFuRuK652LVRQ8Fq&{!kLKvy=HPwy;?cRcPNWF_mMM$#D=Ez2x1G0cat?@inktnh zhydT-fWoQ;;dLOBLd?a~!>ALUJ8)M1%z7BkZ+W86i%A)BpvtOHZ0T38WidJ4{>vNe zW&7{W@nU&lHB)#hz5Z2QyL3@j z_pO{&606vc?^RlL z`c5j|c!5;`M(yr2L!Rpz$Dn7!UzjPDIBrBz3actAnP30sA|*&jzFa8;>m0|KR3b%v zETs0rXU^0?Sj4P7X~hGk0|>4gpWbGJpEFZ^7B&y&|9eOhB!iHpwmu*s_1p3xAm9lgU?3pAXlak3mO}7BKte!DT0lTR zn8T=lXP3saGWyPLWN+f?YGi6{;wtIr;$mUuW?>GYtAOwq4npe-gcszwrnQQ?7H&Z7 z8G%IIU+JL9WhN-7bpl-b=EDuk88}@y6og2!OkR22^@=v;lLv$@aw71Wm4 zax7-)ndATr|12%@{+_h+xQC-d|8_Rgf2mW@4=bd!oJBz{-H8!bU!OYKBvwgsD*AHn ziS(D5@mpiYhf{6NJz1hm-=7Co!q;n4=Z}O(>K3e9jMg|QBTU{td-}@ z^JZB!Gmk9PtbAa(Hy7blJ}M)F>AV-aglzC##%|-_xir@NCf{e!*qG#-w*<|@vlXie zgsy%?7D-#tJ}U>)FIWS>;`g!9qy3 z;oaA}At975&I`+uJIi3%)AVELIHelwJDr2dO&C(guj@hq0x&Tb`>n@@b5M;NGKox; z(#CV}G)f$ey`$A(v(jqGfo+Re)M(kzjj^MV29`f+biu}sl|P|#+<;ayZF$`R23r#F zZ@5ldu$~1*_0D>G!}P{4hdlB z;45umyH38g@5y(caO-4|69sy8hO}%qZK(pkt>zoSw!g#op(pbMX6VZP{Q-xxmiV;v z!%#5jq19i;et_F4mcC=JJp%T1;(4UyMWV+-?)F}v^?wDfckXpSA^YKvfk=>5p`ThoCk*q*q14MExR zx6|jF7u1-_N0o1*BNuq=!=hS7AFl@&1#Epma_pkdF`*b=XGUA zR}2&;*zf|p*fOV5Z$MjFt&NqpXV4eV1iCthzX`MZ=&U%d2^Y{G?vuFFb!a-GCx>^P z%*+w`%XgNVzuWY#b?d_iAQMAG<*CVut}|Hh?mpOG$lV9Xyk~rkZ2zFih;LL~{#SD6 zIuBZgc>}1@E`7UUc_T(8AP(g1lt^Nmj(?WcH$I9%t)ETYwmK7N9vBX*_h#IxGNM;- z;Zw;A7MrE%CHf~7bIV*qwt&xg9@7&Rxm4?T&TglX9qrCzX|_}+tnz49ZNP7$&!$M4vyNvh|pqY>KW{eRAFYSHW==2(KyO5$iEYb6ED7*&1ZkL&`Pw(AdDa;#(LfL?p;5U zi7{%xTKvWNEzO1on-|gO?Fx}4CnqSwUTZrzsgLhQf_^eiYX~UX9Gs|mHY8hHt4$?4 z!0xf&wSEPi8uyBAoAj;MGs6#j>T2;Q{Vd4jeGQRup$avSjftTAh@$XjCtf-A70v#M zWB}Hh%qWr12^%jr*N3ydIXF67o(4E+{~Q1xWrvvAqi3(TcgTZv89y9AyD{ft6}Fj{ z7<>_%Iy#h)JQYYZCXDpRqY!ua`nlcx1LioQDHs9*qv$_mq;35lWaRk|8RbC#i;Ot` zgN#n<|94yjVnDRg{)dY?ha{%)j4=o&hz5beyL^VsakV|VWzdNihz`geWzR}Ki)4tTBckbZAGU7Ha9P`7Ja(z z&M#M|pd>n@j3FiTe{VqqYm3#eiNy3sf60^}G#KaB54JN{^Iw;U>ee_70kYD9!Qplz%tl$hCK!@`h|Ih;egSZ3x(~9DwiN% zf6fyXoVKLPjm|LVh$~*Bz|nz&ibUc<_>W%|HQeDWW0bFulPM~O30s=rAaH$dWmBFE z!N~HirK_BTU&G%9@lU@I!~JQ0@ofHk=_N>Lixe;V8ALyL)Gf$2Fp-IfZRli(S)m{X zS$y$t^+vA-JT}Ra^Gn0)FySrqVv9|9;^#3hGf32*C(Sy>XJm;X-W_0hgn=x+YuL}AHp5J(Ndke&x9QjGx0yxdkK085Wff-J|tVkYTHNkCS8}5(0GKui={tmKFK~?Z$&ztyqM$#ZXAyc(5TW6@5}pD6=8luf0y@hRG5(&0nR; z_W0;Dc?W;b*N2QZC~GV-DvG~V)(wW;Xo!2PS~hzmqe|ILlIWN{~MwmNp|?L$d+TD(@q@QN@W zEs2LPgMSxHBd=uO53MUX>2q@{FQ&%h*|1c42j+Z#9(BvjoPWVtVc-_PVP-Qwg6|d{k7ZNMA1bT!E{pM5Cf_O>e1h3-9^ybl_r#m#`iCdT$I33cVpemSOR>D!!-#lq)fDLh zH6?II1jleBagEH8LWPiw1HonSCQ5nUGss7Qb84g?9;{o}B2(A`r=AiPM-gB#eRV~B z?>!&1X6W&dG*1ZbpckKY6wco`+Suth3=t1_k%^lxeh1gjk1p8%6fChV3|LtkM3;-a zMiYqZ1)tIkq&HWhak1vPQ#CY@k$2ePg!ds&FD|w6jwQijhauV9Qy__LcaUtR$*hXa zJXa*7D5F`$_~0{EV#32-U{#fpE0R%S9{% zAuI~Cd00HI3+t%B_7tzdz(ap<8BDpr<|6`9=fOt$l!aKF;Ip9z3a!;q3sUJ_1^h{x z8*$wN61XOy3%_Jg7h?|;?IT^qKe{geRq378j z7+fiHJXG9B#_9A=Jp4C=m7KcJL4F6k_s=S$TTv}!VUnH(F;7Z0?(3P zUU6pj!C&4CCkm(_3y4#ml%14=_okf;X_Q4G+UDO2XlG$L5P{hVa`xiGJ3m8WI0EbM zT^eqEH)^(;pLPdi+{LXY(hmMS0E3wP-Wo_^g0*eVI*%|gBU;p6(SN0I>>%05c}_qr zO2#q5{HPGi6FX0f$2aTD8KxXupb%5vpS`ZQ5vP*!YZxFl`XV>XqVa1KB4`iqcfKc~ z*hc=YtCGi8vjFUu!B;@S{eI+neg!0Qot%x03`Y>JyOPtQPXJgyX4={99uAOR;yhyk zk>)M*v`3`4#rrhl0l+~mh#otJatsNK4)9-ZjMU$nDR6v<*+BPeBckHT=OZh9Zdwdr zgV)h%O6Ixut4YYNGbSMP}2zsMz%|Lv`ySLZ^VRnUpS%qF#@Dt$T7XK;vvidW$81xYN85Ccm?1 z|A&WSw+a5GvyK8WT_(pH>7PXiUiZ5^c^Q6jAAN7l3wj6)4kLUFT2Q6WCtI#L*OPZ*o366iluhqXeTNL%=i)aBp?gyyP{{-0k6 z#v2>1P*WR7QK@B~pXIT-0sQ7ogf(mAB3RC3Z;~Fex-cC}2J|;>QdiC7NtP;o) z70tmW_}G~sHpph7oj5KWNQ4R(<4-Sheq^};76%IsT2?{6!(EZhK6G43`TMX% zu`be891&`5Wf!EWXia+YH7^*^CDlx-n)zgLRDabsJ-9V)^9!S9F*t79rqT~72u@oH zq$DT}oTayD`beg;KOr zu@?H8fnEV`=Z`6wF|7^w@l%O{GOob=-{KCLs|~Ktq#9w zL6s}X@V)WDJ__1BW0G>^e}a4CC@52|C{gQu9?uy>FI0VMQS337IMuqBN0(sD!IZxl&qo9Kr_?JMT2L!z$xwY2p%A%5>k!`ZEayeo}_wXb<*4hT*qTk^f?t59y3 zF*TmT~w41|z zf6-lzGnsOn;QacXbPUPR9-QB42QM;RIR3R0Fx}4)-uSr6$#mk55BSyk4N`MzvJ&;h znltPJpkj2j@`fRmWKH5eQg~C&k`)#cU?gkYJ^=B&R`)i80g05Cm{QP=_%yMh#oSTs zu&(f059z+Cq}h?oh5DhA*AqTJn!&3$9Wuq#Pk{Wmh~X~7b1{c%an`10>i0zfyb*3g zxGqCC7f`Y(A!;*nw(Zd6p~;Daa(Zq|3ACG-6;_+tR6WHrdt zlV^9cG0w3#^0#BPBx{}Z=JiMES5!m8=3?$`QFrgnr8}e9Pd;XOt0~|gXvC(A^~M*z z({tmIo0&{*BFJ7e{5n z(t!X*mmAM8*p@ifhTWt@v!AAaztR)$l|CK=pJ9>;t-KRuq#&6b=bW?UWtc_-MW+2F zpm)KB?T=yHhH3X-MFw(0!e}tg2t<*QTRcoW@ql)sf&Umdg)4Gxf|6ecoM*_X&+Gva zTASZ{Hh6(116~3fc*D_ii=ZC)BcW8@@NOm2W+$<9`Z&;7_@RKc@sw|y(6hUY~i4IBA!88jYVT#kh>kzbohisqVr1e1YfNY>1C94kGF1d ztK5k)$7JvWNqYag2axS8f_id{+-&wn_;I|l&#Q70U#<&}vA8+)n%K~&rIRb6ig3N+Jl>yj2gv>*=`Rs^<@R@!1S~&k&`Ae5= zywN5#_lM%55WQ?KO_{iBvG5SxwjvhA&Ng%+6SaPrg+H%qx8{W5p#%h@d)q8C=;EtQ zP+$GLwq4e)MfuGA+u5b^AOc;%;#zZt$EPi(8qlG?IM5H4-+P&E4(VtY&VJEbC^vDD zqp-vq55~ARR*=n=lsxxiN}q|)nAF==j5Jj7Ny6F4vJI)4gew6X!2HNTGM+7mh?Z%9 zvhAR0$HfdQJKS)pVZhc~Q|aAtnW~wNG+VBLm3;i6%~W6x%Pe@LtxEazK7+NVS4i^9 zo+l6-0h!-zFkk}5k{@i+WcvUWe**QH>!9cSlH$JbF-vD(=Z&7DW6TM7raN zu%ny+D77iw<+E>6_=x9QCv;GFFn(YbZPGGoM?lh@gCz%@5+qH)tOhVM} zr&EDveL+^^zu*-N*TeFQUah{H3Z|ma<|Z`C?G+2d)vlt8+b$Asq11hQFGv~oB$XID zxXXY1xm!|KiTb0R6~6CzX?RJBSmHM!I1-uIDnc1;Z@>dA5{JS@#~Qvo=r?UfD)qL@ zI5S;C87ed_l_NkqQ_LjG<+jHkCDH37z=h5Cv_Rf*%yz=dH_-lp6)EvORRt~)i!sgX zR|<6R{AO;`&Gii7jofaL!(I z>rTnO&v%G=J90+Vx~d5+0VfFPXCL2#*Mk)w3y*=ysma?~u%|0ghetqzd4}gGKAVHK zd}$>pTEEH}RKrAx2?ZoI{9Ph?_Uds$%6C$u-Qr+MZOk2>tyI_;+6<-N_3;Grs-IIQ z>)EIAousYCI2yM;)r&CC90w`%59x}8K)X5SiBrngYiQX-N!9}7tio|$lF*_g&9MX6 zU}M9KfGhV-zF?R#b^<~`YVRC0tfe-=y@O3=FC9afZ8~sgfVsV^?;SlWwY|5L*yzUS zl+J{ZR<5~Me`-mHlcg~cb|A;XFvHQ_$gKWle^b~k0rdTNN#sM1`25NFJ!gRIgQG$8 z=84gxPpj7TJ!-RS1)f@F;jP>?VCvxo4Q!w<)dlR#za)O#2m)!rzr)1}Fr7m{z?J`B z^$UIK|7B_Z(=Rywzvve>|Epj4DkN#)euP1K)8Wt~JX!%QRKA9qc&U4%Y+i1N<9`Wb zfsRPpr&jS+u<(wiU_ye5MmG(Oa)8CKW(Huu08amy+9o$k{2;SAU(v;3n7($(4Ln0( zrfH>V8?j7$?|J&=OY)Gp$^YPaLyZ@cow*&DrZ;XCY%=~e?ph5g#iTxl=ZBoVB+j<1 zY%T`-w(PHo$VdQTVm<}FMILS+09loq@tnU5(;>R?c?R6FpEi|VR~&Cc#WN_SJ;>)I{Aq zru~|webff}U=rD)IKS=6!6oZn5_NReCo=h|`y6>*^A~KXcF6ju0bHH0+%{qYy#3!--$bnS2EjzPet@Gx2Gpa_(tG@a`~)>Q0CvCHli(`ZY4cwvO~#&_wQQ2g$;B zRaBG3&{yA&w4(rYr+B!aL)yt_DWqordFG~4&l2Gt~{@!?x2>dNxZ389Kugm2hS^&MT6FX z`yTebZjjaSgb_gknP>344rz|)hd`u!Aw%l^BD1E%@=iE!kiyzl02)=fS-@a0O0)Yx z%f6ifYOQPCiteRiyC3UHCTAp0Ltsy6z7I#pf7)*aAo97Xf5B@p#cvB?Rhf2$PIw5 zhPCZw%)jh0>p%A{x}g(#>ND_D!!K~ZNXzBT>D~Qv92lPvYD|4i2b1 z7lXAMy>;}L;IH2j1`GE*#q}-TmrLR{Lw0lcatGu{X8_yT+=dY+U;(j>SkZ1s;IDhalXL!7V* zzutSlD#BkUL(mVg1Gv7E8}PumxRa_Rjt4TPGN9(??dz7y$wy8C8&dV3 zKmnn~V)7E@)aVD;!(;+cl@yB6tlMt~1aU&FMe z3XWNLi-;Xc6At>A9Qo7}z9z4|lhrkD74}=i>yeiSTN4Qm>`+acEvF8T6C|}blDQhI zP=(QtBz@8y&PVPM?k+hr0v7V9x#&pG95_V#d76RF_>uQnsREj90{RJJ+7|)sKM!%# zrFX2wYihjT?-CHRv}&{bHXlP#=wIn*DUu1?3+4v4TjoW4h4CYa@_u7Al_)rhy1&z; z!=;ZLx#&uq`^H+gJ0eercn3c}#Ld_{KUf##{dkVeEaJa$oYS9BZ#7hv;H_#_ki?QG z9SZR*(HfvqT;P-Lle@L9x5vN3t1K4xbX1XD!FJzSRH0;68)fZ~!Be_drPNeHJ;fa9 zTV^!p5)*^7@%(l14sopj7B5v3l48aK-r;_D%akqfAkHMypc5v16xpQVg0hiS0=}I0w$8b#X*qj- zeQW;uZwayl0@sVqM>F7F2lRMLEPO!}bDWK<+BG_7P@0|JRh%TvlF1dJ6iz!YI9Os-n-(5RDJ|^AYmhKwv-OpdVFAfc- z>NXAye47`MLsu+;qGR&M#MNo zu;i<_w8vVPjvQE+MEA~8-Z2U^A5 z$-o3(5tOsMx1FpmFZ@jbE4&t(b}?sWk+|1we%u9u4457r=?71`eTOlL^bpPUor@e7 zDYmFaj{5u3xV06IpLN5PPx#6>oH#MgJQ#bd6^42~^U7q7AKpX5pX1@bb_k0>G{xRr zbFp&RfDC6WonjDox;Bg;qEN_~kruO0tI_^A+_+%HY6i*Oa>K}P&R=3S5vMRmrM?-qh2PS2u0?YU0^#%@tkTsc9Eigq8pGfYesYvBuIb5!VUI7pj6reu$46P%BSDr2J2=-*W@!ptNRp%Rio;njd}`KD6MhB zNR2JuGo$u_Cux0r+G@zHn3;<{1j-4EGPJnl);8c79LR4@L`Y#qb63lv6lhgASRTjg zcj00kT1*65(7B=njLwRLEhk8MYS4Z`97|Pkv+f{?ojWW6j%hGUZX0l~6HUc3PKV~8 z3WUK!K!ew!Kl`B4sf7_qtz##qU=g6+% z?mog>6yo3@)%-01SaALW1E5<8!iOD!O zH!xGo^ZW_3!3!`wvqpC*BM%>Y>CdQo&kCzpe;8){0&!%X^HI1n3#HN%c1z3s8{7dM z#p`YaFPz&+F*JxHwtnX9Yioq7!U$>nx| z#kIj0h|ksZqf6wA6&B1%Rm2clM%x{}yyoJSkTSm2cd!O-v=zvdhP#XZt@IZ&`Kve` zvp;(7$p=YLcpUf7o*tau@f_RWNprN$;7zAfj8dc=N@O^_7#J6Lv{3fqC`O7*%Gb9G z)jFhw1d1_)5_lIUe;}m}`Pb49E6n}|CdPJBvzBGITCdYysiV&ueoP$Y)w!^6#* zyik}1v#(-fxrvG-qSbdx869NUv7bHqVCiw!6##* zZ4|L7;*uXVExVdfw|=Val(N_=O-&ad;#BBSesl$Q%}m(X_{kZ2cR4UQJLjLdYkoTK z0>@W%u|OI#(2o7KC)mTmJyKR4`^fRa5928n%7zv;Zp}LjL6_5^gxcfJvlemV)!+{S z72mJ2MKHgEo)PmJGDlE-@`c^=;W$&1_qM%UXVg`k$8Bp9 zY+-d@rF9!F*-9p{WREw$psU{)%`aqQ;@7xf=dO zf-uleNR;irLtcY(+BGtAU9so0e}~6s62UA86Iz$zE{Zi6dh8FW8cbIxs}*x5i|dSE zdSH@b)u;c)jb4O0y}9*Z-?R%*;gwxGU}r_o!@8ky+`%jWomggrL;1vdz3O(DCr3 z7;IR5K_}O6y_ceD0;(9LgpuU8M8qkB3?5xkuhBq%=98 z!Iy;oIY2f?O6@1E4^wcQ@_4a80%Ow$4{Ug}OZ`bHAh@Oprw;EndCJHNYg2SbkMUDC zA^BGop>R6N{ESaZ3>?HpQ?YEkS{fO~)wDWYKNj{0i<-5N5?OWfCJT13iH(llkRJ#u z;rbq_T&NDq{D7DqG$$Qo{g8a2`hz1d&+XqV3L|^M<1)itNyME$0S1LKM>aCYWba=C z2^uSvwQhFh2q@F+J@-OxR5H)Tf+4Fqlpp^}SDY$!X)j-A7 z`{8mjH=aWF>m--(g5P>+-4&*P0Di|M3rS^_g~V5o26C?@E99xCT-_o>R=;Rp1+8N_Uzc$=h?2a{IZNQAO1%k1=LyY=w9&2%?2`w1Frt==e=K%C z>N%&g6dLvm%U)l!2zpcKGhNO%yIa)$QjK+l<5ryM&B2Kyu$d&yFirs#W+#+TDzn!-)e5zw)37`fLd7Li+#Kk` zN8E78(W1(tVm!)fLP?y3vQ?(*7!Z>K6KWXmK*tK(Zx4+V!0aGnz@Br@ZcZ;|&ayD$ z=?D>&YP=CcC%DCk#VaZt-|)WvvshAdFn_VNxz6^1J?O*9J!opijq6DGZc+|$OJ9^A zol+oWLko7TRhA?6&vEz1+;RHLEACN9lPO?W7$P9D zfYNv+0F;onukLVE(+2rSpN+-HB&AwC8oSZr5i%j@V{~`jCA#JRr~V-; zPIL7`IO$pZmY#qi2|ud+TcB0u`R^H$*+(DgF|7%q-9hIe3@=d~*TRd|K#?P4p)QeI zxYz<5I_}H(Lj)B@2G$*=yqFhesrBg4LpFX91i=^~EuWeGfBX?)LD_Fv5;!OIDcV3S zS^PtzoaC5tLi6?ThLK5kVqB||yZQPl3{5)GIkHZv97;+R^q&tK0nh#IJU&Lz9&lLh zq!n+EauEx~=i0}J+0*FjvtzB*V&eYf#l9!XnzhfWG_9qUrU9qSu}=7gG+$Oqg@j1! zrnj`Rn<@P%uoOo|YE90c*~ z7ezZe*m)hsO*$@LA;<(CzSI6oHz|Vy%9%r-LGSrSQ>+koEtT*IH+$qZXOak^Si$x( zg&k3@K*rgzojw(T=Z3+D(kBWIo5{}PY);p9l42B_PCXqi>Krk2I9D&DeSpdsCcrD< z6`ok;gZrDmT1SQBbP$$IJd|=r7S-$~2HG71Veua6KiF~EAxBBx z(iQ#v?>ko?df$lmHJX$;(h?8z?~nNlm2j|c|Lxc3f}sOfu3seR6E(0zPU0KrqZBOj zI#KKH(35(_Wsx+fi%D7XQXPzxg|kU+@ZYbE z4_+w~kdIe7dy)N9-C7dDewihYAGAT!b3K&Gp%bx!pP!2}K60z&pHx~%=xfcqUmh$A zIsasKl-&A&JwMi$49v~t zWCO@Oop#-D#rv)-5GYWBA+r)n52AQk?X~Ks;_h#Pp}`Y7XT@&J;7mKcjKE}Q%|1+FTgKct8uf>Wih-tOna-HGSwEaGLx%E>CD-%Q)jH8udY`qk# zZQ2Agf880feJXQxp<%<(rlX=e5Kbj3I?6 z-{sNI5DtAM{qwR`e!RehBnF>y~y)G~fIR;VF`qiR3QzSBJD6 z$rOj(2t$sz`1Qc4`{msZnWz`aoo@Gb4kVDhz%T(A0dOl++8io;b_{=bTc$6M4$Wz&NP)AQ*`NKB=S@} z3>QxiNr@xwuW@TAwNL)WN7U%LZ{`Ti(qVMD`(img=q)WbCQ*-)5ju=8GZiwfLsS>J zq(XGv?Y_hUrbQB?YQho8Easr=ZUq<7C|8bPop8Gu!aMgbwTYnuNDJL;qVO@{HZw|z zLVT_YC~hY=J*HfcruTH@pwD#gFUM#K)x=~Nl)oQc6ZD147)a8!%0NOi8zfZ~>~cD!O{-qNWL%flqbTPl$( zLjG}Zt=jO;6$B(x7xCL+Z>n}MqMrCXf8bBzvf~<=ZAt2wU1ChC0_abEo#zi7`4jD4 zJX*x&HbvqKFkfL??8RmAgX1t6)nlVna@@ML{jkzV5vslBuYZM&*Bj=GS>j{>(XmIT zrE*_Rr{gMWZ=hS7#hH+F4yNKDe`^OeHl@WMxA&#dC1mmpx*FvS4vG?XYgLD5=V(V| z#{A*e-Ag)F1bH67>4L7}4|_habE$mzSHEQlNz4?9^I~IE@E?SW+B_DAg7wZF_Lo1f zJ{R3J^E>aY{((Bj(U145=b!(YcgU@HRC8&97J0vbN13s8Gc5QakRiExNp#ph=!gC$ zw3q0=FMlCV2s^k;e)_a4N@i7O@SNftr)b1%)>qs04ZD2=mUtNdo5B|2odRq+YT7j%@c$_y{2$*~G^w=V0YvFN(fIz7K zkJdpR{vV&H;D0_*x8nb$bqGFbo$p4bCUzzcW)}Z4WSvJsjt!kBPGRf5|QWPor^}X!(LLN zKep`^2>(?D;mk5ZEOjD>J6F1>vC+m>@UE-+tEp+NjW&Gam-Sf-$way=Dr< zw1h%FW2_`0iC{iOy2wEdYBxG$Qf3NB)K8B!d5q3kBQG@J^w z3Y&Yekr|SCzha>=JAUC;k=sfk9%69?C*b218(4u_6}{8Kx@w`jcoG>Dk13`k0F?qW zl(;B~R*4vh6bfqxNuR60#TsNQ@4A?249Sy8yyhQ=fs7bXRe+}Z4Nk}c+k+`wInHpKKW_uhn6G7TGMI!gtgtd!tzSzTSjjyB zvb0K|<_D+Kc@OpI$jgs{l{jPp3Z1oJ8~voes;X8^*oSk`%B221(qq0Usvv{{bah-_3xx3F7 z)I2v^(8Ww*A0X$$FX<-Yw4u|{V0}5QJ51j!zZtuU=y^6!neI?ZMso;#Inqgo)gJ$9j5! zL9K5UZq+ZrjJH%9yLcHk=W7T%zHiq;1ccmDeuIN0S~1)&k#A`q3IhpA}&-81c|hA$h*aS9ks4Z4vJhW{w)>(N=%Mc0SE%+>T? z4ce-3QKxsc8QYrAWiZ>USV!z+d+szgI8A0!_pF(&v&RMhQrjR1LWB=Cd^Si(8-eJd zHyTT({`mHT(Yii$)&1(pn5#~uTl(A=O6^T}3E(ZZ-4bT?S22$*D7HT#SL<- zmnmQ@BQnG$inn3G@C3H`g3op%hWdI{zMgQMSu04%8g4a?8ZhkF{A?_tWu*MK8E&`- zbCGFX%(-=45~XM&dlg>&}vI z12XM(JZE&>WK>+~;4*Q8Of5HCz@EWK4LxM9&>!F9G^V3`5R=OYM#pOqrzlZ{v{&0i z4{cvc>~-1=Pa91#CA;RY-llIywk;>OYRrCmmNM|n#*r5Mh#5lcdh>q_TDNgu5AeyMiK}fJh)5H;O+^KK!A|o7TjGMcL~8= zLI-zm+yjBe-5nY_xYIz>a5?Afz0box#{Y6(?!)P^#(HWQU30FQUw!peRZtp^k5*c* zqb7XJ8G!R9{zB1j7CF3+TjmwKXE|bZhPIaJMf^M*LaX)hsNM-gNk8d@Oyr!S9YqjdicE3R#WOeRV zNJ~}dLqbI(OlAE&-hh@PVdUUJCwr1v+_0{zL>PEFftnGciu8j{9roSj2Je zqb?~M)6$5)op^%Oydu-#ksOL--{KuV=U1fa*qvRDxHoexEWCppSgktmNBeCE-J2ss z^Hk)cx9*IHQV<%M=)@t|>`lT-jzq68+ivoU26qlI8M+qvkW-f6Tb$w03OsxI=UMRdR(7g%kccGYV*AJpitJu=tHQ8*zSFP#?f`i= zxu57|j$e4`7A(Ad*FDotw?es*#4Qow;#Rkv zfvi(XCNDVM4%Q-H9wg=!G_wFn0@e&K(_0dJLfI7&grjCbduT3lBd;=stm&x`#EPQ_ zbOpnfpY3otWv|bu3PzK}STC1CStO7c_;O5?d){1LcpB@rqST>Cqy-K8%p5g;^RJ`y z@~otcOEEX~8Y8?Uz|G&uMiKvlITM>Z;)@E#stZ{?ww$DoMP13&_QJ1aYvN+m^-p8_3)IY%Zc%gTmWlg8 z-B-)oFWNM}D4H0*S<)}7AI4-74V$pE$G|t;!G*JZqeU^Jbk)i4xSCOw4H9ylKR_JP}VT)?tckP!pmUlkvB?mh0Y4SWw zJ<2HilF=T?MD(F~cvDmakZ?UcoQRH?O}%GecP|NliTVJS$F4KKZr4_7UQ5x=p`;^EqD&JheI<6)8R%YNzVK>YL?A$wyY`|cSwD?PnM_cOG&YUz6!#%OPO zZ&F~(`_7if96yh%+F)M5wpsW6FB;WCQ&+`NmxBR5-#*mPehmokbUoaSo4w^lWBbL`)q-oV`pF zKN}UOiW1+m)W3%^aDPDP`rB=D0cD%~$&Q8vtgU5vGZW|@E+X7fB{)xteYzzA9$WLv( zFdNAOi=qXS+NA@VCLHdf*1a1koU>POpt$aX!`t(;t2R+hHKgbNyZ&c^|5@OF7WjYB z0viEekR+?9Oi8+e5yk$#;Pi#YoyMAgL&W3f)w9k||2NKSBR~e}KDNmt4RmjGQ*uN0 z|Mz7Zc+aIL+a_B+7G_8(-<9Ft#OY*ka}kL=mREU2q5LxxJs=usAu5>5i2L`$Y*I+G znHQ;EewVjyHs0Spb^{#~$x-m;o>2Z3{&^Ahs>2(w(u)!U>6ttH)}7Vayf7`9r9bXp zt?@s5?Vj*S`}28sv!t28;0V?LBb?p-V~^+tlgCc68y|~s-0}>n-nIvGAca|0&qzCi zoD}D&XPYB6_ZRC|N<`BCo}_(~ixRIJV(q{a^Sm=p#jb?qLJobP=fMp*o_VZ!&yE@f8GWKU6eI%(IXxtZ55dUM%8`hXP(V0&j zanE+*cbf*NO`a;3gj5Vz8*xhX zzt;=txwN&VAQJ>1?wEvhR=m1rZpr)DI35Q4=N%j4q)0jf=Bv5P`p%ZYGw8?DM*TIv zkBb-5k9WVMymsh%O!0l`=qFx1`3{Xsd}zqgDXb7kQQ)U{T4#@4Y5LFRc^VNG$g6X2 z@$LtWKLhPGTZ=P93*85?LH1Q6DfG{~?=QAS0U?mQlL5AUd+GC4mbgZ6M&2%|0N&i& z9MzQXJKwT_PJ6q`PjPq2ZTf##W*k4zv%%rp{M&nbA?)_vvc2eLS!e`a+d|Of>Z^FW zgparBT3!*d@}X>1)uXuQYw#o{#_BfgXm z9k5v)FKdlYYohNog#LW)K)yZYtGMX@8Wzr=aPXT`MznY^5g)Ut8S#eZZ!>NTU`g9h z0eL6Wq9xuWpBj2`SFmUu#=bj5N<5>ItTGK)xS_3`qsTrzI=P~)j(A+#gjYm+!PCS4 z*y$kdbAs2Ly^0L?1@0q zf41CXJqoRnvH57QB32h_%s;8$TV^+y9w{=HQ>t zvHtvsbQ6~`xqFt~=s_M~<_UOAk!aYJ87eLb{9SJCoy!FF^P97*GzBpQPg!PMy7{Fx zhM39uOoMwtY{4tJN{!~&Q3c50j)nF`bqek$0UAM~QB!M!&l^fkfE#?IY==lA4GBGT?#ZMin=*%^~o~M*!v$AQ;lo#^Ey!h27 zfg34Rx%g9%hm}RFW9Y(o_LpvXJiCM?&$t#C-MT+lU>tl)DAGfAkj>sY9ZL)IH$Uyf zmpcecq4hX%D+WxlGoN>8La(K6-!!-|EPmX`*7%Iw}Ox6 zvP^Tmvb9<052VfVak?i{P+{OYn~`V*XXiSD7n{Y{RDkAJt40f+R}C+>2ANjsuEjU3 z4D>Jn%L<0={(4quXTv0TMgU&fjV7#@TEK?N@74195~>}ziMpd)2XU+(QdiFYZd3)t zdMZa!x5aJMGzbxA@qc^fpnz~BMWES_3E!B@RUy17aB>Y|HvNQJ(H<%OcS_5q{=Iw9 z(i{34aiN<{bt4stD#HjYYGf8ui<*6Bdv~XyQnH)YVtKx|7RNe&cr>1EIjoks9sROm zw8D_S&MM9r9(XZc2`V5a4^Ng`ZB&s^zOH6pGY}wl4f9~NKw&kIb+4u(_LfoiEKgHP zb*7DCpWLZRVap+3zxo!fM$ARqlJiJAZv6daH`ZV0h;+~i3DUzxd%}Cs5l_4VK_ta} z@qK-P_6cX1r9Btvma4GbQXK9tG6`-zQQ6y}-HxQ)y|*^`aXde>?>1eF-{g`N;0m4F zGlYtEAa(Z5*4+7HS56b$6r<-zye`KtK3e+la=`ES%GMypVnc!`E8HJ`q7pJQT=q5( zZxJd`lHzW%EPH~LNG-G=_Pb<4Jci=;e-{1e-VJ0%+S)DtyrnE`PbhsJRbE7M{02mo zcz_Pd=9L4ZcX{k29_&x=N_9NzT!DNSfo9~XJRA3kB53E1lzuH0|JYdg0^+BRE-2DX zJV%o_rqkYe%B(AaS3p=$=wE9(v;D3zP5)Jd>c66&Z}8eoVsmPrK1)rzRbGsBKs-EGL12p?$t7f@C*_xLZq8GGTHlXE zatBKvG-+IXA`TQ1UAKL3DG@qg^u3WIcF|*^{iVB*%gy%Vd2>qp2uPnyFS%7t^z+R& z4oRw!xmS2M$R|0T3v7Kdi!8~gWJ&|mnkZcbcJ~hqvQk&#YD--HFx0d*TI&0I^S1_- z7p3EI?tcRavgfoSR{bTqu`A&=Y4G&Q^g|#So$(O$>A@dcU|H`BtDc6pSG!BM;a&fQD1T_|@sF%fznUz6D=w(Ck#i|i``9QQDy7PdkZ|SUVTaevD zgmJa{t4yTCYj-Kh&y`qo4IX^GweLCX2MGRq-e3eWnt06;F&q!X+zc?tto8IpAn@J< zWHS*2Ra7hF^IizY3#wR4&4jUY02@Qxu-PMyL2SviEd=piTjVUyX1JsU+YtA(3g?L5 z->AwOUf=o1yc}OBuF#4)#A|z4G>hG>!;lmQ&Nh9okDOhuJ22@+)oQSQM=MY&=_w!j zGF+^`jyalMgidV)YojSu#bCE5@FvLoYN(J5?6tHvk|H+;fqAyV^f^tUMY8AI6b-%{ zC&pbvV|2w#Q2&BO_o&aLmje9Z)OfG#n=pAvt3j8&OPOK9W&zX_t)up%&wn{SaWdqW zHlN=xxcxkXjF595NX0-s5x(cAlF zHHUp))6DcA`>Ddh;>Iob8Rk+}oeoGgTLxFi_d2;KQ%`XF>9rXLy9MkjzvQe)1WV zpB0y<-C`~b@9t5j=%B?;Mr&RB%%k5{2TD9q-=Bs?H27Hc&0f^R{sWfgu>!s3BMsSy zo%Z>9;ZZ6KiJ?2O-WNjiGD{G3=-eJdA^nDh{CoM!Jxs0W>DUCVf;RxUOpB-X}bQ-Y@eYF;m~DKy;~DkE{*CUv9a?0jpqQdh3{f)R!me79yF0Dubwb`|oH*I;cw> zDcM{QBuUU643bUi@D4j!M>9`LtA`#$2ad1n-Fk6{udyqp>KTz$iN+BY$i*1!yFy^k zDQHg5F(6DwYkUTI(Lz<qq_We2m!?p6f?Ako3{;P6#`+4h~{ zsTa^|4#JybmVTcsr?4I3CaOFo>@<6}kUK9A;#=jeqePGJR!im52bK%pPqz4-6^I4J;+vRr$vUtfq zRMEbfHjF7y(24+z6bCG^6_?)M5|;VR#)F!bnH+goAm+=On&^>r3Nv|y-c&2l%?XnhHS+`9)d-sy@y}#%v`_$&! z8rKn|Wp|da)<&$Cj)%~IM*2k-=;HZ1S#%XW>KM5t!w{lL6J1UhjQb;pkS%83F!w+r zpSXEt-6zZ&b5Y;WyL{)EO&GiYJnB64{|`Om{~d{Opg=U;?<%k`vKK`v-zd2p_jBJR zO{%9#pwC2EFClZAHKd+?_2Y$27HgQVM1=Y{)cLU?;h9cCtSM=Tt|aYAd(ZBW&iTrpNLZMP@po@YFpHN~vsRjT zfas;mqze0}hq?TqpigyuCPGuC!|Gip9vFx)H!qc-G*e<0JTN>tc{qx5Wex<2_4ARgovb@PApX6n`O6@PCbYCpa3r~IdszsdLw_1e|w|I zxP1|=+MJ<5JHE-b)bL?-tOm_hvW1b-e>ucMUJM1~~X(uk%y*=8Ek=81OX7DA&h4IE0320 z+@xYj(05bvTs`yc;0qvIV&TejwDU@oRH{3$4MeGNDYnI&31v|7WZQHt@pfR%AuV&* z3NqN24_~^p__>?0=sDkRNvBiSb*B*Si?=aW{(d>NCB(1Xplx+qWC<_UU9xqtAi9ie zkt)52;zJe|CmoZFV09sPeh&ECzO0dBX^VGziTg&3p56N|F8siI!|O%F38>5R+1lc@ zdd{vWPU1jy$30I{?)KMzV94pyAvyEQRPPeIZhWvT<9Kp*-4B(v)DO4+m=b9dNom;7XHiQnEckOUa}y}v5rDNrVv4ExI69dW-4Ez zw7giXVHqYGQ=axy5mV2m*LnZ!q%uU`5zR>APedHN0~Ut(+c*0>lNP*p@1@F~qoZBy z^hnBhkNq())Tk`(?&sYPQ}V}8Osq5lj{?JK8Z>w}`E8CZ0t_byBzN$zIVk_q#fZz8 zz!hIOik{DQI4}1SE}$ZJ9ydf$x0orCJNro^-?CDp5 z^Zue4q-2o_^iIaw71#0yEeiSFub`k+e(>F4=i+?Qg|l{P_X(LME|?)lXCZ z!a`ou<$t8;@amovzamhFG*GY{TJmotispM3bdhewGm6c$JAXu*D#{VD(NCm#wYiL`Ok9S|g?m(?nsFn3miP7K`x-#9|PB~z~ zT%(Xv(Z0APsfBbvEncF7=mW-+`fN#8=3Z(2;l9EOp&h*{n#gf+Sady?B}&HP4RMq- zx4!pLVg=iq30Q{o-@$waen0$8#A&?)pzZLWg zSU?1xf8M2BM8g;U@kUpSt!l!V?)80sAB0+`x`NV$<+bj%hfW9v_YaSlT6IUHvl#bY3&KU^J=`c=f7rq-RC! zaPkEhPkZsqSXk~t2eHB0q1rDA!acA0NWA5;3o@J`aPiNuCs|R_E)Kpw?A7Uw z*AUKEMZ0I@52<|R^4MUg z$c>HPc{wlPhhK*zGfXxKyEvpi)btOr9tH++IIE`Hh(Akkir<&)<>Fqdao_ zaInSmabsx{k0V6;%UuOOc{R|fvdCf?xHsWKPRtIVk+m}Lws(g(%^AeNdLVCSxt|36 zr1br_kHlN21$*DmgUa$&kG{?C@>Ap(=!|9zb>iz5qKadiSe16npzTfl084*Lr*^ zVwig%irXBzCOJkPPs^)=!Wn}_jrSC^mNtl@B=SBi_nkn(ws&U!gMqqDm-ix(wx^Sg z!EKSm0+Cm&O~0adYg?g0X0KH1!^ia;Ekft0KWu}Z?Sxq1#t-WnUK z`m(#o!iz=IvZ3B>as|qU2p$pcim&y1;jPFC6;|dJJ=vcVDh#2^%kpVgL6ir4T*P@{ zS5)OELe_(w91NnkoHB;6v5-3Kar$ZXd+^J#sSe zTeSp+T6W-pnm_nIw&Y}KJ(^c|lbaQNLm5*Ha}Sbl`*MLQDTUGAP*7IYFyr(^=s9uN3$QFr(RLR*kX1XxsjB+p!J!C z$BXkCsdRV$c)e)Y-BdnS-TAvF&o`;kA?CRn*xH}z?3ULwer2K2@)CgN^6^~AB}G77 zdNCmS{+l6%@%@T3Ku*#wE_6l2w5%9rYTaH#&{ycv_9_A4a8_8J<{%k5nTp3lA8-+i zQSn5}v%vS@9__q8a<70Lp&-q)918`+VN(?BKiQVkq!&m=b#o|5xcbITsPD1hJAFcy zn8WZ-N3>buK)FLVr zCNt8MUK|i?NZ_vN>gI^UzWIuB;Rtx5B!gv+g%BMZ?*}YvYC&i8P%{!-i%Xt`;W1YZ4CI8fT!=v<}CpCC+?B z=7a|-)?(WAuT+9#yZ3Mr;(Jc(dbPU3Ol=&DF8)N~O3WAD{w%UqYHfilqw=%OZ^Oek z@1riN$I@#c_vNbxE}gLezUj(>7qoKu6$ zN%6#tU*-NV3;$olH^3~qq+;z-|qd-hciE}*%&=qx!p&j#7hKdHT|#$ zU)1fAR>*e=7EcE+zzhfNA^Pf_*H^E*j?F@w8A%;R_f^)K?8)_`CFJJZLs*){1K2_J z^jg4WP3wyI@qzEw>ucY|h3;yUyF6a%#D%Sb>wHEhJ+27)A;Ep)%2H0kA_*E% z3B9pDP+cpguAnk}ccG87)Kx=JVbQdAk(=;_W)!{DxiP;l@+q!Tq{=wd`5jb&N@#oQ zj!7(|PlIqtw2NB@{4U!&UED}yPl&IHSSO&l5Bp#} zc~VggD{#SfaZyM!TUWc}mt`6NT6eiBquJ?wLQ>|MEA8EzLNk$-8>Ob!Q+nL8do26o zBt_q8E{AYGk$ka81RwHn?PfJU6^6PN03KXXWOx~8=*__Y4gdU{0wB0BDgUfxoZuR5 zw!uPaC7VcXH106YJIiHMO8eP)4EK7RfsDUV@!LMI)}UdHx7XKeX5K0nC!GA7-wE;5 zUl+E$uyxQ4PAfIMF?8a#ptmnT&ER7o+d447{byfh9 zDtuxMVp{xr)0t)cy_$@w7o47;VhhegjhaTWGuR_aB88179E6p|P-WJdfjIV)N{)sL&_Up zU!@Dqwof46Hrh%K!NJjK3|1M-!4&9~=F#dpZn>cB%fybV__)hyROnXP{37Oxh&8p+ zZpUBy6>c)zPM;j~)f$O0VhyL2Z9BAe>a0PA)31(;^TnS<$5#w}7bGf_oUPJZ?2e65 zWgLChKF&&NnW-PtB_7xvJVzA%;@&fK`g8o>}MwZ;m9F6eaFQ-Cyd#LbLwQDFO)=3K$s_6LK^1{Vkk5Wo9 zrF|ZI1@!$MSAZ&_vRNN$)oW=iYcOtl>><^b@RLZ4wQT&WH6>9}PBq(AAZm;2(rc|c zL&7fVHZS>SEFczlUL0rO;ESun=Eyo9_5{R@40C137kIsNX6?k!UyLp^PlLrdV_)2Y zfZiAnmJG8_RY3xoZuSfAGN~ZJpI0dT;vJ!d}-54j{D`S{#UYaNtL+7X~ zl(x6XajG}H?o)gZ| zArn8h=x=|B==feNp3{c`q# zWv#+zl%Z_>Iq7+doWqrFb2RaO-OH1y)!&p)3DANNOD2nmDK?QN$r5GwT;@87u|U7bEQlMt|M zhUa~j&2A)Z2)%C;Nt5j2MY}~5qdVR>y*pC4kY3ahm%QWxbeifg08eD+=ydF%(Sts` z=EDe?rZ4OH`L`8@1D~np*U$6ZH#m1kI@N&{)!%n)hZjJDVz{B)l+^o|^Ueu_7 zQMY65%f|3~$xUM%8jNks?P7ADor7!>nZx##uS@o5yaxfe9nHFZ`v8^e`Rd)@<%qZG%n6 zK&lmui*ZvMaRF?#gzz-|o~yumaFTF19%|-~hPA+iee{B$X^AT-GUzN=HYq(qHBbFCY5Q!g_ zaRm5UVICX9efFhCvU4A;Ia43=So*93HhdN&nTAo~V?+jLn=bIT5?k5Rn&V;di9fi5 zdxh)9{WQ$SS8O3IbJcoMs~l-nLkF6h&e2@iYU6CsHY>*xwD*b?dmKc8P7@ zNsVs{H(Q;gwW*9{M_(){vI9(2tJcZPRZSBQ#wWHS+@#;vbbNuX+KRRyRi|Yr5AM zuFOzbvoV2b_u)^Yj}L>r#VUf7dOR+^8{MAxZ;r34b0xO470HDE^c}yzFaP|ga*$4f z{X}??dRS|AF+BmE#d)qVfo0m6XdmS9w53sQ%VClxnt!x9T{1|LV!*~9OEa1NB*MA^ zBfH%a@+HO1s%`p(jcUcty1_1skxZOSpbv8jj^gtcmjvfQUDivGqSCS|N|FFo|7>E> zC)MP&*ZcHd4C7qn#OAPOho7i=0hF!-VjOBL{i-pIWk64`5aDpnrY{Ezpfe- z1J>n*%`=QwF^`928+}ov0Fe@S@1Hban@anx7MxAZngMS+Y({h>Ji%F=!5B;I6>-`f zmC;$93+AKytDdphrnaglS+nlxCpLZ-nB_hanyvH(2hgJ1r4MS@_9CYm&vans=8IzU z_*1k(?SSjegI|6xaBN6l5(>3`A$Cm-UnJ;2mA|%#`IlU2YfjEoV_4bV`qkgS>JbCE z`TE0TkF3#leQ?3xPw6B;wtTN6^1^L_QlBP;W(QTWqj~wYAmLU#mFPliDv z*TJO23lkI~9Ey@KTnFd$q9pfOmtu#jaVLJH+xGG38=m8M_j`w%?H8%De7>{Fo>s(~ z{9dDrOMV=o?KAH&(21&bzya%{7Ax)~lE8IptCgg7sF=0hEHvo3ui?Br8%=JlB=X>L zL7`A<^a7?Fje({MzMHsiU0%76ypUjw*;PziMdx)nq2h>TTZ20-9EiPL*ff-YxVLoq ze7L=$({Y(|VanB7hlbWdTD03d^+3C~Ig#g!f%Xf5_&$~h^98`UwZIb6IrSQ>u5GdS z=+-2v%4PEcXnPWl9dH5RTwvY#KB~{k;N5uF&aB6QwqhL>UE5)q4HWOP{xV=F$iP$3 zqk>QgK1q<=d3Zp6CYybK?4FVtA&=#r3A0RjsgXb6^trdouJZ&z`O}LRFraiQ(m9}fxE5Wq1O!vE;Q~1_usu;_UhK^bh+%~t;4%tIE&>A zZnzFv2E_RZxo?1CdQ)rIcberz-gQvb9j}R>(FavLjmOFy;G(E!l0W1UcInREmC=X$ zaE?VpflqFQ-EFEN(#N94jm7Gw)Lw>0B9^2|Z3*ibA94@}J*$vTt+m*=9J|r|#vF&K zrXK=CtdOEYLqM&0goRM0FLS6zAOuYb{+$6niJ7=&zv?cTcrR%_`st}x$mva4?JUNV zbT+#3VA+Y^pzqsdM(@;=;ZI8SeUO-r=dN3wSc^#q>8;;^`kdZaz3i4Fsnh)4&aINb z;6*b|ljVREOx>~AUDIp{wmO5ZWJRSe@0sDMdEpa9Yir2R+(X&(9-J0iN-WGBtXX@n zf~@G@J>OjE{rK>s*Vywf$z3E85r@+LzM}!8Eesaz$S&_b4@M7ztpv;G5Bf6$y1U=V z*BjIg%n7?aX*wU&e;#UIZT_&varie^`3%MFjeo5dIvDBojT?|@-9AH=TJ{kmcW zIK0HhywdO?z7+;z#khbtp(xeX^Xw70x3`^;fw5tHgjl6cn>n&sHMv%4FfQPsUc=Bn zHM;D_JkaPX0~5To?9$ie26>TX?&9WSmtF1;;xHYt##%FLB$xG*cCYIEvZuI|&q9t5 zmr;PkW1lFV7E*YZvd>d1S(ym+LWOlYnt>;f6stp3V;E09x!T@8jfb^iynR@onnJ8& z9H@YuV~#v4Qb@rOovte;Lp6B~j(O0Cgo`)+8QQ$$BQpN=ev5}P5L?vt)%-9S>CNfG#rI4)TAYh# zcgp;?u*Zy0o^|Ch+w_b#h3aCP>&{Ea=XOuS*l4QnU`7?`q$^znsQ3F2&Y&!^%mH#r z%2Zp?&}>(Yw$-`Q+5~>wQtuD_I%75A#~5f2nea~Vje^a00iu4=yZ2&;0lu^9uV`Ex z*yTx9YQk5Lwbq;!Ru(@DxGJPo+dO+7{X+^g$ugc#N!o|)tJ*1~Gw$K4qr@;PJo?$f zTt5D4dK)7g_;K)}bj*+i+$rSJsU35Jj68=@OI0Xc^RSh5HUsfZXbI&@|nk&`pX(p7A&&$c|9C4Q3G(Xlty8;nP#&=Gpb z{;8ZDw-&8dH&<`;=O z^@!ZxA`m&Gt)^GnAj_66)8lGrC} z09P0xYy^_??P<@Nm)zILwVkVJ3cGEnZL9jATXCP^Qs%hv(EpzAbRyzKUd0CW%^ zQk!? zEF(a@$Ezb!du`42iRI;dY#maxKh4-3s$=$kQ_M4WygG4YBk@gGUq-jRT03?^Ep|at zwi}e6*#6)w;x)o&y7}H0Jl529EXtd_fW0EwBY1ZWop0oT+qIL9q64Vv4WL=hvIYdR z9^+24a5tJx4c{`|_Rz}hkzRBz&FqYr z#8{l4>=hpkUQ>#XgAX0owEp0=%iTU_sd5IPDz1SzS^(5KP1rzx$Afcj^MfW28KW`N ziGcJ&`5_ijfe%&YR-KImW>_br6*K;w?5qw%UTxvdASuX56SY$d)1uIhj?{wsm~;Ww z`d1S{kz#(EUnD{lwi-F@mHy_g=e~dbq<+7SVUSVhg2fDLx)^n&O7ZGS&k3xyt=kIE zVlu8_LY)~z;?qt8AZ}r~2pvT0?9hOL3yRJ**Lz|MKLGW-qyHC1z)7kxsc<8`NStx` zNotC1B^|efnae;g#}WDzL9r{^+}9_)TYQS-^tEqtty+_t$GiYWp+;_Kw#4mlu}?E< zmy>e?gb>?4FnRZQ%^K@p0{!8%VhYFnC+$?CDTD2`30RbGyU6i(A*2P;$;&Qjh0Sn@ z+G3yv@5j%6`9wb-VHLLsYWT&;R+5$fBbhhC2)y_Bbq`C)sFr=aBKXzYrVI2SSqhB1 zvm3?Gz%MwCc094D!fQ$LSO7}p>7FQ3i?m71>2u4*o^2B*+3@_-w_aJ{Obn|K8HcLm zAT*?=kzIW{84iS&iMf9qg=I+ZVJO*s)>dpLV=v{;7KiEF7aSN{re=4gNC|(>R>-tR zT$k=>9aO5iF0$t$R`!0>6|(djl3VTKifEFilZRC5{1{?^N>D?er;c^$LbUnp!iF52 zmAlaYB`hMFh8=zIjOE0?^g8>5#RS1w6&MMiS)BikbF8WLcGulWpHC{dCG@?Femwuy@$MO7ZHY3zW zM(wDB7l&h#tNi_i2y2YG^OJBhY^H<8OSYKx0n$v>|B5)JLXborrCs_qNzYHxTO7vs z{4#)>Ip19I;^7WULDtn_@NjI^0j2@n8aHgkvFd4N`)7bo{)%e~QyP^>cJta0v{8cd z&}M9p$jsf+bC<8<9XFe12A9J2)BbIOKe5-Hw!TYXiD*!$QZ4;BjFytBnzmKI_dOQo zaX2zQ_YtMZPkSrLaDu!lr?)zMWqg$?Tq)|7ls#~DMr}(?H-bKR-9y~8<6IH6!xHh$ zH8hOSmbOd8>IU(ecDaPZC=+y0+}_aTu*a|hgsiPa?yQpK=G686DYeE57a;THF`1$) ze3_=*0vMUopHFmOSxUFm`+@+#Z|Op=%k~q8AI@ss2V3{d3nPly2VEO1?PIS_O*hRP@vQM1NDuMOf*ceTd(&Y88&32dWo`3hI{JYZQ)RBl5%5HCme|*;~MXpFRDRxAV zaYFTqF$Oqu%*G+s2@qC{#b~sR@0Hd?G|_#Q)fRmT2++Q0eMmbw5wP*{hPj@1RxfQj zzorId_>Ma*&OR^J#@F+B-_iR?@5^|UZ&bE%T4=C{5pZ5$E=64E z19wvz-GTjb=~#3&*tM*^qL9=F^P+rRsuI-^X0hhtQ%CJPZ`(9{sHleBqPfN&_?-dJ z$Ts+`$T}GU3oKK$d)YgI7XQU2ZL*HIG7)}6u{!g`-4GqjK`kitMHfs;@R&;)pJ;5l z4ZN(r6@Q%QLTk7G7c9Kldq#WfJXkln%lo^7N72Th&Vx`xDqi#ekH%z#*qyTE;j4Nn zC$$+BKP}5K$9V8U&GZzDSm;Cd37JRtiLl%N>dwXyau?bP`d-2ZW(C~Rt*Q6J`K}u4 zq(tZSjc#wY(1`h5a%PAKA8Tr)?K~ z8X>_oxZH&%nMmKBKaa>tbp23|^Tc3-rlb3HI=F_Le?(QN2`M(#EAgJ@xr3u@8?OA5 z)kwDz18qOo**MWQEC)mpCtYb~hMh44XwLfknPn{>fe}F6^f_}(^r1_Y4D<1lC1O?A z4K<4M>^Hs^6CuN(tQQ3z57GRp#-yo9cf<;l#lYzA6rqWJUPB*)ir3Sz5Mj9M0Ob23 z##O+GXYBcf8@f()y)%`mu)XIqXSCZwLs1*se&K&7Qo5zSATh?NS}OR$M?+>zm*}Ww zTT7Z5WY_{$;gg2B6pD0j?8t|MewB`gyZj*gSFR%-hw4l??$C&IzVxS92LtLS!v}QS z#YE`ak9Nv2z}9Ks4XKEXFXikgwdb3+T$F%V7ygA2M*XKE2$@E{5v^%A{DQr%M#oPY zCDT}q-?wg7;&bFHjz{juBJ|rsy#{53NW3bT;jIpR*e??R1*jCsl;a7AGf7gzC66YS z_2FTDBk60HlK1L(3VH%mQO{PANvdn~TLl5T#O0>6$(`s-${{?h**sGaI56o|C)YNm1{ApJk|~F8O5#XQQ`@^9=EWd?sP3IH z&hstdE`Sjl%TirB0Y|S18JEruv;2=Irtgl6$TynU#OQeHbX4!*dj16~ZCzK|xoUgoG?(&YXz)3z9+#DJIsJw`b;cJLlAa$T z#n%H#uq2nJNx8e`h>2&B-!uEs$dkses&w{axHuS9bV$!zFKk(x?@NZ-D7nEHUAvP< z-)iHzS4kIIKH${Fm5+>R9GooH=XsdK&6sg(R@<#xy5ET)(`-%(ZIz#JlXHkSF}f`R za=TnU460eybt*3t^YN>`ozuEg(3B%Rzh|pcpJ(nWInU`zqMirx$^BtjcCs17M12y+ z-KG1L#zTz;6y}%;r_Rl!#^=p|ODVbaDiEFNCqY&6;AF)P+SMsg6MZn&7IozQ0d(g4 z^*@p2BPVivlvES_iQ~g-V5T_DmTqCmwXtoRBbdKcT*&)5)_uj)_)zNWb13TKyDl78 z17T4v@X*fe@_Q1rE<_M$evhUSTMVU({k2oT&ET!OnZ_~0_g0K;Izz?r@Gv!8RS?ydXnemGU{H>#L_t+iTz-MzY3mhYol znfQXV9|7|6v&2H%mu6vf2Ub6L;b{45DtF}q8pVsC{5b&ul&bd|{;t1+ zYJNZ~Zw=njH@jh@!deQB^W-?`oA!kf8yj-D)M#>&Cv&@}ejCK*PG%Uq{#eq{#@G{) z;dQ1;gPV8hO=Ba_O?zSf4o}UOXznS_${$Gffz7qOltD zQTZ4Kt(nXHpn~$bjrUB~mGcUn z^xr9YX0Vu6e${#s8E@0^Zs?kEchKW%n}w$Vl?gu%o_FwS&f3rbCyzx>Z2#`*?M^lj zM!^50Z0gyC&-o8Sti4w3kkR(k$taMbAHsbtoOj$iEuuK_1uw@n_@|rxyOG2eagy1g zR>tw}x*yZ5f(_%`iZ(0g>4AJM#gaU5$w4M}yYd@#UFy&A9sla4Micw7 zn!7lY@qor5vKt~=ymHUil5q0{eL<)5XaQW&XFqul5w>@yG@tHPQcY9N*C#q$!CW;}(7QhC$E1uA-L0D-OWK z;@Lz|GR@^Lvhm3^l@O~l2(ljkRtW6Xfd5{FWkJocNULrVOi@2T@4@%(%?aAmy9M_e z=TA{K+CkNl6+N3#J5naXV9|3y1%BP>qLXLB@+Cn5W;gQIV#?e3zJ@V=(qY=e@Dc45 zA*Og2on5_I7lhV6P2kK>DdzsW1#8wk`%Z}Bg}r1<=}dOey#@8Suxui<4WI6LYOXd` zonPH$o^0uWrqD9)LOSzN&O%%0s9GW{ai#3p{=MEuOBH$zM6x6OUpLMfJP;M(zB)0; zvd1@m_{Hbgz2V+?7 zGqhLy_{I^xP5Qol_%|;ht%Jg(1xsR~GmjL*4d);6k;>>n0g3#wyGEx8Z%gHhm$N-l zo$zv&o^Gw0!jH`A7!;`8_=X*JtdBT|RwOXoOwjsFOP4VHk zzpcSMZ)i6BK|{ux=~s8Ujal8J^y!e8+9*avlh>Ps65H!mQauWlYXIJ51&UXif@kO) z1BhKf?9#O}MP4|5a=p=+NX9TYHD|MJN@H(@=2Q2CJ z=+&{Cz@{^N14A=rDqkRTG+kd(E03*@-@-Tj5QySsokY*Mo zhBx%5H>=|_r6;fb(JF zbT~bjb{4qSCO^SDZ*t?bc}uZ_SRt$3H@$dJ6|);;2yMqo`T*Hju*NEJqghfq+u1uS&{y1sZKEx*;`h05}%Z+FN z_0}gr6aA;s6=#RYT%#@8QdlQ%r&bYdSty7==AukcWX+CB?{TQmrG&pizh0h{%w<7wu+F54fxFwteB!Y8{NVYQRbZ3pU8 zjRU^y_I?#0gfH-o?Wt*XX@eb%meG>=9xZ zept#XbT^Q6oiEhFs!j2*8WW4l2InTo`FU&noGF2f{Kmb+`oH(`yOdD+ST+f4xIaG} z6JXrimpot6eyP|oZ`YK^t5+=osI2AFNT;|Nw6KYGe03@G=DAgT!r|n!>__iVP=^eD zvIZRezGud0*c|ypE`yf>3|)$$in|Kv%z7)Ct3y6~vc_mFrl|DX!9}wJ6nyN3^CDs$ z&km^l?s#9vT>QDMfXvLz?cg_B(VI3C_1e_06_o1IoWdj4#2@UnoesF*TnC zdiJ>72D!qUB)tU={{B>pl{q(}FJ#5jw zm40RBC}auVkSyCrx(evo#En^w1xuBBcc`gcv$CtOML#4GPgW71bFCf40WIOqb+!mm zZj4uNP@jI>kbCk0B78D;f02$?!h?LndJk~QwANKm6L_;0^L>y-j;QOyY+>;s0(W3G z1qe&3hLXBVvY4xG*BUP@IvtV1O(GfLY@1*~UZ#>`YFv!v~!QjaRxz<*lxOSqii zm!E`Z&`F=17O5|5Ok{ebP9R=wKQfF2?sE`HA`tyQCq+e4Ov9zmdY<|HS`Jo*z{Irv zs1{=C{zUnk5cgOZgl(T~y7z?zQ?p`+614KZ?myS)E1bLqc1$tK`A4>=Pd0c2D7Dgu z3|*{MIRMcUtXKnhJ@XDlOS9TsTimTg;`q1=D&7TmP*|kL4GGb6zyxX4Q>{L`K5OZZ`%&NW6OK4w(Mf~P&?`78n4!Vfl7mNVCrGvSW19Hkt4I%<-FGN z+rMNayjs6?g^Yceuc~3%`cp<-WoA~a%*ex3r|xoE0HL4zC(we4HKCW~XyC|uNJjVU zZeH@S#NcHoM+wF?cSdZ9y;hCwV|f%`$04F{ps>;#sGb&gV~Hcj&SV7olQd(eG|BZ< z|6$9>0yrl;E?qZPVR(w^_FdrhLD!dO1s?_t5=6Isu5;pF((_v3%L?=PJ)RByv`pb< zm3(C0r3Cng!Gggf4dFBa&cVfrGXk`eTF40@E(YjZSk(_zmAq`ZQ;S?p!*Y#wdb}M3 zkH8I;SQ|?9q6>FpTONiz-D@12*=IHiEbPrkp8m4+o4EWL69P{^2BMMXBO{%_bbAk6 z%nyFsO{h3Y?(5Mb8R!IAwmvtzCh60d3|kvPZ*kS0&y2|IG}LR8WecPt!b=hJ!Z2Tr zK29jdO7W4|L=`pThru+g$Yij^mE>R;qrQ&VvcAe-((iY(O*F}KZ&=vF*&9yeEAflB zi}MDBD%uTbf0X+G_80wukbF){RHZC9(Ky|W-8K--cVA6;6s{kQr#S4649c|?_)pf%T20XmUNfP`(H zG?u+I;?=8H)gcF{nlTUBU{5C96j444b^KW$GH*93lbf1D51N3i<#Jv8;}dcqbOoQh zzUbS_Wi|jrz)egLHG$t!`_#PEIQ644*rn&vzp7(4O~`@j*W0-hD^90=*R}HV-21#H zEojP9;!NRAseA|fq8#;zSLVROdZ0z}fd4-ji8 z{AAV-fNuU$1%m9#Y8JT8d4W0VJL}W-yb_`@?K0#*P zOKfb()yQVA*DUQsWsrMdrLBZRfI$OP?Tes&zr7_cnT`_ zNV^ZaB2L<}>160Q`+R~~B-~rsOno%l>;x;BECQ3u$Fplj6;vRsIp+L)0l$fb>;}t5 zaqe863&zW1*aAe;=y+8%TAdi3A>FH?Ka|7^iPb^{mjTSDj`Ci|CI1+zj~g(eH?D4B z=BzBXeEN*Cpdo{5Cmb1hFDh8p`XFJ4^%$9oyqDg|U<>?No|Zx4yeZp7?ZP4=Z6g_& zp}}Oy7dT{M$+aq=mNa~cH%sVrzxk2G2Bc5Uss9^{pLz&K!GF%BU^c!O3P<)Hk@Mvjg9( zeQV9mY$ndNp5>D^GZqACTe<9V)6_sGC(Dj1)ouKhvK+T)L6AqbXxVxSGa8jpekn+P zXf5P~a2=NJ;^_cLdCx3o-jbJlg-a|{SQHYdK#CUq?~ml}NTDxU&*}oHVH$lYIF3Sm zCT$>dCfOMK<@-ImVB&x^rCF$oL#Al+|hwPM+`6?vogUZ8S z+byqoXcQxTy38C?F@nZLP=p zU{Toe`5~ujF5tSHF6C_MGu*l4RJAWT8TAF>sBpPY>Eg@Y7pev{RB-AIqzG|ck4t}b zn1Qj%dX(KRW#SjZV|ojf6#NQ%I-jnTYdwB^FWg_g7E?}HrH&T<`b>*tFxSQ)!b&H? z86*VvRQ!JE58lF6VIkoCvf^BYe3zsKdipI(x@{o~s_~aKLBXigL?P;UxbfVI3q97y zEKo>o2me$rQTXI|a~ck_<|5!F@pf2;yUheX#>tM6?>l^`&UrVMuuy`iE<p4ECA-k=Xx4YCj2Hwu{b*|(yI%*ymJTBnf9bn%2IvfXBjLbCNj;b_ffe z=CD}-`pdUJbQNlzY=p4ehz}}1FkH#c1z}N1mpHWO%8FHr8MIgS@J$H)WB&rt9AZ(n z)IOYmwllx93>1U9{P#C?%s+s{+eO^74?S{c?-&Y>irFNosR^ARvg4s_^@Jvsk7JT+ zD%abV6FDLQ?JO4ZSF(hf=Jy0Da7%Bm@M^<>?Hfa!^Dcbu3u~g;Yx*v+nkqGzeX4C( z2n?$5xbsSHfPY1PE}mPPt0MU&tvapzSWfDdTQ4cPu@egG!p*!Ac0j-K?$+M`4Y|Q4 zlr5~Pi3r3@RtFh(=T$iUL(OGl*K9Vn@G|_H-Gx;q!rG0YY9yk%SbO0W@@>xBk@-d& zO`NVKW-~5d-EnyOW~0&DD$4&D{AZ-yg^R^S-?vl!JSrw{L;dQnFCM`0- z^)6lPv;GOsCr_VlO+x6l&Le(tU?t#cr;R4K1`wRnch)m0ooLU@5vxmjpSq8lene|7 z0d+RJRsDLVDfVFUa;9dv{OH=IQ%*SRA3GBC*nna`&VJe`Zit*(+m1>dcedeExK3N~ z-c~Dt(3oqnurS#&;9l>f;#Ozo7(f$tKwfV^ll{3S+MtPO{;*FN$4D^Msp)SVf)piB zmnVc>M}6B;Y#>0&0y%?}qi^tzO+dTu`)(rQkrb13Zp`V0vG3h@A^pQDcV={ZfhAgb&MZdRRrFpF)W zu>|#bkx$dTU&gPokRgC%8}&6+vb#R>78W2|uv$@nEn4#*!}jV;P(UTh%K*2PsMO2~ zdxn?XF(Mb67&6*}9TmQ^Dk96KNt^Tr52MTY6EesM=C6<5EMS~{RZ578CeM)hwLHX2}vpZY{XSJWG4{QPZ zXD}0&su%xSCDI$KCxpTl2m7`LUmf3zmo8Yx?B(f2{VIAnvZhkcazk$t_e;<$=D$1t zxS@r;kvX32I}h!Olyjo`cjxyeD7>s&_#VquFNU(11F5q*zd14{Kd!A;Jbp7Y_;;iK zu{3{u^nigDo(>vt^7HSN?qCc5Hhs8J@h3CDTe8{r|K->J$A|yHh~?s-qox2MfNA|3Aod-}a;SbVF~-D_nZ@d1r|XRWHr{hCDYIe z)D_(8JP(dRq_cMjMOl?PV5w#!9Ykj{ho^ zGr7vn$eHx+v`QM=%iK4eGBs#<7H1hYzFmPtN>sQEtL{9jky5~}j%cgLef|vu(~{EH z$(ZaMj&4khS7-W9yImkKpmYC>9^1j`K*=n^(8v)x(!VN*Mi%K37|>BYCtXrC2`y8$ z^u<>Fq$fUmM%q)pj({psijyf$5C5$){HXbvQF{EnuQA$lwaGI3AK??yx&FH6(ax!`PXf`Bq8Fu!683l*NP4}q5#(~pIrhp?>c9{(%I-pSb9 z=IVejzt`Ab>17o2&y_kwD1$ToCi8X8G{~g;I7xT+D`3OI^FkLP#d_{$%iV^%hX|2l z@rIdL|F*F9ZwG5?_asN%7D(LBZGvK|Icedpy{KlFwqz(eX<5!or&91Zc1(E*%04uI zodxoZD-q&ezR$il4WCP-LQlkIDb>8^Rcs@Lgu1$PR%16;oBlah`mp zQZ9dX?VYnJY8&Jw9i8*2u}qm!-JqdXDf`t`3Mzuucrw0{>gGuXtBUBG;B45 zr^0%oc1d3J$Ow7Qq0?8(i_J@;n9B=7P}OH|#PMItBG823Zo6XuVwt^tK8LQaw4u$_ zyP_4Ws-9{YxVeL?$#>-($YHzdJY?iM0{sbq`y4ulY`lo~)TLO~Je)So_Q85EqC=S5?G z*Q7*^4-iyBSfo0B6DOW_0*f+YirT5~g(<6xx5N(3Kop<(lO9D++QQipN)aJ`N3yxS zI$)1Lo_y2DBV(J+?VnUi2svfXI|Qu2#Zdy|)#p2p(+&&dtd@-qZ_Q#CES=#qKP}Ih zz1m&hWpy&?y69oMteUR0S57;3+oYI=iZFe$s(C_?xwf+=JJIjip6%}*Hh!i3g!(su zGz!%p37QvNDPYq%?n6cQJ^Qw}%nLVZ$RK?UBcD3+aDRBy^E7Dp>W#^+!)Uq}^$VAZ zWT916k07UEvX*CvX|T;I?83S6^rtd3hrsbh%DSt>Htp1-WYf)(=(2|-#Vdu_?{%)u z-_#d2KtY#p$#g)yOEY2voZp5boJ(o>+4`MQXeJNP0ojV2SVfgAFTQ!1;zfY%mf~t& zg2nCfrI-5ZK<&?}(_f!0bLGOnpXz7AKjPUI7?1YeJd`AhZk*Y-PR_7<{l#A$R+P9p zaJ`P6(d*D7|9TqqYt;J9T>&7nP+@v$Q!%$o983@ikHWq=rhqmZrh%_BY`lg1gAK!U zCJdadAA+uZYbQhOI+m3TeF~Z@HNt!{#GPpeUT3AGYy3fsDHd_1@!+qSuB(>gw=MI} zg3Ys$bP`27fUH04jwK7=4ut&%jwcmZ1M`n`Q6F{-HWFCJ%_*|Ew8=InJ8P_u)Au}F zHm2qLs?cKeF}4%cv(3%k$5LI)s7#7o@|fTrOQ&o?3n|ZL!@rngdPN*vJAPlJcxeb6 zY0q;*S{xX8;HX1}zi{wv>V~D$a62b(v;HTy#H2(+bd(gL)lP|qi$s~tZCd!ZkGibS znot~@+oInJ{!f6|?-RP9@?T;qapiWCpPgbpz&-L@uT7=|A2IL|ojo`*K9nx|p9V^F z%yuS+W2t9HE$ERZc?)d{UL}}^5v-ld>oDqO2tU_>QeKXOU)e3ju9VMlDj#h>Drc@S9=g0LFC^?p{QaN-mtD?|)SOWxgP!V~1K5S=4C1!Xu2yP(pwqDoq9l0!sXS+&q%*DFyoCCfCy8o25OcCs#zk zX~(xZ$R`=SKpZVGS(Scc+b_v?lEBbnCAya$WiD^QT(NB%M_i{AuS7H0Djz2jz>-SI z#)-%6|qMMCtUi~hveaYG6G zUgm%R=zP4A1K}W}uWMJN>+0GJ)X#^lIGf;5%0=R`E z+apE3Ez>|Y;0%z$TVa!Y*ttPs;in$ZivB0Kuan@8++g4@b^S2XSRhF@sQ@t#*$J!@%3A663r(+-`nLjn4N_*=V29^Td!fe*z}6XUZ&)7kctG9~p+r_(>eNu&ndjjV2LYar zmZ>3*z|=i2O1^?0GxDG4JX&Hm)E>GK3o9wj;Z$b*(86J}CcCFS@7X8Nr+uOULv6mN zG{=z+pDuV7Eycf&==Q8PQ}r|wbe}#5G&+0?N&1DT7vduG{Vmy9(e$Me5HdcI{)7^} zII6|4Z7o&V?mP;Z%&UY0_r}=NsQ5XftrR_~u2gD}diHynS&rjP*D7DCk)1$xZoH9; zi}BO;ShRyjj-{52Td_ZWZzG{x(1%N~WBmmWWN;`I4E>BPIU{@6JJ$5$r?hE#ljL=z z1Z8Iy0RR)sPpz@E%f3T13oQ@$!`M`oSe?9}>3(RMeN{TNwEW>XjWF8D5r1KOq73cj zX@|VzB&i*%HPhXueR*%dW6@afd#!zTw}kCg=|ibt==zU6zf`x7Mf!IK;^iFMRE?Y7 z;!B+pg}#5KyfR4Mbmfm^jDC>DZRPVD=RXsGaN+4`(s_~R>7&7M_UGLf9lFZh zxa57Yt}lqQo%@}*}e)EH?@DYR)%#na5dnPJX(Ffwz~=Da(M*!q?C zC(>tqQ^jDfnx-iV{#}||^tN3;*+WCeJZ#zU8EHuwvXy+kyR7t*?dAwe5M&$&iu=y_$Ot zc7TfJwW;Icudw|*d0)C!Ou*yayPTC<4-XOPTiR2^-tXF;H9B43NfS*|PTLDJi)NKs zCH)q)6+72t!#|?_07HF$p4Hz{IxM@`we`os4!tLp*SkXP?gAgkJwO+QGxDH9<`gmI zzi=XH;C?Uy`!#*;^m6Yxw+>zvdzHa(i>EHwr;pU=NB;YOsHTak&R6jJ8|=HMr#I6@ z^`8o-scr_ydV5RLWb=*=^hMgr8GW+}WOTNCi0V&Da-mxjZ_iaZi6F>vuM}~o@kb+A zK?zX}n{P>YKd5~I4;oGbM>hjmQ(0x9 zkq*(JdXA^ZzBNiZA=#*JdT*JAiLi%JVSC~Iv293DF1?Gamdn_F?@_86E&@qhq15Q1 zr-QQC^sYQ3JP9j2p7uOp#G~ufYX}yS?mp{XFFw-RbrN*WrqPt5?5xYy_mCiA1x{PJ z5k#Nd5w`a7f38NzoOD4q^$&zNdUK4;0z!_S(V43CQ-{y^qV4DKQhwUcPh{Uaud1Z0 zj<^E2AWS7h=OkDw#psNPAn}Ujc}_@P_dg*N>QvIU473kfl-7;y5!aU19ni34JO-!> z{p7#rfS)ZD0yg|@JBZVs1BmtmovGdH`=Jy(&0Goxs@moMYw#RmW z4d%}HK|spFTagy7-Hg{)>ILhb`)!Vy`+=yXjMhq^Cu8a!KK{wduBzdmg3ep5k8acG8NpoiF9YVH8SM6r?jO z$H~TxfPC!bIeikXv+z~A-PmxVe>OMG(e}Xf$i^ig%;U4ylLf77>G1F_&UtapD&EZ{ zj|gCGw2Do)wUgGIfr-(`rj~ZDOj#!&>(kEM(-y9P4KhbmcbC1*b`|sK2iRc$P~#jC zL8Mli(zqns{N+$kI6>coj?E(1q10yl72Q4g|%Bd4>3s4MWE9dw#rE{!DohJhXBK=Q3O}G`3m2R=_)Zl<%wh)*3YA z67c5)uAot+V%8OTw7tDq=gC?Svqi<704S?&#tch$dI*1yFoM=}2;r+Nf743k9!PnF zu|k`|y~OgGqC296213fNbxj6*vxCtd$x)l-i<_n6)-j#NlIHFD^6wz#eb{c&jByIx zals83#B-3GjV3i0sF%|;=lP-nunEQRC^Z@W%TO)xikl+UM|oy|WXj`Sn<~sUEUgFD z;duGzM}Ta}RI{m*U2RL!uc(eGKi$+2kKcHYp^j*=TS;e4MrctBy;)tG+EYlDiS0s0edO=Gc61fN8T67Vvd-B3M-%1S7Ptv|?fH=^A#@$KK1~izme^j^^*9f6)q{ zs&AM4fxHzgRiA_li4$D*EC+2a3O9(n3#dYm>-tkW{(x=BXvqLjK+W2-NFCYUCGbTE zneK3M<6Wq>#~rwX326uf`=bUGvem-76cKj)iblJUl^y6d|3nj1(%H)pioH#<-oB+H2rK;nFHtQ+Y zM2nj%#4=J!?c5@e!iR9z1bG8`MUsxX3+a<5tV4(OOArE(L|)zFh-sAsp=DS^kQ>#ZqLgo>Zyt>SJ5@~ z;AQ!yMK^3?n*ZAX*=9sfke9B!JO#rP={kzZAA}}LMW^Q)l--W*J4W6tU&1S9om7R5 zZ0f`*s+R4O@3~TbAja+!Q?®ZU4^sD)*Z)qc^eDJatoPIOmUsj6QIt)A!;m~8;JDgWD1ok$HQE!@&!iDhezX)Vc5TwD! zr4PPOTtfS2(Z&d=Q<09aKwq+7t4Z4%6w@>Wxea~e z5O+po1KO0H11Z$lA%R{7{ZG+yush?iqG(8pKhsvObfh1KCzjn$qtbl0pKsN2;6?k_tS4_8?!gq-aA zhckLUx}eUSM%LJ?-q}5qNM0ue{jDpYQA!J;@gw>12S|#@t&x4{#3$R*3@i0g7ezrz z^04iP?XWYa6O?OWM87UVtQM41ft%OYWUjwjT}yeTlNlkkZx;byFpbjRHl~0f#?IC~ zsf^+Tw9~BEPvjkSoD7Tm#*~{4$YkHedxph&t=7fH+l6tMe?xLhkD|L<$faKDwe=I4 z>axj@*XjppVWlus#rBEa&VqvHvqohsz)eHBFn^B~MHNuQAJ_$a&L2WXu-iKKY6m?_ zaQ6Zz(s}b}s328NlR15YE&vwaZ_U zd39V@|L7X`mGJe}Ei>O{9^4^VRroNVHBMQ&%k;j1z+*B_8QwbNc8kuM7AJe?ti1{) zb&K2NrEKk|Rh?yJ{5CI6*{qhmow;7`t$nI?g1%<5<;4q?T5V;X$Qw7$sOG6xVi@v^8e1!m&EbV;@`f23Nkll}6jfd{DrQdz}-~e^+C=;+`G%_h$ z{SHM9t;YV_m?rqq|k{>3mVC@mzMSil6`REu-CAfmTM~KLp z@=w?vd!2EtoE|+Bx}TgW{S`;NT1ktw4Z{~&gB)M!JXg2yc;OF0&fWi1qQF+FI^Sn| zxzHP{D5xEqv~BH2I9K%YK46{YdOOr4a$Dn5y0O}6Qbn3kk}{M4ljD-tpf&I!M`p^-V5o82ws**ZJW$<2+w`N5gug$XO{8Mh0b@i|ukXkk3i)~j=_ zDw;jYxj*iYo6nY0`r1is!DH@JaKU3EQVWO$Hn1y%c;(3}+X)y`IU{-HLq@ z$AGu0PO*{|fCedL?=!?)!47#y#p-}QvMq~&Y=xdNvLl5vc&brc&RUm>9Zl~(c(n=4 z`;|PbI4d@u>*|oDCJF7)88sx9CS!r+rEjo@zMnHq8o{n=CB401SNGavpI6pQwd6wc zPbAtJEQN(73p5h%|qdA%>9 z-$@J|8|EH7zqO>LQ(+@mn^;{gnJ(YZ|N3)?8&D(^P5Z3*Axd}xaS=(Z})yK|-jRqe2~ zKJqgu)>sIkz$3Ncxk2z$YQ+AxssOFG&4){6M^+b+yxLI@iOQ?Z((1{o=Hh=2+?3`N z#%W(FAB1<5~1gHY{&YvxTPY~$+U8YaC z7jdj06WF(7xN7oYueXT;P9qJ&dJEmBb}tf-G?J?K-^ZBs*ODx#9lmS~FJ~IuCD=-1 z$squbR+H8ag$)uR=G67qc%Kryqw8&Xqh9LN_`YBgDo?+fzD^ywSTv6oe`yJxV*(+)=QZ>$swipET7^3E3cMznG8E zDymFAmTaWi6v=>U@lwH*E6^M0b zm%`J$Eno<5ZThlSh`ox>GC_}+H7+$R&(Ii^TH|dP0aB_fO4M8O*FuTBL^VjloQpvZ zRGflw8I_U`iXC5X*VYc&- z{5%iRyB3N~;AhTIf5(r*I!bsK)MdyVc+Vu79MyThg~Vk#dbx+hnPWp-xZFv5Pz-#b z*XfuRPqbFgrt^fLxg8SKGw7cLFY>kx?J3Emb`|v>*f<9ijdalsj_cM2e7C}aiIGp3 z+-Xe!q>QWqh9mT{V*T9+MNW14tCU4R#NAZsmak^jDE;DI89`hLm!tnDY2L&e3jdS7 z+bZH&@-o&_^;ds0=;#H?BXw@7ZGohdLkdl>!q!jhJ#s^PZ#5G;BA1r3Qwpb(;cK3C zK<};H7D$>VE%a@ddD;*zEKWYlij&Z(o#~Rgz{v|{M)cTwF4K~H>C!=H>ZUTX#yfTA z+P^T<@GNYn`95g2-z9P3P_2)f3vZuS)QP#|ZJ)UiOK#W#AR@u0MLJ3B8~t~GQF2Am z)cHWQ&x}t*%7Dvqo!j-8&TIksSz`3D5DC5xfU++EN{9XYhvWD6xIna)u@z@pbihLJ zQ3&Cv$jaZs7Pw|4Eh0ra`L!dPDrxdNHGnwID;DCO@e(Ymp_}}YpzZToV3ENd(xnEPCpL?!?f?SeN^C!Y%U`Tmu8~7W{4NB{OA+{SeYj$JKbOt5tSZTIrs=tuBI0oqFZ%Ez|4g#%D?&Vhxt&Y>HS` z9EyWdHk#eKKEW6HW^2{4v$wc`lMecw-5yXwMeEA#?{b=^mjs3Pi@LK|0v{CSka-d}g=+Ew0%K-&y{lonBXHJ2 z_o6G$H-Z3WfC}W1{i}r)0qQ6>EeDZ_ymuZ5&ZM*U{O1krQ(DiFw%Vr#O^d)Rc4s>lsxD4Nbz}W z0r%?<$LMlv7M>0V*Xg-xY3TwyFH`%c=6zCq@s#Cf_-6Yh~cVya!*orIOwNaJ!jD;@5@#*j6o46r}`D2P1Z+ z4h%3Dzrtyl38ePTc=PKyFRoy{+oD_PIJsJ>-Ml4|hBi`!=Bt961vGy5b{5$?@L9~m zO5={*rn#$=KWFZz1b*H8rEE;#@3Zfmj;u(Va9@}=Cyw8;5`SyC*0g#UK?Ii-&@>uIG4%Y377 zxb9LTft=`9D@JuO6`>P{>*K(4NnzP_qJ1A{!v}_MU?fyrc=&T$CuPf+t`hWEjDmT6 z!zJECb4oUf&+K3}_*65v%-Om8We}SJjaimF2P8IM{ZN zIw%@3*?ZKq8)AjXa_+kN6325nwEuGc?!z~Ng0A=N^uM9TOxMcKY#_m-X>h08uw`e1 z+x*oGv~)?mV*p_b$JD^*%if1pX2Bvlc$RIipwtrPO_I6~E9w5)*$p5Ac%>D@B+DHodV!U`kg=Mm5g& z5v*Z5jyhv|ItpGR`UKoCiDD3-rX2U0cQ|(?(WT+>=|oFm_rZN%DE3{e}O{SSkD7 z0l5gl)jIJ&1rZz*FTN~uUGA}Vm36*_5F?J!%!JK3jDis8`C&3x?vIJIVPCe3A7@%B zJxx_=v%`GlN%7@olQ~;y{}rt>_0{cKil=wc;q}_pFW{sUGIzTB^z+xj{X5~Xh!x)y z!Ja9St@I~cM)NM}PiUk=7HhxXLPsn^30Jg z8DPI}qQ@DJ&4))YiwIPej8EX|>`IB`etWW=y)$WnQ2{J`VD_1Y2&zcNen0YZ8pG~2 zu9Z%K{{@I1yil8I^->n}HzKn<(^9;ov(eve%!6f^F|pukJ7N+~jgeK(wWAz*IZ>uJ z9RSwlYk~>ENfKVbMCFFx6|(xgUdgK?-srYCMc`@HayX<1n_dUA>WYKM(BygMM+=zB`+L2=x#XhKmcSEtxkDMlp zE5U^*(cnHSG)&oaw6?TyQ%6<;o~)lo6MV9-BkLt@hFf6c+FQduKmDd~y^z%J#kqs2 z%{rOlt10>_pw%$%Eqd3q`FY=^Pfe_W{E*$S?KsuJpY07k4}83&KGEOqJFV``x9i9d zlV?Pf%8&5DJ`(b3*n9)7j6G6S+n;GAH=Bw6V!4X4PWHHZcEl7}Q|CeWTntT%wb2mr zHPuT9+kaDW`he+YU0bbayW}Wl^xj~HoxZdaf#>N_iHV?{h40xmXYQL%MfX8R6n7{_ z&vAU7YzIc|iE7lJt17Kro_38l>ps}YPWVwwr&wnA!|%B9%C51hAcn;`U6LhDYnd#b zAEBB@5wv9narFFH!AEo&1Ch5_YHnfBW3q!e^QOa_smXS=%QnfCUwt3D@>>m=2aw4o zPd^O8tCKg-Mwv6j%-+cyxW<9ESAt70SA47iqU7}Ld-H8$iUei(apKY0?|9FS3RubX znccK|XU9zh00l%8Ad_zFxScdTQ=Bk6ak^LUpT_?vxoqS<$?TN>qL$Xcb} zZ(Iogt9VHYywYL+BY?<5yGf9q5y-oV_!Otc30*8k%AzQ$$dBKTv9tQPvo6m}hWseO z8J>t$pDzCIwlutxVf!2ehO;@saS^-|S`U5OKmC$L&?daf-S(Y;$*mfHR+{qu%2Q{r znt8`JP`0j=pW4!Jr7>e)Z+2YCAS) zzOxF3u^{&+WY7&>I+Z^0Ut&5bI%g(u08zYk=hXd*KiYBb8PDY>#grq!Z zV{`aa^0nw;3Xdv6vcvxhd8KWM9p%~r&XI=F`=Zhd&-9jj#4coF-5%;vzDjw%$v53O zZO3bdK6mt4sBO7e;&jG{x4RlD-+ZDKSCTLOxn`-+g1CJkjSMO~;lMl++NC#KbP;5= zDPCi8iW5e=<;5o&TLWm9rQ*Gdesv<*hxovz6YshAF4p1-z1l*<(wRuxtu!0U+CFJ) zhacJ5HYA05usk@d7cqey;++;em|}l+y!L6F`nZ-lX`y`o>sjmaSnG1N%jWs# zti-}(%1<7|tL`TWnRYp`Qvk~{C!^|T&a}Xjtf(2`jizPcGYIKX+26~&h-Di$|10x| zytHO+o70%BMXk*@!k4N|{h|}pZSU*RVgjGOX>_)pJ%e!X5?75U8Zmx1)#ehd@~tqJ zBe_N*1$aF_Xp2%oa0)#mvmi%*<#pGc#Gt%vb`8nV;t)01YW$v{zZ8Cm*%zGvPA{3SnOv@!7=9O7%!j+!fb8+@4;!WbS#WUtAqtv2$ z`n;?oXTLMH@E6=jkHm-TBuLJN3)dk#?B7Eum`?EqC8LDUVUFX0Yl@;pwCieZlt>E+ z{@M3gdnDsEs^>ixaF1*}h>kYFE`_z-Z%eNO&2`1B*lW;cGLe#(nF5E=#Gda{j~t(Q z7zNzj0CFyC>wasi{WVD`&NV}6iphXC)$BhaX={@JDEO589!uHzT+J%;Xsv>jYxAhA zf7^ipNIJRy4bBNK^yJp&Obhu=OSqZ$`SXM$(&T1D;v4{BtG$pVqboi9r)E*biHBv` z>)92OD^JN_JdVvUBF$p%>QjYAnsY2>SUmJAI-}q2NWG&NdKKuePCp~|n1rGrD-32GtkUmCUd99#Kc_P=SI-_opAz2tB&c2=0Q zJ%*jr_T1hfwq(vnJKo-%Y{`ppl_f6MJd~^J7}=+a07Dy80sX2EuB`=iX?gtlXcJv! z#slvU|8-sD=2gJYT4RT^Jp?N2et(2 zNhaeZ+tjHbDSM@+HIDAaJH@e$rv0`ORq$v|x3>^bqY|Ytpt1LI)}hM3@3g7^dI(8> ze%@zsLA|=`9sY}-jNZ>VUG$mC{1wyEZop5S7PzKk9`tERu5hp>p6_G!45j*q<&(1` zzV@ARrnmIJmkT*TKQ9P+u!?M8vQ2OyEGD&#H^Dk3O83;{{pi<8QGsm*eob&v7JpFO zOi<^6MH)%*QgDJLbUe0)LvN^;GHVfsJ!^X=ov(<)!J@bXP|I1>E#dK=yF`5$NI&d0 zgB5CTG+U!uSm^p`X_KKo8JXj&2aXXb3?BoAp_u3O!)R&x28h$C;rM{-hwu0oN_Qm0 zrlAuQx+!fINS}`zyIhleDPT8@@{n%RaR!OLZzEH zZU%|bv6>?BX6?6!ddwvHk77n&Rtcc(p&8G&FNO!VqL$%Xjb!8J(nV?KEkBW3tNN&( z>rY1u-`7QwFP4+^XUvFRDy;s3Uv|q7s(YY-U1L-H-V-(Dm~+RFI{NyfP^wB9=we}HF^_gpqaM?s^kSx;I>Xa^?C35|y$P)q|IoHjfC#)AH zFKe4M0X@nZ@xl4pVb4%>Z%MygLl$?tzAXBELVl=%>^3y6t8YZ9TtVYF2&l|bQnzRP z-FlwEKA$|?b$L^^1b+NIZ#f_k!U0a>JxdY35>GXHz6S&~w?RTmd&UnJX^u|;5Lbf; z^`Gp>I}Y$kU2xY#Wrfgc4f)1$hUVx-y?GjvEGgx zx2`@OdS?S^G?s3%zua5mG=0?hxx|BgURyw|;Kb5)z}n(DI!DX&-~C++*1M<{|{)OLW6`g>Xazqs{( zexloWdNUN)x$6FbSL~UJWKZ)kMQK3uk>G3eq&;fbbg9JucU<@XQ}g!6kN+PkHvFG5 z!2jbiz&BmrcVMS%iz6T)P-q}fARw4b)ls+-AZj3Bpif97KtMnSpo*gO!muXV=B8G{ zrVjchrVK#pl8|#CK$$Q=F2MFWTUo>1huz(=6WwRs-S`9DkO6$%W8K|7@rc=(semN4 zxQtlSexQVX9UX(PPbEOL%Y4Tv+Mm=kU?uVCpTWUDv+Z|xPYrfMeTC!8!zaj5gDpo1 zMM)i~g|0L#aV3T(fmSOahUV*2ut$<$h(}5AW$DKNzAdJ!rlX^K138(i)$+(3P2v@v zJvhnriaEk(krjq9S%bm{2Z2CAhlzL6(fJA5_6>c2I1xYDr(LkzP)EimqUjxoum%L; zSCZ0nKZ8z6r%j3_kW*;iO%UEtrvx3FWaf6JDh=wH>|$N+!ktfppyBD>P=oOtykrD$ zng6uO1TWYw=U$`rDV^fOL5!_;lK3b)R`3r6;9wb#WQP#)*0qc*&p85*xYzra@Kbo- zNs3eHswsQOV#YT>SKC65eXw}z^$$yU-@%$|Wev~MErNYYHy6%ifBX9xw83Ws9PF&e zllGLB(Vp6$enrvuHU5v>fta?T=n&WOj-{OTD>(H=?|Q7&m9}&l9n~Hz08ogIANbb| z1FrDui+X@p_z~L}n(rj{M;llW``icxU4~a=dP)eK` zutAZBnHMNtN(f*Nq9xLSE=@P6k1)Skn8ci-5Tyb9b(2- zMX;!#jSsicp{p8+n54j=@3G*`iy%8#}FG z1Cqd>o9MNaMQiV@54tX0pio-9oG4%^DDn{MVmvAstEZv3^b zQFJ^s>Otb$()$Ioz*E{^R|6@6KE*-bjXK=8Hw{vB_uEc)bMY*9+1ygO^|s>LNl zN8|tcy(v6dVjTI`rZh{UXq~B#gzV31Z!o7; zd;&Ujfo@-4{uo~rxm*2aD2;tKR_Hl45nL!+WyiGLo5!EpMGBaB83(WW4#(MbqvUTd zphc!m^3rcF$(asqo1B-El6LLZ`g<;>M_fbK5Jl`HR!B}6Xzj~2k5|Y;Kk~!itM0k& z6e%|keipQhZS!?ALp-1Cz;|53b6Uu89d>t0&Awf0>pqv?s6*5}Il~*7f5ovNPGY~{ zegU;h_1uWldCvRho zxYZW{7>EN&D+34!Sp7E>fKUHn0+QcMfJXNZCIBe^Wr| z_#X-w`v(Q2A!cX94g(<{{OS8*z{?i+U}LntR5aiuF)5xPAdo-U>FAIdY(9yZ#*m3Z znm~e>3+V|N(Fgkl2m3KhG3C@lgTR1*?DAFVX*6`*0}u zpu=Jl>QYIr`1%qcS&-L`VyIH`C;4eefAsTvzkk)wFFI^gd%!;WdEBY3Qy>Q{d^r0U zYGz!=adrPr?nc$FDLf?%XSRE#mWPfWtSU}~u)P;%#5tW~kh5NkYO`SWS?8M0glaGy zV#SFvHUZtEoEsCUupkinCwN#`KiKjRc~~OZZnY6ZglC%M17XG@PXMY;F**u*%x54V zzC`)u4`gwEBMVaX2U(`y$fAe+16ia$$ZG4E>e>rh+u0fFI~W@L#(4_}s0!pSoVCV( z>|8|R##f5(|1<2TM2*$JttzdnwkN=Va)OX~$v?C2>2!H zvb<2k?k#uUb&Qle2$De`FkPk~Xb5m{esJY)L zpU>BwmkH59Xi>ld5sIwer$>ppp8A`^znOOLKSzww)I78qgk_rnK}6krp&|5kvPT zrA_5xd1^*;Ztw8$WHQr$yWwz%K!;1w;IM=l{!YIHw~PkVf#N`y)K?`jDGzjM@_x>} z%tTC&9F?Ut$M)qt;;e(6SQU1msQ71o4ikEU3dwOb^V}8%k!_aYp0DnV{#J zUK%;Ue1enZBzq*56wNhp#`K{hX`b9;utL^FYjDT8?R}? z(+X^OW)7#ZO7H$u>L72K2WDHFt{ccx1QC%ead$Z6CsdzYJ3h6Q$D;N)UrRM2=+zx! zZQNUk7?dm69OLx9p;`%0F*M`Y+cwwVaJx+!wX4@)pyue&BUxdl#;)+qni_ERNf)Wb0PinkU4&JP#F8~ z78!W+tkNN>U7xM*D#F!waQ3ggt+>{|d$~!&Pl!i?-N=rsAE|-A?qbOZ%>f-V#VzRzx;Ej!KSzf32WrylW(m# ziqQe3(5798m^>-BuBW$N&jKKWHxaX(DzrbaZwxlpew8B8QgQ*nk9n!Iv#xMAH`x@E z;MkAOtQVRP*2#@`^cO}n0(r3UxT)Lkk@F68PoeW=qWR6!R3wgx;m=%+r6`aKpQ5L5 zGaU>ji7ub%zi+DcK|M?Nc6c9YZ8oL_2PKveD=ib6yq=}|i{u;F7uSE{WxdW^x8$SRW?b;WWKq)Mh^}mGQ8LN)v`u( z;m{ZaXLs}toXefJmo1~1Cd{-wT3|yvU_qwJ6*=6%e#-9gM@I_^?Uf=+19rs| zGwaG5bAZ@b!? zKmD}zXDc9;sYvEB?K;mB>AXkD%>eb10#+^E|CCFeP7L6)YPgxMlx>>BMZLA?-l}D~ zsk`q#wQkGVf1+;QyhTT?WF90ki%*?KleXA8Gdj44_AvU9GcFuSZ}^=^GWES&)u>sQ z;2Ki3Z^ph0`sGLzPE~iALQ1@i0o=$-Tcr{>hk3h=9ggmquyyR3cqPe7 zhxsZ6{f^s*$wazJi$|W3lKCn6@G

KH|^bo|N z!~uX_ck>1U!Zmn8(g}Z@3Y>`x;m9APYM-;%KjoEwl;`d8q2S`MCiha@^O;(kq||=p z>F9ocMv?)de|odkg#5s&HxRn>v1SqRM>x*^5soasg(K02X8zmC1Td#Es`)eh7mH+;PbZS7g!?B{*4vWnudW-Cn)eNR*adNnwBb7)tUnr zBL*1sm&7mf8yaa{{@;kL2le_N*|!+lrFbHfZH@O_vWXtmyrLEpVz25i9c&b~*wnnc zTo?f-%Z=eoF2vgOaj--S_R0y?p=48L@7M{n&v5*j%q~=JodAU4Ync@vH<$Y50ftCfP-~)R@1Iv*Z zRT+F`5{ML+zpLefZ(k{!Y-HRM@Z9s)Hzz`OX|R}3gg=i?O#5^)+9dUUL(FF=Ck15A zj#m0IqK3d?vmLnIH&buk9(B%IeC+Hou4qleP?Lse3?On47duOfL4mYny;p`PfDmw> zvx){-ATQ*59EqkDHsZ-~=&ZfD_rb{S+w8nbn_FTde%YX>^u)HSOjC^@%q+f%d{A}X z&nHX$kyn^JCOnU`i@K3!FfdUKio%-H%`R35A71sY z*W&S&vY5r%7<;!kyl>7^8*Jap_X)%t=9E<^x75?FPErB7)ZKJmxNSqILv<4D`l@Pc zk-pRwDbd5m!hL%~P$~F=ay9FdyJ@I4%Oc}Tg}s~`GYs6Ah;i2IJPhe6oMrU;nK={L2#l1NIe#X*+emq)wVe0;Fjcw; ztIZm}gxV@9^<0&ieu;$e*4{WUpaS}Q>&Flys|neSAc!kicJ9DcF|{|*`<}VjTq-lg zvt|xf+)vwB0DNn%RWZMvuPd%}r~(eA1=}am)A}wu-Fu)pUY62}GyrRHJZ72Y?WrD< z3mW>|0vqD3{8;VGjG#?B=ExYd&bA9VDd}=~ez7^Ly-Bbq=y4P`CnBY*=R%@+;4{kZ z4<+}7b7x86%p1ySMxtxEA*Z{*2jU@FQY+(BZ&PkFWZ`2mGR)l0wgKl*m|EEmP_6a% zQ--L!YwWYQB)^sGde-=Lg5p#(J2R0}!nrXuthoYSTqSBe^3;R%Zxb)nv&LiB-;|;e z)xY~M7t>SGTt^CEcoi_8KWz#y$x(|4@Ty#Ws&#fapuzBjO@uJcwx-!%XZ=+Jx6nB$ zXX`5FXVn9w=pl<*b7RLiGS#=0%gxL;(C zwy@0I;y^4XXgAlb5BM5J4tM+0DLt%m>;mL%#0ZNx&#KpWN#zZB>Mf-e-VM>v3JR9O zpQY5{nf3Z|I@==nOL`kPBNtow))8!#c#RokodsL=F>286`01??*6ZozWO49GoC5AW zSa~0m_iN}uGV7kw+0563Fc!y}lBJgf^9A+RfY`xHTh{JkD`A;Vk}x*pn<;-0VdtJ1 zU;1^S+2@d)$Q4_cmeakL2)i6Tljxb?tJL!{75A&ogNGJAN93xPlJtCSKEDm(=d`!T z*2@MXgqgBge-OUdR_bM%TTJ@;)mo(3F1+QQE0%KXo>`#cGBq_Sf=V$nWvdVRymH7Z zxHABbyjJ#+Z%0uc8I9r|wJO}{z(?w6W>-(!?%Oke{?#(wismO8-#R#bI##gFM268t(WmA1<_)^LzdEamILNk{dPBS}YKyByc-Y4)=M%@tz>iI`8$fDYEzL!fJf*k!)tx zf}75&oEAOZqnB806DM$ce~alpx{K9(0x(|J8xHBJ-gi5{`?X)+6_PKlvq_n3P|wv2 zf;~0C=UQtL1Yp@^AIC$eLKQ1baF|THc#1M-0B;?~n;JEaKRw5e5@kGXxpP_{^Pg{4 zx(LS4GY_1mna`1)$*>tBVf(?btM3O zjYzM4j+ocJfp$5&j%Q(=K)$^dH#noZ*F)$PZ{o~#L zo)=rYpfS407$x`C6@V^NZHN3S4>XiqdXxw6&pz<`(_0#*@K{~tewNZ$J)R68mE-GG zUML;H)hE`V@Pf%c!w0J`%&OF#-~&yM-B=yUWRv1P;nr<#8$h@_Igy8C*`q(DlJ&@LufiCV%mNf1n36#KOir=^bH zD##@ig`8_VM&ycp?>Ow_$C@z$dkn77%mP|0wR+IkI{fUlPN(3#fYi91DC93XZt>Wv zO*TOzov2?5x5zmPYT;SZr5#8zm@1w7k8h0a_N1V@v_{PO!0 zXKTnD>Ye|s*KAD8qzqS$-3E+(6q>*3Z5*G zrU(fAuP6Swo5X(4!F=1z?@COf5dt+oq1n7^pqjvun3P@NsdHy!o6=y)6lZfS+z{D< zst`SlDX$zs_180tWLbg(;~4?|b@xC$_beqjAdS^^1XCs<_(@c0kkT7apSkGZ)wP>; zZ>A8ptT*7LQA2G6htswDHg!g0hkL=5cZ1DV%F6m^~6x-w#|ko*&h|7ooJt;zd0?c4MTM* z=)Pp5_aK74XBSmzRj(hZPcmO{bm1xw7Q@(AoBKuDY}f~g7=zst@fssb+PPJRPHYED zBnPlB{bJx}L&NE5VlGs%5;Vv(IkOLse4A)|NLYjgPDkc7^j=Aami3)f0CK8T_R3O` zu1fn$y#2@f=%K_`wqY%M#K#Kv$sa8~`A3V>{np~N7XQ%V2!Ge&HjZ|t4zA3<7jtWY zfhPZ`@U?LYAvt8AEyq{;L<1^t@U<31JEMbyuZ|3|XM9jiFF&||UBN-B@QG60fLuY0 zND6E3Q5>r{>0*bQq%-U8Im#NGHbH(7PT=Lqe|toJ73z0UoQcol)YCC&TT`P{Ng7=r z)Oy`AVUh3QQ*2$Zms7vrpE*me#|*2?_|6rMJinS?+OOj#vu80;;56;t?5etnm$gPN zvmi}cl-#InEI+Jx^G$IhJ+PsrY$!J{HZt|G={bCjs%kb{-OMeXgDJmx<5m6b0TuD~ zV5=snN5s{J=an|tGmG6>+hhEELe2r#>4miK%eFm0|7C1L(~2oxdvhV|*z#l}3JCZU zDCB2+KA->In@+H>km&8K#4nO+wISv z$0547CmJ{PFefAt)F38Q@d^>Wcc2X<7hQeH2Ta1UOvR`exupSdA(MSsH2x{MCR=A%$*!EMpRt^;$*GVA+qzg4yTh z<$Fen^%C{gwyx&qafUQQM*fE&8M;x@?RG*&IeZ%miqXw@9l+w%Rk%Ji^R7__iC~Yf z&yJ?8T_(c_(k-e+aS$Xv5HKVk&?ie-pVBZlEsu)l6Kmn9pO%BvwnqE-25<;i*gRUP zPh4@#j3h_*@+>jI*yD*e7 zqp|Y-JlO@q-uX)zlyqoNpGBg?jm8`7MtL^9)ce`xjYGKXTyURg;~;A6K#H5p7zZiL zjkHrPD}V7aDfI0fBk>MBUCqZ_Iiult=IxEQkff7Tt?0JnON#N`9r`@zcLqBrSE~G# zVg$7O3EOBeRTHI826$QOP1}JRo56%4Yw>Z(>#rM&n}Ba!L7yD-WcM0hS{~LhYjwc? z0Q=bo2o!%y$j9uXWV7h}Kx?EL_Fta=h5et8{2$+{cL5nwC75=3H)uW0be;stbhd@* z!22Gc=D-de@UHtWASXz0lWlJp%5;#~Y9bRSD#;4yf?|l^7CsUHpP89%-@1!unMco2 z)G*DAOh;z|?5yln6!O>d*oD~5(&_dCao5ypxeoum!S_}=t&B!M0{t~)L2oJbV6Gns~*Vc+4?2GN@9pD zY<0vIKtI6$g@CB7qaY8wAg!TM&75O8b;30&6+nLuaJ_r>`dG3(|9-M~a8w1BdW(im zZSXZv63YNxLOA@n4-O}Y-sFV%(mvUPO{(@=>li1U3uGTNI-UAT-2(~DBH+8@Nb^|8 z^np3PezR`IfYOf$g8OCvsw-wIPGMRTt(beekCOJ~017(#s}1`~kwjd1qp9N4v3? zbMYRpHt)r4aA13EADaO2ldXsyNC)Y%2F>1%-sZ*6e0X^(TBQhU2M3Hc$uA#nwF28a zVFan{&&)`deQXkvSP&vni$Wbx&qlaxC(t8unY_;@UZ{>dXHA-}eb5OoowqhW4X17f=A42H zAQL-&G|V!zXos|pr52MZ`B6|^g^ZdIH#UXHd(eyrO3XeNCZiB>ohQg9BqxOiy_SCL z1>2Z&R@~0RTdw)ZF-SRya?hyOGsjlFs;9KdF89s%^nnEoLjVVwC$(cbn}2R~u8)Od z7RB)Z&t4{M>!ZLdS11Y=bEL_-5!W=Rbz1oRV|R-j9-SnSOC-?w#1eCbFBm4Wr*<-- zBO-;i>BA8eU}+QCHaaPSJjd!-2gupU{_-4pgZrISOcvE_^Rg4&byDOiAE~lp88u6k zY)f#sFa+p{jSBEvuoL*qMjPIyxcKV{nmd0tQjkgC(8}UW)`?l_Ntnn&$%ZvKUGRp+ z$S2MnL`OsOq7}{SFIj>i7fTKP*2+P!6ug=HUyNxGPv%!|7~SrKEb6Kc%@&I?`hIB) zcZD?rZtXdDzB&tMwzw~rfE+--3V=Gk{cz7lu3B>m0Hv6zr}b8RFzd*5Q2v%O$~O02t`li! z!IE$fzgozG^1Sr~>3^0QG~V=_4Y<%+ua+Jf?LWz-d31}&Z_%KtXYj3+3Veg=dU>_* z!pKkoA7#{AQaNsb64|#c6H?K|fnW0atnLk&J2BiBE0!p@Pa`I@W2*b8Lc|sIdVE4n z+nhb*5Pn8-xAgMKMRxA;DkzbvIEhq?VtL533U6I<1&{nLSIgnSwTpqWnKw_5X|T3R zL))a@7hb6p32M{YFy~=;YtXALuogXc=If$?DIJK}X%{+ zrRw?nc>vZ`Hj;TzmdjOLB#??n!YZ3WJtVTDaKk}2tbkoSeiSB` zFm|rXh{=fjaSZ+C8~Shl>CFdhkm3}vG1|0nZM|a6bC`HOE@UG8sVfo4WzFPLvtf%G zV{dDT8xghHd}9+TD|c|ILCRTl$%=9f@6MVj0BNe+(;1SZ-q&!}(KhQE>NFHU!2b{Cn%1&xR~H z7iK*;?}j}(gqk*RgFST@#8W0m=)rbP+H32^TyL&(gDqb>oSC6iKbRZflKYXonEn?8 zkCtc784TEQF&Dkfqye^zD~D+3JGhyY#TI-z94~xmUt=NATRNWqIk9$e<2!ssHu&~V zTjPa}D*|@0;aGML0^5=lFg?d@+Ka%9ICh;0rs5D@FR)0m?mN;flaxocw>tG$Q`s)S zgtZ8n#W`ZzK1F*2?ZC0F+p{U^`uYIm)3L&~sSSSr%c-Up+zYsw`A$ddNiM+v$>w?p)90x8dN%^`C#|+{UatXK2yv6XawiG3^-L(L<_htjaM4;sM1sKig(!E zbgEd|+ZDix`nJb!b*9i9zVugCFZRez|9fX2fzgqt3!5o&fXKU=sx>CTog_hklr*Xt z-B2}=i=j+FNY&^ACj18Kr%D3O{##M^&vpa?H&-Zh&3*i~G*~lG9(DEsEuVE~XHo?w zM1mh`0BIAC*uCLc%(har7Bml@om0b~fZT0=1iI3h)&4iZI&gap?r_DKwc zp_D#6qt5%x>$dw3<#OL~@9EXm<=t&jru)?gs(t(?aGweN7r*QrG5U!1tKRO<*?cn5 z-BTgeLX`Pb82o-*Lr)qLKf)H$>3XE z1bh#-r{7iU^atMI9tGbvd>Q#K^VnS3WytmYc+=~pnYTE=YIH>fLWfF@W_<=&YOi3X zK@)cx;Go((M6J`yV2!y!%n0%w-G0>aNr~v&?zkAs%ABy2ez$=7<@Z*vHC&K$lrj@H zM(bb0NGLYDzVcxP^SM(!-n81?YE$aFd1yYMquLiTjLevn?7;tkeQcU{o{@n$_V( zzXDH3r5|RnOPSQ?t$8!BjW6ew*KL))Qu@xom8!3;8Kj$2GYc&KxSi| z3c|Tj`vPtn`!XG=>5iluj@EaKwr(n5hF7~m7@fvuKvEmJ$r;dFDHyS-P$Yt@&Lkih z7a(u@*>EMf5&$s?TTmIl3|XbER08RTJhg`54g7V@Zum>cztE`@kZkZh6COU5syVk+ zf^~2%g8_XAmK^4u zCdb6rPkD?PZTUFv*v+xFxmiIM!nI|ANbXh`)wSY%sm3k7%|vr9{!M4yLki8gcQfN2 zgfW3SEZl9zjeWY*7BjtlOzl8tX;->+!YbS%#)&i<>FL^)rzVfWKChNY2{YVk&QmGjlZ}fT2aRznQwX@(% z!Mg8dl8SGoy#-nbZoVIr#&$?bC)pgP6X|v>puN_An2U`n^*U{G7!3OV(jBd z*=;ZFX*lc4URyKdgxr<{bc~Lnh@59!J&zz8Nkvb*DBq@VNHL(tPfV-YzLLoFGAdBh zXb8Ve0X$4q;b@A4w-^T?aO<=@MK4d`(Es9qNzoF?@xx4>SPR5aRgPcb5s~TJM;e{< z@~{&~Elq1z2nK;;ru2}(&9oP4rFS$ZQrfUy+>^-CsyLS&iNUlaiPSP$mH&}g_lA`d zw?dreN0<4TqkMXz*!Mwa)j%E=tF5DHkCil_UBM6c*+fCJ&Or`4lA zBwmG$Ya_R<5Gc((U2!Ck$D89~wpROJ8fi~ETvG7ic|uaaOnnu>RtNH}?wV9LM^w3+ zE^~aO-YACOHF6K^llpFt;Y*1(L6O`i;*yN(w$$a=fBeD&L4_0dm)4Z<6EoL`az!zD z9IWQdi5eUAyfNY#dgs};Zjl%{$0I;oU;TF3^PJAkI?VA=Ftijr=+w|;9kw94R7E7T zi*WljO8+UB`I1fTpz*cQ{CUHMOhXRZMXpj8+cKJnw(E8PJVotLrdaeN4tZ ze~)G`J^xadAV&C)(d?rxK~z**PuD`%O5gBrWnjNYG(Je6p5G;44a$G~Q`)PBt7Ia3 z>hU`xGG`3$8!DlPKeYI>Fw$F?G8i}hrV~HL&LpE=UogA02 zHrlX z`P96;((3AFaSwTO<#c@ySAPdb04j#YE}Y`}-{ zxkyR82HpzCpvagVp3lPU&wlVKm&$}Vvn&<$K zm67-0{5?Veko?sog(Ecd+?u4iZ^_h{M%E+I(+abl__g2Y7A>$)j`|G|l(hxq*9=F9~2Aary*3Nd&!q%M_e5TB^$`jh= zirRGM&5=`;-igEkHgRxS-C8!kGHJ}Yi!0Ei#teEW-z-xI3?gBrK)R*Pw^}92%?l)I zHhAzmRyp7{$*E_qZPCVcG|uKCnb-GQiM$kMm(j{Kx^qs6M-E%NWmPXQz|B8yD?g+l z1yLLmEfY~KQT?@F3=dh;TY3HA2eOouBbJgufT}CK8#|z$n=GyE;7)&lmK|r^Y zV`AmPZ+oJP@TyZg2*Ja9!g_)aMh?ZNG&#kFiN#OI&~$UyNg!&EpX*5NgpgCj5>Y6% zm+jy1vvUw~A?2~1D)mKJcby3vKIU>!@_s*3B>~n?r0y!snDmJSJi`#l5JY6Y1)5+w ze{1BBVK2C3Xm>Ab>0Ellub*!Q`*8_*IC72Ma;-Qu+0+|1+82<+yj3M-7b>}$jsFF! zzbUZ6s9Rz^{ghMXN=Nb-@Pl2Zc?wWot&@b2$K}Y%$8zzSn`O&fn~27IXL0D0lr~XH zS)g%PNnZQXkO4#8V}!M<>B8nNAt;_(%HdE-W>zBWhj-05{wB}Qz5H~n?379!re#wa zlZ;qSWD&QyI_95z^tud>-Q&N*B*C~81M?ajc9oZi*s3Ly)(wLTt*yW^72zn7)R-mW zh>)jx4WCcKznM>1f}-{0@iha1XB2D9$4kiavEZ03f1bA`ht-Hodq%7~pmJv_ia_Mh z0lVUkY?oea%A5l+p7W>B_Kx`Ll^S+}p{rlrJrc%9hx*cRjHpSs!;8t&_zo3qDxJMPFtios zr6F2p^&79zqlIDDu5_4JeDx(7Xu^#doCQWnJ^isRo!*W1aDq^W@F?n@sYB_gZ@YX= zhqhfC3^aBN)bndtLcFgkU6cdJxPPS5Oe2?7m@Xw@ksG6#T!XYNxjOwLj}9+4i>Tk zj_4#m@BGq?#?F;F?@z>10ejwl>dV)0#*GK^ENzN!4hIE91JtO9hXbANzohnGB3#}L z*&#%qZZkZ>3dl&UTg!j~9`C2QVgX|$_Jfo7m64c+pcJSYMFGf|gSOE_(QVl{yc z)Uf5`*ZH`-YE}oZ5*m%b`|>cc<$go-Rr82@2w+Ftg4pu>+aIFhILdR&`eH8BsNWuT zmh5>X_gH2qh0#&{I<5Vuth})6-(Tqr9J552D{v0G%szoPh3EF@K|5;7>)L1|gHqgd zG)agSQjG>Xb@KA+?5S-i@?nP$Oz=^6og&|P&^%sb>wK1Us zdI_q`ZTtZY9n73RFvvXR6dg?^0ukacrF%SMf~pw<*9Y^h`y?5JDfq%lVXhT3LhU^) z|536|^bXU%dk>$*iK<7r(7POSvJMBvx7Z@9`>1WSUmlZp9Of%rRji{)W z0P&5w$>=S{VopYZr0dsrIK**{ejuPvpZ-jx7ygJ3*58&9x$J+457fU~M*b>4*Z#{n z^2bil3k8hnR7>80uZ<;%3Oa|I~Fho>*t~1^|AM86j{!{dST}E)S(l zXl30E4nN-;4D1Z-{aoVE|5gi7 z$o*fmfIlvSf3F49vj0yD_-`~7{g<_XA$5NC57&Xxzvcj?{QpG@_+vgm0sT7%n2RF+ zHXpQE6_%vPi}FXm#>9Og6Iy;=D~RBr}9g;Kl zQ=l%V7=b?s3WXS@@kHM9){?{2=t&(6E05@pT9Ij`{O;!7sK&2wYMws@#u-|m>X&XN_2$4W zZn|2eVWBkF6rIH_Nk#-F;^!WL4m2*dKnlR6pFn2pjknowc?$9AE-CE18p&mOuXBON3xlzWi{5Vc?~NyKV&xiP|lUug1wDW1R3%wzz!*h5n{tb7|l&9IolC9~TTh?Ck zv9XI+``NGvFjrmK;NtmKZJ%Mq)C+Fr`n{#0Rhm&?xj4B*qyk=z*?8``W||%N82+dN zx}`63b>D^A(KX2!SyOq9Z*W~AtMnWL8KxS@7wR*<{oD}g=7Bj$&TUN69BS$L=o`m2 z0G8bWQ}Xa2YzroF+9n=WZ=g-1qh0+s)J&Cff#yTX{W@i=t z>OK`bj$<&qUtNe$X+Ii%j^3S@C_y-qm`PX=9#OEmLn{d)JTWhL&?b8HJbYekUBe{i zVHw#^v{STc(>ArF0Fd*t4Wcg0V^hQ%7721o5BKgYxLU-x z?}vI&l}|@KPQki64q;~}-x2i{!l64q_w-2ShUPjyCnj*ajEw)xjM2j9J{e08e$=Kx zhMvNp&?1LdkhUr1qU~)Y9IL!Q*YUB5zT_%&cWWA^~5!*~C3pk5? z|GVG-ABZ;=aKZVC_LWi!5U#2#rJ1wBColgL^LYheCYeVWPX|Rl`-HLj`}ujD{2j?& z6kK=#!;x>t`FQm{R|?M3<^10XDh9HCTzN?+jM)u52(1YBn3ykdwm$eFDzveeRos|x zQKXP=M)ns%EZOhfUqRzcveE?G?f2-nV4RNe~=6@W#u)I7}+s&Wg5*NxpXPd&(C-thQdyit*ninEyN@4 zkKk-x8|K?B$DIZssCg@!@oX#`nLKq?W>kduZTsWNf7WOOw(OC-S{_2-%TL!l#_%02 z`@WzMuL;a-Z1!Oje?6<)V-mi;yytqKx0!9f3g}K81cF8kxR%nQntW@Hd-Q1eX|8xW zs6Qd0u@-gq6N|o*+R79cMIgciIID^eP1*o=Ekf3A@t0E>IVj7vTk+8C+w3^We$_$O>hTJ3o-G$TPW7%3YUIM2Fp#cSQ103esjR@9KA4 zrV)lt6;p`4OMni0xex-EK}={busL^pZ`kJyS1bX!*%tGu4_CUqT0bcbuz+ccQ$cwC z*es2?08wX+kd52DvARvcVPb=;!e8~Zz;$56of3!i?yrSTU@$J92XmzL&p*WL^}Cx` z^`YKsSuBretj|&o>99k~VmYCeNH<(RZe3iHW|er1tcGz|+<`Y$n*a3q9F{A28>Ie7 z#^YzU+9x$dsm~v15axv#s}GSt77wb;a<1kw(!R;KAZF=HT%9#q6Bl<$A5W}^Hl0!# zBkfhA#961IkJJ_nTxbpS+xcJZ#PQy+CO<7+x~A?h#=m!T-ROqi{czmITp|463V$i} zW;HxP+OC1~(&+NO)1>O80;nnM(_N|PreTB1!q2JkChbGx@XTgMLVM>Dar~MFV|1C4 z4b===|6XY0sr~9LPa96%iG=+Hum1AJ8Fw9!kt=@r(O?i!VHmj9V{ z-}StV$0%y-ha$w$ugjy4-O=m`()-CLrTN9q&;{Sg%3CfohI;Q+;N2lw+p;|~et6YA zeI=U2e|8gk?tD1rMqt{xyP~>STbqyL3}?^F;N3W19rke1-$XiH$=_a$uX@uv@XQE# z*zAJbYg19bt&)8OU-d>d=5jIlyp(G|)gMB*e4J_#g+wJ{(`|ax&@mQ~bWy5AW8BN`M{uAqiY3YaQ97d>(ix7>Ul= zjS$|-K{WDA1m{HJ4U=aA&Et|>tuiUhM z+>OK;3*y`8G3I>IBQ86%1Q}$TY8EV}r9j^!2i&_ive?7(t0@8EOYR-0S*T`RO&y0{ zVi2p#fJ$i-yUkCLGs7pk&**4Pc(x!I(X3;xI?{ACZ9AU$ph_(}fp2dSakqElxQz*R zWfpr_L9Be7Y916(ZI-rhO-fr}V4Wg5a3TFFM*^{1n+!3h3G;S5e{z|wcBqmdqRm3% z#*`4ydB!XF4Z!acT!^9hYd#=dJhO0lp?6I$i9ASrnr1LA419xOHw~{x`X=5^rB<(j zkmj%&XuJN{Kj}Of?pBJElw1OIxtdN$A<>#)6F1pH#aI<+fTC-)wH=Lr_dW^nRIMQE z=NfFyZL8&OcmrF+ly1)z4`LXS-Li{K9hbFq%HTGY!2WFv;$nO^;PQPKr%lg*9kXrC zWyUD^avbfh-xlkhW%ONKiS@!e7Rw?Cy6+n;7Si>-2qq7sEYHvcBMqy3kvQn#5w!;$ zvU_$h$EIru>G$)@_0!qL@wBav7a`g%hdZ|$gSxr$o8_0CEhGsY){zH&cLav+SlmgOh?c}?XAXe`<4nyohz|;D_k_SRR>M!%6*729v86Km8*MdKvKeIJ85Y3 z{)*t+d6LHEy$Lrj2@(zTPGl|`?7xwE;DYvf21zbD1)QFM`1;q)iQXUakN?=~@ft^9 z0P(jc9(UPrQw*S!^3d_%!%_13eq+*DCFEp_kR5hyn$XQ}@WH7ty=OjfNC;sfME+tRDF4r39qTG}da@dd7w>T)@bZX{)I#ADGRi+2m z`&^{vxCBa>@C*ishbB)b<)>=5w_O#^=!g808Q?Jnc0ohc=ClV2{p<|TjdI=+h!OWx zY3K5KYBSTQ%mNc8*Q}qzm*(pn+HU4(44)nFK0LoM4=89}ze$wjxg|TJmE%k~p-qmD zb0s<0vXLEpqh0--i3wlNNk+vPqV&UU2xFJXdg9!b@DY4E8;g~-&g!{Ms*3l0V!$~` zs)|<~iS8j$Y{Njf8;z^~+iGAd=c9wZpT0jh?GK4ZfBJh$KAoZOCMx|1r;1$*b596M z+~a1mj5RyJYzTpGN6;QqLE8V63=z=bXQoI;jzJ6gn?D zmxtY67LiZjCaJ8lG^v``mC%v4K4^DeoFIC3CFAg@;M%4Lh2W0iVyM-Wn>bTi|4Ld{ zK!3YF6jSIm8f_Sz->w$4SA9(S^T82Xn5L2*6>}xiNqkm+PKR)>$tW%!3$in`Bv)0t zyeW+PDuS|rwdE65JK!j>Wn9)(Ui{aBqZNM1!}6HLgrH0Yqx|9I98B3QPp_F$#jKN{ zR&38)A`~?^K_%;>_xwJ2@e4k+UZa~z>6YE%nXXIRb1l?avK!_)xVpXBZgPup*dUli zD8tfXRk1!TT&jj9Bdkv-Sw)=^)Xk{@pJCeZrQEAdR;|8+J{vsYFN8Ko&!-*`zMSvmkp>qavtr{WN;l-Q`iigV5(IvmdQh5^tWwY) zovY!XBd0Iqq9dGy_!XUXYe}Nx%1aUSnEC@3G7PGdeYxuCh_dB+38PzJSM?2b4|eWp ze^UgbLuJMqr#ayQ{R+KE9?cw+Q5c*Vi9D0^Mdb#Mg0rd3CV3DFP*uZ+N+Xwd7q-*=osm<|mY!L9Ll=W*E%lb(XRZZ_rlpsn zl=nZhV`;=d-i^`#A%KG2@h(&yLaY7nsnPu7k~?;YKEX}+{X9D>y$oSJbjG>pzm6b6 ziRnn70Gg`C>M>hV60kidAQQ(A6`icM9V=iMj5pSiXrj(bp+cfPFej~Jv_P|-oTqNf zFYY(x8C(}Bb6!oomRi+#18*ON4PhH)1gzn^LPo>O8yD)S*Q2?-^SvjWx1*G|Ee1I& z2-~YHS>E$bK;zI|6UR$KnycA0*~KU+MMcK}I8p(&@_i9lADVMt;rn*JM|o(qubXQb z!Qs2e+!!%Rd)aOEct=Q6nU}sy8Xi?p;DLsSX-)X?cA={(4b+p;Z2ou&hO*;sxSK^v zh;~&#fvibu9haOPf@eav_xv5xI%GAGkoA*21^re+&4V9%@M1+A1Vi7bvVn|rH)z$a zrZd8AbI(FPvEHxNr@YIdUXoted$`-}?&`O!U^=H)*f~_bQXFJyynSxPqMV);Er8S= z)q(_mF8Op@b&tCrOJBmcQl`<);U_A-S$uk5vL*^!eOQN(;TZoc%YIUW{gCA* zm+?Uo$oB))V~v$i{qGUpzr}g~+n+blU{8>>{dD~Q$S-RO@YVe;tn!cVQLkq@|D|7+ z)Aav&=KuE&d;b6CmjyxR=LQ0T9)I1X{7IA1ob%TV_+67x;3XI&3;K6W#zl9P!CQdO zM4L5+rYJ7?8%uBqM>CD(c+Y)=`gAn>VZR||qx2gVLQ}aS#n0033=;Hmt4XQqh6_~^ zHc?1&gnyO@j6D*KInXyVcEc43I$d)aUvnLo?<8G6wyj)WKYHC?r0lF^;4{dfV~`kd zmD5uhBzlEKZ;IL#(uHw^?lcZA*>AInFk}srk&i^lNStYnqs38(=XH`vnj?0J(G0IlzM@0nim z0Z*H|&8W9nA1mrN9kC94c_0d!$3%R^zMmc(1ZH}vob&~?eKdf(JydA~x(LhVhmK|CZN7Lp zg2};fg}Pd~!0Be^s(2c-?4!+~$Cbk)zMNHlYTTrv*_pH6*we8slZK`xwy7Ja_8S~Sn&E(Lgj@Y9yvntS2d>q(B#L;TZGf6I$>yHD7A`FRKE@igD~ZI$qvXk5P! z)9@CWd7|Bmn(}l6IGVW3f25jM_rH6FNt}{93^GE>%dtau$^5*llls_XGg*jJ07R#X(>cXd+gxS@B78;Mk%{fM7M@9pupHJ(x7T;o1KW6nFNExTov zlIVMY?>RHGqmZq8G5ghC5_7V(qR}xZ9lc6%@V!DQde&1}Y@_K<^|2bG=_Z8);^@bO z#suwqct{vg+VwaDAy3^7km+3L(L6>wvu;~Lilwoc2s^C6Ja=lY7X5+BjQvs=T|1Cu zk}Hb2%}40uC%ALP7L0vhwuK97GRFa~Ut2(=x;yYoqr;g8k z&6dKK`kHcEA2rI0;o+{xO^di~Kl3}Mu%_009e2 zSY*}6R#Xt|M`7>UXw~QPeSAJfH4!hks1w2&tWLlLHpQKQMGGqX4v_N=#~%dkSScA; zz}(k$SD7>5#K9`U?R?e5#M06!oo5O)>3GH2s)!dpU(%?E>L#9_gt+w4c+ofWFjK8f zGm26H5b|9(7@JB-^Fg$a6DgTVbE4OqDwcPa04-fldXL1vcd^k+a3Fch(Le+of7Uh# z^pIoQDobC>11X)APybt>MK`)Oq6wUCd5zZ?MEY7whc~=DO6EqHj$cB`(fI z)=mQz&jkP{fYg7C?a@4bXEG#3YZQNqI(|Ao+lNIR@M-TGa{K_vI2wPk79P9~b_=Fp z?S>=2hMJ9$Fy|tr6!z{})nuhge*yJ97=`mtGDZn1$kbgi*!64(yvZQdfz1j{yCxF9 zhPUl!+tbi??aQ#5pQqpl4jcxuOU9~pr-M>@KpOHk+9H22PUT<*xY zFJq%<6cTf#BA*jMr!WVOq*uS^uV7>yjj>9rgETJ!t#_&KWHX|S03uC%ll$qD&5j7I z_x8CE6eV1v6rVyECgT{r1ldAP@tJ+*OF{MTHGTqQ!23-crk&ti7wn01D9~^n*IIw_ z6pUGFs^mW9u|VL#z}NHei`TT5uMZn$mdSEAQ~R9vVn6r2k=-G$Vi13x+VStt{z@$w z%`R&{c4s$Jt{dsiS%7@HAkXA|$?n!Nrp_YZ_$Bbxvi?i@GDP_0vN5>R?1YyqKG)#L zc^bC}&%=a>3EjE#LE7BLxu9UzaA}{>MMDOb_}^mee?5u)uYP$F0{Kqo7B*j9KP?Fm zL%7XWZgWPr^Xg}9*4Q>GC+=2)&`2D-GZ*OR^yiW9U*;i<_Nig$~VM>D=vsY!uwTO^n)% zEFKBe*~^El$g}|B7~+M}D;_8?o${d^Lg=U!WF2d?#jy%D>AsCBQt?pzbUf@7AeEwr zW4nu^Mhh(zxc`~0ix7droN>)+07fV7eU~RUwn-UWASCpyNw%}Dg`J@HK{*3v5g2gA zW;Ag`C^uA~3{|{peQnTcqRLg7rokCSmQhw#4NWUStfvwhtJ95m&O|}?e3h+yV;fc3 ziWeW&7JAJI#E z1g2&Za_v_qtV^h5+^+h?3Sc*UX7t{uFl0uS;N_LLB)qE$hBIJZzL(FHbL%|IABo<{ zKx`Wk)B1FR*7G!u#YL_TUj4zuZv=Uck^DGDR3*kkIjWvhdEh*O*dq`9^6X{{r$uw| ztG-Hi0{1iR$m2AQ(q`}XnNPxU43M`sTR~FVR|EQ{@E+~oX=*i_E>ZFU-0 zI6hCs@OUm^(eZAtR6N*wSdJuD2bZUKr?9Usd5voF`s0rMETbvq7dmc#&Tm{PhTkWu zYEp+~v8ef3Cd2%CX7k_P%fB4(1pN3sfAG-;$^^2h2dHeXzV7J$B$nv-=GTtycd}8xtbBC7GN78rfmppkM%T_L%kM^B2j@i>j zb}srnzXUh*ixKL3hRX4M#_Sdg_Wl+K*KIS2Te?J5nlM~jXREe(}nETt!(>HQpsG9{gmMY!dX_ybeY1I5leX9x&4DqJUeT@g%{x8NIgg{lf2! zy)YVnuLxd6Lp-0bQi6QYX4YE2X{F)xRnZxjlgIm3B57pAROD}N?~`^aAV>Cxn*wNo zEBX%4>n8CmQ*L{fkqBAWwi`Pk>Ws8&+^o~tG!kHVkJzQcA!?&D*}AE6hh^+|3tS2s z?B;6;byTLsCj1(0NI4m=CC#IXIaxy^w?QtE@6-G{c*nl$8OTuytF3!lTB!YBarMgt zP#x6BMXYPrvd-cj#$!JClVP(wu0sa9eV?+_Ecl2XDNzW0#6f{s;Blt&)x?XX2s3S@ zK$%|jGW(KLW)R>p2_5wP6d%auVmRJ!h)F)W?3l^H?bE57t(W_mN;9@q6W<{72Jsdz zudwckYtqgB^GL1=zCul-gX+28T7g@K-f(o+1RKS%*bgxgd}gk%)x3qH{AD>UcH1pN zv2_w-cW!oX%!WeJvNQ6*am$mm6wWw4<>-yKRgYTRu~p7jcn2*I$ji1ETuv>hvkf&u!@Xmp7=yuuavx#T%Xg_soZQBXnT*%4hPdec=U8{R^X{m0T;nhh zZrg_T<8VI~>Vne!=6wfwtjR?(RT46tFAHdl4q~_nih-Kw5i5(ne*W?ypYzK3pC)f6 zM-0lcrgtymvo+w&DAIzIU>JoC8)#!h5>(fB2{BU?JK&}ODQ#o9YCxF13vQ_{eejBs z-g`USVnZ@7pQ)>Sv;_^!+X*WeT=w02I8i@;%*(173c9%sbd;l<-OT?nb0MopYZ0OB zfm-BR#>H;@7GXXmlG+lUT%eE{Ap6_7zQaEC(OyrE$V|D;KCP=eYT>T1MC$~4GJZ$X ztRgmwSI=Yqs67}DX9&3IxvG%)Q@jV1&yo$>b=4`HKOI?Ye#*Vlw20hNsJpN0zORNKg@#fTPcRuXD}4Y_(x-RJ!Z`uW6%KhDP7kbJsdo3EruxbZyq+>uS2qx1ffRbkzBjDrPcFYQb6 zjNoz#T$`KvAR7FDULKOsZdTYeYBrK?STK#fLB#3VahKl3103XX=ro0My6SQCnGi|&ZNBXY?!ufcC4KNf%j(%$HlQ_>G zyN^<@+=q;&f<0-2chu*|oXzTVH}hV4h3Pmd9X7f)>Af3Pa{w|9Q>FTmvk_}EyB!zV zn-;FaJHJ75P-yiZ0y zVqb?sHKsc8RRS7r&!$>E3hji{Y}_@`3WlDz086cCR=N49#{|6?e&>T@f$_d=2@nYd z5+K&mS2>4q>c^o}#vNLg2U$seZ64M}73c<2Tp{R=l~;VbkzdbfYo-J?Z$zSh8#RQ{ zx(?A>7aTN6{I!IU*GxxBA@#&qK*kIX~E3qju~Ku=&+qyTCu?4c3C=I#Iqp_BkoR;90huL&O0qJM;%vSL(7h!J!HuG^rQ3mKm6)L%Qm@G z%CS1r5wK}Qs_8j>J-^Yh7>PnfA3ouwrZ?7m5nxM-RJiuFxYwjPRXMjg!_nYnAre_n zbF#|9rEHhFjbT}|vs??ivOpfGM}@mbu09S`E}#48LD9LcwSi6{#0I76&#yH;ZJ%c#*zZgI0FUL?>;885 zHJY6EC7Rs(@Yntp{(nZ3zc?;Sp@D{fR{>WDf030buXA8-5{I_Tj*G5aBWvOsSsoK2 zVkVQ=QVQ-TuNM#|-cr&v6T#7}`1bYZ<}@MUkiXyJcvr*Mym3X6T)V4f#ucZ768*#& z)smg+X|LrS*Nkh=_T!mhwWnKx>PsSGzpy@B5j@O1USi@0;ubczoRfgazPIQI#-s?m z+TQ9bIwEZ49pAqXzrBR&;}%X!l~@xCjzXOxNJY}>XYcA~5RtnnBrOUt>srESjMJj@ z^iyb%Q*dw9Ty7XCuux&_kK zOmcpsxO*&H`vd;+sVSQp^W$eFJ+QNEm^2L$)ogJSl@)9I1)CFE^fu@=)K5+AC?+VS z!-8c#%Bhw)>_sb6wKrC~jtbiYv+mCngUEu)`O}L+adLwtw#5{(BNXqRWV!?uEaeJZ zd0McTxoEjv84O5@Xc5Lv&$Y-LHcFu2Z9BB&jMJ&+2fEwRgW=7);pCRDB=YN;kS3+~ zq7p~s_}Q@`ktb4|3ij$+O|_306n^F}QaBT!DW*MoNDK^SO%*>>1#}?Ai8Sr^qbccF zZ&+->m-8uo6x2LzW^7~j&HFjY~Hy%y!mTTvX?77!O zp;kAo;J~*^BP&p(`Dr+hWUgf-_hc39zQk_=_g#&I&O-{737wOvchX!6P@(n7n#+(J zuxTIj96k$Pj*1Q-q{9SK01nCa*!=2-pN6xEYu}evo;Z9pOodFKhHbU9 z)-u@BLift>*LMDEtIkKw(xVs~lVRK4awB>Bl(a=nYG}*E23?k(soZ7|f)C5j8O}Li!?vp^ zGv{{J#Wm+t8Y~adzZj2gt&ong*Lw^PQAb(uVrS(H9{2jtiLw|IGnrUWXq+IYlQY(#i7!J+NmC*_k$l95I9$WPj3~aFKGhNOqGdAwGG=R}|1hE-cl*spXeY zzwsp_8Hgbai}-p$eP7smKA{bu zj5AIY8`H5v0mNKJd$ac_Pj6F+aEINXt0)Jfz2W*!yIlvUJ@Q_`@Ty;Uj1e3EM*a7nOV1hou?h2s^{dzo`w_+SH zr(3%JsQD9}_o%6g^M^MasidLXv#|4Nn!@@8t_@-z)!q51Fmm)V!j2LTNX69y0+8g`z~!axC=T7 zy1m2Qcj)8?HU$| z^u-T){*Zn>hp&|OvO z#)a&piUc~wO?+{Rf=s?Jg)nDZW_OYfxbw>@_#Z{2IclzO_u1>Y1=`;nwXQt2CEZdV z=ssh9`BA9r@CCY|1B0L&&e$PVyI=4donH0mCo=I4kdaS86}zUo#TZ*HiDP4$U-#sC zK^4-nMGOtT?G~94=*I@yCRM#1!JueYFD@!dwqq6HrKh8(8ukx|QK1w!I?RW>kC3Yi z)4RYB$&a+g*{{5B88fhdrjKc&WG!Zq@99sf?3b2|<2->pa#e=H$BxqNx`UryGgP$1pLO@N37X+i#azB=AR)kBHnLR?Chsem_(A-h8X|k_Z zH+FHh!Ni}MHFif)+`K*a?7G?A!cO2$mjAg` zd~l2cR@ztoO&hx_yYM^&8sd(djXDKN#rd&F9(B*Q6lub*T*;w1~P2i`uYcjW%jpe^2Ao~?2{o8=9VPw zs%;3|FqQ}XLsDb(#Vve<96s+ zhi#%3mqy{W03)aJNNF3k?86eaOl39vNl>(*hx~y`@JMz6(4L zX`FNIxDsS&Umu&PqiwRFH6a~QVKHZLGg@`<$yW558=hk_k+pGVHPqq>2WFQvZ4<&f z;CYxVtn}E_*IR6)KWLcTRa!wSQ@2pTEwWkGGb#*rY3@Jb2`X(1ts3m*0GFU%& z?v2pRvR<6?OF$@|$&neJ!ZVG4Lot@_HV(H7T((-`bd4xzjr`)Lfixapwj$Sp+5QupI0GKl2m#JERUr7vxh~m}N6@@MSayi?G6*l2-&J z{S(P0x5t4|HN2jnOpc&KGDXJ01G@Ya8IBH@dmhE-Nq?9IWLY5R_vwj5k=q%lP>pYY z#CBb=-rR1sdf8;X%IaQEJW z?bg5o_a=@@FFX0uls&q@cN@lCyVg7{?aa55H2b$a8 zctxraaIV;blK!X=c{6h3CnfR;sG5IE9!zCmknuyrc#&cl! zmtv8ij5;AkZ#B41_V(@joSF3rx0_pk;tXE%CsX^1aUxN7`0+NnnX*R>`|nItqb)2@ ztuBI$&yC+sw2Y>T8_-k|_Rc7-a=HJT$cI%&d#C1o)4nAa(e=EMGXBMp_1=2fyKb z@s|Px&3P9Mf>z=CC42DVVv^_!2zdbrVF5HC&3K6}NgQ|~fvIaj4VywT=)0k~oz%@Z zwT~9Y=DtJlG!?jjT-U?FuH*#Z>#~A3S)Wfnq0oUt`fM^(f?1Ii`oKn@XC}d2;q$$7 zTK%+CMUkumAtgnNgF*mri=x7EE8QdhhIC3u3BKnbG{O$Vn@0%Nl}(N3cFPL&dB5Wu zMuh;zn=x?GfK@88ZgIn*jnAS`a(())nB?tlbsa)DkxvujhpWrbJNarf!^q{DAUmR( zYGfpFsvtX@96LrCH{EYGkiX($V1SJwzYlre5X0>e35?1}*PscThLBgTatJb32JEQA zTvpV~<8wpfJ{##{;s6B1uoOH61OzwvG9lp1UMGavivu+F=w(8HD~Om{7>bFR+B;Yq z+v!@`Yl~Vq0)7;%1spBRMeTH*OdYJP6s*O>6s(y9w56#TSn0H_bnWb{owey16%3WA zEp-h5L>m(tJ8Nq|bwEIX5MiLJm)bzystiDM0Z{^K0|Nd-2NPV-+R@74w@<)-yvCA( zjJ`rCUZ5ZnFAW1z5Th4?Hqo{c)RQoDum}7Jbm65?FhH7gK%opTNH9Qt@ZXV0CfYU% zAM6Ya?X&@K8wG9p7sldW8IafioWbzInENXOcH*Bi7+)B#?f-MD5K8_zgXx8l_t!d* z0mqX6nH|h8jPh4T>8s^0>2rY4-~D0$(&yMH*clrC+3v=_;<5g);xG7DtF``$#|!&s z<-gbrQukLp;od*PzgP@H`&azC%zuV|u@|J{72o)3FVl;???-;&0m5^F@=Cvk8u0yf ztU(6<${~;ZSDY8SLHhs7p;G@>oLAdlC0@b))HYg@f5myVzx%bGmREaTQjr4Dpa0?j zqH6@DmH7WK2=L2q7LELs#Z>pNS+6z?{guTU@UK~~R*n6Y#qsf9vtH~1j(=f+CcfH5 z@?sY^@h=vriM$9f0pQo?S5WFJi2Mb_)A$PnX`*asYHZ^00t9A%1?K-T>bwoVfKa~! z#bAFU5QqV20FLP^C-0TR_)<9E>ECgrV1DOFSvvzLVXu^hSIX;P2&ny{zyK~L2W@*B zQ*%RD8wUbYD}vYWfT;rc!czLpRH~PX1h;>&U`@0|4XsqPEp_ef0e__Y^n#_we68UX zEBwdHCIHspqqec3m6)C$01GPnf(7$^#lC+j*Vgh^x!@++(!vTasNa^1&#$Q0Mbe@5 z7YeXQ0#MpECZ;b)`j_$`=3m$OS7ey`pOIqpe`_V;*$a}iR%zq1;|@uuZQuQ@_+)^T(jU{aIHMzz(+C{%0@# z9T}M9rCxCPSMuwe^7`?sUcl^oo%^qI1q|l3g=w$ImyrcQe*X&z7}?+Cy7WyVu%u{Q?7~J^=QD!hJ!30`B^63V~kk1t1t9zfgdC0RZ)P4TgDLNh1Dq zJ_YlSj{5z4%FFWh-=v5JwCF!dX7`Wq|0*NeKf?d3v|510<3GyH1Q0;^k8-R4M(95h zHUDp9V*$(Sf1~#Hk7)mfL>QpQ{u^DX|57>TzdY0Zk8Jxlj@kXYXS4phh~NJ(j^aP` z$OBCNPo7!(apYvNU9My(|sj3Q~Z_88~?dJ40PdLpyORBkQ+9){c4> zt^^jQR_2BVfPd^A08hOta6pt~0IlLF)g^13DO6t0D>vkYaNBh-I`BMl{D>ID1zCz{ z5dFT&XqI;S^}&TzDyg z^=1dIOzM7^+8STFeK##Boi_kog;*Fu}W(EXG`Du_bniYgYB9D(ccHkzautsU>EsFxJrr*drAzR_hTq zxrX*lA&zewN*8ntIcf#vxBLM?pKToBzkh32L^m4$5Rk2Ynr z*ejqgK>Y^j;46Ca9C=F*uLWE~#1q5isul{?k<>OI%pq!Lk#m1W;^^}c$1=>WGiIK! zz1RJIM!q&{4cCadYknEpv!v=n8yJ|R907`VdLJN@dm{RiT5~|TeupERN?ZVCmN#=! zOwbj|PH8cz=S)C2N1HQjx>>w(-C(r&&#lc?9&Y=$IlR+P8|f~jk5&936_=5Y!u`ko zv9#|i2y&t0vCc6vAf!Qiq0k!!z9y{JUR0TX)&+<|u6%g9ytZcYvR}z8 zgk1meSWpIc=`JuaWSTr)f${;w@dxz=GRrjOkig#B+?#BY7X$5WvSl>c8Dp4$v`~b3 zViEaA>1~rCxm;wH>Mu>$OTllRnaX6i^YPW6-kL&0k?UL=b#A8_Q!f=ON-A~O#G5Ow zpSGR$7U$CwZ^31Iuff)3wX=qb zc7GaC<%(0`vb?VGErr5RgB_ewyh(J)=#t=!hcm&t$)vHsa?ze;N;Q)IaC-5M+vB!0 zLuVM|^Am(%XNHe9)A^1OoX%6rC*YZ}a-^EHBBJfUXiRcww%$_?nPvm!-Uf?kg`Z>)ezjE~!lOrmOt zucCp`=$AiA%@P|`=z(_^EkGQOmX<#d`*cMz&7W6xihRWsO3&=fI|-cjE7r-NR4>EE zTV|Sz-U!f-sSb?TJ;V33FuVHVb#tn}Q?BZBcxOJS`{ba$&m7bxH3?$gllKkFDT--P z(IIKh>HYxRehE4d-QnmW1T`MinE8yo*Bx;t!=~2qcAbfbA*kOGtKrQf8eJ$z^^Iz` z24W&?2Gn+=N)VxGrg+kZpDE$h0;7@5a-AS$lf8wVo}S)fLZF~tJPG6Iz*#O;TwRoZ#W7sBZ;TtI-5Cm0Zx zAF4ZZZLEVDyaBs3w%ecS+wK_k3zHyKVn*3@H;nk;2-iswVEWIi?4FjJmn zHS`u))$x&R{h*qX-U;NV3(UvM3=BK~Bgv^yyLBxG5#JKj zZ;nkP_n}V&v5q8(X3GsQJ;$$!+R+wiY5_j}%Mj$Urfmo!zFWxDQRV@|99O6rmd<=B z2G{~~$EG#z3p~>XTG*3E(^Vd9kwz9r+0HHroiYn5>cc#212#f(jIU{n+o?daT zTrFW>W7;rMtNpNfl^b;M3aw+lE0K3W{&Jfg?d^ai&0OG4!wvZHN@FO-gSKU7SMU^l z&~;cP3DRj}NLL<_d`6KHjyZRNGu!reP`JXXZBKBZPMtn_U|!lXy{j`YI0 zI#e4hI*jLOK`z8>5sfskH|55O1i29?2x=C>7L@Tlq3=~y5 zz{;qDsS9v*aW-H~&DcU9P9*6ewFusP!0z%HG-`qDL9oUHkCf*JD!qyR2v& z%@X+30y0hKpI;>!E7mm^!^8?j9@c zk4BNSApLX?hG;WuYVnheMNoV)@LN#X7b8SXL_G#}Ji(-WNHeh;KQOqd;xyeKWr@9J zFzV=u^2CfbJW}Xizlnlqd|CTamf~6Qb|Q{t=6wnK_N-V}{p2=6iRF?8RguzmvMsFZ zJyl|Dd1qx>mPUA?tr+7MhLBi>HJgms%6xc#wDowHNdhwpgX&zfhWR>f@vW99sa71n zY{sB;)KTlNmmY}52#V%P;8HPw=-fgLVlM&z5IdMXm$!{}($ry8$l&NHlvYZsv2z4h z>(LK*o&(eBXPz?zMKg*j)iPM=AgZue5SR1=W_;5OeR2j4*Cm*$&d?lY+%C34_0y62 z$Ot$osT}_&6$9%0_P_)Bj!h+iN!gk6ov|=YXCLt-hRILjj^LAz0kQ<#?vl zl}EtftE~;PKRFs0$Kd>)y7JC_;++p9AfQxAJnX?J_EB(2z3*W>9CYuWn;rB3fEgY9 z6EjcqZ#J10V-Sp2oNG>q$S^#->9~@2k}Xe+d-v*xb)@a%-V}a#lN^(EYAV=8WDV&w z>z?!)`fa95cIyLbn+6ZL2#g~Ql+BoC5+&Bqw{1x=z>e|K^2)e?0VOX197+Hap)pEl zNLGw=i8O=gNzu+s=HIW7=8#hi*|vt0riqFFOz+4%c^eT#vtQDP; zwXGJiSHmHyV&TXp3t9hEg}5ucZAI3v@R*Hz8*JPm*0vEbvl6t4#_vlsK7-b|*0-wB z9M0Oapt08POSFC`Ueg!jK|r=X8Ksx!dcC`!}}XKA&Gud^iE_(+3!j9gf~_=05X|x!-{g z<~fD?Lw0gH(!B^e1QHRXfVz|e^XOn*@kkvf?oCV!3fGGydyd{6efvdF&;0oiW0^ny zY{wt?J-Uto$l-8TfquqXxo9vtd34sP>YJsZtq-f?gF0%oMwV0n0@x&Ymjq9hUov@Y zp(w?#xuK*6Cdny#^N+O)10Vi7{jvd++loy&Vbjzcz4_)3NAWe&{i(2NYILeAHobE6 zk-xQCJtDWyk4>6a7j4pPvAE4sSFj19pQ3n`Sd?}WL!nICiDqTuZI+Ggf1pefBcubY zOe`{J&!b9Zsk-r?{N7O!xz(PQ39#aGhmDr!4vXNcX%Cizl352@Ql{Of<|XAf}mL4GP-=#K%$ zh!4E^-w;2jiqAio>Pt#~u(7o;wAL}R(RyKOhxnst@x;#5~7?TZHZ4jfL^0LSnVgLlK>4I2qsamvWlUe;ioKxug@C#rbdbpNwQu$C4$3PFj5 zHUP;09nDV~O_quthX55D33J51*}q#CEu|0(hz$fTiWa6v9WQLEmtU~Q@o3#ShTs5- zyg1av$hGst?x!Ov(y3FD8)n+IB|2A%y@Y2PrS!d-LtC=WlBmWCumpZ`!{A09`Rn>8%so2la(D3H0w6$Zp;FvVi;-9IgQ^av{i9Zp?w$NgAQk4*O za!PR!8ArU4A}}!xJd(B}!dl3YFect23dALvdedY}l;G9`_EN`N#^!qE>*ed^wNE)F z#=O}w`pxw0J(pP>#Rj@6mM&1g)U(_YiJg@1D_kX}6bO_+8uL=11LdOd!!#Pon79kl zNx%B32sUVY!xp+)BAC(^xvy@VjCf{@XG!)pBGZgzQ z2#d{z%?KS0O&sm5_E!KBU8**qkT7AFhsl!J&cXh$l-S;cA=Emt+SUKik6$>rOr(uG zCNo!J1Qnn~?q!5n1^RAkic)Y}Q;wUOqEP-;Q+y*WOU2jLdivH{h{9SbYO&wcHUbDJ zK=}pHsy#Qgbq&3(ZPH(AE5Y`#j;gty?ok=t45GkPG&3-yuRaj3P zlAiGLN(F4O&=WZ*c~7~Bz0dL4wnAk{X|JG{@1(i;T z8Hjd-4b5c17L&DdWU7f^o^EZL|GpyHrn)-L-&$%SbT-Je=or%X!THd27fASCtdmrm zD+WR(jVHau1a{Lo>}yl&Qz+I*xFC3hvbwNK@#E=^3zk zv~Iz!t!BfbIzqtKrQc`|Ym%2>8Y?p*W@&K}&L{RQUkTWuOM9O0RcS}TVehw+^4MHf zVJQZx$ENY|65aDSvC;FR;KuXMWg^NI`jki!3 zqXSs@s@@L6vaEJIuWw<_!)!b{$!ryj?0Y)luRkpK!&Who@U`RITzUte__}WbLSuI~+?| zNes}bMGAO`l^B1#QhD*g+97Y^>+S^Q)Ye4llU{Dc^^~0XtIT}w?GYAAhq%fF)7tf7 zhLzf`iza*)vj_VuSq?LmDD+iTF`C#8_>t{aIu#|>S83tfu9-^XPMdo2tC0mu3VjWX@jn3^%7bj zwr`q`@0t;Gp8O-7(RcnnojGpkobu1p`Qx9Xv%-H1oj1r+n541j-T>^QiTtY>#CLR+ zEt#cy80pcnsYhfB`^3t}JOH6%UWgT)c1%`>NH9mt-Wxe0I|>Q-)3@nOG%8glpOAsW zL=V14 z`p3R*TWNN?nC^CgO(e>KCVxy96QOHOE0y{M%w&G4gr=WINq)t&W>7mq&KY-@>wIBn zphs9I4>R=99aYvPW)cULvE78r@8Z2WJHu%n70S^9-R-WIy*8`*(5#DWGxG5;5TQV| zRzYp*dcTRsTL#NU5Hw#R)6M=XhG1!LmW~hw<5IsVICB46Nqg#5)$?;yD;;R(Wj+p* zUjevN89PyfXLLCADQD3anJ?3+e71hc2JKGJ&nFY^>*HGB1Jmh(>_cAxy`4fg)`E*( z>YlIT=LMIz(1@k6N0Am0V1>MC*Nqc$Yss;*2;YMBDhX-)_me(BUF5nX7@8q!=WW#L zt|znPlOh67Err!9+$No&a~1A70$m;gK0`H8QUbP<)RHeB(444cLPXodU65w&KuD+g z5pJ>84Gq4FdrS4%3?R)f{?4Xln4tXU4OazPK74#6uSbT%)K=%J?B2*-ub`o~p_4FE zjNca+3&?P~b{$;SwldtNj}{Sxb`mU;O%t>Hp4N}B$QKTy1d}dCc5*x9mpFFEX_d8t zQ1fLxy41-IRn>FcrEPGr1(vg0j5a!Vg`1Ys#KXJ3kJ_{3kYcG%bjPa~U+vgn-ub!y zIn!b6*}(pnLyuO$UPF5;!QF5p8_h!LKBtjSpL)YpX$4o46&+6a9<1bQU5=~H4{I6X zW-|BYPRPohdN}jdUXbpTTKR?#2H$g*Es?rRTya})*bvm6SA1)@F|=^h_%e#Sy<_%e z(@Ur4Md52rqOx(jG>Lp+Cj#yU16D$XE@g-FG#Y@&wRh708MU!H{yw!i|3zxY{5fjB z{coZ6D@rldn21{`rlCN$la2B%;CE6?1o)pyF}WKlwuX>mi481Pj=An~)C)NXB}RCs zFO${M>WCxm+n2dH*EX|PdFM3~$>cGlz_;jW4PX=;V4V9bb+)0hHhU}y`z$6I zJ`x7gJ_A52Ua%Spn8r8O7i^$)asTw?kI1I`<$eC-veuyZok}H-8P>JJb=x=auu&~? z9;3*M(V#n4Dv`MgRyBv!O$3LQ9!}^UP}Df?>d9(5aswsJyX_m(3vAqDE1hQ*@#M7r z?By%!3|4C$(RczD9~Syg)^z-$5@IAuj5>#s)HI>3g3eP(SD2t-CHo?rEkST+g_Mkz z-o(7z1w#^N?p3|ScMe+F`7hp}v(d^$AM00O>x)NP=-uTGlGPV;y|s}HpqH6s0X!nP zR+6qf*FVBk9H7nq*>7GY@9;mp)?5rzFX^N{P?&Vvz2qcs9IU9X`ZgaeVY!x2N?ySM zu95K;Not>7ouf29^E^!RhP+NLF!}O67;^bds;{2x2Opm^ORg!mjRV^o|IN})=hZnq z%l;_UMQ_NLWv|kqNMlfW*XGr!d(FHy3ndllsgpOvtam3MCwkX`ZTq~vaLOqX@;xI6 zIvqC##sM8!+jR3d^iQlz?)R<-NlX>k&W`@o3wB;&a8k=GG;BJC1 zWh}o<{q$0|eMZ}QYvhB>_u~Nx_8L)kaaVag^jsY?S#;mK=ucYjKKAqDdmNmHP0pJx zY_qV>U@MfNvFvzV7_;aXO9`g@ASjTpt6-gwqOvoly}i1YrN462xkCeZIrE+nLG6J* z?%H?K|30<3Zm1po&+pnke~#Mn|1H!$_;b7VGVo^CUa5CkLPtkXJBXV8vilsIXi%gw z^R9BjYQ1c*rdHe(own68f*o$ehAtjM6*Hy^dKRreB-`t}B}ZYk7|_-68k8tX!I5j{ zvCEctxb-FdLl`Ik^q78^zp!1W%z3J%BcPj{$KBGO-SKQxr)0*L;0q=QL{@W2tbTWb zFITAJdbD_|SEp#Ewd7MY?G;Aa>r%pvckcj2w zflK*GlEg{W7t~Xh1e^A;nh=k9VL_-5qgHl?dhG%%VlwLSk#raJO7ie$<52_X*jnp{ z^JEqWj6p~DZpCLq4O(kQ=k>c8d?-?A<`ZWcy$!QjrTgtmCLm3GBmBRD&GU4cm87+~!k_Il@8&srhq7rL; zA+b>c1=ju2=!qc=FGYf$gYFN$erzIbnPg4(Z&?r`?!?)BgY9Z<;(u|go3-*>l z9;u50&pJlzl2TGlHfM}SQ+T^H^aHOdYw9ki^cT}Uuq5I~tAAd>s*K64+< zEK>3VWlI~CZ{6Hamcs&?;@+syZk>_{=FajiPbH^`fXI@x;%l5Y$)UIh_xnbtjICAd z_&+(>?b<>gy{n_pG19Y%S#+rwI;RO}S_;1;6DeNjKe|*74iN}j?iV<9S*GFDggVQ9 zZ;BsZ1T$2nM~UbPEy>j|=hGM$luFE?XEH}0I+71O&Ml5}-U*TDY<%RvOL^=dsaeNG zwImxYfwFlqCtPj}(g_f$;SsrRrk;}+QaY=B01_FIVtH;BWWD#JaM&nmgCG6;kpXca zCyM}|WBz$$&MCYhUu*7XYpDi^Cy}1phJ~B&>uj`vY(=pRn?hU^wT5N4IA?{HdznQT z?`{oZ8cXD zM?GLr1ot`@IqfmeL`L^YWZY)8;4He1*|pGQ*MR`j4orfTsX>Ku<<~Vwr$K_jIH17p z$>jJ_Y0poBg~?aLTU9*`;v31@s<}Hzatru++Nc=}RDfkx98Y}Td|H7n^~>F_)dqUK zmS$DVyAz3S-DOIXgWM~rSvdw^zd`t6{wL{GACaAu%FcGLaB#yB>5ohaV9r=!lkYVq`CKq6_{0$5a!K`^Nz ze!)n@q3(T%O<bzh%^l>^=7~b2Uu?v&fV8Mpc9?P9; za(+OM%Ep7e-g2?v~lB1IO?_$Svs@bzx`A1xr$)C#9?U?VfFzssEjf$$$aKpU#ddXrTrpN z%9$UfR=YH_4PB{>7TByR0pE*1h5C=K&hgvbYkcvH1e|u;evK&00pzgat|P zV4t$-Cn{8$Hu}7qLQ~24^rV>t9k;6-^MMjR=+*fsm`>HINqlj2xnI<+g1mVK^J2E4 zZ9b)(7k(TVn+VBR52G`?%Z#o>Ila}4iVM1*SJJ1|RlP!0eb6Yi`vi!NdA8(>HBE7H z?b9fg=#I{}N82N+*1Y0%|0mq>n0u{97xWSMh~maL&PGO-yJ`f`$*-wYbu^#tU1}>w z!P!RFs)h4ENf}ng)zxiwep78-UdoY+{^V}VvfoErO;=-Ob5-@V@ho8pcQt4;gYPu1 z&gw*u({7}?W1+i8XZ`3f1~y0-DkBT^%@>dvbDPMDl^XB(AyF4@7#Z_MZUK~8`Gpfq z$#y0v(xbWL=;ji!$mHwV#+=9#oFvpnKCU6lw^8dfM~8R(U0(2gW>c`c;fqV&Q7|*D z5+9abHecM^85_Pa#reYOsje&N^F)cgJfWC^geM-P06@8+{4s*XZGU9({qw)a;#(^$ z_@8Al!U+2_EdF;e!f>rpig0j1%8$w2js#QT^PP1lZ|eheg6%m%Twg_r*r<;?$TG^T zto`+p2#*$n);>yNsqfjLIoN%-pWkZ#U33K$e0O>?SkOqYMQ7SCLbNSRh_ltHe5RREiupOb#cxW=dzZ4% z{-=q;xvzuyeayRK=;|z^Bs_m~>*wGY@coc<&vhN%-JZ)WzjS$}TnR~YFJ4USQwQBO zIo|Aj9cot?Z18rXopC|iI9L6_g^m{lbJgE6l~N7l%tUYB!b}Z{8qE<=PS)B@;W@2n zK?wz*bGEp=v`1D4DLD1*id6Boh{tT2ri7_PKz^DIQtlRD@k_GVPO0)rwRug-+MjaU zqoY5soojMGK4`^71W?&HyLzY8fEyCVXxPZv~o`5AZ|&uYr~jV zSSM8?r&4ChzaG=jk>efu6Nm(Lm+s(e$=OYq3(_AxjLk>3#G zc^;6U!9PC96r{}m_VnIfB|~@O+Qe9Cf0^2PQqG4(f#~b#9`zBKsl_mzy|xw=cKF$u z{+m@Z_VHdf;o#o0)e-(l&GR`X;-iuEnLK`36P6tZHTuX6#jDM@H;TsD;d{g{ACFXy z2Mfy3kcW6gTB+AD%vy~&vA3yoSOlXh3tK71vo%}37_7X zOWT>F+7W4JSiYOwlw;-&8m*@Aa-GBbxt3+t^4>f?%z|@EnX=wucEE9xy4JVJ3c4Z# zpwv(qLC`qxk2I!e{ChOMwY}c_vouDSUVnzh{}!efZ!^O5suXZL9Z2y(hBCh3(DWGM zcHj!Vw0ZKOpm=d8_lQ^R#lek^&Vk(AKHkdcEsrW%)T1dvOCwe7N_KgbL7nx!Q;WNF zqXM~~Oscr$U$*K@7x}w5xvhh8I%(aP)pmCZ*Y>7t{Ni*$gBcnQu%{&n=3aMLq~d##(rHN%BkpCAYd^e}g{S zN*qlz8OZN3BUy4Ax*+LgB#EmX(|7Ulg^-*`QV1mftG0ew2n15K`6=hqVHDq2RcSW$ zZu=H-+vTB)kXZ^ojNQ0>m&pp^lUX~m5+DA1TeB4<1&Qx#T zRUE%2zS6I_dJKVR$D;!`p|~f>LrJ~MF>vkc57XTf=nOa~7AAKv3rgQwYWqiHTaCi?kw>yWYO&h_0(#qM`)qb#^-HD?-M`1~u7V6{*BxXDWj$<+=ib^H zo7Sw;@P8-?SA1Hs_-=$bSmxp)_|55+_140P0}*?_9ZvGx>er%+#58ra$fl)BcF^HY z=2+jtxxUt8;-xv0Ozl~)nQ?uFMV!QwLDchLHq7&U0LA%$L$?Mc}c-^uVjdZt{ z%?lEMdLp+Of{PFT$i)Y;e~*i|KGg>DKPik6F4dpm;=hAS1rjfm0+$=_O&WuBEyrB* zIvuKJ?!WL-2c1zyY6Op4Sfd7>j8Oiq{Y=nijaRWZkAJ>mxGoP03 z26UDt|8P#cL@9U!N(!+U=N+^6R5z&4tZH*#sKdii_FmfHKM!r$9zBvNnSIYmri#;y z23SQy_C@r>sQr;5kF5S4MQ)8B>VK9Z2;1k+P~_jh_K{cyA}G>{d*@VEU)z$-WZwOn z<~*+H*~7uFK~vPh6XA6z=xx)&Z0u;cpyv>Nj7F3Onqd8FfswV~l$Q`l_zQ@t>m~;j zc1A6LbLTzzMPF?~%td%p!{Zqxft^lXbi*dHkzi^qaDu-6T^XY4xs;LeMvm>Hhv>wQ z)6iQR(ZN34y))8x-Bzeb^~`@Pu9BSJDR+1@n`mVTOCaawU4QopI9TnpRrdRx62+I&m3Fv2TYwRN$@3CP!?k_yKfv=mVcJ+$*M&zQZ`sz)_)u^+ zf_Z+I#zh(a(%CK~t#uO^9M<^~)MaN!uJ*)ti>$6p(A56eK~Amiz5&F|PSw|~ddrTK z^7-T_bGuK`2XP=^Y%*61fvoOZWPQ7JCAe-}iN{^PA&byROXAJj-B}VadS9Z57$Xd$^yr4@GNWil#z@y=H|U6( zm7zlnWAvnCbd{NYNHPjK+B%4SICP%ZUC#S$wdC=h@1ZRzq{$bBhG_Y$Vq6L$>yJ^L?tMWB&F2liFDOCpVfs7 zO9NBH*P3$+79sBVgLoN5MI0CR*0k4G(cj{NLO7Pyae;Ldh?Q8O6>xhKxR4T2zxU1vXBu~dU3i1K(b$>7ACs4+D&8lYbpo67!z0pp+dPhTtqf&d) z=hq;LVdY)4*-*Q^Z;SF*O@&?5a*z6*v-C*L9=|oU zYM)R(Qd_wqgEmgSs3j9+v7tM!a*dk~1ws7;XZaJuRs@cioYgP6=ChiF3|aFB_86e( zvHFI(1gG%#4Tu&zm=|$OwkIH>kInN_+K(n09QpegW0duwTZImxUQJrOk6+kxW4}ns z^DBT6A?kLy4s?btH4nFr8KIs0+>zBT6oNx)xvK#xUpD*k1_qQLSGK1r$to<3zr=@* zObZb&OSh2=e7PDHI$5?`lPVRce{K@e^fd7jm(x(0Px@P~!NTbNh|bQyZmmTHv%QM* z{OMBtX_A1cZLY_{S>?#Q_4(!-&K<^v|A6Mjr_cvCXyy~?mUEc6*!(m|Ia}MyL`jhN zEQ&!8z4nuB@4|sK3+}E}{>12tdWmVk;q#Tr-giS?39p|Q3yS93I$X6?H9phV_!!We zT){%owV?5e_?~*ztCOnS1fA6b_8)OMI@3<0GZ^&1WH23@w&CL4$ z2+g<0RM@|OW`jS0X2yRbG}j@w%Y#CeQ6kQQIKdR#vuc}VI{r<#5}$abwA>vkk9r;| z$;8jYn@M3De7GxA7=%#3+x>OpYk#~a67kD&=Yd^gd!35Vj)T0D^4(-X=`(x77w;Fi zp!8G4GMu)(0@5d|y_?#OJ8bg9d9p8!%bS`#rRyN-nbbJrii%*OGLzYyR$i55n_P${qx9rE5d zxo|~PloVG#BaA5`x#M?pEPWcgA#U1o*`kl|5 zqF0hGSyW4^G`4tXt5DV*zmYnNSbb-*vXTFKY=d7}GwQpGTM|GMPoON)MF9cjU%K0CZWS}njbi4w{0+*)2*oV(R{XD$ z8S$52G&5pluK9~*Zn)LVA-9@2_BYMU^>AjKxBL5VqPh9gjc8u{MKq%#MDzXM%`x1H z=D*G{r2aO?Aa+P3hQ{zuh~}W*M6=xQMRU|IqM7+Wislp|e;}hcNbh%|ndA?mnfgXF zQ~#f6{{M*P@Bd4p+23^IE&|TqZ&&8OfirjaKZf(IY!3TZ;Ed4C|1zBa>$>@W9?t)# zoByG1z5(?AhHl1eI>|r)y8n-W=1cs?fWB4Eh;!gSzdj?R^S=z}|GISkp9l2+N#}nc zo$ulPFG*)L%k_2yo_}#Q{$_y|L|mHuIvDz&>Wy3RjPU6Gc|0T3^S_Gce?mR~kK_6O z)bl@3&w>9->iNsqDjs6qH~waI2FBc~=SMf{Sw!$RGy{#^JV&BJ^sSm90T2_yj!0$l zMN-ICL|46o93&+pXizjeBjZm5vxx-E;{A6)s5+Qt%qzA>cb?)6(UtOG5Lcos45>(Q z3yjc;_Y=A8o^}bXMWM}3JItP*&s3i#CBcOu4=rcd>ESqFO&k)*s`L09*(h@YSyL&_ zA;LI^*{=#8vy`z?&reMq6AP&=lbizB$)eJ)N@yekEz;Lq^J4LbH^( zSmfEUN7C(gUf|ovHw9k_c5h_?UqQaIkA$!3^c3MN&YmzN2F6}MEo|0x^U=S#8|Npp zs@uKJ$uMuXpYDI-i9?W9fd5KW_07RM&(kLvJVNM_$v>0U~mEegwTY>P;X5jICD?r4dm@kCU1&M)d ziKbTY^D`lWsfwEB39^M4?HRH$iWwe$DzT6H(;8o$uCMM+E8_>xJGIYG@g4EL5jV$1 z6yf@|Gzqt*p}#4OD56v1*M$b%NLl}bp^@!vd3peVgq!jp=FgLE&oV!PZqG7-e>uxQ zgdYlVa|);V$Rp7;{W6GsbAU1a-2p}t@%DDTIh3$QDtQ=QKN#)5I)hFxhJyx@yHAE1 z(PW_dC@acq8nYOF1>`ZI(glq%=Y0O857%~?FOw5LODAPV19?OZg0}x$0X{bY? z$j#bwRLJjj25zFK8RjSy6mOmMfS01sE_hBCGsLN&;gpkr&hT>B*J?(sM#1GB{7aYa z6-zVC3pcsJ(&6fEutZET-`M#0WR{qu4{=+mqWoHU=$_o0Go@-n`bh3IwvL8ZfLu%h zC_<7;&>?~mA_K-kB~K7(v${=N#%5HI>-)pv%jckCZg_v)G2GDG$teC0gt*Nk2wPj2jS$k?jXc*KT} zzV*xZ85Gu9{+LPw6oVmG91hn-s~Oegbt0Av*WY%R|Ju6tyYDy1)cFXbo3r%vYKRT@ zYIqdo)lg=Q40)#jfK29#pjDhG;g~B3;N%~2kg7itVXL$S4A+`#Tb^iZTTY-hbKu|v zgT%mqW@NDfmh08b@sZA?d8hho8Z!k$N$Owzbg~_D8sg>_$$Uiag6Pyt$owi;+fM1(W>cYYtL!yZ}TV zq*S;PdZZY9fXlglK=U1{F?Il{9+_t);3FYbX%mu<5LXW;4lMvM&Z==^X`yop6p|MDo+I8KV+NX^ttyaA`Z2& zb*Arhh^wTS^CgFTLAUpiWD{3$VH(YedsJCaBx+~9r@{NK=RD=sJA}(^jZZ$+8E(`a z_6koQu9Vd0r@y8IB~&lmY--A9x&EGeno;2AG@(W~b&kd@_(yd&9? z!ibm&c(Ku#PTta&C!=rQaB~a4dh+d)IxSg{Oy=Q3-+k8yB8nf&9$zRzdCDbYKOPg6 zI-G22`JNlM3OG~tjrN4njwZ?qPgrp}hxt`+qxBWsosPwA<*g;F*KVCG`cWgw89kh2 z(d&8!H0XsxRO>;?G=$x`F1$A1ySdCo1*C;7YA0$559u|x#Z4=qYF!>YGdI>fV4rlM!%_{RRZi4sv%J${&Y?OTy^F zIO(WV2V!Gsu^#ZR1}=f0cJO08pu&29<^A9R-2*Cb@6QB^ibTY6Pw|10vOBA8F1tH9 zr<%j&+gBw@lUhp2J0kNARfZY$Nj7NhOXD5(fY=nld$_PrtMF~AOG#hvz`&@6w(+L! z@kvg(*`A=l=JZFC;^wEyofcy=Y#8s zi%D9mbjkAii?Wjn_>M=~wJNTjUc)tf^~~W1yT|?q6x#>Fz@{cij_ZJ!YaU2F-$eb@ z$h8v^2gj_3cJZZP_gH<52g%Mg!`Q4ZJSIo*s>+)^d0Ox)&*#qjd-!^_)u$-5531IG zY&^xXhf#m;uw~D$?w>Cp9T!~}6}Zl(Gq@hUxDL8bBkoU1KGw)2Kc6j6751>x-O(ew z*kv$gl^mQEkl)kFMyk~a)G54<_LvwoND%fX|BT(XPLIZ($+KTN;SX6d<2dktVK@Zx~RnfFTch=~02pdG|(m~X~;+ZJi7hCx1K zCFYLcw9%_m5o&Zlz^CC&Sz`F+qX;XTY!pX&wB>?*I%GHh08WaB0PjTiJIiWXkR`{o zd#FyxTT>W%uVsmle#XrXe{V&GcZ{p_5;##->fJ9@p2+dEG3z(ePP(U}!2ClKrPR|C zrd+yjrO%gg#L?_|N`|p7yJJyA1q?0RvhSM{z#G^gBUoMmtT!vWfG!J>dd!CF$(5cb=`5aB&yww2M9LH*)EVAx8_gXiDq6j1fv$ zfX)|rLAklwvuOI#R;Y|(m%+uniZdynAL_Xs%aD9s=PB!sC}|S!eHj`SN0_23Pg~n~ zMoP3Q;x?aFjT1*wqsh&f0o+et>8qjSrEB*Xa$bjH!yN;{ekKBqHh7kKVB6@-SZGci z{6H$BM*R(npTGu`_@miqq<2a+KjLMOZ3oZ&nP-!LQ)RkVyPp);_@bQigp2XTzF%Z+ z#*wbweIMI$Y$5LP_Fer!Hr|@^%#^*v9kG)5U30P^vbmPsKnQCV^7l9Ige@Q84|ULw zD)g!YreAXx8S-s4IA$kFon#8*ZA7Al1xrn(Vg(;uwok@Y?PIno46bO#SHDcIX9Q29Ge&MESzrebQxf z?=gA2b&4AJO_r`+ffyYU);82>O_;*Ug2wQyN!wobN8XP-VQsw(u2p(9biXuoQs#|( zZ{LOqx$r8Ym|7fy1|eoRP5Z*zXl{}itB5(j)Ew>X{V~6-5o$gK2V;x%BND#G2^|)@ z*85C8S;aqdqZ(QV)*{Tn1rS84}!lEbeHgxFydC z_a1AX>2PP`4I&fXp`~@MKr1XPmh86dK;O)*Xk*IO^jh{Cm-DCvs?_VI1|>=YT%2%+ z)71?M15@6dH85csoJH~L2xc`jGPf^Ewh5`6g_KT4C86icN$tOs+1CE%a5gR$hNNPo z8cq5RUwa&%mz`N2RDS+y=WM{nOC~b#Tv3U5jIlUAA~fms<~zG2-+Gw_=Y22jxj3dV z9xW+~wIcNM%~wL3qUUhG0!=FxTMW~@9gV$x6C|m&?J@wPnx*ma$v3zi=@yVEV|OIb z%d9U#PJWq-FHv*g!kQQu-(i{Drp(dMV6&XNWGcc}=eR)?Lx#ySa;_I4u>_C(;`rDJ z4~a#lpsrD$+*0Smoz?s7z-ZD(h7}!Fg{%`3meua})H@EhPG`!2ZJIpABgI;C8wYCV zut4I~@qkh+@7J&r4dd+Ai6!`IGom)IfAiQkH zD!j`KtX{4m=()WfQ`hu!Yf+ieYrvynd4jiQS(SOh#_~yM{NS+ zQ%_-?#{9rJr~PS+fX`@-4!g0kAP-&aqC+5mAML8_$I3Rv}5G&1*=J~6b`p|U$;a2CzpTDvCh(^G)16@=Y6mcIuV6v zW11(lKEC5^3gUhs5;;V49{4=+g=$0Edwv0eFI)gyxu z>+kW9yylKKuYv|S*K;aQtH%)2X|T`zpBI|7)aXbR{5v@;;S%j~XpxlzuQ4+8BY52i zksB6FlK0|G@m@9L@WEfAH^jfe%C;%Siz3MguY%)H$D+SBipqY{-do|dp+G{t_Ka49 zfDk>EJsLEwC?HO!Q5!VQuZ%Hs`UL+m4^?+I-3tGGNMQtn2lgiQ$HJAnYixVId)%wN zjgmYVs&wBOYy@$2#--kzrqzr4{M?BS5UQv0?syZ(GXiMTVfFRrQCcHD(wv6LRAYR?oCfoMTE?$dSQyHBL+Jg}FS4k?LeA_p9RBUPP zG+WlZbEKriz-Ro{{j<&&kGg)5@mRv@qliPK!RR~lk2o(YCJy)6p1wv2#_SUm<09`F z;cesj*i_viQv2Z8W=r(vx`~+WSqLgeE9po5(k2Gk*AjtK1Bn^)=yijV>gAeb{w@dVW#eeYu(SFo-yURUfoCic(|Pv%^eGUPyBwKU^|-X z%Bjix*(LGEv#FXXM4JEam-`uSs0$|pZE$@?PP_cj6)KqxSLzAD4Rjt0`N%Qbt zuAeFyO$vr9V?x*B^?lCkJCL5Q~VH;wPzq59IY{cNY0JpFCkd!S+{EThbXcJ&xJ zeS;Vid`1mi$8uq1RE!dP^(OjIHXK=UaL#dXcG6(pP-r8nC*K-^b&&n!dB?seYu$+$t@80f@_}>v0cV$1 zZyqGq1k1sQ1D#s1RBr_z_n}_Pw=v42Rx0RvMY8*#Rl6!#pW0fiXF^FElkC8`xcT|8 z{ze-C?6NXjqUT1-_jPg54SpWQ4x8n^5{UYIAB)KEg)O~bif5HN$&t5ZPWHOcusKjRTvL5am!`BLS~{+~|qajWs_?vHR4dqJN_$GneZRV6Xt^ zc_Ft(?|=S^gB85dCm^dP?p3Gzx@CfkXp6tK{gERsR+L_HwUwsV1s||(h;bhlt$byE zX2edk71^URWaf#y)0MOlFq=B(*7WtF#hmWP($dKTS`@6}YglcOf|qyvWQfQFhIpOg zw`!X{WFm$Z2M40iBf>zGr;i-O8a|oWLM|`lsLpEDj~<{CZIpaZ#)*J2n{JP5v6l$fO!e!2{!b*IGIy0dwG6@!Jk4h^6f7xHWL)GB#ps0q8^nweiE z!$8$xrgX4&^FscRbg~ekME5oD3nTuP&l8Uq_0#W#X*{F?WZhj*&WLq%7kz+4HC4vc zCtVZ=&jWMN{h437i{R!mgn1|Udkx#xf!jj}2r`R=kiQMGS3%rFQvjNKuuFQsn&d$> zam7+t!F#psRS$e?TtVUW5JNF9Ji~%bdgXRQ1?$jL_a_IL<8IYecMo{Ooz%H9Qs%O+ zMu7njVIGym(VzDDmdG40!4LZ&t|t>t^UVdYHrJ$uP;AO2VwG|18Y5~A)|PP-!&3=O z>%|wbghQ~9bTi7)6LHzDi=s@5D4K*-qO&PXSakKGCaDMa%N=`)-7g~T@7c+n}%`Wmw`%1- z&QG{|@7q&n&EOHOqRHbjqU1v|sRW z;>|PT#_pQ8q|;!Cmq*VzLh4BMX877%>~ryozeQTCke!I%U7>8N-~p*lD|Wc5zJ(ow zzn{QPzI0cF9+*wXvX&>8ydob^-s<3# z8le_mB6g51;ZDyJg!%^simPql;154Lcz6&XcQC^;Ao9pXp6V@dVEUrcK^8f^-bIM` zI+bi-=y6HdI0{wM>~}@`WnsOVZ6G8(naZqNPTQatW1v%*iKaE4s^{P=>*Y48q|Gj; zkj4u7I&IR6HHYITezqx}u-CzHKU1k>Ep$mbEYMEFJ&>unD;w!mmbudP&8GQk;8-6- zkCQP(*}QRHog!MB$Oo?WNJ{ac)Io+Vp=Jqp6-H}3eBI`~OUK=kqdS+Vjw$pjP~v=s zg4PG?c}~P8=GNwe4pU(Q>U4H=XZOAY3BD1@2!i<_;RUk4#sXF!xlVj9ItRV z(|ajjb2q=D9)^F~_Q|G5*W~N4o|LCl$iJJlqf6TZfiiWqey32Fk!%iV-w?}wYp(0a z(xLT|yG*k}NRluhdz^_MJ*y)vsWeps_W6N^2qzOD%l9645@q|#gTvFd>t?aem-cQ* zgu;@sF5%DR_b3!()*o(Mib!PZ@hClf$C@5?O;EEqiA*2*9`iAXSz;qQdR4?%MN;zt zc01!GRu+LX`s?-0C!L%3gZd1%VFzv8!9mAV>7^ODylliz{2K?74XUjq@iC714d?+K z#nloR16PsV1PM_;-7pohlVUrbi$a#7p?vmhWD=b{u@%ejp2LJ5P#mw864RiEDdkwt zcrQi7_bului62D8oD6oLN}f5J6wwP4gq>ccMp>tM>v22`-M$kH0}r?1$H{}}Szb9c z-P?hwcPP=?NMkDy8@}rJ-v(YnmNhf%sHHnruky|tiNj2wF*$CB_;ByfE(UiLGh(6xDbo_&Y4Aj(N zN}{3Y7Akc$L4oxT!ahVy~5?<6RU^&D8)I zQ6gb4ANg`h?0tRrwNc{^hIV#}4)+04J>b0Jv27Stq3zaz^dQOJth2(CIJQcF;Vai?((yXbqXWkGBu2&ga6zHV0>?fFfww zQuo!-;qTX{vVzAH_K4}%3+FeHcHv|zoJlNm+lx71IstU|-nyuq=){H!xumFx42r4v z^fv_7yO34t%e|##OUu>vgg%T}+S+JS_AU+?Nc`LN)h67fxifjo^ke;pjv6BJ8$~%p zQ?G?zSS6NVml{iu1^ARK;@GY@p$o9ZbfeQu9F6&dwh$k!gSiO%?m_zcIAc#=_% z7KS97Ty_#fFXa`#OGEMo`C(;Qf6?`4aCl_}9x%S93oK;fd#2Db|{14yvI^vHS+%+gGZcZkd2(XUTh3jVgYoc9w2PwG^b^ zJz^*tDsAfets|iOkZ=dJ0XBZkmqUS$V+269DzAu7hRCC4+no0uQXm;gRLgu5THSRu zwr<2d@T1`Jp{tQPeq`c%iR7-8eoKJ6+(7$mAd0)-0!>F4`XCB=oLl3^+G-vOb+E6i zwMT}TV;8li+udwS}%<# zx}7;xHqBf!ick>c<*PhqxC3;{3)f0+*baYP?#(4^gFewtOsoPk0FJYiXqP|W;LF*y z;JFZcx13itY}8c+tG7sQ7?d){qVi}COco>=J61T?s&QZ?mJv9(z8U z^}ExE3biDFYPVgFvCydn+KH+Aj@Bb0LPq|Il2r#GeZU(~Al$V5t*Yzv1k%t;maEi? zR)>#A?Uu#J*Y99s}grf)mQmb5L^c`KHMO7?27AvGJRp z+#zU$qn`FOz1|OXEALa^NO#E6_2M~);gpFgxGr78J27NW> zU|OgPVFa&4f^!qBFKSP;)LhULnvmX*6vwxHIXF(a*VKbK>i03RQG=PWU(f% zAG?Uoi_6Z+QuydfvfE{@pZu4PFAj&1&~kw#J=8WT@IOsmaSFe2^>)|Ii@@;;D=@tz z8787bj2xDSDTRSjztv4%(XPOZke%3Y=PwAx5BpaH`+yj=UdOpi;3@P{t|2Xb_6sT8 zQyK0MRN!PHTOV{rRT+ntbN$s0pm2Cw+Y4;YT`hmNo9Y5dVw>=8Rs9a56tRIMwZi4s z_VvNIdlP1|jzeH9+ZD9VLft86bsQoX(XzPA6-jXGq;Xui(4G2{DE~*xV+=Y~tXqyL zHh9_MPsa~K3k4SFZ3^~R`0Ml-@bV%gi3vTm*H;0sLeZV3b0t%M5%;U#1wL5FGqR1a zzE6bYFK)1vflvaAV^{v-+p-Ef)-r3geUQ^0Xi*sx;F|&~!sEmwba9Fu{o}QIxJKpj zG_P0r5L14{t%)1uf+3#K#T0(6CIN@9@>zf zHn^@MCe#J&9R|NWW~gpTu{%i7C_$Wy_uE&U%XV?Ij+u3HK;_#C9U%zG16Gzq_dOw> zh!2KT?|vE+a*W$=>0^O{uXrtB-h)6lt8Ad~-GPXx@tev9jRq7NHV!<-A`;(U&INsQ z0h2J|rWwa~1ugBCx?vi$;HX*i#52?h1tf%2;0*H%K8c4)S{|Yy>rK7YwPYere?7OM z=||F^z*{PYG8h)9deI0BB7l58kT=1LfcH;wrr%)bWJ6Bxe6aqM1bCPud^qH00r1Ak zK+6{3OW=y+TyrqN3k?X@>kAik-6k(2C+&hEraYDTaB>58w0Kw+x!`-2i>BK)A_Q*J z%tG@XIfiJol$zBEp~g3NDgi1e#Q8mBGV{7f0T^qZ+In9C-M;F)*HYDX#ii+`%fb-* zU}0f&m;lPEk`hIOQ;5&8Nj$X5Avo4>gQ(R5^%;H$GZ%6axmZGYuBmtVi6$(Y@4J1e zxrXCRy~P4)&JMtmo}t>*_gyi2AjidKPNyE{=m5C}R)qc31}RMEj^=KLeM|2IY;n!! zL0kiouRY%l3L5ZAs0q$IEZGFRDExWNuE`l4n9sszzkrQk9}iZq?+}+3Ht#ggS|ZQq z9hcqL0^WAfylf|q{1giFril~z?9LDIw8CjY)TUa#yfj!7n@v}laXjD}9fRVu&q3wI z7PnH>S_6r28e^O_@xs_nrY=y~0OxY&phyQ`$R;`Oj9ABjm+z0m9Rv8@9Mm6p_8fZgq@5m4B%fjI*IOJnHL zIp^Kj-mgsK^3jXqoRX)L16(ZM*Mn|HSv4qna&^Ta$oP4{A{nl0ymp`#>A%9zNiLEmt7{or1jcJb4(p$0Zkkr)euuZ*s~C*%mC=tVYS5?=#lmztrrh7449T*b z?rIyU0{+ln(|9u=nzy5bmi~6$%coum9BXS|gj$oUc=;2ei zrQ2O08ez?JZ1K;R0ki|Y%^&O`S8?a%52ZN#ZLAi^oo;O4otVrq2NKL%rFUg+tuuUW z$It99hvQ^!;Um&*_SbAaf>PMFYITD|x{Cue;SxN9dN2%+zz{v3c0WCj%;=m*y)OBT zp)IVT`K$4O1-Ei%xHq#?j`hCMpp8YU2-gw4KBDT(Zd={-?u#*eKuLjdiR6+i=~%&ee%-bp)Nu=8c6bjDBaY2T`Vu(t+U496B-= zv-!?MXly8g8Ue8B$iGEPA4YPhz2-(i-q8+36+|16 zcg3$SD^oxWOi=-EE8k;)NKH~TE-+}%_HqH-1F^{0=M)^IR?z!G3_|3UiO2~fltF#| zz#p(=K~*itP$3C0f`alw-a46!iM{f6v92f)McUvK9}enZk-T}PBC--mzfquWy`Yc2 z?gzcZV+;AuE;#N}gcZ39B?iY%e#Ir5#kq!=qfv*Rv!(*uFqOe3q$gEjLx2u!rvO*b zpe2WOpE-fYU zSqBegK~H|MBbsfiyrK8@05TL?9?%={C zuT_j_62uCZ>lB+d&NSm+!RG4f3QKaMo$6jvBv0q|yR5<}^cW^2cyU8H!lox~e4!R+<`Wgadl6JK;f^cvf^dlXCPuj@I<&M1y|h_7^x{eVGpSBkj?`($o*E&&YM9s+ zMt66@EJ|n;M={P7=jwarMo_f6hIBNR|@aaTVZe*5SiQG^0RDDC#m*&#{4+#!QH;nKT&BE5DS}!dUVlDmyf zA(^^2xe5&+yN};-AKAVVx28y;8(c!U%g5zO2m;UrTwz7&bcKDkH{xw|S+AFmh3J!1 zhIXt7uH%eF&K^PBVA&VBr78|&TvM4 z`o{=Be?yY<1Ov)xXcuStoJcU#Nsl<`4*$s5nE3T57MhzO6dK08kkT1OKjKxQl?w)E zsg6ulnl(t>jhL?4QNl3_&s^IpnB^B+e88wCx$_B10yMHn#B*`n^f73m!xG%^I!6pT zx;z=Dv>f>>6Kwb|JmMlghC)J#$UCh5T)x@(KA!o&i~7PSphb$BNCl>PN;AL!OuV-q49q^RfvYGnpL3W$a0-dc zP2C4YrlSBH!v%8#HLS}NVFB7BhA!Yoada;30@>n13|f*8`&G3O_azerR={ZqS%*w^ zK(!?I)<%;s^Z+-*rM)bTSK0}Q&&Pg;-g1ZEeUtju%tFg0L*ATQtP$~B`UwT!Fl$)n zmSqq35BZ0a6g0P-c+z#uu3)`TYA-up%<9MU5dL;2%xaya?#{61ZDIR;w_97Omyv?c zZ5($b*_GtM3m7#!ricpL){iJ|G{w}}I1CYb=$ZW!{4)d6(zKUguv$D9_6XS&)BeRd zonaf=>;6>A30tM@p_kNRhCJnkgbchmVdB@Lo8Q;Bnsg`-vVqoqp=i~1I~4G-o!t>s zbP(I66%B5E>V`c1Uai?bL8t=)I+$Ca2fZ+qFsxq1RJ#MgS_)A`QXi$iK(8V2UX zH#P$>?(Jdt`MmTX;OHF=@#tB&W2Do#ciJec?OQ@V)u^Lm6Y^Sm9pXZZy0%RX}2g^LI?Y<$?pXMp>+?i0Iw~lkfX0hG(N@3pC z#2~nwW+l;Js`iGm>U|x6&4vb^B?oJS{AQ=^iGw-GFzfwRlKewDHK-k|u$5o8f|y)F3>vqo7<;TS ze@#OV%E;6)RmT!B>GB5QB%WRrn-88ps2fP7lK)Ufnq!>#iBLf<3S&d#6##{LeQBiv zx}&}o+9roUtKf`t4AIOeH6R<6U4^={;?%{$Qt{)GO1=gVxQ89KF>pO`V}N5sx46{= zF2mM@KT|Ig)Ghs_p>gwN^!@}M5>yErX*!^J&)sgcBi1}j#IVjbr(0l2zQhzJ;53vI zJ8%@?bYOv$*25OB&TZCE8?g@C{oO`JjvO;8k%m!pL9wDJ5<;2zCV-~*?6Ow`O)Az* z5Z4vkh*|^G^Gx}$+#P8EAS`e|8hm7Z_2S*x>(ZbzfKAQcb$)D|RxA${xrx46hcv*F z`I%AdkyxYI8&Gg_9TZ|fMQw-{IENSegX}_v@hMt3ZA_lQ>cS7R&Z4~^Tj~b5&&JR4 zHWc#f`8!bmki(=o!w)mLk+DJyg6a{LG26qTiOU+?@j{ESDpbAu7D%M6C+is{{t~-7G)lQpAs~c; zNk8#%1EiZZjr>Df^tV@9z+Wx7lz;lN9sXPY31OxuE2{FR8J7kC67VlQe(7HfMctmi z7>fVh5C0A2;smz`1bzQ61->NcM+-c}|7w9x<6vY&|MDR{(ELk!0R1oNK`PiJ`M(<6 z!7v~(At48RfyP?%k=2e%*MnxuUc9qN%&>isBW9qtxPKUdv)mtK8gzy4AXb&=5%tN$ zmP;7gzm#sIBK$4F>d{W^;^^*(1jt=BySn0F8qhe~ur>Zrr+Okks8hXH!3ACUydQ4& zu(XOAB^Sl})NY1ftzD(F43(T(=d1%EVp=;FJJ24@-2aDF1WeSCov~|3GBzNx_m}S$ zcPj0)i(BK3TJ|adR_KD7cyZN@_W9+5!JF>cwp=J4zk_hGF@Yn;N#o1j8|wtY9ecHk zRRXQcVvYUtDdrgkV&qQ)PivD_P8nST>a!P}fxNQ?B$Qr;Q$$u1Z;b4BHcoVi!|$0q zB|C9F?3`|><)Ol(vy+dF3mV)(W3Rrk2d;5}>Wkgg=bxSsb)zy9S4F%D@Y!TqjH)Y6 zfo(M$H-{_2i2Kt%Wr=!eTxJ9hr@PG$(Sg~SZvM+TyohDD%Dd%;TKMQDG;dmi8T(zg z_s&z159)}=mRO6cUwym%HEo^sjW^+-)@wv^;Qb*GqfAvIy<=(ZHf?zC&Lt88UI%4Y zv*4j<2{`zrv==%Yd;Fifepz>Zcjv6h4mX*QRj7HVZ~W@92M!5^ImiFSDu=qOXY6ez zz9JG1!f)FPQcxWa17D*DfbETn54>(NdycJU_O)N_qliX!1p<+cfTBi3LGVcsF+zaI=PC7sUl>v-Ge&QG1K5__VJA8@+WZIf#IS4QFf`aJseWY_xeUrxmb^pIfcnYQSo zPUlkN4k?*$y+_~dLuZZwR&qAgb6J_{gIsSl4$he#Y?JmndAS7#ot<>M01EFVwh7Mh%>x`8+55&wNt?FA9C{bl@5}n-vBe&FumEO&%00~laOa6g&1yuZLb_f3($@&+o)A|0tn%zHG zogbN{XJ=;qC%fDMAR&LUt6te$Mp+ZRgAS}`Qz>i{JQa)pJRTP%P%%!p2W4s~2%J5s zzobvhbO2EVqK?*rrEYm%3%O$8C>IH#q|N3xFN>;K9Vs=vVmflT{VWa&4uN*TgDx3v z0sqTR^KkP9@4@c#_?jO)4HXzMp>rP|Gz=-2jorTBkX=qaCma)*X|EQ}mQruHK-zFI z=V?Ed`%5p09_g-Ocu`QJ26187gPm@V_#?8o2oHPpD(x?<@LrCxOoJH5at>1Cv26+0 zHAW%ui`BVA(|7k7cKz9ip$C6Qi|qJ8Z4+j3l$}c$_r!R7x&WjvSkFCv$mw5sH^1Bp z>1J&N1bJnowc2O%{>Zu4V}EGTm~utg8Nbq>HZ%OPAvJxdbw#B7(J3U-Sn)M^1w(+M z@Wf>;JBOUt@o^A-*gVuFxOFFQsr_NsAe6X9&3mUIj2hTm^%Q(;;O~BUc*=Zp(Y4RE z`-ZuRG@78Nck8_1|2oUDmKh;egT!(0rMxPD*9imTB@yLx3qxPg6MiyjTG8y%6Rg3S zSJ!=u7l=2rw6=~5HQ#d>DNPm=*zf%M79!dXJcpC*#Zv|1#H+5wYl7@wZ~o9U*9FSi zSV=8H0Y{Wq25H!btguabu z^Cx7$@w?F$dTb=j3r*gcb&xc@q*-dK_dtjn*=c93nkxD^%Pb~fax5Nv+8%&y_=czj z5lLvKt?CFh74jR4@4|Uj1KKH;eaywbklS_aXH&X?9M>#9$w?ogRscQ_4>N z6QtAd%B9j7w9~+SJ{cF}1hf7STeWb5H<*@*#8n|1#)<5!#F1Q{{Ur{r$@d+>cd*rW zm5AgCh?4XgJk}#pl`&coDkZ`J@lpm6C$-bg%VoTyyFed5?wna)nvrg3`qsw zl`vI`Ju_%nk>2SYx5H(T!k~1C;n$iD7W^?+5bH$Jt5Hh2hU_?f=}QeBerBAkSLMl% zEU)Id8@PkhvQp-Flx>I7a{Pm5{=hMR_@~uBvt-DMf{%ucpnk} zkgN3(@ejE@9})iu74k9uA3+H|#{VPt^N;cW$f5Z|8uyRvYCp#RV-wPkn15{c_!0Au zE%iQP{;_k}N6dd<5%m%EA2{)RMEwVLCm&J&fvLnt?*6}v_dn*Ge@{mK@!S5f;QAxx zpQ?>NLjD82?8gcEx7D5hL;T++Wl2;U4wuqL;UR-aBKR9 zS)X7G{IfhZ1%e9^15JRNo1i3;jRj-lTuYy#Z(vqaFUB;Bp^w z@85rFF6qB&F66&!t{>k5LL4+L9GnHMz3M~tD+3z90xVU^ar6k3$~UudA!jT8Z89cI;^_3Tkne{Bi6{TKY;&4x zw)k@x{M>gQXw{ZGeUilJY2T4isYn{~RLCI)Vhky)C8%|~9>-75qj=q12GY}`t#gej z2nB>xiYis|u4mr>s(KN#W%=gPL|UcZWl301lTc3z$#=oUQb!k=+}zok^LJHw67BP= ztzSAEeeb>29mlbq-ZPSl@$<}A^AK>7Jnz}G%-LXRYfT`Ec~_`-UYV@f!^9YMbPokL z)VU&YRG&^JI^S5^GI}dg_tqTuuqXq&wD<0HbF&{1bcrfMxdThG{nMF+BXe|%2!Br~ zF+9D(V54A2Y0Q<0^rjuD{5BoWqB-i|>E8m_KPp9zCOg$hk`3A*q;fUp9$^6j~x1rLpLyqwp7Go{eLW_0odGL6f zsjBl}Bz(SBU>!shruktt?72US&3d*&zMc9~xKr3*<*~kz*sX%zUEpWIMtf((p}x)) zWRq$6;B-$^T00BRqa+;qO#7a&w}-Qt&VlJ3x;7A(X`0GY^!05bHp3 zm>#WV_M~&g6qAH)~F9YLWoi6`4N-g+>a^MJeal2sKgq+(1ZISP$}^(>GUo@Z0cL z4%HYjGsNi@?PA4Eev#*`))FlCxI-oGsuT1=yb_-Pb2*z67_S{0ZH_krMNT_u4mTRh zp*BB}=vDL8xT~DL=m?I;dk>zKu&*sfYzRzFty|d-w|U+f*alLd87E_E%BJDABP{os z26JxdgQD=F%8SAxOJ)s>*ZHR`++wQgwr8{o&92!EgU=7jFUB;!=RM&26EtadXgkb; zE2WeMKBSuQ34Vrk;Kl(*oOw3S{x-)IMspmvlSr3q`Z{tGfo@0ORWgyi$-9~}w2op> zZ|+~snIpzIvRV7GY{WR$e%%gPoPhW!aJX~%cgIpDKo<6gkT#I^Wn&qL&-B4gNA0wb ztsYVK{E*$W*}#1zR7gk(@yyHH906mevcvH_GwsP{4iu%qR_moSgSv3vA%a2oDV)-c zL0}^tBfbVlU<>B2Bh-d?w(56SyPW(soI=3B!^r1-SwsImg(M?GG>gRR`Fj#-bfkF)dsRSjmy3(Mz8YqAQx3ZrC`H{Xwv|bCWv|tk%+}uuCD$F>D*Of5lm7 zq0{@;Ck?4sB-roCWCP-;3mkv1)~AOa4VH(vQKIdOW0@=*y}GJHem?v3g~N0u4};eZ z=w)SPHJh3dXpmz3Ws(NY1cVBn%(>D%hoYn(E98!ji2eaI)U%xF#d+GUk($ei2ca`- zE625Ls^=BfJKfipZPNwbN3<)snI{c$!zAZ7@JWrs%jIlRQ9jJzBjq7ilCtE zYHBxZ^}?1HaX(!TsR}aeOrFrdOn(hcD|1am-&FItnUi5n*`%AO8BfA@`;2^hV*~lG zbv9Sa!IXxYZNXCPv{3T<= zly`wBZ{{uIk(5+mEp$k&WLLLrZ=TaT9$+tVAwIg`&&jj}@(;SZ3xUstce&yny3Rcm z3)-UK)bD<1E&9z?Eb^Pnt{L7vy@C;dWuMyIU+-ya#6 zp0{Zc3_(i>5L|{ilPAMEb(9|6*@7Ssd-DQbynJ9{S~wr6mVtB+lN46(KjbKdFc`YqjW5BwMj7@WpW;0 z>Vj_2)Q+X>*;GOH46Szi^Ar{jySJX?2ZS?elz}dZEQ0tHh!5R<7fs=ojVebRXB3p; z%cY6pB?k`pWCX(}Q3Wcd1Y-JN0ZKUt(=ZHhpRUh8%{f@%FAWFf42&y|Z(0;WSMd;% zaod*@aP^y2&?W8t!d~~scM!(4JC|^uZV)wkk+Vl|6e$s0Q-j)i&1LawR23pGQyAxZN)VqWCQ~n~G=*OFVxwZ}Gng7fStb&z2nxBZ_kGO3xMAhbuB-OLV=m(*! zp?P6BIjv0U2*%49Auw{CGIe@hn zA5Ze*a4-J-awfvc5u$VB+Fxu)Y;!MFb-miK$CJig~cyrH32n+w|IBEqsg=Hb!g z@vkFZbmC*?fPO*x!7oKst6-3})>d(^!^QrJGUG^WNv`K;7j4|2phZgC`bc6wVgsa) zUqNoRay{Rtk8>kIOq?#|M|s9NkBl@&1sQdnZ8%6sdp~B>9jR=|1|GI!-U_1W_=Z>y zw1=%|N16H3(oOVu-olxR&}q-Z#&mklO4o8jT%KK0Mn3ags{xio>K`HYYboe}Q)~vh z>L@ts&+agr3Seo_(TZHcKMe|h72=3YM7o$TzxxEU1ZElxiBXZvWBM(-pF|O1D+rWz zIfQ<$G-CPDiwtU{VwgWo$g;C!kk5gLvs>dH$w6%qp`{`LI5yVTrF=G-siMvP(e`Mj z-Bems3z<}1rCr_1rDCj#f!rG*=khg0JVEpSbu^EN{`(cO27vwJOsxtaRdEi7qa+Du#}1Z_}HQ zAp=>1A78hpMZnye9kX4-NI1iK4*38_$iihMu)+}~Su>y}d*_za=NFox&o8e5+p%by zeBMEi99xIIYUf`r(w+$(fV#>}{6Ro*W=5-$8Po zwHl)>1p%*-yrhTA{@iJFy(lCZq4z~t5hcxkpz5fk%|7VEwVrETuDqH8QEZ3N-g>3$=(?UEg(kK<8VF7Rezz%lO@W(z~1UG<_krpcQ_xXrs0t5akR;F%)xcG2)?e)p(Ohq;RDy!Zn4ZA`P z@Us$4cgfy460^pw^63w>?3CE3_LNpKV*F=B)p6$uf`k~T7QME5LWzT$R9X}V3G<`G z$+VTdID6ar0>vTo&{NW_^L{xZd|02=`4W?I7i!eXeWrL9Cu$7iHmn-U6ybCe>ogDT z9O2*<<7m+g1}+sYtTs-g&au4Z`PBQ*Ak>DDWWj%>Q;Uezh_}-{D7Bh6T z2Wn;M`xnl_i<{TG-|H%&X=?_ZzO(K2VYHeB9;AZ9B&3`&%_dak!i7!Oh@JiF_%D=t zI*!v5z1^OsGvBJmI|)|hnb5Pna`%Dkc~vino-u*aLsV4V^{$YV^I|oXf19?4<-?Ov zQ;#dfENoM8x>t_b!7>;-UTfdZn!oMe%H3=b*n2R&`_EXz;F!+ALYeN>@Q#PzzmDr? zZjUeN7>_5aq-7oajNq{K&fD?o+OEE#XaVa$gzl9EW?-)fAdx$$F6GcMPCK0)r9Mcy z-)>Eu5Z0lBoMNFmyB5agBP0a_fy5^D0Rcfr`;#$L6@O(6^`H7V?)bkl2FgtDBV+!4 zys?c2QbF~RFK3!C9LXnl@1x|sY;g5sMucBFPu67fMMAg|WH1zA;#JsihmaK|m81>} zQKv;zzENQ0u|TI68--nN+%>NpsolH0A8_9L<{bD=oVa(?`&hotYhARiw|Bli>Jp>Z z!cY>Ei$Eh1L+b~G--+YVf_D#ZH7{#h)>jhm~(&|A^kq*V&`2WSKF-4X`dhQDg8$UDA#`ZRP5-fzmYJ!i7R`HRg&MLQdj5lq6|u2Ek`>5|B3 zmF~Aqkpm`j0vR0*Bka$|bj#P&dt|v)+ack24l2JX4#G!kyeKaFvVEu$8!^CdSR&=l z8X)7v6+uD!D~T~b=&wGvoM8tdSIN~kfN4xk%e;N?*|j{H(&kZolm2yLZ6c#Uk<60D zM=iOyZnRRwd)+Qtd2dAh8&%@{PUg!?0$T+-imRWY&;Cl6aIc)zECTMIZf@5eR|LCD z1Vy(B(Ws?@8XTLD0+c|Cvbd-5(Z@zjL?14@@v9=a?{zqla2sRCv$nbc%=dyFIij-Pz`_h6rJGg?~ul1r$(M)~IAVG3s(I zyi*_WF>>6D6#cG(#6BlSGgg%Zeje^$bG3&5JqQ5o&IJfAG@PF|9aAv!V0W(YT$2(f z`_p}vH21SmvXKwU2pAp`kl70ToC`n9kYQg3HcF@#sg{)sR&~U-9B?bxI_2Sh(<;aK z<>XSst`#lr=V6vl207yZ9u(9Ccc7-r?Qv^M1_)MJN(dV*Ajx5uJ~R-6&NrbC(&7{L zhA^s9h%6AdMbEW=Srg<$3Dphh5}>Q8$P?)R7iG#_Rk1h&P0fAaGGGBW3CCmC?B$M~ zrs0j!Y3+*WXIY?C*hrp6=jK^r-^q<#k$7&EkbwlLUuKU{Z0bM7lyls~0)kdxD1rzmWnfRW@L4G$`%7k|%P5%72qj1jHZ+&F_`94z7h zdPwjcQZL&!uJJ)0IyD#X<||FoiGts-sZG*+Hea6Gh2iqB*(N<96<{C!c{f6$$4CID zapuj55)}l8WZSj?)&($Sh zop)!y?lc*Rim)#HoQ;dy@H=b69n6V?@M|0SQEw)exdrL<&s+lgk|x&@s5*Yy&9$aH z923*Fqq`?Nm^vhM!Zr*y)Fj5a2oYTHF(c20vr0IDBi)2oDNMadt>f{xd`{>jUYAxZ z_7T7D2^+^O3sAXbITbj)7jU>wcSg-WVJBhLM-V@?fEpEz?HVkN*#K2Re>p$r^dy{3_~iH_7LFQG z%lOj%1vdYy5br_t8q$~FiUT7x(YY#}XSdb1rhY9(n@+K);93+5Vu9Ozf@9(#6ETwL zLwr3cjTY5`)1|T=x~%TGSF0(*oyjim5qr7WI$K~r<(tR79dtmhYgI;})1?#?eET;z zhyf803oJ%pi2gvwrKO}K27#E-tCdi1fw2j2ya=YKUOe z?-V_A6LjiJ!i#y|O0ey1?HQv~NI&%25yI-S&%~zd?LM94P(}mpu7?dQ{z;ZM>9q}P z0_VRs;wdda6Ua=S5b)MPha2yr?}0!YUz!5MSzhSG0f%1pEiF-VkB5nhE7G;f5*VK|zN!Kd-y*s$OuH*P1>tg!059z`c zqGRltrWS%Fsvyu5S5e}c>FF@d_JQ&=FjxN$yyzXR9g&6}pXurxJ)=Hw;ACkb9h)75 z7qEJoJlPb@5^!kH#F$D4Eo5bnixoi&EA_04v&IVa+j;EzuEn&;OU+ElQb(|8y&cWg zS{E>Mz+mkDBG>i$jkR+i+z%(d_H>Ef)(;1NrClmNP_U~~;MZ%(XFJQqv1F%F5o?4~ z!FnyD&FEn(B+D@HE0<^y|3*kNf!*7svq2sKsU=6AM^+>|+#ua}lzRx!>9T9u6E&c_ z%By|41V!Akp7O0(ITwo%54ZAsw!y{HkV7%OU*Kh4D)x1L>ffLAU= zFgRvwQl#X+smSgQx!+Yc0VH%+B(Jgij$Lu{(0-0J&-lwkYhx+IsGnu*yntc7L(`;V zVsdb04=>dY%;H3T*m$c7f-+%xG>_egWt1>Kvy2C0LP25BG^cU=i;>@=X5C}{#}ixR zY0vpWkNghLVg_vdyfaTtx8H3G;K+eYLPV~jV4*MLyHIIp&S~l6Q%I!pdymuv3pOO< ze&EN4E%}rNa*3Z7V5>0`6vaJ#b`BRWUb?L)MdL*~Z#)$r%uekgPv|~d=ZHk# zG(D7d>5ncr{`#OwD-JFPy%qU@Gul?lA7xxb4t)FRfz_gj1LMb$@^lJQk8vxm>9qfg zX;c~2*(QPyUz@K#$HA*0m!9*!J-*J}Df@^H?vkRwXXb~iHCx@p6hmV*BT?=x=cf|= zrwBDM?Bmr&G;tn70Wbva(goe*IumRKb?v6ebP{*i`>*ch7bC!~PvMlr{wmYGu^z?k zrF(DPFRkte;n@+zau6SXr*}0&N6R-@c%Q)(*dsfDQuvkJa+Gog2Z| zAd9pE&xhI-Kd!rX55LB@*4wZ!+{?X ze$(rwU$k&>zzGuKHHTt)pyQGo~4T!*8~eoOs5gE(tg- z`^&&3a?jBtO_+&Lm+eW-JU8PLwKj(>_o&%(pmgbto9H!)l@4i0{0^G~0EX1fA2Z=ieAXDjix{B{s-1(HyzvjO`;QN=6-ukhioup* z=~u0QaW@`&-VW{wfZn`PA3|ybH7#KVwYEpEo7aJH#OTc#IvbyNgi1I$pR7%nVM64m zQ^OPcVpFEzN;f*uzP{+5{@bJ;0_sptmJ+vZV}f9I#t71u9>T`csN5P?11}0DD5RHd z$@D5raeY{}LHWg)%@KUMRr^Dbx7`EDtu*uSFZg8CeMO;7L$t82V#eDU+D8xhWpwm3 z)V(>WR9hr+l&f1Ep!`ofaH;Hg+fbkBIe2d|gWI1dJJ2a3sv*U8qSB@9ZH$NrZAW`; zSH>=b*|#{9Nr{j&xOU8zEbz-8aZ_myH-%9B^$0m4Z?(jZ7+Y43V#Mmbdq&RwC zerlDndK?95)#Z;_06OBQtVUHjDsL58(a&CZgj;`HmdS}7j-?<#=#M7-bByH0<4l6} z)>a7V36AhN+5`RDJ9sOlS`da5e&_?8bzl`028W$5P4>oml<-_Ca7z!@zE4I`#w4+K zL^Q?Cc!qg2GZ!M63YMfbETE{s75F~mnYX*oNqe@9XfKvi*W(!7-Zqc&`jnbq+0}cx3+-=1K>S_`6<0+h-QHG*7 z&lDxD`I0s%!Mu7v8;#h~@ng^b90HK)ihN-NA)3NExxp>rDVr5hW-Tw&bxS(xWyKVf zZk%V6Z04pSDKO0f$3fT$o=uA!LPqO?>@$T7Kf>O9JA?%k{T%SrVr6!L=udXz-p#zL zUgsjmv`EAjfLkS_f@g=p=Uy37B>!#G&Kj!3vO1)Z4^3=_fODu`UThwc|Its-Ecqxr zu>MW*hYXFp`&RSN-8$_z)hlWad#>wWwqk_4c1bSeglkK<2ptD>in*i6%OrXTp)EI) zAzDz&;l4OEbmb7|1(LrPztj~3a~7W{c7A18PHljJ$k~BR8D~z?N@YIE!Kd!}376(G z25D#sc6PKLI&e`4`l|s7h&mSN_51KbM3LMWH>*`r6W*G-HG)mDY|8%Utxii}jH&F% zu>XAjQ{I_@Qr9?>%r9qvtjvp0qo?T9g2Y0o+j?H5iES6TM0kuhuA_kcfFR2*n=LBf zi!y7(ZFKr971VMY?Iru!Jq@gekeE-TO+NO4O`Rw!NZRs%?@kKFq%rRaLJRz^wrDET zr@cf6hg^mNp|CR4OT7H8%5B^4zuVEDp5>gn_!7r&FIdx)Oe#HvvGH5Hg~5E&1 zCqACv$u3JIz(=jpoW}oRFoJwb2X9z>kwm<<_PQpcU#_SAE$-qmy3U%l@uYy<@mP5l z3q;>FcozS^*n6wkxT0ol)6C3FaSSmtGsMiyY{$&Z7{?g16Ekz0nVDi{YBO`Y&G6^L zBmGw+jb^TnwC-Bky?1Fr)l;?V-R+JSn_Z9T8U9fCN{n{P_F6KX@$QI9X9E9Hg#Ovl zwRmC^{hVL}@cCAG=AGz+gY+}nY>&Y4c~^_bZvHkun0)nPleTjLzyCji=s5qc zAi8RG=>Jy`-Tt2tUHab;z3QJ3-EcrvZ1KDG)KBS=?xh{BbiYdVVL+SiyqzM|z zgjlq?$>xG(D%$XySMedf2Y&{*hIQ=XyGL!EFr9I7&}`oh^?G`VCKZ|z8NC3zr6!5L zd$H4#8<@9MUeW+LC+A?BWp%LrxcRw@t3~I5d8zv*z)bSJDg};=X2nR#pV|TB;xHv3YsC@_ZFYl6=en6ORqx z>g8kR=2|oh-I^@T%y@b4Lr(H?lY41R?nE{kO}3X_In9;(=I~JFiDoc|(-yaNc@n>M zA(=fwqw=LTKttNcsLx^kM!nFj<3 z91}`Tr4QUGNzB- z-~ZOXeFR}<{AK7k|2IP~`&%adUtOVpESP^W^u7Nwba)kwv9)Z;s)E(0SPscbMPW0TNp)4D4_ z^Qx=oG*w9R!9QTC4d~VJvZdeR8=R*hLjfgbkkN|-6N(Wc^Q21jDWrF}eQRE8nPVne z6mtbZ5^h=dCsxCx9sy9D3Jq$2F{%JDWta{bMjR$2+chQEl77LS2nw{Msm~LBoow$R z8{d&Z7$ybSnk)Vxja{QRb1f0T2QS=lGbpQ+x{yG{!wx3Ff=MYzznNX=(L=f& zl@4iQD~D2p>fp+|l~l$i4(%Yc6CaS9M=fMw`Rqodq_7F|QatC)c9wYZ%3LD4E|v&v z;H)iK#-5pc^Z@DH0H7|XdpFwVn4N$LG ztrW9d{#18u05?PF5I9Y`0z-{_Fb=mhkVpU7sGJxZVVH6~bIEly%+bm^DkB81Y{V`I zZ^s4tjb9*yIV>j6?Xbx*>5i^Usp(8r&Y`!C_Iz~I+)fo(dgV1~trUo+J*lv8uh+W?(A4mLKBOgJEgYe9Y0%7cn!UXwB zOPK8TE#1=wz{FmSx2{(b&E4w~r-tqv0-B7g#8+8_bv>8F+LRkzfq&UI-WDZvtlP?P z2*s!Nnr~9~wHuLfx{-G1kO=Dg)}2KF72GiXm6wKQO4vzhvUJ-IH4_^OVs8OE5(;1Q z%-rYiuuPs?e-TbxQwQx}gq48D$TJZM$4!@bPkuhjG_7Hv0 zC=jW}|3pJ&>(2|~Cu>8v3SRbBooh`)Rs4)uh{_;mWPp&E%bRVj7%ANw6tc+PkrZ_8j4ofVu9&>M9eo zh&v52oH}x94C4et`tU@)_PiW=AbJ|2boq@n<7ywjP6|VTs~@k8Co+t%GK{*xog<^B z)xEv)GlB|It*~(bL@f5?faQ~}ST5hDewP?Tk35T!~_@Ry;j~w z{b7^a0B;6@qWv=O9DGR$uF?oWAmm$KlIvTQ|BU9IUW-)$0t#1}++zb1R9BwFw=GZk zzS^ZfvYT}k$lMEV^}_d$q^}kwzz0jx8`3a1q<;3 zhcKl!DIM}@i5Z*?Cnrl5#CEw6C_Q3gvE@_oxX}vQyy@(Zv(e7fyq3N>)pc%YPId2$ zWFc`eDdty{GZ~sPYlAis?#^$J^#17NNWW z_h#GoAN(pz-D{Q~B%*$d`A%Vtf@Mev^dR~8;Lx${u20(O!AllRdX@0#bQo&Cl|RFT zrhRDvIUge>w%HYW-XK77vJ}NGzQhOL#=dG2Ye^-tRPkg|OoZmV&VTC&1>{lB_U!JQ z@v3+y^=RlbU>B()Tj8p@vJ46%&iV8)K5(pw`5h7b+^NJbyWv^y zR<45eC@DHS_(q>s!N<*+Zw@!U-UT-l11I{lRC^!!gfA*3^Vs;L!#29c*lD0@iQ=jd zm-`7{5MGK>>Z&0?xwiat!%RQ+OSUgFBIxLRryU8M4m6TPF|9EYmG`>r*d;8BU(o zsu+bEc8tq3%M3Eb$Qf}IQQ%W<&ACWTfP{qc+uOZFMhf1P4c2Xv(hb`ZT-_?rY-$q_Qt333Da{VH13r|Gvb7*t_nS-t{6V#a{B~5QL ze({*}%^;Dyaxi{J!(LnFtTB+xF7(W?~LDeBJ8SroryyxKtZ ziRgphzrFLElgtdFIwpXU;%(ME;N^g@Hk}Pr_21mMoux{+^KBf8v+<^N z5fph3#$QR9Vq_>DMZ-*Y!y%o2e{}_q_echqwm=DgH;~RP{%kjQMphuUB-Z0bEJLBv zPh6X{0?o)0i|<6jC->4VI)7TgUI+D`Va?(teA)K{|% zuIX@?*H~j^%ff^*+RH4#-5=8AxbD)oisTRzQpUxt2-+ET*%*}*`6y7A+2Fxv$pv7J z&6osDUU$mI(1w6a*;=5LT;7jxnjEG^qqeBqzR~UTy;(D4g%YpMy-B~|T6Y<51p#7$ zNkyhL{Nx!rB_2OPQbls0NsR?+t|#ZIxl%-w1n?2@qnMnx=NeL*cGaH-Qzd9(jK}<9 zmZEdJQR($tz&8F;nvZCiIENnUpjSUcYB0((tB%JuT^wHQ^tdw($`KnqM;UG_+SFV4lTfk2J>%&hH`u*)0KonGkPPP{G zSQ*H9AvpdfvFnYcC>n+?=|lSVTxpk;-Uw1%O|p zFH6tD@GI_%8B0KA>0I_sr(HJf!nhvyfh@_No+-5Io9TW|&4b@V9OkdwWJNLDE;>jQ zjL9`N8-BhhpdxnZdfAWr@kL+e>f+V`o>*sIqLiI}-s^uyq>w}ecn9fs2X@Ndnt6c zGk@+bnY*PNKnKo$Rch!7h|oTW-R`aFR67U)k~G zB~)$_mF}=u=XcZY2_!cbeuHA|;m}Th8|V$fpD~9lztGqJ#tn7K5S6|jD(k-c0HH%p zx1v#$KjA+O68_l0I1p0f@nJN(q38eb65Mg zg%^k1VeYf4y4ZSC0)DU+jG5)@b-T0PL)3RTM-HJ!6OuQH0U*wd$#vxxcI8LO3xJ!G zVx~4qQ2e>_7HFyh1iXmqK16|MRsQIRn$W#^)g0>M;-s%IuaG_toIM}D0>7*DfYrqm z-;O`xW?xB$rU@VUphc{=k5FE-LOzZNA)rEXdtcXkgd2ji1Au`q6ENUmzsWBq&erIz zpa9r3>o$sv78Ez5?MT!ST(${r7w=jgLhOhZvj;+UEe8s7pK6(N4Dy88H%(qo1=7;i zSTolr1g!<*?^3{alL09y-fw+q=V|uA=pJ!qQ;*2JOG=0$OvJsg@cS++cntn0&q7%{ z?9tGIN88VI>Yer;yxm(Hq0?E6!!0_b&g~zn{%YI^M>V{m5A>0{=botkTeS!euoyRQ zlKO%|4QN1h{6Xzpx@|2Vw~d|bcyi!g|7zfwOL+o58OnOBF&)ZI{3XBwF3g7glOI8* z5I2Gd$R`SDJ-BO2N#Q0SGBh$$e_e>H{&=w@^tfD@w$InS>3v+s``$knA9dC=8jirX zA>@hBf+xE@9Tzk9OXA+b?8A-yYax{G;W3T>o)HnV$f4-r!;r;gogjPVCc;!Zy_6MJ zeeYh9bZbC6MnV98yi>|zk}T8@3(p?2jZS;M8qMau;(JF6vQ6_=cSXjW``dvgXjE_e zOq@(QV9XV%a&NKu!?oe6V(Swn!;}oKq?Kv)khY-qHjn(+V=AgZV3%~#q-k|}xtwZadGSpl}kN(WbTxZQ*(=0DBXy9Q?|5NsZi&8gj zjZbEjq}ea-l+z~zPgy+ zqAol}I=t0ghSyB8Ji%D^MBowlr@0%sNQ78CK%XD5!L)D%ilp=%Hs+vycVz|Pe4HX& z^UZj>a}2}2+#!l7XtwwK^A0bUCe|68&_GqS6|b%hq|rQ12=wN|u4cWz_s=QFPU>OU zjtz_fwaN5adsVjP+Mj(&EQV|iJzR%X6nmfN?|FB>(=XlmB>3Pt3_ZIxIaiD!Hb@PN zPkRI~LX2nFEW~F&h(w%C$>$HPp~fTx_W9ogtUNctY?xv~3CVk9EL=rQ?=-X0Zei1S zU4;rPS8QjOP#LV-z;K2AbiQdLvf5ce1RQbq$*f4&#QQ+(t!J1V83{28fS_u$Ec45m z%{ke9V8k_{Su1%tsFBM0IwE8-$Scs5f0K(xYvIrk$n@^OK|L$1YT0k~!o{9Gi5`}UbT*O5#9kX%V zTo1%2H>p^b!kVg?s$BjFeSTS-brwc;e~1=St7WgHae$fq={@PNobVizBj)ylpU8Pk z)VOI^#fbEKR`#zW;(CC#z)ko5~ez*O;ke+Wg-}Xvq!FL^7t1$RY zZJ{++7fHNGY6j0ulTM=xrmjBDCP^K2L5^THgY%Q*Pxj!%BG$8Fdu5`+lYUHA&#oW4 z)0tDQ4S!r`%t4F=Kj$npHZob{hKee_q#VD(#R(OjHf-2S?3B(0#smr!TqsSK`zQ9` zubJjY?KYqlOqQj6`&&X{ftM+t+^26I$gb+@ z1gOiq72Y(}AgT6_dyVIw1v5p>hfs{Ot+#X%a^N%F7hMMBm*;tCC=EWnG8V9SXD)+CD$UYiwAthk6=UeGQ2< zw`u6hy_cB**TCQ;rbl(kvNddpa5sAG&=fuLV+^J0=5IdZ+Ylk;cPW;Q&ffYtG=ggM&9{^6<0QV6DBGk8&1}^D#>*6GvU1Pl9ZST z>n=o~!;7Bb1)X2OtCsEL4hvM~&-@Oc(>WFX6D4h@Rag|Pg;RN(HXM*3L!Tmy_bZb3 zuIvn+5tWHEK9VjeIVbn;FE;vJgAW_zFE*9j;K0XE4}d|s)}&{JnJKY46ma9Cu~ZC= z8Mw!Hs%IcUTp#y?)F<%pUk8ea0Q3iZ1cT}!1O%eyKbRnL`#>F7UXFncB>5HeFCU8>Ez!cV2DOQ^()pp z+W4*4czkSRbAbY0)?dy8tPUr$DDu4`W<*1~qcXx_Or>q;0+Htb-UJLIZ}s&sk*THN zb#)`i|2~I^`X?cU5J^e>@S6u+26KM-f~X{2H4!3JZblU^K)pgvRyAfO8aX~@WoNKC ziSy_e2!k(p`Uz+r1h8F0WD1 zCEFhd0g2xOICegYGj}6f%tK;qX)>HlFOFJL|27B4Zb;5#KW{lU>=Xu(o&=Z{iN$zG zx@MG)tM3IV_UK)FYIrGG+3~?)evIgGU)oo7_Xc!6o%gxBTSl8F_!Lv!Ki4$_3?j+V zZclwMIo$&^>%mATAvrBE(}5SiqAy3#A`%4g^0XE7Lp_!i?wE<9<=Xv`mU+J4!)SOF zrhi*n^x>#i9|(w<30VE7|Jdr{j|mL>iAi*sZVC36#c72#QkeXQfN~c^HM5^h=bZRs?V#K1 zQL90Eo}~!j^-wXa?^njVT*{FWhb>N%0`;KP%?_5MJm|{46(=tE>QY0;Mc<3)X7XXd zQw7&PDQ4?&HwzBuz>qU$5Ei*Xd(=bpQ#46q_Bzg~egI~*mWD?{`Iqu zdm(l8h1RoW{IRnm*xL(|hUv+1+`PuD9yI|Igq$R==Mu_n@Nt7^HMcU%L>*7?PehTs zoB`jUIhfE_ucSq8Et)A_1eKNBBSYpihzuSFc_L|X9GO!AMgt|o+P4F9z6Lmd3-r@v|~ z3=R{v-bcOov8yhs)|!UAw;Wo`XWS>ltp=)gL4%`{i3YRVZtm z)aOmTqXs{u66hDgiE?l0gdpo_&iwk1@fKD(=wId7$(v}IdeR6h6W&&37 zK(XPdhQ0u6p-R)rvx37T1HB89@cinqi!5I#MbqtrY~5lCC(qUNh5Xm=4!DNy8l``e z?~SO>2LYIO@k@_1V>G9|*MZBhY5r{PYqU|*yq}K{Pg@sL&JEreg>pK}BY zIv7)CUZbue1&an-9fx{!9j&D*;# zOJ!)iqAlC3O#B)bpB!AiPkB?2`g*IH>6hziZIEk`EuXC;8Y?FLZSdeX_BGMVF0O4# z;`sIm*To;f+v8ZMr%;uOS}%&IOFKH>JbiuwovcADja@h*nK|@F+{@;K78dIo_d>e` zU%yWAwp;R@o`>Nv?;=CZluFfaqy`hC?7r|V!n*qQZT0(bmLL-Gcyfhb*M0$qxMQ$6>+2Z)lS+ZG-4G6nu73h+l4zK##!3r4S}!m z{ElX_4)gKF&5SrIV>h`fw6?h_l}y>?5WWyid$H(Tx%4F^#soz)n}G@Jevk153}|V4 zzNZ0pl*LC3)PNe9PsKh)7WzQ{`Y#Fcj``FUyVK44>0FCNzqb@_Z-r?xGd3lk2c?s% zQW1-iHOUFPgwnH07QZ)fLl*5>YO~h?qBy~T5fJFX%yHed^IkCAy{8+$fwX`%oiOw$ zv}CUkDC1g@o@hZ$n5RJ$UFwCPA_t)OhG&(b#f9qY_m%B{9r-NMn8F>2&D9#`k}+nm ztRw9^z$Rny6=LoO!%Y2qrWvw$?0PM+krU(a=iFO1d4AX+R2J7UvxMz_A~NQeU7AsK z?wv&$vPqI@Dd`*i$%z9g z_S$@CxgcVd+)ojuB}?NjyyXQr>CCgxy3LsrI&k6&nH;AYTjCvYzRc3=F%(NW(9Hqv zs;L4`qI|FZ3O|yDRb&w9Ab$S6BN|0|MTa$;BG z#$jDPPe2-?P$@#r_*Yu$qhSLA-RIy8=*%&+g<9^@Y zY^$l8kHbIQs+b}O-zE%i$n#A^9i{bm-s={hq83TZ4ViIwh0G^ri61B|Nt04^>Y2!O ze+VbC=vgADsj0%pRS;6?8&G^oPaTrBN8eF3oJ{to|G}!AJDw_Q6gdc*2i9m$3aQrbVLIf4!=#VhxM#4YyamBmp5OPHV z$+V1HR-W);6lG)=1SqF0)_#TpU$L3MLWTT#fgsXloGJX6@K2aqdDw!{6Lu8NLAGUc zqhWD7-X76eS9WX8_h5wm)u{Rev~4~myfx@)nT7dn6oCi{^m_?Zl-HXjaQ42#e9Y}=I0A09O^I}Z=B~Wn(H@ckPhK@wEO6sjANup;sDA|y-}Nc^ ztUctG+#N{xUOcOY)6I*TyMUkBtFNy54g+b8; z|L^!;3;eGI{?`Kk|5>0%9im7HO!B~K9cazb%`bWK(j>Si_t=ZhOaZ>80c)O$7>ksE z`h~3Vu@gmNR=@l)4V-z)HA1bijNdLc~xknZg<#oF}ve% zQTw@}B>7hkv1`H~Z*PC$kgAZk7MP3$jf>K~Je_$JYk7^P=R^nct?nK)_3G^pUWgy^ zaRNh{L0cbtBmL`z|9t2_o{NqgT(C(S{bmbE2h4;cH5%%n@3bT1UUsE`)Ghl^8xxIW zc?3ftA)k_7*{7&+8F8Vvkt;F?+iIbLe5eTgnVhB&@b;Oa+5|G$D6&2M*J{xHeHM{b z9OYXVz4-!|TOw!|D$~r!U{xUgIktmjA&3%^a4x4GHvurN4SGzQWNbYhJLp8gR7-8D zKvF2W=qx^fjqf&k#mA0W;^44X`}x%C4w|hE!ki;25|Y6R(T~aqO4_Fd_w_$0qu^XL z^5&SGFTHJh3|$-CuDZez{jvp}$7|u}+pzz(U0&};8-%})m$~8uHC{@xJh;V!Cg?7N z!rB+8`%?Nkd+0APO1Lo55Fs)FA9w^Sli(DWsX6#MWfin~szRX;V$+o@`~5Wbtgkal zdQ*2YrN9qZa_O-^G_C9xP2oMBz``vj8WH@TKl^~9SbQ%w-y=jBMf#NcYL$taQUlU= z+@uXYx5RLs*(o)K`JqkFLh6#D;Q*23Qw^17WKuaClmf5&P94*f`iG+9#U{*$Qi-c6 zEK923g&sAd;(%h6kaSbG#rDzbh;l^JdN`Kp{L1k$3@)#e!`gC>0fss=k_E4%mV)7! zP{4B;{R(>Sb9a|{2ZzWpS&ZtxOb-G39sxne9s6Q4ANz!_`JRtJO&N;4Zr$*K@k&eR zZP(-N?td&o|Kx{&Gx2ave|I#IzZW@m<=KWTT2ZP0lRNwX`LFH{V>8RFm2L*P+r?1Z zLd6i*p=pwml18$=Kc9?xNk-NC-pjVwPLmJ7iG9NBF$|fG8+B2ag#KNuNu-Ma$FK93 z18#%C2nDV%P@_3>=a#EDvElTU18_^eR9P-G{O>p21~5Vx&kx?)g^N%J(=KBn$wgt* zP~l7_5cO>Qns&SSFjh;9^KFx_|A2ZBbT_~hmLQtA_Boik`Bn|@@{bun&$Pa1rb9>e zF}B~Rj5O-Oy!6{8$7w{nY6of@_&Dx}r@;`hI|OP_-okK!r8p6`zPs#dXnnm>%vTVm zvMpDVQ@o(?GCt>A=2TOEO4!Z2K4}T6fqyCV)rtSl?r|MN3$cpZbvdkGzk!Vra_Q2X znFF5=_!U|oW@tU436*%qU+0yJ4n&jd8Mfil#~odaGUynl)Gjt?9>#IC%0{*`8C%fV zp+y#5;w~#MqkKtTw5x(sd-<{D*_2s3M zW^OX4Yvi4jIk+|JVnFLT;PGBeEYlC^9zULz*5c; zHeI_DAM^&e=~ZCbd(O4z{Ts`!?VEVul`!8rIa=`f=R!SU?qNf`j%eY+_*-`(C`r<`u5P;FoxhuHkQGSm< zUilK1Mn4G;_>wFidja@)88w}mgEMY}?Jato1~RR#88}a-@yZ8+*fN&dU1-9lZMPNl zIQImtyq}XaVyqKl6m@1JtBF1uKzWb$hjkS~AnS*ixBP#7LvK(61RZ#3t%#fEviKWV<}k$2S4OfQyy`lxa--9XQp3|F_B#KP+?YUFOOQo_gol7K~J3ESZoZOkyDDF!(lNalCQ~@C)9@D`J`+5ju&iyzBhfo5SyY zLUMgdVbNFQchrWZGE0>gt%yGP*}uQz@8JMM4#r9AM3Jq$5&ORM=e&^ikGkl|jQMfw zcz~{Z?%Y_!l$JsqY9&sv)p<^t1R5jVWkn`w%^%VGV@?=Cu`WF_~r57G{jrZ`2`-_e0EI z4cmoR-HjC<`MY~;FK{ZO49Au&+ITyOf^14#q0@0O6klHctXGqb!2jKuHe5J57FV^o zUjG(iY3x`t2Ybze$70PL>JdZa_jk(Qnd8+RLxFDCOKF5Q2_qa5a3Of zt2@i)+oNauwe;j)t3sS~X5gwHzn7x70HfCCpXf7>I?6u;(&0O;0-uF5|6XXl@;EC!TV7z1 z`Bc3?CGl|)XnRV&_wR`Ax`z&;xF-E>4m%V0;z;4p@^1gz%AX^#>zws)LPq$*+Az3k z_5gn*g>jjjPLTLck8U4i&}ob0WUhCQr+FC_)oD^^4ERHDAe2aM=JCk_LlQSVw)jf8lEw98W8-BJWu3yMmIi4aeG zof-&@Pg_c5bZGmx21v%CNI5^yi z1-?cfax|ro7{z$_I>ea8&RhVPzOetxmxqMDz36!S?pTc8j-!V0 z=HFO}sP~2})pzA<OBnS12YKhgdoio?i`qg=n5c}O5JvDFIY7#f-1Bqby zU$d1>=jaUoVmn6J;q{af%c@1)(Y77_jGZk$&m`0ThO3 zR8J^3BEn41hY#;;Djbm&a3;y|YvxUT{-rE)%d{1Wt`4gQbpP2sXN>RV8WR%7y{f?v z`mNg|WN!!kB@{tBL7viUuM6}3?1{GwZbcRg9d^!5S;X;~26qd_ecm%N zjK{)Y`t!rw5FjtgZ?6?ysJt&MwQ9EcsV157T-ktwqS%iWs$4THz+En4mV2xW$!I_sw4il2<(T|Tt9M`K6 zV`tnXku^%0mPqg#v&FlOpMBK7J-wjMkcp+dv4)95&Q~b)o-|zsbGppN>PU0a4TX2+ zkG=t(%a@HEETkeh%9AK(?BAU)w#}OXl-01X&E*MO_!`5hhq~5l82rZdZ|?3k)+N(* zOrL0ki$EInKefV?pWObOJn0mT!g`DZ_Qs=f!gaPN#q-#hG~T|8hW8g^tJ zawhNW{mL)(Qr4y0|LdLSp{xWkch(aLm6{dEl2alVSDSioC!-|7eiZ>>fZoI-zKP#- zyt(_YOnp0dnvy+uhWFWd5gUQMd&pAs{e3`#Af zTbev_@9Z-Yu7TydAl#0L`hvpJI+9DL{;_l-yhez6aU6Hx&_LfP zA>@I4%l}(%y`*}kn~ORSr@(q=X6K@cx-3Yi+aV{oSE&o69e<$ZFm<%EcN|XOlomfR z6@+~35{wa&D)k6{cy+^6tn@>D$oMQ4u@-mWqOA5k{%mdA$YD)lw%|m9Y>>m?D@6e4 zR7MXH`3JF^NLA~Qc=SjrYE=k=#pMhC+o6GP&HLZr!dq#0C>FSmboM_>k`_j^xz8uO z?D-Xr?oGDqd&~aA7B-QAM~qJ8z2EOe9dg(B+ETc|dIQ)*I5Oq8nap@)xs`3wfRpy^ zshcjMc5jKHUgb-2e3!*XoFV}%ppwI&Go*?^Hd}q4EhH(t$23c$d+^*$(FEp~K&oh) zm&GLnK?20`d&${`PuVO)^&7{d(vTX1Iq$B^qB5La?PZE{^>CV@Q}foq@M|e92VEQ? zk-(#>w0>i&`R7pW%G7fA?x_}@hD&Tic$_K%wgy*Yd<_KS10G+cX=sLoKplYQf!l#n zcN)iPQbaw=fN`oP)hj5nO2o^aMdIabHNgDTH7#L+S)p~E;(JJzY0Y@rp}V2y{O5-- z_t&)K_A#qrhRDhX>r$2D=GGpeX|T0d!hap>k8lXOhNvdKfy7@%kv4cN_UY*0I3^)(VUj`>Xk zN0_zbpPut#=ELm64@Vs- zlEGH21?;`1Bb)?2ZQQyfoPauncx{i2R};GAL0$!DVxM`mL}l(@0vnPx;3P;oo-I2?&R>k%-YrTxg;72?M8E5@KeKBZ<9M$c76h)vdlU(ov$Y$$fH|VHR;U}Ax?H_ zWNrRBD6Su311xQ~Z(;0KgS&;PM`bS4W5st5>0)OY2;IW?f1}d^Ivp(1fzVD&Y!{w` zDDcZUnX~K4%RdyBbttDq*`NrXj=&7(M*d@QuC0704yS;$C-OcR2CnTOar` zjF8;Qm~HIh;C??&9f|(xE4FZi)8>VOubq&qoW;lAULRJ0Td|*i=Q#Pq!j5;lzXwOG zKx@E8cki+8b4$PZ@Gd7v73x^|3`Q4HHk{{6Lpbh!#NJcjW|dSAcsg$9GgEt!Zm}#p zhidbcbZai%>LwLWY-!u$zUBcLBpuievn3EF{^7AB`7Jj8a1bDL+?oD9F*UvDc`Uvg z@{@Q@i^D)9@BA0%BXv6V3{X}W&B?FWRq*T4>IRVU<`!-!Pm(+>O}mJweSNv4r_jIp z>OCCw;~jOL%B zv2~MR7{aK|wr_RN?!0Iu3bM;gZ4?grs5r>@`mcxs66X;Fvn_v;h)pbYM-t_c?{WG( z?^D6m#dBg)uXzPAerN6xg{O^*oVRbd8}^M7hWe|-vT|pyc-`4GS#F_%=$};XT&*zyQfI24znOFduN+=f?GX zx7Y8!0ruAPZ)QMFYANx2TPEyZuBy~Rd~&B^@jSkCe1<6^>i1~+x;IP@To zVx$~ThDCA6PgO$L{?JX(6qX|!PM)_3zFf-eqsj29O@TkOIpEcwW zil;A)`SWOLnzp9pWV>|t1o6vYginQ7O!Y7gg)i%=khwSL&RdXSE$mp}_>&yOOkE@3KCx0WZH#-{} zO6bp<+33;D(XG7c;!iAN_(W;i2@~=RcOZ{8TPWWesRU&^vZCt{B4&ykTPL64gk^L} zKPOcYX>~s?b`3Ga59HIoliN%z!)WDUI)PpNWL-N zS^zF|#en+YSu?yVsl=H0;=+$;7>k$!aRIKvGbh!v1n_1bE{NWMC1yqQQlb?iWlG6y z`Zn*SfodQFFn}=YDv}q#mzY!9l;7(okd4pq)_nV(%-~Lf>1vmJ^Wd_0AZ5tDcD;v2 zXLmDrD*u2(M|#oXvJvQF*)vZI4`jx}BHcUZz`N^M7=QUj>Z*uPW{_kU_I51%5C(5c zT3ZCNFrQ3g%hfTveVjYeESB@lO-1#MwMDYr>VC$)1Wk{D1Jt60qzwK%DLNc?q^;5P#52Mai63g{UXRG-HXpin0+r5wUB{ z713eJ-0axQABXB52C|5*8QFd;MY6yb&({||)FgjdWR3YRe-wZb?VjLyb3WiZ%`nPv~ffL~eJ zm3Nb9*VD)qaHz=mR)M+cZr9IMy8$OYmGu0|n?n=<8019qBgVJ$@MxVn(=B^jEhRV_ zCxu#FeA2D1D#J|<<*kpuUt6E}c82fTXo}0Qk{R}H|Ej<%w{kceI@wp#G4Q{4YWqb} z#Iqbd58(VarSX6qT-3J}oovL))f8SuX<1l!q`?s7X1ux1RrnHKlB$Xia%_ljU&W*HcprDtfMqifXuGTPjNNuT#! zr3E40Jo>o^PB(0N?oIZ>Z(5JlD49Uo>sBP|1j;qp3!j)LA9zMsya9Z<{j36BWgl+f zc*~~Rh;uj7DPSTZ7HH^5%9%EKeAi5WlKfN~S5m_q;-r*ppa6|f&b0@Q(ziSI3f!>2 zz&{Rz(Ck?F9P&r)_zAlSZ$%QL;M)nV^Efa!@Pk$G+Z{Xq6}SKI&Pp!=nVxDg7WWGO ztx<_)2RIunGo6;}UY}^5S+lGzjyrcTtsv*>PfColUi>dbQ~qpp@K%2eHGIejE#S#F zyT&=9y?&BDb_S_qW#gYcS=9hB*~rtUy62Qt+oq7}m0sq6U1pEB4;?i*8kK(l>bEYL zl^0+b^KLTyk5wECt0UA-TnqRVvly;%(xO^houPEr|mJ{Vk3<=zyXk0!8p zzI@tMvy2vJj=mxxzmOQ&5UJ*Tmw^}`VRX|A>0hnjEW z?zaAnjId8J_s9jP48O!yr+%g|+7%@R>t^YPW{pkD54_|h|*y`rHr;8J_Ia#N*3`IH9+&kO6jFIq<)Sk1)qsKboNNKGvPI%oU zASY6nQ$qa#fc^$lV{{z)1b1|)zqf2hc>j}|PK7z3OtOvmOoJ}UjYx2r!G#j zEX9x7a_)$^g5$$nwW{U(x7MI*?3z6^NuQd$p07Fu{ba;`ccECU%dZ<0?s1&7Z8!#? zv-?MU!KXl-!UV4Oi?80ou0ey3pLDXfaP=HY_8L~qm~#KrCE9eH>v;R&$tAofJ?K~= zRfr}Gq1&r{zn7b+#4|o=Rn%#BI2dpo)G$54KRAZeJ;On#I&LeW>7deTZOg=t`#%?-K!eh)HyaxxnR*_k_u{kg1?4`nO}W z&mk+2c;WPPm}Hy35@UM4RQ{V8y$7jNm_-?jN0VY+Jxhe;gz1`6nUZEKQB8ke3&*R- zCOh3awZs=D(4JOoJ8&wpK8KEPOk72jlq0yf@N!Ltu}asL*^r@peU!qpe9S9~8==c_ zyN%TSCgI0$kx^Ltn2*_#sy}LB^Aw3lUW5|NNcs-|w-np&G78%C*>K-r|1PPCxCTEi zG3|kO=XCWz>52~&k*C?(mvC|@sosBbz;}1vj_Ft|SLPdtji1`*y&LQpKGxK^>LxN5 z`G}~P2xO1-f`t1CzzQ?0;3BJW*}ay0u_Un%2-8(+^G^H{Zqe`qOZ;I>TRYppqge%Cn zMbBy}3U1=&V43^*vMsVwh5Qtg0L$m4V0v@*je@dxOJ~urA}MAwC+Fn~-q90Zt+C4W zA0E;L`nB7k*NFxqrQjRhCg|y>r?TjuRIVt#=R@rXY>KZ4$e{x$HC}ve-)z|wV#cNE z8`Eanam#sa@Fr0CkJixi|DON>@)%F$>f4Te$+pCFED;>UoD-&VR!AAXrkeD5$Od{( z{v+*h(L zl6MkPob&N05r~*@{OPt`AiLXJIMcP~tI{FTw|@Q;TceJz<>P=)d*>yNq5eCY374Lya#lK(p%Bo-4j(?XGv9 zGQ=H)xYH`b)%;+vPegT)X44x}?TqWryb4Ie3+y&G8DK$q1Oa%VE==mM=8+~K(>w6)*I&_R? zLm-swK9r3Sh8^?#NeY&<__vy;=!c~Y-p2&Pg)Gt!9sc(mnSw@jYC843o#tFA83r*Ph7nU#(l7To4zP1+Pb~Y z!y){JW;WnH44J+#gPIq7n>hH8M&eV0Ht^eUcYy{P@Qm&|d_*~mI!bzfKa}Sl__Q$$ z+@v9-lNWFg^gK3pt{51N_AP?L8##cq28D_KL52CgAw5sZ*!@rEDp95+E8FMlwN!Et zwCIin#Lja$g5pfP*^V_4&HfA4w4Ip+TXnwrY#^BcP$~FY-Z>6A=2P93>JfNr8^_CU zF4n3_9jZ=>%QH~SKq<-#8jiG>Q$8GOg$8+^1#=%d=NScSYClYPCnm1P00e{VQX}U-+xD7-<}ZjtoI@UJZ;-ak zR=vp5uYJ%oO_P(b1A*%nuG{A>c6w|w9@t4Sr%fPdTcm=UvJd673TPz`T|~pj$%xR2 z9V4G4xb`AGP!b>n2C3r3PbKcv{_@{D{}TSO2~onyz72x^8j!3Ax|f1!JcK^^Wj~Fy zB}R$R2=RW4FFy3{0Y|1n9La%*HZ%CoY!4w^C zE`sS9baakh@U;>nQ~nx|Q8Ar=r`*1eq}A}HHjfIo*5F!Pm_Ly~G!LLIm)}fIJGW!y z{VMvK7@7LNRYlji_>7(J4Xuo#zhTZ9j~)5zl{SO)W>2aElSM?Ft~T#U+Mjwi_KwEB z=Ruqlb?dI+L{PLvLOz9C>WH6rDJ)nu1A0BqI-ZtI^CoNNj!qiR&;+VH1D%P#kRNly}7=CvLEes2SC0}ZP(ViPe| z=!>!*>n<1C?_cOyF!^FBy+CC~=qbfqFP!XPxS0${$_W`$&klSrK>f z6*KCM@39JuTYSlUWw}+iFNtE-n9lLuHQ!j}_Z?}x3n4GLBY5v&$9!Ta--P#GH4)<9 zs3!HyQdK4x)X~)s5Zv^xIOg|4IRo@6h;_J zXZ+c>hl~g}(Ox`;=hb~3mpo2Lf$8*RVaVp$E>5lGjxnR77O}&XeIq0XsbKVG?A)mA zJa!ul*ZpNc-kZkARJBY?>@&(TTw^@U*O@Vm(y{%RQiq}B#Om;~%tDEZgk*dBSx11G zl0G8Uo}iUykgKAV;OnK&d3P5_%fGTrc(F0T+Es7XLZ_Vx&Df9{R_%|O6pyQ|nj=l< z79G2yV}kaPPlI~0a-rkbp z+0GyOX%uMIM4N%Xe-t~N*uB@=pD` zYg|sW=H`o#eEmi2Ro5dGtx^Knhs)qs<_4q#8N6+ABFE39oOT$)K8X>2r^@)07c7c> zT7BGtC#lRJ^6e7d<}^Zvsi~nf{PYEP>3!R8%8qmKwbc@!OEUqFD~<1x2QQ}Q;Gk6t zWlfC;F4j&J4BDc`18uLg33OX2GItfqP79w0S@(}EgMfq#tge?;yJZnymUBqSrT0;j|pM}(`SUQx-9MOr|frHj4V0!p7&UqNvXXmiO8G=5}Gf@ zShe3H91z<&d813xh}XcO>VsSF+qZ#jZNVS+g~qsQxJCDnc6h5N^tF;^ z3UU@?1>kN2lwSO`vwKSVBG*KFBRvzTu;}LvcWH=-!Jgz?Z{W#uFdm7w&D|3__N()q z6XxJ~Z(__1c6u_G_(Y7naW2Kp-Zx0fPDcBIO>gEdte6X9re%Eho6_gr(S1}W?hy0* zR0aW9U;GAYd$vI~rh^H*HoK5*k_-CuNU?c%pToE0(6EcB>&5dqR79KSx~$KZ2(?!t%Nl9DWe0tQGGV} ztoCL`S^CW?r+4{{y-yaWxpp(pa)$o zek67J_4Uqny-9Qu$VGo`gF~_b>$?&fdtKVQxA3*JsMD8%{LW^jMRu9bXwxZ*;F|!F z(PgnTu0DB`Yz^^|X9#Ye#PEg6XDxG9P@@o0qce%(X@wutd5!Q;xjPfjdz$n7J|B@$ zJcIoV@Yy?_>D;Bu?LUtSv;8d=TKHR&Du96NNnG#s^B=ph@5^m+hIp${(3JU$Vx29- z(vjRu96b;Cc>a^fjB&ZAgI8)-P3ZFv(<^4G4Tct;><8qPEGIjH2S3ax1nmqG;Eak2b)#ZqJCYh4 zRR&@`&M^l|mP$b;Ozkw`Hn2jK3BYV0m}y27y(htEv?X$>)=bUz=ODYwsGhN2!e6YQ4jks`0Nr$-n4J$-B2jz}~b0!2=oiys`lt#c&z%s^!B0$_M+? z6H93v)U~uc;-Y^&mU{P-LYU4&o&UJ)+UpO{mv!5Ina-f%_E|JzfZk4zIT(uAd=7j} zSOAw&ycYY;&u=EB3fDtaqFZT$?#kP{MqQtn8UW24hm3hhpTkIq46bE=UXP!$1NKo7 zhiRgfCS~Y_84&}OxJ2f(90Rvis2%O7XiLX!B{NP%%V*OrR0%v^UHDSlc>m#eN059% z{-K-^eE^h(>D!jO$GPJ(`r`Y zQvR#PnzLeQquG$9`>IB-Lc@=oXmT&(r013xe|6#ivm$7HByF%qtT7}@fNrvK<45IfIHH#S>EMw@xx1&=y! z{osFis!qQ0*{yVjm)Gg<4|bw+h+lD&=ewYg{Se^!?38zql4ecTl}qQ>W`^HJa1A1! z7&_NeI~}n(Qy9gk$c7|feFgf8sq@a50sc9Ul5N|=w`A-<}fGbW-;gc!j)c$Tm%#vjPh|s zIW(&ZvSuW8T^cjMLUUP) zYoaV)q_Hc#;Vu1$!97lX0`}d0y;J{`8@7b_7;DE5iiW$@0;3kLszm~RbO%v>uF8k| z6z5iuPr*ApRsYY=Rl<_+l}Iv8vt)Dz=&fYu-iXNi&pdke?P6TM<^JT}6LCO{`v38} zmQP|z=B(1IupG~(G^nNv&nkd8fSJeEQdzUt9?*NL?B4x6NSj{pS4jU6&|&|WQSUvx z*$6iJGIeI8tD7MIj33RJ_)`rF)NOv*!I#Wjdcaeoup~s}i8&l6w5GldM!V?R*JU>) z9fF-=nveoktMAjgdnm9gr6(#W)LHWLX1hw=L>R9{nfc$C-Q!N1eceG~idg0m=tRBX z{IePwwDp%-ReR1boz!)@5jDF?Fx7{)h6BbqcP#H7KVOaZxxs&etjGkbsfbG^=K2d|< zgCXR?BEO2&M(n*2onYK>Hk~mg0TYu++P=ikxZW9WCy1UUg5a5G$qpj&yld!N*iRm& z>)WTUT`a6Zq?X$aY__d0PFX1I@#C!-(49;!+V65nuFq>{OW1?*%;w)>REQN{iFCO3 zdbqh zgb%l(zoXWi4_$<@0RCGZ(P3*|fLwA7zq>s+H5-T`Y~u<1DQFhDxDTO-4ry{b^oq-n zP>?GLz`6L#OmRf?Xf(Mnx{uG2;l#qz+wS2U(dUUXuv=aGw^{(7h`XgL_q8ZL6rVO{ zZH8iz(=7*dze;#69y*{w$DCii4zaEz!4WoM$=0~D3%2+)U)ZD-&5+bq?w0+V`mtO< z0XV{J&VPL5Y4ka&b#Qj@z5#YX-vO~QzNz#X0 z)xpk1nR{7)BWObcm3T(;&jV@E90pj<{z94CgNj9~N(Up0cjUt0y27*Xd9rRR`mE)h zl5;)orA%H4!6+doa9&}Q_j+sDJbz3pRmE=yqn&{+KM{IkU*AUM)vck*lNS05cDpI&brY|Nt_PL>1$#mZSI zW(2;?p)6RvxVr-e?xLw}f;gPS-Sc;dsn00Q?Y?}AvFr&OS(6^NL%)W_znE#eMD>h> z@GsMH8+ifTE{xVr(yQ4tGHf@UO=}Ts0cNu30|m70pyyU7ingkGU!VksCx-oUV%C#6 ztt!^nW!4$re<`9cuq}44+pT1yP@W(#aISo0gLL)&l)JEroDc+&f=rZAQ441b%@>y- zB@j`EiVu+}F0+(=$^omrfY{GAoffSZJ`S=o6Pa8Y&?k1%{32!YEaG=Ez8eSptew;8 zl0Km)9@yAR1&$Z2!8VK|U`B@3h(2yGNrsGjwlde!0|G_S7=bm`$N9g{p{SOq^sKTl z?K*U)7WaPV@-n}hI$38etBKDmm*)ehS8<+w`;HT*{uerNyk#g-Hg8AGKCO@6QSi+U z^4FUR>RL6_T#5et`P@hPjWGs z2xo*}%V+^RgRzmdVk=agUpFT7BHZM&<4X>Ck6!@|tEs~J3)~|salYOz|Po$1J?#b88+{yF%mh>2( zYihQ|Sv9_vqe5GEBpnHN)W@cc zwB(X5s1#|6Pu1xXtiRihZ}vByn!i9`W36KCv&JKexr=dO1($^p&!KbV+EmD|Q3`K* zbP>NA3o~!vP#qP+n1gu!M)^P3Waj_oE5q*Ou#>o|#jRy12gGTLIX+p7p#%>&M#c-dc`HCLF z7{-ro%j(nOKc0r|M-LOQp96q)U{ii80n-ep)v63N=8qxm4PHIWpLJhoHZ=N-370T9 zAN(n1#}I1g$<#F$p?e5(Ma4zQ6%HlKcL!?- znA0#M0P3YW+BxX_kYC5Q7q8a^Uoq`>CdynQrn@f@0w$RQNLQz zt*K;Yntx8$v4_f7lZ?5W|H^2T3hW&q&A+*wQ_0i49*j8y^%d3FMiw z`(Y2!Uedx`P@nhci0-$>eGLX>E^Y1}>2u7Pifc*R#eP{{y#V=SKZ?kjRh53JJkR z2#nOV)_l>NmjtnmKFSLjr+gaegP3xleEIO1?cbmEHG#r&D+9jj5y`<{w9-Bk_fP8d^XFbkSIuU@FNT}t$aA|tI zWxAwdRE0T7tew(OncJ{8)o-cG1w)eH zxvMpK+hNM+h4Jr?gi8YPxTq2(ha(3HX(K_$&4j6Ii z8BNMk>08Wl&rPc2?Q#{rRVsPyYi5PK@#tm5c+H2sw~=u z-}awor{;G+kJU)J*snSYhMv>nCRdXRzx(JE&L?r^^^4`2?(g+1So<3Fz2W^|-?HQ@ zdaCIEi}s}0islx=RkCAucXtZcf4>R*;Xf}NR~Vb2YVVZ_Dv@bo{`z@l;*zWOx8Aj= zOl@yB`C^^Dn$bNtA6zg1ry!yyzN&Iz29oWGSuLj6XYZlM9%#9jJeiX=!77g|o5X$M z(Dk;r#>=pCI@NRL_`@^P4B_{FM$iQ5q_?iCEn4wk_JV{vJ*-L$*>ndbKNU&F+&dqG zdl&dy2Igy|DckljVCbHhL+DxZX0}Jtp+BomyOFBuSw9s-=$K$=A*y_sp4CJ&DPHX8 z18>rE)b$pw@dI33jJz`_8}}-0(0I{_wBp?9Z#D7jsOL~Mb?P-P?8i9(`y8LrGtQOO zF*i5TQJM_XIg5`Eid)t~_C2vNxgd7Ch3u)~zKQ2Agki&6VO=D1qI?qQn{p2Zdg!gz z;l4M0-?l@>@ZtSerc1Cr+Pm@ciJtUt;J7E!7`(Ec1?Ln5%f4#6Y`Bc3stM>JpNE~W z`{h!$FGtrRkLyE!?RuM0Sc!-pP>0>n%3T=*%m|CuO4g!fvZ&w3^*XO^0tvprkxarn--iMRu(>;sbVMf~LI zL)ttx{Qj$%+;-tg_41wtC&E6(Uz11@Z=*Ap>TD-xX!zVn_MP3H)LH!qw*fRQ5_y$+ z-?KHjhjT%Dr?JU;qFY9_bf?QyaZ#;mSo_oQY}YSHB?zIVy=wN-2WKU+BV+fSNG}-l za--0(r@OW1caNkv{U)MeC5Cpt+amv%uBhIED}2uzI@|c}9bGK&7$$juB_8tA8UP(u z+XHr{Zi=~JG_OUWJP`o~R#Nl(KW2ZPW9+{*_jbn2`6mffA0#}Cutp~ zmCS64<~td*Y+j0-4B8lcyEQQnP+vYO6HgrWYAb@T(7O#yK9iH$s0f?JWY1!3-hN{B zb(RR-%ZoD#>J`q7&TaM+TGdpm6sVsiNxO~^o2*O>@w)CQbtw_XJecqJ`XycO^YRl@ zo>6ge4c|f->k9}3K4-Dyp2S~Q(POA89{cf1WnZ|aKV9CV@Ihy=Ab;_A7&n!iqeCil{Y#AgZAW0`uG5ByipWuktB%m%6Zku>xuVkkjhnH5Nd1{}0h* zo3Hs*#3CuVJKjO=c_`?=)|R<(Dw)+E=aC3D=cI-wUPd4P+fGX|VvWo7UL^0t@AmBV zR#$qGHT{#tP3UyRlMfR6KJ=-G)+myy+FIB$zjvivDaju3fyV)WmR9s5DaLnS2 zfrM?e{<(RP+k?>*z$L6ZZaRZb2wCHu)r(K~Y^J_X9tIQkUZ>k1bw@F#iJBi#(Jv7^ zrUyosM_Osu^hYZBEa1s5pJP)w&&1`!i(D6jP)ljLATeOhfWQMeojlwUmh|{0HtVRa z6=qU4vOJ{4bCEicKeH9f@&SmO@wzq%rv>!z@!5A<*${hs*Nv|+`(_{D!Jii<*Y`gp zvRg8|S0Bn{zY+dwBnz(tI$gax-b3pcbc_L}evZa0m{i_lN)wV!B_h-g5BhV=qcrp=9gjOjjcK3G}mJaERLPU_R4 zhS}`}Rj)cvT^*w>x2gs%Z9SnU?4#l$LK3y=Yg1nBcE6={wjzz*x-R&LRP|h-)Y$on zYZ;4;I=QP((-2)WfnCPPCsw^Cb2En0A$=!_x7aH$uOqN~Ily_hw+r9oSo{Bq{WDV1 zX<$+JN+N4Wl9Pn`aa#-*wPcOt(WC#6EWeSQSpFWD;3p!pNPI#nzW}n<>bdY{a2m52 z^I3l5X1k{%tYwL@ir}AGK^wlufBA+z>OpjRTFcg62rL5>a!5TM-mmS^O_0mFGoyp3 zWVX5T^^7PR-+WFv4|7{PvE+gZ&X6k-c!Ub#{-Ff4oD3#rOUHQ0UgV<`OgYvy+IF=;!yD|N3O-6l}^v8ZS)B zXaDn^l^8>JFT8cwn~vwT*?JM}sG9&yk5DRt%4^*jBk?^?C*%iUdG;gMAj4TXhO&Wh zo8Fw>1Hd`~P1GgIY;9i?Gv?9=k#wJms>Q)&i2IXG>6yAQ-jSLI&>JdkjSkKHY4!Gt zYIJy%hZ|A!JpB9L)5Fc_hn`5MlGmTg`s}w2M!x2q$$8U>0=nliJ5>+BQ2tOPNjQB@ z7c=?OTJ!tZP~Z>p+Vj6YK=D@}Dz$Hd@?;QOiD3cXxlBeFl!QBGa&{WMB}4)9%UOVX zWG0u2q36)FLjS>k`SJ7Nj$m(sCf)xpqV|zu`6v5uN-A`k3%9J4gz;040u23o4~pI! zhi>P?kCV6fRfc}oTODbhubj}D>%1(0h4*{d~owG;!>|> zCEpWSeiJz0xs%1t25`!);7jP$IGo)Q^7>W_7R%K0kjF2i9@*Ik_+QK3kG_QVcXaLD zH2`4PS}%bwe`v@Z#SWWk46OrYgRMu_yO`#IWTe#!S`F52<%8=(wJ{Vx1#2Ykx3@pS z%DvauuYDP#sif4bl98BiD_2u)b^uAF|Kt?n_}FnRDfvK7zitu=OSQ2RncEgdK_Ukk zzv7Nm8m)uXHO#tU>W)1hk238TtgqDLvtKM(QY^siFZM6BUTN$4tbChQRsIHaK5q?R zE)k@SZlI_7 z+|TI8UmHA_FIW(9$&s&9b(agE5kD-nw*l{kOyi9+oaQ2G+JE>r3MfRQwh&t{j;Wlt zxEb{p`^SqEVz)H6%f{#Bq^W(bzLDybCQ5SWWN6OY2EkZrc=Pao3a>+GIzzB33{c`J zkjxl=EzyI?aZ!1e#lF_pJCVkK)7_<&T!Dm~kO786AD3L(SuE^FQdke3{(h)vG~-gU zqlge$jn<6wJL{YLoEmWdcHZb9=9`s9@0Utwu}tXVE-l9XhC{c*rwT_W>*hwl@KI8s z%oa|>jN(whDZ$vG?O8bcaItorCgXUnxlQEZHU1Nu)Ek}1w>T3oW=lu9zV`NTSzp&s zwVMXLs*QLgzV~zf=4?&e&Px2`7IM{O9_tT5zC%`%Z?Ts|j{qQV{L;R4-Ypv0zTj1M zw6+TIlr~isGZn4AW^py;*gL|tH6VB!fLMvLg&=uY(lpQC1PN#EoUEcskFH2n?;6$% z0*~7d6a4dXf?9;{R~@tM*n#ot`?;W9%2Ab$IcMV^nFpAw-Bok^SEdQhJr+8|^g5$> zVtO5i%1{wTVI^CE0AkIio2A+hLaqXq%Cnk(miSMJMCF?`(2+Qr0IM*l*RV%XK6=BklO*B*LjrQ?kS;o zxiF*Q8-$c|L~6nzWw)PEDFtO!F+(&8#|CnPnW9@tb%NYpR!P(nE`I0s9mIRc@ZZyY z7N7$_RJ|E0Db{qM7kZ`rCTUhQ!qh*?dj|o|+Lm-iVY3W2y=50Z-z=r!9lCltafjH? z|6^viJz_`s91xvd)ASg$Y#~!LquwwSMGGob~FrUHjd0 z1MN5ZtWI8sA53L~s9st^&SupB#|TaeG`pZ`94{zIO9NBUuYIwMow~ZA91R}RR=%kC z2yP+(z&eb^3#KPJuJnK2iU;JasaF7*O7G_i*iP49`(J>c#U6J%B99pm0g&hs)6F;H zh1)N<1tdMvW6(-Z#zooenNqq0CS_kylAy$!)Xh^OKd)fd?mcVnx3jZ5}x<1B|RNFCmO5~Hl6J5Qo^$wjcz}f-L3yKIeZY9^w z?!>hKu9*V=jetCezhs>Y?|4i$*yIV<3NJlMe3ZbYtI^g)X|C3zfS{)RqCOS1_TZu& z))f5SZm9Z+QE#6TyKFRUkJn7*^!@I*98AJZP#^lK$B9``BVDlFaucd}PB{$+W)vq+ z6RZWpfh2J!|2r{rW+|1n$+zZqjOfZ~SOXdR#PQL*_HfO_;;pcQPfolpmwjDLEh8dq zyC}Nbv03rWLq)UdmX*;Rh)->#qZZD1Kt5Po zW2xd5eXCC4P5jRqP`kgP#gA6fSA)KmCI#DhpciKKR@R74)3h2M31S>Jm-W$uxDbA8 zX8B=(fT!d?&Y!*M^~EF@;~)ApIb-I+ygmJ!ikLa6nX{=gY64=j4g5L9%rd${dR5~n z@h4Qp<=L%Aa#tlWTyM2cBXTFEk2zp9`+_2aBo?^7raTuob5u36Uhfv$-|PZrPN}9@1v2=8TrTF&Mdv z#WE)7wv6(~0B2l7?-^F{{{X(-k|w=DsSJylMW893V8hR2RnH9S4d z*L|J=43;gCw?=*OVdP3JF7MhM?wXcK>r&VMdofBZ0Xb3Pl!>zscn7}YRlN0jd*{pB z0aFQVXE2ZE!eO(O0poKUM-kv8U9T3T>`?HP+2LCULx224cRKYqx!hw0##VCev4wSPj;6p z+`q^&?zdDrDtWzSqh(sN(`H=_PHD;E*15Js7?eGa=HG2v5kd6UXZs?j)6*Jn4%LsG zY{$jjtmY=VO0^N!Ry)S8Y*P;6wnp+=1=|C^G{|W6U9lObm2E%SM?^>vF+_e^t1W`~ z%rkL+{J_OI9i-7{;(61F4LMU#i*D&KPKv=S1w&7n-ywu4hbD4h=7x{Fz|p{F|M-{I%Cm;Pdg+5{0{^#So2zxd zTsRGsAKke#S1h`jl1VCswBrn5OW&ur&>tZmL(#NdNi>^n_r8~A^?H1UQ+i2QYLl}1 zpQ&2_Vs9w9itN%IWnKkiVc~y7KEmklpj^F(N~W{S?2Bs5g`bjz?Oc&3$t)6P`6{}lAj@wE{uXFVQdw((BTe9YVr z(B9N0L?_2g#0NbmY?B~gb&NFdK>z~`+_)W|4T|HRd+%4`ka!*5^G$+J(mi1`N3eXu z4*ucP03rULK|BEZ9+w>I$R zAV;^HkXbHU(%RK+Gjp9G!#OXm9ln+LNubQ+6e||iw$SOohYC{0aJd12?^yiF552rp zOqHw1jBO&DcKyQRzkbY4(%#|yJM6%o;^(5+oBebWBQgD@;fa$MjQc!z)$8u-gevT2 zs47M0l~J#J0^w9;K$MwCIZ=SyW-YJlx+stv1(a#%H5R?-=)bxW1d8Ylo8p^NYKz!m zktK3(4%J?eM2`-3dfHecUvU;&netrDMs!3Bbv^~_d4e?n0Q33}%CYrjQ%LgE**G*m zfT*JEEhai4rN1&kp^9;y{u0Z>;y+jJPusv6WS5OgvMG*Dk(&b)3hc_|_AJt~h`5uAk7lp6&u5kiF#Y+5Bw2C&Pr` z^5#wL{xvmZI$d#)Pt7lA=KYe1(_Wd7>p|JU03d0p{uNZ{*wyoU|?bR2%C) zm)yOhzA_`u^%_ta7H55BxiiQKL4HikJ&Yiw^VOPrv-*y`mgJ6LX{5HJ2PFQRgj+*k^n?qimUw6v9rY~0O3U@u`uA_z znhv^OB{%bJvF~CJPwts^r+42!6KAENT7KnnnfEpb-ji+YfNz$8jtH?Rao6kr$KG2- zwb^Z9qb>DPYCtJo+@W}J3dP+WTHGmKoVG}dLvRc31S=8(q%E##airD|1bGo;lZ=@1KFY$9(3QcV?VuycY zs;GyQoq`w+{_sW{aaHCBqS^J z{o~%2bdL5Y?-hwmoxrA)93V4!a9B0&gL~&FPq0nz(Bj#I@kZK>w!Ij*^lZ9&kA;%P zY_r1Z9vUOjmqg=&mvo~_@6#ZTr1s|~00BPcb8 z)z#H0DNSYgG^FU5Z|P}o9)`&8lF{GN$)?!9ZFCEPt1_2%>ks7Mn%qA=(BWztaZ&c2 z9IIpX&y8{Lk20P4GfiDRa*xXo5X7sPAqSy;zf~;MVKfXP6NP%C{a=;h{7IeQx1m$T zma4rs#^(#Zb#^&eNv9_j?d2uL;(a!qeC5gi-oF=z8bpi8+jS@^?=(BnyOoN|7C3Q8 z4RS_vmq=pYh%kcBlM*h6hSccK45WJ1zo&cVpYN`;v9N0VTAc~IdRq#>=Z(jRoa8z( z7OJtt$vK}s>3<>Gv}sHT<~SP8Jwe2um!?l*`l?RejzPBU zGvds{Z#@*+ep=@%o^|(KgKc2nZTekzBLL$MP>PL{`w~yr{>PuXl%*#KGyjDUL@2gs zN2cEsRV5i9@@6`ltJE0chp+wF7O?06D(lRIQv7t@7@4>;%a5l&O#=wki^7P7 zJ4#J=bjwy)1LnSlUOzbv_d-w9%4j&e2};(4|4bJpNw8Qa$p zSvLk)bP8If%SIOqu|YhQL;*us#|#lIFs?Fib_)!r?7Q#k^{vSfs0l-k9C&VUl49!U z9=D%>=6DSqzprN(Qsj&`x_E@ripL}`Vx9LGITkyP#%i+@)R-5&cg$`Ioi2^VEQc(2 z{XG6y(j{cm%76*^bcVjyN$t5p8a%6wtaS=ONT2yj8@MRCj5!?br{hb>vWyX}4WnRO zQ`xPWyhbq_=3K<%*uk-oF_~0MDeda*?tLZ4s zw4}6NW{+FhS9H)JRFAT#y~C^F6V4^0@$6W?{&}ed@&u4qqESR&-SJ-Epa^D zt=MpL@9YC1GD-Y<(R76}y^%B(h|TXy<>>DmyS@7Ew5-a|)cuDT^IxkHX0#r_1_a>b z0~$rl@uQ|^x|Hj)VtVVAt@1*(m`v=iCbIK9~6+?{0^ zioDWfTXII6)o2Rr80mWES)Ii*5oA1E5n`>Un!Oa!LQnBs3&HSUQ}#B z3{D6${NNYO%VNZ$Z9eogq;qxgd=kY18S{mADV-Jgjle%fgZCPyK6%*hCvMb%Cifao zA8<)JYX;65xOe<8x_wUqE2pAE5=u?mV#X?zT-D_XFV!u~hNoC3p1oTBlVANr?9W?= ztv7i$v`s$}LvzJghTY$`TUh&Q0MOhJ$#3%i2JLvFk`KT3N~Y{8Pr=C@YJhMvy{0}U ztpKT9Pi{4H2-Gica?fz(y};zdt#-}h&L^9k2*Q3ze~Lvn;uauy={q@vzc+N4l#$lF zEkD9=KU077M|uw1tGX5*LsQoMaK>}`m_+z=MvAJ5=4@D&&PfvSLVp|}=3uwjj?olPy_5vy35!>@XaUKm-ofC1oaHs>J^0xpsQ{i3F{5w$ihi}w1w}}5 zj*)V34EDez8RGO;pOJ^$h!AREMxRSTb7R*LI8N!JufBE1ayM8;Z9b39de7YJo`96R zQH%WG$710X|DYn5--`5@6tOOR1oz}S(JYQ&3)EFtTTA;`O&FB9> zS!DTdS<{@(t3c5;9H(9TK65wJpGT94C{AqI*2I1}s^|hl`M0Fr_q}qkDqG*BsT+GD z{VZ4%lI_5sCO-K#yYz!s_DsGF+k8!xUfOPK_a{}nUoK4Qp<*XT$FWD1W<0H@THd~p zrz&7=ZEo<*uhn0p)Y@W|l=MCHVXJ$y_s)5fsNJ`kvsuE?$3>JJ@rtD(dM-S!LzpDi z1iG1jM@J%LkNj%{IlILSs(ZS&-qR z3Kx%Nr}ow}eF^y%m$@wyv6f$VN_o7qc?)ONqKN4>UeSL2hpvB=F$iBXHE8l25`T1N zDZ#Q)Z5Lm)m3AMVEYPkM+?{rnW2IKZ9gZ#HO>NMom5&Cm)UGw@jmvj0|I z)p>Ga=D&v6ipl63ZbM%8u~-*6sJcFAL{Y7>D!`CT7MY=Cc9t$tC$dmgW;+t5EZv1X z^<&kIAx?aM8DLqES?AM=u&nOXui;Ysy-ML=Yb{mvIwwNyqc!C5<$TKeQ9~WQ*^shu z@is^v;4Q^lnl3&+@{w|TUZxjxBupX&s;2b(*X2H9kZpJp0K3&-PER~2x{&b;$vH8V z{PezX6RiVzS(8*>^}vMpV#oxX9*mT1RIbWXin%p$<92$+?-eJ{#@Mz%2nQ8gB6MAuQ9M`kT_y;Ztyy@F1HvR4>iNT5cypXZc@`U{?!LXvu07`{57fJYLEdPvRn5y}}XtBulRBl=SC~{~Y zXeFY%o$jXMEVu_MHhk&)J8+X_kS}i1As;<^?nx<{sD4EE&VCq=DDem$P8WFhLN|UG`B5fyQB%c{L~_Lj}1$RR3qBb*gE+eYUT zl;WslsY@7{zZHMMZt&47l~C}K#}7)(Eu9m-A3+rQtDC~5S}n13j1zRxsplTM(WmM6 zJrVvT#ppou`)|*ORDGGJz_=96>=~yd<`%ulu5)4>%dPKW@;hNpnu9lefElNEcYYgX5heWPBPvoG~Jg<^Zmy)5)P<6-h*~ZZ*^g1geI9TVr z5q~OU^0JUxDqolPG~2vFmEF@%U!ksbG1w(>e!(s)&RUJuDd2_8np~yYSOvAK;M+jq zy8Weh{#n+st;9jI2K#)jN#i!|y785d*c)0+mLn5xt2eT`sTFEx&4ONC?7q1vYNhIa zV!b_NA2$y2HE*=1AYB0PNkD`lVOG;>LAtsP6duD-$pSsU@!xeSAJ6b+ zEmPa{m#IDY1~0iw^4?fF60)*8!eukapXCS9X6qgEY7*~A*B+7loLm~C64|DmBA|8V zxCId?1X-jE{oIpP6?VV+@|ATR*v~~VPuH(al9MWJd`IsmZIinH<;_A zRDCJV1a)Bd(j(!3n5J%qEYL%B4@ZywK(kijE4EFO&(fj!1jQkM*JyYLE0GKGV~HFz zS~R;zh460b@Muj?#aSoR><~%=Ow_YVUGsJNLf1duz>vUvEOZQ3b!EXUYlzI{G^gt(!CaEQ@jz$Tbvpbni?241Z`MapaX9C$t_wH## zk+Zk6_oE)FO0<;*{v3=uBI7zXwDLBg(Rz+?Q9}d+#WvTrvQ;RXSAFC37ilX+l@2Uh zOloXy{7a6lp1w^nld85FIFrB|0VNcsh<63FSxHaTk{Q@ys9=EmXc%Xl z87+biSlRZi@XLfCcYTt6-*`k>x>IMC#+H`cF?H_i_Q`hsE3?-9eUt63RF$d@%99=A zl3!!Te!TT!zV&~l^h!ZGua#WbkH^Y?p z1kag+RG0QK_i>Y-F%+(8=kI}ElVpb|WsDA~7>g^E4DxTYy~jkRZ7*$%*->)LKr_vF zF|bE0z4%+`@qFdTBdC$eV0prlI~{fA!V&w>w;vwWX)E{-UO_Y~5#UmEsNWr;$g=Uh+_eex}|~G8>qC*XC*Q?EJvKd0$5gnLOtZO~%)N_S4U= z{;9P6S>cxT451L(2Iu1!#*)c4S=QlX| z_o3zZ>5`53N;;$e+Fp(|J_U=>Hl)Rut#2hIRJbDJ`3NOep zN>ukR+pU@@tK{QVV`n_?CZx_hEwjSYifJwIt|xn$Pfn$piQ|Z`_?5y|Et(N2(Lk@T zqhbaC1b1-Mm{=PwRu5hu390Gshr#MKyvcm zSoHWT@VYJqL7V3TZ*i-8j%b;E4K(=RORCV4PXytUtS+om&(5iDgR@-_v7Kg$H}-?4 z{1mVoo@;5`KaTKgx5XV5tz5zL4hNpvB}2swE~Tm6o+Tj5N-GcJCmg|Q{cDL1kIza! zZvtsh+eMzNS|KOH)Wl00c?994;!`xFWx%Hs{iAN@$dW)Azz>L;`6cO~{!XT+U50`>>fr*YoCd<9pJo0prUAr{j1(`@{{>=Xfh7|bZwrcQjIna=C2@; zTdL`yh&ZMfNP@WUdLOP%51Y(C`KN$$_acvo%;nrkKYMv4;4XMxv=rv^z+0K5c+JCI zoJvBqX-}P>t=qv0GK8nKJQ6rv+I2-m9w}QiY|Hi+sn>A1_%805urCnEmh3wPtZPyk zAH+MTi!qa)ht;J>)9(77zBNm~GATcJnrIn)Zz%I4sroV*QKaf_+tnTT%-ciLMNe0c`kAc0suqRb3<|)=YBYL+t$35uo-uSD8 z|5vv41`(Nr9HK?YMk>O(Y`QL>fYmivsb_tR_o05 zVXb}oX)T%z{U=;>As645T7}!@P8%p!!pJ1ny*^vF?pFp*0X7<`{jE&5&~&3DrB~Im zT5Jhja8tWc-$mT|jQmf`^5t+M+zfW(KX6B;@fwRIrNt#W<_~oDxyqbtD3n9N?k7R{ zXbiBgENb2fVra>sHX?Oh7M!S}=t*w&MazH=Cq3y;TLB^o4fJgbOSXX8IT zV?^q4N_pVrIb@@H#U3X|i+QVi(87-MGkA$3(h|SSTlu(PvV9CC=do=rN_rfTVhy2i zhr$_1_l`y%>V_C8K6wIFb-Aq;+2*HG6&Prb1Pw>LlHwHpaGV<`C#~xP*4MBJVN%tdc}dC@!QqKRQIzrACW9H>6Ws_E7Z>wB-)_y%9A*`&Y?WPhFcxQ{xH|^fn5`BG1uNF4UMKpr} ztG;XR(#&$;MohFxU4L>F?4bUGTIH;kd)F947xN6?C0}}oT;!oq#(F-~6D)1A1+&TeiKAQ`qFZOGQP<#>RQK6GQmTzm}=f1s=iJyZX-d;y~S}1aU4nLC!U6iabri6~xMZW7zVKki5bOI~T0E_6&#UI1jNlCrH zua6Ixg#*n(eZwpu@X$Jb?zX8JE51o##7y5#Wp6xUio|Ovk4$OU&@uPLu&;9_xF#TSG-4pX{vhhl#QJZbRw(d(0?Qe_jiyB|mCGsuuCeNkv52$(?VG=cqm=cC!(|ek1 zXuZg#ixz95N@7rh7@EHrR3XyXeAP&ZIfsG+?$KHsY?-b>mHl4}xqefb_OvanQ5%#P zv92+_>o1zR(O#VJkc=_~1QmvN@dS!``Xnab@|KiV2sPI)80)6l+ItmO_i*AgP=s?> zyFrFyO_SiVQPKFliDHX3-}fB2j~B0HD4Uk zKQ0)c?A=!yN#8utSK)8P6@FYqN&}PgB=tP1)Qx0x)jMWuOh1kJS>SzoRZQ64&BcCd z&u)tMhIY5vZY_!H9=y?A<`L}K3`uYETTZlOGuWDB?d8J5VQ?k?zN5bn8eF^C#Vk7{ z&B8{x)1`Hx7D8ZG{H^5CDiN%#=$vv%=Fvl77xkv*h-n3_(=(D#`f5xW^oUv8chiu>DUF))MJQ#-v;f z=(2|Z!2aba3JZ~H2>XXxUjYv>qSW=%BfQ7fXDH?gK+Z!Qi8d=)30kCglhjQON@{16 z91ch+N-y3o<5V-pov9$;fSG$xSk1vF@&CFlih_#kEYy{yV#x53m3!JJI~xlbiAi|g zGZOMZUAYE~qW39@d;!;g-oMnnp3b(^zB;ab+NqT|Nid*B7=&Ovn-c-He7O#Wm;6^PrHPoWtkwpahsTkE^D~KZ z$42J>IuYDLB76^aP3k|dg@30fPTC=SJm{y|RWCA*W?*o?UnaPE$L*yh{bk9Jla%66 z_5{`QVCWVAUr-*~{ps(ML3d^U+<9D(8Dc46xt>O_h?e6t=_YNuyx8+5TL?48_L37o z6Fs5-o#RT4nyy7kY7F?#TuLOytp0m0>_5KqpWq0!3ZHbLI1!YB5%3P@FmZWZ$Nstukn4R@y;enD^1a|7*ej=lFk3 z^*xbI_E<$KsCJ(dca-oz>E=Iqhku>(f9&AjbE^M)`akLXf6%G_yQcl`>3^;Cf9CX0 z2JioOIsCEW{mz_{l5&wEnLRO*v0<))7n`h9%>B{ljtv&)L2h<^3v6=9OYigXse`_CW||A+Isa3bn!N;@ehN%+Wc?IV&?cEV7f z0J^bh{W4qM_8sqd^8KqJU(67#zr@IcBnof*7Z3bL*5Rbv@1dU8Ui=;DUj$vx24UE7 z+_qN{S0?3JZJ;N%?iF432d28yP{(w*@j+&prn?zUCRt-Q+w zyfyG~xa`=ixa^joJk-973}D~z*}$OXz;xOM^CPjp{I$=$q|1)-_W3TQ+za#autZNG znw*W{80o5q6Z)fqi7FE%{sJ@JjT+um*?U7w_;*-=*5vMk zjjX+&BG?uXlWXyn5D9o9A&>oYD2{tDP%U(n|JRuS3$(xC*ZI^{5AymBrIT+qb5lw9-t%04M$H}8Bm23D#DfCoJ|p(f-ggHyg_=$2F_=6mSnZloR|DG` zBzsWIJC><2NUyl+zh*d9Vwrnp_`BpoXh{BM9e50rr{F=Tcr^dw+Q+b{YuNbJ8Q=hR zcOjRC-^7@1NF_f>UQo1zcp*zI+gvdet0tTfzqhkC^TdT?${%mcW^4!m`SGtjN3u zyO!^bijd!P8_n3vWp3%umh!qetN9l@qZEx3!oF98-_>`j(sNVm$;QQw_sKzn^Ilu<%z19NA8Ve#D5LLO*WE@Oyb39Kfub~8MkdWfcHfR}LiCMs+ zXz~_emVom&_kFYVtMck=tC=yk))qAZ@?Gem?V(X#%_cLO0}cu1Z}NZmp1y!IBE6cp zynqrq62OszE$99S@j2cl4p#?Wr+Qr12%67LZ)&0}3vPShA3eU-6OufdSF?xpejsCq z0OYuNHERuObouedKU%1uodD^5+!+04Q*p(6S6F2mZ_}+4KJ3uP%RSqW8CQee$);hQ z)7RHaLHW=hcMOENPfQ9z2Y7d00(_ordD&XoB$efDKJOt8sF@iz{V5VKCNBHz-oaoy zH?&JZZ!>iRMN7^7#7iJUsNC*u)}7s4CHt|_K@k&w!2y+g)@W9r!rV>9M?{a$M6Qef z9#Ik`5*s}8eeq5xdkRxhpO=$jZ&o?bQFoRnZ+L+fKOm$UBfhaJLU=nL&u^Fa`Y}VE zGfhU0f56-g@tXS~3k9O7e&!pq1|i)59xQ zAV&1&p^Z;qr{zaG7eTZx zuIJeK0+`9YPV9T-iHzmtu|~@`)ATDYiE28+XYkT{u{kcSc%8ic6*HGs0KEI{!SmfK ztF~g2)sz4QJ83ajTSRQSk|D*|$~9smBpXxhv!b<0XC7MPdMMT;qt{w&Pt>Y=S1_Q# z;=}~K-eB|qLD^wjdWln?o_ z(=xwjZEOvzBsu)qFn5GoS7Psc(0YAx7?iPkpsyzDo7SeEbie)b%dT(EhMDS#BuugM zTTSb4P6S41iaB68_MoPVA9e%%u1TzYrnlSd-6vcD&CDP76BB zpUq(r?SV-lJ$EhK=6VOq7Pc^~8AD@P-W=Q?o@XhY6!Q9M33)c|i6=3##$XJRR~{TK zYY6})vtd~Q!kK(FR?~0olxDTZ*#tH6gadI&=Cq(=H(uT~9F>O0czDg8Tj?u3f*{*Y zyw=pZBXpqn`ei_x{R!SWDE(r4awQ~+e0~u2Vt7lgkc8#ti$l!aB-9xDJ6Kz{05cUF{PXfszEPBKfCo7~!v8MEp84U7D_~*nk(@gFU}e1NtOz1` zz-oqU_e$ls3Q)+`o06_quFC3JK|lyH6wJb;YH3L>;0$aXXg!uZ$OMVciFD+GW!|6HVrFCT*-Lr-mj9#HL1e&xBXV-Oqet}vIgI@Q_I2W zQ0C@r{HOg8kjwnQg{gO!56^*$P5LE5kcl4H5)xB3*)hOzDvfoekU<{t51;N~$7@+- zwBW6+i8N~I$<*vcnK2`pK`GVN7o)G{(l zTf`*g<-qOwrJ3+v7W<+Sow!0^oFrsJpb505ySrFbsKEeGxC!=SG;P_e(=%PV(R z1{&d8VsRc#S@Q?k;$ZF?+mm*V%Phdty@+3D>MlAQmfeGhiMrtBeSr&_#HSf$Ng4!g z>1PLq`6})H4z!B~C$7H&0&(>;bEX}|;bW15Rmf}8?YmFT-G-zzK!=P#azUYm64SA| zK|oj@wuE~wPguZ2ez}w`*@HdID#BB_+oUEGa&BuN%W)#i8|oopB1z1;<%JrUF*3h8 zC^;y=`IUab$&#dTsWooJucM0Z+uzVQ@Ot*L2L#mFD3|xsWZ|cVQ;LIu#zQF!jHEZO zMKA#yxY*CrTd{i)pK8oHOeHM#!GiQ$yDNAY>lqxZ99J0?{9<9-NeDIt^q{WTD&&ZF zFjYueXaOAx8fqb zvOmAImq#yImt5R>j~?ga{x}P{y22*xyQ<(GtCkdGa75!cE^s8yIOq4LuKGUMigR$y zX+C2u%SNd5!KPc*>w1!pt~VVUmCP6-(V*&QS12qiZQ%UsZmgUML$oX7-grdA)kRl< z;j{O1Fw{fQdtsN?CRR{i=({UV#Ty-&m!Z5TcH|mZEH%&u`i@h<(?#drUSE>I;Lj5| ze0m~MJSRF$_s$8k)f^*%3fU)KVqG+YOue8&L~k@?B{v%Zaq z3!3?zOoOWhcjjDI6O|_Nb13F=P%|uE6L-Lm&-jRcUGT5rVq0!xA)n4Pi{GZ`Dsf`# zpI#c=>?-s_WbE4Rp)!$z?`CI54us~^hWZama92#s3V3dT+aCkYH0F+d?N^)-M{MAN zombVQ6_eGWM|RoAzthO7M+aJ+%)!Eu)>qP&8Fb>g#-ZDC zx9|hJ{NfdVFVj^!nXH<`vx&lRS|L#w?6KH;)bQAwg!{Td)pjLOK2Eg>tQ|3vie#%sx)rI++t{6~ua24&?N~;2*ZwuSL z|8r}6Xdsm)xGEX_>7^Hkhs%Y}k=WJwcQm_K?so4MYlWV0>1J>CewV^-fiac8l|rMW z1U9qhb6DM^E5IPuFjy?$;GOR1-L*}JsFQQA*PNo!LG)Cp?`NawMZpkcjE1fM8p^k4 zO9rglGakd;c5!$57~!Ny-WbYyLJdhHi&s}^vFLavyMx5SGP92&DCTD0xU>wuizHSU zgN^fUnt(NceIxx+uTUO6u}{ae^C7*%`^$$G?xy#|)}L3fxw@#v$Vf_ik=84=6$BTX0HM5>kP0Pfqi#e zsK!UegU$#?lSwBcBkRkbV|09mZBmWjl3*=^4<^_d*(hd1JxEK)zgJa;3s;5@s zvuOvf*d9T<6#XR5wnCHf?f7hw(dzD6LnRpxyws)J<%I4Q)B!fjb(26zWb4F&D`qO) zaX163<8(1$m?g@>N0_+;;EGSjQ-d!TL1QmZtCv1;0~DR-=f0!ru#F8Gcla-Rt5g-y zb~@`#ND>zor=DZ74{s1^cx;D#bub6-`b`A^Bg0p-$;}*ZRSn}ofc8^vXG=ILXz@hE zA?x=?41k7jaVXFW-nzSJ3Dw$ zM74|qdctT%DTA5#mONE`v+JY_O;7`WxvK4jbzLisrWs!*Ho>gPZ2iiGn@A%ay#^7# zNMhP1b5kBJq_}h?2D|FUYyEshhN>3B`US}HQBVW&PKdyKi$At{I>6lP^_nw=0GDFm z080_uoWcmhLh&PEx0;C*7!di1uJ)Z`GphiG*iGf#h9YT9x}9EB{987Uet;?OJNpe8 z7(joBzl4rXPIK9_B%6I>8bf`Ii!nz1{(w%AoK)+BWw8g~^`#N|NjOXG8=TeUTpr2!%qjf#Sd>lWuaiW=TwRg__2N}JFB!qzfM;jVjl1mX5U=dYet zXfjfeO(VB?Bq;OZzWQ5@M`C*4NeJGVo*#$__~@F9OTjY`mG>+)9Lv|KB~ir%H=XAS93*~vG<9Lz0}a>WqR#oU!d}_Z!T<0Q?p~#H2oqg z1+@!+a}x-+r3vqRt||1mvcwkJ*Wej~s378&q!gC64kxNj8q=a7>}%I9v(jn$*KN)z z&H)GS(vAjm5`u$ti&^F9;aM=!NVh`f>a-uWm&9Qma{FegUWr3q2WYcCd8@k@dbbAb zKjP?VCFUMl);X0Ap7aLXHnCWfF}r7zbXlG=S?1N}+qofAJy4l?N33({ZHLE;FsTH3 z807oi_ESfO(M)o=^h7Mow}wAWAhe?yP?pzR6Oi5f(uzI7Wg&!pF3wzOG{KLx|7n>J zh+c-TSSZLlMGS3=o;jTP!`^trHC<^yZ|EIpAs#H8g;jUrPAI%U^HdvS#brXfI5{;` zz7l_CKL>rXFX>=_FqAv#6#5Ar)ZD{PO0u57QLL;Nh3V>za zvyL=0l(|WT4YmIKcsNMG(ax}0$)!cb4~N1fVLVhDYDWgB$n3&mf~ms@U85}pqBVBM zCNcX-Z}d|M`*1+@(mTDguFcTkg_0sp7BH(G>#IN9DqY zo8C&bI)@uIiaGI7gJ&2U4Sb@dE#{&5QVLZ*I`_mR3xj#@&+0fdqVTVWXIcnCF z8mFKi$*eOuS`S}S3@C|M#EH=~7F3cP^qk*pB|D}+N|hE?W?E=dw4FQuSQh`3?U{XS zc6zauQf}b@ZCaLRapFk}jw?{tThOJ(RQXuGZ=`ulFncmYIxo;s7N|PI&}OjrABnF#tTDrJ3I#DvnVuoMaGWkT;P<%LEwlDH%nxjbjFzz6dg z2F8D|??mxysQf|VUtrI#i5#)Y+#yRaV;>B*$gR%a@HU2zM$ z>)B@Qe4Y6NFarUHr0!>8+=D}gH_{A3HWdAesM*lxEeZqLBk9)yh z^vqp}NBrd!6A=xA&~!EzL~j_#hUY$VbD?-|`DN&|TS*dAYRw>Om>bIdY0VFXVRc+{ zH5+;9HMEk?BbE^zfHoO2wSX#3`_s;LAlye75}={q<%&RnAhdRjoAVoyrr}?U&RCOt zoy}|l8Ak0ccy}nd_B*O>3+f z1{@4F35EVN;9qGCX{(QadWD?#Zf;{m2%XX9_Q#hk&~FZnpzfuKuB^*ACBXi)vzMbO zYT9L4KpXxV`J5{a>3}7^BN7Gq%wN5-@fpBNUs$8URJL-T8-pA~H?w#5bW@uYodf~S`%c%aJ$d&#^5$uYL?6Iow zz_Q&Z*0KPdvk}KeORp^RP0=%&Rcpgrv;#rj#D!zW`eAIY6Cv!O?Qe2srGUhKNE8K}TZ##i14X3)D;(Sj=Cb zwk^BnJQhWwVWk@QE&cYR#WziIHv|&xzA=0&&_;gn{Lbm+g#Abp!ZX;uu_cVmq`L@? zpiz`5$H+g_9ckdLnF|Va^-7^^NI+u2U+f=D2Y;8oU*X!HEfv<^4&6~v(_I$a(t;aP zXE+Jrels=(qRatGm1ZJ<;C^o110VZd$}kduZx>CED`@gh|Be^t+Hlwr6^97O`WXpt zir$HOpy*gm^Fn>T?oYLG?(P@Uiw*Z=($h|OOfJWBXb@?|vuv6tHNQt-M;3R^1iF4H zd36lJo?zQ|J(&;qvBC72@bswQkxETF4Qwfe30>&X-{kc>=1IZVDnNGfK+!OAy22-3 zGxXVosm`WfOyG+#=z!aWCRIjTEJEXh@?c1jqd7UDoeq^75?#dAvVqxnkE3$Y6_0oZ zn%>kApbG`9hMvr_+MpfGjO4E+w=!ExgDA zfFy;H(R9CpGnBZIe;$X9O!jj*dR35P-FM|0xR|yTKG+4)i)4xQ_!O~K0#}p{sxRw0 zQ3RdxPQ;a(*hj#E7;#g;^O+~AbrN#CFZLM65{L{ud@3rp9)V`@L%<_ahZ8; zR`gYv3ev!!3}F297JD!jf{{FAKNrT9O5*yZV3IJwCWwbsoM01dti{ext6F&`!C_2C zacQ`n2C>CUIy_Q#c~j>;PHsI%u=_Ib)|(Rim(=Thp+<3BA7rz{-!w8Xo-zEKOxMj~ ze)59IBkEeJORl<^+~z>tDpl{6XAy1aoG`yJ5Q(MEby1HZZ1b<1?+n@yca+|H zIDT}=SuD7(YBS-W_12GT^Zv@qi--`RW1}*0%ILF6^NPrjY;yE%#_An~5*n5DnFDaY zVY_BTh+8gktjJugpP5~&?h-SU{r90Bg9F@44HOMj6GbO$-u&{NUh5h?pLjUa5Xy&inu0cb zU*`G)eyJM=K(`Fb8ZHQo_?JH9Y8`sa?@#Jo9~Vi$JZo#*c>0v9;}(8OqsH7)TwtTK zN8A;jt=P74(ESW+kzr8_AsZ?#eSCS9HWPa*+7tx6;{`S8c3l)_Xi>bgIGhig*TN>v z5zHTg4D(*1JMWJKt~*T^dYdq-n|_3ca2GV^#RTQ?9Mn_ZGLYpvP`+LOH8Z!REhsh_}vcmYlRkP5`2gAi|clEKZvHxurn?8w1OZf z2J3m6ZC>}+3e*mjU9Kpj?#Bc>qiHb?vekY$9Y0Sy_0-y*wfbF(Jwm7GC(9d>je_<9 zIYZ8y&OC9wypq;=fH2a9?=kd%q(6So0Tl5{n%|X~x1_t*R3%pF8bA4(e@jSf@O>we zNMs`09j`oYT94%kda)IH(}gw|;2YOq{qXY-(^q}GqWA6xN8&Sy-}#=A)!eBI=)3BHCk%%_iSV!0f2qkm zEW(Nkz8S&mcE2=)`uFWeiRJIfr}N4D{a&!Xv^ZUguX;*DSNI4K6&ejpPo!9o8}NXv(i2$Z*xboZ z>4}w&KLhTXHQo{BqJ4@VXQ&QzlS-9&Bpc-gw3UB5=KBr_-O@Jy6GH5hXa0ts5l3s^ z%z2u&rp~gCjsrg{^Bezq?a2pUqF>UTj;6#vWJI10x52q;TwpG|*aB!1k;Q(?d#mj~ z+RUQn_n`3RKca^r?%vhokG0a@*bMEO+vFXV&wybP1HX)Vcot#`wyD1$x?+6ef)bl) z4Q^Q(&E1FDz?0S+AKoMBk}oM0UCTHjKi13;%sE8bnL&CQ%alk$axZ_OU13NEll>Y! zbvvog@q~9bQpoz_w_;aLQs?OABJTQ8`QI=U?9Uw^sKIgNl<2+m-PyP>y9hf~1JUt}8Dxy6)YSlJ8o( z*{S{m)%WXx7oJ=nSP`}x2fOfq?;#@lWsl5<#p}J?_hv6lg2(QUl86PrPuNkMd-*7U zsHg?=y}Pn03js>tXC_D7F}^BYvYfs4negsN&{$Gpxm*62 z@vx5d8q!|EiagwP_>;+V57fB$^T`|;iiJ;`MugnQStiojXGdbBE~Lf}$cQZ||{<$f+$SO(NVL%Vs(&We2 zzx;4!VRK+V`q^Jy>s7z~5sD?aHF|hG0CsdTN8wsnC+fAt{X{}TG(Qo@j!DdQ_+&YEk$Y3QicG2 zNEH2wc-y=Ut<23HMDsOqmx#U#H4m(%3Cl|nhTc(<>(nBy`xI>C5m6WqI7k(XQh;HqAV-^s%1rD)%tmwIk(pwgg*lvnZ)X|du=mvjwNWZ|!s z+%2z4h7UB)0|XHF1DsE+(KLJ^%Cr`n0MHzj@WO*kmYXZTxptiSvz_4w`t!kh#Es0X zC`%}4H5q8W7uTtZ^W@y#FB`ZKL;P?T9QHsGVVfehJ!T;O;aDEJt3Jswrb|jg%FfUl z;?jhLS8_;E8c|BuG50(j8FHn0({DQ?_xTxH+Cn&XVXL%?-nEG$Rqiku)wUWbm$YRC zG*KFoiz;_KSADbYjv;*z-Z6XzSnQ!u5F*K<@A})s!FAww^7*zJ*tJ%;3(e!u5V!5; zn5M68DwuSu#sUj3wL#w<$A6d*Uhd;gh4U&;MFpc_AuWf}QgXz1DJUr-KL&RT#z0^m zBdq5LRB?827LTTBVfFc|Znx3mwdSX)1|>8tBb*i^KcHkq#qa3^bGR^8pzM2ePK6tP zTbswTYU5C*YhQ22OA#Q(NO@qyyfsEY0mC%O7%;Ew%r`IO(aD43G4u>;pHsgC+(Uc$R9-5| z;i7H26OUMoEXjSRTR|M@Ql~h(5tuKuL@m?26~N4O5oj-WyR#RmM`t>pC5pj%Y>;Z) z`m}Y`JAn7)LLdoaA2zhM8v5vL8|nIoQ?Ukefy@WRLHkU+sPHz02H zS2_pW){e%yB8?cS)o9 zo|@+Z#5k=7vu4gF`(V@no1&vE1lljlS@0YN;4G1Kwj-HibHqEAwc#us8GgTUHYgo% zCbEd%U)niu+OWuLbjds!6+fIC-+RTldu+E11}%}IQMHP+&1jp{A=_Dix7QHXqH33y zqhdTPdD8eeF=EW`zUez75u8#rD^>3=?5L?n1_xeFA!pDh7C@)M0ahnfm91+nZDi1}Ld?w`Hq*+nSR&a$+qqepDh_U2?#q zREs#L)mBAyh4jPe$!Ksf3EVD|j(ygh9Vg@0W0&eu;<{+V)ljv!wK&&#?Jx<)>>J)?&XPq;-!9;0e&JZX;)9iTO?bq@o95SaFYx-<8<<&sSrb z>*Nfm1-8wVYSc(sU>U;WW35GJ8$&#t5m}3f+Nah#Ed2oyyf}nob@R~Em9|GvC**>& z8G%{CGp@GbL#oz@x$Iv#wg*2<`_{OY{-R_tHLltt$xw=Lz8R^<-@I1YUmzt)MIvL5 z(dk18Xlsy)z4#^lrO7z*0rq}SAYdg0VE;+^@DxwE4M1NOdku-yQew>E!AnuGE3!1` zEFgB}e4pJKJ=o|B)Z0BiH6V~iH^;i7BgEGa`7+11W@XpiR^AuIpk^?s;Bphumv?*H z{Bp@IIL}`DIkO8Zcm&C<&lzF850?52ukw1Ul%O|L7f@yFQXjG5ND*+EVLo*2g8fE8 zEm)gF>O}1E=_!l{{o>48>=Ef&w>KLA-o?g|aH6=drh>Qye%7`Rv})7U+&PQ0PKPY; zl8GVj)i}-}>dnHqs%`f{vDc}?IP^HavfBwV+0eH=(?bl}s2?Eg7V}3#x25Nq;zayUKIh{_ch!Dsv7S~g*A|N6^ zOE&&Uk0AFkvaYFA`&;C#mQmKh2OyPg`OO1Ujwkw9ImvU7qb|?-nfk4@;a&Bn@IP zuP87VpizrRu0rLq4^c>ioqh2i0CqvT0KvZ0HdIS-TX#3`*9~++eki++8s6wA!UGG#5y*75DQ#T1NqxBt@%cIz&dnzQic>l zFt2z}$?mUhTk3&B%6;~tQAEU`Aa*1%{L`$|=# z-pKJ_9zH0KNtB)ru;IqM#DlV0Rl+!BXw8rF^1ieB%Zsz)zGb##ior0rZ(XE4qx4JT zj#`l)lMpSX9U4zU(=Bws7KsoG4&QWZcMAl6E$J7mb)!@xjK9X zq#ol7{m7p;iCPlR;ny!m;zmEcE1)mjkp6Vqqpto7l*(5)+M*Qg(~<{+=U%!PPZ4I8 z;A}v!?&w}}c_7)OZ%G<}Rc?W~+O!Q6Q*-SQPi7SvKpdt2~0*Umr@1%m@elj)eVuw6dg z0_Cx$kSdT~j>)Cl{!C-)7Cb(SdK&VUoQU*ib3`^d>g2ueVgG_Se^%Fn$ zHgVmRoSyO(fOVq@h`l_GoX@_VxQBpL1MOV+aJ*ER4i-FO(v^5Wq}s3pPpEC$Q0`_X z-RvkQa>|$C>cVK)+2$#1z`&0x;TW)c@$&&y5wXQQVPod!V%a7@%G2XYDR4hXSEM~# zu3|_*>U9z&*6Ts7RoNahPgzZC-v z14d`0&DF*uoV-@Q%gMKm5CK_4a4mI~*Sg7i@*NCvSExtt5YU-Q-^KG3H4{<|>bZT|LW54Wa;9D_3rBO^1$^%sevbt#!B(P2Ewo&N zzd+40Pd?L=Sa=fZZ+uel=KURG@D=m;4-d~>{U77Y_ei4|iXk<41bAelR^+5?m<1>9 z9>fp)lNgSd=y&16Y$ky^&Ft)FbB6!KAwHZ^5VX?X)ue0lv5kn27Y_C{2b}w`@pC-e zHXduhs#$s8bd>GeD)MyTO%3Hn z=H$X#iu)YWB0eud=Y&k{GAFLcelo)#bDF=;&zuvegbGzQl8fsDCY+7A)GBLyVk$&E z4wv4NM=mS{8Utr919conRn?BG#fIO6id0ad8@C8Tr`F@n{$*WFvzY0GYq2-Jm~Kql zpsH*cS`mR!jF7mm<4}wVk<)B)ud7X{x*)$P4G3+7M!bpPjKEVzexO zpP*r2TU#HA*Lr~gyWug6dia+MyuxvtCP#4&Tz4b)Cs3i0q>`Om`PFD%oej@hTO%?s zuM9Bg@(Z=i?qU{o$9l+$3eMkadNqq%<&v1TUP2W)5|Wkc5>3@+a+a4c7mf;rZf_x{ zsQ_qhB^LG(*3D-vnN>0(x9#ki(ns%!A)6V^Q%k5jSj-% z?*dyu``+p;HD_P`twE{f(;vb1f;A-3DDvtfaB@ z`$dK!=Y(GjNh^n%T1F#swKUWg!47-cE=teRwJDM&eXN@?Pi-X?T*MrPR`PsODb%%&1{yugEQ75!Y-m zTJ63+_N~cj>_gs#k9HS&Xd#`A{v~-c|8n1oTt13_65+Ym#?y{75uh_{rJ*6pzJvgC zupkS3pG$w{t>yW2)p9n!K#=~ZC1cM@(jUp}?8VRuYF9MzGb}Om+ZJ!C5f;jff?`8Kd z9tk|NM!@7Wu#D`uRfX?jF zO?fb)6Ej0sB&wFv>vJLSOaN!a=lKDi(XSFsV%Ymher4)r$6TenLd9#oLJqXT&$Nny zAEQjZ`2xoh>Bnpe{Bjm%^fP`7GHM%)zQmJ!eB_P0@ag<(3f%KO9HiV33k~)9Q_@b* zJk|P(9>h1VY@D|DEDP4=Sd}{(<8Y07a!@^tN=PS}V_d*RtZ};q3 zM~rDN%e_oVt~a09HP^K45nFi>MICE4cFT9)b+$%kuvw>iDO?2)ymR5YfgvpY9?O|C zEg8*c)RueLYrCWPFJH>6*#@Z-S}0CjpDGn`J|9<;3)6~d>7ZsD#lIhdI9tfe=lDio zrB~czCtudim&i~2{2ndv@4iZp<-eQm#U28g*-njbMX&jUe6#5zpX61I6F1+lVcUmq z^*sd(uzzbfPw|=J7Z2IVmGDSp!<|6*<;Xl?Th}7W~7u_7xbh%@=+= z1g1CQZ2k(0g1dTBKfZ$RxMZMUhs)=YwK|AmIwDv`E9(X$gDyCp3b?f2F3(Br4_^OstPIB|6hF z`J7%jy>du|vp5T#5*triO$N@^D2y+O5k4ELAYFHu z@_w77TXRU8CBb<33coQ{&f<0Bn%yzHFf(w?1xf|IXZr$ifTA6K^irN97N&3Nv*k@p zq;{d9bbRz$8%|Y@`yue-TbE<)iT1IzK>|#ShHdXAhY`{BkNq_5;)BjT$Q1 zj_DZ4!ya!56z1*9a}oIY9z_nfoIUqA91<|=ZOGKsFs^8RIu+*e= z7fT!LJ{B}*F-symz6sw~?b%k%xsU38Kx&WZZsSungR?W=E`>vSZnEw~xELmj2`0}qVDuDPZ>u{~z$ z6=ZuP&|6VKkcaQkRDF+S^X0zX;8>wg_<>}lz}JcPugSW>pr7_HwCPkiZ8luY7D+a> zAKZPQL{EI-sDDpsD?+KMq#Yi#S5&|>m*!%?C2qh*XTnq-Zq77+k2FX&D8{%B3|Z$XpZD66n1DaasoShHRN`&IqV{K+ zvMw_3JYS#X=y9FM#K*v__MV#>1c23v^eQew3fRG5mS~-Gc}@DqzvKMo=t3YFriz-R zozZMpWw~%a@Snhohva>4a<>-~7jv_;`JucSPS^A+Kduqfxn80lxS#7x|IE}QFC>7_ zhMdZ-SCXz<@=Ge1i7_Z;u=nUjBNu^gA9txq|6^{H5AMpjTxy0Ox9|$!pR1Px9&Ki1 z8WetvuClg$DQs#m)oNa6-?K?sc0GYVcAc_@S>Pvd`f|Xeny9p{YLP__=ySqnJG|a- zZ?Nup+8ed0niz8a;1Qg8m7N_i`gbV96=q}E1Dqy6_-&bu!xF2D8>da+(+Yn)kXrgU z9f#jTiVBzwhpqe;cL~*`fxVMG zi{Pz3@-yGH(`al;fCR-l9%^W?ek@RtVmat-A{QV-ZfzbNwj*M2FCD8bi)enh9?GG1 zj?n|}i77Y5lo$ZIM;l*4suQMjrX8nV#>iah_#*fi{N6fXOrdVMPHpWA)Z~fb_mHl- ziU8-vwvDwIBPsJX@tfg3k_uQ$o~Rx5f*T(+N))(-=tV{LIQ}DOF|4Y75B7HLi~VVI z#JkV!f`v4(>b#fGLh!A+vL&d$t|dBQbY^!Z;bI@>T)@=d*wWNkl=1vn|4Qk)^p!tx zj2Bk`v%sbMl=b``xuDl;Q+by$>b}_{Z4BQ7*+YBdyWwVowhOvzq}Td>KmglcqdkL} zvTr{x13|-@Kl08MI-Z=;#d9*G9ihTuLtcQg;3DE|i4n6n*mg$YqBdF{3oi?Kusht- z62oQ!?g_eRM|I>$)dL8J0zMpf^XE)~qJ3-r6>yS?D<8aO%9q(lZh|Sl@2bRT4ecfq z2c*bz^qKG*I3dwNuD5DU{*Rq451_GY=E=?WG$!jEf>;cp zjUI`@n2RN&aX;3Ew`rbd&B^v7?(DQ;&I-TcPCllO+LTwjMWHNHUSr@-CiD}PmLqN> z;VpQDmRGHiS@`>TA3Unm1ABA#%jR=j{@yYtRPD++PFj}IEI#@a-9S32@U<}y(VFa1 zx=by(%Mbh?OkXgxfmff?UT>m;%{cpKBfl#t)r4OR+A$_T!=^s9Ow`H93KJ&$?TBD3 zA%i5lfYlG03}G3^A&xAY&Y51JHK&s)=17bvfbk_Mv$%-+O(0IrFOEp^O@T%}U#iR7 z7tE%w6V66I^l2jBZ_x`4l54ku)49pU+D^RjdJDHupg7W+odLH{#NJa+S74g4y>C(d zN~EbNE&ojpQ#&hdLgXcHQsNZzo#TuUy8C$7Q(bf`C=X6P`U`>w(@96=`OrQ>a%zLQ zy-nL>xn51wss4_YQpjRMy2O8tjL6nh+gWC(2#gXpsL~K?eBXnQS3ywmG{W7z$2cVK zz^?%)P6L~|Pb&G87M)yAzkVIbIZf3d{5}oDt3gs`#=*9P~%)o^-Mm zwEkXz1I8exl)_&Bjf3+Wt|ZKR4=02AOJbA=LRC*gfI9pm{AXUFw_&d@tu%kjW5Q&c zu{|@{k~?7h#pG`#{_~vwI`HCx{F%D6izYZi>Hy`^{H&?@r*^F<6&qK?^Kbd?EHMa- zij`-z{oL#SI_ck+>wd4W)h`yWSGB|Ne}DO}di^ho|KDH!7cKCAar?)N|9@pJ8x!ac zg0r55F%S?iq7X0;5J(xSV<@u_3=ohIQ05pA5D*41ir-npkxg{WO|8UD9rR61Ss~Pa z!lS}KWFSGfK-&M_$Q^|%6CL8F6_ZR9O@9yr2!^p}=*-uo9O^-3{hlt<( z{o5cEssy5TN$4n92TDy7`6n3*7#0?tYqz_5YOovO6N*qS8F{uEa{0%Qk0}GSh?RyV zuAdR95YMV}Cs-;T@#6OTo| z0YO(SVA7YDrm-B+?#>g$bKLg?vttUMW{`+j0d?z1f`a?ee2-BYmX7`+&xC=QOJ^vk zx^ICs5woJSAvEJ+%OaEE%sY$=y2=j3?GeC6S*F&F^ZdA4YT|f zx;(N(cI%1S^^C(ng4caLu8mjHkJ;F8$F2oclO!?r%qvO2->a_uJ)lv|^Zrr-ILgCD zX=zL&)WjFBzOEXeovizxKoqLSXd;mu=+?v19>)LEcx)T-@ zw)Vd2tLfhXB~b6Y%s;bcB_b?(Iff@IWA1KrW3I-(XO@8Se@*uN;Fg3(vMyi%UI*$cwdTlvt z#tc9#oh{Lrr!&od;BsovGEyR=muMf5y5-_3UY^(XXgs8(CqraayY4ufY<*yp!8sI@ zvfa@a1A!4#_0^0hpca#;k)@c+B8q!+W6yO=H`OWd6ro`qb-aBIbsxYZRO!GBRySF9 z%3bXQiI4eg7La})?=0PI^Eht%ikeAJa96>baoTmZ^jomyrNXbrle!vUc!LupG+}^F zh`*TBW>L??SNq}9-fzc3RJBO-mCio~&_5$QJpMrArJ-Bu)H9_=6WHyZju9Y_%<+~+ zwWC8oM4E=DLqI@k{^bzZ>3=wc>Mw^_EB%{8KA7mdv&UcZV1R^}hW&>;e)Ep~C6CgH zf5>C}-{g^sk(C}Z0)f5v4{Q8@T(ThhFwW#d&j?Euo$LV(4WG}=%#6)y1NFl+`pb8C z6L@HIF+DLOmLT7tAYaxgw(NRDXe4OpZNX{^hU0;S7K=xHHp@K`c8C+qpa`=v9hycW8&xl+ z*vFREz`j5`?hyU7CN7JRY7K|WPb>doh;d^8P zsj3TYpOL7UJaT3NsBUzd-@nlfev8HH;rT#K%2%?sFKAi;=j``f>|jL(io3o2As`Yy zsp7n2OZ*pG=&FCPW&4Y*P0hct#rg+Z9X(TBdl73pJ41a3LxaCaZ$Lm)LH`HR+7o|~ z?jQM!boTInB2AwD7is*g_!QNXbREU`RL$7bUI@khp6+4n5AyH^bw2T5yI^XY@sfq~ z?og1)qW8MHWryF{xU?Hsk?E0&tO<_G@>ert2Tw zib)O7gHhtAp^kn+>M`2{``0j=!oddqtS;#NlBn!U|Dh#ab*%gB1HSbeq^KSo>LNo~ zZir#`hP%%yesV4x)u8tWUA92PfAzic-(SA>q2qtV!zPD-5Gmjxf`C9V_zOX#h@r@LKu*(L6|omEgVH>NFf@hYE94CRkijJMK$f=p zP-FTPH@kO#Iw<}^c7O%=4vQ_SNrs2PejqB>LyQaaP1F`Q$)`D+C3J8fs;{~@IQYV7 zkd38y`V$k?euw*hdP%9yT!$n0_)x(3wdH#Smt+aqM^#Bvaxr{a+N&r)u^hIHx%x)A ztxuk~{1r@;yj({1_fZdNv5;lxmLic7S~hgKtLYq}%JG8w-Ss_0rJRwZ95xEUkaUvi zn9Pq4RklbbY2*rni=$HXG>)P2rgAvT2pn3|wtvzLj-Q&j)M}D@lZ;Px!uCc~WKlr` zgDq96`NfB$gIZqGT$0nOHDG6pJ3V0NT#oYP%ac!)HOHHbDV2l^X;U+uvu~On5`jFG zY;(>2v||7(zJ7venWyDew*}U^HNHUS!X^_H%`q2v?9}~-VpCiUG3Q`wkLHdWjcp_`w%Jvj+I^IJKZh3y zl$Xem>?;E^O&=bVhShI+bu@^M;_xbw6F-9BvQR8-lWD$bCBT)EPL6)NeK5X_NZ~Nq z5Z~u^1S6io;oUZH6y-?T%-oCD!}F%CC)ZK+5u!*VW=ZKW>NRD@=0RdSnryl4EH}Fe z+@-eeIP@yAEpD#9kFbGDjQg$e`HpzBIm+p>q6j?=~Q(#YaSy%@(T@Rp89Q7h`& zqYf}u&8CM)mw4VNmZq_vgDOPtXA+n&Xplm=JK_0f9F1HRBSr2X-D}_Y!AL}Sv#H$1 z-zZssEDR|)eZzhzj{?b0Bdw}%53%j;kt=Xh6j?305gAZT++vms?^EQ&RF@(@K3mQv z)M(jwUj|wL`K6{VOKiK?&6b9fOpsCq+(RQH$_LdmGEMZWrX561BB3K#m6Kp@MT#Pg z(=+-;r{yOGIc^K#QE(h4d714A?#!<0ZK$ztcl)MBgI~VJ zkeJ4=b?sZ8w9>2yuo2907oTafGuo6Y`%O+t} zX%TRW?-?vsD4sxif9k^)?^YeSCvdP6M2s}oE}~A5V>lYi z{1w{8__R{3tmelBbD*_hrd#8wYsHb1_&}PBA6ssJy))5=d%AsUf;%i> zEVN0&J82)~v}+`^a?zbtnpAnYR`-hLpiQRvD0IX zF2bx8F1SuXTb+5k=bvr%BlyI6uH_Wks7I=r3Jx4Dw3vRZxG8;*xJlHQ(i~SS?yR00 z$(4msS}Av>6xiM22s4xDU#C}FxobjXH%@Dydijc!877V7%G)oSKp5BO6lXulM(aE6 zu+pDJ6wPQcw@V$WJzZ9HYA%g0E>fZ>k$gt;_Lcpsjf;$ z@y4%s8;z&RfMt7oG4(hC*CyYu`OHDLK9n3qvOKLxJZm05ju;{8()wuDd!>Mx4>MDi zxBHU$Q3WI`joUCc5{O42aP&=hbzrcV>stPoS6ToZ+9Yn;kCk~>^Nt(Qb?<|uCrSO= zBf8HHVArelxg3EZ*mhg3;&_sVnKEm^2;b4=kIz&g@MePW4)(!)Du`DDDxPmo4*=l85L*v`ZF@e22iORX9dse&QlFE#%b%C59DNVFABGyV$N9_{Aw(bf6z65fPy5fWo4!II>l+QPT%*62AWhQcC{C7LmqAqq!OURZHRj_ z7Kz6Hi9O7On@{k%#IpY9lnJ{MTXdwi0{!Th)!Ky4AAy%O{bDA;d@KyV^N!0b5c(00 zM`s=PwX?HNkQ5*vOiyDnEMLR%d)y-2U6~3d2j7suKqh0|D|sedj+e)F%sG2(Wc))zoJK<^LZ(^_|IC|9 z6-;z4j{*VHuL_m)`gPA}%Jmg2au)K7P6Y32rR)O)=K*DOatq%yok2+OHsoTO7glcs z=I=m}FTvu$a;i`GFsA7}7xNAd$gAE#mcN95%OZ@|r}>oJPi|$x^)bIc3p3AlYIvYO z$;ID{-*p+<+nmOrien!*{d~!q8Pzq0+>sDDq+zx7dMZASxlomCDs7&OP~#ZxS`;>} zI7UU~8Xrw_4QZP)|l!<>gG?Rb7lp8 z3BS2?!Sp%0_R-W|e1n=1?-`fIs8DL&lWt|F{LJKrn7iK@Qa+B26ULV3=lbp^8YAj%PqoC= zF$H5`YARq&W#jnZhEq_25*oq8&brnhf!Zfl)=cU$66ciDO5F*7zS)50gDnTJqHng5GN&sr+BgRax&3Wxd zRlUR0-Rw%Fbr|q|n87LVkXJ&r#U&I+tcw>?GMjBM2; zF*06hdc5Yd7oxMn?AI0zfW1AwTCw{hUniU_plVaH7sHyAtv9}_Y0YcUtuprMY>pT} z##JGlBFK}UFxF)u-0YUg+V#F$5y;e0ND>59I~5_xAbE=MsiO7Oj(@*z*86MvTW!Ea z->5x{?wyKQI-{{;#PvrUqj;?yz2r-Mh~PWH{jEEkZ%MZS!RiZltz~_UDb-$INR6l- zY`Bw`c|xzfCVC~pR=pU`JFA*@$6VnrX?OI3H!Kw%&{x^9DOPnr=Sz4+vqtXeJ4akd zo1OODS#`3u_DuU-li#+!BZx|a-daIp1Sg2fYb#0Y0cg7BK-*Ms2X*7r#zy}@*IcXB zm%WZLBJ`u1?V}9~pv|P03KBvaY*)$q(E7^48dI=^_GKZrS0QT5B%6PwiThf2^A_Rv z=+7_HnbC@l8&Q>)mDl9jPIn7tx~_|?-|u-Z&DqZ>;cT(SS_G=IfuASec-4}-+>dn{ zNS*b)R=P?#52fJIq5Qko6TCH2M%%I+U!6PPYnlEh+WDVJ=zn$eN&)o-X_<9Q1p$E? z@{h)v`$uDO{MA@qtpC;H=Yh&9a{ws2{OuuEYQ&8Ka*! zr+xyvfMv4y8G5cte1Ow7$!S4Wa2b_OXE6&@LH-B4IJ z6sHX18vP8AjzZ$CX9N*bIq|CH7cW)#&3UmW(-F|~yhxye565%QWT~H?FM83?G;XZ% zsYF#n4%6r3HX^Hju~l3a*tnk~rTvJ+750khASDYM7PG-@djAlLXM!tsHp^c6%l# z=@xlzL78k;lJ2K>!FHBh*J>Eb2q#>Znn=lzC=TFx#^wS8NBJWpq{Xjf@%58_8jytE z=cH0}g@2Ai^ZjXhTCwj!ruy;_{47c$sY5RZABE^^cI|6w)oNjIo9ePFD^A?b+d2Nd z6o4{|_P(vY(^oyx>t2iy!8=ju)9olgCA=(>2UaMWTyaS(spF{xA)DP9VP&;Fb?q4q zx6a~OWEOpsognQCraLu03Y#XTw|YUO5oMyZ$cxxH48C#0lDeu#rgu#}A{)THA{)J1WVwE~1-8sr& z6||UEzs49rSPRpZa1QddI1)jlyb2}LkY7`X^_3}kcC+$WL3q{&nFdafK?nEXt!goz z<=wS?K+YvP@ne9Fg*0inNUUCC!EU)&^tOh9$pghpXIp90h)Mk)?F6@h7iOM@@J`Kh zD!-pivEio9U(tb@YtsNrhGnl~JQl-r9=m$FMwN6aA+~CUm%>5pjMKXgxjGf`a$`** zYEE+MOF1_sM_L|EupKl#@zm~fdH*WdiK6%zAm73bPh4@|f7*@{)|XW~9v*H!t)#R` zYP&WV?Abu){Pps?&eBHxi8dLJ;o9i;uRny}*IZlHd-1ehH40330^kqh9z`ag8lvqN z#0trb(0I(~bxgnRd~P)&QCxqkgsP#CV4v70?|lv~kn^xacay-ayjl%FHK!O{j8G64 zzYp)Z2tbO7volx~FA>kTB(7Bwpc8j@?a(;dbUQ%*-7mSO6dBnvBs4N% z9`PE<8Wqx+3AQH7BC7^`h?bSW8Xp-g&=!v*1C=@ zLVTk2I!8z)j;eiJ7Vpwwpnu~jC*1(CuP)V72oR4*p{q^m-l`HHI|%ZFXC$0D8lg5(+2XbKSaEiqr&C^DzLH3 zcwqW=1dfkZPW>=Bv~QF5dyO`iV2HJ7fhQ{TFYL2`BaDHs(2eCj3lW-2)Y4`bo=5V> zJA|2E_BB|p>p|QuNph*or3g7zKH4?k&=5=ONZPMehXe0V7P1O$T(-EU4$LXzu>2P* zG!6^C?yu(1es1P&4UXUsO5+5n5mQxSX`nB5=wwC%0~gl$G;8&KVAOM2YPp$E+VZ|3pcQP;(=syeXULN%UN-MiUPKiBY=E))N#(CvPMY(x;`m91FK-?809F*j6ozW$-e%iHRoJpbU2=FJjBhHtfO4 z$%d(0a=dvSw@^LM`ibs2lQZK7`itOz3{u-iS5W)bN9xF&QpV{sM~o_l%DM|uqYjvX z%OQ1i)w2O=%78BCI<3n5pgLjM-yH02&}gO90L%f;Ug-Hxc@^{gH0TF6W=nMmD2|n= z1Y`0;i07OP75n_3BO&h>Vn+;VMr|thOiRSz=QTVSaO-(xUF;$pLHI5K zPELQL?E8Apmu5LjaKOUCR?L2XT=S;PFQJNa)Sl(W%Z%2(Hju1B1;NM%!E=bt8l~Bh zC&ptQlmjyF3^L-~w})*c7)AkOAc^z z_==f835HEI3}_9Nlv``@7uh*G;d-LTjh{bpO*Qw5MC*Sc2M-yVj7A?-eSUl(S!0KHx?O@l z1i8@PU=D)(f(3?*qw;4SU-%14Lw?|YMF8)ku>apnMV~h*sPA(8Us|%()S2A=cn*na zKd!~VhamX8sX$dv(UosE*p9|B2D1l8g=2&DklLj}C`b#tT&d>Ow^gPM(=+Ywd+B== z;Y+oUA&qhM7K;UPiLO+EKYo}A63q3bOj(H`);Ac^(o`THo+fZvP3Zbg_w=CVpn8G}oRqk=wjMIh1n{ z13VxfN)=@t&2r zBwF0C?HhBsx$vOZ8S*Qd4{T=U#tV|o(pPOnRhJnVfY%}sB{uK9poIqUh#+Cvr%$~; z2@`RtwcfgCsx=W;fTg?7bU3!!rLW2KIuRB5(-6;bCMD9UsDf!Jdo&_%H1NA_rNHJ9E=p57t5Bj}1E&fp=I7I#sr&JrGYvN{y2lD{Q3|jFb zc9G!BZ1%glWdynpN!(Fp(3?SHYs~rqsPs;*@I6udzxTXb=LtMIzQlZFfYZ`BoMxst?>wVNlLiEncVhYXC$R|A+mdD=r z9P9PXhVFJ+uwHFycet%SzdDG#o#I>8$tV9_Qa?Z8%GWS=h1!L+gvJ2B-7g}0MFKCl z071U;i)#&VNAxXA+V@2+wL8Ie%`@sx-`WtlK?>aX3INCGR|gb^u zT_#mw9`Mr4SYV2=k;8>MRKZ^nu@d0)#h_s7m;TP-UOr7I!;fJr=D+6MMV5!Uc18T3 zwQV!6>z80M3vQv#cKVoa&01B1T<@cTJ$~TyN-&vZ`Ei}+-m&Z(^=Zl>V~nbw-bUT} z@XptHFtDAj%nINs%Px;;`W`eO&M6rGR>rOx-vF)>fKGW^z}mRMH@{lQ@=gCsPp^dV$aIN3 zZ|gRwcCi0jg!R72^MP8L?fVA^2q>d}gedSIA;ZW&dZs z843dUj|5$vpz9aL>%KJZ&_HbYZps;xBrjPTU_|7fmJ}=6Mbv1q9Gg^Izq=I-O7OF> z*~;fPt(uGtyJo}x-*?;24bsaM8hsc0~5JwD+y-jl2~gUgJTpR{w^?wENw-|Evu zn8p!83T1E<{*dP3Abi4HDEy4N)Zh3dNF_CIA)^x22n0Fo863aGj-wAcIM$+T;S-*) zDV*LB`KR6%uc2g-+>Z;O%|3|ZsJEsv-Wy>eDd^j&lvV}j8->G@c|$Z> zdYnx>;woI$QLlGiOcKaZU3p zX?It6 zc1C;gpB!0b&x8<~p7Z%2U16cC$S70XAY7r1s0wTEKRQm2vtuz?;56;t?5es>nhBzjng2yyl+>tfEI*=nBdWNT7SPaAHk1<( z6Or=R1P%kySN+LSH*<^QVasb?dr^OVz`?lP+o(zGk#MyUcwq|i$mDj`0Zg1v$~llY zJyZ8#ZrbnbKaa0zS+T|Gtj~uYSst%NLO?>nz@w81dH3U_y+L5Tex0Ne zV2xWt{lEL4K5ri%AlfzsR3RXs;{JP6$0Gl~H8soMrdIz?LIDA#{^$~QUjmKBO8hX6 zSgwZPIq473iD&p_$lyu%@D74^lTdq{@WRcQBTRx?9lraLq4Rwdg_A)HMStNELm(dT zBk997AZZPF;3M>VbR=ZKLB8{Z1>Qe;c4qBg1MZ%nNf?;Cf+fQ07*5r9a$UxO;T#xV z%$xaolczM)8LrU)HfQOdzB+tsyc{Ftz?Ip?b)z{NZ9)ZZmOS%5QPvsVJt+<|{lfHz z+WXp(AfL|oYp%O|Ym?_!hsAvVo%G=S=4iZ@N2fA-HaxVb=f~FHVM`5M7yNJlBn4LG9U;7 zKfs?mKX(x2uE)c!?(Xa=mdDb7rR$aR9jyrx-apcc3_&ihOn2&cYzu$cAAo)b$nq6x zqTRY5vz}2ih(N|bCr2xD``wqLMAV3XKiz+v`2W)=#TTuWpli44{-N0GaeLII8RGIQ zq4;X@@0)=8tYz+@1VFZd1r96vN%znFBJra zgZt8VLL{y^`*680`tSk^TKR`05d;~BT$T)B}w#6iK(j##yo^$^@XD{G2=hPA#Q!Mol5 zQ6NGv7Q<$n?# z+khAk?m+2h(e0zfB-9Pqid3V+DGboPiIuqao$CJ6%QnwTmdNJ&urqBw)4{|w=icKz zcU+6toJ_Nmn=XgqRuVim?dkZaQ{#X#z6~~~qi)X{k;lSSU7|1(Y^TfBTpoGOYu-*y zg{+C>XOe5z(aWzXR#Y;G8(M9t6&RZpS)_MR1#`Ox#+0K@O3@ZEPB>mguQzg z>Nr&!jj?qkELL-}UcZjpS!A8Gyd4Om>&C#XWE?lU`_T$FHJ(z6(PaQ{40Sv4t{5~I zN5n`i%4^^H>4NOH&d(UsCAoikmye6V0J1>GdUcl3+Lh!U;LT`mgC0e#s%pQqb6;iU z0{>I%J{IWdv7~O=BUT9W3&c)=e`=%p|2!NQ1f2ZN42|pYRkSbm+7D9eq7p$6(rbd6 zj*uzg;lVzC8a!%~CEFNkXg?yZF2jvmI({Cs6{(;chjU&DbBM0ve#W4<(PE!S=Y9gUV$vTS$8Vb>N~Hlb zb2{po#c(%{xozcM$UoVMsy=O?qtysEbD45qa@x<-dFnm&NI8xfr0CX62tSXZno5_H zZr8DRaNZid*dJn~Y;tP9P||lUv3QenU^G%5dsRl%B%1QVEc<=V)b-nAtZ0{*V)J3X zNtV>2>rPG1Xx06fPorbZOU0tm$#mxLg@lm|YdFl$@-*wHvURyZa1hGsu$0T9C)yaF z%YCoN55(M?cDm=1*|V~E#2Tq|9=U*TeqSx~w(aatP{ModmDN~-Z=0jsUH`P?_IeFvN$_{Vu z`47J4fw`1vufZv&<1tBTa+UC17V^ONKo6gVhI9Ig8X2cWFgK>wDb<%+8M%5~6kvD| z`wI^=iczsz+aVV;9TMH|U9YON56)9J7X%62A0Itiy41T7)PqFSgCaIA0nl?=q9F_@ z!5SRPueToo_opd}!Mgj=kqkO^*VFU8Y1pO|&f_aC%{56M*8fBXUWx$p@7-$OQ<`0r z<{8bV^_mqkix)QIp_DPob00sfc7mIcYdK6FrQAy5mK;(K-@T{c<&#??UsMuRT#WB4 z+#hAXnBG&hV(3JDs_1bd<}Eim_{?1}CqmRnd!mdG>?8f`xN2Z)YE{Q%v@${}-)oaj zp@&wcVW`9CT>7%pkm1^Q0}+Vt>v!YM7jV?mSFr+yodq-;Q-;D&9^rlz+84x}=V{0o zwV4N;xu`3&u)tJavm;}ln8Opcd3okx(9gXaDW$2gG@IA1b8yhPyeM5dO_MrcuyI9F zH*FsZ7l`UGn(1JWSYC9Er=O!nXpE0c-o(v{zzXR0;`K2jyAieFI=mT!FWo0#=r-_x zU3iq^uB|TNI?-r>_PSO3b*f-kf9X1uznRBH2WMRdK62tn7bCDjkZr#Z7UcUP!O#{_ zK}v4xS$dJH4h_p%UkMz5;KX%cl?{AfN?B%?twGs0iOi<&5rAXK)!X1vgP*y5FLLUz zYlOx1{K|2!!3zlLuv;XjRUg|-$ZWbE%u67le@4Chfr~6c$W>gHFR4}1Sdlzns5Wz6 zx@@su%4=9GA+5mRf*0G&0|i=OMBscjD@W%qDwDM=;jmg2cw+s&W&w%dcC2gYCkIct4vriqo0x>|_6nVCrp?Iv(L1_BrzrbnRps zMsl*RfcUz}uvfSloLe8)35WQff8qfbFNf>#bxS4kT(=f zov*P&glb7e>Y0I|$bnY*;SuR!r&jlkPQzL|$NxvJhp~Nd0^5AjgM!J^uB)RVpb(tCjx#gUJU~qlweqr6;WvZ#Gx+F zFbEt9@&|A43AA19Enua@KYsF-n!)aCs;%Rm`Dta>6L=6+<6gXYcX8L5M5XOMMhQZ} z;2w+SKGl3KDoH(tl$85o~RXv!}fhX17cRuM%-Z8S({n;Df)oy~%u_@gtdO4|2#=mX#i!HbZ6sZ3N&a<=>? zIB%hiPDuEsIV$2Z_j`#U`6b37!}&?IQrsFNppQr9PM5Y%Bo^7X*e3YvKyVq!_re%5na5T%5V8IZg;DaU~M zP>Rk$z? zv;z0))bv)BU`M*Y7|wYCFmXV>K5cvj?o};TYf#AycJIU<=lCTXd|8Y6d?c0NYYx)1 z;0**+U$)?MA27X33q|15qY%@cH2FewKxi@qM?46wdewkO1SqB3#XYkb<g&LuR(bFp2_~;&8 z!=RVhYIbk?h_Sg@kz^ikgwl^tt}rXXVJpwurwkBmMqGZ(Y>*pKm3k|gAP^9X!F3X# zt}kHlLrxd~h)HhrHkNQu8##VKdBFWGZT#V~U~okUA?O4qGJIv*Cbu#ScxEMl49)NK zl@ACY7G4qUupry@YhXGN(g+Vpzs`SN+Wu%KhhXQ%4w@SD3u&%0xcF&TK)6MXvNn&s zGgYCLTiJ{UX8|Gbu=5LpnFKuz@m&rghGoK`YG zJ>bC)-G*=8i4%@jpQGpQoV>=c@<27T-UuJgWP*H%`6OFnvDqLg0#k3`z=wa2Grb9`!=xWbZ z^m1OXGiFVq@vPV7R7xZ(TW`H#@_D`e7RW9FFW0V zRx3`m3n9H-SX$G^{9-zgW@Ov1Vspl2{ZmyMuueKKJ8q?7#`tqpBZA9%TjT1d7;b-3 z^~bzd?@7E1Zv=1SR>^pXlb?lt``*6X@ioW6uR0&fi-DYirIZsuL<;aOWt-WQ|8aft zi3;)!UMQOTYiSt-*S~7{qVoSt%QOF><$)mnn(jA~S5`v<*aoj77Y7j*SiuX;(?m3$ zOFqwj6=p@Hfkd1KL`PA_aYg_lt{^}#NhT-^gI3Iz=n_7j*6GnsC&5XDr0As|9f z5R6T`Xi5)f2va3pWKVKvKiP1Y;&Qq;uW2iPU9!-tqoZf+d0IC>@zZz2#GH|09;6>% zhRpC}^>}HadxQ*wxs3^}H4+9j#Kc@l+9gt`B%sBeqX0<%TX)^B#u|-iL(TiHY5j0BzI#!q=J|dM$k(ZU#F#dil-j$wK zPcwb2td^kNYkeh(5WxJ9`k0#)^p5fD<6(+h69ZZCT3=b2vvg^z(jp=p{JG{uYqInb zFv$XNAGb4vpP0ph{#yVbY~Bz-jXB10{3KHl6ODd;ijP%HKEOQDaOgh1Q;%!rW}}HY zOyvuGmTezMBtCNs=T$tv()AtwLF+njLB^Ep38+Mml&y``G7a=WPU>Z;nkqQe_r*$r zHFz|+81HH;C!orXhvLDFbyzga_NXW9hu$}z2@_dv82^xpIFPoFO7A<%RD6VUO(R>_1NcWi_*#3w*VUM|C9P+qvz4?I%y;ut z3&iC?*?ADZH}k3mE_}bNlX~gqc_82Xq5$J>xIMfwLN4jghPhJrV=IgnwnWBMc(V1N zLk~}-myzi`v=w8Ht-#O?xz>g=GD5aG=!B_STM#|gFD4cnUnLXuS8YlUJptKa`>*DZ z+jmV+IfGEW3Txs@=MlHtzuP&*Z^yL0Bcz_?V7p_pzpuXw;BIasJP1x12@p@0cbgXD z+@jqxL2q0wDd+Mo)d<_9Lz8UQPklghY$Nf=-Gi?D5^R=O1sgi)aW~8o61@`41zwYK zym|D~mUJ^YNhH-v>vW;7)<^b@mKF9`1N&)RX3m#70p8w_$>bvG%FpH;?a8|ZK`qE# z$$D`QI<~W0Lp;XR!>#_!K1qV%yE!_JGkX)R^m7<~V6Y5WM0<%r#}Baa<5JF_jQ!5n;7;|D6Bs`w2dwDtES%bCktKqZLMgz)}LMY+O%>CjX%B>#J zmi?X6R`zWis0EDAy;{C|LXuIO-;Vq+2UrO0uaHgwBVT4N!ns!jrFlK<^?%poFFRLg z8~L6wGu7zdDxGkik08&!6NhOE_*?aG<(D1 zepXVQ(cq`zqqG1VCKT^^LHPxL{DxLjcGp<+BF`*4-5xcDcFaM$7e@$4?>|J?Toh zE#qBdb)jadiX8W5`)!x=^p?86V@}pFZc55k^(O1_$pjjVHj-D)#7%8R0?4H~{@Lpo zP$8GC`VOJ^(>`TK1Q5CJ|L%4*3F50ikMW!$SB1`J_BjNM|NLQys8!JODd}5T7K3yt zvp5V*dV8HvMIvp14Vj8etv+O$fuQ?*OHyV8m~*BQf&P)Q%9}b@Y_O)J#N{l%h<2l)>Jvl;4a#hfZ=NGqTiS+nG8bLb|0s*r zm0JdDE${-GT=Jg}^(7n`Y1SByjb_YoQ0{r=jtiA)ikoH_5pQx z_Kh;&Oyhm-7y6FujNOAi2F<3Ky&N}(Jz&EhVvZO?PdwZ6bx>vWIw^~eKjsA0gfvti z3E$^_VY&CvMPH;AN_{hWm{ruLh$0S8WU&vv3O8sevx~=yng6vBlg(dvpu63oi$k(V z4dxd_)G#jTHxUJlWZ{R6Uzu=#7=XZYlfR&oNqpRj8_%&woDL(4Ln8N1yPDN$Cm#$K8`Pgz9$N|cBybW%7#7!lJ(%B2O(1biGpmSXQcM)} zxn+v9NdJOy-0Vh2vfafdQR;ck+IVRJ3mKI134PmzhcFfNKa4_~uRg2F79GC<03Zkc zkPgtjf06=!u9>dd|A%z=S~D#!u4|xgsc&s){C9hcKjcFwBtY*U))tMb9^8p$*xn(S zCBXAW`zgQ*W1JBi16}ez=3-hh!Mixh{rQ&BV zB-=As8B^mN2wyhSE)9LQE`xMXpQBVmvK1Jc zTS@}m4KhVCIhreX?CStQCO|*9uYX8``kvopd4dKV(pyfgZk{Hmn zv`MvddO5NaQJ+qIX0`COWI=Y|?AfJznP^Go%WpxKi(x2@>*p0wGx&s#G1_@^nV9_p zV5dnkP<-44W)rVU3uWtDQF#z<6&6f;*{cy!>5f;VeRv< z=J!cWle4IcIGMEZo%17|boPOB0k&$NWalYEKKLbk#Aps&&hXP#okt;bmI9B06T|}r znctnfE@g8raPAme%Qp?&XgrJ2BHAC6sM;wJ#m3j;GcvWrHH~K!ZPrioW{@6)oLqE@ z^KQpc)l-|*u3XMI5>k+C!(R-xz1-QX9i2$Ho;mf@wMdEhr=F+@X1oph#ht>mfLK+6 zO8kpVC}Bp>td`Gj?<*eN7A`N?YnSARDi`ltUWi}-mWvIy;jY+VWP!`L!AB zkYzHtw`ga@MfV~)DX_l&mwJ`AhJh)Cf-T=hyDNrpX65TBs1Tlz`lvmZc7Qel-w7wT zpV$s&HB8sZ(-}3?={mqYY-5`E|;}*U~qvQEj&lFQ^Qo z_^CoLlI=Q~S5VMpUMvjICv$E+PbhrvP+zlk$qw!Xn1LTn>=y~UI;TklLhm5wX7I`i z#5=BAbDCBX)>g*hS3?;%d;xF4N^8!)5R#USj-f)}q!$B+4!JF}tzfeRK^O^+ciy5f z5kOn8fa*>QLbn=@t$S&P&&Oc8^!@03o^h+DPfJ?RH{8e`5J z0Wtq{BkSek^(~TjzSg`R**_46=Ce8;m?{H=(@7M^C@b>$c;j$|p0oMh5<3ETwmNw= ziv#Bf;&sA$IbhPXWtrnL)7HM*kj^?I(45(Kwz###su9wt{Gh~@>naw}dw$v@j3ZK| z(Rpe?^kpB7j9gdRS9rr(XbTxgv=Rxf>GJKq<#c#VHiWcC?@g?7PjvUWodf^1JKlB^>K*h? zh)dHlYMyR2WcSn&jUG{wd{x{#ERaD9+Bfpepk$5}7-agY?i!c|6#=tKMCxmh5h-W3QGhnpX^3HdyfE zxBJm<)Q7p6Qr|JZVyzJ77dO2olyUPz>A_R_Mv0b%F+Y4JWoo=)2r^eK z1+BzgEnKS8N)3<*>sIEk*18{HZexUL(HGXe9=boi1sE1aW`jx!PcoIfC7iDm9xn%ZJ4&a?`ZAI6#E1Mw5ekXxhcjkd>DMhsX-iFbE_laW|!aF2We?w4h30XL<4bx{w zf#6Mv(zq5tDCq{aJ~t7(6q86`t&456QQen#g*^RkOxAD2#`(r+5{R9FlXp5f^z-z} zYuQ9Kgi?d_ro+YxJo)3!GEjWCQzlYrKXiP27%dSH!0jCA*0evdvnUP;G zit_uchNy7o^hOrgXnQmNjZ(W$#Rtw##2xK3=SMYX>wD}ozFV9 zsih5+4c04vZdGI?6;Mn1I|Q62DrYjET%tvvZmYlC9CRpNjBni$3dF2pK=gt5bK}o% za=pzLk>g^!Zrs)Mj&aY7Jpvo&wxRpcIafspd#SXCAk89-5oaA<&dAwhM0E>T8pX&@#nt$+kUv1d2p@{^SOl*HJwpv`v zI5*1+LUQAP;FFRn11nJ6p)0?^!hHnol6(ZxYU8d|MO55vh6bg=&=!rk09|f)Y>sfG zT!OC?b$Q2VAnrSH(-5f^Bzsd}AwttVjCwbFwrhKr@>;8a@9RC4ak6VgC^sWCzPxH> zEZ#ojN9md^M7mE}d557ypi?kKnjSwhnmW)rMYYaMmah72o}>(IOjW7bIBzv7jhJ(X zm2N~sbDf&B>chWrO2AU&^Td;+3~jM%63MCnsd7v8(it*Wy*aH>${jv zZm{_r9-fh#z;nI)!RJk_45d!$WIqg!ygnKY><;|?U*q#WpimIU7+hQ|yt>Rj^;>S< z^Fn$4+hpLIt{)$JlK}fy1f>3J1hiKEL&pE#Bj8U=?>o?65zzfd1oT`Z`^;ky7cIAi z)q>6B2Gp}WLK*b-_WDbPd9g$Al8C$kno~^3qk|W1lVxEcgvdgL6EtNBgGi;!3fRtv z=LckjK9U)gb`c6hV0N)xT}-$gW;;B+0m_Z7(_Nd{!4(Qe1P+*bo1lh2QH5l>=G>OA zVLER)x9m+0_m^_M$A(RKMRu`XreuV4p>9iYSlVJks0R9N;2lNHW$S6IytN~=(0 zk@+ZyE_V`cp2{0~SE5Cl(AGlO^IDsI36XmLAXt`TlEM zb_oBQxcrmV;|KjKF1@5xjK5gD!_kN@GcV);+uOv#4)QXKTlm;50bryu5q@HwV2x7r z-z?uBPhu;QJAUhl%+xuuMvA@*u%^SLfoe)kXvE5x)EU)t&Qvj?4BhlEF#Q{aPJ$n#ZIY5dD0Hn^M+_>1N` zyAv4rSa^#HPff^M9W*1?iqhudiiU#Ul^R~wT#&$_i=2O7YoCZkGyH|?>5)OlJ|}PV z93*u(!q4xcIc+v3Ck#r`qBR7QD#$cW6WeyXr4n{(@J2U7)E%!|rjacS}9rmc2x9uck4@+A~Bxw=gS&8yb4ct+2&;C{)@YV(ns^_ zV}$E&np1Sl6gN0!{KHB$8SP|Q?Z@$zyOM$6dF}P~)h#hP(&1?Zm8$HHN8pWlZjU_5 zkc0=1?=+aeyoX#w_wW`znvX??FTg%$jt7Yc2{T>i3E!;A7b&U=62I*ME^TJ;eST%D zlIOvdNUo0AmtmovbO4s_L+czwgDN9I2cz}9>#-~-Su=$l4~3#yty*cbG{~t03Wif* z-~Gon$gLmAbmC+&fjv|&m>wxcj-h3npV%diz(!CTit~K$)`_%Br_vnthaN4nr@q`E zmWa6*5ZbL%w3ErLsZ0(aM*($%sXYmA;~WgKP=J2{V#T7qo0KnJ3La=|EbaQ}e|=2= z@Q)+@$3s5~*buq2{t8PI$ZwB|lE4*kBRxDD;*E@m!1i|NL!2!`UR8yY3#CE<_u z&akY_J)77XJA}*;p&K=9ik3*Be^WO-#Y*6bX~1q7Sr1^8>im70@L*lWZE~90u?qI- zyuyipOQz#{lk?)VtCqD%1?DmEBzuXx>xkgnqlL7*oNt~f^%&t1^o9NXyXSMz)WetF z`Q7AeVz1+0^KWnezsbLU!hW96f6u>JZr_#n(T6VkqkRL2T13=DKtu#$3xy{U!Aa?f z(NWl9h0)?f(bR=;U;zO^XOy+V=jWvb26_O1s#1~eQ6T}Tzv70C>Gw5BtXiY79OT(24h1&E!K&){r0C6}G|b&xb+Vly!X zq!o*$!qxe;2WdTJ5{W#IvR-_Q5AK`|o*i?wuFNsjZ{$ULd0qFQ+n`;?SPl|Y_Ft8h z^bV+38w!b_1TV95fnHhbpYm)rTDXN7=39V%7zo`bSeTB;jvv<#UB=&9$};}Pg03&{ z!}q{j$qJg6!gustfF~h(R^I6r@ZGmnPM*`9TR*Y$O%)6)MJLUpVHxx$f~?i6NK8m- zN@O)7>Z!Do)O0W#0qP{fRUO;_THd7!(5X|C;>I3%=(ORi_hR6^lQ~$-uz4lwp|fCO zN59=}Pv4w}yH$Ta%7s13FvMM3X%x9mrdH}>7+9&CCN)Dkq$b#UBw+BW{q9Ka`R81h zqqIB@?82|TAj~A9Gp7?lvj%ng_02}g{3SABm5MnAKmn>;3X|=YG$!HcE@D?9OLN9@ z9R%IY3o z#gsET-J~W)f#pfVl2gSg&QLv`m7TLW%`YHb*5=Zq+q$c+Gs>Hh7fO;+P*{h0H?%z* zxGA9SWgM1p@t6I}W!8|A*$4Bg3GSBQGaUpn3G3>O4pd5X+BrX{qslc`gP$tg@_W5! z?!y*(hw)M7?yg&^hGW>$v=nRn(vfM+OX->fy3+5nN;gd97qptm`7NN$>292(HZtL3 z=59OJAFlO1239go`^F|voKghjN}lY&iiBI8%}VdmjD1(P3|_S}N{BIx=n!0Kz&o13R2 zBlq+98bCc6?>vU5y0L}K*x>+akb{p^{>}q(0kVifsAQRFGcoaeo^_kw;V`sPuKplI zku-kbt2VQ&iH`x~ZcluCJH@&^6s1Mev*mW(-2nqZo($lC+^=^{8_j2jOe^6ilq+boRtVq=oMY4x_@O`72))K$cgd>ZZU)vYZ!YAgovDejRq5C1yphQ2^5a%H7V@Te z@T=jHx_KP-!$kn+?_1Mrug<5~@w3M@cIYDyf$l-Sfzmz?KW7S_wsD#8IB4ZsxnJUo zZW+58!RValND4XN%g|&{c>c&~*U$b$MqKZ1SS#19hA0y=bb&#C_H~uM?Nu83Q4L>W zJ5lv?J7HdRJ^UsDFC-VvwDe z>gJ<0Whs}3NfX-{MU2TrD8guqnKBZov~TD zm6q6C&6&^`ti|mj6qY%xDDLcb1m_w;KWQKL#hsTK&pghEj>nwNCR%yqL<&w-$^O?p zD|akmIL`fJ!;d5CFDacavx1)eQ?t&FFN8~dzgybNG1;ntkl(%zck zENw`F+Jf{x_u^W;RPp+Wcq!=gA+^TurK-B~h~Lo=jq=6^PwtI%{9#WK$YQKBIQn>9^I( z1UD`R>i;_AcST3&i&7+2#_eU!^IGUNAb|H=Egtwgu;-HsuyiCEI7Ui`-bW7$&Z^qb zM~>X1W$FSwjzj$H38Rh&HW~-pFUM3u!RaSb@wdt$8y>Gb{c=uak1dna>)}EMjBR@O zq_m;7WYqg6he>MSoN*Lt*=YZrV*H)Tq!IaA7Od6$NZZ6g);rF5n_dt4?-)i3w$+9*=uLskP3Y7dLgra7Ot8oKl zmHT8y=VY%oEPs@i27rD=V*5VK3p_>7bW{~P=}!6vy9LFA3r3_SQbVq1BvPfPD}3LE zvOxM-pl%^oeo+XcsGDklkyC1}yu9F_HkJ@1AF+Vf zFYWqqVm~dtb&R=j@{{Zg_PyvWx5l~Qz5{<-mkh$FurazF3t_GccTT2cM3qJ&V!6R_ zy>;IC>J9RJ>LO*;?W&&?>5VMJHd<}gD zYFRu0mJF!8)?=8!6Saa_5K;s(T{n$^`FkcUpfRlA0H>tN63eQu1~0w535j?;i+*fkQFTzTJ7LS!y^xJJ>-BS2-);cfn}V+^bHYp;@`(2mC6`)s4Za zQ4`0QdloZQoOAa>KPm-7<=Ui8FS`0Dxq3Vd$w69ZjrV5w_M`NZa0{v>@wlUwvCP7` zqdSvHV$6oTZ(KhzZxJZjhYx;Q4meG!DPK`h`!fy6&onnKpVk}+w9EoSl-H}=wc?cD z(AF_Ll{lSLsGgOZ@Z6pWt=(*jwdiCi{5WC({B>rOqdDLXp}6&$iM|~>=DtnAGdSVr zP>GA)T`ss@2!vq$k#=tAqSAIX_1>d7cQ(a={na{2PQ9`HaXC?C05HPZr{u_vqf+rX zHG)eKVs`fOhwMxU2f8zbdkt~(JENR-Eqs4rcg;~}8At!pa5Z56{9t#P>6=Xsv???* z*DA8=IQ99D3lUyRdyZG49M_r{0AZsuZ?6sUZ~r0m{I^4GKB?qE3u0Tsl*{-M#uklv}okyb>EFYkJvX&7X??=~AG)h>eKeZ4u z9ZGXP9VM!Pd*nZohrME5sE3pR5dNkYuskuW!0!) zC9RaiAe)v(lx{j0gH8*j`3wIHn`c2G!C(r5A+lFVJAdwI7Yv#1_Bc8_rrf?^puun= zJfZkVUj|gWuTJ>=st6BLv~aEE&;h%|oNY1t1D4Ih*~H38-mF`9<7y#;#`9Z-8AQ?d z#9}T;w4d747IaK4ZrhAY%b_sNdXJZ|EdnPOTcM!DNorJICKFB0$-3y*kG{$5kS%8H@ z%g&gNKQC82;tp-JM-%u6&5ZwC#cDY3n%c=Be)=(*AcNdes8^%IhBT=)#lMGYJeTkm zW2n2HY-nH|*eT4EJgHg3e;NsFx{yM>E%DiJOzRBP@Y))aBjyD9Ku_tRO#BK7ZlwGz z-4ZwKQZ90aqM0*b)+%s}CG6ggE)Df>{+c+lqjA+AH1EVPPi+TCC4!l`<+sNcrTw|1?<#pRaYqh14K-!QC@;U) zyMLkRh)#J;auHYM zeEAljYmVD#Ydbd+4&;WKF4K*^=-LB>n;C<#3?j=v7fHiYqaB~WlW?jZazR$Wa9VHu z4h)Gk1ZIq-{9P!+>bTB#oF`ZLAexIa82&M(xV@GU?3LqcaDoRVlv`(eJUL5$x{?;B zTWVZyDXYURA2e=yb&ZzJ^&U%pE6T;{RmDFzLP^R5FFT5-u7eKjXUyFc#;^u(D`fiX zFM}(#aydow={hHF5`0dOo4Ns2WSOUz4s?$nye-YYugn?9L6L7KHxByd@;k?`YkLX0 z(`d&Y5xNt7=v)VzQ59fHAB(607d+VyBf@9;5HFk^q)-D`3oQpM9EYr%S#PNMadVtO@ix zu*N%}1>d+^>ho&1Z1usPh=ES1NRd9r{L#K+!*iL3VZ>LCuB!XnqX5DyD#PiFP{o7QtuDVrOOvc`YxPl1}*P>5+$gufS6L&N72d zQ#s4k?Y7X&5f?UHoAun#=Mvs;bPzrqr^9YDTzOPRmDj^AGtT{YT7Yn+NyLbyh%Hoz zQmsH8YqO{7lWr^R*orzH4bt7_&gdHneky?Q|6pUNXqc_-LhybW(&etCSMQ? zv!ZI>JW!*DAN!>$NL+iI*s{kqA=uE2ezJ}Y?ULzYH+|AGoH|hXPONJW48rpccxx^6 zCwpi7%C5ICSle~rD3A-ZJWV~%+~^w9I$FKZYMPRz?KB5#E_k45=Fulza#iS2@jf0H z37Tsa4IsF19w50miB!?&fyuH3mBQNB5Ht8*DK^L)kfnZ)cC4N_-+|ti@pj@XgL1o;n&-#Ll%o= z4p~LaCMbPu`;JvXzey2I^Z1Q|J<%d|P!0h#_jRPFQrHx0%+tR+^ zcva|9m4cST=fr^Nr=buA2|v*PWV>qb=?27Xf1dd&A6osZ)L1zEH&Wv-+n~P{kT=Gt z`u`{&GHnJ660M{P=Ou!Y##|I}*WHjyoTLmS>SBc{1SduXf!3*^{EAPi?Dxqv`Zm@Z z97HXAk!6Oa!!khryjkWkwa(G)aB+DHzCKguNrp!=nN(;I$9SC@gE>Nk8AL3r*K>U8 zB)U=S%ytwhC)3g^pOxAHb4>!fs)by#@-4nb=64cFd&$8-WF>Ju6KR?WZEd^rlycJi z@s61b;~KiH3HX60D(=UJWP&0Y1yOd2xPi*vK~OV?X=&Z@j?n;GeeHA6C<+fVDv{7- z=jit7v~Spqp6GulEO4XnA7zm0Y~SSs=>fj%{n~F zr44r{Z=2di=Zd1-Jd5T}$30gk@^}o*0=a>M%7X9x;eVCu-qZk5d2`e`uijgi)Yy0i z)(&bt=<4e(TeP)7#i~h|7FU;3?et*19RPYPQcfA=F_;25rcx4aOf}p`N z002z#pTYJ|ooJT79A^G*8}#>1G=hI%rp7RT??jX3!LIU*HIx#oX;vYwsJdoMB1x!y z)m0&VOh%kUQ4}FK!h@Mdqf`hj$)@du-G(JbdQ4PK2#cizdr}%|DSUMH+x~&I{z050 z&Fx^^!DRCC(Cy*1YwPjm^?b^Eadqm$RKVN=jMOjDke4(7rAS%=;xkYxKHtb#3rB5@ zYcg9L68Xy=BIY^2aQc#hGR~9Y?spj;5v*&XEkz+z5=&y{m5NYdIP(sM0tcZD3C zd*dGGD}jc~=uK;1AgM+oiiku*6Z(k^`-A*uM@%1m{a{91zCMv|>I^cR45I80-KVH; zr`~#T`C4mi7mu5Rx?!wnSzQ?!@172GRSOorB2ft7Yw)?#jS~SJ#9@7J4G)DvzC%P!lzSwCs zngmKGOUVh_;z8eQ?y7@OU6xr=#=-f5XB+{KcOre)L?X{9VpB$<`WtiBJS<&wxM0}2 zdOQ+lFuA(dTL}s<_8H&SOxe>lVrhAc!fQ{)VArWGX`%@p|73XrmgerA!iV)k+kUgM z!t98<0IYj{d`|NHekyY!1*}3meHo}9!9?_ksB&_SLtblaz>Qu7r3()#xb%|3L0VbC zZWq7yt9;-|t_0~Q+nK!g<-N(2EBbFNZf%As3pRUEo^cGVBt=o^cdQS^wrLawh zhSXmI0-Z?f7X)zZ&Qc0YVKJ)-u0doKGzwGYZL|HNxO^E+4Pvpuba0Un`7yHO10Mnb za?wcr`7f;-BdT!8rK~+~^NSnS?6HRls1`pWDc3X{X$FUOO;3}XR|W(3rg1L4;xlk( zt`>76ZKSO8Rrj|`T#$j~>C*c;3XJ6)zOHe<#G2Q%<~H=RVoCnJ4ViW(PhRu?)bFz)Uy0fM``OOW7Bkl^la!QB$vA;I0d*FcfV~_#Ye8+iHbi}AoY!+Y)qUpN-jsrkX^3lBjt&tFAyYL=10y}v`hlW{?mgE zD7?y&Q;~~B%zRw*TB<%aq?#ZC5BJrlcV=$*#cDY9Xjcj|d|qG0vi6_F6i4=Q@|E#X z(2Q$A8elEmy-wu9gmsLm&xax^@;+9cZ^4O__NL&67~0Ew-)8Cm+|$UfblCyl+%)1~ z%4D*^QT?J(kej4Qnj@FD9wu5EW-`UcU(qZf7w)%BpHP%1mtWdU>@89Nj$l<=xqejZmW$Q*rb{FlOcn3c3LsO0fM2#xxnHkadgFiYDeysnoJ zxxL9guGMdWGqJ?D2$&DqQ@_HDbXFcedUz_AHtSQ60^iAX@d%&mjxV5g&HVGA!OY(Zfk=8KcGz(C!Ga3%9yA zrQmdO{C$n@T%Bl&gr|jY=X0L!gY}>5sa_`0S*o!(3-=ZlgRd4U>twpV&qaegr>IXl zA^xbiv2RdBXA|!Z(ZS2VGSTRTt^jVet~Z1sOU?5rrf8$YpSV#=@jHE1P_5*gItA|h zd}FRix^G%bNR}923hOl9-ll9{_ZX~Ze33@0#HJL{&q2QB{i({?&YNJWXNuiG!-?+u z+Hydv;tlDR;L)??Oc>LdpRW#>2`rcAX)!&#W6>c>3ssM!T#iGw#g>RIF3Zh}=?EFQ z291MV=0qjG%kEgY+Jk^d97dFkFh0J6b@IE)vpkxq0n*|nRB^!?A&v7&W}bY`buZSv zE;<){J(i7#cn+URDs|csLG;rFKI+C(Rs4ZA$1~h58Np%AfWu$T)%97hkY@Ub2ZOn= zZHNjv%fH|Wl>~=lFynOsVZBX8niQ1cG=Uvu{95j1Me^kX97*!e(>FgS$l}FFIV(fe@SBm5gBZdi}%M>>j>q#zE1NTf#D^c6B0R;Qn@9+9blcs z$J7kGqD31D$5A&Vch!$uMCI+*)}i+oL3 z5kP_S1l(V-TaFm3XeyJ&t*4BnN%qTGbt3efBpDUmctlR%+?&bjU?xw7^)SlX1};Bj zVW)g!4Nv+>BIa(7y;)BRBqemhEJjYp2ujw=upiLNF*6W_UF;EY_PuW-4Rc{AuuvvE z#G6ka{VA9cw!HVg#k_ny2zw4^Hi~g6!#}S1XZYby@u3CRD25*9BzaBhcJggMh6g2v zof<0NlV~y*y#o&E#V2|mk9masG>rA{9rokrA7t@JP7qje>g0X&AxgyT*6djEA8c91 z%B@WvjCa4r`G*TqpH_Vy8zX^JiN*0LN}$7`M$fwMqF`w_2T?tC{epv8JpQD`+)`yi+}1Dn+8EF)4x zw)*)%=Y~v??$#K#;fkpj=+C+7=GGigeFs6+;Xyq5vi;{tp}28jw0WI6 zL+AIi@t`bvSS@JHvmBDBJ&tVBBbqA9Yjr`xf0i3ul;37(s=w%CsC<(8f)8%Ywc9@3 zQt=%kOOaWG(LeHF-s;l{j-bGhQ*Cdy%canV%%rPWz|n9Q~ntB)S&ytu8gQcg6R|L`8MxI`f|nvAlrJu$k zZN&+jQ!Kc9ixIhbnyc2ZD`uZ}jtngA#E2{zy1dY}y_ZZr zDX#&IaCWw54GZm(K|`E8WfqP4`=qn6IUFe&1!2joV$n*ay3+TZ^*D9AD?=>`li^8y z&FOs?9&Ih!H-Ll7UH8`2)rY#J+f7V`lu`v03EJXZgP3eM3h0g~-OEf0PRG#zFMEuU zYVGV^V2fJnP7^u<0-9dhdsdFs=kSvQGTL}g>o8#-G%-+# ziu-QIkGMNHhUZTEL16TM5nh(i_+d}u8;UkK)=HcG&`=1NxoYmdJ92#Y@O+K_v5oM5 zWp4Qf_N8fae*33|inIF{a+w&95$(n%4`cj#r>fl#mM>jy_3DZ&J+rwNmvoFawW@d0 z4#+otfxes{H!aoEVAm5s`$EI4NrN5M+@uq8J%b>u1eRv#rPRiL>7OK+i3uy-EjBsuUj|D<9+$i5m0`Oud**Z83FGXdD@Aq=%QKyh(`o z8VoaUyFVRME0@>B$7_KH-yE$}XDB%^mR#qEY#$-?lbml76Kycd&hn#{*cy`32b)Xq zqo=u|>2vNlD%q(+vnQKIAQYSm+n;)Gbk(?idl@$rO5j; z?A$c-Z9tGTGh1nu$3X)znfZs_*b%wuRc;m}L0k}xs?6yZHtk}Qw=_L667J@*X5383 z@Rdi#74e9IT|H&ShvDDH1isHU0D{5q&$P^Qh}lCRZ1mi4preJG(abk_Ilm^WDRs5l zr)8n=Q0MK{z;;}EC{sgnfpRQi9^K`U6q$Cll^<;0it&NP5QxSOp?a9|Y56~21NYx*%?-zXk6pO^4qUgDDjg;vn}N7ASYHx`_L zogLCW$*euTr0k2wE)EIzsoYE6#{9FuiO3s*V{4|x^tn>|mkzU_j zlXzzd#~WR~WRY3rBpDjfBl*-qY)OKA??slqtu1L56-tw#h5b;_&Tq`(bII8d=6jh1 zh*6oXQVSs=v&Mp&MfP3P@B}#KR3kOPcA{~&umr-ibNK~^wae_C7_8{x%-hb@6&ZU! z{n+FQ^3e-UcAVd#DJNg!>yB9Z%^Xl)(BdIan_=dp;1-L=ox8bbumIBoLM_CzAV`j8 zC@L~mVzWAc!hW(U70rRF`eaBznU4~09lNd@;%S+KKtFgb&Pi4b4V&P{qw+ER0~oB~ zLDlXvk##r>S)Y^SWlQk6Eh91VVHgFzTA~4ZhuGCgET%=e4fJhpQrtAe0L2p#JEH7> zo@|*POr4Nrru+w9w--K@4k}Y=nKI7Y}T4Xj>+`#mLm`55=M6IaKhr`^git>Vbx-_vQqKGRyQD_Qt z;ugl7OoH^`<^#;#A(YYYv4OFfD7d$!F1g2io%E}cDe*V9AYR+-e49n7az>IF%9)*=`J5Qr+mY2a|9C|>xer)a)+faHh zd4lcYTZlJw0 z*_Xdz#C0ihomYC&gSC2PcQt#eW;STCDlDUl-W}6CI*?xK){riLdX9210qiX3r&QL% zrDJ4p9~Xw(c;Ck&@8cimkz;xoYTSp-`s_?C3vZ3cpDOKsQ1ajvLX}-t_)HD&IIt?o zu^4>N9pUYm$yX%vUfh}!?Oh^t#VHq9_*wUBD ziPp5fH6o)!-#{1uvAIh7uVbt1h@_g)bbtHpOq=HQ&D9uL|_Hdg!p{RPSNf zSq``~CvnL|(UVgdGbCWyuj|K$%N4W*arXc@m^JJ0*0yEh3A?>)s-NfdILXmMgKgt# zr+ta(^SW`zV;Sa7X)}W=lKM0mqA&ggHagzxgNjh*;@sv~`Y?udT!mgpYKmb)tu1cJ zf>{Ph-}_P9mJF7^el+JtC}-_W&jt6WpY6|)54gTugM_?+JJil%Y}b#!JYSXr$B3HV z(N*|gsXhpN>#pt3#Jto=dvPB2>s98t0zH0le7J9lOt>TigYt<^ND|YJr5r|SU;H%fejN5w3 zH8ZDLK@#hb-KU5MFwFNq@{9v39xG@N%p5vm1S_v9uu*);IYVUAR()x$`8H&H8P) zJSp z2$N0sC|Y`)PE^Q^o1Szs?+)L`Ue}Z~a-&sgK^sEf=d*9)PkKO+aA)0zRkf#*oj4`; zXSP3&nAfUoAjPP5*UzSNO~@8Q7mqMHC$`y+c5im^4cl!8zc>Q(>J_-+?)S)`H9wy* zyJ*={lx$kWK23%ZOQ$4_@IG-t&Yw#Uer$qMlrLKNbnC9 z?2GJJxXkhOb(g)Swd>OPfyC0h-P2WgtXBz(ZAXJ@E}{fn3~`3i@K0BGX7?lT^?$s> zf|6PR(>u7}+AlZAr7JEBbCJC`_a+Y4%jtX{gRqjf11JSXb0{sh8ER2r*#VY!Frrh) z4UyTYb^1x<1@Xc$4{05oi|oVMqGdML+{DH%;q4Xy-YlN0P9kX3y3Y~Yfa#Ah7)Y=- zEAQTpgc0&pDiGS@ei#qBW3--Sbu1ZmVVlLzdIVoVx@Rr=?n6>d@9;Ozk|evhdkHs$ zFR_vk3m&3z)XsH#PNq8s`gESOpGUXat&;~b3dn0-bij0Hul-+gNFY{&Hct9qayIXk zBEhel9~4P52GV~5s_4Jpxmk;XeuT}ey66Qg&XnF3XCrS8uJo@CuIFLD7iS3n+rjnq zoZE11F}8 zqBOP)!?kd#tsCc*a$If@oiZyn^w*?FaVV=idnoF)X`**97q7GARyW0h-PRDarwCaK z1$gM!gJ?7jPNUdDgaf9AsL9d0kPV~HI2FsW<3bAbldTF~D2$=LV zD^Iv|*A}B2$8z+~9(U~t^cZI<7^uX>okt^I({y{Ymv%_$Vd}8bR&1mx4BSSydlFzv zl9pYg+CmnwT97y^qE+v$0CHiHt4^(1 zYXq+%y)<=ORQ{s1*Vj@7!hjCO<&w}yaj=i`7~yi=}po1aojYf zeidY~I$xE8i|x;KS-G80?@%1-RC-+AIX0EAa!opHraIx(KMe#lP?d6=&Mjxm;N*Vx zmiY#*sOY>-MBVkPdPn}3E(@E(EO`@>H%+-)er|-zb-YvW!g%mgpp(O3wJ2uY`PI)p zys;W$&-48zoy~f2ZtLy*5s{moQa5f{@yy+<_ST)r>#W`L_2uuSzp_*_wsrWHY@o?` zyr!DkdJR$!aZKi_OhDZNGI2>}AzQlMrSUGXj+uL%Un5EjkLe$~+vm(C_`!p&PZL(aireLOPo!)GjHkfJZt(;rDb}9rZ0`&A4gg zo9XbG?b6as@{R`VpU|@LAo1pL={tJ=fLIcgWR`3R5~P_j5nKG^PEp96X?-Jbij_XI zGDllCg^%NOsbPlJ0FiE1_ISU4bA4*?^3;VNCURgD?!al{3}MC^=;TVjh=J~u*5EN; z3$-1N7*4m^E?hWd)Gb5;Qv-s_mWsXPD~Ybz3csR8wmpf=P-MBfL#mYOs;+KpOXMKU z!o__^AoOq7FjdQt$`Mf%{>eh~7_I>i7T*kcE1mAh-E*R*CU2B@s^-(B7HMYIgxxyRM|}9JXv?Z;gdE3`9m9^Bi+VZh71qM0 zO}l)=7UO3B;m~K!{k2|m#|kl%@}^7dGN3HA%>9&&bEyt*-d}QU4I`GYm}W+YIJx%BS!&PGxjZ^h0W&W8ny2aqQ<`aW3v!P!1G0U03w@PvO4{j!@cw%*<*zL9`yjY?mdM62 z5$dq4bo`pM7n@a#=2+;wkd8`O*3; zY&m|Bwa24Loe{S>m%Y%gO-?RKT7jB*t?wsskB||;T{R}>@!}!?>lAP7NFhxiT>vp= zL1W(GXgcqfr>1@<8Q!NzSIPmF#e0YW7-x_oiXIyt7k%xjc(?t@}N~R#jth09OylGZAL;be2uGVia?cS4h~b2_+bV#XUHz?+@Bd zmh7A>dNhZ30-LwXpkE8+*x-FR-4Zls#w!~w;DpNHI?Oa2Jah1^?ml|VKN3b{4HPhr z89ZAb!*>4k*?W?F{&n8w$_IyTA#QkVzAGr~z%r=dsqF(Dcz%} zUjoU--4|;4=vzsBb2->MI<)D3Hf#9aqtP#K%<_FKvpNr@VL6FDD0w+vg)N)g&|w01 zv|2Bs_1tUQ+IjX#0a;(kgchcHzI*`w8Is3?U$?=JMA=~Q&$Aru4?yv~D`PGA5^a^i zqS9%*$XT>yP9I8O7WnF{AdutZmWp~83h&Or3{Q=I|e~1h-K5mQnUBb z2>dv0y~_j*oQX?_n4lj-Oq>sQafg+8=(a_ARz@ZKEVO1QpUsnp^%vVD>xF*zccVF$ zpULA^O(D`l48^>LBPI+@*i~|ny+T2qurgvUKJHPBST2F`N%2Ei-G=L>9YVcP%;_(`9;Aa0Xy8(6 zv7EzGL-;f7I!UsOPdBI16OC%o)2=iV~8$Ne#R66g#2S=MqkGJ%%^7Cd?h=0uWOc0v=O6lp06OZ zIC0q;u29mAaPUjOUo{jrC4#N?5&a5HQ?8m4iv4 ziR=L-VBKxU(+4Ikvi8ait`5Lh_`1|Z?%{xiOmqe=vyZ~fT*^J9Jxg=ux9R_xngD5A z0otpmH4unA#TZ63YgvH#1KrdKZphV0tWErF>(30~c7KWr{=-F&y`*F$C1$DO5Xf7$ zQn#Iu$HapWg$yUwxGg_fwoYTdfYXLSuMc=Fw~)1BGo1i$t2ye>7heLNoqbr1`bS}? z0_U&O^H{t6!>A7o$d5gyLN@&&tIFEf2!M??sI%7+3`Y(uTHZC&8FnLTP(t)T}4 zWK^oAcOY#}J>lOcnGqZhz0u;!-xw>~)OkSa!|v-vVtM2_sKV&vT_zU!lo6q0+_AfH zJz_?*#9dUibl{LDb2qVBG_P^Hj|(~T(lW!zc+&6yp(p%nb@4#?f~Zx+4l#36F4O|w zzosO5+RGYlnJVgerNP>sfCgPV_6Tth6xD#0EwE?Bu=wRYhQiWl%ZKHrd>@Jn%oU%L z&xGC%GQo2xce%W&O|FtFqShL+`)`wQmlUwTxPC`3h}%W2#LM?!|CpKoABKxHe56}M zx|rG{fNS{KU)NMGtAAZn3H?*h#|GFx*Ho$QS`m8~eXA2K(8V8O) zt;GCEKjw-^gqD6C7%5@-^=`J8Hum$x4~D>KElDFRM!I2%tijTeRd3WxU8H?1R zq$K8%p^NLg!y2!)nw4GkQRkE8-KrPYn1xhXKAbzr9YI&y0DpB4}Ey1bz5~0KbxypBlF0rQyytED=6o%_X>HX-gozoO| znGJ#jUS`z^gOYi2Zl@y7;-Gp`-jb2o1`9nA!Ze7F`AoTaRX)o4AFE9m<>`vykm=kc z>wRxKw+t=rHAF(sk*tf)!Xi|I*)U{YB2!vY)vLLnM9QpNPlr>$Ux-tnk>m9*P0mPf z1DvJ?#GGH5oiNhC5oeEb?5Dt%wwR_%4s%+krqp%lsb&Ha_V6BEl+QZ`i{ak?*^3>{B`~$EAmBf0mF!(2@su)xPvQn;e$A8m~2ia#T9c z54Y|jeoxZA`5f4WG;CGe>QzjK67djg%;xDt5YaWW%vdSP!fA1)L~F~15T(uFl5WX} zQ25D2!!mmfl9p@`aq8fT72C^SjB33g0y-kBe_o#M(A9 zkV^UtUJEY9BK8iZ)dlS{dV=GVn1txmj7)r_^d}#;#6Gx5Sk7MWsd!MIT$10oILS!% zl#Pi0$&EGY5p2X-?lH{3-N*9S><1I^>*rqvQ3 zhj!ZLoRQ=dDn?~f8Bp|-?^i$e^Mw_H@7f2c13732828k}6+F%NcZLu(=?Hs#aZu=Z zU96yvu7|!v4BY#zeqE98Uz@U6rBaOWUB(?gUVmiioUZj> zEBJ|$QBs9Wg zPGN&eZIlsiRxRBug(q<9#KFPITn)_Vbapb~Lu%l{Oq2&p-@7T%Bslk(49f#1p`#ku zq|#K?gGM)F+1P?S!OX-;mj^GHLWL)ST#5tXZ5NqS+RUu`0h9nY-p0Xz)e7LyJZZcF z)_C7q>A}3wFe?F9w;&;f)YHDx(w0C;%#}u%)2o9x1&>u%1f-?ojHDQft<6|W_ZM`+ zdb`UG#L%ZkEl7<6g>$<~ZBL?{_kJ_kRXeS`hdGBjv{@>7Ts)0x_;sZi<`_fDPK#xZ{NY+3-Knj{4GZeD^vuS4Uq4Rf7%lKUiw%-y-i zs?&J#iB*Y|cECK3>_`r;K!a53qMd0)Ps)Fky3Oc1DV0Guy*pYmbAM(#UgB8uz=B%| zy*AJq?@WVmsl~nnwF4RY-8>6{*Gm4A+a;lf$;YLnY9Rq*y~kx zcvdEEAy1sW8%sJSM8NUP;}tZJx1hxn+A9B3<`^Do^Ah&UC1*d-YsUL$q%Rm{;^YJ^ z{1?$5{;T=G|6$7TpCD_hNCKe>d0RSsHQJXyJomzQ&OaqXjr+Ij!~yXvvq?FyHynqKQ}bl%d!gj+aOkBT zpbT-z`S_9l+B^kia?u4GMkE~g^#xsbb_~&l5775o!UWmo8MEbLShT}^GH)KF?(q-j zQ&Y$e&=g}^uS>9EI$vbpJe*Ju|9}M;6xaf}!nB1taT46(jFDj`yrX z5h3|$!_rI$Hx^A%_4OvRWHis#{mG|#(1aigeesM(!G>vFi^yLz}KH#EA z!VQ-n3AybrK&m4H5sg#O^# zLEP|EPQ->hY$@E6O3(bEy=gkF#4l)6_rr7jDU%0#2k`dtVphYG6bHYEqQ|InhlY(K zd&IM!LyucckG?HU5~(WzZSsSSp4DmuMIE=g7OK{ok9Y3vUD4XNTD8Mz_$puHC#9Z- zn<$+y{keI>o(c_d+=XITVmCZ^o;J|W^pCp7gWBs2h99qezs3fY@4%AB1a$;G_0%|~ zJhjs<$fsT$v$kEvQwg8mUu<~99BSEGEZ~`a`s}0`TZKvERf~jU=C^j2e)bM=3FG|- zGb#I#a@Sp`6}|O$@W>Sj-L{`D$ji?KK}0-iAlSAF9FGm{)mB$jW23OQjiH;PQ1zC9 z$ko&?Si#t|^xdBo!K%VGvqswZ>-mNxM5o**ddxY)OnN1!#fR4cRhm$*CHXuL77 z&EU{^jIiG&*u%5X_cr2H(=P=gScxb;#v@+R=Am{mr{6zxjuW<7p$IO+YzvxbS#x!$ zcMM3|;`P}sOv!Oy`O&fLlGGnGKBZRFwH(oN2NQ&v=H5}~s9{Wde0F4`&pTE%qJQz? z=nqcj^D>;iW|%j!0;w4v+LluM%=?bUyK?VFEvWeH25^y5GU|EeTUUD831H2%+KAck z^7J0)fj@8c1p24L-^u=TstNT7yQnOh3vlv6c%ATrPW(PZ0fim=J>iEi(GhlZu!jPC zAu_VCb_N`x%m4#TfC8et+w1D`^|k+MZ`bN-KW=X)>S~Ab7ijNpZ|{glKGD)p7y>3m zo3J|{^f||a3zwEBVijP+l_0y2A_{}e$D=S>Z3hAoLVyd8flEbzgX<)ck473}ftU&H z4juXoky#D{3JVIl$zT2>{%YeutM-vGnN0`r$`1~x!iPyi03SpE4gvv!0fXwOz5R5Z zAIaZ^6vOz|03+dxbX#9LOhqhqVIn+5K7z_l1|T+0_!4_#hPy^98+%m*RPhqfRBFV-WA11}&lbg z-HOvturN0F9Y&xl$0s0w83}QvBm&=%6TZy~JpF>k01oN1#Z&=iMONSg8;O~j1b0m+ zKZ!^%oNdAfOnRU<7~{*3@fnfHQmR4Q7BNHBk7s{GZ@TVx|^`5)!8N4%WtY zdY1M&;uem8e@fOujuz(Pc6v^x4%Svm))Ep*)+|CgGPKML3_4bNc6QdzI*iOphAOm{ zdIkWZjR~EdwKYH;5Rf3?|IMp55EQjRNOB-*fHojtrQdxIT-e&t%HfZ%fIqwy3}oyL zO7#i_k@^jVHqo&X{w!(eU=Mf%I{GRUtn3ZR^oj%{{Eb95(XmmIwKFiZ(*eM3lyn$h z8H;~qK>p*B=f5zR{+|rkpZ{J5^DATGuR0Ka{Cft=E2HhN3{qKp1fv+@tL1iv#{X=0-(T@K5C0DTW_9>q@dTa!4*zB|$zSpBKK?uWtHmH1 zf5ns8{yY4uVIXhGYQY-b?0wBr0YpCd8xP1*A*`tKyQu*`zqK{U$eWIT;!q|0C(f(g zAj5y<&>H?H&a3SpgMZ~Pyo&mxE&d;6d$a$Kp4(GB@z1cMOR~ARwe`dW|^+)aflP+${|IB)|3pnLf7ii*}U1YCz@p1oV zfto0a0TTg!eR%_=zJVxTLHsknL69b@hNi|Q4zEC9_BUYOKU!U2`Zo~jPoM|^Lm0nTBuM)um-%xLZq~pzRiGV>8fYPxs zF?~fcy&@qN-p2ViWCY;0`=8wtfRteTpHiZsz9Pws-;flqnxprBBLRN70Hn>EZpOb# z{PB;@`zn#?w?wqRO3bJGUlN)AkO-~(ii2%@(@guSxmoBp4h|skcM=-F(;r;`Fj9@% z8~F7u2vE=eyw^-(uXjOSEdrE5&mNFN4G0L5`c*cP>KmK`00%bH_$?drxBY*)*$)JS zR{2);Kg#slD}ZeQ@r?hhH^3|URvZ7qg1G&wwm|mZtXFM+)Xl%}(D?qUErR|x?^WAt zP5lcCI{TFc+y7=8_iGum{_&FH09e24?O&+vuOZ`+YJ%UWysy+E#6J}>iQ)b4TKpF> zFxjhKaK$(BTc7#@{kyb)9`M%p-}(xe$Xf~1-jJ^?3u2D^8wqIHKVs7Bo0z_iRKQxV zV8ET5LHH@4*RBs@t^6Ad==uQID+>P=1q%4o2cX_E76Af7|4+jJ##;dDUkVIw@XCq& zCzo^Ek>8v@UCtE%4-i7$aR1~4;{A`Y{7)wkg@2I_V)VuueJj!Hr!h!G({Jg3Ph(3p z9Yuvd8u2=7t7hXK&d+`AhPoJGy8*@ko=Zs> z`3-4Nj_NCjeqY5`Hc~WtU2;+bC+A)Q9`4PdpjfxJY4*l_%!8#Z=6r?P<~zsXCrhim88@l+@HkB==dmO# z5!NPM5Zf#FP$e9M;PL7;zRc-Is4LHjPPif@SagJ!Yb&ZeLCEO$gQKm_tR5*{`McYT z7dghce(g(ZC+S(~x3KAiB|+8@^0c7L`hgg2p2==D-l=Z3ZPdUd*+R%w8rvpVBx#k; zb9Wb_%L(kayKtq_4!2G zIplqIjnU^;5fGWIw*qWeqbJ4yF$9-RQ96S>fdHWIIoxpaM(Ma>%;9?lkon~>v54L| zH-2~W#y1yv{%z+*S|#^LlmaLLXm=O=|zMXm%=uJJ_*AudPkMO0#_ao zsSk~Wd{j$#lUl@jFmx!xNXhCtQh5xEH6K=FiCgTNRkfv#zI^u1FJFV)61znd=U5i@ zSPh5WdXz)HzHLi{t9w)Bl7Z>FMt<3yU_fx7jUz&TcbhV%(S&S368n3#wW;F`Q)Vr` z1ApYF^+jW^fPw(cTcE=qn91{$%{}}UaP^VTOjm2#XgJ5xJ7n1&F}q9L2eXpLfyZ1c zFu$C!b4BgF9u6|{bl9tTM$KLGN-0?PE;9pTjC z0;sdRS(Cm6U!(1o6p?$*21IbRI>V-$#jDm1eKp_P1|(bKwMY5RKl8kq?n3@lDHvLQ z73C;8aN-|J|Gu0k2Ra_-0xJVT2DC@U*J|;xASH(ZX2|YG!dlH`rFozpAOp&(?DN%) zHH(-1YGwiC#?PnxQn)L3p~+#>O_VPdNpOtOHW`w~<>PYQl?i7F`0Wcz=||o?Ld|CsQ-~N!-5aBhoit>9!8J~w{>o*geku1+g_w-fXgn-ZF%H%#t*Vmj(R zVDl$;L{cT>JFsVXM&z$bcY;oFa$7?Uyi(E=9HXC1)dyzKmQNR@8xCk`jy&eU){WSD z&h*poigG}2z1F9az##Z>B$5TI6;ve*iJjzw@nun|CF~;)B2Q)5ks~cZZ^oN8SHUGG zCTvEh(6v6SVSv%;mpw_(kr2DSIUG>5O7oxTxq5`++Tzp4pLm8Z_fq zq?9X z+-@AF7?vevhopI@heL4tW#}MGhvUmo^mtHX)^pBYccj@2n;Ofz4HiD8-~mURdiW;{ zhA@z-TlFq2q(s;ZsGSD2U}DqE4@sMTro`8a%tkgVwZhbm_7--ZKYw0I2onArPsThp zIA{b!4oBixLY6_6--FpWLrX~a0376w%lN1~aa#S3%i$e-TgrNd1J(FBK8$CCw>Q_? zDIou)HinHMopWA?^L!ppVkS*8^#h{4J7aRRVZp{;||0-fjh|5G1fuD z@2*g@Y#n*hOtAUpj*aWQmjtHu^suK-rfYn-VhwDLavhzLx}_F0v`4wP1{}ncSU=Ln zKACR$dV0mV@-&BojqAWjuMNQFR%|jLD7B3Hu14Jl`^#^&x3vL=G;^VQEjQq&YpvmL z9`wz-zl6^)hg?V0k|3QnSML)embBPgLbYK_zJOK**;d?`E#8x260jqk_o=i<;H2*u z5+^;mx2G4(*P`3tFkrpR2=gFii)p2S!Iv2)66HjqA*PcIn`{vznTZnz;T(B|Xo;cdd0nsJ0eoJui5Y7@cB;&%EB88t)pAX*cEM=1&dmE3++ z0INYIf!FX$*z@nUbx>U`RNUIN(32;ctkdfWFOGVN>g_N@TPJ8j1>tn%A6E_Z@Ej1&EK@|b zDPKsg8$XznQnf(r+f?|c1FVh;UBQ<=_>|!piTaH2Iyha0OZZVxHcgn(4(o!mog=(v1JY!M1Zj4 z67#Dehh1tDDI$fhZRVPV@z7XBX$O7)Uwvhu|K?d`nxHzOv7%7Tvmx0h7c8ZENfjDZ zjGp$brUau>wTrm$^Lqb#SoIgBfO_g?OVOFK)5HjOT#F^*nObDVDwOJw-V-SnKEIiU znYzMpype^f%!-*4scJ8BU9cVwP0R#|stpu&!~){*URTcRufe0>fTGVdx`-^S9wL9h zxki|R*`9hZ!zCQ7aSJUv;|%BjZZssrKHC2rrRqYavUREM`JT?dL-(VeS6e+x3=rRO z>Ms6g350Bh#!&&T?r5sQ&gge$yAEH}8x{{jAJ}Wx`7(6mJUD=lCn2$-@FQ2Ocla(M z8&-V~cQ^wcgq`fTCR(7lz)+BXd})jYz4)d3=}ZEj{8&aB7G^e#)ID+q-}6CKZuIdE zNk57I#iEb!mbWnyxPRS7)yJz>qrrrM%hh3~U_T`%s|2xV(~rxnS}a}(2xN}bB>_w} zPKU|WB8#G@tRd?M#QUF=?iW!tu%Lv`+)tIjv5TQHoO+W}crAB3h~j6glTQWZre+R> z)NCzwmoaTM8ocl7Mx$hsRWU6mEGp`U6;;cjvoo??;?!cDP=vFj7eb5-H!R~Lj=VFa zQAmD(7E9AGnT&pyG%RR5%Y0msM{bx-kB2Vbun&re-$e*p8!5dNnr*b)Sy|iY1KE(? gLe1c|sOEE4!+Qxoonc={wRi9ne*w<`{^bAv0nr%+s{jB1 diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/save/Histograms_GluGluToBulkGravitonToHHTo4B_M-350_narrow_13TeV-madgraph.root b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/save/Histograms_GluGluToBulkGravitonToHHTo4B_M-350_narrow_13TeV-madgraph.root deleted file mode 100644 index 9897769408e8f2b5a007a5937783caad2df726cc..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 226382 zcmeFZbyS;ewmuv*6bW7^gaR$@R@@40fg*+CEnc)(Ah>JO0tE^!F2zf6cXxMpcX$5+ zugtvf{ARv0Gv}-`e;gKMg~dw9z4vwP=engdeB z)3MRfxvZ<*uC1l0t3~q>t?jI>ty_=Lj#5RW^t1+J2FNH-I8sDoCHtLG2RAjHrW7fv6v3P~|A-G4W6^5bh28HTrexp?=RrN5VitS`f)i4m+CP&?vrSkK)$GKJvx{ zLTQ&g2_W)vNsW3{b@I=gfV2vC4sGk+L-jYD^vsOAf5goPnsHUDKQc!+>ikV6Hi7>K>2ECo4 zfS{dInuFl|S4C+&Q?r0W8CwGM`3&**gqs8bSOk-b4K@TZt_@&M4V)zmu9v=^zMh_Y zkPHeviXjN>#JoRh)glU!ki-#2Jzvv-GLiX$HS3C) zp5!DG|M;LLP^X1FrgwwzOb-ac#EjGt@KxB%L>#+^uKx24D&`&$D90V~vw;r8!9)ja zL*HLF*Mtmo>_%x1#Dp%giZHT5zW&%*>~~(W`aRY-$k+jEy^taug}_Ac#zsq`B}nypE&JGgU^Q3ZETFCbp#iMDI6cFXokl?ILHXs0;Pv#i_VnlZD+~gi zWu0F5NAkkVtd&PVlozW5=+Kt3Js2&QOP|_SF}E8q-)eZ9o%2qFS6f4U*}+M*=&Hwn zE)NS3PvE-_uL3i-Nkz`NODe~0Qjy7jPb#jlHbm)_wZ4J1HaxQsC2jWG#m=t#7|g-D;gd^}J&a#g5Q^zWN80%R5GKIVYZmD!XeJ6K=0zGS9X zq3dC4lmDS0$1IhZ$KKDW+zWYyHGmxTy}q`-w)Pa;Ebxy^*hIWzLc?bdVoWfS3Da02gw*yKaktVa2PvsYwkrZB+dHzCcXz^%LE|Mzw_wR z0eP`KWm8Z;CPxpn1qbUxBqh}kDG#+u8VY4ePUI#S1K)FSr-(6CN!`t zKiW==js(4(q03pgN}kQFvmAfZ>GhE)1ATq--+CR{9$8M@{U zIZqVM=#D2>X_BiulF^W9*oo~mVZ-jFg>5>YKr6&^6vl@i+So-TQx@eTAVPX_AF{-kwTdKTM<2mt8m4Yy5e<3u(fr1#d?9?v zaRl1b`7atMb?ruuze*&4?ltcnV2d0>KTbHGtyV{}g7vuMq?vQCXK|(tyE-ZiQ^fU+ zg7ikmu|c|R_RqSURQP;;@RXvoy|P8a#NEemPM^bB6{a`d1JVO`R4u7yrcO6z%X+qK zR;sZ;+bGA;_boTAcTYu@aEz3qz2D`(IDE5$2y9u9dGc^3A8h8fx}$vdU|W8@a^mH4 z)BALLXdJnSii9{G`$VXspTsVjku)jf`Rpmfi)j@ga79}e!45%10 zdK%B4cf2Pst=YR=xp)KwJR3Kjh0}ZL&-4af|9yIM+|}-Xp57n-J$k?XZ=v@(*>@%x zbUHQBmHx!fMn;!$_Nmr+l6iKiKr(>(c&Il<5C5!e0%%MqoV335MhSge4Jv)8yI zOcrQx>TaxIKU%)mbCRw{3obUTYW>vR2OZ5nS447b8U^~!_G@qI>0x4!Q?(*4Z*+*o`+t?g8GlK9je#T^^UfHke zDhW=H@UWhq@a;6l4yDV2u!LMB_$oBP3{BxZ20?Di@>a@g zH(lLsu#g*W=b`-uvX}jSocWijyadJ?Wg(EsUdo=CVX=czESOmWWAVj~xmBzF7Y5Fq zd3(up>As=eh{a%jU+iMs#G(whe z@QObd(Me8GDlI_vQtm6jJXWsPO*?l4PW4?>`ujqycO!Dl8J9a(XI(FU%+{|;fx3Yw zGf`a9-F2=cC*?)s{$Pz^hw;f?=hfLC#q(ua3;Mv8)Gg0wj0rIKav^?NcxYKZlqI}q z`|N@IJg&YDN-6^dV2Kse1J4(9!*t9m%*tk~k}(T0F{XzU8O1H}w_Im$+@H?Lz9>;E z&Bps`XTB`5x_;R)uKfDt%o6Rz>u_lSsHV!=6g1LYZ?PZxs)d?wy~cm$z=G&Aw2YmHR>e{|@9?W5Z}6pCXF>I5 zDhEH+ludog%bh$cE=B=}J=Vs9lY9KnzNXv$iCpIY2X!Wl^#4?6^0(@2^;VsEXwL7xHVh4ZN$%a?Pa;)qJhK$&iAxzc zL3?dCNxBx>!zHv?+en70rahSJ0*0lz|khqrV~xmteK>qbWg+^oH`1Q+jAch4!0uH-(6ShLvf#0Ev% z3>lKCr7!0Wt7T}5oA@`N+ox+|nxcU3XQ)rnaY|W7ILpC`YM4iKKiISgzqo;dLQ&M0 ze!A4~9u8-gXbtSvCtRUcET^9dg3M=TEOOM!M-uj06YgmlJOtUgjdT^Ea0@7Lzp0TL zu33~XHoqC{jg=;Qx!nD;hW*M@9QULRs2V=OzqnF!&SMmmAwJv^h0u)<5;mU~A58-)^H5X0sF}3uKRsU>I*B#e3 zQiwH9ON-@`dy5~>+ZC<6YP0q6n_{;fewv9TN$jO1FK^yfp$&SkBy=7_5BfSPY}4U* zgQSHTi%^cKW0Xw$gouwNrmUBJK&Z`Xp_uSZv`^Wn-E$_%)?aD2vo*`B}f`r;eW z(d+JnK3SRc(59vY?%5wxS6NW-Prn5bt*PAJ1e;IASBz2;FfT{j3i}FK+g7O4ly>z{ z6Xild`DUuCA1K{6P&rY#1{~tQBFM|S-$bdf1bFQK{fl_OMMEfKjiv2JnaG{%XZ{0} zR1OVKsx+NIl=xv9`Wn|ml;2&N;z!fJfDlaGoYL4ep}RI!t~%=-2B7Vcht*}p;v;n_ zMP(M-jl96{&n3e>x(Sr5$cfk{!H zu^YW*!I&f2vo|inT~DVpG))YL9s-|K=g;R1gz>M&b(ip4>!*uT*|+2=zA+X3BoXXM z81d5s@U?~w@PdF}ah!l-?xK~!}lBaARKqi5S;Buuk9d&AJb)S{%sMl;lvx(FJVp?&in*nrlZr9E%TaS8$1?s^I zW5&ZAuqj;G&>rBps9MNe>w8}l*U87mj+z{R@WPu9tsc3qvDZfyC)@nxRAw-`9v zOKs3gpH@t>xd1QkRw*2UZr0e&wl0Xqf!h3sqbO((cGMSo?Ov%}yx6CKp?-eU@`>pY z=*c!Vx*@}mz}GDhfAJ_yTLRtQMzwEKI>?cPa==iqd_8!-QJ&7W3lp}8#kek5<^tBc ziL9*1HwY3xH55KcdHN89V1jVelR^SUd`VW?KorhjT2qt1Zsr)}y>j4B5*Ato-jo$F zt#MXg({W~@vGQJe2=osp5oiiIAnP27Yh!*@zM|t`2~}@>XbzmZQH(>`=3D$ewN{X9 zvWE<8^TBd-R~G{}$~su6wYpi!Us2NJ9e<4XX6VUw+fwug6I}U{YMgU{PfG~nv1L>t zIOR3c&NT;EKv0!84>lMr_a^g{VxvS8hSV_W>?(jl07iagERq!>tao!1mUX2^hj!0=e%!aC%l(QI)*lCWk z?(i4n^cTqr^$+o64k-`6oLVyZk?;f8nyI8W4Hdxw}e{C^RDMGdOIi?qP5Z3$xH`S zhXK>d*fb+Ao_`C}s(SqS>`S1_D-3}9ONBW&i<|CPoONfGvE7Nvo)roo6*Q_=#~7Y^}Jp zGvm;(!X~@xiK}{y4*T|M$6q>$ez~OuGr=?pcNwi5&=r$LU&u_0C*wZ`Yq;9h--FS7NV4p)V6gdtU#jOY zdt(9HZ>H~1S1l1BXmXQ0_FsgwR`Z+arUd$lzo<-Uj{)<+xZL+VNHYq-c%5OBQ$j+G zluz@i*|mH|C^scG7Z6(>fOHQygQ&CZ?a&-;9Q%o=xq&CI++LDbwv$yBM|Sx;RgBk_ za1LE=6mWv<^882AF7qLf;@yfH-?xo*3SxmBhcY4FQb%TE(PyD#nPQ8ChH}exxx;6r zOTp3p-k#q3K0x;nFs2}HiMGJ{nvQ(sa?!o;&)(}3OA3+EMc~tw6XPm|Wr%#1VX;7R zUhUJPvBtL{ZJHpC9J%#U(pW2bJlmkGFS<6f3&N%<{Q`B@E2^j&OraQ{Owx10m2h%V zEL)vN7sFJF=Yb7%l(UAyp>|HRf40UX_D=S?v3!qNoLwJjCeaF%$(b5h$C8B1MI9W* zXM9qr>45!EW|??os>$zAs8LCjV~v{~W_?W)w&XI)?|m?6x)Y192;#5k4!7d=+qO1j zx!CUPZC)(wSp7M0|HXqel;uvj;qmYoFSiIjgH9cYi)(j>)DN3T{0^XF3(A2L7<&vu zKnv5)-YkNxiGAk=xg{~{c_7IPd$RYe@sL3$!-XHzZ{~JOKaPEIRVWmPMHgR%YCixO z9+k0?k7=uIt}4|pg8;_eQXX&;cm0{fq_}^N#CL|+*MFA8a69bZA@P5L9p)W}9IOc5 z9=51u(Yx##sMb_pk6&!}RWO8_SK zbgL~!k$~*}sJn*2my01?*{ZIk%eQzS(vlMUSNR|9Mq6pM@)ZuN8^#mwBUu!D0(FSt zk>os7ghtqBiwi9U6*nvrP6(uuutHW#&$3?*TGoia(@jrZn4n1sd-aX)k$@rTMk=AtcCTAWUa!zt~Q8sBB*Z1KwfpDdXtkRGpd415zQ0Os? z1(2_x`J*lpwUnX~yS+a2@!(0ViYr^8jJa7Y8r2T+z52Sn^{?J-XILPR0IQki=~jey ziq#M$tRV~Z!v4Cu<}$6TZdEHbuP&Jh=zSC9g{Q^EXPh&Z-Qjfd!+TBI;QCMk23{PB z+NW_-U!*WxPiA}jtnumVF32_Tn-C~OEC{)zhi{dl;uO|*8JhuKL_q;b6Hh~fyGvq> zUhC-Gm~IIxhsR=q5M8S(+;VpEZ|H~AY@T-2dFHK-Y}9(7UPu^_i^LeI=H9rLhFi@O z%3aL7N`B|W3kLHFJ`Zcnc3her=VxDU6aJG4hU+UA9Wta*KWtEL?RsL*oH;emKLiak zb#HYa;W#MB4m(0*xe;C}W75-Hn-9&|s;@BhJU}_i=_cK==S^!Bu|IYb=~4goE~fx- z#URbwy_=WW<*?5rstY+S%2HDfwTmZ4#%Dg}^wA9O^}UbQljJtdR{P$DE%e>*1Gma{ z$Qmpl0^LE9Hl=(E*$sG%rZ8^~RkC7+VgZe*g2uU|MHQIll=N1(lLk~WVpP9|LcauQ z!|#Q2TE6^+cLnd3>Sg?DFw04c6kYiPz@mowDxAze{!HeF(|?c5cLtc{KTBq~{q^sV z`9H$`!gj(Fm9r|HcyH4@kL%q)mNwg@=@byiEkfHfJgU1?TD!dv>w(4i$D^yfg3X!h zAJ%%tIuPT5^fv+(^JNX~;tb56;uFcZa|Kx$Ln^m(rEHymtTT47&$!XrUnlkL)e20q zCYsYHLDF{BZY`|fEw+gb<8u2GbJ)EE3&r)LH2%V(%E1fTy{?2~t_6lNITcuc$_5Bs zhRCk9-O4yOqM(kls<3-(VOaq7g92CT@f8GiO05gi9-e}t`H$^s)_rTJ>o6D^*Cta3 z2@A`OYg(~`whJa4<<5Gb5C`U)pf>UPI!}M+xqfYYaKIq#=+wo=-1mc)PNQvU9-w#J zFjagl3aGujf~V)^x~UE_(tIi5N>29d@IA&->?{6{7E{)(v%^|I-@u@{@^~z8jPPj zyp6CsO83MIqCjF~Q$|3bbJqm~&=s=I+|)L`T#h$Q4vH~#R`b~iXkyi*eKmU}f>{%>c z|ASbWNal8tj&?1d6n;Ql99haW5QamVwn zHhW62fDw)pqK5;vk~WTvw#7Sf;>p7T3-;WmWS5<(Z$xe!8tM*S_cJs*OMo>5v>lzp zt|4qyYp+>o3ft=hPa2BEorMLATkL+6F?Cz@9#s^K>?;I$>kP$p#CB?dVz>uNV*7R> z@|u-&y4B-PfM-0Y2|s({`C7Z8?Pm(M{E-TDkfP^99{~|C9)|J>(2Ulw##*Sgf7iL0 z!&F=x!v-CbXK}N1>Fef-3<~ENOUZd7(GEy=Y0B)@TIrNCxvnWcN7C>Z#{8v=sEX@S#7(Krv2uTQP>l@S%`RWQx^visorEsg59&ci_R@TnO0&>l zd&iw#$lI3cWAr4~f~ZQ@jwO-`aidp!yf;qB)+twCBtp*@S2bazhOw2-*^Nmp_aOe;X1#4%m_3@%oZ4N-1j3lb@a4GE_|zCvtI`Ds)^tj5$`>LfcE}c!RarDz zRpu%34-VES&S^eXC;1Ip(lfnr{lveXFqa zA}91Hg(9t20!0oSbe~UaBx07A{XD;+<6StJO4Si`^)z`~-rc)zZYzO;)RfaInE80> z)$~~Sd$hy}yhe(eM@8fEZ z{Odk0w%b0ghTA?a(c3<*FTeJ2HKU6z5O^%p6Eh?)5z*_Xgb^@)H44+G8>CAMqZ%G1 zUW;6(BWP5G4Kj?<6O+=FrhPz=eXXmb3-6%=a=+?u+OuVOdrd4GodY|6YUed7`hfX6 z^@|G;fD}b8tRLqg!&+^vJisoV!0!Uy4e;&{-2m86xp8ti@y*iM{9=_U1fC*DD|dJx zT-VPXz51Sqi3wsoYFG$j5t`jitnspS?Ro_xg6{JYH^lK*_TrZB`VH;C&kBP%P=7fr z1S&M8*J*EGilSkehh4Qe9OQtQ;5vZSaH^cgf9z?*l#yTc3@Y%+()}jt5El^Y6_10< zSSla!#@7xS`(!?1!e`pJLL7Z{W{KM+f%Fn!%u1xRk;XJ$wbTOI`}D1Ry!P>jF6IOC zvzzUQr?W*pAUA0dmW+3j5VSKl&4rh#!Q!o-Hts1}E0gI_y%$+_<6RD}b>AQAFQo@X zmKe4OsX8nK8$C3}wVDkOZ(9!=PFKwWzo!vcgmJOj8Shj>RJ?Ee8j?A^hHq$}@iI*t z=YC|L^=%lqe6q4EI9TM~Q&3$thD2QVOOu%r3i5ZC4+t{g<3*N6oD@$FSJO*!;KC0= z&{S-DU~~HpnJME6ubkYH)u!8zh0=ZGoOj;kKNk{8Nof1R$K(>nf?}*W3u5kPjPf%V zuUePi-<@0&86Y>(?ilMndwUcUUTO((>o0C;TCRX~9EPT8EbWLuc_b}La{9XAZJLLh z=5SDV-qp^(0yV>J59cram;Vn?-)-ZA{smC${TraB{|^E+4@z(nSZn=~cZa*9Ztgkj zOn!Cr7^o-HKwa>hWpCl zr&|Z*q*mIJ*6<4$@BQg$aSZ#aivjWCj}6K%xvk!r2> zg2y?v6Rp08XFS_>Df4LoZ6)@sD}80(BbD9B=SQuKL<8jZ8uQi}tpCZK!(V;!b{g(}aQM9(MSac6iz5=H!Ys|5{E*%C}<{>@;DUvtfd@ z_AJ*vWigAejO!Gk?7F2OO@SDdvON(OG;3~vaPb|U|E4yxLH-e*?{<6tN^REt*YO-d z_n(7jcPYgVHBi7CCinGMXV56SUU&4K{@;%Y%yy zRxpiPPfV%o`3LbH?=Csq^>L7pnAt$Lil+VQcw>D2^xOyWw8@a@6uxy3*?F1DMg0<( ze@fZ(8_fk@VVd!fuZ1_wUW9wZ5n17&zS8z;uy|;>0 z*Sd9?2ZWDjSdKxZRQIm#PsQ1P)QTHZfds9z`%PK@=e2X~5$1v>P12EvRz=tIs|;#H z8~g7yD?08?!5jaU{8%`%*UJyXPRk49+!sPDXE#EuKDSV-2#iwGz3gu)vCNis7{w(z z0pJtO5Z-7A)_g5flNv62Cc6V|!*vN#xB7YE7yXO^ z*Uuz>n1i^}&wrVNNcepYLiB(@6qVth(9fTL*U$2Q)X!nR=x64?)z9Av{E!%*g7p8O zpNamYpDAzkGv)v3=l`014)|Zw&os(gjBs4{{2ABW1pgShpM?Gg61wkyNkUU4AHdIU5eNPZXWoT>4Cgx${q3! zbjsl71Ni80!EJ>`intTf)VD%f*!OohBN;2cK%jtky!s*lB9P#NrA4pVC6S)u#PpEL zdKnKA+`oUHJ2js`$=cnqQH)VQDuIHM9=UG$8$pooa~v)mUHZI&!u)$Q!^d?mUem;) zi80t7Uwc0tKy&Ju-0s}o+P;bRaz&7?b87mCNTa(qm+u*&IjT`)nBJ`OyqHSNU2WbD zriF;x$04l0L@56(=Hly*M|r4;(}AjjfF(XmgyD*Nso~ktpT6x)UhYpcL=xb{f8lzy ziD#JJ3*rdCdT)0+VQ464672Y3kfwKV)==W6KOjCUi$qrY%}wsfTK@tJs2n|QY-166 z^ircnduie8MS|dzvF)Ke$~eT6Bo>TYoYp;>GO)2z1qs$qJpA2esoaZ3BPDriqZAhp- zVBQV`Ky|tD!4X^VIsDdIzmHg$C?*uRJk>(Pcu9yzq=*2+aDfVV2!!rJkaib>yR(z0 z0>6g4l99B z&_nS1BM|C~RJvfX+qwUkzn=T|wl&Gh3Mq0q7ZQxom7~*GSUu)mf{% z4LZn^Ob(9ZMOpzkq;yFrgI^FEb!I6L-|6<>Mu2LFBUj*Q^MreCAu`Rp$5cK;lo~2# zF%gIwCxd-;UV2T0JFeA+PFVHL6+`{v?GTh0F&309#_rBkdftetf!HkR&5qUw5=CLd z^kXBo1E712f-s1Q!JdT!

g5`s9Fl#P6j@4RjQbkpbL-GHUSP8Q%pj^)7gvxA+lr z_?zI#p#K^?8B2S3?3fS$slUap@h*0?cd@Jeo7gp=BoMmncX+<%B_@tc6kYc);|_km z94>mFs2A;fgewvfS~4FSn?45wQA#(MP7=-d5t8Y1z2}DPNb+jG-V8wP^&fY@s2+DG zNPz?ts7OFuVvJC`T8m%t#4&x1luFHp3*7wW-U+!?kkc+iJNQXX8r_*Zi}>dTku&LZ z(ovb)4w?$w7Y$&{w7WCD--Fkh@Dz9DM{VsaW+ThgJks#9f^4JPPsI-{Xu9?@6}NhC)nC4KN@!6eboFchBLWmO%ha{2J=&?%Po7 zx8H@j^Y>7H!_}6@)7A)%jBVGHPYjMs0~jKGvtnc8c<%WXamvg&w{02qbxA5|jZ{}c#p6`BV2&ON|(qKp<3F%`YMHH-) zK{na%_ZTplFfjveYL|`w2y2!*SaS)Ye5|WYz;CWkCL<X)N&Fu(LESKKijhpUpyKRb>!&*dmvO)S{)J_Gk_ifg%(01 zsCL#BFeg4B*r0<5cy0C81HKPIzfFb8FIPFHTgX2*{XG>J#@Z4F7HZn&x=`rtc*hX@ zVy6PHnp+b+jL#GZYWFx%cOKMmeASLtmv11~nUjD@?AhguhU!03r0IJ0SeNcCV_$M6 zli4LA&>}M4Qa$m_AT8l0E)}nfggI zM)aBnZ-~?~e#L>KrI{WN-qCAL*Qn9QLytV|MXKCaH@Ug`1xI);RRnXX%`*kA-i$vn z$x3dBA-U0f-yf@7<2sUa{I<9X|G|W$!3Z?!peIgSMCYPWYfHn4_)FnT!I5f@`NTl^ zx1vZV;pXT`kn>lEg)Y&-k+5gROl?cWT?o#La1B zOz$g64*(*XQmMxo?~FUMTuEe5g&nQcuKZlfk^>sW?ce^z2c<9%T$3+RId4Oc$5&?H zon|$UT*4)4ovVe9wVFxW6+bil<9A-Ve~L`{P!)bx4aTioB(OiYBjp_uBy9g03HqnehT-@#t=xonx z%-$N(Juzg6s^NOgL`ZEOnIiuvJ%X-mRC`^7>*Wg~C#FHpU}(;pjWNqM)4U54 zMLi#bUp@WH=hDxgSM6cfB%d$o8g`l6;gLwks=FIpXDK>S(dVb#yu66kxp4n>Qvm+) zd&Fb*Qu0+MPh$5xIur!e4<8-w`&>dS2%m6xI}gd6Mdt>&}J!(&>z&A5lx=zSy*XT zX***}VZJEuUTvy;up>JAle1$e4C+PJRjJPM(k(Y-$05BbgaVQZiPuz#0N^&Ssh&9o zh;F4E7?qOhWJs{H7@p&l62vIUOI3rXx>1M8w3XlacIXhb`50{9d-72z{v7-+ z1by@E4@`TizWO-SETR`Z_MSgRsW`8EHAYFzhneCevGwGHcvvq4>f`J|vUtP86bx^} zs#iks(K^emxzi;9Y1t0-O;{4MQ3AtmySqHWm{*ThBf2r_(`U9Z3RJuzM#0+B*$8M^ zJgPjIh2F+5q}4zN7&udotm>}*IFe{IKr*{i2(qcW)M;{-LES zpRn*vNK(sKy{P)nh7^nn)O^D201&e#g>7TC(YIJ!0=^O{C$(y%l+${<_yo6LBWO&I z)no5^oJbzq&ab?zBUN-RLxul&vMk>vYT zYuE8Y5VffBW&y+>iFjozf!h2nuxf9=9Vtvz^rWlbX#bj^SNKBRPD6qCaDh=v)u`Lc zjxMO=upf;$pZ4cvB@|ocM5t5#s}e%hVCNP&p^50pRJeG6x}eT8=h_#CEr1BA_~RO# zOHe@hA%l27qNwHStDSdk2Rdq2Sv&@cn1|)zBPh zRB*-tKTJ~8w68`;ujz_ctQd zhBwP@Z20DhH7<^5ofSuMs_SHk1p%$j+sTe>rX8k&9Z6WtLu5^%A{Vogc~Z6Vy9~r4 zX9N{h0l-dia8FR9R6TBsm!0QF$6O9Bfv?IX=o09b?)=nFfIt;GKG<|GpyONg($p)( zI*aor!t3v{xtB`g=HWBg#hxS?NrQ$Es+DCJuYqnZ|G4_l#1&Fz(&6IS3wGW~k9dr+ zd2|);eyI#_NZK zMBS6zo#M4?K~W5e_l<9wNPKHOngy?>`(NClwho;&cY69^`!c}Pm23#^cQn^DI+Fk7E#ujWyX7sH*DCIJlc)`T{u?66zT zl@_hDG;A2vnQZ&EZ8!4q%EcE~)+%7OU|qA>W9WN_UhMlEo)|*1tLGD2;2mZDDwm@k z*kA#{ewwUC3=6@)5)~T7T4q5Nu_SYl;PNu}kG2lW4PJK?>3>Kv_;m+h4|ZoHN}$EAE*nLfG#MdXH}! z9x>Dv`VepmPxJ;%MzyM>uIgeArMIGrN{$=LlKAEA1YBW-)5(ZS+zs zZAhG%m$J;Y>rFOc<>+U*s3B*Ml2>Mf%`y)h{4>kT(=9!WI(=%7ain+?vJ{5S1>H-^3*7sVU4{ygyJv~O&0h>@&4O|K~*b0DKn37-|afLhHijrKpEd2C)e zfMVHv0Ay{f_UqH)xv4GK&#TeV${SaUq}5Qxk{XqVf`q(+HF*$8578+K ze`q0N5+%y!eq?cFgMe0UA2uO&i0AX;^xI}-B+65Z67YJ}L$O>aQyeP}V%?^~UZqxB`&F-_FW{ssh^A;ZB7M1X9$OBK^ZMxA98ci*n3CV6r_ZXu9!J?}qlc#{6bA~W zX}kDF*EkNf7gdF;X2q+#PJw$0dNX;7HJ>Sp3ntD`OIRAYsbmRA$bCxhhtazlXni~) z&6#AN1m=OLQ=mmzke5$)2Hh-VKlYHuUsu0IvWi~m(KH|Qbcjl*3N(EQS;t*D!~NzU z38`pLF?9vteVuSj(ZHhI!@Pm+_mKzF4NT;SOaMN)GLW%L5Kyi;x~~aUnMm?MV}}H$ zutMZCHd{}|(dp$#``>8+=nw4A>-Xm=mrR-x{9cOi%9;kv)dWy}yM8|#FY+XqgYh|S z$NatYHdbn0APMEwK4TANpRgpp8AimJ%!f|nQsqbm6cd3D*m>+z-ZtH?<*b6_;^!Oj zem#Z`6yk4^&Lj1y^+h{CXS5c<2}IiqTz%M)Z;yOq_~XSs*v1Dy+=%u0+%YYyuMzUy z3Yqv`pokWCMs-c*6a>4nd@@+UWYr(hR+}gc@--W-3bCK1)n`<$;h1Db9#hDWfdPpr zCa%`lKMh|6lU1%VUNREpPb{7f<|zh0=eMOXEX2#d!q0mf`!M+N0f)877{FT3+nkoA zOqBbx?nvLhP;iohb|1AOGM`<=pv^Ojr*>i7UCs~gw??uMe7~kg87mQZE}DsFt@S$o z-ifA{*@%)6iMdg0**UCcQ3hc#=JO%BWruf+_M`cAzaEOTWjmY8mM5(#QHD_LGN~`B zW9+9dLHX`;;dqz?6tJP#+|Ub5zLb%*QfG4U;@XS8$X%^gT&FqH^N+}5me@kk#g0g0 zhGrjZkNgRomM;cb+*_wDCp-uqQ8*tlo6ZfZx5|}A4W24_>cz{wTuMm$>UN&8w~!u; zMH*N0FwSf9s~QWBmO<+_AG0g}xq!Y+?;=`ynE3L(GhqsH>Rf%o8j$OrsB-j7twHsVG}NI+SF`OFe&3<13Iwg_D1&sXI%9 zogBU8jt4CO^}7iIOi86Ad+4R5m8UQwRqodSB{C=KSEFw^^?gDoV@lt)7uxqF=x!7opiWcn*$!3-yoUt-xj20+E-NoJ7{r?-}yt?XL7 zRYLa6)~|q6CC)q6N?V=-Q6Ka#pv}RXWW*{(Eo5>~upV^T^20z#P20oIWx>`>C2zSL z5MP&W#}N!|dg-$^B)z(@p? z2gk|CO41B+K1`5LhWF`2W}ZePc=wd!%CCfkDlf=tm^fNIv9DHZSx-yyG;FjYj7=fuJ4*dUIu@dD$$^V?L>N$*id^Ad}X0oYV+)XcMQ*O<_ToJFT<%wTj4K}!D|Eyr_+}?k?8RY&_0PhqUbg?anl_l zO6*VpzDTkZ4LDmY6znqkh=nCLj9reN7fSk|5P^sCxD;ooaXH@L&ig)xw7@Uc2e$gV;gQ%{|LDQH^yL#rgW zQ;xS8j%`d>g7_ZsvuK-KDw$}}#h2CRWEV6a%WGCL%?0iy(!DB47e-GM$-@>Nw?nLt zigxLoHhsFdy3ukL#*DMHRptI{pWqn_hiY1x!lA*;@>j+n*lKEu+ggP?#e4_Kfz~Pd z7q-_ngYKAmDm!*o;4shCISEUKy%8K1*TeSNV3B9Ok<@;cQeL}hTkp=6EGg=}daixC zh|n^aAWnlC2<$%`8sZMnpN%!5LSh^-=AtcVc(lr19}jJB-?L==_z`EpFp1gcV{d)b zqQ?}D-3veest#1K3BL={lCY<06S4Tu#@Ih*UYMBZTZ8M1_DdKrT16uQ*G&Tlj&Qgk zjo!PfDVsMx_h-k-;t|jFyt;-> zag%9-%I*QzJ@_h_X>JH)kgh!)LY1A>xRJ$ZMn6o%dV})ypW`C4-X(M)AUP zGn(jtVpZB_+;^b?CxrLRkRzACi@ZvsZ_dCc7}2VvV(JCX<>Zv^ral+)^Wf+$Esm$b z-)ytx_1Tg8xca0|X+$L@o?Q*E>!B^X20!eFkb8A-l6}5n@N~&(z4Vj7LB`c@8pUHp zGi!TW837^k;`vaJW~4&dDmniG!2-+E+g+yKzlGBHGoSJqOA{zB`*>-BphD~Gc7;XK zJx>KBL(F1396Z99g&tQ#FDxUc>g`jkx@r5GowsgiPg#_nIBiQ%8r!`R9gbi@=C9_s zp?S`?vQ#nkQgah=Khmfz`Z)=X{PfQYsW4!xr53*>WJ7ef{UkSiT^>!i$<+EN6ao23 zIf?qu;iuo1LJ{i3-cq=iE|gk}A+>7GE$K=-;zaDJuZE!aAEUhEUAp z5NcP|VY-QT3OMIPdh8HRin!nbYkC*1dgwNmOVXGwd-z0lg(8ul4a2jsB1&fM8tBty z*@)#|YkNO6dz)GcM%9{LD0LpX^6a*|L5yGf15Q*cRJS-XYNyVh7_B)n^O{^Q59zj_ zjWYT+G+tEFJEXpi>?7+!UD4D)?aV})jk?Y*zi#C!RT24uyAurJA(P1 z^*(Q{)sVCp*%RhjjvY&)*QW?EV8P)y%r#F%p`@=dFfMSx%Z5_dklH-C)Wffc55O%$ zoS@zcZ+}j_orR0(GgGwWf>t-n<-VZ8Eq_sRRUEQnrb z8a8EemlV#>$vS@bG(Z=?q@-myEzkl815qOgVr$pWopmkQ)-mu}U;ETxGS$s3 zELcC6OVzRCRalOpei9*HQnK{ATeVq%c#PpZi9mzQ zgEa7xVtqTRg;`1N2pHm#v~=2&pp7MIE#E6E^?G)F#$0Ue>BW&>6bXxg&{%>AQ2Iea zTlR{uik$*-S}G=gYES5iQtUr{`~V&5Qlegb#yMJz5wqptub&z@2%kO#p-*vGVY`?H z8QFCoj3PSF>pCBXw!}0ZZQS(~!=DVy@p?&ILg(6=Hfu%sMaVMUdq0y~ zKM{+Bo`FxV*ABH(8{_I8hU}+9?+V*R2OL*6V765qHA~)nNJ{AzOfOc$SqC+4l z)`UAm-2Y=x+rvs865`t>78NcU0h)P9nB}!!B|V#2NiU#v2ZC;UZKGcdx6NTsA`t%x zz69zE+`ipYtO@L-L zo=6X;aROb(ti5J=z#<%p3$r;JsP!K2<#!Sa9xE<0ZU+o;>nn_{8%80(cm=OY=qmy&?MB_H z*MQ=eQN|EVYhW5nT+sM@55a-!vM+b8;QX}PZXG?Z-w=$?))Q)U0LRAQEz4xv07nGS z>-#BS4U~+j9CBL%ft-)zUZ=t2=bta`dE0Q|j2c{y@uxsR;WuYcMR*W&b>13AjG%UA zJ>jij;QWa`tzv6mh~t`L7dFZ)LER^Q=dEO36L|LZ>qiws!fi}56-=x`C$yR`I$A*S zxA;tzXLo(eYxC)Bx?D1jGr@RGGCKxW9Ia-mSc~9i)jY6{LEsXnjqk+}M+>L|UV;p8 z#Thz!^a=a^1m@|wncy{I4N;)8%4mdB;{Rwob~>b>9w+0oQnkYXf<(vyGsewWmpgu4 zDWXq@Gi}WEa_GbH<5iJvL@NP!CanOx)QiqP=rxi|9U2vZW5K{a?H=>Y(*V=^f(#CP z8hmbHl8RtK&tq33A6>jmS-0!364;a3N*2arXaKM9;*RnVFpel8l1wiDI%?vs(4>cDVjpN zOBBI}az(#9Hn0F^Y-_!WEWv!5+t2h&?4Z>9aEb`uPBCH5I=KU)vo~&DDs)6>B5GG# zAFq2L;TxOwg_NbhyQ9SrI?;OqyQhnKy3#3NQ^ek+ zhi18Y-Vg%X#hb?4MgqIn8ynLmAIJc%r(HN%9Dm$STX&zLF))U~ZLd^64}_wg1O>TG z81RHS#x6~K;H7TyVB6YY@ks2^a}x&<0nVi&(aZ;UzPz|OE^ELWTER4kJepccahIli}3M^4?yyr@W|Gy6Z?jHR2kV6z}Bcl z)uxKwx3+JvciR>r26)D029wyMuH-Hy4u=sD_SLvf1U{jJqh!FeK)C(ZAEFyGt^oDc zrWO_&SAiek4ko$c&?SCF@(pL4N&6cYY&YN&gXVst!}`_t?x!L-12vDuKP_hZF)AXv zC0*k#&@F=?tjgn1;EM)adfl-dsR^%lIPjr>m9g75kn~~CuZr_@T(Hr`U9h}g*zPhZ zm=bV!v@DBd4~$;_xmPfuwAJ<5*xPW5G|kMZGzaGnASaRhz3qd9J~YP^&SM#FUTVZE z#vP!O?-}(qhXM4$6$d;yM=lO62QKuZ@6Mkz^)jm#8{ih>{U_#vmEJtXZ!+dtI4-OM z3-tkA0PDW~CBtE6b+ISOtAO?;>P$!X3tq`6o_Y-fjMmdL{9z2(QsqVbqC<>0uV?L6Hw-_OYT>%=4QBK0 z-m6jHTyS&3`O33;%3I&X1+Y>s(ZJ_5)y#2;ANX4tQ}v_Z9%chQ5!t*{ZdbikCv4h#$&k0i37>_A>u)s|I?`(&#hMhbdimVnAy^n=bYUsMZ55 zx^)t?;-X74a^yEmrXu_12wPxV(reY)=J?08D)l~IOuG!EK8cR=xSIxWq8j?J zAcs3cc4Tk8{58YbPzfgMFqz-N)#b1Oi+5ciX~pvI(Qj(a%2X+BD53kMiv|pv#&svZ z6PH~Q1-0m&F{|TryQ)u%{LVY{Xg&`S8>AvgreF z<%aY!!4}zd8BiBD?Xh23i2NdP4+fu$Xtxb|FLxw?^4TYHm9?O!hD2&oc5%SF>|1A< z+C-gTXit4$(Nk_m>b20l=uXAf3Vwq<;`xMCwp8zqeb2lqY>f%=9rfySK`2}$>`)c4aJ$Bi(O5AUiDN6vRB;!r2IpGv1<$A0xACh%2_$Ece_=n)3TEM7Ca9?D++Rg+;7oOQ_oUisG0)G{w`*bDMUzI5piwC zsEWPX(d^N*#M>{(VLYC6NL?Oa;onB`taZd@dg_fyPQAe;?n{XjF8~J4l@aYCi44wo z6`yW!&7++Qy<2?<6q{)o*BHX>z|{BT<^8RO8xSSF!(rN&5;|rY7`bI)9b?4BTQiV5 zaAJl;C1J+30Kq!+VuyN}|M;ybwdY2PZk-B7i=o*`94rSon)5a;7?LpXIu^1wZH3wuI6jsybH zu;P>jtW7Cr27gO3kCDcP(7ojMo2Jg7Okp#ZI3atZFY!yUY)*@U@Oa!tVOM+O@LP@% zf~+Ufw<=Z3d(39$j4(7&r1Rl)Xs~THpd~2p{PU-S^W{TQ>8IX(%LOu<%F#D*|z-2frV%=~4 zAl5EI!G!nlI2Jjgg!No@LJWzZ8*pU%oHOCKN4}s*C>d@HgS>|Q^f6z zc431-T%tWip7_4{SoUTlL6YQDB*;g$u%h;L;WSwmMB-KPAx>{XB%CV9&rS>BEJ0R8 z;~6=SV+X|g>_L$By46E28foMZ!M<=p!B7eL!u9hr5uOhi^@ zx(H&Y5fDr!R0D6)y!t7r!fNQeWM>_^NGYR0kng)yK_9!+1GB_Y1PZ-mQ3kq*CeD%| z3eIuzwlu^|?zspr-?JeHxI+mfmms#9h~~S;ASQn81O;?*L>$4u(-z?sv?L6e zFB%e11zPaQfRNCQB67>oT_VhfiU?#~7SYo|2Z3m1Y>2k_d(hDb6Ufwq6iBZYAYq#+ zbieJ1#MS)^(&}S6vgRfpiQ6hXlGb2sST&H-5N&+xknFZ(0LLqD|IJFK9=0wy#*r)X zo$Vu%6&e>rM*>=ayLe!pBOaNV#qaRyK@bfE6tXnVX)A?!!WI$} zWKC(Z>4Z=U4V-Zzvx=i>K{<+-7iM&CHX9N%ijBv^`|2ah2u_V|t|(T;)`DV2G3IOm zLB4janT#JOSebPKm&km1=3}phC#Falv0Py~BZmd9MV3c{hzfTv3n*B0@?wU^l1FpP z^e1~xqQr)=(_Gr5cZZoV(z#6ks@+N&`7xObJ`J*5pHx+0Wk`qIX;ip*34)3OMVOmkCUPCF9-+ zETKG4J413fd9MJd9M|M$ylR&j`G9u}_<}FQHWZ!^FZ0nQ zsCc4@t)ZnWkXi#h8XJX4+C_;zv0j(IzMxO~mJuvDX_J@16InLK1f~5VdaQdPMp{`| zX7&?ne~~_a)(hAvgbOiw-rW(pA5}5m?V@(IEf(BLj~%@v=a6c9pCNl+ z4oH1${os3#@xoeh^J7Sv>_L_A2fkXnb>n&_wWQV*#1ky%=s*8M=N-wRgMuX|!f%hdi~u zHxlh)x=ksQ>BfzZJNe;(FS}R0b?v16R1cnNA4}`G<}ODwxg-|I6%4Z-aU9SV&dnw( zsW5n*psq!t264DQJsKYiMmsAO8958HEx!7I2MK|kpljcRIcJQAFPKhi$YQSZL)k(GSH?Bn-NHR+LtYpV1Tamlk8JO@j; z)oJolFSEP4JbNaW6-|YuiRe0nr(~&rSy*15LylfQtnPj$HHvC=eNJd4e9yL6G2+jI zWIo`L#%FjO&R0J*+phN5DWs<20QHc4iS6R^L8h9=6daw*s&B2uXUCc1;dR)BrAk2- zZd~EjulSl!pE4qSrdr4I@Zbgau*id`2?;xj1w~m0_;I;B7*&}Tc#X3-+~~KznLGry z2^tkprC(ztWp!YMq?*7MN@^0Lzs84FXHn6;Tr$f|rUR&!vSfLdWygA;h99=?tvR|! zTwWLGq*>RfxLF7Aph&&04h_A68>#(+V&sl%nBGC)o9f**_ko=cu%q`%OfXu#e#hlW z9Y%_}^jj1YnSnFvsxdF5ccy1Oy$X|b>jSmPfN20n==+G`OGv%;vH%QfyWVQ$U_G!k za9X!Awh3B;pE;#te^djImvMQ>qK%HU_zgjol+CE%ifMoFOzHa3Org_KP3F$Z{L>>d8qUN9KcJ(<1uz9S+ahr*(`zcf)cH zCx`U)E4NlJLac(6Pv}}}Dt*89d)?j@T;t7(-@xuc(MvtRS=zFVv}X^}F42a-`kg6t zaXX$5-$cO1n2q$x6q4bztbdbbvi!LtphiG3eTjLWTFaCE8;4vSuADK!H)P=IVSVYS z(agIhQy}i4jO}7^?EMp*{gi_g33l!3*z+dMfVB}Dv&k*+z+VMdlu6hpryN@_T7dx@ zx^b-5;9RjU0%9?EN4k^1A&tTGc5Gl3XrkgG!ekiDDt_4Lq~la&!29)~{yb&yIWf%! z8l>TI7c0OaR^*>AcGI0zH%qaBRb2T+!H;)#KTI(%a%uv=uo?F_&x2PNdVl6z*%u8bz0+?R!H90&^yy{e1yR@bx2z>1U@U)mKpHi( zR-WZkdSe%|^!<`J$V=&!OWriJyEn!Qk-Cea2_H73L%z(8zN3(m^JW(IwV&Up<9RvM$3})k_9go>_U&l!@58>JX1X#W%74au zaex5={>>Gj{4WSnXW%ag@;@f-GY~INu?7H84*vQ8NC18f*@OP4A^S9TdU_P5FHM8` zUrhtVziAp$fu>3RZG;{O6$}jwY{Xa3SYt7=*75hvsM(4a&pbRM)DYO18Q?wEAJXAG z*B49&MZN^Usv0GtIhnxnH>%bz#aqb;e~YkYk8d$u--q$7qgCzp_=<9=s5eg2Fc5V;509Bf*K185_oq_0|96M} z5vMjg@gc4g?dCzH)JG}W4+lH9V((WSzgw`-!zrm8AK%@Bt1$P@{aVsyIJPvZUk}(i zcI=kkznvERf5L%Vw^V(yKi3YLtY?aqfE;j9qxyU*T~C699z*+RyM5Z_3w^hs2^Eiv z6gnrRy>)MZ#+Af7ItYTW<1m_4$*GuPyP+D>CqzQKcAMZ^W%W+!r+k z`--9!-vng7)`;MK|9dS3`&DmH@RCarS3a4`z(}UYEb5io61~r8&-A=hvcPw$X8G^I z+E8_Nji1VmZ=Z$eaCRR{L_eP`p~;qg$KMU?M*+Wl<;YW95X@>9TB}n){z7qtANuJ5 zaDr`;2}jrW-+bG-QMD@VWNuxXTCn4_&ecM?bCMkYp7fa7(D+3LsVBfD-EUSZ#g$-L)1W=PAM))eFn!ly=FOckC#HdU4zn9V%V)Uz& zbnVQ{|CEy_FhIzka%xuclvXlD`7{&JgfUbh5_Cct=124@2gMoCL_Se5dm!-7>nj)spC250K>f-&A1GJ=sPUG1KjPP-oc z`2C!4``+Uy>(hJN?I-<>0FOUN#s~{xM~u6zKRpg1o?WTB59Qup8g^TeXopaIe-0;S z3>`9*eNP0$i@IOjEfPe~Aw2E2-zy2;UU-PfR4hi6Dt_{?Y~CYgjsR9>ty$urCQ~qM zRMXX2Z9JW}mK{Ht+U3rHW9o+?E%Jy0wIw=uyW*m-_*QOu|Lg3v4Y=TR1TM~R6>?D68pTV$(wGb;d$2+Lc@7W z?#}}S6Xw@6$LFY&uA|6}p4S^9viy3wxR(?uUZB!*^PW|gxO#8%qm(ueqtNWWME96vGv)Hwh{rKDXq&p=Jx=vk_3fp9QqTl`2X`|H`M=506i z%~bCB;+$jiqi4igO#|OwM`k~;$?8fkYZuB4`(11YyVhj} z^`H}S7OXD;EJ*T1?hGlHgVM<>m(IZ{N2(|>rGQVI<^x-IIP+Ay-R_pg!1>Rsp<*d& zKq-COR~`l+=IzEWLD3`qu-42fV$OlFlV}$%CV?&Z-Hf-c*_X#UO}rPSwjx9+7gg!fAqPpvIIC;(uJ2*G$kAvb%iNs>=lu~phaCqyINVqyP$R0uup0l7;-egn45ITUr3 z^+*FK+jVE1PL=YRz^xmDDoc@}N*;cW+AGH*c(lRb5n9t4WFP(qcc5w|0xs$EQI%T^ zoICt%tC|sSy1zBoy6wHK1hLImwSHlwzixa0cz-djZnXG{tqv+|H^0b zE9W2k`TgJ4`L8_FzHxL+6OzpWSjCyK(aQu=Q+Bwtbg&9m0m4)61KpGWzRecn&# z&#CPHkA2>+9{?ag|Ia=jWA|rw|GKuMe^v)o`n&qyGvS|@e=~diIurg?)!O}Sv2FkW zltBOGL~w7a=cK2XV65l*rD8YL0}&+9Gtt}H8V_@on}`gfgU|<%{Fj!w$p1?^PV`qg z4vZ{5-s2AlBKsvBzx&f>N&RiJ5dPI>)n^2RIH+4VI15;NHHYd~2ebeMSSnXy>f$O^ zZslNs%~$lmqzcy_^RAMVTjCmKdOrtpMSG+@mv~0e%HD>Usx9 z2*+jDYpseP`(hG5g1VUMMf|b-LkpV0pv1wz_`+%-+K1$Cp@jS>>obFh3IPy>007Wa z6}bQWymbNie{Vql$?pw#_2-HM&;D&_>Hgk*zs&Id?TUka+1@!jIYNBB5SUomx&i>e z!2Jm)iT@kU|0g`)Z~qIbEN$-S1f%5SV61O#>>y!dVv8hf>ug}uL*KKhYQ2DqXJdkTGcZVbhP|`{ekjM#J@|8(IM`8>~t;H#H`kp7x zE~0qcTt?Eg44-!Rp{whjIm$ z<@l#F3PtAX6yx1ZDbl^XLt-GJN~$eX2oI(mE8m$;W>X#aaQE|-+8M97Uiw^$zkI1% z_Rb`@`|!Sv0R+m9W||&J73KTN=3UAO9a@(-s^uTcF5D1}x>Wgvk=d_@Tdu3>i30Tz zbS&nr*+)5kg^JqUG0Wy^I}j~lh4~Zp^Ee5UHp_k>?BnTtu6Ja1fTjz;WtOV?3}s^n zpOtKF$Sv4oIyEQ+Ji$4fLU)J7Rr>Y5p|hehrWN8vJH&i0YxDg8{diP{X6jaF!?tYV zQE4Vg3E{wE_0t!~O=tbWn9KF( z&W?Q*>c%q-4^sCUIoa&KGr6YEw$V*FKC1*Gt9K=#_#02c{YXe^adZFT1I`gs0j2sT z(dlkWKIcXpQGfODJI1aQ9s3D->C5it*XQ2%?d$_vyiDeMe(rXBmZW?iU9%1<86~Wg z9g#fRcF?YY5szvWah|RY0p?gpHU=L!*?DscQ9DTuPt~q zMa=-8xkC%(hj)g*a>*wM7(vgrsh6v63yMAOHGV^3OgdC!tvNv~#VhjiGgh)X0rA+e zQs;WZlIC_3<#Hi2A8GO7i(I!~PrAzLi;Q6ke-2<<3HjQh#)d%VHo8^RyDjp}LA4O+ znQ_pkrfeDRI6`rqt1;%4KPd<;E5FGvGiTL7dR=_W#wsPR?RrJ7QtzAJG@yJ^dNZc- zy%+#Fn4(IvL*8W+SS=?r@F7xMpk8LnW)tfjPd*_f#4|sCYYd2u+z!+8+;kv^F;IjGLv@hM z4E)l47atPEr)Wke29}j*g5U-OmNl5K2~P|3)oR#b{c1YnX9_MIH$AWSRUPf;47{{7 z{yaR7=iM4CRh_nPI>&gejYT(@LRz?nUNw7?+8}L0h>l2Vx?$^74%7E6J2%-wfm#iH zQo9tQT*IzW`*+Nx4jSEzAt^A0Vu4{#1{(lJ9lgoVT76oG@nAX7TSe-jIOgf1@$2g* zgxB+LOzfts`KUa0dR|smR`aQufd(nYOw&}*CII9x#Lm_3xuj*o=phd@__R-ep`Mit zZ_cxJtrVP2+_1gb+qte4GXw8X-s!%+tXnQHJ|ca|?c8Z#n8YSYL~XX2!?3}h?Eha=JEwc=7#I2IvMLChGyC?%$yACDyH2; z%(xRu>@y4OjSb{9n{2LEg2@ckyGr#Un?0;;xlh=nTW!L_soQ-}>>qw7V{rL9af6nR z$icRM`yTnA&Q~@;K=u%b_+j2L8A(PC)IkH^Nql|J`r$dd>jCr@7viG>@|sLtDEFkZ zw-oqV^pGdkqvJe4x}+rnLh%>?88eB=sO;LG;XMU-bps= zo6m|ENfZ(I$2-mJG#&IY(=qJbDwDI^P4`tkvD}a?{UL{;G2Zfo?8wgNDruhqh##Nc|B6^Ww{`gwVWwI*OGAn>&<&k!u3#n6Jp^p#5p zq~eMA^%m)Dl*vVWxeJOxTQ|CrXImBVD}?HO!xUD!#j-rra+w{U8M2svYz3S_XZsX<+X z<}%oID)JH3Yw#{ZfRtlU5HvWo7S#yOh#JaGT+(vF%E&u zMH^QV%c;=}E7YtbWiX1H-3hGAn%zN$$$k+}4P(#0-Pne6FH-X8)j-J{FHXhqMclU- zB583%66so_4g-+YQGD1o(8G0vwylyVwC`=2)MhrB6wF%Y!J$hXam?C1HXW_^G;Q4f zHsxTz)QY@$O5v=-r6tjuc*f9Qf1AfvNx}AF%Ue|*>XRP_hEVFI=nEJrzBPm$MY%P(9o;P z1^H?jcEuj;=y>|%*D((Y!3kr)umJ5SQ*q525SXpCRowf}Qhx>MNqE*I*9+v!E-pa8 zV#OVOc+vXU0I8FAfZOdn&(GPDyhs2Orz^Q}?up)GBlU3sdL3sQc0!`TuN`$)GDo6? zoArdJ3V$}fCDsG^X*=3cda=BG3niYXXs#-B*7K+}otC58wbBradyj~o*F4W^ggKF- zKE!@K1qJvFgN~*)3Yvn_9db(^C=DW7fm5i#py*c-rtnmxiwWbWPcU;}mcb8Ea>7M4 zzZLh>D0~cg{)#?_P|9i}=K4VdKqF}J~-QNZU>~NTSb?%Yu6c!O0%HqH$#`-#B zuO@Rf)H(HC&u02V$^Q8WskA37DER7BoaB~DG)A={v1Jj##Fo@X?@FjUHCL>t>b(Po ztQTet_K|9tqC?}7(_~n^Ofyd~8iyL2HKL9bmQw*E8eiYMRQn;K>`Du15y?bKX}yZW zUe3Mg#59uZTmoeXILQfd6P;V!hmpXVf?EXNEWEyO@}^kcqkP|WO!L*KPRq2?j(^9$ zywa%pacp~^-i81c$P)bgzB4NftKp+X&3$tZ+!@4&+bSiFSlNm7V8X`kMVr| zu6cHP1ix|@-g(|?g1Q_4q)y_B7CMKr*XU+hP$EK?Nk{@#Izj2-AlD2%0{@fiy$&*| z@Dm7~cSYo@ZD9D*4S=ouN4pmDAO7!O?V32lzgr-E00FFk{i|K;9QorxW$~{kVw3;w zL6wepsgIGHsirj!kn}IQj0Eu4Q!$bM^i=GR(^nG1SGxxKzqe})wSqSP>eE6zEz-#3 zqoIJIfq{4V>Lh7ShnL!|o(-9;d+<)c)4>dYjhp;dlyJEHNf6lgxctnmK;+4gts3bg zCXxv<1t!TC8S4rKzDSk;@yq_eF25?w3^3_oblJ0LKs$%F_ZUkv=FDN>M&X&e4ZRW$ z&9;X;s*@|H?b~&&i^E!1zi3^0&h%Il&*o-c9geu%NFTY=%k_i(5x+I5La(Z+(h{QJI7lE|%~~|XxkykkCnu|9T*P@>pMSk@ ztl~1(rZHu==I+YJxw$=Wa+Je~U`A>iH1={NEs0R8;cJ}Be~>HaNnY!OQa1M1ntoh3 zl%0A#I4k^w3mr*o%sI%lVP|&tR#+dqnaY2@8HaCt=3{SSE*Z5=FFKr7tRh%-c8?a4 zQk+*zj&TSrX@94qa#( zM&kYRV>aLE@rIbs8yFW#Ze5?lY~nC(v-myia+xnwD}?0?_b`>S$h^bSrgLOBE~C+K zmyTRNbUFB&0jvTL9O1f4IaAC6N06mA>@P~6Qv~M63e%@7i%`FlXa}7~Urvyb*7LdT zlVZ=HXea0|Gq69cu?VK9n|xMr7LgYn7phbmr_70oLxq~oWmBDV>0Gd;Zx#pnn~N%f z=0#QaNrR(9bB5z3D%Bw<^=P&nLm5YIZ^GGI+ja+Zq*+nqa_uc`gQc-n(*|Q3##th; z0TudtTPJPA4G(QcFL^tJ2wDe(swqcr^78SU8D`|I4u{YortNz+7c@^6RpABasx`-! zmHlNz!=v)!}D7_cAFbIH<56LkA09y5*f+4T^TQC%V z+UNNEfA6-z{}#-@{@w6G1E?bZDwlJ0aCv3*R2zqc6l#L}VAX)VtjqRT98wGfOa%pD z;e69-oZCD)1d2*WS7NEjG8WjK%1ycvV` zk#X%4)5tl5iD!aEz{HDaNN8W!oD+(b5{<>J@~MQDtoKUQ%9Vh)TWHs0<6E^F)fSZW zDPxj_4X|<}RGGP-lUChIIs;}7GhfN6WDPpR;&p-r>6l0nM)`f``H8ACPiUVyFZ2`F z$y51B-<2D6!E>o&J;-`LwYH`*t)DeBW?b`7C51}J{4GtxtQT}hD5&8t4J>#=P#@1d z&Rt{ibNe(~igD~|__laaN2h!7b43mwS-s=Cp`Fo+F97B}4_219W&C>JQ1H!Y3jtnR zls-E;zHnnNX)uzWRent*a)q@xeoW~P@#gkuVe4IQ_mM8Zb{yY1t9z@#8u2`b#)7c@ z+y+@eYtpFW)<)W=8Vpc^TG`Vget`QKv2Ci@+(Q#+?t9}Em??M|07Vq8`)kx2A;_GqYMGzIM3`{hZn(AqiEJ);k!2E(GqyP8&V4}s2$wYA zqF&(NP!==;Z-*?avL7=60;Q)D^H9whx0hG*y-ogPAWm~M3jX|X|DrFhJZD)ik;SDZ z;APtE% zQub^%KCe_s$3^TF6Qe9QKFb+BFy~Z{-BuaQjLwzTOT`O-IoBtr-OZEJ%=)#itL=aX z<7XqUyLUc3GxwDB9c>iAdn_qsKeut7Yu^YB(IJOfB47FhOFHZbR^ci1q7UFXFYm`~ z`LSQJ3dw8`8=%g?8Z~w@KwM2LT;(G0STCyHVGcN%4XR~@t~@{~rY*L!FNmma?8XnZ zCnN~6;4ZaSK!DoQ4wsq>J*QLAf;c7Cqg%WnVN4?e(J79HS4RYbr^g-Bq5iGX~Q#BPxx!#Os;}ff_x}v55Ao7 z+7*DRvZmS_qwBy*{#lUwjyrns=%;B5UdZF2DQ&RPK+Ci}i$_THz-KaOj~n{9V432F ziJHNO{>_F$7`m{4Cb!+4P*WEG(5YUb9mCcDDm#ow2BdnH8Dg>y3jkaq@iR&tw|x%& zy(%5r+|{e{H$Lb{m#=LmW5S$j0U5ppl3&?hj2HK zV}epl?!WEdt!@iD$M1S5HJ{Lkz+9AVyP~rM%#vD^zRFb-aIt?sDEAi4@9UU&ASC;p zp4)zGV@D6?X#CgKBys}KMCGA+>Rwc!i?{9az0b>iyVp$iha&bg3fH=ehybLM%TQ+w zC}v>AeVC(BKjgGm!%6XVJ{CQK+KvP13kHU~w>Ry%uim_ka~sJ6SQ#I+ z*x{nIJsbU6tR+rb6+#PXeHAvN_mKrAM%Z9 ze(vqi!+U8B{0cb_1+PX36v|{v>uwk@C)9!`hy{-V*1r-jnI`m#WB_UGuD9@T#umY4vaZI+h&GQ>is!1#Bz?ap( zzQP+D#BFN%3J?E+K!L;NsM6;En{DN88^T)vCS6gE6snHLIE!vMqJLo{0bPiInzky;8UMzD zUSw_`ll|Hn=tX+S@hP^Jmxbpfb)p+gpq}$H<9izD{H}>g1L`aP?4Wb=lm}^?{W`f1 z29h69rnTjEIaoj^6labEBw+C&C8@3fv^*6Q&(4sBfJ0rM4TUqxL05Q^ zUEUUAv>XY%Z0O00gW$9Ehgh17W&F|KbhLe=LH7Fe7X7=x`$kP%>gP#egh{OUJk^Z+ z-ROPAj~ErU_%0EVl7E5+Xd&j9XjBv2rt3ag+>vdidNX&C&A_UKSD zowo%jQ&<9XH9wDDW0p30z7o6_H{*U6{3gf&9GK^IEYnn zXRQ_~yFlKIsoT;9mL5+g;TSRwydd6uYT(q=;933>7JP_p!S9@=8un z4!&2ir#_C~xz+FBBt=;vjlLtpHm?fX*SPTmO?oFeG`vG?ovP*UIA_B<>$KiK z9IXO#=eDXoXK(?DNhMJ{E)s54!t$Xgu?2B1cJ!#b+7a5(Y-uq*YEj$m(IDCvyy5Vnh1gvElqhj3RO&u@3`H{&vAwTjb22d{v5v;ajZ90u*Es(s$H6JkwO zAkj)OS?z6Ec)dl6?TeW}f>U#KyBE~Vvdm^2>`R3%9K*7$l2BMmD($GP&+I1%<9M=F zMES&znfItu02Yr+WWBVdc`cn)J(I6*n2x};FyE6c1*j~{Xll6P`tl^qs>DvZX7_}q zYk^2Cu2GxGulrh(8EJiqQu=*s{ZT4@8h2i?2a0*e7-p&0_;KPLOT|qbpHlTG#h1XF z-ANNJ5$^8xjdcb3?s)e(c`Zd+r(c6p%(;lQh|D#Mpv-R{{Ypx^!rnx~#_MxUZscrvoukslve48p;lq;>TyG$(%KTM19hNuVMJ)t%0%^Fh!tbm2 z(wg@H42M720_dUNtcO^TFl~nQ$t6S1d*>XOrvgQuS92Bho^!{`Q>8A!h6@-y2rD8( zHhTPq$VdJV8ICfafNzXkBjCG1@k%jgJ7SkOjSdeCSr`iWgOf^znl_m6{D}?VK_&E} zvnx(4n=`2d2kQL=ZL{_J1`pc3$-KH`G4KgjgG{*yEQWjEN3;2DB9<((BGsXRLpz@H zW_vY`s)$hbaqR&rnUXx4;w%}LJjQj|bHWqx3od#zyp={#n{P($L#sF3P5TpeG+EG7 zZu!eVQ?C*yzszXnN9QjetWvj#kQZiMoaO_=wo;apgi81gsbav_N#K{ zX(vwn`?Mz)3FS8{Or)Ks1i}@adrcqk<`eqMyZ!f2&OYYlrAud>4^QwDM*NrIi&LlU z%Xb*;`*k$ix*?KzR)!9@vQxg%)J$kx%4ci5`E_)k4T^vOP9?3>-`4L!yeA7~UEWmw zGd3E9E&AmoQvT+zrhq3|>6;|Vsh@>z^I9t-J-e;XJ+VSO=B|ywzM0_7ohED)Q-yi@ zvc<65)%TmDzP5!me&D9d0p>7x&Jy>DP{&Kgm#?J-ul}#0%qPZ_nv}C3d{F$^_q>vXH%<7@pS@RQ zhE83l%%;L#$KufoizrGVEe26cxQbe(Cx<#;qAk2K-AIx9m>H5Ce$nkNK*Bs0sHl!kDG2~)!~3b z_u7OKiSupL=hv?~U?t8NE9e1+@^-gFL-H&~E09gjxj^*Jo)K^YKq}9cU0k_&dY{5* zx+>&;a#rT8Q`~j8IV^7+B8Av)OS;`T%>;YNJ`OJ#R&f08gxFf{n}O(h6fasT(AFB6 z;qq>Oc9lzLo2Px;8c(Y*&0UwBlW_F5J4fV6ccv&hp3b1&wby{g3iO>3_~s{dexja- z1KOM`+QDMiYRK)H?4V_D9fJ~CoPL^0nYx=yWCNTRx4T(zK_YR#w0QQAQGBg|S|u5X z?LBcpyFyY1sf7RpmZz@)Y!JxQM4cekT0{o6wVZb{N>CXP03JqjKG( zf?_pDc&B`bI$|zJQjm<>+M6O}rydBBu8YW=y2KFgp5%}UwUP$E@tg(i7C5-w8sTGW zjR;W;E)drGBFMGKAxQP{*SrXG<=sn!Aab-tuQpT(j2xb?-sgpetU6EIsBU>|B6LIX z?L2pBql-aYrHE@f69W03`9>EGy4j;O0v_L_;Fjj2c1rUj?M<(Vw7S&sP2uOaW|K?p z8!CW!9W${vrw>N2HPYFaD3N+I%SNNSCf&Y!f#S6lhbH2Y8TMvAUI{!5F00C8b>1^= zH~gZ0ddo5Jy1@gT3&7h7MGv_OuXSL*mq6r2euJb##u^ot<9v`$8oCf$z4o!y@A8x( z)8Tf(3$?NxJR>fxcUqu{^1`l5?V}q1W*9?Um~3ZtjdwOc66%}Z)qnQx;C7G+tJZtP zA&XKq*Rtu#*F<0y?1POM}enl^)t|VQOd^io49$hyVsJqt|>|%1~Yj z7HPWHj|0s}X#GrpW>()9v4{2~In&=rRX}e$kD$D!m+u(4RcuYfjhNXt4xGF7@eXqI zzu0@Lpt`>04G@Am1cG}YxVsBNoR_<#@r-(xy* zc>q*rVgN0HQ{I<9^;yNGnmFh3Ak@;3iT9!WQ{<_AU^vN*io`zj^P(FoScxD}Qy|D1 z3d0sf7&TMG;b+7sbc-q@5?XIx?b)Q>7XJY{kvaeZ*+<3k6SZ#&cv9h=Ddqs%P35Y5Z{%vOF+ohujoKWCGfV zo|qIYL2m29$Y2>{+oDK{S5@|c=!~FsMg~?9_1FS)ivYNGbjt}MSQ1yhy@3?u@rvF& zx=du;$XoI=oKJCcSa&*kXnj=3fYJqofyp_sUj9_$Q|h4+@6Wo|*G#%?<^uSJPU1#y zC!*_ua1lTyA>=}1U95=hhY!1G3S~4#kzm3ytf&R)0?pg+d)?)vcKkkQ(M%v%#=Cpa zbFP#)dRYABh{AA(;CuXoodSWdIJex0p0(ODWQGl;iFj$IKs<|IUc_ootorM~%X6r~ zNTX_5h@%MD@r{XT6g_t*=TuU4Z?3eK>e$i#>XN>prg`-JA_EThtT{8HxNo#u!a04X z=8J{v?&;H58DZ0_=Z|sC!JqgCl=B`~#T!n~=bRB&+TB?SZr}@rCt;IX&!CWroFq5{ z6*$$~tSh9X<0y0!D1R0Zm8m`4(*K!8_qp~dM~Mnt*5xaLhDvrnqv)1i zdu;Vc>wF{<_9V%M=W#H7(bDx@gCIZrfwPItxK+mCle4;7DkY=ayw@7(>jOL z@-0KfM@AJ%bLcmT`Mko@>QN|D2xRtTyverQ*3{uj?FQT5#ET&;6M| zk9Qvk0oRc^BC6`J3(4m#QS51cU#`o3A@P|RfP@P^?`(bX;}Q{280dXV1Q%88(xan~ zkjPJRfgOK<@gN;W_UXYBY`gFwWmIj_OES$<|8p0xYLf9!gaMt=>&xv%HB;vc@F90%6a; z1c-chTs1Er+|BtqhK>W_6K8en29)%6N_anYx&HWbn6|aYahZ@f6%?tYdqN+R%MBHI zl#c{e!bjK%1@)=v|Elg(`v3Qb`A6MhH~JrSC*;$=)g4^~l_Z@eaJ#JHB$H}p6nTPk z%OUu?sHB8+KQE;$HDW=)cL_-ZR*JIE-z1X9@plY!QFu>Bb2lNnOP)eazw|VzE@TvBGIXq4$YP0-*@g5Y4C)i z`OMjz?4Fadh>7#2h%ro+%^nEI9A_^0V1~c? zeFPOvHh4DG>3kukG>D^5IJy&ePbj3$y=EK}!pT&MQdxWHxLoEq@Eqgn!P$%#mvopv zAJyHaH@{<~j|=MrQC=I2fETVuuF5QKULJ{F{r*fr62FgQSqAngstE!kWU@K4FH(SFdtxk*nW%G(n!UFTIZu+X&Xc3<(KpD zTabrqjSniVitrX)0!1GRb^FC-n>{FTDBw!SNBlK1!wp!fJkV_}KvlW9S@q6r$N1@t z`+cBfBzS6ntZCB45i?VnC~0pRCjRM!j86*~YUSG1b-nvB&yA{^gjCHC#n0s| zy+=b0uC~U(-_DlX_rq6tk7DgTW-U9QP!~55TiiX6@C~&vb5GlQTo89fGp%wWDZ|`Q7y4Z?*igk)yP0ryQEMMnA#~ADE97?!!!F8Scvz2Zr2DEGs`h!dP`S zp1dZUzt8RY#OI@pQPOpCg5skUR2Sqm$9IbM&C4Y726|uP+cux6L6H+nz~aodz9$oT z?!~NdLnIWZh-%^Ckw%Z9Xp_1LgSO^f(i7YTyu5UMU29`+z++Sso{TIsYuQF{zIv^? ze&d+f8sYEV%h=Lk7C3n|FpRNGY~dGz$Zn)CN*Xg<-w;yCbfwY) z|6UXxM(WaS_1HB{eyc~)?qo!<;*xslS@m|HZ$)Mrr z!jSr2u(grv%!O#}h}t}6x-Y_+mW`6b2p?S2Zn}@6q=j+yvD@`4Nbtv8w=9`eD@@aT zK6L`quWwovT!okPpU#4b6v>j30~<#pc0F(0BGIB*mAOR&N_3$Xl!-3l*Z8+Q z3at|_#@4?rx|J;4vXc;VT_lIzcm%rUgo8m=1gwXquQ$>Q!s9KiPRyAx0rOZ=m&JoB zwFc}09+H1>#>=}|I_S!=4zfDPv`@96Zb!!tbPp?o=Ef=A zY06C_1m9nC+oQ0^M??(3xiWO!q4@oapc| z3@-96)S#TNUoc#p??t;qH$xA6u%puT)Wy`1QBB-gD^M;2uETRP&AyN%oiOBJG$seA zKK{lC*5m-hDhd=?tb4Kku`XO|pNG@6FuFR(d*+OQF4aF64N#Uz{Kq1dCM@xR5t0puf}(#@yXQ^9RW8~d<)PGVHuIA)=Bhc z{0vuK461$h_f;h1fv89CkIca-O$I-#AsPqId!z;AqevCYQkm>Aeo)W9+kgy$%7F{k zx$8K~%yDB1A`BljP~S!7s(M^QD6Ti4)niy}AnpXk!f*o){?C0mH57Lhc65DA*E-ZW z;51NWj4}Y|XLReaPCneNg?S+)g%F}gM$K|)2t7}fzcRMz8TjxySV6CSEYEHCXD^mG zl1eXKyprF?yu6M;=f9DMkE0D zZa=AUzcK8`!bjJeLA<~Qy2Yk}0~S&JZ=(6dW0aV*Mt`QN+0pmbA{ykD)35IaU*5=a zpkyant48)U^2n3?O@OrmSL5!78yKXzDF1MWawG`m*Xy=Yj>z>NampKXxc_qyB@Be z>Jx*JgX@Q5YCiLei1xtFa+BZp#n@Bpaw)5(vT+37EoUbwyqF_)nAPox(3E%evK9G4 zl!=ae}_wjr#nbzT+aFoCy>nygr2Rfghs*E+xT5<+k*-lKm6uddEKpadL0Y zBH%HjezTU7EkXYgTg4rkr3NT5Z1XxgAzZ25@f|vD!Unox0GwK3!`q3O2;NI{B-Gog zqc4{O2QNEgAKdCcj3{>EB-Wp*HXGZbi<;#*qL58gXb=GEpIS^8a!7joteXOTb__5N zm@$c4v_qu&5I7h(TLKMCLMz^tsjCvm*$eBzmTRYMbAz@Ce{!K6Ys2s_JM6`Yk^s0 zERG&ig{$4TJBClG7bvJyycckE$IRz?&-u;4#g7|97ho+tJ#4N-v6XfmToY*g=|>IC zhg<2+fXlUDm@H}bDST3ri)4f?<#@(d$-VcQKA+aDF#Qit!Y`Uv9E;J~R`btCIij3x zVk3hbt4N9-sjUo48i8p;e_hFZ zK8SH}GV^f3@J1PhsIPkD8yB1lzO>QjJ#n_8U!6nszL@l8K1Hft$}j6dr<+IIIp?S=*&c2`k!&UCg(s5T=S@aFHaMstaT*pko$!8|nu1qt7v}_^hp~`( zll%pk9I*SG$X!#FG)E>d~&Q8R07b2%{XN`)jVH{K{c5c;Gn{)uXFk8w6 zDz<>tu6!LiYMAKC8dU~fR7Pn|&MH>N?gUJggO-#k`L_a#WgQ%kut66un8;}fS7Js^2OT2*$m=!j|r(HSHBHn$hlCEnJO?5DU@o z&sJ<);0c}F`<42X%IfW9m&Rjg=khZMB@=&{cm{rRas{t9S8B6I7N8S;K4`!W%+Sc0 z(Rv*QFy!*a5)UzQa6l@NR7W}B ziqU^=C_h$XJnhzvjr<!2S^Lx(U z(PckjKhR7cehCuq^gYBbFxb))nai%_@#>EO82lpiCi7;~cAK-Kb3Sb)hq*W8Gq{C; z?jblkb2r6xUY|Pj=1iB&2NT5ZMzSE~Urdi?Na~_;`buY8Pt|Nsr%4`%x)suDc3c*h z3D`OYD5wsSZDZll6gwKB)fZW~ihLkE@mTbO!=6!E4t49&Wc@_}he|qYyTcP_# zF!lD?E6d0{zSwM1D>XE}SRZ~@Yr=tVPK$-0zr!%Uq$H2oNcNzW$_1Pki}Z?nA4@&g zrP1}PFfK5ZjB~{M&1>@Yv+~@!%g71GE{1WLDKPIe?wSk+yol{;^QY#l@+quEMB$Ew zJFmL-VdSGonH()yEpj1 zYceYQz)TwPO!qOkw|luyMgm<=l7qJH9X~>6=yUV{_L*#d%Lb?%n1W&UIkuE+K9BSG z29`E^^nj6Y9YB=BF{4I2rJW^}uku9_xdDYxMAMWK{y;1o61h@2X*a<@Fu& z>~I$TWb{jZ0ILb(y7i!OX)_;%jMHK0!HMWfsM(KL|NU-19h+ePJjb1=C^L_j)wKSRmDpyErlx3Jd=6xO#ePs) z%yvDUoZLP(@?$V0E7#2}v%-G;qqDl*zB5vT7&R zU+ zFC%871$!OIAHUz>5;)BsC>Isdi!#fpP_5fX#fLJ$jtqomf1hjTEAo^OCSY6@Yb*Ma z2*&f2Nlbbvl2+n6?r2GvQ^Wjn{$e7NEAA{?GxY1b?FHr6Tyu$&j!kLgd58oduWVe# zKr+=~Ca%+hIKxN59oaf5E2sIhR4SO~#6OycGO{7dMNZesE!}2(BUrXlGbJ?xXj~$3 zf|2N3VJvh-ZY2zUY4))QlSOeIBauIPPotmYTIjk+QpE^O-PbVti61$2*8OF11OJn?c7mmGQ=MU|Dz%fW6x(PzHj8Rls1!kZzfC%thGf!L>Dmk-{C ziv4Tg#adSdcyqGjp-F+sKzDh;6dg)<;9$u1LK&Cl=)qrSMPc#33LgmVN=0u6i+{W+ zQTIQ04!*W6T$$g>mWeP0nF-$qg+Vx;w&q~W5R8od6g`K%oiOW#u>15aeDg+{K8E&7 z2Fia!!)2lm{5(^-b!fy4IBU|hH1Ni{`Rvf!ctJJZ*$*|TDJdGpe>>e4$C*U9)HBq0 z9#>2WYZXs2)y#`M%5OQP(E}%Hmi>c@3T;lgz0hye6R~>;U9r@IHFr#N={gdrf4uX9 zXVrZi`wBu33v@~`b=ue8WEVfU%)RwLQY{1oR~)? z@jxePOt&4nwdX7Z)e~>k!Ufu!Uu7`hF!Uq4GutJ7Y_uUm0kH^s1k3rgkd(IUyrJN& zpB>T8DOQS1PG85wnpxNvSo+1R12kuFt~v|S6xRI)tUz!uE>8o^bY8XkhnIUw10R#DJ+}(%?Z}xwOm}=5~I#^i9U_0{-S<8?JIp z(sIiCgb&(FO9YwNM=6n4Gx&Ld&vK2MO!5~zfFeW+e_t$N4_Yqap0vY`OezWa@>0d_(b^KqJDUOi1>^V;%>RP z(!DKaf&ba?#6^=BS91FRsG8S$qW(Kg`f@t$mw?IwXTCBPf#t4&=bl#Lc%PrV=;4{V zQp20;WfJ58ubQ?5aY{RRvROMN%47_k5}0<#=sD_On}=c7S|d2%uvwpOCXQ86PODDs zEJvoaD|vlL`z?z!I!NNEtb-Xv(oe!%cOIAPD)SM72;*NQ(ckwkU1?s>x^i zrzXFb>%Xim>N{&IV`O4%Yiw_7_RlCPJS3<#l=s5?Mon*R1sl9g4n@GD9~J4t5-^P^7g5F2o#d;3seGi99*K`>r``M7Dv;2gQLRQ#r?#oE$>S+J z>6vqx>oCFb(!AjCw$ZrZ4)n9=mMPoE;-u1MlVG6=hlW)I$7dpo*3RLLA6&o7-{=^I zA3w?s*E0r5VW`mV39IF+#SeE1!y5DkhO20^eUu=a*7LhpuSJ$Kj8rio>EO3*6%$sg+iMbuE%Z+Bph{KW<`Qq}|f zKIRI>dtkxiaQbQAol%1{9CLr3k%WOkt3*KaF!D{`FfXSnIM75kUrFsU2@H!b@v+kq zv~MIg(e!z00Z?wNMJOyWUPLV8g7Tv0J-$ybb412LG=21)?+EV9Fg!Zx%Lq#+^mfn0 z+VYk64ee@hNbdf~w1_lbVr4lAw*R`kBNam1kQuDO%Ud+_^`3swIchE5DxWS^xO?Il zX3=$m^}O^)@$Td#HBgpCyM>90ugLxjp(Tje(<}L=t_f}O7wa;z&xFdMH8&jHR%|H6 zH&d%f^0UXPg&{7-^mEW|=-m3GrCPaOB0Z|q>am(mNTlM_@~}=9^!aqWN1&vcb#d%+%=MvFmoHw&19_$_BUVFLedFnemA z+Dr|U!p+%5FTu%A5pWpW#rraB3tHj#eRDahI=ApXq({D!|OnyD}v9WLL&t zG&@iyi-!g;sqpM^E?nWScboMrhtRg;+ul|}od+(&(_=DuEb#ljA0Fu_NSq{T!SN6U zvn*@n`7@J;oqb%7kwN=vy{mDIHV_b<_k4C2{bkB;%NlgzO#J+1PE3QSf1~(Zz!`Q( zmFY>!c1MnmJ>pom4UaufXpm$7Rv3MTeo5;BbyD4-YD5mjUBn@P+8U5uLwd#AW_2(_W z=gwj{En)qNnxleY)5}?h%>gbyb_3^A;{&vIs)uOiMaL8YQO(ZzQ4H)1U4;>{Fw zL>>y68HX==<4^IxL?JiJ2$fN9%#-<*j~FgLw&isUi_K7>6<@|dAv6e9Oh)O+ zB^|l9Q^wAeE>Rjm31Jx`k9DepAuGz%2J$PBgyyX`haMRK2fq@T z5ePQry3P+fnP8kw<>mF4HbaAJ^LZ+D|11xU7;B{T_#_T+CFS{?eY`b;l7Zx$BqYK+<{s&MUXdX?0yW{syaDT1#L? zeRp66w-dFQjZY-Iov5FQV>N3t>y}Xn1Z7WMd0sz86e0&G3|v9edRUuZfrm5qNSZL@7FdL3m-6H5&6t z@E3@_o5ENAnh4shdcUc*cZ5_vp=)baHr3HW5uHzA0tO?iD?rIgm)6gpRPT9pn(%De z`Psnd_6V`M$`wZEklkk%H(+0@vzFSQp@DflTC-J8^rQ`HK-vbtP9x(dlM#+}po5mS&d8>Xza|ZBrurmdPhn~v_XZ??VGzOC&T48CO=dQ(**qCbpVi7?Xt$gVpU zDf6x{zV3_QgrRWIUF%$TLk+#m5kWz9H@t%>%to(&fvJCu6B-TrH<)6VLbo)s`==%N zT?aRI_O$y4PWg00c{O5sK%cFnXe+LF@q*{ya^^Ku$HNm;E*85A^+$zTu_LH{QZj0Vxnnv+`**4VaRi)HTxga(Jb$9Yv|NP6gOFIQA^iSd?b~VV=iPS$khPdbMx7yxQ zqE~4h($Xrud=53N1Y?y`6=`J<4~UEg3~m3w=?I-l_(Y5b>K-R6Za9nG;H9q=)S56V z`OBEmI5;32Ugwr0P>vm4w?{iG)d<0|;@IjZnh<4L6F_5BUVoN$@YkOuBqB7HZ-0sv z=@;2|(2B;sfpp!TfCStjHSM>r5D)WUe~*J6k&9P^wOpTZ$R2377XTW9aNkSI0_<5J zv2sptNwX`Z8^lgb)GaC$khsG89~U8=G$Q;L?uRLzj9N;|`(QFhTM&lOO!sg9VN-ZG z6{!DR|7(H&wZQ*c;QucR1i&OicNSlE|W{SeF5KYqEF}VfkeJ<7L0os5M|Fa+=AIR5iulT5Qp6i>T zwku9QC(c1^J?b4*IC)xk6j0#%xd~1cpHUH0m5EDpMg#l4#s1z=od7dqnrFv%R9dm4 zE5TJ}PdD$^iNH!s^KH~Y-*{jO`)MrDq`~yf88LVx?eE+AIMWsJE|hO1Ujc5aHrvNb zGR5m2Z&M!U5m(7%4xgHCSj_8*G4Z->3GT{{(f8sZp3n&<*~^{MkmD!#3AV_8@3lJw z>NSq;=CaWY&~Q7uIzxK^SrHGOYj$0?7w8kllew*s$G7n`G-O`$5wZT6L<5u$ZEC$F z>mRh9J_F@nbUl1KhXQBLVlPwA zi+0!APGmoYpvpWb3U+K{4-IlDh+f@4grL|f6gsJP8#u&xUlXR(dtw?T*y*?gKh)^u zwB`V7_a}dY=vp=x<&K%efVeN|Li>)4!{YN&wm)} zR)mVsvrauq^lufx%rTsC`(sl7))Q+Sw0_9UIsp%6g8FG^YIOSOfP-PO%439)F+8?? zcn4#MlES^rB!lBUxVji?0Vp%;27RTCwSyADTgqs?Ldt~H(}fE+cFcNW!VHKBMPqxq zbWZCpwa((9hqG6Aj@Wr^>N>v#Q+a2#W6kR0FBC!{=lyHFVtfo($*GIce1M#HBf@_A z4ANCF&1hpotO8}Ovbq?3JqRoe{G}M;2)NoC4CcAtRVbU$uIM@|U_gwGeP|>aHYE}Z z^qRr8kVMC!v#Am;nFzQ$49IQ;6VrBa?*a@Mi3S5l`w~gMbW^)z9f3?!;IfA*tm}a~ zxiAg~`iS6TS$}2aQfo9&JM6Wv_hPg09vZ|AdWOqgb7?UlbYF4*xMOx|^?^@txKVI< zUyc0lAT*@tQLX!X-#=pXWxp}@_Yc7y3 zp96H98>+(_Iiwp68Wt%1IKDCQ+Pq%d8x0^=t?2k}DZS{U%{;^;jp@))pw(R9$v-Kn@|Hel>VJ{~yhQEV#bn1$F1o7OF zwa=k+b4oSsm+6Bx+F%hOjN?&wYrT8j_(kuutEJ|v*Kg51(hjAY1Vtqy>YnBr-YMlv*55 z`eXV0!CgTN?YjC4*4(5L?W9X>KmRn_C5inKPo7CcM3-3{?3mCUalpBvK>@s{iB@35 z8CK#aE8oKU(?ba1f+^{Ly!ciP3gB4q@rG;Ezl}nMh0emQqUh8HEZ6GuDsyg z{bjwTAINvketLhfyTEG zTe(FC-&8ta3J=2dFS_m1IZskH zICW9idJ5U@!@?y`B}=M{nvYg*aFF{@R}AM~-MiaSnKfRJm=s<-*vY6s*yd=Cr@Mz3 z0~{d~NC=b}$U{#5c07PU2t0J$y27bXslX+01DUkNNW*P;>~;C+V22#IowUFgitvZ8 zJ(Q$$w~(?C#o*D!p_%}Jy#^maqB;L%Yc;}io!x_6fnm$7+z0|=wU21`sm-YJq~CbH zt7&lwJ>Mg8+_GFFK+s6L^i%n0{y9*0%^>sLFQTbo66v_aMC@@fTHKOPAc|}*WY&6e zhd9L3xOTDGrc5r*%W%l`ouceagZ{fY3G6PRN!F!?&_A=9*m z^=NGWO(M38aG~-qVjj5V6x2up=PsXy<^Lke$VtI(s#&qe*kJ@E!h8rm7IyhHxTmQ^ zD%g}o%j`kMu49cL!tHDCSto$-(Xg##EXHx`aHg_RH~|rJ`O<~xun#bwjdW^PeY5OF z?tN|T;PnMhpSZ(8hmYgNDcnWHyq9eMEn)==fjg_0(gRb|<%_k`N}nLNX9b*>%EccKSg z)E6CT2UiO14*M%!E;0PagByMzKilSem1VBkRtv6mZ^&pP@?~)_f~>-UU3{+nb{|sn zUAoL>6oHh|q0wP|168vO;>(OA%~S?mrN!jHdOQ{N8K+uP%D)E?YhVPlk4@{#jsBplhb7Z@6GyFI+e^hdo_6o&+3-XM~Y&7{O99}T&orFo$K*h7_%!(V3inJdn<(I>SrcFYa- zE7zxeF}%KiUS5D3a$o6p_vn+m;w^^cYow;%a`1w#wPAFjyf!l+_O`d_{@y6mLV+}v(u7EVA9XDN#xct2g#Sfaz{-mbZaB4F91_U1;ytn)DFfQNS-aVzO0r3P8%ag;u6~BT5%{9t zg}?Zm@NENJ?Vl@zxPG2vN}OJj+KYtH0P%2FlS{}d$(HIq`OD{9A44e*Fp|y*X>%Tb zjRif|TTfV(0(B&&ZUr=p(7zOk)_KgS_qV831q6R6 zL(}V~_%0s&l^;m?AcIJMW4eS~MoPwhZjGT8ccPb#DA+?m+=#K<2o`o(pWG0;34wNe zZcM`h+dkzg@&D=2K354{IU9KtXcq4Rej=w32tIhw?$f=xp7gNHWg!s6>Q$oYdW&@t?Nz|brT zcZ_1bbxPYs$P!|le&bTZSaJ-)sjw&9tm{AlA6riO&wt^wnQowjGhKAEgF_~MFAUZY z|J>+LgvJ-cYUfVzq2LT}DeWnw4s&oo-WU6s$i|7GPaBWhIp?yM*xc<$VwxPCCS3ov zQeICtB~*w3Kd`ZRpKBfgvGeao>+deawVy1!y_ zaM9g%ppL8pN`nrUO#V_zyND%BwtcVz@6)M z@$U=UIzhPW34*bH3;ZT1ss-eM8gSYrvQMr+75GJ%{02y1N|g_6ck>)=RJWmBah-3n zfWmP49c#EMHDn`sIKzK55o`KF(Z+(OdyQKHSU-#OY#X_`7i;P=MlK+uHcpf~YAaOG z9=YAByC>ISUU8w01(}^`zy3{&PeqwAVLvIIUot^Q{1mYht5kHI6Q(H)k$kMNt68=( zG~8r1IPCqt=yuc5u`S{WT@cI4nL74DlWEHFpWn@h2`Z>nUPH_L3cQX1EyBLC>5f18 z+71f2#8ieA^Ykb8h@+3#R5j=ac1|6SDgvH-dJqe>I8s4J2W7wdZSvN{we{&BD{f4f|1x1CT3>FT+Daz6R&!zKGRFfV&Sy=}6!aIy2}yfp)_ zQ5xz{wD(bX4j^w>c9jhpf8UzFF6-B7$8B|)C#N<_&t1ZNfr zPrYiR&E`&`OVH3`-rl-d{Qi8bTf=A;spMti+m36eCn^qugo6=QU+C=HGpX2Vv|Sj$ zZb*&HH5$p~F_VAffD2kRH6l{3sEbTg0|H1-g!K!lM$W>eBJ&UYk$U_nr05^}k;03FrGz_11U2SslpFo@&Dn;9{GH`^dl4gJlay^k*J)FS_g z_k6X#wo+V#)mFT0yhLr#7_Iktlas;f zkT6dmmhN&aUSkeVxr(lymR5gfmpGOlO`EZGZ4&Q0*3r8?p@h!gT_>k;UFq%(D4^i6 z@;hv@;TAvkI-xMNsiugHc3=+K7R=sVQz6~6LWpfoV{kzDxO?smYI&zim^`PtmZRIC zr`sBS-oTcq4s0TC-RQ!so`76uOLl6B|C1Nx)j@^3k6$}9X1$v}mRdzn>{4zRu`eZP zoLBeW_7I0Iq#kPwhE?zsjJWnFU=Hw8XJ?B1)^L zl*Ci+-t0^N9$T-@+WIeGNWy3}@W`etB9A@3*c`_I+8_q(B7g4306b-Fnz}mPN%E-N z9Yl4T$MF@p?(MBlJOUNH9jIr@yrbusAAM0~8DU+u&m~{uH051B)5MjW5T%HN z-%yc>P4m4 z$=Ua*{}4oP+xiZ;EH+Ja@ACJ@tyaTQKLa$GUadh9)tlF$_qUePhto0TI?C;U!(@=J zU(&h4VWFTOT4%~&a6~*+HTzN{xQpnEbttTJ__VJY(+m0qx$v!dr6MCnh17<&fI)7T zyQPpOq!-C6*R+PXfSxk^2Jkk0YErDSyiCQB$Aw4bjV9&jKL}XwX=OnZJK{giR8$tu zbPC^KJ8BTj3p!fryu|cP%5nF%(NPXjK@b0+Kn*PPym?uCNJ}&J`|jf2~?}M=v)@LPv=OUXNO$!2Xty(qCQ5c@6?>H*+1(mq@N?; zTzne0G}9J5`EyMlcgl&f$tvxdo1e7BU~xQ%GBk+4kqcNXET-T24phvp{N)hX!x9=u z#Z@aM{J5_s@OTLOBmbx~+j|q_j2CVXJoLQ8^TM3028^Mv3+0!1&j)5uv#IPQtgtMy z;Z&412($`)y?~!@_NjT}R~%Br>+9(Jbj*LUMUiMUd;3z{tE_;l?X=}Q`l`f2a{Ri! zfv_$Yb<{F6v+SDq=k*d!PN}U4y)or+@rp11#J3N&eZLxQY*{e88&!*JXUO#SoiY&Q zt#xtiKIp6c4~^p|4~^My+1~f((_djh#D|l%$13Bze#+H{Dc+`*<)j=7P;1y0QudH; zv)cuH^TDpSr*Uo{SF(q{Nq@zizm1CudYQNODo-d*HHXx zd)TthW!QAL$<;xWlU1ZrL$FIL4+%{Oqt3=5EZO%eGE#wTaxw?N!2@qM`kjx;^y;>b z5Xn(1hSF?qR(h7WdX)cJT*AaN04;qaE1F>dzmW)WJ0|oO@AOp+A;eZ;h;a z(b5rl%Z6QW#siWvLm{I@C$d_h*YWc&phOc+Vdp^jsciNc&c!ID!E3DO0hzdA5%u)!>`h9l0%HV~JRO_ad|gsyPDXUMR@q0PUmPjQ z86*masdGc`Lk+_NDw3y>v3-$nI0F4d_0iwZcV0DXyys&pzaJ*eURuq#wypx1uo;Lp zOUA|Q8xKfAVZJbI&P3ivylt1nQbv)2v6r0C2>|)VyHUD z&gFKEW%w%5u0yG-k(ZM55Ts`m*Snyb*Sv2$sg2FHSlb;gmJ zTyJ@3V~a1AR*#lwD94prPRLn`$%rC^@K7kT< z+*aXgnb7Sm_=aQVlBkJIpEJvSgZ~ev-a0I* zuUa zpMTD^&$;)y*IIioOl00g9Yc*!l8JcXXUHYH{r*82x~x(7y=pcWQ+cg~Tbo3c3Q2_- z-Pg+g2r6*n?4-0nx98`Z5j{L!#w|(>a%18?*SYRbvEO5yiuTV%Eg$j!_cGt(#~GyL zn3$MuP|%h0&rEQ{%gsM>^#*gSvbIS4H$%utFAdps`uw&{;zOLCw}mayU-~2P#kmaG z5TA?5b9V7oG|Hx{K!XEv^qOez8M!?5Ld5i@qynFXwAuhS`~zon=WjUIw_}5f4)I;F zV%@E+lH7Nj7n;`PLhfozX7;zXJpBVPvLZz3E=?~YUGbS{$J4yI@hs0=a2o+B`Vo>l zko~(aMS&JC{;4!VO8F%X^ncQ(jcoSG2<2g{f36L~nuV4$kb>w=VF;YxE@V3YM|JiP zKk=w=;qPM~gOlF%F)5m`iSx;sV`*3Tb0UMjbAO$?-N3x_g|nRxNYR<#mQlS9bK`at zK+5R~7<5mHXRD{RiqhogzhxLfma(I%(+F0M^#&EJF&U=KD-k8Ch~zq2_k49|M+)tz zAH-<$sh$~acanC@(_I=PeG5pTve5o?nkN`f*Dk0zhg^P0RENl}BWn6iw|jqr<0wtN znFyt^f3HpJWE>-Qaquf@Z+$Cy|0f7s*=7&+3BsG{JfQ8F2~}xU5x;l2`u+@;BWkoU z3Pq6a)@BmIrWv)^^t+Jm<~T;#w_#{4ZkK>Hg_8JnF#gB6>EuM&1I6n00qYcrJ1LO0 zi{p($-}~cOWdbz@%Y(KYKe+{^+FtbaB$z4n)TtFq^m&jHi_i7q*;x zWYn`Igt~sjeeR`$U0Cnl{#~uU_b#dTiaw1EPT9x9D8sf=4)kwW`6TsYnz?u^1G_iQ z)jLb*;*Q+Ss)iarPDDvft7FR*WrU*|is2xiVG zcp=VKgMx9)Y?&3Wu5RrxnJPvflh{i)QrT6yC+HnsS>;L|@>}~K&jS5jlgVWTMzAE7 zPkudTO#VDtk5`T;tut(TxK{$Kjp+-EIgCzT5e4jjVB47XK8pcuSR9uu+3^ zbFCS+|{(jve|{d^C`i79LX(atP*3DA2JK1*HQDnUPPp|6e+TCHJqA`&9aq)^{wZ zf*le_!DqIUUGcH!H=QKWBzCTp`La;v1izvR=C!G_buW8o;?`^l%r%@l7K7Oa&x29ZLEtk;jjQnR@QLQ+@>(g&O_KJ077SFY&RvZ?r1Mn2_ z60kVdraf~7(LNd*(>HnPg?XgA_hp6^(p_yZFsRN3bTq+)D~c$9UZ^qe-SXm-{1qYY znx+Q7^Km9(TB0SippPVKDNI#C)SrjeNA+=}0gk_+x1|d#Z)l3W-1?oFkR-jYh>Y3TAoA zv%8{wYu0{&T?W*VAVhwp{Pl|Y;;$l4jfD_nUb5cQI-^*U&+?D@9(G!Vt?j=!T)d}# zG4fZG8Gp|uV{(>7EQotEgfqYVi1_SW9-7!geA-CAc)RN}ei3)^U)8He>&bJWLsjON zl$UL?*}jL(e@phsOXp+XYghU=xhw7P83Ytm_U-YS`U79}?cP^Ai!Gktb$>B8sG!z6 zo(~|P^9AyD$72hc&CJ2~-?(cuXL?~^LzJXNZmPQhvO~o6b`RR$5LN8kuROWy)Qirn zo(ek0$8;9T_27%f^~@ohedbK(5z2^;?lG^%9=UHB;!K8?j4N$m{gAY#3AV55e|Nk- zz0cfnHWeC$n_&T8NkS=Hd>Ka~bIIADgoG>9jh)2OAX8zxzkt+O5i5f4R>4{xoVs+- z%JrdXk5n}~Be8yhts4zGRTCRE-7%7-KuEicZPW*8Q`n2*nP~^j`(L`n8-Xw%H@457 z{5`owOD`1PrG{)9ct$&&mwk$3_5oRR%zG0^_UKl8T-UQ?q6JdE`l9kz;%iG`%Ls2y zXlY3ms^HZ*xJ$oItu`hVSicE-54;LKU;crqg%MG>6R=j{nQv0!#{e*E?99aJ8zg+4 z>IQMbd5k~qjZ?Bw5d{G>>bXpVqBThRS|4H8G{y*^qhNeq^^qHwuci*KPem-8MzW@X z+S}k-faPr|M^fa6oVZTfG?01oot3+Pw`Jhi|F8G|Lb5zrFM3>6>whwDUxEC6=R__T zZ+Z3zPdnDFx%^ZR6$SBHAnH{c2}OGNs6G_&YyTZe&0|_3>@{U6kM|WWezBnEM0KvU>Q0bJ zosos}vj}RomF_Vc#r=cmeZQ1{Sbt(%=hpoG4lwvgxr#k{Zv}iGlFt&0SbA<%j!L_>UX1! zkwIZqY2!c+zZHt@l7vYo`U{&`OP!O+QkF7eNX4Q6h7t-_}mzNQm4;P3Pu+sm#%DXIa z<>wiQ@jiQ$ad;3xJKZ&jy{VVg)kQm(LZfdXbOwTL8j7B6FQ$Dw(Oycqcrl9?qO83T zfy#uNJ#ii;97dg9iw{Z^#k&HPTb)NMN~7`L6J$Apr3~lGHhoxv=}*Q!Ia&&?)VE3t z_i3?4QW%}OCknh~ie*j|X@7P3xfoIMdR$Cy?qy)2g%_9xEduI3__dS?y~6qS@0$e` z^Z4t2{vmn~z1k3S47d9Vn-ewy%8r}_APaY<@8rK{;Y{qxiTa$@anhil#+@+}8ru^E zxfE;tpXCNhp<;13CU9Ncb=eL7(fzFQy@vl1gJA5Z*9DTC^RQ6MLekQ!Q%{)}xn*a1 zzTKOQdc*r$q_4QX{mWf~t}%fuE_M03F5dU*ht=pEC*Z{WJPnF5*p?UwBVSOVZ58-qSJXmAWGSoyaF!GX$Ht~JqWebV)UPftg%sK;|t zZ0#sFV@xa?H)+b@ZAY|a2F1K9A5?dZyR(WmGAu8FOkr8M{Y1)hA3iD89?xyamW@t! zLrBYOq()~LEUsS?63SVQowsw@;m0W5=P+DQMHaw5db$6qeO~OE=dFL5uF)LSiLfao zmQtG(ve@T9S*&!>$Y436vj@EyNH>abn$ItvGoQCE*(XG?wzMM z=y5MaH;egF@yI0?*uOtoKm@q(-Eo!r%zf~WmpCr$49zJW;;!j9ei+`K$NR6f#{f6< z&+p*F&K6Z2AYH$ttbJ?eoK0|_4@0ceiT^J$)ar_@o>n`glZs8lXI~)RPqqxn2lqGo zj{@r{k`w5_APM|E=6G?^eh$C77;H$j0X@LpVy5;|z19tAqgr*s$Ojr*Rako$)NvQk zg8+*1aCB z_{QHe4Y@d4TKKiiJMId`o%##;R(kR?OCgr>XGDriB@@&{n6~{pVMteWKYqW1rtA5* zLc6B5;Hp!W{&TIs8(sInpx0XHkM`uW8gtw_0>+@-uTr2Tm&L$8qmdM55PE@25Th=j zkb$T8%zsw6yOnM-HxYv#URVo}rR_h#aT^5PzN7JZzwkQ(fY6I;dr7YlD#vfXDJ%wM zL|=6ExR8*C{}mF_nlY zxSC1A?Cl(!H-W~v9--7(YFGmW1^-dsRi*ilOY_SS@u)A@eF$TBEF~?jKuvCzTsC>Q zZq**ed%@%v@n0)s{gb<^y9;Ry;3|;)NqQ8r5FsMqgf9cilZK|<*PqU#-&^?2=&|wgIbJ{y9Z=c+_xl1R z=yhrON)Rml4u|(~YsPQ%l(L-ojv@#FLUVlrDqEuvt4pefX&dhB1zx{r`V67~?5HRVj3NqGVsSg4-XJHtC;4+v?mAcuWNldx71m z>os9bmEO}TU|L7`mOIi4DahZZR*c*j&y)CM^5pYBZo9=rM+u=PPUYq!LUi14#4Ej^ zfv4pLHw>VQxhbddA0FXNqOL9}Dfn6mz)#*>k`Cr&i$9w%C4tgsi-U5*hR^g05Zz;^ zOmeLJthOusCRU%E;$~|;Z=ajq97|hZk6y(PZv=L|OZRjm>~bxcSbbc>qPkko)s$r= zgIE2GKfaSQM&1gQ>UxP%S5}Rk%O4)CCk@qg?un%I1PQ1wB$@*A^4(~rD!D@I@FUNJ2)fb;N z=8q!2mre)UJEJTlI)7(6yb>m`ui<~gX+lrzrSc^jGT16Rjrgl+A24yIO;xya(QNKJ zo7JsR<%2qwZ)3df20Lof7Tu%?nNuS(2y0u~JTbw0nhsNkr$zy*9e?cdmHeM2B|?=Y zi61qb=6fB86Pu)PkIs2k;sv_X(4f+9-ova717wk#?Io?vV#1+ObnY;Bs@4GN^j2a2 zJ(irfRKR&~XWIV<<9;2Jq?4|=`?%2Uo*Wsu_J5Zg*(Z#RSILL+Il{Ls3})pOiz9Ib zqddT~V&YV(v~9nyb?_aLs_**_Wp5-ZnJKM#5aoxQ^LeSmd0F|pK_E&qfU0)LIu~aiwvAv5It&`S= zL!TGZ^u445`U`1Ycxo>LKdU!)#+sQd78G=}w3o$LNIky|y7a8GnzwzemNDzD_=u@E@NM zGBb@q731?Nh~0c8ThXz4)qA&t+OQj+HlNb;bxoOC;cu7QI+)yI2bQO1yd9sY9|eXg z-l6Ad*u~Vnx*L~0nhYF{6wafRz3bm+hq_o~%nmKSD1L2TGUK}-{oy+6!;1Oz z75&^Q4jq-uRaXzKq+Ox#o9|Av`nqOBQprnKEC!kH?|tqKLxLJ+kC`M9)rRvW=Yn^E zL`;C4>q-FKqprGG&X2d*S;@nz$EfBLPWs<3ff{!bxmx-Fx|8{*kiO9uju*+&yltlK z?1;^0=Oram8C1xxxMzweM0ea70TWOhulW-~$Gl%YEAM`*DT?Hrr>2d zH&G@{7cmAA1|O`PNmlh0z8bo~NnW6|-UUEYydSm*pXIDW5xjDv=S*$Ekz-Ol*@jtS z$@Q%Nu&)m_EdE=xB2W7YSZu(DJa}{Xxl~VP_5SN?Q919R-UF2=tDSZ-gQ44+_oZ9C z_vXHlx&&RtpP7s-N_Owh$LM(L9eWrZ<%XgpraiqE6EH82cOhs50?Jq!v+V%DigX)5ieOQVZ;Vgd9qiREEg3sP4FvA$MF5-f>6dKR;T zG8Fe)W;;6y3Lz)BI-P%jymBSa-z}fj`_)U3&P>f*SV)fhg}!$c>~T(0e}KOd{OBtm zU(H98>%q>L3%COogjJN&xQ%a2YDlF{Xk=G=%g&c$kgl`L>NHrzChrr?8zfqR1ce9U z!F6B%!#c0`9t+;Q+uC9PP45e5-bdUY;*(4qo8BlHnL{(IWB=RgQ=hyDiT{@`REn@Z zdZ^5&7`Uy5zSahZPrmz-Snp{8r_!gH{Q*RQSF&;xcpKz)K|69# zev#k{Ss*qr8r05H=>otWkx{en+Wo~OZy~>% z$sz>x33mbt$+FEYY#sKFLk(9<%lyvJC{^Y6dE80bmeVv=le3N*>A6h0S9#LS%*2%q zTw`FpGQ6)g*%-d;52qrp@!5?(6_YnfE6)QcS3DXTotlEH0 zSb}IZ(**eH9;6B+)H{vJU`*bxgOB1}V|_s8<7#4i+RT6%Ggb=;Q8pahL;x*lr~u5Z zWMIopQ-PFxzZk!`oSZl`HaKsu`ql*~H*mZVY!Lw>sK!6dmqw>HA2xbB3^}+WuF86sd5Ef3aByo z>i>D{uCGccnGgi7D%3*_*2P0hMk%IjuiahvQONS})ttr+T&s({`f zRW*#Dp3Nfq>PYc72nBn_a_R8hq+B;)HMd=lU7;m=8eygy9edzBxVO)%Y5aXWSA?l> z2dV4)@JWF$zuvg}R|8`n#gH=DUg??AOPI+tS?ga-TGV*FOA@xxfkLf|mx0x{`S-i? zu-SeWdxND=7k;a5;NIUW@;Cjzz^zxQk`l!;-ZhH`2Gqqq{K__S?;|NhIO0%Nazjb# zkzsX#Q&+fFz8a%kn?(5;8yPM8^s+Or^4iIywTpunZ1oqU=(L(c$^%vB@NMXqHcgRq zsv;=kh;~r02G$}Bt2XWp+rBSe!EfKsUt)h#LLPrx(gV=|#Z4)p)wiGRNqV8YG5V9v+o~^EJ+U1WqGP|6*oX1{@n0vgbC*m0Fv3ggAES3AbcxM^T z0UX~(89qLHEw_1-qh>_icKXQ3cyp)w1%iXS4OK!+r!b$%kk&51kEZT?^*mxS^C^Ys z{;Nq|(_%{9LN1~NgLi_aw>5;E7kShuL%;U01Ny=S)%+xw3g%ewp09wEu@6$(n9I#* zQ29*BE(}_Ey!V!dS~OF+qK~ne%DF7&7DBN|9!$0k@}2TCzhhU>(vN9ItnLexPzZkC zo1FE9Ls#rU>BCA)dzYY1;c(@ufb(i=?P4E6@5vW0S*LzjJZQZU2%X?&%{P>Y1Cx8W zr_~{S0#;{gCj$q{K>!Xb&!`XPfzfO6ZxnhGi>~Mwv~Efx@Mml@F2rP^+_Tgktv~G? zEGioeE6Fl;l+XDFoi7e8)y7B`X#&LzWsEubM4R3YL^z}`aR-ji6V^U`ml`La8Vw-+ zdH*LAyFVz?QGS(Jra9H1D|A}3lBlx*y+IS?y1Txp3;~+|ZbjVOVU%g6pSGfBO-y^e z+v~0c3KbSFF6h_4{$a|QRq-A4Fc{81x9f}@BcArw{S=sgY9?hIk2Bx>HuorOiB`bF z2TKyZ{$ki}6+ztf)i+%}xLE2t%0;j0eb>Y2`OOIYKnkSY)#Dfv$zpJN+exmxb@zR< zVEiXF`9vrD?`P%o; zk3kzy9_-ZGDgO0Rl%SGfGxVoz!FmGCP4Kt9>UNh+iD#tgoHh88Hs2Vw4+%ZP3oI5} zIC|`Sva;B+%IcoE_4@>+{#p(F#Lq;S=S!*Syo%C! z%#d3l4_W*=GkGUpvUu;e+|A8PvQRcpmi>9N4j!JKevXa_Ybrh5fW@qvC17}`?)oEX zy%bti$`Nj50o}Pj^_2zC<8;0OcCV-0L}iH#{wwTqE^c5=nS zM7CY|KKcunawaf-Ys)P5wF7PbG2ui8&ZtDwI^Nz43j3jz8TOISIp(=Zi6_i*z{Qi| zX09m1Acv6K*Glj0^fWHxk5ArWiN~3=r6s=IUV)G#X%-`abq+%|CNHAv!hYF&$ia7{ zFAu#p0}j<2B4^BQyLS>p@} zOW`s4A{4?SR?ifl1-DAleRwc;65ow}wiB>B<-u>?()2FUb?iImDJICe6`_s5|Lad2(CDUHg8`HAsl!P&{deNlTP6~p^KC% z;DE;Q!CQLLkLF7PICs_!|NTF>_&|;+<;ihtH#ccV|LXadFa4uRc+@YZTiGMvNexE+ zxJ|v>tfy{M!5?Ex29N%oehU(D2eW1-LhC9eT5CUkEGhRJQXs@|FMdayt^ArqUqgTI zYp+yUdXp@2wa!IB)4!QP6-`PX8zKp$`BSzZKFWMIIsLt`a7v@o_k7hlpdhf_+%%U@ z_RqPSvxq&3S=-2}i>0>OoG?ZL@iORI?%is~=w}c>GDLSX&}EIFl7obWV}4{cQWhF) zD5+|~6hp!B(!{d;j%NzhaxsXY9@e~a__yX$=o#}=xNfvg86SdQ^Xq1Mm4=09PN^;T zGNSTz*OqZ{sX>m&B)SJfNBxTTIn%i5g!aI_?y zy=EnUM>y1{zuIu!QR%6t^>4m5cs5mCIa656`~3UO*#Yvf94bCjr&)2RWEHe?d3)2A zTJ$kaKp4c6UuXHesjv{)3spwxM<#@kV5+si&S`{)%W@@G z?*3n_NX9S{nB^h+c2{ie<4}k2;FNzHnLS?C%TiI2O6q{Xkwz$?3yq}k#qjd?hIk3? z$DqwE)_=1Icv?o4@VzKJou<0(<9Gg$8390V3q5Cj2^ z7WH+RKeIv^H8j~ev6vM;63k6qp`YBx@3Pu?V+^s*RylW-;mo?Upq(y`sGT}P`vukr z@ElL$&M9t!U$OYixyzseeX(8k*^R8G7%!WHmiVM(*v_T7#CC_9MRCU05Y6k7FU>(+ zYidSc*?Bvy{k{qD6i|?oUI>vhNo{_k>Kh8lqqf{z-oCBkE6x-OUR#nNF5XzA`ZBou zrFeu?erb6J%yxM2=jHcvnrQx^L?o(?V@kFgjt?c$lU1? zEsC~@L5vs+pZKul9aSQ26i3}3+u#^wv!UNg^3SYzm^Ob?#1)*2!+skG?)WKYxOknk zP!(3fPhWRyD)w0TJ38u8<-=1%eQJ#_!ZDa&Eww2IlUG78wm;{lbc*=F;EQc6OSG*H z!5!$2AW9lK7vR$=GVwqW-2?G;_D}zOKB^?dD)h0FY`{P1bHmMGc(&Q*W=_3+{8 zSHqy6x$eCfYvT~ASxs{<=!SYN)f8%9SK$IIWS9I<$fcEq~Vk)ZIVt+d+QOlyoG;`OS6j zV5ZdJH6OHQHT;wB>m&&$Yt=N|qZ}wTFXkS26{H)iy04)ARe~?^jl4DSPb70S5p9A; zSV8k^%;A)Dje3PiuMhCW;oiRIr3t}F3q1bMc-L7vF7t?F&H)j$d(1_Mp~v9AhOH=C zULFsyIgti*yfJfv%V>~^tjLy9_-w~FO#jj(M8X|+=3s&%bDK?G`n zS#7T_43fBu-V4vtaGu?5M@?|`O!yX~w}Q2U(SGy{PKkSqE8%sTyuAHve&sf30*H4@jA?`+r5)*rW%|_FRoClZz(a&V_u8UVw(sa_vV$ z5`r7U)A7)P)Vk7vPWUgfQJsK-?VEPm_j5xk+dU*bM=Dp|Xau&8eri(vj=%QhVJiDh z58OMhLrpbfsEL-arNUZUa^PIDHS4pjJDRxIbn!lRh%tZ*o&O=stv<0FeLiYX8;6pC zTQGVpgQxG1-;tiK$cPlO_uQn-`>Kj@Rha0Dp87AvzAsIFPTuea7w^-<+~~Cq_el?q z2coi?E&PAV!f8+|d%k%S~D%n2&*Pj#+Pju8C2Pdx*ieLJ0o z4&cSvj-lw-f2sipx4qKwA~FN`Nt#kz7kxe6cAD^zK+qwGJr!(|B(y@u(mC<5&7Y-8FJ|uOa6XV`0p`QR=yuf9P z7EO$er6g@SO{3(0ObrQD)Rp@1fl`W)-)bVu>lep+(5o!oI?>O+o)?EI200HNK9zP~ zS?XBox&q%trB?@b2l=#?Lm&Z)ij7DLKmmui!@>I9t>j;B3-{4~Xd{Xpu089&pX&{( z>61ZO$RW+{fo3lGC}>k`HP)t36A#nP_O0En$-w!?!>3Ga!;vQ4hC09gD3ARVyRjL^ zNqgK)1=H#a)ee}*yWVGe%)VP|}w~0RjMHG2UjSyziLFO(lOA85Ewo^`w-p-Da9l2t;HYO9{o$hb+ z?HQgueIfPa8NoF@0mH%%$kzH`ObD_hMZj|3s5^v=74;)_M6Z$orDJm-bg>_)^ zKIld(p2+OXZDMu}tr5d@lYrm+amxY_V5TMzncjKK)wy{1AAWAbd9-Lf7W`rpMyvZ;|ce`xo6w`;BG0Ep81di@v?R7U7LK8s{ec2m8?G zgnq;_+wm3IN(ha9D|blUzv(?$a?_#7E#*RGIN@1O6ys!R6)}C`om1EOQITJYt6GTr z$+{%$?k%Ui1bZ4^2lbXa{V46w5p6?|Bgx@`#J|QOU=LK!qC9|;|Dk(km&6Q*~`N8l)_g=h6OlEguyiP`{72fV#G=m!_)a{MQ{38 z0IBDP(hDv4wT}X(Y7Em^{hZz^{Xvmq;6}Jyh})d_;eeZsl9T8)H1 zZH2zQVt^ zX084Of(AqZ7o3KXxv%2I8vW>CKQ}JQoq6ahZ1v{bb{Q?|TkI5cN6hZQe z8i`b(;&q#s<$)tV4Yu~QUXKI7b?!W{_yY0DDN%)T(ysH}hC%5s>@cL4 zo7MIC3uA(*z=3vBtMY7dzrpnMleD`}D=_D5EY+*obqjZ1URHgSzUktJ8n+5k>b1Fh zBZ*=5-7W5wx(V`;-QRU95GDoOVXHToX`PwQ`)>(x74>~To=3|ye3gIkzlT8RuOv*x z@_D}6n2RL#TXme_fNbt#Zu6K;gwJ`9ks3!D&!N7nj|Jr)c!$f+!J;LlL6F^}ddA)= zxn;ON=d(&@stKL+wu*$BYp1o7N|xqE^A(tm`ik@qk;V-56@u}sj2F3smegOByBN*% z1=e!xj=ncC+J6GJm~?_OjxQs|D)X+6P&(>7hkvHlsD;z)P^5R`j75p6Jr8;M{vJVe z-yvqo+4CREuRyxW%M8}<^=VWbd{;6k<=fMM74RI&W#lZ3yA=!0ER$@hX~zm%I+p60 zIPOZLMRb%Qa#=2?T%S|KJ;(vjWKveL~Q?3 zQ4R6A3y&h@Fw(nv-$7ile-;eE$~5@_#@(8wgjeIUJJfs3_H5>5X^u>Eir!DWQt|%n zPNe;B=Q835`&So{_!K6#V6D7APgI@NV3Y=_SIvkfey+xhM1 z9z+2lOu zLX$vQ3uWN=*rop;xgyGYXLLkrv$>voU_&%zO*2XDh_OujQ4+Ro>FLGCa@>4O(a4(b zCNeaF!F|o*Wtq+ab7_tdBk~8)!M~f~886*4e_x$FzVy3*7A9iaZmMaUTAb=;wrwxn zOEG;u)YzXNPo>k$V2gv0=t9!o(yj5XSUcVcPf*yD>AuDt315JEG zP}Dhe)D{aB)7M62@X@wBEudAHCv}=_To?z~R|sT*AERzqwbD}IQXMkZ829GonZd5& zFUH=!pLP!(7h=h_$pDaJwXUHD4E)zttf@56YH9(&*-&aRY})mt1nu?4#4ftQm~4lI z6S@tP6U1A$i^{3ekKM{EYwm<83#K4{B2KQHB!T}e_LFCr&p@D_3m({+>Yq1N-El_7 zqzzxmWJYoxBkcyLF8pHZt3BaxyNE0n2Rd2AY?H)v3k<2AkhA3OU^K#I6Ez7KhdQ=f*i(gLHgo>w&5@LlQUO zAKog=bkiKtqIB{F%79U_=irbl}k@2xi{dnXqWf{{L z0{;Gc4krh2`)+=QncVywf5QuR$q3){yvxSA z_C4$S^R0kG1vMecug#Xo%vU#osi|bZT>v0E2_rI*8WrAym`O3>|}=A}eUw*BaWow>eZs#5CR1VGXx8{oyGkIovpQEq3^? z8bzlHC=1+0Tun*fnV{K-cI%3|qP%P}%Ux0#qjtK{l3N3@Y3AH~6St)3_5BC0*ECdP zSHav>?~wed^$)Rx`G*j{XSN?=5zC!JSMAE#p#Ff0XgysKc_7{vx@n^R+ti;zt-leG z=*aqL?GS)uzC0PAL61d2-16T+*RrEmmhCzJYGLJI{Ef;@K;u()C&w*g&F(t0``U7> zGy`zPRX*yivbo>fk7cU+yk9Acyd_aFvv-cprnh{P&d;{G5`t0$<1B!Z)L{b470T3(PFzf4|3my)St)+`B55bwsWMhxkqy(V|Pn zwdnr`o-rI-a7rn;zTXycC)Qd1(vjGq%GeuK6#x8HDjiBSUmYxV%+fKiGrn%L&^j1o z@i{tyE?bL8d3e`v>W{c#Vl)xh_-8a~Twni2;5)AQ4)IpKZ7>WM?NQL^z==F`1 z>!Z6C^oAJ()NBgSr2l)@^8HWnbXTjfWm#`iWX(KQ=nO+Hk4jLkkyU_4MXCPRPa3M?G%Q zcpjI=#B^@js=!(HLO8ICP_+2`jed8S_t3X-1=jrqhi!?_q&Y0J;7)Gi!(Rf0Y+M?x z*)j_?4@G2!_BgaD91v7%G=Gv(1MEKHw{!RXUA}{LBNrSg&1~h34{%fM)_zxW8_;cW zpm=wPwYKL$vX#KPJI#{vaHqa}Dv&dL1^<4@&`n7E@(%Y6lZ3P97%T^B!NooG!^Ew@ zvxpAn!A))J=ftg~lVpKNGSi$mNrSx4d=-BB_`Bzgo-P}nMct9s{`chn7h)7@L!P=w zTQxAm#9A+We8oa0$r5n7QIy=>8Dz=2uOP`dFmg8Na@)ufo)q?7x5pOAbK9RK}* z<^4j!_m^CT%Gcf6t@=@a<5(}_x9{=mue)p1d7TB35ntazW`7vSTNMHI!KU^7o63oM z&1*#^nRK-^(*6cIhfZ$bq2|p;$0n{9>4>AkK;!;gwjxUldW#SLI!I^O`&7Io@Z?HR zD7tXo9Gc?k)uT#d8UwFbLhwm62TQ=H=gN}0BLirL&vTKDlvA-t*$2g$1!eZs^jw|} zjs58o!)ybLzP2%8%eTXfP(9<@ZpYJ+H!A2H?Z2~qoa?s(W50T~c2D{3Q-XGQ$9;pA z4W`W&?Ye@vVUwP-_kN+geb;f3&_!&W`w_RUy0oqRhq?1b9V6>}6vVdM+FkAIu|EeQ zp$`>s9IU>dZzZ(9ttEdR*NV-opw+u*84JLcWi>kMH7^k|QC#e=+STk-Y zz5}(T+XCl8Jgp5bj?LQcm*e zpy1@WdX2Z&x6|0f9cU9{oEsTM9q)ZTDy_Jrrru@JxzSPRmExo@vf*S0K zLraf-H7*U+1;O*z5d((W_lwSG*WP$m-f6R-8#x^Bj)T1D%a==$xQ^X*w~qCF9w#z6 zrF6At3D%5hl1*;tXekV3UuvP<%}~v9o$c8fGBW^QLTKz5r0Vq+2j|N9kI&Rwb&{Is zsrZj0&VOYeCbS8+ZuCPI$~fO;tLJ|x>^KcRv{qJU8xVG@^}Jk(7&VFd!DnIz=N8<+ zg_(2E<*hJgc>-s12-|)T+HzNRUZG+&_4(@6KOG$@j<8?U#McLsz?>VZRJzLJ)2kT8 zE<9JXy6>Igq_s?s_g4$2%fr@s++k!kwYtXEhV+I~3(#4&=-{+1H$OgCsw$F6NYrc% zEiEBv0`mFwT>nTO{^9d>QQB2NtO~3sV-HI0zS#8P$m)O4Q9jTrqMYo3Ms04-NY5bi z>}0WaoYhIaD4^jh5!sL~-7h3QoijyaQxvtO}watbUhOrf`>fc|% z=YY(JSX4l)cR1evFeZ=fcjj4|gS2F`6{8H+@OVk<%q?PW?JKBxKlnql;fh5@-JvY> zmc?6)yYc}OY3lrDe2ANsXd~1fb9etD=@B0*FI?1oF}d72pyhxz0pHYf-+ci(%q5XT}2<|ok})JWt?)W znhRabzX2S}a_gJ#&V=cGGA5c{7v-);hMY{~E9x(@?nLVAVCXx_^b9oG1_60$^^C;- zRt>#j4CMFv197!l6AS-Jba7R{hd_#}3OJsG0}H=RWU9P&w^%k(&BhlDzAD7uLcaX& zCe+4_z?^X4x2Q4C&*qBU9Bcfb*iE^-b=)H#%3zdjWf3TWPG! z%U8)S9N#eB+-Q`*1vbvo^ecMFTM4Vr;4VuNXSQ#3DmM5OxLr%x8RH^IbV}SMOH`E_ zp4t3|%K8tPfsM%mco^f~H6Jd#+ey=Y$N0{fn;2E}(=+?tM7iWn+8e9428UP7bmthUxWHT;4UOs2F8=c@kQtE2X_f9_&!?#*)_ zI~N^R5O6kA=NxeCt=={Qurq?PRK#$5U6ARVA{1O1X~QCj`SWkXF4iruwK7g>h1?Qk zvK{_(#m#1BeGN)Es%E^=klaaUmHS23s{9>x~y~=h;%Wj3WDoS8u7@4nrAn#!qcKz54 zF~4iyj*wagmev>iqrM=9W!@f?ZCp}Uz68g8?AqT;DX=4y(b@HOh~fd9?UjC>|luVh(!e0%_M1_s+dGkmXWvp6~wDMo3+=i0V0 zgr*U+WKuD@&NH_fIWNt0hb~zEZoVbm&$+W=ovG09hWOVb&HxrHjC${w(vaBnew;p; zRS=2x@70#LA?ge$odsX4AjzO?{au|*S~n)KWT zcO=rJzfhqjc*p1)h>pE0=qL&rpp$i(H&jmt{D*Gm;>$lyq}05x#a)RyNawlxCvG3u zoyU-uwEF?lhMbE*dL`?$eb2W}`>Nqzaptr#y0yUyd!^@uiL-DEsVrGK*s?0$>by0Z zWqY4C^T{{8%l;ZAkP6n~mf?8Zk~**#ms!u?kC@VkI@;P_S9bya@Cr5D3DxIXO?B8IcwmA-68u_>1%4qsSiqb;c#Vlspu__B zx0lKmwEDjK`~C>GbHBj-Zk*+WPf)?=My2Zxjl#&ZA=gMZbS^5vMX&rlj?cb2C#ia?)NfVq9tk93nim@x;Su)7rJ>)GPXXirvf9$>WUzBh2K5V=Z0SS?i z?vheE7wPV9>F$PIKqZv!?(WV776FN+8)@lSmX%y;;fr^Cp8w%_-M?PHopWBt%rVEz zIRoqMG)NYF&-<5}(;W&KW^HfHCJZ=S@ioyS*@f+lN$S;9>K9(DvmhRQpl{pKSC+4U z@{u{TZfWLb5BNC{jWy$;(N4ix1ew3s76e93tOAdPS>>>JDQkGv^?XKpCm_Pj7 zvvX$T1L>hP!FsVp6x<#X1D19-3}Cvrk~7{wf1TjnH4n1tK`9RlEfx)oF_{OhJBBxJ zpaXK=>#Nys$-ORKKkj^>3tDeDT2vUBKzmN2aKK}|b{bAwAqaA`#|9k7nUKP7cG)_zAA@B(N$>0}pc zaqTmO+&@ZpzN7lgkg=jbzbJS+V%k zXaUGaTS$!K`qjRS4^W{bF{(_j`Ib|ip@UR-PxZiI1+Ois9JHfHyf!Vh4+e|nujgXR zzcX#LAMeYpj`9C@e*W~O>(dD0+NK7Q-aQ{@Keov>w);kA;KMsVjQ(SDR2+|w!l5Ka z?x4cy@nU{!T0)}Z8oc?_dAs%2=nj9ntBHb8gR5Lfs#G?_%{Oi&HQC(D;NBs6NzoW{ zcxQvKPTy^j7eL4$ot^^!ES(~Z?aG?4k)z?so+t{7( za|89-5j=(OyqWD^5LD^~A#TV+W#!qukyYBxNi@Idf~=Jyi`$0A)8aO(f*j}ou_>K5DaAQYyG>&KZMcLh#c&xky2=GL z`{`W-eH+bKH%_I_f8X?%E+MW#zaTc=5CZv-X9-=x@Z@;)$@>B7$iXp@5OXiNY5HjH zDbBfzSv0Y4agH9_RmQ-36>p@XTDircLDD%_lT5UZ*lH}8hW5WoiP_TxK&$)$XPWHI zYcwc6(g%eeTO5Dn2_IiQ{sR(v^Ty{g!X{~VSG!fKoq0Gy8Dx|>0h6QpB`u(gkA*t( zqg`#?x^9zGpJw<_N=KFZOJ{l2a1=otMitexOk7b@`X^>6cUiJ`ffp`v-|&U5SP@;6 ztE+eYD{4P=wONMXJas4Cck|=9K0qbH(PUn$z&STdw8N`|8`$Zwdea^l!7&50T~l$W z180LxRN4>B1cAl|CcLUn?mM@mwejbQk=wT|0he>D3m-*YeoF1QuM}%;vG{Rk{%*}g zIG9aw`7e>m_>DLp3C^)aY|fx>w{*~YvKFM(*~co9C|*G@4S%v{T?x1X#|RwmJ2y%R zpNk#Gf5@jT)~@qe*~cqXDYaA)N&7XFmSDt6h74l1tdvwBCl>HR#y&VFi4IKt-ceA@ zf68#~3~UE_ci}ewr$j$_7Gx5f1JZL`^;uT+k&-85rFXGN$aVU-cSJ;0 znLV7#-^od)e@zUaOwWZe*yrCrKqhgiy1)DQ;BF$Z4^$d00YOPeHyf_$Utk4CFHT+@ zfL?{%NDQ5$lf2a)nIfE~rvjO+-QxYF^d+~S0#Bj4CryPtmq_CgtVP-qzn~vbQLZ-$ z#~4)Lcmy43^ZhqzI|z=_wl{mzt(9y(trf#B`C<-f028I$$tbpN8`teNa+-~OQQ%%m3 zy;pr}PPz5(lkg8!Tx@^63(;7D;s6DPSV>kFh z$YJ>oKV=%jpFAtMW4G_$C0WW6$%aI|E9_Ms*{geOuRdng_o4qo z#HPJdyVpD-ON}FhfSY3{&m;;gYNaf2`@Z{k*H99-EsSggN6Faq#9-<;L{Ez7W`v8X z7QaygZi9;mTKbawroPT3_Uh)Et#mL0xc*p|{rXwbDb$));ZOA{{}y#_cf}gY04wp! z*^c+yCEiYTf*q?8qxpkR@=)O|UDDIrdecLyan>x?mw>mvp8Eb>3&GtuW<24Qc74E8>WJyCU|&Xw0#sz1lO;3Pf!V*b_7Y* zt9@iCpb^Z+>1Vyy`OG$~!SmzV7ZNdLt`S#ns7d!>XSL#&QV_3cZZeQL@QN^>gsOE_ba}${ zh3NvXPB*-gr896s+k@@vbpUn%D64oqdcx4lxZ#Jhd5@nv!bHfe>2pYtO^Y+;?=$n< zf$Rz*ypm&t4IMp_|GN{aEpPo-io^ET%JLZru_WSd%Z-S6CAo*GxJ?|bK%#o7JK5!Y z!2efWvb+QxDbb7F4H48@c$^H-xJ_Zwdvy9c&c6o4sCC|6HR-uc9Uk(4I;X}h?0Qhb z!>_TG-?8s*B?Lx#sIC%oPnAMhn=%P!Q@Fe*`XBzK5AE?c66wb^ttb(k8!V;*--&mz zGO2hcw?43rZ&pzaNbfQczYYeF$&!8hc(IyS7s0Xtz6sI zc z1-E-M<`Bf8vS?$Lyt>3-)wVl&^;YVforb5I|GFCum2UC)+k_mt*N5sdVzA5DTQW7B z0sXH=t6%OoOF*j4RAkc7i}Bc*#erPeq$ZI|z(UN#gFcz<$;CxOwnGaC|6|Oo!{?o! zXn?rLM|``fl;#3BE7l>q?Ru86VcPBeDgX$1N1^xkFWuBa;PL64ZuL7?*^OwZd)>^G3F_X zA_FPG0R&?lDJ8$A(P3C_A5=k;#0r8qFdPAS*PvZZ1S7lpZNY9 z5RZ>GM0D5Nx^xa*1e*5HI`6LW_Zja|;}JtffOVhc>Vb1d0A&O&>^gp;k->Y7*WtSq ztr1?aEu`J{$CdB9X@`RAR5K>HMLbm%+CH|I;(f^e+q%^F$4QBd;j9r@rw*;yT_A0_Q$Ol6OuF!*vkM)~z0SaZAHfGI zfk$lLJ-4?=VOy1SbMUJGl3Pv}k6#yNuF!azBH;oj|?Y0<2C<-Z$ z8S-x9wmz)h6VANwf1ESHi9jO9Bi;WK-qyu~-Fx}T7H{?MD{DguA}1IlalQw&m<}hi zQ*3f4b;mBb-!Yjwy=Hj_5cyN!>!FdR&5iI;qdiyj3PWQX9o5k-O3JBBK{URJcyOZG z8GmKlzfMM<6%1f(Rf_)yLp~6diOW8*fkYu6&QHk(?_v-<==1u=6-&-x^ZT=$C%drIRC+hC^DCkAgCr^ z&PObpzFqUI$wHYyZ1s0*L=yf93#V`zYRbFpKPV6WA;$Sp{^SIGbCW>=7uc-|Yt+n}KsxR4$InRoLeI01H zfL;X~Mszm|f}BnAL9CXwnTPXYbToFuH_k4tk#iTt6n25{gC=4;+wap1KBHaBCs3~O z&dR^Gs`amPXD|&DneeE^T|Ll!gu3hs1$7REs7kq+%^-956IM1dn3(7rd5>$ zvx!1KRWdnWW9>*wYS5D_!tzG;zK$}%=F;g(w(BVZCd?1*@45tT*iFbaZQ=?>^Guz= za{G!VYJ)PVSaYmFhubN7kQ)24{s_vu_JQs5=0VTu*`03U4MaO14!fw7QhQ+*0|b5* zXoBSoI0)2YYbyL{_&oLImZ)e)(NrszXB+XNC+n|>v?(ORl~V&y7b`QV(91HXi?oV~wYjVSxi z>4Sf)s|0I=U&7{rHq20LN}Q-yDFj^~6J#Ps79Z|Wt($O-y(BSiO}1^#&7TfjU3`PH zcKucJMI_J#@#smFBQpBer;%YvpVrOS1~1HMa_v0H1TDl9gp}?2G?k-T-VfV(4z@`J zUEC2`b#(#H?IanS-bf_CCo4O*jKu?_k6Q{e5r064h9%4k0YTK9|A2W?Y$t6Y>}Q~hP}vN=aCKRuy?gak>x(VPV&FJV=Spz-g_H^l5Zr7Sz?*;Oj}NL$3?!qFzr z0P$;VX>NG>{NcG68O;G^yIJcOl-k2$;3Uq!N#B#F@!w2d4Xy9DX)23T?Xo+x?GA2H zdiCcGfAk~vzn8C+zG#RQ9o4(IHE%`*=MO#2jH12o z=`^0M^Pbm4e1j_W38xX--Ko;c&zpg2x?;C;Z6g@}t1{d%ek69L;62oiuC>ARS3?ET zng&4{y^r!{#o&@BUDm0&@0IULg>S^slX7>B1c4>rHl2tW$nJdaXn0DqhOR!3br69$ zf4P@__Zw8pH+p#;&}!Q9tz_U?s&%SIEjhbZ5T4_@9;Sj3C124c^DiKMS_0@ zZ`kJH7{)>YRU(UurYBnra3b zgC7KDFcufQ1(-2_H&6_*#1_M5`&#pu#vE zNl;5;Yz7li7^pjA2?Znb)=$NuA(kWAF%THt{UWSD(PQA1z1oFMWg+E%X!1kylVawI zmTqgL=~=p*|7PB7_v8)3B5f@R`n7*eNF!&(3qs(lgm|LmMtP06GpDGcXcc3iX&qan zJ8MxYGMXbTD8XrFluEm9c#?Y*h9K6lzpru46KyUth~&ic>#d%N65Kj5Zobot1dx9jLaWyg02ycw^6@7W!1&L3`u39J&=V z`8J6Q=g)_VI3Rc9LxsmyCtmQ6M;0tEI(|Q8vcHvaBSF@Ha4Cz4rHIdqN?cAnwRGVT zCw$nX)(IQ_I^cDClg;QC5L%<`Br}dZKQkLuYO2_MugJGB*NttbAyw-#yrSfsaC=Y_ zdKMy}4DZmS@Zm$1;IxMk-a5UT{oCqt$NOx%ZRpr$Tr4Sjc^x(W zn%Xh9>CGur|Hg~W+h)PZ3OE0s7VQFDmS;I~1fBVs9Dv-W4N zmGss&%gyS9Micg9JNS>F@Fx_0i8m7_EQ|9n%{KPMz#Iu@SzS<~4fi%o1XR@|x){mI zGBR|gk8{0`Q}Ct-o#oFyhPFwSu1|xDaCp|pzGgG4;ZU&_fpS~3?0)3kHY&t-BQ8rh zRXtOdUmKL9XL6j`a8O7_tU?^E*(8ov!Y-eS?5d=DICHQCO0igx2y(1QW%P-5 z8@gyQVQC4PyXqNlQJ;ZEHDx!Lvl`Xfc!!A-V4(K>;90Bf=`R5<$l1F& zB>nY;I>;w}EDpcIzs1UN&gkNrIS(*nBSs@#p?!kf}uWF;q?w;*kWH42; z^kePi&%#U3_}utA)(NFIGUW@R1n|^5Mg{qr>y(%PznS0Qbt--a1hlA=uEH(#x&T6} zV0&D66rQD1u{SYv(fdYwt#hQ}Hj}5lBHNY2J%Ut@+aK7NBVnAfl!|eJ2(^4r(M?x9 zqZGL{5j_3-h=B5`!X(%I+FXX1tcKRhVx7)FR(L zmLB72z1kZn;p_aegyZ)~vX`rK4$NA9$4^Yp-`_~C0V=vB zp?!DynM9WSKBQ3Ln8Na@?9o`@DE=^W738pE5|~G)xjW@+IQJ{k+SWm>sYleE{C*51 zoxh3*ZDKC&N6d)}{Ts-1jSDBqcKpU%hB;uK3jqm80HnY4GbS;Y4K3pq{hX^wFD zl5gNQ8e~7F7X%nK(-`oye~ z8Ig8~BxAsa3@!Lv5pfW2@>o^l2r35@+iwwHj~S6JqC;Ld<_J(c{^6 zqeHSQU&gQcbUaS-=~StUrFZV_(!*Q|&VixyM3H(IJ4=?S0_iKa*eok0u35XC+Nc*= zyY-Y#3(S%YSSjk%{TlP%hE@CZ6aSLoP`W(PRN0Qwd;6*|~8^Da}sbEI3%F8h3 ztXP4^D@77fBQ7dH#37aR9hjGv{DPWttdj00WhyF2UE*<8awgU8TCt%dFZh7*{tO^ggx72@@U z8GyfZPJO8d&`ODhw#rIzvGw$o489ZF1@!9?`J?U{FCxU{NU zZ-#*p?V=%Ey&&d1N7E8@!1o677Ur{LbiXQp@sq8+X;cNS)^Ks4u*AiJ4&!s9b)Oc>00lEA~lnT%K-ujFm)*@6}mX|X^ z*P&{PVDOD`W^eizQ|S7KS@&)g!Lp;R5iH(}FlHCb)_`j($!B)FkGIx8?CMk34g&iS zDZf3xxb8_eEp35TSVmN^Z5@~$-XG$D&b??KBr87PwyUCqVhJBw$onZ27+WhGhRpU} zNATVVnJj0SN#iVbPtL<{h5>2y&YA}99N&tnWi)yxN$CxfW%y>$;}w4pWY|uI@&>so zXsdcYyjAubu{5amfF7$jWE|a$WoTJZ>`VzV{-N;#`bm>8Ax&`;Z6@AY8TrLoV1lAS zs0AR)?J=Y*6h@8n=*7IAZG-PJ-I7lgYy+UJ(nUY{@{ zbbtW#No?4iz~!d{0Y!0rbaOsqUg{Qf$cuc2TPpBxa7>W4B&2CmgDLE7Z^Dpa3AV(Y)#4uIm3R zd`<%tu1>#?a1YB+|M7d;G1`st>~L2)@r(|7GW>q7eI{p+`vJnFmx(8tQDZAPlTmpb zlrUoxFvrVl_@<d1qz0UaYaStgqPrdVXFwb7euxCi|Adf&$!a z&hg1}h)xHVhj8U;EO+g83wjKlPP(2hOfhkfL|PJ?hGo@)D~CC)g4Du##T)Vl zB#cNB46UpG-rm`?_Imuk?`{Eevdyd_;46=r1UKfP$$fyXBuA@ad^RGxz-n7yHl-oe zS$lV;1+b-Mwl;mXJ?)O(A&|#rM^UG-qYQLQna+h!UuThPgNrtt+%wLy(0puv7`QZ- zU@VPqgMD8rtE>zf%mPNhEv$V8_T42P+2_bfU_92Z7Q5f)1@GgJdc#ySRwikY`_N()uYsBB)ACJj+F+(#Zw4)cwe16&( zIJbW}T~0f@{hrMtq}A+#CO9&vmNm~hJi%X#mOQ8_vGrXz z!^Z1qu$cMt<7pC~%~m0Of^b=CKa05t)ch1|HyF?aH&-=V~EXbQy!@P7Bo(#~{$)~Vm|z3*GhdEPz;*NwY= zuCg1*2I6|P5Rd@LUaOx^&(AjDtnO3rQY@KB)wU3syS5g)kxCeTu63fC>L1^CbEY(d ztb5l53y$Z~qNI;a?;A~gUViJuvS_SR-KVzG!J{rVBF|9`(n>zTeIz2Sc+`8k>npPK zP}@1w$I}^Oqw{A_Gf4(3O5;EcU1p2w)pzyQ#;Nu5ThA9qQ+t4>q&^Cc3&{sDOOkGp zigD}HA2qISX9gEk7n7{vwgHnLcQd%d02Bf;<#tXi${Lv@0-n}6ywU`~;pFsYQW<@k zxwOSPsk75U=_*ACWx%S7kn*^z)r{pqRfasZS3s@7x)r63Zj2Ga^OMt0Nn4Fbj&0CU zgo?eI2TUdE0^$2z;Yz1!7b5h^ z(Vk}ftG9JI9IAHe!kqI{U^2n(E|o6HgtWdU1s>iHnHomfX#<_`ZKDdVE+hC)@T_2; z1dncgx^AQP!p3^{Ywm7Q1;W^w45^wy%BfvUQ{<|Aq?5u2d^EunxQdBGY1tw0RH0D5 zJp5WDJ?EVh*-E;R$~bN9{c^G$`M)`Z*N z&Fzk+C z=>^3mjz6yYw*AksVD5Y5Rt<|)eH#>x`l0fp2fnIvyn>3RGZ#z@%o|YR;a`FgE3H?5 zx)f65Zxd5^!~$r}C`A>uCtNO6tcG|VchoMVx$#&S`DjCKQ=FQ9ImB_9oKr7LZ(Rr8 zSpB*J5Q0e!x@VEv0IT7BVy$xoCOj`An z`f^5Y+s(dD?!r_*m2PET=NuXFgl2_sd+(~mBQCJ&S}DTBZqi(y=oJ`)8jX!a%o@h z;exA1Ru(;xEv4_^h*?z!D zZ3zC@THIit%ijKTdz}1t?6U!gdP40^=&CQSA;Kir++zHFwZogCOMgrUs^PRq=<@_) zkn}a6!g<%kc#6f>Be60NHiy*MxvXqmJq5G^=e*|8u zUpoaGvJPP|B=btkuJH|qFVBASQ~GW}@s&gErs{qa6i)2GxA&f5W%XlV_}~;U8n;S2 zn^dW`)V?O07wKDg$2N*O^luPzk~sCphFm*7J!M=kN{mGCt8(Ws5!ZbEn-DEvsC6?| zcwCJ)0kz(c8KgabgPfI|sSzxF57 zY4lFCZc5yG)Ce}QxCv4cQ$Bq`c zzkcg8XNv)s?$gL+%oGD?VxUb0(Dwo@L>_Yr2>z_4jL3V|=Q2N(x?9b6IqiyJ(%B=| zLBdS8ZP=;$!D#mePoq9t8!;b!wXPcW$X*;Y45_`f7U}TNjG-IzioNsPiSFBE<@6||Y=kW|A2NINou#>Q<+H?^ z@Kj2ayeBs#culL_$=Ld)m4}TnE~e&Kk7w1jiSx=QHvAAaV)x z?xKd~t|56F;r?T1h05?Y&DmsEg5$aTWMw3^(+GP8=c?Cf6>>Vx7C<_-4Xz@!MVG-4iYVm=bCyFnZsagc#*ZsKiOE*_R+s) zYArUUi7W2}n@nG~%}nL?jB&=K`@;~0@Am;|uj1EFBca^XVFlwtGi#&ja$rO_`GeuM z+wprNhXVx*mka35CyF+wl`vh=;l5qCj)39VkC97Nsoa@&#{HdHEw1s$ieS>$B^CWw zA|jPaDKJIO>9jO#36$>NgZ&d@`rsBd!uI1?PSojj%YQ1MSJ!S4{7MDs^65>bMx0zwFJp~PWozhF~W>=2xOf8PXo8EU8Q&XBt#hi$;S8}_yDMGG{R5LS|5=Lxm8 zSz>9bs83W^X;C+%w0q&eZPjX~)?{Me&ZvQqH_LcyE$N#~*?6y$?$y#KC6`2YJ)`5! zrdNVK3`&yiC86p4Mi2-0J*W7U=`%neRJTE~XZZWn)h z7xvxv5Kr~jJ^gW``l@ib}dPa(;4As;6I!0 zd^BAwI$S!t5X4$ePCA({zGZu|k2VW*61BHGmRuEHD4mw&Rx*6^i7rO2ZJtRa5d_*l9^!R|;!uPaO=m*-2UuxkDj>OpE=vrSnVi^)`S$ zcNASly_QMX?oTkmy9LhI2Ybhx{1bha-U5-MSsZHOhiaJZC~THN>zSTh!t=nLr>7N3 zs`DdUwl~y-#)kJPhtYb{B^2BThpW=AauDU{YN1IQX+g&pa^ZW!2 z_I-uU7ga0tKlTsfDyh;%-*@7Psf4MSXE&h{$QVc@9G6F0Hv z2k2!wYfMm@KZ?A60xbPP$d91j13f{*x(~jo0S@HJAuk!6&S?Yl(13B$qlZez=v*e% zvRMgWJYmPGNT#zY!Iv)6F@b!y+2*Bs8krStv%(!1sH1r4)f(gCqvFVT^(2yt0M5#*`E1jvh9+fq}?MEFM1s0~6 z)+R-OdEO4=5}9`!H{?RgJLT3x2+t-y!8l@!AD5@eY4$x%*Fd{xc`EQqHF%^aK~OIj zhTc1tu%Xv!Y^ZAGU96ePF5^zJ=!6d~=s}Z?EJ3zshtht1HHjzS6$NEsk#1vxe6n8T zG#9HLnL%tzjbpM(*Wm)~nU2i-4i4E=SJ_;X%aPJ)hj(g9_8;2FAL3epK{Q-5sxzLY zghfF&j457V&YL|y2u8!0f8h^R>>bH5AP%vO*tUvEnB{Yi3ZhmVfTVv9? zBEEv!0WsoUzaMOEU07ijyl%#9ft*cuidW8Utb2ZDj}Wl=2d_kolEa!8Z)yK@P&AKA zlC#HdOeo}vEglxP@QXyV@f(5AvecrozsYrWG7m8d`J%vaFX8E}sJRJ~W57|NK%=PK zx^CEJDGwd4u;|jMChy@q_ZK3vA`Qz`Hp_>#6apIybuF#Ps0CR3;@!BwEKAsCP^Dt` zL2B`t3Lk;3YitF@3UyaEW2(2lR_T#+Eej%s1FqMdIGX7~+s_HJommN0LkcSOj9>G3 z?30qxbq%!n$KGJ!cfsxg- z9!+h?CrqUc8AKXndsiUWPNp1q&+Lrk2`s|giK6tctFL`>H;NcC46)fNabMaps%e{l z^P!ZNPfhl!&&ik1WGBJ{E2^toV|M4&Tbw~mPHD);WaiSQvR!hncCKV4AI5?_8*%`- zu_7ZoSNY5j%BJ56${O=)PxtW9yik*&4TT=i)gw|0aFbd@u}0elupy#KWpJHkh|V|D zOS;>Dhp8lv%bvf;8uHHGMr;B+e5B5E8Y|#mWbse3DF^$_C4N8W1NOQ#NAa%g^8?+7 z+o4}H*^;XPD(E0?+v6z@FjYkk#RW_ z5KP%jpCL}6uLlbQnwfR^=H2hc(^;oG9j0iNe?<$B4<_6Ha9 z$Au^95nqH)hi%8xTcrb01DpAzBqr(Hlrzsp+XA^|Q2`l6jQ~yb+iJOlT~{2xrZJcTk((wahpsfffe+d&Q+1NQ8xw^MNsf1P6CGqo|oJ%!xEe@u!9%@uMl z)h_Bk_rdqv$wEXFLeB24X>)HZ*m7EoU*^8f9J1bebz|qlzU|enkkZXGIke^GP8P99 z7W#~nj2;DvlF?a~4lq#dJ8FHJT zCN&v?3y;3R8bI(bOKPNLGkoPzP71@C9!lrx7 z$e=TQDJ@No$}=@JMdc(+JAsM%jiF5qI?PFdDMLrvk&Mo%yJ?hkMM#0Ki`Yl;VneuQ z!wCT;YF)697?g1D#VSpIViVJ;i!HHq_YT9J<N^(9%$DMpv9CH+l!-oME}=8mx8Y)5)XYqSSc-xysUr~8 z#X_2_Q$4bZLk@0UzONkQpWcQW1SKYj2MjdjTcJNYD4hp46^s!T5h7b^yln(YE`id# z;8=QTnxSAF^?q9JrS38+a`smB$!{NKty%$S%@`#Ys}bb^+2&lPx51kfE%7@;{7t{y zpJOKSASFOEh`hG%0>lKUGp^1rg0aIRe(*1KMG>wXcotUfuKH$uMDu08& z;8Ur^l`mj@ieHzGjL2syXP5cEWTNCF-K|&H;{EmB(p>MqjGwSSd*VE!FyL!@w`lQ= zv@ts>9JdJdR5Cx1W(>{gP^x|k#sVI5idZX)BpJq2kRzAeHOoF&`13LYUoTs$YekI* zAW4cGFNSf?u;|pjNO!FHD4othKp~QQr1EnT7WH)gB1X5Uje=?4J}1_zka5*c)mKu3 zbBeAtnjfkOUJ#)3U`SUyW7-rMoW6JGEk-Ds%Ak4JnfkLQ-6~f57)ux^`bZH3a&|p8 z2LMFC&%$q6+FY1(93+YqWSwo=e+R!ENjy7!h8)}#km%rHD0j4}Xs<1Mg^wg_cKeqV z08a&2?mcnU*SN@6RDOW=Fql)FIac2g_znI*tymOgI{%o5h&>X(BqP=A`RJZ=7T5+k zv#6xzMgBK!CEJ+U2CVo5WQ@`({%fBuQA}lJoT{iXSI%m(k?t&g>Mm~??7CgA%2C3?WhZXX zoPw0pBYyNorQmMCaOkRs=rEsH=~$HMUCb=>i|m)$bDYfTG;8j3|JAdBzD@d~2P54N z?|0d`RvmwzR*_1u6}+Ee(>mq{k|9%OVu?dmyJW0OS^+U0>3_2w!jBQ>(HIM+sUwEc zSIp1jas2oyJUPo!eV_sJ@hu~S5ErUM6WI?zPxQNS>V({+&VUzN(K{RF#hhd8R9LOf z>_Z1r>{$r)*P#|JYDaj_J>jbnukMEisl?`~V=D=vn>7jZ6PZ$psG!00(7E#7HVn%Q zjT9Nt_K(IfwWVFG0qT#l;U-V96>Tr_F$weslEHUw-=bn&@-ig;PRxye%IuckSPHT|8?Rc`bLt#24?Td}4&t9?Mtn{}z-1_P!%Z?^u`fKp6JX zX^-mCZE>JB$O$V~U9?LFV!16M+iD|8rADGdKqD7>UZUPx|0Vooos zggukiBz@l!%nV11Bpy#zi{i5QW}Zh!J%Aaj>X=AsWgxQ_=E zqYeIm=oc2>iQYPa2o-e{Z9nKP(@5zMB0Te{vweK|<&E)u4i?e#$H(Fv>|#2d;Ts!l zITtjARaSBelu_FlIj)U0QoHM9v@J*S6?R^d;M_g=1i;J&qhEgFGoYR`>|p;+uHm-?IaeO9Qap z1CU@@WCmT{s?)pMk57|}1!~_diZR8?Ipt^)efnH0`SEp&N|aL%qi;ovtQ-VJy;tm_ zYRD33{~Kqbgu#PCVQF+Svcx4vmk7>MvAWP!M<~}EWE2*guc%@68bx} z=l%DDf!!rl>4tJDY~OxGY-ogj`rR?ID z?QH5kKVqc($9;H7!^aZOme6{dV>H{H8ITPBac3q^e?8QFT%*+@dZ89gab8|+;ZgDy zs}VTG`&OmYMXi;Ym7XH#W#$)(UrUXQon-Tpz8)VQzCYv4qHY8jmi4z0L&E7vr_%W~LxMW)G4k1D(KoXY2MaY5WHV6E zWVCW}K)~u>5(b_x`^zml?j3g8wax;$zM!}Nd_~tb>$bx;U+;>uu&i2pS9&TjhJbt? z5jt3YTRrgOqGFfQNW4Qtxq6q=i2W#TrI;bhgpH=L_;zS?9^d<(lG*VVXW)%>U*(=k z#w?s=(ZpB^hqoHf%r)Gf2hIj^kj+?DvsE?GRrz$?<5G6_^OT^Ind~Xl#&(>*M!-7; z57c&svX2nvC8s)UE^XVG=ALm*mTR>#R4)}n;BaN9Lj9C{%AcziZu~iPf9}FvN?Y|S z{MC5m89hPZug_&awUit*bsoX}r}_QoK^KOJl#ve&84q|k>XLDV^NAx%XaJjVhqJ7P zCs;tyXKLDO|L|j-aJ+2S-M10L;|P4ZL|HJz{M+ zMq3SnD~+Uk-0d?EM>2>?oI*wWqkXbJK{r3nVMz8YszX!@a-==proK=Ikc~@xi z;Nne)v$3j2BjrZxPGX&Z7DMmzMl(ade~vH*emq3i@6Y5_WXHAAyigDI`Q2($P0re- zwurlF(B`R>89oeG9kh4K`itpq)hGE>KW`1U*$pm^lWtE^icbp62}qKnHVma_%buwg zvufAf=sRQWNq?u!7U`mxwiYc~QuS6q=(r|Z6gAfVKla|KOVg-Z7JSpTZQC|0ot3sx zY1_6{Y1_7KRob@Ali%Lm`{H!>ALwz$cmM%j&Lzku4c4>d^X*FWNx0GQe zghc~G%x>?~sZ-m8n|(n*X2Nt|B=M!oYo#RG^AWLi6&`UV@h^@pUfo9PfKyqE{bd}2 zn~OfYLbET)g3j}>=8UbO{;M(bvxH@M298T%%}TxmT2+PIFWuHBO~Lbbf?S>XPWcf7 z-Gem5U!iAmc@9)v2hMq#$fPBAz&&dzH<5_fYyK0E2p_v$fvDj#Wp6hl`TWkZz{*t& z`om;8oo{Tim83N#Rx7on*WBD7XREsTT?PfVV%+w5Zo0XJQ+^klYrOyIoxd{yRvwY| z)eMgSq{NQ#M@$~!C^917F_jm+Zjt6h3?k(=p~YY-)_sXTwhpx}AH=*>oT%iRnWa&e zcGLwt0L4%2UWztqXRTD}Xj-|xs+E{1FW|U;rwA8b)Wd^NCFOfXo22tqjEHB2c#xJy zVNQo|oDvMhFG1vxja|geXm`>mup7T)o;aX$@iAhF)Jv*yDU@nLjlD)uw*qbZOa^r4 zme_0j^N*6A)j2+>^Q~w|c3w@4*KvC*ghfs_U(n4P)FwO7tP>Xn^hL)iEDsPFeom$L z7vQCH*Q67$Kxw}XC+AOgtQE1j40p35s8wod86(T$Vm%m{m_l|=NrOJ&J`r;Y?+}6b z8FLdQUqrvzBk?wS<`C6Rr>e-|?aj_MeyZ7xftKfQyv3-09pL<8eM4+} z9NVoG`s>2?Tm9XR<#7hVe;}heBBCe4EQUNqHn~v7B_a=-BP_nijx|*seH6#) z((lVSN7Vhmy77Tl=yD*7ChQ7ZL%la>C?|AiG@uc zefbFVKXu?aRp4C%dkpJ0OwQm5==Po}&UiS6dU_j5DT`pZ-3y z)ny3AOKBg+pVG1kpD_eY5MtDAoh*}xVw+P`TT3rxHQmOsf0v;WWgPoZPc!}86u#mB zo`7L5n~72mA>M(&Up<}THi5x877$t-Q!Ae1QzW%h4I-m!pXwGk0F_?FHom9q$@+`C z1>sXIfz+~qFDA|sn-J?dnkHQgsp&vVh09g$Rv#8bDhAxL)Cu7~TU`%cGwk*=fUl8C z^V3t|)>cx(DMW$J(pGr(+mO-qqW=AX;6>Kfz=!S#d(Q9ObYhD;ln>f0z0>bp^mW-L zyM7A>`;EZs_CC9Wt)_phb5K;^>7H?CdA0&g0&AGKxPy_0*vR%Wk|!!XhIOl98mMqIGH@)8lL1ers1evI z7+nINb{|mOp^QGZ)fNONneKJ80qqab_0#c1xW)0A@#uT?#*43sTSC2hXB*M`SMK8= zV=rKykvR^7+d0H1E_whqqxknKZ{=$e;d-lSAS1+} z_Vp=B-FFrQ=HU4z%2|?%Rf(=dQ{QpEi;i12jwd?-8iJp2?vus&rx5cjuIzI#B5@?H_=-z5c zc2LL2I^eY-V2r?)K7Wy?9tM-YX;HqZmQmm7pnLXhd4W0=FXaux*i0}LZY@TMO*ILG zm|^w$X&~&f-J^bB%LQ6w^Z!;sKzjXxod)e58mFIAU*P~o!k8X7od$CEcK5&kC9C(_ zHp1N`y%bk1t>1dv=0#m@VYrdXt3d5Xp2~rYzgKr)P{rB*F9i$DFETpY(9D}j{IiJ8 zXnqsjf$!q@kY;{<(2e($oHCb}VaurC#EfDqk-DX>eZ`UFPD?j%(?_R`mfQlm{Hoi&7XSw1E(tpG@ zvfqlxc@fubR>z9;iUcCMPP*ya)j-Z;%<$;|5A(FuOI+DQMNmBKa(8Pt$?X1uB}cfbgD&!~yA3=bqn&-$p98{!p`#7*-W`e|2? znP^sxF1D4DT)(%hwCEXV->pVr*s(;cpZ5z@X7$r5*B?79SDi+@Kcq2T#NW+roct57 z@^opl_BSPaxJExc<}v6F>RRW+64R|qNHc6n@RprIhvh_(5-i7P@`T%=EAT>ng+kkY z`ng~zOZq)+Y{MMpVk3OFBl-+j|7F4hy{9uUF$gnK6!~2{EBAYNrs3UR*Dy{21gsv0 zzR!|yV)WAu&q1ICYOs# z(y+*3*X14c0P&1=cojP6&EE>K+CL>lHe$DM1onGDAnap-h6j<^7Z15+gydt?jne2n z>@od%IrO-ARbewm?IrAL030-%|{_|zvn+qLJwrGyEvY^9#dy9 z=QFaqTF*q$GeL`1C8Z9!wfKvV5;yqBh+!rEg18eo-~Cy{wc4YoV@ZaB8HK^ofE7&x zn~whXxL&5a~BQXyZpV~*PoOZ>y`ZwPoW`sS9=wdtkdaH#49&wT(FKlySr@})P zm&S;8fFs8gpWj}tz54C0-m%Cj3js;nlcllCnEzcJXX^YHKbhuZaICaRo0ZASWMEW3 zf?<7&DeNSLGpX0Qd3LPo$oD#1&J#y1=`n|!dIS@L^@TJQuQEfA@{IF;2-hlr!{qd5 ziI(5UPy$oU{CRF~6?(RH2SSS$+5O2bzeCT)@cg{&B#YRfr}L@vS7PTw_3MZO4=lq8 z!|xf}#JZMuM7N8lp%Y{K7_~Ro(x!J(+P7JPYPM|+tjD|5t>XONTa7Um;ah0yn)l|bXjr;C$0BJx&qHn?L^sa^|O3r*S1Z7A*~9F~ z+T_w(9`Vnx(|?}$d{o#$szkJ25{j(o&?3L)8rl;eV`+KzyY5SJku%t3<*$A@?6;?f z9n}~Lu8B`VryPy9IL;3n2snaus&3Dw9HNd7ho^1Wd!1q)|A&bDMigwdlQJtH;tDGzRo!uJKv$w}f64)-?p1SV2g z@6@F?9?le*zZst%pK(tA5dYuZfEWq9kcN!b?8Ikq_@!@`&*DvKPSJ>a)=8FsygVmN z`x0&~bIVJSk6jdv2};!8+Cg=8#%RV(j%dzhx0_-LZy<;LSj0z7LlF1ylgqE z(+i?Ju~jTh&N_YBr2yPF@kcZF=Z8Jy*IJ z7g7uydy(>vhhCaYe)q<%xt*d$dvpqxo=TRwAj}Vs?Q|sAlb;-gn_27#?4sA>m{_ix zE4701hd7##Z9sFy{Cz_^RA$PRw~Xhv>1N18LG}U&RctGXAoys(c_7jI<4f4%ZYH0ns7cW zPs+=-H_Ik{qK8?I&RdJ|b~YacUGz{Fx(X^|+^%x48NEJvFZ*=H>^+0O6&XQdbFDb^ z`3fAskDwS%tDib^&HR+w8H&=y%EiAvoJ5=XYyJ3!v26C-x8#|!J0*PV%a_|{^qho3 z&=J?WO*yk5eC55vamS?>d-pb@Y29z)x#fmZeUd{3HcbO5tNB)|5)4d$}>u zQKiKMLCFo4nHo3v^JR%t>i_k(-mi_2o_q;NTUCcmi1oYaQ7u&m1cYo)O_Fj#m@AYa zN5P^Ngpxxr2P}p_oaC6uG;fS4M}ZhE&xm>pKTZf?<0kh)%LhcH8PB}k8xVq;XJ1Wm z!FvM*%@rRD@1bn5*PIB)sQ-|vNI$kIGT)&T{cEb>)Lbh(gq#ARJN6wnSLIXdK2?b* zPoig>DW+dsN|TSs*4FYt^Np44vp4KpY8pPw|*p0)fUOPSz`c=_H z=8r8z|Nngdrvm?{0{_3PfPatFjxW%~>Dvqd0R9F51ppA$)F$fRl$O!?YOU;3Rpa`MCrq|v9LUoV<`ow9W`r%@If>xlSf{RgW5RlYEG{lssO)ZVUz-q9< zKn!!-%Me4FLb5~Jbdq9~QX(jtnH86@?**T8SWACb&$VK^p4PUx98G}?@P%gm7{^J- zL4+pB%-1AnJU|Uz#DN9UrnU)Xe(gpM_M=k&A`aKfz$TC|M}dP{Bh9AQh=g;}dRWwC z4Nfb(kJkuNHLup3fe*;j!8qyU&S|F2V?Y@nq+(H5*Ghb>r?dnS;7jXDKI{#Tby&2i zqc~YZPOpoWvrToDy=95CfADtrBGIwOTN2M~#F}1#>+T4ng{vy?q?& zw{_+T*PyY#qI2F2I%WWrik%uJ5ya>DmuVDPvVQ7em!r-E;UxEhhPLlFCnNu*_^`N) zo3zpCl#N{o7F^vhumz$O_m6A&gdU>fw~f+lbP?l>acTb&89eUN!DcJc2uLd5gokv) zFFU+e6f|rCa2Qr{vSqK9K+mrS2L=Ruw=x9v@hgqM93OeQ=Q$a{5nFK^6*!Q;i`^DS zLhzs=*K1wRJ;vKnc9skWqBCF$*MvfN%n}<4Evw8H$0H0}rip_KAVh1!&07YeSgLH1=f87s1g(s7wHik>!#11O#6QXyD*5paFb~yW z>h4da8`zc*_ootAAUuQ$zh&R^jLB}MVkTF~e*qi7@&qm`!B|EU94E(Pf=-D}Ge!O- z{IGhkuXAF$VXIi46)7ZK)5;Q1$OHFZzaQ#O-y~Fjk^C5X>>~82NoCLc1Ng`+4nBn2 z?oVgMsUJTEL4xyXo z8&W^{BiOyH2EvX(Z;heH0&?S8E1(-*2SHJ+itdoYlkhj%67#Vbgs4^shDxiG@Zb=$ z#DeWAV(}S|*;+d;aZnw9>M?@I3Gk6r6G4c{jPY^_Wv3sDth>upuoNT{krZ}V7Gh>@ zzs*895h5C`k7hCqZgk*%2$+f=HcBK2HHWamE_5;#Gx%bxp{%Wep!D_3VT@b#Cb%@1qe@hb0{T93RF zT(XJFceD7Oq3b~8PifFwoEU#tK6EmIIs-@#kb~b-pULg@Moo$A3JUB89~K~>mhizh zi`qHy_MDk1p=)|H=T9Kb5X2J(jpSIT{_iBJAh;%JBDQ)o^eHK^#ydyzqtKMNp{>A_ z2AUlWY`=1FlE7ez_#Vlqluhm^hqn*KCkY^PwRbS({FT`5Gb>RMu-{g)+d*(5U*TOX z(*sf6k(@iFi1*^>j1)3K)>zAS>Pw8eLz_{Kt|dFbs=U(_Aoe2%(yfEMAg-CG!_e6v zHUdTw9mdzY7_QlSIUMb~Km|mVWi$iwtxrkT(IjkKqO!6^=?V=UPl`v2ghR&d3Q-Tp zmR|VuZ{Niy}{hxk2E-W>X9I_S%<@qM(o^p^%3;2b$zT+ zwahSf0cO%4riZ3hr&|GwzaaUV&IS1vE@xjOOqJRJ`7jBJy5?N>aNwj7T)-oZwVYnjEvidt#Rc~db0iX07JM%rT_r?!+(&E zqW!;+kNrQ$7ti=V$cOe{$Y-bg|HQo}bU-`Be{fI3oilm;S>T9Eq&NasWHhNQ%JXvB zNt7&ESroe(_ODnx3Nqa9pd@8%QsKE|%HK%PMf7B;lFSIPK7;Orb{&3Uq`JIBu?vpajGl`PTfhVHINqS1+Hdesm6$w2Q zlBW340r7ahjG?mCmkew*^%=W2T(V0y(`O$sB}&37Em(ndE#`2-xm}{4BWw$Z&qyx+ z!3WbsXQrEa@GHf-d`6Zm%v$(&{8j8h*v0*cZY=3rw!(l?QX=vBa87{mvTx}56>r!G z?<5$%{UEdRWI|l(00HGg3x8>1&J&$Xh5Md`r?(^hWWVI@&owl1S?tbo*Ro)i@Du;} z5BN#2uLDQEwqV-k=w$@z01M&foy>aImjsMg-m9Z(C1cKS$#S`Tz;Ad_p5M$a3`jSI zPVp3Om2e9^-9@eoe(+tlT*rP3Zo|+cC;0tcC{7KmMB=SKla=7w1K)i|uF`CDqQLJ1 zt=s}#&d)vS>YAgP7-(k5%0Cy*h>$)J7fqQCeBJ~X?w<2rh<7u%y&xUupsjy3n{E!g zETuD`aY;*1?r07%_8(|jaXI(XEDYoIWb6KJiE`ZZw(aM1H`?gdh}(?Bs{apm5)?n( z_-|OOlT?M@<)Stv9I8Yxjvi7OYgZqFf}JOW3ndl>;7hPC+rg=aHU7MLM zx@3cZDOPp6D~qegwN)8Qy#i5oG+ueg#RH+i<1ve%K#WR@cm5_V3f!BIb%al6AIL{u z4yZFKCv>iQV`-v?gW-ZfrFqUm>S_Q%)do|`h~Nn9 zd`F2y9kx-QTohKk0G;i&|9~v}CNe*OEX-!D1N=<}(x%G3tgRf|`J{L^R+!W45aV`4 zpsZ?LwaQThve-;gv;9WfnhC3!^0?j>vME@{;lrx-v)2A7gT#mqLE+-V$ta8tz^c|h zqorO7*)iM;oSvx3(g>yn2j$r?(N z;Wx*!qOeebd=x{u1;Gh#)4-pqvfNiC{oEW2DB1_ zKxL?JDQ*XNtGI)jvosLxRO?LNVK2bLGFF4^dK18%Z~+vRy)VeSu}p1c1m^)Bfs@Y1 z4w&y8zO#x&#@zC4Qavfe)>o~FT5wOy{dO|znCNHija9Y|_~Z!m{|STH{=#Hz)o0Vt zsD+EVM(5E;z5=cy^Uqj@67~DzKSp=Xiov*tPZhPR4_JJAT5G#wCuEOGe_&h&s$Op< zZjU5zQjc(~!D9oyM|@`xii+2ldkDhZ-U1P4pcM`b_|pu4DH7~~n~WIFsOEzQY%G~; z@C`$ly4os5X;bv7o6i|tQ(Wq6v+FDLokJzPGPn|K^uSP-9BB$%e?yw)co_9uID$L6 z*kcXUdlB}B9Clu_2mBquQ9Cm=t!*u{) zboj(H+hv3-9{tdN8H(1wJN&Dtz(j)R>g`rdj|6sK38IEfK@XE|Ekh-O?Qb*?%E4&kG*|;T(k|hJ5n3)R0rMBNH4A>w`@^({qkRMg5y+@+hCU zkD$xwq}+FJ)ESCuEQ& zx~FtNRYh`@Yf+v;dBj8cVTLdf7(S!schZ2V)V%7HSX3dS3bVdkGd8+dvDO|Z>e4oZ zoN$!FscXZO{9o}DrM5KGrx^Tzbfl`?+s*RYgAgU!Kxx7lDEtH_GfR;v9MV}_g&ob(;Kpcr;VIXDrGFC6D);`$B}*x^QkfD z8Nq~`c1EwKbLI+5R|wT744`e3H{+>o?6oH!M`=E5{KRBl-(Q&x5`uJUgnIpk7?O&{ zRzJ6sAh9D`qE;vKDE@8-$K4@uTm~)Sk&6Ij`) zGNo3oo>O^1c$f4ksslr4SF}NO>fd=zNCPC`H_HV>p8x9P}nCFlq7AqdA_n!m4t_#b97U{I?)uZQKB0OJ^% zZv<>FMqjfHo%ozR!HWUrsnYv9!tVJn6I%&f+SZgw#&2B`NMASXj7~Q&%0W37nLi5t z$AbR((WC^B?>C)Dov46-b#AhpNQ}T)@d0iI2^&HsP8P#j0 zNqKh!nyJG;F1r5nLfl2a>#CAPG(((GMrK~Df~NpTu1Sh(ckJ4r!?Al;>V>0C^&aye z(9U-{-9p(o0~@zk&+s`)NKVeGDs?0%m|}iPiT6}L^Fxtn>g-s;Q8WiyxgvPcKseHL z4r>3n_rNXJb8}~~tA7@WZ*zr%f4k=dnIYL4x1DLZ5I!;yW=hH+0KUUd3|$f%LSC2c z6_41ez3*S(=fR_nrC(P-ujA2v?bV)oH8A-BJO6BU;iQuV8HKf`ybmdBHPPO(QHubs zfc<>%W)H-+hql3H4H$JRVwz^Of4L0d@OhUhUgo@_mex!Ynme^$c7K~b0FZa*TWe^U zk^B-@wUFzh5VQz9+MWRuLdH##OYNyRX5TY=9oy#XUc|WS6OvIyPsTf!GiMvF$V6Sjn8M!jzujMYG|B4osFo&Sm1Ob*~TP9()TmFnMn^$ z^qf1r5@2QEq-(^VQwtLNwJtnlf!tJK+z~9z7M8Glb3&E(Wc20)k0#>r+Dm2ye-*5D zz5=u%KF60J#wK6?9J?v8GrhW=onByNJPqvdecY9Dah;Q@RQWG<;e>^Q3vA1R zOEZimx}6eF1mt6~nz&yi34kfoY}j=U zlU};c3$%7}4?{b{@O3;z$OvzyGK6>K?dI6px}?&9v96fMlV|UnRIJ*8uP%#gkvWr5=oZnB)bq${WFD`0Z!K^o+4u)nK{UNtQzBDVgvVf$&vnL2(hT4 zv{&qu6xD9g1<$S|Svpa0J*7{N_Gq5CT|5&KKbz$Fnx%!h_Sv9qq0}x2Y}))07M9>> zzO&_7Mr4G{EH9mnkt|xlpudjh<5`Rg)vELyssiDoqo$OVxVtRS2MhGb=TVBQE|=9r z;mP8VpTn0{XGV&Rx{O_{3V>8D@8K&u=MD6g&+iUDYj-Yhe3f!5x8O-Ma}!K}%Ax+r zf2&jEm=OYbhHLoJ=#+?|Sa{yLzO9C@HZ-zC#%4tD`0Z&CB6qH}A^M^zzBW;lr&Xgq zruI=UZM#5Gu*zF{E)zF~qM5TI{#&$T-0b!*U@_6SW6a^2HikT5<`=lu-P9XTkIYKc z)AXC!&9_Q^U+BH%)XjCjV$E1-*P$6Rwu{tp(^$wh(icc>ci$}RCnGbq0)zL9zKceJ zLS4AN6_GVx@JFpiNSS{S_XzrM29y^AT$SyZiCS>?uy5)M2A;Y3A9PQNo$D3z+_1^+ z<+SD=H~x;vJ?T%pT>-#ZeV1kht#n7tl0+E{!R!-W)qQ55r};TgR^MtPFSxAw*GcbJ zP>=@(e7p~-FT<2TNI^9&J@jYaJp~AyOdVU*T#!KC=Zp>ODCNwTGf)1b5&Xn2r(NIa zXEXoNR650>>$99W(@%4|mSg{inwb)fk?+#nD{BP4qZY*;I0+Cfu(E31?S9{N@ZX+} zfzNU;x`bzM^MB*iWxuk&YxYV@hQ-F@v)|NSeUn4qT+SO8hdz6bKO5dk8~W8{<}L|p zBHJm7Js3Xkox5FoN-=(U%DTn(9Diecw}5=R>}~OFYz6)T z_%njE%jM@a;yABy6+$Bv*$3DjzB*Yh++DF)rpo$wn-zBqZa|W{bAo35WFQ$h{j1tU za{V*m<6%e`|5$S^&6)=8+5>fFXFy5wSq%dJ`mIjQf~WZ*Tbthlh7O4|fSmerb0@KW zyXEg@b*2@AXEANCAWL&wPYUFAL>SfuPbwt;Vc1D=2Lx{fIdq=GWrSd>Q~B1BfAqQis0m^4kU@yI zL;9k%26=@jpNZv;i-FC8#LMn681RwNIvE=Tu_<9MQqD-Uc@ibyj7zdoGl3*i^%)eG zjD@e^o1RwF;HPi=j|el>ny@jU!QQ~0&S0@XP?9PdSv%7-=zxhycu$$hr>NV1rN2hr z3X+v5X`7dvJ-nJs^~M7+pQj-VE$KLD?dP$10d2PWy(6oEQCC2%vAW<2wKg$nkpPk@ znMM%JJL7H_W1s@&wwOBJny{#i1reeP1uVQN60$7pps75%A%-IYkWqb5(kV1?y$!|g zfw~Z_3KUVHCplzzC%f?GPyi!$pCo1)FA*&k3*`NqoNxkVDocbXrQ`bdRk(sGPsKKTZ=vw-H-#qck^7eMJndR? zIHptAqt8Jfp}=)Dygr&a=q>H~2%gS&)+NO3MP`V#cZ;L+UJ~v9xN_4Uob;N-#O^tw z+;LhD!j1Tz4q|O`wd!$z9Am8QWYv(}OjnfLL|gE9WnV%~pRo1XlS931#xe6}s6;o! z^7e*ea_rp~x6~=AqSNbsvcM}@jJRsE*b^&Z#8h|q4eW{9U*vJ(o*aa_;}PsXPQ~6t zkAkVc{N?B0&+`ww0;F6{^(tpvt}yeXpSyNX2TD2A9ktR{BxGc z%88t^!{JRQh&|LZHIkjsy!bo?Inw+Fx1`4l?7Tm^Njw*cqI}l(YGT{U#E&H-9k7>a z#o549k6opa7ujxr;%u_TbD@#yWk!Euob|TSwx>B^WfTDo)#q>A3hao)NBX~K zmketT5AQz;2lDVbvRT_@FQDy37_dfs6`=a5(YkCQ&}9~kPYblk&jSgC6)@!BZ1;4m z=4Y7^zq^IbnzR%M9`xzA%!bM?s+Hg6c)7C}0D04$4A2}Y=*!5A26p__J2nG+7`fzU zDh=uug$0}%1GmOqf*ze33^L%Y#M+MnqN}#w=Qt0=i*FVDlgQXu(Fg;}HIt8bDOK8? z9t12eCTIyp!EHEdUHg#9Z0EaTM#<;~@aj?S3!gmQ=Sp&80ux&t31~UEKW(%8$xsaS zek^egVR=0vJce&wy#aSG#0``OCD~%M|@|c<9 z*#uWE9E)(#pf1okfAb$>hZTcYS-8*BI?S0<-)6DHxfZFrXrd%$fdQ+65)M?F9&Oct zd4;yiM{xFVqW3=GfKbbw`+Cr;+}2eD{s(0J)`(wfmTbmb`j$ecBVi!H0(VV`o>y8& zM`_51ad!Wg-$>}X@OAc8b|gO1nszPupZ`XiNxW^qvD4(Su^_)nqx`f=0A;?a_;*$} zSA?dWIxe1JCS@5c-zcI3uMq``a-*Hcut!)OGJu+8J3OlGzc7< z*;tf|(mvwfw#ax)=b5(!VG>Z3jFwNF*)b$7G!S!raE7A`HdNIAI-}mMAM*XCR#}*Q z)$(&TluT>sLKn0{?SaDPGgUi%`!yUhOnbZoK(R=BAsw9W0YBF6B(?2-BUagb`4y>u}3 z92NMf7U->ipZ$R6wad;ofTyzQ0RVtt``^{xQquq7y#J&2GXH<5y$}DR_PQ%1tKj&C zUq+-x`Voa`(}UJS)~C_tXCCu0)DIE!)Vp1qKq&;N(+VOPgQ5|4!P>;>he<*j2NOjG zk=BLzKyDB9|CW-`fTK4L7rriX60i6>Y}bB{ z%MQbB%5AYm3z;74+1$g~J$Qz331;clAG6m^Gr~= z?}z&k$$to!dkd>O69fYhU0+;N;_NuPDK}RhyMH2$UB#bj2Azvq!H0co&q{kZ^x(+) zx7X0)-!ZQ{gmQC|lUP;~Fr2}9tM7o3!ms+3)8%#ew*Cj+k-vCBPoE>KSm9TLzE2${iw7R=JXqf9pEyCbZu8C)PK^=>ZfE0^$GS|QR3*Is^g5wi zCx~V@>M-5->IGyo@%<5NG{odbymq#iVR24nAie}6w70>5ZVn%kwAX3m1AbT;vwhC}{=A8yI*IAg6+k=jqTQuY;Lp{v(2wn*2y z5Q38x_S50*W_@SN$+WyC1_<6eU?v5!W0x*^E7``(2lyQy3vd4`*)Il$ltG6c%*(YR z(fWzJwxJy-8;u+!$;Lo^<5;GaCh=JrA=bZ1Z)304noB>gKY5xS(XT0BqlHb%)=%R| zUn(IBOa0B)yAMmvAM1X!NJQ*bpUc!?lbskaNv`t&@d+PLEuPc2%L?C_=VI$RAm?zT6;p#QNHzC5I0xq8o$%tjt_Uet_Up zTfGB{&-gD2qbKClVs#njjCw!_Z0d3j&$y7tPu_^i`^0jxV8Jph)gjuc`HDIN&Hc!+ z59{vY89Ec}jK7+)LeIIjf$=GgDMKM0;|&7~05nfh^82eCwI@n1C75D$BC0bY+Hg6` zJ0%o3%m$U-018RiBU!Zpw#h8+5a}jr zY$8*eQelcF@t+dAbXtuwd1xD)#5%UkgRh@7@tvbkVQK%VN*CEtv8%p6dWOH%{fXg&!mX32a^7LTJMd1;yI)VuSx(D6Y}?AJF`dP|U3N|0Wa@|KCEfCWHd&>XMB^Tqf8cP&_3U%MM@5SZ)9i z6mf)qVM2102qGg)ML+~JFnw4UkQgG8hM-Jo7<3qtXo4{+;x568@5V#(lSmX=6eN{<00^WZP@m}cECh^@U4%zX!;&sWt;HrdL99N@ zcW&+!jtILg@d>kBK=`V&xKzuk8M1o&2|7m~?*I|D5CN@&AR-bd#wVq~z)O89V-xZjU{zI+;k-xJ0U@J{_x zmkl)j^9{y}-txdw)cbE~Yx4SR&fPp2i7lDdUHVxe1UoNk-4n2>j85f!d ze7UQV1~;YB9&)>iav{=y^P*!Ogq$l;5Qd|Qs){k;O(_tAXn0h8wv)3*5GehaZ32gn zY(SWOcs`lVvVm^JU$=juxN-VgR2DC*;6cCM8x~Jm2=_nYTF`im|RvCdV57)Xf9h!Sb2o%4pgfPRT zqfMKrWdjaiR?P2P;Ze7ixTH$8L5kWgl~0>MX_e#kGM?J-l`a30UCp?Hk(D{yu7JD> z)*0sppVqS~AU~;V7gj-7L;dMHYS9xElhT%aMdTTkXX=X5$b_x0E;=gcBq1c*Jh*;r z!$3bA_L=tW2bY3K$z1bfhDVQiXvC~V$>p^@EgfkFmbz~#h zcxqqbNO!xxs;gUWh7cE~y`_9qJX7uw>Hv$c0-W-t*ChX%Y(VFA$lI;AMy?rBMw3qy zB&8*VbIe6F;PWN=h@w#{j%!xa)msXJf|Ye=o_-w z^DxEpX%nb?CxfYb(_8<{$ko}|1rDdk8N^GWuvk$O@4?oE=CQdNsOw{L<%?tg z!MS4E(>Y0ZdHnHr#yv12Gn!YTDlt^Z9*lG20w18TL6j_=xlfzrQ3-e1f{{;cjJjbT zC2h2Gl|-l&py2se$~zUrW_GJQVH%#igmr0C$s5}A4>evsoK~OJT$8QxE(?H8rfFc_ z)*rk2AhAvpN@k(k%6S?CJi*gzKcbOJknYO!w*@@N60(t__7~=;meKaKq+`I;MkY;_ z?xlVm(NVBDBSl&X?w_`8USQK}iIrz6@_;JA&3Y}qQ$g;>%binnV3tT5+hewjUg49s z@D~yj{m4vp5cX)ltbHIevjTWV->U5mY&^hH1vtsI7z1d7`NDF5#Ef4u&+=xG$)>&$ zk{gPi9H`}~gW0Jil0FNOq0XF8&hqhC^z$wVz-<6bN|X+ zze{;&$2Nvf)fItmwtV&$>3kW#=NzysWg+xGsm5-DU7OQK#UUt&arMC_49RV zmUXZp(2wxsgP+cTFEllI%=%Dw*g3+%rnB{j6LR=oWRPWCCtvf2abXWqH%RY?mvbw; z$H(_nPT47IDXSd>|RY08yQU5}q#Sxr% z(EUcn(wqH9YmuT!0J|n1fe(c@TTtVv*`=xvHws-Yl@3<}Alur^K~|*$mBqI5tSJDL zE5g+n{zmhw->X&5)nY3x?CGd_-NGRqcf}36SOb0YNSyY{#LGQ#ALBc(U^9>2I-Rbz z2a|mT?pqA8&K~=^?dA(pXXRX_ahCK-hu91tS zL3FBIaV&coq*jP_bbO~=gJy2(pLPz05@gzJHT<;qPV14a`nPC@WWK>fW#6R%7NMwB zSyA-dyHUQ!z=joS;D3KYG3^N=xSQD_c^1PF_P#;=s~!ea!x+G@uOu|bei|yBLg1HslZlVUzoMedUO>U@qIF8q+dv z(kqFQ-pU=&^<@M_O-m|JkL-Pl+WMW~yyjj6Tnk&6X-ZO#fC-2de%YR_2PC3b$KU6{ zWEaG18OvYtSD@3RufOjUQEtT4ub`%+A@HkL+F>5f69Tm;Z26S%CjThnnp_@(!dtg= zWok|OM|&j_=~*>qUh+VNmoUn>jx!XtyAI{#iSPX&eO!)`xcrh#!xw$ZM0#)MWi1|^ zp>KvoGlV+<*!)$MI8Nh0E8AHDJ#8Vt$SF;UC_^N@P3Oe1L;vZZei7?91OfPKHt~QH z-Aj)%tg1s1fpCq=A<8_t{KJ&@;9RFbiBdaVBTqjKCS+1ExJyC%;{~jD#D;p847%?Q zFC%+7n%QUUI03RMU5<0q7NUCpegbH!$3dHwz|k#fK?F-z*o*#{QQTlaz^i4G&n{Ls zvk~wEZbq3Pl%y!Av5M7IwyLZRB&;ETQ9~Qmsz`Z#1AewEHUuUtv~x zb;bIa$V1m$RYBxji`Bi=-B1?~Zbe$69_%8)e>r1-cs2q})^ELWsLo5@EaJu`QW-er zlVe-Y{2j=71cASj@Wh#4*=rWFO00{=##-8de0ESdemLA3xYsB}{P4#qok_uJeN5l- zd7gLe(=(DgN(b%l(U`h&a#_gehM0CQ7^)@l+%YrF)Lw1ZO%55;`B)#Bm)pn8l|zX0 zcD=u7)iGKpMd;FfJD)8H9-~FG+>s+`dXSeL)|y;nL3v{7oJVDu$a~gZ<|suM8`2)D zHEhKz33O!MNh2G9?<;huOFIwX*%VIDTq!Ej7JL4o0fo3$ z&q=n-0)XSycX8(gm~SSc=`}DJwO@z52@9tMr7B^9VtbvEzR@AfqFVTtBJcW<7wL$} zK0)VZ&xCu#CP3-`FZSLlDz0wZ7Dj@*1lJHeIDz2q9^55JaM!|}5Zo!Ca1HKS2^!qp zg1Z(};oR(V_P5V%?Y{g^|I=x0K2>W~Ypt(!A-4n@xPY{{rXbh%iJp3Xp+3yA0jq^5|k=SuHk(64w0T#VY9m)a1{8L5BW3nEJN z9F0U-9%3#(a8%V+WJ1D<^S137d~>YL_Lco@5vY~k;L&k%X6gn}yCv@J<_YI97w(cz z)A9u9*z)eM$RaHB5!vr$=1*wjLex}>^r-Tcoj4+;ywMep|Ki84z)BiOym-Llerv71 z%3?+*)EM6^{7BdU_Y_~P6 z41^_|gBuaQ-W6_WLKW`RyrUv_+eG97US_#pcVATmgOPPyU*p@yt5H^hrlgBuWkSbtDxky^pMvbray(rv zWvjTR6E+EBZdfwFl*`>)Kp1uv6>39B(h7>rikvV@?>F+{hmox@cc3x0$%XjEA$qyx zhOgh~lEDx~e`ahjE8|tZ+G%pQ+)Qm!7|5IqC|E>UH0(;$F6&*q80_VwUDrl`dcwgMH|QgG7VehZBa|Z zLT@gF062gJA9L1Q9e;lZp$WpxZ_ecWUu>#$^?H|xs5R01IRd!i0US}SO{N3Lj5^y@ z1l>#3GH*69m4B&8j^VXG^nfC=7 zM%_S@RYUcjzSB*fYTvlHABgonBAVXVpz!wq8EJ9+9_{C=aO`&4mF(1JKjq3C-FH|s z*YcCX0d6P1-+sQ(VLAHI4Adf3XJjL8PqrtQREXNMSK#*!{9N6b#%rI>D8=EEe6F!m zoL+@%d%&U+nf|vGJW+qL($ht1(6lSLB`O=)R!Q z2VBW-ntzo7ZECl?T0G{xwlu=JvLpzLoI=c7=gXfD&ASMzk8QR}Lc_q_*b9=zKN^gb z!gk<{U5tQlY6C<&rTDZ@vpT*{OiqMg$BH2t(;0aa@^G=cy&Ztg`CW$&n`)kJFeI|t zHKs+lr~C;YrK5OI2z<@Whauk%P;*h1aPdjM0cYh?@QD+@R{{r1{DQiT`CE zy3w5?0q8}#_DnxCVzTT{+GNAkubRE31M|20Q0JdihK^ge1#gVbZNsYVy|<}77+hv- z!-v@!Pn{rWKz02(=$c*5-7=Eqi80qlKIF$Ht}pMD@s%7*;to6Lg0UQK}njewi>6-%yT!eTkuQ*TfKy~Z7JKl&NIGE$IhbLQ-lxeNcgljGM% znC*|EW%!b^jbBxn>z5X~*hB|7QRJf8e;8)oq(wOBP0bT>Ct^O`#G&&h`1~NT3ypYd zDxty3dh?(tsaS&4!U~KuPUxet^Fhxpcf8bG{ya6?7|GjwpnkrIadIj|t06)4)av?^ zTZev$K@($vfjQsMA2F{JmnrTGJz>_5C?n__^{qaDpGRCV439RTRyLFRt~Udn6!5@U z-NZ?V<*p$uFOcAa$oE}K=gcl4jnF4#ndy!3w@iP#_mUle#5L#Xc*q9fa#6Z?_}nU> z5<9}p(T==W0~f2pqvPi35_pifDd~;V9cjV^Yrau69r+2GFCUyH-dZh*8}Ui^uriQ} zqANJ%)hFq$xfA}laT`Q_&H;Ws;FRQ2Jo*jp3W@}hGM$@0TAX~J0(G0lGcnT>$}m|M z)B(`H600$N3jhY^X|GGrN?L%+5AV&rxG7z42$#d{`JnN*rxhCnPI=(l3iI-@DsbqoIKKEjlv&=s`sS(ihA^ z5z`<^6A?7zjh)Gbo@tPCi^Qe%bQx5JD59tvHE|vBblPX{l@sa9jRFdAUvl} z{@TvhPnI-wraRm*Tdrq30TCj^V-625c3s{zNQsuU8!FY6$Er{ANKs@-R+99yw{jeD z(6PfvGE%Ck=YgCbLRub&9w#5iY$hN%7k@kbfgwPi130ekY+S_9bY*44(5ZL*cho)d zxNlU}Cuc`S+&guHb@TaW-8;d$nZD{@nPvg}?kK+wW>C4V*bqcF(}|=NJg(XFC5?h< z`Dhd6#BpuVNMF9PiX-8Q@zB0Ke|t`CEo;YS!PQL{RwPVUoi3f!v75n6_igT#+cV}m z`o;=b))pWuD4Uc%HvSY&7XDr$S_O6X_{XQw6yuUQZNQ${9+!k|$T;lq(*7Cv`WF2z z_6OLW1~teWsQ5a+FDd~HwRtv;MFXiPQr)5r2K{a1V}bXYVey1?5&Trvt4dR=5wNV3 z9K0rc-sw|ed?^4O3sx(9w`VZH8K8b&_s+H|k#WYf`Bk15#ddWH%@06*m}yz<=i&~R z&Xj86m)C|}o^;rE1Y>|hiSgF4c?_Ay@1A?#DpWU7_*@nlDPI?#{==BZ4*q1rg9~3* zFf?~2rZPGDbKPRIm3;f}u*M%3m$~I9f0_<%X2-s(*MV8O*-qtIKGomQz<#MNHF3Y9)S!A|UoT-^EK8Z5Aq*VMc5oV^;Mz61n5`5d0TwrL` zXZBX^$>hT(diti9sqO7BB9Ob}S>U+OEMVV9yvPDuuOfvu%iR0o&>!;*9wwu{bqdL7N-R?1KfggTuiHv+FsF~Tu8a&O5D92jo-=Nb(dUo!* z>{<(N)2CQL$$s!=KlH5mr2uH0yXYO?H}k^ivu!g|Y~UEIO~wT#J$_0DPCnnd-q)p$ zS9bxDk+MA}Qg%W-^j!GPx+K*E4mnEREd;eh4wxqxtz4JvG2fK)%H{)e9S+e+L!M~72#Q_CSYZh=ueeBn*X7!p zL?%e0g}$8w+3H)X*RMF6}44or4U8wqAe+y2o1o(pZ9##FOyHpd!dRtIPc?&pf@)T z;rtkfQw=}TRsYUlnipB&rT|$|(NV4zx8!qL4a5tCz`IZ>EG>lfRqLCTf3+S(>HNg8 zK8J3?AU5|}=)+;*r+k58U9Q*Pl11NP6e-ys65C~`M?3fPuVxc$g2EJdD=(M&ew9)6 zhXwR`Q>r7`^0%5i#Q4wECN*t8iD-}^Sf-D!5r6=AxAO^+Vt)@mkv$u1nYX%rY$Fb0 zXiJOtOO6#i|1l!jXTVLnj^w~wKX`qEY=V1yT@`o1;-A34;JL#7c2;6WM2BBDDiRqG z8F*EInn-UKN2b&mjH)HN0^*$KKmNMq2&j}Od@(i98`?zt?e5odI;oapcgTTQygg1A z@3mC)vUy;$fr&K79@uzkEka(bhkQRo<`n!SZ&`LGO>r!IWU4i<5=fcAFdsM_&s-Gt zG^UL+!)eJEB(?j_-j;rJavOF^ryQ5N!;SlfrH4k)NG!dr+!R$uBypiz(7nH)9p zRG_)BU&rxCp<(mRPZpJyyQp#6>Q8!eyjNo!gA_DK1<0%3gNT`;72$yMi;{F)&r78o zc=b=%#I{k&ix@Z!^l>-63dS;ZuRP7?ynW**urot7f=Cr&n=%oCGkI_uH1pn|`Scv3 zpYh}2VV!or6mT%$#o6!9>0Q)-dLL`4bWF@F5(I@#2(ovU%KLV;Qx1gPM#OyYr#^s= zOgBbZy@l$X5tiP8<%?==<j1@Ip;L}u)!9Jm@8__Py9uwmJTcj1iMZ}JVvC#4Cghs z>VwYoho9V!0(zT`WGC%fW@rm2l_mkmIx2Q$=&^w%_@;_~-I$N+M^TgN3TtO`I{^n3 zit~zUh@^AM=NjL}(aV(m;?*D7J2aV@J?!qs2j)D&(7$3_6kD{(%yAD8ey#l& zy745exLqV*gsl)ot%7Um{+(uHoASNsLL_d{W2&$khLav7Sb|L&M5a9b=ppxYY^!(J zjo(aQUSjWgT>Uxs-QDE&g{cnC`)4j<{0G9HZ6msuM8VM94-W;l#K&2}@qXS)ed*%> z4Or!;f`ple@C}Aq#Lja5agTocPGLdc*-hgDE{Uy-GZ z-Cs*)9&Tq!&)Zul`Xb`q?}ns=A%b1kQSINrk9xGbnM|t2S?c1M+}T(DMW};Axv~^{0t#$Z%m_U|L=6EjPn;rmoc*RaJ-e=GLxa^rdx+dBf;9uHyuj+a* z{nat=+wom3+hP6wqLp>%#M7)FF%2dhIUg;Y4YNPT_pg;EJ3WpAWz#b^{Hgln=7_Zuv`1Ouf z)O9nyl418%6jC_C<9+9AlLt)z)I6)fy6#T0z`X$njxRwqwfx8pwXfCZaw_sQl9`b*G?2bg!8@jk6e07i)4#lP>ns1rFCVsjh*g{i>L;COWa`r}?uTf%vi2T~w z+uTRuf1V>4LF_%;%vlkP-5Z~YA3=Xn_B@L}HP(JCY**_jTR$U<4ACAn_|q!-xL!qm zWF1+R#F`@n5_TTc2Fg}_Gjs25;z>0;M;LYc@1MNf`~bHd8Rc=3YxA;xfoEBWLmbFl z1LcfvaUHc`E;5?fm*922aXAAzK+8&Ke)u%2R#8G`Rf8#u{u9he zbn%IB9_89}WfeFYjzvG72D%F7^Ppy`VmHLa38_r#?jT&W3`!oZmuYK~gnvinbsB-j zo@nmRL=+1QZjZ9h5!hP$IUb4WG6*f$V<9WGBCee!v3>l<1>M1Q&?0=aharVs_Q;d* z!4RbIzpwmrlNN5f;+$n~^Y!WMqHRzNl9On!%j@dG)dxkRcJ|)q_*gYInoh4Wf>HL! zZnWmcrjg5PvlHZu&ds{mR53K1(DHW~u7^Vn_I&O|^K!X=UR6y;)3e$iW6c#xEkZr` zKTqfif5$t2)ChW@zBqI~hL=v?n*9FyaHPv3hA^a{HoDV)CR<=A+z;ob zQpra~k0+tdH(PzQlprT_@f&%(&wQ!(x$93ZJh->t>P}6cy-Bv*x6)^y0{mOPB zr!*Ngrq&X^9yLii#Vnj}l|&hNe6DVj}P&2cfCp&o{GyN2HzvS2hX; zSJa5?dg}Y;l#Tops*2`wCekI>H3satB{COB(iTO#-EXF$BrV_53I*mtHa$&!O#bU% zAM)w|pE$YJeh58PkCoaXxJ2Kmr^9R05PN{Qb$5;YWqpS?`esqkV$DEZ^OffO zV~@QeyXF@ox9}m6i`e3hPl?T>tD-x+@G*9BVNw3b$qBiFML`)g)JiCw-u@DvXLS_+ z#s~F3FpS{C`4OxH#3~QC<*JPZk>!y1SmXp${i|;k`07&dOdZo49E<2xv_DqtnDPWf zJBqn9u;I*S_Jk%`7X?DpE9V21odr$w0NZP5k#bFgA6$gzSuov15Keof(Nb4mr-cb) zf#01g<;0ty_en2kW7KDA?IO|F8QMjYhr(?i%xjU=A^Jmq;wV9d8jY5vnw0~YIyC8Nbnxyxw zmOI@2Q5ne2ee_plOd-Tw;9=s+J0()4m_M)C+P+kK$ha?N`i4PdrX4>^i|NF^SEIOk zP=dmVF@d%0NLS(Zx57Dg->Ygw46!Y2h2}G45OBpnt*%ehK`$fFSmysAd;&&rIfRPs z3{PyME|MsbN8qyxt2mq_b+e?iF|w#!N$uub9uq&J2IL&eej`559(fx-_Ut*X-QN?1 zW<#TkZz>%A(S%AD2(wxG)Yju8@t}yvQ2z!zaH-_M01o3^En8*7i1gkz`N&x3*F0gSUmagB9$< z6Rj?efZvlnzV0!sCwEXdTd~%NqOq|^ygfk0m+Ah7YicHTj)ZX}Awk35NK>!**5fte zhIgo2xfy-rBb&hGl-;OW!(p0!cyl&e&MHVD7>?H~C61f7})Zo07BCf9HsRycgTheuok_&ZLycT!&?fSd;=7b%6c>#axmNuFqRPb@ zA+_nazqi~bLV=56kM6Hjv)^R-ZC!sAv3;5>+^Lrgab$d9z&Xok{>}&UUsqOJ2)NpF zx#k&6!AqmSZw}NcOmmDZC(mn>Q`uB{=>o%>7wpkF-qX1#;D8KHMQu&4GRr1^PWU2OaU6QfN$kF}0I zu(`zET~ZuMMcd&Q4645U*I7+mqVb%n^9N8MxzF=IX+aHvCKi;M>%R*cdC^9`*2-Xh z(r(91j05WClZi*KWaAWlT=aE+yNMlbXSQJ*OZ?_~?v{vh%4W&016v{Bah)>lzU!$Y zz(LL3mrqpyX_@lx&S2M(0b!;GizL1iWJK-^tExT`g|uKhbQ;)3Q|A|cd#R0x4KMGD znXBw<$)3iCgKU}$hvOynky{)nhw%mV%0S(^l+#?qz3RO~dOYN_6SV=<;OEgG<^PWMG@m6!UYFR~0%H z^%69Hgty(uy^E}F52SVO1}}^_8Rf-QF-M#R_OcBXRym@~l#K3|X&Gn8G?|V$w7v!q zc7?@12qn0jNjTW=H9hlRpycJ@Z8|(q2&(ZWI*ZgxSgjpBV>~6#w~x|AB9hF;))KoR z1zp1RH@h|4QhNm27wNVz_j#dg%hRfzGn+vi&>J2l7(a-h0$6LUq}rPTJKE~vw;p8DSd1Yg~JTJ{!kUIQNCkMwf!dJsB# zDqen$R+Bdl2+LEg+6rwoi21{Tg^ibO3|!N^5x~OfH+76YNxu0F?Yek|t&uu6?zKl4*4kv1FtnuS?fRE-Y1u(K# zjb+GZ$1!`zM{b8rR_{j6vxg%rM*}ILgSai!d`Q!zVmox7k=-l^=`%DdHiw)zG!Fyl zy_T9=1lDa#_1dBfZG*HwUraV-vhu6S2HR2U=gSxIlor#Kkv2dh#`$3PheuMYxmMWm6?m0?xJ3!mjXQi^eCy-zq&y@? zMC7M3v1$EC>u-O+zH;R1U?PBY)kM&tV0b8MQ|Yz1QZ{|Hd0>s9Rl_;r`Zu55?{ro; zuC-g!2=Cs{SUh{fFs_m42d8t<7A3GyXg;pjHOF@6cX0l8cDtB6*3_<)xH0R`Z=-(o z)-9p?@b9`MBuEM#*FGMt^BL$%zRY}^N~C>|6nHaJ@L~MD$VD<@G`U*fN|${8T3-1r z_@hNIE8;*sl`XqB$=*ZuwYr;yYS=bv4dqROR(WEqM{XxfvNdM#tOme*PJ-x`CPKcC;&KLt!MOpPvMNYq051pB zzwrdvmp4++H?6wr1Iy5`9oXbQCs?wJ$Pbye*Zysmz~yjHts*hji0$CSVD=c2oI2lS zzeD=l9mBm{;SJ4EkbwD%GW>60sMoB6$fLZ!#p|vgh5McOQ$bc+s4EZ5#1iIyg(<~|aG_Q~)~ zpk$F*T6_L9r!FP7LmrV>@4FUi2!@20diU(BjUP1#cgFW6W;iz1`m^I1&%M@pekR!u z&5vH3(jZc|vY3qL7x@6iDFLY6A}>~pIS3aRFfBxe{TeaO}~!SaixCsnEm7u)a6 z5Mu`O1vpBUt^ZE7t=U<4JW&Xm{7g=Blu02B{Ge6UO=~2?cMdD1Fr$7t!E? zG-WcQYO=p}`z8vUuC8(2!T1hBTz-Ys4{>L1uEX<5|C{%`O2S7sRyE#M2E=(IZzCz` z5b2{;ViZ4$@y-JP)kuaoGf*@-2JM=RgArB=P^Y|!&MFQuBTHw%NrpRSMuxAAX_ip# z-`R~ctgWk5jfsp7LW*;?lRcz$9apXZ@aSk#SSkNd<^$GR9_t*c5)XQ6-48;40a0JX(4BiAW0 zNj}MFo|aHAF>(ml8tpPAQMcp-8&Umi4wJrJF%XOy+1kuS$x4}wZ1k?`53{Vbon(?o zyB6z&leYgnW~22Q*ar#_J;nK_j8%nCG|D6QKRanFXe5G|F$eU(_I?!-K<IB>iI*q7`1zv~5z1VTXa?`)IZwT!*r{)tW@6LP$MF`fTpYpkcE@%kV`{$6#cm%z z(C2RG^3bGiPh$Ssr6HANH$On;2>%j9>}4l6e`}UV4(>Hl@70>6h}HN{?L`MSQ(RC< zhs+6PeyE6|*@VO%8HhepD!x)7RHNe<~0xy8;ZQ@*@J)gd{4n_I>4>o>lJwF3V3pG$tV zBH%XLr@GJPRYm61Kc16%ZC{_lzZYH=V`^jT+fUPcFoN_#ytNt2#eJOIt9ksiSMW9n zHSA4g-bG6?w)ove#uM1r3PD_j;kTB*gdUwE?7eXPM=Vf5NCcEPe2E(IrGReG)b2gY z*`=KTm##N~p{cq;`Ev8N__zt}+sQVgb_;7VJ7N z%adh73o4=a=~VeAmH7iyQHGeQq!g=Hw4rL7DNT*J1#C23uGrjtzHeAmnXEs?=1#QG zk=68J^Hm&R;jbn}_Z?#zPL$HD`!k$D7;AFMWh&40r-H?=BA5lcl5Tu0|D@>zgrbtG z`N-}A*i?Qj3-7X1wm$B=kuCa^7lz>Q=Ob1`$R^gI7?*jy9v*qdk^VmQ@7}PM{n_$G zlSx63>1M*F(Fh$MBthAIm||bc#(!h=jmWVI<`24q6ItPexs+27x9MYMThRn*NL81k->t0%Pe60;I4zk z-8}cKptle@Pa4~+xh~Z`zY=QON4k0%*LeNxgYh~?ao$F6h^#dNUu}-$e%IQb&FRr5 zERY!UCLpz{T{yZS9#xJf&3E}v0LqH-dk6T`v88F^52yi73p^}Q=Nz<-H39x{!6CC7 zwXJj39dQbjM|!;Hs9yr7DBowUSzvnSuu=KD+;U)pLv$>95v+AMiuue1h`^L9X|XR z8t-Kt0_0~FXIq;@$u*6sU|LgOz4v3Coxuod1edxz_tYtPz*Mq9;X?(X_)&|i7hoHi?0R1x zqf${4ALTCpx%Q;!HEr<=wSOlM&GAr7<-8OCcnlFKbCXY&st0~`g_(c3Q}3W%XuLH* zVG?7j7vSq^FpW`L>S?th;mbRG>$NzWg)e{5r?snw?|Zp-=}`8O#Xm8($17TI_Ci@H zGRJ>|0ZZ}Ajn&cHVQGL}%JOP7U363pbAU3~#`uGwpzSpw)pXvH`S9+1o&(rH(Wl5LUDG%5mfcjHhv-&_}-Vl8#6x!dh0(%Yfq zQ{&BW9LcJimrld!O?AUrrn2|F(7sX{>UrOrJgaa~8{mXe$~u9;4X_m>+35 zW4Mu@vf$-JEaTp|xJq4dR8d!S#_r_08@ zwSwmfBsLFefjZC-immDIH-W?zg46fj39^64;_ZHg7F+f{()S7ar(zW^-I$7fmOuC< zTavD-wDVxTN-%zKD-(}}PkTGQV@*Wrz?JZIA&ZEOoIPw?TLWs{9J-8Nm^>$PykI3b z(FWdli-@VAt{Kk2pgw;@hLw!!BvnC`Em`ty)!_D_@>lYEr_#QXE zpu*q(E)=FSMbMWphk6`_9rsZ}GtFQ2za2v~S(^g0U9GQrX8znk)ItSEXz( zpaVk>&P!)Y0J*dx20XY_WH$4z6MMOe;H_+Hcs1(WcMZKvc*^922!4{Yv5 zJG?SC{f)P7p#{RU4=SoAoYTUe*N&H%Nq3vrI}NhcK(KLG4Cbl)5dV1Rl5zKM+;J1B zsLiWbTETA$0_*Wp_ml%+4smrOCj>&fG6`3N;`%Rn8I{g``4(Cu^M*D@fF!AXm91QP z8>On`g>Y7?PLI_Lr({x^y+!jD8IS5L2ctZU%j}ic_`gQ<6Vkw>v3iMKeF(P4tyf7 za~97F5v7{t`Z4RUP2i1%xRU1H^8%xhP-4vrSgso@!{#xpuq%0*-QyLh9=K|DWZew_?E52@nYDU_o#$so`$oJtyQ)`-6BviZW34G!>=b*RU|QRKVTYYmd)+%+`nWtIgMXB+rTN1A^6t>_s(@4vqpJ@S~FIGEX8!C@F)+yU1Bwi(niqXX zfK9Y!gLpfe{2)UD0jTSn(yd$(}3o_js|%)s<=gidnNs z$H}8M<^`eE4mU7bqRN?5ed~Kn#nRNEr&}}}w;YT!_O;T@9WIqt66LYzhtvAfA^`f4 zckQE-s90LO;fk1|f9*)v^=+e5Qwl`F!gR?0$v?9E9K0#m%}3oMY`=D>b0rCV$v68N z1yB$dcbGy?FX8;N(%6@*3M0+z3~Dp@Vvj)Y+dV3|mb~nVL*{T8n>9b6N7xwJT?|%J}R-{oG-tJ4=g!3Q;j+&Kk!3fiC3;!b>J~)760TK z`|Sw8XXvO1i_4t`JR(P81uKLQKhU4kIlRbe;?7r|CBCx^Y@#H`>6NoT5%wai^Hu&2 z3gW_Dk*ZwToQe6{F+Fy1d}%?1*Z4^b0C!?lp5Thcn|N=Wf6Oh@-wMcIc7-QL5h$9h zsk0*a7xBINQ-c&>6efY^X{6RCK%yu#G3?YOoLNqYJiJLqZK zI7wHjW-4mLr`Qx#BKT;>qw5=mrbFi>UdcP97i6A2dJOO5y`Z_w!QudxBYK7wN0Dq5xS1uUlDnsHPW>f zD+ga3k3OluRKvKS9xqIeLEikDqFVjzQ2mcl6NuV5)B0^Zq~9LDSLt3jl1#TZ*_f)= zBTlcLubBjC;q8KtHwE^Y59FHIk$E?%@#X9mQ~2uI@MPzpsIW1m?J&u+AMVv99u)d7 z^-BFOD$+pe9Ghg7{6nd0du;_P0OC#o(aB1Q#LzR*Xo7dqqu~$WTM>RCQc?ca`>9ex z?%lo0waa5N)NRs$sGhv>I@oBbv}U3hAVG>#egkLf{Dcjz-Wv9WzQtn=AbNJa{!Xwq z^KL4@(w~G}ZLu%5130~i+VdQIC!cFzBggZX4$~e?v~97fd#L!zu9oRiC6-H^yh3e2J*V*#$zKR=`Gyg?5E4!zP)RMi zp$>1VjG23Ke;MP|Im$>cgkRv$*T|?K5~fgXy_2_;%c%b1A|2+1b@TwGjKk5pDTT;i znYxJvK^d}TBc%$DI$+n?8kEAfR8jU=fR7ydO0Xho&Rg3jf7If}$)o|#mCGh(v27C%aU5@S&Hc-Cu4TX6O{ z3@pdv+t+w=Eyd>1%#KVDx9^XN+#re03%@{PDZTI{vvUXwbKuGd{c)B{FQ@A23k|M;%>FI2 zhh6S-3I|55Fe>`$w2u}KyE2}(3*%#nrmwWk&w8MnVrodq9Pn5S0$Nbu0ddPri}=qx zIe~~vDk&=2+pX=Yxmf;+a?$&7cV%<^xlB2wHzTf@|12-RTEjmWpSWjTlujM!VQmj} zEaAyRS7^x91tyUj)WCi)(0;xH9DQq4Mw5~9fho&Ev3J=ce;R-&yCfW6J+pdyd6#?S zO4_mhwk;&rLVQ}HHKDdP_)wOgy-OcgY7@-ry(zgE6(q>>xXp>NvLSEdHvnvixr`+o35q4s+nK%*b<4krHXYjaob zmgy?#Q*CiKO^gSH&ky6{S#1B$HoXnXU~6HEx@XJo%W@iM&!17q*{#wwrFcV$QgAmK zVnheQJA*VAn97_1#gd-f$ILhzO(tK@FW)T00&pPtJ7e$2d(%eW_04q5dfpVKq$6Vn z)MQt6I-0k>iL4^#2udmUZRF+{8SQq7V+@|LOyOzw^YCBc*AUz1mL=LJ`$J=yc|^4-YZ{N7QI6)a)q0!2$VVeg+MPS6K9 z->pfMImO*y2S`}#DEh9gl0z!?^kdG@2#)iQ>ya@Bjqo%doGczL-}UX$bFh&!pdb3d zxYd@EFcxS=XMLu=5^f#KFvi~nd>R`dP)W(k5S={;&wfB@5HUnYt99-ZBIh~s*GWke z#X>xKD2|JajSE)0k(}YD9-|n8O7Z4x8nNZcz}U1+VX;BZ@LM1&|6-kxr3#f&L| zC}NRQ2z#Z--C#87D7D&3Ex%aNbN@B|+w>O|oB$FS49EyP7jPOwzKJ+;bgR-ys~wpA zVz>$@!)>Z zs6LPa$+))G*I~%e7MnjYgj-{mo7UJA1e51a!kfBpu>~!9p8pa5ZnNik+PscONRS;R zaF3TL%+=sgaG`zeS6QPNTlA<@UW497paMeS%K@_%G9q%XKlTxDTpfCIp#Tk;-sFUJ zES5A~(Y0^V8JcLKCoksOFgwk>XfHrX_Q!8gtO^L!M3mosY##FahuS*h!@1V~x>|9} zIzC6cb{t&tCRYXl=uu*Gs+7y7z!x=vf*^qVnZ!(>*Jj(u?I(5rZbY!2Pt=*(74U9KKbDc@0tWOE@-Sr4Ei2&FwI1cD@*g=s>9pWefN$$FVS5W(x&QOC}yYjxXPcT?aj=@A5izd>EGr*0Xq=SMH_`0+e(p+4H1ew}N_H)+fm1OtWV{ zydij$8Kg{WrA`GWO|l<8d@{#HMxV_%2HxZ-u#pFXLnaEO&%WAeHQ1A+QrCFfB#H*q z&OGUqq4lgtJHwLGXW5sguF`H~p=b~OJZ1}hcitiWX6F&EzdFNnQo8!8g<7j#Orlq2 zY_e6}n5)|fI1M@B5sPo?)}bz+_Jyr&0EJ)*M0L+~%<{7c8-mK_ZT`y-CBzf_`6iCv zR4cVbgOP02lSVWJotdEDGxOD8JBd*hL>uoNc-WC#k30!9o#A(HmfXa^*8JxcRF1{?0vY_@gp^5w$pn{XfzHZtyl`H#PZqU=73~-pHy+g~S*OsiUXwRS{}=c!tW0 z6(^gjV;eWv_)(lOzmMk58^r5oK+L@+PqD$=>8$Z#AW zg(Jq($au^c{{RBYFE#>;@330R4yeKRjn9u%>SXxI0(Q=v)22{AbuV#ld1A`84*JNA z1LjqC+GZi~ERHMBc7kQ!(U6nJv7rds1A;>F^8vdv~S6WDeDuvImx=W z=1kA+>AKRPVEMF^iFbhPkp4qb)XL^wqwC*$G*neI@{SY@GHB|n2*9SqF%oQgKi|Od zTT~EOIXh&w85mueFdu&^FZd$BZRu|JiMH#(a3N^A5TXn%!(PYPRQ;|ajMlnJIWQ>2 z^~}^qs|))N#psgLn_#vyvzM$TP{QZUGp_s&Fz(cWU_z!#ho%G6O4J4tR0 z%e$n)9?hOS5xc9S z-!2v@=isry8@(c#dhGi1)p?}sa;v;2&+yaOuG=-5a;pi5=khnUyKxZRzNnukMhv#s zC4!x9f4unA(2{SoIK()`>KWlIj)l5?hxhdMcD1-!W*g0&c)w=EJ(g7FsNPwpVfTWt zl#QfQ`Sm)a{kVm{acgniZY&Gl7cTEkDt7UOUj&|o{BN08d@L(%#U6e{R=oBk-JfSc zVqK&|CGdnQrO@(4M#6qq5&fI?jz*DX0yc&qpv>4<)`_e1f!bFoQWaC;zl9ftq#qrF z?G5s62Rg{tJ?>`~k2t;%pvV*+z8Zbqx1sf1?di6Le_*&9pS)lo$}QUNDgFkNtJ+R#7Rauz*-94EGOU5pb!tXJP^iZGsw{E%Pp0N{c)HX7P7e_$J>Mcd9;?9P5XQXZ;u zgv(G|$+XTpW~Sgv5TcR12Oqb1!1t8zRlDiX7pJO|)@&M2^%fPHWl`3pH1S>67h^C> z=9`G>#laL(Mi=8y`hf9MmRG|XUs*U71_NAkmB%P@UmG8YRi|%$>r%iQIrfcz8eZ{9 z!J{5zb~o%5W`D+1^CMvLAjXo%fI92_etEo5Bj+Bdu~C}LO=K1W7oC9*exlcF>En$9 zrV^F4X)gF0%b}q4)!+K;dY)~6%L2dOo%J(6&hbu9Pn2RHCx%SdwQL|@Ib2+fWofticRd;1rhn_#Fg;)KdbPw{!iict`GIl@o@#J8znhp6 zN%-Df)j`NB)0F>pP2Lba)Jo(t#XmRWa=k)+T|ybs5!Ph`NtCN{&?u@RRGa`Se46|N&kD(^sk&P!I_(%)RxE--5!h|Eo!+AU_l72>pc* z@T@rC*Y)KHyVLV;ojz@{KeQtq^N=L3Ayl_6JSmfe{!9~(RQqEW3StdNIFiqMA2pls z;?p?>BANia>MRO*u6)gt7Y~#-3p|p_r_YihNqG~j9q&Ibj@4@R`u(e`U-J2zj#B+D zM|mfH9?1g3+xkX<2>Obv7hE$(R4{rjC#y-2X2i=)E zL=rzZvxu_GAkC}giz2v~D|hEaiB&f~#QUEijbEDN4}PpM?z>GKdM>FxST1dpTEM&z zw$vpsendFz!eI^{u(i0vFU5F;i7zfQW|D5+c0|L&7de3l4%K{&ZL+FqxxDpI_Hu5SQneS=F+nidzTEpIam4&)IRF{y7nZ z)XFb9R>F0|1tBcooF?e(WdN0_KVgyNbR+>mePO-OsRmES_rn!j9&>+oxuaU9|}3%ieHYP8RNm;QLHr!iiyd;}Uzyls##yASlK@ z(3qJljonq(LqrY7%kwwy2uz@;!OsbGF3Zn1PvxLc>Kw79k|jZi#nsARjhZ?y!vx`y za{Cb6<0M9cS>U2Z_CLu;DzF`B~ zgTGptI%dDT-SsFur0L=rJ2vnCL%QZC8yAI9q+#fyzgeDnBLAKP76-;q#trhcto^gf zqHy46<014|6G^EP=`wnL=FJO%xxjj6zvi?3p*HdCr7x)9H~BkZlTyp1-FI1hn;#bU z+Vkf@d9ei^v%<*53SJDERFbrDF7I)i@-@re5Ma^;r^8-lXxvwKQIv z^S>w~!U8x{VXGgP1CU37yb9C!o%d_c-!>>P}B}FYgURcKJee@#78!3)> zS-$I)gh^PqN7X{D#4%z0p4(4a~<|`ci>=e0q92!Kl%DXLHy;y5t zD-Q4YjYxQ#eCZ0}9x6LrQ=l-%cciWI>0s44f+8!#Xlz6BfXv zTP1FRrt`r?V0EKVItge$Bms11G^be`M*xW_65Y-@9vSlOdAE7)CSLs7*B$%4sOutb zf8KDm#LpsarI4BdV<}4V{gCidy%U^jQcxG^dy=jO)r&Dt@M+8>K&MTcrZbXwwdx_5Qm`v6~s4|S=cv*<3LTDN>p-nT*37DDZw z`|2%R9&ZPHT#Kc`!62H#LM@lvWls=J%1ds#iqmuAh#Pvq?m`Nn{IH&d?a}z-4^sS4 zzxJ$r8a@R5tm_O#mxY^E1z{^uuUu7`aAzn7Daj6yy0i9cT?HWUuOlk`UGZhtcGq&5 z;GejZ(1jB3aII&;HJ+A|D!*>&m(nNm)Ro43w!v`=R!MxUM~~u$Q}d-J{EnAJg>ldN zh28mA{=*wPCLNhu0XcTudc6q_ss&A1`OPGi+^K|}L9t_;BX>2DO5yvt00qm_=IfEL z|5kHun{j0w&h00vABJD6%YrOoG*UQFe6=T!Umvd9r}uxYn*uj88?p+x(WV1lF2NTp z9!*_RXDtu@h2z8*$M<(n!&0nyfn~3}y&^sJwO1Uh*!VQe_rQt9@B0qhZG!Edn|rn> z&GUXNP$aShh1v)2(53tJ1sKdGO9KhxHhRY*!bTkTpXaSV$zMi3Z;jzTDN`$-!cfML zbnY@U9~7*39t12EI_2$GS{$kNsY-dd8UqEzNtr>|+xy%^kx36ECC{3CVy?!tC|oFE zk6!vvvkot9#q-)2cO#BboTLDLom7em-X}caIk6|%=_{?Yqa$MKq7w%kH~;xoCqQHO ztw7~I1(L+bv`{&AnW8grt)fngR+M?FWa-<>%N5#!R&ey5<`}^x?XK+HWHqlRCibLz zzAr}O_`{Rpm4l(dFaOlfh20Miq$Gi-inK~ebUs->r{0BCZP5^jX|nioS75$VuBWzG z$SwBm6CDeAtnhTv-^n+xDT*+>-`^@sOHkSK8NNQ5vUvIT!V@}Y%bzR$`3gCj#!WAv zr9~+d@X-V{@`VEce)8BhRpw^u~|b#vi`x)gS+Dhb|EPi6H4DDMdOEuVx`3 znvMBp1fC3PaQaUfpK#}CKfe|E1IG!S65@sh4&G@EE7>uKw?g{`!PR(y1D^@P>PI#YsJ)vz5oAX61l!zY<6yzlm&Vdzr%5&N92-yt-?Yz5oA zyp3-Ll|bWm(BtM0j^=;Yy;9s_*FnYf=82J|CwSEZo-7p4Tc=%Y`6rj2wJzb#njDkA zue^Mn+k0N^NP~y?p*FBuKKfo<8XVfdvD+gwjnzX19j8^qeXA^3px^lYq4lT6 zMg!Y59Rqe7@5xJ7rFpZNx$h?u)^j_@!<%DK{}{Nq&eckhcHIUZYtscMGOrQF@$_?I=`BW3{GfM8>O?c9eYKS0fE!=i6FbB_ z!bW08cu^c24yhlg{+I9Nc^%wCPA!^$ORqwbs88;2o$@fw!=R;hrEPFH z{NXlkjdsRH>7sL$VdJLNPT&(^P`JJ52yy@tVHXU(eL~oI8`gp2_CFGoC-;LU8fs@D zO;-J2((~Xj4b^fU>ng$rahb|-c9sh*Gx%njgGE^B|_Tyl_WPgwYH9QM;B538NpUXiClb-h-5 zG?co`#ET~%m*v$yowOhD8Q>~=G9b$q2iYiY{Vcoxs5d`S_Wj+hjKwW;_KEB1r;zH# z@|HFKR6AqR>)!lMA#oO2K8;~?lwZ%swjcfch>CI&A8;Cf+y##)t)6U3^9^C* z)Kcp%n_4HWJZ#>rv{-$anp+sZ_v{Z-E<59wT&6a%d5d}hT_hyVWV4uzbWxP7#GxQW zntNZVrOTvFxRODMXdb84A(YRVc z($R6ZN{g<}kcs?)U##Wdex2qSKfm}s5Yw|$sFnHh?>{TvCpH0=p2bDCvi%ZTuCD#D zAO6cY@uJUg@^vd>!pT(?n0AtkC?%!{04W5R!cNir)5%M)`Nn+$>C)Ur-{t@>1_Xw#o}%T?Hs83yu| z-cAmX&IOM=Ti^Hhh|jVfB-+a3(XH4hxD+LyZ}WRaF5xk58l0DGnoA*5SwgA4nB@AZ zYSt@e@-%9{V9@5e=VUo?7gL0v%Fx6iXO`w6=6~}Thtmjpq=`BSR@Kb&y)o0USYE@o zQsq<1`g#`?nvnO4!N)6IN8{S!w}QYhX`}52AI}oR-7Qs7I~*pqzdR2$d@EWS@bvrRn7tr0V(UfTb@J~|<<`CI zwgvkE?#RvVdjy5|ZC%as;_d70ek=?2QQPY&Q_JKlyTT(~7`)gBvG=hLO?FY38HEp;u8)SWo=~9+o@lKjloCW0Pd2pGC-#Ed&|a+OE(8PrC&gqvdL6j%uho)DLF}oD z5KF{JKppLUK#%UB<}Lz!=0s4wr?y`XheWAW3S_ce=c%{X8hmh6Is%gk)-J}pMP z7*4KRow+U!s@KL*EZ*Fve>USyJ$;~G99GSMz1<90Y;A6v_H(iw{cemyQ1m9$ak;-# zw75@D@NnRS?t7UO{S7KjO!&Z65TVK4c%5=qBrdOlTJ!DT;;2{=dtFzop=GN{j z>F*z&JjT}rT#;362f2255ywi9)Tmde#;N43Q{WNOcH-UhVd>!^W9AB-9mA636>Ulj z>P3e=`G}@rVrDlS(QSz^&UbE|rdA(Xm8JB4>=4fI8f5N#k{2-AP4nWCPt7ww$A0*%4(5&iTo7p<;|sPM4BLSW$SE z<;#QlAh(HO{jB%KUX9Z=e0}?HSvi%0-;av@1O@+%jJMh5m}Pr(ZvTm6HLOBa;n{y;im91}GyR7aRp zT^FmvHku0BNp?P!CF9d74|K?hJ2t%*)|+P<1TXn?*5*LaoA zz@h5}E`oMBVpX^?D`Z$xMYAyO^ykO&lx@Z?)@y!;JIkcY^)Pjp9l!9PjreuLt-L3^ z{!6lrJ2|PBwgW{Cl?$NNZ|B%QkHVKfQ~A;YIvrDzS9}XS4!cFW3k7*n(7 zg1@iqFD9REwWtNP(WLxDPhi83Abw{0qYN^)s`1;n+KnkmNv*>0#zyVN#vzTP?N`-5 zf3o2T3kzq*M#aY)87<+)uRY*-s)EeJhM{OL0mh)c1xM(Pj1S9HJ`6I#pOPcy!;%>G z)-jrqr&|N$qHI~+ViLePk(XXulh@%TGn?HgK*ZF`UP%f`^0Fhp=yw~|4x6kFtT0SV ztF^tiH3iJp&yw57u!HtOQJ+E;7`Q^XHTZCc#9M09T6L^~#uC*0MUOwMG@N*<3R>Bq zzrNR@53H0qYu5VI+1N`-ea_xsCU^Xr;nB0t4<5fhm3maVY#ewg4>~=U);Va4n=_YRkz%YdNT)@xpD49yZL8PL?0*lBAB7n zY6!Jq*2U{e$(a%O+o!ZY*Vyyiycf~REs#w6suA5Pl9o5f+fWG~BWka0aN?g%7c^HL zZ71LVO|(D-I+EOols*u0cMbXQJ2656#Q=I6nS)*u5xbs6ABDo)g8Dx5A&2$5N%949 zni3ZI1UKRG4)(al=dF4DHJL$2^x^Wk@7}t*jSm#uW@HQ{Ae+gRl-h?dH$~|6!?KK-HW-@`-v3G zPPK+vJz^G+TbCRTl2+$d+K=OhZRwNQ3kLjL&j(9f-8kr=E5|N5216qMgQo{y`XU|- z*&T<@esa;_2+7COLi%QM}dJIg*KYMz)LTRKfl9F|I6r*K_Y7xcmE zqpMJeo#)O6u`kJnE)~Q-5?w+E<{JqdT%Io-DqZL~Kt;6Cn_X1R_#~$Oh&b-MWFKr; zyeMcY?3VnH!;<67OLOmKyK2bYatG6sJRvnZyxD3F1K;f_kzi|X_h1=^5U1pOyVFgu zq{Ob9r73fEj%C-9|Cb(K`#KX?#zI2hohbi+T5x&_uq%b|+IQ|g!P$R_k_C#Hcww6P ziF2~ATk2g~Pyf5f4CnS61LqVIox9d2RYMpgoY#6$tx(5R90GksIQ+GqC#tgnuR1h0(rA2I^^A8+lo0eax;V`EzOsX+~ z4lW4aOZ084uGPnaM>oAoMSk$Z5T8($zry~&W!WFIM8*FDH5vWS@H>32ws4%;UVM9? zr}yrR=Ej7?t0mjyxb%rBMGj%E6$?h@n-Dqh-pmA3-BTNJVrK?D2QnEEDXfu0jD$P2 zz|ZN^fyN9LwJC7B*$+V(u&{(aD?0ltKc@CPaIN;C06{JV!|iNXeSZQh>eS2ZvbYr@ zbB1O!KBHUl$H6M;R)vnJR$PfzT>R~-PD2NOky!BWEc|KzQTPbFYAE+*wn{Gp_j3hwwGd}DNdEQ;@%VOf~-gPlCkfUI27hm>kbcgwc}!5 zYs|;G=y3@Mu(jNv|A59FEDI2F#;R<=t_32?$&+uP6UCTVD!b59zC&quREav7!@cZt|! zxd-=^>X(ep=i(8`6N+8Nn}tcFpGbX1LHrr&!Vz?I7QqT^ciHgXZc|lrOWC?E46Lgf zyrZXDHS-T_d^(dDSeooslZt>=yp`F09`AfQu$^ZDnsj71Z?XJ|Go-+RzkNJ`I+Nbx9wPhIVDi~J<$}hBj+Jz=9dB9KfY!;q-ja3;qs~KN-)@M?E z7wFwY3VP&S1zJMahuoIAZ1LJKU70*Wxzunsi<5~|>Y6=LKNIeb)6W@KZr9gyd4Ta> zg1SOT}c^AjY$hbPI%T79Wh~P{9CdF zawh&E#@@7^&o7?+rk2)pu+y>*$f0_k-o>(TGbSv3+pQZmpZ4%}{58{@>p~T1{Fl7H zZ$hPjJ*&M#CIJjq9S!-@hG-}`!lhD|k2yn$^NNn+t3hGkxo@ZI1JqfhV#HS=tN{|h z6iM;!^<{^z>2=4D${7c~;c&}~UwfHhES>1aX?vG-O-dzKxGex$q?ama$WE&)bLu&yHJ(>Zp!1YK2%IP zaJ6x`qzSeiz^&}PYRt@P2RYc}8&h%9TVMRjpUKm&@&#v3IbJk{TW~<~sL^G^Q7M38rfl1T%Ly*_u(s{T6xxuxmjy=s)pHz zbZ#JdWcC!}=FtHS%cLO4lxP}%i^@0u8x$CHYZGBp>^_Zz7M{5_uFh3|GL@{?* zMR1&7@VGlOlX|rWPv|VJ4tM_d)9d(CpG%P^ElXDx3k_!k5Q6l-GN9QUmaiV-TmMrs z;LnR%!l=l)M;hUkNGW?X03VQyKQpBpwO*5-##f_L=nHwQl5KcccKP@&*yTC>asOQ% zhkRRCg#w%J7#|k9dL#q6q?*m~t3Y)-u1UNHx3#&!3BG)PWlVbXd|-qj4QQEo!$vjs z4dLF6%`pfGI}X&2`M8Q}&@(X$Sr6SfLtPGwbtyuAEX5GZ*ItP_hjOO8`4UpNlNKmZ z+swcq6WBJ^w$I3ParlHgDDM=m3P4B~#|!)EvV0*7f;xTV4eqsni` z*VZiIu2h=0*nMZYthO`1UVQLus7_A~I{nIrxGkCwTJCv0g?jpfcPz-Dxn?wbe6-x3 zmH}p*ZtfjuEOl#M@SuX7Dp65)H|L;tLG2$@0J{I6A84QUVZD|9q27h=b{uz`Kh(^c%6T_dGPU6w zRQ?Z+Q{#SsoKL0}Ya_a~;$(IIFu@xU1J1rhtH#-S4CxeGq+K|xUUmFo7v4O+eHxGQ z_NTpBiSzhSBc*#r1uajHbf!5hKfP98qZxmf&NpD)9_*j*pt$b_?(Uy|^A?b#+xM{< z4Peixc)~V|22{^m|Hckq38%mO*NSK|OGJduVFd?Xm|tz2eI^(sH5gW+7N;sb7OX!L9Nq}d5A0Qn zG9=*3({n)vj)>#im=Wdd@0Mm(k+In1^B3^0XaCu7HRDRCSxo>=QS_dKVo?sarEARx zAFIeVrpiPDjI$gGRFI5Wlr(l~{vAUZez1Y;z*gM}1$>RtDydm9C8l?WFEUtiH6>p$$5{l{}^GN28Yh=eUDxue5Epg|nBiG)Fuw{Nd_ zrp9>CKH_J;c1HF(h6Z6BiVmzOt2_IVJs0j^bn>+@>&N54_?KZlPX8ndDT2b!e3K58 z$5*VTD+7m4-a#FPM4ph-zuyN#>k|@F1*&^f2%0NH=(KfH3S19A><6iqTh?$nMgc9v zEoL+7pNO*whAzC5w)FKXHHA2j7dviWF#@D=tp5!oD<=R#@Ok(h#V3z&H zD&;ze>}N55=^UESOXASA%pc@G#9Biw<0v_4$42M0yvS+hHsWW}F!9QTU3T3Ht#ycqD*3qPD4z&OmR;9DA zJWAbXDyJ3C`N6MFcQ1-H)!HSQC&i5Y&1=#pVTVVUiGR@3NQoQ<9x+bevBP2I&KuwN zK~fMq={~WMiF!cp{krF>Zs)=%%{>+-lK(*j%fp%Ua6fcJ!JEGRQi8q(XP5P}?;e3V z7j;$_&Z)A_$-MO8Zp`*+*D+-|Nu1lmt?iukInt4F_~c&KA!U0PH@$-}dEN1FZQdWJ z*Iuds0vj=hb2f)gFM|_FeSaxbSJb2ul&z808QehK{d;<@C}jtU2`gf{GV42!%`G8R3a2n5MU^qyQ2`gHwaUVd@3N_8B9|>etm}3B=zGW>p+s1`HZ4S{bRY{pHEVT%p-`XAfcwW}zWtViT z)5pdqEjZmI$0pO~B0pX%kw~F@6(C~JUC18|Y&EL=cP7BRYrz&8nUhrJ5#gxjF#HgP zmnBp+8Ba^y*4Q+@AC?vB0+ewUr`4ve$0*@-`s`3>$l{aT#2GkO zrOR11uvw=1BNGgVWn9weC&V=a=guQp&1g+vQQN$JMjE*mdXP@mvOBZh780UU3qI}_ z!FA{ny57wlBPsQj5ImTm!@Z-o+4y5$$j>q+xqRfoq_7Nxck^;{cEAFa#|_X3lBy?_9rGkNK#7rl?swa*l+GJhbZ?ovl-hhDGdA9+D{ zUqVwCW-H zQBbU9Po1W-D~$97&pQYHvf1VYI^1hLyYM|U>d{c&fj{rBf_fZ!a6^+Ql&fuI3LU@N z@wQ+JN9bI+ntFJuI|aanbcquv6S}pLn2Lr235-8M(SD#pQO4EJ-lPDhjnM(ojJrkk?(-f6HBBY&~X@)+=Sp9(?{}@kPuqzm#V?i}nPNuLQ72 zGq0AT)+oZl(~ty(eGt9WM0!qVWpFJxm>-5h(WvSXI-^cV&J5Nj#SIQu1g>U;(|+Ph z&!C~LEnLe1@=ouTQO{qNv`om{4{m*{AIR+5%Kn=HG_C6FznpVV9?2hyDcYQa-MO$@|9M zDiSn($A@ZiYE<&^0aAKiA0}Z^@?4KtOXEiSBuYukBn-H|S6xAffBg4d@%b0klW<&ji8m>?9LDdak>jjzzv;1fydQ}2ggReey9FoFO_O))x|F|NHQ{XV`6o( zMPlO6FBfTLW9%4Y6ts!i@v|@O+UUyI$NK`h`DeTrTJJahFJbn&Qw)^uY;t%EIU-FD zgz9`cl@b#OGTMvbkGcwSWa>R?Bp%34T16`34avMqP*kAf_@GKZeiE>^R;%Be?H5yP zjo`8bY4+(XLa5T%EB|zKZW_093ZX~Zi2-;sd`G?!dc*%kn-b$z*1t~&C7^s)fp4bT$z>c%E`-<&6ZPP zC00!VKo#yowD$0@4~e45cJi1`!3F8U8k9A|klFw4Z#h3hpSd|TsHszcSeV=fO6g@e zCDaNeq8Ri>N2RwZ%?nQ(@$AmhPelsXe+|4Fxt3h5_%|g|3aixb#BrLbnXX^q;N0+6 zHs4v9uLG8a=t!g=!x8Z*cbYA)uIF`BsNh+aN>zV!OeIW1eF7o=O0!DyUDZh*{Quj5 zY%t5>&&Kadt#igErGje*Vl8QPRaVl^W_K$__Z&vgpGes0h&A4{N00w?3z|1*#_r7w zr$YR~`82d3(zkXe_?6Tu@GYQIfYvM4ccCSLlN7dP_#zGsLLuwX%%F78fn3JJRy4pn zS+XI2xg5utV7Vgur22!`bvy-+S4gw?w|}4Vic5w__#%qa3%Kqw$ork(ed;CaIYg#%Lhgw9&HBTiWZ-wgB11e!Fp{z^};OTw@Jmg-h86X+RXudj|(4n%_@Pj0o)=D6?}q z(k61`=2@(rBaRIVFbFSWODwO1g0BCt7TKYb!hP}6Tn`*WT|7}=;oB`_okiwK6wf(G zd(ggW@tAlET6fkLtWhD^&|K)rg%AhhN}0;^_Un663mESn|1G(z^*(KhN+_!Phu{l~>kJWeIorY*NOoA$FT>Ui5QMA6A;6o}WU_KF6#|{>C~X&z8{Qri{3I)#o1pOx zvzVVSjn+{FxnZrDWk7XYA~lVH3(&`v-&v7<4Nl8Zazr84p3;`eC*^}~ino2-DA_D7 zz3DVyN|H_n)2{cc5@F7R@N(Cr2{elrl4<&Pj&V7ZSBUZuJ7(So^G8v6JA7OnmvrcU z7YQE=3St$Cg!4AnNx5_q%7jqeVx$AyIrRH(~k`T)w^trVK?-Rn{-{s>v6g z-mtpNCLWH&K!CEu?Vo=ykXO=ISWn*dPd6D}ii2|)Q(}sn{L7b5e8QuaEL8wG3Q_e> zZOla89y?{R@5Y6!gL`D8YK7IuVMx8%UCT*5B`VFtODNrH%(}YpL$@20DU>@NBPGWOFRZHI-G?{ zUe_TN5x@|3wuJ=SY>{5*Hj9*RX_!S5*rL~>x zJm}^PDSRt&9rFb?xD^uS;Ht99Sr*W_vn!N*jW}CgVNwkyh9ZS{fFWIxEsQ%mfNq)O zO*p%-%h58Qyd1SfIn0LT^vrmgQlx42(O`7;Z7b%uU)Po$`!S#)G*_CP=9rI&b1J*@ zEXm87@KxHd{q(8xB!NS(vv~|YljHPtpn*teP9nwG&venTYra{-uF$36vBD{`iRv~` z;a8BG*B!rY8iT;C(G0&=JFBw_i931q)JX8`dSX!XZy-OzAWM`Xn65o!59z-g6m}cD z;H!Tz-MUj#+Hht(qZQm3PHx#3hcvo1FFWEi!~$uzuz>SiaeD?J&{g;RmPB)y=;oDW zlLe)!nCH;}Q2;w@YjBRVbSQ;dUz52^#U)GWS%8kfeAMEU&Uv3mW{PEmZFh(>ToH`+ zU~S(%31;;ZF=#f`mFueSvdx}3pawenm{3!<8>mf^>0F1nN}-_ZUDWAqr)Zx^e z@3+(gSEj)b9gJfg%KJr$j#Aa!i5CTcAicr=Ahm!2mmMm>%eFbfVL_H3?t_K*(8bID zmuB$baah&^=Wa=loB@&Zy&I;BHS$^?W;xcJDQG^?{)_sl4cF@C&XkW|iEC?TR6Vj` zQ|~N4As9}oCm~t#;0j=x`c2s-+wBl^=y3K5O-}i${YTV>)@ zrdR;!x0I)W+#93yh?|5gm4atiJ;u1enx$xO2jn})A-)}370s7?zpPBubuL^nGw>UE z73vOH^DX%4H9~CXD06;Yt+33jwPjk`LA35qH$LI^c*6~MRhdXG|L&^=5|^EEu2mKf zKF{Ba6xBTvD{?YlXE?K5rqOlzGok8I{=%C`W2Uj}aqgjkYPkWh?`e4=%8*5uS!PC! zZK1|8m_?e^{-xV;a5E0Wh~LdKm-{UPw%6RE;;g!lSdKGV6FdZ;CycQnFGGJQaE67s zqHg`93<$^<-Js*eisUvAbyAR$uQ)#rZA&sbi$qG~jUr1E@YBuagCHH|(WSMZf7TIl zYHD}usd%A8B)T&HFaupce2aCh``{_u4A!zB=rx*@kRv+eKj-%IFNQa=;012pCjhF! zVYc#@=$`q{=X>vnolO%9F|w0=0J<7SG_%V1 zF4BaGN@F*u;+W(RRguwq)Zf1+XCxii~Nf4VX}A{B%^ zS#QC&D<$y23P!;l!HKSaZQ)wO1k?-{s@X5bh;$c3Li+e4jaMhx4;*h3sgHjC^{~{m z)N!%o?LPdo$TxE0vGcEg&jASaqUyQovY0A*vCBlhmBc3HI~T8{8MZ$76F);|fG5=- z-T^sS^V2WCyWNjo?1U5Y4^$r>ID|g6jkeY2b~fb_;8;hVf&V@QPm35>f_I^O)tFb% zibtGlPNhdGX%BR+DNx}@U3t_K*`>GN4>YN}ZL8{E)m!m*{^l@TGy*S?8;$oUMJ_Qo z2>0fMi2*cK_8>n;(j^|TJNC+uPofqbjS?a6n!oF5aPdZ`3w*L0H_UjMF%5f|BqJj^ zIwj`w*Yw?=4+?Qf6b8c_Ffx$OMZeQ?W`;O}ZGMm97r8nY#9 zV^cMKHVV|dV6zn-+{l<#6ogI|_rI@f&8L4S2VfI`{ARH5d@a7@F+< z$g_Ps9rcsR7*vBDtiCT0dTvqF-Xjk!X zx)&3GGf%~s7ZQlf?h>_ke<&MfEf~DRsjnqnY-3Ota}*Z}zwb~8Tw~H>*LYw^ol3_l zPuRvcc0cLUU-tJE|8YFYg)`E$`;~j<_Ay(4wQm zujgFnCjg~F>Pumr4=qXkXc;W82{sg4O)QXD>aYz&)=otJ;~Dy6Z5hOCOS(-9B{2(BhEgPfUn388OXyeZ_2!PQzTi`el9 zK%ZUwDKpQqh)*pvY+gK$x)B1hCaSpeS61cMy)xHy(VI!(2Z>tdpz`Y_q=Wo?ODc@= z+r#%}E9$=R69nrvV$5Ws($8pk_hvV@rr!5NZWz(c|JURAUcbBJco>iQB+5Byru|p` z8^4jUcku6>L4PNeP17>^?00;HmVZ|Lf&$vAQY}H*8XRrEmlTFaXz=AX&=P#?=BuAX zTRoW+(2|CGS^dp#aQVLQm#B3=4nx=~IO`r(P!YdAZt(MoX%8CbVx3E5pg$bsn$+Vk z_hw-Tr~4^Uz4hcaY%2?q;~$I`Bb|0k?(o~)XELoxIph%@84>eAjZS2~b8zzX>43~S zrZ2ZRFV|DwXE(*X^60!EaATYZZr9M1f8 zlo;H*M%xis<0{uhjh36C4pk{f?Wx7Zz&ppa9vOJ1o<&d5V3p>;bt`#Ecz0?G@L;)u z$2z<_`G@>}l(AFbi`P5fbO~Li$UqlA*w;m23b>vh!*-Ngy;o*g86VmEwp51->AGa4 z11#o{ODscvhq}e@T(#I3ctcKJbqKjISE8*>hf>3-5Wj-Ph654oz2HxzSxO4VgbHTi z!5QH(P5_l&appl69VPt!glT0Ry{@8;@1!=>d~zzkaR1XU-XDqZ><2^Kje@8C`mw}1 zZdzl1G7f#9Re@9*#BRT)ltn=^vy&DoRAW@+2%n{in>OIq;b)vMA`&=L?2fXS!}xI^ zuQ#-6rdJ}I?Jk!>g-fV>`!(opA9;>qMT`F{T$VcNx&1cvBxl{^sO_h$iRCaql?c%h6dZ_QXmIEsB%D2V7WaC!^>`cj5DeKnT$CT)6$#( zj{&dm^TVT}3A>Q6hl2`~D*EnetJ`+n=2jztyF6mUiF&)Xnc6IMNJbRHpj+RzCu=s6 zQI7vwdZM}%#aEfbQwJu0<>&q;-kl;g7~?A4c){8U8`NoApYv%Y+m_c%yEHlgUZVJb zBZ@6+OgvAK6N#rah4MaE4d$mQ7R2gi?7f2JG9(*djVb# z-wQ5QA@`m*hzpuJ-3iGy*THd@=zcwSe=Pl{mT~UdKy)_n4%ca8m9?x&A9o&W=9aY_ zyP=IRsm0Z5a};(_QRJ0t(K1lZRWX@7%r&~TytYUNPfGdTw;q6jJMjkhk8#6ewu1e4 z&y`bIXtv46(iHi(9+~JSv}^W&zWk~MW;YjoutrOL!fK0SIkcy&=@h&lcbwcH(iE$y&VAd#r zyp6Xdz1;&V4*OBh-7+457mqKSWWnw&Lr<Ed$z}XcczdV*RQpyDp z$26YZ)4HrM#FN#FkC6H%sUAibA7y$U>AmmydgEyHD%Ra5qm+ibFVEEO$BUc!wz#SS zB^;>u11pXgGHRcGoj6$v*C9md-4}YLiw6_1(SI*{VMwTR*1F`56Lbj+W7wUPJg>Za^_%!5(Pu50(Lf;dDJuB@_$fX)+HAtdBU_Bm#IAQ(T~Cad;3S&%8PWXtOI?iR05io~@c zOuanVElRT|nqH~IT&J0Y10K`(_4pnLo#KH(a{I+kXH#KzQ$6MrclN2`WEu~uakdZ5 zDG_bEog~@6GwRO$wpYU6qe96fl@B7@O#Lk`FDsQwm1Z#pE$&3Z#K2Autw>Z1oo@f)R#!GzuLFzu^xEiQfeFDL0iMIh8u}*N68~#C z$uR@9gNa#`6ux0$;1qA$3JMK+)>j*n0YK}?)7PF~eqE}^R_oI=Ve!%G9y~cV$SDG1 zYMrAMNV2}v?;<0U+56S9x$Oj3v?>nGbS8|0a^jg3GqOra#_g3(6Rt!2YGM49saY=1 zGeODMG~YMa>cn^Vm}pE2RtHrHC`bCrQ61BLT3vUaFDjM#R~`IFU82{EcHJ|yW9Irz zmRA*aw%Zh0112_xVdbaL82GzSJIsggT7ND;ICw$Z%0IRaTW5y+Hs`5!C-sHUqbjlH zd=d(&lmx4n$K(24hNZl(IQ>&8pD6>{k4!thIaPrn(i_8LXF|9)zoBsYA*R79;tdV@)=#bmM)GMy&Xp0 z`O_{$auH5WH+g!lmAk#?|8g9$PTFZq8JkXTo3Yy!kAHWccdpXMcIN}|F`n^rzH(Zk+NaHkDrdMTy8R2nwN=+-ggsM#rK_s2D|xg+6l47pxHgv<;A4H-KNaf zPTn5&j2xd2iJR9}FQ@y9KURcQ>Q+_J?^)j|DN;bfrs1|09>zhBbi#O95&sg?w6A>v z?yMeV9#axn}mIcN67##IVHPL3-6^^EvhIEf1GO@9K|24(oP4l`dNlHrca}p!1MP zzZ?$J&=3y-BRYKmroJRBC?b@f=#+4*_-4T$L#Rw6EWeg3plLnfYOWK5lMia#=9CzXZ;9B5#MFqC?9Y`O|pp8x^83)c6cztEmbOq)AaA}e(tFdZpHWq zsr`<}`TbZ#PIfTNp==WQ&V1h0?|HB9dqQ1NfRAwP^Xe$0XeT~{u&zSO;bVn*)0^zK zIVp34ewzs~C*4uI!$%p>qL9kZhKeZ1`d`to&dLjU7U74r77<1BEk`qD4pZ0&HK zZJCL_G)m{h;h9v*eAtsKZoiv{VpHif)6n9WNpiJm7bD|*gft#uh-`zMDkTyoSQbZE ziS3%-7ZvCfBqJ9$y@luM8(Fgv?-D({m$KVAuNuWG@TC0m4uxxJn#ae{T9dpbFn8N2 ztwZ|)Ht$@0&rnw8WzS!bEb3po+!k$E z=J+Aeic^9>IxEa`&uR5&D)$^Q^55`=f zTd)6Kpr;g*%t2iuF>Dtklu~2_EOY&* zmoOy77D$(Y;=QJ@s`jBm>v?xvV1M_)VawM`JI}*yobo?$D*VXGLqETU#A>)8enxPM zqe6`LKd#UcDc`VDC1r7F;FcUwxbJ3Cjf=^AE)uIyS_2ABDae=r&>x*vSu>`itH~@@ zHxwzGW%G$ic_MQs52v~9H-v;=AQI)BCy6e~kFIS%CVsnP(4%gY+V#pM}Xbe3~hNy-Y&uBCi>B7J+|ABZQ#ttb<8=>ndFfi@Ctg0TAEsUBqsAL zhaT7S9JCdCzw^tx!Dx@)QXWM=nVGxyog`7)HP@W1a~FP4L?ge3--Z?!mFLRfumYk+ zu_fE#X(mm6c=G|+Wvn23Up#&-8X^sJTb!IRh&e!(@!nanrFIO<5M4v)qIKujGm5gc zxaJkQDa!mho=nbsY@mpg%(U@}cO6HIIv#n4O=sxBxS|y#&=r60Ex*nGi zhxuPbGR1`vUV-tB>Fs1gA`*S+^7&M zt=ajV1=7QotEGjl+P*c z`qg7)U=Brg(a5zdK1;>T@3c`u30^hTSAU~4T4XH_wKUf-+mRDsSRm_@kmA^#Au7W} z6<kMy{sB9%pP8$pG@2J! z%`q6}ZC6Coj0D+p8?T>-f3bRxsXTC1-g!pf-3A;fvH(d$8S@t{hT4`;EZJGZQ-FL> z372gFa3H`0Y+VtnoDftt5NIpy=z+MJ+Lh|)Jcq-Z(M<^w zDAW#8XX#3dC1Cx_ch7weXFEoAvF|Q+PZTtqnwD zo~Om4K<-Vpss;hwzNbgj21}Rs`R0$Nr)N|1U@iOEC!!QgsXl^+X1#fBxfU7opJlre1>>-FdhhY^lQJ>o#F9{a#M_ z?2)}vAAFAb9t=ihsF@$D;=H|YU(ZI^6*4qw-KV2*A&z%Ux(`3CgFQGGno1TnpR zE91-#)e~1`rN{DF%8LhS4)NUS*7n+bI#R=0k1wz44GwI01JIwF+1>+nJWFRC8*J*; z;yqi~9iji%j_y&5L}tB@tv#Hg-cvhMlA}!(t?PKM2|h=Y<|+eDv9*CY+wa?*QIHq| z7&ZFc<^yeWR7XAxHK7%uTXM%3WP5JLq|{U|rOM*Ft(RVP;j<}02k#5AXj7l$4X#qK zPiH541NiymQ?3~5EUPV=97pMguAQ`Fofr(5Yl)Mt_EJWnE{9!Ldvt39o|jW+!!cPm z{%zmHU?9={`)y}2o8D;dNDp262ARc@Kta7e7BxZp*oN zh5TRU1r{p-f~Q|ESl!&go9mppy$R)rijieJ?{zy>32y#b)K4HPe+YsiYdZM7WUM*I z=-l7?ZL*p#4AUgzs&-cdP9md`p`@5MfUBn|tT(6*qA9J_xN|=qvr;d*P5$H_MUj>F z?M!pz{L$#^I){TgXu@Gplh3)hn<6;qPo!mZ&RQIe4`2*5Z@=lL80z5ycr9~kjnnzt zIui~W@pITq-}-^XF{0IOafB4rX^#*jdiGesOgZ&#Dt=%zHum zj}#XeI1~yYNpZPx^hZzMQ|ZQN*f*sLm_1uMcom@1i!H$4tuSWTk6p3C;1(Le8>zwo zV0ev+k50@u=*}jM?Q5^GCQg_f%dXvGFzyC+-vvCZG*xA17i6;z$=KWTl+RQO+ykmS z4(1*|3Mn?CmfNIyb}Lq~h2ykzWQuA%LrEv=^^|lGrGbeL7ZuaQcMl~#o++s^TbD%T zS$0z{*`=84vuO9QZambbkFxiB4Ob%J>!O<`+oW_rNK2%~^nSS%(K@BCht$4|)SG{m z$Tq#m$zWpg!wSQ5g=JCn&TEOaRI|VZSSH+oTP)7>n{4X+a_TXO4sc3QYdD=w?uKj2 z6%IW`&?o!lY0oJ^DRpMW%ggjM9!k-em!*WcH8c+$!rj|y2t%DZsZ>k%ncnzm8Z~5P zZIsT2(QO_zD%quat$oq7u-B!ci`cV_E>3ulI90`ZYYISi>G1jyMq&QchmT_fwM*4#1BpNP zO&0O~M0`eJnoV()bx7kJ-+hYh1(c+CQuYy| zD0=C6jPdZFm~@?FTy?Pt&h(Japxs@BIQc>emD%#~OLN-nmYf7o6R5 zr4y?s$swS&77TC{iFH=W6ie&bl?U>g($Xfl#J1V476%i&6p71rs(5aEFaiay?Sqv{ zvwD)523!E`q!2%e^LwKd=>rX;cc!WVza5OD^9aU;0kFDIw{iPDjw~-(BSHTdk|MuB zj3RZwgSB^=tT+q8s<|x7or|OrqWf3lr31~U%OoU;M$IXT$Wh!4vZ$*1x514(kDuaL zybR;iZ}2uPycne+?Ikk%6bR*&)q!|W#EFn{p++~G!}4{O=YXBn0m9_zy=~`QA{gW5 za5&z1D5A2E*oR7IjmtNP^`z-fdrG@!6yy zC-o=w>0&W2I+W$+jhuP;bhTu&wsVAG6k8F0WHq`zbIV3WADc)=zI9|B4ZIXF84_j& zd{;YPKRs#y0lBT;+hJ^u@^?RNc_@?p3kV%?3bgx5AC>XL?(D9QFZVqkEs#u}YEfh| zKW)=m-GI8;%Dd(B18=nsLK+Q*csfDZ>@)<+|8 zGxsXt08Ftv<}`9!DuTWzt`%R;FB-)-6yJ3L104NjSv8Iq0hg-6-7P|6{{}@+Tx{b~ zm?NtNMo0d-MM*g5{nOSE3aYv7y1j20Q#+gCN8>h_Z1G-8Hsm#4Jof`9{wsLjdV7?< zEj*%oRB=e%l?oG<523|wm_Nh^#sxlrzCHgt`ZMYqzIv+Z14g?E>u6qL$t217<6FE$EF4x4etEUck?IuyVDnuMF}) zYt^!mj@?XywH<{oZ)3LKg$MrwdxJoj6ixQGu6n2YdLcsLY3u59;rXa4A39cRa~@^J zM6sf|y^-&^zrFj<$)>m<$ER3~vgVBUdkMG|j*49f=L7{PqXeq^S|R?kXD}yb!WdYz z{PFUaV`{<54&u7Kg2vO*gNfi3ukP8xAg6o`K2B2m&MH_=AS`%{@+F@^WGy+QRu5th z(B{fwn zxv+00JqHQCKv?HHbnIo9II#l+@yq`M?_o!hO(g%#+YY0b?c8A*aS4 zPq!5|MggRbjZpk5vK-H#f=|Ih#J*7#=VHoD5^18TvO`fsiN|JQ8)cieyF_;GAR;D0_aPpq%A7^CkD&~ z7pxj}h`xbgoZcRpZ?w7g_l`bf0;sTpQQMeKXE%e-zWFJ9Mje-3?tc;S-7V70uOfb! zTRnvCuTgMu`sUNV93VqHszqzib~Ax?ZF^2(K9)Z(6SpS2gt%0N66iLM5;dP9bBM|q z0*mwfJ&jwSVm}3)^(+|F<9@DJAle96XWRY5rLd(U*ZIr>Z%Gj+ z{0mluk!P;oj=R%Xt%jkuTfdBdR>(b1-iBJ6ZSOr@CBT^Qr?xkMl_%{^IMTr64~Ene zxCIQPx6e35VN4wdCC|-FMBHe;?E%E3Hln{hQD=^DsRKNzdkSA?rE*@B+AK8unt8!y zeOk-hNUw&bl}Oh$%LMFO)g6`?jTdQz8S)7oH|#E7CA@{r!wEmaWImd|sz!9P=h>6K z+xlbI(=+j)8o7{N^5yU)Y+Ef8Z?K1UWVR$O;Z#DC&?W))*rAlWMfMM|*JTW8qig`h z%B92fTifGLX9qDxa#BRFg&1`lodo)N|7 zQfY)jw@g4?Jn$Z?=AOpoKfcca4bF&c&$`kHW$_w~ed%?Rrkq>v+H4T1jokVteVdCj3Ie)z?#q^eaAfs$XUr@qO`a(B;x(^4h3WMT< zsw1_;ydIcUUR06qlj5YUx)sV0t#47v2$Y!uiKSEPT`kH|ANmAMY!nX=?}aW^KTMF= z9Hn2UU?&j^Y)ep5+8w%vtzS$Y z6Y(LD6Y>H=KVW)*HES^G_rUU)@1Nmb0D>H511oWYrY(CX@AW9r^XZf*8v;>4_nv5A zGO$MzKl|gPVfG6W_C^L* z{Z}rZ_FMc`Bc${~A+rVM_tc7-y;d@H@q)PLzz^@Vg+B+9RBXn7@KpQtJKz_3eg1>& zjWXP4ME$|L4I2~Ip|k5>1D?C^#B(0F84GsJluSi)WxVD|8FaF(o-1@G_cQ|IM&C@n zw1RVhCXsGYke=%a&-4 zX*Ra<({%1{STe^**zC`E4dZ~vOyhHtH*bFkoJWw%tRExtnf%#I z3RXxH4i(ohC)s#^66q{z0-(-*?1R{uS_lhgM_Qu2x!MbLn*~XURkXvug!%rSKd;~0 zxw1iGM>T`Ik*&cymA056&np$#=C-IZ9Ld~X&wE%)xnDrm%3NS(rfp`B=BQAOz7H|= zA$Vw;f@zl*!Z#T?J~DQMWC7j}2(xU`cMGy%ox_NSXaghz?gsI?+`ba)%D?!_s;$&! zsV{@$@JSyykBx+aM#K7w;2Ch_SIbZNsUo(E-nO_|9u?P#I@$8UW#iQ~7~_z5D5Y0F zqTc%%0qlIdwABqr0M!N;OX3tz)`>A@Qd@34fp0vT~0;8!>9o1!@2EP&uS) z;?K(aTJiTdlE}^1DrLArDZD2Yg-%{}Ob2m~Nbd!^NkRcVW6HIAn)m4BSbjIRl}*7+ z#ryH7+|4&KCUY;UlwN4{QXADvPX2)y#*W&XZ%*MidZ-@QX#t3T#&jCE1#Y-QEyv%n z-!LGrM%GtNfeTwOKiR)gr>pewrkI%E}7NuiyYg>pNW>qK5a9jXT*8muc3;kII`+`arU zTvH@UZXq1t)BB?H@cmooZ0z6g&xCK1{M8`P5HG|8qdIJN(O>p*ACj{idZxKt+arh% zezw~6U?fuxYv&KT#lIG9bzDMDlvqlbj5>6hUY&f3bhq3Y99r~BpIExw(FE`S63_HI zG4WA9aQ(SxWj)14AQ#Y!Ss31UQlwlwYx^okma|3ifSQDKDe&Q;u$zG8B%f)g-TCtH z;7Z`HQaeTJEs7x2Khvf1pw#nxRv#zOokmYA#Wy+AT@St*p}!DR7hEBLC-Zmn4J|}1 z>4#{%dboT3u+*15>A8ad>!_x%XCPYoYq{a4{flauZ1|BW%|^~g83V+uZyZRc{z!)S z4kk_gctCyCZO6#A;7|_d&pA`o5q@&CPo9331g4h>@A1&-1R$qhk(gb%1JPUl%1l1p zD^Mk?kt_c9vpK>@2*lS#jF`aCT_D+JIzLn1pjL1_K&I4Jsr6gRYyPsa%XeiRcovuJ zkQF~nvf6AN=l6&rcSU4m@~UvePk(Li3( zbQE;aWEZal+hA6%)jLc*#qJsJM$_s?Yr6^BwY9bqp|_=t+lMidt{wec?t;O-n!)px zY|s82b^l2BDbm-CWP&={p<2^Zg&$CMi8s6^r4H(DlG7rw=UKHiKPR@KMi`dv(9AjB7=xRD&wuZZ=z z&Y$urR903R1nGCge{AnzPXQ{{x0-{BoGvXaKMr(0y+5h6I~%_8=iu3o=j`!0ya;~U z7=|ek1nk~{#8Q;FJ&2fhprqk6xt?-vNCJWucJngrl1M3+OY4_weET%&Q~%6SOt6dm z&~$BOZg#Pl+ORaoAQT4=v_gNNw&Uvl(V#hZA3=*O{x_eow7iT+=N>JN;IvwF#Uhrg z8QfOqvQbD(brNRFCURj@^G_c=yhjclfQfJDIYuyt8*&2=Pc32(xHj{gb3!aZY&M`0 z@>W0UCud!-!ceRaiYmQw`|%^6h0;wYnneFOy}liW++Bz;k~PUSB7?xhUtRd>bqt7y zjB>D)(2!`bfZq|-dw&p?7Q5z35}y^_x%!D4}6o`}1K_ z9nC6+H09!LIrH{t1)uss&>H(HDF^ShAQuTH%j)IUdz96$^&|D~UCNebhNYX4%cQQA*EkExO2H>a>!aS1&V&PZ$3mx zkNI(LO5VWER~l;kjuP2>DuZyS^{*B;l6=Kxm~C}?M6_3nz~hcU50_8nwZcRhzJSsb zZ?F`z3fJRL3g2TUbK6b8{|!PqQS(u+M<{NkeHnpV-ydm=a!u$92g=Dd(T*;!X&)Po z85duK*(#ISXhUXo&CpQ%p3V?))>{Q9HDJ6!kxgQ36;9Ij{oF`t14XSnZe2j)!qOkT zrSCTwgrzki^84pL>qF+`ds$y%#_edF{rJP1aytSLB;#78!bXFxKvByFT<3vQS;|;kAFgNWXT27Wr2Jv zVt0V=VoM7pD0}VHzRi(Plx`lM8a{G3l2ZC(_qV&*CH46p@~y@FPn74$1zj(pc*xbc39*&q|GPhNuTs*t`=H+f>;(du?9V@$SR(&!DoP^g-_7}x zfSB{;q{Al|qb9ZZVFloM1{Dt#;-Zbf;dT&Pi`N<*D<{{_Rxhl-l(=rIiFl;$b9t?3 z7b9_&MGstiV6kCeiy2}O4mZ-QYtY#fyhQLr%%vU{(YlNE>8+tdGkJ_zbNtYVV^<%W zr(oX%ly4*rxnn=nj&t$T0~#8?Q8#|zVulAI4Rml=?#u@g&Mhn9U4;f0T#!1sTA|(c z=TdBPpk&b{kK9qN$1j*aJ>&2Adq5qab>Yfd+;q>o@_Bu*^F&Vl>V9m|OFd<1Z%M`{%XjMAZ`G3Hutu~u$sNVG z6Kfscj~_Rla~q1I?KkyFuQ|ScvE|PUT)ssah+n+XFrXfF+p^<$VHJ5ihoH5xOb_X; z^C`#jNh>UM_J>3(={(m8o`~I?!%8rqcad0-a1MeIAK`nnNvJwmDIh+iX6Reg5AZV8 zH%B-8)F@oocA>)q6rLv3CGjpExB%mzQ@N(E{22z1*97Cwz zL$m4a%H`Cs)xilEK12o1o}F7uJ3^u+WbJzG(|0o5p1Hx5WP&MYx{E2y4i8iZ6(|}O z@z_r$eXZCk+Btu|4@e9qn(4`1m^!`X-|ll;ZPFZZ>3DmL#NCX2N+{b(R}Z$``-%-m zjLqHrDdvTc)O4x-@Q%~|qCKa#C-qfuH3W+Jt0o0M5BoBc97_JBHJ)%`+tb*)Jk`>8 zVW&YJqq=Wt$jQFyZIqpd12QtI3nr0@-uGmU66*2j4G5f0iociy-tiERZ<+zEZ=l`@ zWk-0BLR7-~J`q6i7{&6%tJ8alur1f<>vOgJ_sdH0Ijnu@uIJZ^enqDZAMkUnGWV@* zc$vPB-GU_^;^iWv*re)xkUL7IW14PUeH?$yE9g0uZ&=$gJiWOp4iJ;4U+{^*AFr_<+}dma-GZeL80+CMJRiPPF}6Fp$N(4ig$ zVcP>83xJrA+C-!YuE#8&PIS5pM{0`I)!50f-+a1(tfGFBt?5ePCw|C%k`G^PyIv$@ zY4_lA3RfSxw(#qX(OHPyF_wFH#T$!XZ~1X154D`fR%OEvUfe9$RAaBERYp&&u_r*5 zAen@87D=GHe)#1mWqmS)L2!xJvL&OL%B5GEBQY1zBT6K!(eT&kFJ<`ezJwnO)oZ%{ ziblc4;%3rq<^IDh^?M*?)Xch`oGr;AVK(W*1jlLQB<}dH;@oHtP(Af{GOljOx0720 z19~K(Pim#s?zdfb_T;7k0q?w_n%_6TB=v)K+o}^-Gy=ZQ%tuJFM2rvc49DEJxrJz9 zK!Lt+*KCCFfErhrjBiW5A`|qba2|X|09=N^`ECTf^e92az<|T?dx4WiA|+aHTnR= z9@po5N2x5~%2P4wt|l}J6>PB6_MNU~?QIszNUP;z03(0S1mGO(r$c?r2{-b5WA?c) zl#x~Gy@b3G>Lrhse%_E)BOE7CBGI>H4(>Tturm-_#^4jD^_zcQN5%CM6OG7`l7E;o zHWeCq)35#eSAd)XV=M~*WKHWEDS47ipQ|ldBB>s}ep19-WLA%2t z_sr{7m3ZCmXFTKel8<_8x8W4!@g{t$8yFNtF4YOg#Zc0v%;M40EjDJ0-1kvmD(OB= z>P($5cWou>YGqHFu;@-wbl9Got+w-J+MrWe43mA%hlcs-k{12otUsD5xLMe}C))c0 zDcn*xR8_&DnzTaDJns=z!H*gBF=BnsRwANlN8%orJGeG&bwy0u964mGhRZ^x5sLD% zhMin(sazOFyt84+E-7+p_4Y~z*G8VdTBEc&zM>P7=5f%9zR&}^6icB zI}b~0-=(sFa^!|LGbsfaqMv2$_+C$ov21Bb{vp~l4D$IJ2;aGszZtBwO2#bgACJ0W z@zeQzCu^pt5EE8n2rDXkp@>c!x}WFqkY`2LuA5T;~VD4;Yoo13yHb>%X9tKYuQ{K7JDnyyrC zo{7I;454a8G!&OkWfT)CkIkao8MO!{Tg>BO@x>g+VEMtzyKA+R{EkDg0jZEPnZEl{ zHtWfh568ab&!5dtSzuQgDC zU@gp%r6Yv7jz{H&6~{}LRm!X#C-v55sG<_66{=utiu>>^io}XYtU{U1g!A-=I4UbJXkW;%A&VKnZZ; zQpy+4=<>nUAp8_7V3IwjM0jrIS;qe-8-oV2Ln&SJA)-;)@_NlK;_R>t3rB`;DL#O~G5$&(ppZpz5mV<^jF(U32 z+TS7<^Wt-k?yca}f94EL%gupvAKr4i+tSWz3x(7+nr$%&0A~yWp?e6_36HiPe_?cq zctl%$;H{x}jPl1krWw40DkQYVYzmWgGspgvU2}AgwT+Ik+#TH+z$(Ls6r?dQEck&a z{C#bDRGiqzs8_8?m>;g>LfbvD{gt_TXpWQ*{XTkNySD!2FqN=-E1T=W2`>!osn;$H zYJo;MwWmObNj7Pp(wZ;ZOt*;|4?A&BA%ir*^R3)CvAh$xgyvy7r%cF$VNs z7ce}Q4a`GE*5+bX9kh7*CwYmf4LncJX0nkO&fc!B`2@4zj7(XGYE;6DnRjJW6D;Q= zTtWLfvK+74T1WpHfTFLa!d7*Co-2?Di(tJvObJ@cc~fHTv5371qhu<<1BNdip(wW& zU^*a?FP)3rGy0U=?kHn5$=+ytgK~VfZ4cD2f-O@iO9Xv9XXM9_9T9&g16RyRxDliN z2XGK%#MVpZDuj^Gb~>QETR6ILh*Ns8@&mBi9;Kx<#A}g1`{us*-iF6!Jazt+y$MMPz}?w zgHLsHcgLTa3_1NaYB~g;GkW(D6^Z-LA#HE<4Rwt5qFxNKEYQ=}?Gf`tnSVCk2}4-r zFzGKZru#;joB-O!V&dL(i`2S_Rp`0Z=N;mpu(jI(xv02RwSsfbWl9`Psg$4I2+YYM zhDe;nZx(trrBQ2*(YR6^i-A{B@mb zh@eii=(*_V5Bfko*uCKpFu;pSZ-9V55j{?l0OS?LOG-I$V6a)OMFilcMakVp zv_a$%bcp8KN3oP3!#=;ajt0+8ka+D|)*H|l1rk8WeTgE4)qi+wcTqNM zgs2|@vE?(G2+s{pD37Hq%Pc|@OqA?V>I{@_Zv4xEQ^wNox)f9j1)athUhiV0(15S6 z&hm<~s(#?P2ZmazdyY=5hyb#6lSdyOE|g|-T?wqU#7D4E)W=uvb?TLvB+>$K-3_aa z0=jYyZ{;jp9nw1FmXwd*dEgf!T2-dTYX;$R~qioxKD#%jHf?pCYmcw3nv6U9AA>(|&L zS#qB!{9g&SdZAx(MJxA?=I&`Y;xmTSG2 z*KpH#r^>fD#Kb1o2c*i(tWJiL1f#$x&hmi7@czD`tIc&m6hxB*8O%rV`Ug$ z22~Wbnq!oUK6wE*e_n~VzkGGx+)R~;ED~s9t^9=vpy*O8YH1>q>7F8{qzSMXSKo7e zWQf{ylm$nyxqVK2{7$>T5OuqWPARRLd{B)9C^iqD3&L9C-L2xhwllU}TiwaH$qr(? zE4lfQ4qUu+QL@#wQjH)2&4>VjlEkN}7Pmm>D|mI<{oieK=y)xvqg5+{p&Q#6?sf3e zbQog4_UuB_%zUwxd*b?FC4hf-&dZiD;Q?FPlHf^qZ}N>*d1u~qYw&!(jF*w8cf>H? z6Qgt>=dpVpzJeEC=pfuy+K2f7E*z=8&1|gZ`;Y;B1I{MCWfVatzc>3pEgrFdu*wSf zsS_F=`iiJbiC^p-55Rpo-w<+qiyK!sF& zMNlaIx|B#l25hp3D(aaq-kJi#}?*AafdnZHpd)AD7Pyr}DG^{yq4#qcIbmB5`Xr%%IeFlVL ziwk|Bl(5*dnH+}?vPSV{tP%$}wi|9l)a^s;5tl0K2ZasCn^%1RWJ->3+87QrEsaQ5? zu-!tvOAq5p)>cX-vDvI1jO=jRAwAxV`zu^?Yj4%#wZ>L+j%MR$rExrRfPXaG{5vCH z3z9E!^7NV_lHf`>0~=;+#yp0CN9^RVKe*U0oyT~ffJ*o%p~kAJXZ>inPDnrYT@ ziktXL=j$iv8hHjwstu*x1r{g?(5!$vHJZTcc{iX+Z`AmR-@>? z_i#-*b9>nS?_m;nb5S!m#Y@qf7RwN->qPYRx^C@;Q?-QpcOua_4aCyZ&9O>dd1xt=Flc$85o+HdL4YSsCOJxF?&nlJAhE6Loi&jc_59T<-1005(Z?Rk<#i7qGH*Q91o3fgGvdXej7I$L+bZgh zTb{U`kgGx+$=Kf{Cc&OA{6Oe=|9nuQx<>K)lca$v{;HIAZ_rfb;?Cs{f*dIvJQFd| zFP9w&z7oF&3-U9oTPf3Xtk%CD8`paBYB#bV=&V?R7EvHxJ1{dK9=rEE7sEh_8b^oc7LFnkaitX;Uz9z%P&XO ze?rxAtyaHn87b+UFxN((guSj-oheMIyG7`L2Q4I_DCITd@S{-nG?x1w@u23a&?=dEpf3!sG z12~pR9a)FQQzhGjsDh)G35Rue#wwmLkInbjpPITDG#r}w(Gz8E@aRLmqq5x1$qhL| zzH!i)FFuae5W&OMsWQC6I0)NLUcjS;LipAhMuL%J_l|pSN9v4Zb>Yr+X9lBbEN)Mm zj;+-@M}|OtSW17^3Cf!OEGcoKE;;n`17mra+)@`ag}Z*ICVUqaB5atCMRYOAsZM7tbQA{p&5H zyv~##-3$^EKjM?CPruk;9ftrav=Xny_~`_?Lvq-vi@R2%kB%3CW*T*r*8dNCZxtI? z&~6LbF>}n!F*7qm?3kIEnVFfHnPX;VrkI(TncZfOlmE=o8QrJRNOv^S^hNcvJ@PW){kBe5O6B)GH=w;Nl#QEpsnW1Kb#VA z+F`9U&34VHGUArbnF!i2P=Z9nQA{Mj^M$a#Buco#2@&C|0*8*y`bOgo2`1|{5vtc zaziovRyt?DTsY9qRD>z53qmbE`FpuNU@U>+XFhXVY1~J2`Ph6qrjVY`hH*{kT33s+}y!_4g?zdQp;mvi?%pxkcNtu2L6R1-7ws^on zn&FuXGFwa{VF73BzSdmYDlJRit`Xa8-@8o7bT*HoYbM8vvsF|@naZfX23cJXF++)a8PE*EwCw$co>MBRt@KlAwt)?)QME@-COPX<2*_(hK@DK# zcV&0HAqrXQLRA%zW(8KU@2644fQyk9FZ|mMM?~xTakEWrt`?dMDZMjk1xbK7hSp%* zdAP+Z-2y?|gN9wWt9rcpW|i1u^cJL5{E6Hm*nk+A!J5} zcT{0x+*Vx2oM0`a4aMjqaP0dm_H}#ZJ@Kw3zQ9uSnY%&$p!p2lua?UfFB@l7vUg9! z%MB%c_FAU)x1dqhv4(`()uw5mKxYN8kO8)3Q2` znob-&mx8=dte~ICs*EJ%>1FVnCSr#@HF)u@)_1;b@=UK60_zpthM1=O(DnX(A`9VU zMCo})PxvU0d5{Fw$euxJj&h%VQf!&5wdq5okT^##EUUIVU&TwT{KXB^vu9??W{qIm zv4_>G)aYRgH+HoO+rm?x5Lt@X@O`AYuto-(M>@s2Lx+x$4{#`%Fw=5mw-|zpb`DDf z;4(qJnvV6P4-9*2rWL11Ukf)M(BEtFJI6wb9O|DQ3)FPixAc)|UElQDAH0&c(V?N) zN($$0KY|@CoN1Yu}SW(G`6j!FWkUV=x7falUAxiSN{ ziK%d?z13qZk(-=j)@UeemX~EWILK`z;OcW=FGQ?{pY=nTA^qxT_LF*73lBZ;h)Ok) zxutW$Q=@H0tS?!^8K0w_VM~66gMf^@+?vTR%}rmAag3O=1)ZiS#5+~s6s#!|MJ;f< zpVG$!J61;qju^8~4`te)4(WerTwu=58$dp`2vDhO2`SdMGV@KOQKDvr>=${I%G7xYeodmt&Z$Xd zqH%iyPb)`*)Z^L-irjVh3mZenfT3DY)Uw4`Nfq8g=)+2}O9#~Oe65{icDOP$rdT&` z`tXe8Adf9ZMdR9dNsB;*lc=RY8-}@_NGL;&OAmF84{oXSSQ5Uj}f2n#A&|#M&$JCQYMIwmh|kWTk3_JGN!qu!0xo1u zy|U3UL1qsBN8VZejOL)m$L8kls@h=B`r!y-RmnMRd|^SpSAlnnI&sCaxx1@%?mML3z0M zddBXTK`zpR(t|YEHQmAlQ7%MJyR2MnG)>Ks!$p6D*-{(0|1jCB$p|Qn9z*WFw**xq zRs$)mUwvNfc}VhmzLp8XB4?;GVk$GKpy|Af1dHv`2bZNx%mytkBo{v1>;n~PgFShhk zk)$cp{{Wh8Y&3iG*AT;-PoP{fu#%etgDW{s75F;nO(NUCTHwx|X3f+`PN%H`~k*dp3 z69;YiF|eQ;Z%6Tx^6^6b6&J(=hhNPc`BTM+`yQQbb84wTH25M+5k zkG#tB_a~~Y^XEwWgPv#M<t?;BFNTEfLEmKc}2U<*Xx zA*>Z9E{*=O>N3?fAS9lP@7EBRWNagyPpnu>AMQD6$JQ( zbv*yY$KsU&qV*;Vf{mo{Cifv#e8=ju0@GMSG=QvN#-VcN9vr}0Yv>M{0cGISS*WcIOGz3NTsIOvcfKW*AZ(Yg)?@8%5J)sLiZuxTqauBhi_EN z`h^xiJKdo~IB)-Ds*$n!^`B5iH=IcFTDRnuoI7_RiL@Xt&$ilGDF5YMulj$7;FVJlPp6Z0g*wv zIXhe7Oog#CDI!H}MtIPi=w_TKkT;%y{|__nMiG}9RK*eTou0kQN_vDFtToh7CZ zK$@B|7U#TphU-MDtADKEL11DEY=r483_$8l7Pk2SD;1BXPG;B^;JocQ%qkZe1GPvFv)O%wgq(NH=-y4$j(ANQ8;VC=U}~uZ(kL zIwVrrD8uR%a|7;EJ=U$YC6ecQoE#kq?e z=W^mSQH!N#eC?2YQMjiS=DDgRbhKLr^;g>Ftv??6T8yXpzJPaW>ceM7{`&}d#+8$R z2Y!YjlD}$>JJ5!1HD{nrjX#hs{`w9USeuBMqBy~f%zt!%Va4A zy_LN#T-?10gmpH8i4N}HSxHNsriwM+0~aoG2$kPU2F`zzQZLc{CA;xKI{aN1&Jz56Gp6712%rtg;? z*y)(XK^8q+M!fRsmMGOB<87kz(w#sY(LYtW+qIbrw`zpLC1^^P>Kqhox2z}*(SIP$ zQ{Z(WOcDNYL+EoqIn3FKS$?X`eS6~_-N>bR_WGBg`s4;C{}%O~vv>UZ*EJs!^>T}r zX+vH&0WRR{ym@sPS4T7Ya%2Y0X3|1e6+~KMF9L_MKpnu6pyeF3`9fS}+!~*lN9eSH z95vt5k24JduG**}HBJArar6GO?OE-MW@(3J!dB`vbbdicklSZ#%k0dGl%wm@L4!b} zWT7X3$9DNR(jFv>-h14px0nBf$-`q5)q==|>?$8`&tea(*MCHfc;Diqkyo1Wc%6Qh zDCr*z??Q6C{h9)%xxwo1N`vd7%dOFxzaXEEBK-@(YT=BVq8xA=9v{87gi0 z^e_oZ;)~}!D{WzGCTdXv81HE(YkSUUXlIEiReAhN(X}_v=7qc*rs^jdg`=aLob~oN z@Aq_*&eeOTo7rI?f0np)qy0N|O(1gx-urXRG3nUOCdGx-Yj`*rQhqgf!-#;eCi}Nv zxp!1JxINE&G8}3Z{XWUN3o?m@Y^?PrIu;*M%tv!p*=RlH4gAQ zJGdTYf};uCHm5=KK2)g_SB*iPu&#BV)sRTL*J?}hw!^UAn+~skOt+?l%ZN$1tP`Zk^kv<0@tsj1Xm0CLelJdn_kl6J(y~iPh zW&Mms!1;pER&8K$GN=hreF-kD*OHqgtx%I(TPD`C0zAREYO<_)iST= zf|3g+uinvT$2sVNDxB9e5-rcFGUTfsmkKy0Jbf-Il%Q&UFb%i?4a^0JAy z879DyE#*^rI_DgOSNGHC7`xjgU8LuYXf=MCbk)?MiK%%7os_bKj%E%`Ay(t|H7ULsmTuz$r>~gI7_v3xr@rn ziEQF!YG4?PtL#2IZ7{MhcH70PpEB4z#YaR})4cBo_#3m?f4t{3Szu zYJqM)C3t58e!2w1v&q*ovQYbEKX&$XMC^R>0bfe_peY8@Ui)@zfRrHAvN#@kIMArZ z1`qZc8%cage0QS!Ty^IVv?7Z8DvPlQrJ67g`8VF%@+M9#s}cRS)6OkHxpBR79LgSz zg|M6j$A=Rw@GCUJYWd=0)z}ZF;)KaWBX}dL6}Gvu^)vs;f2Y3t3ckN~Oq9Pwy{QPq za3*c`CaSQX`tZ zR#s>ZT|8VRVik|=ej2|f-=OXnLyw=;Xfi-#AKgXYtm_jEq>|^YlwF;H;wwUU&sHU! zyy|*s54VA$l?vj zbB*>Fp4e{K>O^v70x0N?ule$H@J*UTTQf!{!(Q$Hvb1=Uo~M&BJBuQ(TsZY)eZ{{~ zJHqRDLGr?!<9}||Jr_K>6qNr}lr-#7R>Ysa8e{?PKJ%YWD7!tqX|n$fk=eIc zgz|{Ca^;Axsf}ekMEyvYE zR~3kw4hUVqR-TWCZ&c%UXFFlX8Xk(nXx9d`TnM8Zr6=n%46CA+df12m4^1+~z3C~_i)7afVog$%cB#mV>pthWt zq2^0AGhop8rR8o)%BySp{T{VIHl7Ty4xdjo(#N|C$|{9?Zp}+=5D8eQCxzs_J>Nt( z7#uqK zQlU@ydc{BZ5f6|Fw%HT!XGupi5#*&RYc=2!p&uW4Q6J8^AS{&J?x=wQwA>~ugian_ zTc!tHK@uJADq8EC-a^{?&InR3<$e>++r4TwT#2i!pS4R zX1I!)o^4%?^a+uBA2*@OWD6}3z_bl|+_*g0&XX>?1-9^m1-1 z^yTOmIW~UKY1QQ#a@Q6W>>1(tyRgtJUta%{X10wJrZx!g>0~hL(!Uu?;v1*6(h3AC zLv8zZ%i#i{7Wkn#Fnqg{efP>vKJXaeQpKk{H61gZfF8R}v_3uT^p$`4!Z#FX-5PEC|3=^*Vo-Ie=v^h9s*rUIDAnd6=M zTk!w1`ewU1wRjHW4t)Wz{3y8Njl7+kQVTkhXmd7Io%XWD|LY;WLh)z)=@Pli@suA) zF@7UkJF@z#0qITvVkXx9z?C_)ZJS#5uL_9eD!6^!@pdGA%Rv~q`Yg8!RHc3`U)#U< zTP*)ljOaPtbug(;Co$}b+6#Qp-4NQo$GttL>S|JUU**)1v>&0g@P*qsr~8~{KRNxA zs6+8{)Yj?I+?VGBZ)?xwBhXg6g#VLhe7zOhci;S-T|NhV+0}&)rUy5zzX_>sA)xS8 z{EZ`Ia^3mBY#(7E`NM~LfBRfYoo<59?uC$Pg_PVHhv#Nqd>`7c=cgaTCZmeqsvY>3 z^K(BROtt}2P;VJu-Cf_ka^+pN#CUYk4ABYr3-lFIkL~cQ&*2FJp}|g0>D1X51?g*Q zx*+>XARcUaNqO`9XF#wadqfuYyLWh>cx?YZ@po?g&&D$ys3XVn#SuK_KY#FLHkv7_ zKC_E=WcvQcqkr*2G%|kkQrT141^wFU|Bm+mqlUk~Ejjbs|MEWn*SGusfBla!_+JO_ z|4n$VKUecWkbu5E0-rj~#M4k%^twI1z#!nT82_L6(ql%j&b`zF1Oyrh1PTNMlchQa zj|xNs1Pt`8TIZ`*hMTuqGpZ;re=&l>XMMkpg>tLK(4?C${wU@#Q?Aan+(JuW5eW!l5)IuHs4nw|u*6~q9KfmLLzt60MDuhT z82$W{h~P{^Q;;NyWgzV4jlP|4W~pWM@jXF&OgkKTAFbbIUA;|SdHQ6+nC_W~!F}JO zp9K#bkHvbB&G-8*#70Uaop?-vgdd5>L1dodH$N|Q4Ebl1f7nb?9u2v4j+a`f!4X(c zO)NzH!i?@B-=2_0JW=@G4{Rq6D~p^oGi=$EL4YJiIut1a9?24#a6OK*UmzW_l!i)X z)w251g+t}-TaPs4c-1Lb4Az=dunI$^ z_n&{R&;hWH+0@+cg5_Sh-rZ5)gmBvIuNsZ2p?pHJ>Z( z67Wy(_ag5roNN4f3c(qHZJA{D8(J1$m7i2gefLJx%9!MZFc02ynL=M_WTQ!CQG0S_OgR5Z9fTuDTw*up)VR_QmW zb>Pxg)m4SXkdm}Es;t+C-(DM{qUMqq=q)xVD})PlzgY9k9fmQ*Wet<`Z-%;-^c$0r z=zC@lac?RRkn{@@sx{rHuyn8cgNNFt12Li~gSD@~uwnYuOXA4W?-xfdIus^;ZsDT8 zR+Sh`@g}hO&WvJEmBWK*nv#0vL&*~z#;q>psmDT(s;?%rP!~8W85c34(E?_zdV-2mBF>SbrVxjsf*7Dkfnwi4dwBLWA)#xBmybo+PP z??a-;Fa^4R+y+JQ()9W7^6!+s`alNYd<%>o^31a{%$A+v)H40?>X-R=P4YVK64yB~ zWVrBrX1L(zR=2(swC-Y>x_+mEF#6{xu1W|XemAY!Yr0sojnC&tK%7cO?pm)v;5CA( zipcq`J*tYn@TRnNB;?K6R6a$)rl0sBq#fG44xaq{c1EMGL}nCt8@3E9Ywt> z_uWdi#cn;6^eiACVD-PY2z=(BEh7DEi|Wt*+ZKVD>U>$Dzeb1(7-$Ck%LqB>>T-?s z9QX8;P4ry$^bm~qKnC*njQ8~PrX%KL#*G4@9O~*ChJOjQ5rUfUBP4xl+ zfh^>pr$=G5{U&Y}OD+a!3JGE%qAz015aJ&a;?FqEoZA2m0s{iF$5%r{b2hltYWZxy zY}JK#3V{i#4`S5d%cW_9F^O0$?wp|`3Rqfa)eCip% zsNuwjI(%cs*wSlEJIwR6a|js}6qwjG`OW^rWn7XEJr+6vzv!osE;Fbv;r3UrM|#4^ z2kF0oWfp1HyUDbc;lw*GIwB9sGEmYJ5CQ?6&nsMfA&dJLS&-^~$TI&$wo&B2kwyN8 ztd72!o`aB$y}glvqmkiXoVS61szLsPv-ZSaoCik#;+#A3f8tD-`4?x*oWwNM^GqGZ z#B|O0^gbZPf!>}G6fk*6!+O6&rf$%>7K~JW{YN-hg0DlSdt^s?pneny$QMkH zIT#uO99#fgS-3)%T&({)CMpKX7dS#ioH#&0aQA<~i5~t34*6ejn)Lr090*e#D^(o@ z`M-el!vPIPe*tol<-x6df;QaD6{kqqd`i<+s!1kaySQ0JNPI%t{DWi`EGSGnj8KtL z3X4Tt>KD>4arE%COI%b&Msr2`i6U$*_A84??*vAt$uy>;%qi}esUt0m_r=vSw@1K6 zj!E~&3U=uPSmJkiS~d!(!V-bR?^iKw!sNf?^-IUT@}%|W* zM-O>{&seq;o3WDz6d#EwR}Snt2NoTyiK;z)Kr%X*llCdqhhPpv>2%pl(JJ|(Ve*Nx zKUMNx=Dl2AFdiLn*e;%fXx@xHb5i7vSSEIyjcKJUB-WGfg z4ZADTws6y*bMWz>Zbtn-h!bwUFY1cgE&aM4=|cw7xKwaewOJ2B6}mUm0x^F~tvS1= z=+;Xk0XMka!)ZTNef_vCa@dLy7l!=)Ef9#1AM(uy$v6EESJj|-W_EdqvUOcE#nsVZ zH%IQf-n|Q)vIx%_|Cu#1riqdte4`CYx5L%2U%FwOLpppW!s!{c=Y^mk80S2@ks7C% z{55;)m4qG#d`Fn@7^<3x?5CB-xvwSsugHv4-cA-Ite<>t`}-3jVHGpKB_c2kHCcY??)o!i~?Hp>z2C-> zLBHlVd=jJ-HiePrc-aU~6SCki)^?ZAaNQr{abSqldMl&gcE9^^#bns*rO_ z%xn&y=0Jg?j<%E43@hUh)!C;_3jwi=(LNj!&HwfL9x=dUkY>H6Avl~|x=GN;c^)XH!!!F4YPZlX8DWs+Eh+m^Jq9(augTPNOEdUdcU9WClcNOTdHEsCYJ@Lw~o zhv5aA-Pr<6)w#b>A;<~_3vYS_i@SO-OU>8p^AGIWVoTa;RM67j)1O-=#4(~`_+V1W zyD=-9MR7UWjPRtl*3yVOETC5>6I(kc0E!LUy2r+4>Lu{ru%OketgvJUP=8yaL@vkxC$?T4Z=(`JfH zneuhxc3>nLa48gbbL!w}f{c_eHErRfsH^_`p{5$b%qY1b$`dfPE8dzT=}I!~BpCEj zQ$SKD3CxP){`e*(Q=#zj5Q>x@qy(B3n;JP}vP37>LKX6xPN@8l8#{s&0^9_)6UpEB z0X>2CXr;hSs3>4TkB^y+ugacKlB)Mi7}CSj9@w{uDBR=6bSk@L_+!((jG|ipop1;>4@GY?;>b z!$`{cMbnD;KS?4RL~|SyCi1deyT*ChPo(o@BcB<{i;(k5C|%SE@?prorJ9?6i47rQ zPN)$svdOynd@V;o+A{N)yG|BXREP^|Ew?dcypWN}S#GB~a8w%WbuG*f@Po5_WTV!& zl7>+MSAj0*N0;dd(_U!ByhM;8^Ok;#7zi810mP(P!9t!fMp@qOKXMLT#NkPfo<{1& zzz8AEZND5`Ux!c9L~xxo^1N3U%&Z1+T0RrbS*=Ea$vLRxMV`R~7s>0R3@8HIV8SAb zMdYuIt*)!i`FkHBLOMt@ad#&K%zF{jtX8k?$((hxZQ6U+j#w97DiZhm_K=m;H=(Z{ zht12EDc?yT+&e8A;1b>SV1P4n;x#C1xscNvTz^;RG-65e~b3w(1re;X>n|#dzQpk3HVufA?Id>s89ct0M@ECWFvvbeBYj%(2Z~S?L~t<&%4$g#&=|t{iu% z5b%46&z{{ILSr$E6eTArTw*d9$jP4qK_)b|M1S)>pSu?>Mk#W+#?IB#Fh8)Z zWZ}K|ZPr(rz&7J(vAJj5C-QLxi!%9~oMzxW0-362p~a5Z?C1>j%?&Q5)eqb#kij~| zd3&ef2w*a!G_5VI+UDK}9PTL0wfGCu!LNI6Vlt?JuP`%%wo6RW9o8^d>0(45`o}I^!?ig6o2QEP=K(?@$ zB;*?zWKUm#l%-DSiyrP7z&LMpJ!?W>vy`<90S|L_JDuG1jf@)AeXXdyrO}UAL?|MN zikc5EV$K@Ee`}ozvH-@`-iXBz{(BI?SG{NY6VoNxOfVH7>dGnz&GVSVzc6WtV}ctw z43fwojd+7G){F-YSFn&G<2jFY^F5JVa>gRip!D!N&5A7IJm3bL|y02a-9 z?HZhIPU*V9cbUJxbfBDTt;=`?(pNWc!O`q&37gcUA~BeiKRt%srx{Y@OBUJDZdI3eqC2#PN_RO9#iL zC=JG6sZHilgXskzD2ATPIFY5W8MTja(;%D4jU8wP1Mx3)aen2esfK|>dKpqOt+>I} zKULA+IXOWfw|UbdD>Vk&)vo6+@jl$>;6puXNkrCw?^koq1 z=rdgwV;KLVKjeO|JG5>9SCIR=pM0F$@Wnd1Fk>Jh?PjLUapL?n@((|iDESfZyLm3c zyXzw>r;a{rr^7BT=liBB=Z-lVZp!j6vcbSPzom{7J-nCY5@X5o7u=!qmwMOB2w7@0 zhT)3yO4Wp{h&8t>Q?uD}|KMBOjt*()`bFk~-b(TsPa_z*#Rb3SAt_Zy8_HQ6x&ko` zLe<}iAT)Pu*VP=v0J~LkX71Lr7npfDVd9gs?c>NPEBGHed}*KQp0D(Sg7}Qi4aV>TgF(#^g913pn_Ex%u(lrU%&0r>|5PWnZkrW z_KAr#z>Rpuf#6Dse#4^b^}w|jk=+@cKRa(5-XY~@J72AW<2zkjElg0dqB zwF~@y6~YFN7#KLqn380f^8849$!qP0<_!$2jVGX;4Jtz_013r)Tg0ss*{wURkxeEJ zdFK!+bRDb+PlqfCd)OI$VDikNEhor4Pcu&@n_fG6VDZQqoZPrXWR)$P^_>thFXr10 z=v>3E(G#J}hKW^}rn`t6ug!5#?U}I-Xn){gmAOlFG|0Z6)2_!RQTge?6>TcfcrHr6Y!UC>;zGLB)0x|o{={ur8(xL z**oM+P|j8FF0azeDFYn6Z>d0}zEHY<8+zMsC68)F7D1c=+J2`K(!~cuvxI(|yg7Ci z9%5IXR|8wP_nQ^2(rpjxbhkXka{zcd;P15QDDJL=Ai~OY+44`4&DGJ-at3zMI~?%E zY~CqyZnHfcU2K;)In(cplz2{bc&FCTZ#t(a{En2mm8sDjtT@=!Fq237q-fWfMLAX3!4ok5-uo zuv>&B8s4KJzb{DUqU~gQmKC(B%TOcvcLWym9`mvYjJ{-toLVr7KV76Z9{)fk!X-2w zDR}3)zrMU=02|YDmmQ_6y{lswRd)=OzEB)%%X&-(5 z1cx~C2B5c91yr5tPR1pZ>C)FaU+{YToK}s9oV z5l|H4m4Azru3b~PX=^e@P5LlRXpCNf66_hKLn7@m#`)$=?K_DogvO*YZ8|9H^JSg| z>m^X~ebS?Pf<#AK?Uc3AA&^A-h~JtrJd=Z92u^1mN<|hvw+XGTpOV^)Oajr0u0wgQ z1gR|UxhS5;%bu}zPW@aKOSLw5a%D?(Cxx$){iW8Fn~|=ANX|2}4aPD#`#hYQB79SA z5n}eRfuB;N+eXBKW@@bj?S!r>(sJtXacvQTU(p;Jcs+K5UQ-c%KpY;7^Dl>jNu4Kf zOYUipy?2dX^ZUB>iU4Wdch%WXD=jEhw2C%c=QGRHnM|WIy%T7(=RR6M{8|sAHvo-h z%|dsjkM%yBwCA=(yH))Fv4-2>aA2QklY`F7iN!1Jn`~0KwaMX$?*j1A1GL7VZ|NcV zWoHBKNR4G3eUOV6%He*@I3<{Itjx>hxxRSTpvQG!lsR1 z)37(^9J#%qQA<;5F`EN^?gCnZVFHMz?IRn2GIe;^jE*v98o5+PqY?0T00VuPm&^F? z>~FF$m|vNJWt^d(A)%Wc&EU+eziCsSOyNq(&^nD4_WhOrTuS@+0~-|4W*ClKK@_p6 z>zz9D`Ku;5`O+Og7xd>FoK~0l?!LDlNl%7BaF9$dr)Yr(4uq_T(DdbQJL}fP$}y35 zxFVsp#)a{k@=kCM)&RRvk&tDbs1tCockfB%Qi;JDhnFQu=Q+S zUd*^u?iZV3_#HiE{f$6if*Y`Zqi`GhiS^bQ6=99ZO|{bFW=#u~R1vI9{n*QF$dX-x3PG$Z?cNvRAhkjq_U-bSMf)*_c3CdFAvD||a`9njcj|F8 z%U~rizO!v+jS&zn_e#Oau5jeOm;5b+LEzOl+AQMK>D&?xgX#FGS$*DfaBuiR+&8_f z-DqnS*;Fe0Gg4V#-&JeMuy+|lbN{V~+QyRo z^T?+Gc$u&cMd(1wiQ%Y5iBZs)e??mPSV zmIdIL{EM`=KKow^76D-{O*+X!R@zKVM-jdFo|&7s$KJ0p3=u`2dVKRZTgV<|h|_U$ zq@~Uxoo6qcCB#z7L5dd{q_SF;va+NB{BSI3#nq{HUElA;2`)KhC_gZIVZa7Al_$(HmE8a&uZd8~L1~ z-F+}7J)rdedzz;$5+G1Q znb427e{td~{M!hiOV~E@%bCbQ=C?jdf5O}^??+lLQds3v%1wXna*SNn;R7DMf6pB* zDRA&-(TPDtTMl>a-6NcFsqUA%dx72LyQ_JYJQ9vIMOOi3nd~H*Zf|kvgR7-hb?(9d z!%{0q=||~RuoMCtbZo|z`Dj&lwvf!sO6`OoM zr3$%TH|Bo8T+;sDVA4E6`Awp}6D<$ef+ccM`~M3E_u;6&wY zL1E_sg?N_fFRtN$^r^}s*rRm0s`JXkMor`cQ*5CLXq8-))vo;WyMof(#t;gNCa^*7 zWJwN3P&wWR6}ft+pwb|s_(Zd0q63^2VVcbhF*iE%g5}<;Qq0x##63~EUp|6JgKBlb z>TY_FgI(!Tn3t>K6TemkF@tdODrO@~p`gepHvWkH`V8UzWix60M|Lz>UW`Mqw6RoS z9GApUM1`}6c_yxd9YFl7YDeKFvGaq))Rj{0!alOYR4_iM(%q1>HMHY#GHYB-ATHZ3 z%ry7x-XC4P<=JCl_K%c#u1^FMu#OzPV+q2-|31 zfn!#a)05u?gx25asVDP*v;}FVJ3Q#K~H$G<@xif@cHP>Q$ zzy1TN9+IvNg)x0ot+p@!I`;goRpnJCz~#c?r?@edZ#_;A>y`DoJ0lPfwrVxou%ee-;dN2z**&la@!hKCk(dY>D$r2bkS^!5nZ1@dw_ zjTHg$h6CMveaXcZiy=augBxm{i-qE`H_PAnDH+0A^!u&;`Evkg*IfLA>;<+EB3w5Z zRv6%6Dw}D%eL6$aK`ggI*W|wVr*>;z0+qSyg2PUkVoPXY+jwN(m9sa zKB7aEFRV&6A5A{oi?a~Ysz&rvuSDIcG2}ZFLhIp`^{l$Sj7>^ZHXnYTw+*;mIdC|6 zc{^9fP?4)Fj&_wgW~)W2A@KtNgCX*FbAT+YC%hURbDX6|r7wrxBez@)>;SAPziF!@ ztUoX2`Iicq|0Mba1OiF$zx=pr`-Kek({O*@<96m_u_x|QSL7+`R~&eGiCVAuySip{ z!2MEO!lqa8kf%NQ*Q@{i{{Pj-79XS+P_l^j!`IpT>AyzR-1dJIRX_fUs#@TGM%4tB zh&(FLmh-z~f)UNPZ)-6e4kicjB+iU-7yM97Z~5H7?%zPG2#8ZWfZRb%$O>y8(VVNe ze#DG4$z;?$a+Wo?Y=WK<0q}Dbgr8C0Mf%;8X5w6qkSQUEs zm0A}Z(h-WAYc$MNJIkuU;n!w zI>Ez!PanOvH}G!OZ{k&Y*<#d?|95}W?-T6_sBN29?JI%A{p(aOjQ>Yd&G6S$Yy5ix z>5@zn!0f&zw}=p(4l^{2tPf}nbzQzCp|A6AJ@D;e$6u0kWd*`fFj+Ya?_8K(y~&7d6e2q0O2akHPBcN`~E#f z;kL3N&t;s3{K8I_omuJP(si(P=>7h@LmQ54KNK~z8GsTRNeiR7VVckr+&%KB-j*CW zktJGp6st}+eK+K%^rTxQA{g2`p9C#trQi0di7t7uTv@sE;O#xTh=JV^XApc<^+3v& z>uvqI!2inYl^V?xajdqO7r=)itBK#WthRmz(a-}v7y_b-H^W8Ga^G??`eP0Vvc9g8|1N_Hu!g=i^ z4ODU7dR-) z-SR1PoINZFoj*L@e8wz0Ub^(+RwXl4h^ty)N*TiWZ>FE-&9DAHul;rjKtSLp{~D6Z z|BwItmo@Eg1hfYHAK7R93juXTg}B214ICyPyG!lJ5-2=?q#KZP7}C03oCg*W0M{C3 z#SQii9C;*Do-l@Di{n#&&Gd9te;@O9Jf|*n1*}#s58g5y;Tloe!*5z`3v+>** zR4keGO~>TH)#otX^WxIyL;gdZUDMOw-QJ{FuQR=dcU}iJLhOsq8Y%`4KziV-bI`Qd0(ptIfihcEG~gA75ai$5uJd!DW@9Tz6zY6j ziePIiWpXy=+@ag%UE2&Pbg*!|?)KE!U~8ylXBm*=Am9&-bRMS39_VgWHch`PPD26L zoDMV6?1}!;DJs!qwSHUX9$~3ij&t5xezJCtdM$C8oJtQHy>(*aGG0hY@49`EOu+Dd zg|Pg_E%oRAF}o~Imh(jfe}411=8$I=!QiqrcD{PQRkl5<6j>%BokLvAW&M=NVX>vr z{K1K?`qOnx&_V@yq>XG?{keSBPG!?_^XKOltO z*?w-sAT@)fR*L8~>}v2<5!Ze3RqN5{(`T|?Gcx_vsw!+*n<$i19RV)2C67P%G~CN| z4Qe~8{k-Bh24$yzp~gX%&qkALfDYLRioshi!q7+;_1cD?2IKiar8ZR*povF)eWAz| z>_W{e*!Y}RSdLfK5?LOT;1i-qBHcqOFs~pb(Nur%N^@Cs$)l5p(xm9@X0J5$b4X_o z-?;$$qt0Jwe$({hUZoa;?M~f2rp+>U#i7pK{!f&JM+n~dlk{Qbq;{s2km#!_o}=o* z-biiT=C;o&iS)Lk7l0(a3Ou0t}nJrJ_2&VE`>c{3qi|XEW&e=*) z<_CyTR)+5d+D8_CoRulj7~R3C#wmdkn@5ta^0r}gUfRoEB{kXg5Z+ubuo3o$WN$vQ zG}}Dv(u(oam&5lgiW8?f;AT8D(?=?OQV6V=mBQU*S3V;I2V&^2X2V;Ee|!;IkWF=t zmcA0;*Y{(P`s=xb;cEKkqAZldfd8G=#Ior?rf2F4*F8-O)SLB}9^2HL+9K5<{F*RR zrISg#qfEt%l)HI%T#pL7?_+@1LIW)1^)#s>OX0{1+*YAm{}8SR(Mvocbm{`Sje>q7 zD!BX;>TfI`wS8vts*m4wWidQUwchK0&ueI;X2KeN`=bn}CQ{JfrBUoK05?_yWClC;egsdBbhX1}n9WPl!RP+&p# z9F3%;l+&419GWn*Y~`b83TC{)yER;ZH~;nwt8t~@SR9_9P+rQkA5nq9;Y!`%J-^x@ zTG&|v;Lt#>Dr*1ZbeQfab!#mT@I;DZ$WiGZ{fWafpC zPTut3MWt~!zYEAe>#)>d3>arvICwGZ^IS|lH7}J(@#!Iwb+=C;vN=z9(-pTkPdV4e zLks*|#@hhB-1-g@znuNyx%<7ShjJyZyZKOeZ8LKN;u7SmiSvJ{L40={?G?r`RoD{{ z5bU3S&GefR|55S5^jGnr3j2>tpW&{g_=r42&jnrEL?PFas}vXp+362GE>|IvL-!lz z_b*I&5@-qv$$@I_esJ&sxF8}b5UQ>C8tD zA3i_}({0A{#G02w+#g??KN_wHv4W%Tu0Me(Phfujd?MFkL@g-h-1OdteWZ-K@bL@p z0QH}s)b}GIB|RsiLVmf)RrsDcbt)kd&b%epTi~Qn45q*nIOId5oDa1s?;ubY(4Isw z3$rd{N>c>amBwXVU2Q}_Dk-mkyCaw<-)8erui}hrH7{4KGbgnN!z9{UI24525A*oK zV8a%Ux=)K&{yej#H?23l+_hWHH>o~{3zoZEhSBMvHcbAVOjylN-+qUw=MO*VrCC^S zc81mI0%1a~H7l8`4SZL*?yZjD>=E$ojl7{W%Bi87COHNRIoEVysPRP)9&{C=LYlBq zk39WBr4ti1SYqa8y4ifo{uSR?bZ_t{4IH;hENqlKu^7E`h~93evtS;@IKB1LPDGhF z6*!|Z=z^IcFG_sI;tH|>PfN!I`jFhT>mQHK=4K0!b>36mL8nj5o8F^po6(@kv$60nbP_L2j@j?Udi%^`SZ?1P>%xW1l*Smc z8aKWn&b=={DOjY}HVnupVu6*5pyvm*W%o@~%R8G0Ps#z7+K-4>ulLf=( z%ME%>H;-#~$XDtgoG8lJQ`q`mk^hs66+Pdjuv0OG^9h7dxOPL38;QvR|%(D5hg)&V4eMK z7{1_B4%3yf43VWOgmaCFFS6F<8dwyB&#c4N&1Bt?MG5A!^-Y})Mx!XR9-xsIjO7mB z(hyE9cU#STX?}=M+^B3l%nyTb=J?v5vuA%iHPdBgoWX$Msm(~YZd4ALQFgXy)Jixy zA8-9bK~_v;{l;<^J3eQDaY%JJSo9pcFG89KRbH8rV1zOsYkrNb5`Io!C@$baRuu=y zv!8TrbqF~-tU+ugt5+;4l6JA6Tp?=yO-TNYVR;}FeHCqls5n7qNs#$qD4KW zAQ~CYi6Kj~&;J^1EJ|B8U)}U^CIJ|}`!wdWEC-zI<@XiU_;GfLIKHvlX}jK@D|3UNhH2>a6Ax4^!|q zZf$yLDuQbJW$00wLfH7@Iwc@|m;cJjHcns?=;$n_O+82~&q-tIJ~I49UZ#+{XusF% zXuMjZjU^Zq4e1#ne1%<(&%xt~Sdk^(SnL@MkPcj7jzUweq##$QV(R^ZCR9u_%w{WD zD4#<_Y0JHes4;l}Kw-DbX{`w83YicHG9|@r!h_aDNYF@W6U)zT&xuwXY(?E#*EwyS zh!AuRu}vDfpcG74O=@3lq6V3q8a6xqxqT0KoPb;?%5L4n5Y z93+NU{;6Huk!e5mQ8vJsW`%_&Tfz#Eh>FqjZ79<^ds(&b_64j1hr1|FouE(^s1J*j z2n1;=RW=9=tC0ib(-f1k4m~M=xysrk;ysOKqarx0d_CGY%X` zyg{XmYzxJSN29AJQbAp=gkQujkSed7xtZJor`e>w2T=(zm&D5{it?XmW!dg)C}iKK z2dlOcV>}(2mOJo@F}V*4Cd@0B6=E~5;d|t+m@^V9+70Vj#pfKo&S$|qfs*M?ye2?V z4qrW=M6jlbS{wlH!}XDH?*7ut%0z+*x(sM}C_LM!7xp#4*EC^3$O)NFq(m?Kn4!Kc zgy&rQDWvV^xcN)i=;S+00?O!k#@7kkgkYZwwJk@g2{HlumYGg$PvANYvk{gO+`69> z2$pxgvd1%1PQU-w$e{W*dC+8BOL(||Wf;lyfFIQ%a1$^6*DiJ};>pY)TghTX93=j- z-)rg{#e$54YViwg0Sk44KNjqFMfw<0_$!qSX!qfrA0SGfA1UU-v44Eqr85Y$o=DY4 zj7I!9$)p8DAXPWy9awBU)gvpwnpO$O)T*jkPpPR$aT2+%AM$5is5^1d|L3iaV~Ce zp}KpmJ_{I2@plVoD14hgOv`XXF)Ma=v)hECjv~3nf(XOr%qyZMjtf57ry)JWW=3H` z$8s$>T7EF?MQE(nbTumV-iEmRoWstkG<^D)Z1uhHI%$#eE$(pB7q=r6L%v19lH|dd zmKs+pUcRogHS%Q380o4CvItVR-Nf^*_qpWyw7!??%AKp=hR{`oxHn|XJK*S|TbB+g z%`^?xsy!`4@k4w<1d)3k`!U=5^F`?43%To_<$rHzySdJ~OCB~P{J-M<{{MjCRvsdM zm_pIsN4sUmk<6<$M$5jZDiH}87%w<*a)$ORulM$dD@`Gunx{&**VU-JK|Ka-vnQ(` zwK0sd3tsh=I1RH!ykPeob@jm!uNJ%SyLoUuea2|tcsGK1`F!awT#q(z%ruh0 zBB{&mNG{Pe`ZEQ_46*I2F|q{=nkSZzF71a?fVMEKz5yP2?Ddz_w&uUOkczgN@d>lT z4hm5c+AZ~g(DYUA-X;RkWES{Skuo-WB?G~I+V#?S{VL3%>;7bb-5m-PaL#2U%d8zR zV)KoVy&8(GwV=T78!YG~&dy*1p$)d-pUgkM5<0$A+jBzLRTpEh8APL~FdO8Ey!|nJ zNC^Mg3+C-|-aP_}kqtG_E6wYXoIHhsrRL$Lzau*=jTiNP=S4`wfr0g+p{H=+<>YIJ z1M`3|6hQO+&DN?_hq_{6gg|38iJna%eiV>)d;l0{f3$YBim;-K7`kA92D zs#oVm0=oo(h0f-foEqqvV-P#zmMI24`k=MtpXa(@^9?d)-SYv7Sb?>=R*0PN!g`;25lV|iC}#Tq6n{Wdbi%9$AizQt;kiY|7EQJYa+%h z+$lXya(&sr|7R1)ejJM%w%{f7HO%1m(k?`$P2GUc-8obq-Y9wKJNT$0;mdreDb-3@O#=AlL+{j8VG(pjN$$rZZ5+y$?F%~*wY7*cW2(@ znzep!^o$M|VDM)t+-k;tz7P<}Ie31jt{+=o&f;2!I@dGaV1ygS5Oqam4I3>#@OmRB zUFTCUY38babPo6Cg2>j~%a1p@dnw*D>y{s%2szmqsYp8j#m?-<8 z)SI!bN3=UkF9v#BA6T5m4(F3cUbxwBZTx1dT`3+gP&BHa;%eN~E~rq)eu>W&KhmQz zXZp6No_0NtY*SU{j*qL7S?QbgQrS=~NG_Q#Fnr`L1)mtz33#%t-D!iKlQlMg7-L^gby2?4ci>nZT8qGEtcV`aM25 zNQF3j0{*+9%}}vVhV}xbM~WZC^yEaz#PT>@66n{az0JIDuEss(dQrMjC@@*r7Z^kZ z$Xnl!TNOlBS5`$rvKZ4(2khG~GKJT#A#Cn5rZ%;Q-sXcQ{0;mWKEvp`%m}*#WdkAz zwy!XF?9z272SIt4*#)a>w(h#@>kv%QmB=gnA9Zc7PSa>VC0Tb-c>Rb|dC2|B5o($7{2aGc}G>H ze|tvT+4gw1(jRD>w1)eyo_i~u%i_F*0&4iefU#z^$an(!$9!9Mb{1%ogN*A4ZX@v( z%Ls({V^FVMT_1XVO}Jq)VT4RqN;HoI4jb;%xu1A0d@d`Ul&HeW`8%YRdHjsj?7bs{ zh~Hwab%1q(2zHoQdq;`C8(ofSwVPJK#nJ&M*xe%^vrnzvFM;zDo~s>`v3Sp9JW6@i z5FzvrmD-pkB7jT_bb_zU&s;?+{nkqHAcV!cUXQ5+bCt`Ou2#4v0}XOJomw_761dI5 zIprw@QA#tO2*1Gpwr-&4*xH5l?RkTa?MMqK^%+73n{>>7Fsgew;Znz6W45=%FX`(} z!aTNQ>shNlyK7Dl@dV*hhd6B6_j61Nqbb?vU)*U8U03c3{n*y*LPr7ZoAz$pAfTg1NP8!J{ z;g%K#O~Ur9fHhBEF3g3&rErlLFEy0mm+t6BX(;0TkCiuU5?;gfXDklaUY9HNSfoaz z1$q#z)=c@NaW=lq&U@c|<6`So^5{_8dy-DJImI(x+QhR`a0m8oIO)#aiWEwUWRhyY zyv^>&11sNL5W`w$c|K5|K~p>)38`ks&kyOwy`t z(T`BzZ*=ms)VaA5CzBS|9t`Vv6F2k95le-0%(*W&eg1Ua`Qhd($v%LfYz3iDb0%SE zuEO6K_T$Y!Rs-j}vZJL^u=O1#N<_tn;c~K-KeH`$D!iww4aXg6{xY$Y_3a`^x8)Zz zSvoq`;zL52{qiA5|7;IAHTC}OaThHaJz%p@1rx+~HMkiGIveQ!c693!1L2VOg?hVL zbZkkyX0dtgy&e)_=5_O_{~BL5Cg#S!-gkx?`dp1m&iC_Au0N+B^@*7m7FG`)pQj~= z(UI?8_K=ulne<7~o2n@>#Zlgo)@V$J2ykB9x{OC%#zhM;D%d_Q;8hpqN=*+OcX^~Dzc#S#z4-8 zJEHb`Z9MqA;`tLYRx3wJl*CA(BxC06-92Od)4E;j3LxYHXI+>&3ZckzzR#@ZR+*Va zD^6#ey{|q4Fg3$LDz)AaCb7Vyhs70XrjtOaD3y>K{fKAu)giP*q{=YSM*4PKeE9HB1t-ZI8QEF}}&678u3H4#mLM_9%`8FK-8)GOqU6{T;5%0K!dc=S~ zQ(h3#xUg14OV`H8!k(-l;VG56QyNT~GE3U`;g;HJQpqK!G_%HEMSwSK>J))Kc~<)v z_Std?{co>_KWGPftnO}`tZoMT#_L~LrwGD4L#rkPL^)J%^V3`7Fnj z=?DuRz)mMrw*~j|RRwLl{>&SA?Fz~-p+i?2(t~7|7hIW-9gcT>$oCe>+p0rn&ZdIl zi+I|k^fjT!f$>DvFX!L*b_%`w^C~8$@HV_mdXh=q6Jp$NX z3QQY0fe@h|zjM{|D5#PksGhQ8#M^Uof4SLFVDk4kau~5Q{r=GlkaBTSy*2!_x}VkU zu$^DDRepSQ@{J5UQ5J-UdXX`JM(*bpl=1ocBKxMUA#pl@sy?2w4Xw>n>J0MR zta@GQ-Qsm5g|pgA3XSA?`>Mv1+}%#rgt~x~quz20tMtu~GNBB7xYId;)!(jf^92dR z8`Zwr{MQ689-E$5*<$$Kx4IoTSn7VA1;LHx`rnVl20HA$79xDO(nL|mu%{2j2LKb; zI8#Z=>m|onejj{P-jX_3B8?YBvm45`)2CvQ+J5dIPZgOX{yF&ZF%?(r%f`y&9_?*} z`4i2*H|icPS}Us2J9?dNN|{mYS6*(SW5nvFYKo%Mnfh`kL@!u9R{jl)Q^2@N zkL?tb2H64b8J?0V>Qv z+AO@}Tja|UitYjR=rt3az5V^Ns1ipw4*R?-8W$jZi&o=$;H4T)hD3YAibtd6rCvF6 z9s*{Re^~r5FgZBz+*b(qwfk2b!8>yi8|;zv0DtN5Cx*?a5_XF}x)~sj9`5uUp5h4)|DB~q|h|E++~WYY`DltwW$dbL~p8#;5!t^n^lB65A2n1X-n1Z zJgN74aM^K)7S5k!pR~;bk)bpX zeCHI6u|xNmk=gD5wrZxh1k&)U*Oh1EV%|#Y#N_?EN#4pbE+~3sUa?y1dTT-x*h^Xa z(ef^r+{7}cS*Ruj)g2hoY-}i#uWQwvrXi5+0k8T_96Gpv*X=@A2Ow~W(8Z9Hn8H(+ zpIs$Z!A3cnYD5EJ=Vz6W>r9x>BC2}oFCCR>0F5MXgmD6e2NcpVwyleN5uZ=X?>zG^ z^wf)QNR;%9?BIVGgX5D?v-ZDEh#W!JU+BHw=x^nC9tEF zg`Az{n6JE*DtX5bsRX;_1w zf1bd)17~_)J>ami0-@Y$;yiT=BA?a0nzxf=>X<=3#H|VgP?svcCeDS!I+=piW)Ys{4g(`gumfGx@fu24Sa6N z+}dwp>Iz#d>!Q3Hvq*H~iC@U)+X;70-xz4MtmUu1%5S}P2U!PlIqjN?KPyiS+!^}x zpF}Otgm~BnUtGQLzy6@IJ)J5*TDZnyaY2}@#TA8JirK8B-)i^ zvrC2qyx!<$-j9p@2AG49IDMSuC2Xx~P2#}AGS1Jih2-gt`i9K z%>2kHkZ=NH+|qxKhzaowKB&|kUM$4#}a8#XnyB3^@u$LEc#8Q3Av;F%- zA#pt~zQ7m{FlHL1H-tR14#m8y9uDY*4vd@c4v}4MNdQKyu?K-*gsnesF;VA}8Be zfJ%5Cn2^8d4;=A^U*Z5X$}HC^%yMSFH!KMQ_KqOhYh=)q=Tp8I%*&__@PL+y88-*7 z6dJmHKG+4pmqI0|Mm|h^Kb6zSuiKN@n7V2Zr~bTN&;*%_psVeIgz`-Iv{fZS5n`AL zD{7DQ3F<&!r}ZEpfA5Yh{9TN({lyx8JpOwzhW=01_}|?5bpH)G{u>VM1qNF9H{_T> zQu8l3G%jBQ8-_@5(ZtS-vBmOQ+NDWO5Q-ZI44;%#2~?i)4nye;4*nx(hvXxWP8)Z% zBE0Nw<9ARpEM38vE6C-#=f(&}(j~+iQKwI|2GYJWH!YD$UZM{r77`5o!>CV_SDUs^ zF|Um>#J=8B2`9T&xKa~h!^^8y+QRKKex$DXe1r$U+9wn>9D|Z6!u0r=(bSR7IkIIM zP`u*1agsE&{^iAN>$2IPIAXyaTD%?w!*y!Pms*wNaUPjg7WWq{nj~ZKLhFnvX3yKK zE7KAF+k)H8*x*VZFJ1O?Sl`tYu+HXtcz8x(g246i7c4rtJd_O3$$S_bd3`h**csUS zKZ8X-piz;=7+hT~y*tf6^_y?rbAI#uw=vZ>T|YkdMgjJ(2&nm&2ml3o{!b#{Z)VgU z*l7~`lZZ+SwG~AR zw$W_5x4<}@1XiQo0VOau8)m2*WA10Zrzz$Y3o?5z#V40t*DL$u8dKMNdFS+vi2%1o zI@-uAk-&9wv^fXSv$3{}YuPNa16~VHq)pc>7oy8+o@;;qe)!O;iQxqMV&-sYntYDi zc`6ptY?#T!=r7dd&fdxumN;dvm=L664Z#TF;cy4HgJ4kG<^S&-!=-j8)x zHWHrB>seK{){I=NTr6bAVsT&a=F8SYhUfVo9eN zE6YykKjCttpZwOoE9KZ-CO+KCfHNh!6DRlii^s*z8;s+}ro!7?U6A7_)A!buW;CCx zv9x<gw%S;4D*}-NLh-ep zjPs-q?Ze3!j4|g^h zFZs%|-@ERm7NKky`ao>ZjmN@Ayv_T?H0t>^1X}vfN7^lC!y-x&B6;wZ*tIv*d|p&+ zTs~9w=SN63)4KW(*fdwj(j)@W4Dxl{k+081fXA8`$b#uFPbyaakY(OST*TBCn#x(p zU)=}jF5<1B=FMHJK+!bW1SQgOBK}1J0s%wTa{-smA6f_&=vJL+8PPe9+|EK9E!937 zs3d1ttm>EAuGPMW)Y_H8J7KjCs#aIH{SaF1g;oZDW1?K$oj9Y3_7oa$t03zBu1j#{!Bx33kV zEpKcsd2(!C0dwxNUNxZ!2}`bBg_@U|X0(x3{>FV&Rf^a^#^%F0ig_&PHuR)T3HfHT zq>E*$EmjEV2zOv*uwb5?NVXTQ|ITIvn2n;F(mceC9C^Cd{2)Y%pfY)9;Phzb-%pw) zPV>S)+6dejqLaZWxRm@*?n+=Co6U%G#IlJGGkW3iHPP-Eh8bpGk>ujl`t(g_H(7bn z6AfM+lDX%!9MK#s8+$>|;wJiIt|}oM8!fJUkQXjUCw@(}`7%2zqO+(Vneees2eEUf zq^{iV@j}5V0nw1NqLn(YNAMi{5ts@=J|or!uLlOY&G{rbQ4BwkBe5 z)T=lSD5=+z^6GuH6GE7nrtL}^#|FR75t$+Q?gGdDgFsfcB}tdJxPy49%+)Dfs;k|X zm`lvbYomQmF;0UovJwMci9U1Zh&8$*bKLODm?599@jmlT(22>(r%G8rx5InHt+#7S zuvD)qDq8V=>zpU}a+`3aNa|OFtyU^p;%k3qSkzE^lLFIq=y^!wN)ph#+jw*(A4z?c z;x;p)nJ$QtR6BA^L$fz7bdetr*oyEk)=&3=%|p)`Y4oAof5zW`jaU4yBdXDK1dI!D z&Mlt{9?#OR3m7`jHnjejAm`e@7QCC*ULus%egy1f@KoG#7p`!keBDvMN^bI-{TXN8 zGqdjG>diXP*41|_t@%?NvH(fI+bxRGwRL(kO_Cz7bNO?Lkn>b@v|;X4t9WLEyGn{w zIqVLBFTZ_ZUyM}WIq&U=%{}by0?CQqu8cHlHNSjh_dsJt23MriK7f)+(LTErX}O-E zA$f78%e81KOtoV_nVBd4kvH~Wq3W)uDbdw=IyQxi;?|U@z^GZiux)}%+Po)6P{U1& z1JPXY%Bevu6JMRz6f=I7*Xdn6b-XO!FN2nATYD zvDsW$ljl8}s&#yXBX)8;J6Wl|s5r9$x4^+crX5(=@>Z8h92vft$IaF95bhrDj%y5G z@XYEIU*{6<7<+I5h;mR#ue%5F^M*LL^k$(V{7NwYwF&N?rM<#$;i;7GjC$M{2C>$B3u=na-@FqD*UZ>5tVEA?vFv44WisMar8N`e`G zwn4Yh5Z1?{kG$7v#;!sa)Y2`NYc`dnzP^g0Rj@MbL5V_L9-bYQM`>~Ic6FdI`Z zLu?M;#C*@MMA*DN%AbYOG&uL0-d&|?cP@-SY{w;0(NLc6#wl8l%v=54^jfp}&y8Yo zx%(qu-%IS9i)+m8d8{5>CUQ>*5WRiewnEZsJ`+utdw)j!M6Lo`?&;%cMh(*UY^Mnf zo>w$F$933AqLfij@-z##UC&;FlQGEX|8RdUHT}ei`~CmCy?DVv6nKFa}pNE*`TWZvrZ`{?8z~vH$!=Jukv_0&x;_ft7k$3OtHAurvz8Sz5Po|&o; z(QVSE;k930PW^RkecAE*6i&E1*jiou)45a6$>w)Ed^jmk5HEI)F#!PZipZq2o`9po0t{=nXlEDF>s@ zT)>@DJdX>L)lUy9$RTWH>iA`WvCx*bp{HOWNjo3OqW}2Xf z)kVoj;yC`~LC-uk%Ad8qN-y`7uYoA3#Tr;AYz8qv&ZQ0OASgPyx%RCgr%9-zr(&MG zbJT$g=Kc`V5mQA;!m2{&EM_Ee zpB`9zE9FRfK4ik(yoUj(sn`*ry&}+D0el98IGo$Sg|y@4Pn8mv3zORjt{|Pcy@BKx ze3NST!G)Cvc{1*3ql(>kr)4M0N9D7)+Ik zM=`K{?WbG$lx*}T!{>JSEyeX0_B^ELxLwAC4+f-^Dk=cXR5N1d=b$L{bVqrk8K}FV zELHNI!k5Y0&w_J1MG1us!CR)Yr!suUT+pv@9jLcYRlW9q(2{XtTOJ$iqpY7 zaK&htqVL6&Rg0uen`RzY9c|0o0Dh{s*e11_Fge!VZw)ITt-jkbD$>6&=J+t{U)_KV zvWO%8B>LSH%aKpnGj>5Y0I0AIj}8k9bfdBk(n;dAm6MV7&_X!T<4{w|x*#^PA$&@s zDdW>HZ3rR&Alv9=PDGz@dQWeW zHF&*o_*OW~37Ew>+s2954A`Ynq@yib1#-LQ53O9@vDrMcfZK&?!I2LV^m*O3wP~kD zp^EO}d%tw{Vpcx$0?QfbjO408`SvdQETYuJB2q*wX?ABvAy{i^hLYPB>74D(JYSjHN z{H`gNYFe?_kb^tOL_v`#64CFA)RrJ#5u^-|->|u**2FKn=GM(&PKk%?rI(YzneoBbH{-K(Um@9+19V&|I}Y zccQEpEc)3&<>k2K;WE3AS`^PdN(_vA|GLGxIkC9UHAvq~5!qIX5D5{oh*^+rga=k? z2&y_K*=s{PN3`0SQwOVaQNk8FQk2bW+k+vnT9XH2fezbIcAGp+sk>1{=kkpA(lJ4& zlukTAnIPb8U{aF-_Y=jJy}PZ*y4{0ZC>Ejzc6AM+CiV|VCL^0cRBa*ibqFX+K}%di z9Xn#J=Tgv}&YcIF+5(Jmqej7hxrW-50w-`CE_B^=2Oj>h*Go-Xg zm*a99v|rUxH|@3)>F45M4xwzu_2zR4ew$n|-_=(0gwmNguG==}?UB|1-l?ZX6E!X> zOQYjqne#G&Tg;d;#@(AY?J=nIEAw3;Y+|4SjCpI^BcPcol5fFpgwwaww~wRGZ6?A(6+cg@%Gb9QG~3qp+JdZ1c_W{nfBAM4E?ig`6ZCq)yw z7A1As(+D3*a_btm=OT;{Y-Oo;2IFvxk_~A>kZ9`D0DX`WYiDYfZ}*x!ZL6fm-tA=u z*tM7(^b-w*2t`%TKLRm&Tq6KDeD04iAEukip`Y&pbmjx@`n z=5AkY(1=@R672adNcM$Yiko$|ei-ips~a5+GC9Nh)bG!4V6Tz{thbC$&FTWpX;kRi zQauuWR%U9=IEy47be#YLE(3vn8JvpD@a1n}dh@)*I6FiknIV`7!&T9Fg0;RQQbVA#BTLA}uuw?fC&U>TEtk&!;TEp+3-s9y91(86vlMW8;~ zrA!Dl@zi2MRSxqSL$T4-WT#MfN18!clG6^-3Mtze{6h4nHSJOC5yg3Eg`~%cf!KW5 zXZM&gD&{!>owtH1b{wva$nr&@A}RzuoCB&}PY*p+yX~3R#7BYW^KX2gVZvZwrUGG_ z5f!8`WUI$w6O8W#p4RBLeU((JutQH+I0mZoW^}Wu4HA2{zMF2{M?7%F38XyOVrdl5 zKWFb=KTD?w;j#_vv&3+OG=Z|0>c>FF6^7%Xx!Ha;WgrUo9$Lp3N?$TY4 zmoRfTV&sCI900Mu|MR9=Umx1;(o@o~DxyMR)2M~%2eowpgDZdF9KxJe+l6x8tq6x2 znuiGIVcelX%|t$Ub3neBtK`84G>m0bf~zXTi4?h)IA|HIWp@2BWBFO!OU`o_6+}_2 zt&1v5^Y+ebVIF*Eh2l~2sRZm#uC&cXzfV`u%c0BHYPb+_gRx`o4<%oU zO>Ouk6`OT);afyI8L!PSZ-n*U%1Xb6L+sYn)8vq+jyA6ST!^qNO?kW>x{NdSPuHQX zw#ZM{N5uIM#4>}Ld#_iz7jlme6dnQ(g(JS{qB6Xz^fwqP^nKj3V5dB2`%rS`k&G?6TE|I|P zq5OwscAJ5S!fSt1QxIfR5QK;Q?njdcPKps>&hAH~fodiq+5rOjve6bnC7F$!S2`w9 zjw?+`O_^)ao`2l91#mq+EJ`YWx+4^KxKc1=yV1tO%EbedlDR>qf{Bb+JY9omyURqi z1AS(@f9SXWxw`+*$2L{)=T`qIwWgg+jVTE;`R52ZVvo{ZKSEg1e~=1AxR;Wnr!Mmc zRRmP2fMymcj<;~cI z1(yT*du)BG|7zzdF=Mo&OL9^fq>0W#mu^ioUo=Z|gzTF2-*1T_(jN3#UOO>kbknJ$ z-1tRQI7nmsIl!+&kNYe@2PfVY@g93N+p?!!s1~iEKzDrZEqhDMvDdL|85f}iU;TmC z-Z-tb?@0V79n&1?mMR){F))xBeIZ7tb8V6A0|(LcO~6JNoCGTx!y-KB*W9SL2soqG zpSzcA3hhNG#%QZ9>e5Bjd15bFk)-l?Cq1sF4=2$E;JpmD26b;WJZ-GB^loOanyr=>#&*kk+w+ zi2kf5#Nw#{AQq}m3%x5{^2^w&`Zc4O8u2`3Q=0YyS^q3`5mP>?vrzo$H%6F&*bYyP zw_ogN>~*tla@`~u_PcnR`w}Fc{B?a!lTXhX*+%yQ?q(#wdol|T>KC+xmo_rv)p{r5 zlQaPj;q>^u%?24e3wCtHuTgFCix;3&Z93y{H_{+c1EbY5?AlX{O$RlWc>ah2sBl2r;;n(* zrkK!$AV>C?OssHcoTqh@*&``H%U3|MsnPX}_(Mmp5#h4?)hJ$%1b1t|? z?Rh)g-@aF5){{7Pcnu15?b$90Tiwg}&Tg^R>Sa}n#x7l9>RR6pk+jlUE!J!YcZrp*bwaR9H(u`kkn`xr`Z9SM~68WU4cQn_VM z?5NYN4%Ac%$a#Mj>yb_<-JLq8WTxHdxE%W@8Su_n@r$g56s=%6->+wz%k5i*wFO zDQzJcx_dxyJ9$Y}nTiaZ1Ek)*?i+i@OwgXtBkBsqhVYEDmuINqm;{U&3DV@!YTpN( z2`e@$?7o;*p2G_rDJ`B^4ak?5^+QZ9OYQIgWx^`swDv)-^8_z;c8MhTMwps=Y6o~v zrEzqo2CG!iU3+-9BpRtoBhBSW{BCoBA5pFcnibLx6Pk#555t55{@y)uQVU1X{qm zAb!8xBd!zxhjF|Fty=)mJ#>@&DTV>s({Iz?n8f&mP%JVIV%6t;*9i;J;tCEaE$jIQ z0|7><*$ag2j$$U~$tsbbx>DP9+3|S^u^sLj)@mWLhase7gGySSZG-V!)KhtbIm`$e2D*5k%Uy z_!1Jwk~Y@}x5`Xe74kI9#Xsf&$RdSIAhs2z%)ttz{@7N7a0PQ>&vYTGHt<=}4q{km zO|VqhNHEOm!_&8VSX!rjlcqU|h>>#DTqbUsU5CQz-CRMp%R6i+M>i!zrVwVP*kbHU z`kCS(|CRKwy?SP3!7PzycJl*<;K58kXG4>4cAU2x%+VbV& z!C7$N>wO(eU@h6#wrbgoz-htDGiS-B4KvjA2XpKrQ>NsMyLzunPjowtP9bn`684(j zHZWU~70@aN^ls8gPgmY#(UnJ-tg;HsQ2e4Oxi(a>4-5!XM-unGmp_QDkQJIJ6ij7V zQ_Q3LoP4pv-mh+ko^`EoFwFRV?Lm#&wH9H6h>}IU&Jj@on+omg%IHxq0iq5evWQRr z;oOLVbd#3>3fhjrT{mq}Op$oY`&_;p=zrVIJkIm1-CCQh(Q`6Q#ECue`2?d+{=ap0 zihcYmbH`S|RJQ4#Piy!+|1VE#Z~4HkHlvc?g~~`kVTYZzT%$<*`~t zAxUw+z_28V2+a6c+0&1}+JM$+=6n)tP3(Lzl{he{`5&!J!@$)agpCVM(%o-{ylyfa zR(9YUBxXi?@_X76%t?`u5})_h5zkmfj(!q)WUXe{7PzM;adUs%?AbWVxpC{=!ejMt z(lU~9J$C$sUaww_lp{*;O?A7cFjLxix@@mZq47iA+RzLr`B8rM)+dM6+fQLDNHI`| zvmV9<4Gt$utJ<6s6IY%sdNIjr?T`m~l<9;_Q_qfckF3;)7mb?Kt(xFV>s9-RU@y?&XLm|PHHnkM z8`(XmZea2p5Sjjws_0Y~c;+emf%y#SvHZSQW!4>5`;LRCcLwb#F6qnFT#6^BcrlVi zs`Gz1*ZaSn6aF7KpABR=A}599*4mY&ninVAtp`=aXW}n>>%cRXqPpvapI`iIAEquI z)CZ|^*4O^b=IMIGQ;f$fGP=d_={ zqP!>zenOqQHNrUKi{v}0txAiBo@w^Cg(34`$37Qy#9#X5hhH&7hYz?hJI_Vy^2D$Y3^v_6#gK*>l-Uxb! z>qw8LTu_R45?_$AK%bXEv)G9jSHB(A27M`*N~KKd@>wW~o4UJ(abym`nER>!B2>iP z;;1?IK4J_G7TnIQ?S@^>Wu}crGm{=YMTkm-QSPPa2z!V186VpH8J&EC+R6V8ut-VV zuF}}U-(!1cdV@{N^l-%}q1vBURweCG9J6hR$5C&H1bywNr8vcao}8iWvFs@C@RtR~ zuvFq%yX=v%{v%Idbn_i6RQY1W1f#6I5@ZK-b^#E_h4P21nNy{>Q+BKy=2cwvZ{yA^ zK{!739>x(i*c)=nrAOH=R`(koP|e5!(ES1?E8}U*d(KMFBt5eht022H1G-!SlxV2b z1`XYosB%&RmNNs2wG{1>eERar3{;}JoXpa^@8aPc(-e~&F-Ql$ZVMGUWK}=)CTY?a z5MMO*9WRY*W;1o`r7P&uNE}^Aeoxl{=N3%mn*2; z{Kfl1(w9j*B{{0yralRf6@R;D28H4xHy3S7iEmU?M~}{yvQu_b6Hj-i)0SvhXqwtk zcEf_rIHTR8*BM)?Ib)I|zdTaLq`p<;#&K+B@CnLXdnMsqN&;nG?`Ro~iFV9( zy7j;#h_PsESK%@&2F)IgS8lMe0iGpNl~aOG~4GyzS4Khs3;!a*6_j= zb?S^sic0OLaO;VOdASIV@bVXu>#o7QB5EfcPU}^D=J!wWo{on25pB(l2NTecQ=HpI z6X(B}u}p1>)y^8Q!_mc+3#aF^f0o&Pv(lNhz3k-9T~>`04KF@e&_r=rr|3RSpsIt! zYUs;IJudeb*|Ix2fHKaCPEW1hu5xEK+mCV3WI(G`Re{OCAK(oNerCIRc?>45kKnO1 z*bQ0O|Ji4IRIBI9x>n(p0))j!4u5ZfBX~?j+ip)}uZ@-X85hM~|9FOHUx+%6y zcjh`CYg*HLnwW``nBxQWPK4YT{nQZQfJ~GFO0GRL|H=(z1zJ@=(uHHM9~2 zE-P^vr%fftU278Ld``zK)9lE6|FFpBZpSx%ea2|o(E6aVRc{fcIF402(hV!^G}T;? zUre-PAD@1|pujxLa{9GWhF`JK!tHv4wP-jDBg2CLyZ^9tJL|(f8J4%1gWF`WJ97!c z4a($C!Q7n2{?DHoK(0n(u8_eq`L0W3nNxCF#%>FwtQ*w1uvAn*Z@HC(Yt^YiG(r%~ z@u=B#_Dh1@&sJ2SCM@MyY`+%W8{17S=3`zhT6s^cH1e!{iXt<|VB6u02oY>NCqi#r z#4P%z5y#Y$SL{MI2*Y~XNU|ciskUfoN9Z|3u4TugB#dg_u+sHV> z@t+@j!J})6(WbRf45V5d>?O0MAIyz~$o%ky%au4yyi4e1eA9_tGJE-QQ`}tknBgR9 z=B>jq*h@xVv`8uYn2-Y=KE})O&hXoT1o^1U(3XZ{mJbJwfc5_>;8OZh$4PEofr8OM zKhMGtHON=(*y3kQiH_B0v|}CmE9)`DhDYYQGN^BfX++$h@pMtYx>1L>RRMor*0WsI zkaw+tV*0Rpe+T*wP|YaTupK+KoW*(`mId+^V$8H@hb9B)lQmjsb3N9|N zG)_noQQPT`Y%T<=9U4`IG*{Ecz9Axv6|dCe7a=lFN$Jgh+lKpfVgrFU{|R%XPxUZ- zyDYh-HSPJjy(wtMBfvvMYn!(}?R~!dMWr{l>4(VOy0LvGLDh&&(oD)Up6(Y^Qwrwb z5!c(2r!$+SOu9vbms^+Gpp4?c2Rh|mflYg>(HisP#cLnqcxhsIskIiX6<%EU;UE(g z9@L{$WGv)#=b%QrRYy2ejBU*sFt0n1E&iu?{I*(8t2w^Cmj>JvEt%D_*}Fjy!D<_i zd0rlFtK0989dVP33B9ckqp+q_syH}qb{(4?v8Al5+_&z0yiP6npjl4QNG^>h4-7Er zzDTa4kbFB5!ViXMZ94`NXDi6SV~+$Y#BE_08D9naZxfM$#37?oZtd^6o(5M%Ie19< zAmxDLfd2n}!-siim_+#X_N0CW+Ir!neK-E(DP)YB^z{3CK3iY$mxVRn2cU*X#Q+j$ z@oe}dNx1ipYC7zoEjeF1V<`iTb_RS>QOLd`N~~1{brfEZcPu>ht*snG4St*haUppr znMVQVdc5f-iterWlxA6p41ex4FtXE7k|Sj7fr|j>aF}|VKlD#y3Rov z=hLh)Oxe2mTuitw)9|yTT4s1z=SY!RXI8GSPW?x9t>oo zpcWVAwu%~f5ymujlH1len+gGY&rl8D+~DOC=sWVbl-WLaMHlr1>2J?83vF%~ZnT)N zM#qE;T`aZEng8rAlh^&EmW{JL1&)*;%(h~B-rw)%`6DJYM5y-(QSZdDE8>DF*kamP zU+GX>sh$ie;*l$7v{Bl4=$Hf?!rk+?VoA~szzl#{tVM)fsI3rVAcx~Wl z2y(fRl6>%Hm`Bu?ArVskiT3Tm@ED1E!;Lb5CgqoauS^DM(}K8RTN~Yk$?0%p87*(ih3r-g^ixyCgdpaTcOD{7iz^w_ zpM^2SAMZss$N>9^+(X4}oe84pz>x|PgnS)G5V{K@e_9_vRdrRTyJ`&(4#v44_SZf@ zGCjRJYa1fIAP%i;;_)ep3ql%W%J(T<%A7>#CV0Swbbo{7@OpU^Zv z*E$O#zu&lYwgR)?Zr?H425<0XIdYWAjrEM(lBvboLYsHvLvMCI^eJT1MX|Z%UJO1Y zI^Ax>A-ZxUBFzz4`XY1TBEqcOwReP-gFlL3M#&g{l78>jC}Z=ykW`DH=C@{`JiU5D z=JCFYb564`f4%zotYUvY__=Onj=mQU@~FaHCrr*e-GA6&uEH!n^8=g;#WCvcn5FfS zi6$!ARAGNb;QOok=+nbKtJ8pYC;a|=2Tk?GH)NFvX)Bt@o}5(AGWfGk778Bli0_tdi zy+vGq)zJc>&-fj2{k@Ksz(3c~>ib6>tz|d0VRd|uxS5k162ewg zy{cLSDyz_`Vf&*ljN+oNc~TQ^zGu|ANnZK!Vd3lhlb~7m4_}jVGF7935}R9RrMxpw zqY3r&0Ey9)js{OBdH~^A@uSj81G=|hq{NDtFXC4Jm%-DNU-CMJgv28rxE+z_1}!-- z)Dz?ryjr2Szfg}V{lD?LUmJqxgu+e6>IvyMlVWKUu0~bFXIOule4JE$)PH2K>5Wpo zd|xi0+RdHqyROO2_|<#1^V|jprpc%XE;lqfoJw{{&aJ{nQ zGU(=LrgkT#;fImp`wmhk7sgK$H;ST3b5TR@G>kT$f>8TpP6m)KZFF?ccT*iWa)Fh; zK*_zM;sYz{I02T6b*BbXoNE_d;r2!At4AI(Txq>ur%)PxOe z)}xnkBS6Q9CmiAXCD_RkT-&d}`y6FD zuj?l9u#+m-mHg#yJ~H-}Kz6r8dk5z{tokhKby^*|Af?LMR#KW1#dce5Z|&iG3HU{a z_0QQK2i(bnpUtyjq>msjTOwVWy9ep}IFHPYb6ZwG@^P*{#f_bLnje%!GV(|4NL&)j z*N)^yj{lU3n_9qBa2bY-f9lmpkg*lqy66knkl%5;S$VnD2g6oII&U9~ZV2^KK^Mn$ z>&&vuoP;I?_Os*bfybd zJL2Kqi`Wk<={sFz35t{F5k8nhe6&~8g`i$GZpkqW)OR>)q2x27S&)$xq3iCs9qQQ? z!33GS2Wj`E42qv3+_MQx;WH9!W4@em+NfU+LF!H}!+0L)A>{#1b55G+`w{-mBjTXa&- zX|`DzWZFc#N~16F4r{s2+Zy*X?!0O|6G+QhL!Mf*ad* zj`XnFn2OZY0vTQ?fmLv4C9=E*>XDflHkQ?o3=y_~HkH;sI43+0HD9j4d09Y`8)#ou ze;$}xM9y-u);Ty+l*lbp;%JU+E?qM0jmiKHJAi6TWkbP-+Pe58dt}MyS4*CUU8XH} z;wlt;bY$>jq?NANeHB&N7?hGA1Dz&@S z?jI;H#bHx&-z|JmZn<&UqWvahq}0M?uWx6-V7{_<6>jQ>a?R8hT*A*%)L`(U)~_oi zFJqAQE5Rd}hP=CJzNu7>sm!uitA^bCrRu=GO&P2 z$~bor4dyP4vm?FZwt%*sh#kKTtE1Wqd(#R90$??J`+QtCUw?H+NVZ^@{1TI+EwgyQ z`N|P7aq}Sbfb)$U=j0MQQ4;O@j>&g|`ub3f%NJBkYIO~I=u@&PT(DwixEYp&H-*Z@d$_O7Gr*kO*lSSB zD9L5`p!009QIk1T&YBhv6$}j>gJr+tQiOE(oI?cDGquInw{px-J!#S~s{zwQc**6i zsTx1f(#trW`7diqlDP`7yD@fe5w$+`kDZTR+)9bzs1EP9+H9T_ zH|4C_3Jm;b3awwdAF|HCZqADtC|ch2LgP0N9Y~=@2wq`6Nhe3ncb)Na25ICgi+CLJ zdT6hE@LxH*9CxXD-{TZ_i}cl1~gBfBhh^JD;;wO!(w>BQ@G>GjD{M}W`rrkxhQ^~J&F z%QiHtdZa#&%Y1t)9`lgG+DPh4{i>hN7pO;E;4w53UNUuT{5v`t zfgPo_7i}OSvSUQnFS;dZ0S4uxdOAN^XLlYMxX$c-g0&pPu*R{aGetWOVf}PQ-&s#E z7L~w#+0%K*;wVKi7D?cn{<)>?@#JWv7qP)`%2NOx-so&AT8x2~Y3u*N2^I#i8r&t8 zOwD5vsomQ(BQp|QxBZJdE;6&rP$xod02?Vk+Q-0cgGYM5wTZlz?>MBRWJ8TJ=sWJz z>)ZH>mHUHeS~c?+C+@BrxXZ%`1?vH`F;BLHO`lp$Fo~4CFxhW*^wKVjDONNiL`3vmlm_)X@-($ZPX|L342iiAWrc6qexbOC zDhofZ_zJ+<&W%$@d76P)7&~)YW7l7tTkY(-wB8u=s`-b=f2-(Vhn+c`@Kg6;K{%H~ z8V(KBb5nw<(W&t@*@dWuBEGwO46KvEZgP)iW%>+1&5E97RK(5<0y20=-g$9|w!35q z7LI&1t~aV}yU?+{1BoRRFuD~6c8GY*d3cDTuMC&$t5_uAgmNOtBz0|- zFx2|ZF9n2EFn3`U8kA|P7ucX;j$Sf+lg~@5L^kbRzIeJ$TdbNKkmUlW4zTNU58DV7 z?GIiSCt=;H`c=Lxjx@CBUkP2+<32rR;}LzM=8Yq6f#WynhwS&?LHJ~Ju41V(abweq zRp;V;3`~BMdqSjja>Y(Fb#m>-{jBW01dk zn(X`yrN<{H+wsD~To0Z|pu-fj2REv5su!Vm!7FSJUN=>3`4*3DELesA*$wCPh3eD> z#E*a*Fzq(|76gvG?Nz4->{SQh&ix$(!u_9n)n8}d(qVx{{#HfVLu+{N8nA(fUei%9 z`p`KWAtW@Xwv7{MKs-c(@+SqV@J*b(__h!ZY-8LK<4^5l%sfMIJ&6ghT)88O8?CN+ z4?z3PLhXhQc3MUN+jkCXXEicwGp@KsJ-lx|PxH!(S=|O82@ZTqis28P$m#)1z!CDx zS8=y4J>o1M9xZvcpliBAC_J{%kdhtK6soN%FN?%)dD=a7DD)`W?M(-i6i|qc@H6c=xFtx41I{I89UNZ4x4KE^|Klrn?))pZx2p4ZlHM1*oue2aR9r$-fz+fx--9u4z@i=1y0$q2SDRxrPi zapiaN65>3#<&Ue^om_9~K+BJ?E-9Ij6|k$F>zv@an^_ylh5l*V#exCW^iF%e<{y z$wMo`?3`;?_7Zw^iqCbI2=)sJzotOBg!a5}^5;pLijdTmYi=v(OIS)$*~pK3p3k1` z6tNsDM^l!gKaT>E6hu1Nc4nZtCVy%wzbzuF3QTSEhZ7UtGFa8i@0Ot$aKKULBcy7k z^UPzZA}>k9J(oJ?$Ade?uwayzKxgT#i9yQYkb4>lUedENDvCDonrKK4Z=E5Rh>V{V zzQSX=Jdd%-$+?a`oS!X~drGlK`Irv^aZKm2GuafuarShCQ{Z4;_$<$rs?DjQ1Hy=14TuroD_ zQv=N>T_$lqCgz43EeR)W25Yo8&^0M31(p=5u~+wNebW0hfZj6D}Kz!hVw z52G&n`kixYl8{C49bKO0CSESv6-gB6o&|=m6)I?jRb+b_whP5 zZkdExmt4Mntbp8pb2S~Q8m|B6Jt1l&5?+qelwy$B17Di)2yRwEUhwquH~6a&Is#9Vt`mS>(Gwuv?rKb23cTo@K$C#d^H1dSi!dOuc7Furc@~Ti9H#^~QM5-8> zF!sUn_^6mnO!Vj32!$o!_Mxld3OY72OXj9@*>!WJdDpCjyTe2I-ZW%%FfihB!?!N^ zkeU6o|GD!$OV1bvS8M-EcX80LPc83ylzMKR_7f#+(B1M@4XA7{p*W!o;z(H3lXm~L zU|?qvZymSkH5%#E-097_6^*P?a#IoQbOFZ0Lh@Cnwlgk-Bu5-={Z!90sk%C$y*h=9 zrh{sqHZqQ!IbF4hJ5EcrLK|x0;0s7`2f3Y+9y3*dbt7W6H<^SeRd3mhWG~)G-Sn_V z07a=mlK09CkgNI8_iQ^9i6T3ih?}*nw7r^=`mpvO_an@YbWal5WokN}S>foXeXAHR zRZ*~4xQOA0Kjd7!ovkWLBWanF#QVv|P);wUe`OdcQZSK=S9h?0t(26`C{fvMgzVnwq74v5#&4E}z!u zz=%z%8PEQXDl(g)X~&CJTS&b%B6Cz^f$<^=HQ)Q%>%hp>Zgh}Bb}GVmHhk_meHga@ zZbfKhHxbhq+JkC}{-IT$iNipCJHzKd_$M0~ct+PK?G}iT)0pdn-s!f6e+tx1RP;2F zw$iGt^=HX0G{cSWXy#8kGz@0|UW=W{$LXhTG*T{l<^pul?u*Gu7|-eF`0`OZtsO^Y zl(21_%kFcPk715VD#*{+YFMLF>q=O^N)2$0FUz>?q8}oMzzG zq6NSy(h&nH0cWd#++G_zvU6WY)Liov+7}!?f+?@Nvujnsm^}P`?8ETB{hm2lUX}_gYnO})B35~vw8}}46tL?JUFtOt8f<5?<9D2> z&6`!jl{tj&yk>RN^k3O6eG<&=nw>9@9n=^ubu__G#h$9T`{1~87|uDRkMkHMmfyPmY&!y6?oZ4$2OJglrC!lmt}KZrt;6_+kA?3z>Aj7 z`-RuAE#r|U8b^0Z8hL`7k@?99S}2g2c3EydS9TtI)>o&cVGri3A(_cfTV@T5_dL$d zk=6$c=~=83v0F+%j5oYz1r}E_uxeE5?dN7!9Y<>pmM?j!`Luh_zB+8?z8pT%r$bzY zSZ(2j&FgZUC|=2>UYHwSU0Oe7kTt2vTdVa{aWJlZkY%>fISrlOG_a}#Q_HxOd!k&`9`DD$JfbP7(u$f6 z;d+jK#rdRj`7Q0DeG8}KqPQkZ_r9z@YRoA;|T-T9^8NzPkMyIcR_xfiY zqz^q2kmdz-Kdf{&eTq;hTVq5L z%RzE5Tf7Qi2R=NjmK{1uRmr!dc%kNO$W%k86rP)aJR>17w38FrdUL&}eVwOW97FkM zH%=sC%``W369iWd1Uy`}G7f1)XMW1@!#3Nux}lgEj2DcPL+Fl6pXW=Ua8IuB$uPX? z<~SKPrnI``3+(Xg^BO|>^y_b?`Lu)6dssVU_f_k#_s4m~m%TG6_d~z1noJi>nto^NGR^tn4TLb4a{;UXQ=9 zPNi3=1~A=6!0M@}<#9^!81!n)D=M6mH-fzSVUQVplcKnSX;)~5Xh*J-q6}}b^dUqT z90KmQ@pT*{c&9SdSCx_XeVp6yCj%N;$nm|X`gi4c`;yK$HPy^U{5-5?KQ$_tn>@WN z1~G-)rF;06m&xp?tqEGrm3&W;i!4vncZ`~J)O#FNj}rep-3Sgm6M2Z^a!m-yE@jD6 zI}?5O@&)ZlF=+8lsvJo=>O^*Im3?FY`&UnylKv1XjXHX~U`e#rl z@IMm4;`|QkT$EyGvHMr~zWf*i0)`8X*5j8)d>2hHdXckM5?T~2rfm4g7qtg0OavzM zjVP32PDPle!7ht!fk;CL3Y8X4NzQm)Q7+**rbe7Lz?{2~yZ^c^E!M>Aq;>S^7un9Q zOlSqpDoSt#NqhxHG5LKIzn6Y*63Wo&Rj)mXhx`kgM0a;rO^>piTPL*MC|d;6+qN1$ zO7-3wLrO?~I9HUH=;oo(vV!|F-5|&+UmR~%3G?(xjz}Q4k%9b!BR}>gMeU=@TO_Mc zarv*R0_$SO>kw73;B5QJ^~OSwWPqq{K=Dx+p6o7kiB~O;0)D+~pk0$quA(CA z!A0vZF$1hxFn6u?2Es#^X4gjjYh(q|jS3WJXOiYeLB9#gCGOm9rSJD#8c$OUu_q7Z z*~s5+G?;a&WFwtX_Jyu*js~@#y`+c)zWgI4!|g{zJ~y}20f>*D@+r}?*Ok=R`*3KU z0lIcst#VsZee8#gs!GclKVX~Bk&-QvQw#*ue&DGeRGd2TFuL)l*7bS84cVGK(ZE5V zB5%Mskz@H7%uj0(^Fm1u;8v`$_ppwXP<+VDs5@gH__&a8 zo4k;9jmR@7s%O6uA5;Hqjmxo(VwqpB&B9X|hidi#PW7c`bL&4~?9a8L>F zv{|yZJ22^>Co8^^gh&YO*5zzHaW5?vG*Ox4>v-tT;1%a^bP?r5w-o;&D~hkr1JGQSorutEHyI>lANkpQa|?L zhpbwoJ`*K&i2OcShe+`#VN|c>Anb@8{=#YhK|4y;qWi4Nd>a8Q39V;}IMlC2nEkaJ zsfxbmyy_@I-aN1iA1TWA^tW@$EH2kd$IXhCwlfM7Jb;@xnyg0dtLz$-MCK+fkaBJ? z*+ql2r!zOdP~qB5OkO(Jo-RGzB`juUod=6b;t#9vne_{c+LssRn!6jR8qcA{9jrxY z9Bldc=_E>gz`lFP-2b$LEf<2NzS1AIA-%5bsW*Sktye_sLZxUD^{&L_ms@TMt z)7}Y-fL-wZ`o%+`YEEc?#=7;1Fq^%L{G-FXE6#k%bIwIC%#`M5jp^^_IQHPGEmMo1 zeB57}^FN&Lsu|GRM|W3%_?x4;Rfe&B~71DFva5d z?xFlKt8$h!cR~m`twVDz-kS`FHpg0m0WUr``KzH+r3_`t9XtI}<1kj^`Vu7V;yz;e zXOGOp9wF<>yPtgnm8R}wmmG@|kd0;AwAW$nfo1x$a|Vgj zDE=T{csa9y>IO01G2JGt;=r^o)sR7`9TU#MF3n0$bwVhr8+M?t6&m=F#KO8+DeJiC zq(s{SB74TlBEAOf!fp*S6Fn&X+-|pYTb3LXU<#YAXd&HxSPswqa%6y4CQH`-SZ?XR;Jj&9>U=KueO~Y8V~{$< z3AQs@K9NQp9GI(p7V;CYV}UX;GnQof7RXQ zywBx^IqkTcf5iK4_9H0PwUacq9u5fk`=$8P(>OnhRx$4QnXO`z^|?!$5d&eg>{e?It4hb-pQP}rJ{_EhwY4jnKkJ)FJcC5 zFM8hTx$wfJTCQq=m}K6ZoVgM&*(>33(G&iGvvIzFpd}{>Dgn!KoUN!hPBK%U8j7-r z1xugd0#r7x2R8W|#p`E__)vj_6T@=nvR1oGU+Bznt*9_P% z{dV=ecDU`atlVH?z1Xznx)+0y(;2<(2!b~`9Mkd5=l58^sAe(!5*erWC1K|jTU=Bf zR*4iSn!8kvP#QeD@K1tA@yyL^#2IS0r69urCMT718_ZL2QYO-8Tm02t=W?ZUw)XLg-URWe^ZHEAa*eUOH{?!4_<2pQvcT77XwU^^oVo93pIN}Bvv>EJ z71a;Agqv;$BaLC;DB!6RK)pCavydTb7oD+Huio#$TbdLU6yer9+_H>e!L#d zEYd4dq{3+E*W%KNdns2lr5ffcvlDF5F5=aDSPSTZ7z8P?*}_Y@Jw6g_HJ?i&8FaxX zAiMeuH#M(IQ8e@1KjYC(_kaghTM69;WA}@{b@igT^~b0C0B-7>m-`!Idc{^nC=Krq zyee&5=`}(^?=OXcQqmyKxt{K++F9V8?gpTuF>R(1-vPe&^mGNy^2$H2aYg&=njRYg zh`QDU$$_r6n$w+K?0GJ|T5Mhjh=(cW(_b=|UmomTv6dxgf}#qNgvH_WltfJD!ha%DeXJ}Yn67m5 zbPiSU)HOYTK@ygsj~qK(5sy#PkNw#+9{j))gKgvz(f_M#2Qo<0*`OTS(sD-FcK4jC zPBW&tvhmthP<+wH`ZSdjtgq{64_TEoII1akn|nSGS;FmMDmt_+*kLL|bby(-O#PqS zs9bb**yQF%om{jAmqrPjlXHt04jlo;E1Nknt7r>JJ3h3MBjYN$Hu~99q>tByu{D|l zAPb7bp>+>383}tCLiC>dGB($v`5)n1g+xcL3ul${CUu1|#@sZn9ZR|qI5b7O6htIa zp6|BbHI>o$T4PX{uoEmtexJ|~S`CrQEk(hiQ7>-1OnwTyoS#f^yl0Ya8e$EUNx2D* z2$?C|Bvvr(w;H&-W%4ky9x!$HNZ=fv4#|^FY#g&+*mLX}%e_py=6&P*Kb zl11CqpO-eftR2qZ(~dRUvr}B}eWtAW%>Qv^-VDlV#QIh^kSfCA36aH#(XJ&GN+-@S z=u4~cZaQt`XYV*$SUEXAdBmDNG-H;jQ&AMb);^F0dRj&RMgEu?Xw8YDM3&3OdNHFxZ^k z(NHMB1zkhR2qHJRJ?*625dA5a5%;Gw)3U7W%f@c>cHVzG@r4EsQ-qNuAP~it?#A(V ziyUAPXm(qj6*$;xR{yl>DL3HSMj>)Fs-V}K(2Rh93Y78O{+Jo38+MxZjcP`mrj7Re zp=zuo^~o3(Ed&3~nC5g`OvjTKn;G8>dAgH#J9=();Ynf5??w`Ku1kk{AdIH$Ia~ZN z$gLb4zd9(Vp)i0V;k5N$aD_Jsd{q|v%MCL~OZjYz`i`#b(zEeWD*WfuMIM3NFi@=b zY4%E{A6Zf_S+}j&PZeZ9U2aml*tr0!cxO0CD(dYjBp6HT9|7^zaM)D96By~E^U3*Y z1zXt%rd=xywSKR1C%szh@}2B@mKAb{&sH~tr!B5UZf?|XB}v*eMaUo*pZNd-|Cnl{0DEq zz%LNW@!NQSeUPxPF%`(fUlV0&L%(Axa8q4DCr5|(fENN|OB)x!MA`H^pa~E_aSex0 zpLqH^b~`$>x;u_LItaQu-uv@)^mKG|CLo?@X($Z6BSD$4KOgit$AS4OB~QS@$BHdR zdLc;=23>?hVZ7P_1S|jt^EDbK4GspTi$FdKVT>7kCbTDXNFO|_0ty5g1Z0!9A}`@; z<3OwKks*au7yil*2B^}9QG*W`m=6XV4*UZe)lo;s={hfhzbgrv$*mz;;uop*{tl?h zILwkHSc)PzmF>(pR4s+LitO{Mvd@m;I411fGt|wdR}h% zs2|Dxt*?(;DefwL5=Z|IuIP@P^$PsXjj&VlxAs$z5t}{LRjfKnppnu0t)`+uHuyer zG0qPk-sg}@p-9{IyP>e*0R3#}xBmRDAh%h9ujXKM&E(U4S@ip)k?m#hobh)+bn-zC zfb@q`ug(Bt{^ktkud}8aZ}soMltj!djl{&v92{*-?Dec1bVV(l06$7L0#23|qV{^u zW{x)2N;YC*N;b>_y3({vEFW~O_3Z6!TyzNf-a)pC0ylmBV=@Sk{W z#D9f;66K z)vkBduev~z-s~cMwTmaZ+rbg3f?$OufhfX`rhy#94V;3bEIrs0Fh5Fa4|XRI@p?77(v@Q5|~*NynP0AJJc&n;2?ia>g^`!{OvaiaFYa}bZt$|UXcv1^1v6~?(=WRh`-zufD~i+M=R03 zy&}oW-jEcpnxnIS%LHs+2Ow?VbpMmYBAMT~SBZ@Okce9Mr^Hh4-^f>qjDM2|DgBCr zZhF&9`>MI~^{W4y%`gDm@6um@qwO^SFhZ^S8~Am(572<`-@%L`ugiU2Edof^b8xc) z90$LDm5reK24@4n--WXNmW}>q)oU;Pu}K672<`H%?SE_2t5>{>{_vXzxJ2L1#y_zj zSpL*jMDm;Us_k#*=AU?IdVgvwSO3j>)%JR({)q*d`^tj;@n#$6Ya4r;ezULutl#JD zpQvlE1wIgJgWss!uhdcPzf&1SaQ@G;_)p|_q_29x6yL~iKJ}&Zw_bn;y!rl{uYi7i zYhn5u^0jAy%XNPv0X_S-3L*xkX0LaucN(u?@bNeBtLp<-1M>R+<@x~FD+>1&1p*lL z;ZT9z>crIw|3(4E0s!it8Vvi^nGt_wW&p1H>!SL5W(Ea-5V*JQi}-6l5pa*nZ`ps} zPo(fq(t%Z8TNE++)}q(Z7R4yS;S(;o{5xa9R&wGVE)2{x2g| zK!0Sv!YQcVE<`@Sg$QEuHY$QCNddwc7)3{WBfuIwdvR-H8zdncCw)sd0!uS%3nN3o zn}Z`D;#GqIqNV^uywmE-HaOF$yqwqW$cy228=xP+3Mla-Vi6YQsA7N(`YU5tNl@rN zk&_rYyY%64ac&L`^|6jsA;A+6W>2V?%e$Gs_=F}B)s~npOa!TzXHuOB;A@2NDCK*t z7b88TJDBt{4SsL6;3?6u*gpOW$kD@{d6VV)USb}=3 zFH^=5^2&3PGqw;h1|9z8+KMVy5F+aR;Aq=3i)U(g(azT5MZQUaU&qqgNk(?YEp!I{ zw;&sEd0G%AgFv))uM~G%?=*M2cItP;IRc2)8e66q#OYPfb9WcQ%ZVRvcVNCtJ&e%W z;7hmfrYC3c2B51E3uAs7+jEtKc|tL3;3XV$$;-ZAon$W?b1c+%i#Fg?;S-u{uhbX_9e7Y$e=S$drP&V__3x za8T3vXmATZ1}{j1fg}mh+6NClE{SOjc@lsS{0SPko=%_y6EL;Eiwj-E}G z%MXmX8b#%I`~ks%woY(AdfJuIjVJz}0D20A^-qPFHzru%)b8SGGh9CFgc1GW+h=}- zsfAnk0PLg}n%OD5#XoEexQ_lZ_26C<8tzQyC8B(h=iEE%*Gle&?mFHI=yw^WMRR`p z>z}7zH?%y@Yk8-x7XM3G{JsPPOHm*cf1bzS*D;tE{#v_*uVcV<3|N(gE1`cinUje2 z6z8q0Cw&Mbw$eWgp@BP zupp%gmKyUIp9W0>#Z7{4+x)4Ur7#N2a-^5wwe+%UhGBZ`jo(lH_4jWyeskZTsR!c8 z{iv=C^?O3o&1ss_uoO=Mb;&K`6E@Z>%|hzo*$tv447iT|b8w+a0g_p@r4#6ZvtjuhtSkA9ihOQL&@e$iZ$gR5YlD_gD`9^N$B zlH-MAle348=<*+ZY-;w9e)#cY=dW3T?fPrXVg7Vm>othNOwc9AsPRdkuz zcKhrFbKMDt7j*9QiWQavXEpLU#(NOgpK!Hp`QkJ_GKk7`8n_Mp7BGtfv-nxVTo9NG zp9to;ScoBMph=nIgJ~i5+cRcx-nK(4x^rxDVq#+4mxn`QmL)UL%gbf}Ck!KXttFo& zsKpn$)-4|{`vHf08!`M<((tq*I&>lpznkHobSlyE9SVJoe}6jQ@Brn7$PbpWEDY)Egq&6<_FDx4sGoc$Oi1wje!C8lIFN$V9cs3c^}-ZKUW&rmN4_ zs=U9gS2MDvXI*5hzPIdS9BTf`Xd5J%bfqt-<*~iaUfws2~)kLxqf|i(%LI zXJ8eH;|tx<=*D0bq4BcNcr;DpE=A+|)Qv6Cy2Wc1noMNz9)T@ZYt_-X*RPpw%@Pw? zb^R#f?6WH|b^_^m3R3l-7;;;#4%p}XpgM<`*bhedr|CM+nw$vew!G|)#Ftz6?`e5dIA0RT+NewFTCgIL-7~PdCpjw z2X^D%`k0N}TsOUnUJI>&1G9&5vG;1*`Xm<~HxTm2R=r3Xp5|pCnf-gfo~hZk6>u6b z82{EoJP@KrT%80BuVxitwG$%=;!+4?;*_z6 zSV7#;iWi3w6l7Qdg*?lB#NXsK*V};i}->w*Kan5{=5R# zFodVFN0dmz(^Ep;k+h}_+A1hT7VZao;{X+91%wukSFzTKx(F>QF}BlfyUYa}YY2I_FJ zgq|P`PmhY;9Zc(8pM8!KlRcYJ9zRkCw!?)4%()aJw2klb_CnS1_9Mg5t;&)VOKc~A z`veeh*lBF(I5tB`)Q7}~u8?LBT@Ye2IUYlq>j!E`_=5xt)vKLh$*!2jY6@Eym{TJ& za6U{Iq{K%8T#(_AuA6_ z^?VR#4^?Yc1x%B^cMPdqBYr}JigF6-coMmCO)ZQp69pHWD{fZcl-VHm;*$IxeaqHc z@_pAJs@GLmvrZbG0$B_82K6z^YCzU9$5CW-_pBLNcL_RbJ$P|Mx7LsA6Av7loI3Wv z1N!9D@q6z(KEc~-Hvx}br@iNZo(`?PoL)l#qAnp=+{5K~rqq>3z~HN`4YEHu8W_jm z{GPh<&VAyY4W6it?c?4Qet44{lXYq;*hORw=``z}^cwnYrb~9~18SQF z54i}8BMp?zm}U|s*3h?YNio2V@zV0jxPSpAF994%0284xN@qw`jC6@KgXl@o&P?Xt zuaM@DQw-U-Nr<%rpjO^G;|B&6kSeg;ph_zlP3$m402!5-sI&*oc(#}*jzjiv*t|m= z6g5RH%A^7Hk}xlmeY0toSI%1AQnWncO2<%$OIP$NijS-nos+e#7P42vA*y2G$R-O} z|5SyzE4*z**01oGje8qx+#%Ms5izq8w28*=OEf-%*16WVs?i+I+Owds*6&NSekWiA z#W-6Rmq@eX5;qU2A&ka(Irfr>&jmDt=+?S;MB3l%5lI^M4%7x%m~w&6aXUr>BF0q)ZW7>^x}-f!kU^NzXSfe+?6h5JKxayrtz2s#83 z5u|{+lmqkVU|sP@9VhNhObZIvizIuF-W`4WMNrTD`4D57KmTmUANW1GjseKwa94qT z##*^(Fgkg3)~V{7rJ=14tK)+@YP3d{Q~(0lBzTtuPnBOXd2FF5#jm-cqy{F*DSPve zwF?6u{yY7$0hHT{O*vuH)EvF}<_|~lHPij6uxV;^sw+0Va`chEwOTzQx6hAFnpYQX z(rmG~%~Myf38J5(c$HX`b`nFOOxlTNW#Vm?jqQJ+OcEoc1FTFeGHB1EN@c0K@u2+P zQ4zV-o|Xx);&X?Mmgf$O;Lfi2Lf5)&=HB4q#{%L^S>ZMA^T!5=WL*JLgxojr{9>>9GU2zR(-hPHY~4 z8S;YH{|))TP<(D`VJIPCYG-e4Y^!H!rz39Rfc#Rle&S$ZE^e#mXlie5rD!c7p=ka1 ziHWA2Y2G7Yz>$Z9$|kGxlJ9U9;?*^F6N);ej7M zpvZ?yU6fMyi|D;fEP6nPUU6QeMdyadYzf{XkwvUhe>0b^L>-J|?*#w?C-TtM$CtQ^ z_7>AF0tX8dQw&r2sRebX&lsZ3NOvbb8h;r8_>KmVMGkV{X4ri%N;#0=&gVkSNH<8{5|B(PG})6Rc{G81G>Mk*9={Cm3GngR zr5Y7wU2hqwv^aVF*s|{a8kQQaKAK^PcNq+YlN|gJp&DO;h6Y6$^^s=)=AlC(v>HlT zcnUJfKfX~FXwXI<)4xJ_s*eT4$4}4|2za%ThdPFXtM*wP6MvTsI1?@nfV9k+7aw(} zzQO|4*@`4ld*+V4TbT{_euRl3KJ@mv+Sw2mQ0grT<7@AJU7+u*4<}`n=lb2keIDD8&pWz%#*7Rx ze#`|rH)fQht}c;*F2);NB5z_`On^WGt+!3o~Q@`8x)Pp?X%6R`?n*j|Y zGab5ozdSs^>a2%3at@fj&M11pO-8w{Gm1|6dq!`W=)e?ZZ4C@z?6)HbcHn?NX43Jh}2rK}8QsPjQ=wz2~ zd&$bE%+SlyF8A@34C{-$BF+JBr9PM}!65qkv_?cD0&z@e5%xzOY@puopefXw93RB5 z$09ZE;-(hj{ znwV21+kYB%qu?AOm9{?39a`5s8b8X@aU7_v0GlZ0` zS7%fa3$u1VCKa1mi#I}{0!<-JXY!9J-+M89&CL4=GdXva7Ta89fnz2Jh)20*fy}HO zwmt6YEX$p^&ZLAsn*nufx#y1)ldZ|6Triv~#@0cL6zUsD)F|OkzR0wml^a1w&~t`s zi=CGv*6HfIx1=MWVP%!!39_kB*VYr@<-}Xy>J#CP9-Vzqq-@rCf#m4|Q9b+Cr?b-` zAdWQFutlQ$GSSpmI!T003baJ)Aa2cx5cGhp_bd2E+xM>=&4q}eDe3(0e9PJd>9XFnkaC9U~k z8v<8KNfgkbLk^(D-DDosOsaCV(EJ>3;beJvdxfq<5z#&OEHkmiT8NJ^J1$?=_;W?R z^7!01f^Esn{G>;z?o<2H8KzKNE`@-mBZ-WS+DGc;0XoO2Ebvu%$jlOuEaZy|8?K9n z7J6n_H3$D5q`tFa-JLUg$Yp)6yGKA>SfE$adSkNgyvi=h*xxSuYlYo>oQ1Ku-=`kB z9Kj^Rr2V8z=QuETjIdpmsoTV=ZC>_Z9VK2;*`w}Ny|Q{1(c$cTbi!5jG7X&41Cxv2d9hjrJf;PSxm5nhZW@*|Lac{hGWqX< z9yOP+76=N>&D!`DZ>)w^13!hbO6f@Lf%sJpYcfLiD4ejRL6TDzhdyyLZ&$5m=#1hW3S!5SbfWmA!+TTUMV%hrV>PW?Q;bCY0 z&q+QPU?-5I?sdG;e4)wnnc}iRDy4_ZB=lUmTt3{oFW^eo^`UhRAAX0u>; zNC6DRTxpK=Byjkc@~J$B+AtrQ)!)VVnHCecRBW#_Y&pIm7r9%bq4=UZz3R@}edS3CaSr&#}Y_397 z1yUmKJu*yh@pO;DR3`X^7rVeo7LNeM@K}{UZLeeL?h8Ai3hJ>?uYMjrzfx1HwM2zU zaGXJvHmuY(`HO37>1Zxu=s|0Xl7*HJ^Zr6DTimgA<%Wn$uc4Zle`n^RNgQ#CD%p&* zh*qAkL={8N0qhp5$XX-g?!<}q^vjin9Ao}%NX~4HNo}1SS$LgYu~Lp5i&s%`>J^%C zO!%#ymjirBO9gNNZf0)&T1R5LD$m2JL6j^|j!@6I%wV_#zXO;PQtDa@`>Y^kJ23NT zQ_+>Hsl~F%29V5Y9)l$M%%6#lxA?b-&V5bv%zvEd@&6jpmH%6a{*p>mEk622rD@4C zY<)(r4Ecjf6Gr?0sx-N4mGpnr8)Q0#R_qxQ0=&SxO0BSQRo7sm6gZJxFvMBKKcW|9R_r9!1cCENlFCMd1ZN8^=E#(^nX%x{F4r>-+0Pd_ ztPh#4C}>CmIo=dI$O6+q)#^rm*06_Cf= zGalz5>^Q+|tW|juNqKLCz=V{?JJ6-o%YUb0DM9eo7U5!#1$uDAQ+T zxdvK-^*WIHh#ubN=Ei>Nb>N6y+;`4p>J<&0-Q00v?7#(ri>P5 zg@swH{RV>(sqi~_cCfdVO8Fk+tqpn?ixLaVw7@c- zToEatoehJatLytsTXDJhTS)Pn%|s1YV#oI;4v@KJ>)0dTsLUqslwC1dUE0lKrXR4L zqIAnDFV(3sNQJ&K=$nwk>j}f{({t|B^{|hG`BBw56-HggFdo@hThdFrzNLv<8gZ|c z3N-JqYHkcr&aD!ky=`eZ|4(cWjK?v=TlT((g%z> zhz6&H?HzU=r)9EGyVzQrnbp}QC7JSjmyl$}J23U)JjAE)9K@&N>^cQU-)x0ZL64k> zoG}^sXZuO$;Uf0)CJ778%bA;A-d2ujiy1Lkooms;TiuzM^og z-VQ!ml4X8STi4?G$@k$ogf(gGNf|Q;2)+!9v7NUcjY`bCTRWfEm(_UnDev(*dGD;e7Pm|)H%)@2 z9Iy{mdYloi2oA{^?|+)?>2N9&U>*Vs*geJrb6>r+Rqs9+HHGh)=LE!R$rvU+PU@ny zOxhqz5D0Qxfp}_kZX3+;bneC;*|diHGKR^@a0=who-KkOwzZBiyhQ^HHLKl5^11)d ze7+s^xB1L-&F9#EoX^q!8lRQ^4fs6r6ANE-c4th|T;@)$UsI08v@qEiA-}5{g^?Bi z-l)x($JCKR*o80$CuZhbl;?gB>_+s4<{sP85ynsIu;UL+b>S=8igkN7U?Q(exu4I) z;Ar~1G7ZL~phHV9r{S{?rA^w;Jwxxh6jM5`F^zMpRP$S?6_vewQP-z;Ve>4suly3& zDZ;;g6_1!N{Bdi0Z;iGTSWL>a#LiO!mLi=Lcx_jk51pC!2ngOr`VSrD;s}fA!4jNCygU{K{awIpzeijdV3|oq7tAUvc*s z)2i;EahR|7b%-nDZ$3|rhHTp8LysGFjA6A>MEtV2C5oO;fCYYmBvwm)m)e^O|M8P{{8zJ=dSaxj-9jpD~ZVT3d3y7rI zx_hjDzr)9EW|fS>o(qJIpLCEx7Ch>;OIm*_yXoVnyT4Wz9Y&1RQ`*AJ>InvO{CLr7 zrL+y}8>q8C>6jw?W3l}ZSIg^uknP1FUqh(Uhu+Yopz8G*E6B*v+ClzGQ(a{~7tqF% zc)-S?>~xI@!q~i&zw{t3=EzKwsaZ>N^1)Sg+hs9KkA&4u*mWgqUyxgQg^iPJ<#?5~ zXFPZ%na9)0!8PgYfN8l|)L@TcLDDH1I=_a?Wbu*}H&;1!vFU#_T7QGA)PTnu6C(JC)`eeTDmF7t-qxU=$szjhuef zEP~@8==IK*A%N5)ov%nj_udft%Z-i3ac!fKUHjj^_`!tNHkz%W@n4&0NIHM{%|vUz zG0{?POtjeFOf)|cq=}Zvz$5e*3(fl%3l00)LNok37TPz?e@_dIFQOE?e`-u~`8I5XD)lnHvYI+5`Kg-ex12`bxiDu9S@|?wy580q!(pd9Y^M`Ryxh-k3TtbY zKU^vUQi#CgUU*#07Rozz9*qP<0`cnaa@6Nlt#GW51;v*;5`yTIFpX5P$_0M9r#2lg zh9y9&70-r_w^)G$K8d4uHJvFxL&uM1EHBpO#>IWB?PLxl` zo*vBPy3NmK^|-J+d)h@a`|;>Y4s#O7osxMaMvKdC=d?WCy?Fl?R>5*L@qx}LB}m&d zk-q^x*zl}X`%98>j-T{ib!Dy16X2maIw`}CJV$2?*+Nl zZoT)@TaOh*V?)8h*u{FzEqw|8p*gQs3VqZnRtCGsLz`y>a*=s${UW*o&U?+xL@JQ{ly^NWuopPU|detzk_F%IH(&3uBqww(8?cZm}^OPd{r6zEQ}^mW=oy5ZQD8C z<}~N)#UU2mH}9ba6Amn~c`RiPaCV2Eayxm| zUbwvf)7twIg_bHq8C&{tFh-?^)4copwPQ2i>V@!A#n$a|Vo+z@7$lY%F0d?;`h)yS z)Di>7W<4~ul}{Ywj1IoqfJI45*Z~3Y5x{nin`U8I;8q%o8CJJd6)s@-<`sX5(COwQ zW)LdCp-Gh($>gFxGx`3--(vEOE#~}>G8t)#{VPoVw=l)5W&E_}clLS=?Jj${LvE(sx3b{_C|k^S|mb8U#CeQ1{BMHXGfeg^@(`~FNY znujE%W3-G=UVV9ko|C^+@5LG;usWdEann?7t8gK7__kFU7|x2z%r0=T?5OHRQ_s}# zy+cpULH7Iks5sD0g?*>eq`Fh@rE5PcX2G21cDm>I1+W7FMw(DxR~{2+w8>k4h`aWo{$Lr+M3qXfdGEAfOql*9qtPhlrF+<_japUpXiLh9 zAKu`l$%>zyrvTrmIRq|MyU0SRFwYX9yjJ2ch?_H%u9J+*69!qDQu~o@rZ9CcI!*g2fQT$yiJ{;7Xlnr4iQO5#&AbBB-B<%A)6ZS#=-y-ad z(M9l&5*BH5{VRn1cd)rI&d`uHSCXm6LQGe~ENpFKu`_#n1@hUeO!|s`aDMcg$~Ifp z+F#l_uBG$~P-g?I{7IwK)I;DV*2ANjllXZK6@-^o`Lrhd#3qE-%2l{iZ<^JoB#v;M z(x^82%v2$9fg?F+aQl2O0C+pfic+qYWUSK|H8kTQf;> z6x$TniNy>W(Dy&I5-D$_@!>u{UM9n%d~%0G(6%?m0T%B#IVR~5<0lytNYy(-j8*<# zT7F$?AG9&hy|N+T+16mog*9@^jTKAl(5-7IMjlwDe4mWld>(0J?(rQX$$W}*Mtm)ZZzuK{N)f=;v9oWeoViNa|_>wJ3*~)o4VR#lOvAj=gO`WO8mdcRcKFsg%W@RqfVeVzrU(_5hW zY#SF()4OelcTGnr>Tqs;2r%TT&Ze+u6Bf}EZi6j9rh6sZ*L%6$&)CLRTCkcYy4*B+ zh_`_&W^q>K#n)ip{5b}|N&p>4~sD?$ahcucKNbu%yj_}NCRY4zncqM5vqpPXQs8v8bS6gc*x z*SLMdOeO}10s%5-DpSEE66ilB*6u_>H5)T#kAyTp8P-A~%1+r6H1_7w16={0Kw;L~ z7tFjMTUcnj#!z)_bAxtL!E{ymjM&7yWSgJ>4_0j>JK;l_ZM(kIQ>TVEYT_XDoC}>n zWz8i-W5-P1QVGJRV7;&2QkaU8Tye!dY4sIs)_s0+=WQw4R4LGXg<|(w!7RF})V4By}H3&v!L`U|HbtL?C z?-<8*?^x4y@0jRy@7TLvd&j=viY}0NFEf%eWiF918f3+iFh?858Zdlk$ccS4JW9Tr zu*N{rtOEbeG|EU$!BCO&21Qz4Pgf7wxQE3n+v&RNz@~9YE}d8aKNWNI9TmOHnnwHl zOa$|Dg+kP>h$Tko&ep4o7gZ619LBilkDfH_Bz> z+*uJ0wK&AxGEXSCyrW@`nQXAW_DV;08Xx1zTx*-6b&Nnmj*!^+lERAqU_+^G;bOp}Kip zXXcasviu3)@L3++j7Zv+Zn8%GmGy=VR`q-DH>0v5l$rrXy(Ebx4K#~Z`)bukR3P6o z;kAPwZy^2}(gc(In^92vHtT+^Mm=Cq6kCt-_UL@Xu=?upxL*^^!a-B=ehw*wBuhXl z^o5cAN2!ofR zun(PI7+Mc^UWAe96xaw}ZR9RgYn;feIZ`Cud1~qOUeA1?S)ciD(yl*b+0Y)CM7{Ta;6 zVt)_JH;zE~KLKX_e*w&l|3+Y*L%Rm^m);A-wT;=GmQ8iUoCT}Xzsn&+1!Nn@oP6u^-f}H8+l`HE zWGNL0X)Ld0yNI)4h$k)TFW4`Fnod6Ml&7(V+s64Nh9@sLeiW4F=yq)ogsUs{9`a}3 z1%~Q39z8@Y1*wCAoiOSHVJ5kfQIJ)&#XiI7^ebw&chK!p3{!#dT>+^Ya6!(~iV;0r zyS)qcCzHTIm6G8~UP*zjHN5Rx8s`W-;ZBT@ODZhNI}{!URkVn$LU|EbxAKeIa013! zOKu1q*y0FB^&2gCWNznfkmG)BD`m=;Kt6|`-2Sb;XlQ=aXv`c+C@2i6dVt%l>$lnU z0|!JAyFYG=4S6o(8{Xv$Z)qs{@I~fC1Z?3 zrG{OwPZ9w@HvUH?63ab*#xfhh-^21vP5kbkz_QW5fMw=?BP_p1kN5zpqw_Q{)80YM zbuyoj<|}YhP8--{o~s<#IF~)zUspLB3y=b zotpI+n|xc!Wls57gtTil{7e&?28NBb2TN^*N4aPeZqcKt0!sZ1u6S_sJ_pCx3m&P0hVuWDGcBxO8DrFhs`FUzHns>vVSK7L$ zRPTXs9hVfDoMPNdJC(lel;^(b=U2HPxX6F=j9zPsC%@{=`GS+Q6StjZ(Bv%tnM&b0 z5Y2jI#;JPBER)?EiRQJ~^<5;If9Z?(E1AJD@%PYtQ!qyT6KK}^=g}O`@b80W4I4n) zE1=HtQSFfY3)rz>wP)*Fryd~RAzrYnW1THnVW+ReW^?WjXr}AJHXpyT{zYaSc2+Xg zXnvZ7?aj@ZI=sAxRD@)mW4Tf`qmUJ&v6jUGV4^kox{*-rav|GUA0`w?2`4ok-bneh z-=()2NnlCl^pl@ue7~2gAZ}2v!ByzYPh^5}+3@+gw2)1oUe9g`P)FJbuI8}3zQ(5m zi$584*w@Os4^IedP5lnmwvV5#usO)BodIRLzLeQh7(rH)PocapkL0HBH4bMjLWE$c zM9+`5N4@IsPjfwj2X3X5*Yc1y zgIZtaR%ZIR)K0?cn%c6CrC5W|&LIU-HnQc@O3+Ky#ji15v7J6!B5V`E7h1r{VEeJt zk?AEwH#n}zBbIH1{&Us2*D2wm1)zH15V@T_* z`NJ>5896`K{3e_mZiI9Ajc`u*T{u5}I6cPK)&IM4ZVtLu&I`XNXAGorzW0Y+7dOiJ zFS{<%f8TW>x=$jC$@C8>=g{Akv)mt*bL=n5ne{&^=QNUFG-ffN!5@?}*`Jg%&9!o- z`9J0SpDE}5|0U&|4cgv7;`x_l@xQ_|uiM|p^Nn^!7J~mco{{4DpT_flT|EEK&nEvn`dQ;-qW}r$!JBIEuK+Db@%I6JqoAYz89*Z?^gj#ee?UV2j|2MuB=mnG zp}Fq;FG*-t-lONpEy{)0kVcEYk8J2Q2pHC;WDjl0Z-kFh|&iSbBpr^yi2#!ipUTs7&N-czHN z^evJZ_l%d+4~k2$)MzoH`&-7@74GihKV@!t>4E_wOh@AoM&;(QaZZe1YY&&I<1@4M zHsNR7il_I@QU^W%+1RM;MR8|R0d=52kJB}~v1$17(OVG>1+5&9pv#6hjmnE+rtd97 zoy!CI12gTNuaD=`OxbaNK!2WDmbm$_z39$E>*2I{DM&2ttwrs08>u?}KKje@sX>X7ubPVY|dfY}}qtm_6ws zsI|$!u5i1bEgmF>QEu8W^|8qToVq`&JZ3CpP!jwam zu5*UmN1t+2dt8)B=9t!es3w`i^g~HJE%ZBpn(#Gr$rHusg?QI6L=#h=o zuOf*0K$!p4z4VNt_?SSsdlVSaO-5?8pJIKcaK0ig(Rj_N^?{?Txfwx*2wk^1Si>ct z&CLGZqc`~18@=uH9)AVJZ{GMN!GQ$$7^c*>%D;J$6MsNOqd)}=qzWK6Z=s0Ygdpc8 z1UHK%V(Gt!0Q=VvNZ|bv3Tg>tK#&MVNA{}y8V&8P>zc2*?fO)Kw6@<*6?k_m<$XfR ztN8|kbW%ZY!L$cJ%;(t*5l^m97fAZ+(*=AU|JCUNI4Ge8x?d#n+E|PLxVapK92^{% zXp&}X>~%ecom3x8_YdSm+5kip3?DGQze8=-oux*7tv7HTfk#7Jg#u#VCcF?O=ydbm zQ(u|ht777pkpT(F5RR`01mdjS91k*}O~9UN?np0CJUN;&)(1V{n?dAudSCp!z)^2W z1i2{(W>E>691S@ipb0;a(iNljoNz^1DUV?))a$Hb)8hiRgaU=aLja|4e+{6NwG%Rad?keoYwZr0#p2 zK4xHY@`Mc0HE#>v2(#rl(K}>)*lF<|XlU4(5DpFlE*R8F8Y? zss4KEfU5i-i(gFdn`NUg5^78|tXt%GQH}_!UopiseTkM$%W(^9fMy66J; z0s3gvjsSfWOiV0lf<_L&OHdyP=Iwj89s^?F%E%o_C?Pi?pSTJ6jZ^Vd>GzQ1A{(CV zb?jiK=7xAMdumfF>YLZds7s*$CVq{2UC(vY4LWY3-t~LbV{Yll5$kA1BqVoe$z?<& z)DPI}io_4NxAZ--`5whXAq5PAqwgHjX*f*yEcp0uuMo>7e?&Rk4ay%2 zVgxoI(rKl``$zY~E`t|gH8Vuby-9E2L-(eJ1`wjX1u1m!6UsjfHiK1^IPB|GDF1TD zW4T8Ev)SKMfoGy4ZfK>dW2t9ncfE~d5P9QMMoyxe6V)%#UJ-fEsg1-}1jnf|-eFXX zRJ`+`c|D&fgF2R25kDA3f&9TOYnn9nG=|uW0NGhIZ2gtn$GGa)yvn{{V?Qy!0AK1h z5uf5>J38aY0+IZ#l)$BqzOU$7?_`R8e$Wf?f3M8_$wD|;O@ryqGd`&PPyH%(SN8OGgx?rNbi;hXaoJJX!7onc7YTt@qRL<w)3HCZRw2A+!)&6`evMv z$T8CwY-(?08veN_FPhol63H}M^8wAXJc4}CaPUqTLfogl%&)(_Y;mFW9^~&`d4~#p z8esQB4ix}kZo0++=iM7h-rzv|$6w>XKwih#&`LsI{~8Bj%z(R`*En!BR#cSUUm<$5 zLd`%82@HJtYT$dV2MVnpgG2=N3;e|-yEpIfafwMVXkQRLBjQZ=re;W^eolgdhW)%T zthZX&?b7(DX$x|uCt}eJ(V7|>QW_G<*_ImGMtzZx`V{TaZquXZ)bDuTnS7*T>VGF8 zm6sBh9~*YxivF;oBI09|)T4Xq6C$|Zg`22&stCW|#|t_Pe+zrd*B2`?5>UrDjIZ9erDQCjgDT=8<; zX(c@AOg;3H7JWc@(n`PWwR`ulbtTpBtbT2yS4>y%rM}mb2ItYPfnHqq24^SF9+8qF zoZD`~66>dx=n6d*-*j`dVb<( znkO?Yi!Fis>jlQM+vKBzYR{akvC<%QCFaDJF;QeXtXa0XPM`YnWxT9lHfgOf>-^5B0tNV3SFx>d4`az3~+ds z@+ve7Gi{I0mv=%F@P2*$0gIW~%!;kJF%0m7{80Ga&k#%!4n58xTAX+)vY$RMTB2Qe_vbN^y7pDWR)3h=sEp>uWU`*9V!Rd4d#nlWZJb_FIa*;N@LuhYJ9Iir z@qOpLZB*t2z`VfF@+)@H9e7`Elbnl__lClLW9-PsCDo)N0fDP3fF8&zc@79+PVDl0 zW6~&`H4wjf$XsZ>BV%iPk1zhX_rox;XJOa4dEUA6eJQNCrNi%KeuhUaGgz2|i0AtY z4Ylo&y4)k#uZ$l9hpj%~+?i6)9V#YK0_EXit%Z)PV=EO_y75@b;Ztp|3}%Y3#{o zbX8gD4Z^7&VA&Iw8um33#F*|PUA(g|RBpwS_Y(}}*(x<0EDvx?#2SHW|Maobo+S-W z&WHV&6w+>gX;|2#5hCC?g;`y~YMAX9J4?b}Pn=$e$|hf&QC1?ayDnx_YrD$~nkT4^ z+5ux|PLoE@L>{8V8HCp@$|!)7o>OexBL}dp+Nw`Dv-{v}(YEk^BCuk7yK853)G&0S zUEhr$fMvZimA|)#&KGmPwromZZpS3__VIvkXX1(7X>H@|Jx!jUAMYVN_IEMPl4lT` z(;w(}S6SXqzUU$FJzrt__Mw&8Wt{_$>pS+bX<~d#~HJZ}F#@bH5Fsxi& zn*G2F-EOCa2PC&c#zJfD>Fqx%Dmmm{{j-3%oGWX!DojGk> z$}sjhpGm-10S%~kgrJJ277e=KmqI?;pNJV|rS_jZ^ym?Azu=?$SYBA~7JbXdi6lN4 zbCu;|__X?_eow&h7C|FBDKbJsSM5o~<~(>KTD8d5(EWiZ&nDOPeAEg1&brqD<0><{ z$Y&4xOJ7=aS>Yq#7C*Y!+w;NL98aiRs6uP^=O!YvOOGG%IUN3n>_A-gAt-iDDLWgX zf5i9I!5k|qUk3OEJ5|uWXhnvOeIubxpyJkU{+Jg@qyP4M#=G185_$D)c-DRrGf_pK zZW$7h%4-bUiIG3Bgm62w8xj>S{FJU#NTs$Ne0Pgrxta(kIL|o$v*?ENWCL}$S)g#Y z-c}{5#ne^CvJ=sQpn4o z9vUy_-ulKZK`fA^FY6(k8FB14Myo^}u!4QD^NC-=bF1cj(+@k-hLmb7;FH*R0m>X% zx_g9rDknY3`TYU29-PlM(oni*HTyyJR0d$%mXoq=-?wJZdm*GUZ8b3NiFyU1ufTjh zD-Ld~mv#=sMz=B5CRC=M?xX^6SKi)tiv-K1NRUQ`-A4(&;>)$m$QQlKf6sYq7z#dl zt|zC|MPys1wPnp9<)2h4Tl_}6M^vVG1jL$!YMbmbUXB|FO+gD)xZh5^cf4gec(=f} zhUHMhQlETLe3Wr>oyo5eQ|sNOafw`8^Cn^|h4AJl1 zRWtbT||*K(JOC^ep+ zo$iz)GRVp0-^9i^8))DnXonZkk!FPGVUb+A(rtx|;V?`E+y;%G* zIv-Z>WIBn|ENyzko$pnrc+09BpxTf)nSy$|#poU7OfS@GDID4;dtWpKw(;FMl(Q{o zJ$P|!4$DO#*?_Q(6snz7^QBXmpiSXUWd4q%kLI21BGLltw(g?5{M9SWO8%fk)U64q z)vFb*?G@ID+a>_nvPs{hH*^UP8oopZA_72o@4lA$#=-UsZ;$v> z`hxB$V_s|rM=0!!X<1q`%hhpE)$y4V&{HPx)w+=5Lo^QBOg{{Yn!XQ@xop6U_Wek} zMCT)VGF{T8QHRG6vQAJ;n5kmtTCPMen=}#U-ZAFtki4C}vnwfaj=E@sp^!6^bf>glv%2!^4$2eGff+v`2 zj9YbOS$88`E?6#flNk+S1>3(Hq>08(gOZ;b>B>OPA< zdzNJ5QbhLv%vDEzq>%zld@bkBFP4Z)u-Ib7_Hfyb%o&IyyH`HjYm+{?$CxR}l>?0I zNK6^svlEq9dE458DlPGzBBmoepO!F4i$8w!S>%rAIqh9y-pQ4MS1-pNo4gX5X~Cf-crwH2_F!Ml>@4>;2exXI_xx*)y;kb+*4FMzt_r5!-gVG?1Gp zQ3x?!|Af#+|I_XLr3<3{*dI&veR!PayK0lNA=JDXe9)J1Ra?R#Z-x_rfwjd~WkMCu zJi{&u#w9xN zZ_@m(f&j)5+YHTq^xO9hs+hu7~bQf8>B zoi<5=s0VaT%A0nO6`#}lUau7VSMJO>^`0uCi%&4)yel!DZf_=1U6qkOpknhHq$_?B zy~nrE=PVg`ozRv41dM{tX9TT|V&gFvsce8OQyM)Y`nXuH&L zifGtidGA7w=V{8x*Tp<(ytzir;#=Fk)b>oTJ_fQ8G*Zy*P5QHmqIc?rz2^5I;#H`8 z@#!1xlY(w?S~7ztf$oV#%To;48dSK)lRTJucS=g;HHK*fWxp?b+LQSIyp{U&iOiFa z7oS|LC`_?qB+hKsThOpGEL&%y$HW3t{QK0hh_LlY6;_Ir;j?~4`+1)>h`98?H4X1#61}t^lUrl`bm?kPUW5ac zAWQxx)e7>LU=9C4mDv&geB+dh4$lXL^FnFx6OqN0a7^+=-( zwqnHxucTT$->tSc&0bpmx*yutIx(R{-*=u1N6}IEPAhq-zLkSVykwXr52apwcJx}} z5+%KwFPO2vQcO;fz z9(flv2A?g7$r&5vl@2Z8gS*%@AJshHdJ3QmcJUr^P`&{)S-n@7=%SIJlO%8XEUMc< z*)+OFyCd*nI$|*akiN$lRL{Ul)W>A7u%Aoj%jPCa4+3G~~~y z!o75>u4lp7K$-D%_kHM#a}F66MovWtDiM(`#|cdLy?hH>!w=rQ&bM24-`LHX+bKd8 zjvpUGhKq=}p3k0{K<#^{`FGAPCyFX~$x+{yrYw_x@z!bhuoZ^$d3q0{z*iq*XIWS< zw*!+X4fgU;yVu=wu$t+EPwN+i;|#Q5H{Y2!v-fDr7PAW)7rV7#AyD%Pi+Lf}P8r)5lcgIR4dh6SgnD zGf>aNTNOBU+G^78G=RR=4y#j8A==pq^QVI?*4TA2bZ=gFZzK2)b9n?teP)J_IE#XJ zXIqVh+}cCX+=*pu0#qN#DHP?ttUiV!*x4^N&-~ewJ}!8c*9V)?FVVoM4(_|+RdXb} zuw&J!yN90jYy-BBf`T}Qnn&#;do^ydD ze%a&*sz`&WNR+=IIQ?k8aZQ`eET!r0beT1(yKJ93DCGmz%%@wjHraP~@|X4IbJP58 z$8?TueIlN{P%y9T@FWRS3A~fLScj?eD)l=>Rl%IU%Zy3q7#CRE)?Ln)${|&=;BgI= zfzS4l-;1gf!cS*ac9Mi!J_T2v%;SciwXHWG(1|-cTuK;ab{DfP{p-~ip>)oNZNmjK zu9)Ip;%gPtBIw%F<@!71%rJp&NaUsWd#uCVBrBa1)RCZ562!v>L?RvY37&^f<); zy}BAcPqO$zcfZo=wTmVDD5!Sv*gpPFUhclS-_X+r&os5^#n*(R?{$=lnZf}AF;pVN zj=X-|XCs$Hig>&<_Jlu%nr6MbLN#CVJ6xa=AXC(`KwhfkhH8JRu?anyD= z9K=v>M4b|qfwl>Tj|55^68;};?-*U#7Hy5jwr$(C?Nn^rwr$%LSDaMrq=Jf7v28nV zpL6cJ`19U9UwiM*-n*rZ(Pqn9dyF~zUZeL8Tl45^Uv{+vY%>N4EKE&ccA|POtC&TSbP|y%m!vF1#0Ng->a+p_YE-^NS8sW@gwr=fwqhHFS7I3v7;f+|QPEAmh zsit(;Ivtjb@14a2JSgaK#e}I8#DG0-_j!xi4DVBVnAw&clkusN`!9dkS2;?HWF3x> zF_wv-wOHK#<8AMywj}nIYQQd2P~OMY*Oz)R4uiG+_`{gH5F|X-Of`x6Akgm$FE7-* zkCE3g#1ObJ2dxNcPn$>(-echkh$#cZZ;VS1)*CvkRJ#5)~0nh_ZXxe1Z=DoI9)Mg@_vRx(!(&2%Wi* z{5MTNgD-fqAm6If)4YG*WL#O7Nbw;$nx}}b_G8Pl#d`?e-G3IJJ%tPU^mj%xsrj97Lo(;wQIr6chJX4G zKYhe#j6TX04A`ocA5T*@ox zd#}pBog2NCXPh_Vmka;8yPlfqkyiT5dPuwxSX9Id2vW`fp-S_%BD6RG$)dj?+)%U( zj=Wef^Qn6yx@+d}l#AyNn~!>UJ{zVUE>m0e@64 zy)>{S+AI4FCQFE?V~g|dMr%c8cJ-GzJ*aUoDWi*!`J^W0FV%dj7~KVktY%dL!gXw+$7t=wesx@>_|5j7hF65hbgCmwgt`zh zje_`$A7JSrmESKc^x)b{(WW;#Sq>N->1(D=l*a-Ii#TA*r`ACR#KX|MaJSLbR-{ zV;xrM2(gn}yZ&PeGt^cuuXj5W1laecEo!f~zQg^YQV4hcM899N9mQ_YKO<3u<9<&Y z>F5*;zFxQ@WwcbyexriyxCxuBEjb`^J$ad#Zl0(YKV;jweULyp>%G7@m4mJ6coT>b z1X&S@7`_#sO~h=2;;Sj63_5QxZE}B!xKC)edRrM5qPd2=il##VDLF^J z(W!JVxylkIjXYb}Szb5J5#@mZ&(5-U_oKN__(p}{ViHm;2*k){^i zPz4wvbV8d=(^B&cUG7tIpSFGn?GtzdvBm>4gdKDr-Ioa!S}R|!QwPfLzQNn9^Z-4< z!g~{=Q{JjvaE?>WgA(CKa#KqG25rS^Fu;s^gCU8=&n8?S{~DeJTOX7fCy(pPYDM8f z)knakv|MWiXAIi@L>ny7$@{f+dC5uhn)U$kdfK&!=1(@Q5Hy3ytDc@cwV5Q$$1a70XLIp z0E<#lC*1jLl;6#VabG@a!<`TW(33>RAJSo&KG@2VEseCm2+-d4Sg9W>Ga zAIEphtb)L}k}J3tZGDj6u2VZj^IxElzPdK^lUj@r_wq5*Awv^E9(F!%vpUS%XR-mi ziI-ry9=*#F?LR@f?X;(V7q9hYWV^wH3cSYxHbc*yDd^KTp!ox<>0aX&a* zQ3HQnP&14qj`sN!yq!#a^STYr_`GUZTkv_K*j=;}KmFX`Y0hU#`IW7!{-d0VtdN^R z#aI@$Z!@vKY*-Y0)k+WvRaoKcl>SNQJnD$zW0+FWI7s;W3- zfYU^;ci$slQ<0u0)-f$fwb$LyFIZ{apUHFkTYxo7Mp%@th$qVWo0EzszD6c8T})rO zJ1JkP;oHAEvjRby%vNJe-}asbQhL*VJjr_nj0SMOJZ{~=6FSqJy=oM6sS%Jq#m9&t zAe(PK9k4y{^*~4p2mkVbRR54cm=6Q_H&#Ag1CE6$=D2hbxEsFz)C9r7;ykCyM=jE z9R68LCxKaFRCMZDKeJjtv?BpW^ZbC-v3m!y)RobQ+QY!m{9y;6^#Up=z%QgsEIyW;=gyv zxBBzu7SWfojp4GsBQV2%HCl2ZcKe~}#*+kVFUz3%X1yuzXSWtrep1+uWINo=J+@yL zc@I*rz)bkE7tBt%cEK(?$Kx~mCtla}BKN!6oOzc|D?y#k?cm*S)SK!nYERZJu1~Hi znBGb1s4esA;pKva9n}V4%aC6d?_*{jV!b0Vy{a{%Zx?$v!U_TJ7Wo{;QHG;eT2k9} zf-5BM)A*5T=TV-PM@TMiXvPS!qRBiOv)_fVhkA1(S~UYid}GZb?`kPlZ6C3v1t%p` z-dK>o9=k1%;Gi$MS_$p0=tVlsmJ+SaaOPCBB()_^XAUo|L&aPZTQh)HdBaFag(+P3 z_dQH|=aGz#u82%XVOZW95Qm$iNS~He_Vee0b0J2Rx35uP?v#Za>KI523hdDqJi)@k z6-p8fQKG$+B1Iey3o}!=sk+Wd#{H?oVa8aFn+rIK<3 z#nqaqiK4@B66_Y|3QO(hHdKt#bev_T&hs|P<0 z!t@v4=5Oy(QLYHiBIyP}LitxC2a8(AA&oB*4c%QK7Z>bD$)}G(ZO~4J!j+;_=`n`5~nV(+`%Q* z?%a)ftd|svuq9H)tWjw8I6?VsDB%A0ktfQSnS0WO<7NtLHnq9l5936bU)l)F5= zsMM|AVwsmH$jMT~#-T@173q6oD=kl<246rs^rwoUYWql%Pi?4|9&wS!%Q2y}A80#X z6e;!d9KV`IEh~fvj@%$-o@Rbw= zu~3HGwOj+TZuA?}PG1CA-8pdZs9yMX#;dp^ZUZV_Zt;+L40~{vZ$aT#smL|@9Li)< z@Uf2ph_KHYop7C3nBjSmQ)BO&P+h{abDBgb(KoWh;`2!8w)K^Vb|g>{1DGa1`?mdW2xyE}wL3Iv^sFsp5k z$>o{7FQ?)Ke)$xSZR4<=Du(D+8Hm^IH_nd!9ylHz1iR194bu0*mkg=hJQjZBWb3g4 z*|<{{PpHx_+H~_`Bc~0$49FGdH&Z??>LkTsF#I0RudG-^WqrXL`l_*6!W+_V$>ad7 z_r)IDu{1yPFbt!nha0wfxTaj4MsLkU5&q+#K*UamM;Vu&)|%Nfkf9b|M1B!*_Mx1n zVz3>krQBDjmJxe4EgV^`M?V~A+Oz0821}J}uDID&^Gw(OAfmIc#c$GasA?@iW%wKk%`U5j!hXS*$qpCR=+zu&(!tW? z!bpzgM<5?yA&%3u2n!?PD?!+?$#Cz4h@>eN`XX4N9ooh^W9BJMro>R~ zzs@$yIisz84_6>?kg)Q5p)$Nd8eb?CzZvnT5}+d_|HfV7spyTCp%SBVs$Xnc?T%J6 z6JIP?SJJEj_pA1rD7tqmKE9c?M3cc{f1?eW+%l|~svjej3OUG_KQwW=ACXGj51u=R zr&y_)mrDPEOy+x>&}Mw{ucnA#Uu)Q;lmn1x<`bcajeH_WWNfsI@xWyKB_*jvuIQ5d z@aO%@-N0C%LFHr9~qo@Mpt7S)&MwAPqs@C-&z z3pH5%Iago@NYbmIlRP4>qTGPK%>RK{;@#L-=DHN4>!>>bK}0G-blD%qJS+f5%)KVY8d93?Gu52jS7D3tNON z-uaJ4*Tx(AosO)eMI+ZJlY;QR*i(KR6A1a;_+)~9a>aDp@R7*~(+`okz~p-f>8=$N zOMZZ6gefLk?+G_JsqbniPQzKhpoV!~yaHWwzd&**F5QR1`P*2*ss-yn6#bi9Hn0nP z!zj(Ps=@v&-Y7}FvF4l-7zJxz%&_0}5FZ41{eI_o<~uA7-Ml4E6DmU}G%iRCA=4m( zg8wkcVJ`EmT`g1AZY1@cgbB^OZKla6@A1b**p1?u@mtKa;p#Mg1N~^P;V)iz0r@zS z?MGz)!`{(iNJ}HrSWwo~)o|)DZKG&8XU&=>Y+o7wa3_uy!(fQCOqnCZXBE9DYL0y) zW7Lt%mNW!Drt860%#YCQb``@Nvxu=ft4tCbnD1M+$a|GBL(T8-%)b|`<=(Sce4S56 zHQB%I=!{^;j_RU*mw7Afd4+-tP##rNaVECf;-8$n=JaKh296)JV#?$PDPiqp&Ysj_ zQULaBCsI^UE+18st=ir=E*%Par@(M2^diKuS=Nmq{9fuNo7jc(5inr zr(3xHDg4a@ujWA;^p7E<=03e>cO(6uy$XoTqm<9FGL?=nqe8gC>|R0~Xlc*VH1LwL zN5?OkmTySnphh+$O3P00*=C2t*t}v4coo6F?-}Z6n88VzgT4SJIZKE^dVX9BJZ(ZH z=A7*naUgb4F8c-1;C+shkXR%Ofl>8jNATmqYgvrjZ0}&Pl}cLflB87FOo8ggIGXTN zLczAIrWO1l3nR|f*p&souS=vA-S}{^@mF7C!16yZKt1jyer3;xrXX?(t#1IW+_&P( zsOS9(xD}0=Zw}yk$tQkjXsGdNd=`Qu7cTTefKH8f zC%|;y7jandWnWOBqMfpxDij1yQTA&;J;2m4H3Rym+4$HW{n@W$GM*oSSw&ld?hOb! z&Jr37cu?EVlALK6pVxw=yh3pqXEf6V0x$cYXn88LPkmBjM2ua=&!lgneV2nzluzW8 z7{eeYT^hEzPMW2m)b%rwlgm(Bh!(SR0FgOqXKL+PB0ip+JtN_Y_*58x`sQ;iW zWPr?&{l{252s#7?1jI;yp_%qlOr6W0+fmC^U;YI|7MLN3aZBI_oWC3s7kB|?JZMVa zfoyBhqFd64Z2q9@PN>|;LHcCaTH#m}NaB7A5ubGpyHnlW{r&ATQj-zv>xq7W7mJ~xK|(xR3o`=0$JgGFyv#97J8^x;`Gv2C zLsos>itbI$ya?IBexj4;Uqw1Pcx;XG>H4|E`-Ox4Po=gqn2`CoaxcHlVe!y@5LV|r z4=sGANEG~;6fDO>Yn@8sC-EB$dTMUFz1M?A5MkxC(-+(c46#&}_WFJW4w*DUP&?;A zi1+j994hfi8wgR5cvD8WdlwRck20U{{l}Q$m$btBIt>QI+n?ed3U=NpZYBnq#S<4ZK_= z+l~;MH@=4f#>sef_PpntS6gmp)HH8Ocv~9h^`(Y)h04p`pLuB;Ho9FFivWMLz<&>37iMs`{3<*`@*E!P8B85k zcp4^$Y<*Tl=%N8R?s3w5FaW3{NwQ@D>aXIj5qhwHY;6DbH}#+=3 z{;EMYP@wR?YOqDsODWa}E1*p@9WQNNa->+QY!I8jmY{{oL|48{Y;KB7Hs0V{?wg_EdqEqM~+=v`B_IMo3-6*_KF%_|qj41RdStLEHC)AqhYq;=WBy`T53`tEp zC^5=_8DGNhM(Xg$%$UL90ZrOYY&i85;&9f@sZEbj3P_UzY~oyClc(IWxkIA~i7+lt z|E`pNmd4D=Nh2y<2d8pej%NUHAxs+kFcONKsj$Dx@y4s3vJaB{l%M?Rn7$!9{o0HB zt|xbEFqG-ydtrBBJjyV<=50Fk0qr5S$q{pb2`koLsEPjOK0SK2$zXwN?hU@SJ`QKJ z_REk>!Jqp{7^-!HbWQk=7I8qkIFt@>761z1LWllp_}9~6=--hA^C%D zM{uQ1SjZuBGa>T8@0_#9RG)Cm(btxR`aic9({G5Xv&>hz>;!(TM&tJ4p9GKRrV9w0 zqWrDRtFeSBLB?!DfRPMEt4yn)utIA#Fi8m{_% zlMntFF>Iql{87llW<7X|7jYBzO{F&SrS9ski3uuJBk}^le5G{=lb0Y~g8qnBz=mb=$4f68>?eKUyRh~yjiP?81A?{ zt+Dg(J)jGpUI4odfPFQfPJsyiwr~F1Zu)OiYt#R)?WX_Qfqisvi=XGfB;$l2Z}3ztp5X93qbAuzbgj-g8p}ObwJ?1CUpaH{w0UdtzuRb4t z@>h2UTwC(LRtH!8d-cChgMY>Rhcp4;H262M*70vdb_)cg3jU8a!GndNtD#}CnV|>3 zmEFP+OoYhL+;Dq)GSWlwcT6NBlo623KXm5OAOMk^+YW{Eg^U(ike_jLp zxBa<`A`k$oxeokeZcniyJwT;U1;!1%&uB~!`UYXz^#O?#h0kT!RufGDutR1)k4AP1FWN>6|5edv2^AX-Bmo5kWcW?^;p^+p4RB!oe*~=m=7s~` z{B_Ae=l%x3jDOvXe>Qe7H7RBZ2!H^do2v^H;DyNC)&U^M1c&ffI9bx);X;4!(QE&F zKjf@jT;Wt*oz0Bw%$xy)U&^4KZm-DYt@_jJdaYjlo>FFN}Z)xzv zV5`5LP4|AXcjXM$WE^a`9AHv}^ywZv=@;fd!|M~)M(~DI@bwFpJDRO}T=`!~y$W9~?4L{X^$}2y1BEDz=2#rd zmKFsl6kaKc9@%{dXoa3AEZ&lgy4M6oQaEiy*=&3>lmO`?>R2jVcZziZgi1Kxvndql zIg>2oLL+e)>*-)1l(`mkdWQD{%ieG^pXaBjy)7 zxx={Lmdz0jrX2v78yiWR>CLW@77HoUI(voQax*H4zuJiF>^M-TYdY8VCinWGsF2rp zuGswbb975l&^DRG_Cr-P>DGt%AO@OF$||VrkY~g~Shb;9Vy4?h(5(qiB1kLho~0{Y z-|07#+*S9>+e`1qPTrvdK@Qu45MMhXduoxtfn^7+yedxmu6Q9sJ9yW?hQA6ZhA15lCut=a%EvU8oF9Uji{0xWT|c21 zXprBw-@^GIP)be@_bDpc9tYv1bj0?#uo%c^2@$8o`Zh>m33=tUM+lAPUplKF56?mJ zo9Gq{o+C`KnLro(&34#%<9a50EFGVbk4eDqx}M={7Ew-)Z~>9u=YAcYwq7qFi+i%p z-ntt?IWtPzu$C)TbC4l9TwgpR%cN~OpH(B*(Np0_xK7)M+%cV`z@%%`=>vPYgWe!} zNESl5OnBIb*&fJ6-*D=y&WHhOGE5QtPK9nLk!_}Q^5&))>Ft7=mCItS2%X>2(AU=1 zb|E7t#5moIb%qw!9EcK*)UDR5fV^TDGyIXBkl`6P!l#<~-EGdXjf%&W556~Vr@*6X zcHjfXFDoE`W7{3hU%W4^oi7t&%e>&;@bw#)ulvP}vSOsAj<1pB)@v2swpMuVACyIX za(It%MAKqzQ*fj1Rz8(m()mS;Gj@Tkbb1SaV&iakVDu3&dYDvlJU=pdHDO`-^^AU) zy5${TqG9?05;Y{4`67{#`QdunPL}%Uq1pCJOIMTnsu@plOTOgqPC3O+X2yy-&Gt8| zVH74>UFC)`E#7txe5agpZT3-7bnX6VPLF@muy})9`M@hj6ye*cHDVsM1S@_MQ9Onq ze_C}+#ZXX!bkHMqlHNRUeEQ7od4s$shWqP-y`|BWC_d}&FNeI9J{C&$=(`P&FYAhf zQGErXb{MtWvMFw_l0B!2e+PCe5%%y6oF#?-2nG_&hPZ4pN}WJ`L!+w!I~*UGTe9yE z4o6K67G8zEP$b1Xcafdk+W{ww{PZ;h(I8-o!;f$(Jk8^H_g|GHizR{l{GgwkVT3(l zJ%PVpV|7!!?Y=G|RUC3)I^s4lBUt$za0Y3+f7o%N{@`s1j+e5gXn zvl~;@=VuM+8`QUl#&Z~4ticxI25>i$SYv%+d3ecLAbi%4`Z|2~>VD=v1pYm-q0W3!smyAGv@bzJx~obJ_R z9HVwMG-;>6$dALRJ@_fz-ak06cLPpdc>xk|{z%=79 zQ1p0p*0o4($l7Wq&93gL%r$@!ndWG3-B^rUc@3@utRoOBiKf+*N;(XaDowi>d91P) zFCx2&7B8@2iV4!`VcdoHTZbsVB^rLiA29MKOVja!(GRUAD7xG+BnEcq!$1`ERG$uw zOb8tjKi9~V+xNH3>vEdSi|1?#5in(sx#t|8nvXYnnl~T*Sa36A>&DzZr}Na~Gmshn ze!()@cxG^zUc__2WWn30nv!i8atHaT2m~CFHxeFiLZ2$;Clz~)V+An_PE3)q$DG>U z*cl%xDAlLby^52b8*NpSUhfvq&CUXTH0UZU^DZ3-%YrxO=7R9eq+{-IHJE)64_6wn z+R)}%j3}HjL5o57>*cy zm~E>XJYc6}s?6m~sa!Tuf`gci0eOvU&PUu{6aAh24S4?N6}~vla%=%oQE_fCPrld> zT~%1p393&=6kvQ<^OErn%okEYnO~T!ijWpx>=3LRS z1i2ifHob)OiX;c+)=Mr;8&e6j!$MzCrfThHx&aHNhM8c_+?A zZmF_z8!d^ybiO8H&gZx-i-Eh=quK3&r9S!sxi;=!A7M6;} z3wm1#Boiu5nMbtIxOAcvTWmVU-JIpiKa4FT*Z7wNCGiqQ;HuYIEFqSXP*tCE1Wm0e zTf-m{u&J6!@f-o$-XG&)E(GlTdaoERD(h%%H7U?jGb4S9H}m-)bomWkFP26_X+cFu z84RcFXoOm{Jd`%7^rm&;2^G;{q&9S>AFAlPKdw2@wR#6kI4&(4onka|B!(tsW+-ra zS!bW&w2!p6en_}b*-QtIXaoN8S{sOrwkId5OCld5tNSJee>MNEAKyf_dj*m$?5Zfr zM{;5P5J?7a0cjm}yZH9XBam+MfTpqMk{O^~o0(&)m-In+b*)|V>%`$9>n9RK2z%Je z$L^dMh-bS?zDFc6cjUma0O$#lXjKJ_Xmmy1Jh1t}r47~Pl~%;t`$zC@0_wJaU+4?h z&hg;4OV+E*H~eQqebt|Wrj!Pf9hkxqLL|XxN*T_E1Q#|`1eMcKyeRX*0}mu)`9(TD zTR!LutN{Wex`)$(%X^6L1RFzO`;N!zg#``Y7;w(<1z9c@?px+&MhL6-5ZxARf74Y0 zfz?Z2Gr;E4^qStTh)72pu!>5<%O$Hm9u`<)MiYMVe$+#!mVAL=3ap9)U<1ovXaHjM zzwlc8$$!UdQq2D;gY*RgvO>Ag#`uO6Rek^KO0_dw|y~T zv+E%^h0KC51~qFATvf&63nD|}+UE_lvISG3K(%dRivFEOlp{Pvxx`XmB8;&T0F<;6 z1nNFfWoeAf1ZTjt&I9WnHTbYg*!6|U#HH(p_orol$ybsSd{&@k+6S*qdx7_ZMmOLe zCtV2_e;k~GOWg>j2?K&Zj1D|vhj+^#tBbox4%;>3SS^2uwO+qRimp3ExTZ{$H?nui&s0x7Q0h}+<4&7jFS^d#SrZH6ML3Y>taD$0;!&d+x{6^xbF}0-vAq1*Hc`a< zV#;i=Y8UaX)&^TwHyFXr=ZdFYLyX(?R9i3qsB^W5^+k2z-5?C1yFCI!%w^Ig^IEC@ zMwem2=;_Hc|_k03P;~v6`)o{Njs<|D>vuO)CdjeY^9`wSQJ+eg&Uc#PG&ne)>YdgycmB?L zwShmCOOmcY7^B1N%O?f~bcRm|kj2FQ`-d{hn!hWC>M#79{9pR7kd_93iuvdFjbdz| z8cIODTzEsXrCqH)rE7JHgp0MnTTLX&WjPx>rBJJyTd91PAvXypftEJ4CZdV1P)jBo zn-Q!0BykB*W3j_V9q4TP`lC?(bpNq+*L|jAk=N3*rv3K%;lJ!=u>7I>=KttVFby%+ zXo~`yC>AD_D?|dFta%)8-!DVrV$Q!7HXAh}V>Z`;! zfFU=D;DK5H>m@KipYHlgn%NtYXZuggNt#et+atXT3^YNTdTBz!#_(#V7a`nQ`0m<5 zjTWYdEnUnO8~!K&?fHI-3fR97@wF)~kiGzFetCT_UFmJZ*y}3U`|j0M zF`rS!yC?{T@vW_*GRrqOZ0o{zNJBEjQ2U^r&zbR6z-9?GS&sjju^>j>^QbR*wduE0 zj~$USPd58?zckVkEkMRW0R&(`b=89&ErjittkGsft7I-aPcw1i6yS^C5S0WvCcZzy z!3VvIA}&Jy4cEwujfU2s1(zxzy@JOrJm}}H(b~cUP~%70sQPq8;J%cArf(YP$#YCH z%gsambLYecj zTGfJVEJ^=X;P4bUS9J&qs&N@KF15jM5Qdhx$40l1TZfn}o6&NdU>0CAlX1HztjR1oDN4J&&@@-)<_w62bJHDFu)==DXF1S2Ns{+R? z_yP-8EY760u-kaHidZKo3q#n0-czx#s891=RVYM79{R<63=HrhZ-TGx{3j6pM5HtC zt?Z1z-N=FU6Ru|7orqMvlq99OP5}HEv!9%Rz)4opjT$y@`K4mf`VV9DwBE=cHfzBrLen>$6 z3_4IR@R7)A4e^>9hUB0}HQd=EG)u_)uUkRQURQESMY-*MXX-cGAU)f3&!>#SX&Neyl*MfFHgM4rnOx>b61%w>S2Z}st=;D@k-<`tWg#y7dX z*Y3l7cKM@zg+Gq5ZHy@A2vP;E?!-ZhhaNBzop^nl89oV*$!qmHqNgu!8pcK;Y&x;W zX|?t0vrN33dWamu*~c#~2Ep>)s!s6j>V{87lG110O7+!9hlG46&}VCE?#e$|`t6r9 zXZQS#>R~P)lv8i_dxPf$(qcU)_`h z^KVUEE_P)wnwZ^5ooEywtqNmfaj(FJX0`U7jyHNtn0&lf=Met&Xi~??0mUE~9$Y5j zyoW({b?JCT{*ZLP&wir6hxQdKb~`2h=DFb=; zd=iH=V)m`DCv|tXL%0$yDx#?^&P=BaW3uBN4rn*E@PrrN`_*bRgrCX0XVwcu@6Ca^m=w7J0bJ6WSLjg-qzzG|!t~;uCW+x-ma-Utp6o<}MO6dT_ zT?^Xc*|K7|X;FxJ)nMT+#e5v-(N5Wdq-Ik>mIkK}_-At#-%OGUaX48z7qdQJTrKy% zdl2JRNLb6-b2H(xxp-i#Vl#ruAK5Wj9dldqDHMlwb_2IC9;Kff6oXcCNTgHN!_A#d z^SlSMVY1DMg-4buX*NjYdvam}k3WUUKVGDQq3fL_>z9WVRWefvAug+s*0XbAVF4?h;O#BNVlZgwQ!NKkzIwk({zu6bONo)$n58Px zN0r>E*b?yGsDHihQUn6B4T}^3Kk1ZT39M-;BL0%R6J*%Rl7;q#G0{oIo{9MuoCrj* zs{hfO@KnI%(|X7cB2nIe^SKd@#6&qaSAa|u`FDJLSQ!1m0VmK1;n%QWw1-uur&U-Y z2HdRuPF_L`*Bh*AMy9~w?k7S_TGtS<8OfK((=ei+pgs{V&HcNyRZWEfsB{bzH)(%h zfW&Qfj(z(x>P@!~E7i}?jKUl?jO}!RWCs-M1Q$Ed$&TtCJy$=$s6sjwR=Jad3hpm! z(LVUn?$r?V4!=Xi49U>Cep3=Qzw|4=*5@Fq`(P>COb6ogmyBLWg%vJjW)k!$VgFT` z*4guu8Vq*pB2Qz%5DFmh38DN%DQx}WtM~hDRJcB}z(VAPTS?yz(f`5-$_aSXiS;m2?qz+js<#8bEdk@$x6hOYX3W3LP45^$j?)|l~1 zTgajxtbb0&&xCE`)t9~%kR@``cs6}ffFQTx*$Kx>Y%5B0ednOW9l~ff&`S~y4g;3Z zcT>@=Pn>X{|Am35dCNworES9R=pK3Hp|u33`=<`$xwn+i;a$w8nGroSf&BaL)&=l> z;9J9M7-^(g6;-3kXW;WeAM)VKGGOxM8k^&JjBQIr+j)nnKreR$x7kH}A`&h$o>5^C zu3H%d{fqO!c2NT#`^kr3@Tq**z5JM+;Joq=4+JnS@htK$8KybG|9qC&tGKCbwOXl4_x*z>&VsQZ+W z@uLmQL3IXo3KY~J@Q50HO(Yqv6EZ7f&y7RGTM%x1Ob!C`)}e_*bB4dS{<*Yrr$5R0y)=?#l*z$ z3mJ~pHaIy*8dB3T6v)MkeQ+o@8wsGC{(y;F(j)|Fk`bSRYo{)n+OHkBKt)5E`!%zs za3-2EQ1YuSDcC;}+_;vse0G1Gb#1_mkg0BTR&Ah57#Q7cb)^a@72IU8RI7O$a=rO4V%XqSKgc8nI=K0PUTO1YWi?yy4k~a$NXsQ$|N= zH@N-XkVpW#Xy%7BF{K6xwEQc_bLchbX@GDXVY_s&*BK9sN8b11%>}o%OTRLpHd%9{ zN?IVF7gPN#U$RrJ*6xQMQZsYEWyP6sMa-P)mN3bg99e`=I=-P(R-AYO}kAsgBH=jAaFmaMGc)>jabzy z!vS<_(jIH-C7Riy>agAT3xVyN_#4LeiHRCSmw_IuSh2JsC(_fF{!OH9EX1R8tT6}z z;JPO|*yC2&yQzFdAUaX9lxJBqLzf0sO|(hy-15FB?l{;7Pl?P~hQt}M#+mmtzQw-i z!R&Rk;}1`&8T>6Vkod!=A0;8}6>FoP>Y2G{O$^yQJ+@K~vjv>$uE_G}c3CVx4qyde1yyT;vQm4LHt4`Z6yQYmu=dY=0OGoc7C}c#ThSvS8)Q%+hk7 zzx}Rxs|JsslwRfU$?`ASVcu@jh!F)%XuE_e4WNH|zv+I(?cQ8~gw8^Dy5DP!lhVA0 znDLxr|FF?wz034MzVI)+A*T&k7(Ggxlb;ew0Uuq6k7nIq#dy$vRP$aH6K?KHJW$qU z&_+zVABp8q8~zVZ8zM^@otuU@rz{<>t57M>%DjUa+RN=s5A~{=GrhmOFqJ$gbD- zSm^_mQZiNKlKTD&iEV|8nAbyNJru)x0~m$hSX#PE2MSX>a`ePsJw4a|N<_;j%Y zbYFWB#9N2gU2p`ue-W5JdYo4ng;Gd}H?~y)djE8$Y|12#G-K!i9`Frva{o+Oy0>bK zHKm}EmHxEp*|E*hoLep{6yjN+JpFX)+5k9lh`TC#5H4xlr_orFm+7OTMT;}hnqXi* zz-(5-Wci>7|BIdgUfeJBsE4&laHh}JC_~TozGp4Kc`+;Li{``N6&c=6fb=Cfm`77L z^$(_se_mk6T1t)Vg}Lhj>4CXjFE!XK-^W13pMYhncIk$+<dNEBar;(oVmeol(sUtgInIg`MXT&5kuEXS{O6y*Ii76pIwVWw<-7kYUoQt!cL zB=bdUm$Xx}`g(yEeAvmf?EIjzUyJRlIX~ARitBVbqQflaKC=(MvP+~pQzu2r5)Dub zdm=y7B?Sm&DV7=use^$d55E&EtZOyhXU58ZKF8!VLs6K(1^Em;mFat z{IJ9G785XMxYc>8J2B@f-iYVk(c&Hq0I#?*Zj2hIdshF#m&~)^O`lndvxKa|LHDNa zjVoafYu3DctNrr0`&7q=zns^-U&r~hCV1U$lBJqU9*7my8+(E0ftGvyy6CM0jeOkO zBjkzy`hI$UR^Oj#;ovj5z112R(7<%6;YI7lurFxd{k6OEF&b79v>0sMWc>RCGnY&N z<*h)`4=bVCAHN1g4t%UyyXIRxw5el#cX~(%KS)wj9CnuvHIQB%f@skSCz}=-EM`aT zO|Dn?^^G$ppN9FUDYMR`27nijfFXR7y1z`}F+KH=s8<$}wX>`+KdOLyFWBV2nLX)8u z>MD%$`MJ|lSL{dMVuaa^yan@lr!YkCSVuz4|Ha-rK6(0dYrf^`vTfUTRhMm7b(vjV zwr$(CZQHhO+u!NmGtb_8W@28Ph!f|$+7asy$a_U(=DPESV@i`WK8eJGZeTQRpENCWcyE0)7csDV)U)^hV^*7?c30+hqX1b`|}uJee1LW z$Jm4tzivh&?}yOZeevP@7byoK>bAk|lv@)e&hH={4lf0IHsjV2vSbiGJ|lMivJ5=f zV(LF#WHDU2W$a`6;LqDlmoLqzBz?sGgj$(l2y=>y3j|fisFVAdE(mQXvTDw>*UFd8 zIqDO6O8~LYxQIwKRTb!wN{>`7OZI#%K}1YTfGAFofq2&c7=l;GPQ0@m8fqg)!hEem zeEswTkz$Tz-*SsIZo4*;68eQK+p|?Jk*gia1UXHlb3=N+Kn&e3NJqZ$ahd{OhlT z{mpMQk^AP2K)?|AVBVm9|5!&xC=mxr-#XIZI}w~=(g(fa$T!Pi_#*$$NlyZUqiUhb zQ8bcEegx!tD5k*2e%_zC%u%~I_{7Vb7DTOAV}sBW%3vk!;6!LW*$Nm@WUG1tEs*!NBWMhtd*XD~XBPc2^XLa=*43?!Pgt9mvIBeMd9Ux8Hk=_kA~9%v zW~u^v87M@Yq}E8=+)RNBFg$m^!*p=<0FccQjQxHcptp*9%$e`zp!9lpAxjxsw`Erw zxnlKL6NPt1@D>K1M17DO0(*n8$>FNF7`q8OIYwOI44u}$xz#*nhS1xbI0qHLm3K<| z7dDbs15!XY;BE%`bwN^%hKOBp$|A}#V)W~kVLRpSL+k*+v`SXMqCy9ZTE$>lW+{f- zoYIq6&p$#)`9s1=Ni@pkuxB)np-WEgjLr=mQjw4Q)PN^?9UPEc<@kIfo-1yDHMyE+ zSN4Z%YuEP6Qlm=v4Dxmz*=jzrAVRTebh+SPns$NDQS=NfoHV;W_X$mI#X_Ok$oGAC z<6M$p1G7mo#ab~zc+rc^qA~!}DWfsIN#ZuwbM(K<>gjV{V{P_?n0TRfOPAo z07Rt+(-&fboEYQwb9z+t@!%QmcBd-vU5_C!MUQS)Uy$A0PCY;=jJPz#xwq)k@Rc1M zYP_z+cM$*_Up^k|GDI!`sD<7RiOUN}DaxUoo z)17NJ18Ips6E_mSu<-WzYzZ21$~UV@Diphowb;{&kGk0)qymv zLLoMcd%Y#*8}oQq4%Mn1zUjsXk`}(sJpUWlh~B~1v=<#hZ0TZHL1h^GaLFXJ*!WeU zRgO773osoi+$ZfZ=SEM*s#e5O0G^#J(%oWqt*O33eMFc;9|-SYD}Uk$pa!=>vtpd6 zgTIPG6TJiXD1I^u(^E7qAqqElWtTAaDC`Q!>WUVfc1oGtxUeC3yvUdq6Q zBxx62VB80N*u;q{I?^es_xJH-8NtP|bJ>u4dcZo+APp36{vx$6E>lTnvR2SuGcT)F zDZ(#KYzRE~%PE&IEzJYrF;&!ePh8yGfO3=ber45XI8Hw7$GT2q@|m!Qn;bLa{ceqT zcOCqK>rUAlEDQ+NLYHXsh&1NsiQms_%DmEWyWnEJ%HHAHUKRlHK>qEZZ6U^Pe{ZB8 z$P9tF@^zn2y?~x#Y!6`O6A-9aQA58F^Ao(}g)aeMHP<&;b822VI)e>Ll5{~b>e4-2 z^FD+7c19&X@*XYlrJ1vwi3e9w<#LKrjPRBdX<}F`y3IF|nrh&bt*h{v28f*Nrdb2@ z3dhKNPNreD#q!14NHQm|(B2EX_#6XJA`OlIQj(cEb2dHDfP$=z0-t373e$ZB(#K9E z&QRdum(4N2njX4C;7ho1=MA9j=x8H+?E|a__qFyHg0lRd5VYdI{LlV2tx7QeCjMQU6~-P{k_$|F0lu=D#55-M=9y?*D|Kn&K=&ANK~lXwlMDT|Q%-8s7gq1cg+u z4q^W7ox$z8)E@d3rta{=HFvgWva^pUmJT2_IuZaM=W$FGi0f?kBS*Wnfs=8HsQUHw z!3jWyi;R)g=4jXxCcGY4K%JJqfy?~WY~A?bHIhfzB2u?<=_^ch;#pNOk%lYvfq~7C z*14MJc=zx%BS*=t68z2o+C#ONckbKYz2BCAXL+?6jeftx$x10g?Zx7KGuv97yEizV z0WYh(&mXSZ&cmv?ot9TSI+}Mj_GDXq77Q=jl+{u4I_+p4X`pu6oq41H$oDpM-?0lh z=Xn@EXOrhtY0o@Le$qWqC|bYnxt8=5z8eWGyn4~&M#bfR{*GX*5S}*u00}5DgilLz z+SZek<|@oMn|Vn}a+dJ46C*WIOckzt&i18+cLp9tNk^UEzZd3G^ z-iqk^0R%>o!;P-74P)C6fqGj50n^=2p`e*J_jQ+(4-o%p8U}BNYrw}$TjlH=SH4qD z1BG5o16WG^!c0d`=Cikiy;c(O>7ujHWSO*iw{l+!2_`>2F$hqLFv(ww94xedw#@%Z zL2HQqvv1%Z3d;O%3VMk7Zwl%L#hIl0^1@_VJ{gynkT$7YeA#5vAjSM3A(h5#LWvfK zDn&%4NEt6OmOvUb8ml6uLK;5KD=Ky9@;wv&HZD2fFDq)EL+zH0Gi-H$TksXBv>OL#7>`l^ypT zmX(i9ve3Bis_AdVSDgoQ9K z;9;C=V`CjNLUA(_VD5*4%L`TGd8J5)?`sUQXjx#2zxP%ebHoL;KFVu6?1@GtxFE@7 zMEpBP+PuJ*ka8E}Tf75AX(bpf*C=q!A&yw5+gU1-{m#qx7g!U93A=65%_R2mBrwNX z>W*-Miwcz2&v&BzIt_M<2JylO7gPc3r-*cw-MHKLMPPze&H&Orc?h%*vZol3HKDPP zufBz$=i2n@Gn%WRhg@G7*B6L3|4A?4YJ;4YTuQFiufRtpg*|VI;y>!3)Rt45MbE6c zxF}7=>T*z}MK?H|I?fQR7l#~{;TV3yQUID5bUS}&ZJ}w~F(w6vhncF-L(r%jFVloP zAKzrVAOQT6fkwfJJFS@oQmM7BO%-4kjg`O97$02+N~^Nd@_A-h&}2fA<~?9Xu%WM- zQ{MxplspiA(;g0}N(*hHq~0R8V>~x|Z(K^l>-_mm(1UMwzVYsm?E|)b!?JJ`b}6@u zp;hru4sxlSPW2}%Eu6;2WNQgGmSf*el5j58BgCM*nrGplfQrV-f+F!}R`YM1_R_+bPd2z!L3 zfH=uaUetA81FrKKyC1;$uQBaryi|#w^?p-3sC^2R$Xb*aYmBBkMrPp%sTft!4>Tr$ za5x#}qe>Y1RU>t+^e?cCde8Jd<%=Mbf1;h8?IZ@YPCy|pcG~>Y+yo6c&uCLm#GJXF zx&4Fkh~y8a;8$%MO|uRhX{=DuWD*$L5paUo-db8Be2W0}`|3ZJYUkpOKx7a7iY(+* z2Tm1hwKAt!8pc5?F$uC1nj=9rs(24gM$UWRQ4LMj3W1a98Mf`K*g-O6c|LpUfirk4^`$<@j)v=93* zqFip?FLeFF3N3p zX(hqJH@+pq^%v`ZNCc{j9UyCvOf^fWSEhg>(yW z)d%%-UXywC4H~oxjT%(1^_(*7ze$HzyKx%9%r5K=R#L|aE<)2MBINDs>;k4m?>aSA zsrPFd3qO&kZSj9Pfb}aWCh3hFycmijfjE|0Xk2NH4p^gMyI?bL)Yr-*Jl1H3oGgm8 ztQW@Yl^DHqw`l^c6woy7$sog$k@KG%HsaTR48M{69Cw%M;6hkXB&swyck9>PggW*f z;_o0E>Xq1u+*2_H#{A(_|9(LQ5=o!YNr(vJp0&dLG7RnCJwZ#EWA)egGZEA12y8G8 zKjjgaM}x2WRe!x1y|G~4SZ1KV&p4;GGL;Dmc0d{Jz=hlYI%t@p9R(%V6ldzslpdtk zSO6LH0EVB0H&wh*1IOmf2+PpQrMu8Dpu z1RcJ~_Yfa~kP+);TSzl!<@Bs0s?8seE9>=xxZxPVK3sYpG6Be=8DP30knP;Zw*|`; zD?A07oFRfsy@2yzon#SFB885GUjwQy6y~kXmMII%e($O34MSc8vubYrE93GYPTghI zosh@5j<>Mti*uZ@w{>fm!@cm>aa^U0XM~iHEqW6;$e?UF9g*eR9aJAa7J?t3s)!Fe zBVSC1yrmDN6b}xve$VtVGRHq96_)Be9?2On8s)fj&}eA`RZGZHWdn(Yh%6&mrY@`$ zo_IXpjh=}VcykVj!?$AJXMrc9c9C%QOdk4#^bwqm1XOc*h7ojjNCIuao<= z!3lB`U_+8e%Q8<5OI@L8z1YQG5GNE!N`5 z(_<_f41`WD@P{l}=oT#g`@9qG=sMo|XMR7SG)cKw&NfiEs?*QM6lg!6r{d_aTaDdk zK7%KPO`uj}`lu}9WDt|70I8uJHPDwXj4zg@Yr^WW-@K=8IHT%H)sZ}B{^kztPi75D zv9Pbk`X;|151R$9P%_Jf`o2Iayz>Y`J#=Fau&;pg4u3pdOjhN7Cez4lgZeePbW}<> zz}%iSnVj|5LNcWn?y3-pBS!Pwq&f;A4${HJv&ZoY5xZBReerl9>KY{KFBhY6DO{tU5ckm>Wi#W$6#3lBMWpwE~U!dX$wY!WhZ2;7!x$cE>3Fj z+ye0ge$_po34D}0>H-=!Q{Uv2+B(7vbJb0YCe0jE-_5)R!J&{gG-{Gkvv#E~zww(_ zQVG~rV6w~c2@NWh*(Jxj>JnD^R~E)i?FMw_K@G_KvW0Kxl>=4GlZ&ql-`T;4JXUSJ zt6ixLKZEUZHUbq>9%OJsdpofqRIkN!8na3cLZ(UIPp5K!LGOpx!ggb5S~MYGvAj#d z+Cw$HlWd4x4SKSI3ZxhaP)@pE@sfn(m$%e>$#AVT7V=k^_7KB$XGfbhsD4vF(lAl&v_y`TG9Rfgqgw@_4;>(7wDJnGH;N8ca4Z>khV!Etb4zh>LFA{-%$8?1Eh ztc-WZ$`6U)2SG}{PEvrGE^9}F6=xHN@RHq&vC^-YA+>ylG{y8BcGKSm>)c|P(!H*~ zlI(H8vEz8p2+7FxQ#MGEbQYl_)q}_ix;lONJ3e49XpC6DEbb*jyh+lhIkN1UIK+3d zvBHa-*+9fsAR^KOwQF^JZQj1Z^cQdLsKKPofL5Z|NZGO3H42GOAIELLQl-W3(MXGY zojn4LMx87)-lwuPuVr{|qht8*Fs6W+j<@_a*u!&?Dms%IEfSsbKc51R+{_-whFFYW z>R~mglb%Ml@jM0B)0HW@4^1p?U4@?n9d;Uw#coRn`odXZ(^ z@qTozXD|dS(u+RVsdIui4!hnpizn6?#c>N! zZ`0wmlwI~p#kSa96=fQ7C#iJ`uK*?eI6&K!B+0yBLQlK8024NP9c{8#w#BD3E?i)g zD)~_^@JH7H6O{2{&Ffau=IWCJZn|9~zirqX6Cvrpxud{IsA;%+Sc8=?ue_shjAVcMTz^5y4bD zG>a%BhhXmE4PcyYQwSOQ) z1{vC0cAPIiAm4bHiE8(}#k%9%2gZv;w&~Ie4l?+8H1c}5tGBmi-?W4e8pX1Lx~3rKpLcVPvh zlvu(}hrqA1;!njX({3~@b@8eTmr&DgDeLR>?kGzKN zF=bjhB(A2c--02~%VHzxmaf^04-r<~V9h6b`(_2-zNG z@2P?dglOKO7EnkZ-*k%*I%sqI#BwBNU<5*xms2KkCTHqLRUl*O;f}iaheetIx*`K* zmVY9me4xa?AMU)B@nRzv zJh_Wwh4lF!wzhkY^E$Ud1uJ(Yp1=>|457{``6bs{ zFry@r=M$fbSW$m|MBd+)ZnrNz&>Zpmcra`^8n}HW{cU&JE?9W0`7kL3e1)a=Jd^zG zY1UfPT)qcKbbE}NfC6Wp{b4IBfyqVt>LEKU$}%;o@}Woc?u_wnCXUfR+aOG`VBoV9 z^4>*Fuhpr23!njq}f(erWmL zIr>5X0FHm;dV6j*80o&wEEVi|_)zCN-~WB`Tm|rn1C?%8 zs0vKz)yT|dQ&^Aw$%S%MLde~}Fg4$I0v4(4L^x+E8Xf5ecIN*B0>E*peLZC2}- zgKxx9Ce%4z1om(yZ;&A0`D(6$_xwBVFKM~iQze2}J^NO_bUUEtA6@iSmPM|`&q3wq z7z?dA;_HL(fU9%M;^05n4?w8V3~qVH8(EqgesxxWp8nF0Nyr}BYu{D#ByEDVL7^O| z2v8}7@o3uD_)JCFt?>8$s&DKceNsf?mo-V{j+2NSBP7%eb;oRf(5E1R*U znk@0<9t9`o5$X5K77?uJ){ncet-#L?3y@b6r~p|d5#F`*P=1fB+qFWOLDyu&IvW-! zJv@5i`0iK<%5I6wtXDyig=!Kx=qyrX&5qE^0DO`8yeJX1zi31hz!)b`CcC&4j@^G?tgwtw#GE0lUC08$+$a68pAX^?XvBz?% zge#I@;>r^e8Lvy&0Nzb#Vv2O=COt=ftyemylCn(Z-6V;U(hf3@lycbD(@7YpBK07W ziS)kyC6VFpq#sBRW*`RfJc1$`Jw%t{42ZuumQc3+%K|5YvIdcO6#Id2kjrIfeq2{I z1ZKJ+=f#dl(PDcE|A>A*pirH1?QM>!ovI~LK;;lRK##IvPdnJ|U=GYR#~|A9g6@&* z2y%!72K*hWPV*jrdjWy5sZ$*B8^K|>JB#@hv4^hvwi%OxZzskkC9Bsh&heFei|cbS zqIZehxfPV>Al_aw)2c5BZXv?1Yr@jgv=)Bn^&J(4sd6Y>jK(%jj|+dddiV{3uT|E7 z>bYETM4UqGF6kud^)=cUmrWzcX0z4*MW$*b3}nJK`UKjFq79m2>2Y5I9V#`PH#7it zvo1IZb=#c}Z+o20APtLVGTkW3Mc1OQuKa#h(*?+S_sX`q3N?rS8YZa!UBgM6%5<$S zij0FwAM^@yatPFO~k2e|gd;oUP!qHdhM6 zv9e;MpZsW6$qS9yW_%#xsB<-v2R~kml5NM-clC?KmW~pQ1zJ_;uk*s>_6^9w5QIj9 zI4})?k)L+*cB#II{Y?)uVOTuE;~3=)u&+YQ!chL05D8T0f-}$?o;JkI@V(Lz~E~3ev9jY*{*qPyloyZ z3rGyVt7$3Q^=YVm#b!kGF@z(dD2@C(Ms9t6U?Oe?MLGnUK+7s{>?>|gGwK@c@&ss0 zHtyXQEyOpO>70-}LJq7aXE9%d2qNsvQm|o{5kj(bsQbg7TrWTHT{{U-uP^-2VVvKy zC;iZ@NEiq_Evorjuq+C-mB6w*_W3g`ErNM;h`21Uy~Tata957`-#>x0;-DhsVuU>E zo&65%7JqslsE+ddHK-HTtN##+ktxe+hR5qh3Vc@O@vGHB#Z|)s_Wy-$?6hB6*M324 zCbZ#?a4MGt{zpNS31Q*bbF|TF2p1%Z59Qt))!%ty>#y~ySFBog@Vn)RU+4!sggW-# z;xUH#%8(|b`L=)O@Jk+25z}E+i64B&mgoTveSQPljGyzvSX;9@jo^O-GHERA6Q0pD`7;0KOL5FEv*~at9H3xrQ3^U@IW1q;r(UDCzddp4Vw-Gzv z^F<(Rb^I(+3jUi8ZR)~Y z$qlhebogk~E}m+RFe+vGTLIq;IOJfyZb@tGiRTz8YBDeL%#EzkC)cw$jyZ-0&{b7E z0hh`r5$Ic5;MBGHQNr@*KhdUoFC#a)rUIv+S-g76E)@(a5 zYoh~QXW}0MRRy5RJ|6UWBt6?l0$V45s4EhNF5Sg;1g69O0@MC4X&Bu<(y&qX|AZp2f1!wko}q!2fwhszKhqHVpn%$8{_4Y;)I2m~HF0)| z?5Vfp3&rqI%Vx6{8@)Yl3U%z2kn`uS9Q(L*70Bhn?JVNU%tQAnhg)H(TdK{Wr;Jat zg(BmA#*K%j%grRXb=w@r+~nMB&HUs&4@-U<5w%tm^QL2Mh&bD9{9~gr@^{hu@%ZTTQ_ubUu^rL|V$fg_>UDQH%ARm2cBxuPa|kHu^62?QDNeWdeg$ zu$M|DYY~dr=ab4CMiWw`Y16+~r!7zr-+H(a)Fh|; z2(`K?OLs>0)84wCxZVcw>0s|V$)@!TAnw5XhzNe2+}iVAgWvwMmO?_|Xk?PNm(@bh zs_~1XC$)wN4L_;#y}piOSJivJkMhds)_OZGk>9lNNqpvI)ppl?`N0CKK;vQ!)ax;5P+78b+Uam)l}tu*V@W$=h2Q(9pit z?`A~Rs+waedrUz%=TxH1e_8GBzF#1}$b;89LRHeth50^_j`f>+bIY)JK<>P(_cM!r zzaq1l$XqHRfsMHI-K#8LpnsUAZf)1EHtmx~LN-z3i|_^ql^7i-LSf|Lsgjj!?gcR5 zZU#B;kQ?1EmWfFgxiMbBd^9^IA{P%!P7dQ87~K061{_#YovQadaCcKcqJaLUSznOS zcdwq46XVBBh+pxkpS~J;#iL*Yj4l8(m_9#wkew^6I#H^#$)f0VySESYnPPfV+OrA} z_pUw{OP=|p8&CrVH&@c#6f`Z`PQA29SP}H37wJxf*gTa&yId(AB@Bc&E^e@^b%$oo z54X?FBu2)oYK;hEVVZ6@Qg!f z%R)f_g=4;vuz@8#q z=5qrJZHypaRz4$^r=@shKeG(voMR|q< zbW`Bfd*Y2WD(Sb98_1{t3W4pGZH#BR6w6D#J)uwOYw`gPaN=5hpoWXXJ&{4fdf8$} z>`AO6$4df<(-@A!4v5EvY|d35vz)qf6Ze@yPgy)Ez8wHm@*^r!nmU`8_7An~443;) z_XbOadmjMCr_u0jk}!{TQwc#@5#xG&w2b{v0%g{Sfkl%^Lx?GFW3B~?S`=fkx`X)o z)jF*uT2j5bUr<7{J$l(rE#qc*`4bu~=tvi__dFehM8R1{3KQ#8>-Fs0Jq-(drnSjQ znw58ttj@=5nrgp0a4HB(hU|Ykro98v6;F5~Kg@Q7yz#fCv?*Q>E{gp!foDiDkb9>! zRl-Lxy*b00EN`SGPk&EK%Q&2xT;?614XrhUtx;txJ|T-V+{0;?oz9+<#}((W=q`Yn zrkv-1bv#8bPX7EFrT;Ud%{%w#zTRAR$oeVX{T-UAzK*k$9XlhuCg13VLQ5!lIN2@Dyj{s(Z$!TTdzY*BL0P1`hdUa( zXK4MF(Ou>en$uif@OeZ}vU3W>b@%tBim9D9Qs34vUacd)G7orHmwrz+#tByB0xO<4gxb0Ztfer*1pj6pQ;20VOLP}0VWd6N;T}f zhX8Q%Jso1K;JmXaff~k(l*8C`+eV1pt}-)}UJl8Ucwivbq%pk(%@??;Ai*LK&`Ipy zvJbJz{aW0fRa>@21pt<3s5>~4}@2MP@>&?QaF)t?xU|vR;o3qGu?~{mx zA2Ja4fG;Nv!fE-~Gf7a?cp0F6>m^}IGV9|rlh;MwP0OpU;kYXVu+gFvz zir>g~DZ+BvoQZ9_XP`NQ|8(;U^5Nl^D6rZ zu)qfiusasm{T|!+M5q?9j+FR*y{Y*|mD;s?-l5*x8`r8jc7@*rFgyJ=6ndWZz8Yp- zL{)*~+kV+^=1>}F++z7&j+O-|$2?BF%ezhH0zv_HIzhVAO+-JI#V3Vl0AB)39a0Y0He%#>Em2|+g5?oSC>bNw zxhA7;FRrtIB@vfbdmN`l9QUdrMEJg)lP!}ITx7QG)2opzL?!SKFB+q-aG`dw7geY& z85(dvdNLlkLKtSJWuzh)l3Jx_f@4zL6N9^s<8oUonO}>BRj{|6@h?I7bf_!pkCy3kYM;&v=inoj&;^w!82IZaz!hPlgjo z#gT>uXX}%=dQD(EZ2L(-BMC8a3b!!mjgLESvp6uS;NS4;@drX;_}FHx=XvP(D=ijg zsc~ui(rwUNMv*Mh+{p&irw{A0lk<3E-gs1iJ-6L4_6a3W;D8=KMtUHejczMrb zvhk`54^m9MOk5l#aUQOIY~kpB8J`e6U3}7udz-C-5YK0E@3&>pGSFb?m1{nm0}G3A zl$@Y{9O}h|7&^wtZ)Z9cKlc06*Iwr4NkMA zpa>qf&GpGlY<)>dvE5;s+EP6&l88^^o#GLq-*X0*4JJGicn~JT=tmi!MRVd#$6yEz z&n*W*=&SAGfbflqHV28oukDP1RgrI%Umw?d+1<%^BKOZ8%d^nfD_h-MEPDjw}i8B?s=7K42#QeyQxoI2{2s z=myc){a534T4LN0S&nc`h4>e%_0Teao-CtTwDO%f^rgeO>LSeCVXo_^SFzJu50Cu# z^U+IX*Ne|5FW~xO_*(%8{GZqbM1T~!UibUc1W)#StdD*bJ3wXVu@pWI>>YDJx>kKq z9HCz~savxY8Y=ZmCtR@7+pn_R+kwR_J}H!E^VgGIBT30sYV9w--{#yKFBlK;Y)fM) zys@6Y^^UVP1H19da9KOxL87L?)sQM_eu|f8r;^K09E`0ey|2@!XHJ-MiCmiZ238uc zg6xXST;d;C%a+$Gf7Tq@NhWj}#_7?A=uqOt>C~?sq->1^Zs;JBZeFGc9j@Jyo)vHiXL6yEHGcLSC0GJpt{M5p=B@Fmsd)! zHb|CVBtCxwdxBK9ZX0zL=Ge9Rl?hS9iyzlHce(|rsO(uLkVtEK?q+N3(r`@Zh>258 z2u?ePBaz;h6kTM$$t>zsi!DC$fZ(0_GZtaVif(e}YQ>jYAUrWC)IShHxa zXVn3)fVNlE=BO&USWC}FP?KDV9YYyg*Hr70@x6*kw4BEMph`);ezh@eb)MY-JTj5r^BsLPATp>}zL6c^Cb-lBRsF4|I+CwPghei{J zuFdza{L}f*r04;(?D$^~2fm%EQ!?NlC`w;UF$4{a@jp`K9}a!+Lr9RDG(#44KsOjD zt#Sn9Iww;S;nyr#)2bgBD%|Eiz-1>$$Y0z|dW|;fsE}$DO0T>!iHHMEjd1WRJaQ(a zcR>dJ**9cdwY)-CIo3Pv0!qvQ8{YGEK5wtfUk3R9+9p8Y-;*GP_WE|(Au{hB--V~% z+v?i_9yNuBy&C~Z13nwsKh#9<9wm&mUZltIbgiDRzS}w-_ex>3A(=%eHCsKaPvpN) z4AxsbDdf4oS-WOpiyXUDl?_Ha=Mj3Jv%Et2)#%sK;6 z%%8#%$BN$1zA^4l0roXTC#c#@-(1p`a;y03x>L1mBBiWDTYVWs1lB$-%_t*d;}^?( zHzXyLzbR;Dym0aB#HbQ~JXtwk#ht_=H=LYXhqJ<;qih_1;t@U>i!M4*1oOIjZaa;t zW0z>KZPLl)+D$yhzv)W1ir1V(4du=w;%`LDN^SuqZBoUw6*gOr zgvCxKd*9=qMoE;c(2de^I<15ZXOTQTTlinP+S9tWq>cR%Tb5T@`Ut4#;wt1feeLBp zu)4ERCO%EKJ?RtBIkk!Dh4`d!5j=n&$s%bwbyXLxerS|WAqgAY>kmiWMHG6QUb)tE)S zetTRG4vi1Mb#ufm9lgF@!#IL1qiLwbM;xzR0UggY3c0u-4wG=W&cuHd8dviX;pQH+ z`*R|pgv57pm?qKAKMBa}^XAjfK*}>Yk7G_%&;pZ!clwK z2uX6w`|XVn_)t#-qeu0@GzOq570A+jMBA`e_mpeiO!|4os;5wX^M2*+jE?l&`d&t; zq&Cw`;$P!!xk54b%EWyn)p;TR^!G&jBPGHirz2tV-LkcN_g~qG0*d>qgWuvg>#?}Y zsR$*tP^mhCfTx;1eRDkH3a%n65|>K=2_88XI`Rk?1{hcr5}U7zLdxzj< z_uloWUoE5zn{5PF?G%gylXbNcfi|c4x<744wQVSezE-Lo%xbg#`rxMQICNxAv%uzS ztRahKkP3lJD_!6m-Y-u_%X&Gm=GkDh|Bc^O*z<)Hr`@`-s?d(_bDabafuI}K_>-yK zoao`jl3V_?!?JEll3(|wr^o<0%jJ__K<`6~z4oc_Q*&CV6H*|WAfToK#NsE&})q}__5!3aB83ZSq9)|!x?jUP>TNz($_TcJdQzsQe zvU{>phl@?v8Ph_GD(6~vlQON~=(TL3vPMTVZ?>86C)_w`7M3?ff z`g2c0;^W>4qX0|=6+6Ap$-JSwvZ)srFT6LakwWiR<|!2#dJ9gUipsHg3K|R_t7f*N z#zO+@G?!m)Fi{ux72(q&ELI)MR7hU9DV^g=YBGU)+QjrCqxYAPN_+3+4X@0#Z$2(k zQsFY><}i^aKjr7zaRIm z?O+C{hbNDHg=Tr^@OJ1h9rQ{Hz%jxnstNd&$2$551E~MLY!!BUkO*_6x_j<*`(xvk>sErx zz8B*isk77G^gcIHjwABiGWlX|86FUPw0~Us74}_h-cBUN)q8%$JI}m;4>h>WDnJvE z-m8=Se5syExiT5uW=RouV6R*gL8>QFaTeamtWPPWw zcgB#)x_pe7MxFTotS51yj_dQY*11J#fDOKiVcp{PeD_r0rMkMGqdEc>9ygnCkek}| zv;R^Jq4;%I?;Q2OqdA>>HyKkaXT#Dm_X2k12Ne3;!@%M&wvc9P> zS+yr#UGqF-$tbu}6wPr4Z6Onq9`gZ&;ljwQ9gBQ{>ymGD6O1)l%Z6X{Csp}STW`Vs zN0oe=f=Jj;)qroxaNN|bNjzEata?1xYT7J1yZ|S2@ve7t)?U(k_>kVIx70#U5rwkS zjhQt@7S)$hT_jU<5#as|g)Sey#!#*6B@dpo;T^a`)y$km{m%$^YDzvAlVb*dED&nfV^jQd_JLA)Kks_qn_|-?U-2rgrpSS!d zy+e2G(r9#b5B!53m$|NZd%(1nV>KR%aop_4w}KVK!{;nocVeQ^&-zqEN= zhCSC@k&zAyv%W+Q(9eXuo-(C7B#rjI;lVw$&V%awy66V5lyEFI3nCamGv(JsvCthe zEn`zQNSLzJc?)}f7o$KXCehPkuWF))%zf4Tq|gR|T;w6^hS?h%7fSF^@g7L$6ES!B z*hIGp?qXDW8|ABK4T8Z&LxEGL8zaf@6VvO6Nm!a#Uy{{kvb5N6Wk(oB?#pdF%gfbJ z%Bs|4Ad3I)=5N{bRpHp8Z7qjB%qTJbHdBXqOevgkPfwOPsICZGJAdSFh?PJ0+`+Pv^c=9czZ%2&r!8Re3y7 z0{ax{8P3HA;@IRZlNqNEA=?xI=+7qs%N51(@-L_Ek3^E~#eH{|e!XRMr}au%)g1fJ z3e%4Ks+aC0cS--`pORvzklFK7 zT82L1S8k9vi0S@VW>u;Cs;4s7=KJ#WA&ikY3b1E`Z546l;x%&Sk1BD`3UhGBMc@wZ z^twRMA23+7yN970qy&Z%P`bO3W`-DGfT1~D=e+OtedoG=!ruGY>sfIx%X=DrNSi^D z_GXC)w5iLrz2)6iWlYQM*!7c#3bX~-b?fprHdbj?x%kAzp40CfWsg9W`tVLrdW%^a z46OB>E&HdQ3JE-=WE}n@annBd%=*^iNRkeGe-W&oxc47ia%M|NUzB9a=-X*O zK*jm87$^j6rUmUey2{f?FHsZBY44x%{dc&i#;}Op zz+AO{By{5qIg2s5+vo?-;teE}+&c#SOXt8TKTmPa9&u7IhhYf>cuv=3xrfGxKxi_v z&SFkxIA=>(mR~Sh=4|k1V+DhMQs-*COMKaB@qjCd4_PR8fI)|sUB$+vWJU5NtrL%l*lRtV$n^Bd^L<~8-4ByT3&)%{+DWa4k4r`6S|=; z?$CWaP25eDIw_H}9*;Q-Oj*NG1V6DAS2;aN$E7Npv2?c7ep!kt;R0#poi{UcuW4T_ zpA*JYNl5`)-~CC~yIKnh_$>PKBy2Xw;Hx%a5)9>tV1MH>NKEH^=)J8}vP+hg@XLlk z$8t!n(374X@O}N6nx*}Yj)7M9<+SE37sll;V(&xX$H6eln)<*ZxM_+^EuH6GTpIKw zp&L3D>U|j3wuR?(7*GRqdzaQu*g!wFq5nH{AfL4n=D}`1Vd_YIyoFhHk-kY1`?7?T zQM<)Lgbq7iL8vtLM7I4_sa~U8O=%A&(@nA)#a@elOmZ#Plts9`63*jK6Is+;?Itl( z!T7w_he01t(h3ix3ueYSa_M2qrC{rD5#54>Mgj?^X6L9x_tc1K>ct3kHlwA4Z^hb% zci!dKd$dU22D82t+_>iYME!}l*cbot=%1c+2RtxY+efY>OJh;rP}|X^6MPassg)xE^)e(DGfF`Exa#8j=e=k@5JCZv%dHP%lsP5;9 z{U2%w59RlFQABf)->@|CV=LYFp_Y)@OD)>fnAZR>%}juDfn}WOVI!QTKciLSyWQ4E zx{xOTY;~0y082f@3)oo68N$~5MZ=byg_o^*Q2DJX5$MwWCv+u24Fjn0qsBDL`1e=4 zhwE{;8%+Gd(=4W={(-R!$#}BNGw(0^&m&cEeaDx+xnob3ndYy0Gq3#orDi!e#B!#* zU{v*VIo^^eY5GJvE+)L!QoT=+Ty;WDu2w~y!DdH9k?Ysqp240QHxa?k5Z{e**V$r} zHu<}L=e|WdgDF8n@h%^fD=+~!_NvOx=;HlkNRub?IEi)3!J!o4wg<}(sytu$&v3r_ zOwMQ}U$SwW)s{c@KO$N+*Lwyj^-hYNFFB=Ce#GbW9s!%wJcFKg=GhO}8L+g zW|d2sTQNL9k;DqF?rxn<%obx2o!2yvgZ^jw7}qo@Q&(z4G{PsDu}pMo(i1=VQ)v|c zQ0%0#EAoP7f(Fk}*)RS6o_5oi`uY-uT}2ZB5@!5lT3@^PzbWW`Hd6NbiAR%3QRyjW zQc%ZYMunMKBP2{4- zj;yhUeVr;v(uyOIDHjpaq1TBuG0CYqrOzUrH&A`2rqWjB)|g`IhjKEQf4F4WP}3DE zA=cBT*7QEWnaOS#aCqt6!BXMn4-KyVhjiF}7)-8ri>rrg7@Z$ibiVk#I)5-|zhOhZ z`NLr~=@4qWt~$wpB_y!u@7W2~+0^83Shis&bb4Vu^E@Np!28L+ zqmVMdS3<|N!Md#h?f?C*Ziab!;+Z=a_Okv*J}E*XaCCP5sc#YN1uN+lu&~(HT^4z> znlMMAY3SkD%E5MIgwHvd@svk6{1@Q12!VCUoH2^~F-FgAtdrF}@c@ZAc_rErB5*jt z^9ym~!})q_6m;)IYvdr(M77TS6!a&DDjEWhQWWsssC#(5h2V?yrC;f&`2JqkRa z1FxbSrp{Mgd#)Hb!S<+P!bN4y05YWku6?eH+b4N3)k=|PT<0ig#355d~ghWs``pa+fo%n z47R-H7PD_ycYGJADX5>}W_SBAXe4Ip8R$4M!eprcPWZvQUPdiD>&PZ~$M4yBhW30D zwL~gCO!N3KiAMtQEjp4fes8on*rS<=S z4lhBAC@McQ%50rTb&x!WLgBUpB>4RofpWY~8Ub=4?pkUXZDHAUA)0N+qdyIClY~`$_ix?;m2y7_J4=kArS_-V#%Ie7 zwsIMYSotXr$_c<;ebD`YsOmlg+xu7#^C}W4ED&oascRP1?Vif`%if>K3?>y zIJp2D+LTL8sP6pvvlh_D&olTdlYRGsos_S|DB{!I?e-yt4)oUD3g6+TvlJ*&hHC}Y%GuJwndL4yNo^!iY*iZ--`*BE8pw*E>HJ%2W+ zd;W6&8;u%l)}LW*8+|tuv}T!lGTAYMIHW#K6}J(|I?i3ShEHovQ49H8TZqxI7T8}^ z1SL*_x`P7M9#`K_Rd~g%nWdrKl?9z-(4~Z50QL3);LIQ~d#2d~9o7oX<}9fyb^1y( zKmNmS<|xVJcv;f?X>yxQB7ApoRG|*5aWFQZpEHo@BzB`9NTT4h)eEsSH*Uxsw%Yv3pM8MZ)ArB7(~`bwN#!*l zVQI>ZnXdcCwZH0}MDfJj&sdY08nB_I1%5sq4WPwmiC=8e?oq;X#8xc9t6Og{|I~8Y zifi-U4SQVrx#p*{Eh|B0$TNGPThi`Pe(&aH#F!xTFvGB#$Uace`9*(Hbi8nOIW1OD zgt$F&)i;+<8eo1}o6sG#$elgl%>U%v{Y7mDqCZR8a&B%#(sL_=P!0e~>)qvk`W*k? z-!2aFOvP_Oh!#Vv$5Kbxy@bBmr}9aNGPhlU+gJ=sktnTY-_;UyvrPW%x9fcypBU}s zWAXD=x`uooIW`81IUbXSMr_%}XN7{n)qHW6KPJn!-*VWzT2JJ?CC|yGVJ~A6VUpc2)cwcQtYJ8K@=agzpGbuS^SMr8g3s(bS}cfBFT@OCr0)GS8FCR7|gdb(}9E~|OwLQq~T zQBme1?qc^FL%+!x;Lzx-R0+*QE>c3r{$-_i!}$Y+ChQ_qvD{s@8aDRxSaR6he6Gta z)t;e}yu-Ywk_Nx`(0NZa5CX0%JfVT&zDxZPBwnoJKPysI9Ho4aapetS8eza3M=m)H zfOOa{@cAqhdSU)3aM$~&*G{OdV^X{>PwRJP73{F9ZOG3+FfLmD@gSBNIiCB6qwJ@1 z1fG17?dfAPMt=s;Fk115GFjO8|J-guY>;&}K++rsRPdfI#Tna6KpiCw9+8uDhjd9o zf^nBbivOgR4AYzX@`URQFU@cD;hFIwA9jS}8|cWe4^r3YV7RzavyjIFxoC2vep|dJfM|XkDGoPjD zU_4SU`#Lysb`=+6tsUuTcS!L3JuF=!Ck0XALb>I~cX^m28pT04)OxZ8_63d3t>4Xs z7J_sr0C@E?qv9ie_j)|WbL~g_nz6mRN*BHU05hIlJl<(4GPx37{u75O4}a|WSnVZ~GoTWEQnce{(eZ5-7pkWED2%wm z3j1FbJ%kNehi>-km!!yJpKOU|p(E?tGc(Gh6rWxe*i_J84zYj($&{VY8K7am5EjD_ zW^Q;C%u}j*TSlY%nG+0z%B{}iCt4Hf%CkQGguMpTbGFQAeDd5%0xzGkh_C-6P(BqJ zMH7-4ndM$i`aqd@)dtmRO&m2vN)|w)+LI`U=K`Y-jJ!vSVf9jyKHDGtH@X*+i3UZ& zCKkt47n~+h`uzwdMtx|J;_o#Nj_uXZO6NKTQ3p@Zbwx?;fz}dJ5B~sX5x-`G{C~OT zzHKPk5Brqdn9gyC_HA!+wtUC6df(Oo_dv$@xm#+mOcJdh5$o!E0g%yjeoA(A7VMP> zgi1sRzWc3jTuk`+0aXoN(!r6X^z)|9NvFaD{UlQru~uh~l;6%h7)5&VyU*uLzUOEK zB=E2A3MXL!w7I3#6Vs~wQf}khL_b8`EGb<;wNwh6V_B|I?u4kR_#mX`X45hJq0oCh z6NtwT6<}#SJ#pN}%F%$s%J2(;RL-f0It-7nZV&Whq<+E^D}!G8DHU%C;MC_2Dy}@t z%;_2>eqf_DHF1A4?+%Ag>Md{kvPNB_j<=F*rkDA1tBkr2q83;2IKf|$J#FuO!2T`Y z(jeC9W*b9|qdGct6uf#O9KhF|8h6=`21o59vHRV8)>aq~+o%M`rc6srSn%L!%vkOJ zm}n;1WOCxXI51OhYhekm%WeaM#lF2QP2H@-xgC1YGh5&~K3RELA_&s!9?d4>a{Tx$ zlYK&CLvB%j`8z3;WFh5F-+ISWje_!}T8tHc$}KyV%5>?4E>1Zg@E|&!x$W_oRp=Nz zNG6IbT#YxF9?>(W5gjBZv>HgDSuTKJaqp66!idH1_Ey7}c@@J1TIQnuFcs@AHGi1lyU z#3N-UdX#JTF(h5FKsXN8s53E5koN8>u5EKHbilrWEbS&GDq`|>mRi(Y!eV7(a)3kT z{uWCiGXtmLH@%qclHnr$RNHd!ML(u~5>>i6pM~)&`@|pl zEyXY3X|<8we5*(2d+xfUMQsmJz@W72uWKXllc`^qo5C;v%zb<*ARYW#b3tQ@+EMTv zsehkW;XhtC=_Vussw)?E+P96Ed4ljDID?wSN!&4Kg_n$QuYt2^9CG0;-*ssWCY&vP~M4mKk z8|Iiy>32YM8@zZcU@dSw4qeoKl6pRZ*#h(w_w-@H;iF%W2t6H$wEI!2IX!&(M)7Sy9CB-LM7n5LBs>Bx$dvp z^yWz;yF}dcps9uXm$xr=qVAX%^ly5Xg#k^%2ZVPjK?m7i%kVs-arpy*)OsQsB@x2$ z%^P@AA5Q}o;;$A;KKfX+r%ParedG0e?3sEL;OlX5B8AI{u5Vs1Ac;vG!aJ>EX5^<3 zU83HI4~|oZQ?Ty|etebM!d(F(`KR^%73W50=4MlQ-o_rfY-Dqcck9|$L#Thf*htk^ zGl{f+9Tg7oW8b>%`$xe=xCq8VF7}RXC|$c&yQ=3>5NJ5eE5d))ATP>zP+` zR872aie)nR3ly+2oOg65r3vZ$$I<*C-&1eD1ASny8b1WTj~>a9zHTxLVfT`4tjT+n zc{La*4z!)xA(n#q*ctZxUHD(nz>KV8B*GXtBplUc%V5}03w5Eu-zwjmF3WCoH|)|f zrfd?-dJ0}8dBsOX;r`ZRyXp%dYz{CVvXwi)obnpAtQal-8LLBYmQBW6g5ZyOyJMD8 zqN8+>RwM`DKyX~tZ12r_=G@Tp&~e>md-wU+v0$vD@^TsdVz}7cbo@B?DzZHg;e(j_AbH^U!Q-bW!x!W)tJKr-~?2fm{dm0C;hv=eV z(^Gz~*OyAn7H(A?N3Fgy`1JvO9s==>3!L+mu%kC0_r74j!KGo>cVR{WR9qkK-~Rnb zv=JQ+446j@GviL3o&(fZ;TWNgr@_wtGOs-I41M9=Cts(GEvh=bsyWEp*1O*Zc935> zD`x6R@gUXmMs?}9;-Zu$`4Onn&YZtT#4msm-Qk8GmroqH)u))S60UX2jv$e_w5Q^M zSaFt{IW)cDzu`*Tk=7ttak>WrP*`yt;!_MxxR@9*S}0Ka`xU{xH!I zhpyv09w{v&7I|8DTWxRvbo;u6-n$Kg+peN`E^)X#>OFO=q$7z|Fvgw zzn76ui2fE!;`bhzjm^KB_nsb5FSrC(ff!IKa&j0^`DQDA`s!0YxizzC=0<>c8{hLo zxSk}0&pd{w#Y7_h=*IM*(A@@PH0ib@J(9|YRP$)@2A8#r6~_% z*GC(g_~@ebo1&`kB@H_lXRNAHhdr=I^Z6QLE$^PW!=)EDg2Q^*CX0TfGF2effTNy3%0JN>z~Cv4#gino$3-Wio`hL*734v#T_v4}3tnP$c*!STJ@`@TlTUi;SFTOytZpOv>Ze%BqtC)0cV?-=Wu12Kt>}#YG?F5c)MT-&3X2QfMN$}%wS=F*rjyGO*eHAP=Sg3PD*U`u@~^N3cj9w z!Urk7Y}z^FG8e_h$9ZuGEd(te^mpu$c~kpNL(d-0E}&x1w4X}+ z_9b4wOLHOYyC>};5jL!Y&*9=m`;*CV{{p{4`wx8K&5O;0V>y$quzw~G^h+2So3nl^DdyN{WiBRjTbrp2}Wipb2cmc>f3`3lHvWot{ zc+~F#?NFs(-M3qmc(t(jG$}t~qf=&%cYQQ;G#k|BO4>22+f@75Y{p`X&jba7LiFQa z%NMkckf$On0aEVcakTjcq2-IW=Z*dlDvm3KTnZt)AF58yO~tpMWFG#9aB+ZZn(vCa zItuDVX^N9Q3yT)-8`n7deipN`DoJ1EMGoEz@wOG%gN*Tv_YxfXJ_#WraZ78}@c828 z-IPSf_{C$+=b-fMVqQRt766zwl}3w$z7s__`o00X{_WRr$O_k4oIg=m&i$i=ve!;Z^@kpJMxatct}WYe>v$`Bv-eD;U~ zD42W$d`=g}c^{m|M>~(Nvf0|U-5+Oa!VuV5R}evkk+ynGy^Ml zu@mMrSv<)*0VR<}`mMy(S9Vm*q{Zp`%Rw%XnXT%$;;q%8#NtAuwx<|TGniUACKsGH zr+4q1mNSERN@MZTm)OS~socQ&5$I>$CS0_M+M_qs^_$2)KLKfeQnPHCqaNA0^&4cg zRfNFp7)Yjuj&bRe=$PBHLr=aQHE?C1BU?XL6lj)2yz<^-^Jm~U7SGP>uZWuB4N&XS z&#Ku*Js#1`M|lhCpgP`5c{#}Cd!9_GjI~kSZ{C?NK;9ubyv|fSgnL;0=WB8NTiFx7 z3S2coAdevS<&~7J{5l8nBi5;SE$*zBmH5m@Iv(RUD=oTAU)=UU@SC{)@^8LVGyJ$A zn{2dc`{MPkzeG?+ygVM8Xqi3)Yz3Wda?|7Nyz`w$Y=I9+Kyate|bhux+`iart`F2dZ^dgrlz1EJ|4c;m&_>s z?{T6W`g&ngf~)7-;vG;10?C}pd-o!x8FiLNe;W`-J8f07qlULvBC^1~QO=s*f^6@) zH@HTd_ULN67Hdrdp;)E`YFR;sD^Q_dCzo@?{Jyg4Q^g9CWkL~cVfy}c?K=y2JTtHp1*WjYECH><6Zjo&EL;VER7^EZVr}e1bt2Kj#j*VD(=JemcI}y z>Mra{R|)`r>Tq>4Id39CH8*R%&!{1nel@*m;(t*$cC{lmIBCiE z>d!7VsE{3i&YE3NYm_MQRosQ3B($|-;!_sIx2)V#XWhRR(Z`~95nOk&o10Dgg?%bn zC}pSX?qd5Fy)$wX$4Yi+c3d&e28=i;sbjN)UDbax z`9&lkoc)h{(oZ+J4}kbnUyze>Si4FEE&V|2a_R^Fe7IOy$HkjY+PMj8?1QxfvflP3 zV$9@cj&^Ha2Rf<9qjK9UzkAZt{Dwv5E8_U1H$fZyKe&|wE#{B)-xB){>(-C#4|{zk zbVzIf$iL;f&@UWA8;B@#Cub-06~ zlp+_~htZIJbUesG6)RHsS_~hls(g2E2mOY-48&74xuS(Ia;6_CKA`&ra}?i`e_M9! zkUmI>Qa}}oGoi%G88>X{?^OHUX>a9VhmV2X?){;-m~Ti@op z40^hqk~I_IuMi*?=-{HI{Mnz=Z7?|JvCpi@^Jpg&n9WZomZhn&Cb~-7#<3Y}>iNXX z8l^71XEPX)fFe;iP?LHPhovyJ2XKFqR4QU-Ovxum4qm^$wZ^>6mq$#WaVctb>=R;S9e+bOA z69+>czt@d6PD1nc)b0=?jlOXEh6BR}JK?i5q zq@azvD|L4HNN}Q)O7OQ}O7ZpZZaVRy4d*j{^HJG}Q=PGU(MI1KP8Rk(SC2%{?>62uk^;%;y9^!nDGp?rVCp-Pndg$Q)kD99#@zjxzR$U5UBI_#?u^tY7 zCo2C{@I2LxP3{`FPg~Lt0QGw1PFH%1uD- zOWt`?<#40-yqWtbV)lUIFX>9JaTvzF8LANc~?oB1fbBR-lNk$xpcIEKZC#+YFHny{m zR3C^J#^MceKk~f4`VId+<#sbGJDIS7Zu5wn7;4=FY6^0w9M3W0p=xtqSP7TldGvHu zzG-5$+qqvTF}G)K=H{Hg)+3Qyot?d}_su}rm*k8a`Nu#m$w|%QD@*H{;t6cEKq6bY zGzR>d_2c!tfFw(QE~WE?SJW?M6QS4uaS<(Mw&C*{o3`F)I$B*#=fnPC9Bh*IPR`dU zij)&(0cPAqJ7MvWnejHtGKldfb<`r%Fb-k(iPRt}NI1L0bnocHRIWG7g=rnn%v#s~ z;SWFq6ug_Ky;w`9+?AfE?`6VNnTJmW-frY0IBhRHGL$>;IO1krgG(X(2sC~g;o-8Q zPBP15QWSQeFH0>4Ge_90&ACjHj&Ad6nO2fy?7sASQ}5eJP`!=qP1+p!?}OroX?w!HjLM$d*bch+Fgwxy*P?yHkA?4c4h&WB1T6IDcx&!t6}Y6o zUfqP7$RpZ`3&@3=YjJ`mY7R2y5^{!1`Vhu(11yFCe2#g0Ps%K!^1J;(WZfOi-Gowz zWzVR^nY!SHdn?shrES!VWm3D=u9<_Ep{mC2sGFW`oytdy5vK z`C>(x<|g|le(z<81h5n6au2QWj0!YyJLMmtd_9Ncd+nG^;YS*)lPpo zbUNE#QBMVyxIonrOH$`k=SL82x703~`t?3X+cJ}=gl+<8G`T)cm+*4iuLau6)Pa0B z)DrDZJU5M292kC0rvcE?{)s{~?y;XrD;T=`=XFREiMKiL_2bw8v#^X~-z`MkYrD{6 z(yJ`pQeCELDX2Cto~3zMj8yo`hQ1x*{XZF{pOS|yl9%dlO7M58ohl&1+6QgDqHu#rcwoAt6QZT<7AhQ$+#RX zKnG=+x8`5QzG=+e#$PBhrYkW}hqOJ)*n(Z3yDopc@{nRp#9O|#>LxnUWWpGrQC>u! zS*ufgjy7M8*quyABrQiYLeapu?d!F3W%5vH3ai~*VD(B-UrJZUeOt&jy;htXAhv} z&ti#JY&AdK6gk%yI~(uU_6R_o9@)cLrUWIT^ew5H!cyc+*{tsV(+3+CT_*l<8R7dR z&P{V%LLetGenD<7ie~w)yE4K3u+tqWREPRFjChLFcWUXGp&v8)m*!(@doLkWtGGLk zvO&kaiRZ21GU7k%093_qUZ6)8dx#j}%7*)`Y>B7Ic*JrL7-7J(Vp_((Z4)w;FA%tp zEm}FX?+45r?9T?(XFIokl6IT!PJKS}Qg9y#9PXTzUU zftP>)6`!9=h#gaU4~!KPTCw?^d^|h6lR0liC7jO=FsJ9U7pYXb^(^qE4Cs)B1JINY zM9&|9*3-I*5UOQxQTRAMs{Zs9Iy%j`TLj^Ef88>P>Yg0p^rA_q0XA*1~XoK3cKiJ9!cnMk}>vwNY?JPp5g~eI7jvKPA$&w^$7TY zU@TR-&Y22`TCz&6BYhf8m3f#$aBUg9>!cYz$8{!qq!(>fJ7P6+2AQvzwm^z+Tf*nQ z&+t`l99^WpK}veRdW#9)n0Bjbl>*Y%lTS%mu(Qn-!Tz3Fe=QkR)6}vr=sV)kPmkH~ zJPvU|3fkc98JBr9;i`O{c&M8-{1#~bB>F!5sbjf-|6aZLcoXd&hWUTbr0J}5b(j-{ z4qY3f7Y?|Tl!yezC;a-o!Jj-Ad^2sDIqt61-vnSem_67_6Qk=qz39zM+qH8bS>km< zoe^NIac(_$BcIctf>;~%)e<7Vc>akvoz@G2_1p}2_c$ZObCXmQz*+(YNvz-W^i*^z z^^^?KYl&4pq^U4`Q_)r?V^R>W#Gh8LFuC4XI`x@&h=bX>78Js13t*x>9>JD*lL5E3 zb+==-6D$y`F$4&cC9v}B}A+&6p!{hIt7MXS9lhnd-bnDnioZh#JvYEqn zf)}_^Y=Yfn7ZNJwM#M+vMzFV8+g5XRtqMMYY-qK~!VUJ?V3Fqnt9E8m1kucH2g@}Y+-silo$p0LsNRP{tp&&+ z$U$zILZ}s6@5XpYQHml$rO$KL8TXvNsbLNFr+XT@%0z<1%e1C5C0N>@Hm(M*VB8l53+i$~ z!#=}$MUF&{=~T5ockL1HZ;f!msFxBS`2zLd1Y4TsVW75?tP6W){tY|M)oNUi)tUmE zSv>RRVyfIma=kNM_$|z*1rd^_W*S|qzOf*Y{Ws4x?4azJWg&i9xXl|H-gqWA+~EdV z^Bb}5o^~I@DjfCQxk1r0kS7swYC-2DDj(401A_wXzyo2t)QcYE6y1)$kmty5_|POYq+bM<ae#~}@T zUa)?X19{Bm@2`>>mYDgiF-*6s2AtYx+wNWp8~Gcn#jD2Vyoqn)j@qng@bqtaA5FIi zn-2Y49!b<2N9;ZaXWP1x&)5M|M)r&1Y0J_&{ja0#ejCQIRPfBV7G}ah{X&N4JHBJQ zo#kMM4IjQCA7Jbn;~6;|6jjr9674tm$A(*^>-8et^-1=8P3TJq<1bCu?5BjR@6bX) zF;Dt}bi>EMR?(#9KnK{^!&om>yf3YBpsO#J19V8*+ZOjtyvFbi;V-(7#lBP7CksN0 zwOh|N+hB~p3lGJAq2ho zEKP1`K?`PGRMIE?J*{sZcT;Y5=%3UkiW+Lscsu6?0;tYmFzZ1(F!P&72|$w#)u{n1 zTKy3tdICxT#k~#4gxW%{RG)Mwkm36u{#eJ9WzBt6Q8+sRIy>zvvK$SPVcAw#Rx>7zS^GXC^b~pfFP4rp zp9&9+`KZ6E@Y;et+qL2Bf>KPW1IWid7|d&3J;x-N$6c4DN7l1-O*0j{aJ3W;-zYU? zS*ZIOgWTR%$IN_EO#i$fceM{No?2f2I(Vpq&AM(zL%O?^us74nAM!1H#et*2ES&1+ zlim|Y8(re{af+~n3WkieaWyskD~}dNt3Z0*SEQFbYJ*L@&-B@iA{EB{*DQt=39*nJ zB-Zs{;h_FYWKdp@#N(O1ScTs=;*iG=DEdM5G5lmp^Z{SK9}=DrXeE~#D7Xg2ku$r3 z_h;>7c->sci20GS$KoosjJNGTji#|de1uGB8#Sek$gfn^2%%+-vUbNC8z~k}EaO)K zFJ(PQo&8d86{L;u@00j+W#p)C7RP9@pZ}o{QqWPoB7+vnG9nl2iV28A8e5NbW=~NlzOV2bX?&B|;xM6z==PQg4?h3Z;8bI%2XN`Z3TTcr!2p zrKBpNU3{ZqI$rMNxP6IEfy?Dg+A#a?G{!Qpm^Sl@G-9af-J>4ISUE*q&cdb1Yj{qg zM#xt=f)XEZAgimM+zx^mqXO8Lh%`@k?QOvvx`U_%h(Kp z9Q8saLwu7=hOO(!8J!GY;i|U_L-3#4*aX4pI?~#EQP? z;$1<9ytNr2$B6>TY>6*ii&~g%(`L zasJKYv$sPNj_9({*#b7>LuCfCCqMFL!SogEhFeMqlA6Xv+iD7_cMsZw%|tWfmV|K+ za;vv*>THAmX%moA@@1|{Os0gdkghihzUhA&@P^;H`;8sEP5+F)`0X*1&4&!_-0d;N z?&hzDM|9*>9xV366Az~sot<(sIY{T)SX2@BK_URMVCiOObv;}J3i_Q)#2AM3KlA$) zN{n0RxQW14BGQZ_2}Yzyp5pl3e$tGrTvdM6U}E0yTjO>KN)LvwokOdzKc=Q)4qbu6 zmB@%u%k0zkeD?`Fr4hQN=ugOJ@plEj-V9h)#Xx&29&1^<4PlOhj{G($m(-?s{5stL zs~#QbTclDiZ}tLpiI`&wXb|CAxPN5XVFf1A&@glR>%?RkH6;sg$25)@;EWlAKPx(M zaOce!At7pH{L%iRGXWN{uY2T#<}s$&e1gzXFE4v(1mUBBJh6LF^sx?^_`-OGqUcwM?0xn*QeGd9XOHJaCv-`+f(MJ!ui4~W&_#L z{*Y^nc6reIaiQcZWwhnK*6qy|H$d20nVEC-125iF>}C&FS!m8`?(edzHqGrOPY*|u z;D5;vrP!-Pve%a>ETaoHp?x!|a3Go!lIh)AhI3ZA>dMbTCX4&G_|mrP@P8hhF)5e{ zng%7Hg!|Q-b#LwIe+ph547BVA(#SZs0oZiQSur2+HrwssVVK*Kst)=tQANKZJh-Fv zwu56iwF~Qb(M=wI?Mae|Zi{G2A#Bp-i7@K&+~myt6Oa<{xGNff`jpZ4_GYuQf1X*6 zckMGju|>IE#w5#x{%8KdLXj+}DLeJ@KFAfHD*VFo-u5lr61)P?`lfAsaE<>h@u^9V ziqp*`$?cVOaPgK{lQ-;ChmO+0;~j!4asR`s546J?F4|l%4VEh^2JCNem`z0*uQ5ZR zsp{%G+=A0F``Lxv{oi8%mOg;bcyQUzU1HGV!^Dq1%ch^TBX`Wy0nsij?Wl>c-WvS? zxiAa2w+CzKy!ev4ZQ^J8oN8~;y1?3p@#MOj3AEUQojCyV}cw1GH~nsw>+MFStBel#0M#T%DK35%MFyH zGxfP556>YNERKpB6|vx`e9yW43uJu)JZrfjs9>JYUaOGArX;CKv2HU@3;|a9Z}Uro zawtsMf_Ppz>>$+EyE7x^>Q>QXYinem6l8i+o1$cDAG@kV29VNFY-`v2&GD@+rSJ}| z#6zz`%|V&b_;&dsC)vdv)MZX2S9x%%`{Cg8?=&$35?`t~IR_(!LgzLVU5}1y!U%P` z_`sWVgNnI)W`Pt)?duI5h*Lt;^Fm|pgc~gxux`WDHs-!9XM5$GHzRcmr|9#5Jq^j9 z1XuPJ@mw@wg;;LKwX3PKv&ehtV*5NibSo(M$A>lB+(hDMahG~BD7T)7StBmI2psE} zu=YwI@XCBN8l}p^nZoCy8Vx%%p%EEAB?q!FsU+=RB~IbET6MX$^&X-`rY&B3iSQ&9ka12UULWDxWAj=5bxv^&p5~Qob@()Bhi3U7HB{v zzORR-`=@E(k`IO~_~Swl-oa~;`zq>aaa-a!UNA7ahZ?2*I4X$t(>bWLo7w8{P)Lg% zZw8ZN;IV#hsDX-6D(vzGwH@{CIsL!CZDsRONBDd~>ejKO+u(sxpT|rZ3}7_|^Px2^ zJ!{})xlS8CRKoZ8KHHI(UiMtMGPYJxuA1hr`|zHf6YS}9c~Vk#%FpOmiXP0UVxlDgjC!CmC{JWxns|CZSyXm zA*WTB8p<`(BNa%2cw7dqHkOmY1)G=PWlRaE5aYfY#n~lL+jx-?^aK~=kl>^yYV{VkyP?Sn$|(zLtttxiSLJz-I>CxXQK zti`SL-R8+A6IpB09j^|AyOwhMpM;KhzgD}<8@!Gxi;zqU#kfQarS{E0;Lk~N;#fY8 z$gkWRLFdz#$SWG-WAZX;T*INyGQ{baAYg)|A)P={A;Ug zx<-o?FHqc}K!H-+p%g3bMbknl?ykYzU4m0wN^uPo_d;>^;0^&o$jhVm_52O*{o7yi zZJ*3OGiPS6HM8__{i^)X-_x*1>7|bZU8lVstrNG+R~FwX$g{%UY0}|5sh$#AD|h#_ zP-dpk^Y-VwvKOWRl>AvsCymT_fNIN}L&*`vCSPi5pGo4a8umS|eFQmX?7h)PG|;!2*Kqme*cU?zDsrK8%6dAqtOgEP5>&d8ts`#dhmV2Sd;nFTJXtgrZ}YLrSgK| z%Y$@Z3ung_N4d!J`&w_%*%0~E!T?@x{lc?sb6$7hk~5gsBIh+08s>kmrwL3tYm3#i z{Y7oO7ZG)?VAUQ9cFfk7ceJmFKOB4AQjUO}!2K#PQa`?d+qC`T-(5t<;E{J~P#b6D zi`Hg0n&x(72f5fzU1myt+B3cijesFzU<(yD}!RD{-)AsjtG7~EWuUAl~pB^Z| zE2Svw!CaL0L8R(bpIMY1c#sTKXWgd6@TK=Ap!)p3CVfpj@0G z*OR9^tsjmg$83~+RJV5a|Je15xa8QG1D``(u6N*4RgssCE?rA&7A!~%TNKI5)BK4} zK7hK>=Q6x*ent3Q=L!q-g>)}9V2i4dc&EHx(t4S(O82(3!UxEq9scY z4Dy4`$+9G7VC67uU%Wl!bpbL10_ZR&u!1IK;Vp+9V7W#qC zKU z7M1v>T(`Fyw8Szo<4J6K6ppJ~Jgs!$vWeZ?uBSgEtH>y@XT5*kI}1ak5-=Ta$6qR7 zMD=kl|I|H3{5f)Q6MmNGlUb!2+ahu@HUeDZrG6wRO0007#|(^Gay({KF*<8m1)S=- zF;OfT2%ZGd?)_Njm4bP)p)Y%|CO4Pp7YUGE5@l~|Cm0*sdin~Xe=GTvJ37@Tc2Y8t zS^vvc>Jy@5rDWbU!2oe#>4V;c(0xFEtMdodx@R@xsmg(_+Gv;3cT?hxf?6{eoQ`4* z_yM$E+Q-vm`(Cc5a(?B%z9(@ei?f%hZWn)j`J!THDKJ$BCs4$qpX{oWAz$n-k14(k zCFF+k^bMEWi`|w==vXuOH{3VMe!Y|usZ}li9V%2>`_)KLE@YDqaq{H09(^M;$qq5B zwt0Dqs&8t4F@*jNFSMF#@e7vbs+wRY*T(&h1})=cvrAHvscvN_Jg9E=%#?kxi-ER4>9&s z!mKH};R-;3iC@U$#)_K&7o@>)y@261VeoJ$gI;4ey9f)Cq>QhWu{8?jnbd6#)mr4B zI5b>zt+y0K=b3PzScLT5gEHj1_`by-no(E_zKoeM{VRl1woTmY3FNc*6oZEHKMQDs z7N7=sR5(|$2U)&gpJ(uvfwK+<<4k0olFr zt7(+}q)}G)!HS>}SstE9i@JB!=$Z0(dO^R%rwchNLDC!+y*DQZ_|n2|i-Xo!^nW@# zjJ|DZ$tJW5ypnuk!7u(i<6FsFB4u87IrrA{<&0K#?0vACGU`fANLdmJAE)vOKNH!%02fuyZF%~@~H%?JB+I$e===_gNg2H&amuE}EG zm?v5~8mCUt6nvxuDt!L45bk9fPKK78T|I^A(5TVtys;4$wwsj8sr(~fH>YKO4W}%^ zsX_W;>IJ(;j?*_dRb9WfcG;Fq9{&^qOMLpQ{azPqp7NAWCqsI(Ecwql?EaxXintYJ zE9hU9lS2#=g-FdiyCx*ux;?hh6fC$QlVeAMZ4&LsY_DH2tNA=j2Bd1HN1g{Rh+V>c!E??1nvGo_lB2v8D zU15HCeP?~a--W>qi`E?}(&2W{z53USCo8K@iIE50mGE|MI0yAz$p~3wc_u1&P=2qf z{uRNBbRO6!5HAa0#C>{FixJ9x5n2=_FHHyioc-OId8iL4+m#wdcT~g=jHcX+U2w|* zhvEk;2{u60R=lQrev9HGT*TmxP$!6^A4rAZY@hJfO2=#-F z&bZE+NRblH-MM=iH_K4(;>U^m-6F|oUPMLB1Q`WCEN1cYN*^%7yWw}QL3uX?PB%to z1fP#ih@PmITLqBCc0PhUX0zGfpHf72HFVj$k zKrcdpNbF8mbe4ZhxLu`6VRz|)DuH}E9C#$N4}(71u$p`Ur@t2u)=Q4M>PA^PxvR^& zEWge4z%K{+MR-+nET)#p?`%l_Z`1&)p{ZB8ebyRQHDVQl72QbsryH98J&mCG;q*t! zw%>x@hixJ5!7F^{Nr0#kIO7TbfDLP2xc^awC5p?FOmStx`wn0FG&bb$N5-VlGcag| zlt1;XlugP|3rt}nRzz0}b_j>O5Y6AL)mg@Py-;Idc7KJHjmy;Y zEq(I~J;9F#u-h7S)Ie5A?ZVGj^TZ|L;Q;Y)*j9c$KqtIj>Zha1AdbJlo0Q$!TC8)F z)_MkqP8l)j`%h*Tu@*uJ?!3QV7q}8MD%$hmULe=0{w?d^h?oBMr+0D&=gK~{;Sm&l z&r$XS!0yQTB{ll2K7J!I(cETLcUa?3^5y}&q`M;!H1OaNzEpyA-Yzm+5d%jeM<#=z zlRwdEYE`|dO~l03WF0?gDhul4lk>%O`-S5bOl*{30@`QobalcuEH-OyJHTszv+Hw@3Pt*~09W+Anc!k0vB8X!J>~@Q% z-7ZDo6(Gq%Ty6)p0G3RRKbI$%aOytT?>Ad*KGuZTJ>pNlBv9I`nz`j7I>c=U=hH$b zzuOq!oM)oab>8+00rWW)VBRkl!f}vWf$|@xl1(PyQpbH`OPrJSQcKraWw*FvHjWEc zEvnNvZad`-9oYTu>$2gweYA=B?-)51TZUh|C56?j&?q5kP6?bbmscYkpG;rGsc!r7zz@u@8J(g(gT*IC-dSJ-GF7#*MUi-wfdQd5%dLaW)F^mqiv1Tt4jd1_AWOX?p|{m zIWG_%G;qg1J@x|W{-Qk2u;%MiL|;ytNtDo?2Xz=Bu?Ux zz0{r_^4dSxBOB>VhDLgh5?;gNezs~iT_WjeT5&H@vxsS5ei0RPt5g{;#R6|Hv^}-; z2!aObkPq}J`m>MGnMfR_1V}dC(%tq>N?5rn<=Yyx%vIxR+(rzp6R3X|4W3lh- zsQ7l*ptaW;P#2}M>_lLr^3XrZlp+GDI=r4r9F_-0hP~fry%&_0p!AO?hVtIguR2<< zRNK+bMyH)b>Ng!w@rtrtS8l#Onm0OqcyFm}B? zn_$*8?v9KttAW*s44<9C=CzVS0gr<^1AlhRys;t!3Cax+YEmf6qI)6(U9&OMevK?n z9A#K-%LVB&b17eC^UJA#(kTz%QilScE#x3eo3`U2k%rmOD z9hx(aek-_0zCOAUL{4eCD352Q3^tNxfDh(K=YIwOZ?8cFr|T{3h!IzydV6n&eC^ze z%k=AkS=s}sr1yqPc}M6$6p|(4?+0%66Ve#Kl$6k9ql5$RlQ-uW%o7h{)l_ey<0iRY zBhXDn>(BOVP$(wOMr{Op&!|P!?4^#-&K=g<4iiPFhpsEh$gD3-fg3SrZmSu3{-Z1U zHsOxBMh-_grAyv)^bq_0s}l6sOWA0cVLGa!7`!2;lPr!^SJ)nR!=H5mDrLLMyvM@= zV#Au%cpxhsM3N7X3*G%Of#|z`7)|1zSMBvR#8H|C<{)c3EHhp#CXP%o{sU|TqoPC* zIu`?bzMDxo-+#cYTNnSRcFb>H?~ji>y=~!3`APLH=SSkcq%MY>HM90qW>nA0V;{M z)h1Jr>di~fNOMQ*v0JC_9ifwP{o5!I+nQD85I?u~Cj41dth{hx?NfWYWJc)y^m<&w zn?^0^wLeKWv%M6r)+|5biA|sk(~&%n)Hb9m^#QJ*dTiz&UvB#wc;cKliI2~Ad_X>6 zl>3W4i5^U34%9the4jA)6UOiwN$Zr2G|c-PMb^`BwDlTJXHM8GDPK#o(^y5J*Y&%@ zFsn!qaz%~)!=b(v z#H%5CKJ>ioL`yzt8%LO>xPsj(qqTb{#CX#Dz6G zFnDW^8?S@Oc71Nt+`Y{at>w(s(Nbh@Hp%3IeZR8>H4YqwQ4HIBlA~Eal(5_OXWfBn z+bz{Z2Y5%dbs?%4U2a|EW^CHK7{voea`4{;PXuvbHCoXcx9UZ|NBbVS3(?bnDA z`xCt3m^VjDVVhmKO=`RoU(pb^oQlVE(#nf#MCLM z-ELFmCXOTaQ9UR3C{7J|XAon0k9&REJJCi@5bTmG!vxsc>cz2fg?v z3U`p%^kR93cY+%^1AFjDcd0hjsmzZ|MLAmDh9M@W~w3`0;Rjz*E95eCqo>7F33D zOL~poH0Qndz7C;cobE_-H$PR?zo&%C2(=8>xJH4QqE6`n_R8ABMtUj%Ng;%AewT7&Ex8mBcZfC z{2gw=FS>I|%uJ0FsvX+V9?5k#!mx1sK6Xj#&u3N|+k`PH{bh5NyAwCEZ1JW8n|luc zUxaqGh@xN3Pg;q3GUG2xl68$>)cHu6LTha7Jiq~-?uG-=b(#c!IPP{5S(q&h75Sz!x>JxOc zuUa)u=!g!fUcB*6_bUe0(MaKc0mtje$bBg;e94ssg*B=eP1e|t?H+Pt$g(nzM|fh+ zdH3Fm+B5I33-}t7LKY4&+RY4kxVvfi8=7-(9VW?5C<(ff!%k4fD|gKR)B#W>^UG9J zvZ;kr3r+hBheik8Parc65?m{HUv9sQAz}PM{?KN_l|p9-V~-Buda9FTcN`fucRSJ4 zLjRW>B?n|4S#k8rBP+T+PMr^IzG$Ws8YhiT-gL!ZW!T&Sc!f*zXZNc0FAn@vb}K2s z^mEDgydm}FmY>g&TC*C_ZjKDb-mdB5eab7Wg*23z`g{F_-8OdyNSkw$JTpj6-CmAD*|r=^xI1 zr8_D{@L_DG`*=x=LIJkAl{}0HYnze4uumur9J9+Q1YxuQp~{|`6?$=33vs28v4P2Q z?T3yQJ>qXAo%i{c1~`u@a6m|XVZd8Tc5mk|)N#wYBoZEdkB@e4=)Wr8(ST!|Pd}O? zBL;W<>M&jgfZy5adgS1nwsz(6K6mF#4s9I(VnzsEs@sQ1tc(B)41nFE$n8Xr;PF26 z6sf`*dPr0zfoWr5MdBq^NBi7c(;fVzKl>?kjVTr_V71(c7LCB4pfht8A$Kf4 zEPQugAHZ*c8o`$%1b1oYu{Jm6igo?%G=@_u`Pk zVW_8q*SlL=mNFp0IrsS!=Uik8tXh}9U50pDcxIx*(i;Owg>LyBdr}U6nYjrf ztTaI08ypHBE!FP5KzQ%P_9VYoQ}l~nhsO6h=8{M*d&IR#P{xkcuBDH}pYW4~@yjd{ zYfrwyTdf-OI(H$%g#Z`>O(8AkKZ??)-u3^4JIOOpXiUUXdzD7M_9^n9Fi4hCZ$#GV z>VtRYU;~@9*C1WAXV^Sv68#^k$ZjxOAIk`!JW-N+US=WnaRwr^!X&7B9#H?&&a-zl zqHlx@Ah)>No{9`x{$31v4lS#hk6tbe)_J*u+gS=SZ_iwc)M6Y#n!rkvTFTT)y?Yj> zT5Ht&&uKQj`p<{AXeHuRS|?6P&Qb}@7?|3Qc>`-NMf{CKP{x6H3omqjkMB893Ay}} zek4jCU?8dgHivgAJnQN-!i$Uj9Vk7dt(bF=bbj+Lr(5@EHka@8A#}kghfVg*V?p)% zc)=GU(<*hTJp+(A(V>&LAxUEL5Xo~IVV12+J-+E8HP&L!tWUnIGscT8-reJ3 zDQL_$cm1(P<}u0M8O+hAhz@_0(54~UC`t3IIH9`KlbM7SXKOOxDhV*s(rgvK44i52e->Kp3+{VrB_gbq z_n25W_c{>iVGZ(%!i;mwc`wFZl%3!(Nw8;Vx?wai^vIw4#IcPAxvYB*&$8 zO(AYW>(**#^zc_BRQNIQQJ+;m@YmHsw*?MJ?dI;cYGten-P^v;%<_dB-s7e3!+ZDh zx$HonNYkW>=sCC(jl2j(8L)p>S4ug5^9fytFz`KgT0*3yG3YY07Qdh77k&N0+MHr$ zvZQ;#FeP{t$PH1MSTP|Zh`Vn!l$Rug{H3f@+i0o%vX&d~WmQmib{D-!8UMB2eUZz9 z5F0mk^59~!*Xyj8y6{0Z9x22&o~3qqY!|+?&- z+RCc1A~x+)O(vJj?b9D{vM37iPGwyYc9N!(`tNn_A%#?Tok^yuGbMBuweXo`}$7$@6Cm-b~&J(~x&j}nj)Be(q^nyW|2fU@7h-OxXGPtIt$kheukcNXw4&qm`L z17nZ6E(Q39z{R%%cOItHc0sVBO@6&nzj`R)v4ZTzK0sg0hN!P z9@{07z9ob!zgtH>gILgJ@zl-~B&5sw! zmbbWMLK^z{(xC%pkEJQBQ!4Naf`a(zF#7|?mEdy?@8}831b5zYG9ucY^lnanjK8=p z&{g%axX2nOqEEuh=brY~q(6skdGHPBYRWNlwcM~j+{xr=sfAjY&C+v*WjPXK9>bm8 z_GRz={a6ORc$+L!Lay_{ZkXPMrLt;Zv*(MNdQfhm6U>61LQ;>|e=G28DPI6SW z&gayxyWLHKl#HaAYdpmG&Cgt--=03SRBLHfO@6lplxd7|g%%c=l2}FB2+;ynAy_mP z6nYNVxfT1LBT*@`H+4DY1Fw?oM@@YEkgmcwCBdtOc~MIwg+X3UzN)$wKO6FYp!2Au zWm-Rc0Vf`e3)5!)CH(t5E~yTM*0Vo`ff4~-*e46EIMLi9D- zA@wgMC`%#DCspn{tF`Kdzh;)4&*)n;bAba zWo{y6B0Si-Z6uN)*63q~Q6{y-)Y@*xJ%R9eDaIu@9dtFxlp^uzF9FPE&wM>!e+AA| zi_iKQtHrA4x~mt)^b?aUrc>`Cd3DD!WFGRr%fo6{fhcvOBfiQDc!zu~5eTI9x6 zf7LfzL9zXFfJ{MQ&^_-jE0|b6K|ZywUmC`2FaQ$%2Q`TR^Dz?1da?4oxNqUpnOZC& ziLS)^lTAHSoLWxAf}&(FoUdI{jkg4zDuR{c+RkV|JE9|X%xMgBYB}K+d~`wn7K+L= zN^v9P9YF}KKMcpbt=)eqccsh9P?A?}2%`ewpCx-qi{ulanRK~{b;eChVFXU?&hAc_ zl<}4pGny76USd*dUMPA@d|36bVXS9Rw0u17Eq;HcFvDlat7%?KGo=5ZA z&;5lf^!~M+o@5Bi7&qXpy`K6KE`#8o#|Zq!ZVNJwQnzVzrhALSQ_t{|Vn#N_3V4eu zkEmZIoV{ih_3_j+W-sLfA84eR%ie|w^V61NWHT z=)H{JYFO`a=5CqrS+8^@+GEbm_OZ#?59c{y#>2!mil31-G|qj%mnrvfR=|KSB;qCEu@N{!VJ*ZxKMDG33UkDTCYPgFAK&Z-Aizw?+#RHGrxZa%qJ zB&GYF*!kfbWt>^&7?(oc5ULDnnqORboe)5Qi;MaiiAPrgs`YU7d1JCLMB?o7L(JYR zy3an-80GGhY);VCw2LYxz$hfo;YnV;s9t-9>e>Z^G51B#+AJ(t-?h*4)2g^>uQ&m2 z9w)DM3r*zGN1*teYkonR%9|0<^eF3fp&S$1VL#sur5!>%laQ-qTcrX}n=R#o^G@Mkj>APfB{$6n%n0s1e=kjN;>4O<0?z*`kTMy& zHpy;=r4&-v@hh8{^?AN-I3)T4Ck7bxm0M*unB~NKtic}BUHMZ~ zO-?(HD5M&Y3o=tIn-8$ztK?W4zMz*Y6qBd=ilMhDCd128D^v2c@EsR^PZOg9%Aq1@{~=He!G`p9O6 zL9nmiVaP8;h}Lna8U@?B+i;j9;c#{GhZXGnG8&VgV@~Qa1S2mel8bIQr_ey3w!TZ) zq^~+6(;r4=diRV7so6dZt7p4(BUHQNSjh*GnK@u&UZP*xdDqY1#T~hcPPI4>|#5G7+5@|8JEl=W-z{|B*7Y5=BIzT9VQwJ zfs`Mu1PxX_cV5EdWUV8(FYqAq8gb8%R+v0*kp4=u^{DJ*WIVCjmZI=%xsXSU9`c6n z#kT8ln}AU%q`7ZE77f<_>g~MU@|ey?#@bq@$wFj3u#d*kJx==@%az-dx>d=$f*`U^ z-|rLp18yi%yV_QoH1#OQE$bM`hxWKNiX97iC(LKJ{FgXvO3n>_L1V zG%WV5;m7cdGw~}Q`6(h)K5N*_#nl{^X#G92+2J*-c3+v$B4d5-h%f<~K+ecE>rp`$ zJ4UL67l@Tv*h86}8Y*qQR!@~q60o2&OdCsXOCT``tFtf>$HaaE^7miCiKXHHTi%g8 zB#aSzZWAst(d$d<#M3;{sL|p)ATH$2CWnp&(K*2tS`9MbFX^6er7*R7Z%kTGu3q1=^&?E;d1%=G zVPx~7l*wds*Q&(duJCTldY{90C3li7+u)jIgjOQf1`aRuiO zZjX;~$l( z&uL3hPvOJNJmw$?SqC?+h_p1lntZsI;8$R#XS({!JvTcXoT$sRsO`gMuvJB|)mJbj z+ug`gXJXlv^_ubQ&9Zu_>@b^*;l?4)bnXo|LQYmvUeLYsi445vnCRzs{6k@5weWGt zLkZ1V^rx2sL(;(NJoBOgSv4KY z;#g{C$Uq@hH}b}r689!*B}P(D!U-`)`FmMn^Um~kp>U{uX(4w-$mPqn3Kaxya5sj% zoL8OKoawsW<1~N&p{Bj}C+$g;!5%2GL$FT@d8!{-d%}hA|Mc-7#L)e}IzUMgVU;Ju`!Wmu2CZD4Uxo6UVx~4h&DtB4>G}*b zyQsyz@M1rUw8Da{wBBu5Z9WR}sXL?B0qekP1#656j^x#JBL+Dcv+5s9O=-Y|*zV>Z zx5NBKfH!Y+MY@w!<=GnRKPInQMHKupbgN`-I$QHqg;!&ixtvKX^9v%)hK;UaAE5B9 z{C-LJx-cK+#j)qByeT1Ry0Xy1T4ak7ZaW!a9L=_J1M~=tNfTT1YI^xpy;i2b%8`t< z!g5p;_cC;!l5s|Ir~2${_H)A%eO{IP*uPNr|BOAuFor}!2D=ZJ0KGDwrdB`KlRRhL zy(q0G;wQeocM{3YRwQnhPs1)V1GLa4Ad4P8REKm$L!rl?4Y%`(XMwi2Vu=Wb1hX?R zc}wKaCQ%?r>NEJTg9dnGjSXf*WGc&0kGo8sJ*G>Hy)1)R3XWe zJq9%y?DI+!uw+f#NuF@znYYQN7*mlO8{UGXV3zUSjiwQkHEnGH)8>uUU!nQt<`9aa+v$^KS58zAHm)|uMEu*jJG}#LaFAlV}fquVlw`$e!2UIA9q4Ksr z(l6UV0iqT;-1m*tkaC{fWw2xWhux87-!AY`;h#Sn^bPD1GsuhR2Q-rxKNtqiLFT^} ziM?goC(y39BxbKuDL4}mTY@%9U)QJm-8p%4fQldJ{cC4av#OW)_-wz5m0hwYy5u2F zBMf@cVDHbfdD;X&7ppFqWy}}#dFK5ELSKJ~|3{q@i$sCvHw#pJ#DA%dE_ymN7bUra zFh)N7f>6FSWDi-2I@1|h`%&ntmb2=nxpHE89Hj@n$LS`d)7>g66{RWz-2-CFWE_sl zIa&a`MK-ke6( z&%C7)>#CaSg2K%)6j%;`xYaubot^fq?~6}-sp6dpW1QeA=DuOBBD!=bBR9i$M_l|d zLolm1F6EW)eVh)&;yEjSyq^u1sYBR|htgibj|g+@J06pXu{?jvFlz%gVU}6IUs*3e zu*cbmrQpI>{hqC(5f>60ioXrndF;j z)xYn&b>fatb$g$_4T6`>#QvOo{v*lh2EIp$7|za{ndHZLk_59?EPAZiZ2H~-#4&l) zGE6ozm9jhVp~JUe7TK*4>3n5u&Ss8}F`0mhqokhzHkguZk@$oRw9`Qo8r@EP=PfBY z+;$rJncjIPRj6i&QtumnWk}0&eX0&kO@3+%XF2AWW0QvR8Ku8@Q;!&qXA1~3oeApO zF0-_?PCr`n9w|Oyx?Wt5FE))h5h-<;yX^8)nL! zS{WDC-*_s#_6hCa(JXX;=PBZ=*`uh}R0xXR6_|^_g(%2y{b{EMhgYA&LKjT4=P)@9O1&w?HiKKYOsj z#3*Hg=S#nBDqCw~mY5B=|CDM8qkK#U7|`pD=D6&>gpH54J=fCD3d$ehN^M+k@6nQP z64x^uuRC*%cqnpMZs;R$BXr0tnevo(xgPt`O*=+g9bXLoT^QunTIEhwZ@*?6WQDZA z)R&2uV~S~o{8`>P!_GlqA@dJ02AY}0`I0y4ka6u|=ht}-EE7d%@*k?+(BA+SYG)02 zw{NJQr6GO-?b`yl(;zh(E#Y3Ref{g=AbL>5z#fbG;!z6A>G^X+vdj3^PIA>0zX~(h zb`J@X%eFYMT|0TF?{G=gXjRH5{DmeWmrjK=kNGy5pJRrGG)VHA9mNl0LT$&qV6wFX zhk?}wo|nh?z4K_kii_x>%-u{DbcDF4Bw+nVUyWn{k~M2`sH807qPR>pMDsl=gk1dd zdzNf%6yTdj2W)j4pUZgpy_MCnV_5ks2MP~~dz8jcA>twhpLT~do+ckN2mnUm9^-E_ z!1P3SrR?QOwh)m$f}^L(oA$cA@J=cI{=U=@Q}?c#c-2i?L^GqQz)itt&jhYAGR>W#84BLHy0D1~o0GU@WXb#!zXY6uIACmiVxjBR@Nt7`ph* zB(QWw>}$utI3P-f5{2{Q``43Ct=0hW?ANur4Rmwx3(J+8I?KpW>h8t>f}$@QTm0-6 z(+v%4q0*?F_)yzg5j?aRHlk#K0b3= zSc`~430DbGj9RwZ*Jrv!1wxo~3?5%AZLmLc^y+$ZlvKc9JAHW3h#OxJDCs;j{Sw7h zxSZM^4<{0S$RLwkQSD0^$b4psx%t+r-g+tb`c~Br=GMNIztPG&_Z`i5zAd01sMZ>8 z#j{*M98OTzKXrm_xS0EoREQmK)o7*`=;eGh-^WEy=*7NT3Ws?BB9+1PiuW?{7mZBw z+Ii27Ue|gZJ3Y4$)aK0_V42FA-2eG5KCxovr#Vo*j(FC38M8f_>!Pngs@t_#?;10H zLcmdYd<@jQ9{vzq5!xJhyl*P1LHvRm;{$K#%6L_tM>I7{&S_MZTg1=c5}8s&OT7M6 z;B;G*DDXr6g}wF!h?n8J%4N#BV5>7H$D6?XT7Ev}qzgc!^?(&& zmtE1wdMn_*(;RDj89%s5*P<5)03QjiGcOJe4-)*VQ6vydf>PG6H28hd$(ELB+(+9# zUgUmP0~(gy9`c0Y14Y)6ZK{c-Aat2%5|)3Lpa15((|k^M8C1XXmJa)MM3gWc_MU)E zr5#>|%S6FAA@Xog&})QFzp?FdCk!NhDg^GF>^wW>x%*yGp+EUrS1&{7h<0+c%K>pV zlGH?I@rm|v)ZY2@G?+9V=Si!*xHC_8cpvK;H|cik;K`uvES_Z*4>vQr!l&lecV^n~ z2!-h+N#~~5&l$FR3xt@7-`eCQJzN50y_5hs!1z9z1nPdgb$mk<3%H~f1T3cnw|vP{fc?+?!AS7;uY~whB1>w zA}ZbIv;t6GPsrhsD-rh|J!tN&PazTOX0QP`g=&!n)qp8r;7f0-u24h?-(* za&3tt+V#LYfANQ3OsC${;vLalWuog9CcQfffK`{;KfC^MK)(lu3)=9tgHqVjho!|3 zyIC3M^mz-WA8maN0_A~^9u)YViF3+=>s4?Nmhnp_yTg?HY@!+8^y|?)vxJ z^Mw4@qkgn*>sAiat-U`3&W>)(U)u?3SAL7!e%{$GZ(-dt^Av_}A$cNR1&huN|Nf<@8RBYH-7+4@m%bwL>!Tm3(*(~SrSC{_kO?CbX+!7G@oH1bSk z491f~>XCW5N@s_vHqb7wY=?2Z2_Y6{@SQ|J(mf0S#y0e8>1ef7R>aWpL+@R1=ml~FGa2CMo)k$ z-Dh11fbdJ%Tps;6k)3GBX~nB_#2W$Wm>LFQ+dra3YyVuPtzx6Q4Bl z-V8l$J?!kianL@kh2eEwT_Z+=yL*GmrJ*F<~Y1pkDXH^Yn~q2oWCr;s7;!^p9XrpB-Zmd={T=VgX`UF&EJDp*1!f~ zZvXX9>G64=R;vxxn|>u=1xFvjMvKc?h?bfXTW0JSxT7H;R^iT$Du;RbN*6hepQpas zoY5KsrhJ{G`McaR6Or50x0dGd=ytQ1y=!T|ivE%fcT7)vw;5AbkMmCQ@>eK=*kh*O zTdy@AA!Ge&Ab{F@eGuXQUO)3y!jIyEQ`F%${K^W)MvC=R~NwoiROKRBD z@IkN94XtajT(uhJc&SbAaBiZ zYGnZhNSibK%T996^S)~IyismB`t8VXqJWM~gSWq??f>1>w z95x93R+}~CmaFcX9{o(@@NN)Yapu_S8)sw*KizoVHy(h+;)ctd{&vw8EVwGq&JTYp zS}{wFp|#*pBlnjaU1z+uKWQozs#s9VfV@C8BMjx6EblG+GQiDKuCv&Aefz zzZa-_&ko@_^SujE_VrK>8o!KMJ$Kr=|6~}yWG_CwAJYUO=Y<{xa! zS2{NDC5;U$ZY~`cojI3QxtZ;hRQ_D@81I#9s7yPa=+$xCF)?OwB?NG!GnGe#-gFjD zZTWJ2HoEm5x*M-Hf2^@eYE)|X;OcQvsg6$3Y%u>zp*B@$SCSZ$?PoMvds&+=$3Hxp zHM?{1Qj!zUnVh*G2PJ^LwIe^82v?r*KAKJ@Q@kvZuzrFunO#A0+x^xD-v8%Q26ViT zUXN1^!nJ>%weE5CzHR~2O1QQ*=EjKSfK^1X`-rbDTS$RL(lFvXw?V|weEKwioV#uU zXU45?w)m|R4QT-Y+()LGWVLreX<`m+5nu(4e3`{dLy&l~! z5_+j$zBlCxv1?d@J<}4zhwbW*Qs`@7^ZTO+)mP2A%!nNSV;N-ZM+oN7QF|*iqKi5e zjq_#FS3(WzoV!P7?brn2-f!!3a$5#ARST!@2$~Coq1{^FcjuQVDP*?rS%&|j@BSGp z!M-#yd?SE?Q`mp+?U>W9Du%(7FIx`N9jL4--Y)yF<@*zdRC%?Oi-W6PQlUf5OVP8y z7^e^p@!dL?O8o2P5@)B?E>}$1GFj=XAGJf`HXh--# z1dG%AlOTAzYHm-bCYRJWOJslfzdidG2g25^Z)?q}6RkSxZ#)f4nA}6h9Vklg%JOnS z`au=Qb-_>E=YB&NnYXC0E>GKEb5At0Kcje@KA+M8A1`)6RcciEbwri6gD%?FIHjsx z*+!w%22Lv0(Aes*pvuC-nR@s}ZBW`@Y_G%Qm*RfPWKt4lopaMGY}S9$RG&4^>ZCM& zaQ2xVnx*%F@_4=(A*vw<0K?9%&1j#!NK#A6w{3TgSWiCUJCyjEv5{-~OSo^tsIclC z75SSkn8(rbH&@&f3T<1r!2+w`&IGV4hobkB^0d-SqLs{<5@P7@mXUo$hy+|`y1IAQ zjh^ha=SL+uQ+%w?e6lOeaF#p=`-GIV{$0Dy+35mfR(RWuh8RY!d?F*X|9(JnJd$7; zw`kUX>vBtN620GPOYO4JZ-Qs4W|-mPQ`V0gB@uf@6D3?G%fwQDc+7La2F3*_DEx{M z5!R4o7?qAjalRrwQ|UiXN;gPrkiTloxb_U8*j(8obFy5UYWr+3!86=Ht$M8IJ-i{O z_f3D>?Y-SNZsggbwBf*41=%C&WwoJ}y6;313|cG&VGH86+-H=#6MC|}5#kXFCUjPQ z9#*5pr_rhSUEE)swGA+&BaFQog_?Dg;ccH#^>hNWNaRg0d17|n2YVm?L zJR7p~SYklwQPKRQmnsJ3d;jt92yv7xeTOii=KsguTdu{`HC@{wK!D(o;O=e-Zo%C( zjRkk7@rGc*A-G#`cWB(*wQ-l=K^th~Rx{I;Cdj-pJG+C7-?StkA~JubKM%J?SAv9lnp$JYR8QkD=4tt;T?wqr5~*2U^+OH zX1x&+ot(PEpG%H22mT|M?#0`NR%zg`Fgb(J^u7J)JDdL6#)s)Y`#vb1H|lsP-zhpO zV~qzg7g|kq@X(mn0|M4HDqjoYmQ&jq41Es-BU~dDOmO3U$cmd@%V}gX617iQ4+R=E z^P@Q3>n8y-8Wa8*6>SdXta3i_ot38l-FBDnP4qgN{mOA_z8Ev_b5Hqo#u!bOym!YU_DrIX-q_FoJs6F{*5VkBpRI)6XeK~{ap~vRDC<< zBIHqN@L}HmOc&Js`n^lO0OScTHj7&WAktWg=-z#G#Yqa;|YH?jpieI zr8>tOTDUz*potl28GPEpEnOVpyGG@5n71Z;r4ScqH=Kjctq2{nJT;9Az2$dPg#O0o zJbw>`oy@}ZoR>~fmTbGE@Lyy*d>+wJ6D0I-Ipnf7N@x0#?cV1Ba-60pcNNrdDGmI2 zPO-w2ljw7-mQkezRSL71N9V>~_DMA+gG+Th8gz-EU+t*R+g(-&!9dCjja za|azep4{@{f8cL_ae0eRy7o_>o!kQdm-v$3T?z3#=uqRNl5`qmUMDAE*^&eG zt-N*6NxA)U%*N9Jn~UN833HptX~pjl{W525_u|8@|Kj^!6B&zk4HkGV*Di@!1Y08v;t&Y0_u~rIGa2*s zJx(@IPZ=n2Km1sm&@u5h@-Yk>WRK{*Ix?2i(WaiT!UV9t{1hf;8je(h%sfqt=vQ&e z)jfHeiU&6e398~Vb773O@fz<;Q={%0-6cXhHKyDDpbPc!{um!HlN@xHhWvr-N$k3> z=<1K1i~DWH@3i|fu$UHwmq#-LHvY2BS&*h6Ax<=kV2J3c?I~lTlrG8h^4caUe#fg^ zESGz;pN;P~kaCsh_aC^fa?gY{#dy8N>kw)fO!;h0w#!@&l$T{xY99V(O+hy)Smii( z9H?A{*A|zs=Y{@-@L!}mYl&mZ9^=@4qylU0mkkC#HrvJ*$Jle6)jDqM+iPM;{&DfW zr1KJ|QsnUrvMB>LV;jM}vl9f-e7Z1(o#;Z9c3M9-EkYd-ULbySz)5RSs<|kR^*Yh6 z1%O$|XBh+TPTQ*Xn;=qeejGEWUm5?P|JS~(DtKc6s3NNIHl;s;AG(~m;-92rDj@sA zDU9#pn94z(-MMaIlGJ>)9h2+P7QWVK({RmHSx(m5a*sLB0P`?rYVjuLAbqr#;OwEO z6O;PCB!oy~r(fY0x$~4)ke(8(6Ww4{e^dyLMwz`bg$Y=5Ivb=%DOgn=EYOG*vhE8L z~65HaTF9MW%hQ=rZD1x z&I}6o+y&lyCgg+ateLuy3}$U=LSFLF2R&*0i_$^9I@K5om^cr838gd_|ca z8jRY`XCc%o8|fyv&fiY2Ed`+&EfH934PC8NKwpKw7-u+Ie~v>CDq-NsYVac2(PI$T zFW37Eg|0GuuN?hrw~Lf-=|Cs-dr0s416BKkt=z#A z#n(5x-jf`#9e?tj9XdqGapq~6`cy6r<2s7=%6Jp`Q~4|c9(t9@)DaVba2KU}3VSqd zQ{fv~w$TMRGbOXf41}3a5}36qw4amrO?o+Ei?q|X17Gd+T6DyjPg80m@&8D_>~mFG zw;}|;<~iWvfnpR+J?-0VzUNH;*}`(3h-mE8sfz*7_ms=XZFP7(y4Ny)moCQ?c+xc* zl6{jZd~j*$cf~M`SDUfq`a^KoMD6xYO-nffqRk=k&Ylfjt@9bp0)r)nb~1$Zp>bDS z4hW!gbSTWVw=z_;yOOL^|9BE3nnJVqhb-HXTN@H9C+go{5BjiU;27B-1!m5Px8It! zDsNApBWBg%Kdyp9%KtGybOosWH82>s^luQCn9PTYyOjp8$@T4i&pu3$ALZ=HaJ%!_ zdu>Vc1Cn>gZ;0to?%9F}hfRkTRh44zx5%*_XHLl`at4ZW4`2{<9qFIkYsIDvfzfN( z!T#kk`0V3{Py-!m+_!@bMV58Z zl>&~b|0rUPsaOFyS9Tb zNs8WIAkZamlQOjPW;~os;ut(^#I$WDL*5W`EiHQ_vt;zZ;ajGhsHH}`KSwPn$wN#R zb63A#{`?Lo`r}4~DAMG3Omg@4+Ox9Ztg;>2t8>oSBs6ETy#JtyC&#c0?f+#r=0k9y zgVvx(C;RS+;zH~nfVV6ZW1Z3NiYuz325o4*z3%YN8hT z#gRxSA|gsksk-fZIiKq9??drZLQEARhW5Cxyq!J@u`hi4e5mfS)e`tfOK;*eKoG3u z^``d~oy)c@>^wz~y|T3eRd!6#8XJ=<=G>Pu(taA)b2-oFl1n32g)G+|^VxH~KNyI} z-S0#Ie1{L^+IZXHezWTu(f zgjc|94>VPh>gsxAP}Xp%LQFUP&-xNsk(_*B z+Fw!F17T;vwZ6xMy7PLW3fI!ROY*Mz9)KuOA)Ox&#i(KGc1hlt(X{7-7oOlQaJ!v( zL~!lrfv%tYEPW!Q%KolTcQZsWk3w#e`tg-_Cte)oW5S9FgP%0jICD>nrM{% z^wc7!BR4!c-+czC`WAg%yvX4rUuP4ODGwilvDsvu8!mFmou~UKF*HrE41m1rIz|7B z2q^M!u#tPYUUIj_e*ck<$1_8}$OYmh!Oe>I$~BtT{;gpklPLBO4pL)hQ;7P&bNwGd zQR0tK1*6=II@(Th_AxNq{?=kkNqc<|9~mi&Ly;(DyQ2;`YR;gIaI!yu(ZKv5S1$fe z(xVy_g^9s!6T>ef&+rf^T;umdL~B&ZpUP{VYogx8@kijUCkD}=hS7)h$>6%LqR-`q zkSGj-YT2D{`01_>>(CN&;7;6;azSXD$4unT-ap{Cx{R^DEpnCbWH)%qeDCa5QO?0v zJ&?4`c=ANii%-u-M}IaOB2kT{LlTw46d+CS0$t5JHsy5KrDs1Tf!r-r-Uxt*0jxEU zL)w2?JSvh#76oq=Ui(jnY;`|iIoG4R4vLqr9*Lj-kI%EGKl@jP#->Yo`?r(s1V6{O zKENv;XeDyu16{W=l5vK@>K6?Fr18rzjJ!1xUgz&Hyon|s1&aWlFvXIH5}dsF%R5xR zj72oO4?{G&vq*$KUd6#{OJTMU$PN?{H%_&IW-(SM2>y1;)te#03AP8~Aw8{{tR=)aRkMe^fIcfLqyCiQHZ4?)#|3DXBj$AcLgvX} zY|~B}y4{8QcN!nAU5=q}ya3=>BKnm>ToGTaK|gli;;)+`q$N&54#a8uOOU485ET_` zgb_q(Ish7@cLvugZS*H5Td!k8ybk2_uXl#tyDjJOhs<~8Nz?uJ9wYJXeW0I?3>8Mb zM1g4#&Gtv~J`< zB8fjF^gl;o3&9%WPMI!d){cw%fz}u&pM(0(_W=sKeCwG@ zJn;SXx)LZ}rZfpkI##eZR`yN(?qOu_Un!28Nz#%cm{NqzCLsW=(@1ephcWN-edwDu z&wG!fd6DWD#6{^Jl@0+-87HBIu~2rN$XM-H_w?PNE1F2d4x#kV~xIum2?nlrW` zdx8H5>d=dbEldDr9%g>EgY6WSlIHHx_x9_8!jpQ=b1xL$4_W;i5fhx}>uSCX{Nx@? zIclw0Oqj9kk<))*q>9xJvW zD%^!j_|=keu-SYoQlz2|i4xgQsYasw=YH=~Fiz|5-$Z4<)rL_gyev+bL7uyqY zT^c4-Ic*K8mY*?gb^KHX?T?Z_Gpm!rikQ@e-wm+ly0pPgWE9kU5710Lsw`6w-z8e< z>^yJLu-f|#GB^r=#ASha%Q2A2>X&@OA2KOrRR+ZVjnr zG2*AqXY;WifQJW}Df1anZ05ktk+2WwK!}}6gCBK%@ko7$zSJB!VGF6;m^tmMO2l3!i5cE2rQ+7@*{#yaq3lg9Qi}^sacqs z5h>jLaMwlh9q-r?f-MI&auRpPH10t+;Jx@sseX@1e#Y?mK-&<~c2w%T$ zmCvrw{ud_1l#`R#{WnRfpYks&m95VY=QXDBr8VNB?O#{kYQ&dzuY?IK2^^(Woarf| zY@B3%$9~=5=BC)4y=U#NO&qJkk~c;+aP$Wcj$R@SlsVyYWhb7iZGD4G3uN#*?JAk|;D*G$%A%%18)cs9ic&E?T5BKd}yo55J_h zG=23{X#X-fSW6YRWCUw6>9i+N&$?hlSMKOti1?Bu&a>{sz4d<4sHA#6oUP>3$to%6 zN@#H37^+(ImwNof34W{$O^3-5C18K+j<4OP@M*&WxxL8-^7eH~GOk}9>+ajDqkb1h z(mI^j>(UVC&yu(8_t?M(9}O=4bvCcP++a{P{(-}1xT(a;o;(c`AwrQD}CvqWNy-luHJeo zkaks?*B;AOaMYfYIm0d=s428UM|YoyOE7u6KyX#+p;L71*Ja2 z*O=tOmrZ~WBUjUOeXE(=4ZcU)#V&wr-O!sV?}m!hQWBZ8c>D6D2^+HJQ9N=qHEo1P zx>v%Dt;kySIGOE{4P!(JE~Iaa)~h7?oIbw ziaFeHb-^EEgte+%K^4@p+ymp__codut3xr` zJM-14YZdcytdY?1OxT^W>r_0w%{LWMLv{1r2L@Vx{-}->o;h zKD~tb{1ml$q;wy#FYJyI96l97V{|sa>fq70*69$&K@!ngN$x6NvLg+H0bz_20vA2Q z+^xCsB^F#54>$QBP=tZ4Qy^m(=f?}e;pN#?M0^Chtnrs_Zz0BwSS_P`)vt{JD zFV9=2Ya|~`jZE~Puz|1t6k^$H^jEZ2A$ubMHkt`h(PhOM(7de3-g${O=}GHtqqp=T zgA%3_OS%|q`C=*p22HK(Sa;x5`Vh)lS#bkNv?qwP<56CI*%)U2ikUT;U9~Fr(!rF~ z9)|bI@@NNyV*j$PN!3&_X)Z7|DL99rzRb=1wUP8#}`sdI*e6nWO^K$|hw8*z@IWhG!ygv9> zv{!5LKQOmD7BZgY2nD?sevb$c!x334i;Nz%vdhd2TS}Pv2U~mwujGAPyAT~%TRz)T ztztRYw+>6bb?CiUWtIDDPLIK@(=EWJ295f1xc)CUuWN*UHLYZUzl)D;gB=dHz2DWR z3Bdy+PDyXA;n`g{`^$xUFoX_;?bh+ND6Ey`zbF!=rnr-7fMVX-;$|2%K*P{b~Z+BUjs~3)X(oS*c`Ra>)hA1?P2ZPAW<~awFrGasv z2C%x%BuaZrsh|j}NL3=?OPhLCH)8)SAqplCJoN#w_Ux%RK4!uD zL~;s3C918~myRY!u}Y6Od#4TA%p&}tP4*1cgNJvz>DqYB*M0k@534wjJ%gibm5t!@ z&O%<(|4QGApI|V0;$D$3@ZxRXQ!`6Xv!e|s2zp_)yr?4`JCWx9==_&aj$s|Ca#A<% zB_$k(e3uD>F7n6sDH3ViraZML99^NS-z7;4ztjBD-wbRb+RfLdY2BFV{`ys0K8>Vs zRdplicCJNRB&0JShOTLSB(;yE(?h?kS!FBqO}LT|-=}qU6f+uVRpcJ<+=4IMJX4Rj z)bLpPTADu(vrbme^YZcpwpVI)5mwB99fuDM{J^*Nh!PWtPIW3m4LoHO>iitM$M~h@ zDVw$(pTB3)v|fF!&&cp!%_6F1t{gz z9Ej^SAkAW$YF)GaWKr|l2Ir9SS8Dq<7y%ztk_6wU-uU4q@9i6be`ZY}jm8Qm%%3KZ*9W1uoVCRDa(yCKHtIExUgalHN0 znYf>@LM{COs7@px#iRuRieInOVzsd1HKS&n9CQo*S^h}=mCTJCn?7P|dToy2=5Iqm z)mi9!=8N7w-vE~51p@784b|R~$|fVkj~)qPp<|<~WtUg`(2yO^VJSNIb0(h8UGhH~ z*LQF@bkFEDf^hpU<<6fp8)L%XYGTg!JBy-Zzpz_enP~aEi~PoRre9mlc!`+Z4OU0_ z)}a=@@2evFGHG$Xx@5V%sD6y>UCqDDzTVjbzpoz@`FR_yyyRP#;@kQKRgeuo4zm@C zexc+%l!YKMVAs}t2@%ol@)ph(h9PPs+fR2i-{YQF%J)q8s(NcF_DipmycrRxJNM@n zn`qm>ooiuA+=SPA`m7QL)^$2+;APetege%xDQ_i@X+0F;w!HOds&Q_ zp1es@Qh=srF-Ab=sJo;+RQkB)Z`1xjuQ7dn9i+zdT}-wpMt;SrGP zykS7|2vuE&5?+nXWziwOdJ~EYcSZ!FH|GwO5wLXR!8)y<=j3Ze26c-C-C2CUNOO+c zhCNr07arBIMl^a6nx$#=oOcAsw`}?_C7IwRx@3H$UbQY!zh8D8s7&IlnlKFKoV#M4 zcv7#e{wBr8hZY2_OKJsb_2J*0->FEc?5;pWP|a(A-*Ilzp6@1-m*F&LqJ=M!akHXI!QmRRwPs+epH2{#Sla01 zVz0t-Odh?SW?ob7VVg?qJzDGskHzQGqF(l>Yo@|n(BLE(RG&b!Ju?-dJ~E@s+41-u zk|Drgfysr%^@D>-8C~bC&9@#+u58nxuj8k2O0#?CWDU?8O=qe~HUdUItgy`}gMEg^dLa2qGqPiWv|+lyp93SBDf%v2PDf9Ligt z{PA?T6=+g)DE*4DQkA$;#h?Wv>(A@CsTjE zL}kbACI3FUm8G&x;N*nhtxK&-<(qih>8vBEy$O5%eyTLGAQ3}${@OOAIfyUiS|X!? z2KBwYU|I7`X!d^8~)D8vD3yOS{gm_vqQM2-35K{uE7oYL=$*J95>3?)v~|9g3}b zN~aF8-Oh%P7O+`Gg0$siMbZPfQ`$f8KMNJU1ZK#ycFD;15MR)2C7t`=j;-$Y7afhN zFaxjI)$xtD^9I7aVPtp?%v;}?5t!>Q{uG&V-`v^J>*Q;2Y_H*mJDP^#upS=!iNdha zV%TvGnS*Fd54{$|ef{L(c(K`bKIM|0(A*Zrd4}vK97!ymRQ~sA$muCwU{`WQ`F9t% zc;qW-u`+nqD4-ka2HOaJ=HqTr&>UA#8DrQz6xdb{PkCX{a7t87iy@7f%yHL zJ>QW!l8L;Qs@{5*sq~VgVETtGn=|I{siLFKj8q2adI2k#xsf{t!2PW1 z4c{%ZiVqlnJHL+11iTc!$x=4BF&=})7EF`ZJCa|GF28@Selhb!(x_FK8r%WEbBauS zxbY?S>=0}`Vs+xZc{j-8~t$+7GOTR4@JL@58|tozs)z$JRPjU_u)LpSv7rD(VmN`tN02`2FG+x1p%m?9Lsv_CEse9|WkBq@}szpiti2 z?|s-@l$#RHPN<8|os!4^PyIy5=LY}2e`f|ruFCVDeR5zp_4~mEV1d4~AP2Ui!$7N6 z|Db*($DYa2qJQVQhJ%pGSkmh&lQDSQOmG7}Y8#rkWKW;2MWY@g_aWS3HjciNP#%Hy zd1y&wLQMk*ea+oE?^C0H#iyH%rIGZS1cKIYucc5~{tHFf{MOt}7Y8$R)+5{*87Hp2hoNGQ3^ z%}SdN26iyK-;;5~0|Vw+0CvjV^xUI#^LRdE!t@lh->1R8C2lv=Pfdw^D@|O@={we$z3?bGW_pZE$A-GTUD%?Jj`fA;clM1q#sFe~?JZ+@aY@{N6`l_w zjmSfsCz{{uGlLr>g#T6BG?}i%o~vlX*z4Ljyp*D-UhIAyDGSTWX5QZPqy<#i1puDudnBv!_P3u1wq|5Y zRi{ZjxXAN$0>+kZ%y`@h&$`>v&k}R)CLta5o+xuCjzcfGGglP#xaq9~6c5jWnXINE zZ3=D1Qxz8Roptc-2U!v@P^%wVps>P4f3uXD`naOAe= zu3gQs`@ciu2}dYs`3r$Wn9g*OO}m*5&U8{iI;eN2S~tASORRG8b|1~t-IksF3y-|E zt1XI9lcqbgEyh0jaQFhUGA1|xKf{i{`)!vHEMN$=@2UT2(X2B!+_R*BKMrb>Or z2b=5@e@OU6V;N8}v&XlD-yVxNHBNK3 zBUj<`kKn-cBZZ5zUqf~ye3Jc%>`o=RlQntpj#NsIxKKfN%a^;F z4y81Q;##13@oMAC`a%hvv*)S=j*jmz<0bo>?)E^|y+B^b&N^yF&)@RoW_Jkix&`ih zf+^P>!@I_gO9jLknXd)VTD<^xk*;^_TgWJIIO=)+*bGwJ^vI<`<~M`~`P$aQNKD^t zW@nhmA8SOl`ICkU8;(@rWNqmWA*JDk)VdBL6mE@O-#5Aov0S{MRm+$=?;WDc@Bbmj zS~unMW7bFPqwkVfcMq+Fg?9;%xjCPqN4f+hzPDxD+UZNb$Ehdq86we)NUVr%i95%1o~@Kj=y0=vZ+HttPtHY<{Q1R? zn08nGvDuuP-Bpjz*J$X!er127?$&YRGp|nYd`r25QtvPP8565Q;vKb<%BZUJqNFZ& z-#qD)tmou60=L@d_Se(ds1!6Nr5}AfdatbW!&F!5ET{(FzUFXL|LemQiVtW_wOJ+E z48+K8{gBgbhcjKL>KsK*@ZlO?E-a?5uY*j5!!-Ha*IwN4YixE%VUB6sl4GvAlLC^R z(F@|2KbXu#er#ad1|<e$dcBYkFF8V8vI zG4@ocEb;CmVgiVFNx@C!FO1kVgmR$f!ydYm>O$1?%L>exJ3t@1cmqAb+YA*OpZ z70VOm)9tyBEEj$=5HN%4ykL)M0eX;n^Rks~Cn5-yrgO#SZXt6ZJq@_B{vI(R?LQ9s zhZDKDwB0+IQ}a4E1>QAymuH~B^x56qf<3mPQ~63 zEOrUJYO!rtvEZI_>>wd7>zK+vTiqXpHr%f<8?^iE@hR!zvXCcPIj=ga8{RRN{|}nH z$wG1eYmH_G72ClGgUHF>25-B!RV6z*sp=IV$y2b$ z@UswA0--L}>Q%Bu_HvlPF`Y|+n05HI-v`LEsGM{y0Iapk|IzN0jaXFpmx^vHjoH3f z=@PwsUdG25Z6Rdl^+^Bi)(cOAazlct&}5wmrIEoGkB83^yTk-8^q7N2E|Qx6RB5MX zEacN>x^YrMX3Mqd(pmovIbYXvWXutq2Qg8dIjayt4&uQ|uUdv~AjBLTBbuY-cWGJL zpP55XvUv@e*)iR&hu1C)Qet0Xr>Xw&r+c9248?dSuiWMeO*yi4RyNDq07{x(u~|iJ zXP$Y_?&+7K>C4Rj(>oWRu`WKX3k7Vf_|gJtaIW2dBPbf&pOvtjY_8H)kv58$?Ao$7 zWy5GTMimV=W8)L+jc6MEcmN&$`tO&gXiFbyYhy`h!yO&+f%mwCb!TO6w#(8R7^^?S zf+RRQAb{W}>c%)K-CIkv(LdRoqCA;Gk> z5ii1LSWhgZO#H_{9szItB}|(dvk%ro$8b_N-R5nIutEAWX+L`;`wVgW_B6MNJ!bAM zS1Rul+AII0%S_RBjsA?BkjVVp3W;GNUU9bne^`{wq) zR?1j>tivCcX$z&>P(3{83mk_{3XN&{Y23R_^qscJ$DBtRuZ3@OZH3e0)6#X8FOZ|=86IE&~3EOJSwe{Xk$hKUSAwR=o^SZ`XaJ|1SB)Vyr_TxKqld0o*C zlXo<2ogc*T>F42%he88}wh~fJR|vk8RrNN30)spRs2T@9D7LyIH!t2{L!z#9MK)zE zyzPbtLCpL118z~zX3-@Ebh`feI4o8EQZT4?Jit4(faetB(jW7h*%H{Lrl%^zg(`c6 z1MmEBTdC;bCbn^@vu$Ko;dv`q6zwAoM?Z3(PB*7)1It@Ltnj84bJ%ZqDzIc`!JiV% z|6dC?IXeXyAK=A)SFgL-kmT{Nv$1&Oce0 zAwG#C8J^%_@{Yy=KpkN1irl{}YWV_zDU}`zI9=!BN*j#E-#=T{9>#O}ZeWU)d-!a- z7LyO&jV1Exr0h)Ftvj|?@dv^}1bbYdWcTN?-PKh{PTOn1hO2c(YwEi#={>oEJKK*z zXCmO%!bY0bWQmO)(139p{7R?j$CNPfmAhm1)AuT6(m2{q$xFhE=URIBdYs?InSofLCj8e2Q>5wFXTy7-V?}3S zb#=YPj`B1F2fM&gVN8Xsrt2Nm!p0?bUP-4Vv|xN87QrE!@E~Wk27V(VABC=O3zrVV zMs^>SlZYrsjs|B%U-24riNcU05p;FB;Huvm76~9IN!Q#zVe=ZPOJ^h)om0#)mngd0 z!eoX#dTPV9NCNh?()|@^Bf8BhBJ8>m+&&Y)O%&$nWusRWA1EoQR^tU+<}}sE5;$Mk zq(6Z-`r;o)eEq4mq!8808m4D0xW0^-sZ(IhiXn%sDWE6`9BWNaXP_g(sr85D$)aGr zx5h&5SmXCu9LaLJ>}*@~QE7JsO_4vGJ+HzNA1adSCztCFGqwJjXu6t_y4Fd{db~y) zlFg;9%f7JTn3I+Z#`^d2Ki5-wu2W5VHCcMxkEpAA$ZGg$bqq zS%+QvxMBQJ`?Y%iwx%4tk&B9{nt3XuNf1~Lbvd-9Py@nKhTz-#@ESzDyR}(T2s$bqGnWt?yIQX0_{C2G23eiEd$ay zIwET1>wizyB7HDgjAwH^OOjfxQc!kijf!AP44|jnuq7VJ!o-m0hGG?Tc1jdwd*OzJ zUKP%&_^2%{pvL9U$+oq_&CYf3vuH@7t@k;XL}T`bk`A4fX{q_%S;s-$ZD4aLKOG-$ z=SRcJTqLG?o{r#>6tX)M2l}5wZ+QL#($LS}f<55vV`az79`t;quPTe6&6IiHq9LYI znzloZ#W_dbTm86Jbro5QDrnyuv4yN-g#5RyQ_Djlgp3o2s3i)I9(;8Vz2xm)xo5W< zxw*Owi6V|YcVvf@x$bC(+WvTyUl)PX9DBX};ye+X;sDk6FwUFdpa$^zi%(2GY0B{DbrJAx5Ndt<+tx)_1$CPf9?IN_8C`D6CCSqZ<+S~ zlPBMMf}P9!Cd*II^^o#X6mVlZX@xyT1T^>oS+HV~73}8nUOdGzf8IY@vty0yAt!2} zf2`7Yeb3YV*ph$c5vSuyr;#*a)jp9YgLa!)XIuIDmVwU#yK6~&!SY(Co@93?cEo4o zH~;Qa|0-1C^83O4gqi$j>(#bmA)88e<7&(}y0gbJ`*l4oMXn)x897l3CU2y1|LYX5 zX9cH@0m#nWW9s~!5K~c{!z}0Rcdt5&WWb^4YE~HWXUF>mKcW+bl+n{{$8r#CUJlPA8~g9(=)?ZW-`eXD&L`xY;71d4$fE=H4>YfA zbr)N*up}XFls;iT>%~Z}Hho%&m=@TdVwb+k^!PF9rzB8#p$;l%2e52d%4~^`t<oPJrJ>(_CM3JcdV13t3mN2zHv4n5W3dQ0w?Etfi#Z0gh|9bzWry8kLeeH4!Zy~B4n-K6dm3waZ>NU;lUbYySgBgZ=ke~E zF_s)D#-|lT96DZuw+!&^qQ#RMvgsnD+|^0@`C>K>?|KLI`)-}3I7GE{d|`KZ7nR3^ zA7_CHytAU3T{+mBx%sIZe4jk%^f=0&3BHT&5?LTs|E4=KA8xzsKy&aiIQB?A_RJ2} zdioVXP#zrSQKTe*c}8a(wh>6QcCqBqVY3a1N?M^QAoyFzB%#(VH0Y$_E*RHGa5+jE6qWe4I|AGgv0 zFP@RIY0977!hteqUs(V-A_&g<7zlb%MdQXu{CRT_bJ)dqNcE`@LsD}C8G+~|&w3Nu z_$=ENA{FK&6uGl@z{b$BC~*+Qp#WR$*qv`&ZdB%Wwhmaxi2RH?2^I zrpWXYETMWN%+WG#*Xd?7iY-+;sCPXo42P|U;x1NWyB5W+bZ)j$W3``=K7XP7+IOjp zHk3K{sf!wbadfy~**(C2t=UlstGw#ugtwr0*s|`J{O@mGBEIL!aqnvsHnNt9m>+P5 zQ2%-`qq(a0pcFFNkK=mOdF3H~JO&lS^OH((Kf!lC=dqpQ3ik5Zkc>yp{$6syP`9nd zg}zkxHT;vR?7H_HPl$m)!>9iB$fg~Il>8X-g~5mRpT z!G5e^Ql{$vW;SSL)j3%W)lUhC7RFk*X?J^gL7r^kpG<1Wlf4EMH3}XK`1IaPnrBXd z5UK0Brd=Kb3*-=MXg08*kol$tq4>e_&Eyl1ro-A`&W(Vb9&yi&7g_JA4U6K`mp9gf zsq(HX(|_-!L(ng!q$>8tx4RkpcmsvgujLnR+vt=I$9XArmH^*I{tT1UN#txd6VtiA zA-+etfsAhSIly2qewT3iOSberZL}sVarIJm0?eB92Wq^lw@y3kfmoHuf2f77*FZ9u zXSv|rX>TYQ1Lgk|H6k|J=3wI5e&M9(`Nz$m<-NIH!hDlFmB;pZw^*5-bA6cqnsStg zZqzVfBX#!GF~+%p7Fk#iJr3p1?F_y(Z%MPEw7lZOQgZfxRQQG9eJaPou9!@qS|jAx zD=MqJ6Mz21TXHWdPS$tdi$Ez0i@ZfusFIars)R7V*%teVSf(WPpmXten;Z8*_T}f3 zI0ta@ad<;fmeV39e$V`K`=ZQR2k(x_Z`Q5Ub=2^U)i@LP?B*Tfs&6l6u{E^bOzPET z7uQ%#SI+HR-CmVCLS{9)psGzu?+53`>Jg}gTt?&BUW?L;laL${YS*xP)B^qP__)*f zO136%?LmbuR8@=i36A3yo}~{(p0UEO0bcn*n*7FD|cY zyNi32-Wb>ldWk80fNJUEaox4auF8F^CJVmxbhOJJ&30{_SetkcNoxBY<|{MGwY^D&a`iB;s= z5OIW?FkoofG7gT?k5<GoP*n|V-eGMZozdB&H9e7((iRA2V3Of zg``SoZj?JTct6gYRLm>-mg~Qc-60%~cA@4BKgp$KRRck5;L?ZBnHl4s27 z_8#S*dK-#x?V7JS${N4#JCNAt?sT^wr#4JK5FboqOg?-{tG{yUc*c3q_|Ag^%@p%& zOaQO+2Hx9tf`7Qj3J?5 z2i~$-#<6@G)NZOmKR7av7nU#ehE^EvzeV5Lf^HCZ*#xU!qd@adY)g7g(&Hk)H&cEg z29ujn4b1V-Dj&@;Vr3f8U9S7Vf5GAdmnyUX?Dub`{|YV}93-E|e4DF2@)~liyRb38 z9Qz*lJ1U&-)fAuR%xyC7SoNBZino)YQl$3ixiJh#KmQo^Dr^MY;!7&+O%t8M#v1*zV(EO*+`8+LtZ(n7H%XLY&{V z7AS)$XN_y6@f;vMYSE~&;F#GMZc9A&cHv(z|Ad!gxAKwH&u?zD;@j8~X0?gjO~WXg z_+EaGf4wPGX8C?&<65UOia9_m%v;28>I8dG$4Gp3p)|~Px7{de`4~|nw$;0hjPq*u z>W!V}h_A)PVtKi+1dD>ujY{q0dlpbp4gp~7aqPN2yn^xe ztq5j=pRym%XO|uOKd{PQ=)g)^FECLXN?4axro33T9yFXH({q=9RYq_Y=?{EqhAqg|&ntFy9!O*bJ zHZRG^bNHTq*=M4z<55?w&wbedLODI?3BPc!#Y0Ow$?4@(j^#IP(vGaSHzqQL-F*)@ zekHt1I;5ej7c(16D~_!Ufo>c_%LZ=I=`8a->Qzy zHoRnZDAm(nFOMs;rA+T>3bHp;Vy#5Ktv4S7-xS{e+1>r0-QE8M!T%r3ySn?Z?gdN9 zoD1K*LvnnF@a`R!j_w#n?+~t z;$m*&J8l|qDi|F4i_mfCN@apA$LRv*OoC@87*ArY$B zbOp3DCeJ4PYGZ$8hvod0Ett4548B_wgl^a9HpVt$)^ z&bV3E&dQ~!R981|LlBvFP>WH1q__IQgDOxB=&9SrB^!ZP)aCd21yQwl2MEFZ|LA(h z=1`z@SvR(A+qP}nnXzprGq!Epwr$(Cot(LL)me4x?tA~i_||WYe!4pc-(3?rqZAYp zFMPy6$8+uG#t{kz8pHgZ$cMqnYaK&h2*_QPJO~dh##?G}94;q>{n$g)U?{6gJ9vJl(jUn?F zOAnzIK;~3vapS;!jmYY$NoNAGr~z+9#W|?--G_4A&~A-u zyQTZ?O!1Bre_^WE3*hVOHD}ed&d{s$M&CN}qVG0;UFI@ax^Klr2$Su+Z{1!7>#D)iJj;>WXk!_947}7=Q2{L}d*l6M_)#AFMJvk^rk>+WzeY zu&v6*n2Y|%fJ`;TLke!lF42^#iy9UPZFd%t0tqZv=O_&YhaZIb+Z>ujE+B5=fi*C# z(SX@aGY3d2b0QJNg<8@yQ_eL_^%@6Vbug9ljr4TNWu=G(H z*2<7O?{@3(J4cAky8~C-(bhi5gPDfHAcCqn61G_r2o9WW(ZX46Id%IpszG)R0)Vu)>cKZ=#J&vMpr5c_*Z%&ZlxrG~HvjT23QiXL|E0 z6Dsf&y87v!Hfi8guhdz!SKaUj=gM0h3b+dPlj`03iBd6ov+s_ds6azbPoG2)@^SPd zZ0pQW$m9EcAKMcsK0m^wxo>`cV`X@HpRu!0Qu3z@=SCDYMi1oh8dpk$#b z2J^+FI=?VnZ0-FgPGS{hzkMaJuk$=DTXI#D`TZ43?G<1TMVgz7Z`R=XC9blr$Dux%tFy#MzHA*e z@Cl)2%i0K+ow{J?z>d&eQ(9|z=e{CWj5SidJrLPM!zsN8eCOU^2sI2*eyDO-Q1Z*- zMGaYGpZe1y&v5dpdJyFw%F(zDa_ht!{yJWNPaaLnLBb5-rMom_$cSBk3J<$RD}iT6 z`vHMXPHK=S(kC+uU*`!Qu$dAt}Rkfl><%qFC_p0kkKEd;{BN<{#sugf|Bu*ufUBsCr}`q36p{eO&k=D-BE_q;MiBG^Kp}}J3PQ$2 z_>(9{=1~YLhzJU*Bw&gL5*3vB`(r31V4{S}DhVK%V!LKKjNE^j&aQ9&-f;e2IPJLI zy7hLn?p%64BPpOfQql;d(~9qdK$*}52j3g9ut5b|m851Cr)1W4Z+hOk{FG>af3dZJ zTi@j|80(;*sii_v4xXf)^{vd*xl>dj;}j@jM9ZR4Bq>0#8&R|OGnIuGC0X=e26lgg zmZxZ`=(pm&be2g)vQ=fB*6@@Yl`3eAkS|k(oc{aBGi#&5_MzqFiFX(<6;Z*^EQ?}E zgoR_O&PAj^xgEb4@T$l~|zT=`aI>Zm3EBi9bXGBgKN=&C0 zZ**miH5(;Bho$8s`Zly5g!1IGv-U$^0=W0Q={-2ThSofljP=bSCmLk?3>=wtATamg zepa~^OOUA9vr(*tX{w`2R%_!Gz?}B5(WQmxuJXzzTZ;}DUp0J5H_4sP7|;pLTagoJ zFF4eCx5bgS^Bzs-&4qPB;eN}+&k4g!S~{Dgc?znMT}hvUZXV=3hP;i=-E9zKw>*w( z(kj5>IN0?y#}>EQZSu(7vMYEVsT=1d3rZn*eGE$t1Kd9tp*9R`W$3Ean)A?X9vAJz zIK)>hAnVGrjW-R)wCmGps`(Hwu$&{z+Qbysu_@q|Q3`gEiu3~JS`yIZlw-5<;;B&2 zyqmWeNPf)+j_kjhRbz@QLF*3;PsWV*|?S1|6+SiI+#j-4laW z2$^vn$`aHm?{94tcGf;EFQ~0v=)K=#MWC%nYQ25|^}tS=-0++&z~2A*z$h&@SB*T4 zL-Pv*?YImwsaz;%wB5ZDZFG=l;dSy|+~t<1g+2JvVat97HZDS178^K2IW3ghK%V#0 zN7YYV4$EQZ+eBGDo}pXv4mWH<$Cg5VAQB=nU_-aoOhz zds6zZ!o}-3NbD-Lx%b~*E>`u6e0E8Dz(qqLT;XR*pq6YFvJDAfQw^+TsXjZ9DBf~W z0dA|{`La>uezj~~WU@+=4P1~bS?sS9Hy6e*Ywn&ZCjj*6$7Az6sNgoYk6fK9>=b*S z_Ls7%f$t64x_aYopy@EW%M9mAo^qaB_p2rcO&Nx-=Zyu^2x2$h4(|8&k>QIY3pCMi8Dl2x4DrU#|=NjM#rI$e; zW7r`}#8=1T%O#ctuR%|TG4!7O@Yrkn~V-NK6U5unzvKrkdcSz zY3ESEt3ihbH=votG<#i^V~1X=Q1(=qE~s_Y0m&|>@JV`5z@sA$u?Hz|_ORx@ac7S( zSvl4`hUg5qSysKOYYH=gg)U6+opOv-1;bJlz1P6v!&o(DmE8S|yzhd`g5>rW%iS4L zya00aUwAw#-SCxrjf$ntR2-a=50kJrU}pTo!bnW*d+zFN(maOvx>v_R@PYJ*U8zR?^v=XHO)JwbOt0YX(5-(y#x z`W$<=BdExI`fk>A!s!s@G}z2P>puKB*5GuOy^c{KCoA2VTYKU_JLA zpSl{J7-@8GG*$m71EW0>7lWQI`%jOrE;qzz_gQ)=j~$bK)R~v4UTUnl)FJv+D)Tu* z%bcSNb8JAwrH!d3lxFrnMRy7gsq!;;X}pv-1mVi4D^<^&ruGx{&TiVkmIMt`lJ~23 z9`-Lalx9Rh1O)4mKhLk;8qi?JuCnKXjR3u~zE<#I&@U9GTebs9y0H3rsv+M^Vsk&h z0PHO)NGQp`pZUp-d*QxA37m$=nf^uU^K1dlVa7bQv4pYG5oRN>J3P9ev73uUpg>Z! z`1_tKlbj6H*)QS^rrreMKaO@daE*1t@H@x12y{p{cUhHqxz-9Eb#<-fdO8~z9DfT# zx573!P`7rYkkg#UepqNxuVNQ{SzejSKad>V74^KLh&xV07O3(J7cn z;V~6H0eom9o$(fO8~8G5$R3Sd%)swe`f0=IGk4(L&1lgSQ~wif3sIc_Eb@{L?W+s3 zp@SLTwguvhh2}RMjS1Ae^zvs?xYiKwwKDlnGiRR5PuQ@+Im}##HAA=S4*A@~-UIW8 zFA~bDB*+KlL|{yS%rWE3vjGl6lWyNO<`eYoWVE;qFe_;Tvr#Okd2{3%n-^^0L!7UJ zLkDje=^}OPJxf4Ae?be2Jl9x7!khLQ1`E!1WwNxEfCs$J0$K+k)9e6v%bs^yW4%&p z0vY(imRsk|?KXhprabJTF#rnv%`rYt6W$TKWbAZ7lub?oyYhDfeggwV4V1ro-Dvxuje>-1(B(qSWf5#+?`xrOc z5%!3@7^rbjgA=aVQjHx!b;TPJ7Ow!8I^hEZH+NlSGZxz$HK5nPX+Bjr8G=@Yecvb% z>^Qw;~kPtqZ3EWhG8n_+HfBAR@b)vBucMD92sO$;Io5F#r z>?=)$Q`iE*TH5B!)xfzRUb^%qX@cjTBzEU~9EjK#G|oTzd&Vw#mz5rXsVM~z{AQqG zqOQxKpYDL-R+%1wzHkukkf7}-YlBbVNMetkG=geclo$D2ufy5{TX zB_NAvsazYIIsTY|vnS_PwxO6@Cz3Q5DFjPI88@-~1&Zsq$>LIFeP+MUrYP0u(W)}J z@fMiii;tr;)s>isCvNhdn(b&J`cQt4y>8epqu}~jeDb30quWw=^~wSga^CNv=cQ*} zx3<#IPTB|?O}oB;#JyvmX)>SC>;mpPz`FXo(q*qJ(g9dl0KGfveuwa}a~f0G1Ml8e z0mW9UV(@Iz2Fh()E=6B-7c+*;)85jcY^N_e%|z09Dm}W~r1X=3RV@Cya;g_jTn}E z3P4FV#aq7K{!j(8i!#v3XoZAo*<$f?rRLt7pP!Si3v;*YA4*9X94xk+1IZgS{yFd$ zV&%{PSl(zR_WWU)!Y!KvSF^$%`f_4GyJK`Wd*3!wr|@}Q`E|a!a>9pf`p?6i zh7qS@8_BnusbB*>3zVC6nD#s2vAu|CVAeuio;kM`WrbIYy?D_fJ^16U%kCrYaPgYX zdynn(Wy0+_;$IY~&m?wGSB*TNLbEgtk;rZZF&yQAth_3wzGOhJfx9Y=2Q&ejbDhUg zh_KP7+h)>*O8$kCGR%9pplhYLYzkB$dtJ2|NJm)kH18$)9d^p|6lMrE68&iII?87^ zQdWrD6{CKafK>J@=42(4>UjYK@zbB^_xUx$Er!IcWdfM@GCOU0kk4#but)p_d5k|* zU?03A4p2|?bxo1Nyx`l9z#o+6I+yX$Kgk>-rBkmqGfg5-F^}`C^(rEMoh{!s7^u;c zP-7VSfJ=$WrP=n`?bs+w&8js&D_U6gA=yV|-`nWX!PnNB-sCZq0^6o^&G|Ygf3bsr zg_(2_#! zmU^?GStM{0k^6TDTTq2!eCTz;vqK+J^trS*=cvX;YN9`@V)%U12nhO^Z6iGj%Q1M6 z0g=k9*8A&2x}1g%dr>ORYc$?Ew6<|Pb#y;w!|~!qhdR<&tyxF*Sh(VMTZ$OH2m=%S zT*L~e-JlfML0_myW&PgilZsAj%!8DDOH)0Ik-)lmu(-x}C@8LWilf;Ll*tfYM8@^7 zKE(%uRqf8`RKd#NaWuZ;@#yIGKPmnuGGEfejpY0G%a=+`r9Gh(ifZy-lrpU}B8O7b{U)LNBxv_3eLF{p>pJqi%+#=$ z3M~yZzIJyL7XG&6*%x2&J6GphHE=DIILmzZ3O%){Qyq#hz&=;FX*1Mp|2F0K>^7t* zO!$|ZO#%P#@WBZ@MK+P}j{Gh)mK?UMEj5`4diswS;6qwS%{$UB?)A{#_-wn2D5J zV{`fVWuaTbZEmb!NcvFTmHBS5B3``d`V(U=P#M3clq4}D*N=B zL{7|Iz5cCnDB#;>cPwXlD}A3AkU7q*DgM>?m4E!vU(Sz_Gb8-=z4%?e|NV9NeTQJU zF`L=QGS~tK3MP_Bf4SB7A>&j3ZvMU>ACj0(gU1ao#jxV|%VY}=wcpA<8uxBbY`NJ8 zjx@l@D6dC8)HWHA9Yp?SE+%j&PKLg1%a%G71jk?4V-B1$S51w`%5b0G-QWuWqZabm9CHxZ#f0NC+7Wj~e&+~N4b z@ayk4w=MHpU~L^categSfU6-uYv=mmNCH#API|=bwn>+Emgra(krR=}JrE+33c&_9 zPFR!@W4r|W=u;%BF`YK8;;WvFTB$qIp@m(TS}py&LO2=P&Hm7p5+0$PrSW)4yRnHL zpJwWy)Ryy6xL-5NeQ!^28dgRED&WZw@gar-M@P6w%-^_WS=%9#QtEXj*VwDxuG}Lc zSVt+Tzc|m`qDr-`@sCp7M`@M_lr5a{3C6?{WZHD&9?kJvTR!ngEIWj+w`>V2o*?Zd zt>Hx<;BnOCGUMNYj!LM;!WlgV4-3IUH@y$U%RQNr`Y?pEx+>$FCEQ2zJvX^UD*lx^AM##}iQoxahA|*&}>1ijJrbs3j ztt8sJ+Bxz#0CILDWs~S*lOvLMNM@0uuYVm-arViNGpe>W0e13+- zE~6C?^`wmPyveBSS|oZTQ;D#VhigE@AgA?aP}DGyk654H&po;hOtwJ7bMla>coHFE zugQYcCheDaS`B3XB->wzB8-P>{{3Dz)Hz*_mF|^5exa}$pfioI8%f`f5aH&D(+<@y z)i^}I$as@GXZs?%W$O9u13^y#Kh&Cr@>W=d@w-+Zu?PuzbL~NhNzDj(OrasHGRwT< z+@;7$PYUd&pBZS%u=Qrqgv0m2_K($X_rKn_u;*&%)3-g@8{tfMPaMVdW}(FDOtBdX z_&!L(=pAKBjW;9>Tqx zc-{*ebgH|-;>OX84?nJUuHPIVP5VydV_Q)R8Ok(G^YR5x(Q!gjex)7VDv!`8{6f)7 zZp2s45H&FFH<~*_0WQosjT_>FhQ8|xny~_nYxSh$x$=t5MoAIa-%pJDGC`2H+8-eT zAF7MkwxaowMWFW{h<4HM?xQoL-usT@*m{i&aI2!u|FQ*FGwbq|q4N#k+-%D)?ZJf8 zaR|7eLpSH)4K(ZagD8plh%@blp#$>}7*7YE^SdE@vN;McFfnOU<$>B6?e=H>ri9VA z2{h58(vTDZdRaCVn0y0l^N@m0*fs8p+X5T2PXQG6gb_#rLWxcB-)Hk#yW9ZE2Yhxn zW#qQTI07MF=P1Ju7l~bI5(uy$a*wDE6fmLUXk`)p(UqU8h6FDy09kWz<>VUI*^;}1loJEi_9k?&=E~}J1(yr{%&R-uC2WfW zEpgK5(@|wt@J9O!6l)sL&<$BP4YoF85d`;ckTf(MWIp^UV_OEAKM#s-;DnEjQq3Y7 zn!?NMVB`lu8gZ#mXuyQ^lM+6HS?e3p3rVO~%2_6!4b5}FoF^uM{Pj&nPtjNM3<#_K zCeLAz*AHGgh|+iTZ$n#qAN;6rX2SgoKG^4(XNtwnE@b3>IM+2%tDJZc>Zw(E_|XpS4N> zEs%9~$CSfYSf67Z22PgJ+zNSo+3WK`IEMAl1$V%il{WK6&S>yUMk`>v7Ss6kZM6Wn zmk8NaI9S#Es={6}v-y|}tmB{d;2u?oe79>^WJVNKI<5d@*kaw*91&7V!zRWT&J8m9 zu&?C}^7b%3RutSv(*ZDK{BOydtvM`|aY}YWd6uS5HghB+tLwR+j|IsGem3*eha+b2 zjVbI%HWx`IBlE3e#6?r04c~2_3Aqf-n3tL)@vdCnd9@rPnVj%4{ZQK{)gYe<{+?p| z;I|y{fbaq3tZIqzztP^o7i9B1#=slCYc>mdm|kW;zcuMF#WbQ#K-ayI`C)~K$UIys zd=WzOqXoMC{rndSZ@zFPv0@P|a+Y?Hs(CWM)I?F10YS1*4vmkYBat6n8=|u^w|T^ZehTV;Xfoqi?m= zP2X}0v5Y8%T%3NsM`>(OLhR`;v0(#nQQv3GHb>W((@nn-=D@p0?T_j|y#wNcv!y35 zeq{Ji^rr9Jyb<}`U)(=_8Nz(ar@y6EKfPt4?wb$4upZOYivLiI!2dUju_^IiZ|FZL z2Gjo!iXr%46vK-p*#g}!UT3mcXe3qm=E#vH;_l|vgF_PWFiVGMKg)4k*D*Uu;)J-B znOF+!e9|OhK_MZEY}MkTawNi{=x-DqjBq&TsP~CBE3?(K_hlyQ@7k@_?apWG>ksee z`larzCmumjHUuC62@@nD0fdW?|LdJd7=g&K53kKxPJrJ2e$I}s-aZEhP1GTBzaes$ zh@z0dTy*YKBl@HC-w^i{4#Kg~F_1uVpbs9BaD>Bd*f$FN!+E3uMLk8|eJPfq!=i5? zDd?xD=KRscCN{?wi$|%YFj1a}^md_a*x}tUZHacP%vg5ZN=(jvKN1lkoijDwDrADxt9q5^ZXFH>)7m(u)~m(bNNU#RBh+#GCix zQ0EVj`GI0Q*E0|GZ-H0d79R9^DGWr-(OOwE`&v5S>dQM^*L*i*_iTl5+Q@j9L}uFe z6#s|@Z%qNo`{Z&Qs#E)Ck2!u!oIBl(W2dIVH-qFF$^WZD@B|K3o`|cG0+fq>%!qdp z-Ls-=P`MCgeJf$>IkGhed@)YR@-T;b+u>gQctFXa#VR=h1Y(^kLz({R7VEgN??Ikj89cUnXdb$rBOGwbo zeYQnK2GX{+E^S>M3P5}`W-2RCHzlh{ey9ZDzPQ{?u>|^6urYhGx@frS_LHTmtK64f zRUUDCF?d5i==yIZ1necqkCk@b2{`xFsS3kFxUSK~`or4`-+de7vMs?0xa%1oS_L(_ zUk2aU;opGpu4cA(27Lrb*A0tPd$g34jB8YZ1A|2rm@0zbQElzbYl=gw|7<|ek$R;g0 zGC9<3z_UcR-o2AwomTd4mG&cyf=$OZzx7HGEAM2(=N?^MSNrQ&o&%7=qE_K%5msMW z>l*X;xiJwC$3=A-8rXBq=*f$aAVH|=pp520*UWzt+ zW#G~$RRgIY^;gwL>I7Y0$(+x!aXM8Q7n!*P3z~n(`_%h9_jsP88393sA1}p@QPG4d zNT5X4WqD4HAVO_TG9(-dDCQ#4LBTo;Cm#%6Ng?Ku%H#)dB>kd6d{ft(X$>%^L;kvl zjv|%_JT&C%6jp*TIK5?>$>P{;dVG(4u$bHltrgV?z&n$X)#YF8IADn@iz3eJ?OrHO z6fLXkf5U-Y@=aEM%Do1>`8bzc#?#{;BKc!~HD%#!qi3-TzSkRqzk(sZ{Kx@72!$bj zy(^A#qjr;niPt-k-}QZ%C_Zc6|DJ*yZ>@0}h)@KoZ91$SmjkpDZX4ivraa7biAdsU z!O?epl;s`5Se`zGCdqwJS9EoSQT33BWk>J`^TI5aPNXJ=nQla*(68pJe$vK?^|D3$ z@ych7oS1X%fQ~R}$$L9aJ~KCAoxm9rem)#5b7jKSm9`Zd48551u@ZhNF$JS%a~cT= zg*SX|V5!oS9=&u-sCzH%SmO%`N@ulMYfFhtFHL5=d?wk!y@+@P#n?M*faahg$MtIy zK_Rz9Jy_B{=FrXwNG!cQIFdhbcyWh`p&9R|gr~U^Z$)xQXkmS+U5ouD^{T(+CC?gC z9UvUS>)JlyY9WiNdk=_ocM^nROW6rn4#v>1WI&mG4Ko~`wXO%z2AXW^jqPdoMVhXg znxhS!onO7CR(Kv~aqcgNz%~Ct`(9i?@yK=%zM?=y`L4!0sKc2Dixn%HRuiJaHzQ0e z#g31gkZNM;j^-lt%B6~SF5GxUKv|_vmBKX74{TsA3(7e`K~xjv>`+n4;AKo2m_v;q z{LS#R+eE)xq6Vd@@dfuSHjQiC%;^eVGyVmIXYi+cNXdb0%WaovXrxONFG?KO3tcpR z@FFh4_Hh2eCR~sD-7x6uq%%Rf%)w2ftH9~%a#LR!50RX`K9|it@ z(isO6|5f1s&>2kn|6g>5@c*SVJRv!fw>y8((uo>H>c@G4MMA2~x|JkM)FgsQlF}21 zh?q!Bs){5fC0Pj4vBJheKMIu6nP!b$*>?Rt{d#*AU3xCLPIY=8J7+X&F1v3}eQ(@& zt!Qs|Zkqx~?$bnoNdOg*fa4^rBv_L8r3y*oF+6Zy�~)n756*>~l+7Dnmzoxof{) zNFt)+MH+`3cck{89=YdSl`xns#=Am*B$LFbfk+bY!^0a;v(+gVyi1FU#b0na&&CB; zREavTIZZvYXxdGB-?g~QLGf|JMVLGHQdZi2xF5yXtSG1F7aAXVXPl(OG8UlI7p8@R z?5RGffx?~b^SM^}RrtB|eSDz`ih5PAVgqK~V!=*Ye|>}edee6Oq!}lmoCQRe2PE>Q zoU&Z#l0oRTU9;QgHG&cK3-g^YAx}esZ+Tlf%igk{17jn8IlQ&v{i1%c^7k{ZxJ#I5}AYzVifiL=nkkEm}Y$?pTJgf=18&J|CD1OG&w}t)GmVn+P0)G7s17u!fI`hkU@8itY|msiVFl5Iu6g&|3TRO z-rzQmfnOUBLF!m8scT3{qz)d06mgkK$2n~QeqXn&4QN+F@cW=OO&)ec;3gw}ySGP* za}oLm(<=keBtV#F9O=s-rBc*S^b~MdtglK})g#c7u5}n;Ml~+s=XtK!1!M}ZD1vU4 zBzSs}^p0`ji#wk%+EzyoJTnni2lX@681%F~F67~kz*{R^B?KapIlnPJG>)_MoBNPe zg(jhsN}}p&1s8P!?H2%ML{P%2>K(0xUI=l_eEhZ)?DB!#ypQB1_&q8=7Y{Pl(EmD5 zyBws?(=i!p@`8r0(jK;Xr`tj!xq)pZl~w%UP5kX@y+o40r?{WUN(QBD-M?pvRIj5O zQZER+f|S|;ilO~%^|!3I!~Z?cB;YsPi*pnNT_FYUb4Y9^=s{UN)z;|Wn9{bB-T~?V z*xppziEscX9bYUiwA9O+!^iKP+()hA#bEv@lE)+Aq;F3%z7HVFenRR%b5X#mA$f+& z0US;)EGR(E733waxN}#7Evwnth+E@@qGJ2H5SKR(a{R8~<<@x+^my{m`{hQWSPpO3 zRcwRT;;O``A%pAZx<9|f+IGkT5=?#DNEfK@7m;!*KwJXlE1`jo1aF=e8L;~qB-nh? z$1h##CGX^3awR1YzT6`q1i9#K{lnyeO|jX{ zL+Zi>$r5S?3MUQ`n34FX=$J%8(PP-zNOQ$k_6Bppi}MFm^h9=5Y~)G6%%#69`Vn_6 zjjZ&WLlK+h8XQxO1EFr*^lBVx_}HH~q(gt03GiRbN9q;|AXY~G+jkPSfkR=|t5&Vx zDR62d`vdSb!AV_g!h%0)F74}%0xU@BS4m}5M_sv;YZIqCKvVFc!Xc__->z+@2>v`s z_A1UHZ$58cjL)mjrYbDgz-rH0(HmfW?lYB>E$x{cDt)JVIh^O_vXk$VdSFkpH=I{6 zw6*2}_V~LeKpxH+3}$PP??veS6S7<1S@mzgi+Ok2ObzVp=}b-uxpn~>h}DFlY=9oZ%xMIf%SefwQJbQ%X!yp_3p&^?TH zlw3V-+F47t%IOyr8GWkbm5V;CSc=YrHmPPmk1yN1w;8{N43qe}UosFeZ@DfU6P>}8 zRj)WVJ^GY#dMTJ4`GDL!%L1u79YZQFDWc&!1kH-ichw*nsOhS7gJvO6A5CXrl=3BT znwib=yP+=%P0ag|ZFvq*?E#Me?kr~M|dYP4Jn@v z#4{*E_2-xMx|R4^^Q11UmutW~*Y?ufB&7k`v**!0quts#9l_eAAH3_tc=zwUDfm^^ z6RL$bHk7G+2Eow@#FeqDZ=sC}6dDd8DEA-0DQEr4)ylsC;k~U~w;?iX&)kQPBXNrc z9ruX_!#Va038pefbd`bEW`)#5Pxyh9r|&OBCGrL>+Z9POr#u+Yarh9}IKYX^RWW8; z)O{SHWS%s&5K(+$F%HqnF_8-;uGl$}3_`@9)pR!o=88*+y(cVZly))BN>YH{zJJhZ~6Eat)? zdnBzHLAs9k;rx{?GIuWD15y?Q$wD`$@)R3)T)Z2R`pD8Nt!5d3Qsln-1yjJ9kz*Ebk15|- z2@{t;g#;^&o+;g!X%)V`>1u3&vCD|rx^bgXa!ngM=L;+Ae6w$h>SNK%HgMr2H;iB{ zQ~%M*`%(&r6-P#oGl8(rdL!Ar@IfW@%c(+q;&b-V|MsM?pd!4WT>sJ-f-Lt?lawAA zC@|Dr@DsTrCBc`r(6D;}O~}HePG|oWv_*dGoQ8F(GZcRrrR^*gm`~Uqkt)YPxq5ul z#&->@&{_XMUzH1*h*-l{rq2mVDxZ9YV%A;T%Y4k{?SNsy2Kr7&84uJNbow>yfKl+I zZ5i;4get>h&hx@D0y`2m`E*-Y_FuRyq~H7kGQ1xAQpO^J7c5tzryZ?8C();rI<3tG z;mkJtg`0SdPB=`$@cPR(rn1?aSjPww&yED-t^h(((e@F>-CRe;o8tHKLK21}C*iUd zA<+LvDQM>fAdE-HMt%Gd;b=5lvnxd|=uPDwaI(oWZUX_6m$eM|4~-cy6V9gKgrZ>-nfk|oheT{X9 z2+^-kK8)k=M5ts&q^Ht?N0_=_-!>n0mff6oYpc+8Le!MZw00oI*Z6eZn;np27C(fg zhaiG+p|;x=+(;6~nkVlL^8V&Hoc7{Vm+OC=e#hB0Z~DfIBX!Ab$&(1v%tK zy4M)-Ik?vTw1+wc{6^J@7+XTv*I-qAUMBP)>;9qo9C`YJ`hA?g1(%pCpafhCLUDpZ& z%C_GAY~d``M?OP;->-=@R*Ou>HpB&(3k_Uiq6WYue%E)4Z05hz_OfCw#aXvAmUh7` z3%2vjFGuBO0YscF|97&IX3x{x+N)rJ1;Tw-SGVqi;_kz4k9D&H(7oMJtMK&8aM&&Q z+Zh|xAQLqT@@JJb~A4FCAT}j!%B_`gKzZ?CGwc|}Irv_-J zCkigjN?cheo$kc7yzkwpah!sl9-=(Ny+?f$S|?~!<&DWCz;6A6)Jua8z{o3WZ0}8v zg^qrGj#Lorg?f>3%cM1cKgjo1+DQBYmDWBwjKypy-v1`+X(c`N%Dg0~r+qEm5!dr* zKDz;bs}F8aXB@rD{}y@Ihu?(W;NQ`vKI@F_e$yMfT#^;4#%8zb$8!dDwWC@SZ39)e z@S5G)@u_RTYiXqG%K*l~Hmd4Utp*U|hLnz9G&=8G#k*L-#B`Tj5!+E}4s`l48XC%% z3OwEKy8$~AayIBuuTd>I;lcuJgs~`#^pALq6Y43690|H`|7vL{JO_bwr-bX%lh}DL zNx*(?kPFe9AT12&`_WZj3!Z-pi!O-vpt4tWb_F-J06Guam{A@m@9RTd;5r-yCi$W6 z*Htd>OCr#*^3gz_riq<#YKa2;*m{lEj@X);+EarL|H5iIE$J<+#e>B7dS8@sdhk)ZA)GrN`P(7JRj~8&*G#h5Sfis`{7G?6kHt&STz^p->7uY1 znr&N9Z!7olVdmbv^8Pd(n!U^jYJOkrysNEzDw^ zY#R?ol2<*kX-TddWa{Bn#9v!9jWF9!B;tO{=PvB54Rw|+yIy1-cw;EmTvpsC0`Nkh)g?wwvPm9o;RVyVHmcc?_nibP)(c>&)dU0 zlO)4h5KxQ`CC3GnQT^sRk;(}+U1Elr*iuh_;m`;kaJdE21#2<(a%}OH9YNJ)L-=3Qhnr(dHt>S- z33vU)a-tTj3jCD;S`1Ul!GG7xDSIg4haW#Aj2| zoPV9xdQse^&*@-bK;?|6iuz#hFN7VvXOZtWt=4wLVe7~g4OZJHKar+MN+QY+XQVKYYuc_qd28_NWU(I*l9LG*L&(_I|$NBQ5J7XD_ zo8yu10WWMTUY+7)jHrknb>nod*Z+BV{DWWKvYb@`4*IrDeeDS4W5b*C&9kTFM=Hb< z=G3we$CVlIg=ancz_;w)?8hu4)>GpwJ}Y=dOi7O5>lOhdEOkRs(H-Cg4!<*PCXU4P zuR8HXZ6cLt$>*f)eBOiEe3HOh@jg1_l9Mn80SWsZ`nf13Y>(}oqI!Vnz8w;aL5u!q zsL_1%$KW-d7cA|FUus@XD`;2gfQ0#9LfHqVzw57l_xx_43VxC?Kp!$cr!fb9`Yub+h1oqAAV0U6@4r!) z#3oiHlgIEs??He_;XzGLv8{ZMwUxfMem*9F1s9=n0XbYt(`|6Dk4uAsz7vN$vshzR zPGGv%d~+OZ`;cIbJ>iFPs z$zHewg`6mw+*k}i%fHh^%`tZ>k^@*rX&JS#X-_IRVnBD!_8wn9>oVTRu5k0heWJJ- z7nd;f_)20_iJj}mbihrgE&BuEiq}ra$X9ClLg|;e4MJRG)@meh>`W*J46ixc{NDnc zQaBDTYf|g>w1@E579>jGLbMWqhRm#;4ot(Ry*Mjt9(1#jr-t5g(|7-WSz@%$19*iY9xJ%q}d;8dPs z0NXtH{@52&XQ%~4Kg*hoZEX=znw9Ea;$IZDG+ht^;tpAd7Sx@iB5H4IPqd6>67eAV z79!_*ap-~?9AY^IQ>fsEuRek~6kuOvi%}GTigxht*oMr&z;aMs(z?J}D>VYwK`dko zfbKwlLApf4BjJ^eJA{5F{NKz|+yen4AVlh>bO?MjQXxKfM7P;3(t#($_;m$gW4cJf z0@2LyBk|BMXecZZ_e;%#mQfgopl>{ff8AU00gK_#n$aTTAkd1-nvz5Dz+si8ZQ%(g zjYHatm<4tAkoQdW+3pvq0z9+_L{j5AA|_49isgNBD(9t0q?gEHV8VeE7Vu=2mRsRJ zg!Bj5@!a=cl^BdKACUK=wwU+hJJDn1$RvDYDoDfmHABd(yagW;w2Hj0(PhjRL^)Es zWIJc1$j2o(Lxr41MA6eZZ!DEE#_mZ7^@(aCV;JdeUPdYIX|z&0ID8UY23(>#ur$O6 zqrqVyF?d95!O0wnU72f|))FG+wxmdw17RBEP6I3Ri5w$cK^%QnV%ChPq+ixtVL_TO ze`CZr4N-ei3_N!vtgG0GK}3%snjLHc8+rW|qF0EEQezRVk?a3@dJqu4420}eKN7bo zf!u8sgSV-kGxU=f%i6Oo?uCHEv=xtLX;gH9tB5_1jT}-f7IGNBn|kY0ftmTJ5BF>9?>!9Ra!hjap|o0K2n{U zLJnAUvmPQ-Z~deEY*3Yy8VD*ga#!)GJSQU|)bD_Mh0+SmOdZo7JLBT6Z3CS0-Hq(2 zd)rqvg2U6pAN@|lE)?}G zyzt7gM_kGFm&E69g(a$r9~=m^vAfHW5o zS)2p}qYE(EVXDX7KKt1;K$Kf=QGOL=LSs!+clhBWp zAOx*0bUBw!LGK5KITXLZjyggK4sM8ng?)*;44jMDIq=s~i?c}(UM%ZBfq7SyN9*)| z18qF#?DOzQjx&L-C$Q$A+yRT4rRwNwAz}TTfSymo&&1=-#7wwc7~oO;-4lWO#Q*eL z%c4CLm;md^`z|S)1xUf~=wUpXc0QVKh#@CMEymZnkyG%?iYAsJzQ07#9sSEc)9;N8 zP22aZ!(vqI4o_fQ;)XVd?kg>A+h znH{CLIA9_O-z_+qQ-J}0P*)KTuyZY3ynRCF2~fvSsGG9QGwBTxyVCxhbB~@|YG7o+ zv}!}}YI0Nj%p;n6m=E%PL}3*xjcqOvv{?u3ZPnz5S~b<#D;1|vv^%;4^<|Mk@esQb z_C;6vy>sx&ud`#H)9^&T;Px`m%d|6>dfx}~%t;jDW1pe9>yb8ml&~2i&#}rO4y`&7 zou&`YnLu|8wKL849|C0Ip$<%NpD5$3n@cNx$VChTQ$Mn5M+wHQcz1$pKL?!}9rLg? zw1(!fw!hy|j%@rI?J9A}`K94P(Tuv9@zcNC%4p+=eUw$!r9Xgw8AW@~>J5%5hRiQj zTlQNy`V|j@<66ld1oq5$*t{y! zb9Q|A<%iCT_&o>%I+OiTE%n!F`gP3up`I3H9-;f-=ic!HzPCA%1pt6j`40mDJ@!BO zSnmJiW4~nn>%d_Bb6_O&{}@^u+8UYs?~p746u=ntzmRORnwbj9INFV27%`^=f(b(0 zKdW3M&-Rsq0Mi+9oIwQj|FHL#UvYI$8YmLng9cAeMdVPt`LZ1)uDq@HLtCCvCW#YPS;ODKttsx&2dSAr>WqO-#^Mc8gO`r^NX!xV^;@_|RR`-rhl4%ZJ1D_UmIA z3Dws>r1EA|_B7@s0K@pyqN3EAsrNbk?m-;DuQ{Bnc*y-Zf#X0N^Q9|uT6P^(F_DA) zUmtMlY0w7;M&1(*))Dp8A}9xMth&}`5|F*yjk=D)#O5h3X9|bSsfBZQsp>hJe&#C+ z@@U~M%Xm3z=M+;zdZ4l__sd!xE7ZReX@F1Wa>S%ztLm{mVf2>cB6QIaNOOEhkeP^D z(cxV-oH%hCp!Vi_aKa%W>iqC!N8(%d*6`l=O%RmXNKXs0VyKn1t|LIPm=eoJxI^nW3%H8g%4YbE!2N-E8eDSIS3{3z^l7)=_(*U%PwcjDLiZx( zSyg3q49UNymAP|e0rOh;SghR9MiP1n#S5$FUrXac&`B!q%=l zLnLbjJ}|90_#rPs11}PZc;M`O$_}e+BYF?q08vjiYRg)URqPUA_!H74ruDK6tVU-v zuDP(+CN+GwC-@H1o{=@!RgMmPWF5capRr!mMUDiYE1X`}wS#qR8DdTh0Na3?19CqO z59o9AewgV|dp&8l_jCbHTg*HC;NCcjVkR}@-iuT(22WFyuN5A%hj>dll4E;%L8`-a z>UNK&KYrosd8-fq@BP*;v>ipN9!j7M@HBX;SBsx}t`~1K7EJ5I>m1_Xp z@%9MO&FqO8Y*)cYJAWV%(F~FJv}b?aHfm!TRv)#>nT976tSYi+5R!>)vHmXlZ@u%Q zt`Mw3e#?wP#cvgetk)~#e&r%|S>a2a&^?~h3Ls!) zr|0(E-Jk~AjI(_u!-!7D;oZG}&&3?mx$)EraejJY)86T#R#vo)6I(^+E_P^7GA4aE zn#dG<_XlO&6=H5B;TiVl%QpEy9x@w6#cY;UbC@^C4=MagFkaABFOjMcW8KLnO~}g; zF6Y6EMtg9Rno)0+&gDDRFjcLHhjQT7eOjgTqLVzn=KUsiG!^MD{73Hlq-Y{4w&?a# zPe~btbKCI;Gf5&tCYFsxDzto9HVgJ&QZkrR3S^V!LF8sxltQ{@LAGa7C(Zu>3IqF;ir z+iORkO)>>nn>tqsDLY$KF;_%F@PuOiqm!z-sF$z;*{ z3B(phm&`T$N9QvAB$-JX4Yw|*7v}x+LqMfe<`;d9Oi2QTZX=&q3NLt^$&9}vBQyV zSTPCw;%w%>#q+g}AMf&O1TMaR4x;K7NxnB&bG5PGst`k(JxFf3l_C`=*rZrsCLkHoo z41`b4?>@`B8*<;`vTsAl3~i^shtR}c@MnjTaioQrS`+Toljl~LvCSVrrtOB(0z~MnjOpI21CCgWC62THA^}xXa2} zZx+4jNb|<}-))=q$eUBk@DcnvfeS}P%1dlZ{JN3`=cRXKy&MIX5Ue`iaxW?ew|r|HJy2yFH`$k?LzK2c(^@u;8@mF>uH$P1s9-AfG`<6X}S{{0Y;h5*hUMP0f8Kz7> zrKPo`1QFL?<>_Ctbm@V%5wY}0!Cwq{Nt?E$H}bj|r+rewUZL&sx#pi{dIH?#5=UU! zu&=GvZ@TPuO5FC3OMczZmC2mlicOv_ zkbjF?me;9A&9+Z=PW4#(qQ0NlcR!}!0!d!wF2U$)KrA_7-?sa~@XX5$)hn1_;qP2P zNFw1Apb2(8z(UkI^+zC}E-Wqwc#@`M`AVR;T23x>KLTjV%}EZjE9oi8nHRbO3TysPJn2`<_mP3 zC8*=d$ywt5&rAQ!T3E_dh~p zF#hC}Mr*0VA^q>#ia_Axo;|)h<=w=2t+xNKvAUCBhNHVhF6icdQOKdBBKvpGmd+bV z*4do$62){|#2tTu93Cl^6oG}axIwA<@#;m;9pJ<_=vusv0zDV*pY>RRCb@W7_9;MY zIPQ$>jjza=V3l|)h6-3drffRx&sH- zH>$^jRvV-fp7{IGP6O|ox0QHmjGlBJ*RqLaFM$D+MkQJA1*`lOURVZ;$Uo_*BbN42Nq%V=%u{sJf2pwnJbF{38u%2fF&?CnnIZlw zgpe0sc-$2ccM1AeGBdOyOV^4x>^su{T&#I3Z4S#oT|Acm{X{U5q-{Ydk!vI@u3KZP zg>$7k>2YjBTElo@V;8V_X2tO)TqEzVWGdn;Y}TBAh@_ctuS$`+`o!Ug!YILZ3i=Sm9C08lT4#KmfbwbR0!3^|5Q? ztKa{=t0a89a{xfCjykB>AR<3gWPQf&U4FTyHYf9^rtPPYX(7<#0T(7}CU(#xhd4c9 zw32oVc8xiy_)E<}-m-(Li_EIyB!R%Y(KyN7` zG={rNg~gn@B`(z>eM=MhsFw9UX2(Aqhkso}x&N-_U^`}D-6EypW4|Z0yR(R0`XHiI zEp>c$0n*!&KM4lzWD9o7X9_;04njNLimHiE!HQ?qnGgEKrV>5pihMY?`JIyR-X%Gkp6iRZu{~~q22mlrZEXZndhwT(kngcOWMH~fe zUNYgIQ{=q(CcN#vsI`{)qe>CqXfN%)*&hfPpNI90{SI_s^>Ho%jEr-9u^@f}g_Ss{ z-X`ypZKC?8K|^xZvP^ez@5Q~t8mLg-D9tV!@otaoAWImWdHr(vN$@3B;xbbDf(+)^iA#^ z%&h`+`tAM)RqkzDUS2V|>8^WM(@!7axQS;@q><^|@y*lWS7RFvV1f(((&jKI#~svw z8}{G2_u_#-Z4b0@t0@`}8Vd`NTyph_^e-5KpFuK8{eXufi;tb$Wk=&@j2qeIZ{>SI z%6BIQN9SO~!oHCY(LnUVT0GJLs%kQxKX(?esu9dRd=tu!v4n+GFsn_WxUN*P(p}9_ zo}~pc;FT}(s+sV_GqBt}Ax2)SF=l;sAW7Mm;-&slDG`@|MCuRM-Ct?$=Yy4hqlbG$ z6}iqCk7zbWAtT>X#c>ywBbiA$y4I5R*n6;y`9H3K;Z1I%iBv^5lY|B&sJw?PYZ^@n zfpj6Fo-eWL#g+&yI{O_PSoD{TF5chf{Y3iTKTNS%mFk~37nHQ&($F@DjnxZx(P!Pd z4R_rTCBH3~@3I>h7sLkQ2LD!Ld*sP>$-UCu9;xmYWfbQYewIgj>fXL1a`@ckbK$#! z0<+YvH3 zz*bIwPQLAqQ=R8{pm=G>B9!`2V?50-$rJ`FV2XUQC2VJXuhN7fwKoBK26q;Zk`3my zkI6pW5=j^VH2j`n=QM1)q(8{^xBXgoT4Qg3EDoCRi2vA-U<7XXyY}WASirrg-fN#N zqduvSw=O5*TfuhoevH}NKY<+TrU!#{1!+GnfB2MYFKe-ZG$oAjCJ&chyr1rn?~shU zcAdr^LUzU)P$p*`ma#U1l0S2T{@4bHU6z63x-yoc27Od&YF^l#V>!eW;Qv1R z#rj#`O`c1{SGdnlDt2{m&dpAEhMC|kw~9G`tfq*of>tmoDig1F(@;~tQ$HczR+i+o zc)VS)A!l?I*=;=SIPnFn*GyOcVR3(0uyi*>yUdDAf{tMYO~c8eHz2nxk3Hs+68-BU z0CI3|Y%C{7MK|NvvFYNj&Mo$zYB%E^Y;>`yjM>fsjT|;4PRuyr7A1~iM^ln@Ka6f$ zl_?Ey-h{39Q;E0)OC0uV$2{DVlxAxrf^xD)7R|rl0v2nJvR)OwasS*f_|{7ea{TMo zrv7Rtm#gEg_}pcP)cEHZQ_O_jZhubxk#NTESZZq`GoQ6<7!U32pttT~u1*n@Q-~{^ z8v={=msfkN58}DxB5hs`Xa;aOmTLk4;-Qdomw_w;a?t1wofTzabBqP5)s3iF7{j)D z10?>3&3iR%<0i;D(%LjNZtLH3!5bZragylyeb=t^kE$ikqI0J9lA{#X4r~MLKFe9w zhIizp3$U$L`r)*g7e=IyQ{7$1B`blN6l4EmyPt{SOEbOt)?M7_Q5Ph1J*t5mNC-*= zS^E#2FGXM=Ybb})cwZch$GPTK`tN}bCIN*A#)|T*jn4g|=~(;dbZnoMlI?8uY+3T6 zgo}_XU zUMKA4tq{&8GlfNLO3fC&!xhkmO|vIgyinfsH??8kI7(@6UpUqHvP`0o>RE^e)H!{fe5evvhqP@@VNK>RTTD8(Dy3t9WTon z(DQb!c#`gSyg%3W_Q7o!Ed>h*1X4-dCjpMkh%#6F8|a;rlJHR}M58<^{Es6DjOpF0 zi%zny5}hCOeUgt+#szo(se$M~v}V~H111-z6!<)Z@(ulqj@QnzsTY+uR8ukX7ME2P zq&r4Xew1sCwGEZGxr=J810JzcUq?kBOz$>EMr%AUXQASh24s3WZ%G;VABXTdsm<*7 z7HSxBdiec_E2r`cr-`T?F`4Po3Oxa?;zExA#?NB+_-oIxs;}hD@&874g z6-rb}g}@9sP)&DQq;2JfH`cL?eaKV$Rvvl$txmf&Uux{o+szYC)dJX&KzV@unwB<2 z_u_`b%20T4E1{RFjTJ)LN3vb_!&d3?%zRGSh`|Wr9Nx>~<4{nuznzs4P__N*9h*>< z^DsvzucAPVOp?8&cvO^5vev72^2f^R1Uay6M0j{-O>J`*n+jz_bXlC^u;mO`g1t-s z4l-6!m?Elosrjg?0)3}K)7rrXuaNspl@O}GVqNs%LkB_pNC_+N`i~_xb%t(H6oFg~^IMK+5Fm$E1vd zFRR&_G5tB7Z%+pGkIj2hMqK+t9!ya*2UBliuw3aU#(l5i#EL<&n;d0h zOP0B|awE|#D4~&`Yf#9fF)gryO~eY$_XVyqD<2gh304JCjowwG4-b$Jk=kpfJgWRH z$wq2B{57;bZ8VBH1ZpR2g^-ZRfwGN5|9C;4#+gB(H|5;YX^aX#7|#gemKW#nN4;c0 zjvH!QuoOx>DVw93OZs=eDm#6F%;1k| z!ju(r+QUV#(dcr=j%;p~u%k`2YAgx4TASk1Dmh^AW+ni@2_7wyHP-cdb75AB*fsS4gQ z9mFyw&)Ao=fhJddp?u5usP4ZmH*Ss*4A_u($fw8gS5u+l7D=yl;YSKA7F^{CVHnfF zY@%qaYn-{0(q=dGC|l%?%7ay9Pd(Z9A(q9I0OH_H$5sfU0otl*$2~p!N@~P8MX)mT z7Byocp5WMuKU8k4b_8rG@7SKT)KbR9oXhG{@Wiw|XF+pX7A{>Srd zNqmCqcHAhsNyoh{mg=KO`OA~Ezj8;VlJ{+4WK1T7+ujdX7+Rh6w#OV|kFG^53$(=% zZ18y%rToslnyP)X20B!TJ>B^9n+vWk+74njSAEYpRj#$t#f5Pe*qig=cWF32MT_-W zE7T>ol2SvHd3gEg<5Y6w9|sH;!HZMx$)tpvewq(ckw4|N7^F9tGrlZ2u1PM0Nhyj$i7@vGdc z8ORA#$Z&XS<60L&K{565)}KsE26Q=C(kgyFh;%uQjTpA+91J{u#dL>U!=let$1o6h zLSDM367NPDsf_Z@l_`x(ZmvZx)2bCx#y3V|T9sj3_wHIe70+#ZzKz7UMu#5>Vg*x6 zvv29p`zKi%>K z>j!B6EzbQ8%%Ni=`KEu6OYXnxJs~g1@WMcXgsqXsek!Ez$M*_g;C*r6mUra3`nGKG z$Q9{%Uf|?V2D2kUMEkph?2S~bw?&szEm0VP>RgN#-qNDP-$#l}fMg3!vbOVAK?t%o zSGTEJ@Aa^LN|B#gcBeQ;nu)%c`ix293i<~a;Qpog^p1G8ok>JyfAspWCT*Kqm~HiI zN)K*8#EC-S?rfg$iDBX3p>jUAm`%Zg5W<2OintzL5ATslp^ruJPjp0c`3Kr-3JUC| znFc2dm`K=O&-ENA^w9f2PImrCmU5nygnfgGoy~370S@2EILo{)c!&r1NbutbO+EXFf zOh{1^we!{ylV|}-BiQhTrMk5{M{XPAO#hW55b45d-L832L3{E)sxB2W!>=GtK^41X zmz_E;8TZRWyiBA1fO-^d(`de0oa0i6k=sdhim4))>faKBgf85t#Ib15bKkv=22Yo& zm~J0zMFH7#g$vLXcL-cF^=h?k5L7oWeYo`eEQkvGff-1$TuK#h?SRR5H(%=4J}FT0 zWtgFzeaSp8*Xl_SdsH-f&424hm?n4)3A(6U@B@Hycz*(AFI_L#%_+k;AkTxC&~epN zLI-F3mpcT0*W`eO%^!)pwAxjV$enrl=u*c$kpP?^615V;osHx9Skl7sli=IsGbq-D1e6Mp=T+&i)zbtSSz5Ka@yPeYF9KXgI|s=9T&(0 z?*5isj;Gz8n2`(XvGiRGSYu=dQnfxleH-V>1+5nkWy=*YeOMKyl>d_t*1VDQ7e4#5 zkJsK^81x(uM2rNj55A0`D* z)Hz_jJ3!DNVb~7FS_+mtH*lu*Qhk!enQtWRHF0~7diT^E(4ZKNEDjvC$;HE=y-bDT z#L?sGEeH7xBKZQrV?=~i7N|O$W_!tTBHx}!H@SZ`T|wwFqi>&_?9muL5&AKl_#LBo zyw1o5>%9a>Kk68KS6vV`^6sYb7MwEWwYoy^o#9lEPW< z9}_hTx(IMLo)B`$Q6fVYPfD>B8N=6mZ3LCBt-{)n@M?@17?jpC)HWt5d-HSNFXz1!8yAd*d~ zF%Do+(qqEU_QiGpsZ5#T9&(JEC<7uGZ+HVvj9&7s^RMl-^<=e4FO)pHTvg07#y;o& zDP5`e#DNcSabI5O$4q*&DUtbA9;h(PMhPYw=t)&bG>6i1so&>q`Nh+nnwXr*$-7zQ zo86b2)EDz;P^LDxu0`>dwsmscoa_&rOJfK#eu8Zca5>8 zV`RnDCuVO0z-(PL0v3xdDfPb8E4DkOTotA_01+HH4iP=l8F-rKe@e_fLA7uRsnAQ8 z8H+>T&(>c*535O_eZ%&<4+s{uSq^42{FZIxM?A+lc_5XUUq3sYG%z?qERZ-Ns+qMz<6v#ZU(-fgDV%%q| zmE*syeJPGjC9J7!JcD9uzbq-|`#V3i9!ayKVn6WKFc-jT{5`2mZliI-u*ID8#&Jg; z<`&i+NyNDcXt|D8ft|1UWJajbsF(^0n)-l#_)uP8b^ym)2XcLBe^W1&^<`^1g@l<>HgXuy-B4>N3Xtz5RMv3|S2tnz5+QdsD zVHaFDN26e{%Vgtd*y1~RQSf0@-E1zm!o>L=r3SKzx!b>$IHLNuIwdbGp5=XXhnjR>g*O zE;7v;*t9ER&A&>>0WZO|i4OZ`lKg9o;iU$II^RDOo5G_uulYp?ppTVHeXKm3pfS?R zeuC3l^{6V=!R3!*`k(8mw{T!s<;R(|{tRDB##ZlHlcuuI!ka9HGq)A}(!Q}^68tc2 zN_R?n^&IeY${B`9?XzJy9ggj$GSzj@(z`deJlW712@w3>U)?k=A7oEu7iNZuCe=l3 z`!-IU1pj^oYE-$gr=Jk!DHbGVY&MtC#onJN<9v8{WKdgGYgK5RlyxaY z9A7?eVA?h$X;BQx#($69;4cg!No9ojR0+5L#k7Sgd7INimVK$g>Mjral6?nJ^;M>W z(IPPqVMk;l*CjrqM|C$V1Xm_il@vi?lML+b$wevhpt;-Sz!N!8T(rmBr?>pI3#3KV z%7AR*x_t_Ux&VtW7=!rRs7L7N&X)ojZ75pu`JTaLHJ}?fx z3h@|f%4ch0O%5YGhj&R&ra@!bn|IA%!pgRuPPDYvpy`j&L~_V+AO4KFQ=Yd5gxik zcu$%-sQ>Fob?Kd&!?9b&W(#tfrZ`J}XsP`y|Fxhd{Okm5@nl(Y=>50w1Sjr@SQ;mk zLgzAr!_1qk6R_~k!7L(uDp&~rl%Ap~S^%Ny5i%i-+!7Mz92{me$$B1z$r5sADuBl2@3mgK8#1Ev-y1$R`me`_NI4f4QY^V z?_K@?8ARA%4gY(<;zXTF9wa&gf1HmM4F-e1e7z2p3TiTm1xzx0=#Lyq!QY4J9H^@K z|2B%#C3~M4IVMzDKY9+Tcf;_P zhB4%B4^aJ+NpO-j-EmH}%#C^r>P{WSEJU#2m$J#UOLR)0t|dXla9Yiszd#8BbK{i$ z!2F6-)Z&_}BNN4v?jY;TS3%h!_i`-}8-khcgwel&O*B^qXB9Zgds3$IBN0Lk))K_s zSt&TVumVcG2sV*(Spup_rUkNLy7bRZIEW}XTfkfTg6pXSOXi{TY%EMV^uDMjjvBqt zyU;;6C@(_OHhef6IM6H0J|~V`#)+|OTJ*WCnntqQc+w8sM2#wDIMWUeW(p-pFd;#hLe{zCM+^mb)$o*gY9Fq7x&jPW@CMdT^+03!Km-sfmDUG=Z4peAr&}TR?BPHZeZ*sJ0aG}yEuu2G^zswiiqx*IYl> z*~!g2z_8XcY>bQa{}@b}of= zYe>*0E2n>Wr~NnOSr+pv|KEyU#qdBHbsewz3I5poPa?)i29bx}f1z{Zjel87pN#j~ z4-oTUt)0U2x|VNMVs)$c4H-&DjhfS|J3^ML!djGAySi((B8{x+w=;Fybc+6Lnyhac z5bqp%vkSn^7?<4h`zU+>f|r<)Q{(QpQw~zU*aIbMVFmb_DJRAzg-Vf&Ys5LJNcM;N@l83fd=Hrou1iSr?r< zGfsRgrb^zoQ+z%7D0yN{!JUT_z@D)lMp{EZI@%UJWzZOVhsuXjf4>3orq*o{>nTcl zHVzf#;Saz>G3^IAWVH*h;uOg-$wdGwR5|MlEQZ~g$K6ipvz8xp!4*Hw~_F0=@Er9pRH^k&w& zc7F(7EXYZKoh~z-6^RITo zs_MS2-ka*}vD*AoPIwGIt&{ouvWDwuk!PmfINUCWTI*`$?(rH8b$n&?;pI*su|8p2 zElP(ovBJJF(N&6^k**?Q&p}wmz?p?fC4m&>=d!+Ziq086o&_0LRGUQV|PxyV5ei9t=zOH0j^6`uM z4BCdWG!=mFF^MJ|EB8Z&TJHuLLczjdu%cU2EM_Dyg9EMj9H%_3fp>h@hkhO`G(JaF zfgIYsMp<*aCnXh^n@I6Ekvkf+{r8fLsc=fI7w3VVUpd0#i7MD9PSVd5I8-e#nz{;gwRO zS~Yp_>ef^J%P0ju;8_%_l=3S}>w5AT%ob3%R7*h_f6jleLKL?jUxW*$YS<_X45BcA z>r}AhwJDHG4_f~$xoWqqP!%#s-N|!qN4E_hq$bkvsk-t* zt3m4kN`~u}-MDZQ$kLsX`Pt|EbfzAjbS5hccW$)eS1E(&hKIc-wdQT+U6Y@|!*dRl z&Ck7({d@W`#1b=5B{zk*pxpxwh52b}3M^iR!?h`Csa;Huo3+A&0_FFl)lZ|Eytzc9 z9si53*V&?~-hb}M>;GN`Q(keQy;uluB1Bt2jQ#B_E1yvBGJgW2Q#QLP=4_#Gp9sRe;x@?BK2DvI+H!6HiEWjuInp!+!fH6M0LDftLt>v?ZzIl8 zr1hq0CXEdq0+f5#7S1J#LN3DB6jO1rXN3Dq8pS)}!|7}hi@O+Bp0C%dLCNpwF}d`5 zv(A^@nCHo9d;`3k!O!jEQ%@V0+<<4zk{z(UO!0`g7J{nrRG$y!9 z&w9P$lN-KowccO|4du=5ELBs#>woD|$crQV);VL2SK;sbg_7_2nJZ%(*)vZQVQQkS zN>fvYf3Z~4*;Rf!#)@IRFsZwM49dbOYyte7qrZbj1?!n4w-xiJknZm~xl{8zn$+ad58NC-KUMjMZcDUGM>dpbf@*K`GgN&t@ zPTy{P(Vx1cGn^4rQiV$9gEZeqFXcnIysN%uC;lO^W%sRRfuM3R8UpXPh-^KIh4bM&#wiIJbWo-DItSN_-_`FJpv|) zXP$JlDPSHa79UqD4O?vvn1!jd{Z1gyU*+<7jtA!h^V~NsoWX}XJq5Dc{ddX@1|Rah zpxW&QRagWptj2b;sqfoc%=I@=OOD&{aj5iiWDcLb6Fala=ORZ}zt?Bms;YN6Ci%qM z2+nY=>AMxvB7J|#@xYle4+N+PWB*(jH-0OGS2$6LZToJ{L%pc6WZ{ZD--k``+n;`g z(wKA?k6s%D>C|zqrcKdOmATc;V~n*-8O>t$?R6ouL1anp#wAQuY*Wa08gelc)NOmp zLahletTo`C?|TC6n6sdgcm<%^wMAeWG2-lOm%${%%*`l=Ctnvi7@)9Qux{W^S=;^% zC|yUIm2=$nwcSFOmw;{2W5jHE>}&Kt_@*FR`236go7@XRdFohiKAUCMm99|da4$t2 zt~jio78na=i6AaNkP}IY0CO34AZ%)%P%Xvfuu~HdiS7BB(jYFIr+k$qy87kf%RN`l zmuKegJs6mma)TJK={|+|sDX(3fC~=Jt2{+A#7i+Rzs}d2$Q;$W-7u&(~a4 zen;!!`Ov5U1i*bnomqzxbgNI1koe2peIOc-wTY z0jtNzv;Yu~K)jHlJE$6Br4Cl)zZrk(D0r3~3#Lha%rW=^iz@;x0CbNC+7oUeoyQS; z#n)o-pf!1iRn_GOd-PfOEP{4|VdNuqKFjlyUn1M}S8K3<^a(Tub>1r1Kbpyi%ydpU zaz~u?SAEMk%mp@ve_$FsR3Kj3StG)L9V!e z!E>na@nLtC&jVQW)@hOoqL7O8WoD5qDcj_Qi*CYLsU z4ssW7!+pc@n_z)|=1H9b`NWq(0VJmxJLWTY%y`_^1eg!)33x794O1mAJ#7j&Vz$EG z#teeAP9>?&`d?v04c%8~7iDC(iLP7qsKeIb}nvx}4 z_nRa%g#Ev{DVpz0XTJ#1&^!VDC0G{D^uu(W;>hg2iY{3gyiu)3E{NP;yVcYez+ zbk9$=UL?=gul=U<>21hW-T{lRL=nVDKCI)q1oQ(e+`P4K=lAvuHoQwk;Vo;EzQmW2 zrCLcd0~S@RoZY6Gk*JsByY>%ft%lxgT(9BaOJ2)IG-WrbSzIZzVM$|tKOnX6lIyCiD?7oMJ!aiyg0V;%{R@A@T1$bMMMYY9d1 z0_GPU6uyBG%VkSH4U_4pvuy^Ju*x}zzZ)4G>NAfuP)XMMzkvD95B=9N(AWlZN&rKL zVj}XRT=w@8!r^9NlVQAZ7t4VmL9W>wAyM_BWUuL1AkWCvpVFLapr! zqdgu&KhgyNOsfpXPXndW3e!4EjP@)T@-JqkAmD6jMz#&wGvE1l-6*dfU_m(YFxH1x z=jBnh)a5Mi(waMq>Su@bV+_?BHDJ*1PMn?igN+}Q8fs0{zT#^AVX@1&6A0C^<0T;H zD$PHXe)6)bP=n@&#f(eYCE$VGUnpySYCB**^DwW^oglpu{rAVbdz%At z-_5^^SyqSQ{IML@#8e2|A&`YG0)(2Zy0FfFHh*Lf5likj)1Q(3QOE z){I+Eqkx{2`=bJ*IM3hdZUzbtfG@$@lVO_lm4F5R)T_v5iJGyyb=G|KV(!i6#k40R z{5Bs)w%~4nB5m8;(j$$7z?|JpmaXthNy6fQbV9Y8s!HtTW-ADa3&-e=y-zM=Wx$0(vrMTa<-zgzifkiN&JWKbkjB7b zCBFd4>v+jnVc=#f4{G@(z z&U)ees>SPHcVU<=5j%;0;~;WTKq^M;5fq$x?=C#WC&G58Y^SuCP|e_%)zVsyo?lK! zY@|AOdHI0N=g_|?RdtMwQ z6&Ao9HB+nus_sS2&$g=ZC{9tjo*;*8k~dQiDipMmk74FdLsrfv-kar%1nNAPshQ+= z9Iab#Z2HK)j4r8(1W?v8^qODKfA*oMt~{;^GSd1&Amd z4xuE#nCuk0uOHnTA4DD~(di6x^b}5Z^CQo+V>bFrjOm1j?8c9fPiXbcKPZUtO?^n` zpz!nXm0sd(5n7tj(+gIL!`SnKXSkw0t-tm6U($sI@)jrDVSd({y~# z0|D*Gf;^di(X)MNX~kNfq(iSZiHKYICN-~V<@*G4O z*B4*J(A@e)(4cAJq38l+jDEl&E9$Csb?I#m@OHq9B+oFzE{aZhgAIKHmBXBm<2M}yLWTY zcCZ5ZitVEQ>lW3ziW8Zg3u_k(LQSL!$X(=Ib*KD+j8vry?lrdy?%58gn2vjOheHJa zKq8(~;5dInd1Tsof+|j^@WOuM%^ffoUZfvk*miGdK9)0+>D1j&$D(K@)?;Y_7OMEVlht8)+P9z+b@vO}NhMJzGDBTUU_9`CCP71N=9}s>{5~`N{ zV&yO_{K})l7B56p|y6y&2KVIjSlgSi(}*d!2FXa%S=^7 zYUMh0@1R^kJs^K0X;lbQqrEEwVnn=Fk63mRM-ClDaGyE_C6+QHqO#@z|Q z12h)gf;$9vcXyWt8rNlZ_M6%NQ1`rbPn~+|9=W(1u2$A6> zZcVgX36rSrv5B9Z6*TtLWRLP2`gv$BDLJ9Vuk_nWf0omQOg4twwgab}g?2f!DB9v< zwro@1XWH<)aGd-Jvu(|2=E&{hPqh@OPPwj6ktBFLibv1sZ_%lkF%kXau5ykVoEl@? zm^^EPv|~7N@#7o?cSOr8tla%X$I4)`>kIyPhUFHD1?9X6GDzyejThBab%FxClHO0x z2gB-Rg@`DKX{sZ93wf)}zno?#(mb#R2k3-cocEU79G{F=vZC~`y)%VK_8eW1op%R0 ziS**dojES9im4^(E-DAA!sE?MkvDkdlB2r_|4oUm8kS1rZt`Cx$x+jAo||zD>H7>} z+J&Cq3e#V7LTAy+yt&aY6H$Ebukk?tQ!BCCq$CUi?L;9y{#PYj6T<(L%V#)1TdGf| z(iP@YAw(eabZss6xtI!BYg~1;Iu=%J!U|mF{?*nO>mzBZT~|J&Z^*xF%P-=UELPsf zRkgW8-*yu}g+#2A_FmN*+r|V{yr34+!jiiaY{8u6!Gej-Vuz4G>2>U0dGn&lanfk7Rqzx$+Y*P!xn>EF zuEOU>$OGG9_1fQGkLrGR9uO{0;l7h{!jh)(h1m_3Sx*L5qvoDC(jz(8eA;0mZgZ8`1z7B9>hmL% zGS#xYhWv?=`6nkZ6X;QrN~&RMD+ju#N-Xx65aCxor`{?DrRKJRD>LwYbRN%T0cz)Z zSk9v%9V(Y=&`SqoA(=V$1%6{qO4%k3ZbGNS7te-a?;YU;@Qm)+Tu+S5M0CXZYg-UF z6~f>9?MV?3k%qw-(qDxZ$k&Ahe%|GSLKufCsf(D{bBosun{}>9X%h*UWxii0a8YL_+wp+B-5fp zo0v4i6aya@m1tnxI|D|mZ46rKz^WEBd9H`%kkIOYYx|x;^tsy1bsEN?_76WF6W6m1hdGJR5xd8_*%c23ZH3 z1b>s>|J?ZHNr}T-IaK_)g+n=pL+zu%;qE#!c4<+){)^ogz1R-SAA8Y)6CPWDw)ewM z8G_`pB89e_k%xQ@`{1DjMrJd-jC+`Rm+N!eyKS-c-)SUy>$!$k+X+C{D^ z2Kq_^Z#H0iVy#Y0?2wo3>2i|nr}@7W|I@mQsKZF=uKbyo{|G{F!N?z{@xBoCbV9`jAN4gQ8~R zv@uYij^$HXPi#o^s=bihvJ%gyynu&9TE9r%W5S9sr~kT14&Q@fF}j59d7Yap|F(c>G6{0^@3KfyfylvA|^E%dWXpkgT`mqYK&ccYEB+c3NCvyjDc zuEIf4xwXUh;|tl718!xbQJFj<*U`5l^2e9nb7&K^=oH``8fEXnQ#}3f+5R~R9kd0y z0y99m#3VU}+C1c)u%<|AcGO&0+T$s04B#8ganR%8aPme1W@lddByJS*{+eYKK@?T; zYF#9iwGzy;W2llLEoj$!{iDCfHQn_#PfC!M>7#$7jFS3Bn0 zsWKzl#Eb^%npN|J>_Zgl=PZh~NYu9VCE8~;m?>;`6w`>#RG7g(QMW%Itkj(<98`ZX z0Vc8BQ0eOFku1f2m#c$o!Mr6Um#>>wK|!`T!hCk0q41%Q8({75n7`u}-5|leeb##9 zY=NAp9jH|aT+=aP7s+qj-O)tFty)wZ-Qn7(Gz_nJ&l4dOaewijO*VQFRn-(?ePMjL z>n$;Gr;miiG`{ju2fSxi$D_{9WCxZE>}0v!-ZJ|L$H=-&R;oWE3-0sTGun`{@_U%N zW7z?loW@!d4O;BUTp0E2$P(&5-K|&`Wr=n+Vy`*fG+Dme`TyIECBXfqcb>V<#jary z^Wl{GJNG@s;TRrQxN6gvcU;t}F~I|rRp>wQ@y_z&w#(9^ss{r|1sHa|Li8uW-;6fv zt)*rssQ{IlX+r?8pHoAM6oSKg!pC#uGiTd3)g?rTB|POPuJVh%v=Q%G$zul6qiONs z`kd89Ch5#g`u!k6wfWPWA`#Gm-O50Nai>#l1~zlV&gSv3g2jPpbi z6KpRvUpD=o*o!|^S~ir!Q+gBAEvWA?<}8=oInx3y@*ER)KsMrZ8uUt#sr&=dJeRY= z^(`u!?pVUSrBhpg6^Q=aFPn!_@_k1Fw9Nucr?_jE0IaEEa^(+G4RmaEr{clyfB$G^ z`G&V44dkNLwcsWy!r%$g)$8KS70!z1$ojqS*caos;j+wL%SoPKqDw5;@MmYW`;{VT z?>6YC2QPi5%o|x!g=+*v3NldBTVM|#xU5@5vofiO#h=_5fwmRkxog|bG@l*uC{=K+ z=6m?$zkXZ1T-vja&;0h7?$;VP&KhQ~5jS2QuPycD_T0uodMvD>8dnIRtvazunKq8( zxKKfM7p?$Ogy&%{6`63e+e%>7=@Po>XT$o*y^f~#*YN6%7yg?#)_Z)BPTaE<`hPne zuMVjHCQDm#ZtF+m!Q>$oVRf^wWt|dkWzy2^gi^n)k*Er|TMcI(!ha<%sJJhfARpxU zigEhBZN5M%W_pN$7`+lA=;R$r^As9hs~NUNBPQ=e1a6ANcr7--<+HPDuwN(eqI;eO zf+4Ztu;_6$vONcoEjjwd6G_Ra`zuJD_PT8vlYr-eaJus#yKU`#cy}PxCX_g*6JHta z7PZl8kC}xz%uBquwd+%CgoDaaclfN4&3(Y(cKEDw(H5jYaOlUJ-`AY=#a1-4)@+-I zm0wwB)_e&&kw7xIw{wWCMUJ=9xu?jjV8QH+ zxO_>~F{YjLqGz-XR1A=*!ZPYl1%#Mr&TPXzfJN+8>b9Aq9=-8#g7e7am2IdZ&dCJo z6VVQBCq_pHtB=Ye1HXzoywPG$u`e2KHim&0a@;FtmJ(QHp$xI5DVn*xlh@k{$=HdJ zPSIVgRN?WoV=0)ee7(bwhcUW;n|lth~?3lDKvZR)2o^;)o~NQPNP#|5D=Om{W}6R)3kld0OMB z3||2O@1FE0pbza34(J5`LUmmIxJ$>$v(NaB3+cck`5a1hQyh%3P&Ux~SZ*)AOhw4? z+8beiVDgt9Gj(FncT|35a}&oko1(EE^(wdsU+ILE(PPztXk?-c@>jv$OCB%KsSGJm zta6OV*}Sy0!A)%^(hq?wr+?uj9T5S`CwIH-?SIJ{{a^8&}j^LusS(TnsLZ)!HtMMMaTovcIrmQoUF{5{$uo` z*CKhwF{l~(={9k;jx~OE)-aVx+ve4tQnxh*HH zZatW2{EDP1=U<)QMvd&|ZHtnftr6T*#uLL@uL7HX;em+lGMMwDVzuUQ*A)PqWHY4q zB{V%5AaazVGE!Wwo?LOd6Vw=y#B%t@3anc`L}^C+g4@p3BEg^w$OOWsngLNQo`sd(*=3)?ag zIfKeLI~Bn$bI{D-cRv2>tfR*QyJ);pw2>^}{+fHupB5b#v>&szn(JUlZG|h@Y&!NGt~h^lq3Q6qGdjQ7{Xv4U6jf1el6`kV zX0!t}U+P}S^TN|kN1oh)fBz1LtFY0j+2h&!22q zTVmC~h1kIW07dk_gk!^?t3;nEdX>6)`hxv z7c~3w+Mx#CRT9C7`1~|)1ENVu>J<25EQN9HuD=kr)koYI6_-X5O<%(O zJ;>JKoqB;mdhk0-+UF@eo2o>`Ngo9^V!45et^2IaO;k~;PDG}dY*)Z;yf5ZHS4@*h zH;iO_LO5|_dB$vPA(0>Ga%|GTG{{0qr9=t{-nOb803P1t%$fA(FUD|->m z?Qk{saAg>j+o;sz?Z=i4G#u;T-B5tz%;;&Uz#bTsuFOWr0TnMW+?ntZI|192TF|p+ z1f~l8nEO$1g&fj<*GmQ2+Fa+wB8zCbm^9s!%IR1CVUC#%VS|}-l*3&FWQR3ggb6(JQOZQF zQL)f}d4_?S$98mFRi>gl&!tR0&cgQgEof3Ci^M?RBQ^FaJv;5)ywbX!z$5VlUVq^AYeMuMI8uNFg%KXNXR%ffZQ7??fiO?XuWw9FOS?mI1!!X+_Ivy`lkKy68vx?{) ze>FQ(D`q{c6=4gbD_&ckCLpPw`et+!24A`aRecV?2D&p6NEt-e^Fbl`hk9cvvA@l_D_uOesBd zeRu^&?H~xo80*$#sG(7Vg%u0_=*Np9&*??bX;=^Lk{`GmTm>{ zG<~iuo#NnTtvtNfcZHsP585gG>k+F%pUh+DO7@TPS>1^tPoc$auM^D2vIZN~BbOGJ ztiC?v4av>(TLcdfgoyMRmu?fH8;>2h=KmH#1mx$9P#9~9pXqHL{TsJMlc}+G@l+|_ zywIq$Jg3ZaiJpalT12BP~{uNqA%8+Qr;d=M`o5jz)xVgA~3+=ktbp(mGtbV#$Y8Qz}bR?Re&oOGv|!kUZnq8PRn? zJMhjhT#g`yzgY4);!OzBadj4Y4%bhpu72Ep(Gt_A?BACxbl4K z2Jirh{b*F6LT=aBrWoq>vKg5+EAOGfdMZ~x+Z2a;ym#k(I;4Ud%w*zK?LmdD85)Q? zs(t|Exw++wgvNd67-3d$1e4F0cJ!7gGd}LV^KJ#<4rKN=OwydyMXz@g`p4PkBDQ?n zwJSqEm`0meu@?AxdFHK;X-7Be=fJZWyx)CdfN_!-JHySq;6qIR#NNn5OqEg{;`<5h zX@#4V`krR?>cB}k3K;vb_sMqAsd5LavbITJ>Ud3PR3f4Cv8%a{GQzHi>5_{d(G9~a zJErKW@TEcOl&ujIC-u((4*~xFYX==fVc6&thBDdzyr3(*bSeM}Q;UF;lKk6k^W)Y( zyAO_Lj%@JOH=8D-xhlZn4;xBYAPt9Xil742PnP1%m`lvu1sWqT}YzOx{ip3et30kc-}j^S4q zwv>gr8^3K$)$PY{x~O_Otm$3|Q#esSWe7^^s~yajNN~KEOeJbce4Fy)6=CT($y`%} zu}a*s*^2hX?#VCYy@lU*5;|#-akHWF@5J2}I$HqK1~vf?X~&S}n(U{R^J*?|di}&5 zK$Kv(kf#GXDjMYCMz6d+B22h#AB9(3-T~Oym~r*unzu{vMQ|V(L;?hq`IZ7Yqx#mT0asg7&Jl_ofHsluLI8d)$~*BPmU3d1&Fia9#;Esz}@WhKFTVb>JVG*IFHD3 zunY=S@a$4RvV$t~&tufqwv(v9I-_t2Z58HyR!uNDe=Dr1sE&bt3>?2Ui*T(oBU0pA zuXbwZTu_{DoZh#6;T(QJ%wq~ZWRr1F3|S33Lg;)6TFUsJe`y5;F0Jbce<@B=8Uj^O zEzek{Y@2Qn7|exee{ZKj0)H@E)wp6>wv7#+^~WGlMW5R`<`V|(ufNC$gDC?^Pt=MU zEodqyzFW}t)_-tozUDzQ77la($jKe;91!6uQb{9Gyy+9}G2 zjg8Ozi*!^TZepYkFAF)GJ&7;>&@4P=UKWKlxA$>>nt_}Espg9Ocofrgf^U@y3>esCfWiEU*JyYW6FIQqQhEs6is z>E9B*)7=;`)#~ciNDD}D-g@G()A(tnAh@$IA1CbtQFZ5^Rvl3NV3B~DTy-Ch*6ZE5 zJ&iItG2h(tx5{&kbw}jntuh|k0Df#Ee>D>(Zkbl!lW=@l6AaY<&yUCZdz*!v!>Se? zRB7|g%Z7@MW3Sqds&gXoZ557)PFQs#p*t}@j=jZXiL+{RjaXEc}?&UhHovrt&eklEO49IbbGEy}F)c6v1jPp{6BPo)=%a^@-!3vdSX zx6wrD=?fH>4;^t^vBHm~I!u@yS;Kvf9wO&FL<;4r)9N#T&Eev4TWP;*a&u{+>|{VK zHlUI=v7Zmx4w|}MT#(Lzm}^2E52yidv>uU8=wb$@&zA-*sbXsZnZBxc3tfKqMuC5! zxT-8fQRQPmv}K%Db^Yv`00z6d2p2UtjrrTE)-x&CU)|!+LDZ$Kg6p7~?}mTDX4k!y?<+p+&ftAJMO z2lhCDIfD~Np=0J9lE`*md)_|N%$OmrpIMg1#HIUa^4#s=Q85{!8V|3_d{BeHAK+=n zZ=Gc5UXQgFgt*k^+s9pbB6BX=IDJhVnd(^dHPDg;?9&B(7GL?+U;QBRUg3N%Z_!?!vDXR_8el5tYhvdM8Z~U_%~0^p1>g65clhWMB(I)l ze75q;0eznRi5<-69k|f+#f9s&C!H^cX#dx75q+<pifxtsii@tx!a=;5&J$e9eHR^22|ls0 zXRJfvwoCk|lZ}P+WN})y9E0K#+=>o!xxBX*Be4cy%^Yh5;!=1LIxT^du#a0m$|W=n z$mk~bI3G#VJHIANe?a|HqqRy~;<)PuI$yKUyw$Ws)0r9qpVqimI~&_Bg!(5VRgr8V z3cA^Nl6ksH5fDaZx+GTOzo_jI7e%HZ7L%{UHV^tMgx{Lfwljo`EM!t)!|H_eFhd?& z?F|t%N;LFbF*j44t{$NPO~3Qg3_COR)5CUtu63|E)#vPqgL9Zh;F6DnTqhJbCw1@z z^e=_rXC2Ni*`lhE`Vto~;`V+A&Ccf*rK72fdU+qcf;k#;OxfiUhQPO1pX;^RMFacT5DR!q74iu6 z>8(+79#_iEWvO41P8lgVr1I#SlFl?_xJUWlLiG=VIj&<-Nt=39k$yGAu5`&N+i?E% zSfwSEl|VcGjX!PTN&Xc{Gt*z_UUdi{5EIp5CsOZWMfGeiyxm(lWw1X&G4OmL6ylJa zX0erVURuD95wYVP^O>gzPZDkeOIK@$7eMK7YTjx5Q;DlncmaYeYh&icl@w^@`I4#IoHy2yLp5$;t&ah=f@zdZi-9o>@ z8T`#uTtLY(?}m+!$sKz%3ILl)JtaXMp=L|HTxnfMe8ad;)?s6_?KO_oyhCqTOw)p; zRUrW(igFyfZyF9);_QAaj6qaPK`=XK&maE+O5W>HJIne0cT@7&B9paouR;cHTrV~E zive-jF52)(B2%jag%o;j286(9ou#^MCVKi4shFVAJQWfLYQ!`nVRF|ZFc~V(>)nMk z%e6PwAm`%bdyx_lH42RqC2cP;~%tBl|;`nP7OnCCI~WrsIThqoYpT|nns?JMLlLdlyq-UPmr zgkbPL-im0zKM@HSH8XF4%_v^5 z2-mTXHT8c)GaFeVq+CanSBxY0+0=S?^@xe*_i9jx>Ma+)$&En)`_aSAscZ!)h*wNc zQ$N)B9<}Hpw?k-9t6#2jDt=uXX9^zh$ER%ZA)4#8Rto2VwrA?jf$^*iH5ne6EBx5d zz;$bPFW`r$b0O!X1+$0@t_&-wzBZJwMEfiO6WGUuN@1-llpG?EwTrF=DRD=x2=k`_ zh-5~kh#<2sTGITufd<|_Vkyp1a59C4=tMMQUgr`{@i!L(_N;ADb+RR)sx?&95!q`l zf&70z{59kLMB`Y_D)QC3W5lW7wtkNkoJYJ-e3@+?50G|`=eW}HKtzOI?Dk6VI;>ls zIA;x=i5l6RnD6bhRkmysNb6jLZn(M>=PE{EZ++iwcj159bz zu97bPW2dha5O|5Oo5R?tc)#xpcydS3fF_lWY?hJ7zKKv`Z-NnC0(f~3N}Y8a_}*Wr zLpS%>6Z`F$hub5+Pm*Y!*O3j}b)Icr@l;eMQU6!E-Y^hUJvyZ|#D*LkLJ0@FWtbE$ z?!FZq+&(qdW#dgvif`Okr13<$b?x~rWM5f)7@bzOpU$Bg4;XMhH5U)QIk_v}+;(~4 z4z1-t`*y+idM2 z!*FQVj1%Zp*?S#L-yuKnvcPKKqR1uI-z+5htpb*zFBGVqx(SWhyIb3sof5P6vOnAc z8>?!g{Gi(Vrh2Q>xPB?ddaUt&a51w0wnSU_!A((M@B!r0yx~sdN;8xw?$~7#`a4x2 z7Q+x>x_vciUR+;9HqZ9)kEZQUh&FYWG6Uiq3`u?gDbBuETDPBj>&LpNh3V$zhn%Dd zWvp9IIE}6Af5|KdVrKcjcI*26CRhF0#ebVJDKe_a$k@eUp}qhQVQnPyNW!Qy?8& z+ln7iv0W$-jFBI=)mTNb`Rv9fG9<(VMh$M7r_Gj*x8}@r_~!0M8@E&F4c7B-#z7X? zU=o&9mdsD);C7N`bI?BDeh}ZLjQC8`!d^)qa3{R=_Db}4w z^}kv>r#KXpije{L*(6POf@l9W-nU87Rhu$57S@9iwL6rFVaAeR-fVy1ibzROT$q+M zgCe zuc_?UbKUa6?my!?B)>F&Hc^ont<0&47yp_KFSpEkM7@tWHps;=wo?_zPppz6u%35? z*x3w|8_%-k(#jAa$L*lp$i@u_} zdh1?fyspg0v+$kvXSM_R6Zb1QazP?EvyK~K`*V9c`O{(!anq*g=94?tnGVU z@+XVIwl8o~ui%^~>UvS-**gdaFX}HecKU*Bw>=?p;!&TeeYqmz*WmoowELNy=RA&J zeiBi0OD?&J$xo(LnqZ;c$`7G7ZWy1|Y(%YqMX^)(a)j#Jxz@!Ggx6nET{hY>K1h1S zE4VMPO@x4TcZO}6D)U03Z@t9Pi*qZOh~1NV7B911Q`9Si-4(lMqG#YmFXf|VRgo*R z30-Xa@R}I_12i?77}>z`5rb>CYm{PHPRMNqO*jekY zylNSW?$NFx>aGx)Z$Zyz(etuW!E2laK1Qt-b|)#G!BwJ6&X9*TQ{@;X@~U3AE6-Au z^&(@{uf;r^r?mN$FAlDKezr1W74*6X#!oy6p8Cbpq)r5nUm9t)eYI@N+X@oJ#QZ=B z3wlPqVtv5^g*(q*E_d!eah3p5?_|Hs)!?ABkRHmn!UzhAIS;k=aR8A3h2eXxh1R1; zxg|uGz2qzE&cN*O>|E$I7E|?+(oU88M`OS74h{#_IC_jM-vbUssnxHT^Vde}oN!m^ zj)lv>?2WfFf(QwI;TJcKi)-vBzh6>kOsD?7eSgL9O2bf`--?+x~+b8c@S#7uIuead_KS)TS zZc-8tT|6ph0BY&{a?o}5eIrddUL1p;jm#*-Iv3<~dDoF4&S^7n`|qdtCUK?;O=_Bv zEhqpk3OEq8uEK{_BQRo}rN@NrqGmBwVwpLR&A@a?MUS9?pEd-tSfM%>oTAR|In249 zYb$*kr&hH!bQ(DOTB&Z*#>dsIOUMS)G^{Tz3?!x<`^{TGj=NrsnZ|e%v^plnJm!L9 zd7(5Ws)BKAk<7xyyeb=BO|5BkMdOh3h1*;n!z=jwbw_4gP9|t^dmnxyb*EJ1%L|hD zK?;o3HX@V*afMCg#A?q~1a9zXXkqJkR+PVvcZHf3A<3*8xVqZgcR9x9!CG_CEWYhw z;49-J?D%K++vB#J>awRubgL4|ER}M-VJ1S3HETlE8aw80R<9&pr{0byMbghvNWkHk z(vZx6u`uGR}SNYi}<(oEKLy;~st%_b^VEGQ$>emW_YM@`5fnGB~FNF%9D`y#* zn;E`C`EOaNv0cba)O3IcMK8ZyeQ?*GtH(C{*i2R8bCquQmt_sJdihgrp?gdBVz`Tb z#Q!ntkg@JXuwi?-L0htadL|~~2s4%xTgmm~5A=^7CYNS`{o!;~`iG{WXAIDX6~Tc| zU$eCwd`ubVAzqKgR0&lWl0{abkgruGhrjt2qujnx>!!phaAN}H<>@m8yEF%>wXt4 zy(O9^q6)rO{5*Bk%46^{b6?4yN z4KVkcKc7!+PZWg(!fwNatU(Qokq?f{MniLmjTLC2wTZkOIB^;>mlw!>d!53=s~nzA7o-2}Ho(@gVM>kuG~U}>n`aq2(rX16 zK8zmjItAnhKuomq}(oEh*j6!+!bcfK$DyN zVCU}JELZvL8E?q@dT+j`SC}KSEQK2>w0VvceV<}kqE+$3RGOYPt?(}~$*_Vf$11|z zhPw^4ZR>y}m!)ny^h!d44KErHBe9vGTgQ6nSpnL>`goI!XfO&zC(o4Q>x#Wlx|I%Z zWs~Xl6Ko;tU`JH;_^Bg8$$M6K!>`w`>58L~BhOk)R!zKBKQ#&iy}>op@!zd$jPhaF zOJ%XmN8cWGAx3K;==#u(6zMgEcnH0syREdU_pz<+9)fwCQnbMz13g{d@8HJ@_p0~q z6(Mat8(7ggl>yZ*h}6O!ghwXZ=@`Jb!S+6I8hN;X=$uH!WQmNRU+aQ8qn>NL4R7?# ze5(78dcB8P-XsxJ7Z!y3LzJI=4IAaZF_+>y(Gv-dqm3aM??l&EErbU=@9V8Zy$7YV zvA$SzqC*Gn_Wh#J`Zu0z#|SqX>649i55OzkHbW z@10n?pEBiicI^zkyZts>^w~j8RYIH^DX2)lNrY^+XyNpV4;-@?A6>%5j{rDt;TU5I zih)Az7Lf%8a&o=2sMb0jgXzPW9MvnnRNg}@7HsC? zJH9XyJfCG@l7tP#Gua+6I7X^iq6a$a*@!}G_QwKgZ0T9Njs#f<2AB`(;*5m>)-_xA&Y-;8$LdB?PYskhH467mHACNmbGH+e@(=i zEuD6V6X19WS^?Q*-kBv?*L_C!2M*CT9Ni5?=xnv$*?-<&c>F8ivu(~!yuN07x73F3 z>!0e~`s9Wh;g2@1nD9%~mmpPm*L=q%%wn}l*~CO7{H^5r7>6-J7~ihJkqgo3CCf^U zF--J@ym{-pCm->$N;xV)-@%hSI)LGpd$2E_Mo=jHWb@Rq$(k-HB+QWX4#-Bd0)h+= zIF$F?=1Q7`#nz$`^U)r;uuZ|r3fQ9vplSxEB=5R((~a$Wju3{d%Pu|Yf!w+zi22D?iJiVr-- zE67NQhP&Dvna*9N6$!5&OoHHwhv?jsGK{O_*T_%MU7-_j zx-J0Pj!KxY@=*|(XXQDsh9r)@5$!8MXHYOQ-Y;i#_s$lY{s37hE0pg_$87X(PpZ@H zzsGOfr?&)sIsfq5ER^?fc8mBeR+1Z%gT;H?!BA6kF}7o6)Fic^Jx}Q-n#!NMZ_^IV z*dxdN9qyrNvjYiJA3U=`Jf7i#=G0;C9W$fk>t7q9@612%bMD-kQ;mh|DDPoD)3d7H zAsKBSiCp1ovwlhVQuxwFYK#lwAHRE)daVWLu!{bdMf{$FdaK12J^h4+dNot-9}ZUu z^ttH=Q7}4?TG?lHI2)qAd()#sWK?v|TOvc9$@U`qaW6FA0y8!6Hqke|dnMQxx_8tD zLJCPb{W_2>bHsgb<7BlteSZ49_1$tsR4pmH@B$R?QiTUA03mN@ zLW?jDJZfPy29GeQ`xOgYJJL(cLWt@l{oCY^F4tgND{cM00XGTC$^~j-D^gM(d-lrC zwoMZ;5rWxA;M)G85xK_OU8oKZwV0JhRdY-=E8!xZj)iV&@N?xfZHIdk%TA(|u}3h; zS4go$Px2U7jz#A|&e;u7TDVc7m-v+t;D$t4XPp%8544&rmq%CBNnIzTcSr^xA|=gM zvQG8~tz%>PPskaIit+lY6lV3BnRiS4_YXMEVc4J;^eM-oP%fkwgLfj1ar-;*nc!Bd zAyy~$tY`ar#Qx~BsIFs*^BB&738Jvh22cUsEbAO;DB970g0(Ef=D?Bcq*V=7t6{&` zr9De_d)Sqe-A%610l!j!$ablcVkNFa{re2lnSoPg?ZQPC2s=WE0WjL{PNYyhT^>&r zL|BzgafF(at0Kk>wqI~s{b{`Fch%1|>JsYsU_%@M{Hnc*lpIm5$@!P`V98}!^H{>a z7tsp>UnOO$1Lsc-7x8I+o~1TCprh^e%X3b^W0id@A!=Efz^%HN zkF#QS&G)I!S&FNu@hkHuYUu*wn>3NMgSSqK@y79wf~GN0Z{6L_UCrr9thtt41MDX@ z(goTG9ixtW<@tXLGxdVLH2d2f#-y*{#C6;Vmg+yF1>dQgOKOK ze39S?2nFfaVgXnNFOOQDM~$EsTSv1VK->WHcb?kn&xi~?$>vJ%MPi@BOOmH>VV0%w zEzZj?;A$RXi|ftx#B38Reg!U40jR9~W!Z^#eGb@F9Ig;UmB-TR+0y(C#dr-C#hBo5X4JBcYKx5>&X-!eH{%eb(b+EhmzKO-_ zZiKO`hph(Lzu@GfDA7nK{KR7jT(sMq3vyo}(78C2Mwo}n$*x@<8d6sD`LqaV)*`)% z9oF`tbG7mB;DI1| zb$P#@K{u3$gutHHNPY)G!f}{CK8&O>>us{b^uVRj`#JU7Y}LT+9EJ%qVkSNJv0BP3 zc_6gB5|@v6JwKOwVa#KoPyGSP_sM(>bekE_5>KWf($oK1*!{Z_Z4pC&l6voIE<1{F zMUYu;#_zD!LqYaV9k#Q`L+Td`bg%8^)jE17nN9w|xE^=puFQ?brnQ`ae~< z=}!n(O#SR7A3}KJ;ZK52G+f1?)#v8=#kp>wiVASvn^@^x|8GVnhF|eYC^$fxA7_Jg zu-9u5b1ajb!;$oJs-uy;3o~)LshgQJ9FRg1O3o$EOP|NRk~Y(LQu6E;=6kMXpZz_W z(1ZRdQ%_ndS+e@EoS-Gg@zSuzu(=jst)9oTGx8ma<^17PkScJ|2H#=mCFBfA#=`NV zJ?s?dSfd*dhh%@-)J}_;ov%JpujSso;hSpclx<_m`P*7B{~eV6Erw|?tZ^)`F6)#3 zowdNAVok@XW%mcGyI~@9G%hg?yOl;Lo#(U0`3_z!401G!Pz`6lTP+^k8H>IW+?7-? zvf8|`DkxLc(|M6%uoiuyz;fFql)Bxk3c~@$c~w3utdLH1Lr42BV2QjpuYcu3b6S4F z#3~u)#Llz#j#pP}>qjvL%NIT6X>`CWCZRUw)YRrxu?HTD>Ce{==zW7gJ)l-7{D~KL zg>63cR=KDwpow`+rz8?Xcb`kQR)jFoBzQ*4w(8^2Trs(K#Di&uxdoa^uV5X}KudXT!ox90 zG1Vi!lawqLbuEhDhv*=fRvvYP7BQy_F@sqm#9(TG_Sb-pEAfwpiaS?`@$2hNAG5$; zf@~SGmfs#d+?e;y8#1lITqBmxe(}ezOUpRVPT=PaJGF&vjLtEm&a5y(@WA(3ueuFJ z^Z_wT-xT6&(f zt3bG3XEkUi`Sknsy62Lw7AnwszhM9f(6rCtA=6aY!(2fz5q|I@k!~a8T;~MbZg3DK zIuf!ypIZqF%SoMjB@;v={UwvBk^l4*GtnqV4{lOW**S?e@9@iNTf#DRHV*EN3lG>` z<_Z4RES2NTB3AAg4<9kdd}a3-1)Y3R>C<`KY9cv%dgpI{4Aj?m7dI*sMxN_cf*m)) ziWS{5aM~}XufORiOks_!3U&H9A9H;t^5&0l+L!#3d)yOxI8WQavS zJ!@9LCEHkG!K&5cG`zAyE~{h|cv~CcmTSEi!DMA@N~b6@Y8FkQqMQrIHF|9DZ~Z%G z-DoV%bo2x^ugCWomVq`C;#Bk7{V=lXQN><$ooD?w3>WE5=$)MjerdEg^u{C5-#v6luNtaL1Z}CM*=fDc=4=^(ok~egsr8m-WBv;3E}S^tZhnP{#+rxHU0Ct%N>2O3gBPc zGiKzpI*dAM>>jWdDSKJ*?Okk^ag+LRvjJvE1N^5qd(Wt&BTR1oJsv_ic-{N>^NfWX zvot|@iB8WI#N63yoSa;t@2rhhyEZ`o8}bbu(rzkN#5Gv>Zypj9$Qi@HbOg0o6FxC-}J}-SQ z>-!z0k3@rO+w%h_&Ewae*L4j&y!&uyX#MfF_9W#wM6s>qFhJp0kvvyad&v?Nk-uH5 z|LfL`Y)*(B)lpXd%QoMZuaD!{Mx~MiuA#+BL`c>-I)5h1_wgPrC2voh!XBuz)0pZC1(J(StbS7H&yL@mnJ7%`Icmgx`SR)_Ec8LEfaOU*dCjJEW2MiIx#;3o_K?yI%4t`*tTR+k7 z_Z+Ypb!&-OY*6F?L zc=Iu9nVzTbRWAc_4b_OBxYmLMu#^B9MP6Qzhc!uydMyoZ7#u*$&~1Fi;3={8WK!M6 zHtQ}#-d4`VY>sq)Fp}P09%4UaxpZ^zv3Iao`Be?}sEa3_jPLs^M6^HNINu)p0mT$@ z>72}A_Vd&GDsiTpiPrdhs%|zhyW=*Id&Gn1>SeF5vNmQmHm)+V@M&9hlhf4=VBIva zcnMj)$4$+H@(<739G;cEOAh~1Ya964L6iW0QXu?T;O9X=06{NHmvHgpv?frh^f%;s zm+W_n%xmei#OR8NH^yw6pH~C!dLHPq@^WrRs$m#QAY$$E%o((doRP2Z(X|${wXR_0 zDXnP70s6Q>>U8A(FUPn?R@;H-Zsx0s2uEZW(bNU>*q2MGMb$EKOnFmiQb{^!J1ywO zGKMn3d>Aara6><;6)qJYenoO_WRSX@uvK$aGN}x-pX~uy;%mx;#VVPVURv{}yii zpgg^F(}|e3D8JxIkzuVx`b^x#yLw-p@LpD)tbE>B6~aY4Q-pw@qwY9lpAT%ZFC?aT;xZi(PfDp}-rWnI#hP2w(%F0Mk!Qg0@&JkziD39{Ni zKA@Iabo-|27BQziK#R`(*=9pU^<7CTM-=#V0m2_wmc77Ldi&O>1)6t3AEeB6MLE*C zB27I<=xgv2k0KDawUqw|N*p_NpZ;{Xds2r`AjOCe?F}@TvT>WrU&2I6B0|or@O{*S^B~aaXZ6Mfmmad&`YG-i2u< zup~H|)SxEEy7?kA)8`k%0Yc}6+-?HxngCCzg!Sz=s2j3c$&=(C$)Gm#4HcgHL?mX@ ztmFf}yoBTUvgos*r+Hhy7~dC=L%}(BKb!*0$11U>&0#)b3U^WPhH`8K$SXv!B=>HW z!hr6M=XEYSN}j7)upd{fq4nx*IM>+TGTyvB;BMeT`NhGS)Lovk(WTEsA=|~zEI`J* z+`w&*<@WjIJ`htHJW6%XtY>|}KVkgc!}qU4e<}&Tkg7qvXrV9>QNhS{u6o$&Wa7si zg!g}{A<5fn=fsLOm}S>gNeD9c+5{8-w!}&5`k$sp*la?&VOXok!p8KY)W}m-cEyNZ z*l)Z&DBj9#J?If@Q!cl7!3BIeEEMH&XIWn*+Kgy&XV8ukakJ~x^a6v}oJ6w_^f%$# zV%unwG$-G@BPtT~BlDcCQO=_pC)<$H&`{NyLNTCT^X7|00xb>%^k+6IavPQzbG8Kz$>n8;hu4NOh6wTADmS?K>x}F@q{%!m~uRYwgH{yJi<7S0( z)x$3p1K1D}mnbA8IITb;3(f)e>DuDB78lyQv%LF4za21T<(T~W6yhj{HVJ<5^w*a8 z`lOq0e^;>RkL?iZHPb|nRZ<(>2eo=j^BJXQ>e1nJJZ_4D%w5>lDmdxr0zK2~pOIxh zA!4eP1d5q|{K; zG=~Z3yH#@k#^-ZO2w865ib(=SkfSP^!B00kva0@Dxcpkq zhIpTTLht&2OD&q*dV*$y09-rr=}&jRD5{QgF=OL%h$b5J&tl3qXVR|dCr~p;^emBc|4LMs zwEE~UAJJ@mnS0XuyIA@L_dAf*dU0egC-&({p2Nf;kJWsPa_58X>77%mFQQ1CCSdT& z&2bC)yW)MfJ`@Q9Lh2t~0_*9PmlA$LV8!G4P8=2Y!p66E4@xDU-c;~BFpH*Twb7)r zjZJ^w+oO-2-1Pn?4gr-IT&=fgYZL0S(mDU`xj%!0z+m6riF~KfJpEYS(15?6CFjb* zd2R-|EGSRtVFx?mwgjNYaimb3|DI!7T4D4$ngo>>5OZBmbax#isVw^jaX^cowT-zONkgouOOEL!; z|4jklwB>ZaUm$+JDdWuRl|TgV)y76ns;kEYUcMN%pd>sL7_s!^3h4+R#(_I9h(O;4 z#sE(Po4u6<{tM)$zVNBI*{fvFbqzRt>LmNkZtA@DWt)vuX7?lvYYbLp&~h%9ZyMF~ zDNnp3BwL=~+L9sDx5r2(=cu*E^y_N|%8P6mZYnl|X zf;VC!Qwpebwa=$}%uUi7SaR+@z&<{lac$R)?@o&Ra$opB)9aYGfBm6*h>#b@1Rd!? z4W5>~CGzU3P;Hxk)hW}AJu3gbTV~f7jkF$bh)gZ8IFb6-174{+d9%unyQUW2@Az)c zm(kD#f8ICHZTs<@06(cFz$g=DGFz58cB@@t#s&zs~28MecysknZs@^MluVfWMtCw+k*@ zQa#zhoyrUUSK+nN&8Mps-X8GS6VLZ=(|U@BNgu-GIP2JlV_O-NN#(yhuMBk!8(KI% zdWGzsT2*PkdUu<;M?CZ`)~Y|5pXv!WB>ki8!~i`d=pvrwp(Ee2tu-;0?=XB_`GjPP z>{Y&I#eHVISjX4rcZ@3;{bOowvS8kCR^Ia-=BM$p+Ng929QC$Ji_eaIk$83*xr_@6 z5Tz8oW<(2wJv`^lb7_L(!NpI(%j`5Do2$7zNi-HJca=9Bg~};)iVGe}-&z8%qTlmp z_y#m*bK1@mWWc$1W~{Dl9!6w%%X@_wlXv;RafILs<6xz8_PH800t8#dW9=!M>h}^7 zcjKfL=fm|I&VP_hoz+%t*cw=iQbyZxziAe-@!YFbycf2c)9NVt=`buvD44v5NL5L` z$>$-}(i1v<&Lyg7g}^KI_9$=Zyv14MXbj9~S*EQBX;_*#iFqQ8jI>)4Giji2Zw4Dz zG>_5R(%3#5%(*P#W7GD+l;NJ^aflgFb&~VQX1pMCS>k0#$8l`-jdQy{o{~VtE)pl> z(~Y@z@zEg6)Drm?p2)OsZ*dbcDZY_N4uYwGWo8^1eR61E1YWseK zdGOevlpj?d=BaW~@y5ov?~t{}MJ#LBNih3tMW;H3i+^S<@f8d1($*(LvbdX)FROrO zf8j+>9@b@R9!w?9Kg{`74FtUW>uz&SN&N!9($i?Efv>b3wLto?+h1t=^1to?F-X`L zdDLpG9zR#jcplmw#;Wo2AFa%h(%tj@Z83vShRO9|Z9D!#mS^TyyN30y z!Ubqwaa?JHkHssSNlZ$%5e5vikYU5ee^efye@GkSakTdG1E|kav8evfHX_DI5zl)5 z)7wJvj!H%wYkYaVIA2f;>N%|Z@O!Ab(I>{PTc4o7MKgGfK^N(2V^C<0&)70Y``j;b ziC{j|di7qr6sC)mn7BKIBnXnae;I=+v1?yi3kDMB5MDdLiW8=f1`~Bd0sV zLnSD^1XnSnqU*BMlE6{pOvq5seu7wQO9Iu}s z&uEor2MlMJ2_4&~ANB*=wCpNzkQIb_uU2#kiL}tb9;&y$tlmBx1%a)jOv|lYk*A-x zTS9IXCAkd6nrhGK_OpKrZ83E_&9X? zVv}P1x^)i%*hbuEpGCu2gTFO>$b(0hG_kU4l1&|Y)G zbjpdZzag_tP2QCLe@IicF5R5j4}$RzmfB9#N^f!*+=}|H4Ji|e*q{4QD1tT4B9H6MXacgf^k_mEW=>d^o8?`{tvjD&|Gr0gpQ&w$OE* z%GVMB&)TGV0btD=82cF2#LQ4!YD^6R>+FZ&EIkcpSB1Hl!ZIz3ev7I{&evpsq?Lw89i zD!3CgWv1l4bjXt2MNhjB`kla_4o|VonmW!z)P>!&{Tds?yKu+)G%aj58`$m-p5MpR zzxLXHXX&9yeQe3XySw&#`(U~k=AM3v1%(+ukDf#=bx3`am#L6%wcD#3{qf(iF!1v^ zTY{lrNm$E8+vZFO1?um}rv_v81i`gRR*L02S=&P@V_ut(jgh5s*(xNTO{*#kK8q74 zDCVh5$PREDI^DmxkbSSRB&+Rp+UhaodmzTf;GqTEkMjm%T+8yy(Vx=Z8alpw*>7eL zpLI)gA&y>rx$IjSI?Jr4)Yg>2*RQ!tp?lV5ZU1h&uEp(0kNEB@k3XwX4L-lvtHICf!%HaMPy zU<#}2ef8^(LT~k>G5tDa*y_Y)V?j`SP1%d=pEg_?(ABLbiIQ0xS7Wzx7GVV+80IPi zYjrZ#MGKKaGT%axz%=E=E*s4#A+tZ!>IbEpa7WdWW?5jarfQ)>f}bCxno)pj^pWe! zCYla-Xo=|q^a2WWw*l;~z;(R;>~OMyJ(?l1w9(xJ&ysZOrEqhL6_@ds#ew&7wgQjm z3|M@Hg@MY>HqKEsM_@$;Lq9f_9Xx84EifQUb~1V7^mxi_yvFwO#9<9tX20=B(X6MU z)jLGi6N|$=+6W!Qef6%B9B5|Z;Wc`Ryn?!Wg#QJ#=(S?bJ1q2{W?vHw7|qq^oO%Al zJ;;dq#OeKG_h*C~!GrD69rM~sfV>*ZvMBC?5ZRct2HBTqFFPKxZw2P`bR1J$dcqD_ zWQujDrYLK>*oOP(&R>1{8^-hdH>_REsP>^kU{z*dKfthwSzBc;v zdE;NNjIt+E;&mz$RbLeIL9BNnX`%Ypk(`rQ<1L$c_yb65)lzO0IT+2i zjvdDLv`QVxcTd~#X&#BFB93ip=>Aie^n@{xigEg>!TCSM2h9)AF2_InLu#7uX=aUb3RI&2R)9rI)m zC!%iV2bKNlV1n!St&VQgD~d>gti8ol*V@Ccxj2qHjK{2vE?%#8=l-a zXeQZg4kM~jI0GMJ&OWW+k%kdzO~+FUxgC(*Nz#@C*WqamAJPBql7mXeex)$~1jc)N z*?q5a>&^44PtRSrd6vjGc$1LvP)@1aI{blAOrWH1?hysrd3wW2vb$Y{D>*FtTlIaN zGMvfYLEV)lFlrA&XU%C^GGHmwa(AK*AHVjvinBPNMRrywsnRY+n~>9*3givjL4POf zE|x7O`z+mnMu=`&%d*5IZ1O|KQ}%ZswR#wi|IvegKA}()6|D4Pm(X9SO!rp}-vgb< zRUp4-W&+0cXjU^Ac_Lp&#&Yg0rn02{6A(ok!`eYzk)~Lr*LAf}3KW6608zT^5I@2@ zAhm~&bDs%td0nRJNh47zF({NYk8TddLbQb-VW`t(Rl9twebZ(DPnL{h2Q_1`!O6US zNC(!*A(IfCWU z9Vbk=li*TR7Ydd)*1tOMpa|0yFrhesSp=H?3?`K78QUTpHNA`5g5B2yQ4A(^riW#{ zVv1q&{ybwF`!}kxZJ9(Q*hbX!GIe;=oVVlRtG%Dk#Jsn+MVJCCKOCB1a2+xCuK1sr8h5r+d%MBkGTz{Yz8H!&C;zaisG z(Ya2vuSXZrkL>;_P5lw{)E(BmfG==1i5|KAE3LJqYoSZbh)C?}Qq(Jdpn2=K>4mBy zbXcK=KOZX$u?lWXu;^@O);tB)Fct{ETs{m5!bSyA=i29c-LuLZ66Cp zKjzuAD5;Lq_D(Lh#**!hnoKAQ5sHdShnb#U-+?g(clgDtf15*H@9-JU@69G)JYM8F z13pq$9)bB>cw*$`U$b#Hg3M^AyZH*kb~Y+Hh@nGEUu^vssI^WvM@O7>e`(y3cKLHn zLD3^G|LdGCH)mwI*Y6ebwb1PT8UxJF%&y1fSGYPO`hM{_+n-){qT%64H63aFPOCXJ z>ZBN^CP#?o2~;WVHX<9hxH3J)q=sIpt}y#JX0EG==* z71p9tmiOV@rF&;q{zT;3&|BJc2Pw-}8C^QNONx@y$+)n}j8#Ck?On(E8vse^KSgd25*Kpfd?;!Yv8uEd=g~m+DA@=mqfsoS1w=4$W^nQQx!f{eET<4H>Qqex}qPspzXEs2eK`ZkY8Q*gVH znsa@PSyJ%4%tpy>^~YJ~_e&8^4-SrMT$7MxB1|@E#(5v@lrD=_={ZXxW3rO+^{XB) z9T2mR$gZJ5dC^Hxn;G2P^RlK2c^{$y;YBd(Icc35tFpvuBC&y0HdJvuFv!Y^tZ0Wp zBsWSw*Xu31PxDK?m#%v~_4bpFCQWo{3mC5odl97~hd6 z{BZ0u{T;rEW8E_0?bIc#@e7l62>}VX>+c`VC$0ON`sQk!vH9%|$$Rp4jMvu;p*2DMIOnjv@ zSYT2sEh*Lhn+Yef@D6<76Usg8Vf^;GF9M;%r5jZpxlv;Nj6=&ibKYuvstxZl3kk_a z(IumeA~3wmz32^*3I5@|)k|_`!(W=8ianW@!lJjk4w{~TjXvn;e5w5blch^Ei(k<5 z!fT7Pd$n?RoIVa*uC5|3FC{;XER?fWniArRSL*>u!l>;Tdr*+BNEdT&*^X`O`Z*y;3v_)K z>+S%6Oy`CZ^3am@9S%P`qln-dY8I2qu|<`K1)G{Ir51@ewtb8jR0-2Gxj%g1(Z8_% z48oi7#IUD;?44M0Jhy-^c_yI0u~$;uMcrvB0rYsKnobhPaOY=!v@A9^c~+TEek4y{ zl7=0Ziao@XOfM>5Ym5nuhVPJGx=raA@qC`E{iZf72fJ&p^A`k0 ziHFu@oMD}}PNi;gb2VRngu5rgcMcjFz{<+QLiVMM;{Z+1k_h0OfM90{l6>K!nW_}*r3Ok+SBtkTU^#^HNySg_2B-)7GJ#=Sl2 zp{W-}z1Y5~(`46~lwEj|>$0Ka`Jx{YQz)w2Gnz7OkoU;|wQC;r6PoAE%QW(O8H#q+ z!xtP=MmO7V{*iwa9Sn(0S=F0o3{DRfzyEgpSeKGGfKdx0(_DTq9MmG-NY*=^^o|PyRx^84^@55(ApHcNY*TdA(`IfhnPpgE4LY}*)8qBtB zhExP38my6N)a}+Z)~)wjReLjmsR4!hRPNgLISHRnCA0w#VS45v5zv~Dg&#bn4*L&1 zh~Yk^)&{fA!Br;E%G7jFHlNfp7`?(to!oBo!^V(FMW+}bKx&gbMM?+q{^ElSzgJ|?{NXDyG4$0R=KCb zm-i;W=vsf3c&yWl#m5Jt-aYemz+=RDF2AOWGt4r}c27O>SBNy_OvE=m7K=|3rem%D zgBu^oY|QpVNF_aJ=^Q_L_yoWHCL>zf%<~$M^AU2$u(FYnn@!KGQBZ4R5J%%4$*w_z z!+&G&+^pfela$wzhZPZDI09pZ0KpAPzt^94oZ>oKm+-e+Y}-yZSR52+O5y@OSEe@B zQlyL3u4YT_Nom(6$L}RXnCOVCKIL2W+HJ5%KM5}Xm8!l%_>C7OR1wFxe|(veKOv5s>s;+-k+Onf{dH)l#*rdByF*V46JD znXTrOO-r}1WtOgQdnG4jS$P4%CpqzKJzfe19shiGb{Pgk?+Yp_ExcqS&t`SCSg-8j z%S^cJn8p|Ik$QztdZ+ykNZF9!W(^6f7v(>YP)$wZi0V#C%mt^;Z)by?#T0Ef&=dv3 z!Ya)gLmVyO*$exL!SZTLEXK1yYRn;pQI%7mjvPwxCuV?bvw>2Wh2inL>p7XMFH69! zEfT`~99Gh{(;r~KX3FyBi1rDYc}75RIxT08!}QC~lKIL-^C0DaLWO7N0Tc4opc$j7 z!>xBoBtculkyb<)gj8_n8XOvd%U1R5Oh!uz383V#sJidJ995wYS3E}Vetf)HpK9(o zfK&fE)6&(2$I%KOi#qOvuD0H?Rpe$76oy-;Vgma%j{XdZvIu;4n~^<)Z59v~0V%~w zo;OPYn#Bs6o)mc#o-3wruLROT(>&Y#wm+H^^>)7YQ#Dm;9m%}d_bqj~2w%FLOQL#Y zu3OQzk~i^_r940rF9y(6lwAAC4axCZ$$HQd8Ib@8Bem4s4^>Qff|XVpQ15LtpHcK% z#EZ@hs6dJbO~1~qE5ugF>sHN7$h$H<;GhL|u^re1xEMm%$t%^W$Jt2bLtM(7n0UHD z=+4#6eTxxqZFX{va_`s7r~qml3BUOo{DwmN_~)OYn$A&sKcCrrhQ!;ZTPG~q+Z|?J z$hB>AschlC@tpZd$Jw&`QhXjg{YIXtJsklM;3xjB39I-$VzXC$&({_JBCW`51hGY3 z{){KXX6)bYW%NRRv=0k2F;gBXrTp1RYah12HQJx|K`|COd#q^#2-lUZO2Xg(!?+|T zZWfr*-PrX#QxjqC#hRb6Qt47k)0M}va?6&-3mUBu!@wW212Q?IMa;i<9xj(La^EPc zw1dY{$d#KvuEk{8pD5>r(CvVrT2;QoB?oTO3LgafUz*j_7 zeIUTHXrHrwNr4{~MP?y_up)+8aqJo`nG9tIFS)hxoz4!e56BiI{sOlwtXj%&TSm6> zS0;y?JRCJnx#jNLmAu>~a%|e?`(*Lfmj)0gT^0%g@#k>9s`9Tjes72U0)6K9)m59; zt%Sy)@wWx@#6c&GB}>nKUa+&ij?>JSr9KWbgWuDWv_%d8%h@l1q&2zTu!Y0)@8WBi z0Rycs?FNxphW+;1P;GNaAm|6y`-CX&#Kis}M5b7cAR;rM66MSi==vDfE!lfkPlfC@ zz(x;5cK#q89yJ$+&ul$DITjoL5>Os^Xh+ZC)TeU45Jcco zWk@Z-5`7uOQ#{#1LaP}BX0?&JG^1BQv7Bh{@gA|0AS{(s3JWrBWCfdWAvWDNoxa=Y zz3pajOz7BioA8Kag!f_J>_ zFqa5BGA&e&%=^DRXK=)OFWXbItAI4HveANbPRNo zm0Uy#$V=w^_E_VPiYCdnK-!^c2EIFNX@sL9r!C!ifeC)_WP=!(H{!E@RsI>11{PU_SjUd# z!~r_WrtYv@W)z*q=<$U6Cey2zS;~eS zL=LIK$Ku#BgzVks_tsd+Bz-8Fu#}KR#6-9qH+dExud8;OHP(TQZFrmtc_+&&5?U7vK zko<$z=eN()VRP9%s4L)`V^O0d~48HsB^S>PDHCrG&uUNrWQH z(;hDW#l1W+!AfsFk4gURD5@n;U6^Oq%Lr)F);JXG8MgoaABH9VTnj6CE9F5*i+X>- zL&Oq|9>(7GR6RB6=5DXgibuM%aEC(reC`QPv2cetr@LHzYf6?9yl^T$dCNzv!VF-n z0(HfqwQOX+hwc|^HvtqXZvZkj&5S`8VDMy$gO#%)@-u?XsG$0zPJhv)KlGvwEk4Kv zEl{EXu{sK%!)ntV$&0OYR_7;%a?~&TtR|1tMxsU?Pn(i<532K7+$)V-_-Na3W=ykA zw8)>^uxT&cF|p?>;C<(n4yg^pmW5Fb@?DSj*~#TgCy>+B;FdChQ4K69eZxx&BxGVK zu3u)D5O5}Xry@7!vJk9NlAyP+pyd2u`i9k2PaU_S2C+V?dR&Vh&$4q0J^c4C0Xe$? z(Y1d8?(^hf3ubquI;JEal|pfs81ge!OGDdeLy< zz}Ju&h$c!PoxcQL;uLB4elT&ru}eFw(Wg*_X|;jBob<5rSwx!jU4azGy6=K!qkWs~ zOM$gV;6)*QvnyxRbK;zWuP-{dHD`%^j>mcbwHUA_e{BD}XJ=W$Qe=@7%__(C%@hF+ z%BxxY8C4LfrSEt5>~7Q1{?Rf#cGabpk{$ihBj;9Kw`)<&T_;a3uc!1gb zxVw44Qx{_W4Zu*6DlTjm&(P|=-5vhVx~aLu*VC%jvZA~Z0*$;qq7#LR)12eyDY1EP z)B~`Z{X$AT9$?PF`6Q$f#<@Et&FO1k0(mQXw3#CI-R-gT>*eK^;s(MK9SJY%5{&~a zd(dzXE52D$8FPvjfDf~=&3f<7#gmhj?6|?Xqh{AJLQl;RNT;I*+Bcy!V4hT;JG2~I zo)0RX)UV0!F6{Ems_G83`K(xwEIxyEQDxz-U=T7)qLBC8Q0e+cJ_Ebt5?TI$l<0Ci zd~>TZn2nj~Z=(3#j>;vz>d@40K8FrU_TQD5KhWQY?B3o zsXO#C-G>}M$*XHj<{xpuod}{sxv9oV?qLQ7E=Bp;Z5xM|MDO!=apq^-VV#|d1ERro zZ7nzQj_@D?!&O110dzq|vM3#GPdw2-lYXj5P3QHutSx9ZxLs$kwSoyrF<$Ett8t)m zuvIKb${Z_%J&Q`>-F9eynY;i9SzZb#PzVu+aGD#ci$gHfoaF^jUL_ok%aaLSoDyddHBth$h{tq*@3>WUTk?%l1E@zq8(yXlrDbJ!;wl1otPch0~iHD~>O zG(3!Z$)Hodz8?Y4N?`SO-Z?w@(eU8Wj#c`fP^-0}cTlUcBmb@VWTt>?4z?HgA)D2n z+;If zTg-{n3K)<0l7>;^(;y6-k}GIm8Zr)J?V__vto2r;V48@6hMAwr_&W}O-%4!sCMpyA z&ncGP1M&m19a6$ySO;O0ES&CplhXQG#IOnIxRlAXw{emrw|89P1bkFbc@hqq6X-%G{>%@-H29r?-Q(T z_DfI8kd-AQhgzg0m0@&+7Ip|b=O8<2xwP&Jh6u^rx*T#h z-z~egK#LX0d2)h}Pz=X~nC8#oM@}XmJ6lEq$vf|r=jT?^ZHkXQ0k-Ye0g|jo`C;l+ zC8}_7Xp^a{>u^oe(sb)@+^ys#rt4Yszrrdf^+B)51}q98en*e`Am62md-bmKryK^~ zK(>bcaHzcH<4ncMb|MqO#cJ(`LRbxV?EJWwt|s#GKb}7R0zD^$Jh-8FLf%q65RpjH zR58@CWqM!LQhgE7mnyZAlL`YPj5qqqLF)V-AztI$O+HOQhc;1N#LD&f+(Ny&jP1pR zPx%?O)1_*$_}~(#_@i}28$d|4piibz0D>7U=nSkA`^e;oLTboxi;pXPKt+VZYr#{m zV;oyei%el!_}=|HXQ9_MlL`?tB`Af~OHCqV#46I&BQDny{UcuZ@j#HZ|8#Ar%kRF`G+maF%QA-kX_Vg6Ya!LZ;V>F2#g4LM*7Mz2K8w-mP*{h4f@Qs|NElqG-T zAp^4&@a`4R=BK2&tg@)JKD-NMLYiMIZGOg3olt%nNB8fojNyIijJ-(XG0=)UhR%!g z58Mbu_K`v@tVvwS7_Ib!-sTK^bmCrz5Z5|$qvM4+LDxV^yGJ1l1+kvA6^!~lF)XkD z0x;$Wh0;_&@ZJe~Q$y+@iIgq)`_q4i#6ap7vmMl&mUv6Y-q8=YU4}{}bsaLU(Mur+ z)GZ=emD&`CixwHkZh!N54h;$prio%E9A z(;O2etsNHQg0B^0dc0PJq&b;Rlm%_GnRtCHJ-QdGDpC)XV`ND2%yA3^aJ#SENj;U* zsmdl;=odE#9d4_25IC&>BVV47B2Pd#POv32-M?)2xwmfTwbm4xSF1?Tw%Z-qnVt{( zJczAAk>H@Qp^-%tG;yqjps%;JL5h8_ZJlJG-qqqrI3R$WAXYRTs+$PcxoBXelPq_r z!4I_makwC$RZ=777>{G(_n^eT<*eUZ$Ec-lSmeo)!d0F=`a2)>^fyrCX~`Xx-Y~w? zwt3!SYk38Lz)EHp*Aim#Rc3Qo>fyk}<>9w57$Tz)Q6djr-lk1l7?`zI)kOwd0zw~e z83({NLIO3a+|e-{@;DNyYtCZ?pH)8wds!pr97sAQg@d=f^Em(2*;%w9^0asNPhhrV zZ)@PCLjRy46r4%4&}#78C#5Oe6IuoK$uD3oo+pOpFMQgrqc+}*?RBx`mwEML=h3L` z6^DEyO1%@2ILJrh@+Rylab#np9yrzj`Y_VS+Audc{^%>y*OeZUx;XC9UjN4*(lOpM z`mBX0lf#94*biuDJ7)h&m@`!wQ!i+`&Nx_C;BGS;p5!9dUAtzn1x|-V@%0 z{|ZAhFMTtgGA^`hJw`eR1&{Lo6gDT!U808%PC5*nBL>pN>8nF9Wk6b9x&dARien^O zRbDH2i;ZHq5j8pRn4G1mdMH^bRhPP?Gy?7UeK-L0U+w7R6rWUjMITx3mMQI-y20ti zCw=Lkyb&GKmxc}<(u?jusJ13vPWCxfl_&d~+p=!bdBJB_=s>z7{snXX(ij{CQoo1} z@QYUv$(K^s+Sb~gh{`|4v?%YAME1Q=lty)>;|9I}l>))hZ5WKQg8dovZ}fQLdr4yo z63VZrko(~im9mLNcRLrCss>z41lQZqbe78=aEaI!O!|CKDa2pDI(EObm2!9a`UL`+KXuL+}7NQJ*DAd+j+3T zo1`1T914_MVL;%R^38wm6(rzIlIr`6x`d_a%iPyJJw`*kw!$sbDRbvkm1e8`LI}PM z6omTwmjAGLPM0+NKV?fv6P&`I0HoDI=V<(+#UHG!o- z`w`NErO1zRvs(^S`6-maE5(AYK}r)2lzt=DG z9ix3`gt(SK2lqa1HmEzxf}U{E{$nTqdbXGgN%Ye=K(8nvW-ji(evo`&ztHa1M`-be zz-auH|7`KE5dS~A_=i0?D_re-KJq|%y2GVpBkWlB_wRrEw11f0e-FlgZ+=2^dFA8$ zX;K2$BIOr69DeD4(~nSO3#V9v>!-W)|F4e!H!c2ip#IOk@B^v;#`ajpf;KnU{9m=n-YW6_sIAp$+`TKxc;@U6X@(|ugu}+Iou54q zvbHmXZF1pVNEy-~y>EmkpzgP4sz9mBuQvosk;mQ6YKcBFhsv$liM|t*LHE5#mIO4p z+s3w_dHUuV@FP>M#UbQRwYM{#h5L_1Cz5^!?-Ivs%MzXzLRYfW3fbN8g90T^Snte;v(2F$?Q`SN|YJ$uxJ z&z^Ss_LqBk^-62(@t&2((XkPqvGKk;GSz6JMWw?Rek!`pBvfg>rsU;47nQqb2y~k! zZj&>NiK~cq9WSRvtv4U;v+InPbJI&l%Rw#8YO zcjK?7*WwOxtTRH2{-6qobOq7DMN<`Kyf9y}wY1`4eXDWqMp}NsBz+R|H|+r?T|&_F zfbox6mhL&3N}t8FvRRe&a&B}S!}$5{8Oh?F+PO`T)2oKg$g?Bd)ws|CL1f;2lKQXd zJGz!lPsLN|?-+j)(~=3)o@LagJ`qafX;tDrWB3Xmr#GCcb2nz)8dOc_>aGq;D)Qhe zN?iI_t%gnsOVTDwZJip(O`kzRiqLshCCwvvrJ_s8M9qhweTe`s^14bjh%P@Amvh?v zweKpm@B^?u{fvb6v8m~i+imRPa;m~$!!whPAZzX(r)7}4iZ%G}Nwm7K_)0MJa5U6p zv85=EnF~s{IW|+~ki^iVe@Sb15lq83?;xt6fBj4GR{5Cs9)Ve358V_uFmdT?j&xf_ zCv*KR(xMT-t*Q!Cce)}CN-jOj>uNuP_CL@xag@rDra{hwTyK63TRF3$a&Zi0NY6@2 zoCO1nF4bOJUnv(JKyb1>CE%#8Ree>DpmtC*aTbbRNGux{+f`jI2&h)8$w$eGd64rd zo(qIjt&DMenXI1S7I`ZpSc`_CqVgVzWCPq_vOJkhU7#c}$8eD0r;e+zy&UhmH($`i zjTVE#A}&p_tVELTqyCh4D{Mu659?z3w%2vOZ4_!yiq77FrHU?*gx-!Pw?xh|t)K5hYSU*GP*~|9SY(;weAbfRa zCj^~?ka#xGTi@Lyf3^iqRKHNbo5gpY)ddRC9T4!K zZP~{0@7K*d>R)X?5lLR;1o1m%-DN}#nlZsOi3{%3C!&;JMm zzF97E>jBX(vIoSz%LR8Z6FXa&;2jA`Li(lf9%A@2K6k1yrrsWts8a2NsLt9_{-pB) zjMv^$PLyd6Kh}x5u(qV0z$}@3noMcV?#-3nk2lMIyU&tR18dMdQ|%kPSa|KDk5QY~ z;qOGgOz;&aiFAyM`FL!nnPfU<&A!W%u=^`%brzz>b~ZvVDx;bHr_;B3?0;@gRJTJU zCVn&O3W{l2@gf2V5`)0Bt{1bFBeP%ktEWRUGSV8p)v69~6Su4OBoL>gR#SdW zuE`%nCFpCfJ1p8CMk-o4I$x4;4 zWN}y~M$%PV5&QvlO$@pr@7FV4Qeb*Upy{;8t}#zl%4@`SAmY2;y%38ynLy`LT?;Hm zY}xqS(D+KH{Q-36vON8=N50FJ;Qj%t`}4P-!^ax!OeQL_y6s#%VDts=EX$-z?U0m|;9E@!4?u8q6Eq8n*M5@fN}$5NEPc55+U z7vKEInKY2)zUDrmxWdt6u`(JFi1)2G==Z-|u)(U#;j3RmVA)L5YkOIhJ)e@eC8t4X zn<&OEN*Er=7v4AT>n`v05rdz${rna9@>p8EVLqy9-jsV$zp+D!SGOb*B%{4&UZC2c zhP?~aqjyvJEpqeA?vvvLLlUOkGqGo_0yxdkVYEvESc*GN6Y|7BKugVfLq!Z;B2At>Lo~{|wibf8d2ruiw;oB9ko--X1M&{5VFe{j#T>pwFi) z%ko$&D@j>SJ&8Bs>L1o1tw#Z|;bl!IolY&-eZSV1u6u&5ytvl>8->?gar6ycI?Upb z8m|`q8zIuB{al%@;_dDO3A5{q=B0N!cOeZg#hLuiHu71l4nG8*SgRX80uw_Lz<3m9 z;9UlUOzW6V$l{>W&K3I@@(r5cHlst|i>}a}d_HxVmD4QR7NYx#XNeQyL0SD@0Hi=$ zzcDkslT04tg#9wFCnJUUvNByMX^KAC*LS2qt@fm-;=qi4v!xqX>eIu=pFf|x_Y0pX zaMqg5)+20QEL2y*-*d%slAh2H`VOXt&u*q9aIL8r7fVVQCHw}7{QVw@F|nipsYTV> zO!wd)pKo-XBwV9G!Ci&VYOy~`2teS+3eY@{>FN^*Y!I7_b|jG`d{{mJpoExNV$3Hi@%MdM5( zDQ2vKY#Vncr-_;5?Qoi=t?ov49mc4~VY*`;@N<**ScAs7?_uE?UxyrrZW8tv{CYf% zeR!27=>P8h2yH`7e^QrtK>z}Oj{rHPN!Nqsw?}drdOBy0c_-cVIqUQ;>bIPAahuZ5 z-)AkBwxK7=5b|)7uE7%9naRiM;x+|Lv0}#c7}+J%VyzC1p;xZY$+P<&w&%PN#s55? znHA5XxDxNAe79XY&01$&Vddu6p&6}W$k8EyKI|9v!75hBAfJkz)VZvC^Urf1hXca8 zJ=u=*P{+yhnkB6m(u270z z`Hm*)9P+C1`7=6roiyjnt1sdZfWVIvpxLXxc>R^R<=|mo+6%dL-E2B{o-@5G*q@y1 z8j3j-R7d#ksIHS;$v|@NCw#`y*{qF}IIFCfC$zuUQtC+p4LHx57K|3gPkQ>CY>Sr`wug8Ppy-5(>TU5wv1i(_3ISnK-RX@3$?N9&%p!*} z<)j?f-e3LsFZMwR0SNp(0u-?R4UOHjpPYaFd|iOf6)*Drd}#pvfr%8d1Pcg#YkOeT5msJt2NQpjFQ&~-?LcZ>oduAtcALr-pOoeevf5jJEA1b z*cfHrU13K<%GGC!t4$O7M+90h*^rH_^Dalq>~ukh^*)tMY1MYH6*ZfX)AmetO#LF) zcEWi>dRKcX#Z7b~lV=4!$Cvb_)Ln;!Bz2y3SUs|>!YEJ zA+I#)Iu07y_KTnENtOKhv!<1o1=&s+45Yq=SM_4LMXFNbp+{`~ z!Z=c%Tu9EB51IFxr6A9XKIHz>E^_RYMH8EjGP^i(E`4lOl)SJ1N zk^Aa;F~K&R9pT_Or!0N(ew8e*yA+G*dH+rmK39y{+)wO0!L@ zQ^Mx#bBOL~wJ1*Ovbv2NH@H#3MKj6m(i!r~T0~C$=aFK-0cKcSpZ|8*fZTkAYg}2| zdaU^1zy zRaUpDUzGIGh};?q_tNkp zrI}5)lgvQ-B0Kcpi4gO8*@;FhT}kgN3E#DtM`^|kH|=0Xk2*5%1CJ?abro@Z^51%f z!cRP+xYD23t3Fy}vbqxzSm&nmS%(QNnD)DM<|j;Ak?Utdh8I#WIDTR(cVMptZi^fN^y+Cza<6PiNjHPpvE{>pXo8IfS-QA0Ig;UuQNMu}mv$0&5+VNzNlakhA|P@~!R5O1E1?=Ql5B-Y!GP zSvG^>U4`HEP(boxp|4GlFo$ENhSKkX$Z0aahGKA}_})qWLi(%{V<;g2f&Z=mxdrN& zHg0-KeH5(8p>yOvK>9bUj?ugMzT~-f2_@F;@ zds|q$9WG>VvXW+e>cLi4pGdKZ5zH{79nF~8iv@cok=@}>rcK@~S0AhT#frfGJc z=V(q-o_~&h{*xv+3Ezk5%_Ex*sV+QCfPo@^9Gs?tknMwA`dm;c?rC-PXgnBq5`Q0LOX!$pNM`C24-Z0{&+ z+pG9Fw;lYxG+xCiSv!(~iV5r3Yeyv4VDEoP9z`p@&STSJBQ zez8r+^|k1ivo6FYuPdY(LmdJT_^|@yPNT&U$!6P2^)@|O6l4~(Yc~1r86~y3W~B&i z9(voPm}-4h8vl4GDfvb46?ctizV#Qf!xqcP{qRfXteV6Q6g^FIqYts`XWFUzF!x5Q z*pit$*#0NlW^-g6*y5F_Wx&q^kFtTn;y*%o-+4 zN5_X!XIhaRGZl_uL5+sPy7sAe83_2N8z zJaFGU_=QSrBgb1-(za^!Msgh+KsLX1P{+)ScTAvpna$YH*`GgeR@Sc09DZ#}&-dB0 zR*D;xVn2ye2k+}k$UC;e zVm3QorYJk{GKe(~o5b2joMYz~-ev(U?oh&~gUs%bDQnT_6=R1F)7w*?blS{-wcdD~ zuB6srhB2ea_4owlec|(bZ|sut{MxQ0meisFrPPj~aYil4sl^rXy)ffN-sCX+A>G`u zjoz1BNRu|dklLI>=8>}d6N>rZXZ~`yn>tS8cfFzUTgHev>XOwx-b!6kA)PYn@=Gro zb3^$4nX`?&tCpfEhSGP>oNd^K!2dS^vN^peulG#8Jr9z5_%5>`qgi>*m*%uLP>VMlI+vE44l%zWQ*cA!aD^}bmByY|eo z+F{CARF<``bC8r{ma#TtQdq{Qsce%xhAnC9$IR=TXU#@-Vn2<%L%#8?*_K3Keouy# ztaZDZ%xq^I#dl3&OPY9)a|_{~JIrTz0wvC`O}3A8nP(*}e$D+Ga-QFc($;?doHa8Q z=9Cm%%uYCl0%7IVCB2=}L|uw68r#H`rUuWVdzn=Zojm*U9eu=E0TDU(U#`a25kHj^x9{JGEH zscZ(yD4?ewE4C$$6}TKk0oD7nC5!nQ*qE#IvM{4h+P&FA;~lK4@eZ=HG@%hc$FQ3B zH#4@$QLEAgl|L^~(@)&HUYU3nagv>vN0jt38&+3^*=r zi!qcCfI!{?lypV94x9>)7JfIFGn*z@UZjcjZ!x`H%P3)OW3i3N9g2~2uWOWIlFS?) zS0;zpvE&$-Mjit_S+lx3nAaXB+Iodwi{*WaO$zSLSg(F$|ELAImv<(&<;ko~>00KG zd##|43o5covt;Z<>)E8&@C2*8+>SL-#4}c9KAS%wnzdZ5WG(A1X1^pf>eW_g*7UMPs(i zD1o`W_hp{-dNH38by)D*ldN690e<~hIw`~S*oxm8u(ti8$nnk@)=&0`e@E=fSj#z- zsykME-(=Z$6aB;<@%!Z1t7GIaNt$<&eH8yKkzX0|?35wqe@#gfTMZJ%8gDFIo3Gi2 z#?HE+8ABZc|8@Z~w6*z~_ehr#gn#oiclB$sUu2ZCk6Gk=X|08vDwN{acebYs`#yh{ zYV*`bolCAouIB7R4%Jq%9u8M%{5-zaJeo0;vr&HYN zrIfgSECmk~*3!wp^zS~KXlnCXtR+ z^u;Y^vgIh#8PS`qnJr;m#baud@f!jKV#%rNQ-JL=wtV#0o6ZyU?`ZwU7?-)ogw(yndHeD4m{xqJh9 zE5FQ|nHHz+W$#k7TuBMLgIJq{Mg0DRA1O5~jxDRbQh2ZSmbK{(pKCb|n@N7PCJ3={ zckj@v^=&AipzxV4#Jn$hsmq)%3JkN(Sr@lWU)?yX-X^aIAsj${A=1|IM>6#<+5c67;av)gUMtyr7q`)&t^#1v8WE-)N0h0^PF zvbt2i*ebn3wAf}S#lB8vji20QW_H!-QCWYAe;vujHw$GehI+ArTQb>B$AbK~HVZn` z8EL>mtaMoay%8*>WE@+oQ;}&IjNtcm-^oq{%wbzL4Q4ZoGZr;|5?kDH1Y6v|pWRFz z!i-jV($+%@*|syIn2TRgijhy`*HFBo_$A9Ivz{?CYSDo8Xz(*z+~qk1&nd#p92$_# z1!v~aZUobM7stA)bZ9}PcjPz1nYf@(Rm8{hztM7c540+v1CyOvcgV z+QMfRIax~UU1EFAk{q8&YlJ!D*oFWE@)sc2Y0`R?n9YB8=q+xGCD}jzKz6(Ksq17H zok?SEcc;mL!uKMQ4;;l-z35F&G>rc?CxZXRuq3H^+#-jcim|1|rJ%APA!L5BjaIxpn6rD?0!l@kZy6B*R;2A zR&+9QfBuQw9`u3J<=JqmDveQ*=&S>ag#I$^pQ}iG9KEDxjB0k0?|R>OC`VO-_Y2|s zvTeF+##mqzmLS-<8}yZ6?*eUKBeujP$lPqC2}zFjiKZHuF=|-rE$O6dwG@nC24DLTiOzrNzJ3@l3QC{+LP9YcCI-DMO|Zx zez=fa-j&B2dPD8&3g_yy-A+y?mAG{H3b`)}!w@)2eQc_qKpiI?AiW1^NIEDzcR-q| zCsh6W;Qa{|T#_e?d71?|D00&v{j zS*!)+qf=0gPS9)tmXGgCF{i8ZN#Aghs8dO+WcdFir->zE(7WqQDQ;Km5iC^}lK$4V zHWlx(hkWPmflXF#WUo@u{uyOx^d4>M^3IlA1`Q+kObgO&l|*u_AINa%DCDmRz^BR5 zo^pAaSx4!fOKo|{)YIg=@C>a8c}Y75PLNmF`4RUI-XIsZzO>@WG;-T`g6z*sr%G`i z)UnumTGKL?B7DlrD_|kb=s1Ip^&3aSF9*?M;{<9suLjNOE}Vlpcqy3&SCE%0e;fYx zG1RG-2?cgMMebvr$o=$DSUg({MQkKBE;XBaDHf4TCxCSAqmVm7IJayHqR>tY@kCcp%~ zpMb2=)k$JD0^Fs251KVG#dj&foa2#EIb6#57>a zxQlw*>ce&2O)*Bs{YK&5933(aE+N_euWyjDx{}(>Z9=hzml1Ml3CZ+k(v_o06lt-8 zy!K`ju5ZC|vz-)uR#?OO(1H@~%_93zsTAu7igX)AOEM2o+$tq)*J()CmUzSwU>hxO@q`u)^`X0mYf)@nC6aF}q5}pt_!Kjfmf!1#q;b_qr|eXupUI{u^IFn@z@wPOfyeAl|I&j!)MvB7ag8rs|qV zaZj^SlC@$V6_Hr@Cg$Xc$0svVx*lPNZ%Z zo{4=VoV*B^i_hVb@=CJr&E152tb*g|OUR!&mIjosjH!7A=W+%6NONT5uP%mZy;EV^ ztqZ33x1;8&g<@Sqb<4o$_Nj0TeTVGri$$Nh!0D3`Zpno{*sm^p7OBo*$po0d9}^JX zD}IY<`=$GsIvZXSq`h4DFz%k{Lx9W*PIKnUV*Co`Itc@EC4WNoi+H&*9;>>$An5Te zq$s8Rl=N&>K3q=4QiuG_3KN~g7|ARt?Fla>CP?XTE-r9Cu2CJkMBVrel9~1+GFT?W-rR` z9zi=RyrUHj>(Nf3{YBA6@}?&mA9jG!Mp|y6B{^|7;lW$Eel(tBY4x=qwg?08l zt7-8;Q(EFVAL+M7k>SkMaQ<+U^iFLj*UERu(9D@i4jcnVJ##o68ZP#gy1fXeHunm~ zR<47eBl~4I9F11W9(**HSj>0Mmfh2CA?cx4j~DnlOMB`?U0q<+-W~a&?L-@C(`9OZ zQ3>0Af7u$CaEAV@qV2QI1pboYE6pLLn19RRxYPL!!m972Ij!bl*s&#W&xxQ;XA{LZ8J8GGOI0eoZV^vq zUfqyR;C#}EXZlS4-L{0zL~wSjJ(O`UC2%ch0ph( z6~ejnJ{b{Y7aBsZ4=tpv$41GUR869UoknzQ^aA>vvYz&Kyh8_qJJX^5zO>)oi;B;< zEbm$?oz{ez(4|u6sY|=o6m1ty)5_eTr7Hqy@uCl8QgI#92KJ(*GY*q$>_NE4-$qIe zg)H`Pcj{ppgcqM{n(7bgEPT)GJ?uWdgNscKuxc40aGkb}Cv0%nx zY2B~D`u1Nq>}{rwBEVyeTK|@We^`nbgU8YXaK7B_TY2nf0{@K!$Z%(f*e{~E2e7x_ zpxH-ccnm>@y9RS6vNYZIKoUDuo2;Z$2 z-jlYorRW7Gso#iMG^6f4q%K#{+Dq-oRdJc@kM6LdV%o?^@+X>yh7G-SFp#nL@_iza@gbn7E8HsT?r<&Ppg z?O1sgr-!t)Ya5#HzX@qk+4S(VJ) z{yZ4 |+)u&{i{*0`w!|{5O4;k6IAiZTBnyXz7iDTTMYWsu+I;r44DVSX*>x<6yI`A5wdtZqeV+M+Hzhn4o`|HkidBeJNEZ6@%)KmZo4j($%+ zF=oO!F%Qm`zwVQt-Khx{8Xpk-RLn{klWdwS=|-Qfz0Fx~bnQ~E zyp&BE?bzLyj#SE^Rqu@C^(qdOw>$?*+|!m0L~W&|1HI_#>1ax5(4Mk<_Q+e9Z>Id# z*7A1SgJ|F2B{aon16|frko>kOMgJ(HmFr&7s_Ef0zi$q;=zE!tv>b?lt<}(fa~JZk zNu)W-kJNsk3{Fw~VE6o;@V#2$9I!WTWLUBl6jn0wThl=5+xdC>Nbm9)q>b)J-BZWH zsog~~7=K5Kg}BT^Mw?X#&b1=v+fT49O$N`)h3kT1j#%L5d!az%zf6D$d@ljm9Fx|o z{wNwJf=!ygbXDJV= zU2sawB-iGqxHl`9l;&IUs@gmPDmz&UU{y=q^RqKTUTx^`c`2DYQ4f zo4m^SK6F1Ml#YFRKyG)22=CVJ5LwQo3I zUam_Ix;E}AMU`nFFLkOfWxjhrukt-8KdLqjX@(vZe^OM=46TDZxlKA*HiWQ~0z{*qF^8m}}R)xNKv!u2Q zZR7rSYMmt$U;@7-0JlTZIO4aFuX~_aBFz`!>bxH=HwwmOHqP^L^d}v$22{P`kr(76 z>6Xq9p%~B!0hTtT2-Yr00?A#f7X}jmNVMGIY*$LJZ`Llt%v~5MYoR>#$LpxA% zg;45HSDVsCH=y~uThU7STe^E(hxXSor8~nX(bLycXwSB%w7JzJvN!KY_Wivm?9mKb zmffA&_Pb11Y^Agr#wv2Z;6}#}M^e^GXVO_&nGW@_ zBFDOIsZS*t<&W7)W##SY{z75x%C`g^iE1aWSLp)z*exTI;pfOp_y$IqJ5nEL${2ex zE_IexZR#PM7u|zG!|x(HEtTf@Cy`gb?X*+Yh&qSfqWTd*R93kS4(_|9{-#WsfZ$WJ zg>SY6NOr(R7g3sCE;(DW6IUOG=L;3o z=D$qff0qC(yKL3$J%an~5zbAYB>E6&`&g1jMlv|>GN4jXMo{gLK{37<>~0hn_A~W_ zPrCtlRr&$>9B)D9J+IKBg@Fi}cbvu=B*D?U5^XJ0i?+QI=7c+r(pW2D|HJzIWN>~Z zY~3wMr+r0gp*xS(mKDzOYg3Q*c~+$hx3X!(rCpS9K8Y^0nJTZbcbB$5n?s5R z%W3a)VIRC-K0V$sO5UyAJ-Kf05#+Hsmp&-F(DJ3R@=}&VsZCb2ynB1$TnTR*x>K?r zUH_pfEn8_vx)%n~nr3C`WUF8bDBGTN#C5t@1sTuXOG8o*;q~K|6m@(y6tiy%-;G^_ zS#vH@hrHs*4lTGZTN{+667BlYva`;z*c#2?Qf~_sD|GSh?2?+Nhw?!-dEC=D8>))JN0QZMcTXBs#E3>j?RMp_P!;B|c^MV4(xJ$m1O^37tB z@2g4H!_UEGek>i=DHw0YnioEMMQF#v!XDg$dGyZy_u;Un6qF_Ah-`#2_zUyYtYEuD zdd>k`gD=Ki>bO+TuXBA(n{_6@1b!uendu{cwZ5*w?qpjrg5Y}B@u_@$av5!cpeK=- zd3`_pPb`yF$@vi}{lgKzB?|XObP;o@tEV^II_M*#*AQgL6%^^%oFdB)!`+1hyC1xv z(sicQK}X0Zc@M=pgj3WwCt6v-8ShIH`PSGX?~ooq*$>K-_W3BHl2vGzmOh=#tR`>q zdb_;B3=hf@*2AJ3+snIr@TDga7V>K6XHtUBV&n|eq741O9H^sq_^x?>q7 zZ&aZw_0;`DdwZOs5%KkCcmMOWdd5XEtS@qaFIId3<8Hhy|+M+Yw zHs|+u3UKgWCh!jvz|5!inw4Se8-XQv3!l*=$<-S!lcli~p2yZl=+@Opv>uBLgZ=PJ zeu98w2gUjbyw!wey)T7?Dp?fpAszn09x%ngezJb=wU8OK3~BB!5vGbHm7fP~h#M_@ ze^sA;T&+W4?LW}t2F`dD9!}Gf;^^)*E84sFBiu?4AlDiTXnym%@@oBqX+xQVNe^fbz0+w zWS{fMSe-#NGrLjL`$|;xRteH?l1`UfG$bQC5(ZTR$f(XqTDY_wO$=Bkwf$yXYnuMF zHSK@)l)OS;(d<(yT6QRi4!8V7pC@#ex9E74IxT2Hd&@`C;tgHtmSY3CamOz5a(0Vp z+qF9MEcOxUy6VufVtVwk%1k=onMIvC{YcZtZlIS_GHAiv99lfAv2fq&K%To^(cJQl z$uHQ9qMBU8+jFCcF6Yy%jj>3*RtNDh#IaA)$SL@j9vJn+~x5 z@gB}zHNaczVCmYOj}_iy;8^+x*j2xYv1+C1@0T7phMW;SP!^Yy;oE35E%gy^&YZ=&UtU5PEImIX+B6G} z!(~W(luJEtt)sbHiqnpy7v#N0OZXn)K57>Ao(`T7z7_3NjrR3lLOaSH#-b|Qp*p*R zZl?Lu^5)IR_lB@1Y-X77+|flYPist9qle4un>msEhyC=zi75EGF#=CUP^9oI(Ruz9 ziuLI)JRh(oPyapmlyH}J#m%JKu6^mEX#}mQXHFY0y&yxsWb!XtlbrqAQrDfe$Sc`M z>yY!JpLCstF<3xPDlw)F?K;1NeD|BcCg~>P7EMON0e{jn z??N4VRgiL5f8I(iM?A>n<`7sYdy?liGt6qZ6y6=qlZ)`a;7!L=x;C#A^&50j%HJI* zoSQT4DeY5r#9E^X)H(VxeV*%2=Z^27+(yad^{FDgY;=+gUy!_l@*E|NszHyB2>bCL znbW?^WZJhzi{6>tCWi=n+!>uf_ObDJ6Rb@JAw#MAvIFF&M`UxN6D({N;4|(Z;6MYs zsnh@tPW{RFc`o@pZ9vY=wvoP-ib{5FA*)i(772N4;5B6$%op0=@>(5u>PhQ^m=15@ zouU>9eJ0Jp;aY7qvU0q|ejwCrqbS9KgigEQQuADa#ebOq6ZpFcVA|Pt)K$KmO26_T z{TvlVcCaAB3hm$;6phdQq_rH<-WLa(eZxt1YYUY;(hna!*1_G-mke$;C9lZ_R5z#< zIk)si!s;BVw#*lITR)~UnJ)CK*;xd(h$Fo&Z)o+2J@{~U80EbxPp-T7(2#p7%5=1* zbCp!&R-y$(%^OG=Kc>?A9!IGC?XzTW-G{b5+(7k~7sIC~dDz~v2T^U}P4yZ;_+^Kb>x5bQ(*eGbJ z@I9WNIvUc04{cyq{~bkVU7>r$MhoAxHl{3P481maPR9~ivQ)jK(8+u7z_<=Y&MHHl&jgX@ z126J@)_|NEe88-{C6uwC0l94!zVEY8L9s8lkzp+>>KrnP?pkY6#{K)W*6fVDvzwA4 z7tf_9k2ll7o7VDXmnYK-cP(-qlS~1-7gOxx#}r`}Kn^dq(c`QAXl2bYG%D{DKCD#I z?pY@&+NveFj6F|Ihmw(|pG~pZ%VO`?p=CHh7}X3+od1j zJmU$Jo+>P?UkM*0$H6x8EXnq$g!g}P5o#;V1=W2wo$a#`fybnG$YJ|_mn?4Nbam`& zl8R3{FPt0ONj9hH=dZ=t#{`(b9}__EHXn=|IJjsgY^uGc+FO_Z#{a&8aJFfc&7z3LZ9+ef>R%f;=;ZeNy~6+eu`;3cHvGl{yJydbakiBu{0 zKK-zDI>mZh(z-?Vcz1gM-6(O4Uin`@_B&y3#Hxw3`vp1 zhP3>=aK>rMB-(pjNmcs@X9>nWpgrYb@<1(r0 zEhpEBc{KM;0CKmx(9VedP+G3TXZvJY)bu{yE$@YZrAgGKWF)2t`y^_t_aZAgh1idW zku`EJoQ9umlJ{;4nVu}=rM%=Cd-U}upDg4Tz_*SirMvUkaP zhlC2>LXw`rBB1sO*wpyyo(Hj>SfD(gSD=0Q7tXVFzx1%h1eick0xevX9J!^eQZ>W+o`dZKo&-O@2dWb_NN^D=&hyo+(lXIzQ2vf@O_LMHN26RMx zSiaZ?@?0E>ym1$)>+>3TJ>3F*GJB9-gSJxtuHMr@vT3ZSn|5`&BKg7^eDMx}=qp;_ zZMDT00QnV`>pp^4}#A(R$Bv(s=U~Bcj{bci_}KXJ8_hH>jbs! zGmoO@gpgZxJzCc_opyK1C)I}ubd*X`?vWs*I2yrz?Fo6gpl~Fu-9@?!E|X4j2fEsG z2?B-h{rIe&NOmPlk*C^oyVTrb8QG^8!FF50_$hJuL0Gpq zh~U!O#Opx+#iilcr!PKQOcvG$t4TiP{ad0G3taX~&k-d(AhR6YTaJ+}+4VsR{>~pL zQoH_6m_tl}34DbB-fEvJ>ZWO9UaEbt-#fQZcRzfoP|q5pgODfo!h6LVL?4+fzDUIz zS0UXj3#3>bhwYY1c;VO+{TKQ(FHeS%L%(o}9g$9fhu>1-3oClp7H`bmEaw<{8$4AJ!vJMVQO{kWQ7jiySMu>cjn1^?b zT}4^6z#iW7oI@CXeWHEs|BZKQhTt| zuP4T!T%RsVv0zGztK>X<4y@}OAfu#uuv|To0_vrSF(R*(xp6O3~Xw zXmh2Kw7g{;JsM(7S!Jw{WABI0txv(NeKlJ3Hl6ke_bmHLQzJ#XE$Ae@%GJ+!dY^2sDH&N3ir^z9F0L3QNB=q&68A@OLVzi4)iW^Z= z8$+b;+5lC}f#iJ3ld6qhhbL7V(*4doptvv1hoKr~hiP}LNq^&7>AHNEg^E%vR3<7H zF2~QnYkLRboWNA1Enf#k%U8nM{`-Oqfro$N39!zW#+srJwsXrs=b5Z99&%w-fnV3K z&^L3Z#7AuxmGGZ0ts@rov&{tlR|vqq#hvfzE2ht`Rx}S*wW0PQIPobgGaJcz`2B)p z{UMlYEZyT^lNk-`3puclY7U2s!kKz$(!YD^_Ie2Njkb#QN$+YNl6Cq}$pH#D&hVv{ z9X7z-svF+Lrjb^2Y2A#@WHg6uPB-|uS0&S)^DyAlN@{eo2MzkAH#uK1!ByF7JgnhL z=jQdJ;W3xUx8D%DaVd;u>RVGp{C#S)YX&)AD~8CEQ)s5QHiCB#h12RJc%K;#+h&ug z>#FkPwBR8e??#gGqIjA(OG$2}*9m7C7VP=RIW-H)>DuD;!lkA3+|Tr~_fX;c7>2@o zMKchnibK-5Vz4Y*68)wvMgEN?$Viw#`rX}-`>kU8nA&aMn~OwXT+MNiLils(qRg&Igx@ws3a+R(yW111oPES+xxn zk#PSMR^J?ncX9S6bJq4l_>Me;+9{-5w^k|C{l`SojhRnfr{z)iO-E^Ytz_g?`aniy z-c#3}qsX~V8>)EM3>g#G(DI6wWR@mf2hF~=iDItbr7o?XQA@wI7}3E1*^jr<#!knm zSlKc3_{SJJJlO>9&w+R4x>2!O2WeqoYr4ODB^l(cp~Z8jAx}G;jC()C8K1`F84*a` zhMttJ%R4A5ZtNr$E9 z68JpENAj6JDuEtPgmceYv_*ibrsxw3?w+|=p#Az6mhpw-yI;MmF##r^NdR_%cA9ok z9hTQ?AP*h!_jv>fd2i9fo!}j1E(s`dN`tj+Q6Z%F;`?!$%%MX$-z2i&Rt#C$K z(=gE{ozIgce>H=ONcwpIRb8Jzo~?V)oa_Eb+p`8KaW65wr3Y1V?2V+E)ksd&$>;eM z@|oC-ns4zU&lRau!pw&JQtMNn#!p~3!48=d;>cvzOIkguJ9%bor^u;2XlM1RBJ#1>^SvK zw8HkWN5yLu3l&qO!TRRN0!!#?;+rF)F06m$z#&T7^B~#IdkgnlVNIhnc#NKpH-mRc zu@vL;qSP!VOBS9{+fWrxQ0pw2023%6Agg}#clQOsVQxuHR`}tL^p2sXPpxCXl!|z7 zXbI=BHDG_GY@y$($#T*QTL>!;Y3&BeqtciS`3BYC<@Y1fnk$gfqXlvL>Q(WNw<7_fGwUfG*u1m(pqp7O> z1~}}zjKsCopmpsP>Fvm*${siHvGzrL&>thVg@DLdY6nUkTy+J^Arp%Y~PF!Mc#e_BCQ0FIR<2GV}H}WYk;% zze`%QD9!~he%Xh_*zE|3?nga@`Jl_p+Xy<) zcMJLX+u`(nBtqXlr{OmSA;bP4RO8#y-VG+?dHe;PE4G-5Y59}s^VPyxUG2%kKUw^3 za*dczH?*Qi*>X0LEvr!EX9XGE8%90m^gz<7mt@qdJJqXP5#!$2AbZFs(!1LWDH#`F zJD?SEZTv_#;EB|S{2!%zII^BNi?&$c+O4%DV=dmm>9w@K6nR7YNI{K1aN6>M^g9Ge zx%1uI!nH&WtYd$@&)NoAV(JwSOtE|e`~C|wsuqKy;Js{3AL~qj3H&(%@Y_=nsue?p zZ(aDq*6)zIHs*GpA?gUUcuZQ!H46PxR!L(cY#E|U-Adm!J)LX@MbHX_AOp!WD~NgI z?{$*&E8c_WsZR*$7X+{4_E6UATi8a>fKk+?bRb1o?-$;g)+2c-VZDERINmnvLN`Xm zlDl6%ltX>RbLa8Nu&k_dkMgwGb`ajoJp-Fo7o^|Nw~eGOVU^*~>ZxeMF3OsYn#Cb# zel;?>eO>ewEqEjAg0~eEct5QM>4#s2VqC!-Sml=^=HjrHu_Tq%O2XVC0)C5TNw$@# zG!~MDQsMp*(JvO^jOL>lsqI!^75v47=~BCDA8boZ6?GIZR=9se9b?G^n7|(sfa7RC zbrzKKKf_{0XSJ;B58+C7q6YX){yWV@e`aX^gv*@2h>Kk42#_#N&R}iL%P>W zdiH&3Z3@;^LPT3ENEgG z2bE@23V<*fJZq4CU=)2%#=?jNA)pU_A2NF_F_NuvkZ}U6NvE4|D2jLq`-mLt{s|JS zE^|%rFo6)JW0||m3>Ja;#<%c7YSiJ5$EGk=;4pCs>D4~i8?cEX@3x{OXfvvees*_p zct;Rj>J#hD9IbsmBD%T9eB5c5=BTLn#p{$nWWxZNq*XqZ9LWl_I#TALb(L3F6M!3` zzHgjSxK=6XmhG=Ty95BY-oGKLMsq3c4-GMWqCrGL1l^*0(@ZoJFK)K!ZJbwG-8oUX z<+JLYdV=Kec@o9Z+3WLvF|I{a>C|EIG~fg)MWvkyO}LNwxL>m6O6kutE*Rz%UY%0g z#(b$#p7n>O83Ly8d3pd_3v~vL#-4trLbj(Iz_}1E*?z1h)Vt%aFsf!>mCr0buK@!o z5c|0>EIUMzPTp|AZ~LvXvkuug)C-XJ_s!^Tf64R{RclRlbkP?ZZF-!fS&zOY#yh_R zY)0n@dCm1biuePFDBK|AhS(cG6cpbJeR`x(ixX$uFUQTNaImuk28 z5{GwGM{P&MG6bXU!zO_X@0zR|Fh)QMhEexxk5b);7-K)32_?WNfETY!QkMXlMoWdrkd zFqtE*3oTN9qv%(&nF@-8N zP6d}{h_xDP;hacZkE^*f2b}M8C=*Oj(VPjvdsAfAd-wy#?aT(70~@r=;H`+31j^-3%ey0_zt z+!nYpsSnMgvGIN{byLoFsNQvaT9KaJN+bd;3Q028t?b`(1aExffX(3fe!cLIlJ}+o z+cV?(cz?5T(-+Za@uJz`hx4M3v3mSeCrf9s9X!Ij?8_fi+9WA`%byz^j>eYrZrnCx z*zQQAE?`-rFqer^>`ko zHLS>u^qBs1O1ABf^v3R!%C$7%7xnI+CulO_iakzq^=_Hl#yS`L zj=CKURgf_SW+=`ZUq|7obsiWMMLIVsFFLwqMCd)EKAZ)YGaE+e%7fyZlx;oa5A-S6 zlSO7qFERapjCp954zlK(cw;_I`~4k)dF5|p<37*|HDYx34TMF*(?HAH0LD*F`Z+yf zF(vCs_X4=Ib6h=zTi=(p;N|FONpqS3lTYMu(&yDp5HaJit$jK3hZ(xEJm5i^^tSG%XP+1-6qE(ztOu$mY7&HnpYzu-qgZkWwRL_9)wje5La{V4oWE7pkAeZ*Z3 zO)B0NfQ>j|=pMsPUQOn?pWUQ_?c;v@02ao=N+P^*+o@cCX0@(M&PST1JIrmKrDdWD z`q$AQAlp6B7>OdC1aq;D%A&{zl%9@B46t<%<3h8n;$TpXPY`W|z1R#a535=0)3kZU zg-~0OQCljGwQu{{)U8gfdJQ)y1#L}9R^m*L!GrI#>IpCCPY^<2L!mE_3Y7sls|o*D zJL}!;il{P#{i0qc#x_*HWBD;6$YD_d-Wl`~)Eu)0^J54LBO^^7&yvhd7l zKw?v*$j?zBU!V0iKw)@@M1!9i&8Cl}dVNEVyShm_qzDUSFnthy=rS((UMeDkwh11P zTLpdsTUApVK^_KIy|a1?TP(O47{xQ&sjf+ta31u%)k}w|Z+~5aIs#iiftOO2c2O8! zaA2+6&+-r}xHc@k)UNT{Et%CR&54Rax`!BU6Y=7LMxRF~dl$O^TU`wAKRml71>znC zw`AC*4qldw-L?OotkhJ`Yc*(i*P}i6MxG^aTzDJX;aA$Nf%1EgRL9&X7YvREq5&Sea;IcAoZG= zN(&U_xD)y|hgA+QcBxwviSsL2X|(gOqzr8X{k&7-Z?6-~e~VZPU;-_1-=ukhPu2Pp zy9y0d*Apj1iV?`OEQU`yjT8X??iCT+Sf^6t(KGmznOM!tAGKXYzTLD#nzor4{L-1U z(3*}`rsjYWU;%TwkNp#tjgzsh8Y&GJYf%#)6qc4qoHI?{KX6Jw`nHRuPnz;HC*wfZVIpm z8M7Ulb3?qJOwa{kc(w@Nx*8IpPx@jq87XMJ`*rcAW3Jjp)515?P;g7-r%`B13Uwsb z%Ei85A3q1dTh){5xCy>s=VI_$i}dnYL+JZ*Xq^ZyykSv0s$hA)A+aWNv1~h+h%I#V z-fTouSWF|Y7>gBsu{Y!N&)#AkI98!8k_7IjK48N#{JBCA3#z)^!?Aa(Bh;x{ZS(~K zsezsbH~5FIj7WaAOQ*3i8IVo0ev)@r`x)JK58K0LR%H&=fj2(ez~T0A#*kTW^|bI& zW@ufUa8v2-Q!R*%rK0&m1YZ5_k&*~=dWi?R+nHOo`p$J*u{VnwFi#KQb-^fwEuZJP z=%k2xhdZ;<;DWdLs%Wi~=*VIT4;`69u@TUN#r+(!B|N(jepL@cQ}PCo~@?gA^o zwKMWVp+e+GR80mlV;$R=sawqMWF^pA!N7kF+WCIt4iZw_xj3lcH#WX9um$O zl+AnVL(vh+h`UGPpkM0SG!!R!0}6AW##Ouj6-trSArS?uox4oei#b&O7X}Zj?vTGe zcGm;^DpxcFZT+veIv??bs85VhL%&srf$#JJW%=*3gi?5=Az>z;l`OK^@;Ag)>5Onc=j{1S9S7Xy(57;%R?`C+3 zd(|>`_}5?DqP0h7QL7dg&}b6A`TU880+eQ#`vpk$ak@|Bj2!5G8W<5+U5j`5yX{y_ z<@=G1Tkiamu>!pMoIjyhD}{!54)!b#B54}M{4MG&SV%0p00*%jX zAue9hOU04OiD#px#=MhBs-sf6Zqam(k4O5&Sq@;1!YxP4N{{RuCd$j0~kFJOHkxtg_S_s(5hp@D2$9aI4h_?bfxZ)-3;+^^+6zkd50kA~_6 zm<1@bAp_DHwz%Z2*Y*n9+w8da@6}HvDAqBm9rI5?mN^;M9ik;C2X_2B3>n4;OSuxc z3jL69(3#F0k|s*$v9kLY9COZ9K4soYHRveB7WXD zbA)0F#&FKlKZP8gsyeT*P#!SuMqJyjK-@Nc2G6i*hX?FkJZ@miwFKYd&TOjUS%^X# zJCe%Ur@Z%YPX&TpE-&w^&+MKae{#`CC)tTy-L;SH=XjJs=acxDQA=biX&?XRZ3=$h zJBX{u3Ac~rENI$R3Com4den`?1R@&dgN;WkB3B0+_K{#p7_#mGhbj$TzZN-)Dz*Se z8xH?cejLz*w^wl{vir@4)|gJc8SG2!JXdY8+^)P?WY5qkoUh;yBGUa8^pee)qB6E! zYaHo+(A>jqvCWUa5@jKTPRx#nynbWaPfur2AY6P@HhyTzNZ99nY-_D z`+mX7lv&>UcwlhgHWv`LpOb!T=<;_M+x^0n3xY>=?#53cY$D4$-QP2ZL9=}ea~|n# ztUHx2!t0QyKFqwUIJzffZK26leW=f(zrqsk1YA~aEnT7N?r@zv8H}O(Nh9AstIN+Jr!?@Sy0S>m-TUwo$i40OqB54PUEG&m z_?$WZ{Ll;nh(IB}U{>k8ZdQ{ynpZmv>@43uHXCnUkynnUIt)ZS7H>d6sgiK6^@) zkp&A6iV|ypH9*%m;N<|4JH zN$C@zOeOzHqUXooZ*6kbU4R@}?&6!nz`Q@V4I=$~ zWhpL3(OX_U_P5SQhWWFXEVP1q)px$NgQia_hzH5s@~ypp87pDtge@h_ngYx-tzLLz zzisMji4pm)e828`Pri$OwYcQ-KF-nYr(atJ0HE1W_n*~P z#E)Ne<$zT5b+-<_y;eF>e*DJ|Q;PvnCCq=*tCCgUd)f;~vDrEK*c}LKiPqEdMBY_{ z+57l!-v1AK(g1@gHSlEI=|17Oa{KUw^gyt~_8`Es|8rUW(~9|X=RfGlZ|8`CsQY;e z-c5;2bbkcheM0)t?|=T{9Re&@@uh1|D2VMH;=g=34`HZx*5374GWn_a{146kUw!;F+x)i^`2Pd)-v9|940?y|HiFCq0fA%$ zfdB!4&(a)2iUeT*0R;j7LJ9%`VhW)u%_50lX<%bzFKOj!Vrj(+qAd^e00EK(58?@W zrtSk!HN$vM4&(QxM>!h49+ji0P2%VQbh`j0po)I@O4N}e6IXNugP@{f|Bz}cXip~x zpd$nsgOM8jpvlb#Q&#?x8Vd>DM+;+%G92s*oYc*lt}Ui~`Q>up-|gam;CtZF<@4Tx zJ@Hneg^mf6mZQ+4bN`@LewNWQ2mUG?Qqt_&#l z5gh;{N|Ae;hC)uCJVS;e2i~cS$Jx%lU;7`+_;K#LDo_EM|EJ{9~$p{=Qj;8eCe zgZX0pLqUhT%6pACUoo!Zj>BR{Px-srqn-!MiL*zlvrM34yA4bKuM?7%v2~GSP3Sd5 zo27KZ+pwO51W08}S{RhYtW$NEUZ6`iWV9!Uc!srHa)nCpRBss;d?e?x=87TVW*m$l z1IN9}{bPUVnGI>76=;Qq{dpoVDa2#&{-jOnWXG-f4k=@hZo8F_!cWJQs-x-K1)Kvj zNQk8r5rb1{y8)-z)zy{wLwD~>? z^|J=BU6Iv7L)<3U3P`c_+*P7lq|L+I(#4qNjNgH-d6j!Srl$m30Zzi;QdA7dGCM2g z`=GP2DOK>vu6os*S)6H0QT8`m@wV9wKwcK?tQHoDn1_zrxK}LE#`OrPyD!-cZ>+aZ z?`V;y87~j8PuOnV$_i}KC2~{J(48%n8Pzv70(woW8MA}^K-Fl$g*X2uoysEfqtehc zXhL{Wmk@YKI#(m^@G+%fX4{ir{Eop=xkFU&?7O~sz|7jfZsk4 zx}Qw_3>(SCjQ~tGoLxHBkrZsRg3N}$IfeX!a4UZRGOXo-33Y3t`jOWLi=`6N)-*;vnfrhPNrN?Z$)$_*qs&Dk?Y6lfMS0a}8Sj+C z+q{7rS_Y}rt4OnkOKG7>j<&F;GhxaF(`{!`}1v$5w9@GPyrU-1c@DKHh`CjRWG zd$YP?;)HzhPsOnHLf6K&6cv4ya@;AVTBkh;k=G*PhCB~BiK5&-Ckjt$g!MH33dR3g z?rCX)rWoaFsuU^4t5AEjX`#7r_s2Pp_QzgNmslVL4{ya3uHum&60#{p4GYrSZzPM; z?OoI)EWzyL$K2vS>Wn8L`?x%j+zq;;e_Z=7Y3{j^evM2zy(OSHjFlQ+bBi6ob}K6# zUoeN=ckNsxpK6vtz zCh0*zW}rT3(#6n_@1r_EPfyuI&v{P|$#@UUH{qV~o}S)x)SS$?5fF@hLqpRDFd5Jl zTN21|rXYGoD9YGWKX7oELLO#j3|2=l8LL=oX&6fwa2p9@33HaP;IOb@)@k0x~0d`PHBxQgmCIx-nc$I+5gH zUBwDB!~5W$&F>&&wcyaF$!asdSq(2b9l71GPSL`42ZTJ|nG7AdpSbI6Mk?!(hE~8Q zCUMKSGt-z03=H9~gTh%1-I(zv9<7+W`jIG#3ydX1kuv@eChHvw?g7y5Z16ms1myh_ zi4cQkP(VTh!NEgF!0GZa`e85}lbr>Yih;cMcm4;BT-?m6Kj9FhVL(8L#ncZ!pe6i- z7QFf&XxTrZr7impXwm?YVdypT7Tjb=-(rsK<5ts zJJ6(=pFrd0B&KPeW*Vp_rt8M1_kpPX?(G@Ifcy$$S|60i)(uhDf|Dw2e20iY61(5i z0~qds{Zb^7PePg-hfskTj+r(<07pawH!55oG)s#>kAU#=y(glf0^8uAZZBr0;nBN< z*c9alV&V+gu{@|Tv*V9%waiw~P@(cQMSaxC>cRAot(lr*J?D_P4)37i#?VO14CVRZ zWWVpP$E$3;uVI}()}p7m^c_8GqG3^F98S$O8qA|(L?`$ zL;VR3-Ozu418r$wr)i+_^%Ia_6p*3l&j~uqhdW6NyGIF5Vh;_ok2GAC`lqYbiC=px zOshEgETo=995vzmw|JWwMIr50f+f^84|?4681S{k3QQ zDJ>tpJ8hfy$?Gnl*Cg>XiHQNF2?(n#G3!HIFNy`ib_cf!NeD~o){J{+QRNXC)DTN5 zOP~ep(n#91lNgk`lQ|dyQ5B*l!X!#ZUu_F(sN<$tt9n&bLTK-a{Xv)a9AMvDM``R# zo?=4{YcvxDa*zbdMA*V(``eLJB&0c<7TuI*4(e}(!7LYkbZ(gh9^5wQ?B!*)*YDy` zCT<=(s5zLMqYUF`T{#1Sx8oB?w&%~)$S=3XL?bRCyZvosPcMn z3y{?L@ga9-Mdzl-S;ZE{!UUAXcEtLpfEfW;kEwTBRBmB;sy0jbg99ehf@x{E0#QMK z;@eA?gTtuN%=VwRbzx-*Dl74XjL~GDi{Sa7^(0r^l`}x9trJV(I~P=qe|}w?2cGg8 z2bv&dSF{N-5`-xvY_@-7CtNArYU+JyN2REA-P6nsHTi20sj7=1yff(MAhoF%-iOP@ zAOQaY7#A2SDis0Q%cr|F@V+2*8LT{Bh)E%-XL(5q5GRursGU*YkCK{kIL~Ovau(M& zGufwLP<+7+C%mioQ~nadg?FbbQi`#n(Zoxv+-7RL?xSQw(0<}MR?;ezd-DSS?4?1M zKii&osGQ|X&2*=Hf25_w zvBCPuv>Ip~G{svKBb~R;^EMYs&Z;bC(3ZIw7k(V6ING4Z)qA8;--tQ*RFGW!x`;A` zl&NjYcQk(XSi)vLT4t0sz%9VHOzqwZ(>G?v6})vqvLD8dhugNpKc_aeI?ER)n*Gxv z&$f`wR1wcbuzE$OT^H|nBEVx$d}*S|oBQCAIxZs9tHk45dgl8JG&{oBD*Dh4FW(M} zj=V8A9-i-RAu-x_$>Q)|WVpzHEt|QA(mCXv^~v}UDKxs72SqX0q;qrj8sv?_HcBXL zxZ#WQrnH}tiv0eXyy%X3sJzJrR}$!@VpKhQgm?$t&dfUg#0q6m&I63@`BwUIYF%6Y z?44ci!Ww>%jNV&clj07e)L|FeI{J|dzE9lSgh?J1r zTos@}oQT#>g26x#i5#v(rL+AzZEUQc)oMetr;YvQ2=0Kib*{3+eOf+6Q-q_v_(@JMgG9RG|TON%Czcbw0W2VZF&v{W?d7q zWc`vo%aGF6ZweEYNvt+KDYnO7q31i*Gx4v~1~aWV3WsjDg4c=Dr&@g-_s5Nvtfn{f zuLbqfH_`e}{%NM{TX;!(Q!@&Nxe8k8uQq1q|4^p5*0SImkc z&R$rX)?mJh?seSaX6Y|0qn~WzlE2v!4Yn(8e9%sVMG|x*GldhSpkXe`t z;wL1PI)7BL`O6vUaQqu~^XsU-(k|fX+lHQl7-FI(DH@>48y6Bg8D}6yQOv(7RmBkz z-0XMM;#lR+?`08@JG^P~7`)zf!~Uf#S89-wilxrtMAd(m5u>7~Epa*es4;zVsN6zt zZX6C+^Ss5%lU718r+e5o*jTVkHs_Jvh-^Ka`IKX6jH7U zj_TIwFtH&U7c1Fp*V4GBr+XNhBQ{ zuLy_6u^&)kIuEomK-X_&kHA49z2VcdUuxnW=3=Tu?8kZ&s;#doIS#}DCj_WdM=DkZ zy~AjeZ?o`~qaXF>g1on9+@FL6HZthsL& zHW_B)L~P(?iGJ+S7|eO3I+s~_u)ntEu`ad1Q>R;KCH2TtK_|2;AwhRw&QM3?zBc-g zYE;wiEfWoTArb018E0xci2jAARvq2Mg;ucVoxLCDJ~@?LZxTc~r}@E;UKrM_--f7g zx94`XY;v9i(8(}MM0rZkPx|}H-Tb2-I68xhzF!k-5j!b(Ths~f6gW_B!R1DqXP#bE zS~A|7{T<-LxB6Zs7c&|tnP!CUK4m1_SU%sQK@iQsdLFVCuO$FF{bD&R_l$75fZyrd zoO1YHxU|mXn*JzIzhsc$dVdC!px-(4CPl%XiC4d`&BO>bkIP^38v8K7+mnob`r@=l z%rF%=icD;7C-dms>3s*bWtzQJ0nHGDCZJ1v|CC4iTUV|V(Ff6w5+J8!Qx|?@@_Mam ziQ(mUIGAbhLDZ^4eM{wGvyCQ|Ch4HcCNfbizS;% zXQYXrX15jZN)&&y{fZV#23}@)4VgH)7V-lPe%cr|{>_fwyU~hs^d$(n)w!H5+}$(m(UL zt5M}GfiJ-OtsCEB7DxqlVT#;YRDa6U59-F`T(w8V@?IDGejy4V4yc-+0TOq~)d`3O zqL4tqfQo*2tA+h+wI@Xc_kmKcz>c1`6o3U=)O$P9n|@LrqafMgolo zK-@eG_9Rn?`IdJHUlCL^XJ|`aKP;{29QVOg@~-YRL~en*iTO|LdF&`ryAf~QyL>dJ zB?e$sy>>7$hicOF3MsrEX6F$p#N-RJ1_TZ*fpC}?a&zw#B&Zs6HdO0Pd zi1Y;XBP*|I%jd;wv5$|Qoj=usY^>|?hPz>3LU8GD}St8ydzUW7@>CAb`o zh!%xxAx*4vJZ$mlzO3=}@5l$wUPj%6?8usYJRM`Z-pv+54}-eiqv9py5k};f@0D%U z2@}M{eco?T+iPWkk4@@^K+n@$hzcLG~r+S~#cc;75 zi7@9VMUsMGD`0%)vJNDqs2>ELT+hxlA-A__zqL==1iK7^8n#9RD&6Qj)O0>~YxFE} z!SfR=Z=9$jw7_k3Vtq%9UBclc7mVZ|K{R1 z475e`$+&89IS*8zyK^5?({DDMa6|q(wQz7eOlJT$i8i|-m_kr*fAmWkEShW1=;*?sLbpkVGmDiU_=OWF|MEd^YsgX@v86m{oqA|pa?(joxB}$Y{#X(Xe@oX{bXPluzC{g5n9{*f#e{*f#=KP3x(@Bff2F#jc4{Ev!G z1q#T*KLSRkkEX)PbB~8|-q*Yg7J?0NiP_x3+w&y3L|1g>!XNgs60kfQ02!LNSZ5g- zSqf#*L~5FNz_;*(st63du3!5;^5{hSTx{KGkAgP0{0E)gCjvS39?$c{@Fg1*7}x;1 z?61DU%Ci{Q&taWVfO(RcMmmDz3T9SaBdhvZiLsd#ug0X4V>JvuJCuQe&IYQa%IiA} zgc2hgG3s+7V&ku;0|9YoE5eB8-O)#vcMr=7G(`7F=bVgS2w|8RDYju61gZ`6FZL$*-{L2hVYD2ryntUE^BzJ^h5g`I3tLXxcs^L$Q{fNlA4`;J7xC!{Z(zdtoX3h!(IDEDR&|eu9k%>+$`gZnpl_Op zIW(VI!0gyF6KDDHSG8q4Cnt0@Aw^NIRuE#LwY9_B0UJzISqbv%xfBQxzH#X2x+BP- zbT9iR3T0ae$IgqLmYAb(by9pzOvDwHt;xJ!KUP(UdD&sq3Ww#gL!$H>x^+tB&0<+L zWN`fz62WpM7~0@DX=J>vNG_S1WZ|mfcC@aGN6>}#Hj_%yov~_==DcdM-YF@{p=+$P z4L#(@a~GL*+($j~j$WC2RUw>OdxxI28YdEKD);9*MX0h$j;JWK@DL+WAup=dXpos3 z{@dWeG?I$u>53>hsKL{0W5UoE;g>kI!vUWz5)%@}$%-X#sOE(1i)U9H`!aU%scWg& zgzPx}nQJU*0t1Z{S0_wqbIP=>b=jZ>t+~khh%4rCf?r$`+JPOh9fNm_qz@wGCDg^d zgoSV+_C8lFeaKeLtSO4B!NmMx9#L+pP~nBcSQ9@n0NM#Ph~YvImkPxu9kS$xi49Um z4VZi)?wOajiEJ7o?(>7L&lScveBLOF6Uq>esWkP!Fn@&vPmSa+Nr!^4Z5 z|4HOXzNSIBFK%f1$qK#aAp)ighnstR;pkdY3@a~-SH|h#M@wx+M=7qr5jgnU z8ky^<;2YN^PxxZG#`?##9hG`2!=>zYK{mB3@fpxVO#$$~B~jn9L#Lj~K4Lz&q)v4` zAC_p>i^|30O!e8d<^m}A{jrRQ`S28`UZ^qr$z^fZ+P~eiW_I&GRKEATsF;o{G-0H7Z76$z*DB1tArP6&e_fj&tb~FXDZOTBOSw$16tqv~| zkx3wUrHil}(rium`5_@A(ShzTGcG-YTL{N>qs7F1eli%+oX0~-Z~+`#+yB0D%($k< zyh*Ix0`t)HRH^Go87Xw)l74eWIhW4tZ$c%UVIb7+Lus18OXp|4`>3RzR9^qJ#U;EO zf>AL#yUCE5ncxV56H`t0KS`s9YB*SWe!cjvDUgE|*ji%*?mhWG)5M^WVWH;ykQE>f zGds-Hyy9#HC5%9Itt=S5DrYqYV$!(}{2CA@MV+oNYAE&Os zHj#rVrs#fUmDquqTuXp{6!Z^NK5i&V*G2E~wBPvyPd*v^7GxFWG`enBSZR}hZ3RE* zp68$C9&c!A&P`)fD~L16T|cGl#fr1hWQB2p0p8!^0e8+5Tq8W>H>lD)XZXTW*IJ%H zjMddby6wUYiBPTDW`E2KDK>|}5Wq$=ea%}pZEQw^bB5A+K)M4KTG6?mfp*rr{b;${ zRv_0q?A9h?I?XnHp8#kiGK1rVjn-i^);7|Y$D8zChVZuV%%)Yc2hSqBjE><`3{rGi zfeIn~CA{R*^xZC(&eA~pMAy%rYuqO%1IXu#Vj1IWmtgV+(|`lNx7a-ws6{ICRX@2h zx3NrL!S!4&)vSM8p<)bV;zFyQt!f0!-``-KK?M15-=$HE3jsXJ_V#7l-UqNC{Wblr zj-UZzD(a*3PhjaEwGdqhp+Ij{&7W$qTqWn7*Y%S73aN}ny}E20Xo-ES#n0TuArbU@ zyZpM?{@%ZwTP7DEig`73HLbYuDL1F$Zw&B2;S@pzfpQf=c|@nTx<&A&*=ujyN8tzg(~p*Ro8N^L>{feaoiN9mOFxXZVN?c{jk_DaTT-BsYV zdiPT2+JFebhHBJtIWCD`D-RRx|wQf;SLf{Z%4t)Bu!ywjpB?>}` zF@lo<$w#yFFDD6m*obag$6L%(CSbs~gb4U?kNo0H6~#*oNZnFIo(uyOlDgv}8M=~u z%33>{KVhMc$IAUX$9q@^aGfJbKJ7h$yXNm~6t)>x{V9QhU99LS@CYJ$v(^-(tAU%I zR>W6e!icRa4p7*v+>j+9m;si5`227zzjE-K$=y%|c>H}yb16TC~l*03Zbd@PkF=#`e(KH{Pq@mNQDE?vG@(@&24aWV?Xal|T_MF7EQ zh8~FGG!+WqBeXdATkq9UqL4{H?$1a#wlL{8CSI+DhKg=p+YSA9=wZvb7*KzZRf%~m zbTW3dWsr~LvhnMj+<#BYW%Fbwixr9rxpYEts(uta`jr9p#W>W35Pwg3!qZ`a{2r%7 zzqzD}A!?=@391;0o~tbU90+s(Z`4|TRYWc5Chp|n7`>adNKt-os9r6(d#N1UfjXTM zDSVpV)52&=co1#%I<|QBZR`yIFR?e<`NrDmu$aeNu~_$V*u3h8B~{VHsn86c^HdN@ zNtlChK6UkG4PE9_*IbexJhB3fX>copx}%vRH&3X4l(+(y2?H>@6{312n5ga6$ftC9 z#Rr;!EF8ng$YQc}H=j?9iZv#@Mn6!ozE$|YKIgXONbbWw`qm3sx@4|rd)y-|-+V%U9H>U-A|vPSze zLdXl&#Ytk_agRU&e8G_17!O?NtIP3M3V?fwp)1jMhM$v;xDp=u0*ZL^mZ^xUVvKek`G z&wgq6uKrkH*$-e)#!1;mkW zJ)@IyehmAv1w&Fk)MQX5PKPGp^I~boP3$e0BA1qYtvvQi7GpsDCW@QAiAat4rq0QJGC|VsR>VR^g{;f z8xBS8)5cPd#j`RXQzLpk02lgu6JVP?1z&Ydqwf#1pX#ePJTMt}o!K zow~%WIkBO+RKdbZxX|u#-wh3tqWT2iV0hwe@?4EzzL@b_5Hn;!oom!@H#IOpRHZ;Z zBDrZ|zk)Dg5A-z+GgAA+3SR^LU}>T;bn98fmAyWS8U6uqGsPnIo;9%x8DL=8i8jpE zOQtggL4U<&$o~a^DRc@M1dSShbeJaKc~ z8->wJKMX6}R$GE0VUfQfi0I9e(T=$ms*1mNWP(u_; zJF`@Cj>fhG(LyaCRK;4`B#j{tmg`?K4{LCwu=IPSkobRJdbvOR$i?0C-G@}fRPG7l zcji9c)AxNibvhlJiZbya=#eU{4DEhlFmArmPQQFwy zIK0M@#bxkKnj@tie@mi!WkdmaKQ-^(4U47gnFb8(zTG6dBoihK^Aik^C9d}<*RRf`VboWP2`G1PH9 z>2Mewo+t9P=mWP+VlnZmPk?uYmFQY|*zNJ=YHNvd4MAi0hKT=E=kz|Qh0iMk`}6Qs ztwN`_hCJ^@)$ZAXpKsOua2LEC4{zNNR1mhraJL%;RcOj+!pW8?imPq z()>?zLcn5t+Zdk)r?K{y{LUPX(x2vl0d!&LQv0aQ+};M^!3L#wjqmb=EF4hxXJJhY zr=6RCgM#ieYMH;hgT+AkcL>4}Rl)c7OmMG4GhZvAzvlYS6hfCDPW_(l6p*V6tM|>L znL)q)Zmy5Kx3G@N<~J2{QkVZtD!uT5eSrp{t0V^j0ju~&>X`aR>R|qqIzHspe~+O= z{&%Uv(aqV))r;dZO2Y*VWa=N0V`EBART-n_k}Z1wp}-U+E$Qh;4>7z)mFl@2X;35< zB`ZRo+^92xnEXsF7%nQ_k1xke(-QFSpiTwSK{yR~Kd|hBshwuNEV6cZ5P>UYgrOn9 z_yc=<4zfJXc~Yi`FC@pxW6);*_{YgI%uVF~oEEDx1E&|ZS2C4s=Yml}9@-932u*46 z_+J^(o-&whf!dF{8!BA$i?2R5Bb@cMUUT;8RcT0%MOz9OeF5j%U($$m18f~fk(z!9 z?J@($o7zWLY%Yr;ku&HU>_UdQi%D@CFF93jO(IfgX1pkJLD#l0t=!7XLt=M zD58^GMB01Gwc0osU*Z-Gd)V^$=6wUr{ zO}n8147eLQUNIhg_sy=2(9htR^1r!)m=|@p=xz!8_P=?ADYDxz!`BYAA7NJiCd>U7 zTLqy0&uo?X(^l(1|7EM|6SNY_7$DnjuP#ZZ^iWXiaXilE`-xxNSOMq4u+1-p{GeV? z;MFALY2F}S;O3OYb@!NV)qKoxBh89g_4mBxjqY3Er(~1F`Cr8!FE(azr2 zixJ0mC!5hApkNR%C?vvx|99VXK}P(TIehJC6x?dqBC7Irz^8_&ccTjEvJU54VTJg z4pAgO{+8YcGg}qv&cJ}(=!U*SOJ<4st=$ zhIXrQfpw`Pk3zT}$2Dg{V#wXUCD6*LQC+qAuy%GRP!^X+eqYj&rrmO`KbKVhZMJImYILVkWdWu9*5JcIsSN}X-jISdQku-{?QT;v$`9{O_g`_j1j_2#W&zo6(BikXI*C=O=H za2-^aZM)n1G^YMiR@=t5v{g)#t{@S|AoQZhPfCqTjV5kG3-kT0&sBEOO*QWB=u95& z#x_puA=QIO)h+6Wa4S;el|ItCs>5RG(7QJ*@JT%3d6rcT zZ=sa1y@{SfcT{dA_}K0QHL%29KExK5CNyX0xQ-J#=d`6>y1-Td5+#m_A69^?{tZ0r zY!=-`61I^Eb@?z?gUYiE*bL61Ps96D$MuqUV=EC4~b)GPE@B-gBXG_D5!vko*kH zWAiwZACRJyX{%k#NTYw8k%OOQ_XE5!!p+^vR_cS}G}XmDW4vthb#ajkG^#?TIA*OW zrEt70==@zdiz2^V=l~OrmQQV;ZIC)JGsA*-r~+j`^b)+}uNpcroSEpxc~O_Q>!O5an1WzSE`&gB;32H|5$& z4EwXQpDVCSIeZc z>=YZ?L9g*WFteuRHz>u(qcU|8^KiBR+kEpC_lqKsIr6;Q-8dUH!a^=ZAQ*05`B=sL zBQJh2l)Q=oXy0(P1^JjjM}CmMCAa>^*YF{$r)?_TGIh#&H7P3Boq6ki-&$NG;v0X+ zK(5U+Umqy=Kh+8P<)6R$2J(ONF#?R+usdyGpmaG>cAc&FYSh&cC5mVk1=1{sbauVn zEV*XhYr1u3*622kopfpv_0T>djV-!gOjT|0NY}A&)PMe#ks@J3Y8~{bh-J%N@nk}n zvUJptOQS}JLHAY8NQH%kb*qq^_h(LF!s15L>Vc^w0gq_ZT)@6<+Tr(33>(VCI1}r(EHV9|ee;DVrW>{KNF2A^{xiN(vz3po z0qSHlDcB7G37w4tZb_=7&IlUisZo_I zy#TG1MO6NEcs*ky{bsb@|Lo`Et1W=a+`EHkTBpeBibq=X#(AYs!bz6gpX zewtXDeyKc$_D6eBSbUh=;&B1-x%39h3SiCi^+J39_ZU+zhhxssq(;usYkT*~OBK)( z2*muPF8U6X|1QqKS5g#LphSUkiR2n4k0w36!5Uu`ic#-q2@PS~Q~ z-J;z)2~8UPd2UspS%EJn{<$_SXMFQfk#z(EDz~lyL=TkM=J2qOKbstRl+So&NjJ7G zlnSQ1e%LmEtKw%mpT(i-lGVNOyTwajb_^2z8$<9B0O7Z`wr`XoNqAW;6gW_OTlI<+ zcrVv`;GWqDj636Rl(KR2`htJjXc`T?Mmf#1+*@gtokklbUwABPkuxsU^FD^{=&b3V z(ZFiFXScAJLB`>+*%;g|9yqyNZHxkeO2Xy-(8nGxd@ArjeIGP)TkyFZk7RQ?K0Id$ zulbBWU|Nzrh@wKTiu|hCvtewi2@CL6uZp~cPx{yb{;6gy^{id~c)-5@ zI5w6mT^{4)oIfAxa$PC@awyQf^fsu402MLb!;aO}kB9DaudZNzLR41x$e z3M`Nr53g5EIuy#}IB7>uR!`>R)yLf%SC6l1icJ94Tpo#KNOC;ybH3)4v`PVu%Z2D> z2i_8G!@5VLn;Ow$HL9dI{bn}JI-@hN1s2`%M=K_Ng`W?=b$Cp~Nw3k?Dv~*}Z|>l1 zWWA-^i$poQd?%W(~mC^kz%8q>(hkBd^6$gRjan-MuR zP7S(owL(Ln%mtth@_a zfY8e4`%G{IhRG$Vu`adLEr6#zwm7YlS_;T^o+li_Ewh)*KWPgY;EZQZt16E3!DR8o zfO0m&A0uh`@D6^*A*sSxs&-#6%b-qBXr%$X?s3|s+cv6-OUpQ_;|`FihkEm5pmct-kb}N`JT!BQtch=9 z+^e@uMTNUp0_c>K^IM_oSz@^ukFEV9(0rZ=}a!de4;1^dB*DuIdWiQaEA+Dlab6 z6qY+xlRDM*S^f#GIdq#I+c3$lQ6F=A+QfBar#)^u{_GmedNbRRO7adCUJ~|j->1~e zX9dCJOGp;#-Rn6dk2|A%OTWb?eBJ>%BoyJqip_d_`ig|4f)0$LQNLsfVzyR3+>k#A zMV-29s+!$PWoNQ}5=Z3LD6`Rv3y{bjDm8E2_j`{g6R)wVs0c`<&Ar>NZyp)4{NUyj zB@lBXVbB^*67!w z{F(?uq_bMAB$he>1HCgLy7h(&P9WLPtz?M`=9OYebo_pE;|;t~~d!w{EX1y{Z%)`eOdcCZ+}@I=o&@8$HWO-8X5_(p5E`L{tO>XVqA&BL{ba z?9V)56*WxuSqooAX{_mwiUdSC9Y)_Da?g|P6| zWB`s?o+spU9pe2u4g6|Hn{jF$e>^59ncNTEFa8XVb(q`5(jZ+(kJPSA7YfawU?u}v zA7^>~s&O;9~wDoK&J+n{k2tZ7gNPb?bXVlhi(K)|c`fb<od<{fz)3WWr{=sk1Y9*r9l`=@+bWYrU-t5;yH4hIgzI@LaVL@4CGf|oAe%B&M|kH!N7!{gGBpBiEMSkG{CPhrk{0K}t#w?hnIxu(BtUFoXw z>Gob{j3V4ITBUs_Vsl%mZfN#9*xGcW+0^q0;1&qg_n5hGs^ERTIIn0v-%rPxm~rw& zAML}x=jLBt(KuCCL&|nRmXJN>3pLT`9{rpVlYY&_(p>3Zk%5B?+)2vyqq#YF7-4lhKALv8M{}0_7hGr;od32wRV@W|juNWg9rj9p;(Nq8%^Sk8tR? z(r;MN(SvziE1V%@v1~vdrN{JFpBc{fS)<`V^9*W3(+Z@yLEk}`<>yHKFnaA4_QpWi z7fQW(^xX-@KfhS@^U+P-U5`}EPdo@VzZfgq%mnH7$e+D&0GEa4Rnf;nU1vUWF@*Kq z0xRJ=N6Wu{Kj}a*gCEyZHLJ9)^&zjJ&B+P9OCI3o@;=C+U5uXrk1>-V`cH% zbh$$U1*yQ7ZCRtB}=wW}V1tcu%T3*@s;wr$PXyWEF_j!>xsyx!VUHMti*aM{B~$Gqvuh;(G>*`rP=StJSet-PN7F%{id}j~WP^lT3JN@NwSfttzNX<{&T7~rpIXpIpBwez_f??- z0B{J+^uWi-r`^-fROh_wy8~c5-<9^*8_(@1-hTtU{*TWz|6VA6Ur;sFtv`kZaLWH$ z{aXAfe*gdbsLX#=zj$!}-bZClR>uXoTA>M1yv#_-Qs5+qDHnfrcNHTKDinv+E)tYv zagZ7lP6$aasdOTepw#}dphTOWNt#~*U%dGhpe6Z&$dnT#`{hhwo{Bz`z#{hkeoQCmp6&XvnGAlBognRNZE&OsUZ^9sPn@ zgoPr1bVt@H_jF{}qZ5h~ z($W1e($o@0QIviU{>S`MVwtr=nbx|}vWVr)*#rY1(>XSnYQ0~YDVXbynSF1A>#Ybn zM15UR?Ygl4tOL$9_k)l6;Viw=m5c@e^xfK-iG+OnF%%T!9A~`h_;pln60x8MJ}cV1 z`=d|>Vd4fs_%cRw1fw})lYp$+?HV^Vr)%qDe}BTrn|lNsHV@?Q)AtzwVxFsz_JgXk z8>lXEQHXH@^4_B#!d;h=kwlK*cS6m2@RhLlV%LJHC(tl7cm-E zu_mX#eopsU?wN#8;r%EVSzFOU=n4?{a0P3`y=p~D9THs&YpBpe0wBYqf< zRyKP|79QCNXlOVTtCC>~8xq{vZVrMce@ph7QIz?Xy=`PpY!>QcX*C#=EFM2R!Fc8? zevoj~l?W{SZSCK9D`(O)B79s*FLN=bqKnLALB1}JF0hr6Q-6g@3}Tvn$tiZ?g0;Gv z;AK(IdPi2Rp@T7@=chHYnRrd|O-D^7Yg__KMxj}xvmUaX@afpWm=`l?1rbTDzyn-Z zv6i_CmKLgbnusCRAV~KPa|sTLpcQ1OB59Z5Fg;JN-DzyL9x^XJ&h6+v(N>_{a%XPg z<5A%7eoU9Lh&IpxdjFltEnsz5XyeV*Ds(rH`QSi@AP_}GEMZ=fir?8UkJy_76N;5s zIfw;4z^l~N?dcljn|+m+Up|eWLTL7R)+B7)bH-s86?Kq6hgS@(735SvS97AMi(gDh zRX2|q5;Mk^rz0vW{h;mZ1{W6X*{!!CtKLwiV<;W7wl*e&5F_h-J{v^n?2}Uky22Sh zos6(mQ6W_kwAly^wy0_PCQQKS=sRhw+JyCn7z$OHR(_*{@Mn#Y#OX zTi}V5{RPoO3BQtV8SU*_XUI+UM3dV020Oa-F6L|2 zJ66D`S%_CM+a{qt)-(X&o}zyD17ri2HRQqA(jK}R5@h~MXJhZCaujvC&)jd?;}mr@ z(Mf4+iV#**+pgF>SCD6CYzv~E*S}OYN9TvXVVv7yhNz00|8YlzK_X3q4Djy#5?u== z?w4p-u;S1tL=We1PZ&uaxDR@*-QeNaC!p8iotj5r@|;|a5UCCt5XQyOaj(5YuReC5 zEDk;yL1oDue~J{~T1(t~=HkCVb*;@S0m|0Kjp~Pk;($*%UA15$nI1>j>;!KPDz}A zzWZGmX&=@V%l3t%R~u(B-=71416MeK$d-~3UH?arY9k>nqcck-fQ$x?!0lW zE!gNWRITczgA!H+bcQ+Gu}?BXd_KLO=vlYU_}EC(u#Z+(Fi25AL~65&g(|mzC8w)3 znhnX-VW(>x`c%ME_cpFAyZb>m8RoyV5}T7;)%SW>Q&vD-5O7WONLJtYLO&i>$4;;K6+R+iSv>Tr@9{IQ z4WSI*o^DIe`pfu8E{O_Y4&u5t=k_%lG|oz1qrN*HG#T>ed*9$TQ1zXXI8$(3GEdk0 z&gR`i78!wp@BDTz@s-iMp@h_Ns;%f(sbNgujNpydqHx@V>F8^t5A4)}wM3xitwJXj zZTZY1Bkm@FWKQqOF_cVWLc=*Eq3` z>%ms}_Jt`{&wy&$IW@@3o$hTL7;whxw$rV$S!Q=b&v?;+bK@2QS>m zRQKNE&wc!KBbORIebBf4;JSarfd7}*z7eoK`kSc1TG?u#&%DoeNURr-D!>u#$@lBG zWLG5*KBV;0+B5ve8|`HKx(?Oe$D3;ys_docd`bNx?W$8DR~)E%SlhLe!ANft7@OYlaC6<4L> zA}Di4As7jB3$*?+I?s0!TxH9Q3~nA_XY&w|-i8wS z8fW;gEgXrG5S;Sa0S=UpSJ)TZUz$GIT`N*|M8!N><*7csa1z|25$%C_ynIUYAdx(a zA~sa`zK-As_>H+Q#OjKlOBznT?^qo=cVO=(71Y|>P3fW-ob%o@KaO)YNS$g;NN6Z3 z3QBXeibd=>?vzG!JZOVu6QB1_>_xOQ(zC@Bfw2X~+TqN6bU`|+3c|pP$3pd~>?Ufm zG!q_xfUBtJf}{M@o%kh&2OEaj-W#`u7M@HYoBF(Aq|&j;Gl)mqTu_d9Ws#?<=`4_A zoLO`(DF+8r#&w2EoK2-wq4z1{8N3FCvcSYQ1@fVS zFv)U14Rpdl@;JEw1scZgpys~&mzVu__tzTF2j187`wLs3^JP0U{hH`cc=~z!pRn{l zF;P)@1&Q>qBv>YAhKA_;P=@rNpk75nn6d{98T651P*ERIAYrW~WD z!Hk}1X^_s{l+xXiUi*ug9}2@yD;v<|#hUZ-sKA2S@b_GrQsHuu7P}#(v`XnG+Al$L z8lTmm1O1q06(7)3!YI=6)t{CP!LTA%;@@yS)pv3eN#1o6U~qZiqdhUx_}_hWpe6_d zJ6f`>`s*-cek&ZM=28q}6NzNy)Fx##dSmWk+;1PZ(oO5X&#+hrlnC0LmRH>?0U)@> zJy}-{=K91YJ4|PE-;w2P=_OWtprUNy%`hiXg49m;LL-`qHm}L0IUd=A^oiTgQ|Z2G zy#xbc&3T0-t)~#&hC|Do#XN3b7KmLRdLBVApc7dG!CepIMfSGcQNp8v!#>Me ztY47)jjl580Cup&^jy3;4Vu18MiMo?>{QGOB6TLv^r+d*q=GjOxx-lG=@Gf&J znyV=U(CPBfEYRK1CYYL5evsnZHj}Nn7)u*C`&3b}WG;FdpM)8HfN_ zumMk50uMHXKu{`+*nAI#YEL58i6QBubx{s1d7vC4O2MQV8+^-;OM71(p z0SF!}zeZ@zeL?Y4;xW^%ez`GTiIWZn#w^I{&n=J%EL75zE%to5qoqW9#qUBmJ=4`d zfUJfZbN<*kz@g+%Hg9-06(PAhG~6C5ozdoh_tqR5TEX~cX;({u4rWm(6on7LOV0Vod$P|;cd@TLJeX_!suK8y8LC^mS&x}QXmg0* zoePF@tv#52lA4EioK^U?D?7-fOp)b)LI9DKR}R$n7I0+5w6%5y56H;5S*)d=wXn)g zb}016;e3ubNQ0v+ZK&;tqRN*)s^ZZA$I8%=pw%uP5y{m$OF%o;ip%7&pw(rD&w#oE zO`1cvse)y?g*E)PY_fHfHKDslCS}viu+<0I9MKbtBV!mwXj)>UCJptxZHtu7u9P1? z{3qWn7zpt`H4_5CP5N|>qhAm3KM#A$8^dSJP)tv9$5KJKu};}SHTHXWko6L5@iW;> zuWn9_kk4Ha_fMn2Ryxh^t|Jz3`w+Y6q=l*LQl|pmZ5ho`4Hk>^{&jUZT9jS)Sy%_Em(>u)9NEY}T z$VjBHGA=+eM7Fkc%OXDPTRPnFXCy04oN%IJOoVBB$nmym^_#hVcC~>6`rHG9W=^ub zf8Sqi4I=(qYXhd(sU-f(v)lBwlmRo^M7v^^9z@7#xYvBOuPR!pyx@}-c_6LXU(Lz%Bc~A3h|*)83_~SqEth0C^ADtZM@4} zR)tpCX2`6v8{nDy&->`T8Ou;;AGHCp5Xv6Vp2R%*6f-|RYgA8dN54564XGM#1)HVt zYVw^BSLLD{X)c#S3|9PE%n3~5e`A}++Q)>yF0du5MIZy0C}nW53xwlT@O_<)q?TgV z1neG_fk?Fh_pO@=FCmmTo&N~0U+3;qJMg!E;8}K8>H{1O0$$H{9jg@sVl)GbxopsV z^hSD8dDf4@lhd?LQ##DTc(5tF0WH>yiTipUo${dJ67%@79NR>HoH5Msxg z%&m&sF`wkvg63UsyNVsD#-q%*E@^2oU?0b?WlAav6QY$wNqF^OQiIW*1nVN|sPmVu z;>aqDd;8{fy_AGiY|slUZ@VO(_94ripx!98=HXF#7yn>s+6W)FNGQ2M@+?WV=|)*Y(BU3a^56@VG>&>Dh1&L zH^s~XHF-7Qk-XjBCkY3Yv6z`SGQp=Uu;2T)V1BELVoMqm#mG1rxv0KF(m}Ba+61)w zlinvsL~$@B?dmnE$h83nuZhS&Ckylyt+nY}IC{v@hTGouIN5G?tmGB^s~|UBntv$) z)1YjwOkZJz)m77qmR9L60yZ|Q{`P_CHgkT+OI0@l-G^bc*3*qJO_Z6vuNBs9oj(Xu zldJp&o3OQ90-0)@55LPe8SHU24ciNL@i`rK?0US&%XM?YXpx}p2vQMdH%NvIBQzkZ z_u}g6yCPCh;raFIEcYYf5X3p;D=u1V6}X}`cva*b-C;2wb_L(=!;m+y5&r&BI{>1L z`169n?a~BlC_>ckAe#|3n^LfA?;A6j9g+O>~74e?bQqCy| z8joIF=vS~`joS6@YKG}fPcSs2$qDj|v_su-PY8rFirK)TC^>n$=q=J~-jSGNU0Mg& zvac8DYp=3E)*DqE;Xzp1P`sJ%E(tT;c60%24%h}#q8+U(ww3GWS3vGgfos?orGak5 zGpI~`=SC>1JJ^Y4))P2Z4EM+QsD3@64QNQF2N&q4RRByW18m{C_NB z!NC6R!!G}wGP3P^aBmM}Y)yCiWvs&bCD=at- zp0;?x6$}XQ+#2IZ1wwCr@9~M%Ksj*crunW?nBqf$g91nQFz(ap)v4`M#%rSteW3SL z&dIJ7snm+x{PL=mxqSOf7_Do*6y-5(?Gug`iAli}WqR_=XzEDo9Nj)QUAFGKb(%T? zn5kB^b=huK9JAmKF9XEDah;j+Wz?p6TtsJ9CjLd^r^;Bo&^Tj>+4HvP%5+DDS#Y}< z8(irVWXXPx>bsgw1K50zj?T$Vkhos{qVZ?eM$)Eravp}qULTEy_J)4{Kcn$KV9`(} z7+hT~y?e|*_1kXV^TT-l+j9VKy8e9ZEduO+6wv*z3hL3)Y;S*Xyk7=o+Zp#i9Do%H5%L#%d68pB%BXc84jwEDT)*u5Yk47sFM<& zRW3M2`y$WI%^YyW>aiV--$2BO8U5Y^+eX^PBmNQ?6yqQ0IdF;bW;+ES@3?GNL#(57Z%#yaN=Y?A@mwax0p-H);W5(AF4V8h#_KKul4Cy;XV2OWq_~o-rw`Jd<>6*4`!zRbQB9QeY>+= ze{HVTIIZW^S_OGA$&N%0^m_c*J3=LV{&C$Tb#Bu;VHC{Od7R-qGe4Ci;{wbjZVbXD z)oKefUunK|F^kE@@7i#F%T)K-1hlf)Rg|8+j;xGL%xqH+-r`1j?#xpq7xofEw1acV<=+su*jSrQ9MJ*$x;C}~n|L*|&7D|0# zO%g)8)%TauuN%0vUfZ<&t`NxNG^~9j-&8&X z)IY_WZTVBt6l>&F#hn-@>H2%OLbSLhFfLsE{KP#QX2KX{?vK54(*OA=SjB4-!uwsTcec(ff=Ga{*D9Py z{~3$)*y-m!i{c_|ORL&ku~JvAZlQ0WZ)2>ljD3YXXw%hQ#aH1=`fU}d5j)ZABIpr!KFWR30>5baX3_daZ@M>L~J%;;1+w z@8hF6YmW=pD3UMnMJlMHubqFWRH>I}`+=!tHS~OIn5Vg%R(q6_>-6WLS8)#Ih(~M` zx!Dcwe2eY4_T)rxm+CJiPo4VgDl*GZ?e2-W&A`Lza)t<g=ctC8N~&SX zKvadwa&*l37?uAB6w7%B>q~!rq(jyv9@3&!*-m_i?Nh9fh~Vn8AQ4FJRbR$RHIaR^9*3F@=;P(f}2&G_eOJI&pMzA7rZ7l zo3Z?!=qxGL6se;)MI}1Xny41&E#dYV8;vk+#Yv`o#A0);&z(G+t;R?^D{Opn7QiRP z%)wUBaFcWeDou#m&~x*g4QR$&D}4guv&qLN@;I4|R(a{bH0jChN568QA(Kv&ITQiq zty#%lX{wE=s+osF(>3PH55^9Cncc)tkyx}nhfZo(FRH;)xe3IUiGl}GjBV= zP(h!j8^o^{HXHMRBiVxmmVKFF`)U9^z_a>teEnz7(*4q0>qKZvM_03<{9_tOG9>Zo z>8m$PQR^Wo$?|kDO2PnO_;a)YtUa_ieXH&^` zl<-d}{zH)eLsz4}fc*4_x$65p>DOtb8ZTE;FhU4UR8S4;`tYM-4$%WnwJ|oC&l(a$ zB2y%3m*qI~9SRQ7ddCup?gZbIj}_>pBx-bTUUIqw47*psfLa~prsWqcjjIADGSX_= zt=d80Gj~KVpIe}TX!3PN!Ge-%7WolCyZlffxQt|9jA8y|q^xtElg>4^Z5%262v`ux zMmO5ime8K+pn4J1ta1Y1WY+XGvDt{AUa3s5o9s-Q2}xui-v%k7$t}$GhpKRh>gkWfRs8(<7QX)1nbw zdJW?!G~=nUUq%)w@{I5Ky(fyw^)B0byhG~@&+*P&`(8w>w{We=?lUc><;c{y_xDmC z50$6=CUpAnEBj0KSV_>YkZC8KtR-)-q&w-JR||51KX;P<>GD-aW&2@||L{1eG+RU> zrK9x1-vb#0^uKWYKQaA#LBDG>{F#UTCy4(aQs9Wl|0IU|&ExkV{xgPTd2%N|Ka3Ez z3)8lz*mz_JeOGjn#8QuxoR^j?tjrG+r)@_wpCBF&zod+qH%2>=DUYi`J*ml*kG4vk zaxpdJn%TPboP1L<V0*8I6H`?Q_v(-_$tnktk4}_ z&_n@q7~4)vA=#4KxgaT4%JCqRL$I|>P?_xo_QtJJ`%E>oIHvHm8zamDTUV4>up!|3 zMXp;I$Bz6kp?8oRGzssPL#Zf&xrB-Y{~Ygpx0b)w3D#aqEH-VAQ#SUGds-2>q#!x% z;^*O2BQNR;?L3q1cqBRt>hn+0T=R@ECuCi>$xvs$I&pb|z3`=v?LkXn)JT=j^u+fD z6M5I2NM1gl-4Qa)SGx2lfzhE+;2_nnFC+e`OdM!7Se!FF&!%)z!7;$({dol%*Uu+n z;&)G-=@yYa&gF=}OQdHh0ImK1GWXl*O#!j{0kvpeUATrDw9XN+vlksRgWs!nQl9+i{JuzJkgnd@9IP90E02a3+AH`>0#3kH6j=P2p6en+k<0UWs6w zMjN+8(9mZmBd}-*F|l5g{c+za6hS7vDZkIJ_FE1Bk+jIThX361#k_soP^=#=-?3qM zFdZYTBB5Gv=|qA2bCkDN5=vggInq35Pfa{tCc45)v~d2o<*~*PA-}P}XewFYC{Jka zC*4yqzLE?D;9F}%ND2`_`u>)2e#ggPOIomGnVRRMW^jYh7`sfF`aOr4D;>a!`;r0P z2H^HxJ5w-RO3^Uj)>yvbqAguh5l;aWXF2tJChvTi8|HBc?7a4wn`M9x%_2uP%Dbip zHap;K#rg63!!zZ*Lsc-5({6xuV-dNMcG|eMMk7wKA=)Aao@x;5*1@^rq>t3p^j?aM zESUeJ4~?#SNMO<6dLJtDB1iUa22cn&Yx-`Bz#1Aq)`Y@-W=kL#S9j$K310B|`4Yb? z!N7%3j)`Su@>qk3I}E@r^!=+mQS+LW_@%Xy!Ww5w#DqVkh-G423DxRGUiN%5EYvT* z!rOuvQUOyvkE{U!W2Nl!lWbd4M6YfA=R{e>vJ>xh?hFfvUr$BaO?Z&33jrCKDvo&y zBTRdz_?Tv;1yT+WhVs?R_v-E|5<3%|yvm)(@E4}Z)i?bp2a1HX`?ZJQwldc0QE-si zy4}3XSi$7QX}2}>#IVT=LA#jRDf#_@ua(kLqIpe*RW?d%;7a6hbu$vXg*SW6xaSt7 zLczgu+c_q-i2o+t!+%gW5@w5v5(n>)J`$u(p#R$ z@}h0q4YSLzK|c;-?8lD$?B*+W=OM$u4Jb*q3UTC(pX0%)mQDFBrzf1HTkw(?ZCPEO{jHV56jH%psReP`f$9dsQKZ+xteS|YG z5N8YXcs$PTn!hTr8@V0{Hv8?D?UBAKeNI{9H8Cl-G)1iu9;B;ek}iC^yLVmJ7(1UR z)2FL$GE-`l3|et<%zwWm*q;nwUkuwIScXS)QrA86g-EWqEh`y83}siUm3@%!l`#Yk z@|@YF5mo#upi0ojOS)>1;`2=$_L>gp^+SWA$!-s_)Zu%)Mc(MZ)c#d}H`IX*H zJK|jJ-1EL8>!VFi$tl06Wkl}gNv^T!kcWajUhZ*KE%N_GXa1PUOWDtoz4@jpsK=4 zkcWZfoLPEiM#!IZ!MEipIbgj=4QM^v9AhD8=&CCJ>X^s*svQo|*xR7heIeRBAZ;dQ0A-ho8d*CopLc6NM@QiFby35oui_}+vvN?3NvX4mM#B0o?`3*aNk|NgFbl0 z2E?_l={}V|0>Kse5(@4Oap2jZAdW`3y92Or~25^ws!Jy#WeTH;@f)8 zLgkAxShd|FXDrEE=#;Og&l0nS4EHyj7bl+k`Lggofl-t-=(M}Ea^2$X42(JA?sc41 zU^b_7H8TOvc5YKA_S*m+-DgCF_4a5=+g&FpLltPZNI~%wOpc^uV0@)THU>VfU~OIY z{*Y^UW-d%ko=bq7HQ$*Fr2WbmSImzX@PH$Zy7sPPMPs?8c8i;)jY&Qd7ZNqK9{w`# zo>?~Dz>q&C`!hg3W2>`qAyYG%nQQU#qo5cHv9jLX7Ix0eXKiY?28(`z4pZ$JtkZ$Z zT2JFh9_J+aTopZqtF!12UC>2Kic{N+!7EmRY`vFEOp_TXD;`@9edjZd7u1uP6#3IG z^X)N9WJ+)-iJpn4f%m+GO6*#`@Btb4H~pLbJ!7kmI=uS^QRYcJvk+PrL6Hgfd*-v7fCvW#|3{pl1P`jnmK zQMQPFW~t4;^;LA1=M}8AdFea(8F;rTKJLJKlWWNRFyW$5x1@T1vxJp;YjB4(;;<-~ z5u};BmyLCwBkNnNW|@!gVHx7kdEqV3dnwZiU*|V7`VC}u!_(Y9tExwY3e9a7CX_zfbbVJoo@EFLK@Y&J^{rTr z_SFk~%)$CJn@)Elx$aU=;lxCTxhIz24c>beJH&J8gg|tx>S4e3JTp%5&O=%dcKb(_ z#Ttd(aX|Q~zU(K5VxG*Dld$~HxRU)h{-w`13Pd3ZmgIe+{JtRZ!Bgk==wpts_|GqI zbjW_dq#g_aSykg2#Ac_fevLjZGiKM2{3OG;j5$u-IIUEcD_`c987Ht^(_$>G#@`)k zktuHQvJZg%is~P7(sB?7f#l>=?bOrR&DyXv&fM@_@!+*ZuL3H?scN<+F^vGWMU3y< z>wUL2zGZ9i!AC%>{uCzY*#%94Ndf@FuxKU>CpJyFo@+#up#g33JbW^5N;t= z2H)J;PWhg8g7hrX-F>`@|gLaK7^Vx$iLin=q%=?gpmX@)O3h0IJuQfAT44P` znE8HJQ4PvpcZ=-jyNwFl=U%Ia?6H%-U}tF0`HPp6X4P5*6mJc!wld?(99s>C1371R z`mxw)2!lTm@%LUNLt$5+Sn)ERT=v?k522j8>d{{>IyHt^JBZOWY`gux^%Ca&=m6)0 zHwkmXdu($KNajI8luq_fF)p9I>(eP}#IzEx3EuHBFThF;y%xcs)y(V*;S{=Z*hH*O zhcTE^b>OR!m_&P>8-?sW!;6ny99FCoxRQ!?)aF~=A3;Ccg?o&&nt`L#7JX9*{Ig%6 zPQL}G$`#TMp%c;uy0*c+$YgooFzI9-VL4bo1H>e)VI{(yQ<(( zdR&#jxStfupFD6M9kTlSnI}6;z1h`}sk@QtpRLP+ZUS$#=;p{vnwe7qzh}h^XnsA> zR=#7yeYAAVvQ~JCj?BFO=*PHe%F7LQoFh12gnVK%N}^1 z*0Fy?UY)Kz>f#IaJq^yJ5A;v}9y?lmZ(a0zu)GE?9&I62W-?t44f3?N@hZa)#*A8lW_|fK!2PrO1-Q#8 ziQ#};jYNZ!vxR-z_uqs0E-V)Ju?0^~xko=*{N;-SY#4d#o?E@Je3;d5WEgS+0cK&8 z>lo;WugcFC zgev4$4doIFaCQ~@OY9`nU`j<{YF`Q}%1E`66T&rc(d#7QvCmP?8j{W1R!7V;?8c2G zGYW`9Lday;_%wd0u@75kh&)aa&lwc-*co-$%^B>%4j{+`MRfLt^UH${;8uD!**BRP z&YgTtP5JOPnmNzYc6|5*Zf{c`_BN!)$$_N)43!1LT%@(t4^^<^EkF8ok6mltF>|O~ z*9ER!<09tj9QNU=+lDZMIuaXOYj?7b$ArcY`uFkg4FEZ*l)PTz`2To&rzlUtZQHZb zww+mN+qRuqY1_74Y1@^yZ9D&I+qQXY?|b*TyHD$$9^L&C@f2gkLyRxhnrp84Oa3S` zBl3aB;KnoL=iO3Rp8n04FClHGtrSd`i`uy(?^O+(t0}KdZo`lJ`sK))*cqLa_1%S* z%aYOZ#+NfmfK}s%f&3LSfjhPxYVPDmLohbv;y`kl61z6nWI$rqp`39%iC#h+4_SSZ z@;arTFw9xuNamqvocFZ*(8jk~xaK;`DBL&txrg(6tSCBGnoObaw7pF@nMxE}7NY|U ziOgawv!kgjT@n-kTb@bJJSNav+HOU;YOFuhWEo(>Br$am?Zm7Eek#qF{pzAUcX5Ak z!U{vyhU0qPO_(bW&W)S8W~%@$_W8tIv>g&CvpJB1R%Vg6;IMPpo@^#LAC4FQY{n?K z_~H48WTL}V7-yuXq6eddk$GrxM3R^iyn#)7E~4-KdX;4B0d(3ihN-_6I%XCedm8&hK3BqI{hAW-N^XolerMP|KiRfQ%fqqvFv&4N8?|SO zJ)T|xI*YBuZr>&k9KRj?tICB5ygyW!rDwC{<<_KruZ<%aQ}N>DP*|dhM7cFJ`k*LYpLD|w;_it=hNFZQM=jj8U)!7>4ZUTt}nBqLAE$0^e; zC&xhr@B-|k5xK}ay5#QJ!G~cg7(;;82zisz?Y>+nPkfqP9=K6l6vl04|Lj|j3Q#Y< zCW|md`DnGIxH}0Nh1x7c&fXb9DAXz+fsG{v9%UIZPq^_yh+Pg{C8i>a4U;m{$=7FZ z!H-KZ5A3_525Pn)ENQ{=Nj%`7`}u?;B<0;w7L|f9`Hp{PL4*>fc3I8<_)s5WFlwxl z&w-<97Atqk)CATN@7c%PfHAFx=}MROgL0hCs$piK2z5S&RY)^n$^-0RqU``-r`M_H zo3)WZmpIVc02LgDl^Z24_h?e{zD4!6L3@2{&@en8lr&_&9Zk>)7}%O(9g0pfu+Z?j zwJ)6UUiFEM=}1l_8Ka)LB~CXKndOJ&U)1~{ku_vbl2ejEOIku4 zap9w`Rdqo_PO;Y#$>X5Y)qng%ZYO#z^+y}?CV|nxblx34k@?m0ANyL3z0qjsF!=9!%R26iSE{VlO_FU7+A_heVpFqA zXNUD~JHY7n~LQ$wp$I)HpJ8s21_X?uI> z{`$@B*#2fB^Ch`-L3+PuC66;N5cOuWxMY|IeTN3jv))o6GB~`M^(7I#Xu7XueG4La zXH0d^Abb0}Xjk<~6{x6>#BL+!aRTv_V69FmEBt5y5;wAF!q}N}ntmT>)2fw1^eN>y zY27MQ`c4EBzg2eyIGLhVnR*nzgy}39roZ>J6Tz> zUepH3LC=-xl&S`DJo!*)3CFH}W1~9Ie@B@1{BS12j0|`0wGQ81K>y?1b4mMYR)C@F zY^9!(3D^{Od!bp&3bL5RCa#P-9aQ=76Bcz}*}$<%x^Jychv89oR!#98zCY=&y$-Ji zekN9?R7pPN$0|>_7DTGUnEzrySoD1w1D{*J@)r-g0%p&(%~mo+oNVRh=B_0OHp2KY zw3Lp(+fxwhK8-qI2fwd{W+1u6=?UVA8?zu?j}!fQru7|Pc*MD@uLw8@8wSM|uQd2O zE#T6{M+E!6TO|VhE7z`P*5dRdBXBl63q&v;c+PY7<}qbR=5`w@zR5|0nKhL^0YP-R z!%AmA@FBrNjJyL`qChHapo)fUmU}2Nvj}?6V^2a8eUu<#YY5}`+k#|D&6AaeG;Qx) zGI95-Btw<>RibOrJnLIv-0nPDx}6NK$tYoI;PEP_2Mc}st0XemM8|pL9sc7KJ`_Ue zzaRVmzg+{q*@5yX(4>xzTb3fX8o$p&YrMakAde_+)X)j-4*1^EA@1I)FX(eqD;X8Z zGZXG<+(KnvOmr5=*RyaXUT!h>y6&d!uWoYiV|Lfoe*bAj^8L1#Yd+P+DyvduCENmU zFKimloMdXiSf+g%T#6G2q1&^mj|!%(BC%?DjZ0Yy4P48_Osiswu!gz^>pA9@@Zm%Fpq2gYmrwS>+Z>V& zW9E+m+q0Dl`>Rdp{hpY??_H;LOdW_b@(U`K|6rzonjFi&Dr{s1W3VB}A46H2mE8klxKOQF#58C)5PKZD0*j3&If}s0NJW z01IWX)~jDdq@YI%g&ZhR^25FJ0Sz9Dea zP8(k{of_J4lTK~&b?*@!)?SEiIy)DjGtoZ%F`F8DVBTzvQEjl_}kxX_hFbM|P^cFXvskI2My{R_kU$8eV3P z>O+3SudP8CQFvWOk9pfVNWHjd_~dA(D7zqGF7XZMlGl^`egD4O=DTY&*dU=2^C+>+ zT@*0*(iC~m&!lO*JopuVzN`8F#D@RZynoY!_<}*kC-D5&R5SjctLnn-|C_4%p8>oP z|1#BV_E;qf{x#K*S5+~pN>jF%(JR%SDrje^m~se=njx>NX@uvuAoW=OD8+C9Gvu8{OJ&X@jX%jucV4bYWq>}zze zN*<1R+cRcMJV%Q3URR|-;%PrhAor3=|5~PhV9jt88?y~PJV!owBuYA$q4E8 zYJ-|c#$KXqsI?xLjg`v#7XD5IMRYkU0|`pF&crTg60_th$UnxOMDzGrAK zC($X_sAL^tuf(?}(;>5MW$Uyqb9x;wVyY7#Zs6OK7#S7DEd@=kqyOqb6`eYJ^|Bhw zZL>8!I@07!X%d+ZtHv48sr9;_7$-w`Y-{m(^WK#1lkv&YVNZtV{`f5MD}CcWz|e3d z^;gJpa|pv9@qam9T+98@i=W|iu^4yn&+ndx*hd_dcU!l*s=c$PbSm{Yb#y#EI$fIg zj84X93Ci@?yCR_0orPiO@4D;~i+>%me6!r%3wN8oFP>>%%%=fsj*9naA0IEJZPUqz z{1=06|CJ8>zxY_~K3J4QSYy(b=Ji%%PxtNk^W)DbBmw<*Fcuu%o$@odDchp2LHd}IPljNtf=BPrs*^41FGuV;0nN}l_SM&E zsV;dEV^ZlTIZ8hmt61F2EI;CQx4wIS=rU=ftF<$GJL>wLiK?@>tP?&PB$gJV^;*L? zjWioYx{LYN@@w#8(Qntdr#gKbFXN?#0RLroZ0Un8@fPvdKI8m!vi?RO)1!+MCJ#*| zR-^GE)gRYw;iqF=qtVxN#R#`b?|R}3u5-|*&BJGDKlWlIQUNFh;G`djNxcO3gETzeNnKP-!^{N90?dbvdp#baMyU2{qL|#gh|raLo8-c+gYol>TbU zwP{Tc_;nbG+~8s>RAG5vr2%2I+h!E)L$-|lou{*;iCJs30kmPU{k5c~*MVgr%kZrrmBCgNER+pqc-qBCK z-!f%wqrj`pAK;mT9zsi?(_F4s%wPqO&GVwZb8jyh0Epnb3s*a0^*L z)>6XdIk@|TqH zSfkg|%12!~{lq-1(&ql92L9)uq3Ntb9Hv0z>sed_ABv*TQ^whB+k&HAL}rWJfg^@t zCMN++BV5TWJTYDhkLp}Z`=m(_Q?wd9nMS6rZ+3s7na3O;ewvQdG+n|;frZQ^Xw=CJ zpUeJu!m<(yJ&@dUn)by@C8w5t-&pzsf@WM->8uOlkW5Qh{M^u3Hh?(-mcE-jHJOb9 ztcbeB^HmB@WRlT>6-+v=akcX z@S^e62_{4mKLrd!n@+B9Y288GodPG!!kQ8C-f}G}>meOux7WP_|BxWDaSv-b53F4}75;DVzDTor zsY=D|F%qZhIage-Q6~d}+^teS=f6zeinCb?E}c#mI)Z2xYfF|5LxpW4+oFs54hhsL z++dP<#Y6GBh2$@7mPQ`^(rhnWmriOt`qXLhuHLlp^&u_$i@zCVM&)!nqkU_c^?vP< zm`yg7LLxvJh45AUhx(!I;^L;05m{kmF1Hz9_1NZ!mU#Ty)u1Dvoz7m>JbAahJ6`Kt zrUkeA1-fC)#d&?NB1K7&iyW@0E)4-IGAvOP9v57rxU#xrs%D!Nf&*4;tg!{t`D>a* zX)05R=7_cY0F5W6v#QRcJr#BY)=XZ{w<&9p{mJ%Gae4WIuZJhR92^dFZ66QkUm!KU z-JfMP#l*7=vxZYoyh5eC{nhmj+H}~X?*~h{TffDe95c*@VSDSApvO?6@c-0x961hn zb<7&e2~LAd_A)AM{5kI8Qh3+uLUObzQQ&V-AFAv{YZ8iFwO%wUh znV-U3M8!yBB^fF(l~J6)xos*fz)iw1G>h@{d6Lxddq=Tsd5DVP%nsXcD#j_)_?1_^ z0vB|5pjgUY-ftEe!*#ZZ8iFdXi1 z`c{P|HQHWJXnPYm|04UX+JX?`WUm5qJ)qd%0kGj&4UNQA_&Y^R9$a_eaCfP@&vzD2 zs{F+U!>JL?%N=UvK{YLyP830FXHAxGUsx`xkq#@Rr_7JUC5y#{-hk6W2NS00x*p^M z1`F@tXzs;V_(Kz8@!Lqng(IRqtLB}@PKXkv$slyTQjv-7r%WX!+B*VYtKr=e>nN2= zmxBEPOJgF~>FkKc%6d_YyW_oSX<~8|!T5W3O(f)m!)cJcI18co3PPY!pde#)*4*yT zV9mODuX|t9f|HMw;JrUmCo7cocYC(zpvcP*s$;N?VaZu+GDd=%k3fpZun-w+mAPKo z&n|D@Af!Jp^hR5WSpdpDm}94NV6Ru`@Kv~&&O)JZF6VpeQtrpMIHLI?Ve?CYT;`5+ zTZPL0y)Nyk+8^x|1Wc8wj26kAuZsnKxO2~(_Tnk-JnJC}B^;zp2O!6sZu6$u5!&EX zI7`cEQ=%6WDL!eO{-kNgPUzUz^zO|R{vb^eDHEv}4g6YqW=I)Hh2OJWr7#4B4K}zq z+EirJRH@F3g0gKk(^hzFJX(ineniz)*rl1Nmo84U5amKB#p9}t2w*KM4&OlqZTCsm-GngAUiOG z5;qdBNlCZo!CVxq8n34KxMK*vlwfR3kP6WGJg$9!ZSTYV^Q$OMKxA{qLX%@b4N}2u zjW2$Vt#@vl9O%o<_pHo#QY*NLC9w{gbhj&Lja*TEM1efEV+6?(_!ghFNDE)Kb3(Bt zbUu^!W#0|~*g`$S2DqJiy!khAfZg^jZ+~C?U3(y0dvUrofO;CK_Ai#KM`s+lHF^b{ zjwVSwFV8x@Yj19|B4~HrKf*ZQNk1_PF61NlRLEF@3s z+Lok$Ur&SoIr?-IlltmN{XBh~(e~}-E<5Dcg(!^JlG^y#V!S7KKKCW!$#h?;dHcLC z^TLa!1d`f$CjJ4Z=3+9gwbHW@>2fDd7up`&HQf zkj-lANDDq7)Fa<*$ezb3TyVEh*Zjm6Av(d^p$R{TyP9uE6M-$oW@@;}JZau-*T|q{C6?m7c0_oP%-F+G znfdB4Df&7q!}}>rl-&}EunyYqLMLEFp4DI?P9PDHd4vH{S7f9r!cGREOwdp$gQ$4U zItO%eE-*Y1#!|T4V{d6(@2=muDu;g18Feqh=!8MC0srDD6`(>6SNLxuds|0 zM>=8?D{Uf*_q6Hvk`YC(tYOH=6WHRNs6*rWXMKLpD%mO5;ZMkfM2t%+-GD0ZzNr?n z=*50GK4N-UdS|hWQ^oCdmq;k4{A{bL8&jbWh*jB8Bjr=Z9gT%ikq9M@ypXaWX9WOD z4%1Uh1f8Ke5+AabVd{uIWlxYUXN*fEuLwGZB+BO0*GsO$s?|GM@U7}OMrw~skSbCS zCtPDlC-O8f8b|jTA+y=Cb9&FmWqnr14Q3p~r+l_Z_Q$=GcpTa!P#uakXI+Zpvyvo4 zKq!w@A(JE9ZzqT>b`r&Bip8&V9YZm$N(9aiCq!=-BAypql915lyo@jzBQ^wah|u(7 zYIyw7n?oS}J4nDEu#F4X6cUMW-`#D8aF4tg>4K(L>~df(Zs=Dui{vwXLJw_56W#IE zg_7>f_UAUGz#iG^^J#%&5L*HL8O0(8H$w+AwEw+$go37L%@($a|;35^@z*Q`HHRw(z57LYf_+E($l#KXR7*m_TV!I!)3op(6|=;Fq=%2uo4*h|a(4t>q7>&B)y zR*}(W6aQZn_Qe=M27$NU=11I?PEcGh(q_~55TUs%>6~%o@N+_3VpZkBf5r+2)ip_! z#^?A7{xXmYjkl$P3b&{3J9wEFluOLcc$}tPIFGyea-YpQx@+FO@w)xI10p)5>wpdw zgdKoHB^9kF362a)D6Y!r;Bl<+Dx+|Jb#U3FcZ|)?dqk(+Yeu9G%hp9}F(!>Sjv%1b zvNKjeEwmEBF;X1uO_@ zSpg42L3>OjkV_l*?g|u?zun3=6=q}pGiseNa>3BK6AUqd+W;ck29JRLHnD>z926$^ zoj&m8a+H5n>U45H0K>;Kd0YW&^wT;RMQngPz-Ssl_0yVC;z$9;VY3^rLRAvt!M|Y4i>b_O7&M;dcM!R8bN&zIN?l>p}avV-S3O6R1Z;E{Kwgd zLV&}ZzNy3G>QjtR8prJ-njob#A~!y-AW1VC$DGtau^R(m%#D_PbOpGWFZ{Kvm>A@x zzbPpKtvaCAZ)NV4vSTK1&49Xm3!$6(NR_U;5GG*=g?ldLSI~**ttRCd1){pk%ErJR z=4f)Zq+qj|Kx?u(Aa& zgzOYs&|B91dp$62U|Dfnvx8MfL|Ht$j~I3kk(UsohJ~L2De+|9+sEL)k5<)^7_J#a z|28RsaFm15YtX6_LPPA`Hf@ zvieJX1PM&IV1gzyVLdB(a3rp}tUB!voTcN?xhr~`ke0V4TF0W|L36ks@y`%TKtA|3 z*^##J6d|{?n-|(Z4Vp$WBzql#Eno3bD4DzzGAJ)LzWcBW?=FYEXEB@%6TY8~Qy*w~ zw?`Cedt+01@ygC6Wh^i(FILzpoiqVk=j--+pEfh8@vXwlZ?1957)9O_V zY;hfojBZv1a1^1dqt|}zppE#{b6K1ieHT&boA;t_{#V|@&%f6|XI6*NMT#Z@bP3*b z*gX&gxH%@o8=(W%#^#PxD_Z@pka~^Gd+=E3w5@V_%!yC|-pLA`&HK@0Rg@e`g^W$ zGuCt7Dh!J-CpdGsk*e|oGysQ)3$-Kvt@gPv!%1Ikq>V%w3<4lL_VvJ=0-e0$Yx5bE zPMj01U{ia7bf7hjX3t%2oj!%T-!RL0qIAA4O{hGfEBP zvr|j~tNm&fu~&NFXV;n;4R+bUHq=FWjlnhkPszp>#uwn8yYsYDY#D)Xe109WoI-?k z7e#>ScCnf8)oh1&dUzE%8V>vQSb~!`c2X@mSD-0IKd3K|-0I#(x_N6*?dIO^80$aR*9gUiQ3Og7Dlv9ExnlmsU-O2tM~X)fti4{BTxEl2@|^t_p;?EBwpUQYoXYKRLJB7ZUN|osEj-6J4q0Z zEfLHYgHJ&RkzX%^4bu9a(&-D8QU-C>4P~p18i>X?PdSZR=V1M6R^F&C*n%{d)#YkO zsEArP=BaJW(56?-oTP?JkUs@CaH8Gk1RkQ2-&t|N0?VCHToPUs2);98mTaL}d$yVf zETKV)+w7zr+ACo83wkAn=5b!=)d{@1yHG&Espw9bua*0r*AL`axB_m~e+#W{k

G z4fcSs#5I-$#|pmr#(>bX56jk0Zi`ad(^d=Dsr2{{*Dog?Mmpk0n(U^6CECEmw$yor zuSt!wYWy12!#56R2j%I zKfQE6BaxTi0qqgN{p6NOKt&x?MdVqW>{5eF{r=z!`SbEhfY>r|9ji}gSc2%&(6zUR zDmX0Ig{H&)+sRM=E&TJ1rlQvZKlxhhJi4vV&8-m2=wcpA@&SyGM$p}L{;gd2spRseTW0y)Js~;)c04&kmwTmh zY9UWm$6uTG3RXiItryV4sZXLhn#XHdth>sOrSl@zyZI^to68`v;gjzwZ)PKk?>r;I zS{Aw4-)`i8(z};BJ8Zu;ZN6_m74VlgCv}Lw;e8*^1+|AeMVSKie5Oml^VE{XJLR5y zsGT95=T zmsv|xpJuh~zwg=WEvl1ur>86bTbpK|Zy2o2=lCTbQxlCRwWz=c z3%&HHWP+Ga$x+Y>wWi@CAFr#l@iVgLtDM0zD?LCHD9%rM(mqCB7041bLdb=iBz{0} z(ZHr^)VB8gnV?=!tq)exz8hyLyE!b#>5O$ow+-zxLkAwIsmdve5UkNA$A5OrcEO_w z^+YIOhu8_qWs>p7)Yz?lb}^i$EJCQ)r4AB|CpTHX91PbCt8Y*;EVat90dQF22b@Rl ztI(fnwno`wLBMpm{*#m_q~wl&b?U?q8jfC{d>&Lc+>k0or=6{IZbGsZm=;}{5v53c zVLJmzks|qFQ>iC~Pb$2No}SP)zkEWgYdJ`Qg&?Ua;#&JU(9V*B+g3LO{qRK-n#X%s zd&TMzrm!GJ@dB_TwZ-5!Lh{m5oiGn@GNJhaNq3KP@XCr*7{&_E+n7Frx=K~VCF+Vn z=Ux8V@)m-e2T$Bz=JF#)Wvc3vmIx_H9uX*R+k^QKQw}FSPCQc@xYwwc!-_6#D?Zo8 z-XbL6UdAiCGmbvq-#WO>@47JJ2VA=|(*!qAo$w{8Wc$I~)He>_+S=Ui_}jXaL9zH> zU|M_`vDxl^L!xV`Hxsbfbn=-&e)~oHBWC~yNfd&=+*72HXUN?~ZTyYy1%zdi%YoR8 zjhj^&(v7+hf^B5j!Bp6aTjn6^kEbom4IITlyA=1GD||igjTfZujSk%7DX$1G5Lx@? zOnN!gh@lR)rv36Af}2}rzShwM6g5_?ec~&Jm%AoRVpm!$@7FifEd0e7BeX7iS1knJ zX`Xu^Wejbl*;p8p@|*c}3y!O06ZO&ipWSF2C=eXD1GkG|_8)T{D_Z4v*VO!BAnnJ7 zdN}e~-hT+B?Rf`qQWgyW?+`bDNWHx#3>gQ;eYyw8$UTKF>KE>=s+ICQlyh)U!y#>6 z9_j_ud7V@Da&hEe>!{FS?}j&j-q2}Q2#PCENTR>?br z4}rwpn_EHmvPEa^L$F3KAGt=)U4Kxxfqz#@{kEtH4JK!dqnVEYu7UIS&ICGh+6>dS zip3Tg8z;2e9H7YaW138x5Lkl0R&Xn1ljva&nYZ;FcplxcgLrQFTPM@vX-iE?bR0A<|tVetOyyL``tP zZDQ4`Wm$>|G_%%U)vGV4<={juXJdkKcMPrh1a!rXO2p4cJ7|N8h%(=9Y1Zw>oLy3)*=Tlz^9_ivKZJ><0I>He+YNi)m(|}3 zF7VJntDA zR+5|iK|k)$B)$?7|Il{c=_!d@{QcYTrmC5&>;GMga(at{fArt|Gy0l`iC`u0P)B4Kf{8uy*L*B>ICAPA-LkC296Sc zvXqj%`L?mjR1ykKXdVbgq6~hRba&+e zlAGQbj#k@fo}U`-;0tfh_E_?PB44p{=*QLIy~plJ%t2l__2=D%@3eGHS#1!nHKKD5 zkKH%TfA&@PZB-OvcGI1s+v-Q<99`uNB%03!Td?F`;qRu6iQ`Mi#B2O9`fAq4=)u}P zRvo^{IJ)6_faN)&x96{yDDZfesk})HU%n$hs`+9je+Oi|Zsv!7fBZ$4<vSKq@JCCE z{LdfXHz@E;wPozcjWT0k*AH@;G7T3HVZ?p?4tw!Sl;#!ZJBaEm=hww&QQ znUEH%pbTV{f9N{PG+m^~CwiA9CV{%yU+@znzBbRz>+POmbP{&Zj=9X}@LyX;GTeDtRu^Kv8}= z`B}{|f-A0?&2`j8jClAHLuSizGltlTjwzLFo>@gY0`dDB{DgQU$?@yp7%GC}@f(N1KzPh2i3 zf=nv9Qko6PBZ|tRIxc@utX)>K|UdA|9s#28SplHhhpNJc}zn1goX6J*zwlY$nXqpsSPEfV9J+zvDKp`qB z18?!&`)Y3nja_v5^mwOMt0pD2M<+O8^>7#MUc5m4ZjTPo_EnnC`_uY%4p=2per(f~ z4*Qh6rb>aQ3t5~@{##e}1db`jRAjMTy}<|xd(9vXv^wyjpH5|2z!*p1fuM7lbBGj*vN zIMrO{ii`?&$Y7jO=NTm^iT0gZ<=B8M!P1%1-bjdSHqx6ct!{f8OiZmG-;kcE?($Kyc^1_+M`E7ta>u2cv2cu!=LwE1U>6*20l6b*?K`Ya1`Ll(@v|UV@b*c!YegGhgsc(&?QEzPi~PTdTkG-xv>HJ zaAr;s&(tUkXdE99bze|@ zl}@1=4u92L-k{IA_Ik!kp(C)1+c0JuHRWrLv2^7d8)WX(VI$U=#4x?azza|ZpjOfF zvesy)g(-7ij*k@A&2B`uxdp2r%0a{Vxcg|r$a$vEZrY~B#<5L1C}okztuV^oFRTf% zc%yOyDu{4gtX$Amy8#MX8_Lp_=W3-s^Gw922M!C}DcPuB51r~ zkVUN29UJ&+d0D<)jt}w^juBcKi!Yu>% z(Ub^CLyfqxQ=XoXi%xHcztMLRA_+UUy};K2=WyvUGZFF1&c>PF~NWbqPDW z&vsEg;+IP%VOuMtC}Z;qjPe zlER&lpOB}mGWyDVR{~vC;=o;+y)S-R2NA$fcu&iio@oZRFOGxwjlN8M=EX46*hZ1Q zk2Ld46O(pOZ-DOFH7nS)l2YEW6!d^A)L_$W#SdJmE%&lmImn$R3kJziCdQA4hK5o* zF&TN?^B)V`k0I$DjrppC4i~2zaDwoSe{X@Zs9bj`st$#kx~@+tmvsV?$8HSM8N{}` zdoAo*Alq*gyKCeS2d3uvF*|c^;_-DSc%@%biv*Ue@;#nEphEE|Bm~ws8;B|hp!>hs zVPxf+MQt)5;Q-9Bmb30P1?P{9&o-DnZh|vRl+IHZSf9-ScM}Hbj-TUS0MMIZnMoS* z#{%COCW>1~au9y12T6f>n+_Ms)OTY)AIL{$lca@-)f*|zz4{N)r(;)tGOYNDIp+&` z1bQx(4mVbB*X^&j_&0i#A6E%zEd)A7AN6PV6>-HlpF4kC?f7@7s>}e&*U|hvD2iWb zP`w40lX+Kb{MHsXXL7X0A|D2y->1<5TFM!2?>zh0-SXy>9LkrXTM&NF%kh=D|01uw zP^0{?72BxZ`|`7UqrTo%whAhCPrv#_=3D+`c9h4++VkK~u@A^foD}_^h1Gvy$NR_s zs@mYk3@lMFHY@VwWXbzo_}LwV`?{4184eZT#{}d~w{*{ra1-*N{>8`0K!MLeN_t~o zP1cygEBO5SymOe3jT-B8xZFogjf8Jr6;Luan|4?a`HKK9Af|@Azbi;I$vzN`$~mb3 z=$VeEV*2v5BuO$X1)W;kiIsrY%CZOAiMo zs`$t85?ZGhbp$rcEJSA8moK?DD!KSuxZZRe-r!;;fLCpeBbiboQY8e>3LXF>3O zw762}qFJr%P&hVDn#>s1n9@&^KMN{#`aJdrh(+Gg!Az>ZMjn_W(g@MQre=dEiG$e8 zwG@Qg+Bu9Y%&1vMb#f9)(*vlDx(k8}T@8nCnP5|Lgio!TM0y;mlHQcCc|~v9 zcD%qgn7V>8cpgBue3Id!xz=m7G{7>C$oFNJDHhC1cAWsCNwspMq)oiY_X~1+k#S}x z@0(oOjiNb9es%)kTT;UpP0Ex*B^{KfhJKZ~SW@A+RfUGS*ajeG(1)p*Qm3rt%4BDH zO7TIRvkM2K|In3~tA70RlZ2~}@EbEZwnQDJ? z+T?IE-)*p%uF#>G8qYZ%g`alnj|{6bKIKK9xX?{n#oHvomSwP0HO9hmuJvN`Z9;W@lG^j@pB4fiQx4&^;XdG72 z+=&~?&TjRVA0)7kySo!9Ff0oku*gKgT_2t+eyGIHu|NsL2V*oFoB>aiBa6tufWJ)k z^brpy@)P2h@5t5cTyvqYxj67P#PSi*&7zc?Jl_ychTS_ni>4LzXgaxCO%NI%43Tp+ zu(czE{kD4WPsa%`m%`P~(9#9boz#uYppz6wU%a0PCXZ(_XltN+B2hKK1Ri*TG_{B; zTxvVtS)!cV$vdhqk!H;Osi{IQ%OKp9yT@;kceNk9YCAAAH2fwcH(=-=ZfdtaH_Md4 zsuO&B;9Bf**NfE?Na!!08tO$p1kDT6z~7?Tz_c`Yha@-O%bLz+dWeIFM8&J;cB&l% z&qM}7;e^jxwAQ*sAQhDm0=*1HU!DSun}yxjm^V4I?9ZHx7oLo|c|n(wyw9+LlP!p* ziZ?yCCEho;k^zt4F1eL;QxK0+LCPD~M~f}Txkv+N;o-T=u_0Bbyxs7?i=F)9-)_tP zN6+%UQ~3JxSzCaMnzk#zoKT$dCjl=;aMop;-pA~H+}A&(Spd-wt0(FYjgA0?ShyZH zI!Gw5XD_d~bEyB5we$bO&GemI(VcCRT(Q4P1&AvDSyos<{m-(3(7%x@aQ`JMWWjK# zp1$>}(IHtjTiIGt}+IIVVTC?JPzvY1`D@C>hRdQ8L`WxiI z!y0%$qS1*;%3+$FUD343ukNbH(U#8fs({-=$Qo!y$sS4^dmwiAH5wmGfnN=`f@%hJ z>_F4KKr!vWvpnA9P_Fp#Mg5uGDVkR83bYh3DOqflQtBv_M8Owd4EMKmC9 ztqRu;?dA~aU=m}-RANq7(%;+f94mO6jYm0dkyrOZk8QWZb|m)=k@?BP+``r96x-8% zvz%%35zDeqXg%n>)Jx*-E?cCT#~NbcjjffvR8z7@yh#3rQ8wGg%0`}q{)9TX0zU|M z)q|_Yah>|_LeS2&zzSLoDy_sMsNTYHoeW#*=DZ@(00V|x!fd?SIt0i zmr1b!$)Q2=*o6FliXn z-`VaK*(Pe?pD33XE)2qN*qo-f;W-MzO~)!rA#muW5E*(oxB*2?#i$oYvWQJ*xJ(9V z{B|s}>nKb8yq$=`6l&2#`^MJi+lMXKlXPD-vl1=Ph_2t8SqwixUX4>OslyY8XZb@) zE7VAY5_iMhH3-O{iyFAadv*lF<$a!x=y{_)thjQA(Zz`AoouW8H-J!&On&I`{xs5X z$xjzVi>PLtPk&xTJ(+e#&%P-2H}nxYf~g<3x3&lkJfrl(J)T{O<1mGYnQSP3IN=DN z zP*j-U)H*+<#l^w2YND9O974r8+dp0@7%Z!zbo@m}k)G+~u!YZy%I&6mlsIWqTHD++ zmAfR69#va~b1jnJdR3x?!A%=?{mW~OuS=4m$86sTO!4n3_jCK|V`N?y1%M|^jMbPg z=d<(SgBq29+=HgU5jQT#TpIMNTGDW$g2B4iXtbPPLBQ%(AW5verq-8uP4991AoFLb!Z#i zr|Y2KO}yiW^QrpxyY_e5fR!P!(b43aN= zn744Hn03ymP)XDg3ABFy=IMTsHgn+0(zFm6zSsZyCKmM*mlk;<^>Y+oylZrG%aA(q zBbSq~rWzumsrj1qv?@?7y2Mf$L98I_wc_||WQF4>V5xKNCpZ)Ro5TnQp;WasC++)h z1k!TpC3n)d{FjS3Rr%D`9f|$8K$HCe1xvG2QYTkhD%);`mH-IF!?Cy3Q)~Q>1tT*x z>jAVR6S2X@SVR#qbG7=(-RM$^i57rIDr!uwqhS2ABjmW+Lhc1CwLnouNP`)B^PWms zbjkS#slu)6!M=ILKxx;gZ%A-Atekfq*T`+yW$BW=>KL&*f4O0iyZ-`o*3v?}F2gu1 zD^9ghng|oNhgQ#cE{SG2hy1KXUd6XIO#Voj*&+Flk^vk=eUSp@q~ zHb0;Sm=-@426B2yWS+^2wW}D|_%Y(p`5ehSdBeQJye2kyDP_Devlb)^#Bl@WtcnL1vjnd7-O6AL|)mRVc>h8=G5& zz@__9g=gu@_Vw%QfL`%Fvv?08@ZDZ1RxMHBfGcamna>I$(+I<4DY{WJru;RaeH>4U zqm5lK9ckk?HpD7+RcfN*@chwvQ?qDks~FkJXQDz@DZz82^R|Zy+3F1$BFZgbS^mGLI3Q4^rxX>+CGRqT0Iu4-C!F-Q9w8Hxd#Gh_rOq5QCJI zq@;uhNQ;zo2}nvAG)PNIDAFzUJ2T!F{d@o3=Y8+D{rwYM#M6uk7jeeWfnEO+mXV6(E#J8Sr(VW1tUes$7 z=+@}!u3ewR4%EEF7+k}JXbFw`wM>?2dG}{1uOVMAz0P(Nsxe5#WzjGah;h9|^`zM1 zjzG=lsZS}Df!GBdCSi(RIAM3T9h=81(>sWo1_QkN&hT+W!|<~^=rzXI`o)dc3bmEX z2;{sBYWIgZxmaq(qh98JbzSkNUm|xN2wQ1U!0>4J)_%j*_>=*`ztYeH=Zc9*PsXSDLuv4kPz)&P>c+ z!}wA6aRiTaO}~rxU=;&bovjznpcu{9gM6HW(0rNoYpT5cel}D7q1SaZMHm)R=}g{h zc-zjAXf!sXhl2y+5vYB&#v+@2FOQoK2Xp=WDc2V?$cS$EO2*5qJYKj?lKpW)YVxRK zx}*97eYjQh^c3?f1z!3w{34yg?&xc(W_NSdbGtLGLN z_KJ1~FL3O`l-Au(y$dW44~w{1A}_z63mQ>X5+cEG2b`%Pq)_APZ0Xn#&|E%4&Tgox zzxMV0<;uJG>Z_fYq_mI*?^imdO`Ki^tTIYc^O5|wcL)B5I}UAG>Im#ANsE^!r3W*@ z8?DW6Ip^kB(mN%+U7MOUpep_(U>fW(x<7l~q^74FF)-?t^GSaV}g#WHP8d9n0yYhCX) z@LC&SwRfb*85w_$n(dMu+vO3%!zhY4b+kPnME*eUg>~q?74~||F8njuNtywBUD;JDn{S67yOlHF)yyjh5`kxzR7rblnzoiIRxh^~0z!fxM=a78 zw?DYxM_(FYK<3ojJ99lmmiMeCF2qoM8ML>*MDZ(U)b_ly=-jrnB(g6T=!CSqT59rv z@+KRG<&4DpK*v?(#}x)NJMw7^y$5o2jvhcMkElGyyB4P)%Y&~Mgiz6rSKF5n@@b!s0m_>i^K|JUb&XLOJSzgoARGyJ2&lMa7|eS+I$tD!orT=#IHS(G_Ppc~<$)k5R8us<@*$s>q#iXLv@;zGbzX-m_QHy(Ka+|g_ zsK(BMk=my^&Umz3oz>)a?#O1JrRIlMLq|G9BQcS>Yp)a4*GM9sa|(Xe`>Nly?@-EI zQdB#j&(jyk9MBpo7?8vI!D@UnZ{fa|(C}By#?zso%euDgS+fPfJJJXHs6WRGllDtK0ZfxYZUT90|AFR;nxxC6O zG2gFR%jnu**e{pL`Aoh_N#`TMbtDVo%->WjN4Qtho7~-ejP1-`F1xC7FG=znxH-%k zkAeUPsFXI;Y)jFk)8F&_D?VrrH0MrUaW^1isJ}+Nf_n`uNh}Y^&_vY5Z_P8Ac1rvl zoUisdbdy=P{UC)+#Mm{Q{RP&g)57GCS1goC2*_v)G z2IP1!M6PZ2x|l=+!WPD5Cbml(BXzJ%R@>Ct7GX=aEP4UM8%8I3IWd8b@_~n)R~Oe^R=bN zZ8Q|SNG)s{D8d(ch&{ekZNlZy?64mF5fjzm@$b%%DYHGMVBrH{D^s)*|2qMOLf?&? zr>5&8rGMchZU z92DzTK}zH}-Ak^^)9-CBkKUcGfV<`OCUa#|Uk@}n2yRQz*2rpWpJktIZK6`>vs^l3 zJGTtAoPx%WvNWSck44aB5EwW5ZU$!XZ-aeC6fNcEE$B?MAtWcfy*s)9^lNX74x6_x&ORS0a#E*i+q7mf-i^%Y{Y>FyQcse{<&0P&Gzb^ z0;;Wvya&`B9r!_K?FjJ%mMTmjA`F9oYMAb(rcym^Yi(^t9c`O!ZFC)N=piy~oo#LH z$@p7F23oy{Ohm(OyB~sfsld@{nskCPLX^tPd#ZF%ScOz<)^lwLNOCyf=y-5C4jBA~ zPV+I|paAMvWM^crIcjzVCI|}zT9U5FOFmd!H>x}1O%pP~JqQLPR0i=G$WSB6fKhQ! zc}O@m+S;}kr13($m`H4nElHjRsZx0C8|h#Cm=oGAf`q~hV@+}{2DQHICBR=G&@g&2->C?#ghPf&{J?7RzW zM6}aDOnpyQ(?35k&~mhKc-V)-T|rGlgW3Pco1G42QA7SXCu}>AhzA8N=rdm>vNLm0 z5LPT{b}IOgR)*>ReBh@ljx;?~HMQ$hM07Z=Ntf2NgX+z{Z937P0%o1=GVC4yYL|Y!c)SU`lI`QsLDU9;8Bghd*TEM3@ z!;TJ9>HG-w8qATx{FNgtTN5QKXFU@qGk163AZG`RGc{0bP1F^%VN@Z^B61jTbb|5A~B5o)nYmQ zm2a3uz8@Ab;AaP{M!07#nCG`bR~-1)a^1ku)yIHQyjmYP3|n)FFwFHA%%=!ja|w$G zux#e;?F1Z0gTUH=rwhkL035O5=Mqg)cvP@a`t38F2nZBZ@V5VG6D%tb+pk@<33!Ua zd*g2^w1>ZYn^wM3!My$Go4@JE;X2k|ye+=J(!spJdg^Z~O!)gmSa0F6iNo3mT$lf6 zTBiV1Kg*n(+nKq`L)_e~ETF)S{tQ$eCvet`^t=RQ1FP`F_vRtB7ejVy@iX9fTx`=g$wg{>WIrb0A?!Kg!U7?%1V zcAzlle_kZmngAG#qJ~i*;H-}mg#fSZ&H=of`HKS11pxK82IE!3G_k+z-No5+rTJ^` zE-l~y-a4H7<>S8+K35zt3{H9`ceMUy9jOGa8i2P5b~Xm71J#s%o?U;ae$)(woy`z` zc=?6b!2c7^13ZA#^t*k{vp?~$S2?IEzw_Glf8t^N{#V_nU)p1c^d}y6ZosI=n*jWJ+K4DD*Xcea6$@nF{f%ZpavY9w6TeJ(;6HJNESVn2|`Rn*G*ZOEbn`E(@2Of z_4alP4OS80($VJ(>)300+g}DnK4qvaww)Rd*Rjvy*pZ_(cqFC$!f&C7;5@_KricGS zS+j#wv9ZI-X7tv~oMhHfx;r+->u0-3i~=zb+YZ#_+3)D3BD5&U`n3=FGdBolFH-JP z-e4r-rrn>P)s+axC;t9npyfjF!LyFS)#d5E7dH99Z8P&*nK_xqSedk?;Sf|!E)c&( z7)h&NnvY9Bx{qrsCn9669DcRIvMm{7M%Bf{$)3Wer^3gp;4-z-el7^Ddh1$7YNm83 zsUD*Ox#{2+FIDh4kzKts{h()F&YsYSXvrY7z}!3DLR?4Y#z?*Mn~!zGDe(wA5oM$7 zo=E3N0LmibLs2lmEf(*9-7SMJtwBmg$Kcs`3yR-Nzc`hphU+RQqRi{AXDn=Sj5~-c ze~pYl6|K1&7j;OL+!|vmit;4`$5R1tMQE%A1|I%K9qm#2OTqQtZ|c14g5LdAn^iMk_>H92L-5ZRrfvK~i$V>L5x(V-rcJUpbxAvd z>tiqY4(5%CC^pqrm~$V*ug-|CkE?8kZHmoeu6dH@E4cfgu4fgP2-ipqICvM7kzA_k zpS2((t7_5_1!VTjkMpLGUKqR%Ew^a%0P8&o<;)2XOihe9Bw8(f$?7*A8Y9-?iIr)e ztXtQc;P7SnbF-ABJHd15v5TclFV^!a*~p56I1h#QTOmo;St{sWU?fxQk!7K(gSylo zI!~V!J$u1}+3S|~biQ`K$|1}QsNOtx`{LjTBH-^nmtBOm`0l*041C}#H_~U9He5k; z8_DAx*Ak)77-yf{*M&*!TxM8+?k>5v?uqgz3LqF0DM%&Z$qw?mrlCoA-TL(Ez*e*r z<@i#d?3QE!t>FcM9cnzg>5+B&N`?*Br~WtTM6$XkP2M*{Pv$vw}^mVs*7L zpeke9qOg9)SF>)9;dH)Nwg@H4@Q`qbfHabud0zj>@bU%d*neR(6&Y2ULOD&gMoU-O zivGT41odq~PG$Gl_1JB7Vf;h`IE*SAfZ4}9&E5DQCe!RfUU1;j${nKwK?w>HiNuitj zk;KU$8^K-CZeP6dESFlRlSKh3zKHi86!qBWBs@__)yMiBMtCV$S?DVbdJ*(?**8;{ zg6-%Jr}?d2X6xiR8{Hk<%+1Ybo`%btCo}U8e)wRGzzSycC}qxKF6<(09OI(pK1B@o zrQ|)kJG@=PAO>Z?Zhf|p1?3pprN;D&2?!9I-v$vl7?ZeIaeEfDdrlTeq_hy@WKGXN zM=2Smh)vcEUbSGNc_q{P*3n6-Q)DL5zP(ZV7W0jPhg05~QvS<<@#3b|QvLp6w@&Z| z5=ZnS1AI1B5g(JZ!iNvj8YP2?jZ524WFo~w6bk8x^5sLL3!==%k8DhdA1z^h8d~c% zCC=Fa-kldvU*c9+`aT-NHPqPUK%Ay#xkD4grQ`5%sD8XW)wz#=P~YR6ZSh+*C+~fv zFJ72h2U%ophGjStt7q9_;VBciipK?C#0JvR(bwvlzQuMvH9X$3i(ALomZ#WMWtb?p zB=;LWVrV6q;jTrK+&zdSENfgrWso^ROCJ>cVD;P^eO#!$K#dQp(7~f|L2{qQuKqgK z_PO1>6s2N=kcUS58x_+s$7@_0`IMF-^z3AL8H4xiK0oyHf8s6C6pcJ&f~hwD9xK0c zi3dl!dFbI>-1mqO&ChMEt-zG#AotzK2l4#Ss4wxs^`_M|`5n?;?|!{hwEIhQ-&0~{ zjDU@Ljj>7tLDk`|l}Gl|-pe2c~`Fuxs2-(S0S|-)e@$i zy+|bLwkj{0F&*}8$~Qs1)=g+#xDXnYxI3~4rN;?c$hCxw7>ioymWxT1;d-+3XeA8O zVRt$Zr2Wr`th-C32CzKdHf!k?4Mmk|J!gu{6OrlkagREF$UhDd3cqMV8siBms8UK& z?ijfvHydA*k3Ge~ra-cZ=DUPIY=sg+602J|_NWn^i-XrdO#D5W4#-JrN=A}f5$hy} zGhHj%JxJiW=Egg15;XH-Jts5@9urWvS3rqvpGvMDk$!b)3Y1P?3av(jW->bIGRzvx>SZ_0#V0B z&Qhzb-^=ogB}|ljrb#2Mg;v)Qirm{k#8?xvwRXMPm~BTt0JSxQ7#CY0a28ePFHar$I*typIz%@xc0^jb=7d3$9>j!{gJ zt1|y%zQ`oL1(&R($^x7alEq}qQ964L%jy^Q^;30{HeUiB@COeB4*L(~J_5B4%+d_9_$(4!J^eNPNAdr2?X8?VOV)(LT`o~4T&wt>EX z9^LWX5|?V9b`VC4yI0V>8kmVw+LCT8kC@9%uQ$`N?3F+IM5%55Whr)*v?v8x&-__t z<8Hs-Vg@b~UADH0#J6^~Lrs^P&0A&?RM4%gXVm)$f#lR@g#5SnAVR4m7I@LR=?=Fd z-ttH^eW_3IOaL~8^*#C;?vb~#G)v^~l}MH7Vb3w4V2S-jU_Eo6;=5D6>iu<){WDbD z2J~n~?4-UFYXau6!B+9X@Y0LCvG?EmZ-j;IW3WSH(kA{ZrN1m1A3~HU6xo z$Xz0aq)(Nr7YT%Mi|C`fy+scbA_h=^rjIpx-I$vDhJTad5N8x~dGyqtlJ-NbPvpxT z(P-)C*1hV&18*Z><-I2X5S@uTq;U7f1dS|?I(8PaBDELWFc*ZoA{u%sf8R}PxEWmx znE*d8urUd=w`O{8N12*+Q(X-Ub3BU4H+GiV?^Ho!;Oqp?B31g*v4{3pvN0C%?ShML zkbk#9gDsDkH*~D%>$4X*rMNGbg2n7>6qB_PkS3VCo+96VV#4R`n8Vgp-jI`r%JPog zcQ39M3q*S%eqM!`G##lfYBn-T)qJvotF$9Ha$ZznXAdpr6l!+ck8iCtkYso@5T~A| zOX@W2SXtk9N4EkaH!IiciC)ru0{I-ZsYljUi%!Wg8v)sB1dMs0618i5wgb;qtcn_U zvd?BU@f$v7CSz1Ax`)Rkui`|__m>^ZjW;^2%+4?NAT6qWCd?9dtda86qq>aV9uuBQ PcZUWmU7}hpm3MMAvlF4!GgOa!Cit&;VvP;9fG?% zdMQk8nn+53I=+0Qv;XJg|40Bk%3004#n#3~v9z>Wj{ zI0*iO1pg^VhF=f>h1!8o`$7TgJ?Lft zbNCD1{%`Ovl-JM9ERCK&H?w!JF|pILvIk3BI>NtS+lV__T1eaJIhi@wSiiP;{`|EK zr#M*dDJK^z*jmrd&c+$c#_`%n^{JJfA^eFDQ)au{h5Yxu5&-4)y{h*BzrYv%1O8Ua z|MH#zh$$ui-$3l$t{3tC-Fg{s*NgD__W8)KpR+wfk+5;JcKGG0DT`hY0Nh6exFFc; z>Mj`QI_T-GFv=zvx}PYl7Y1uuPXZ^XAyWC+fv|#Q6)9aQ6S2R%KcfzBYl9)* zFSF4FAQ+>e2FRkmqNK;VkAjJSG4j6keXl-hTJb$3OeCa5k>W2gM++NT6_;!Y++ds| zC>Ef^hh0;YOt(Ok=tpj)pjKf*a5Ot-@fO?|i0xe8iG`@X&p{<9&Rf9FK(u__`Rseu+b%Yioja z5}-t&mX3?Qj{_rWXkp1xvR$B};?CLX>c;iJFrG|{eWIjF6T`}X@a{o;8_m6L$})m( z4jFa=^C)GR`xchLhq8_Y_ZIRb%pYtL1Y;9SDYrNfBzd%ee6(`{z~ zKHX>=t+qTf;IwKWUq{opr;lV*?p*;vU?b+uhN;JuBOys3jQJ?h0rQdh!nK>eGI14s zA>pQ0`J*&QlJdkaWb|gdky|lab4y3Y^&M`l^My2(sG3j@I9N-IOer#)8XP5GGb!n zhw47*h{(9KpXpHqnl#2cT8x};_(zAUn+m=9r<@&A6IYq8?UEm3R-z@mMFphDy2Ck+ zGG7bYa<=?SGpN^QYoLzgd=48L47{b-}{2qX^cc~?1^D$%f{-{x=Bhb3TyT8 z(YuF48(xm|&ezWymAzQ?iK-!?1tUOCnJ%aZn4`k_`gsqFQs>L3^s00NOkE1uim#r& z$S+|V;!qic$YXy;PDpEpHN#-1IF_Nm$NeVa9qwB~yos?u{CZ5X6FzV(Z!*&pIIH+h zwH3~3#w4gIVZD~fPu5NKu`Ia(JSsuDrB-orGo6#F&n7Yooyt=r)I-cb#x$6*E~Kh; ze&NT;;2gxZpndDK93^xHC7w)News}F=~Y&-%)y$^J2qWMR+3&ZTpDy5rx@sN5^hme z20yUrAnznewti7zVjM!{Hp3B!K|#KvK61{-1kob8Svs=_lyZKG{qS^#m#O=M+Dy%L zRf}(u=k?6PS~6n-{=md%Lbh?IUtQ%xhroe_pGmR0sZ|9yCqWo<3oq@n@dOygcdY{? zq(+xWx%zHEFGCxSKWZn>E3B4RrmJU8P>H-)W^XC-0D+%2raNx zfK*aL{*iB-bcEQyX;iw z=rpbqnD)iUr2hsJf*$dq%IoWDKJ?;8982%Pwg4}fap>y$BnCQ(7pAW*#)B5CEZ5i_ zyJHKHeXd@7Sd|2oX!$X7mBk3kKU6P#F!6#v?xp2m1L%6PNzk%LM?vB%bRKQb>NuGk z$lWx=BA)n&EZ8d*T)aJif_Bv=@+jnoF)y)^7wdK|hApe$Rfp4xwLDsjit}+2kF4Wh zN{wW*$t(uiaBbj<`_0gfZgJQ*u`9oFiRSBT*Y~KNX|0btVfSQJL;>&Y%7dDN!~>Voy!(lo4N{8ie zKW*HN0E| z2C1)cz61B0=^uL1PHsoP+7GpQRby-Q>iyJYQWd)}9~*ZDZ;HmyauxU29@`6Bo{r=9 z`W>}7??Mk)p7X~PmP0lNbQZ?UxyMViVS{Xk`vlTwCV^y$agUR(ZwLSYTOBP8IG_9e z$Y-?azt3m(TRunpc|HgIYkXGvZ{hPgSsIh$fQ{*PDDKd;{3JE@vE+QWjTslL>99tb$OHf|if?W>7BfdNWs| zHIrf!?^8FhO-SQndn(GwlyA4$sT7jZ@-utx+=0tD(3OzT;%aG#jPUGqIOEMBA5)OX z*mgZ6rbTP5psQKHOF;JGI7MPctu_6|T5f3CDg&5I(|p@0Z!+uCqy#P>G>J{-$`< z6EdaiMvNp}{z)n`yQ%GB8xzod`6E^^pIsXj)rm%+NqxM;YK?Iq%crNndEcwNjfes= z-|sa_0x2xE=&COLoCg^d5)g~p*#emn&GW5ETvyFb<5&bOQHaD` zS$&%?n?&t}AA`#} zr-gEgGG}FQq`OT*q~5YU?RGaM?L~FNtIG!+WFi=L{MH;=>s1%h!HWiLYSNPtU7?TO zXM|pfIPnKeeYD5w()dZ7r@si1dYfBDhQtHV1}dPy$vpK(GGpfceKK?0k~#g)lR55R zBeUv%3z=V1h-$<|-6<|@CA#fgjg(5)EBF?K1iEB3z>!Q&Xh)2f7zZHdc@`fElyHqSwO)>E2Kt3iEFq^ zG+VZ3j;Rv1?q3#S?BziTsSsAows!tQwYuPNg_%Xxqq>5El7_MtrkSTHnKCAPy;}(u zN+6Nu zz_q;X{iUNsz9%PSv2VV_EZ}-Q(UwsJ_fWlEE5T9DB!{5aEAGb5@4g8H>=>LllHb_w z&NlAKsn8rs&urUR4ab!YFe*doUJsf2ZmN# z$bGuu;xj#KpBu&f9`2-nhe$3+?KiNZ4e-y$eb1S*z<=r0hiUtsDZ$mkJCB# zNXdCuMOF^1&I;DkOiEIu3}gMFUnDb~yRQR*rCC_!6(0DugXM+|+U4`!P<@x$q?Mms zz}|o<1R*Lcpj}|5)td~%`8lik&ok`WfZup6dWMOVCYk-GoU1G+-8+rC$)CmQB2W`OMs+2kdWf^q zL3ofH7U$uRVz}E|9k`Qc52pQ3DS85dD=Wx-2)bRMsnoUbOX0`KOzj6$%dBvwu zn-mpF!zWcH=saXPv+82d%s>k)aSd&tVh#=a00q6tG~=(>UF9Efi4(}QRCLH^_~0n3 zqP_@O-j@k90rrNDaBPuj2*2gqrR%qK$p9}BI4p1h-WjUFD{iE3f8;h!z~ARK=PkEm z{yew+{xxnZ{|1HAlv)R#lUY^U3bc_ij7)ies0KF_ za_Qn7T$Z&1eU;ZDP@@GvrQc~Ag^$-OB!=c`m6{qC;9GO@rR$bJtVCTW#WiHfJn(r- z?j>OvEwJe=d5rw5u%tn5Gl3{7iWk1vG{Fn;}{5F#> zbDZx8Ng1tYw72tt9*p`0dw{q3)IplIS6hs3Xfk+v7AC^g{HyXGA~$$zx|>dYCnvVw z+M^i|u8@k?=7L^3_21B_r!A*Z@2#ymQk$R&m7Eb7-#g=_o7EUr;h%01bBfuyn9ybc zN%AYNxL#V?D)4@7ZE^O2LPg(@dCemdp>d-uS_eYV(3(EPciZ#GLLm9fHOnJke@|*% z$#jm<#KrzSwNZYNZQj-UkyT?xZ$Fjx)VP^w^>5Cs+Lf(E^sE(g#>$CkYOD6VuXY$_ zt@`PK;cUxc4#5+6xYqo$q4TV@CZs=aVu!cV)5sxIW?e7zs>z2^`f1c1${~DoH{tXD-wsJ@4LG95pXm!*4WlZ#?t7T58`FgzT z8h3MOUt}Km95aACju=U)9q_pcgskVQs}J93-7OY}8ziUojvKeqW8Nl`8Ph)9;kT-2 z){AM{d?PC~4dgf>8{_ZW4Qk<}AI>7AnFlI6U7qcvI8LYE6uQjMSmOs4#$!b8Gem+k zT~eoQ2@@6uA>~dTdo9|)2mFOsY$!HlFXgV$8h2kfbQ<8vu1-H#4WBm`mK#m)qLR8W z%7dULN^sg&jyx-T2>duwYOT9x>Wbq>oiG3T2inJJtRa+FG4GHM`UNZSbeN zOAFtMionyP4;jtL+T_WOs#>NC4o{1^)()4lUQvsOC4=Hs`T2HF_;vb(HouU2P1$PL zS1ul~xPf{wzmt*ro(RxrY&mmQt~jn@iLBCn-SwB)Kg0wssa1pcEoR5S;M}d^)2eq8 zmD`+wVJ2DnRUkQ-&#-Y~ixxc%AXbCL4o0*;lN$_7!38Z=}PywXf`qO#arq z@?1sU-tSyqzg>97Ff(QA_N@J={`<}?;Z)In<=dyyO|K-o(9s}` zIbG&y*VcCD8i~u6VyUoRM9@p$OuqgdeCJgxok)F0_71)Ew@8u5-|Pb8we%Y&Mr;8CXFUFM?Am#rNZ315@mX@RkBe-AcxA%K)&t zaoc~1u!_&{j7|E3p{)ILck_L2liK$Zy<0&k`34if`HlD)uz+hH73=r~QLI%gw2^Ce zhYRx%G{p_ht)I4qHQ57C{7IQupH|aOepfM>(vM?XH(ddodOjO=f z8FM^?!7vnHs9Zv_?VkHzy{c|7F@XBs76mE_A9>=`LT~12tE*!-M{KzEL*_Tb*0ox@ zOAtPulklE<0b9%kw6V47CPMbtPOdoz0mT;m514O~C0>I0Kdk=buh&&ybtu+p%?T{& z&Y}4@-gVeZL7Up$@=Dw(i%eu-cD^ck$J-#a<9>%|%DoQZlGM=qBqty%?sI{p@uWrK z>-jK=4oAYkD^)OvdwOh*HE|)C(`H3t;|lHB94dM z#(J261U8vU;6zNIErauRPHL<(dM~%;7^%xdlk+G4!*hx}(3Df3!H;i>5LVl&a)bK( zV(4_&2g}PxmcWq=50uTe1)wHkPsH>id=RH~y`p9Gfc>D}n8MM8W+n7}xBnv7Qx)LL z)YrY_myC9}2f*_hg@QIQvyIv5Z9NlEYX$8gim@SY=kT_TWxeB!Sh&p|ib*vg+F7}D zb(j(jZ_rC}m$HR6Bs6BCqu6882O#1)U$x$-WeDz(GK==$dCRqjYK5w8weMA6(BlSU zff6(tyidpAm2tmUW2lLzFs zir~$K`?bU0jA|~(V~>=*syEN728~>QO2npACo}sjlQD}wBu&P7*(Si#&B~ki)6?<1 zysaf?06a;5bxJ~uR0QbY8kYxofn4WYoOU!jc3n+C)5`<)!Ixz7*`|ksiZ04=EenD~ z(wQlUf!Y}DKoOh=yqsP?O@WZ)pTTeaV#54FK@yM?K9`WuRC5AssJh-3quMqFw!cU@o<*mH{VT$NbW`H)$ zuO6=XcD=|ACBZ-OA^;EUj8z_Xw@Bov{cg)#FyS*SAcFM%ulE!!j3SnJ%ru*<(L9SZ!5*`pERi^BxWa=R8$!-x@4Q)yOWL zhNZ8C?!_OWnt*aYP^`LZ7cMJQMRaTq<3rLpQ35JETCOQ|$3!k79=}De#{3 zzT`m`13z)5EN^DRfiJXqK4*$8m>y{7x#D+|G`>Yib?KG9v55wZFsl<`^h$M@o7#Vo zu%QjTk_Mhwoow^+7Qb{aR!eQ@^l7ogv&eBkV|u+QLX0M~k^Tc2!Zc)*V+<>>-W)6E^yxPm~zrL`>~l`%yy9Xfo+1QwqZ}E3y9r5A^gt$(G3w_ zDOOw29(poRBkTTXu5@|cI(ArbotZII8xmhNFqYw}nfqbDo|-6!(Y^oVVn2yCj)6DP z9Kz?(=e}JYAvcu+`#k<)z#wKZl2V`p=`AD3WM9_4JQBzGXZ@q4u?f7*-SOjsmLq9< zvJp3SzRd?(YiU(%(+yI(nb4t_5FikZ+egcE7Gmu0ag)g&XR(z?Q4MWloV}{F;djQN z0TR9`*~AaF@zNdQ2T1Qys=`mg_y0&SD!so)u{&d@8u3qxQn;=2uTbpY!Pc2TEtUbP z#KQ4; z4J^+PXb>`<{E6#9S=ywj*-Pc?8ely~E{}F|V|8IiA;rs!e!fg6sOZQl;$~x0x~Yk_ z`07F`RD~9Vg{4vI7aG7%cRdF2a2#ewvwb(Wdl8IA7G=z&S-fcy0A24hkJ$<20F9;4 zm{3 zi1Guuri*@}m0nvN6Sm>%g2J(C{#WheDQ6|$51>u2q@6u%&EJykwB~zE?CB@lTZh9^&tu5Bxuic)0KJuOR;4!1s_? zM}i|>N!iw~@$;lo8gZ+Am?u*Uk^qhES&u$L*(@sT4rW1#xu zPLYi^86ePCsW-I3N4CX^xKEdOXXkZ$8Ff~P;dPHfsd0twi6WX@;aFLvu$7&{>LNWb zsj)@Ov~sqfSlb5l1;3zxT}PF7x9_rB6$Au2FFin= z;%X=U;QSNyh{aR)nuf)w=@ZaJwF{ZhP7ZHrUj-!2k*R53@d!I`Xk9(9&_L`M%s3Yy zP~2!vE9p6JOM05r->`&l3YJh- z{jDVh{`i-k6cZ8l=PZ8mDTZ8j3UZ8rM&YqL@NJ<&x1?`3*ohA&G*^oAKR1dLH8F@|(M z=(1v-jEoVl#jn#5w5kREU>Kt(CZ(&&3P6xk($m$0_jsXk%lEw9b7X#VO)QsK6nHM? zCe{&GYx@2H|*O&S|6VpPHD1?Db|$VnW@?n8}yUa!D}0FwU?58%W%LYc=wF z2eq8L$Qb|NfG6GpU80PtYBlj%MToNjso!@$ih4;j24>MdVG)Bh`J7mq?CuH40TDSq zjc2iV&80bgE#o+xeucLEhVcfZt2LiiSrxBQ{-{q((Y*s0xlV}2bwP?2E0VgdYwCPC zQSnR+4gYhwTjN+5ull)XFr;$C9^$TdSeoNi2~EteoLJv-0_vn(lV)MW^ZAXLyfaBn z{fV2k;9(OR-zXstlj%$3vjOdw>-2{_m9fo!YlW}9TGN?6dU{h*f$0HUxrzfzlAWU1 z^ZX{vML&UFU#{+;3jRF(d}Gf(aP_kC;`o6re`~?|*PP(gg>aYo z?~7BUJs_p+6l{W_e7jEF+5|=Zunwxx8~-Eh4lba7YWGuOWjE=nc?C18mIOLw6-_=rA$4jUOH3>sUms(mu?0`eeH`OCEk z?d&BmtJ~xtsYWO`$+)g=rCg_Ec5Qu%I149mIGJyt&t5fU^QYx!hc3Q&n~(PL`>rcF zChN&Kuf|r~D{XTzq4wDyy3%!Gf0BsAW{etYxw7qHCuZ-nJq)bP(BW{jg5&8abXXJFP4uz%$dkoJ>*R>6f=(>$c_ z%l=AeH5yI3cN81Ulod@Zj#pj%p?mSy97%L+s~Cxh)1xSv8zT_IkuaB)*OOHRZQ>p_ zs?|h^K4prKQF%L1uE`FE-hFnvY(6r@ee=h)5*ZcypQfh|KnyqeX5$hx7;?Yx{(LGRa?uD1tW>=GKLH68>S zdntcoZQ%{1>C(P_$ov9WAcV>3AKwR>IDBQSeM-49SYmmF{36y1I6W-b_{2AXjHZ0g zx@y^Io3+j6ID~r-F);pB0MITK8>D)Dezcv<%p*t$`lS~Y-j*YJhJ_TzyKQFQgqz{x z%`t1mwPHZ+*bL@k{ay@@-HYS;m7%7Vt#I4Xwwr z+|VR!z(>WUtp5zk%p3m*%6HY+KLcgGe;&$lbpJk39!k8sEuWUQX&q9Br_}PXzH05! z+lXAzj3HM6GLD|AnY?ndgKLTB50P&Bmi^vI%qa1dU9LXy8yqy|>qQT_p{X2c*E7TF zIcj7P04=j!5*l;7wu_5c^;%GH4wnF{MSkCq^$Oh9=@?FpX|y+WJ)dz=vVAX6CeTre zVFUzzWowd>s+I#f_O=Vhp6m*|ej2QYemt|Rz@|KPC7K^4kx}1#X^=Vv>K6C1o`prDCr&%wV6N>z`4Od9{y-ri+FTbX?oW=N5 zAG|1v>|ZfH71;Ul+F{20veR{?on(c}*r(rOM8sa_fO^Wc?}hwIGzAM^(K*FW_xVqG z2Mu05$wmAusC=XVrQMw=IFzgI?#gv{vY7i;7PD3S2IU8ESuCe2_E%jD|K%59?1~7e z`-?Dcx)a7>cfvUSH(|{AcxIfZ_uFsExb@wwGG6>e8Kc0JG0E@R@b8rIU)%80e`~`R zJs=Q8W%v`yIOI2Ftnhnf9P^7Ze)=DkaT>vUBt|iy;qR0&(I1pC)vYq7x>LqK{!bbI zVp;!hDB~lhiSKaS4*U_foYwysw|Ck&{GY)sTpa(?xc#q-^M6Sk zb17|_!r|QiM>z8c{bM-a$zyn__vdfJaDDtw!}-6ikN@Z4{D1oR@9N`+*#ArV7_ofW z=s!at-i#D? zCy}XdC9>f7Z)ip`Repv*32(XtBLL!%;Ny$+AM0h1#BkeYm+ps{U7EKtq@icxVhTj} zPNP_Sd!;0a-t>d}oqGP**t;|j*fV6eo)(51pA32?eIn$hm+ocGdx+KT;Ew{`R-)P-R0d99sLddy5#u(>%{m49iuy6)eyPTL}hS3(Vhf zgjy6G(5!BC9M8AOFV2jHTb;< zkU~ZDyuDZ2Vg?&`i~g%uGxj?h-Np03_We1U?U) za#y09hTN4X!G9@HphAxYxj2MA`za#Owfr(3d|Q{8|E?~14u5*5;T&>AGo@lU?jQ*D zzd935FN%cXfLtG;6RggkG6CPfuo=4ZTl*Jb$`kgV}+T3~2 zZ>(r7W@xCWVyLQ;mN07FU`}Evh=jlv2p=+k#gB#6zd=l_HN(MLb-ktw!PL`*EH<>v z@wfRlMbG*)Wo#ip4^YxbB+@1xU}1%_c)K9sB0Y6f2egWk7!qP3RqFy4!r(^|pVn1x zqa1J-<;lA!-7Dkv52TC(*%Dcz#KuaS4CVvfdL;r1{ z4ZH6G-TPahqw&BB_rY4>@yXrV3ZKH`vjE0O(YCCt>{32ah~t)&*u5-1Ow6b>;lBl2 zRu9fur#sFn{K{D?l%gN^{e4f@!!=PP{L3#N`RD(L(D&c(jll9JS^5#tN<#WrNErqD zCFl9lyQ#c0~RjY&$~SR*kw-d-GnQQI0Eh znx4)eg7=mwGs_?ty*5m-A zq#^-q@1Q-5hnzY}pX*+{#`xIjH?8j8e!B=Temwh!k0hM3h8F&%l?sH%5!1n5h&SFT z$piv++lkp9{abw-PKG^Jrrl~*rU%~C4Rb~C6LfUW`BpvqA_1x|9}e;(jUDRh-8bat zNgep`DxeKRZX7ve!%DL+`B{qJrnTFQmY4LmI;<6Ut-qY;{fM!h>d0Sq zKWZnRp;51=_T%1B@4mT?eS>;gDZ(3CPn(N@M7%CkuE|_;>xqPsE$I(ASvHriyBgl_ z8DLAVd=OaP-h5kQWb5o;b*kq^H7Y>JFBHUIrkw$Om`G!DGB;muUw;w~KtRS7g&;kAW=evLNCoVo<0@g=QmDKpS%)&f8EkS&jbj=)y zH;R;s!qsw7DX7SlQ@Z`=@xvz{UXC%)NQ$!O+Z-Eyv{&d7D}C=hM<^ym zjgd{P;9H9KfbFqwg(rcI6>uLKc-6t|julXBTIE%o=cWEU%25Fq`jo(UclWI= zVAD+u7`#Jv@yf5MXPzzc;b!w_-|`c-_L3rHz9}~Hi$}%m5Tn-py<8GPDwzdD6>Tmk zr!S%bK2){H__3G4E(fvTXM@v+G#BLW;$ED~@{rY3_XaR|$??VZbt25-r7XPyHuVlTS|1bY zvWh%4Bxg{(ULrc(kvW(lP`i>kJI+>1rDMD{0@qk%nrqhcKM852$?Ru@IxJ$WRpPaU zvmcIU@JygJM791H;V0Yesqg@Oln*#O7|t~zl$5Y^&sj;(MD?R6Qsi|hAYKoU$jw?D zPE$Wy^K8`?>Lk`0eLlevG|TVnDAhxZdzr1a-mrrBIyoMkYRv*QZ#KmC_qNN{crUz{ zvX1g#>AuHW(dOIAz=H~`hjga{btZfs#Op)nWfzWWV$?a#*GDnty+bK18ech)Ne~ft zTpSy8Lt78gyCS8j)YSEfU!sXNi7u2}P61`zavayp2P8Yqr3hBlwfx)5Mkb+XN~~Eh z(>CNK%iga%wpI;==-TtA878xtV$SQ43nD3B_1a142GY3=m=DgNi(i#lmx8^#$J(q- zK_57h>X~uB7kR1K3h4xlFNya|^iHx}K(;;x)6g3>LcFxOyf4%k3J=nW7M|v@5M{S3@R*Bq9vJoWgtEG z!~KZ+pMeUAGcGS#I0E90r}8)MzhV`x-!@VVz?Y?4nR&kAusZGLs_)`S8`ndsMTF7W z@@3?v%!V49K}teZqw)TTk2WR_j}$cF3v+|DF^M`+rF!7=LqOvwxs8_qPQHhtVo2D! zsB}Qj(+Lgqkz9MTOd>bE@r@@^QJi{Bbn@mlvd9}-8wUkKi+Ud5UGsBC!lb0=etBUI zbb*b^+Q(O?dNRiR%Ub(B{>rf9IS&0|ZWXt<=@Tq&o$jaA52uUqHp2X8#iPK}B@ zUV9gHs~)bMKv*qZPfMQThT`*YYg?N`9ZO#pyA7ErSPXdP;XVym6vI#CiQJlxo6H+( z695p&WH4>mkyV{j^l}py`?joAlC|Z_RuR#IQ^new)_&$zKePEVXAX`#UGG8%jTO1_ zO^WeeOvt1hSwQ=C=M1)dsHy@wxA#fw(Rn&p^M+PZ=gU=&-3{EywPGrOsM=B=7xehH~n;~h@#rx_a6Gm^sYGf)E}1UDo;=7>?pX@?N$}(vEx}Ij6Mobex*mX zTpl)M>6_KXUF&?EICqwNy_acFJ7>fM9%2$knvqYvc|N$|@4PwEG0{=fVvynXE#41f zH|bG0r6Vu7aM!%FuQ3>QIh5V1k;}g;LooP)ozbr{%q*%aM(1?fWi;1_AG0B#By?E( z8@eTKKRMr{58iL?CxmzuqL*80vZhzw_c;g+bMIN|_|(#U>Y>4oI6!=Pon1oy;Zn)P z;gddI>0I^H+RP5RR?mkoFQt)VqpefvQUawgp-EHY`^C8?2``Pt(Raf9Yp!bw3m`Sgpr7}gx!bAsziMlKRzrxfmVYk#9bXa|nepB1ml8?g^=kt@6Q*&F zM;C>=RD^F($oe%tzRS+ac-7NkrZ+xsRvBt|MoGg3P9~i2Tisp4JkVFcOLm=Mo`!Jf z+o>?idmaL1-mhf%;gCIZDBa6zd4gd}o&wdYc&omxxpt;6!T2f1=_F?q8BgHaSr{dT zRR3$km{H~hRgFgP{$_ti5WVoDO5+M*{VadU>5Iqrzo`+rRwu%eEdZTn&{VWic z`lo8#lDm-;fV+VwWCL5Dk7#v5x7 zmp+m`lhNx)=HC!-&*nP!0r-g=9!fHmzF4F%4bc_#&%L=A)!# z%!cu|&S$Nfp*vI4o#KatH*+%IMoSFa8(P3#$CTz;y~b3ZpS7YVaTZ!CN%byH$vp6{ z30hvOFLE`cj*(mk$I3=X9oFLt+18G#$K>*tr8|>8QqGWcK22#|K;Gh@Fbu>q>sFs9 zu0dqOw|YZ?1AN3jvw6N|Ey3hLS8H07CY!!N0E={?@C>lg?T z3UqT8h0}`@Xj~lbV!n}#dSF#3!it%`_E^)Y1Q~Csl99lI9e2ChG6~wxA!&&(Q~Pz7 zPP}N7U&LlZ$}f2&or3>@>auraT5nkqon?$=uiKhI+}|oe92`dJa99{UzijC@1?F_N zJ)sk?JXq11Hv0gJ|bMScwI(ZJ+j0K7!+!e$at!EGbrqsZ zYYfOK3)mNL>F$YHqf{<$=ljV!dT)N-NKhxxwPiazvqpY-Aa_l(0)@SLQJws)8~sqQ z-@xmGmGc5(az~Ei?(|@seqvY5tXy@t!!Zfsu-0oH&P~6S3gpF_&;GkTytd1OZ)IG# z!$@~m)qT8?{7HpfMqwA3ddDP*x-Mw-Gu4Zwn3pv4@}-XMKyd0C<+ndF=BgR=phMfn zF7gDO^#}WOf`O$2DMbl5jT@hAoYhR5PWDP7uR~VwAnjaVB+DK)Jk$96K*M~Od9S+g z+ze^zY{@buRN33Pr2Xm(mj#=b!${LC^Ki>S%SC02UH9%wq8^6B>Cm$t>!k)u_jf1( z+l_6WG2-6mg&8aj?^@i7Mt`=s6}7xc-wJTrqH@99Fmu4@ypUX+UTK}G* z%e3h^z5LY#pd-L+n$cGXbGP^3@VO!o#M+FcLDg>d9WY+2S0;vFR_9h!b7Q2qfQ`OAtA_0h6PCvpt2iMi3H}fZCha=t0Jb$ri)IaV$K3rS zEf+5jBCY9bT=P+(dzBs1(bz(&P0=r+S?FfbPQo#c!hZJa2^T3{R^rku?^yEJO6qfI zr3yR~d1>MQ9ZJx_7Z3n(HH2JDjhpRe$K@Zeg-kc_6`1UN6Lt|KSI6bpqn{!L#<*rO z`yR9rPeW4Q^0rl4qBA$5n)KAz2w(x5pV~0qwD!JcvaC+!)5<^|y;PQvIOv@#F>nd{ zAdU`ld#ijLgxr)PY5{I|%?N6KAG&?tpixaee`-9Y2zxY_c4XUn^Q7of5IWB;RK@?9 za)goW82+(ceaVOO`#D*s`$_0y4eBF%*&`2}8U)BOif0@92i_+yvjDv(>yT!YUmwE) z62?d!%ag7e`oo#noCC`6>)o7sm3fnLy>{nMsEb2RKe?K^;(;C?R>o;KHo4Xt`m|g< z;VnH*P4?6i23g8m6@-|aY-o(Un7kY<_M~)@t{Nb*#?;2y(s4uw4qwE$bL9Fg#$NV+ ztwDu6n%~+mK@5E_AVKR#+DxM>R-dviUS;`0+s$~5P(9wuo$q2@n-^RmxGo%yZ9zTk z=ooAPsf*8e!)StJv9V<%3>HSJoLI)GZ9s;N56&uOS}|zxL`&8<&-gO-Og4`=G3Tdf zT31yT04ly~AT)k8hOPP6Mfi{4^VSCCnxN1$+op&TfTaYI1V@iXtI7OT#t%%8bjXSc zv{~I59jG_MB&9jXGhs7=G#v|r0_t27=NLaST2wi9=zG8v71e!Kp}uPKpUif<7XtV| zS>&>^TEjTfSr{UI@8#x;(>$05;_r`bs|(iK&S7rO+Z;uuqmXLjujNlYE!KKEoGm-x zdm!tR)6^gXo6sI11uJ9MqS=Zk%C)ALn$~M$(?@7VJYR**3UO~ zFUDo(SaU!PQd_&2H@vPh_Mt(5ySg7Q%7m?Vy;RRutSp;DmduI1l0p!}+Hcx%t^Iv_ zNUB`I6!XxZ;c~kG9oED&=4%dgr{CF7e;*QE-aU%)j6n1_i8eJd zrpRXmYp05EB0SOF=;ufzR9DU1HnH&Y{;WajO?HoQHGpp8muh;48_&$1V zw*r|d*R@Gr*=?-+UA~%j0mg_=8$!&sM)6E#U1S^=V8DNP_zEg2a8|W?PX(&tx>GMI z&YoW(BWpgZf}uLX8&;@R275G`Abu(WEoLvE`B{$Sw9}H&5A+!v2z!^yg1~h;#bbPP zPhIQi#{&W|u;*vlyO8Tty`~xn=NcD&ko#G=={u6au(q9L}iw z4*iBBauYRyU99=5U1P8;)DQE;%6wTydWRqNJviiiGYG&J6)&)hYxuHPSRbKgif1Iv zP{|MzVKDA&pbcJnyJ}>i5qN2?>U~y-n|V0><~0?Akkc1AwprNQ<19t z*9iQ}Y2T(qLR<1X`d`-WV={q63X=)OfHgC%&J=n@Xg(^oN8M1}R~4@}Z1Dq(zP{}2 z`h2eIx#i(iqlvRTeDbPy>YC(9-nMCFCqp=8pb9D4kZwK$tJ|qPS8>H#&V@jFh1{D~ z*Y7B}H?d}GdYfn0#^u{?b->=)D($3tcZOb2vJ)>T#*a#d&EBNNG0w7#H?e7El$5X( zxcw#<>)>=@y&~hWWo-^iMT#I=nbY(|AKM!1+R6r=V-lb&e$O>y-%V_ZPIeOC6~A1p z=DfUixR^D3YSv&Jqg%rL<8UiKt9&6YuR-m@cG|5%$K&Z%8A3yq)`4jXR9$A=6Y;5|Cy=*tE)5>=0J~2TIP}9{&4TvhU+=}u zXnA;wYM`IvlfQ9X#C7$F1vrVs|Agx1$T4Oy2O%Q4?!AFy6Seh454uy)?Ua> z32Zy?Sm_P*(6lsc}{TkAs?peo4g9r+veK9ZW)yUTF)>c{iign-3x! zKT$>Ecq*a7lpbUzn3z;9#B8uESYA76s;~LNbGtL(nQWf$jN^JB*>bK%R&w~5-`(_ZuXZ*zS^n`K`lc7get2L`5?kq~}r#of&-51#D3-ry8_m6l?)#GOb-n#Sr z2x`u`BArUBKUirW`22>|!c9|lA`!1QfqU4^@sdGSgelVA-IXTlaHZjOfu1OrtGQgq zJ4D$643hCfOIprt)xLzuXoP6zam0uAh-ueD<{>L3_j^~XS3c4@Q4ATCD=g#>#JR9p zU8ndNXOmx?Q@fA8l#So-G`>fZ?&5&?&G)AhP@H` zY;(fNzN)OC94i6LEGasPbLTT@2|3$1kTowARRc-sSHcQu5GI?Pz#A}Z0{uG|Im)yr znO~Q`cn_*SvBFMyWK{eQ|FwAL(J5gm{ZC;n&?jeh+57jtKKZhPTGXB$ksFK>g(de^ zbM%ewrH`NdS0lo>!6{F%fB zB~m4ZiAC06YOxQN6o@<5yyOvCjZlwZtGet2VS8(6rXAv~E~cKo@>~QGDi4Jbm*#9f z)K;3g64SVcPpJbqwxWk*yv8(g(Qw5%&<42u8LcZj7=|>z3)4+-!yPU-Dk*?ZpmwM(+`YX zd9B;5B$8L}258!8ip?syXki(l^YZdym&E+OeJ@$}g2hW-z&wV7hW!*#=`+ApH6)}j z29&M7$HI6Ld*ztI-}QMeu+9+lrJ^ogwaSdy1sFABW=0=S{w}*q)zc&>w8wM$O995( zHksAud*9-4-SunEszE{Z3#stC4y7k#?kJQ$)bn6IqGuR)GK|lcL7n z+PrnrPj4uizYuo}$-**JJ*Ji{3~qNRNU9P$vI|PcU?QDXLU{PiR3K51&~V|)0h3!d zm6}7<=kvpt%djW@nJt%=wWB%~6ny`Wwzm$dY-{obp>QbN-QC@xDBK+icXxLv+@WxH zcXxMpcXun?Igh&co3E#5UPSlpnfK2*Cy3105qpzsugvumtLw5!2lIUU$V20hvq#J- zy)2vG^H4Whs;UR0DOsukRHhp+LDhm2DUnP@zxEeSeAqjZJw9MM>DwaN!D{y6=(nzS zjBp;)v374C&EGVED>HSDy4y?klA}bGeHJj!mF9dS_Lx}o*YW3% z?)PxeMfBic)MNVGLnUu0^8P4ASNh~@xx98DmIGHE#^u0O=o^_ltmO*deH3hS&!@gd7urzL8+c8~Ya?yY-px-i|J;O}youRw0c0DorQ@G#7fyfsxcpbk^J zr0kxlCeO~j^*bp;^m<4XBp*mVA<~3sd1!<+7(FwVr*d@R_DaE;Z~w~mk_RNZs|R6O zZL|yZvi(CCz!&{-b7eDuv2JHFnJ;dT#1GH+Ss; zHeRaiUeBKIuNq&ocAL+B`>cL!Sq6RE{zW}M)ZtzHYaDm zPNEWPvYu8KYaTHDUt^kmkZJ|jYeZs0DYbZiu{eKkeYWQ)@bF#CkcL{i97t$g5nF;N zcyj~8Sz68IH(>*hS}%NJrnMsz~QVil3fqGW~E2x%tW^8#>7?F3hmB)1CJN zhjaZq=C3S@UvJ;V3q|B4m)PY?+C7S;2GGnUnWbAO{3IG_a>(#Z3k*AN3vpbi@;_jXubw@t~9tCj`w; zEZG!~-tm=c@4-18^f{I`n$X{~kcN~}T@`7=v&tVq?-p-ni55GIZORMhAkFJqGAyKU zh-u|n%bT#@C~QnhD7^*aoemDL3T-FiE_~ESwB}%oZP1|PLh~)iY4Lw4IsDKHXu6|f zJd`Hq5s(ZWysMZ`vVaK*x`H5bv%;2V#voxX#3e*VyGL$F``(Y?O>(0RQsV$gjP}AD zDzOcoTXh}E5a$tE@*P7DkF7AMLKcDk!x-sDiPYEAh>-23G!lKhSM+&dHrM#LudhiY z*`0wX&enwTWb9&xy(GI!34$t8S7h@jzargw4AVxyYUfGQ%9-!U+eS5pORkVe01A-e z84RK6`?#WTG_!~k(y@EO~i=yt*jc^@~r3e%1ow3f=t-^Kb@yAY~@TTF> zxb=W(npH1bTB~QXfI_TC1xPmq!F zgq!5*L(b*hcR|F}-$tBfIWZ*0NW8N~M+&@-`}6RrKrrGowa3Cw(5HH?*DIE*ejJx zzUNBuq-o^nvGIYxBz1ZL=XX?u*!*j8ZxrYX`U{d#Vrg*`oHpX)awOta2}GorY9wVz z;tw7iu^Z@7F$t68BeAntBr5rFmRbBlrD0QX<QU|dGo`WRrNFiJJI$~koa3hnv zqRZUCu^%$gPs0j^f_3yYc5Q+Yn`k7K3(`o>q8!%_Mo9YH5{nIDah!;xhE7AY z`UtmSG+`qIgPjn=aG?u^&$XV;021-R9Xuxb+Q4bpD)IfkJ(5k+08qe;STE0di1P{* zQ-d4&HE&yLv(~ea<9RQn*9&KjvK^@fXj9C$s}hoLH4#rZh~zX1-_|dXLdDbIQ?NY3 z`kkD9ZJll*pcA|Kv7^L%)I<%tJ0UK9m@+*_(T#L4C2)*sAZ5M_2oO0&5~TquR>f3p$=KFB0Zn3gJe(vd@AaJ8nakKhCHDj zvY1Gb>+ZlTk6cCW*X})k+&&_-doqFC;9v;_+v|{*a|LP zWpe2lE9I`7aq`^fWfX0wP)Z8zX-{js_;vt&31Sy*LMR?Zig_bF^TAxAr62E3MBKa5 zt`gRYpNH&*T{>u5@}#%L*DN1K$^E2Zc4tE?Tt!4+lrzQ;?5 zkSHI|f8$&gRk*Y=nolQ_9fc~GKUWiv_qAk5;5h*owmB(U*SfhDuTERVN(vEVn)^+p z9Uj}zDb2VZP;7XM9zPZ@HY#1=%jCfvVIk{CxrzQrS&=qG0aX`lIwDsjG{i``7DSex zu(s<9;QE@1Q>3(hxEtclMq0hkMh7tR4yee#io43_^Wp_)eF>0QZOZA zg6I0J>(3XHwd9tC`(|wy93tyFTaQ+(cr^N;{v>sddU{cnOkQ>H+v?jkpv!hltXCPY z2U8xV82BF2ndOHym*vY>*pnFzTMfUAFjktN-~i6i)TQnP9<%|Z_Fu;}LX5JIaI&|) zj~w1ODFo10(-XE+Ua&`&7Os|PJ%d6%hF;0QI`EA$hYW0V)P25%1>+HJZ%=!D+Zd?# zY2Z!Yg(01__vTYz$6kNJQ2tK+2)KQR3FTf8>#$&dz&(HX;Dca(faSSV+Q2})a`HDU zhhqlp6EHg+Kn4$u+hb0B)v)X?_o)Wy#al`SLrWWaLltAfx7eE}2f+&#lIcp(;AI+I z-KW;}K!f3KfklX6@gG+3qNruW;SX>=h}`*jX$)TP*si&9xuzW)cLX%yU=}fS zjlPE(oUt~9Eq~o%m;H#ZHUeXI;CK`(4aHp}w|z6*8+cXtoX1RJ{Jw)AGdnjxnEfGK zT{~?eHTxE`T0F9>Ohhve-N7WGjF%;!tvS62pBgF@Rn@PO)(m(J%bbWC1;o@j{(QbtmPECrfe%l39ly1%T2~NlOgY^RS z`wQzu_6PE3;rVZ@7nrGzw6M}2l-J1@AisaHHcS4ph|=!;1GFUg51?f#;?)^eFA&P% zUp!55;7@EN*nh%SCVz5QQJ6o0tZIJ&St0)gWKH@qP4X|~ewAyc*QwB)|c0}->d%yQ@DQuSPC$>wgo$cTM)ld%jq82AfKq%+JNhK==k zX$P%*!AEGkk0TQj9IPouFPn_KD>=`b>!I+~I$Zm9<*Y)}WDb&#W)&{lqH)6gk2QXH z^ht-`q3TIJYs=H#h1`w~ZRX!B}oZW4LYF+BH@h)Jv z?`sN~hm^Fox=>1KEf+L$o1HH2yI|MrfpOC3L;ARbL#Igw95dW_dL5(78~wAMY3 zPunIx>CvFgQ%|JgedL)}A8RE{ypyKjvz6w`N>!_6J)Dvh~K;Y8aJiWTZn|Fhu6wOvT)o?jkclyn0e+#`x1?gF|HhXlJ3x2N&OQMa8>g;$e& zk)Yy>OK{~d7~GqU^(y_T(HG8M--8?GY8(qyvT^wbV8zAW<>Pv<@K?9wWG|052agh; zFb2L5aG;S9=ub*MNY-C<@wZ>xUv^^F@&B%iPdl;Cy3nyTHTzQ=mLNbue`=#a(L*dw z9;GYIxH31@C{V~urrMXZkhl7VCb|q%*s7An$c(y3&3tTWHYf0~vt_ACK2g0`ULHYZ zxlcmHOeJ29=As70eaHRjRKQqii@i4FCC`Toee!+70j_I{_Yt_?34I61j#Fgt3*j78 zFlIyx!tSKva4r!^t)(!Rp2B57pS0oJS7(E8O`NY-qRo~xF+W->M@*OgqDg$ggxyk}_V72xVr6p3^?)sEL#)kFDhz%+H z%6YO7p}>Fd42}1HFc6Szl<*y}-+x!huoC$8AwAw=m&j}R^WKO3sV(`mD}?cA8Ky&l zx()Rh^#(2@F6n39NsoJ{CJ3rSYp#Jcmyq>t8Zlfny^11|hKPvC(QXn9UZAe`77=k( zh3@s$WSlhzR0QGQMRiQ-R7z=T+<`J zP0{qY-`9jng{J-3cL&+G9h(`ejG*dCWYImSS>M{Y>(>$EArcg|nykAlATIjS*NSlT zzCj^-g<;ctGdc`9W!m~FqUN&K&;d%ZdYQ1L4b5e(>!U~pyDAW+$r}rs>Jk`iGOp;~ zm{&@bKZ8q!?s)#&9S2g~gm9D z2A-`(_qS=~!f0Erk9}{3RZ47=U}&jE4{%l=sN`PU#!lvgZw3R9;@U8GF%vU4ddSl* zmTI{>x8Ee~B~7Sfd)hCRC7n_r$9XO8`ncd3WId3VnBQQ>!wWY24z6`;bRw$Krm#EE z9|~?pl6AI@O!QGWst_J!?uNY1j`DJ75l@O>rtNtUNawVHRC_ut5GK&)@ zd&hlElIhL6zfytLeNkXQHJ6*+3<<4}WK>}LIfH(~P&o==0DXgqe9E{xE*>DLVVBT~ zhWuuQQ5Mqodp-ff;Q&g4tCoT75^+>N%=m|XJ)ar>&;{f(;~&}#d}jP3jr7m>eSikEt=O61N{qJ)AD?ysiod1FH$7k06KzHFY>wiFR|KDZ(*EHhK z+WoKTnx8@cJsRO>;6J9@edhdAve{?K|A0C5d4vAjOrL*32l*_$|3*9U8TH@XTz#(a z-hZw0DF3m}yJG*@hW(#d=Ur2PfZVzNtn)zR^h0UHz|3;GdX(vC=*_ zfq(I#Z2xMIZh(Lk!9F*EpQO)wlRqB1u|~Qsp9*Rwx}e_)bd7blx5qpC#<@fjd%J2gUWoe{qFuWNs@mxNeF*8Nj0f{LH26q_D%v;o(;iz z6@HCh{4A8pFm-Sh%C=ir~RLQakjke?p} z#+EiNpU%i|e;yG@%wOT({)D^p{QVCi^=aw+RngJjNYBd1UfkN)21&@qN#D|qz|zdx z!pQLR%faz;_dWmv6hrd);1<+2Y;YD(`MDq5k*h5B`o#%Qk_!=#$O#*Blt{n^qYOx` z#3;18pC`{RBY0h%2UAiat+I_s@xFamDyUG(xtad}QPv5YFU>WR#8)rzDvd{fnTB|g zOLzz@k~q0a=jP5-TYRX@5$jl7Z)5Is@cBFrbeP0&1f<0m;pCXD=fGmddpxqKo3TOD z)ER>n@vf2cyfa#{hlns}X&(!0sd9y5D!-gfb$zh5r}dR59c(xppp*G`YaTpmXJPtRRx-*%~pg!s3>ESQ3HClDK z^1c##5xAP)KNsie#-khs@|PJ(GdY&b&+(DTzLFI@vMO}=k#i!ma6>fYT>dkJ%x)vp zVnan&tgo0U4+ADsEF+yi%gc5J<$?Yh%ZrR4jsccp-UzIVBzUD45jU#O)sU!(0(U~Rd!r+P`6A-Oh^Ph1poh_c6 za2qI`+GiPUpfl8=FSS}_Uj|OLnl&QxrELdt zo~5ohN7>xPXCqthcMWu(P6`Nuh;<63(Ai~mk$SzaZ7XeyYJz;x3No8Z-+DhpKN*sy zox0WDv?-ndNU(J=1NW$)Kn_$LF+N*K9Y%IFY!0e2?2wVsj0`4Bccqq#3;7qQoxMP9 zIqBs^U2R0RwH_$b)Saulle$&P%4Bq(%hm&$hqh$-En|r+-xUR8ZafGN!l7uy%zO(D zxdu%H6l>~5raLV7o$7EzeAPnlnA#Jy?Iswct~#DypS#|7G7fF<(pc`l@wDKx#^-qJ zn6^?&D`F+?3TM-`fVKAyx>qQR@wT@LutY<#GkU|x%$re|7{`KlhvyDMAQM4yk;ynT zK}?mrHsaCdHvj>$`WH%$?hMAV$R`Mxz|MDQmdkH*3q0=CSD-N_?JKa>9U+%u6!^X| zm9aT~;k9L>$?}3F&FUb^;znjU*5t<*zHYgmbdk{$9>o*_^kQ2I`q-dG2SH`kxt7+r zF7nPnHxlWZaxx?(ZX4`6KyzRGV9G9ek{4W7dXrmbNw0?Tyrj&)Dk86He?=}=>z?1z zr+QL+Gotpn>;*lXqE5C&-eVG2DI#z6$)!%f4CDQuD>leIs?T7+X`?0(q%49HuK!;Qo4 zJbxgFsFA2Y6J1|)t{-|fVy~5W{e-NyMta+N3+o+EE;cd9BPVBj^b0$=EvCnXNpB{T zzc4k1N*|di#Fg6~J`{>~{)~1MEE~}T!3`)ZTOfZuo+j9<<$(Rh@9ET$L|l3v20pLf z)pURvcqu9Td3auryLDLVYAv4>&haX1^A2$N7IatJ<1s0oMvsCD7YMXV7oGQvRq1Mdf%bFQha>aww=Fv3wI~9@Fat88E4(;zNm0` zI$uo7%Z8Y0cIXRkqYetuLdTQhc#%je2?$89C-p#AE$w&`4AAxxDIq}5<$NEU8>pskW2z48pJ}-? zbu_3hopu#A<%un{OUt!0(wEh!x4vEtBr{NJFVYQfaJRDIIc1k>vJMTUY4Jv}dss=p z;P!Ro0V^4lg>9i!4S!JMFPh%gt6qyGi|qC)$y2;=A+S@PfQ#qP8DiLX zKOp{8@XI>A_%Y;H6q<6-!_mRnMeA09Amms-fmNsrSz`2a2g&ih9WauR4^Q1Ms(1{M zxWRVWrx|Q--m9V{5kwFl@3gbi^e`vPC$M*G%ucd59lvvkW&3RyjyMgB@Rlch&LAxJ z4_i-^@7+zoaFTgL!#kE*D`f3=ogNgTY(?3DV&O3Z)5afSRJdeSb8l=DB^ZML*5T3_h2VAyH>DXZsC6PA!LqX z%9FvmBn7nhnMq?;E6at^tiwC^15=GcL(<|@nO7htoh6RBH`E1^L%DE(m-E{##p;6`9o+~5W}KsH7^HGn<;c4HIDvq;6OTL~?F zvN#pRA9mkpfTYP8PNZXnIsimgP4Qt<%K+CJ+`L92|0zsjT$NUDoI7ig4Tmmy%sFfO zSbx0HS-*L|V#3LYsTqFrl*m<$OGlzR@r>v zV=ySnfHq#pODy6T%M5%5jF2pDk1@Wbwk;}vU#wfMV-+hgJw+b zS>epU6+~hb$Z#&>m>&8sr@yZ&1Y!x%23j^M!G69e8A{UG<4TqcgnxO7tj~ns zUK5;1RRNxBzQPrzT8hX*$jMFjtZ_ytj*vaA`neSnF<~lSlnzt}o z7RTc$#=yX{-5L4!GVH1y+VRQs>DUP`3c)Fp-+%z!5OYE0`WJ8;E6ZQ+BSpUQQj_p( z@h+FhSMA)uzy%7sdhjAO(SDMr??AUZ*&cw|)9i2{W5?gJ<2(~xCx&X{0u0(tpDqrZL(b`DrK8L29w2WE&-hH-D}?c-G^%DTR)+!lldri)WvR zfzK@4a*!pCq9(|0BM}AU9D|;=DguUr$_;8;?n^Rcq&$~kt$zMkKBmxAxU(@6z&nt| zKV5%Vgq&~@?dPi7Sp+_Y+_%zh`(UaHLzbF81YkoYgWOp>mc14ITn;$Q{c5*x4hr)y zbtN&7QzJcXvRC7|N}9}?_GeSQ{si9~ge1CCRup_SYA$jMMOwqEpy=YTKw=9T!*@m0 z-OAr=sA^rk25gt6wRYh@(nR{lC8o)+x|nC4zN#OoZ&ivoP*_a)4XS_s<)z{$BFdhW zpeB)YxTNN*80^*Dn|4$k$?nycQ~^g>K^~$D^ZO7ISQ7~Iz?+5F7cRa;i+dE+J%?l; z^@`*)ORbo9{Hx#U<-;d7_bJT?;Qp+E&+oglLSI~495P)(2suM~kNH4O5Clt$p#{T= zGv*8HlP~eqJg>oa!`Ssotjb!F%cx-u~&NKV)4Qd`v@h|Pczu|54gYMfND`#ib zsL)}ZY>ZXk zt^e-Sf;`NV$>buTL0~{Y_V}wMXwL?gS}dOpSgbnnP9ajj^+Am4f37Ox@c5D-aO`vc zG_wSiBSW^VV+fl_AV?FKBwu8z&J#fUmvOxFSgEN#Cc{@9j`M1uwtl^{fD8RHU&5LJ z1C#A{096##sBrjgG>=1iISPLlY1r-G-VKq5Z!9c)8!d3ge34eZn~yj+uiyQ)WH%1B zbLHPoO}3dJMA_-5_G8uHI_>$`og?h+o8GzmrZO@*n=faTy+_o9HLJco@fDXbi_uIH>j1 zI-A91GB#_lSQ_RqROf$Nw&NZrq*irC2K95g2Xv2Zg?~{#HN!ksYh1;TK)btUWj1CSv2ciVuwV5S#WTtTD zTdT1=77a)S=Qr!Dw?%K*haikGc~s%=B6u${zs^y!1&7?NQH`>bb3Q!}uXkWiZf~2E zP8^X#}Vkkp>~O74n^=U6tKWSFUo zxN%b+hs@Ht;fmm?m?k5_6VjE#Ke)@*^&Fks*?U%8*UXQy_rZ@s@&YGmb#l|sq&7Jo zanugi-A9*OM2CmmRvT1~J~Ch@2g;x`ZkLX@J-{dJ*i{izu8 z^1mvE;!pn^`XA@N5Pwz7-vbUQWT0~L&w9B~hx!p|_R4Rj(;%5P*9lo63bXOp#}Y$= zk}DmKCMjI3H^4ob<2EBZ#r_D^7xe-Be?S|ES)6~of3r-8e%VchJzA?PunJm)1B_a8Aar0 zbT6YdC-ZPOj}(*%Hwcv6AR}kCB1WVlCS^PVH2<<4arCPiy{xZyMkRO4+au5o*jm22jGY7!i_nBnKYoy}MZ<@t{Q#qb$T zI@ai~^SD816&zjtnkbn~oY*=sIX;;X>NGl+vZ~p=+v)x*R=iL;{oIKjtQ%E%-#rEj z3masIUi!+)1eT6?hjq{NhP&Dd8sTy_%oE1ykfG|x0+^j>wlTvsJZ_2m`$1# z`ALH4VxcyZG@S2Hx(IDTM|E@UOh|8KgxkbRnWuQD0q3(`MsL)j25uR*9&BGK70^36 zYT%B3B(fRkNN!(|jfpkwqOg|%zuOGEYmfgXP}5$!1cz=I<1z6z=>~7Gj2sNF=ryI@ zg&^E1R~Z*~ZjfDP)aIyFATD@sE6Itg{GQrktiCNm-`20npeVMp!yToZiM zil*gPN$1ysx@YeYDCj`APTD39w$D+R@gpwL<5m=wkga)i0sQExR1S5RGaJZ94e2z7!Ov1nX6EO7GGoy`iC zHdyUxmtLC_d)WJ!%KNirC&DFiDcPZ6Coq@kX|DL>lV~$}PL%?svm863ShEyec`vr#9^6pyZ8Nxh%t3E( zxDHtz)Zj+XH!ABR%g_hXn|K(kA%$8_sU=;8!E<--)>bD;L*|t&Y)WvNLuZ)}Zut{g zvU^KgNDI~iEB-u(h$;7AzQS z>qvLXE2f=!FDKzcNT6rWixW^ut-1sQTD-aW*9uoWtL zu1L>z90{)Iyfm%1dhUf^Y7phi3Dl6hL$#}{i2=oFMXc0A$mREYD@D+btw=#uV{TK~}GyF!y+;9gJ8l;qG8eM@o_l@&K|0VKZ5b(*qAK*)4wb3ErSh z+6HzZf6V^8S`ld2RT)fM8O(1R+hP9eSM%~N3iov3nl>zB8=0(31kr_H%&oFn4&VA3 zmS|C`)beIxkGNteuQ}dd#t!@a(oE4F^P2TN2u~wJiXQQshE6)TILj^?cn{b_H@%^P&5Lmb9A?jXS@;Zdu3#pSKkCL!v|AI zgMT#+9yU*15T?722$&RjvZd0|y3bs4Ae!ZJt^`Mk<#tZcI*|^jnZ_b#@{iF%-?yM! z@!J_w&#vyJ%N~{Pev+@X@W2I3)p5|Lb+k%`Q zhb*V)mvn3U;-%D?!TIt&nO02qK9fP`2D=~udfud6kf);g%iDSbSLp_mH`Z$sB*9|? z`XeLc<$Q_y&G}60L_PCV$_PfWy3`xCM zPHA4DZX04={9;4W-=6}Hf!F-D(=c8##cBgXG1z{rXp}{E%YP3<^*;{H%sF#6+*W*o#;2%!xoeC)rvm2}uA_4G&*a+MB$1!ctGIH>!jkB~?KFv>c&| zGem<5N}w4md!uQ6PImao>`X5+1-@x7YF-q@PQ}bAZgJ3;q7z&T*~GkN`R>p@`%Q|c z+!KW*0iXEr>t%IM1I$qgZ*=~%99$Vqf_qT(c)_l!=eB1&%;D?9(AD)xEEELv_6u4^ z@D}7O5{-&s0fF^|JBCGA;W|^0-V~@|lgIfNvUjYnJeFLW6I08DNIIr^yb5Kxry;%7Y1pmD*ySJbdL8Hi|F_sqFa6-YGGs3H+J*IypI zcf=UNxb`#nbnMVt7vmxozDIc37Q$Bj@S^|9p1j4HF4kigc`emkvVLo>GI+W2KIth$=!=D96ZUJ7Qu?n2$yuN04vcxF>O(^Gumjg zY!B^8fv|~ocnRGhjkmaC{i^pAuzNee6yfdWVt86tOyMq~vO98OjImjF-TyYn%7A5! z)!q-A!)@EUd)BIyo=o$+YgJC{n25ie)tUg^al_8+Bk>I*Js0KNJj?e>WNw^d731kM zqdkNA-Pb$%C2e9(p+LQmQg^Qmzx9d+6bN9<{X5&Erdgi8OpFK`AC|`(U##OXg)@d8~0FIyk;aQ)~5_KEal! z#qQ<^R(UQ*+sTbOp)9ZwjW1NStJV?7Y^S4zommGebH3e&`*C zjIS}s;S#uZYDO9H%%ItHUQU|QyJWNTt+tuSdrIaa@=sVhj=dlqe$`s`FYUtl&Gp|U>7z<7sW zhKrBpf5w%3aG*Uw|GZqOlJ&|~&>f}_x0`#WzneZXz4X3>d7)nUaK{p%0X3CL#{|$Y zx7Y5|-4yvKgL~ER4uIns*rCW31guvNG45soxzc4GT~8!ElAc>n>$G~OgX~S-*MWmL zqwZln5~T$hw9rdA2$mRlCyjjE=*x4hiH@GSR+=ngS^}cgU5#2v+OYPmW&iC!V;g&(o~G2Y7O9 z@=s-^wFch}R&M)>?mNZcy{6zWuYGoNiW)4xdxE~h?5IK>cZTKIeVMNc02pDpd#YO4 zEb}D7zdYcMAiUOhy^TTfp8?stxfV=V{$_qDqjR)w9lv;wcv0^0F$2<`xYSYEcm!B) z0%#8cDz(Hh2VejO_x^{HO_`_DfV-O=-i@pHS-TnjjBWZ$$oHBO;m0o@yX7c@k23HS z1z;n0T|CzSvG2zgH+z+x&-}HiT}jt2U>}v;S1Lf1D2&jLQ?g#k(Pex#S$HWwUET(! z^1ANyv=m_Hg4t5OKNV^Q;DWr~4gA(0YGmB<*kSqoRuWJkeRrw5(&&f2ojD69xFFem zdMb*s-WEFGLK}~Hb`o{ER+jb;F7L10!)H900nQn~=CRm_c%zw*D7rz`j3L?0T z${1Hr)4(2}tm3;}rV_0ZF8f_jfnI{SvvM(^KyUjV#+1JuinB7J*V)Zx{H|1(_zZsB zd%CRLzrO(K4OD7ESdeeKuvU|0)Ve=ArDR**3asxHKX-;rR7z~WyM7aN-DEgY7{*3- zDFd9w!383#SiITz%u^Gw4x~x*x?2=c-ge3r=dCz3eB^ZG*w_j_=(=XQR5QSPDsV@c z5Vj)MqK3i*CFxUI3i;H_bmbBElCh>Qi;KvPAqVbkQIqt`gEdF|ub*aC@22Lv5s_oh z41p%(&Rjgbk6TiNZ!kpH!3U%q_TK}NVP#3%1&SEmCN(|ddVJAYNFf1qs_m!pqUj3Y zAuF#eOl1versyrdC>2eGUJOC6Cr3#}=MnTm;S^(R_N7iqwz9e3KLF`^aM*iD@*6b})CQghrv1p|7a5M|0{e&kkrQ;}h)p41)b`d>in+s=4 z{-)4qq7CuN7YMPEaJZkMm+XN^(hRh@xm}RR?l{tHf4Cd3Tra#F`cHk;fu&g`BhC8Cx8GCZiW3nJf?x z-CrQcJN^(=Qb9vZgB5>zk^-xN$&bNIo3qY@e)7TtpW_IS6 z2P6kYt|Qmb+~P1T6LR(zA50xYc3Y1Qnaekv9$ z^X>xWg60W!*ia1qb**Q#A#U7$hca|uNAa(ql=FMOA_l$0-)sZ>9KLGV1ocn{|5)0N z*)_sY%7%=QkoneCi`md8NZ3e=Ymy*Lbm~%9*(9Mwn6D)nP@#TlOQr_NPD=-_!>Lv; z!7SYB0$h$a9I!;I+3js(2E}>iZ2sfmhdjM-m zP8Ji|jYRLFM}nh$2(nSaxW;w!aqyR?!q?X4#2&5>ymd5Z6m8sOXn!s+1kVGm#V+_D zryAmKIsnj2e(k8+X7auAQi*2I6|`2R1-sTFlGAbCvDC+(4@@C95`NP*0Y5&1CchOL zv0-Q`fzK$?sx==S3nkuj5Q1T+qo{G1tFqx}tq%9*9Apd|5s&n9>@89}$>Z8JPB<>J z&@S_2I(!Kq;#!P`wp~A<`Eh$l<;r(&aGjoR0I)DoX}u8Wqm5zCjP!ukupX-34R5?* zpml_xH&!?Hw;gKWCkB`CN*NktmiCM#80-nS5G)(FBLnA`;ZB6Do(Juck_k~UGk7`N zeRM>83}wEi#|G^{4m1X)XM>1whO&G!p=mF9v5)8;n%6n>qnI=-jCM$u{fIR&`1S~E zIbM&Dgxd2!SfUSxoJK#oK2g8jm3XfRyboDz^wPCJz~I7@77W`CZLsXjk{sHzdXAX( zYJx`en-z4vZnJ7@&QJAe8H?cMhHH4_(&UVAH8F6ft*`tsZK94gp#Hk<`brIQ?9y4Z^Q-Jyg3rY9c=5RA z$MRpUJ>@UIhn0TKTLlEb<%Yib=%;rLJzbS{1Ax8U5I(V_|L<{i`lsIdf8dM6nEv6o z8s-1fxcalb|35XZF8^y>ee$nyb^l-EYLzG=g@PU&9#NdMz%I5Mx*v9bd%}u1cw=E@ zU1~zGR`l6J02VkfwqCUgM%Q+9DI5(}V^MkF22TPPG(8r%IW*PO@0$esdc-Gg9$N5U zad3EXP(aC?IbEOe)t-*C{QT2+=W=7|z2QDyZPqE$c&B>kd6@(}k4ScN^Uv?LzdC?8cVg{2+{e4_&%0*5is4!m(Q0mgF|MmKh||DaP*gMM`_T`okLQQ zh^pm{eFZ&V+V`j&e7O6qlqx!{K86W%RC08zwy=ZyXZ@((Urcb2gyF^GDJC64jN6{9 zS*Nw22C?0=_X9bF9Ql7iK6!5vJ}G2w1gvP_d{J~=V_K=e(JX5qefH?X;lZ~uw2;d@ z+GhR~Z{yY@$0^4FFlVf;>~448D7S5^{PZ6fyTGp`!MB^P8@ax=iLhsQCaYHZkdOAy z6u#NJL509Uu{x~!p*nCu0GKkfItZoz-;JyDyl#buBC}LDWw^S=?PdZlWZL0g)AP^H z(*xMYxC%UZj`x3c4wP8EiWUu?0WzGkRP5CO2_t3`D_%0#7i#I1UJ~}Lj zL*S^B<(PFDm~J!~ZkHJjXfbR1<5?AZcaHBQCJ#e2GU%_u8HpXR4yo&9=Z4;rla%Vy z-6h4koqNcE#4_a#olz$2G7gp#t-H;1fINe_V4o=cN^TstCr$=W9wAU57YBSgARv^u z|L3?moBH1s^JiSmr1STUTsnF zs(ps}(3o|U9yve#RRV}onN$LWQX&Rv`@=2`K{zy&?#7wn+PGCt^LqpmLi&cNy;Tff zs2uJRQW5B@es^xOv=|JfIV6o8bM38Fk3IYM8dR(_jG`?P1XDR zO?EJ=Q=j>jDv&E``18&we(R^9jEWEblZdu24as^V*id+z+HO8f!aF%oOhXs++z9tg zwK8ycvSJFUj#U;B^9`=>nNiVQxShWiZQipyx*O>$Qd^#izMHZ=p)}M+exx9rnh(7O zL)B#;{8+?rIodkO0V7M8J9xJ{R$;v0KnRyx$|Y_9 z>ZF~CIqCBYGIEKIa>>g{!#uuwNt*v?Z=Jbf9~pls1k@V(Ri3;lnaagUk9G3h}UQnL?o6+8T7DV)MZb?#unw}ikM^EI72S0wuH>r zHh+W)jAh=nl&G+b_IL3Rr4!6dIb0e_cg^AkM_}VknvffQTPmnRF5@*bHNExflP`#| zOMEFEv;7vsXv9uxgZh0h8%XPj0y+@ioo@bibazQ01y*r&IZ=&*c@cy<_WoDRI!#sY z3+DV1QCpvXU~Zr6QULU8w(WCNL>+`;OikI`oTM7Kd*U*^v%XfKHD+DEsT&q5sK_T^ zts1nk-Zj5Z8oG0ldMgG04z56d9bF3U*4N#`L}r5!jb&1ym7+E(NS036548=EBb07( z&Za)Eyvft`(9lCSPEc6XkRqPec9n7UjPZk*w#~WGiWfSbWnfW*SOQ%!`g>uWe37O8 zZC`kmd@^g5^Gv?zaI(|B;G_XPiq_qM{IfV4+_Jl|#ySh?ai*Qutc4)$F&-g+$SI!~ zn&tUx8~yXwfw$6gHfYZ5-17(^{w4_&bHpU9%gnH_hygD zm&}FSL>tuA$d|~wyHLps(#R-nr*1~U9zz@zu<6+6>#R|4; z9Co~JkL=Teei+(=&VM9#n$xh5Upr41(=P!#on*hRRI2V55EkJ+s_+OAuNxM2 z%PE+Oqy7ky3vpz zf7Yt5uByGOdiP2*uCxD%=usZ78GW@+xvmFt8jcQQNb111_`Sm_TjlJ$ogn~Hl5eS* zZ!{HRL~F2#__ZHMiy?1PyLVRTZK%v4{nu1ShND^4$BPSPKXSrK?K1%#SBfZfNonIY z?cBs(scCiVUNg_zUAWTrdi#Z=VWMyZ$62Q18vk^P$f37)B-*!<^T9V4^EMtRGoM>7 zX1<+~Hmn4-Wv}VX&?zsEo=S18NkCQ`$F|7CPrOy5R4RuQyVxT^tYhD>eLLojk-%o2 z#$G0mD69>{2A)B+l2~s;9s-jk@_=}%I)3S}&Y7}yE9V0vA7W~*-})95VJ7~4I(prN z5kt5RqA0wnX01QUC6D~yYgrSSt3zsWnQv8?`H!Jkk=!GU)P(yv=FdybU+AzRkHCwp z&T4rFi}iPC4H!9+TARWBg*IkQhf^8Rb6jR>#!R_bRenRVn?NtM;G41i;+yXx{j4A-AYf+^*tcVomN!D6p zr*gyEwSz}Y>>*aB)nr3&0dXqH;xuG0W5duSjXN5^yqT3%>etOz3~niqhDa_rA$f2x zO@81M4JXPRwh|{nIfN(`TJlspC)~G9ne%+3ba?=d(k(cZ+^Q64lysj!MrjS3^R}W^ zzsgQ1)2%ymFqD+UdisE(o6SmpwC;zfGjO@{e4#TQ<$yd_T+h6ESw{&WWe$`vo8(zN~CP{wMP@xmdz!DYb?4Ui5F zaXy~?7V|(vi;=n^=M1SI%&`c{ILHMG=Boj%Sns&#d=7i6h}353W=kotO*8}HRZw&{C^M_-nZGNsvi9=>wNGH)SNB(qJ0%o+Y3wxRTG5Nav>KECYdr;?FiB8G#0yV z)rC!HKeKD;6|5wS8rW`w`3lf{2>?gC4G`L{c>kl~C;#TR7HCMkbL{yF;2D}PvC-Q<82>hd%P3F~$Ip_wIJayH zvHSi0)x_|!Pr%H{F)n_gDEF?vZQSCN=T8Y*aLr zAjFGtB{~Ql9v02$x7w&)PqJW2r}DH6?u1xh-DT8FGtuvZZrge`*%seJ-PXkl;mOQ& zyMVT*&5r0&=xi!~WwGF*_ELCmP@bW@9iA`x5dwD`xkBqsgB^$;tT!Et7wlrT*_

>=^R7rM#=yh#tiT28Ol#KVv4-`~M+S|G`W@4FBIS zQySL)jhWRKiApuGc>M?uL0jJD}b^00?wY`|z55;?)ZPzSg#^7+BQx03@t8%_3px zyf|dw=wwp%jRRI=;tGFD^3=4l>Rs7)t#5n9thjP10^Dr4>Rj?y*^MK^J=VZdt`JeM zZaL}&lp{UBAYq2>eZNa7e*L?H{419u37ESTZfN8;TLiH*8amYWTL3%^?q zc=-Jz_s@!|*6C5S|}wzsi~NLD`GUwps!#e9L#*)QBAJlhrmijk0?G_oLG@n>;8JXLiO zMJ6kvttN4imW2VykQN81sm^ZsWXDb|<&<2-`Bn#8NgA?!_Zf;Z93>+Qvq#%?uf?TU zndhNPL?v6ZhM+0CVO zS_1ItgH0j(q{_7U`9_03CU!CM*G$wvBi=C0S<@*R9{GXTYdVXg`2|BV)hb3_ zZg<&r#^1i6ZcG|H&I{;u7~XOiA)$|@nF=MwL<~g^u(P1ykj;)%r^@EI8CoYE^E@&C_SNIGtfS#I+tR)$eNQa{RL@)7 zH4~m?`)H|n@NKn6QPf79{uG|B>dujy&)0;MYo-1H6W3=`b_LUQg-^Rqzu^C3N+0Q; zUb$#+k3iKDr~QSe6gS8Se85qsDJZvaY@ZmlK3q7D_3Yq}(T(%{Tx420^fbD!s;w|# ziEp!mhUan*{^78d+XQz1XMtG5#JSs4{ zxqHeAz07BxcYCcFQ6cK+v%`6KhOpdXpX-eEyCOPT^)=ZkL`r@s->3CrAb6E2qG3!H zO=iwvS*EGR9JZ@vtapeURSpl1ZuA{e9&T3hxZE@)O88zsP_l_Sy!;!rOP?`XM3PXz zL{PI}DrU^6ZPbn1)_fAD_tm{z$>-NtTR;!l%p>odTv=5~(qX#ts6e2+TlY@E?)Cekq4UH3Ul5$F)b?6kQ>f&Xd|4$ZSB94b1XTiRYKwi4o(7H21 zOBuYBsWJA&xI>4#n(WX6t|4r~u9hMNju#r8iy~=-7v~yWm~tz>eh;-}YWDOe3HyX| zcXp%&JBB-f;E|rErklQM;i4(AMs^RB^C(koqULDvj}C!JF(CsnmnHU+S3;VC47rX! zhR%rRSM5#B>os8V9^7TkVkNtj1;BzgvQecpx3RUkMGRz-O2SbhX-T$<6f*&fA9F7z zDGKf5QtTd`M4HsTP{^X}E(oXEmY*_v%X7b46@mgoG!+>Y7SoAO)+|CKvQ%9Q%e3?F zDl4hrDLftb7ZCR!kS}K2d3>(#505Ovly@^o|CH(o@mAfH6?#op&m|f1 z6?z3dH2_qb=Zf#fPqJdQx$pLhT5vB5XAdn>=s8;kELF$?TwH7k2{yN$rf4EbX+nGa zdn_FIGS?;ggFERbzH}x<+zAUTc z=IG{g&}I&$HUQ!7pxOwVyw#R0a0|23a%nG;#mA0Fhxur$emMSmFiW7f!?x`HwNUU% z&{J+aMQVUH5qDlDq%IPVeop;P#G(5OpFp3utmEiOn|%y?C#B9t`Ku=NL$}Y7UB%N^ zQgZ`)$^VovgSP=@2?=wnP9XN@2OEuYpa*tl_2#Wp^E}I9W&+6_u()8{9+tD6K;|t{r;JBEBmqwzhg7z!8I_U31Td=5A=OfC%h%?nPeA^k`G=2)?{7Kf$Mb`ljttSP5wOsFkhiM)BK@iiRpqbo-CJjx==&yUClI(9g$B0xAXdoxjY4I{zeHmtgwi-9~) z3|-p=9~zwIP!qk^yx1!IU7aJ>gGAz+1JBm&SrajW1b2sxj~?M>T-e=3P8KmPq#OYA zz~{OVXtnm4vHir3f(ys$-_w9am%%}O?-SbLYm^Grx5beyQ2>Jr=|*pSIBi#ay)7eJ zQ1QmwQzsMnM77$+l+h!kueNj5f32zH5q8)Md!bA{E4Fl8f-J+N!pZBT3f?J6g@maI18MO-p%%XN}nkr9*$y2PXPk@iCDKd-%^gF42%!5xLU&-XB+G zAMqC>mwm@!IfQf^0QAPp0xb*GSI+FUisiGAK*2pG)#aaoyC%=v z0GUF3ZoLi7kH6|LkHMoaMc!~z*%A$m$d`WXCPT$i6?muXYj&UsN*M9COU|#=9GI5G zGGYeih8r6aQbvItY1H#0+HnEDi5Oahb^HUjsB~KaWQVks?aSBb<+k;NydkrnfS@x_ zXC4JRew|kJZDf#$1?Hm}aFGIF8iJ~8awfbDdK3eP7AJVM!0Kf*BmjS9A)k;-1^)o| zIw!zE;zpx(rvgEAks6)=@8f!xpY*c?<|aCmt3t^CPQW|3)QVKCWbe7zTT2~jLNm=S z{VsbjXE0vW0GT&id?Q#+MkAfU@I734=WEdapvTJv4HVyYDI-VO{#oo3zc zvyIq07nLom&h4js{+L(@&sCBVzBzm;J&(sbHT0J$IZa?^zwrU_TA+diwRRtUE2$!M zfdYut7;u|d5-tz3o*$k0vUDaa_BH`|2Bg0YO^h!lnXS=uk^sjj3zD=^DQiW`TUDM%4eWTDjYRy>=$URG0op3u z{~n{!CF!mx%2#lH8JQ0PZT$_WIRS1sUpSeT4l|TB;P)rTRXIBlR397{#8GkjuaMuc}2d1q~{>8>B1USVIa%1D|I6@%Tk9{dSc5g(a3%XL=r zjWHu<_oyjN1YtXV%%;05E(Q=I=WJ!RfKD1#<|f7@p+hFKWlaoM5-He6*ZG8_u$org zz(M>lfG*?tF@O8OB(ppdSg#$I_>=CO^(nPCpVtEJN41_as)M?XLwmnUOnTQuQmuRSeC2P7gPpvz2eHrqT2elNK{X z03pHHf;UkUOU9^a!W03l&p|w$g~t)@@(;2bAE*~BqdJ3+7Lv%8b*iQPvjX4K*&oDd2~XNmTAs>mBD+NWbV%3)q}q|@+Rl<6Y9P+|djwVDjx6f_?0%#0 zgT$N_ak1*UNf6}Q=*SF=ug?u*;;>EF_y=^;^)4!pyM;rndjLrP|&+TaG%BQ4gQM{ z%x7*;fDKH((@H8s{u;9itxPb+%To=Y|Dv+sYA3)9!e6>9tTOOmpXpRZBP<^?1(L^7 zeQ)z2P*fY1W_t{jZPN1_t3a>`dvnNz`))rDT9tPK<|Z!x$$GEuJ@XNqZ+3SHg4B^O zD|F-?I@?org!&KnDS{xx2O3ER!t?Zr@xce4R+AwK@7o)9c8Ib{y=ep&OO#zd-yZyV zREKB?ddx_N?5^w_w$=(Ofj%ZAY`f>nqK}*dCWJ>-h53|puh z>kZ8Bf1XPx4Ug$9;G8 zXJqC4+e5pwBifzPFfvI=BZ~Gh9Y-NOR{bL)(u!&J0C{QoxrEHiCwaq`grW>;E#Ddm zISb;}*pc3=Lp6?$J+F!}JJ-cbe0=EU*fWIXP~!$eEUx#ND0Cm2R^_YB^+vRgVdQR% zF-jWQhUCgHyEH2>{PGlE=9tpb)vVCBMSX6kQ(1@1H0jr_T@s~$%xfkBS>-x0 zRN!?4hoMdCGv21Wq(hsY;i7v#T~+j4O8`{Pk6mzt-4D%u4O1 zwDZH`No&tK)cDt%7AYe&-pG6JyN&7mb&hmz-os`!M=a{xdK$m6c0}2Ag)+Y2Lep$A}P&yVj@U5iY(yU9Oj~X1q_waMhe?a6Bn#(v8av`%Q z2#gQcHkA<;gimLXnK$hm1COSdE5aO`EByY8n_+QmV*Jq5p<(sxYBbkx2Orqd#ijgno2?N!~W#tR;lxi?|dIT(oLdx*oa|NMa4T;bnjI$PdqB`K%_7N{#(M`&EUY z{)Sy1Cz#%94}A$w4*`tdvh4O?vaOhc04TAsCzT(Z`fR0#JukP;I#m+!$I*%mGMCKe zpZ-~{)ef}jF;Z1H1Ot!@2t*9-c<~c%9#O0X5ZfLO*;RM!ezy+7X+4SmI^;oV{cA)P zn~iPk)Kil4k+y3VH3v`|7`#}qFJOsyUGii`y7@u>E1y4v zs4Zx%u9sjiS+8|LD-j1f$BZ~{OCs%7(`|Th`ukrO#ks#V6F{YoxbTd1En!30$$Y!a!L8PB3y*SPMCknP^x?qhi%+1*(KOpgMUjl^ggZ>O(^OJVS#!) zBFgyAFf*>(z2lyo6>^Fw7~=o(=I40s$qHqcg>tXprRQ57`g3xxZ?LtL(}^{ztm|*b zC$L&vV|5^i$kxsGRR9Gye7Xy&zwM&yB772*8wwWb65E&d#l|f*)%MQT{gn*qpU1t@ z`=xer^Y%}Pz7CKAn{-Bmz}V}0ZNR`_kN)FoB98qxJkR%^@VwX9|8O-4{<)e`hQEw$ zjqOd${?`P30W8=U;=craiv}XQ`YXZCDH&aysH*ps6kSF4FaEdQ9syO6P9D17D3WB- zW#N+HVs#0Rcyz3pGELr6+Tt;itZZ$39GQuDd*`8|PP~WcC%Jyh>zQ;O{|9^T{SIfh z{f`qwh>{>7>Ii~p5xo{N0(@$PncmChL3a3^E~H$ zUEhD;`@^}eea&xk-}hd7@AX>ywO)I#iB-MB0IMAIb1@%0l-{<{=k^E(qRSQCo)Gd`q|f{_|faJz}*DX zhGc#7T>OGzCjcWwX9Tu$I0Zvz$6I#kk=LXQt=EpkOQy1vdw5>K(@*OIrY8sMi|Mbp zd83%(#KTv0H}*aOy^g4R_fqPMNgY$Fe!VxvmSQ0o9h+;1TN3hn5=AJrwI57lVadL10EECBYjXJhRXn$UX zm~0(Q9a#rW2IM_xYF^{^GIqnQZnE@Ny417Q@oGo4R0_{LhjiC=xIXc8Smpn<5av;H z_r53ZE#~Q%rwX?>iQ6K{vnuXevXHW?j~{0EWKQOT6=@F?2A-$9NZ%<`iA3wm+CMH1 z*x~C^tdK9W>O+Vv&^+?o7h$7i%18hD^}|kCzL=BGOBkOd(S>d414SFbKIP=@7_EwR zAhH|Mm2Da3+>t$+0-7pxL-l(g;nqV-0a_nh2vo+6i*+x<3+5Lq&I{-dr%fwwEy~ib z+gP^Trl&1wGnG8k`rk*tYwY?=>*{uCJ(-a+r(P7fOMK<&DhRjmovCT(bL6IUvdb=Y zN+|m9K`EBlCMcZFve)pWiKZFkT1uQ-Ei;4m{b|HSI{oc{tVU5Hga?K4ocC2ycLYHe zHR*CU`*9X{CVR4@W=SCZ-|(Nf>qsa8xxMLaPnvn`yGEpPNZD$#{B;sCzl=m2FtUDo z@`Yo2uo?Wm@_S?7A>6KEQs7y^1wJ_bPjCTxSew_7qKeBC4uX#6Ri=b|*Yp`QtqO<$6hV{cQR9XXwxNDY+Sxx8tB7P-tu<4T

?uLnKIiI$_@WvXJHi|g`tDCG>QT7if zY~bWQqxRYPbr~vunjIpb1d1--GI{uMF66<1b}}uKyPxv>5PL}tj$(PPru)b03(noEG&zn{Qf}evD|y32)Nyl<1c1 z&B`@rEtn_Ox9Qe1X{u+HO`w2CX)O*-cc>PX&suGK=(S1J*g47gC}b~bG{s*qN#`wP z^z`f-6)tZ%B6TELGY0P&7fVrJQj4igB2LN0*~@2XG^#4mUGFB)8gwA#=xu!d4)RmB+GAZ0()x^4g&c`qQIwa^1=m3}|JldU8=rmk5_XqXLKmGIs8$9!Pv-hdAHMuLB{UZL=4ISzf$~287-2-6z1nky3Tzkq>_R_CFGR{~%a8wI zUX$tq9g)f1?E7%zBOfo(u$luJRk&|FN&4v>mfKT0W(*+#fWTv;)Qv%hG(c^u!8YtEjuhR!!B%mL{xk% zyN14S+;t>-d$jB6yR>m0#V0Nd98>DmHi8BD1p-u1gGcrk>#6b#sgGJCRBtlt9iZm&(7&K7mp^q8{3hJyc?l za2?o_xB`EmycXrR`X#jN+80Z5ll;ZiK5G(M?IS3%P$ZO^EqBK(DB*oOlp;CAyF_5r;-YL{TKH1xa}_{wh=>?GSY zaR){DndM*JsM!Z1k`&Yr?|73WH+Xi4ovHEa#2_#&sTI{7wM8q3=QVC;C!V%Ft`VUo zpa?W`LP{^?m)kLv77ZIq(1ZWA|5@OF7Wkh9{{L@*KoDl4amC{CH07BA2gIO_N97aa=*{vAWXK=p{kpM^iEw-FfFF71y8 zQ?~Eq@%ald@bmxOZd9-(3%1r=vtL{_a*^91mB=_t`||v0yaLE1G5>0p-8g`YsRBI*U67RoV`9uCJi23XpXOUkZvNBX1yvaopfSkQCQ^U|Glbcnl*}bb5 zh!hC_%WdDi#JrqybUNQW9H#RhOU$IKN8QN&P7vlA_C@g<3^@Z_-`A)&O4J4b6>fPC zC$#hE0>l7g+0DnX&4X8S-~{)-I~E+6fWauRRD{&Tu04*Idf6#*_<@30!d|#|IaMX(PvpA%W>0CWIzs%FZ&G@mF<-20-|K%~GC+Y5O+77_$ z%}v_gA37v88DkHf(mF3GzAJ{}S^A_wkH4{2;#^hU^gw6b?|PcQ?f#341!D$@nd^}W zuju_%a+|0elI$skBQ<+fNc50((*K%7Ab2OV>28@fa2`b#V;1%IHw8TiOvX^~nNt?E z83l>ZQ3t9&@n8tT8hJAkP+h5!w-K}4+=aN)efVJHG$*RK&5JhiB@V>FLqkB#(IhbKj+EluEU%$Wqv zo)Y$Z7SfWr&0g9e61Zn&Jq7+^-idaJRTX=E!Qay%LkIO@9#>)K8*9-A-qJDT(4vkZ7~_d>!wT<&@fWvvZO94Hlcn4Rb4!J65J5 zJr`W~Ysp~X+@c;N`po+oSQty8m87O`j=u;wV86@mmC~iu*UUe-ujeWICXcoP^O%l~m-@a#azr z*4b;#68V{USJ5PY)$BNuP|~GQ{>L7@H5dw>>TSY4hA@_y{FoztKt=mN zd!u4@DAvlI{r~n4a6H#`_4)M1_)aOt<1>J7+1n)Cy8wxmWTaBF&pw}t>o`hH4LMI< zBpTJb)@OF(SeBh)PwXGMb7?G<6K5f$3A~76q$D(ckYB|s+t#LQhr3^n0rvI1;+inU z#P?RGgXEeTp)nZ8Xsbmoj$!TP2|o`2FYG)EuLOhV>t+7q6oPxdVho>mYCm42znQOn z!I)dkCYn3aco?=lS_6k6o*$ZuLYMmM-I*`noy{*j*C9GhLC)RbIN#f2CWySpwRVr@AI=lqAHB>uEgLb{>)Ai1@ukBe~iY~*5RUWUi^jmmGTeeX&3Wq zl>5UE2hR5Hi3Ah2po<|12=)$m<=iTbdAa8C)?Xg;k0S}j2*QStkt$5$AXjRpX~1Q6 zc*9Rz-Gjm!Iodj$MrgCs((BSbC^Z_fNd7Z!ARw_J-!Wx-sf%LD1%m{wowBY&*2GIL zL@;s|B@$6;GZC?k)LV+c&!Y>uNfTdTwifrC6Ry+88YWI@|N3-DdNgcvjcVu2cA~c( zf2M`4VfX4$uQ!1DKR9#$D@lf7;rAJ#nIcGG0FurN26?MHWSOtl@vJe^?}Qc0a7n%Y zD1zbnrp8e_yzY&{S8{V2672e10nVaBwB<#jy~#{vXB5WB8gAQBF?hqgvcuD9?l=AQ z+9$y8dj;THpGZ4*Pt>XtDRE6Q@)`|n!75h=&va0FT;3C)y@l1b35&7Sdk0lSb zPD*|4uV8e)A!1U$SD0RHq}~WubUzdtYO(k9gN?oY)!^Tt+!-o+0!G!7m^1sm8kPG4 zVDmp8IB@*lfy)D$UaUIanjryLb zzpFGRVj-x$%2TUn!h~tFbez@YHo%*Bw%cm!TC{8XRUWC zF$pN*+Txw=IWe2m%(;4r>EnUJPs|U?Gd`yUzb4>+(O@g`2=rVz(fD#dNjd%dgZyzy zalekCo;dRSyzr_$M?`0)* zL7ZwAvGirNBGoL0lcr9C4wq3Yngf}J_ixXV z+O+5COt98_c(zQ;RC~I77Emk5m}O*t_WtrG_}X`kI6mgDcp)$h!`#ze!Y}Ir>ipRV zi{+Kt(adWp5T$~4butv+ROEN=xPh5y204~7k>rB=&js3CQ)&&yorwKd5?$K0KsVRH z_1cBJq=b_Up1Ling&H79H&zs~x^o7Z|EhMY6AaZ8;TCl&SSiJGNL&&Ah#Gr?S$s-J z{0wx0OOkM18KR-(T@uTQT(z?rNBubLF$*ET#FrUTB=K3!?kO|opg&Z|Pv_blc$nr> ze`VEo@HqwG&0~)wb0nIX>^@z6rmowu;E{N<%~D&mP4Cz}(GFd~wvPg=Ty&j*U(4Hj z_wo@%7gW~F5dwPMsgDx=?ldmurC=ra)X~crkEAqyUGst-d=huU@cU0dO6~W91E$rs z1O6dtP@|79?hDuPTy0kS(shhz#hJBPtq+MQ%h0TKV}hW~$rlN2UiCEr7#b10raB2$ z&WT-3!U2`E#Amb*tyZy#&ZsgbmrhrSw~4O>jTTvUqpqR{o_2RW!Y0YGH<+<)_`Z3- zw4Fnj_&MYTr90`DJak5wyo!%tHVKp!lDtUNILqSkuY6EsvsP!7B9`N&) zUak*b1FCL++C)mMrkaTPc~~acj)7mgqOS^#Q0b!hj`f$vxFp95+D==0x)c+*NE6B) zXrd40mZc>&g=#eh?!1d$l~R6b-YsSbf+*+mg>K(~dsxYF?$K%=87Q1qdj3m~diyxG zR^nqf?!abM*fydifZQYMioFIHBJ-!o%RBR=S3E$eH-!U#LI(yuNaUY!`xKgl@ZQcm zCQ|9%gLlT$n3t08`z($}sHBC}@y3x9FGx=&ARw`U)V_%2>I75jq&`nkzG?BmkU3kf zO6@b~9?UM!f32``QSCmui1A!t_0>>MAa5ob-36vmGL!Mq!2h-F`F9Hl#Zd65jYuHG zIj5JjaT9v$QR$-#qABhywdcGDhNNP!s(EY+e5gLO9y4=J^wUj+mH2Ob9CjY>4Y1Q8 zV*%2MPuFJkEOPA}1U=_=_pZ_r=GSo!4P(a8T&bl#^lr5VPOcK@8Q-z8noJU1(1^Ko2 z8*_z_dd|DYxNo*hQF>$W}KWaw2?%mjc4R3 zBif5<1I&_E6#I!aYJxBCgcWM8MDBRiE@9ObEZZ$>q~Zm|-LFIB|Mt8{a*UlsdJ8q| z8+!+A7Y;(Rz?1W}K)TSQg;1;1b~m)uUhx$J9@v38nW;>|Z!x2;<9=PJb?ehMmBF(M zW;Ln3i8gb+wC?8g8R&}TPMMPY_mCk}uRlV{)xbQSrzaR0l1O_Rl!+YYac^Pec=dDe zU_^-K^^Iqyp_#ij$=6`3veH9b>Bu+Ufif8K?|pDbt08be4%+61-3OgiEcJ|L1)j(& z@hL+m*0$^BhZ^GfcytJv&d-p#23}aZomsbtrv=qssc{w0~!nC7;pO7IS>sOi9@!S4)U)TG~-E zxod`%yY@Sv0<;3zjbqv-Xx?cCM;f4z@vspBQWAqAn7LoSpAGp?bI=kIw!B62w&kS>czSmJGmxjz)?u&Df2Oy z_f^T?TicZysixkhjkoXGdr!74F;BHk;qdB0N7ZmKFof>u;Y@3=VFHcYt=ZdpWE?bv zf-C(Auj;f^HeJZ3*=bQ$=8U&)ik$N`b2&=6#ytn&g$G9YgYcq{J3+JxBtx1o;_~o# zh}l=K^ERKH0M9qBKf**1BH(LRmCYLXlUB#o`JB#3AKL#rn?_=2hP0Mm-YodyE-`Gi za8{fHyad`WcB#35D{TOt6_UD3z8vBKSx>^@7Mziu=X`0)AVXXh0b(F`e`t^64vg0h ztOJYdK5!)YsFFSC1ds?^9ZQ%!;`-{C?W&p#uZ5S_r z^DZT6pOePz-*Ei)8_cn-LHI5FL!d6|93r^g`;(SpJx^);N?L+-#G+Iz^=o5=ZmpomoEvd8HHQ^%M_G#ppMyd#O z8XCEO(No>ylH6jaQ@Q-Qo{oj)!uZ(Xy>6gsU5B#%s*QmH5X5VK@g{gcPZ1gM?K)rp zm)2DNzL;Ee{U2g3`YZq5*c$0eM;Zz;O@j*s3S{+~pn~AE*^b_P?~o%chRA=|wEXXM z01T25*__#q%?yBPm&RMpByucS(I8|-4?Wdh7i*>7yGC-83cRVb+x)g22L(iP{KKV* z)(wAmMc>Y1JySN$oJr|ym5!&H9b7hu;_{iyt`?%iF6Y&nQ>b;%*l&whzp2e1;vE;) zxb*5pX)qY(F`pw}yyIa!*?A z*4&$ytHc_q^R{~a1zt4$)+@IY5-?Ybt>BQXNm;M@*SJaE94+o;U}cLOI-=GW(zUha z@?$w)D%_jg;M1BrxqP~~ZF=yJOpQI8mv4&P%3Tdebm0PN`F^^-XB6^<>rXYbaX+t$ zk5&#nt_*dn7+4UW{#+7uocImy0&`~o65LGU0$3YixoA3%j*Tk^C$E18Bf)`{7~2u5 zoFJ`L;0juLdApRy12(--^)!Na|1v?9`QbN#CpoM`LH9N}3jUs> z2k{47+QWXlF6~GP=XKmGtp&mJ4Ee>j#AWYK12N}b>aRK^%08G*F%}MztVIKq{cpYM zD>3#bUS-?Ny^W^OyE_Z69(P!-*3EUFWic5^rF`6JND3(SlTnI7+T^?8gWk%QXE2Xs zxz0AV4@v@v%RwJ1$aBE)`g{`&pScbnd8`{Loixu5TODs0gfLd!uKz4)ihn$6mL`(2 zB;VudcNFn=_-ciz5Z^T|A}09>i7{FZt)XzR(5esXueiNVVvg}P4PD0UuhAE;^fr5t zMAKY$H4F7j8Y5*Upe$*oo30P!_WZ4sYU_xw3MYQJ_Tz}u!VT=KVmLR?;^ z7Pld2oPw;d5rbl~VrQzY9SFUS>Is}*aK2iAif&iIA61d$XXc6RX$o!INO#=MyC|(3 z4PYn9uhOz{m%*PPRaDn^#sT1OMn(iOb-zL&HSg zJzj+H0@S^(WMWBAJl2C-U4%E-w9Xa0=(ss|#|+ktTlYAKN9yjRc7>mp!uv;$wP~qo z#vcG4S9X7yy}89K9tt-Xh=c0owvZIphL z$CbUv*zMWu4KMT{g#+9VqYjHY@J%s@{|Y958M9zSi`l>y4rkBvNt^LQE}{bKL+sp^ z;z0Pu5}5n*u@<3TghIpfzPV{;zs4v5r+@fEE9Uq7_7*SNf5z^+_CG66%Zl5QG+8=2 z?vrI#0pXRixr(%G?)!YSuRS@moq@fIK)d}EkP1qOLr~-B7;D^k!4S6{7yW?Ua_8oL zKw|6kSk8u4kS=)q^qpA8$@yaMrLeH`%^B`C$hVk-0ubqLv-_*t-+mtkc%H!OTW1C0 z&h0Q)KxB4)F%^USc4?mBdsNv-vJRf+2#`tB5>jY~e#DE1oBkTZ>>qi)xRG8>yYMa4 z4XC?0INc@p(~%&^^us*w>{hQc*-`vo)9Q{LGf~7@$8IlRr-A6}PXobI3Dk+?x{Ea$ z>L}Qk;gcR#Rd2c_efB*T1B!tX|7y|rthrn75)SW(NIl=b);YUU`SJRI^#KEc(XAhLA{N;ln4$BF2J#q*1Z!cSX`r)!{?w6V+ql4L!9 ze?Ohb^FAU;;J#9K!1-0*S=~Qeeg579K(n>ovz|~cpM*PbShC8Hd*<}{D@9i1LpDmX zWjeCXKGV$@=RdbvxOY{VEl-{ay@WgE56WP=xQ3*%NKXK)z>9~Q99C9QjQ~jG7GY$eG>y>|6(Rj#3d$T&elFqs4(oIwIGdfISRwKwB zzotBR^)$!F^Of3M8JHti zp79tsgbul#8c_@=7}lkYry+gqT3voD3Bq^iSj>JSujJ6JH3UpY$`ujH?mEkjdG0SI zKJ$AieK!wI*0_Q5Z7|{F>v4}a<_Du%MIGp@=fA1yv`gCAV>QT~sNImRiyQFT=dAnI zE%zG%rNCGK!96b?Hdo-;Db#^i1)NJdp)#P~wBaQ}RSc|Y7jnPK+A%Rp1 zjYGr=Q-12W-b4;dr}9USsmSd-Td4c1^AAno@q{!!>5x>ljca`Y(5K%U5;JJQ+TAK6 z`8<(@CRa_~=S}g<`>o9&II)|=rC#32ImAc5UW5_XqXXVjuyFdQRhV6Db}hjjW8n6C zq@o&au-{g`Fd94q?{aSP%az&K@~I7U8KCZ<)oC!+f_%>TZPo*XuZ33xu*N8{=Vgyb z`$(IZ%wAinPfZAw%)WKLWs1*Rah~cIrz(_OXR@CXVcb-Prp!8|h`fUgusP z4grMao)SBqo#f}d8#%bqQ4ng4g#gdMqsYG&d~X>Bi+q~c3=dEgM=Np7x@e`qpm75;vHGRMnD_*1)*F5YfXj6J^zDI?ZUlJhfUa2dQu{DZn zB+~^s^^e#MeNz!SdZl0qhfl%`6 zk;p)G5)R+1ikb|bNjhK4dKk~&>X;hdzHz=hK#JbGvjz?;evl;6EG0rO#~_^rD8Q=q zv!iXp`N50SB3kVXOPnjvxf)lXFcl*a3}U~%4@0xZE7aMrOhJ<(R?M*<+lii&kh~@g z1l7r6l%J}>vWEWLCuO$6A^wdCPaMp%XOFZ@4eh|y$zChWedNU|205OZ$4J>Wj1-8_TqD`kzFzY~FXewYe5E*cnj0r%}<{ z)NYDCDcuQq(ZfUBjR5nbi# zElKO$(HpU6Q7G@dYmEkuXE@vhtgb{Y;P_H-cZFRXZ9qnk74PhKs{;yD&aV{?7_C|f ztSrw?G|=mcC9&Gy&CN9k<1JL~_j8p!zwZgRl1&jDWNrk*o5y?CD#!faUvN#pnewhL z2T`Q{L@id46E)7%#qqWU*@>**54FXRy+v@6sDShQX}bQ$FPTIeU{zTrL!3|Ea`Hu1 z`o;hw&PFR!32{vQisn~y?6pWsxT4(XZuERxuBHxQG~2$Zz`zqhn6Os&9!hV0<~9}W zjSwz=#dGdU@z}I44Qu#Bx3tlL%lLk4Nn;N5z%srlg{+jCgL>l!DUXxH zk!EBS$o09E{|?GSOm*tn4Z3`^s#FKE&@F(%sP<(F)y8QlxH?`>jR(~af}P%RByN&= zGY*C`gmaoj^gezLC9I+w-p=;*pGVpPK!NYS6i|}mzbtK~S`IIXVNzgdq&n^xYsBy; zMys?A0ukK|JfvciX`x3RBL1&|WDqj|OhL5FKrUNA(uHl{8jjZUjGvScCyGBABQ4_j zO4~yV#XWm1UE^aAv(+fWvbR*4-R?_f&IU?oGx|ZhuI8{H7l@xjcf7YrZ6^)2@3Oio zLZDxdWMAzvBw?!y>XsT7L*UcBs4W59JwN;X0=Sya^lgUfaf4&M$$kLw&&jHF5?M)a zd(>Rn0-}BW$DEL>z>8V$W#Ee(?cnSf-zg3GF4{uPjq1~Q{PnO|i8SrbT0vOoT;~kB z8(X;7fL!9&n)ri;jBe`DOuWsg9%{*%lw%MQHQROhYdrENcHz*7OJrL5L#jdShs!p` z%w(i@^tgZ*9arDCz567#J^t|jCwRRzeE?A7Y5!ggo#%=XUV+tJn|)lJse|Jd9fL>m@d^jV^_7Pqz7NEZJYM{?Y*HPj{XeFUaZGhhynqIJOSy#1wff3p|2UTO>z4Lfu`aGm${)1TS%k9`f&Zzh^vsNo=*5wYl4Jy3$Y zP;-A2yE*|HV`C>u;xRg}I0*2(>l+;UPZl{iuoZ(5EOtO`&H9Zk$lSKb<6I=hBoWEa z^^D@$_zak2YF(9mPe+Q=ZGqjffSF}X|F4w~z>LBwGji0<` zD5Op4kFv$HH zRH1#;l?d{$m!@MzQ9B*n#w!y~xqmO(cc{?`k?cUlsywE{G;c6!QR&Tu437t%&GVEX zJC{{*5%WDnLh|Sd@CoB5?&9`q-3jC*z{1t4_4~mlItH31Yvey`_(@9`c1Y%A(A-@` z0r9{{LV3HpdDXvQtmUU@UweuL;Hy|P856G0p^;qJ1?^6V>S}=$A=e9T>D=X&3)psl zX`O-tgD?;$X93`x+UK!7tE4PqStFh7#;4V-kAT8NE0&ZXx6o`K--n+Gn{lIB=PISJ za+!imk4l~ltwAJr11>b}v}ltBM5y(YA;HP>ue8{h=-Jh}8GSfZs9)(MFg|R|%GPsb zkG#Eg>pzZi%RJj5MysCH(R3P{&{N@3eCxfK-^Ec zBJ70v@L<=XRJC8^5!E^P;`0e%m(fD4<5k$hXbR5#smzm&HxuPs3!K=+r9-Yo;6Iyf zS2+${dWPW)!ZyH^suYCJLFy`9>dOaG%bgw(9y(=U9Al!jCpw=as(x%4OjZm^pA;xn z`)y47H`nm>T-LmzQU&1^q;c@$Jd8XB(B!62lY(P{H@q+uLpcMtiDsb_D~^f?oa!Pe zh4-_B@rbK$F42g2Nl+o*DK1|S!f0_lLSV0JwYo~@j*ge*A7RuzcYUTxfDpVV`qQzD|exdBePQ z3(5TLY)nu_7Fh_Vn$;BY)H%J+R3(voRcjijUx)a~qH4cumlf!uv_+e&H0U1?Da0TxjG6Dey(*0nXPMWD;(&P_8loMBcHkIm-NM zSxKWs$57I@2wP)jtxGn2jU^Q~I*uyj1c+cNm2!ZJ5n~eA2Z89!HynsS}PiJ;s$qHQ=tW&nhyU+)$IzFc73G5Nc zjrd|XG7sm?BX1P_ue=AJ97A^E*U}AxFqfj2t;t#fSJzN2k7SaiIX6dEjfmUfm$nVV z{NAy&-pvMEiPtE@`tqFY$+B(7_%s7rRjB51OD}bEoTO##yjdj;6CmT(M9dB%$faOL zzDzP7Uizf>?AJ7VZYc8?v+#%-hA_5(PR}x$mLps1TeG2c#0^QSMyJQ_%m(atoG6Sd z|4<$51CF(RzmX6fDYPVYeoH(pH0^m8FO0aBL|SMUaNtozq$CRLS|l)~Jt7+y{3YZP z{UWB3M4WwPsT-IKSST?o7H(brc%Ge*bh1KI)PF&ZjC;X>*cbl>6L=*eUItrY7PQZT zheaOar16Xmm0pJQ>(-iW$Rm(-dEFxIlUmdXJM|>VKlKOF{AKz(Hr=k2h*mzHC$|v{ z{lLfM=iqSPHH@UNx~eKZj0-+@aXd3MI?F#Nv<7&IL|2^@%sXQOhvr%x26)t zj=_o-0rpUNa$Dt_fBhp5&mm0-DrH#W1u{N;E19&@$)oF#D%t)wEILWcQRCF>0rjgIJd?i&S$;RlthGX`x)^bWJ5UGNm-54 z_8ZqE!+^(rsI15e^tAZn5{f5JrRnp{?Vw+!a z-!~Ed`4p`HO%#oZcH8*%HWd9U%flmcT>7G(#NRT@H4({fiKwf;=r7h;Nb0)cblXrr zy!cuu)FB~irCDPeXew%D_ObS?27&bUK%{#{t|xfs@KTwfj4b62!hXUEB{R=QFYbw8 zWtUWmWwCg2Fq<-Qu3znIqlA?J`fr^SmJ@E`t@Nem{k*6E9mR;wv!tFXOoz<(2dyk; zuD!d=WDg$CUe_-C`Ci`|z>d)nA?&ID{)2qR)0+Se>%)Y9MuPcqP+y1t;bMq9VAhD&1J(dOgvZe|!_MOyqaj z>~!ns4K=iiofySH^>kSsR>oVpi5-pvm2wMHZwt3pETSpbtkx@`n~`kwfA%{H)TF6S z{rdfaf8>9&10}lqnS2v{H7MnMH@cWg`Vl^T^MwOAS!4SOSmv_3kK^m(0(dO&XO)yK zXmhn-N$Y0+whm1NVZTev4eVxKGEw+GW-+>TDfQs63^)V*RwBkPRtN(>ySviBn-`@% zGaFK&IF$?Xgt(whZw4Fy#wc5B1_RWFRGD%P^`3v}L069*BJ%=PH$rb8o31m5rEcf? z2GJuIoq5;o4X70DRtTFBTia5tGn$`nek1A4jq=s2lX#lT9Y5w`o{$|NilSP|I`uC zI9Ph6$xQ2VF*vs_pta=(@NW`1Sd>Ryzw@L4QtIq1MFBSaWE%C(j}=c1z;pv4X(sNpygIQNfKQ` zOV(WUr01u#i*LKwj99QZf&%#0)mRl*QqE~KLoOZVvwM*p&VXDjoyJ@IWNBd_B_yxz zwu({Mex!K)q1qlyF|W3L?**}mw4H_X%0BEwl)^#Bbk%ft#rz}3qB>x8DN@N`RR%EJ zcrY*4)Io>tww?97GOmWPW)dk09>0f1j2UXL2ENWEo*}BbQ(sHUX_+FKd4J3d(TYSj zy9dn`-DlnVuHyLVVvGJGh5v4ash&&Q0ALUIt9-~fw2?Lk90MK72i7igm(=Gj5+&8` zuh}(O%%ZCa^s6WIo5oWqn36m6TxpHeY>a*nkLw3i;VLMP53j9i^8xiG@4jU1cf=#k zif!o(_gp*seaCR)Nmm8}gv7{`9n~eFuJq62NQ<10nW@UgLqGsXbIxUYL% z98iZfsf3lMg?R?GHh9c0JuY1^+N)8xM4HE)va#CP>F1(@={rw(G=2Tet``zb&$^c8 z!V$N=sn;K&htN_p(4PymUWaZ7Z-sr_BVZNzc~FhAcqRm_ZJ1_;2Jkg%g0|R1EB~uL zS8v0RX*qOfR=)1XBlGlc83jdRNwIq=lNsSX4$|Pal4LWgpS%|n-JH`@_>{=i-zzq3 zEagRTo^ZbpO!zkaUBxXRX_IeEdU3Sz;qal4-!dGzDF~2Q3p`@!h)>l%a{t`SA5i>G zED>C(^NbPFpyZ)GF$+M>g;{Z!-b79w{bIAoqz>EWi>TBKn?)9E?iwl`?>ua;Wjs7S zkdt!wQH&%;WqwJT<*gH4PYo}&3BQz3t!>g9 z+vc@g3FoMJudGx>y#hG)sxKfi4mw=1vIWjBE|?xBaB1;T+v6u8n9o?Oa`(pDbx(7P z(wW!G-fvQV;&cKSDa4D!kxE`vz}uQD{1xv5etHXI$%xs~`%b~zy_`4M>L<^1@sv34 zq{6u>qnTJZHgzUMRQ|;>qS4Bn)~1@dpQXIZ*Ee6dKdJ<=NjWeWOgZ7zR@3~W6TUC{ zI&fvX<~HKkL$=s?ayI7iz&~EVB+7&v_tpRxJ4(t^!~j%JH~f&PN2Tsrq*R(KLj^~p zHXSje_K=ahT(pTP@3%H(o_Wzoz9(B5L?D7by_6a-M-7z^D-ZsehcMq_TW*hpmg!0J z6Jtk(X`b3`iR_xgsz5vbE>ez49h)T|Ca^GxLwbz?oo0ule~zr9>EsNu@P_$4x1oxz z2%D64q5qDQ!-HYi28&}l+tfy|1N8Y=qa~3B`t^&~W$@y#-2I6-P)psz;gJm!-B0hK z!PUt+`yk8wZ{$-Uu8aWxuH-S_pEJBlrWAUEFiB;BOQ#BHc=h0>Oa#S?S3v8)K|*tZ z-1RGj;U}7Xn3bgLxjTUs=6xjqcn4c1rD}OU&liD#szHF=lAYN7lyqfXBLloz z(<*l*;;Bqr))GyBVc>7Qz&>we*KF-Lzk0a-eXY2s8ik*2T+(t|65qNE$t7T8ZrZUu zoZZLSw#%Y5ea0lItuZ9EgXKrhTq2#aj_bD%V_NTZ`cWof-s=&|QlH+V^L+Zk$IHDV zVIltWQc1#De|{@u+abbe>8dHkO|1GVk`x~mkOn#y{>4-p>^6+{4COlgS9Wmtnv>H0 z!Z<*Ub+Ts#@FVpbv{6`w=;F`oJtau5Ih6x}`hHobJ=~-n@eA^(3SF7IMoC_r`$m&jU+yXoU#*rQM041E$ub_X1C5)RAigy znz+rb`{`XCM6qUwrc z32&zQnzFlP#>WUiIQpxpW2y;b(LPH58m4q`y%nMQ+8E?b5A-& z4KHa2<*#`isb(fbGq#SDox^b_L)@F~E`?(LHA_p2ACRmCU@5L+@lPC2(5STo;2H08 z5kH}z$URd^{Q?yRh%jC*vZ*f=?k-(kM0>sa?d$dt-Ly6HYuN)9-ToVp8zvO z+>M(1OY%%zdSC75QeLqK-#VQ4b0*}$t8VXeJa~!%6B0KQ&QcSo6o+za5UG^3B8c{USq=={=_Ul5epDPB$30;FP$m7WbDQ< z(9wdG$kElbb;_9A9NJJY=j|n+oTxk~msUL-`qCj>vwo|peV9qqNO->rM{Q0-axzI< zu@Sq&cz;fb&!OuL1L_pDUy^x$<8MjEgea7QMJhMYTV?55acaC6we*M0l#-i-BwWW} z9~URh(XytO0;e3P%D_WjxlC9Qu}&#Eo3%H#rG1#$88YK#?EZ%7UzC1gb;X-rv_9=i z9b=ZIH;GoqiI!Ma#!F980V|#A64xxl0@Z#z6A6=n+OqcJXQiYw4Wz|X1h4x*HfcLQ zxDmeNzde`*2=fJw&P*@oqiXE39XX=nb5!SNjQxZ1`7wqK`^23zfE-oL_zm-Hs=#{! zOAWfTW!x`56A7aEmiSPCe+kr4w|D*H*;{J z%YzU0OB|G$avy+jOXORizu1Y)U1uYVn@voJfLzB7f)Y9Z)}p`lo0z3bBrv4ho6>B-z>Gt{f5RA$M?tAz@;m!*O`C zGX8V~e)h+5vv^5x=UhihNpSa(xzr~TA!%ZmF^fO5#tHe`not|E6>-4F);(-9mfl&_CFDYkEBk42~wmhSv_YC1Aa`mpyL@5MZRhaTG7pwGIjS>jJLZ-f8+yD zpC3*5oE_gEYf5%idv5ULx+L)t^TO1=!*EDJ=Jffr4`xCo_k2!+J^S0C1~P)uK1!L> zROz%C=V`!%LsNoPse}2MUEjqM4?o5xNJT~2;jMu>y@(I&ARBF{N?y>gCPUBi9!d0T z#GxvHONV*<;=pZ~RvEWLUx$OS;9LQmVM~Qzu=HuEXMOwNS%Y(f-NBn0TCJYbCrH`y z7z~6efz)(GAz#_v2K4B>_HUf%PgksApv=Z6`m3L(1Yhaje%7X%1mn=_8W7o;hTgr} z=X_kw#g}j(G?FR5!I)><_T$GT)6MO4>WkfBTGD-klUAwH6>*!`vTjt@O=$83${7&8 z@r}J-C#Z}9F(B$4cN^-&Mwo97aX_&*4(QiYv^XjQGaKiC)Yki5N*`0?=4L{8=x)u| z05F9}frS_X*hlAl%mzSzDnI5Ua71qEpywlA(7|= zJj7z%+DYnNK20cy{sR=_&mkm#EE)L4K$Qft=q>k3`r_nhdn+-lFytfB6#(%uoWNjo z#5A}RQ^clKRDPgn#8>&Ltt(achA#UVAAgOGjlD4BhZ0vqx!cIl){ z8^$KCb*{i2&ozuS#LkUWJKMUZk#ZZfZy%DJQqwQ6jRo`UOg75i+zLgF7skl&EqKgM zV9b4lo464lwA&0ufvAgS;Hzsfa_QqFFKHOW3+jqK2~0s;ZBQzBLVf&6ui*t=2`)ON_)NOYny$wbV|co*QHRCIpHg< zL~8`*r-b^~e~f7p-Z}7Iu}@njnvih{88;y=j5+?mkfk%nD4>g$!ME+7g6H1Fn_v)P z?|11dYoK8N)?bZCtKDHSl|A=oWMvPK_>~&uq>sVBWf%JJCi^VK!DXnk?1>n^wkcmwA;@;jRQO2V+IhQvLpD zZlBl}kDYj+ALBgEaRTVyqImHKgrZwY%ym`wrYZ3rm7Sg6&%`YdRT6n8^FsBP4ak&> zG66+u$2)Hxb$vpu9s2lB$y0!E9l4EQ?fgFP$eNYT-i~*GuL$Si1KPr4vDP%0AHp=* z{NiM#JJwk!Uy`WbOG6e&1InPI;MdmQqtl;I{Gsm`&G}vO4W$IMA0~jCQz= zxLY2$Gjrfs$}pkAdnTq5h{@u4Rusfj`$t-&U{qF=20#wH4iG6tnSkN+)kU{}oZ>C<3A*jOVT4xA^WX;ya3d|w z8NfV{F^xLzJETYN7@{nI|ACg#cVdTiLHOs<4|hNFIy_N5siPn52`@_b3(lI(4WK}h8Qi|pjLzf8$W6KM-W6A*vB7{`*#*d&}~Iy zF0eKY>WG`piu{_<^96FzJ}7ZkIwTH0RT!q6)Bk=QAVE#=%+}T9Xrgf9`ey=Fwy`qA zQBv5V_Um-VcYWv-h8Bbq`Gv0dt^o$9`Qr5;p5q84*^O5{aB z(ji2-3saEha!tPzRlp}`ek_I?^O?_H6yp{a+7R+=`P(Lqe|$QYbyA~0k3XmZG>6`?L#Ke^*OjEhVYPL^D<{tIOJQ`CJXVw@{V?M|MwgdX5*hz+l9 z|G$yneaZudD!xV&xt~Y_L4u`@#PZaC4f3XN`2ht(bYp2R+H>psfz;6+|_69 zoqUqsp2rDP``>Qm9PPAw-UTf_#<37Afi0l{Ry#n?tD>(NY>md6jrn!Nn;dR(glB|d zm>)sysgjXaIyDauL$kO+?30(pp!;@;f@Awn5-tEf^@TN0Uz!g6?c+k^$El5LfdAWx zxg3}9GG{^YlBJvgk>NTY(1w4`qpu~WmiG0NLdZbQi?YC=@Agp9q9^XT_sSv!^??Gc zFtmb0M4{0h5qA*gzea_CEGT(M+%c5|(L&Phw%x0#S)pjM4Dkh7=HWK=1$N`>x7{H+`V}~|G?I^ z&=DrXam{<(FLuC07u$W`WXIuP^DOOx?ikcx2z}ZgC6va%FtM_-H201Pk-WfkRI9!n z@YJkrX8c-JbB3GXKOsIl`W2zX3y0meKi`~fZ+B1W5bLKf8;5xkoHVUO2Rn-e9V9}^ zUUACrU(Wg32Bc0s;ERQ~sLIqh=m>@$L18b73-w3yDjNn!a~c1a=1O7l)$?I%7pzRsv%dIR|it zDI(~M^N6fLlBJ<1Q5n%nS~sHdm|#6Wn(jJR=}%x7B1XjABz9ki{dLLd_e?V--_%Y) zwKV>i=g%Y^Oxpv{{E=fNj;G%VZxBJi*;O+$LgKT3+vhYkxtP(WkNKJHtj{EmJ~I?q z%|onCI~~NnsPWi^4^Q1RQK9D;&?j=%4 zf(iO`Vw<6>{c4&+9EBe)D=9)GU?t9$-~VqUEa*X3E}DPUTh|}oLiHpuSS+m91B)`9 zi<|01SZ---#C`#*TN|H#q$^`K9(ZE7k}nwBx|O6nyTZtyS2Zy|WO!SGLOv7;WM4p0 zC4diYf5x)CLBpI*#|uvJob+eMZ_40zk3qYzP5C}hiEoYqD-@vz%|NGxCji?Nc)V)D zv<-pyYiHG5Us>@=)1q5N1c}XinOtXqRPiIt!PrwTLpSv$gLa>F=ZYDyK#bh&!zT_j zij)W*-SQfie@$%AgAHb>eWKk{4uPUuDa3EmzylGaxW!$S1hm6?H_p-V@czd=W6}mp z9dn2Q1Iazt2MMYjn{U}NrIL|S;vR%X3_!&zI*HxXj_vB}(0+;f-tK#2nVaxD<7|?H zR2?xEd4i$VW9Dy%S!9Yvd8l9hsVVW3Zyc}LhqiTF+fVHIKb>7Mp#6ADH8{&xc>Km_-32?v5R2XhV|ZhAC=wHX`SeZ>3B`Zgshm>yfa&w} z6WcUp0`v#Jr%^!FL)nMY$xNzJU*Z`QiM|vKqu38X2%VF*UM>DUKkWNah@ zZ`%`YH-NwuSsM`XygP1WyG^T;(Sk)M!jIiJN26RW23UB%ai0Qln~`Yz)ru6-p|WQ) z%gFJCIxUT1>nRzwyt|&OU!Ox37p*P6TW~b&wH{@FxqrhHcpf{k_^Nj=QnbEppzjy1&l}&3qT8 zq5fQG}jJQ6?bep*RC(Y{C(XaYEoWgW~0v5w>sN)jlB^C*^Si6JKm)y+yD<8RX7#6 z$|Y({lnp8hnoTahx`p5r9&2=sOWt0-O(s>OX}0>gaA+pLu-9Rm0;J1?T?SUe&c3b| zUf-zUA2biS0|i#Di?oL%gp3c;jK)ZWPjHl7EkDX&PHeXpiK9I|!DHt+zsKx@7T2LDLQu{DAokmPkAa|9jS*1^MXkA8benUCtE^;>@A?j@3tj2Ym(}F5F9e^z% zq;CSdjO^3mR9?3^3WcccA|a1KRazcA~%uel{PQ2+StyD&9u}{X!aC5%~e9ciFi-a zr7@n#3#{t!NGFcDK)?~FyYno~FvQxou9cDM)NNRe9R5zJ;nvk0#_1rL4dNq4KN}D7 zi=TqnN6H!ny#xgUW^>MmNE6TGL$IIvO~b`dfQYy1u%P;axK3c7AL`h12jGcQSo%m$ z!HbLlg)1BRv=8&rCCek>&8?6@dK`sc-)%dbAX8i16C28+Qe?c5m6Pl@<(xD54BtE} z)Q!5z7<{Z7c-7)F=viiX-z)sX`50oU)eF~a{K9kNS2ahT5$Z2L-gGO98NzJF{Gw^P z>m}_V4Zj!oexYVCh3SPH_0VFs<_}raQgsebo*Qx{G+I6^3x6JKDBQUPG}<`fWxMvQ z+0+7QU&K?Q8aXn$}NpzBiQ>$LDkdPiES`HPdV#ldNWI_+~&z~!;qp; zhF0?^VBiZ1OSfmuOWBp#W@Nd-{3ca&onANeYrI~gh4{@ki0D+aGccbOu^@pA`XBn2 zo&}8vBW;&o1H}6-sw0=YUzgq+11;|WDMT}yF(PuxmH@wJcd%bmu907-+6jr>egF?` z3NH(q%?ZY-67wE{mm6e{Bl?!X4V1YfP`WDZ5qZvEHhk>t&*9&4G5e4-QN05bWeq0p?y$%D5y`aXPX9_y{MMT~P?WpBUAf3|+Pqh)-v(;5vD`u9v#xx|o0x zYm{1}&QOtxolAT!xjJomDa!cG{AyCkfOdE3cIRSEb4Cru4O*C93CQlPS4+M+OTdu9 z7r&H>Y$v;NYqMOg&Jv-!ypgJ z;Gj6jAo}Qw(8+T44kOpy7c4{HPMH#Pt~;R#AG8@?b>AhC-@Zpq-tR6D?fYLhlGsF< z?stfZ2li*T?$(p&b4>D+Tt`S2H2e#1MV{-3S$#-~)}$MFcYYkp5MwA0m8&-Z)eENRl=WD{TXXAFK zQ$NVrh%}&n5>*l1z?P@Yp&&=o;j7=WUc3#{u01Jx<&55*~+Q)MxpH!;^p95 zQSCTqVY6pG*_4~8tnnaWAp5yVL2=%a%I37zL zLUa*-tCUnQG6>C_Ud>OVz`k{ZWD2nFSNo$_Q{Xj1ynlFKsmK*U)?xmuqNL5T?j36- z88so|l*}>v9iFKc8uv^3zUL~_1zz6IUWEFcd#n4*#cKcAfKVrLB|RwYl049M&^y}q z;=;yQz~-Yuj8rMf?=bHT%A><5yY`<PAn@7P&z)tAeq6m!d!CcCkmvX2Yr-ZcO2mCu6M zpO32vflGWf-3I1T(FfIv=;+S*%TkRzR7E+)6=1ftHT9Y}cY%-LM#!Zm2WFt9SO?Gg zI{o#|0#3bM-y;Y6oin&Ld_hE_2=}RcvUnidrN_D()qP2X^k{cu$GxA7^%8p2d>|71 zxx;c1TeAgw-heKdZTufC40=$NfOZp}&CMR0q>BuF@f!A0@_{JK#ytmt zE(-Jz)7z0ZY(IB8h+5MG(CO0uv7+>ZQYwoRuFRYVrn7qe4Z7A4Ge6i=qD$lc0(pux zI9*lTWve5J_FgGaatV_2_^EL!`Dr5aNN;8U0r%EK_DV7bK_B{GCIq$GiqC`WTX)Px z?SO3e&Ug&2mbuczqEBlj}(tDVc z`D5;Dg?g~{&FvDm@=I9E>h*9g??!LhK41VaZLD2!pgA(6mn1jMU zwnqwv!*DKDMO6`~V+u_qnqlZ;FEuUgWw82L(>;!|@h8{}0j~XHRi~a+C+3^3|8n-% zXEe^-yD5G17S1{uhNB718SKtx_)jZOQ?54p?~)YBE}XaPqKsW!-|usL+%)ik9J~ep z2-W896NZ|pZ71=Q+?9ta6X+8ZlEvSAoiOed9={o_Pch20Lb?qgvADWk{Kd-lkLcM3 zTD~(uX-N3T+AMTT1=JPwI~hmSish5-9t+4E1vae5|B{v0ZO<9RGI$?oWH!~YXBIN^ z?|!oR9E$_mb))~r-6eNgRRJu{qR;ET~ZRBiZ{%daZq|r1T_X2YTA%WJEPeeIM zD3h+({7A=x|9Rjqo~geI3biVt+rKjc9N{}C{=>)rXw2WvfD+F8nc_8nn6rPu{;wg; zzgO%(RQ~;Nd+P&ljoQtg0S^KzJ{egb{$p!PKC4;Iwj(0Pjjnx6IkSxG_5*Mnguo)u z78Z6YM<22Cj}2ov1CvUPo~+@~AJ*PIBGPWsnp>NxmC#7F{`nu_|0~w`Z`9qZK8WOW zZZ>I)I^Tc-uT1`5Wc}r*|39bm*RC-~EH%3~V2Mw@(BZ?o6Z_xa`ZKoZGJMd^BNkZ* z?gPL1Zv_1JSO53xf0dH|kLCE^v;SJ~zk}-k$=Uz-@W)L3AEFlqgc{}L(FVJX!{6`| zdFO-_6|oyw_?tkzmH}Z#vhBCNW*m-ZvW2`~Fus;LVYNN@VY@0#PH>V1& zVk92_3EA)49=L!%T3my+I-oh0v6g?-a6%hxmq|(T*xQqR&lxZ;v9v^2x#3bFF4_a& zz;1tru7cd?9;Kr~&r-H5SjJlKf#GOeDqNwpJZLT(P}pQ67}&w88nQMK)ZX@ ztxrOj&

!C5iCiD!lbJlgV|LnhNlm`JvmIU(Gfw&_xJ_VBzxC)<9?eAHCT(1lJM zIII&ke|lL;u(J;68Gc-+=LAL%^L&E)l_CmVoHPw!iLAz+KYWqcgLG|{qJ^l>b*ZDB zK7zH!IzK|zWKD~3hEuT@yEe!B3Rd_G{BcmkD$r=?{T$ZkIop3r2wiH8TAZ<2sAzgh zT!k5iZ^2&fxkAKfmMxoMj|KxonsY8mECBfA`=X&V6b=&cqs(4jMj3%x(MiXiVkJ2q zsP7%K1|@dja+&X88IWYJHy4YY(qDm!u~BCiY_0OI*3!P|yq^|(yzv#XIo(o36%rWR zs7@cgj_Ej1gZPb=$!d|Qc`6? zxc@~OmCWKY_@jv-tJt`s3VY=Mp^uDFenf&J++MB1W1z>irb&&3UQ{v96yLDXwLP z4hwzma()5%KHk!&1^MIy5c06gGNs)i$&;FYwAsPF=36uxk6*<6c0U0<>%|B+Vc;i@ z#}$>~L7V%vO~m6PeY~pP?F;JSkNpO~)A5$Y(+YilX}*!~kgCrf>)GbbHPN;_XT2Yy zZ3dDeCJ%C1gglE`R?>?oz#HVI!V-K5-0JAqckqXs)wZG6P4X@T)&}7+CH_3lIRcWK zk}K_ZKg4dvGD_xq&*Y*J6%?lT$tMvjj~e_x@VvMYx>WSaO#`&mUtpPZy{-_lK+z1t z?zRP$kJ1pun|X{C)4#bV@?Ctj!ub88@D-Bo+W+r_Trj61+86?{S@b*0ecu(H}Dr$0h; zmX%|ko9x&ZEquhWd7s*#=-j#XM9=V5Z}%qU*(#8DianL_2Q>Hlc!j47KR=S;3eT|v zi*pJ*B67g>Tj6IW-@?|ns%j;B!D4`9Mj9)w2c#Hqkk9Lnj0h67|LtvCQ0O6WTfZHP z3SX+i(H_9wrSJxitXNvEi^=^wSEwy-Kevj$6{OVDZkwTprCB!nF~Z*1>@xD-+5!?> z=PcKG!jwA=dBQQv`T-<#ApvvdPFpENbN5~by4phV3H)3!>Gmo1soWzxVopEwcbdwr zGait5^FN#{omTaD;WAMn9$1%6d16H06g$N8;N=|)WUu7VnCF??(hy4yHG{iRt8e}2 zN*SQpFMY40$idp}TZv~}*y@Ue&Q7B$u)!MZFIazbj#NsjiC3Lh^x@JEfJyKbcE#Mi zXW6>n&fA^tk+PSoO)FwGs@oyip8IfuzNNSnB4dV!g7Hze!VLuBO`M^dhL_*qfegdr z5bLcYR!6m~lX(H}QCWdnf z$9`$*6VIRCG@YjMU%h3d;Mp?K1Um|cI^(DWL5almkkEkbB3!m zNG&k3O^uUFD{W|Z%gr!CbnDfoo=F>~oW?rM0YGv$^QI!Dj?iVvEIwofNBblx$g6Y7 z<@P{r`l?d+qo^j#JFo&ZFlfL-(a;EIar)grx)v&nz=gK&vn)Q76ps(K+?_5}2%GRM zBo$29`lLqPfV;m^pw%ZnaL=$UA^F3*i-CqotNo=$y=!Y7om#&38fGDd^K4r#Q+X^N zO@eH%hNDun2m;t;Nr{Oc4Pm-jP;(9V=`vA@Wt87QJm}G=2B$12Cb)h+w*TZpUj-!u zdfI5?!L+|e3AMcIN3)7v(-`D@KS4(6=kg?!0Ge0zt>|Pm~vguuy;W*KUZ1E~HBe5B(%?;HFr$=g4fVo&B=j2eC_rvcif7XTs1d z?Fyq_(7fp=+l%={IZ=xY{K<*t7={ElmjH(O@J*gU96_3X#K&lEP}N?NrLms-0Z{bN z->~z^<@?2A(3(~$xk}AIX!o67LqGyXv^@ZfD*0;9{3%`z1Q_%gm#Qd}DxV$LQCj>_ zaqb6Li0YXb3d$#ddi$FCfry1fuB~&8axTW-Ysp=jP&!`v%CZ-E7X(qYTu_ix&;1FD zcenr#$k8MCL$Q9Z)@x6&u5JHPg(=Jia;rC}e40n9Du9^BM(7)pDZ2MRjaBR4Gh93~#!Mjr zMN|$#>_4btj;R>HIEX1c7X%~^9_Ht9KDIu1*e2Pvef!N-n*i5OM{=?axf?-EfFGe3hUBvNx zmL0C?F1*KWi*h&6BBmE`LN??4$KNW**5fVD_8_A>fBBx}h8YUR3mTas{;s~SAT#$4 z@!lmke=^X6f>SSP@4)a5hlrqpYp;~=u1xR*NwUvR1o!U3VbizuJ(|;(rx)^DmFN(_ zGA7P)T8l^nebCy@>X$sSlSzE|)sk_Km)b#lSjz5zjT?+OfklT^5c#nU)&`enH+} zEwauuDonV3T6%C~kEeu{xqV*N z4RG-C!mG=ovWc10r5~bzI@`k|D8zjEm^|RKB3Z??O_o`)TFoS?uHs?ULtP(dBmOw; zF~r?@9c{ByL^pHq0VL2np8kfE;;PqnY}p+o%_Pe&R!T~~mSrUr2MPfm7wWbo7-8I+ z{~pR@+M~aT8w(9H*@XBL^$ADE>HRYK#u{7La1k6;N7&-@ta3u%!DnLw?V&NrKJgTn zr=Bpsj^u0Oxv~o^Md+(Qgz;Mgajcp0lQXZ_pv6;a(jgII;YX3(WmKjGqATRuSo zzfL@vFaqnI6+?wow5K zxs9bgdu2>!(M0-r(8h5>I6FdM;JljolLPJzBZ+-Eb*W`m%~+TG-KKx^T#kLDFSD&G zqEh+6sTxw`Cu}z%A`$yoUm5}H`wA- zyJTBh0)A#$pkQ-W*vR!@p-7h5sj@jCWF+4N3+b156470|(d%2e*i}$Zk>YN4NPkvf zNMHtbQ^J_l`sBYvc5cbVZ09|FU(xH)FHUW|cgyG#ML_qCt#YuX_V`_)gkoWPb+2?`IC2% z*CUw--H^WJff7{VIk#W6W8rX9Y};3NXUfA9 z0>l;Z>l+f;$puG3Lsr4ZYH@GU?W287nwP}R*NL3?wftXRHfJChTxvYm(wDgZ6d)*) zNfqZWsy{;PN5}pYx7HRS_s||uI$c-I^Hny^+PaOi{7C&gEv8W|;X^(Nzti$cgUJuZ zmks{sb_TXW;#7Ld!do$<=aKU<`)F8|0-6=tl4rhxVyxD~W+f&hyt>i1TK&kqCnrw# zSOjkMVcH>5Q1*Hqq!tF1oo!Ai1QB)#hLJy5uw<%1$VT{7v@2dz8jkOIt)a6dQO`QjH zeZqdU6TV7Xf;z&y5ic{e7;xRwuaM~Cno*ugw99&QGVn0!(tSyu)ut>&uO%UwAV5(h zXU2{?w(YKN+qk1{+Q#q;&&Pz2wT+0RahGWtSQ%X}#6sLj;^GTpRC`AJ2)<{z z_a_n~4{CFahR7Q72F-Mu@42?6JP-V8*(^3+0>Bk-q>3L~=+#x0INbQL7WeNLPQ)>V!%5oXE}9Inm$=@unjBjTn!u=!59 zykm$5RRP6t`-rgKC+1r7L*$ds6Z3{H>n-bIm3!RfTIJLACZd!POqj}t!7N8TuC zCrzL`S@c~df3<%jN|7?%e35wNYzC;iHlOl*KjP1H*=(j!V^p^Rg}=y)yRB}wbw(5< z9;~0MdXq+lS)}Q@h=9Vo@e_sK_0hYII}#FkgqJb3D{KF5vad)5MdQ!F4$F2=Zn{g_ls#!< z2ETQ8Nuveeto#ChSXN$^+Iywl>@_vcYDddd36z~IZm6aG+;tkgQWl`KtZzbmIc_5G z&9&@JtOw(tH=BiKP3w+<-Wr{||x^=Jl zey_Lyh5zvFmvD3L2E-Lj^VKrHLFi_|TD_$5#`u~^ii6tDdpCKDTSQWCxI5r43~k$| zST62&=@{x|qCGqcq^DjB`DHR3iL*74AHIK9)dk3AWi(GrnlW}31QhsmMotE27A-H_ zg0c{?@aV&-y>ClYRlr>;U3fDv}e&-FP9(gk->}Y*6%O|gF@^mIe8_? zN;=~f-MB8u18+4^L9KoR%o@T2`QtZ`SGTwpH;Z9gRh=gSMrL7N)-~}z28i6IvGy;_ zeWJA}|!@r=f?;(=m*geqLYO*(JVq}OnKwwHLEoZbJbUd#170mqve=w9% zsikANPOLy}$jGLWJ^mQo=zQ~n>A-g|GQg{mUi0E{D67ZvF3E0g=|;HMrE>G@eLUmi zW}=WP=+~X$+0&N^YTql4t9p1~KS=yVJ-XkI@;X}x-uPLEj!(j((-*{93E*O0A6V*l z-#Vf?L9oRP&?MUW0(%b|>;eu(NbI?=Xsa128Yv`v3EBfpoJ_4(4o280mfu9=We9G1 zdj%OroUOV>Mq??gO;|@={2q6dqnZ|?IaMYv1zclt|~-}%|~pmO$&4^^*pyDFqX`C zBx7HbfUVZ06TFc}`+7iiK(hb1*LLms61mf@eKBA$zB1%f7$%$U^RJbFRs7MdLt2mQU5#GKPJtV)$P+(~;S$G%s&CPjQ}B zOnKiOO3QLRosd4a86*@kZjVLts;N>rre7XYuO|?(AuI_5V|zLSOPP-4M(e;diLHJ) z+d2A;!A9FvJQK;NU=r})EMf6WN`7x=7uQd(WZl6a3ApJ)5WB4e-Ou$S3sYT)lK6r` zq-ctJ&XXK*!y4K|ceQB8(zTbRpx1%Z)JkK)O`8H9bgQZUVP|B!$&V$Sq(@gRv@rgd>g+T6@T zEcW1n?5=eFGow1m0~sS$%Xz5W*<<#8rxNCE(Mw{-2QT)tK0R6;C^lY6mhjRo;V$sp z(sJpbdUb>+hqHNa4S0Q3g%P=2Pt~+St}EiihC88F=32O+QqZ3scP8wDEpZLmy4QT! z3=g0luR%t3t`9tSft_hUjxfXNC3@#lwk0M`+nx1<+74%%zn0~fW&S*dWqmg`-}UBi zxML{a@qtjt(~~cl^E{sL@%)SHzXH%Xj78B;r2$({uO%tQB9Hypg?WVRDX_~LtFF$uFfM2ww3?vgzT=qxwN*`1xUpv} z&|zUuxOz+Ja(S#FW>brwZ&w}$54Tc;uEw5GC4A8@$u>{2MvJdJo|D0F#l>3DMU!eJW^6qFM&l>EN-t_CQ(7L%DhrQY90H45sN^L7weK`e171^4=&bqERHbog)Im_wR9YUZDqG_BDIu$g|mBW zK$+f%nkd?RILZR=nH&t7)ZQ)~J%zryY`%;SF-P=LP9f#1zPhLp!kyDsEa~MPBZ<$a z8f_&+<*pi{KN)A3|9+g~{Oqwdc01DptXs_!TSa>j7n>Y&Al(gJ%bceRYhikm9u=w% zda;5o*4g*u>E+FRoSaDOfPXU{R>VeiS*^G^$T@wzfMLF4)8}X2>~(RgxnKp&>SMLn zh>q93mcMeJV6EP?@i_D(PjY>2=?@I!r+Ta{P2^wQg1sgHul;7p*1?Ep z7T*!o+~0905O~^sAiS!@QOB$=HNNH5VIEYS1CVIiIW;V(=b>2bgDJPZAO|Of7nO*WB zKnuW_4|kPRtBuQL+}E1RT%ZVX-hQgCX}?1zZ%1-?Q{jg7e(13nsPn1J`h~p9!f|sg zOnHes+{#`Bymj1*b>12me0z*Yi|2b2_6NMZlWC)9o*YK zjSf&6+40{L?S?vB3<{W!VszaVKGZo1yRt%TiI?E64rJbwohV`!91b>Yk!rrJkJ4Yq z?)@70vSgt4BKU){E9Bm#PJoLCm3nG_kKTv)vfZgHP7_{10{7XA2nQ3^ETF5IbZPBi z599Jyr2(F$pW=Y^4&x7KM4Fdh*qmdo6*B6VB&-x6LkAVM#R~P~+-1EpB$RS;El`R+ z@}ZBQ%{+yQ6US1L2!3^5lgSpBR^B`3`*y+0KAPo>Lx?^Yuo1e|)}jPjS#Ie&1@p32 zeoOx3ArWew4>2##D?YX>4cLVBJf$e(AiVCj%wf7hBBeG2rrPhy0YXR}!48Q?1EHaI z{B>%h%(RT6?m!bXnQaUXyw|_Z2}aTZlsyt}CoY(%R$rr*%UiAL#q{+h^0V2&0@l4> zyCt=O{9H#?gP$?If@}c!kJ$-L-Iy^482(S^*#=5T+~P#ZBAs)Pf<@MckBM7$)CKo@ z1SvQ4chO(A0Syv4T}#VA$IEYq@}aINwp<M>KH{1JXYj1iyBAjKZl36NqW!J~-LQzOYsK3~7 zWp8K#QR90Ttv(W*s3T4Y7f)DzV5$8wIY2C4H8`*h4L518+jovSb%QuZ6EtSwa!mGe zMDak(Xm5^$G+H*w-9<|JN+BSAbMprzX6N!qX_rN>Z|sPmY15~$3*JD#aN8br(X!rM zVX`fP2X8WDZj^o{On0i+6};(jTk`?pN|{u`VDYOCMS`3RXBh@o80D>dA8Z4Z=qy-g>|{DGjW?T|FEM>dGt8r z5A2?e_8GpBnBTkKq0E!38=c3#yk5$8-20eAVbi&Rurp6wqU+0%VSgcvIyWPr$XLDP zov3YKu~D!1CmISifu497^9fR?)mQdDNY&|_vSZ@$9Hms%t<)lq+S7?o@HTpehb2eC1Y|eg4y+z7U zNwn1t{zhX~s8qRY&RKiM#|rJjZ*YhpY7Mi)rE^RD8<|H%BBaAnzC_J*9kAc2Lk(Ch zf!r<0*}cWfZx@8nw>%OxS|SWB$O9OSRkzw*UO|yvWTegQk&)LE97TodH}8Af)$GJ$ zO|3U?3c990b_+B(==r@hyK)rItA7HHSS(Sfw$l4CT`rA*yNV#Ds*IP`XRiU9I+g{z zuFtDdl=0P-J~zNyznyubU)H zzQMjY6=51Cuy&GJofavEo;iw@3*rY{g9vMQY&%%(pidg&c!q@O<1vbLH3+~QW zVN_}Kt2EqZd!%KIpeg4Ot7aOa+wqTL9VGrrB+`Bk?#Hn%Z&0M|-Sa>MD0e~kEriS~4A!)ud!4`Yne1q}*a>x? zWM#<=b2S6|lG8s!9(BxmQtXuEBVBpw07{)r+^#K&)%Z`_PDVP~Z9 zBqngC&>S>gir?PH)aDqy>f*7c#>j%0hxc9C0sE2H_>J+rxFdEExS?f80*k|xHl(nq z6)dZ``>xCOtN)*{kxLCt#<~c=6(%oSf6Ow|mYy_U9`ql2Yu)>}M20 zW?$hV`{fMOGIlB`BiO6gnET`+LQvc0qgVl)W zySV9jCXWVn2|AgW-QY5Nx`udq6rQ}nh$e{qst!>ltm}+e#;ad#gzet|PzXOepQ)e`5q!h{yuCHdszy zt|U7a$Yy0pKFUa7H4iAWi*`TT;;TaEwrlguwOvX>m04}hkq7P9Xnsn?s(OCf^wB_- zsPx#;l#E+l!4>pu=NEn8n~{XtjB%9sIWA{9il}~5GO#9u~ny69@cx9^uzz#xI)>m&u-aS3J<|X zM&QI|NN(QZXl>c<#hySnMVG2Sr>4J&^lwIL^(D>kC26u>bY- z?*gX=9N4bAE*7H`(Q2a=+KJXn?0i<5iB+6|-rHv6)DvXPz!mxgppNq;xp$EP$e!j% z6sUKmHC3>QT762t!Yva*?^@8jfbOHyAXUkyiPa!k8Daargz5$%efES`NQm;&bGaqv z0eV$AM>yV<6pLxC)x<< zNc-w>AR}+%Y{QCbaMucqfbN zL|YU%3et+y&6_pFiIFz1cjA>NaYV9JyRCuc%mzTBo;Ok3?KkbH3`Y07@0VMBRJ6Vp zWjhLrwporkR3od&*vjVkso?I;J4@+JN>io#B}_H6CrTzaKB4>=`L>uuP%d}_Vu@9y zAj@k6juM6qgTwgjYhzBkS_BWPD<&y z$?VzP3A=1+poa2&u`r&Mo$s|Y2&w17F?p|0y_c)6&+?b|bUEO##nS4-cr0;va@=|p zi~Y`ZR;Lfa{BHQLm!B-^$19GW>1WIh2>lk6EjK9L3q_L`id|N0c@)x|jM~?hspabT zq#GtAVPBxD9Sb5r7La6(jc9J)6Q&plc}kq0e`f4+jlmUjUK3ZN|B;;;$x0u(=zYKQ zP6|5ee?Z6_f9T`RNaohGU^grvdU~f<((3@SGm0xhM@=AJKx{K4Q0&jrkz{*~i9ehH zaM*azY!)t2W)wB~x_j?}_n@1+IH3%LoQ7X_DFe^i$VMhBk>szi*}sK{{Z8{Jh#`=_ zoY$lT-RWMq3FENI#Sd`tVp)a_lBW*N{OC1$L0f3rRO2s8SGx_+YgqImi$LSuE52LN zi0FN9FFm(=XU?5v?%5jpYi`gCcHj4BCa*tfOC`KhP#jJw>$aF6&%7y_-pVLfdn43u zecZOu@7}j?qi=yve8|_iW@P7ucnt+*sGD3**L`^T$)U%-xldz!c3lV)EfZ<#u@stLYw zZ5mf2y!&b3^I5x`HO=oI@%yG2ZHdebZ-F*V@@llb$jR=W_UkJoBB?(eNybLhhI>z( zLta#&iRM_Tx2x&jpX(VM`LJ?rgJ+}&I?~E?iO@=)@AAYbP7eLx;^` zRx@;E4iA#B4Vq=TrkOta0{3_A_$^Ii&$PNr8wwoy?Q_Qx+ADL|yZq%>*sJ^6Und`L zG2Ihxze&AkeySkXvwSnwfs7yTz&S|ZlOOn4BIjG{f%bil()R5?cGt$zg*7%d(2U+j z^Pt~%aZmQ#^^o>@8zLTo?x-BY0(1R-r#Qs<7xDAUPQSG!O(za-$(9jLtWlHP?bIb9 zozFX=VW02D^6K(xw3kG(^|XeXQSSNmO9WC7{nfC$vLgHsTlP|eDn1B`sCH0>rU$+e z6qIU9Dc2K}n*tVW`>CdbqWiFY0Z0h~oo+?NPHNG;VsS|tin>V$f2q0W(*O?zhVZ2NB+NRwz zZzMVCoFF;+y{L-r{1sfcDaqVgRo&k2b(_nE`aw(`NdFOX?-q`Uiw?4`IA*Ei_q zy*dp|-*l&DV(c2Jcj=aaQ0p+UywS!JD6^`sZJhDWbN0>$xL%*vhb1R6?%#es31B&U zYP+&=PugM=onYd{FX8^D(B7}KRG~%AV-{%RR{9)!sAEh3U#k71BQo(J-Q^o>n=}YB z1?#pE0nz;2;jjUT;iOb*P#V~u2?O-%fZO~Huc^V!`*(MGL=C81^r+lE{uwRy6n=Na z?lu0K9`yiy5Lhz^2#ZVhCu%DcKHkR=>y?*lsrAh<0{p2Q@_P2HW ztM#Eq2cYuCZt0?Qy=HESGa`*6OVYP7Hzd7Lb}f)fMt`hTu9l4T^jlUD0C+Fcvt~JK zmI)7AuKJDLU*99n2RxgP$>8V( z|BrM3-L&xEjY|JtcICXu_`HD)24^1u0O0ZfZ~y=NjIs(CW!^?7&Yi1sLf=xPS++WVgFjCl4&tJ*4}4-my3^}r5yIP z|FzXiS07%LAWYQ$l@fd7gUcgQZoLsb0cwVc$!8W3_P#^f5=~pp-VegtCAZhd1c(A0 zcw^&dMUK$YFq|&cEkhrou3oRQq+k$zLO-{Uuh?@o)svNYuBGm6*6L{oyEgdyh4MS) zHooveH4dXZ@s1hT*&rm95b2|CZPs1C%vAi~i zogp?%!EwHl6>%>9!qQ%w`t(!x(Bt~zp~VPsKqIoix}un%X{>DXd&w-QOYH_l zyp2RatVl>N)O}n2M5ehb;OFs7>jbnAQN8XmgHm40+t{dpTkPa$5ie*L1|idXBl~(6 zmDb_=l4{LsTndV-yVYd+w7{p@Nw6UxPtfA|)Mz}V?nKDA*lAXI#Gi=2gOrL~_4cT- zjl#fzgohOF>d*TDAkF9tU-rF(s8`u0e!J|{dTZ24eeS^G4yQ1_uz_Q2P4A3(?y+#D z?>bUevHmIzpL3i&o^#cHnpfe(u<GD zmE&|ub+>6&KiuFfLv_%=Q4HVY*2{6!oMUglwBlz`{b8ZO^A8wAqEFZa&A>ZO_Z#Q! z^BV7|FG6JFQ^tgqFB4S|i2e4j>~Vx4_KT(Nz1c09YajeGdtWzVED@Wz>hQ~srSYXn z>Dk$zWojqvW*s*@I+tI!b4=aXp2VN<>9{mv)g&2+IFp3!SFlbrkhWH^O5&HXoalXr zyG@^-yd(i`ZLqxE%~z_grIuTBc92azn06gD{kss;fU004;kZ+ikc^~au&{kA7K z5`Wth2vePROY+;0P=f%bApaN=U9OSehNNWdk0BZT+mNK7WTr(A1JHN>SP%)2rEkO# zqx3#BbdY3GNgiNe(0LpT4CqWYpb}UM;N0#6>vS5{ekY)ajEN<@K$fEs0 zR!84V&tAyd&d$id!N~A8&YJ*0CD=c3)*kzfbKmf9oU?}hiSviF-#FuB#wDvBr|Brg zrD(>a^Z=Cly1RzZArznuYklHAcY@b6VJGqH-y*;hN9}fX$q&8T?R8ku5iUeg}8i?jJ)se1K2psD-5Mg~N#6{ZDoM5A_O*fx4oTQxJh(hQw2g3dZRhce@ zcrP*z1~&Q!06-|86aU?T{rnA1#NZ!rD1L*3*Y!6zP^LPTsyd1azX7R&0}MvI19GzF z!alcz2RNtyP{XPqx*u4hw7b0GyfH)Zqt0AFgeu%{c%D<;Ei3nvjL$0akTvA95 zs$`_F67$@r3OqfErCq19^yUJ}E4-Ug<|~Ww3+}tLtBkw0J$JsQ$WA)LkMxZCLrtrO zt|Yxh4EoRXo=5!*)9q_oZTOnUCJfIIW}?!o5>-P)QZNdxwhy_yVNJx4_<g7+%MH* zODo|0;0CWDAf2Y1oxW9iTXs|D;eqw1Vr`5&0(LkYly^oQyCct`T)Qw=!Y|g9 z^lrC}_MEw(O5U*YAXNMiMS$KnA+yHuY9b5ONo8x>;{Hf9uFks-Ao=-T< zm*+^=BG1D#3;R2ytLzr*&OlO-&Qz%Kcm)!w8TOnjZzsKE(U};wOP|D3cV1$Jwqeu?Q7kjyzayOnQuwwd=o!v6wV7s&m<{KYE8 zbbW>}q-`vSP1|_$z)7v()ky0`_$hn$=Y^*ekE;C9233OkxX&Z?1TXbG7VYP*_J*9E zBM_+N_Bi?qsjz^=4UJ>x8WEVLAKS!zX>;-SBY=!fXui^4OBg|!-%iFC^MPx4hs`Mv zmZ7Z;0^LR0ctMuODV@B4)7S(0vh@4A+V(lu&aH)(o0Q^H)+LG`P!+Y&iiV6({X%Tv zmpG%S{cg)bYv~tsgL5sn0xu7KLKq0|!)Zlax~_gmrET6@q^GFIZcZ3*XdSW0W~#(t zytTZ}bj=>=1EJe6#}W#HX`Ib7nV*VO7dU^c)lYj3Ytt>ixgxEO!}mYBVmch|EOBsI zi4EJ&*MO+NeK}0kvXZ2y6D;gh*OyTKFdIsQ7|ISqRX%nWIlZz!OL*i`SmUeH@tEz9I1tfq zmvJw@A3t8+7IA`2-VL`TkDKW`tZG=y*d1hq_I3oWRQTEY^@NDaiLaK-Lo)@3*<$VX zT|@5c0oK+G!IPdB6vpjv8~X8F#m;f{DK_H%;^D3Bz!&^UK7GTlYH*0cR~Yu_1=+Hj zhm5UK;a}JUc-4WO;F8OP3Hxq>7{DMhPVHOA!4G1$=<1l@xhT#fHb`pO#@bo=V^_NP zsOfvQ-;`)d0wterH}ZoxAsY>d?)$Qp&04av#i$WyMk!9~yYOy6uQI|^b3sPAo zOXJET=qRO#aa9d*xBxLSKT0j&;V9OgSoR^sl(s0@h7atf*OmN)r@M1cc`mq{Gs~ko{5>4`mNnuj{-NI^4HTRyeyHrI!R_Zh%u|jv(fO@NCW&#vBP1J+~6ja?8q%s zL%hVyPD0g)&(X{ zOWFwhx0BqsHoH0s#T7L32B@)uWoHE3*^qCaZF@sKMNK>8pKbVZ!%g+$?flc-A(sdW zdx+qvMPsF&o=?uqiMcd=lt>@59sm#zKAf>r?7x_JIa!gzN0cLC=G=mfNjeZ;^g;y2(nt^ySfunVsY3q@$w&pt2@wW0RvQOrAvSf#mNKG~$3)m3l5SC)^or!QEV!u%? zpc)>r{;E_d6ZUJ-YbZP}oBCFCM#*QvF?%M@r-ILp7j!fh*|}8>9u7OdKqbi|Trc6{ zcJ#Gz`+KUDfC}?qRz+^(&M=LIA&|nJCVkA-CM5y&*h=^|=SV-Ai!LX_L1Wc0=xFG1 z)?q!NO?cK68IR4=5SGeZXP*9&t|wA*Ym1)d8^6c)ZcEOj83k6$>(5=rZ%PDFNsKv^ zkbLtL731!x-epTL1j#06xh;E=4H=?z4h0$7M5X-#V;*feVwa2*@u>af8L|G;_0tD; z>WxBs(dYIkwFTLEuT^DrS`8FN@>XbUE+EYAz?)xHgYbrAUe%UA5QI4rRzNLh1mmLF zKa)FJV9z!-k=`wZPqGR>CX95O$=CNZ)8(`uy?`7lQ_eMx>kHhNB_or3MXV$Bhc{Ql zfI|qEZvp|YDm&=qKxmQhV+0juv{=Qz~M*{L8Tgd*}POYS;= zeP;3&ttWkGvp&DM*WrO$2k-YxwYxuy#9;|3Z7y@-LBbt3tQn?&#Ib7S&Ak!>LaJu%fn<8lsYtj>F4QOZ}`D-Mi2w6TR== zBMC_?GvuEx1S1R79mG`S%7()}Nc}Ij@_z2!$GGc)o{t(N`@BicL*1%g+ZF--asGe$ zqyHx#?x`W7^d6aF_`J;9H)C>glHnbg;7Rsm`r2`EC7JkTX2xbOEI^ZF*n7**Otz zs&if3u(O92cHsJ@C|P&ow_#bK_P;l^Ky{b~`}P;ui!kbq&xn%fbqZXDPt<~Ajl=#_ z2fB5Yy1kbRM|}r3u}~;Oe8g5Ip;x`|e9;r2?^@!Gh5RlsoO5mxS0coU;IQ!Zf5~Yfr$9q{F<&n=P(Av@>>IvHq!ZrB z2}yqe+l|j1@;RXW=~~X;LnD{xel)~qXQzkF>UzaS5gCg`)s7BMn;A08MF~G*of?AP zX$7=Uj$wBFSv<-w@CRF$R&Y=>YCOBqB|=;gbU?n&m{4paYnG8G#cI(||94h;ZUYYt zTJ8*k+8uq(gl+$VC4=Fz-T~*EX=rA1y={UW%~3cwk@Y}g{Tjgp_W^T3DN6(?pG4lViS-Hvff00wHT(47i;p)n=`@K_Cj`7_TyS!2$IRYkj1j-w{60~sp#AN zMI6NPT->SIWyr!N3n7Za#lyTWFpqH%Tkgqt$V%6s&WhZ66$h-{cUa0;L%qI%qDAFT zgn}j>h!clb{ueCe#a&Y}-tmxHZ`e@0M?)xOFu48)=5O4tPb%kWFR0ImX3v%B$gcXV z{_|xAbWpoz-}dQVSsBkY7cbl%kZTsOMJt__}8v%p1K`4&pi&8?KLXFbu zXg-%2O*D^WgX!^HaoR_PUl}v2_JmAp%}%GEod(kH7Ov9nUOYF>TGJ-%$Im!ku7t== zaY+KgOju^%a6}`cQD0#y3E@c=Od?DsmE;nGGuG|f1;xhTV3K#xSVt035{4NSrmb=m z^g0Vo1tZn<HFXB=mQD8`y7gq2*=Nyuy6h*ow z1D|MGTG}(v<6KP1L@8gZmfCA&S3TX``+Fh{aKHQ``2UABey#-1vQ?cq*vXGM$#S_F zQ$CZ7`_$s#t%J|7nNK8@7HCXrmE{BIw{@bOEwW&J2&itsd&}pZh1|(Ar0`@S!o|8a zLoE3jyw|(JlKRU&emcwQA*)*SG^Wk4O(3AHl*TyNz!r|>hA`jYO#HHoXmCL~@uxuR z)#K<>hNi970_Oc-LBUgjlZ=$U=_$_y*P8-2wD@j64U2^Ks!!k~YjGPDA@?*_o~HgV z>RvzXd8X*yTFkKD<2HG@ko85Mi!Ge*Ptrh~0nH+}_PecE6&hRZRo^Vf%^gP_$mKI; z=?6U+Ec5Y<%*(KT{xuQ4&V!}Q+0Z@ULQiVL`OB_RCp!{2=>)kFwnT!@UZE(szvhY?1sWOjvvse>CX zbNhp_(6c(^ddC+ezStrDpc}SvJSAk#NAQ+B22Eu6(bUhk=z?1Il|EO?s*_|-U+-mC zn4OFBQf{xIL3QX}1MP`0e-O5r$tRI|7mRj~O*D{D(M>RFlp4ax2vky0oxvSliwEQO z`tBakh6})9#}yYzH?OM)+HKGhDA@Ug@`$#Suu8>uubeC-uuEv)&>t3k)5&R z&hjIEO?{v4X-VCiLFL8AXep1+9n+GE0t|#Ac*V(|G8XJ)EH|Jbgu6>uC45$;B4nWs zZO_oM=~*8^qrp_N`EnIy{lNT`ScGxt=;?YdJ4@r_N?n!g&GW+6qLnrl5CKO5e;2l$ zqdr31TP4JD9}u(<4;2e1uks*#pEqf_$Te2?;4Fw?zOv?+=CB4@Pjk(N>slt#pi&ap zJVG@q>9Lm{Jt#V#GzDTEq?X;{RU*ndfeZ|4hR;M}Myp@YP&-ws5$RX6{0GpK=X}Ggk@cr0>=Hj*fy*hs+xbQ~DQ^ z+uPxb1R4nhW8<7i^!Ty^Z^jcy}qM0MB-jSS>N zguvVh_}hwk(b_TCVmL6E!&GU8(U5A9@u;#*4?61H5{hkIw{I}Z7rs1AY~{Jr%v z4V6G4lgi~M{bG2#S(9<3Qr!#|q(pW-VD*-hD19H#JkbGIgsZK}_XoxagVBHmyBTmU6FvLQLg)>B=F( zm{RZb`nZ=*V5hMA^~IDM_vAgL5c>#aX^f;-Tmqh@t#tY*x#DA*uvMyn%YbdE)p;^? z)B>4Oc2&YI!#pW%Ymn4<)*Y1gKnUzom0^!bahced)K5@uPD{Pk>wn9!aMzj{>(DnsCGdn!~q+6o|pE=&1 zT_HW?`}_|~M$bJm;#T(fbc+^vHJ&|_wn$kKS<}M|^4hpBe9dq0MGgEsl{Fn_jmFtO z4RahH_ko6mDb7%?Y&l(lI*rA@L0|_@yNEBZd?_tvI?~9gH|+5L+1r%lD4-~ znpkz>VWF8N|Jj=Qm?TGDOmDJyh@BloXug__jLL_A0c+t);86?;G@+0Dd5e0W=3Ae-z}XC+`ZldZGu=<2QGr6a__ z>Cd9nyI;yo1hlj;dWaDI|-vl;5AQsPbvJQee^iS=Qr@VY>5uE=L_6@;(T_JE=8813%5fw~Zn;6DAq z=^td2c7FJ#)u>f`}A0TYFHUU9vmG`&U2>{tqNhWHNP%cW~71= zMIbTdAzCBX5Q{wss(;@2>GFljEXLiLMWV4) zra_b~sw#`Mr{V5HwaVJi4~dXZqAs78jGqJ3)OtyRuG%CdD!F4C+2RZh&5=EW;W-B8 ziT&z%hC%|`C6fK%gLO&Nnp4Fb@9{~^T6R8>Nv9j007*2&Ok!yVm4+{a48*rkHELwn zylGaP;(u}N#6-m*e4=(iuU_BaNB_7i@q@{NiOC9n%4JnpbA1sl^h2)1?(s*|^98t1 zERI+gwi}@s^ry&6ca_8JQYzo*BD(TYRlfI5nf2}Se^|!GM8%N7T<1vlr<|CpvU-+y z9}(<-0O414IR?!wuN1*$oGyZQf*3dbf@>L>)^lFl-Q-*g8lz!i(+!DerQD9#eL3-S z=bXIha~;aP4pfe(AjU63tK(;y{)!2ouJdss^3Bf{e)m_9-J=T57u;9{5UYWkFAq7~ zKQ?{@4UPOrzw$M|-&!6|I;%PEz1O+XE7lfp+D4AyZVVOk67>GQU-bd<+O1XtLI*bPm{>kz=AJ~?~d1BllQ*46Ux=| zU86kH0ly42?}48WX#S!4`?7!pV~^`M0Vm-5vf96|q5q=q=Pt0%V6(N!bMJ+gqd%#} z#Gh1y;diRR4F7kkf%MN*!v<()=HSBeyQWYB0+{$mk}*al@&z5R34F1SH>81tTx~|N zGv1B+1Z0vw<%el}ADRZ@0tr@0Op@#hZ~-$WE2z1{09JA_L=QL0rq|wamexCNfE|Av zC(2O}en5W_>2p?^j?LlH*EMWiRijo(7+D+8e%Ul-Rp{ndYMHnHqJFnCeVSN@8&Z*` z!5xY|w-RU8r|T;B>)Uv~2l{BKeJ|5MbGalC5pHFAf4HQ*d$|BGM z8Q})ce$24}#WK?^5P>Vbf|pXiHv68$d`;>}ZjeK^j2$Pe+eG1u+^YZ=;>${gYJ~1P z@-bQ+I-5n-RJ7oW@YxuHUalW1uT8-l#(MkR>eD#S9UGpCoFYOym9S!iXT7kZc{%LV z+cjp1lCx4qIr~V0?U1s%)dZhneBL#}PpZBc%WuO6lvH=Be>~S1&FgCbmBWD^kHw?x9#UoMc}hd{cLVov8XhPsxprF(;Z8b? zF*pVuq}p=J*(Nq@g?@-5qxZC`s6zN)J%to_XEl~ENmACtCl)a*k z*jQVgMmu&My{=zjVeL(J2iF~|T?Jq57aRvJAbPnNhmMH9(XG79)n9gOATC~P0EjI*4Xf??3>qWIJO6XLGI?V?igGg zCmkSejIcV$pj*oX^);{gKml|#aFOq&>V~S_-Pwg!EE**8BS=v&R==Bq0jm`PK1f&u%?Qz<0mb8Q8DYN(~0;h?TT}U?6Wi}n?7OwtycN^BUlBh) zxp_>y? zzRJi@xf15%IuVIDk>XVbj{)f~Z-e`v=P;SU2FLdkh5ltx+bfK$Faj_kNw#H@9kwE{ zT)p(4bjj$G2UI_YmC2#IKG$S*zpBWVnz+^{o}i|{@akM_roM)s5hL2M$FvwHFoX$e zF79Lmpald3tRdM}x4L1r_-Ws_y%FE((3lBhZlg3rWpUe*3u`;k@%iWtr5GWKD9X~1 z9S$R}^`C;%!ysQ9KEs4jjZ^D_<) zBLt}B7qsvaOvGi+dB-#h*?_@;r6YHZ1-F>a#wM)$=SHDFz)xSugJG zPfpo1;WD(VzWoT_z~Ick{_FsS8fiHdf70Y4iyVh)pK#mTa4N_afurq~OQb8?qJa%m z^$tbJs15Tn;dg3r&>mede&L^SpS=l*37Ai!TdFR_-=A22v^*PWGhKw-~ZAa zmxn*@mvH%GhfNJ~maZe}bXZal4slhj?$>P0wv-vp_2KZ`S~oL(O~AZJVoL=}jRWXD zIT73yH3@S;f~w_M(%ZlcO*l~lM0v^Oc~AWGW0si*-N~IxTE2(3z}y!NukcCEeeGA` z&8V<={oa#AM?Z9z#1w*5rS96C0Dl@d;>rGLR9NiSrOs)o+(vYTkL?e3`}L zq`OC=ihWdsYMEUsp(F57p7=_rQaMwX456j0_NYJt#%8ntJ04+F3|OY4c|%Ftk7QBH z%!jxej5)0oQ05KXn4BE#DL;~(_m92Idbplp{DF&TWyurcW{V;Pm({8`$6egQclzFg zLC0GI*@C}?9-Ke!-+Z6XOIi(HXO{P&Bq@M5z*1s8h%N6y3re%C%;TxkWX$Bq%CKyk zqqPx;j{Q0NDYW5mB_2LHAM@*1LipUPB8c8&i6Fr;7j3r^)_C_=7@mA1#}lugXK0m8 zWfib{{E92gb58DWukaj1?X~0~vWYZxa`d;Z)nWX1`V%e_PR4>8pmVN`b2NH64R;mL z83M;`ZX{%$8erk6f~YJJEDj$HgItemJ7rC!Y29CY{G|*Ko`JuVjYd?u`L%T_(k2G` zTj88&HY+!-bvFWh@aIz1O<#Z!I+rL3yWNw+;J|rQ{hiF89t_{TTVAVF?3l!kW_^vV zcgA2%uG%V|CBH&>={%3~U1F($z!j~>1aQ4#v=?sdcAh<=otDO^DH50xgp#p#4rgvV zRiAx&Oq!Fq@#~*V*epA91rB*+m0#syL9nTiqv*mg;mD@QWttiSV>KA%X_~kEgMb~;!|L@ zY{W5z*`guq*Ufl1O{$}><`W+z0a&gG>UE&M)vMq@wGcSkIv6|PwEE;~Fd-HR*r(c4 z+CzMMz1ffMLi_Ny4o6af?7JvX@&O;d@DOIe!TcNT2K=A+5Gd)*FbY1fd#Z61z;=>~ z=)TiRi4qpw_4XNLh=EsR0x5Wqg!n^c)BqSQczsH{7{dfFmODP6-bh4`~!$!(4LSJf0zLt4p8nb60JOZlaM#8Vz>o|E4izb@4c} z#(p%|w{)iVS?hdRdImpSzMB@^LNRWkMNyLGP?%_@hk zUCXjfzZ`NRR-Oy`smKS@MpG_L9d9qMr;o|+Gy9c}=!DK-kQgi1f03&9r#mq1NfDX8 zk5BxjdH@1t21N*ERf&L&G#W58V4tP5e$ogW*3`>j(7lsW;KzyqOP8_#eiRNA_Uy*< zU5kKYIU62-dE$A9jO}Xg=1<`StTVSkl~gea2toCE-pF+ag$b<$pLnhN%5y~*CMgaT zinr|3AO5_SEGFA=E4kFWvS`h7_Aq7gw~iVYyehy%EgekV^~a8B>Dv%k-2Cujkmkd= zcsn}lb7AB0-E-k3Xt!$~35;g$=S?F*g1OL`(EYNul)Cr^7nY~?T}Z#{au~W){Zw2~ zcxwKUQQj>=wfaQ#Ay3Mapua zoS!5-^eJ-RPFh+-n*b#Qwp~fGK5q2dhO+S};?qtEg}qeC6qwL=RqeZsT;Q&(qSIJe z>tTiRUF(E;XZxMg+11PG#$MXh;KLr2v?K-zWY}J07(7E5CJC7{ObU4K5Y>|lWV0)s z))r3B(@aYhG#$wz@yPdJFVfXd*ivwflFV?Tmtjo|qB%GMiWHc_&S7broD$d=1Kt+&5Va(W|7y^J#4@Agl!<`U)zy; zgJxC$%z{(6BTooliZi0F2l-Od3-_;!GvplTE@My4^6lUfOkdr2n$1X14DheqR$ljx z^0ucvJ&Z{1Cj%r#R4nigE!1+_@_;*mw>va}b+=}BK(7la%{oL>1UL8bhS$MP*gTi} z8apwlPA8ZrZNfwpEB!~)o(_ZM?e{$n6$4bFwHool0CG7K!!V_+8%H{iP276o4fqvaL?@e zloCKFDoxkAW`Lma@3rK&BTC{qd#@bJJR)gq`=6%?$rj=!>diMZUYtI&pxcRsXN4e7 z?v+ioE7aj2Tpq6;d6S^$e^QHbbfatgYYp&7 zF${hEF+UUoUi=XB>Fcq=C8%;^}R=N})N74z;^&|Glk&0_R zt5`5xm>Rs<83chri>HCSIYtH-%iH4$7F;< z184HPeoK6=19V@ZgD68Wo-;aUp=SICG8WBN1O|--rtQxGrJJO^Qed&V3I_4fCOEXD)GL_@3q&!(q-rbxR+08K(@CsVFfZzw8Z<;@eSYS?@s{06I~gT` z6Kq{eb8VgL_a9U@n)}^|ZK2ENmBwf|kwFr&ZMQV8Z*)s;@5oy2l)44UENy4H8W}vs z`^g{Tk-A#kUlFbfrM!>QNeAbfV8|M+OvjmM(PnQFn9JuOrTB{RZ^}fva5xk1hng^H zH5s}my4bc3QTCzU)D6jE(sPS=#9_fVc*ml&iVATb>XMh7|kb`028MCDx^!rx!EBdmDX; znou;HGSm(1E$XC9oPw1{j=U=+k!)KuAxSwa$(I^j{^*@n^+XLYyBI9xU&ouV5xg6* zmpJ^8*M?`#r%oRydU=*(p*9|PVzKsiwrH7ihWV|Y^E$%cFB7$Zoe9Mc$r5?^a4B%@ zhINxCR1u(aMx4?y6I;+UBeUE*bw=Y(1~To!@}euVWn#zXjQ6*_`G4n4W&nU843^|( zxA>-q{N%0SC&`8vwXZ!ozYh`#|8vW!XOgsaO%#@&9uZR}16J~9n+FdL6Gx(OH=XCs z;OL}X6|ZZLzKJExrbKYhOi^Dg#P91+#t%3-7ekK=q+X=$T6%qzX;2Mr`NNPN>y-=L z(&Z`l;Z_ipw*;T$o!G=#KScoxSGy&F)QdWD#H(?_;)Kw?Ydk@EDQ^}m$~kDz zFzXjUb2S_%9wR&wo%n(%!^4%LYyzCorw68F5=itC?M>IFdoquF@hf=#C1GFo;Luut zL%SX$H!~))e=4BSV!bMmB9>0c*BHpjSvpN0B2;8hfWOAQDe06+n-}cEGyCw2kwSzc z5$p$}1r(1hxNa19V#L6$FN+&bT9b?)HC8ZtOJr7k#i+kP$_&iT3oP5wY5^42H+JA4FttrUnoa!p_2q6_O zp0`DVm`T)!Y71RYbbgTk`pf4H$;S(%Cxn(A0Dx-v9rnO=|Bs#?S*O3lp7)*}ad91e zy>EI}21b81V*U<&T%Z8mznd`Ym0^?=O)x!$1H@6n1q8mhSPfBeGU+Lvc~sH}gy*AE zF%g1JG5GKc^Mj)x!1^iU)L|xm$r2S=F3FmY=9~p32}NJU78!&9S0b*VLWE3|u-k-^Og)CaYJ1}R?UgeoeIJOcxEBgP|&44z7ja`_8MeaV%fO)kn4Q%8kKX$F0(?iu!cfYh6E`V2npW2Jp*2bMzJ@mGydnJA||Cuo` zfk&oIvsNp4WFT+-zydFpYdV7hF=1)b(p5WD?)Re#@`8`8|G^^abW_TPbD;bGYmpTnWho0M!+-7O8E6{tn> zr~O>^>+ADROJP4>m$l05@Y?d1;K4zxvij#ScC36GCjkm}-I}KRz)?!Ro|KyBC6GaC z7t;>(x4LX_EJgH+SQMWlPeJ?&udDb@_ch1DSan&Y;`5YCgwu8dFX3{?st6f1geiSl zcc(}~u0eJ9g&`c_c&+mf*Yh4wf;A zcI~zY!}awA(`bfPhQdz(j=>|s>Fh+?w2c6~^$qk~z4N-4#B6j|sCC+58B^cagqM-q z^tf%P#ECJ>4sGw<`IS8rFDLvl4j+LSu182hL6 zwyxCbPSw$h8w6QQR=r=Q0@0f22+mpA?8ZN^fyy9QoW0!Wqi~O;s_TnC0dR-K#!4X>p0eje^%~ub3WXZ1R;q#YnH}yn?`8(JPBNoayDmzA3byhy)@Z*f&zLkUwlKg=~_`Zx0N6R?sgts0!zInw1EL;@C1RAiR%o+E#=x+7U#}q za2y8Sr*#-TKIQN)YW@*og`=-H5=^4|$;uQLlwyIOp?MT{S;E@{yf0rlkPtP-_dC(E zD?RT`eDN z4i}8r>+H?M_o63vrl0O;=fE8t%Q}YZi3QZ~^Hg(nzrC^Lq%-Ib-j3pe!uSe>;kwde zD@!~Lb&DKC7Ev~E6_+j`Dk2rPGP6Aac*@tq6-ZrYb}bYRj8w!X>0%IZsoczTG8hT? zbok+>PYw(dd0ms^q0+Mqr}Q@x>(u(ym&aCv9ASrYX`3v}NcXlTbZ~OP zSc?#JA7R#3(JM$NkG2PlwZSNLS@iiS%T-IeBHq!ac&qu)IHaP%BYcK#!m&q*r7Nx~ z`^KUD<=7_)ipBH{FH~S-V=4`xo>$T30oJj9#Ehg}Pr4b14ys>B6BITUG?|qcZcJni zQoW7pAY<+WEyn6QEc)DDxA!swrnZEOpwq@<4WIV3jC65Gy4Zk=gT$?o2q_`LL~z!q zSrM#9x`*dbGskoI;q`)2KHm8wH3e3VuyvM6(CwRl1=?0p^Rml@Bw^cV3e;3AMAVc? z{#=ZohrqOx2A-3a2ZGi^0dX988{e5%KXLHk%(zso1c;g_m%rC9xKzj*9KIo8oG1^8 zE2d(Cs=IF_Wqd^^`7<>WI>!14JrP@O#9C36;cSs>*Pao<9~7zuQWLFL3ub;XX8M(x z(e>V-@V3V0rpLCCN`fKMd9hC9dYS|PKtca3R?PqL+HAiGBFeOXdu_~r5=8znIYH+iJdr=-fgTXR{6Bai zj8YoEc_OiS>UeM;1s9BMOqrT3E@T`Vw&u1z%#nBowfeEcGg2L82gptPQ8_oklM)vNj{f$CXQO+o zmS+*K)mNw;-TPurcFjP6-QC@TySqEVec^ly z&OX`u-TTOU&basf`o>s;wKDTOU9)Ca%j~YMa@5m4(IQBae(Ke7Fc@B9_t@DvpwLI= zzJ2x^8JX*e8`em<>h8M(=yt7lZT>&=8+n97e>K49;9%m`V)Ud1OlFiG!22J2tlVpQ z@pIG&0_SaiwE!jhe`5hJJ_Y~E0xCHFe+&4(=tA^=%mR8;1UZ2|1~Gr`15_CQjRm~8 z8YqDOy$|@it3i|=jyU=&nTuyv1HETggW%69QE|lD?B*pDOT!6qC;^q@*)ZZMYd7HGv5xT=2++Vsxp;NML#4Z6w7s{ zj&=HM?kA6_>ey`5BJlB9U^4G?fA}g>HI&D|buo>4e9_ui5~Wjhn&E+?7#}h;5mp($ zGpKKOqp$IRyyQ`dMr@>y;yxY813fmAJmkLm`GclQ`T9k!%9He(>u1qimr1aH9$XvQ^k*!w9E$Hl#XM?V-bY8?xeP zCw2spW@(8FK0D75AR1Q^mziD@$Keq{3+~1wfSc9cYKfV4GsMud4IM7v?xtUL_)sNJ zrT+^cSzgi9Id4xE>+c>Ee{m=9vPAj*`1Oa+I2sHpneT_u9{0fU_K*bMze!S=qCW+SR zXCqkg2f_XX0h9K1>$*~MrD4aJY%cOuZ1Ab?>m{86CKIn>RTkc?v{>_aq*@FDl;PN` zuDf%9aYqLL*ZY-b4jW(|r9AQITm;bkr-AmI4BW7kb~1tA>>CPVu(&IB6Z27MU_77~%9N-!q+BLd zItOBDuD8!J2d|eXaV&Em7fcM4P&c`%1l7VO!t$kJk61WItO%-Y3P9M=(rCSo=5RC& zYlr>uW$nTZ?`kOCcd4C1%|$Z{pcRO$_ZpaK0AeeEoVdS##CikUuSjh-iGLfI6VT~c z*|tLOspz_BqugO(L?i|O(wirFtyP%9K{{-oExU&j%bj-ZvP`V& zo|LnvT&~&eh2?`SX2Q4Tj*NzV!{r3XjryD$42|h=w`oDu^R=@5^rB)Y21CVY#D|n2 zt_I}SOJP2Plw?bc;+!6Qn%_v(P2w7iB$1%GhJ3**W6Qr7Kh4Dq4zak6U`ix-$gAa7 zB+aO$aN3`uz&DqA3*b6xYaS6uX&_4`y62m^e56|l7Hr)O`^fjH>`X}e>G(cuC!}n2 z%g!yN-LTf96Z(EeWDabp9~d`%L22}uMhej|M(>8+YM$1sBrvpTsE{C1z3qpYi2QOr zXpzWTE!gg%F&A$SL)ueAJD|Sf{;pwqD#a3^oZsoEl1c^np*N~|S)w{Fw7M@L_O`|_ zgz(pmNO zuTMl4Kjj9J?GEk-c`drD&oq}m8|kKlX`*d8?&`-LqR>DOJWpk4>wa zq<>Uj*8pRXkLb8G_6#C&j#_ScN`FR$KCE@Po55i0yg{C-j+`X*;XHr5((9>te`hy^ zF-bFtvO8O;^+a5GH&I<)5ki0`a zW)Avg-sOHtJsjb+#vC_!pa(DFzy{th&6Z&@?MJBKfo9n(+H||L;yi+VlkOP~YwPL< zy@YLxCJn4_-vCdvV69`QPer#KVy z!ehFDjAgdO1m9tLr&?R+ZWEJlX#VQ-7QaZX7Q;K8?bT&iZzY^z<)(f+Im%Pjg~ z8f??dyO@`70#nK@<^pL+JtkUmX^q1qe_K- zR(!|@mmrZJb)D+ze=ISxoky4wPOytLx}-JOUS z)sveaMjrEVgIKDqIQ+%O=zqD{``^G;%Si-Y>oaVe49V{Mk{=FW@tvtlLFfSQ=UOZ? zhdt~l1pF-?VlG$S)B|z88CJ+stZ%fv7!lu2S`*Z=t9yMtl%QYzc6mK=p{n1+YbdDY zjFvCN_aPSqr!!>oVUA1hPV19V&Zqpf-3Abvoirx3D@y}vWLrU_7E47m8)d2IM-#bb zcPWg8Ok0S$NN0JDfUm@h9Q8<6`FEQMDB!ViB=fpmL<#<*-zw9}?@-6j(em|&g!WQa zM)8{54uN^`^oifm@?v4J)sbB)yfH+v621i?7G`@N=2)XZe`P6^Xh<+AQjB7hMATIf z7@9VJ^G1oS&eK?XWIhT&%*BbzreCJppI|JQs65mJQiB?FEWc)Pb({n_l|l%_q^i6$3aPCY-OBypSQ<_O+hEQLE9q8)t2 ztD(#HoouX>D0d3h+32MN77GL~{cUEBy63fSC_?D*?QYI0JUmNjRDc5h3^M8mXi)M89PN~A`73tb~zG$ zCx9mMu0Trw9SVjj?@L-=88(qN)GIA?!TEqtK}MwrU>uR~;?BunAH#QE;Z_K*R49nx ze8_Zf!;Rp@DMEZ%A316ZZOZpxCS=a93GJB9I%xGcwvF-K>gXYE85UO@(5Ql?64 zYM%d?;MD(p!|-Ge{(DJQ{ZS5RU*uAhZOhMB5Awm56*mS`fkis8L_11nmA4wvPG_k% zxdzj;m@QO*ct_-MRpslLP;7}J=|S;Wj-uilKTB=(_(%_qyquQg0*TZ+ab4kV;V>Sb zk>*uMT=AWyRR?>*xC=azyERXhZF#?5echFdI9{U_c!DPnRZ*_uV~)SOvhhwKHb8Z}xx2ETXyAVR3g3(k}2^XRuMIvPS4 z(y;a!_Eu8+uIXxsVd1jbZ}Q>;%1LEWErze>+6pNoq*?YCLl-N;RyW81xCYv=gOX2^ z!cR+wS;#iWM{a;Z**9gD-c_FBJaBBR-TwT$n7!e@qz zGPMk9Pz(?0)V(F3ct5K(8-aW>fSfs}N&}L`DRg*0FfWO6q z^7_tuwT0FECU$+~%N*{E^}-;NmXT!rkjfaJr8|G8Va+V;;u-Gkh$AUjfj0Wj(6SXILp74txKQC` zec@jZfBl*R3$L0!HY*U~i_L*)e~$c$m#}_!pP(S0Qb35?&PqLm!pATpagP#E>Sg!7 zdm2rpD1Gv&Q*(&@_?>kEuC1?uUKEll2C(pbwl#KhP>$!tcA?qjuwOD}HtCnc5fU!r zCGXL&iByygQByv{+=|;RNBppln`+`Z#!&|ChB{JM$9pAFT7Dq|fEuL>(~R7ZLoAgy ziQb1G2YWEC_4W;{qB*A< zOxD5}`Z6nEdnfHPgMr>tx3?b}C*fiP`^6RToo;@r|ue*Jz zF;2d*Ny%90f%*BLxpPBu)SPiK+3{l$Uc?D!BSw?t7bqe1>yjpr_!qq&a1{!*pbudY zwX5mX3@&Z&=i)^%iu$QI3t8`>s5!ER8q7@fhd!z*$%o-qHM09v7d}L=-WvrZv)6`J zNBLGX1kosK6|$PeH^;kAWC#^5KYnF9WY4Yr=De$XDK}pPfE_B*kbu{p9wm7QGgOm8 zjqW#>t?tg8yiELH+&C9~22p}ixj}GQkmt>8tx19M{>ys@aGGxvUoWQI%UUFGKTCH; zyd_*4Y;)!PDSHG)&v{-Al_-_XBmt&p(aK1? z|G#(M^Z(dlEf|&{FVMl_BV%Zx0_ z%(tvguB{)k{Y7VX3*ygqQT)z!y>y4=0~p735M=sT;&Y5dsaTzZ^VU9OLk9*jQHG+C z$2aZSjxg>g$rnVcI3&0jxOq%h03MHyACKJl+(S1~37Pu3g3*}>VzD80U(o_LWdFZ$cZGkDDw<;~QJ`0r(~ z>^T?75IWmSRkV7H*QI?{dz_q#_;Mk7VZ%696U0kp91Xb>&6We?Zcgi0HyhMgJp4JY zV84UBeA=EeL0EFt3T4KxQ~9}0Ttbzz^AN9-PJl7MPYEdzSVnr6OVfG-mw;N4m~dx`L zlCxfkiU#)Gj}S-~NkqvOWGyc}@)07mJ9(YgQK{Uu{W=x8_?Ga(`bu#87b`OkLl^ei zUaLC3L+LkotHw`k3v~XF0J5W522Nm3Av6538ET)?fH&kb$*;DPC-NK4-y_!fRd1x& zmVYuHj4~k|cW;w4jbR59*=0K;NOJ0j)I+`8JV@QU;)l5)GC2rnLSLmT*~dg@%(ISI z$*ygKRpAO&v{$h4+^H?*ojpglG|^GPS>&X+8_1MTjHwdvSk#f5 zvyZ>aBf@heTq$8z(EVhz5ZDgtfZ|MVyKPFK;B|Jl;=udljdqb`yoE)-B~a@0XjQ85 zZtkOv$ANtci7P(mR^T>*vBgrcI!0E2ca{4FpN8@`XKv<()`}CcLn)WTa8uUFL8iXo zTh9<2T5Q!i3`q{tI1A(GLX!T&rtO)&exa$iwTVnS7Hi+Z#{rlY7GUi;t zY`hXw9b+mo%u-nNqLL#RxbUG0nf+EgSy=Ygz=N%X`gJ@)4uM7TivR+ z=gBB$;T05r{gz8pG@L9D<f^?pP-lYn%mhCv!L0)4!;OIt zW2@jlOWNeG@)8xJ(5cFVrkv_+I<$RvLhniM9@AtwX3y_e3$&c`h@v^4(!)vmao9p7 zW?NucrNxTr`8I=ZKS)*R8@opJNuMwlFbId}xS(237Rs#X&SW-pMslntrh;YUnhAus zL8GO6|qa^@W+wXR={BI%yqA1qaP2zr-Cs)8#n zWTfkTIjfm7ogAkTHOjZtUEe9(QV110O!bRZ<1zH3(zN)wN`NeOlgR8nTyG&%%`^p@ zG})XdYxkC#KRM*v7MCBK9!B2h(J{`jSl@=NNI3stDlz4WDBkmFwsdEWZT7*Y^z}QO z=&!Vsh4v>h3%Uv85e%wwLHA>vye?=3J-pgvhe&=YS$o$Rp)|VpV!5ROSj+TQg#2GD z9xzjmcH{Gw_rBuzZ<=XG*;&EZL*bA2`eKsX2ehlK-CYh|i$J?pq}eUqk1!eg0_^le zyHTZCz2t(7@uPrY<>*a?rI)i}3fdxWB2 zw}1EdZ8*7JZ=rU;^*v5?Ka+-M^=<9p_psdapP;0`8g+f0t)8|Ylw4dJDi1O;{+XTS z+Z%VclZ&WsDI0Yx4jZF`2E2L@$MLs1Dek6RJTS)j4!B{XIY&dR)KQy3GnW=JbR$*@ zKLc1+MWTG9Kk0%V%QhlsD?LnTaQfXI#fyrY_VH95-S@6a(23!JfKFQs%+on}p!M9< zT0VJ-I_)4TJY5U)wAr*Ir(4T8KI%TUTP@a>FpoY!B|tZQ@}E+nO7hx%l6NW_BR7z4 zQ=ZnWep)z!2jC(Zbzw1%;@l*gjbMml8v;HTA?OnGT;MzZ6c!V|FFg`ayyLWOdm*s76uFA*I8AduLVEWc72-iF=^jCIz2=0Xmha)}Uvd&j@N77j<{G>nR>D zf+q@~-{&7OIuFf$b8y^t{9#9> zzeTFmT_NvS&4ynb0`XcVBX}&bRnWT=XE1ipE)Lrj*FkDRAarV`?t#Huuiv$bH7*33 z3ol7Q(+@s|O{XB`jY3LAmw$^C2l2p2dlvPKmhKeF{oWV!99kHEa%rRuYgJnReEsvX zzOr7yr`1o;)4P>OEz@{STIpWYXRc)vJqYw+r$0{i>Eh}GLdw0k3~efqXg{!8S!m-< zFR!o9s)8-P`WXtKTELrJ*Jf}v{BE^8Mf1Q$<==jXT24HUN66Akhog* zb5VCmpHuTRJ|5}_7_smcD8+H0C}ZR^LWOWP5)@0P(v3^;n-(IkYTZXlwC5BOIC6~& z+SXR`K`laB2n)AgNPh^$edo#t?yL=GIj+r_CyfK!KAi6c@DZ4sZ&6EwUvkPuN!*5% zxpD)1yWUxLAlp}B^C>FzN5OkCRa=BEgyxYUByqF9tX8i-@3L9PoOabGIchEPU0r8@ zsZTknsAmrm?2Qn!XxO&9vEN!&)rdW>IWL>up?RmqPojbhi^(sH`ZQBpe0jhXa24oc ze^2J7q*r?)c}5uvv0M$Z%G9@V=+Ml5Cm#Oq0;&8f9 z{+dev7Kc;luW>lD;D3w5ndGDtVno=J8o@R1V69C+(ib5p|Hf?P z&S7O_Cuv7*hs$H}eb-_d`gd!$_xVI3@t@!#Vs&jZC}O;F3jugD*g9%hv^M9pJ0)sA z%N?Wrxk!KV>Yh;S@SbvEDJC3Pa<5$ z(O4^PrK~)?3g64eGRrbst)E9LHsv!eG4}o{KQ9l#S6Y;MS1RHlv@k?F`|ZE(lP}c{ zQ3Jg`Od&1liO-8+VSp7YbpM7P%M{z}^6 z2Mfe>=YvOKsv;!TRc;B35~(dl$UMpSM{ap==~^4&rFo*afcrkp?t!r8ai+rDDQ%lA1$^y&c2TZ$=Wk;|1kKo0}KxMMb?FKM`&mIK$1h z%IT5i_MZoXe{}}<51A$eE~w_w3~c@+bTVl6UXC6QR%TXAfzsOFt5E#FvwECRSjN62 zqj4<&eN83KJYMZY6e@oAxTkfiK9Me7TZC-#ffyL`lBMq=Q!vhoo3SAY+IQ^H82Mpy z!qY<+Msds6NAr`i&LfT!Kgu9M=Tz_wuX)yR34VhAS>Pd_VIPCq=_U!}l;WL~8m~Vj z$yIQtNGJ&EUA@r*%wB4_LEL=^OO;??OYn^^p$z23{*}q1#iq=qxJ| za4n7GB6Qbb;ME%h_o(QC?bNu`-Z4dTtBHhAYc@EnMKueiChrB8f)b|XTLM4j7N90O zqnFzxDvM+@AVT1Xm|$_FidOfZfKJDk=K(t{NNs7k-eL-l79v7KxmbQ<^*tD~NTzcN z)xJB7lN$&b%8>rbC4hr{IX&fKoyD$WGA_UWHmt(5viF2zUtgOtM?AY@k3{Y$?ghZOBT#5TGhfwn+% zp9ztK)k{x`!x1cI$%Npz?;mFme-PdZZ)dHKlqOzSnH(Y7L%Px!J3pCCvdU}OcN_@) z#xglSUn#d_$FqkZQNM%2fYAs@ti5y+CNtK{*-7Hmg(^LQlAqy;KG;8rDifXtdJx7O z7<}&)%63i_{2?7N z+S%L;U5&AauP_6NLwPcjcx502 zeNVc{S!8VPdu-$o^8*H)QxV8LeL@P&g`Y?jPDZqB{M1^=w~qa0%Q9IVqUu9=bzh-o zT9%HAT;MNJle?RXECeu`M|Py*cLUTN-d)zW9OH~D@9;I=u%Jf6CGWh3-6&7Y>6LQu z#lopulpkzJ^5tq-B*B}7WtDSh9j?IhYB-l{I*P;0819}$!|8YxQbNde$?$~4f=oe= zbDZJbFJnAFQ;a8bs3)cTgUw9tV=DH9i)X2=-wcExqopj@pJLDBO+p#eLj{ehuF2rc4e}!W~~bRi@jBCNUfIMMlEJ z5F2%Cou`B*xeaIso2}tlTNKq;D{ARka9Og94=15yeqgkqh6x=GyC4xxmv#`?Fb_^2 z*}W51Rro$&CZ0-}+iV|IkU4%se$MSgAfoWaF?&IjdD8SQ#^m)z;A8+SGcDEUxDmpt z*=|JRO6)-A9O)Va6ImO&5hcOh=WD4`*traeGBQL6Cx~eP`{xgIU-hMDB zQvZs>A*$yBTuZ`iTEHC|U)Cem7bjW7wNh=lagUH2`A1(E>ZHx?m0P;~O&9ih-PO-l zT0dv@X)}796$elh|EvYJr2``9v5jMd7OoZIr*c%Hj7Wod+;cvK*03q)6uL3`xb>6r z`EWjuaFEG^;g+gVF96oU_n$s((62mu8h#!j;kS0``hU8+aU7)=<9^?mB6?0 zbgovuY7OUc_dCH*R|{#MPT)9pvO*4W#Gdl7R2ZtT!h2|D(&pEQIL-r6Amv_3$Em>h zI23oP#Yq4Dh`zWl^0sXG9EN9>>9V?Y?PI)~78#Vkt7JYs{%Xq>It{E^n8F)LEv-jP zWjaHEfNEuBq%K&#pGl9ttFqg0k|(=PcWosegP;On#Q1AnnXkm78D`A=Jg(5~v3n&{ zG-7uqdBSW*ztN6hd1-bP)BxQB%+bf1KG#w=QKq}ucWD}Kny0CL-4s%D2j`ad*pSW=gQPUG1e)-%_=`~;e@R8EkIRvq&^twTyp{>* zx*7Pf++_$_LaVV&cAQEN9;hL)_4e}$*ic>HuogWtugqc9Hc3U?09ZTU{TX=%>o#mT zrA40}j#s0v)xJ`)Yg-8(N}g;EMU?o%<|Z+;@j;lW^?%B;_S0dZMt`_2uA9pQb;uxH z#@-B6tu*(pn}h_ok#*u1;#!@&m8D5h52V+eTVodsBWBI>(t)Wld_}yfG>GGuo726K zFwN*#NguMFO~P{~_v&WkI_a_-8^t2tv#WvEQuGy&f z8%ny?*S};%&{%Eavu;|~q}Aqe$HYUe_tEt`%BuymhmO^mnBsgJAV|Ax`}vx%2|_wX zL1!^T`(kA-SQ*}yVUz~L_?wgfQPyfsT{Ir#zBNz#c)KBhqDpR)#Q%=eZ73TU&Qq7eP3U)L+7Cl)HV8m_=8zQoHEfB5Bi z1O4;y2LIpVUn2d_;|G^jrU#Zxo^K)(`5RQh~$4p{Yu~dJ&VGK6IpC!E3_sE zubKB@+ZpN;m}Wx6Yu%m;m@{IDT-{_MTq#6t7MM&3;q4{?*epL-f+_6iF^EDLZ|@{; zo(Db7mQdmWb}JTI1^Ow}D#K5o(MeC=&E}a!XmGjKG^rRzU`(pcMg^ zK6McjuL9r8r2Ghpb~bDBnv3InpfocU`uHSh5MR^XDAv0yETlP%-loMtlIoAucZ=$Ysce!8 zNGvOzXa&2M7OlCS_6uxmt6Znd755ciWz09x2ZhKyt7m!?ETa;pokK zDy~&2s(qmjfA$9RrysATc+cOkoh(q~c{uLgx!{u|U(UfGKB}XVTlfa<s;t{#UPW$Uzb zclq#$eowayUyqMzM)%^#L3p}$hCc$Dnsi|7sQJr+sFBcqULrcHF3EPJ?Vk|P1Ei2x z_-_rx?%Ad>MOK%jaqtr9uiZcP#43eu1_Xnm8eSbzv^e2*nHkoa##E8MMgZ7IyY9p$U-x%WpwXj(zLtlmJ+C=W%dHQn7D6* zqN*Gs5;j|~{EN<8GRz3V-iU@=aWA`J$?Mwlg*V-T_&3bh;!+d~`u?29(gqY}B%MtZ zrDDKYEe=iHh$j}y)b|csN=GAy;utp@j(Rc3xo8iL;D?7959o`2e5aQ&pQY(GWiTu@ zG=h_pYtHSjgH&2#&LGnb8x0I0<8sf~a%_9TOvQp|V9wY=hQA)_te6y5a8e!49JAtj zKkYopZxXePt`g|X27mEpeBl&aR`PQ08r-;HUX>&4r%*CYGre$YydPA3hufQqW=p?t z;iJP2<$zR0PQ&fT;7Tg8DV9!*HxF7SLvi2S0;G@m0|8TlDn_wpKX_$Xl5f@f_nI&} zC!DC6j4?@;oNWXXv!GP2A%`CNk0=sC8e8tL4wWFDV!pz6Y_HPLD^7*mlNq)gs|@5j zrT5x}ajhvA2kGAxM7GHEik#Cc=FiCclBh4{7_xgXCE%wJ$T@1@8uYC!hOg!LLm|6Q zT4B3_h3IFgU@F~Zo~Ebrut^w+=+p;chbLry@+kY+)uBl!s8c(xKCRawGs8B*w!{N< zxpYZKZB(6p^u2QxupX0fM7sCL6^#iUts&$A7Pa!ChjGl2A z0YT6%o5Y3ti6N>li1srFYDmIxP7T)Ng^bhrlt_D@JkY~i(y2dK0kcnxCg3ndOKk@hQJ&6699sKj}j(h{tFSRXEBC$;osSJdF-3VU;eEGH~nu9;#y zC{VK+MjJ$TlRu5P8-zRR%I3ml_Lfd|G%40Gt?YQ;BDH%(8Kp^s9P5MYnMWxcfV*%D z!NN+z0W@!Xb?$Ac+mew*F`*-2OfX&jppyx-V_$dMfZ~YS0>EwYV@`7g;vqmv>OHnk zDbE@rJJ?ewvP4SPO>>Qxe!aB$;_CWwHG%TZ5UM9sVc%3Z@{i>MI*+8OwRYCzuTc&= zmuF$Zp-Dc!kH8wDAOvBT);y|@6>RH&o@{$if{pHO6(6>yoX0j8T9^NEJ?H<_RNMm} z?7hsl$yEb~VuPb9dcI!Tm9D_=3BWsqcv>N85NYN|DqD*pEc6Z=L7APc_s=KZ-ILK; zv@iL3>02!}AgQIsx%(C(Ti+A@Ntb@b&d;s1f$i;1SHe*Hhy=JoZ3yO6N77LRCtCXm zX@la@{J~sd$^3(bmS$Ts+K*ZNYmg>r<%>PoMZiH3FS1ZOqiJ$ksk=ingR}hEm&&S7 zXwz$U#RqBu-)+Ea!)V$&ME$4Y4CiB7q61e&q(MuoE+vMMt{uhUio$q$r|Csu;6uL{ z&yt+7D|MB=+Scfr`&4_ZiQ+~Rcjz0o)!*ilvWrK;Ykh1lL!cT%(l2~KGnW*yx;6p) zxy4?=iQ8Ukj1wvBwuB?=yV@fW`bNmN*3qxPe`I7my-kN_qNuBHl%X8ndWK6-)t%Fk zyN-#Ar=PW3po4_W0Lr~UC{qI>M0O`hG?O+u&UOaH17YR|DS%x&=~hNflNa+wx!sW~ z6Wj(B?bJvJmyZC;w-{bwe4yF;^eAHEVzm83xs=fsq3`a(_K*%MvdJO71o%#wj zn^>l!$w9cIlZ*Ea>6D%(-|sLKr!@WV0CN?K*sm7qsia8NlF$2CT6L%&WPKsj^Kt|g zO+eM1J*894ShJ`<0>&wYgLaE#aV|i&iZ34Xy)OEU`JJ;=sLTq-r1tLy)BS@Jyg?rw zc6~!SPUHZeU9lXH$u#suE9#3p2^SenY6z8qemG<)&` z{H@g7g^+mscA}xz$ha82u_@AiwaAmJ|JawHZ2bM^*Tj24*`|mxml-<FME zrr@bj6QIuoTeC*0ktXlBxUTCinxvivoZIPdr;cr?l@P9U0f6o!y@iWYV%_s$K5c$5 z)2V~Y``z5FAZb5zgZi~Zy6zP^0e=UMdi`72LJf8SJ( zCs#$$l7Qda^uL^Ad-0QbJ%ORxA83Gpz={2NE*$}kMg3cV@!#gsLVt+ufeiQCTzb(- zE=nGlo;Ftg)jP;nU&Y1Rr3F|PQKNr4Y4E+>eB*$ID2NjE>JtPo1OWu(hd03tj7+uf z48u{*2O=y(HoksJhlujcpy}|W`Brh=d_0Q)@hYiwOKzt=siS$sCKa&E-P*x0KuFIN z82cJSckyGKU@rrhsPElc0!|0Q^raQR!Aetm=ZJcFl?X|{?xsEX+uny3KU|ZuXyd6x zLzv9|9f2Q~l6UB_bAyIftvx5od_Be8hCWU{f!?-0k4LI%89v)1F0F>`(Q%A>2$|!Q z^i@eVyWJ>b42tjzF_op~L8m(A-4Uu6t&4DHem_CKX_XRSi_)wpJsIHopW~kA60Yh? z4-b|iA>JQrnqLnjirfn?PN- z8bo-avxqHhk{Wxuzn;%^Cy;&j`%cFLynx*}d$#aJl<(-t?&d|-T7O+D=prs}kNasP zfT>jue#!<}9|5N*>1zRMyn8UI(h4U>IltV@cxzKAuaKi|;3O zehqd^(q=N}x2sY=p(Db3e7=1CblKkM?=oob`<+K~h$928kqI1EuzErTKsW-2F||6p zOD0RGGszPX^6z2Lhg^Ab+#!ugqPt)M+z9waEBe77NX3~L#@JFvCE zYhyXt=Q_8z1!>6DQ|c5WPo9t+*8HG9fXlHrX~O0N7)i6VpBuj*b{Ol=JaN+x#8**Q zDlTB+M13NiE?{3e^c0m{nRmT4h#q=%AUY~7}J1zG$ zGIVD&Tq0@m*3X>GXq5Gopc3?+ zz0!N7pPzRm$F;M^M>sjFg=4LifLz7yr_i)TBX}vseii$(Q2>~wiZHbhOGtIwr->i9+ zmbqzd?58l}qq)=V`p_pBcjGR0kLthdM3mK z0(RDQ)w^O@4Td&Q({m~Qvd1P%&n=I5rtf5Iu7>jGwcHMxo}W^k?|&G(h-;pE*b?CI zLSfxmNpHC0uoUAvnRzu=!0l1-u?6rK20xjDe;3i6=ezyjWSWQ8(s;1~27Fxr|IJt9 z8Ur+Mbl{@m*je+MI-5o0_m1>G+dlqZ?=^diwU$y6P^kI_c0=dnJ)>6$37V3kNBJF(%I3a9*jBZPu(tD- zni|_eg2&n-?^BZ0UdE9XfU!tCe_Lm4GEmAD`N%-7olg^s>%O$Zo*kL5hrLek8a6L9 z6^^ldVAD#eAi4=Ke-qz?tajnC;(^>5tA5SezNrx~w+E={#G~zjW)|aq| z)Xk7+?P@SUW&h~StYn_zLraxjO%DoKWp=9EyB3=e1R`>lP#f@fJcRFp7Sxzy;KPIv&p_$Gj+d|t0`TRo8z-KL(bNQn!wcjVTH{A|^p zJAj8j#pWUZAf>)VdkkYl-EHV$n#Z)^wBJHqhiFE)%3)Dp@3z28G36#>2k*d?V#fw$ z&#h%=@fch9It1^AuRR0HW5mvg7WFz82BakXiT*y9hrk){KWjE8is;vbJ{Un6Ko@q@ z=V>JP`0q=yNvXf4kx+)3!gjVcFu*@V`lc2Rz$MvvP>^wOV2C)IFJJh2+IHL8)H>RZ z+S-UZ+F*PH+B)0X+GAcFtEqe*1bvG>Zhbc3b%uu!EFnY0D!_*Op7i`9Q4o9{9)f!-Iow@Rw!9T(0k{)!Z{CuxTP+ zdLw|8doig9;DZSuKp{afU{W2nwVkZ-qxd+!#Wc9q#f}dXkV^o6I~2W>v>C1P+0?+~>ktxM89o64+;E^1B@yKMC*kXK zzY|Y%21sbHO{Q`PbJBb-_)x60c!VoLfw%Uno=X)}2})2B67+cJL`YWGj|G|h&Drgz zU5sX@q1EM~U}2N`t=!?OhWCfsmLuQrp~<>EF@6{Z&~Z>g7zkpAh9%V7;hwuj zgTBS0OLSWKFUxinVY9E@Pev4)Yr0E(J=cMJWNUm<2HoMNa}V!L=fLeIf6vXp0Fyy3 zfi7uD-pFkR{;_Vzl{?Hv@KHSM? zi$E}bu?XYmMf#NTXN!Q86E!l`d;i|Z#@52XTFcBvQ_R#3_>r>^vNJUiv(~aVvb8Xm zvv~hr&VofqQ<9d2l|j>7%i7ukm?eZ+PEUc>OiLF?v^1o%wy*$-0|9x?<8b;c4GdLj z0LBP}8Ym3}RPI?Cgxq^ZQAlA6J9FE={RRF*@0`sWO$XU5{68Sn-F zoWcCe82d8=+3%k-Se_Yne`cU5{&NQFGo${6QT(F$bA~Yx%)ws_VA?55Icq(GKkDuD zXFQJYKf}Lht@CF*{^LKxKkE#3_Gdh?)<45PYYg_XLj>`M`+qC@&+yOsf>pniU;m;n z%d@^@zjt52Fqguz3csov`1_@`7?{f{9m(PbQ=CMiye5P<+rBy z4`sb*^%oWw{J&;B>jfI}EDJpDMK984y?Ew+vA_*wML~&xAkY_3(hG?48N{dm3j}Sb zsAptgX!`P7s|p5<)t!&z<*KTfQ`vk)5g-sL=WE5mdMDQ=;b%iRG^<(3V&0T=2?(%;4c=u zp{AIgxss-tmW>VYBI&_1mJ$0!!V6a9`ya8opEV8i%-?Hk122NVe#Sz4eZi7Fmumvt zQvG{RX{aeF@@&Q6sV^wM7t~89X&&_p1?(h&C{0U4qh}=3GZJe4rJsL6`hEB#@;&3< z?-I@J8A)FBf~0ts9QeCr;2|d<((*<2UrJ26`5z@R{k=r=$Um2uM*R!DekkKLq{a0h`Us)A$Pu zD*w;YG{k?go~8Zm+5ClvKK*BDx@W(5&(fZs)L&T8ThA=`-WT1tpYPGB_ZJHX$of6{ zueOnvjj)BawVsZxo-Pm*`P>7eR0q6Jd7r6X#lKORMDhOTQ~ZluP||0)kg_l27n^d7 z|0Ne_eJ{5EVk;0Y@s!|`Uy#o=3x@u?tpIEGZ!r#a42_<9Do~Z@Vxh)fz|W=+hW-1) zgEZ6x!k$t1&nR%$>e*R18|5?6Ipa%OdQvQ%1^j{^7{73kIm3a{OZ2qJ4b-~(ZR$j1YGiJrrwjbDu?4>NDj|SSQvhFkr<9j0@TUI108k9C z^A$fk_IeZBjd9`xFa@S5AC8j{+fXW!0%OOqk~Sn1FJLDmWOjGP9y~ka%*@6%(6SN_ zAR(dBR%%gsYX5va)!v^Kv`UtH!9|e|KwSqIA?GxVqn06aPBN#3p^x)oC zJckh#`peJ0{xy7?!>H%w+w-Morh~xT;P0NHp7;x%AFYRP22m{oGh>DpzkQl|aDSY7 zalb18BcehPvs&e77$cps{@D5RMctP-_~#6+O#99)Zy!y+=$)CKKZO@qBSjft(CK(f z4E+>oxIZD#cch{7Hq$w*&~&F_d68o~RzO74xNgGLwiTF>05FKI)G2oY{Q_yYKPEVO z8mG@LI+1G)#y}B2P!|{=B6qq@bP>HF;@Y1~4{X-56}-oEEp0?2ffA* z2GL6yW(n_$8>=EJmoyBpg^pth5E1RRANQQAHS5gmO))7odCs!#3mDmpt8E*sd7-o9 zSry&!B7>+}Cv6$MMH=o;3+`ANH*e24QMkY4L^{OdR`f73qgtr1`9Xz++NOIiHB1O!V_AQXR| z$Kcm7m>2$9yM?b~z;z5*m4z#ze>Itti1rlct*a+}*M*HbzIO|rYL-{F%#v&A<>b9S zJ#!MHKi2-^o_HtyvO$Wl^^bK$%I}1fFD9@cr3scA^BA87O#{VEf^OUVshg!R3e0k( zm*BPZvTKH6dhLzhPyY4yZ!~^$-=L`n;>rD}t_<~iLetG@n$oZoPXcwxE#nh5)+^0I z>fzZ9q9qKtj{b9SqE1~oGm|s`UKB+>ln_DCF>#s)Ja|ssxAkZ_tp)i1G_FoPrypDX z5@`mJDPZ?z!RDQ3E#0eCOIE;emTOhvrbD=nl=1K;S08*zc-6V!+_6OJe62HZTGZ-tq2%e3(VD3_?UQ~!b&@q z3}_nope}40cwg8woMux`@$@7;eEF@PV9o-D{su$ApMhUA^XFy^VE(*-0oT#55wxAE zBIbvZ87T=k#*0uUn4S~rwjb!G&PrB^qXB)4pN{CVdmh3^Cvjz39Ihnq8fM8dwCidK zZT<7E;&c?9bv$c`Z@L*_cQ4fpuwi_ht`9uV4o{nt{WcSG})5lg=3SmhmPp-AAM|U_K<$~@nh$&S%K~P zYs_K(bX)5+h{8;-e(35OSS?(~WkmIG%s@;SzP5Z9k@ zwQc$0G(Iwj%5@sJ4gD4{ivqLwS;Jfqm=DApiA!(pVnd5_LA@UCGtkS+W&kG)BXzAMpCzcp7rNFhA1?a=hkF|_{8iHMv?4lmA`QQr z;h%IW(efP%eT{#AI^ggF5^G)-aAhucr@?pGr#zUx6%L=<+;r3%BH9&S=vueF3I}+W zA$ztUJxv;(lpn}Mwa5y>T6Jxt=trij&)2HFzpYu$(sINM?E)%{iCPgTOE`L8ny7+; znz}uM6<)2u`9O+0ghi+z6sALkjHioX*Y{^&6^Y{u-O=dAU=^Y9ve0-mP2(;_EmmvQ(YV*InQqMz6IpfrDB|q1D=~Hg>39lK^`97WTdoe+=lq~L zhnUz8M);@cI?tM%2{K&6c3&w&1mEv znQBKNh8w+@TEitB*+;OUmt<8~zyz)>i7ludVI1QMX=*r%2JlNU2VNizPaDF4%x1g? z#Sd>D1&>of0Im3vQUtXVBMIVC2xQ`vv4>be;0LTC+lEua06%{G6lTV(KFmmLUlVz3R(il(6`In!Z=Sdx^Xs_CHjuVqTn^7J=QU|uf zg#^sG6eF~a@ACFS)$#Tt!_lqEk`zm9CxH6|5OCOOZ0R^QLrK(!#E7ntW)NKvVlp`% zLz(LbYDoBl1Ps-yongtYn8s=fTNjv9BQtP5Oc$iYM*>`s;gGJIeXtVKl{VKVtU2b` zNW!<&<`1lG-CQiHR_2;<3wir2n605n5N8inYgPqJlfHKhsazv|LWGKP3hH_?R^XJ`Aok*t{2qPF)?4y@*C49bRamo58lD1K3-$)}G0SQ|)-uOY zWOVne8CiD;I%++5aYVP)kLwc;9Gjdv_P_)Bj!h+iN!gk6ov|=YXCLt-hRI zLjj^LAz0kQ<#?vll}EtftE~;PKRFs0$Kd>)y7JC_;++p9AfQxAJnX?J_EB(2z3*W> z9CYuWn;rB3fEgY96EjcqZ#J10V-Sp2oNG>q$S^#->9~@2k}Xe+d-v*xb)@a%-V}a# zlN^(EYAV=8WDV&w>z?!)`fa95cIyLbn+6ZL2#g~Ql+BoC5+&Bqw{1x=z>e|K^2)e? z0VOX197+Hap)pElNLGw=i8O=gNzu+s=HIW7=8#hi*|vt0riqFFOz+4%c^eT#vtQDP;wXGJiSHmHyV&TXp3t9hEg}5ucZAI3v@R*Hz8*JPm*0vEbvl6t4 z#_vlsK7-b|*0-wB9M0Oapt08POSFC`Ueg!jK|r=X8Ksx!dcC`!}}XKA&Gud^iE_(+3!j z9gf~_=05X|x!-{g<~fD?Lw0gH(!B^e1QHRXfVz|e^XOn*@kkvf?oCV!3fGGydyd{6 zefvdF&;0oiW0^nyY{wt?J-Uto$l-8TfquqXxo9vtd34sP>YJsZtq-f?gF0%oMwV0n z0@x&Ymjq9hUov@Yp(w?#xuK*6Cdny#^N+O)10Vi7{jvd++loy&Vbjzcz4_)3NAWe& z{i(2NYILeAHobE6k-xQCJtDWyk4>6a7j4pPvAE4sSFj19pQ3n`Sd?}WL!nICiDqTu zZI+Ggf1pefBcubYOe`{J&!b9Zsk-r?{N7O!xz(PQ39#aGhmDr!4vXNn zU%|b7``$a#{ZDt#tm(D>sYSi3SS8dsXYcpj&wkFq#?sOb0N7vx000I6#3?EOz~%)0 z*dKmJg5OJ#;Rgf&V*dvK04p7Uu<()h6T$)RN-W`*x;dZv9r&~VrQ0sx_JjOXy3i8< z@8KVK``6$%6b12jW`>fI?`-WXjcs(zZM7xL?BPEOme1|YOeJh|A@A%gEfg#zB^4~6 zJ=cEC#L3F4ZJ}#pW9gvH#-U)S#AL2(0Dq&E3A4>@Apd=z1VFj{t}0!?HhADe@UL3> zm+uTfgcbgOCSvb4Uc?7?@iN@Ti=c4(eq;qnHgObDOM45uUyf?h=yd?V14Mu$f~}6u zyuOZ|j?QIM<91^sSyLnW2jRx<#>S@gB<%!cL~<`15LU3X9GMeY;{A-kGpg|K-y4x1 zlvwHj5RA}J{iIQ4$mp;hpkN|kj0Cm>cI%<072ZR_L_%5+D$IyEn%~eUzhq0`(#AgW z!2%R{v8xG_=zJ4?oPkCI=+rIAi!|%n6q+r?T*NVpQ5AoZF#T=7h+@A5jA5c}A*%Pv z(9RYBkM|=2p#Rr+`CyH!jg8L&yr#UoM3TI4(Y-w5y}W!lCj|&IJX(Os?U`dm)U7(`k%v$T{#C0`dJe?BxL`I$_f|d6$;9>lC>U*7JCHS2j zQtbHeKgvrzFf|K4l(xseH=ir|{^2Hm@O}JAd6*r3k{b-%C9_g4c z)5iDFDzh{FXXf=!*3ne&=^+`GdX`%uuo3ZmZB&UXMM4rq81s5d3(Q024cBZcW8^Hz zAo}X30&dbm9@o1;c%g>|#KMZ#0sG2r<{^$_+*8d_L&e%71di$x3(Htnu9rv#iv>2# zbv95|SwGhUS~`usa(-=XWuQMEdv#;eotnA~6w4 z)gRj^T<9fOGflkV17g&3+j*FzQJ*OOY#FiG4`3X;G zxYt7>dSSpTS|Y$EvaxKKR;<)|kVe?_)e?2m&kZ&AzM1i5pd?#h|+ zmvV}-Qr45TG|*C&(N4o_O7?U*9O3H+AFl|ydl^{mMo4r; zydt(A9E$x`viAp(6VjR+n;RQXvCTsN2>VUMJJ`cQJc+PCe7cO%@GPYRHks-09TdGM zzvs`Y#Uv=d#ZnN>OV&yCGAp_PP!u8EGOIATnHHktwTX;EtH^|edWZ?#D7sIU#iOAp z6Mjb0IBT`EpEwex*A(g%I@4EnA#Go~ibJ1i-*^INPB=R%(fwsIbUb7{aM$$?ZaIr< zg8+$i*fLAsOZD~e(wCJ?oOFHZPV!gD5{ZvNnOsl4_S980>5A;kH(a^}0Hw|uK&8)_ zKruG5)5GjF)4FVgFs?nfI^Y2Z#MC3KZi97-$);EOi!&4>g*%kRxnVfnc6p(7+VCMT z1W&uhVsO#!D{t+P5#a$T)Mmp+!abiGLc5)7QGb0NDB85*lYFjS!Mmtfd)611Fdv>@ zTwW#8)JmRBNoU~~oh15$pf}vlR17G`y_J#0yAAPAe)JWDW4wc-_`R#rY61z`?oo%m zwW$btuE~rB60n&e-z}^huDFpRK{TfBkmloVYl3~ClI0Z`YdYA6Zfx{&@|@NQo!z|C zuk?|CmA-)XM*}SmAnblQ$+m?Bs*WFn21lE$zbE`~mZL;Ve4W#L&i$PvFGrf8!07-? zge*HW5#c`Cq_UUsGpknxO=@^Cw2qLE1ZzGg(=6s@MaSB30zX9<6OBYHaSDX}gs;6X zaBxIlWj(Fr!t}69H5DXXXI4J`t;9;Q=eqXW@ih0Fd0Yb>luUXuz!D3VC$29rIQuxX z#`{y!7kAWZTBnaSc{87uJL}D|a-C;nl+DGAl(Q3?nQsUh?8agH-Cw9qqoste^a<$!c7iNP49?o}9Fd%DaX^zcXZyf7Vp}ZWy)1G6`pB(eeZdp={k&UgtFyfb+RVC!Eidf95mV z3g*D07xu;U=6*9*g6nBEt%Qtu}JQhj4I03wCvBrj{tB+h^j9k<5_PkY;S&u?6s9?QG}Vk%%N zxyrb#7FIg$gti8`fC!YB6Uq%Xh@oeiq*B|-YgTb}83!LFJ^Wy$!;ikj@-g#Ds|YwO zMR>x1$<^e7*uAeICg*b<*_CXa=@u8=!&#IUB=lkR>+$lD8*h@TSie!w^{4j-%=w*b zSVQ?kDw`W9q=BmBxuZAv{#Nbf{5u-uqV440muDlC1_yxwGvnUndp0~REG!%S(@S&V z?bCJ_*L5aP$3&9gD$p08Zu-Xj3cuh2PQp^F^O04Z&&-6*OxH~@$z{V;v0}sM&MZ^; zH2Hot)JN8CJyxBU8aRDEvPttm9>mXk++bHg+ld21XW2V2NChjbu)lg&Sa)#ety@sNwqE2 z1~2)?Q>5f!WhuUyh&)I~umcELvAn<5yW&p8*QdB;x7~|w%?!!00&a&o04*JCl-@Y4br+Cr9kyL&awH}< z44(AJCv(wU+N$+jj$})pm&i|Ty^|>lBu#qI!aSI}{`!pV znKW-T-0i_f$pI(#igh%?#5{UMZPQ}CX z9?Iy96S*}@P-!^vC=q~GQOUZ4{Ye){jV&aW=U``FI5$;2H~@+A3Awyrptl(Y8bRe_ z-D%I(bk={KaYD|YpqbAl7F<8lwC%4|sub6M8RWCCynKZ1ZptgEnCDb3u;k;@X^J5lA)`wtKLwRr>7FwebOvcM zZ_TU~yZYuz;oV5Z?s8jd;HMt&+^9Q^oh|J@STPS+>pj3Gv?f^wl^`hjFm;%hIW=wG@g&H9 zfdtwYny6L}&Udq1BD#?n9>}`z`n>4v3v8oI;i2c3f+*NuZ1$&B&FH2O#tzO`5CYf{ z-zmZAJ@99GW5@n&dOy3Rcg#Od?+^bPz2*K}=)M0hUApZB(u%OKfXXNini`iM;mfOZ zQT2l2C-%?O^*V~wK6hGMT*@3k3o@{!gAwTTJqL7v-mD_5MJ1rOkG6*t7wc@=NB4NQ zzuUpmGpSCm3JRux0@hP)N+?etah-AyZM}d9n4MOZz+;+bkWt58mBmA8>$obBVZr)| z8C|7|t}oh_8V+$qOsN|K#m}LSriZ!JD;TZf)Yk3uyES`te@t&2I4ts8uYwy|U)3qJ zrXTFqzH88{=P6Z;epJpdV{JlTZme1@*q*-J+seeAQbW>dA!u->m%99>+136ezS;$N zX1pzUU{pODE_YxP?;aZ=scDeL?|X&UM2nfBe@7t@v+1=x7I>SRRe@cSj3*f~Zib4IUsXY1Qi2vZH}M9_}Y?p=(+0k58(f z#1SDWp?z)wA?teU=o#~NH!!|gzdERddH27`_F+&VS*9XcsX03igH4_Ulq3+ySjBz* zQYq9&^+Q+OoT(zcA{I7u_UMbOS}h6nhPdUf>{t6$k6l6ae5SE<(To1{&>=9;91~k3 z_9)oiWNd)+W0O^LdiDJ2#kr^pNoPpU=)>AeO+4!+DS`lL8#3` z-m%G?Ga|Bs=_Z4VS5xs7`yec^%x*)U(7FzUYd0n+pv>o(ssbf7^O(ovtRY?tzZh}(~zCbUVi4nJhoQF4n~Z=A0&thymYL7Vol zBu(ZgoF!Z3eV35?DFA7LBS=C2(%u$fM8lX!)K*dh8^toXVp=oOHvbPvBtWX8ZyZ4R^z*Ay@oQ+lcn%Df`YmN ze3_Racp76z*t|1WdreNGDd1k!h@d1l*{@*YxM}Ni50}8f?-fQenib>8HepKO*AQI$ zV#oB^)9#z(1<)B$TY$V2i9^N{d#sDA;epQsJw^MqCHl^7ZqO3NHWJ^SK+rKqk}b}g zvE}~r{V36{>xV!+DQ&PnX-H9Ok-7KPp4%f}Pk`1jlODs?1aKPdti2xW?B|9_{23O6 z1O+UYXtTq4+;zv}Z+9LU>#avd$odAbdHU2mIY?+R@CJRiU#t{BA3t{D3W~?(IWr>s(#wx zR?iEz`Fa!gbKJ=#0fua=&&)xi3e7G67aO2Jc)L5NHjbILDqx$@Gojz94|%#5T^NX3 z*(P*tg3INUy*`Q-Tt}uk=w*Qtw4Kjc(HMA#WLB}=$|2FBFBPy0Ov=(kE#{}+L65t5 zGJ5LNXRVz+iR#HpV=J$MplZnPO^a<-bfbD);P zjo=EymX(#p^%vKuelVIu*akND(<>`h^||O}LhhcXUK*OOR^#{3FsGEWAcoi0tQgm- zkFV%qO+0T)3b#r;eYD<+8V0Zg`Mgw26LxqN>+|Wfi*U4jf)BlxPcz#(w@sv}wAH$A zh6xyGCQHJ_pS;re7}x#4cpDR~cU}xz>8B}=$;Hvv60sRO9s7u+3VM4VA5T8$&H`Q_ zaQ^vQaOjr`9{(*`?edeWhZlXCmeZvzykoM~Jbh37(QVPhL+Z|zc<&#RR+M7AR_mCZ zeJf`?$SwNd57*&Lv?LQZYg;%ONR(y?oyk2p|BXimg&CCS@$dh zD5d1nC@W%ud^!%^KwG4hBnYDo(4sn$fXN%kpv)U3YZY6E8aGST>}0?oQh3;=Lu~wb z1(VzI(;w9&fL>gA_+l9;_s>**eDSxad}of?{G(KcTVwwUmH!>Av2mP2DUeJVnhck7 z+pN|8s^IbA7Y-1Url5wlNAr;Na7i+SJ@MkLy3Y0atGMoVr@G8jP?^IaEqb9KR6UZ; zL-xLdvF0`Kh%Jy#N#iGQ3!%dH8*c;Op-awJ?#)=cI7WFha>dGa-Ss@JYrY*N=vo8s z(01OQbsWKAQP<6PIcP_d+loN29*BDN_4Gvi*iQeRFzx=b&}(QbdygeMaX!ySfg9=> zgNpCzjhV(v#9y3tb9!Go5ZOh$qh?Pqz`$$%K zXVdsgFc~D*(?@xyu19I~0>t>-JF`1=awSbZdHmxV?QGfxK1~ZvWuHho_;cp8TfEPE z!!>Cwjz?&|8zl48lZZ;;h4vLp6)|iA8()bSj*fHy(c{WvND2$)|4$?dxNDw z*jEiSi)lfRDik2_Q|(T@!ApKm-{Ly#*u35ImsrO)F+%mdSXpR#FQ_on?El31AiZH)l`t}&6Bs}vE1k;(k9ZgkOq6YOh=YFR;xXv-yk=NxXjSj-UmkTHxzgWr)uz@srn@I zZ&CHm>yrORsS0Zz|Pfv*zN8Mb~p+z%0db-WJOPM}3I)Fu6(d z)?k6&3y}9SzRb)7ew#uy_LDaVqo!!uBhl24;JaXX7P1#(RXQa;(=OIWu2d3ehS4oP zgxl|VzE<-LL2W|0P@EXy-SgOMUNY@$=>5z8m1cSIBSEWDv-|2v;0N}T6a*cO5OAOmRj(xIWR zkf83J=fO?(4M(EYHUaG(I(s3a{6ieieL~d6$G*L|+y&JNHuq|zJtnt`S67&0?J;vT zlt>BfRGY}R*bn;EVlzK0GGjmqs^V<;t>=VnXPn$75LT|oW_tOI%4CF$H~3yxH*{p* zwA^o#Dt1Vo@0Ee@*NnHZbv5@#9L$MHXu>EYQm`KYSrTM;FVD;S^O;$OQP{-l8KjHxlie^3F#ZK;2Si~kO`6ty<|vdP6Gz;>1n zn=RZ+A6R=Dh03h&ebJ$5wl7Hye+;8M3kO496ZUMF}n z2tgC7u(K#v&jNw;rp1?9Z>$UJ)2wffrqqGrdbZ6J^kKZTRDIQ}2PHKiZ}`XC7_}b!hWdEynpEQN}8`oaLZur0dW$xpFr zq>?S==|}$EMh?&C{`8A=USp~ay56vP&g7ZBR0sFm!-2Ew0p4C0;36NXOVVoX?4{_+ zOJfHxvAL1Mh?e=H-SV1xmcV=Nq`=HtJH3--8&_PCEuN)zY>A?ox=?%hdn9EuTGl)> zX^p;C6RyvDhob8AC`fZ^0HgPn|@iMKwaxB(-#b`JRV)85uh%F)=`9 z7TFQr>+5}Cwcd1IZ)>b zT1m;grKoJOHEZHxt!1{UuTT1FLt|vCI9iB&hy460JE(M{-Xf@oe=Th@nMYp>CCKNJ zUnXcB#TfKLb>rT2Eua1kOk_FI_7XYH6g1}Z#Bcc|zc6*)D&-{(^}XQW9kylc@dFUZ zaVF>V^$!{0b}Wt<|&KYWx-6X@=Nx z2c)VyZ{gXkw?G5m>HGD}if5uNDzEfg0}lN0FC92gL_pQA{=#_YoxhNH=PyM3#a|HR zp`7OB>HbR#4sv@aw*i2DUPs3u5RncU-dWWd|NG7=*4xf1*llN(@NH*R#IK!It@nf% z@I9C5i0Ctx2$Q#9iq*Oc{(yiv=+Zki{GLQ9iktjBO<1)%<@Bc{Z>~; z7v9i@#wFY3yl2m>eogc`u>g850`VRbe#DeUC4M0Ucu7_W{ekm@eyy?b4FHmgA9w-Z zyx0H3<~_Cu7fvAuo>>-aV6q|^SOh^zvC9+Tx_Qpo45?iXs4U=qb6ybyxBe|jB&z5b zK=~R@8VAO$4p4^Z;yfv#Zh_xz+qa0U=*;houIZwur}q?BJWxqucR`%QJ0@M|Y2Yhl z9ZU7#+~|x+zIUAZgtHr*IzLO+l3uBz1#S}AbQo@yKSl%L1I^V>&F2u&eCzh>3H*|P zIf6ynaYJ<=ENm9-s=OD&A|(NPz2pn1Xi)vCA09@kym6+gE2e%1;4yBkm+|%uKbwwP zIhUwnP=P7x(b8^11iX%*O0x;8CK&l?mgP0L1QQtW(A0aHRBI)CPpxVhtREsOx0b&l1*5ObfV)1k^ z|A%$5X3+wJsRPXxFItjo{86&Tj1jn}i_UKO`mlYRYVY$wMx1>w>CD#}>GR|{t};F% z13|!q`5GLph`;z_zr!&7o4<$QyM=Y=KY?Mre*wdE|3(-_ZhsBmz7ohFNwH$%(Kw5? zX)yi43+>9Ac$(ml&7+Z2#CcA=vG7;X?io>~c6F@m^yEW-zY(uwTi^L!4kXcM4Q)+( zp2h(@_LPyGPu`)YiG$BbYyKHFns%>ym=CBN*d)T1*_X8qK{r;fbJ?d7f%<>{p+=M3 z%iF@cU#PSRUc_nW|HQxFO%BbNp|I?8*0hp*$J2ykwd61QGl)c2jirHSQLXO5wab@A za)$up=_ywfsGbP9=?v!t$t&5Hu3hSnw%+tS6g2nSvxNTSYNgu<1B0J!NX*p#Oj_(8 zC$6%6FIxxuz}qB{YsqXAN5_(1IBAg%docBbb1u>u*hX*<#mL<4UKk1*D(YXZ`GPP2 zHE@5z;||Dk&kvE?%G#881p^~(YzU+wfd_*Q2`OvKrG|5wS(J5yNz)+L%|n{apb{df zhLUa;5@XR=y%qeclU`M(_r3C@ZdO{k>zl4yg;@v04F$}RsS_HmGb%NuB$LZF)#ib@ z`<61?Qeg(+B?w%o8=7z^_x$;E%tZY6pnSLR4F4yfZ1gWcnc?3D%GG%NDyXQ?-0IZM z@0&!ReE#r<#dlO7dWM%iS%3e&0Ms zv{qtt=lvBY@L}rly>CK?Q|Z$yxs$d7-+}j?33PvA=YiIFRLhi=#dwCKQk6~lt$Nd) z=fG8wWw~%|tHe|@p|IXRt6fmuV(TU9^L}J5ZDoVxF&~Y)&?^0G|Fbf)pT^(yfj!sS z*xfs|^Zm_iD=W-U9;lMy3|^#tC(v9*V&9Tp#@2-8{isyrp6zO}du5-IY?)}^6pY=P zbO_{3>HZkX>c}H~I*(JeW&wp|l;Y=#$%cZZSv;Z}e#8#y*7prYFK?rPMpRuxSIV}$ z+q{1#8d7xucx|a76>Klwk%Nz^!Ugs?M4UQIiKWo|5WCtkCxl(Q6S|BzFq3B;R~bn8R^sE6+N`B4 ztg&A`|JK#CC6*sdm8F@BJTB6U3TU<4eEgq*nPv6wf%$Ib_RoM>_n!xI9PPgkm=kdC zz|4U4GN8MH2*hkDc%`=H2JyO1~Wng1pD1}%-@Y?!okjAF@7mkT^ zW`P!y6pd&6k3mF4zirTCA;s~;Zuw-%VX4yJtJJupSbM+IxYg-?lHQdbO{%#ZTTz4m zq0Ry041Z3qzOzq^pJ7sLbAx~|g{n`3=!lE&<`p5t{d}|dz{h2>*LXCZXC`i7+x6M> z&$DSu^Oc%7Ne2p7t)l|=rkl;OYpB9;9S0kwaT%1w7tIqXg<$NwgkpHWVab9WE?rj=U)Zng5l zFIpJ|u9YAEVG7|+EB|#0A^o>01mOdGVO08mKr4s*rj_6PQ7gy%qLrEcqgGDC4@6=R z0UG>4D--@nE0f=9W%B>i%70TU2mh~VW$E7aS8y2j-U*D~!I;za@5A^`ErQ&0kEn15)tEi=BLRle2X$W+nTpWnhd;kR!(wF7MYK8>@6H=djUu-F z9=)l2@ru|)nhJ*3_Cb|>mi7~YA>>+{gCpzlqO%-VIrV@Mp+4I}nf;RW1kcS}=1uu= z-94w(ETe5%@VCTI0rQXdz;L~uw zpaYEgwW;_-ukUi*p*z*jr8IVw>hW>#@_y&_K_1BiohRWgc|DQ7k`t5NN<}57sy4*! z4v1z1{)QsgK4%DWWXwp58;b(lltX=oqgrIES%Pm%N_=P1I5p=kDPUvhlxlHdQ62zO z2aDUm@|(NDB;6H;?zS*OKED+P%|zMoow14CU2%Ee5|2D8YK&17=nIQ<~h|LVXvoiG+E@Xcdl zl#ehYRjTY5uPKb;#%m-lQ!+i^7!$mo)UZ*7BwPO{~>MC_kK;Aw50<)YqSV}%)ex<-8Gd0At zvLkzEL3Z~Tp5~VbfQetzT;F?}W`oYVGE~}N*(@Ns-<<|goWG@_RX(^HAg8Jdf@AQx*o2EBI;XuN#UC} z6shOC-yMnN`*>+6vgI)`rGPxj{gWZq*J&8^Sd3U$!8eV|CVvDo^BtI<@uT=RHKyaW zHfN9!5#4Ltj(l#dOx3Qrc`x5E+llJCFlWn8jN?b`1Q*z355QLN6A1DIU9g_;m3aMthj(LOlU;z04#Pi zG9`c>DlPE~q#_ss83J;@9rhd+;sXGEs+tyDilN-rLFt!E7vn9~Uwrwk4wxp|5{4Ek z+UB~pwzp#w{qQT868t2&HSwDEg&cn49!LGOBY|EZEob0krOsXnTimFSFHfb1KGIQh z>UC$ds6{1=eI-{fAAu#5Z8Aa`&CHf2x#bMfyY+@{>Z^BZU1V1#PbRb}2YL4%JyLnl z=3g2hOG+|KaqYKc@-!wcAfK5!>Qkcoo?_2WOA8k!xFb-h!N z;rw@W*{_*0=R1~X-#_ChsS6JXmNiEcjTo~FqlUZ;@!#o@+9Bbuv4s+^IQwZ8l$2+L z*k>tAUA)#{SYvfssPjm$Gwv~+x&Cq$W4?pj#;q4{l(BqSY`lhMmbx31?D0hW>Glzp z>soxdz&CZ(#BAdM{1wtoIcYWp9?dbl1II^v-CJ1_TwxY!CFAvSZ6qn1-ARPNWwQj= z+Pbj54r?J%L}VOc0K)CTs~A1*Vj?sv#t+Xnb%zv_r^b-(74C0O-@WF)ez>OBd6AG& zZfE*K>*7+d(&kk2gC#P~R}HU#+?D8n<~^~cl<+8WPXHo1*?)G}^+29Rs5?@X1OTYa zZb88I=#GqcAP~>_JqQfmY8x9`Nb2d`f`FR}@Q4i#f+c4sl@RTdlXuJ^uO7b$c#s~j z%$HiXv-~3i|4ZbnFE68To=2sJKmGVXZkfUW3&YU=d1st-#~XjzXjjM&JmFjKI&9W0Umv3b!<0sSHD$e_if`#IJh5?@6-|FpIyC+dJ>IDQs&(W$b z`Y=O_F|iD+>BUrCFH0&BK^k!k)VqE@_jUJdoi_0ave4~pcsdx_dgY_KNEWT1Jb!5$ z**w2E)T)9a(b6YpJ9-a<$3p{oIs4-asH2Ecgdk{VCG8TqMDqlyB6$(YePd%SP$A3Q zn;qY{cEMS}ZP8Td(dco49Q2UmtM-}pAXi2Kg>!uCs0b){fy}6zuN^ZBTu204hkF!Zu#8tcs z^R-h|N(N#XTIZWY=1)Y^4!F;6=$f~Wxz7=0j<2-oXE#O|%r2BJvz{D(>oxCb%Ncfj zKb{&SU#itvIF?#FzC_ijBQzY_UNscGUvs@uQPPaymfx`CEKWB$Nz<-(a*UQt?0`-* zuSt_dEDzh3x~c#1gB3+o&6O*46HCXV>>EFc+i>*MU`p|V63*CEL}~~rVy!z_VTKZm zm;%ZC0kub!`dcIvw~G_J?{-bf?j26z_^jRYMcy~i$r*m2%q`UsTEScvUl`i6}tZYg9%_ zgt_o5lh|8q*wAO2Z55E0e!s6vm#I43X`YJ{geu#HYo`% zZ*!S$KAljN=rY%5wOI1|c3~{}{31SlHooe-A0xZAWM5T4d|RO-@*z_zQS!O_aCO+5 ziPG6ivt0VG*_bh}`Or)lE^`K=BwOQhU_r7oi-)m`_1&U0xTseGOPKazx@L;+<`&`+ zx7^&pHC&7Ot}%<_hI;C3`F!b5%>1<&i%|>B?FW>jCZm980{v_b@;>?MG z6r`C#o=TUsgQ&xVF!Ca>K9uwH3`U!KS@Yx``s&jKFB8y_7OlZP?msMEiY!Rec2wsQ z+9mAv-8z!pA!r*iw4pKt>*>sYN;5j!1Qf11FU*n7uzs&}eVuHMBW+0dtmu_^)9xpz zSxKiYk<2$q=L~Bs>UXb5Hu>yvO0d6mUWhj4->WygPeWw-P=k+g7V&uD3Kl9*;d@s0 z8JK!8D4gINQ}i&jiDIX2AjHp@>;&-@CG=GjWUV4D)aAX-s0Nm-EE^*8p`xqFmd~Kb z2H#s1K<CTA(~Tr292+;|bVPSko&yH8O! zi0@Ouc=t+)FWzH6I>mxw+q$s#@aa6P@nzOh3!+c592(gF)8G^O+q z$C%vl6v&;Vq8s#R9VLP3%4Nzor0v8Ida z(l@dc^s6^U6@RAh?IzXe$xalyS)G*B;VRY;KcP8(mU6y~T3}~+!`p>FJ6u@W+2sMM zUDyulbI0*rV`A}0@K5$T`S#POXhUdDbtF|_wh)Pfow=@I|CG+vL3^lch!5iiu+aO% z%dR_VhD+8>kJpunQY+JCr_l^)V~~Y9Sh%rjx-K`yfMRx6rmY1n6_<6S?m@wfUg)7# zom)OI?!f%#w)R$M90Tit{^W=aa%!=`sF18!e+~%;Np32ILATlG1HlQL^LtVUecPh_ z_y{)?Uog;_UshEM6=NOr-rHo*7C@S7`=Ic!;3L_ku*%#^5997GxuVfR5C49`b7O*( zHL=r^irjj})Zlg};tEo|wW&+~D9VUOSeK``qdC#TZ0sOw#fbOj`Ye>Xp+AGfm~$lGY}8UxoB*u{ zVVyabSrqP5g)cuj=tWd|`^T7Rd43>OClIT34|Ozt>C!e>FPV1CiF&Lm8N7XZF7;mU z0ZEeJQSw*e&2i1og5UXHJpZ_x86v= z3DcE#rG)$1n(?;?lfw=DobKl>>Y9$>lPbZL&*Ecwdp5!g`J7z44$S?()wvj=*5d3~ zELa~-nYYNQq;g%kG0ofNF2sc#goi(aR4(MR`Dcws)O$hvYq(qn%2TNPb1$ZKtFLk9 z&7Z&09{WhatiBu&IHBCK#5qjwq(VMob~#i9-1gU=blr{%K-CjXS-#-9FV>701r8c{ zO1Xakiz~=a2Ho^Ta4BW_zjG;7{XC66Ae&6V{76IWFcj=IchE}l!+NdkCAb#1#MV6e zl+gG^Y;Dc6D_g#0Q$AC1;v-76QCR!IBvZ>6wgySv0qQ4vt?sl$4V*6;^>Sk6Sh!!1 zCVq@cP`Y?i?GwJSJ~m zOj+4)un~?^n>$~1)5fiypPt&jAVb=qs<#ip!z0;=kTlXZN>Q@|+!vTn zQj??m)>dizM;GDB|VO9taq5|W!z1U(s7qo8$j43910Ga{avVs}5+`%su4${=ee zt`oWt_?E;zv<^+_o$GagXWx9RHg$$xFJ1loCaWm&*gZq7izNTX82{Cj$ycXgiHssa z7L@%414~06QsZowYkHWWue!}~>Bf{JDu>|yy-tdu{9bYQ8CTOo+*#Dw+xoh@0HU(j?*G=WoURZ4eohTf9)72q#+XFwcl_(a_BsCfrPbASJg@>EGTWOrg5-5)qToVXI| zNoLu@bph!X{PgCasuZyVq&y~|`Vk|QNxAVS!E4Jpelj(PIM^4T7 zV!df@#~lwIcTq;;*0p`K`_FjvGEY5+HfXiG9e1q8)^~BbU&ZYiq!m1vrVr%p6?EH; zP;w*HqMksIq)H!{ps|O?Ns*MuI21KgF^N`$`ql9#jMcD9?x8hmKm0Xuxma8XEtHwSTd_gGzi zX{G6*l0zki#$hIns&sMI$hny`QZlE_syUK<`MNZXW1cbNbDJu0g5s>O*x! z#i?{nfc0wyownZ?s$(-^DN%SM&Y#)O~*Oo=S#8rbko zmw!CpTPrZWy^WJUbLRbTg)VJp9(H9?ADJIMK{;_XhaN49SPky@hl*oPYFShscdyY+ zvb+1w{N%vcPWMZt>Z;K_5nDAZvtyrJ6x`#)f6-KR5(7)QKV0Z$TqCM9`cUTev?8i9 zL?>a&HFem+tI!S1nEA5@zgK--JlmrZ(Iso7_2(hKigt=^wqC(wqN=z-%8+MG$cf2U z^b9B~Y12|EToXDTY750P6RKA6wXMSatoMQ2<|I)(7pkVi@pyrzYI8OWmI+#&5$p|I;U@4*K&u#R#~t?g;4O8(GXU2H6`Z*tMfZUYa;aLvKFj7&IZ{=NPma|;_f zCus*vy@to-KlMSky@r1d)0 zXnb$mlP;jI1Y3{q2|Y@0&{0n2?B{kzV$8f3rU2yhE^|4=;uXMFnVF&|wP1TZLN)); z2Dh$oAc_CjDS&!Yh7crO^A>xw_LGcAG(u%HS3qM80#{1xX$;HA{N@EgPP{g9-jf8> zLls(~MP2!i>n!21KHcfHOY=!TR_ciUnC=jnBOd2Iuw270e z>!dL(o@;&wnit!AZ=#6w6h31lo(*y__0sy;+q_xnLHSPB(2`o+W#DZW{5EK21fxA6 z&qP%fy}0UK&sC)0teHz&JRzyb(tC>}!7}XN9-r^IgciO>Wt-a6DM5{=ofuJtzO32= zyu+*d5By{8!y>O_Rot#F-xqArh2zBglKP!Cy((wo*-E7T`o^F)2;)H^*Cly%zAVa! zts-?_?2zwVJZT-0%S^MlbZZ^=XJoF2Jtsdmi|1Hdj&&h7wBdMKCt&@Prkp+`8(z0G zBg_&hhfS}t<=m`$xk!!O<6HE@O6ZayGdig;Koj^#U7ZaOOMix|^N?23>v9OmX{nHQ z%kA~(v2Ti?~EO2qtbH~YCg=*_-J~TtTk6+vmgXug8xHcQ&Lt$82-3eIA5nlUz&}M+8 zo5AJeXDE#2zfoR)-uo&%xMzHnlIK9o>&g?~d;!@pBx=3cP)Dk6I95Fly#&drn!!d3 z$ubM$Y)PYSsMkvFtOIa_<5K;Zj39%*#r9^ejMcPq?9#@PW;KhjK1fNt>GCW*^U`Ih zaPo)kuouK@Tq#*HQn4vCUS3eu%gZUgRrX-%#8aW-bmLW)Ze{n;F!q5)q1?WdblYRc zcvGG8q+0RH=Y*Ob~QG<@xtQTJ?=D@+7_( z%xfjgDh`b{r+I@+(O&&k3KXHA^mQ&KmGjgi+V;Bm3T%62brx%^_H0L<#L2XkI8K3C zt)r9;=Z%_M*uHlQlL1+4!)eRaixehhO(_>sGPQXqk8D#W5?O`yX9k zEXeKW+~29y6*QL`oO6B|H!bg=$#KFg{jr`)UFlxaX(#epK1!F)>;<*?MB)Tl=W}id z#>Vp-x3@OiTe)faZ+E)03|Y@2DG4=y-uHP_W&gziN%z!McTle$MD)Z>;77m>I~IXT z?g<)lGym+Rh;meo&PKAC&|?rrNx*jhdtP9<_+Zm$U#e&g*U*hoCgWHIU%R~v6;bs^ zgYr;oM5Zy@{g7*pI0I!C!ObfY0^7$kD?}FFBEv}Ej}2v6J7klG*%=7s!GXuAINJyh zYdt!)7pzp0knLb^JEIu(2>soI7s^>GBIDW#$>3F$?O~*sRIM6cVt^Xn%2D41}geBm7jbQtdj6-UR4Jw8TKdE zns^tbuxBa=yb+kdB9b-PJlqQO^xN4xOQu#%&*yg0$n7H}V(x4QADP~xMiWPVHnyVs z;}V--4;-bNu|MCVlq~ngHPYnZ=rz+JgDn-e-}DCy%S2XOSELY#;>b@$#eM;68K1KO z014Y@i*kBA5t#c7zd`%{vu8hyAcmJM{)6s$N$U};m*WmH92A5Lrxq4v3oMPN{U2a> z*jt|Owff?WE(ZET$4n-gI%Wd&!`doW6r0l&+}=9OngqKp#*^)D(zObl(D@J51_t1n zp8nWy5OF*3`hv*G!nUj<1yiJZWFl7fy0c*#V{4r7Lrv+lsDOJ{_6Y-ix_RNHvGNh> zSEyS#`h(H$m6dpH%$iTUi+UfPL;dRf9CLS(F5D2_44o;(Fw`&tLqS)9e(Ycpz1U5)Iss>7^`GXOoJpk zB0hAddiy9B@jcqn$BGUKozwG9iG*_R&22(nTVhO4+%I()Tun+iNqH1J3t6lgNr9*` z!3sY8g=^ec+PnIz-a`Tl4=Kj4hS!Q9&7P+(Kbev$Vs-Q9URvvH#Pxnt_&mZZ&ciYy#%SmNNY4ZCH2Y2AJ~ zeUY17l7#IB%6;w^a_N@;b(MHFyc2-9LrJQ@lP&T*`}?u{qqgZ>-k6u#0%Ud^T+CM( zZ8EWfSKSt1TIuOxtEEFCNyzl}|D)|KqvBY*bx|Zha0u@1?(Xgm!QI^*0t9z=cXzi0 z4Fq?0cX#O9S?jysKKqO_#@=h+d;ZW3%-JaWa=op(gHw0U$@y3H`m%)Z8&xJxo*DSZ@Dfcw zI@5-PVr8u+DS>}5NIxU`mkai&QQdC2>xMV$~%d|emXQ0W2q&p4P|Z~Y(g@Wd@x6ElG z9Cpxn*sO^t^s36$GNjE+w>T{QE@spEP9GoJ_U`1Ei6<5WR}ODx`)RoR-X-*|_Xs^^ zJ!RTz&|=LVX%qMo?I%VGYt=^U6MyU)OJ<)WN-rv2CF?oymfgk-9}4}NP#H7WU@+^(Z7l%bhBS~p`fWF)a=+<(<-~3=>3`M)=6gV$n+_BSZ57{O;4bAm!6f> zGR_Uec}Gu5t#@8WFU6M5Ir(l-+To2c7Fi})P~MDiFoYvZrk@h(&|i;9nbx$ zG0NhARu?UaNZk9V6Xe6aQ~4F@HjoneXj##Nci6X z6f8H|KF&fp`~k24`<<)OHGk>bgG+zv$;93F-m4=3!bdwlAe(oHtX8YpydCPX!Jks* zh(I6y^Bc}F;8Ek^j1}8Z}3B&{X?4907)oOI4ZwKlL zj4jb~(%LA)G%3>MAvWj3 zNa&6X&w$>XI&!O>TIG+1l&E%21;?PM77ZP~m3N!rsM#cydSN>s!@aXtXroE3yO}7X zL>tdBx_#DF;t$QxUy|nw?l>N`c0Pg|9$}r}Nfxh=oZed0pz;RIKQ@YR!2w-=U{Ait z$re#Ly_m7ZptI0=xC{pMbF9q-9^&fBPU3XJPEt+$ zGYX$8RcXa?+#*|R=qqarGYsBzREHL7Awy$uJ=b$s{bG{YT{0YIx*ng7h58Z&BUHo2@}unA?Dx>^Ymy9;;v$yj8z3Qc3XSy~& zY>vN<>`gqFxUq*ZpPE54t%^%BW#(3!x2U-?@yMa1)8Ra&%W2l8%Nehx)43j|;oe7% z4XLv?uF$3|cgTfk@~MSTRhY2^>7$dnJX>SsVJqx-&(pr7|f^$}`bh z28_M!vB?S#f|48QaIv@t67D))GNC->437DChCs_`{ur~ZFzVyY#1v>Wk9t19ih33l zFlHCZ-R^2+cB9*g(ms$fYq(M#QYH=v@Pjbkcum6E>`1EjNF6+KaG{L4F&#SN>HqqB znaK>XgwdcBxYDiK>T)sX#eqnu7 za?HlKDF%{JdcyARm|04^UoSYm?943WR>AP8bCap>qP>YiEIOXIF39bGz*O}8fHCky zIjT#H=bW9Z?<&_vME`xp_!C&`G{?3z)<=fd%8E}c@~C_1<7Q93yU6U3Z6e~G+%d-s z<1_U;scTG646pR%C4I3kv(Ft$E{kuHsssZM&5SllljVK2XA^Z-VvdHsI8GA(%&8dB zoh+J#wI*EmqfTT?f~wZOQ=ob#ejb`*;N4v<&Rv`ZPPY$nG=49!2oC#Y>F`_eG1F>v z)0G$PILv*?vp&JBbB(=)lp6l}8iC-W3HA(Z6{eQY7TCJ9-0{Phq?QGSG|dI&bajP* zrC$}%`dfWs%An|sbh49HlP}M@ag`8DERxr+`JjtOJfYbkf}&;6bXJMF2>L}l>G$)o zBl=sTjuD;sl5ohWqTgaJt*2Jln`;t_y%>3wDvL8w&w0zDLG@WS6Islc7j*8TY&(+1(QlKt!_fj3B#1S=XPvJE%nUWefGRiYP=_O|bVnLBn zWkLxg_v}iAAE!-6sPn#xsl9x}58RhR9|+^r~ghcjonM}4H#r}L8C0(52S>j;>)E+GkW zQ`1;g!oGE z_`SeYvm4$E=x5}n5cxCvf*TFF<13WQk=RbHB4O&lo8PsieK=(0C({ahp(F&yJO1() z_^;xc1uI2&t9;Za*EtPdFeA|)jjA&aaGqt=3L8;c5~koNQmxTEmevlWzWhc-sF6~y zv!u*%Cqgw8;Ry_r2yyba7RoGQSxo|%gmNt?U^Cp5)!Cl6%iR_1L1IKaDo+NyIKhXQ)0z>(S*9Xa(gQ_!Z9B%MDDlTQbDe`T=B0tS<;Eb?UQF* zUL^_9%h;-4@9E27rHC_=HRAe{7p0ylNE(C)Q`f4OWj55l%}GR)=C;&_RR%(MYADOO z-D)a@bJdQd^SDcC?=d9^T(CoLoJmV-WtSP8Yv25u3(s0RmStCSS4_zzwe-vrmzVyU z&^cq2GznniIxCfP+vt#}S$>T7^D|fO*B1$$!%SqE*Cc(Kl~F!s%gD0Rl8vF4Bz0w{ z`8BxCGLq6I-7uM-gBnqmNLv!*qtB6Cgzb?4HlMzCwfrbrya$c7Kq~wILr;jBlyK+=e2UcZ_lF- zyFQxp6CYutiOk5*%j1zGEvY!e_wdshGEs8rL`v&uV)a-0FO!$GVSz7l%-IS7bzN?8 z;qEYDeQIc&n<;|p)I7|N?QF;`nV=Z+^aab)fjIi?NZB%O7U-L?&5Oiw+3Uh*S=7@s z@p5OGJv$FI_*vHJVbrre#7HS2?E7+Se1sdlO5ZoT&6v-kX_2{}KhF+-%Ja&@?9L1= z^a-Ni=?9?Msh$X#%}9FSb%HxbdoHEjB(08|dvA_35;bL?LFZT1gc4se<$`!u5%xobq=lR}G&Jwv+hLpNHtf?%n5*79n%-}^5 zIX@G=&OSI)eI>QiETiUMiXEs*JZLdo4*J-6`PrG5o}J6;k=3_x{`2|}BE~4;!7tU{8J9PYW~CC#H)q=|LT*D}==adVCOe*R z4p(|;uBcPZ4(nUtdsM1i6OCyAxZ{c2LN$DAOo*fEVxtIsp10AEtBxx-dmczxU#}f5 zJUlob-@lJr4j0qu0q;fa@ZOGn6nZ%LdqY8yh(ls7;UpM`2dEfMupAPQL>y3D&zxa^ zdw#Ys=bf?OuD*K`M1TSjYEh2EX0^vn3P(lj%@qLE>HTSPcX#>4{MElDHnXtHi=9H8 z_pLXmE6s7g?RtL%aEs~D{s+)81Nrh4yAK5Q z;4ccL6etke2=Sk=jcJ^WjHoO?7^&u8Fw)Qef{~_zO_BZ!xd?^^i4F-lw06A&_dXN3bqG^r?=n;UbSOQ{GjT+IMOlZA~rt@3*RyrcUDy$jh z%ps2Mfk2SdZR^L6IOrA>t}e{4e+)qSB7p`V{nx?$kxNiOL!YjxwB7g8^q<@N3xIr; zszoktj~m=K>c?S6KZVyr@N@=*|3ySRfC(?95(>lH2gY^j*3x^O_MHMDl#>99(uunH5T8I^h{97eNAYHK6z&c|qzMYpy4XY^;& z{A1$nt=fhm`3Je!pu<)aoo2*zyfbxkfX|%Ho`GvXB*jiru;H3u4mB<(NLs(9Zm zYC|{&)DA2C)iba6Az_Y|TuZw#sE>9%@4TaqUpBqgKKHyD;oiJ*MZ z>(8}!0Y3)fEMKu!$$vaOuuzjPDZrhBfE4Z!eR*t1|*NZ9ikLmk*4EV4wia(1cH{q=4!YNzM;7XnQkd9A$a$pEBj zZEbhOIeYMgqYAyZHEPJtzR>i;p3j7&lL!3!ERVW@oerP; zZ*0w4qG3;%VuRoAztv`1_C#X&$BHl}d1@@dz>Ub3HjI9T(~rkvQpBF>u}Clx;O!Z+ z+;ycG@DlxVKucIy9#J#3$E%q zmb%X2H6=?FlFYmbu1;N>RaGOoEIgEho;w2{xl_6`dk1VZiSct^!YSrN4qC5ZdwgJ$ z4G#;R&y^d8iUj1WJ0)k@LETk2=$4)kGyd#|zA${_);Vea5efMsrZ$^>dT)=S`yzGP~kBl;QGzMR3lJv%8Q3 zz&Gu?ni1C-XW(2B2gmvKr=oMeU+3N1Q|D*>3L3|^yH_9DDDYJjqw@@LlXvp`1>B(K zA>T5N(Yh6t(Ea|PudY<+GR5&%Sv*?(snfrVFHQdcwxs;?$DAf7sZ-gyCu zEunD0cR;I6ceW%D0N{oAKN&&-DF^>eD@EW^^AFwnfEoYL4-A;`4_$_U8UN6@1eoy; zoe_W;|44%!82^uio`LcINNpAv|Bnw& z4~74;x&zNG*`K3BsQh*GzjlLvV*W)T2kr*{;w?G+)k@uffT%zKcY{D~=DqnJAK(O2 z19t-hBy)pL!h{B923uQWVeSg!kzov<4MC*;riv8>09kp&f3fnwQ6$HD0ziR21&oY$ zf7&UTzuGCJzuT$$jKB~lO)Do?AzPp3P{ZoL7O+5T)k-XVJmt!*9BjzBs{hwB_4|MJ zOsxX_%QMwk0R-4%x%B;QgG;_7)ki5`@ret1kHLrz{1wuq>m3Ry9FNnWwJL%f=&1Mz z;bv|S@yDVC{rfZ~_20rl$c`cTTc{zw%6?dUjtT)0{|o|Rpe}R|0NlF%SDofRx!|DJ ze@;30%wL@=!=H=s_l^B8?`24!G?1%{^Jm}>LNgnCcc8g5!k=)`_`kvh|GGy5{{DW* z0$r)$R9u`)4Q)-Gr0mS>zlhqq8rgUf+F06Io0>b~keO79n{T<65091P{m8Cm$qqx?Xa-Trw@ShL&Sc9GCeEmwJZ1f7-F?o%uvI&2bO!Pk~Yg(-rqize~v%q070wGb!F5_*A1HLGr_y=0`F` z`Tp{GmkJ_>wk6JA^N;1{Z-|H8s=kGhJFbUYud5q~gZ&`vSjby*jB*BsiaXq~%IE4j z5ieqg1rYb-(=!T+UZ@5g5sQlqG}CC}?^rp-86DJhUG&`%7~zI|Wh6^M5RbNpD_CS6 z`?8U$o+_$JZ<%HQizk6XNW5YvaLToKx^R5VW2}7Qlxw<gbB_YoK=($!ta; zINkdTt%H^KaS|4NmSbPo$J6<2@6b#iT^ESk3{CYJ>c$QMJNepxN3hpa>h}<+1lMp% z{T()U+1LAq&Wg^M*3U1xA(pdQo9_o0$HQ`Tlec;s_GRM$Y4%$AM~0H8dNZn|M1zVoPhX%nT@4FkF4v~6Z@h{2BcW*}Edz=VxQEPzRO*|=r@E~LTpMx412n_$n7dN+ z9LE`DFT0;#pL^f8vk&a?GgBylLLvUlO)l@;3N=~&+JaA4)C>a19hfgayfgltOEFH! z3~{ziyHs^sQ0#rLwG4wf;Z%*i=JI(lUYTEzxsu%ljL(6cHrE%PEVr9Dmj{LQNJoG` z?7IDW!d>1_Y!pir(1&9q;%|=@8v>o%=uuJcvA{PA(?V=u!Nr)GvSqyE48wE&l{v5c zNl9c$^-Xb!HLDKV=YlF5yOg4~>lLL+^T*t#5%rVGn<zrH44T-;eh3RZr+!}93)1Asoqa+0d?uQO8|}PS2V2`1J6!8 zPI&VPo;_Hg310`|)n?FX{c0*>Bn6Lwml22_ucHS{Bg)DW%pvl5->t#Z)am-CbB)#7 zS#?7yrG;x5RC6YM?Wa!&(GyEeH*THGVbREP@Q^+svIB9}GnfF>8q$9r3s!)*Ri+(?W1T7*yS{EhdOfFN;WS^(N8@ua@UgM6 znM=(KGD|h;DCv#oIz;yeCg^O`r#gvDb1#d!$V`hP)sgZ(qlil@7 zFuAd2SE)f{vzM(s?+J%&t6g|FZMz?;AuP*Q5djiJmfMq#a|ltKZUZ{JLou8yZ5qyz)j-|kL+ITs8(>=RstvT zx0yeb>R+$2A$9h{I4|$8)dnpE1;4iE8-ORW8km=wx^fGFRz8uu-XfccGP{T`cSAL5 z>&8&=ZmS}B{j7f9a0Y{e+22f558+B2Wu!+W2QM)V;zxJzgQjTPPK`5;D+)^K?aEB) ziWBS8R0IQ+m?8yJ0wH~{Ah|q*c^KL!zaP{MmYi&GSH{EgMy6FKw;hV1YdG-9*xf4$ z*oN(@s8WvK!rl)icHt*T=CU5QVz4Y z*^|(=tl9I^Ao*{S$w8dCw;TI#-UVttgBlpQfr$GS<1ac~k;MA8XoDc+b(A0W z4U7mKp>3reFdlk>Rt7|giq6%#V`18!h#3Lv1N*+U^Q#&k)dzLHT#*p`sf5JcpOyG%*# z4V^LH1tfnccCTQkWJOq3rPR5`aIrB%9QL~iNxw;bgJs5@adk#eH}04@SP5k7$HkEX z9_}q*P~J>LB|>a|LWjkU$UYae(T$y}g)Qlni4DOLQdvA+nH={bk@;cZVoG>TIT%}% zF4(3;6&`q}WGv6(NGxA8R)m9`js$y&ZpuO2S```3PzRlDyTlWtUX02`$}h+Y;xivlKTb9Wfu=9XtDB+A)}NF46!Cs)`vK*r=WtLVKUIwM!`~2 zdqQt1f~9?qR^k?EFe>_8ge5u|>1M_Z@C#-Q$};*TPC>MQ{%ytcG>QOIQLy5NQz&({ z32S{n5~zu)als5e>+Z5q0Ve|1UY%zoC#6+{mZ~K9iK(F;`K#G%4Q)<+*RzG;KypAn zQY!rk8!CY&4L60g3Y|%9NNia|Fo`v-$-4^LPR$iNnr3gGG5du@gJa~^O!0v+=_zvT zUY6-6IITmi%^GoMO6$qMAuZrvUaG$#qwdOz=n%_A%ILgG!e7q5>BTgX?p%Up2)QVT z@DiU}-G`CFn?qRz-^{VsUNatWuU~w1m4S#*$)1JeTT3&9wIz9Foo&fXt++Fj`)DS`CE~4w4%{Xm2 z$fr7~D|*-*>RywZC1I%ueHIZZc-aJ%hl5-Tj0ge%&wCwoQXv2ggMUQ~*fy~I=>{NI z{-a+Dh5ujsHA$v_t4x4^gRDUQ-LG{H{n7Za`g`;>@o$ZfbmU7z%-qbcI%6P7f2-|F zfdj{1V*hFU^+!b|i3!-RLHw`%8dI&X-QSH`h__W5xneX7I4n5$u0WkM-RagqcDU6bsCCg+k~{{vh#7 z0pM=GD=dt#7~%9e&)7ga2MjTW9UD(&Fmc^*mp2V|{8p9vrA=2-epkiJ^7A4+y^`(y zE#47*@W#r@zut~8v8;jhi0S8e)!q1THKPfQ&;trZ&$RCDbXCsPG~08L9<K!CfG!gNZ1OYbiEMrnqt%ePAOY&~Y(-oqZc zSB#;#Tr1}&$>+A;c*p`9N_$8GkAl(V{;TCZZS6yPfXIKtr?Hk<3?Wzv;=(+w4KISr zy_(O|^iYwMP#4RmZZQ9XYB^DS+cR(P2m#n9MkG=$U9hP4&biuCjWi-H7+`VH{!2t(oos zdT83z!=z{6B_6SzqvRpzI@*`Hms6AO3K55)3Yun^V1x}nhULg{Zd_cB(#p;D`(HnW z`COHMr0YS^EQDV4BFZ~4zWylNa&?Ib8llYz^`EFJ_WmC20t?hy0cz?Zi(!d-C}tIB zvFbu(Q73X{jq-EwpzYbYS!K6QSlWHal#Wz|smJDAn!AJYEJ-m5Cd+O2YHm|cFe z%5px_;y6UDRhgheTg{^QNOaBdCtCCrZ^*lC!YG)aLHuyt;BxQ1Jz=xXPUUNK)2k`p zTKkCTZx8b>biP>upXfL|&tBe@=j^`hICC+yES)_W=a-L+VQ`YxH9aC-#@g|)icZ~q zZ*RqYRN&ceYcVGdi46?{7Rv~64G0L@>z|ULsQRm9DE~Cj5rY3N87K>VV9EUbfMXO5 zq>2JqFy~s(ob#s(032cA14`3Gs&o-kty3~n3sIIYXwtz*!kv=LsLVxk(~>)^5@ItB zlw?#A;MvmPE$QS~J%Eivn?v07+jZ{?_sRF1!`F*b&j+pEO|46<%cf1hinoX~U+9jI zRTeE-7%G{_^_0KMZXqR+P%Rq!3yn`UpoP5OmK2B4t~?3 zGDR!W_liC<%Lu#>Y~(KHCGW&f{o=XXoko!=oFc{xCt@A=iJX3KsDms&t`}JOv}kPj zS3DDzLvg&9ke9h_r;7?1j~KH;I@?xSzfg^4ChDHJFN-WKFRLi#f8?78AZFp=b1&8U zcW!UWqraq*7HZ@n-@lHlt%U0q+RrQmXY zYrA>uKUDeP`^Y7+pr3o2LZ19CzaJ%~1sH#LOMuCMDVoVzWC}5dRCkGd^Du?cvKsoN zED%I2?6~L-?yl&&JxtG>Nc&;L|IlMB zC}iGHyNH4Y15uJa1($mU;j1o`I$&oCzmFGh;ioB^(^9DaPTq*QH(au_bUBcJt0EN^ z34&tU3)3rYB-+C-Nk9__X8WR$1>Ti6 z`$*FG;YsXMotCp~&q@F(%HpReix#TBeiW4Hn?~tCX5cSp%;oaLaj*Mwk6ZA|7uHbv znoOGW$i*^`B}R3!K4!M~aMtnm>KhWcsc@!UPOe&5LJ5Nk!|Onv$*WeyVizv=ZO&(@ z9-feb`=0d-)7#J?vQ9Hk-dKIqQPy?o-!zOO8-?4*+{n?C+woDy+ZB{bcgLf^>(%YZUeUkLO25-%@V5w6r`PNH{ zgCnFF1Z-$KgNbLvtWJipC~*fa4SOl!hE;u!EGGAa{8AFQU01-+4y!qjyxp-!Ydmb# zp0seuv@_IZYTUMuzzz4EWBGnwJJgyaQlcc&GQ2g}8F7rxS$&eaBHbxk*Wj67gLkAY zT%EqJ#~oFR$?=Gr58my~C1mRr08y)^AkFg84Bu5Q-DBX)3cM+hpixlW%XiVpSlS|m zH=$j4xbXZfDxN%`Tgl6#y4gVMJ?3SodQj=fDR74y!?Dieo_m6$>Su24@3bYMs;{LUE*z#JL)xbecQ()~ zb`Fzc(W|gQ>u~gm9C^;9O25G-2K{8SOed4;7_@?m&mk#?I9Mg^QF||DP5k^+g&{`Y zI7l4(_l|UsLgB{=M$XZFUilbqOqAJ}CXzjTJjupl7MvG0hoa-)Q zVhK4hX1u&$I6dNdKXa@p0(%bf20c}__rUn(^h^3~G$w@#=}uy+4)FVr5vlc#A1B0} zr=PAUwC(ehqD5NWUL;xFnh4^~Iz#t8?nG6>xGG+Q2E z61Cpg$q4bMaAUZh?f zv`loTY=)_u8qk;dX&4})X=@fQXeC_3hB5m zM5LJ%z3V;bZlK03U5wDWj8_swA>e4GEA*aP`q@m$AdOm@q%-2_SPmk`T#DE2PysQ& zpabn|iV^)1aeRr513z6C!Zu;r4sl|gvwU8+Lz~faS&iO{7Yz9^Yp1P~9=dXS-kN-_ zAX2DZAu|H$MNo)V5sM!wO48#Kz!?l*rf1*H*XxaRPu;Y@x=k?`IUYi$8LIRs=hGc} z%f^~D<1efAa0Z$1DGm3gVY91k?hVt6+jP-HIX-+fGn4)PJR4nCa`CcqX)Rkd6C-i2f ztcv#8A=MhcV&xeN!{$Z&D%egiAcDGbUM&>K9UK<#qc(lo$WQGj$Al89NavG1m@uO!`r$ zM}0oJG}V2Z>i1d+GQ-Ey()C@%5)w~0HDNsIV>-K7R@eS(GkdRUr$8k=3z@}+A!E*m zp)t1b%E$boB??%>VHV1Q18zB6f2fE~0|k=)^TzEpm*gOzGfrp?3%_>PzBEka{p=Xk|z4Bu`FUcH)0CV(5wxKln{#KT+LYNwA-15qI^N z4DCdjL1pczKY+2~^1aA9@!0#L+vm6$7MpW}Od>h#G(XOB$hlY?CKxBFS*P1miFV`C z_I8yz3C2+eYfCp23?rpjL@uTG;94^^1dDw<>u#iI{y2^tRt@b1O!T_We{j!E$$wyNXB>#)f)4OVw+wYzXLNI#d=Rymb({BpnOsx_%SR@S%AIrKm{O6#g znChFuEH`9F!Dw2cg7Q=f7W3|`dB;bVY6B@(b^u8&KW&(=E5cXtNx9eJkeBJ(1?zkQ z5y~x!o)z{We0_Wcue&$VqM4eUW$=BGYfl;TSnu6b2-^#p-b9oFhwn$>3iyU1hd3+X z;BxxV)2;86NSH!DIM(9zBszq+PxZfbhJI z3=30|H*xWHaz)lKtin|ZG!M^S!m=( zo*$_oNX8UjLm+cdlG1ID+we$nt&JuxNG~2S`7k#^-XX7@_iHoBA52#qgi!}Gi{8`%pl zhr{EEWHCk<>fmB!p1Dat=OdQ1iP2>5$tz8Vr>@J(cK*ogWp@Pz`B<8sk90fcq-qTV z1yctM9}fkVrAdVTK>7$5*?v-D`cbFkV_oBKJP8e z4Q7Tu*m?+9%)3#_n!%NZGP+dAs?GP@(%9X1X|yXQ1ol9-o`v$NP3h8^m*%sY98&-2 z+c>(v#ngF|_@V`syHJ`sdph^-qP7vy}5fE5L7`&`A`nz|r{)8Rn2%fE8T!1OYqF zS--#Q8ergc66Q^X<{K)RQ1sKY2EoImT0hQaE8C_+sy?GfD~yP$;*kSO6@vG~zQMb= z`4vHxvGG-U`mYr9!%64{veusq<33m1da&%3Ho@vR2=Lptdm(4zO!YQ+3&jFkzp7%vXbAeDDNw*3OPgRFQ^zC{Hp{Va zKnxSLA8HNrjIO-$%?CZf2A|D}ny`)(3lB>S2`LrIuX|(5rWH-D;6Z2!9(_qq3o#$+ z-SA!5GE5y=sIrwxQuo*19b3mi%L zdG(Mt*lLl5$zkNLDh-uI;_$i(nH6U0zQLbFmtV`#6GKXDRC}dagWU zGpT#+_&XG*J!MPS@*Yen?p1_@opYtVm+!$T%o--NVm4ps_M`L?Cpfx`mc=4U1|H|ZXs%KkKCvmw}l0!!O0ffk32r6!Y; z&OkSaP^lf`mm+jQwocB~MKMx-)}JD5$+TCVj$H1zq)_uIJnrmFP`P%9Sd=56=wnW_ z$6rTiM$anY;g*+lSC<=Fr#=|d$!0H}Tde;eT z37ss3c4g4ird&wcCOzry*-e=GqG|&zc?9NIG*M;ur!a?iXWFK(B5>M~^%YdW4RLqa zuPD?nYG~pmRD(uJKOD!TnjL?i-rT1Cfc#KaM0DX7ggl90 zAlZe9Kh_>g?p=tS()(RC1i=ReH^>;#!{H`Wx%3CQFvuH*s-S>B&8H|X*!aP_6MDw) zHPH=iKF_L2huR3M=)R&GOUs`J0|BG%Dc%#M z0Ed6h%5QuOmzuK|O}j0hmf(99d*`9wwu5wjNYJt?1%hIq)M74&UCTM& zuXv6!up+ufvo3KJIme)d*?oto)Lyyxw_^i|%*sI|VtKBeZB}E7IcL|A*hPCvFWX4x zoO3~aaViPdmr#kT{d;~JKf(#7f&H#hasd&B%O-q!^}OQpp*@@X5?bbtvUI%!&rUxI zRuYDr!Q1}pCqeKEm($ff(GqgX!1SW&6yQ!!07I|L7V8%y?a*Kvv6XF zhQe=U@h1Rua35Ifz59md^3V3y0+l4iXdv~Yu^+PjOV`SKlTUz7U&GnY_x|qkZv0`p z@qo==zsI5d{1V$<1gH&%cRT@Qm;P@b9uOa}ncVn5zcp~?|9x7L$Mf$;zd&@GB=f(g zB>=Gh&a?#e|I@TYsXFlg*0iMRuW1R|zosSXe@{#1mHO_xqyyWEjCrh2qFdS({;-28 zgQhJe6hwAsvri4?t|`g6Bqx6MoxT)HIgKN@^|Ii>tUd6g$@U2B<|@?(8BagR`B;G> zEJPCDkUXw(w)L#NojznCB3vks3B-P8<9g~nEL+Cy9wEB2OM4rG2uC1VS5IH0ALjgC zldNcvaXUmbU^7Ve^Bx~TiGNHUoxK}D>ChyRAMJ`~pywGAuj4Xa#K>en8Vl%BJi<*; z;8PmLN!r+w^c2y;N!pYC<*MH-SY&h$7HX{m8<&}XU2$Hwev(M7lkHOH4n1^FAv7VI z{hFK9H_CVT#VlULN6XglSXDgq=nfu+W}}T$^xWN~IYIvrsiAzz`9T;Z^jln*C7rN0 zZWq4B27UJW!B(?oYjX2RTF`7bw3wwmJ|`!cf2Y67^|zpVI@f7`>lV&5Gbf8@AFZvt zFXpYk-gGj90_K$>)nrTY=4dJz0BFz-Q)n1Tp6ia`7s%{0bU;)jl8J#Bsww8SkYkFI z&Y97UhtV!6#eu>q-l8-%cX;>G{?pIP%0#r#kVF}lN|jSAy3*s}63%LG%+scE#x=|F z7y@~BfeUx9vflCI$C=*~!mim95o*X2FqSzJMz5({*27nvug_-OI2$~tRbHdZnioI{ zt4dq_>?{_ZJYv)aSGDf@Liw&qgG$6Za_RR6Wr}AhX89SRo0!^8Vmx=49{0H`Wrs6O z?(u21hLQTCT|PJhL}XBq!WV2+APn{Re;<|<+Wxy@{tQc)|1~UWL;csVMAMTu+49vt zhVNC+giDG!1y!@(b-jc*8EL)=23jgbQkHw#NTxzca}?RQsJjTSoJtCI*{X@E;o$2R z&6jNB4P)%??%N6Tjm_5&me$EbpW4gj^+jL4N#~1I&$x^%x#>7;1_fwhu@NQK2LkUa z<)pa0Lu#CNH9vXORYK8ej})gU8_jRKeX9d0->L9p5HL}_uPTVdf|ZSza!+vSvf;xS__ z7WIu&%a$Qf;?Bhk$W)`&9&YKI<2~stJm%0RbG>ZKwZYCa;E}h_lTaVGBfODLY zW8WP6d~;FYd_T2DdG9Mii>Cu|zPs-zI@#r)y}v8BxrKOmkuR^!Lr+YkSTAOo!9A0(9h`ahvu_=MzZZmffI+0&KES> zVMa+HK@?;W$`gFp#U*+5@^i}DYV2&>t7^F@i$!NoNAJ8FE>CI9jzBJ`GNyWY_=BE zXY)F~R%!4e=kex(0u-^~gNUAp4^9hnF9&IsQq!p1{wU2@w{IA^cZ>2}wzAM7t&(I{ zc^$xgDgqzKj5X}f?+L_usL&@l-_PdsW~9^{HWO1Og&NDL}jEO|4%nqu5BOJX1~{b3af zq(RMaxgK$L{0#(j!4v zTtb?O-?z<+N14F6uimT}Fj9P5_6Thof_FRi^5F&+qzY+f&!Y`|o zFb3PGU5cr(=AzRKGd$74ez0620u9``e!>z^240Jcw=lbA=7QU;=|RNhJ!fCR$<`u^ zuNfQdV4CX;Jku~z!yxO*x1%Nt=HLEO_GS68g0j^|f`VLwSab>->w7Y+BG->;c$7I- zdG(1F*Q&fUi8)Xij0v_%4c;dG>8tgnxb-cVn32juG`zk)`gkkU94JW+;`amaYF zors%G3$v>Yn0{F|!~^nttaG2gR}>M@Xh>@+Cg0p`hgl$7v{FPudfkZ z7WT6UNw==Bo2m;F3(pxO_VH$kHdGCAi@S64R)4Zv(;2E~)nG+$cUh(q zSPa(-#1v<1#;_Tb6^Kryog7=|mkzIGbNQRVius0buH@NsMCfsIgZC*HPG3zEF6=@= zPE|VY>>2WajL?c3JZSPQUfKt1LSj_2I-p2cBTGlyaRkw9HI69~Ix_!5@^m8Ih9lx} zss7L@nB+9Z+034?l5GP+K6&*3eKFo!>5b(`THOS+fG$wRWdB)i|1_pB7-tf^?pI;=k|hfH?u zK}sXm$BCnSFXMdaOj7R{8$dKI8S=Khqi5tdwa)2B6RBA--Rd*D1p|&vx8A*(gHcNc zWx`Gg1A_47a~=bAO^yzxA|f9n1VXwye&IS+(bphoeN7~b-6%O@wzN@oX^8`DUs;8n z#vDn>E>*}({ji3w3L(lJ_c;UPem%)@gN(k$n+`F$X5?9}2lLxLPPr6ZaHKMz2$0MQ z;8U37JI2yii5;pdO5j&na|&@WHcAlXJ>}X|!swh08^UcNrc5@FVgklm3xOh3_i4Mc zuD=j5=K$qb6KkT18AvvTFmh&QPTRLJ_KSFuE)&BvY{&_z66WH!gZaSqw9*oEyNwZM zw8E3)QVBK}&ZF6Aj?Zb_%QoYIN)J}XEQfo+g!^N`h80T%QznrsFTVy$y;_!?^_WOd zKAjqJ=&$^Go)(KpZ&})L-C7f?!LvFOnla~b-yT2=KyydP?rVddt7XK z;#a0(X9geMyYbMR`m-4Bea@u*-NO=iiEX`Q!)y5%{_1;NW>aEHn0M2c{%Jc$p+HB% zA$-M(76K7nmoT`<@*iImM) z>Z4cF+ojgAtNt}cgdF4Ac9ie<5`{n0DC(7v5n5cFktdd*m;`dCIat>f@>#NzCuZE+ z!?$`v!Z9cVrnQFVrg!~`Nq5vG?ir&ue={0zqQshKykS?4ds6AOs1Y0kU(q@kC+Ca& zUg(rTxgP-t33|0@&>=N~Q=f1V^Zu;2mI=i+_wDRk1(z!lD;d9cEFLdXD-V?qfeh?F zH}V1|!ZZq$IGTrL&OF&wA;vZlW)GA|JbA(?O1^ z^TZHqe~`Dc=M)@6Tr7t+-u!;hNCBz4lN&agWhL7)4ZdMtmvpmk_1H&6~yn)z*3$AX3A+4kP* z2%h|A`$iv~g)tn-=1{;9yJ2>p<=x+cye(9X+$~R`%l03X7A}e1Dkfv3rlE1>xturcoYAI8K#+ zU~t{YWyQ9&5I^0#Yh5=2u+>wblW^W2N+#qw8$1cF-LxIBDHO()V}W zmMlQ-9K;}_5BZnGXL-PLGd#|&8^`ZII_=0mi zRJ(B$F*{D+j61pCFxbxR>T_!`cjQi3R+D+9*B%?o>-@*6@tz9d3Et`9j2v}&lbjC5 zui%^8o^*sQv+y(zho*pLyHKnn`gtjSm9tM%+isXJ@{&4lGQ3aF>_|ewxc)a$71|#$U%q+(JBr@HAs3KX8+7Sy7X$P$(YX z)KJteAw_*I|5LLn1qxVv7O3R_qrK+cz0r21n%>{#+?$90JsjkqBF1#1!t3$`6FKsdEM1&Fg;$tGp$2&PQb%=s4r+ z+Rpy!=`nHGee5tVvaTyrvR7azC!8OeoMP`_uHsq^!)HlBF*i~KAjo5WD3BTy8@(Bi)FTq~4_ zeHZVUbrV}pW&(egd$trz5g%Uf7!{5YDAv3C%PlgKl24k^+OWh@`~xcoQtoP(DN@z8 zM|PfHThRHc4b@!g`e(tS$Km~1kkIa#*n3C?u@0Ss)Q8ua;-`L3d|90#m-y!~xd zfX5DC23l!R==H{$;tj3%&1bBK|0?GaN+l6{@ExQ}HU%o5-EYyP-KpXWGJ(H*F~cpr zwrV`Cjb_aQ=bRD<$CgrDi3!#Eqko%6M*CACk1rq@Vu<#qkvB5LWnd2bTjnavt#tIh zvsM<_2O%K{h0+MDRXQrMAYqDi%u0b!CFySuJ-&h8c?Mst@PkIK{83SYP)l7-30=#v z9MPtw-WZl@yOK&$gEFC$)>Cr(f&_Q0yc7CoCV?4|zF*2F5qhTadP6I*8CaDeSgkDxc-p zhV(}2Iwh|mUir*LX5c7_EI0A7E3-q#5&`-i>4rRarQz&7af2}kpYRU~Lj(zMJil-v z1K0?}tYpwW@wcKtxE2efvKZ69#SWsjBuErz0|&1b$1_a69)>HG3|)L>U4{vk3> zy#b6EB$d$W(?iz+!Nq{E3-2{&Ng8){h1CzctLUZ3prWnCZ$#Z49E&(PmrSO-tZYj= zySPXnT9Y}u3dFT)$7^&t=@*thP+Vto#%6-nzFW`vlP8f1|CZaDmO(XSX`^zBZX94D z_j1ZUxKoE^=PCLH2RHV6c~<}6z73j@w5&q|Gq^@Nsa*K;JdlRfK2#^%{xf+Inzc;R zlm=tA6i{RDg0%3=0z>6QOI#?GjFz*W;edi_SoU;9{$}DCstuGQnJOk(`1ys7an!@r z`A`2;L~{Cf%qFV?(#cHh?dR}~1AsW{CNw4$M+UZio4kSjs$$^w*U{*NERDToW9bb+ zRYo14luFsLqCyTc4S&l7wWJ48Sjif8eN97jBBxnGf`j?*D|lf{)qtP@(6Plp^F4o` zS|n{5Kir5Sm=95vA|}jB7o(R35`I0dV7w$MJs_ZJj83dzTQQAZlxgwnGUBW9TrE{2 z-sGdq6OT3tCuxt*Igw%Taj6XVEwh{ZvvaKj~%J@zaL6xVS3XTS=ZqQ}M z2ezW}tSG!5DUOS=ohLd09=SnyP+@(Yk0f*TsPaJHzQ2|rgzA)L`NwJ(M`bgZa^D+V zyVQeV#~AQ?l9 zU_D8*B18i@qS}V~I_Rvgc_Ezeqn`%9G~inz+y8WXxKpZZLZ@nY5OEB|4N<@zO6zLJ zKhp_zf8%Ri?e=+GMIAp27!+{68ngTSNud2BEG%$lMIVmH7~#(bB?jIUSlrl Q^z zu|$=^-oPE%#N~Boe^Kwm)-fQ4CUhs{9^<<~Jt+&5)o^aw8QHf(c%x&`xMe*%ig+;| zrF;eIY3kYXheLG5Rp?>Nq|t&ra1PFgzz)I8~Ngc5sl`w4dTXdxKbwEuSS`!b-lAa<1o zohnMUH&6#)Vb~pVL5Cm07wKge{iwjUf4ZyAPv#reGjK@!i@d-!tg{vWL(MkX(fU1? zuRR%aknkd`K}g7sPr;oFQDJ7jxYCnMH7cdWqL^U_a;W$Z{iiS9U0wH#@AgaxZT z!zj`8Y1oV6-c4o1(T@i^d zauIOK5|(4tm+Va9quvr^en)GQQs$96bZ!5ON3!2%F$XCYo_yplL%+8>T%guC9o z#fjW~!4)baE%2iCA<4fOMCk<+S`OQBHkWkxsBTdnen-TnRi)__JDT|{j&$Dyv)SGo zO9Y1fj+=7y6?F_CZ5Q8Bubwicyxk&HY-WbYu8i@O2T>x9CQaR~l4Ko?{~WOo(pmtOg_J z>+<>2iM9Drxvp)P0;6W`<2cW4E64szzmckIU5x4*M?P^1b~3yvX^pr8-VWw9uyw&h z;(Z&en0tvP>cOhjLGIAM)@SVYxjU;XGsEG_uWo27ZaM!bk(^SAV?#xpJk5os%q2m9 z)LO^lR>XX`K``R@qKyNkp58CL^#~N%z*SA}yt& zB&yr@xh20oXhaU3kmGqqT9-S~uOc~kJR+Nezl&Cs<0C{VMK$m??`~9z0~sB}N;bh? z9BU8yWEaR@crxm>v73?L+I`$WPh>9e;aORX6W-cbv+Hw&&=J0=5xx#Qw6k^Qs`-72XlGBKyiJvF= zHql@#ub2twk|}a;#k6CtWZ@AZSR>2qh>zIc5#SDs8XFUf+}zSMIOfkiM*{b6>s3lI zMi+Jzl+4XON0v~9PV?qU{wZ20plz6)kshxt@5H)eUv|qFpo%|wi1@f)z$0gk-87L4 zzev`Zrh-=-eAK><*`zc7gQVe3cmTH|c}mLIis^xB)ji$2FGXQ>y{ z1oAhMrYp(e_xPYp*o>w@ewr`t$G@r)XQW=|t)UkQ1V*;1NI)3Bu6);tJ2n+zmE08e zrV;yRXUOW?$9NKd)k$)>YhS~c*3Fpm)T=V+Z5g6Va@~|GSVtps9O%Li)$ObbV9@V#msq|7sU$)~er{#8x@_IR|c|>O4%kdXw z67vOcm{c?C$rIqNZ#dt)G{-%l(}XGS2yC2 zEw4okgy{EAX#g{-kxlw z^V-mj8V`OHpBzM1Co7;7#tG>q4tTW?QXK`Pht{o;>BbNw%;Sh{YsQkcJbVXbRLAC{ z_GkDEcH3ORcMJMdjvg~&dK1}B5K)?5uG;MVK9JuRI$@vUO`(b>Q8`i&YD_VH${Ctj zE#Eg<`^JDP_8btZm~t|?l5zwGrNeB2^8HZ81rPs0wIq&I28dANGtiUCtowu) z=N%%*5QeR?N>i}VS#g*s(~A?a951(;#-Q4|!!!tV?C;;GO7(ROqa?>!*GS$82|%|6 zK~TJX&{Q%T(Xo%u2Y=o3x0-m+*%R@`RQnCh7(Q?oBi#x_VOH)~o#^}8fU%@eGob}7 z_|dUmlm@BLJ=%suDlLVF&TW6>&{C&neaMq%IryOYXK3h4+{9Km2E(#;RyaE75`|=r zRSPx$5}Zn`PNv@9lgX_8W`>c))MbiTA_yu?yQ>EX#Q87aoDnnn?(BoKV6v$_0!M4<|FNMOqle~!22dN26+3h~BvTS;Fl z9gz>F0GZNO^mbHKk}H?MNK_mO8l3}i(P?lRp4BiYr;)W$jK>apP(G+~>X^JkuM^aj zK|v+_!(s}($@`xP@}D*(J%8Ou{^<rV@l{Q~Z9P(()YaA3Y2S-gO?|`Q3y8~9or1a>Cz~L5>^#NL(nTiA zs{_&0PsdD}63O@2x7l5uex&Sz68@&#cL!nbGvXW|F*El;V`C_wM!e>(XL(^XSM!kP z{E`iwCuaWUM1cy-L-lO<=94(o{V)V%#_#xXlX>%UI~$p)!?bJXqkz8=w^VoJYE`h; zvuL|uWa!(bfU`;DKGD?#^l{j(v67+EDL_2ma{!E-l?qqO(jC-Xo)vUAyuNQ_(Y>E@ zYd&>scV0oVdiq}vre9dAFNHs0Z@=p30LxUb+xzz+RGl+DN2<5mGHfuBQ)G9CT!%Y= zq(ys7P)Lyvx)z%jt16!h1>0_leFzQ9pXf9O)@|>#%GVd zW5%sgI!=P+HvD`%F8ZO&`*ll*Phs7eugtoca*yZYzU_`}=%mGAb~L)JF2X!Dw2!Lfi2vsrPpo%et<1#7wioyE^S)`#dhIz?iGE4$5+ z(!9u8DK+azrROUj_2}FTZp=r%VivAOQR$RC`0za2LvMD z3qEJ23Gn;3uslgYdhh?Ug5Du8zdF|Q=BkN|dY-Atx2g4cua;`KAcxQ7h;6rChw#~) z)EfftF5PhBlsj;1Xs&ZvcC z%sE2TX0s+_*at%%ySBpJh=b-5f)@hf#T=P=Z{~^As7PxfEofba(+LTB(ocP)gusaAP92TWA^F1V+D|RQv7$nYD0T>|h zq<@w+2Y9hh#!fkCe=cC;pj2w*@)i@@uT{A_7{w(+zz7%w`oA_hzoKY2t0B#$5ukia z+}DOS{l)3MN+mbZ&}xo^D45V;#UN*Q$St8wPQ@mj(Gy;#fHT*DCh zYHJa9T_5AG0KAh>5}H!>ccC!5gMCW!V71q-TX?}2NFb>)#`;Fyb^17Scj~8>>*~Xs zsp)}mbCH#PR87AqSa^bMkySjBQ-7p_x+!EK!))MHsWvIxW$r~rl3MSl z=wjby{Z-S8P|}$E(d_P_!%3-Fu}h#p@M-hjtf^q1@14*<^|5}8E#^Py1BM~515oMS zLoQnaCJMldT*@%MBdbq&CsSw+pD5OpzZPVT#4-d9(9&__pLu21uLX5#i?<{UdrmsX z(E__Xn<~{h)w&!a1!|ZZm^owSD<293q)G8nc$7;PUPau0$@%W7GfX|hswZ?LbVcil zdV@fyHOXd6CU*cX_`{Q6NXqG(ty^X2e_lwK9BTiQ9=8US0KEzdCZ^)+J&6b*=zM8Z z=5Y}<_fUWQD0W1V8@B9k+wYxDJ!`#z;t2HY`US;r{?e)29xQppM)_ zM>GMVxoD?(n>i^aw`QWQ2Oh^h6IuipX?^?!ldd_E%A7GcI}c{UfSRX%0Ha@hoU{RNr2j+_6di4`xGSKR#gnBub;3 z=1>1!?@u7j$K`REs$Y(88tm{XsN+;CaZn8&q0ws ztX@*XhB1=3yKBTFn_25%S7O>b?ycK$PQ}LK>{t8>MXL8Z1SGW1`t+sDS^+uHWdDVo zA?<9-!O(Nmu7N&dBzEA`$2%t+;}s z7K#_^Plo4&_MP#uf{mKCA8r`LUbx@M?qP4PgUG5B@diQwdOux**59VZ%393@lS5fU z4N0<=e@&Srt&q9G{@NfJ>in z*EZm`tyb_~U-{yIGy`5T(?I!qP)haFcg7?Ey69L+gdObL6u91L9-1p`E1TD4ehU#m zck*)8?{E$H1{dgXq=1wu$I;i589ZSgVty?uU~1Qbgqr`Li3D_eGxiZ0dEMsY{|iRK zg^SW^@Lh+%hwKWQ<4Nq}4q5dVDyWEo7_yIDiZVIPS?PLQW_P()>cf0E`zE4GE^`yP z7y=uac1!hZqI^BvZo8IXh`=nG*7~hXJY&VQ3jIRamvWG?>IgBntzz`t{#OmfufYTA zD9prbi0Rj4hob%xV%CFi&K+cTk%#}yN_@~GkH!LLqJ(JWPC6Ow{soX6g~U&nof#I2 zP@m6(;1vO+bExVM1<#t<^`7^KSsXCjS@%&b$jR#T@@BcboN_Ca>mIcs84qHw-==m zH;j76*P(4Os~#gRdjt7_XXCaxvp9EGpcCqB3t&Ag5)5ayJM!Z-+!$cYuiZgp6UD*4~aR;zqJ;hCpu)t90iGSe+& zwid|W=X%(9x?lfDKc{F%$`w>yV@{%TJ0y+{lJPSj%yEz!PS}*SZP%&$QvBa}hk+is zB59MuWZ6PwS0F3zX-^{m;C~I17~|70CPqU&aj6@{yAiqk-nLqBF``5|Nu^fOuTTf`aTqRSu(o2RH=QLFnT$gF# zWL)cQ^6LNQpX-c_Dt$-GRGk)B*)e@2l?`L+B$X}^0xlZEsb}f8xX%Zb%RJLmsK8A+ zCx?F5+-6HyyV_~&>^&d!XJRT=+9;5N->e^2jnfr6>o4GhHV(?^{5c@6p1mD$0H|-* zLc!L(92MvZ_v-vtrTrJR>!7GX>%RV;%0DGp9GVd>b@S3TT2{Hqg3cbo)@`4 zSXV`3Xk{10U6&6=XVG~kFMp?KFo{x}>{%(P`Q+rq!JJzAOfFdGZ~1`es{i%mB=V^P z*cwHQ(oWKkF{Lj&Y%Y#Z@67s5OK6{*t*Uyv|4TdSGaKd0yg#aGv7l@*^%eSj+hC(G ziY`TmICA7~R{?cTs}Xfw7Z{ZqXSwppo$#$v*(_wT*1*cld&q>-*?r^Rh9azqm^rVC z0!RzMVu8nbDjasXF5sSuz=TG`QPf-n;29ftoe5JBN&WJ{)DcLZkY2PS?$jV zH~RS%uZ0>W(RC8v+Ty0)3(wmiFw_X3Dhf7_6IS)XncQW2-opDNKkH=>uJ_99w zDmpe5wT~$?=VU`mOPY&r9GbmW$SS{_f4-^wY1zWW>t4&71r4bYCV#MVqdxee=!$SZ z@v6lcGN_F-hm*ieh=Lh5dfvPU27L=OeJ{=yw>$B|JeofZVd0{APU%aq#`O+3JNs@| z5CdZ~tiosCu~4NsT~4lx$y@Ts#5z>8|FCZ7QnG7%58F_ti-DHux(9l0!Nf>Tss(d$Poaf*Eu-O5XNKUhlDfi2tjwdF-Kr8e8-! zVX_e&CJ1(z%(3+w%l>pg5HO^P?D-GU?hswB8+752Qs^;XZyh(To0@^Yh57F5$lZE#6q0(&}avULhh}-qv-EDZ)M z!DwH-M>DlGzKd>M4b9|M2_XM`nH?x`^NPXO>YTB5nZ`bde}p5-ru$%lWrIiJn15W* zjq=c3xL?OW;j@SL@zlNdfiDMqNKw5+5&X{Ix5pF=A)Uqr4LZi@&v%GQ-gUER7-%42 z%#Zh+v&?`sT3QgxWwsj<2`8=ciIp_mo_iwCuMxXsW0A*gfBu(8Yqc*^uI&DoQy+|Nlr?c(F}+uOre7k~&b}$;r_VaocT>8g zqw^NcV`W?o4KTGlsk&Hl-F{tbia^+Y2=eGMU)&>oI)q4TlJLGPO3+u36fRC!zPY<= z4;p7?E3S=Im==Gg@6Z~{$(VENwQISW8 zC7`{YXA|myF5m%)$TAjx&p z7iN7!Cj8bW&tqC|)ZmIx#ara(hrP4z7Ae;3MU&5^Q=8?LRYb_aui|!CF(Gx2m&I|s zWAw5upi8b{_y1zM1hi7~y#JT(juk5G2c4`%r&PWgVo-Mrx#)zA!B69Uh$Ap(N^#Pg z%MX~l?7E?@@0p2LsGS9Sn63`1rioYxZ&uCsgT5At+{SZ(^&awsDy8FpuPyb_<6@~S z*`Yso1ui+d=s0BTKB^QDH{-mC`azUmS5!k-X)^IRt`>v zCh5S;=eJ$$eMw=a^XlsQE_zEA(AG=`VZ)h4qv^jH&z@K)+B3c?(LS zaB9VyV1#><)Fs)so@r12ZOI*dQ4Hga)`Eyyi0FNIxJ^xU?yH9t#H;wvKe*>j?FfW+ z_pk1AhNABGcA%j~=>fxs@em0RF{V^(d!5#`cpF?dar^hCjm3mA8yP1NhrcNxlYemO zNv%`wneZkDm)9|92yXX3!=~+06p6<`l|Rh+FA1Lb&Iafk{i-gZS>oev_8_hp!sw!X zg^@Z}tA#QZBGxT&6Zc7eS4NtXUbg6U^VEoS1Xh&TDjjR-8<2hYn)4)iPcDRMmN;;bAs zc(xCO#3X2tg=O$pPnhS1J@Ei4+wlv#10nl0oqRVgn&fs$Amv_sXcZ(-mG&Crr#aJg zLp>D_SgR7Zi0No$gtrr1YDO~R^p42x6ivtH*AqJ!Y~RTo3;&Qm%Uy1C#8ET=H7u-= z3!ZULa36JYTGY)Z?rC;mQ3%q-r z+u`+MI2w@8TuLU@_nU-r!ZXTz`t0j%+~%n& zC;S0dncLRzR?;S#tkCh+Rvanv)Utcj*kAA~yiLy3qf4X<>nW6Ng$ZNPUFF(>;gSNNgv%iT*}j>5~3PdL0_ z%+i@gXw0(4_cwNnudMf)dW>&g=RepK$E-HBX8n}#XLX;AOM2SKDoWBYrwYgS?d4xZ zoJ#8(fe0{?N4+lR&L_Mj^F=5~ZYMAC{?m$2E}q6ZY>S19KXjK!sX={h)2^Lm+#0h> zb6=p?CqYs5sq))cwmFS_dUGKsJZoo(VT{FtO}8&!SudG*9Q9h}^~f@}sQCh!al z4_<1CHm@o*!^I^`e{w$goWDcJb8UFm6_~ia^K>k^Iy}B+s?70MO z>gD4h&2FmA1`q7hXYPU-@UDa^oJ)^Z`FiraYI;H0^S3?bI|XRtmpPunM>7rj0w|T9 zZ!*uM1(1aJnAmPpGPtqF0UeX>nu_z_kr=m=SD)pIB2W3;+Tj3DFqfL+~3VO7RNF%Yehaa-e2qmYTu?8Dny`Z{A}UcACHI7X5QrmlF=@4GdjzDBWw>YkARDvbR7PKDxoYb1T{Gx+5^xAdn7Z z_!Zvl=%_Z7N64{K2N`Gm3`y7zQ1h53cq{r+{WN*bsEC4d-Vqf;mIq- zV~Xnx4J~W(_j#0B%72RmM2J6cl9DeU7Yi$M;A-TF`Ad^sa5`m{C4@t zTG4Gzj6|ekP_aFP&Av^ty`lE{rd#GcSWg#ichOqUGg7>iR2GWHG$GnvpnBeb$%lqx zZBxMf6&sm@B}}2+#e7ffck0DLvAjlHW`S9+xFv-~TX8S4T7azgm8%@};SY29W| z64*48k?0IJAWsxrHnFqvk3(VEyw>LXMVk!Rux#z#S3U&!a9li{S(e1^2TvOnBO+M4 zxXBgA_YK2n2T0WoYQ;#yo9I^kdjw|#@JW|QUMj^$N-ML7oUGGs+U3qOJlo}+c0^CG z=G(1_J{q>&HLRJ-zB#x``|ID;SF%w=mhZ`SH4IO3?2fcRN@Y337W*G5(*!!M%F9u) z=wQ4Yk;Wun*U+(GJEzRO(dKS$+sFJo*Kw+aG=na*PCzc)zQ@djVD0q|KC>i|KweeHnm9D1LgG#8q~iFVwcFZV%uv1R2b zoV+7*`gg4?`ZeR#6oy)wuV9h3^6(6_=!!;pBB4>5Gyn9@*t%+s=lj|+M4 z?+^y^952R|yZDmcHq%Ic4cRzcr9TY+FD(xM6KBHTx&8>#mrZO6rjcK-EZ8Rblw+up zbwM|+zh@iQ_!$amu7-toUK$P!5Sh!HJ5y9V#Rks?*0F%Q1E;Md( z$05_pKVH1FbLrj55@}@5w(XhmrGJf4D!&(NkD;HpR(tIGW${q7y(lAWFOW@#6K`^< zv*bvl{(@Rrw!4WTHnkO2>Yo;OV*yir>!$M4dMS!Ks|5l5Lgy;^sQ}n+W|0CkIXk%= z_k6D%rw=%h%upvLmD_fSBIdR2NP(*Na`EPQ5JpMUZ?3AZFWN6}x4`5NNhTxsi;~S?`+shF=EBnYkn<`#-Pp!vIRdm&jqM#3`C=svVu4mI3 zi|oT#10v3y9F5Wr2^ZNS|Ff3yV18&9a{Eet6}#2HQ*`UBnyG||SV!1mttTlUU}Z#0 z3mp=;$L7gz@>6)PNrqF4W?hUzjxxIg@&NbfTEKPW9SshP>Wl_aDYnR6U7;7lW2j?G zUXFn=9+XX*f(4h`GQy-W+Qdf4tU_EK0y+E0!5baz&uErDRZ|VDjbXnWs^V(amc(Ki%>KdhM<{fV--&CqufwtKr z%+lM(m6}a;T|DlmO$)7k2Tq>BV0H(_jPr~6vtaH?iu`hP9%QL`Vh#Vd*fz3f&ll5CCRUAD{JRtOy!2|ik%=wT zp5X?^GVH`Lse+~9-zx9`IFVUDcQI$#w8Ki05pM82W0tx0zl&KY_);jp9C_V}+OxYq z+meCvkvEz>jhGo&EEQuT$7n#Gu-GAH0Q+wX_}uoB{Z^T-7z7oF->%mZ47LqP>G^eZ ztv3_Rn#=Mgf%0?`{;&h+!FEFiH#B}>$naZHN8shonvm*AtF%G+^r zFMmaW!m(=%+JgL7;FIRD$Ky6O88&+?DMQ%%_iaO_<*mHaF=FY7F0M`pa<*E=ob~Q_ zi$6I?&#FKU@*%EsLCL?2UFs8c-jX41I4qaSn>}cJ``et;X5g??MhjJ;HRFEJ8c|F= zL`-@AHAr}Z!m(#MbE@|d-mJQ%I8Vg~TbjbmC6%I=Hd(ogkL5QrrM#JQ!OBz}=UG`|!){fD`tnRb zud7f>zn0J$z-5bT*XC5rh0hqG756}Pw(bv&HfK$7=!2*K9$|d?Gmq%v=?;p~>8(%%_4LKGj4U9}u%A-Pxd%@iU?i+0#|uvV z^q>ZEc}w{X%X={`hb~AWawUoubi!+LXXqi!Bb;HGWW#+0>ic5csbAOmLx#!JtcG{) z3{i0`)_>8upBsL5E&j5N?t*%D-K6VuL6bGES%43~sGl<7+=G*Kt_pWEobif^9fGxA z<+0sX!}TjOuFOGk!XvmZ$w%)~`Y>h?vloGT*13pL65qWGImtUG&(YF)SoI}Am#sF0 z#P7YXZg%rP%AedR9MsW-g4Q7X;3xP!}%iO%%97_)tTXwQvex5@N18g9%jratQ!WlA!Pdfa^JJot;_xnu?leD z5=3ZhF}j!#k`l3Q6p&F)tFBqRRH<2-fr=BT@^WGDL#ut9DxyOBdg2os-EyFTSCYc> zk;Q`xoQ(mBp?dy$Y%pgnxr|kEHq!0P8G?h}6{MbV??5ES^O~$IhC$NP<=b6d3Zoy| z>E|dy0!upAd@JKE5KOlw>Z4i1#g90Mhsk>B7^dEmvN=AAe=gg~=2mXFVuM^ygFqs` zck);*eJSx8Y|&^j|5gdE<&( z4l>Xv0s5rKO#~sw+vQ!gZ^bFKPs>$A%Xfj-fjk_ws+)Y^6FxIR?qyYvkEVhve0#NA zpuZBEd7PgA&%9JR@9yXLRAvR^9R$4G$_)n{QOhzNCCoNfW^&0HrriA|MoopurT=|c z-h+|5UB=r${W;-Qy4(p{eLxdN`dtimQ1|NF2^^mK)QFFYFy;Oo~(Ghz}C z`EJ4n)@ZtrrTq@P6^TH#RjN~iZmrlwi_eLTP1o*x-;V*$zG|ZlypQevwwne%Fbjuh zI{E^?2}E2I2#Gkf27&~-YkFiiNoFe`o<7Jfx+-txmSG&racb87t}heHq=hOFlN`lm zIXsB6T4nXhdMjlqlQ%63YwkY#<}n^J;f#~+gMmg(n-=|=^1{W{6qFLrG|_BKcFJ${ zrupWfquZ`ODU3n{JdLo6)?gaV;#SP8YmB_R?Fd-%{D(ESF0WRs(!O-&D#l*{44>P} z9ls04>^GCu@#4yDPak;8Wo2U-wvTJ+vqbVf_`7>wS>=!3yvjKLVba^CYf z@B24=*ZK8Xv)1#>zIVCyzV_aCnmI{L3xfUUor!My)xh$2O7?hlm)7t@Bhqs3=LdC< zAuY9bxgU1DXo^H=01m-1cP2v*pgws}sbsFvj+Uu}vr2ZJ8$PW&GZ3n5X@d#(xio{+ zS|5em`|eNon+xyuCDTE6d|-GA-G!LQFFK0~A=u_N4o@~^^=1B&&|uL=O$+UtN7lz; z^T3Sd9pZ5RKF#Tjz(e`degbSnbYETWdj0*Z;&MZ~~ z+VrQnR#PPKGp7PHq|2L_fhl+voFs0VkF-HDbXD``L(_%%jrm(SKTE>Px1vUNrGFkb zbs2E%i0%!SL{#Z{(d+Q`y&dc){h+DZ%XZ3#H#0Xj1(Dhjh3V(okS+>S<7hb&wzmz=q~(~z;*`MFk1xP` zb&rz$?LS{52|#HnUy8hMClmW|IPovCnzoufCI3E4epHpSf(S z2@~JI$2wa>i~(Jdhz(COZ5W@fY-8k zdt`+W1N1TPyA|>|L8_?SzBje`uC7DYg16-j~Ux(lI`_xWoIO_SNfMoYSCD_~m=hV}Wqqt`F^x!7g_e zQnKXCP{r_An*i3O*32mP$W0YD&;!Y`m<=jk7rKGRh# zzcHCHIZTlkCCPiw#**jt1+8x4vk^Gre^q@Lux+LZGsAQ{I7>z2&Ww0(2T=CtOQn7v zj&`ke_!*T0cQcoL-YLoW_CDqnk0||}$r0DgA}{REzIDhKKVLlyH|q^MBumMAfyVj} z7{$}(T0e)yA9(Wn%KOOlpFu(R&7g+H3-xtcdEQ z9ZS>Y61~*IU`_>3=0@ag0QvUr!nIHSHaH znm^m#W-%ZTXb2v~gREoxPDywCws?;8_4Klj|1m-)tzrEayI+s5tq? z6A23R`L?_}WjD(UPXm4>HRH_gLsvg?D|c8pV|E{9&9~3Gy`Ab|o(%-pf+Cp9E^Q9! zk~#&oD8U#%-|&07{0Fjz2Kr5sO>g+AyY0r=SmS@*cy zsmQw8eC^t+e370_&)7^qyx#ZGxcAJq8$4H?jrDWWdnka=)Ay}n$PQ@`ajgcKmnAuV(^Fw_h_H8|xI2N_TO5bA(;kfA zOZcwlmr zQE7E+Q6C41wkX@KAM(pN$F%Hi1R2<~%>po0RW9u}nOUar0iLi98 zooNoE<99BF2Wxn@fss2X+}&2N)*)T{$fKgg61IwvJcRs1NjDj`A2~+ug;8+@aWDDZ z7Fv52W+RhbbtGZ^_5q9?MY_?E?!5XkeO~gJl!6{lmHUYr_A6||6CDKMekl3`dGMBl zo6}k{`+HQ-aYY&n;g>=R(kZ2m99-FsqsslhhH0Xh2ZYS zr*lr>|A*9}zO(gXEjCwT+&__u&UtTe-2LrgGm5n2xC&o6WQBwGv_PD97e>Y9nTJ4b z!GigVkVeCie<*1~3XvkIM7)Ug8Pq1@TxsWBe(WgJ9<;n za3bMx^vfdBI`$f$=ulo~EoYPPqECCvhY1qVv|p@d+8bc%Q~tSIpGAPx&x=klp=r{3 zQDNT?bgGw&3S|xaN|;%r$XF3iI5Xxv3lJKF(IR6+FMzBZ&^Z}X+z+S>^l&$&D#s6$ zUr?ix_)D3mQf<*WEbPQSGAnf^nKU|kKkBw#3-Hr;HEUi4vlX<@^w*rR>RD|180TnA zM((EjHWMxPMqC@Rik_~J62>ft(g7zfe!{(T=9}r|iRqmWjoVohDzb?u!93?(EW?MV zbI)Wf#7?iLqoHcDsZ#R%TbT15MVHcsw>j941!?1a$Ir)63NpEjzpH!l+zvMP7bOU+ zH0Xq@omp|*2c?r7ck;>Js^8c4CH zV-BmAa#zgW)1v&IWm)ulnZ}s$4LD`}7$o{%MvnT9K`$B&;XRUZxC^Z}t9=>p4(vY^ z?FQUee+3WS>|N8Zwqvy7t_hKBFZmFXfG~$6JTh|zQ)We1LxD6_f=Q;i*o%_|exw11_@oUiVY}A-;H!psFjyEIQLm#}E`D9Bo z-+MpL!YUUzw%tKALkqTZh^f1bMWu9s**6Mvbm-37SLVSqYXhXy!+^Hb!}gXyUq>Ee~r|8*xsI!zX@}9E6sOSxMW_aQ z)inR>%ok*WPa_|-Wkb5L{~jk7!&_!jrJIhHhJao&LpjKi!-_o`hXctz&6<^3&q z>W6JZ8yu`V81N4^XL^3;iNSOC_-;hYaYbujT9mB}qlcssevLQkQ^)$w_5-fBXrdG@ zPePpsHOvd`o=P29KPb zaV~*{ETGRbw!jS@mr~iBG=<-8Ii z3kdxFb|dqZ5#!3eXYvd=F@7VI-0NA-R9?KFclr(cyn(yZdZ-rED^a(9?ZxPU9DJSG z5B=M)-2bKQ$9MLg6PdTK1M)rI0v70+Wv{Q_Cm@8^l&~Mg{$XK18Qys&(iNOId{3OI zPfTp@XzzQ-K4HN}^RJbjc(X*=8un0^8S$PIF1$Yp=x;OLc<)a^1{P!z8_3Cu>1s7(Y0#9P z*Tk*bzXdBn{E(sYq9&w*_J$&vhemocbq96O_`~SMdZ{t!#N)2>WZn#y;Y7lLw?B%Y zab2Z;)}}@)kE5(Kn1-XZ2wG%hxGu|NTN(Avn#Q8T%EI#lcf?4F)*HhX6p3_YRoVo3 ziD8i&Ocq+kRYNoJPrvoTCC#iUR5@x*5|hnoW!2Q57rWR~;y!0{)gSYfP#FfJxtWYI z$3nct^_>?4^#TA_)%urGEEbp5&10Pvz&@|zAY`<+O=Nexgx{X!>7&aW%hBs&`_rtr zr!A+DKPZ3Qhqi~WT2$=i2V;96_gyq`hAd^8CpeT~?doy#0$iq5gL{r8dFyi}#iElJ zAf?$Y(1f@7LWXYc-nqRlB~qdCFoCGK7}hO2yW(yn5f?YdD?F@oKGi*UE@tzU0_Q{! zlZ*1$>VJ5I^X~zqYutOX&DfRb_j;eP9};o{taHt)$5aFRM8lNEgQY3qHZ;VmvN+48 zN~CpJm_IUkUh_Z3TS?4kB3J$_99N<&`Z}5&b$TiNac&dru6IvbXAvc$ad)?bsjL)D=a3e_vsXH)ZwKjcH*AC)o|0jA_Ft!g=j*QtT8>t-JR4Y9 zK>2T!*F~vHFgN)Y7dweQ?~{?gdd=8A(fCi-xI?+_PfFkSYx+}yG|(2$Lj7Dfz%78) zIef<4@&$B_6*SN#392HVL?Q<9Nz{U-Z-d!Ic@1zj->Nz;T(Eu+QlN^Jc4rX9i#?;usTbzSI)WUG- z%X`v#9>Ao`p=j*O^*N!RS~pU4qN=a2UBc3}p3YKlL`hW|8#g`xSw{WC{p3-7iV+?Z zuHd@u5JA++ZUe_GdQ|G@2{XInepGW_1#^2p6bME_ka5T3oUeHN{!rYy+r`#6C26q3 z__esHql5D8eeGVf4ku^+!GHh4WgKTJ|n`?hOIkT;+l;?(N zm3TH2T~L$HMZ>)!Zmn;$5k$lgWkHl(l3t1!EuJR#7wRm2PjvdGjmzVEPH?xaw@8yZ#UsN58e_$!=aaF0K z`$M)d*R+h*Ux4_mC9_QMO*sC7I!slG^CY3OPek(kp^^h3$~BAd_$vl{@+kdXAN2W( z$VN@=hQ6M-I`C}o`>I->-|?<<%T)`~;u_HOdz5MtYrXg^R2$V`?Vc((kr!))c%$tN zSor!pJD2RXol@B_xm#3Bmke3|jmQ$>?f+zq;14SM*(mt)} zXxjDWSwa>_+@pi=rtqQc#hL09^{E6{0BxS@dqI?edQE{U0*4P<$mFq?Q9^{ij>+%l z3SGS)C3@y56*@K^yeUvwtt+xr30HCD9wOu`fw6ZGRytczzG=+JIhd>SA<>cs`N(Iw zU3TWIk%PQJcx0idnPv^gci_h+j-p*bj4U=mNC!k*ac}wzZY8miQbhA{O=PZ*Vm<6j zL6@&@7eN-zcUycVMN@;j{p$F+BD5NFgX$1zKY4XGIPqy||!Z-UlDS<>_*6 zfH2qsP(g6)gc((hddsHv(LeQzzz_)8B$Q3fStcPfoba_jInK5kHFC0hjuFBVRAetB zpMcenvckD8;)O-U-`O8)5k*5jU3973L&Sp~4S z9}JuWp+Claw@{|ZXGhPHN8m7j3pU8$P09J?OdEe+o~?S}Iqj*$>t{uyKg`#0$&!Y| zl?I%($+%f;3$N5^+Ieqr)CnDTFqYXf1hpA0eR{ za~d)9%Zp0~zj8xw3EpK!SGLb2*5rDS20S-y=ZF*Ozu)bDH!7l+srkd@=CD zkGbI;_T}fh9ow~`A8s0x;??j*&*M+{l+Zg7kG#2+A2ha^jBbWwKY0kzWb3PYT)7g=|Q2?sqddlujThz1w3H2 z6tV6+q^iJDAQJ93iKdry;(QDwOz51mL2a7SXSW0d`Y3vO2k(L+kg$VY@tXbKEG6<& z?9lQ|XtV1>+=bG6p^3iz0sGh1#d(|i$X$L*>l91+e};iq&DidwgQ=mJifH=~e~+gw zBc{MyPNy(uXI4|>16iPMdRt7KV-atqZnSB>f!d%F;}#MOPmKe?q#LV66hGpH2@Z|R zkR^?sykB311kPv%xX7W<@$ruRQSQ5~f_gUX6YkUL^N>1n`Xa{JfIxw4wr_xT(!MX; z%C-7FuFoQlks*H=F;oSu72{;*7~S^(Y360iKgnLQ5t%BW;7!M7iYth4 z?KD`H_oiA1eN@G$`r5;K6?zN{W1b=nC&Ani8Pfr zO8KK^^uA`FvMy?jE@hMV%mJ7Sh=-m2A%`1{BaVY2>`F2iIc zBty}oN;HT(Ox2hBH18N_Wuazjm%`D9VBS9&!lEmCPnG2qy8^&d?h6g}tR?RJ>z+1q zi{P+?i z7iRpVry+`Ysy3j{O&DbHA2f5M@hA_*z!gthL-wlu**6%>T^w)kI4QYrAqL5=qtU%YMY~H0Il5uG^hpSNWt@kF_`iOSukH;0 z#91az4C1|cL0q)LeM!f=^9UiWtGj?3l~$-x;A+=%FOxuIHo>BYAc9Sy;UQE@_tV~Dq}Hhw7mGyJ)_BVE3+ zrPM+|37Gk^b129o;&~?+%wrDQ+E6dfkUuG>f_$T26(W*dcZC#*D8VvKJrtE#cd!Rk zLS9VIeg@>d@7gaX*kXp78`0$=Yi=i?zqxki-fg2Yh|ms7dLZf_r%lC<-zUHoUuR3DCOH?*cRyRYk{Bx*pJj8 zgDskWOaF6-?cIdVfVA9(X#8^X&NCwk!uQMOMUu7EqFtZA=xGZAX^`CxcZOdtPst*; zZwdX52p9i~@AITpYLXLd7~U1tWRfe2n?}y;+C+cfNnD^hwUIyCA$0QQ8Z@;0?yfpc z8Bk`@^$EqV!@~40J)E2Xl|U^HQ{$H4@GV%M5A(r={RA1Fi5XqU{(v&-*F6DhPC63b z?R=~2vs4k>2SeLIdj|9D;VAq!{=uedrI<@qEmO28_2BIcE@ztUHhn%)7fR1z6=L*SkCS)pla3hpcHDmW|IBeiDL?hGeq}f%#!Co$Vzu zrF69X_x=&y3cj4J+r1)h7@}Rdc`y?f1u98Rw(7*=Ri)|Sjou!Pi^Nu@LQ&MFMM&+N z+D=Sde8JAmot!Y!VpX(k`DCEVp`fx7(5tAWQI)52e3Fvj`DvW8>(h4`ukMnQ-6end zO9!b2=C8<6@m9*}&xea#t&_Qk^Xy(r-W_cWrQd(k1 z)b5#-X(nh3FpS^?z148kcM?4>lIrE#;ZnITWoNG zzBOpXQ6>}lW1?Go{GIvXw|TSM(yFjXCerZry!sQ`pVv;()p1K*rCrdQlgq)Zc-~h| zDG04>-MOdVjV{!$e&%^d%@+LrWtUBn7IbmG&0=i=6!ldXndo@W2o~WE(E`StFh(4$ zAPu{-O69-1c0csSNrq=$!ZM{fvjCX7?qsK*e41?!_kI>F^L3B;jbo#~T81w&H`$_0 zs^>UEZp7-B#xp{llD#b@>ItZkevKw|<_VUU@K*<|O=VXM#m5)U`-IFFs}j_t@l%t- z7${n=0aKFUAGrNZMqf4vGz-G-w{Df{dvc_+RPm(Qw$bR>Tt>SI+EQ_JMEeuYqr5wK z*QNIo-nDVCzc)bV0_^)-+PZBIm9|HjU#@MVbIN!ZOD$<^zslJBBDIcO$FOYiunTPo9 z!Y#bMVwHhY*ZWHUI{HWFW{+fhfMrs2pj`pXVFV^92Z_9RJ&QeBw@DJj_}*VTDjIax zNJeL~;YqnVC0z&L_|8JJF~L}3bm;k@U_g~}2&C|UG~8vjsZPRyF+MEP2gODg+ISZ8 zbba_y=Fyh0r;H?5o%CLSF;60DNxISlM!6`O2sx}gkFbn0WQgqTLY(#cTVEdzRUNvg z`7jsnVmElKN01iVfOt^jCBRh3S}IWC>(CF?-J0lxBh*l3j=Z$oV((1#-c3bszQG)) zh<-7p!NdN?yBMsjvxH&a43jV9rI2Cij9^qmNCIk2AbVYE-vpChIRZ)WJKUQ+IDWm| zcSB8+^SqZIT0gsyV)0%_(bb@$*;Axg( zkI+uBw|4eh{%Zq0!P&{(f!V#@7M1ulDWfF1c*fGH(3(j$@n_SwdoF)UD?2Lg7e1z* z-Dz|HMzk)3Zkx1a@VI8nUV#yp^IXm9nQ&#%^m!Y!b+(wf&L_RA90^-bqRLm5e~sd= z*SMm-N7nA9ymug+?()PPDr9WL63tT>Hw>L=YuvO~NEoUYH7f0w9`;t*tTXP-oB~-Zb z%ew2SS_>p54kRA$m&yC>iAm@rEFAcFzo-hPLDO6}Z5j=$`J-K%%DptAxEW|wB`6tv zf-Y>Kx?V83$hI&>u@;JO!ZC&T%>k~-@#;&AhcV=jwW#n|00yB}nHJj}vt!EtocT@7 zopp4%8J#cTfDt4ee%+59Hd^D-+-&j1228EiRrX-^YNg>-!M8 zP2)#a*>igl5^Yyk_a$zfU%^iUAKQ1OKCk`6^MjqB(=>hR?OFojjtR4IVF3)nt~(Vv zDc%Nao)s(U0LWhla#$MVlRx5No=q)0Fe;8ngO9rl>^7v!mt2N-7q}txVfJi?{6#dU>ykCvQBMThuT#lp=cfMoe1WE0+%+l4__71q8 z6a4)+h=#&~^L%r-xT?|+wb4R}&jC+UXOb4+(fJ{ABtfJ+38^~lw1058!b7fE?V%1| z^8>r*hBD!65%8p7}TkGr}*&4-J{|P)HId{It zjx|9YS+6^|Gn&I%Gc5N2Q024*pTv_t^Of9-plP?c)Ok+) z>Dh{iBZL&s09FlGCPGIc%uI?v2$HfBl`s9!(3sfy6R%nBY;T#_m;V#!AKfkxQa*D$ zvR(&4Nw1H&v0aG~@y^;_t03&=zvGV(CeXPRpQEyLa_ud{JnHExkIqipPJaq^7#EE)2&p0xyEpBq+8J zEBkFy*SOV}?W`7#s45BR4R1wdQ==BF?$*V^fjsumc%&Qykr?`TXH44AjRSo~Y-m=J zsPFJP5m5tgBwh!N9=hpcC1OesYvBcw=s+*A5NIYRb@~#oO!>I~q=#pS=e5gel0zVn zy*pmgkFVTk0E+v-N4i0JFUzH)nSp!#It5wxh6^B*5QM~1f-4BCvGIz1&2*H8EE}+z zbZ0#Sk7G%@DyM?7NXE3^YfY5vw^`zbp{*4$NZq1#l zbVF7QD#NvCsM3(S(f)SuBu-U);p5extEYuN+yCg$Usxn~H%odYuik7Vq?tUf}_8X2bfI^U~FpJA_8Ku0bv`8;x64cP-@+j;PX2U;cnlj?1WI1#xespQD zq0tO}Z_X%rLNU?9U2ci#ZFI~c^i_OdiU&AO&<4oR*V0-)(3Wuct_1}6C-!tm;Y2iW zJNQkjqDz#*!Vm$E7ET5rP_KscGx?LqcVG1eBGe?VRT#+h+?2vcXS`g2Vpsb8NS~#} z;lSr#0Q85|Rg}>ot%AScvI)YBg6c0$JyjpKigdV4j=bb~!5R?8Tg;`;m&J8~BF zq~F&CRmLs=Pt%k*B<@UEtZC;d^x=+gMUm<`(P5U240m}Xpz&P{f%_g%k)X~6F{S7y1iN3=Js zl;kP_uW~zYMw-JVWIniVXLC+%$nM9siNxxSX39Iw_9YFxOpg;J{rLGGm6myT$9-z) z1N6AzP-AHou}roe9~88EjAe$Kw|XL@F@Z^wTh*9OXYZo@wzHIp*&u!8vT6U*9CvZg z_3jU{9v5Od6`euQz7TtnWv+h&a`W--vscS|?!D6Ng|(mhCM<>hd8Z6oSk0~AmM=AD zcV(*M&ZGOAV>MTLADcOEO#cbk3O1hL2CCU1OPysJNLcKB+bq&Zt!58oT$HMAe&%>f z6I{lN^pV_VDgQeDqj*Z$D{V}W1SuSV_`I=S=YkIytmk_+YG|?xnp#I6!q8_*7M;LUW{|$ov`}Dtp`kO!hS4;kD7yng)e;1SfYYhLt8H4F#GGSpn=lX^D ziUqD(;g>?s(zQmTS|qQ3|MFFR6+I%n@6`7NKKk^9`l%gi&5~{@pL>$T;>&+6;=dO0 zH#YtV4f=3KBy>2rC>YJB2KjEl)O=f&y-~kQbM>|oN}S(5_S+x($cS)}hWBPLxLcjgx_G`ri+7eXzQqgNRvN z1I+XGHd9|N6GVuXHTM?3wx&4S@SmfI24gcgC5eGm1+;FRYZk$ z#bYwx^4|0(9mJc>>KEJspoF?RjQBpItuxa&xtu)dD9t5uA2vnBLM7ZM*;J3-$c3Ld zh!v7Povj`&i}fdbzY1mfl+UYJ3BAVx27~6yMg$Hr&F43+-6ZCI8y5>z| zHoqLFpw_LBc<$1~{XkUmS*+_l36=>V?5s?@mHf?X>4v zE-on|-Woa)jIZDPXL%?o(8>!OsGij(TAsxRjON?>Boc1YI2YEAu)?T zN^f&ODV(0ewhQ3ErO|JZ?oMx>2Jx(bM>-gSrRozPPs6ogd)Ft3wF1?Xs+k+*zMpOK z+=IJ?s3&7B24|MHr{LF)x7yHF6%a<_;%1h7aDP2X3|ep2x@Cnm2$ThIRs* zqkF^T*Jvc2(45$;nhp=ClBVB3p7(k_StgqP)Yg|fs&|5b?w&b0=c0_m_AC@^O6fUPMJOjf;QUWRT=`OpMNc|B34MwN z?Fj9Wx%3Z-2`S7BJ04OeV?Vd;3t18vlV(rc{){!8;PzkN%MRWWf46PS@IovGb5>+6 zqiuS%9qJ63&`44lBG?3SqGcw>XSIS79x=*asEhvrbu~6rQH%6hHu>%{HxNDI&q`- zJ1-nN=V%Ql01rtTK0IVwva?pawcA|QJLqplg5rkQ?H~OPbR7-8^@q5*E-r=-zu8Gt zJ3Zk)9`ij~{3xxV-)xXJab5a=U?c@1UOPixU-dFb((9mQ5v-VjoptM8gM&5q9uWZgp40Zxn#>LHKnxi{x0Wm%*KA31+XKO0 zd}MX}=GHxgUCuK*cXh1Dug6{R)wJeAQx4=s$C#dGJSw+7q_&;9f7f&ynVzc0O8a7_ zuF5ENjqWLUCRHr;rR?XBv^(FFu46Wz8mx&GwOo!K9iOY8H)fIKxJ>`KJPLa0c4=5+ zE2|YH8UOK0(m&)y#x~?`ZFoDGxOq)EVp-rRru>gvO|WuxG>2KqFR>De9v~3p(~>(} zu8I96bsVfPZ~eRDqrc0WK6bHOR|lQN&~-x#EANZUyce>{dNnd<1EnJl%5u^9 zSPPkb zGS0FyLI;!72@nep@&(sdx4PuFiAidhMMHpaQIPXbwY!8Joj5e&bEn2GKeYRy;%~#2 zGUnoY;02^v@eijiEk`twxBKKMC)}#JLzb$VSuK_yNbd3GzV5+@#pv{D6^9+ zt1-L}5SI|KO#d;4cy&NgQ#rX_IIQ{h&?d?z?|^{TPgpu_4QCB*OLHrXcN^)0)TC&` zuCImzKduIO(-`~w@edN+%D|=Wep{bwJNotV7&g~a>!*&LI6DE5@RV<(OlWd8QlPWH zZk9hBEIlpwmL(EywD9n#b%u_Wr}|NIGd@{>9Y@9{=|CsP;A$6A58I!FyVX@dCGy&$ z(u8j_n{|)ckObXdg7vSejExv-U-X$_uP05Ii)g(9;f3i4L#cZ#H|0S9x0)bYY0{d- z!NZ>oBMpBg8jRzX{m~TP!Qaa*=U5RuHh$(sFd66DKwp`RB@0{Fk-o7h(vaU41H)IYlVt$3KkX5et*K5CN42uN| zZ0SuQNv`49<9C(NFf&zKxv`|p+x36EK!n-@kQQi!(-I^V%WjR$s` zP-zcxdY;rTs-=a7>aj;7j~)Moa{Suwt=9E;T@ygI!j3K?_a=UCEq;8GokI(N+a34& zV#ssk$C9Ei<2ifkoGFPR;}6VVvI^4ThfYX(^`5^WFY8Pw3^F)8_3P|l%g}rQ^eU1mY2$3aRa~dF zIyYRz`(i}Abau__&5DwURJ+8K*w49G+c=y@=bm`06sdlCs{{s+rQ=x$ZM#T zSg&>lX|9pRMcl#PvLv=HHL7cWwh76`R2Y#Ar1ID?B12P^dSbsj7)*OsJ$G;luGxB% z^kdYHx|!O^9BV^P zttFbmwAbLNO0nYjh30wwm~$HxrgyeDXd}f5a$#&(o8W<do9UT|Fhhp!;lwH>YybOxvGq!VQvl#ehFu22BVCGN3J%rhc_8*HthQOvRA4|go3uc(sE6}_AaCE5C`o} z=;~zcogm!i-^lh-lm;i zK?Gl1Uxf~iewt&zTYosytE}YDRNAy*f8^CfOu8=wyOg12qwO%$sI1hS&TYVFnak*z zui$vtk}{`S;O{KK5A0!BCaTzU^O7f>n1-`60?3?YiuJX{2HsZ);22APb-&^VIon%H z9t!JCOF=ZPRMMl|%^rPH8cc&3&DE8_1ra+1BhQAt7C_R; z>#bv`r+S+@gLCb2pLY0y8>4fE5_)k-@u08+ge7L|JNyb-Jn%ajwMVvU&T}l8fOS8$ zY?!pBB1mBnbH3%;i1uQ==vlDu+B8NyW|*5y$EDfc=nt;@oL&xWWXa!ZAGaGPZPh@8 zDJR~Zv~Y@HqU2}vPj?Vrn&#ux=C(Te%mh7YShDqvHk0GVlfQti_RfpiL>Q0Xx#Xmo z={R+`!-&$p$jr2B%n@9*(UoTyzeQnr?OSV32JT8qMz53}e_u#phlt}i2gcCg)WWbn zo~G?1PEg>7$4ni_=N;1a573&~w{ywy;n9gRm60>5xx3L+7=?3n?ubp`SdUB8!+28c zmw8;BH=#ObM<`&F`#16<4Vq7{ZdHJhHYnN5g|leYrh@=r-Su!o9B66P4JtXa51cLw z-gnGRL|XleYxTq2+plc$B#$LZor)vYjP7Wxw^mpk0X+?DSXZv#KtRcSt#~ATV{|dA z{^3pMm+M-7!kMwZ2B;@qRpG2xJp5WJ|G=2%rm$?z_4!jJSL#c#>eU6~95aRL`35%$ ztAP7E4OZO7b6g(hYX!z4EK!IMW+w_lg78^wh4Lp7d;<;8W`tr!)~j zwN6a+EB|KUx4Dq9%^xUl_aE||!FM8~zP1Jj#IRJ4YoeEH9@qFaKKRFW1(M*hC5p#{ zK4dP?jGT8}WxLyMjS(j~5z(DLtul?NSuj=VNJR$>(~JO4n$P zE_{YeoxFSpb^Gv!1-doN3VEiCFqY>MkoFPVRNVh&&dla1z!*0Mc&6aOw&g~7FXSxt zi0LO)9lE}!Q`^xGoA7MObXn!i@XS~}{lzNLd5$ns?Z^dPw+^e!Eznuw%_G&YBlHa? zZDjqr^g^jAW^*4h+O{dFx3)cbJJ$DdPR?JCRjhld}*=5wJS_OJdw{Bd4HFgOMN9j4FR)mgO<9# z+0-qAOw3b$U~p0W(Y1*f{bh;F%CYNV?`k@a^1k7pW!|a}oLda!ziA3@Wame|BhTDO z4fh%WRute_m-pr00vUOoTn{pUGtJ!D}L)M zEcI|F&@Zd(2!&IWn&`-*ARnLIGrLpOkyavg$X&}>-z4=7*07o36Q(vB`2;>p(ES^4 z4N_8CCev`2Lgs+IzQzm}+OzbvvrBY9ceLVA3HvKpU0o>Za%r=9rhW_GoFuqOJVzn} zHjs=o6yXNnwlZ~?;1C3VIBkg|fcB>YsDH!+(2#S0UmrP26BVWb*cE=#Ez@~7(#JRI zimdL15S9jV>mvQGbvQK#`R@ZrsLH)HVMN(S*d7(NV|JF3wjZ+wUm4GFd@bi5&}GsV zti(C`m66K3ZIQ+7op;dyKk|Q{Ymchn+zj}C?7j1IWnCC9n2wE(&5qS^$F^sr%chUFXzZd!JS7dDnw?LCn<5mWX>aqh2o95jUGH z)e&6=H=#{DVv5C(X6(#q@)n>u)mII*4r4VUX^)9~?fZx>k4dewZ#0%w@lMw&|A z^*ZUxHQJxSt9Y%8pdxV`~#sFOFIc^qcEhuchM$WJ#8~>`aqV z41JLm#P^>SdFgY!`7z~nz70lFLG1{kZWp4K1R-#P^OWfo_9~ka=~8+eb{=sBYBcw5 zr?5h&9313)AzS&vh3700b?l;~C&|@V?OQS|x|qc2%M1JfHadr^yR%cac_eOMc+}|C zMdS&-I@F?ByreB86~H_2wU_6NXqjtVSpR|Jeepy?AD$){cd3gpT5$-XIff;Lbg40QCmDY*&A59VsB8d8G)yq>l zm0}n;dd#k>kr$)3$XbywQ~fNnUS0NPBh-D)s9i?yq~~^C(OuJt%o#j^I$_u(pyt5h zOWg_n&DSK3$)&Q!VJj$+if~7F02|!>D9MOzvn-&ra`f5y#i!%=DK1@!j|AW?W-!-T zYu>~qY)qrBsQ2Uzo^6~1+iXG@S!~kQSE)}oa~y1O$@Au@8|UKyHYa|7Wwe$N0|55% z&s03fvLaQ-`ix)1;Zn|e zujlkly1XJ>$*wbzt>{A^-$0CBy{o&uk4d63%G2+R%zy*KsJ;1%l_}lNk#F0~SODG7o2Tl6@Y{&|9iHksA_l~M?qa``U_$f`>6Kmgce$hQ@q$^;9PGg{A z9S%8&F8_JSwy(rV0i|l|cLQ%FGW&p1hhKhM4HYn;?I%{oy~2m7HEvL~b|?j3$hO3& zh!4QwwgY@GJgIJK^6yozyJe2Y(Wf5&0ClS=M&1&R)_iL+kFG#e2CXuQF!vLhc|HX9Jq?|A@rsqa3Lc<;{m(6BC5dJ!YsDz zhUx)S`3AKNI~aP9ayDK>HX43dswrq}ZRFz54Ox^M&D59pGJS!rb10iMn3s|2h1oWU zQ;I_St`~m~g@t#ZTWst4`LCvSTzpf~o8PwcfHd6!%4>|b9o+O|zW>d_Zjg{lx9J#A zf_m=-CP5m?JCPX+#;=+`P-Jcg|0KV`1>;x$+_ugNcM5~`(a2Hs%NUIuQB`gxK(v1a zsqrE_1XUJ#Y0TrgW!Q(6A`17e|E_ncuUO2&Afr4E%d3^856qUtQ3U~9O&a|U)@>2< zrow;p8ME}=f#JIF+JT!2&@?MTTq6z_MXM_o6@e8jwln(LNzlpgTM|P^c@OH^@)h}; z8$;M4ux+e1PXWvXo>LocB-C(wl^W8>PK4@8suDDIL3HJi-KYU)0Vy*JIQn~#Z`5;f zM-zQ$2zTfH>9?xcKf2KK8;4oKlIUtS%EDE?CPs8W*S3h)T`QCXaJP{+8Kt*>b>w5h zhEHJG4B*gRlF2Nz4S{*{;kFQ5$t!Ln)>D?;l4HlAZCTY5pB^B7zM;FU)-L;25bAhj0m? zF9Q_%=#O(wY0J8cWotG5vrt~U!V-C#BayKZ!UA0#H!vWhz2$fmIZj`Cf0(HT#kz+0 zHS4F{o!pIH#U^#<%@F7+93am)RXtuX<_><7-b_N6>X+&(^Dj4lt;|YQqtspI84Vwn z>CHbFuo0)Trm>V64=?ma58f&w+R3`${;fC^mVD)kf#{JDwi@~-GKRzu@rUvN@01jI z>sNbfyIoaHw~~%^I^J*0DbH}4qP-nfM@H_Hu~(j%8cPy_^~)geYFVtMR{}@3(@SKX zb1`>my;A%Pj2+E=Ossr@k*j-aVG8X22=~$Bx{o@dTsJm@H z8_b{4d47{!W>ei1K~;qNIFnvtlS85xoJIGW@$T0=(9k!it*x{epYza*)ZD=o-Z3q9 zF?7KciCp<95_E}cx1O;}d*2z{B|pqU#zh!-RH;p3y$ho7eq;UfJ*&>%nn%X?{TJbG zJTjZz zXkV0Qm%QaZgc^-02emGsJn-d2m)081chr=z!6*p%p}RWVeVO`WKh#l=sD=tv0t`l> z>`&TZ-3S>5`fp_zYrAfN3tG!gj>?Gx$y>2%I|5a6Q zji94jCb|`uC|!5y!^f-dMB3GOgJJcK@BL>nkOly$GLIR3X$Wkmp{u2romC62#;7pz z{v8}0>Ewhiah1&^R?RfjEs|9jk1x-DNxR|v4-Y>o92t)ou`{Cq0O6HDH&cl)+uT+F z`a{N{G9a>QZ)5wE726hyjmSfSwFNIK&LbmkbZe-kxI)DyUrZSAtRBJT=tsZiC%i1` zAsu$yrB3L>h(3huaRCl2_*&whz@vC>X!>ZX1xqT6f3;7`?Yk)g$_bx*xF?krM~Qu> z8kqjAAV4_%u>SH-y=Xv}LM*HU(m|^Lmmv5m`Ldo|CE^iI@w4Y1(no5W>kn;2zq2a|YY(!L3C{fO12wTLS(kCAB7l96~t9=I|iML*t zynYeKnfZ02}h1otMELM#zOhzY;A;U^*nQQhPv_d1)x zHLtK1@~M7J!hh1!6{df!OQ|QCxz|!hNbhawALY%Jx~inO_H}VGUZyOD?4#+7JC_hY z2)8w;!!|tuj}6GB#{k32i!zc7E1yP$49UcS4bKN;3vOCR&aVu{p;tuqH3rY^Ltnj# z9^96csDYnX_$`ppSLGFM%27w8Ns85YrDVzmJOqe3(L8)c$_n*a*@&XmPkgKMQ(bu*%E1#K~ zER-2^`Y&E-SV#I84!rl`DEj)touE(6dazRz)Xj`LW+ViQ>yAw??ot}pdWgwlhMbrJw1Aq z;TB9$>+ST9-C06r^FDf~SzdEvC>i+4D4LBR|3R71^;^E=Nd?$DBm#_JiokIiKz2L~5 zZSr%2d9{~?ozJ9CmBZzd2v+R{gII5q>8gL(6!BJ#>bJd7gZayd5M{Sj;_K~sIwfA$ z1jH71H7{WU7azY3W@~o(VuooMh2Iuf%9P&ogulnD$7q)$LdfwCtwy&0FoGh_Jc)KI8-%s~G2FWUA4s{sPef`W)>89AP@f+~yrS7&xS^)ViNYU0f^&8N98y@7$`bJ7tr=s<)tu#e< z^?hXR&Vrzg4jlVa4B9$B6o$3@(`14DRrNbw5;(2;f8psBe7nKTP1Fms@#-O1EpJVe zYc&&|F(vEo3Q0rd?d9Rhj|Duz=GWcb)%n0J z_%;D|Imx7s2gDpF5#{fRtWN;OJ`42p{Xa_vmWV)}*zMX0#YXFQ0RS_>;;*kbOF**} zzh2=A1vWm)(7xBj1H@2X7$>BHP7|@WwZM$A%3@Sg-oXx^2@1)2Quo@atLj*|V>5Fiu0@yZuQo_)7X@DORU@;tPNMm|HqJZ3xPy;alw>8+YNXXY5I|J=q4;NEP6D?6fXcY z4|iH6b(MBB-bIr=R+_KwiQJvJir-XA8s8I%b+%n=+sC~ctO9Pf2m+K+1z5DYJFFDe25k%2PZwmz+Ytv(o zxZT@x(M=VEWq)L^#u9#kg`W_}W|dy=-piO5*XObKDf<#;%vFUbN9clL!6Qm*Xxc~d zuKygv74b%QXL%#(`XO1A6IXw|soMA&tHcDUiy@JB6wzJ(U!DANa>A0zBRfvol*QqP15z8wu4~ZxqByPxt)`YJ%24nT-I{*Q&rjYN zrs`yrCfC0%F)m-@s>U>bF#=36uhC@Mj=0GYJG;14R=>|9^2{?urAXiDmZ1)re`&7i z#?=g*d#QCp9egC@b|Gth+)RYq#8WhydQorcRS)qtmrG{D$N0-yLq{|e9Ln7r@@M5D z+_;Y4_d>^7-RMe0$gYO(eO1n^uu(S6QcQGc`ioA@G}FGKJnmfJ+gx9(uP;{Bs8hUW zko!zQ=*P>>Ahhp|Fqa`b?tW2{31Kz%p;N5plHPM|!uacIl1jk=6#dv~sY_;BlfrzO zqYPanWV7vvHorI(xan2w2^Y;@mxn-RDZ;%Ku)90Zs4is!AbIA39$VtqRudxKlj>d5 znKegg;#YN8EHd{&@%rSjTx{yyq!|TCA;7otU;6OP34FTwfat;;p9IHLZR`=X_;J?J zGH9wx(sJI7;Kvd_5lQojuD!R72SMO#u1Q^vST`3_TV`gi=mXf&JHAX&)TfBybFF*L z*c-iIR0}pO;3a|t3-{NYC)sTy72S|+@{vqSrg>E97f67Cx^cjU_Wq)KEpSkma*x%a zY(6rixUy+<#c~}623okR0Pcdd=e~SJz+M_B55xr7&)mkJ{~Tp_-#DV9>5v1|=i zbjwPL_R*ht$6|ZD4_irEL|b-)w?x7B|K>gfFV(NO8=n_2JbAFbj*7hx5u`gTU0;At<*@@yFAs(;o3h$;*j&-c-sTLhhVNo#7uG+ zjNq(%7#9HCb_~`=`<}4-7G3<0xNc2&9kMG{KA+|d)dWZPVgSdl6wmb|Y>!8y#e|B2 zPLOA!y^eKuV7yCr4aBu|xtRHp^POz+7VOWBG5uc2yH>bxpX{-lp__i%*AqLFEqx8O zF~dSF{HNlD=J9^N=XkYK-C8Z$Gfiwat+8i1aGyu%v41b_pW4mGUac^EZoYF%w82R! z%#+}BUX2Tv(}udU-mhaLq%R}q{`^*TM&y1tZLub@wpMvz~p8)1q zA_i86TG{xy2FZo5`8~3=^88oa`fvICIx4)xKZra}oUw}U@STl;p79|h@mN+`Np9K? zNN$c|bY=i;KJYQg$t9GrQpt))TN0wYGyPR_oK*>pronickOZya4U(tTJo=H{1fXj! zO4`X>SD~>&8L^s}LVM8aW~}VAr@qbmFDLs&gh79QUB1_5zH8gDe(Wg)f6D~|Ind-49sOLLe1tpqleAl*}8_J49%jqAFd8$*i`952M zX%7Zp*|dLJrjz%61_809jIY7hxsL}%&-Bn|Z)d01Hk8#V+w1$dmG}W`L**t>pV~-X zdsBzrj^i|EUE3-)Rg2`WQ>UC0b@Waj7PZh}vCWfXO{aN|i11*%aZAe8XZ`>F;wcpW zF+mT$VuGLfO^5H5q<}CDQo1!16oXg+8wQOp$J|~gu1e+F_LjzEHI<*x9@e@mU$4iW zeIru3d+JmPmQw#WTjB#+K%W(mV5|+#Xy$ed`vpxHf${x}I9DYWgqJ zm3f>A z^{rz9Fltor<<&v_#-WPvTuB;0EWepykZ6T3TxktA#frP|;f_PUMO+%KvdN_<_~rBZ zNj&AXXv0WfYWSZ!;Ry)cbI>nP{mORTY3Hr;A>$ZEdo6mWzqs~0a_MY|)i_#0VNq(| ze@Xax&C+LPhR*i@q!D z0*1u&osPsdeE5kJ+baB_Wv99cD`^VpvF=mg`BWQ2NW-MQy?IaBOu@)AjoR!V~79{4v=pk-;}^WKtPPamBoLGVw&rT|J1WF_#$%* zEexE5>>M3UjGRr3K{TbI!yrM_kU`wPU8q{fD~lof!bLHN2 zJxEw4`6KD?boJ@O(#F>Py?3?l0toA7uptO5bpXycv?76@$DwQ<5r(px#|C3J$W?bh z;Pt)6QMY+{P7b@?{)NblF!|sgEh^GEb%7>fUCDyD#7x@I0W=$U9nSht#lo#S6Ag_R zTPcLCF5C84zDSwl>~p@1x?ln>n_s=wGPrhXbe`dytWmZzOWpSLK=t?G;Jx+6@%FJj z;|Y`0s_`Q1RcC-NSa%)Yv_2Ht!5m-MtyduUC}dpLA%pGXE4J~4Li_og|^ zC63~DcOHnPOj(7L>-U014+!+|R_poHyAZBSDp7_n+;+wbtX|+pt*H{&#dfc1Ou@K(u=^SAEZWvE)4`Cb2!cXNwvdy2j`}>JX--DKF zYndDcgW`IxF53>gd{HUuB-AW00r0Vmt5l?~g^I1l!VGDBmYAXyC!_C{q%wC|1bkzW83@f0tpjo{r5pMRY`vg0Mt&%q6cPE zcKadQ`AF{((u{Q^GW8hG{xWO8QT{u~m1o}Vl+kh9@3Z8~eZt-!HS_qjG`H_ViBYk!q{Jlch#!Uwcrhqqj|T1G6~)&?MkR zm3M&TYxZ%~HGO-I!M5^aCBRUL*~VC?hFF(JS2j@u8QLOH8@7V>1!_%CEL@e&UkjIvw|TyLP}V0H?l` zpl!}4Qr37jubPUUe4kI;k9XLmW21~k1oDtV1eC@BN7eM^c_4)BJs&Ds5y_g!#q0FD zjNq0@Ri;ZZPQHNnd!3ZC(TE|hUg|x%xQ?RyQl~h74$f$!JQE<6FN#$wR_$?U{*%## zmj~B&J5o2tX!vZ)Bv7)rD8u0j@!oo*H0l_O&C|zM7SK}RK5zJB>M8LDD`e0TvJKi> z!O79Mf46$&c%xFP2-3%JezTn~$m9ETtXb@N6jRZk2JvSa;KVu7r|rC(_1c6j1b;M7 z)I9}E;A!B~lprkj*cIY#UP^cu?p3LuI3ZdA?pJ3sL(o82p>Se|4O9;ccdCCsj8+63S-JN}O-KRgh0(gH31B`Zg`&mUV-JKFJ=`$G7^)8WjUdCzr z?9Y0ptPI1F3!_Rgrikmil1Q1U7x#`1L&Ii68imb@5-ZlTgj!gg#NCe>cRNVJXd`Dx z2|Rube1@=vqpAOy{$VHnH-=T?t}xa(%2!+vY$`4c-A#P_><3wXYiOZwoJd!uofxd% zbNs%Gk@%{Q*Z0pSCW+lDVzFBui3me<39ATl6rI5Vu4I`$aq1iGLGlj*5~fDFpj4R# zVrKg0xZ2jSVd>2y;Yvq#g+pkEMgv0GcMFCtHv>!z{Kml|jqdFdipD&r@?VIv^8M|I zi~6rmwad=~v=ukD=#Ov8NM{-0JN9l6O%39qEJcbOYE_Y9OG5!vc6{22Y=Z9=FtinF z!3*EMlldfqrC39MhmQZ#(1>ZnQ4hl*rkmTCUr>6b00wKtB$7E;HOzJV(c>msO(*mx z&2EsNdpmCWqBqCA`sMiB*XIs_YY>9l&o0pJZyly(?I0lNSO0*FqU}E*WBUhW8sq;H z$k6`-GJEC!JB-z!gS1ingE0*ljwGuk--)$UsLXEy~r3lC$5>91>sGrQBSRNA0CxachVe8`+)1n{#^gaAh^E%-GdV8gSz?#0TUr zv206zw{xGKPg_ zy=G0Z84p*vWGCY;U6OmT?5}rNU_ih!T69o?P>vRH)&AM!tBTH!)IjgD`sdm@6@<`q zBq%en>^G3DY4j-Lc=*oqT)#DeO>u`cL#&iT;EX))zWEA!nuXoXM+E|cF!IMyacG^p zSS)3>M%Z+N(;D78JtT|m&y7y|+iMvA51zA)rtB%<51QKmr)1UK>y;?u392GSM%(_r zte5y{)5PlDyWhOr)uy7+QwU(NyjL*eKi3k2KqoamuCh4#&i{?C2Yjq>0_t8 zN_zG#a5_yZ&Y zADt{@$+6+l?!D#JePST#mdY{DQ==(ys8{{oObA)dmfE3bD6#AvTQr`G2)(<)5F;j` zC+z0f4!mk7f*@UJ}5g?l;y`u;XH~vcehF{B4;0c)2Ir{<&P`B z+f7;Hc+=mhsd^-a|5g}v;rcC^=e6{ZQTgV4tWjb|k$w>N_Jc#c=$Qb5oWW0rN+eMC ziq$b0BIa6ysE&GM3Wd|%jCUHXcgOQyX$(kL+ZN-^9aHZjnVBoL)7Jb>0GP7trxD?2#J+=yS4CP6#rVWuk#D=Rqe)9Ct!LU-Vk~&Q?%OAvy z+@1I`QLg!HG*RS2_#KbkmhF@YXoL=CWR1xyR$mLY ze8f~!zqA%S`3Rehy2P2M{<)bt_cuKMqOmCYlBtwhVMBY13G(EZRr3|6J64i!-KLqS zru=HO8rQ-YL?Zzdb!O^jsHehcm2G{c!cmWI%1mrYo~Tf!Sle&vzs~Li%)F?v>DiD9 zN6p2#<6#M1ii?(|sJOs;e|7NF3YN15DekEI08*NEX^87kkOZ_iskhSZmB*q-e4b1W zvYh?w;mAFeC%FBl36XvP^(|Zup+Kh=l#0~QNI_GZE_Z?$+)1>qz>g1=QuJyRUM~L- zPQf7Q4km1hvc*X#I?tJM~&*OJx^!-%i_k@>tlfv~?eR(y{ax+hchDnRzjG4*~ z9T)sBTrAvG6Gr))VF`hNsnW{oKB{(3R|Nuvur6xLv1(q?0;FsRlt>MSB`MK82sxHC zM$P)Y7&K5n(frs|1TvVs5au~}``fprh04y18O2_gc}MggELEMRpAJD#>7jUKleX@m z#Q;^Z4GHyd4vEi9kuK8oiN8KXGq<48Q3t=&eq zk{m9NnNj8=YaA!8>t?|RW^rV^g=*4DLPjHJb)FJ~VX#Zdwr9RE2}{xFSKcZ?MRug>y!XFAQ093Pd7dF}TU!S4OVpa});}Hb~*pQ`khOY|JqaX-Bbbrao@zF$W{_4tHf(Kw|^lt*|I3`Ve;xn4KPkl?X>s)l%{$i%`=7-wwKMWtB{J>=> zc>GPFHc`M^V0t2VlvOG?pL6Ya8g~MZmtqgG23~1*yL4 z)grprxJ@HpKC%`V^m({?HHpwXL!~~NNUN(jUmeq8fqCCze=B28g5kc zu_QyYequIF3ET{qFx85c%VRYaRg1C(62!G1Ak*NPHlEW>ccfLwiG0Hdgwz{MxhC+*ERi7`hfujq3fOXr-Bkg?K zRuIKTrE<~`nOl^`dK-}f>V5;$WOlL(Gg0EGyB>Zy!qxf1(E3ond;z4aTD~@j@j;iI z|KXQgyEv1l_a=Ag`X?w)tX6ixG)7#io4nn}5+63^+AFU`3aRLR-@8qX&y=Uzhsntl zAy-&wp!Ne&Cb5<}hI7*-q%WDh;Z|%v|9I`B81V-8&yrQws)CM``6m8Wr+mma9afK< z)!p_#e&Tl`4F)(d)q(N$ZvtH16!2Al)qb%I zYchBsR60uj$n)51f7W1ulq49BSTN?ff~a4$8%Rvbzn`R_Kx>D}?(z)$v6bW}_Apb%2*;;sOb; z>gT)8<8#Gdu*3dRF{|^g+oOi3iJQWL>&gxji_KPTC|Gph3&ZLQfye{4kenMwFNj}% zW`#oDK2K zXqzz%yg!7tU=WokWbNm_@I#Do2)0+q3O$RiAi4`lKO30$<3h+3FhPp^f#r^KOXu`-xa5kr3;$nRV7<^uHb7D%qd-uc$ zetem65PlA?n(5w0c#DhmTBaX;0G9d8@g4c8=K$Qi%ZkWX-&Q}>_N85h$C$XU&H{zrGg^%)WLZqb zpBQZL_IzR_kpEG$6McXjlBFJ z8W$6-po&Z8&M7)LDw;c63+jU=+ZZM#8E$J$vVg`OQU!vXOP@SJaxisGa3W-R3lEuX zI5Zz0Edij5T%d)=z|*V86<>x+FV`n|I=kv$uFDAHGAJwUqv}h&QN@u7btl?T&I2(w z+MbE!buXLV^+U4oc`AT1B9qj|!L6>+U#0vm>Yu9qc>`xkR!2ljh&c(2{45i3E}X?rrEiEQl5gX0r<{bVjIOS(%)Sg?eJpu= zvo&v^*c*J@&pmb--?g9^S+TlG)ZgvY_}q^O?vQ-x3DYaa_aqM8-nBRVBCd%$W*L{> z_+;)F_Ttj*@9hJxt{>nkp{69B7G^$8w*9ESrLJUuM-@Wh#J>vOss!+H$s8N+M+r6Z zNquGjWuS74T)+9QArgs17lQk~pZ0%fKU_Qka-@4oRQ9zFmpFyNgMBOOP1J1?1{wpZ36HoC z+=F?7U4*7uT*sWuf?Jp{dzG{^=?ZohCai-V%7n}neGDQdy_Bxc_YBrrz(9pC`D695 zD!R}RWMDFSnLDE|gxtn>j=cw=f2VpPx7p#ZL5|5T)uIFz64aqA%2glek5sa5ui{4T zy5>=qccLw(6#6%xkh*7-hWxhb=rubOgkIY9UJDSdXEm=;LDpfG$=%q2wWd_>8QD3b z1>0cvnoi{eN6APc&inOAap#Z}3G}T;}1NX8k zE=cPV-MmH;Dtb|)7a(WQQ&A2UQbWuY6IQVxIwlftAIJ{N^Mi9*kOJN_`1kd=rT~jW zMo6oN?6F@s=3H}lf5`=cJ1-}=5-Nq^)A&(~umMT7TER|YDO1I51R!L#9_u?`;53Sj zX_P&b^5Unz+hwwGLqAprk#blq>3}?YPOP-&JU_VWWdGmyk%7rneT8=zL*$dFD~$AA zn`Un&VjW~8G(O_HLp}a(07batr3=aK>hE_>&r}N);Y_jCxE64&?_`XD>Mh|3C{pC# zx#mQ;O@cL0i!XB}jL|GH$FL_hpm}1C3`}g*at#2?ZGp@1P9reNI<5xeDj5@+7 zx}m9N*JZQO@JXA|m|^A&amu)T(=)RcWOVW8NCBiK5@#w9vl|aRlJn)iGe@i`AT}=x zkL|nB?bzll_fv`c5;F`$I%kM65fkGz{frcS^+S`MWRw(D%7kUvOf_x}OX5Tcp%ew% zZHin!FmKz)`z_}yKpd%+RwQd`Vj9-i;stTr&~4f%J@!7by~o!j43Dy#zrWrTC3yp| zX2)7A2DLH-ZEs2vUPA%|q?SXrP31wa04P&Je|A zdGE_#V%4d!rWNM!O2)epl3k_)#YOLgc4L{tt`?AjKD5&rt^W>3w7(8pPJz@l4<`R% zml_Et^CfB5NT(c3OgOeO3v&oZOtXI?(r6zDU#1|IsJkQ@wT%#77r`z!N zH$XZ>*HUQ@2}w{D;Bt5cef3T!o+bM`*0Y+}e3E%xC|2a+EdxuuI{^2A)SyNQDWteL z_v{^#1y>sBxqsoxQ{GDk^XZT-)XZ&d+SrP1HXCIOpTbp$ z(vD*i?>av+Jd%Ir*^*Y#cz1SClLV~AP zdzHxAGwb)1bUO!k=LzYJWi(iY@+JhK8#sT-D7HR}me8v@9ejF0xFEaqA2SUC9JTBq zgae3ktmE*_K+-e=WT5SAbz3OiD);yO{rV2d(97PFX@Uj5gOf{NXmrfq{uI!-km*Fz zM(oZPh4mii--y5Y;Awxpk-?9P3-BfwX1dGZ1|N9n+Z= zhkg09B$o8z?O3duek^k=tf)sBt=&$OJV3Xp_l;*$dinGZG=x$$*wPVxg<>?B#}Vnc zd}Zg9(3%TDLm`ijKQ+hl*;?L;iUW1~VfK=$rGhhPn{k+9ZxXjZB6yhOq80xf$#ec- zPH&`55GflK#r06lPMA>~rOKn4;r8K-bC~rbEdqp87_C*7WH3ayj|nyn1S!TVaN}y3 zpJ=PvgFr08ai{&XUUy|x z;U$L&9=#B~7kM#Pp%+Dw4+HUm3rkey%xI;a7<;K}pnj4}I@$>nyJ%1 zLy(I8!vS)!zPG7Rymu`WLfT*&dZZO8Cc4B@>$XK-DiUYopcrmZY3g9#bw6;gO7+w- z1|*f%kch_>LARSnKmJS;ve3z^(C`u7e!;e4VtE)0Xk=T0cnI5@c5aJcDGTXsTXsWy zBGgj`n^T=}3TJy73||nht8cgd-QL}V&YjJ##_sMrhWld#?5wRHRCaMQ%^FW%&skYr zpU8`;zE-APC?nz%;u&sg5lcTVLIAZ`0a?$@9-m`VICu_|RyWY%u;*tT!&(t9%v)ed zhmngF)zioR@{DsE!5eQ`3J%^(V2`2>Us9Xk_GA-d2WK@#hh5bc<7X%abSe)g+T;~D zADykFnh^oG`6ie0Pn(~#wh{0vajpcQLU^LzEADy$CKLRJq)69XO3m!K6nGs->*BLS zmD>!OIu|1|P&ry|Rc<+NI4x&cg>tUePz=22s|lYdEnAGoinCz>?C(pw9xo1bEqa&M zaOgw+p_)y^_3GdR7CdtUE{FUvY~6$U4n0Qv+RjY}-xv|NR58*l!Ny7&P8)H!_$OF* zFa>V|9&D>-yOOs2-{To%I68c`3s)bX#E!l2erKuAtLs6A%fO2{lvPcRi*ija4W0S^A4QRT?d8a8dXTfljMG z^k>`2J?DqNkGCu+F35AGHeH&RE9gQTcd)0`Uf80J@1F_e>4G0K+Z1GYb?{e{v{`r= zBH-un}J^5J#aBk0d@h zXJK~(c4L?CVs!Fir(#J@6WYvKvOk4XqgmWi zmrKHo^^dRvp9I&y4=+N<1n*{!x+B;OJdHfbrZ9{I^xC^H{x}&}4NKu^kIaUJ(71lD zl!O83A9bN!0m6{ZD84}azOl%!Q*}a&Ekxlpt_Od_E1=4xUQC5aU9;`ds*=B`%t2qu z_vbLfboF!#pdF15R30XLrC(6GR^MQK_tE`Hn-aJ2e3=jlqXy6wFl*CqEUgJf02*u} z%kA3V=H!kIXvV0=KYF1@OV$Kx&!C|TCi}pu!QHv}g-C5!Qm0fxL*AUW+is*d;#i@+ zLwWZe#DABhZ1UfiRU)f$P1>SaooB%7Z?DxT-Fo$^(M<{SWDhNn{)95Oari#UF(JxT z3_WByi-||jzdS1NYZT!|GKB|7KIEqrpa=4kuKP>bL=XI5^-b4`{|R{i^i3wc|0jJ@ z_h9TUCg#d4%Z)+>f@wmtB*bOPlu66!WJy`^rjl{w zROsQOf8b4IhwkXSsuvpCA9E}#~i1Ij9m7D{b%M3gDw|>$=+kERG3k{)~sOfff~QPgT!rwqPF% zK@%h`j*5FyoG4sALcvFQorZL>eRob9=jDOv2HjTuKF3O8Lc(ZK zLM%rs=2&h_Ho{urv5LDxde=y6X_JOBRV-y@A&6#&=~xtt23Da?DW5qnqIS2(uhD&$ z*7HG5+7f6ke}1-Y>$zdvch6!sfN|NH_EE^Q!8NS_i!8g@> zTwNg)^C}f|$ORlqdT+pKJWjDvZC@bfUc9aP(rN{mCoU6M10fLRgqlig)u&qu3x6JR zfO+zq>m6JcA1qnEpAQT)#&-t%_~* zs?Xy1G)2NPi7c_v6&L{8_7Y3IROH}2ja=iH7eEbnx)q@rRbk5i8Wmx~Wg6;u>xY@A zK;RmZ!kF82y#!1Wgn!act(2`cwm;4Dk4|__GFGEMs;uNae5fTzr_j6q%WCBC^;`r) zf<;*pyVJ~l9j}@gf>-@c-#eut*|!e(i*XDMVAP)T)=QTxBy)Cz0Z+X zPD#Y?CT~b*h^*}kb|VpWfBYnzW)>xljyDK3liz<~oDg3|0CSN=RHTtop;q{(K*bP{ zX3$D~yAK<7Q=a*!9AZ_*&4Vx(ROGxk75_YD>Q;)$1r#SJ-F>gFlW#Lm&M(D=gJiRs z#=HBDt9TM0LLZr>l(<2&bjD0DX6@dD-X+0X?%8w;dMc)xq)CN%r^@M5n?`{c zbJNJ$pAz}mO7>BrrlUaJ<+NE^<}mHB*Ba^3#ldpvRbIBz!ygU`5oa4}pBSdD?5^;M zEV;R^Qc7YCRsAlQLZk3{y=PV_Cs0&7eJamAnh*;K)&-hQg&C<}(8T|GxDAWuWua2u z`~&kPfx>ops^C${Wq5TCbeHmBmdgH)=wm2zwOHt#MsiCW|PXW{Sm;< zD}2ZW?S#mQ(q;z9&dlCoG`YK9!y!9lzfxPmN?-823~;$hnr;%A~mI$COhxt z(9dAcTa4D1Qf=LavZ2}UD#FT0xj-RC@w_{6nB>v zD^8(!ad(H{?i7l{;a&)fPmHC2+nQ13Y5J)*jo)j}hlz zM(8;>?5T6_STX$weY<(@^t{URg_x%Ca&TjRA1lv3#}8bWN?7J2V58u!LO`O))Uh7D z)f)*ZkmAv{cz5%a-s!fwJBsT6F}h?|7a3+lJF_!Z z4YFs*$v3($LT5TeuzWIlLg*QA}kiK z#L~g+UbuuRS5&rb8R*K5UMA2bX~st4qj`eu7$==n<+j2{g)liObLRKUD3);L)Ar{v zlNr;t2>BZ_dXkn3#r4}gszj^!7Dh8vs_UqP?Zug3%eFs-e09^53`9V|E5UCVv1hY1 zpRzha34>AS1kA_^a^Goq84$X!+PBO)V!)>r21C^ft zWeH%NC2IgsExOK59!oTNo>kX~b=yC;dA8QfU;g!CFh}wmcWzl87w;4bgZ4Swtcr^a z`fYE^)+^i3c<`2{^sSs2Pcolx{>y z?W=3#u}IoM`1ta6su0ts5iZu#vZl6YX;>hY2J_-+&Qd4BtpzQX4qtJ>5Fqp0oXLZV z0Gllg5sbB94(w=A_Qh$giF!)_NR-(P=6z;*Gp@p1#&Eg4_(OxWAT`|XmyFxK0-;W* zjH;PB%w7_E$Vn^b>(Ud*ot{!?51({#mNx4w&~C(WO0)Z~eYj4_rvAL!oYO?o zy{%ifJ(<@ix0Rp^|Hp#?Ga03>D4K11b5Z(q{x6&bXI9fBzcQ1A`fP0Z#}1m5>MNop z+X?2w^sM!Z6h%C`UM`4>@$bOZzYKy*^ru7!IWDDlwZfGrZ299%IK#=aM^VIou3yGu z=8$~wA81A>AFXE`vT)XKGQb{;bUi8@lm3-ul#=1iii{Wyo{aVRlC3bOo3+tSSO@@z zL>6ol=8sSZ=FRY%ki8zp*pUAH&g}j`8?(@`Fi)@Ho|jJR7pWMd9`FNExLET(ZdYdT z)4XAgug^!K&<7bte!Iy)*Pf>uj~j|Np)63>5R=h2V7Ll^DpZzV;nCSK;f(IfbJhXa~OkYKVXw+rhQWHdKB zWb@!d3%5x@)(*0+D`gPW2o(*d=mK|sH7M=Mp<@42&q^NGIY&6+B=+fVKPkOn2ObBybBr={W zugw>ulAk?7eKYvZ`mDFX_}A_7@eOd32hftX@2Qw!&A{L{@iCp7AklyQyor`jltLwH zRf>E=_xe2k`(nt*`H!YmrzLVrb#K-E&xg5`2B!)pky1&Gfn{^%NOMw+b2%2KlG_{{ zm-a45t_+vAbYl%|`vravM)J);_56LlY7++$l4MRa!W!0S%~P$34?&YSx{L z+!cFZ!=XG0Wx)1PO@^~&PWe@f%SRs3*1iVEV`EFQL88X3y1C~+X& z*kLK;%;fgX3gE8Hy?^#z=p+S?&nZ_1xd;eG(T(p>aL8>sdUC0C8xch#e%wM&akps5 zBgP=42Np|&`)bvvhw+0zjnwXSx*J&5E1%2`o^N=9kb;|n3VXWo!^3QQK6buy$k&(h z^e<$POtRmhX}2fjPNA5b;{D65pl_k0qWE1whW+0oA;|J>V( zj0FK*KAEh`5V?>(;fuRis#Tr7N0JFI8OpZC%3ct7xFYevrXZ0fXsci0*S5~ZT+kbd zCjNvqxvHPN4FSkKMdq!$Qi9c(L%vKZIH6)JL69uDt_*wiVdsrv&JokXqqX!(+2O2T z5Xqf>JRRI?1}?P?sXda19M)uFg{~K!rNR(ftFPPWi`>%9N4OnV1F?@HFLlj`FB(Rf zd&MyGn>&qV;1|Kjkmyg&BU_qJ;c!+R*I?HpnqjQiN1o`nq5L;J#%iY{_h;Y<XY9xPW`#GjbZGZw-dc~+l;@H{&nt4=A1Tjnaa7@kz*;}Acx5@o zCRo#3Jb>0&09kze@@r-IvKaj{x44W1`A2nVrPsVuV<91ir6{=Zs9Ypi{pFmdNg6sC zU)JAq4b!K{kW}JYh|>1ohn9L-%KEAajm7s~N_9$9-9)?$VLn@YX0(!1`VK@EICZ3H z>Wo!A7KQ{*jlLMlSo(TEe%JepiXC~Q(=RPG`td4Rj>}rF3W@uk>2;Q!2$TBnL50Xk zcxbBs4o`3QR1S|yC4J#9DzN=dLz+QE{{7mm?F3J&H*FyZIGU4hfq!@} z+8xRDK70O#snG(OqF_UfCED*bZ%uoHWj7sefNH9|;ior04UeTVI)!eV(_SX2Pjsx& zK7sfo)iyTIeWkowzq2~lR|f@<$?(c-e}hRmJ+%w{_4%F>yNtMzek88{qIaL*X&Q0P zWgO&Fh2Q3%5Jor8hi&Dyol^gy^EV5ZQC3nHVut#nDk_1KZ#w6KE_Z<4xQdvH_AQp) z+04&<4RTLip1%Sn==XZ>G(xr-J2^?WZ3 z4*p{IxlVu+zT*aAwm=u|%>X8QxsS+>*fXNAGw%=Ud#<%rH)L!A`;bv+C)Jqg2V0)K z;AxZQ`T`g#l1O~`Co@AmOZ`Y0it()!QL6>Ykpa?pq`I3V3Z*Lbz7#mto0jQ*6(`@O zj@(ea5d&xx$id@1>X+cTp zIS{$BeS-!e>2&GZ4Fxi=Ic~Ckuc^z39$uGLlC;fY0{FvH;w0)Xi)(_!ueoxB(9{Hy z;m(1@+2A7qkBlqcq|J_oUmlMp+E{XloZ->cXELS zBM~cpb$K*8tDWv6CTHf3pBlD@H0O^oa&{xCbNU+c6@BQV%*uAo=GUHTYMKh(h4QR} zZzzAVgyA1%tH{KGP;}*?B2>Awk0bgN>R0!W^rFV*K#Y@5bn$zSN!RbJQxabr0r@NB zWSM_70%gK>STv#6&PIRB+R_j%>3`An`EioBo_6*K)CzFWU0Vj1kxs2`x zT^9NN#A(0qqc{{WlvP>{PvG%U`f2K8<7~8tuU70GVk%wv^E#JAb~hTqnT{!&K#7%B zohB~HuyHZ+{Dx~sMG6zO=_yopW04`LMwp%>+hatd+L-g`;(S2Woh#jUB_#&anLduv zG$JtnLp>o1jkV5`>7)dYBdW z`NF5i(~9zVtv|ChibeZ68xs8I@~^wb+p}-)jsK(+-&ZxmPa4;3b0edE%@9L;Q?qaU zeHajfV-U57$}?iY@rF$|vafW3CdRWO0^gyD>iU5GfY0Nz9JHDL<7e!?^Ywv%XRjF! zPvXgm*YhkN@O?`er5f**2<}ED%B{La)bs;Vx0ZU3FG%dPO&F1xnJ5Kr2)_AKwui_;6ZO~18Ea{m zr{0B;M<|=TH+l(C*ZNZ(N2fSw$zfw!^&pA*o_{QGY7hZs5d+%)`N8``Au9=ynxR?8 zsv}QN;=GjIJztoB&kwFV{ROBJHnu?6_xc%IIvKMW0h*+u!q z^26pW=z*FwEET%;NDbPuKv~7J0fGe9jQ7>;u=b??@ZKWTA)VC;*dA_)UQ@Fu1#T0M z?SAq^^yB0CEoQd@5=53tTbUsa?th(=3d&jNnd<@ln5-eU#WbcT_RrmR#7R#a7!>mS z#((dRM?II^Dbr(*{A3TfKEs^lC88>*yRn&uykCNTCNwX$8|E~v%XZlpGUkV*8!FSB5^zCekaxY*Ak8Xd*yZM$x8??$DJRNPR z{J|1B<|Engy9CC=J^>&3N=Da4fmKBUXHpW6t=TEQ{fUK!yPK^2Ww7vd_xZUm_+__K z_!{$vi^C7@-v?HI4B`6I-YeeYrVxb968lk*#f7(O<$>%e4Y3{kYiHafsHuUXM!;1L zqm;PWy*4#3>eS*da&D;U!o1;gIM{_1gzPNXN%$0}Ov#BMTqc}94Sqi7Yx1izuYnk> zm78P;hG|I*BYSKV3!Q>JPE#x)W!b>aLM>0}cIjfo03`@&kgP)8n#1sz3+*Sim~Tj3+GfJaV0Lyhic`X$nL zm@gLeOEcSd7Z#+PN9(=}j4v6anQ+c3Qa=iHP|ZDr{r-42V*OeB>}Dm(5Malz^)mAD z8`W9!bfXC}f-vA+QFRu2mh`yo_8R%cVP6!CUP@p5w<=wKYs(K4gNM6NJv7HJAF88{ z?ti#Aaq8G$zTux$i$<5S?|ocLYCCg95e*085T572>mKe{?_AgqG04{rqNA z{i_Oz|rpO58>S~W3 z9o%)?+Zl_w9d8Q6elR)YAaDxTO0bt;R}B{sO;9J8b(8^#fpf7MN>Lf+WZ#o%5qMvXWMbxG-?@PEKGjCh^c_R+*_(06 z@GVNCVg;FFY$^92MQVO)W$YNP=|#$$(NsUKO3qTlEZ*4X{#7kcM#4ZMQ`b?0^Yroo z1&6(z!R+v{RWIRwodk5!#C3~zAA{9@=oyKkRwdLHyiR_b^nF^Ealgxq~rt4qB7D5{ur|(bvRv*%c z0-n-ER?Q4KCH5pw-<3WhBmgb#Iql2P=7Qj4=Eo6!8yDv27Zc?@|JIw<(Bve!*LWFp zW5eKKwX^=ZfUKej0F2e_;xM}2?JcHHUBMx8-KZe=X;x+=k@Y&6X7kR}g{uE?i@s4Y zS6Kd(3s}M9idOLG)>i!-;}=Sq&;(mGM(VwB(Bsso`J(v*y9%f`w%qM2#gVUDnpv!J2XE_Rqydlb%Rc-)dzlzN91x1@p+h ziS^n+2zPQ`=b*wYWRcZwB~VkXk6!St{^AI*STyz#4F3jgq#=na8!R2=I;kDNtDzx`vL5kLLA>d?^e5o~A zEG)cIsXy+U`j4O9@L#i??gzZEW*(LEzJgR;%jl604a)8P*tAe+<{~SW9{^a3lFj}!C(kFqcDgMftQZNTH(MnwnE#!N!FHSZFMLLtYS)C z_T6KJ=Y`nUkyeY_{D_O_Ek9mq>cTgS>4ZD2IFRa%d5;b!1vipC*_-8&`L^F;j z{K>k99)a8n{{=k?3X=Fl`8N%AnF-P2f*@QM$ z0P!=OT-v}yLV+G0mOg4(UDt-6aTKQmtE484eV%$kf$?*FgF;2d# zR_67fr(+?urM31&|FfxA5`jzWzI3{42PE`@rqvh!fL&uK_MXuXRtgj=#Bi>deBnvl zHpeF02w|taIa91rJpW_An8R0hTSvBFCpAg9KCj>T+1?%2BMf{h#Xan)@~<#KL{x$M z-}S!|_+JV9uLS=8kicJMA~+7M^^bAT>vLw^d;Z!fsypQ#jt!iD9`A1{dcbuwg|Bm} zlbG)hvI}M0fEx=fuwY4}|JdXOJ!1gEzt@E!Biz=9Ei@sbhL_Ozu=tRFK6vfXYXh%h z0QmNiD*34z_oBZL4lVD0)>AP8RrQR~!0Gmh;UkWJ@1#USxx0QL{hFbpO&8t2zm)e| z84pfwx0Y0WIhUIREBL=Z%XpEC2j`^^>D;?J@wa~38bUPtV$$5#+Sc^)U8wBH<8(7o zW9w3)VXwc*mZ4>UoE`T+FU3X#H)`P0Fd7OSr`&P4gQL2(dA}zR1e=Y=ocoxnzK{L1 z`7GvbcoP2KyZLLtaq8}himt}69`aLZyET0KZJ7;Fu@lSuVi8s0a&RL(yElTH44L2){e0;B6gH%fXY~`ksGnpn*bie=C0VOfm z*T>*!2+eKz&$lGDm6Ur#YFXazw%+TS2h;J_jS306X&Qz{*Nx$Wm;XUzzaY4^oTb7U zE4)evMx0h}W_|6a4kR#T!y8GyQZfv@qulr&(e^yl&Eplik-37Ln|LE}l0Vk6@!>48 z(t&d3kD#O`D3KO&dN}vvfMd#Z@cll%1Bj3!9{a@+HL=)9sXta*C6Sn-W3}%l4t>kv z_yj?kB^Pe1^@Bme58z{JDph)SeiVp%^P!0ng#hbpjz;E`ed#~%|N3}4G3$KWb!<$B zDpZFJTQ|!?wsP0eOT8)bV+*R7B+JcHkp z>D^~$ZCom4Un}>0GJ^{&s-rTHIxf~F%!yZMA)MnN|E9Nxk$fNre-?K#ocP+S@#x(B zyTa*c*nb4{+9@xuOok|YTj2m8>$LwPpSTjXlc4G}S9ALa@(>qv|9sCg*+DcSB*R*h z(tEib;F@pPYR~63w7dF%R|FIVX)W$n4yNRh5ej9{4eni{QY|NOpdno^8Y?i?HP}84 z!1h_&-nq!|XD;TOPcchQ2WR`4EuBNMe?rLV#Wtf3<0k*B@_}%)-sube+M%pxO9{l+ zGfRilLjLa>+(F9~{*NUPCy9pbEo%_UB!Jt<0nY1vlw4W{l~JX-E}h1NU2;jj{8B&5rh@mx*AkC(7pOynqQ z6YS=Uc5?eW%I!rrcKG!C&A{UDo8seGsk4MlXeMb?6TUd_?r5XY(uz^GAV+LWPZt~%vq~ZkeCAum9sW?7a{3kxEJr=_UU;EfvUTEZR!r{ zFNRcfre7-{?M$V+WeNaCLsg}XXLd*T4lZdDq^BvDK6`)(B4YdL=@9Fl?(;gTCt4bI zDkV{)P{-TsKoL0irwCCw<{Q-5ZbFuHeM?QuSl2hXQgF^T(e(A&RhoSH^5^Os(A@y4 zgl2yJx_wS1%hxLg;^nbL^)nYE74(sYlNJ9qZPQf;dw#ob=55tJ1*n7}#zc28he(iY z+Nnrf3yI~GJ^KxlO+FGufOuFVJ_v53ydiLb-!e+hO(idC6_b@6XGQ+vJctqe&+c7_ zvBK%L4>S3yy_n>}(>~+6I+r6ZUNwm;yztNJL&*1i&UzdI*-;$b59l9 z+_oHCwNYfD7h8k$d89!PABi{{D|+Ex_lW=g<7L8a?|OGe3Yg`zd`M9pyz_4R*<)& zx5pIq%T?}V$N$l_7as(wNq?J`W@O#9B&oe^NVzYNAhT2iixFDXa=sXKFwki5otW3+ zCJuS7Ky%nfq;#M2i zw=POs@gB#aLce!P<;8cW(2%@rmloqqVncL6_#legDZ26B&Z{P~6cn{2HtmzEou*Z4 z|Nc&Q8XpBl=fNz-Fq2~-}u zaDR02rS}FbHH6E`J+M3uA;jF!ZN{@WaZ_bYz7!Y*VS+6yg)MH6%`B zbax6L>YMQDR^ZoV;dm6(LA?MLPRHLhypsN+VsNU~iyH!Y6T%nQZGB1Dx_SKpB6HO4D`QEgG}uRp>*K&69kE}52HNeS_4TNG6( z@vfTK#Iq>cKK#V*yV0AS2s4?`7KNLOn#%RI(!0Mm{3bav(Qr=I-g9*4Y50#Fs>R9M z2go0DFI4#e&ZT-MK@F%z9mhO%lkCoSZx{+hD0cLjJMEKy$_mxgVp$lrvn3PtoMRAd zjOnbi605wwi*Dv(cpRFKlahb|nOh>KZH6BNX+_h&moA>)rB|Y*@+hwj@^OVQUGtl) zTj9cd*c3TUe zql4fLzE3veN5{y-nN>mNpAT)8NW-5jSVfZ23bNrIzO@o~vSI~2F?}XsPY(3U) zwf@<0%69CNa<(fHry`Jb+*lx?r6(O2MMUR?EgGjUFfm$~=q_D}uciTC$k^}En*szsGCCc&(XR&!VhL`Nk z1FA<-3UA8}skmTC;>%Ztj`ND%s^5epVk*c@!F+7rsg?IOjvi&DfEDUNp5vZY!$d3* zpgNd3b7KOBRz0|=Qz-`scdwa!qCJ&!c7A0;;^30FdoAwfebr$j8d7T#`H$0j0cL~S zS|(!NT{n7QK>Tb!^~{`l*fF(S_h@qvQj{i^knHsF7ipa(4UR zL}V8wXZRpMqE^Eoc8@a{006Iq_S9jNO?XV~4NZT)zpBpiNdTkwamV|* zm8Z&DYVF0ZTXSlU>~8~5BU#rvixo|&YVD9aeXMcI0P2K;Oov`LlNFl2rRi*!4*=A} zRYQnpv-yLdVUV%xM9i%Rs^Lo^U0MHb=3UR;y^}aSn(y~L9K%JXeC3YYGDu89ZPG#3|Y#w(FaJ_(dHWhiy0J(7@7bjst zw&#>&JZOMZ^VDJ3YCrfpN7du+;wmLQcOSj=kB2O4zrqbq%%qxD9|Q^9Y8?bRn32j zt*9>uvg?@0P{x-}xEbS`CLclz1b-4Y!*!b%#}6&=-nPdTbYMN&<^gOoC?wFP6Fd|< zXTHzCP)X`-aW#7v=93xj zD~v+K5cC6YMf_8#kvfH| zTY1f>OXVgDQUzxFJQM9tMJM+TAn#j$r7jCPOA2?}K|vYGoyDCAQQ@N=SzAd;?_auR&VJ6kQ28%O>$csuO=k9rBA21sjrL~h%s zyi8C{j(06x|5W*xmZ#%pvT5I6EQ;w#KI4e-We&dmHC0-x@AAoAIN@6~FwKE+N5Xoz zI%^-PBZuyk=Rq997fiTK;XnI3_kFWh`yW3obhQdO{N$4ma%s&@8j?e4u#I2K``d_` z(#YLid$7|E)w-g=-C0V@X1d}}p*P#uABhs?ksb0MYq(pri zsD9S;m6JDx)%eHAj%!{OMKSj4i)Tv}Kle-n{tT3diip(lk93#c^52>*ZtN7N)7Mhn z|DLt4$0+)wbaP%GA_@*;cA8F^clkD22Kq(0Qz6IdUNQ?w24(nq`s%+A?}3ZVUZz9!qFh@T3>u zgX9aZqcJ=hB~r*J!`I+I?yFH^T1nIU3M#|3H&chz+RBN%1pBs_n?H`tz)#@m)L$Zs zK2@0c*EE$eb4ad~DYRaaFJ>MBMr4r{VnieVcN#=>n@u7XH-ot-FV0 zdgY@w&vATZtY7up^sToH12iiI*ys7r&`n;dTK-Yu$jX{m-2VfCUSQIP0;7h$o<9A@( zKV-<$3k%#>L9-~@)jB0E?YsSEL0fTIZYx3eIOy77PrJ8UuX7(Kvqr)D*-tAXV@g_S6IkM*ds{LYA8%c880!r5dk^^skw1ZW-lu(}B;U6@0z2mcO zEMvvob`;jGd-ghWE<@GQx zfN6XGWQ&3%YNkidFl-$g(^5e3lR3=#bz zFANwg+Wd|^i)rtME&!l+D7$_3n86YEZ_In8ni4er_;vQfwG^SS&o0o_;W0S@@7k#R zbUPP(DLc-#_Yc#cZN=_Ba>seX-<0hX4}1o0P$9Z*`Ot;Tl8B6Av}we-ZH5&eZi1tg z?VzIR#tE6;6{CEt1}<7U?w~hvyJM9d*7USR6Z1f;$(Gf?t5mL(@l~9JWiT0WmsA^e z7Y0*nl_KS1PSf#SZ+7SW9Ul_R+R@eT`sw*E1?KmJCbo=O+irTp2Un%J^OpADg?X_8 zw~6x{lZJ+A){a^QK*KTHWRfw833%)46|<1>Q-i#-_h%yN%T{!i5`{gH`&$5LU=;V; zKHjPOsi3TL{2fDSVoMe4A{( zY*)H`>Gdf8r=#`q=V{0Jsd)SPQ+pQBUt_f=i@&V_g;q74l9}8{u04L{Y6wOcLd*fw zGkA51KgsUz@Vk>LLOhmF(t%vRc2^}h28(V^wFDm|J16qS7Ca|K`9+^!U4?zhuZgY= z3uo9zn8W7Pmeg}`FP7wA3GTi`f6qQkXe;ji%K8SAKg4b;77VNj5?29 zySK%+_}-|ln0KGP__^AC{=c+ACwjoWl;uX|W0fefN{h2%RYUg0X`Y^og!Zn!wn+~GAi3#y{Ed9g*p=HU9@^v%t+sWQD7h>S}Dbgh%C*Jgq>?m<;d z$fvt-8~46Ilp;N~A?CwG-0zW+O)`QF=jjat&5<{wzuW!*I>42(C%7cKJQ-=it=D(1 zJK}o}R%adAH@>H-BB+>LApk#s3ZhONpE6Y*`wC2;l~~{5!~7WdNJd=v#IA7I^+n4( z>cnfL=RVtB4*U+EZ7%jf$DayHvw9KsX#ut)rsDRU!$q3;Dk*$$^PfsEEP<1a;Sk%!yRlo3S2UfV4=+07iOK9DA{M0wSMnWxe~wq3a?}C zcSpehMfE-{kh@$-BML$2+w3ft!O!zo=e2o`#@#ikCAcG$ChdzpQKY$wERV|S(@s~V z`(x)ZI6`kFH@bC(R)hF~G#&;~ zkGZTN@;yFtGvr86^O|kwsv+*I{ify893Vd^SNd;VFCaH%^58 z4VgLl$L71?p=@qcl0i#|5v6RzhPTv}@67Yq-MpYKy7DJe5ai^`SaxNfFh5G?gKa6k z2%J=2&&50d!8qu@9M=pR++1t)QLVP)iw~s4|~oas=jB}Z*}r>8Vbt6rq=hOe;j8|aeyn=PHT|j zm6;BO=&XR^-dII}x9%NSn0okYQqK|CWUIW4Bn?-T8~ma&iSr8Eit4Kuu!ltU z?8#qRkAG&b*O3X8VwwZsazSj2>Vr*+n^yI!af5J@Xij@UIF z8De%D7p0ca@VOGQ4Q`9~W#i6Kt`v#p$E|pE0%@VmHg8~%O{i6>qs!HGHiqxyL$-gO zt^KTRzFnkGV1bNk@Y!oe)|bLaD!UGM(_OtY8K{ZaKdvD$g6lJ`mZ@;`A|D}Rn_-8y z>pV!$HtUxFUY(0C9Bkdfs(XkKT=0NJbz8ATB$76j*^)Bm-;)GX79wGF|7C?<^@@ zVn1mb9gsS0)Vvy5E+aX7kES}{Xj(<*b@(~WjUw1E9#pr(;1@wB$1eovh_`wc6?>?yfiZs_ayutYByiO{JNr}+49DE> zy{B@3Vy++f92VbQ-J`3Ju;`d79y~X&C-seuhd?h*0jQy0pDuorvY3jjaO|~FQ<{rw z+xs=Pb{+uctqQ+M+6cyX-;da)no|zDaMm0amhffMC*VT%^*%2jCu6EhF-PKb%{y{nRK)0+6%wt_h~+7_x+=L zZyUOcDj#D$Bs31%U&e7|K+9{C{6KtcvTZ#li$&>&!`j9jw>Ny1R<8PILkjrJ3LSAv zjtWyb^(?PDo2bTv^g3#H4WX#zHY%+<%U#Hn7%Bo=zllmq*>G{apb?5FCocJuAbt-R z5p(E18bcr~N@iP1>z(ylJ7#j4m+sh(tj%JA$a?_Mj+EA5QLQ}J{Z$ZbE;bL7hs#$^ z-Z%F)i?|e@Xa&8e$$q}IHCkob)~w{r;R{UpTo#&8G>=`x5V3b|iiTB7him%%6!#V476 z0ao($54egECBUgqvu1txLS<)>O*$p^h9K07K||ko6ok6XlxZ8JG8P}oQk7XHcv_!lNixnc6P&-) zIQ3&l=Kl!V&G0rU2z5eh@o;slX5Bglpthr(|DN8~1{&z0&LvDbiI_xBA}=nS5$$E- z`UyY!jtc}*mjjvy=tf+wS<%1QMhg9)`6s#Q&j^y~GTpQ6m*kpoEIBR%>^PP9Sh4+Uq!cd}!NTmS_+%=s^{a2)Q-V^cYvz?l`ObI zu9kC(z?JBAEPUcCW|8pz@fBtgLRZ|Eg_*P)^4*YF$2Iq?Csojtzr}J8ujDT4=H0tP zzq@ut?+|T{0q)!U{ygX>m4v2;XG|xYGWu|RUL0KGwi+pr_ww5XBjh8uvZrI0Z1xc! z3)Cz4^J_NHk4Q6x>HOwl_7LI)n~mn>J{Jjz)!AbG#)Iej(fF+)Vce~i>FQdnIc-u( zgBiei;B;`1iH+7bu%uY-k!iX;cBqpC-b=lm&O59DuCa99pH^Fl#mBXWuCt-%@&AdM zvJu7eqjI}ue;#nb)gO-*pFRn6pEmTRTq{rgxNRASBAR{?n1|@=e;^qMLE8>+*4Qav z>&e*$?paQBMLu?*J9)?L&wr6~IRMt6Vhd_;6q!YDG!Dh&L9?zzko3A0h9l22Z`KsJ z{8T$J9C|!%0Abka4mv1CM#9es1j(Y=2cIEqqmSIjK1F=v!*Yl9%N#xp0)1Iu+ivPA zageRNRcFIcS;`>3c8j9Em>kW{BCB7wCyl1Qs83wxGuE%RCZZu!EFsjM#>TmpQ5!+dZH0uj~eH&G{*`1?Ldjp|3&%IUN z3&)qo@gM6{S&sb>1~2r{;`Zuo`fUG(T{gdH;Pdmn=OwkmYeMw_k9H!0Gbj8&*zR!X z$~^nKXpO$)=EFn1pVTWoqOn?g%3q#@%-Px-%}eVj2%|+`$I`e4VI40>c)`^4Tj8Zk zH^s;TV)T#kvZR(@F6N%R2W#YwvQj>EwjDtAwzf4o#bfS zcc2uE;_Ie$T=+%OIWO?Q{gJyastCjL;ye_dC0F@9ZeLZ=I7J~tjd&Yy(kPv*kumP`-Yb*m2nwhrs?>l+U^uj3}Gz2kXc z>KjChwcuPjGteJQE0Yr7158J;tJQS}e_X%&cP7>zBMrE@X z&AS1PB8Mvi`m$QT%e?Du9R~a(a|ZYXUQvIBdjhC(Z>|db?TD6=qQN0~>RDU|=w2LC z30zI(|4C@a5^9;Sh@qJqiGL-IYd8%sq1uGvzDc5P*=IvX|8S!helTtZwYvI7E}$?Q zQl2miVG-iY-Gv5rOs8oh=gfI6LSXPY!KNxxUt^w07NVI2lV%FQeu9Q#yW zy2-AUvJ;!gK*IeSx;0AQj1Qx7JzkXFzjNInCV?e>$sgHq=?cd71@F86kt;9Qx68g; zT>((&*Lwe1ybkfw9})E*p(;;BS>UyQXJEG|Y>|Jh`f^MDK7zxuvztOB)gbG*wOz>~ zt_Rz2&eu(Id~T_cO8wiZ^HA)@W$sJf?~=``nRS|xqXi3XpGg4zFXS#>Hxb$43%8OP{w5pq2>!^USY$@{8Q|jt_QoU;lq0(N6=8K!HrBhYR|KPU@IDyUpF; zm2vpd^}#S^fjB;gtHU{tw3G{ju|V`wRvv0FzmF~yxB39uU*26IBV$E!qZfFkXspOr zQ2Gr&OcIj5%f+ex*Tl$HywOGySw%zd*6fm{L+Ksh+}59zfzeZV{bc!;O08qGiurmj zLux2N$fe=HXTmO5YJZuWW}qrhrj)HX`v3@;B5y7G-nWMO_2P-(a~0VtcYGOtaGKrp zh;lKQSz{VVeCO!Mz2mRP{^NU0gg>4NkHl*x)YG3;P{^Vy&G)T!DhR9AkeC$E4kAJ%T^*qc@x-lGt&%v;&$`;aB090X5u$T z$%q8GL_Lu4n{(vH_y=8!5fa?APiMBLp&LYuCl^m_ zlbR#5xN89Q{v?@|*7p9?jO|bFzVGUI5k@>c5_Rv^(eRhmqPMedEcle+fv$$aNoGg3W`Aj$6ol+xB&of)!Rr=$ z%1xL-eOY^)rQ!;VRmRZ611|54?@6@BsaQ82c*t6u_J7P6ILh5?9>PE6_0q{%;rb)Mr8s3^NnoLMJ_$c%r0uO|t)T8ao0M30W##`&`WBP0j&zNd18Xx?n# zJFi7^BqPZF;g*@qOa?-AW`Gj)AA7s zd9P_b?~5OdzHIklF=Xm)v?G<>7&%J&Y=$&LnmWs?h-ijqYAkwu<2pAjJ(GEBLrk(C^?U^ZiGU=%=~!H8Iz zwdiwqPlaxeKJY?pXFJaa?0+c#$zk^3z%8ePsyXf2#U72Q#Kumdm1*@Mk#-z4p{VO( z&v(xxVhWEGRp)V`RzrhW%3pI@9OjRt97bOIJsdd-uAg&z*_el#k&Uq0Z7)?(z$HFY zE^@xhW)smd@NYI3>$v+}XZPGIicW(;mE^74NTa+Nm3?_^&>ga>PV9fZ-egASl_lN)c^*!GA zIG%5Nj@f(dz0S3+c3#(7YeHgx2rg2%qfG^om@fzv&Mo8got&(+`!OQ-ak6t*&niu0QtTq33S-CUsq!<|A9;h{@{|c8vA)~Ssu3{S zcyqeb%1h)_?<3u&%#yi`ePW@;z%0MV8xUPR0dtEW zXi#0QVl&R*#k@$@#fkNNTwIXU-#BWGAU82i`s|tdCSGJ7c&C!#nt`TauFFO|gGK}= za`rof*wkLfsP^*=24N85z8PA0+&G9bVz4v&Q2ru-8)I^PNIb)1IvaWKN1N^74?WI= zzC?;HmtxmR(~w?UG0(4v_g<6>;m) zo&-GGQUeV|x`s!EW=fLKbFlo|9AoEnE}L_-zUEx1`pYX z>jw=rI^ODd{#ZP+JR>O|VM`nE#5Tb=C-t#%$qvMvdFD`g<{KA@8;5toHx80ed#0t; zH@CMQ>Nv3d{TD+@Y5?!R63W^ZpZdc@U)8{R(!J&*T1 zO*;?>4X8|L81mfJ%yD1Onm?z;#Z$L))j`?C`F-ZSj<;S?KQii|kh5epp93 z!Cc?Iw|q$wyUK*&AFXV`*AK>7ng;d zdKt9TgrP3{4FSWXAXr7cVqu36h8uYWP%etPf^q4t`bmD1oszb{?vgQ{)WbaP)O zo%k!sjF!G&+6B1zD*EI?3A6_gz(Eiu=*Mojx+V=oI@2?J4X zt-}>wSGqFWv2B?b5fvlZf_??g{hlq{LUM?rNy(b7sn7V%yL%Q(aj_`t7dmEvEPVCc zZ5{7BE1pQnSiJFQI_f+|7wqr{j2S(lm?hz3JfvsZAkZlTJ~1fjy1{$>ge4(M+dF?AAHzJQgKM z@;p9^K3#{mH!Ah`HrifL3z*t-K2l2XDTh3vO$itbK%S+> z{Y}k%!c$fQ)dE~s0*=j@Bg&>91?@BG#54#>Dx&YJ=p~?h9!}7bJ*pfQ=cpBT-NXA< zR`jsh^)a2GdE?I+su%E>FYcb-X2<=P+Sr}>Bss;;RdcYgss%^D5M6B)0`l~C8<*3e zrV`ngQjvSkD`LtjByL**i6P~k2{|dH@H=;Qa~6F44Q`$f(DljiCl2uaLWhwsa55|JG0r@4c7SH>};eF(b`>4M^stgmkG8;F9#b2!j&C(g7JJI^s~FG z`>PM^H3FivdlMp*RvGE=nZmr)SQVKD5Yt}ZfF-auVpfuLurbx3`YUk;?vxlgOUUCE zU`KMEkg;Ga8FZZwQAs6RXjUAMXZF1}_w0KNgnPj_sif}9`dour4=FHF6x@P4kvBS4 zBEI1+t~p>XF(<^Z#FR)w5a&~HG)a+?d(T?35XS%NBg0kof@(37^0b1JNGq9m#DjlV z&B_K};p3leU>&D3C(_YIUuHy>)8QsR&O%8GdkFqw%&h-A*65!dN#O=wP>+dEd9 z&{jVs^>=TcQ_ud&k_q!iL#gL^$@s&#VGrC& z#!k9>Bn}-gQrdhoR*OdU)$=a5rUDcXNN=asx>NpseuQTQ4Wm0NNB7XpIIKs<;Bh5z z+I?0=(gH#!4i(g8cs%H^eH%!mZ#cybC5&ve(NsSz+R53!)j0MItzE8T?6(>RHKsd~_HRs}L!F{7(Fo#T zLDpiUgl9c6%r)ECYSp?!6f^pFYx(cfbTQrE(!4)3zlB`Xhps8|_&bA-l+Vfck2{tl zyJPPJ51z@)Qh(8*Z2Vkngg<+I{>JSbfRUV**{J(U*^=3ZBkNb{GS{{A`G_{UxJuC^-v82r zGTL~Fb!CC=;>w6vX5m<=XV6#Sa+=E_8y;=q%ByJebA_uwB^I?GVkd%msPJh-$9&9uVP%xC&F>n!`3 zy$TX#8_gC|r&0MqU;s?H@QnF1UuX3N^TwxBE^m5w zj8XKhlvJ-3L|gQ2?PW;!qD1-AY(Le3lPp@YND97C-p7o0w?ov3I_4CW)8@kRBcF`> zZzGHmS*lK2BWwgd^}xf`>a^y& zT)1ILai9Nn%59U)0NmY}PbVflJ)ch#Vv1vR41%QUgo4$ZF2MsajVY? zXms`b<9?XWhR@^pN)we%%}p1#nC+apO~2^0Y|FInakS6G*nq?8Cg!K0r`BT0CPrv{ zZF6otGy<@elx5^TU`b$v=J+^V20M@W3_mtE+q&eL3FS^wMtB+M6sv2oz4{$6@Hilb zU7$hwXjW>5e^_@Ag^*gmP`Xfz7 zt^Da*Wy-+F8BV2U*#K1Z6EnT>TsOntPAbS^hOavFo~+C>@lV(K*jlpa|V=UyBM z6t!8O&T7J_1;;(}Pd1V8uY`TWW)_Jhf z3m7}#RJ9+qGO+QM3wg5t*#RJhnbvfssb4sDzboBem>%cGNt^w(mcy#k+X|hMQ4Y+eE2J&q1<_!k{)AWzql+k8cJjT*0gon)mcS84#{W-&fydwYYb+{KS~N#TrWP{O@v@<+N~5`Ke+N=J#a z;akHE2lQm{%{8o6{Y^QIw)g$_kY1h)3xTKa7r%)xEXfA)yHBn*zYqu9(!sEgSN503 zr)USB#|wF6X|#Xe3l=olgf?9*sJN9~+1%}WMa%wmhY{(7sWOl8 zDC&F|y*xJR!|-P&$V&QOZ?^Z>F4eJ+mwQSG=p36fc;|+Cwl|9lR7}2VTuB-O+#xbW z9W4wUV#9xuVEROLggVIxfz~EurgdvO1$t;}OX^>@h-a21>+0WsWmb*HIK{aY^c$1RHUMQhsOruzw859iNQ#+hdv-I{dyhzYsw zCnJ^Jmgkn;<$V@ugnGGo2}xTYBaKPEd}g zePi!z0~|)hnFSo1npS^B9iuD5Bo~JYW7Y;H4L+1>3RO{ZY65*#R&z(_w)|x^B8Q3B z>76tDTx-BTVnX)*vwG-)kh$by7iv#lmWBVNq%E3YUM#D*7LqNOobIlCdleq&L+DF> zO^?B8dNSngw>c_|Gmo#A&ow!u++*{H&Hsj@;|lNUd9;M3E`oAej=$Wu5Tq0SEF%d2 znG#b{-~UF~A0Udph~E~yu9GMGdFo(Z`;k_31e{2MHD3;U8WrGdIQahXc*f#0o3c{J zbBoPx3WvkdkhZCB5nD6mWf@)y6DQ57MYvcG+&X;t=_qSt7obKuplT_Mm;7VNvlX40 zqwGG#<(12IhnoUYV?OU^Q?5(e9`*EBuw$jIcJPax=L^whV()*m+OfYCvzs*^I63aH z4YtgcOx%atW2=Kv?&ObwrcM?aQh>D`498uS;vM7l#*hyXk{?fs@nc%Shv;>+SK{pv z#wB^s*Zt0OHMxw;W_B48HH2m~m}mB~6Zey$FoT}$9e)OK{yZq$hFS%;fKlEGC@W6b z@_B3ZWz%%X)t9ZzauTjSJFX7f7bOAoh_c?BKK47^y6w{E-&cN;$l%3yc z;aJhZVC6R~@ns9rlY-ag8&_4A`>Ov`e|H78*=~RE8v04d=)#vTe<+Fn*Kx`-(>an4 zw1Zzd7R58Dj?S+aaxI(ozU(^$#cLSXops|=7lcJul{xVfub&((dd$%%YorIB`DFx$ z@wzi*G4{Sx4BMApl^MsH+j5)E3WPx7=t5r`2-k#U9wB-hTkpLUbbVcX;3}b#R(y_{ zjV2{NNqkPVicys7EVTVN;CJC0v9w5PuP;THs88dQIkpS@pkyf(`^#%NcdX2_^BbYk zNGZUDX~HbE={A&0#$w50^NskG9XJByJ{Xjekf8VkFpdt&5M@%0EkJ#{uvk)T8wWM$ z$kkdoegsK<4b&d{X~fC4g*+%{VA$sJ^Xp6t=I0v#*2K1A?{KuYB(&+?Tq%R@%wBAJ zQYxOoX^xi=pJ^a`yIoFLRDN#zX~l;QmU9#`+UxK7ODqBN-Nv94%%-@OzV?XjMYj6v zQU3tS!N_Hist$C11Vl)%Xc`>n)ZIM#TE?oxEw(2iJN1Eir&7acui2APkC!NxPYJMi zxffTN!YfdphhmOU+nta=+&vc)_`J|A@I3>PL6!s2h+6sRou;sA3VFz0aCrw6?TGE& z@@;vOP@;+Z?NN$Mt-3ZgzcH;1yQNXeEg&J&Xr|qdmq521k3F_y;s~G>IifGP{IaC; zCux=enUtWK&|dz@hRN))N-m}^09^AXS160v*bG#+y6M{!XXap}C{XaSXAN_IzZC_& zQHyr%MYKdJZ&@fVObN&4?YvDOI?Y8DSH&vjrzyU8nOzU9hi55Xvw2Uy#z;T}sjg?s zqv!{w9ef>uXWMZ$SrPZ3z`}daKi-c|`s^q(^-)&m|{Xc z{#0h59KemcR?Ga2HmC@4Gn2hM?G0<1h<;*{IWq&AG}%#ghXI;h=oF@l?oN02i;k9| zxs>+zJyfFi3M2zx^`AW=d4jHOp@{)ay!g^8T$aDzg7@m(q}223ui;3%?Zk|hVBZkg z&QqhUpRi5o0}Qr31z5DiHvd)7K@g%ns8*&QuzvWMsL@Pye|#qOz_n-EmNRU^z5FP` zYwh%F<~@GPmbZm^DuGBu>EUwiv1Hjol)E{Pv%;IX?xC2AHu6CLzhKKd1%%YO!5SVEnh}5?nC)cZ1zCTT0JrZ^fxbmrGhshQV=FnvlfX_ z&wcANvqV82->Eq`x;S8ufVtmlhF~Ur2JmOvmYd$A$I-!agZ4iAiJpP}pm^crBH_mr zM=z*dofOvyG|bXLc{pD}lF(v)axC+?Md# zT9*A@a0HKv02&Q$>G9izkq@J9oE(B+JA7X;D@=D)%HArW{XxFE!v#^{saA0{kw8XG z^+<6A36Kxb&vgm)PU^xf&Y4Es@H_h02Z4jJjORZ|GP@)n7{OB^UYYNY6iMIy4qqKV z(ZU)HZi_cxZQnlmn(I`z35fmJRpqG??ZaPjzBm>U7qZ(2pVzxR3~x|-D_CG17K2%l zo!Bhz{<<`}bR=U+yWsxnSq@;RU6)BRbc-u1%)izL#+9@>_divvXRi41jm_}Z;TNY$ zO1WJ-Ub8lwoF2pxlLJGC=_veJ%F@1z~ zo{gkkLbNox{M_d2&9t3oDPFM*T+Xf|5P8ZW(fA`Z9mRl64WvZhkJ-_L_0`;1!^CD2 z@|#~O=wnIgRCACiziVL%9}Rg*uB<{;n&XQl!G~*(FELFAwQV?KSl2g9Ubz>3IylD4 z;+Be(8vI9|i3i7V!-{iY-`e=-;&Q{Dtj%05w-E4VOEMd`3=@4{lbn8BskZ0?>OO}I zP)63kk!z2khMBt?ALK^7Il)5U!R{YuB^P6o_51X zV+~;%+;nVXlllDoc|P_~Tef!lLwB|JX-7BX)I^%=nj68mGwB|^b`JY`-r#BxDF1nr2Dc%A{e$OqD>k;1D7E~fyEIDlh zleQhN!y|bHzs%NRyu893SBc#0uB)scGS{6Tlq?>^H#yhieo@ChtvqP>aou34E*q*U zDioZ;fnqXXZd_mzy!1kS&Lbz3rq=j~_>Fq;+Pccig_yomQ}r$%{Mb*3Pme{yIHb1Fj1j(bc1@*FDr*1(rrspC7m+IuV+zP#5lbiFz73w@bI2qflyza3tYc;#-eW<52B!#&|;HZ6%j`~h{!nRWhq&bzk zAKt<~It$#EZ^K_xMLGcZYG)6T6(Kx|`yOnEfVg~QCo{_2wlm{AE~X0E`9SI4%L)Ro zx8(Ap{DC1p__#>O#mdZ}LH=S(c-~gF)#K(?MiqyaM2>qnnM_UD&>M7|WOQOm}U( z44HzI%lGwE&`)Xp12D+we@j~4EQx4wZKJHerzMO_Yqe`CrY2hiRQ0XuMbCJ4J9{nIXG$= z0z;$GW;>KKNq}zWQmV_Cf60Dyt)}pK@fa)% zG)tC*c$dVbmmhO<`Rk}*?xaQN_V|ga-pGD=rp%{-2DHI`N|k%z)Mf}(BJyqkX0h<@ z5YkB|THKFoKTD-qWZ|MoK$tXqe*TT#q6X2b-{{*O^Li_eIuyuLHZA*B6kipc9EDEFMt zh*3(xh^WHV=&rY=`1M{XM^XDTJolDlpv^_TRM3_Nd*G1eF7(@n@TZu*ii#xHAL&Kq zPizuL#RwnE;@^1{M8GeHH{L>ao^@Lf5@LERN9_!k+L69@XjY{}Q^W<0I1s}j$ks`M zuIBF13U~*;Vp<2^F|(ailPrR*Y!n_{o>NWk=)soF*Nz(3Z;)_9D`%To;*L6cB5tuNGLNj6=4pDMt<20Hf|z(2u5HQy4t^o9CqSs^LiK)uOJj? zZkMq~?==VFq|O7t>zDupn%bKa5|m2UVoL9!3+alNQEK+J;MH1tQvGf=HgpJV(U>%Y zXfgb4F*bcC)Mm3jKptQ>(b}$Q6vyq!-eccJ-S~Y~wo8l2zr}#$@y>@P$Ikh0nM|5c zGB}yIrKIZBW^~n&WYplq((bmAVGD3qJ@_u1r@?9cEV79q^;J)*^X?gtP}GyKksB2aIzEulHgxU-7O{ z4!*J_2%mOC+E@+wM7l{&)LOHxzev_Hreup-<{2rh&HH%GWih3&xP6NQ zes3G{H;;p!CysE8Ob9x%x~-KLs4Q{q$iS2N$cDVlh)qN_swOJRAbv09FZW)R8^pVr z>)Ii3FNQ9R76tc{Y>P4jBQ7t>7|ocRCi_{o%i28$(rLAF?@jty#Bp;$2fp|2Ba%;y zU8hr-us?FbOhB*q^Y3gwFMjQ~4lbUw1<^W4F6d+{1^OKieX>=xKR4nfch=siJo3JS z@{=qTM`baJMq{*KOi9h_!-AuCH(V=tc}U~~e8DF#D@MN%Q088vbpX8g{hSI-j~KD^ zHmf2W|0EUFqYGK8UzJ@OAy-M7+i}@Kq~`=S=oSBHplG6jdZ``nTfHBc%sKN1v($Sk zvOn}Q;Ttc}??>DKu+q%*dsB-rRrytlwQmw%gtFR3<%KLsw7#Z%w}G@q9{#nRx^m=!2 z{blWS8I)0#0i?>tr(sxE#b}^RhhyL%QjwpRDFWPe@fKT^a8Ekdy5;kJKe!$jt?Fko z_O+sp59TKyrk^?^$dYfD2xUV0p`nq9c4Li3ONUaVc1PqjmNjjoqltabXi2Z-`Cl-` zr{S$g?O-W&Wv$X_Q0U#zm_1VChj}v6)$>KEnua{ni#)|)_%sy88k_s2a=$vA{UA)^ zc3|U(GlG~lp5v+XehN?})t(9eI*LVJJSM})J{Xc3|08nne6dTeQ$qU&xtjZ~WbIOr z$P#~+gvdJBXy^h8gtQe|iP5vtv>Jy#hE_z1jvOM_nCs=`ZzE0D{Xxca?efP3dkZFa z1yTn_=fY-2bl`@vnc&8?I76?kLEpOCxWR?Ym~}F`9UG3s z7=(85Mz1@D@m?o)G%y>V~Q;!t0{;j6sT21yP9-f2DhkS13(Rt9i zbL~Bq2LJ^(orJHRtygX58$d9Dz2F8{Y3d0hc>3>b^ z_w3{K*)#sVyG$u%sKBD;vyS7-y*sO8HP8grmzP@5{gOSeP z0dB!#T>*HE6wc>Rb_jY5Zy$+2(!)7!e(OmCj6Av_+Nfc=j%^^TtaFz-TjRILjy-#` zhW)uFU3DfEMc-GPdG+pG+55n$BPWn5`~o*vd3b}g|196wvcuEtp0Pw7h4#QUR%;&$5wXNyZuZ zOdmT|pXU7+P?HC@k*G>tH5!D@@PAF=~Bw{5N#P~0ba4j>EO?Y{|12M`xZ^k%Y zeuPP&5QX#5kgYkQs^h&9kZp_nOSk|HGSv?+rCV8YfBtRtk4>JO=H<@S?_C{b*8(lm z;srGP@-&AU9Z1*V=nTrD9!RPo3^cSjIyX#2jUA9UfTmlIJ8((T6D&_RQY{DW7+<)j zgwN{ZPEXp1P!R_hhGBk4aXF0nX!rE2eJ0v2ycCDV5e~$xCL(OjcuYjr{WR6&P0#%$ zphaf6RLTQ-!ac+V(z_bmAZ<4gy<#OGY^cK44Wq8t;#rk-SfIcwMp&eszvES}X zIYpE;B~7v@1PANUHPRZAYN)|_TGGYFOzp*}J!jGh2tz0*!~yompKDzT*Og-*eRjuG z(aa+0g2GLaOU})+Vti#(>tHhw@!IfZC)eja%{iuaPX3YYc4yUxtUjS;GYO}-F46Tf zZ-##lU$8B?>_=oNT8%+Nh_c3^b6@9LH_Mx%I(=tx^<>&W&B{4haO}&>WoDkoitwIS4=WNdgnfmU>6jEMfAtAW8xuGy_GPveE45XrNgpP}%P6;vWsct4 z3~+d2Fu?_-?eM7f0TxC(G}|A}t5Pdhizi;0XC<~{xa|{XWsa){X=^K0o5rmB4{yha z#9S0zQ$fZ4jWuAXl(A$!g{!~+aZ`WM2)$X}@5?7dAz*1%HIOu@LTlE0E>pmqRo*DY zq^ZT3mpJRZd1N-+yw>e_vpi>s1+v~B0Uy7^vaxzEVAJ3p{dnB} zz;G3WcQMdt=kAx_Z34VQz^IyBf%&W{5g;E2)%VIvc;R5H&&pR~xjQD^BMBfsNxw{@ z{3aA<`%BSpAfP5i7b0`dm2H4%{XGdeAdqD5$RQmZU*8cFHar~~t`r^xC0wl!PhCW> zb&0QEo_NOgIfIBQZXkx4#3nfO9Bd4qpqtk1MdY7rsow%x3WJjdpB}PrOS` z9R*v@dH?NJ|CV718ctC1loGL^4u6g2lngdFLVm#qj*V`SM>7(O5Uc#ZEGbO9% zGWNRlELR@ZGVsjwD*HEs?=z3uMC(3Cm^~|EX|!&*(@XYvb-}?Cl5>cvtj7=EG0#Vy zp&N>h+9s`&H{K`J0xiG=@RoIvw5pIF>SYIWPt>ft2Hcq>n_t^z9&m9tOS*dev{v#^ zt}b`?n`Ayr>;)RN9${uJWu5?$F;bldMBR+qf2_*)Kpni>Z--B6k`|lcpTa>m9Li$^ zCHI0^z7C#E3(9%fuik^T+GYrU7PpkB1>1$u;;4s^9F4QBK5tboaVP#5UR%&hzrhqa zY5H%4^lI|BLnYHu$$mdeB_gUvep5F4C0Q?b6!n(DX7mjr59S0CRK-Xo9p5_~7W3BF zZmd5!>4aN@81huLyj}Jd%8P{J{_V=h1{*L3HE)&$wiaMxC2VE}h*L4n?H-ih;C zyx`lV%4zDQ!5K51(GpT$f8i zb$u9E;?1fJ_!Q0}fRP#bdMQ28kpBa7SK!_1h?=}6-5C1rj~N^Y z1lZ-AN=u>I4HguwRMc-tmikU&)^Y!6s4HvyNB+}@42Raxv<}5S4UK~lf#K9okBh&= z`H4J;4yMu5mTqcms6{cgjugo)jVX8Z@&INXkDmNcQX~8m^SX$9-GNPtA zTYhPKaoE3_{t|uDC4T~7*;Q5LJ5xn^TaMe&SoG0w+l$L8Ld-8TMv#IVLwddVP>C}z^KZdtM z{Td4hn@pO|y~d>Bd?jiLG@!=5PvcpjTgLO&NfwqLz+F>{9zW1skYx*oIO4~@Sl;eF zskkyy>syBgfM2Jt*V|^ruKt5Mll2NQO zhyg`3*?5k$=DWP@sVrrOqs*=68ndDxl1_{LF_BdwBMy z-1;Z+XlOF@pRh+ZxJe1`Gw?jK6D~eX9Q`fbF|w05O9bz;W}6nUiScVg1I1w&oYG80 z<-wdbVu~<8ay0kaCc2`c6!N1kGisTWXM#vCl9n>|pV_OWYF>+33$*j3&Hh@tMpXO6 z37tFL7UGQ-clMPsU;i}A9_`zaCfm>X8*)+0>d`krcYZyU+;Qm3@4`h?Gji36o3~VT zD2D=yHb+q89o1vE=k5%lvHOYhi@k5gE<&wg%MLPjwXYnyzERY$+c;jiYkh*TwAzzm0#Xmp{SX>FwW&9ZZ~(k1K>^+~kd^o4R0Z8uOA!ySZ>C zkMh2sj}Gfs1&5XNdQYVpZMOu6g^&a1zDW`qhNY6u%W-$slM{zs+K=X^zLSl1kj{F~ zs~R3aiPb`D7?a*TzpyV<;&P0WVlwwN0B76fi9bp#wZ4P@<&QKj zn&QjzZn(_s3Ti=M!p= z-nSe_C9De}i9b)GV~poU2rvY*o{$Aubp8EhpQ^?d)zQFhSFJWCUMAhU!f~y~{b&Tnq;Qomdv??Ci7`?6y7Ups=cEk_bj3!gNPN2+D=U5#Sce1K$fE&w^j z^Kepnu=l}sbn8-j^HFBxZdRn#rTD#t3WvktZRCS2Z|K5X?N3!COaD_GV`Kdb z8rVrUoo1b9rQn16e_Xy9gX?wR>gf8m-k)+OrQVu4*}7An9niJAVMalRf581vQBiha9*4zBaf159I%q@wlt8F@?B@j&1$#+BG9 zdf)o^SCFMx6QutsBA-=IY#R%B(k?}|-^{;s=rk4HH$q!lRu=d^# zcHYG6n-o}U6MfPCH4HrgAaNBAGsgyEwt?dOUjL4JDdP#k7Z*CF#TV%FgHtC^k$aux zlA^fnA)Jx7x-_de|MqFs)An+jpbVyUjQE5~d-?g&FEBaK@>Fr*v*^izx9LBwl&B8g zc!$)fSnJN>V2E!B*&R^=39ZYz$mP4@1)?jj?%85zpg=Mecb@QOK};#^$1_)=zXRy) ze$(YEW`i$8dO~W4eEGPW-%DRrf({m^hz2QB*!h~jzxjE2R3gp+JD;#JIKT&=`{lO} z7Q_E5Y1iJy4wbAPiiG?9;$+8S{_n-VLH#E@R?ldAu=FY-xQkZl{3wp#w(UT}^H+-P zmr@;zQp~JMBihA3Tj9Qx&`vM;fX{*2XJ<{PXF1p;_eXzQr@hTAo`D&$$?~8*v85h} z@uc!i0$(6HZAJJo|Gej~rTj~n9EgxG@1u{{AxOUrAVFN#f2POZ8~$MboA3@Z>rtDe z9M*&1Whh0E%89fk`B&o{ePAa4`VV)Vze4}`fcn<&{@`tmg`@2e0F?k}%Ksf$RnB87ZT-j++y(eeUA?=3BrwV z-(8pOdQs3m+W!os3E@422gP%eu8J_|YSACQ@?WelrS}VhX0s`5lVZvblJr>Ef5Y$( z1@SLLDkx=5S(N0)zpPY9dOv*jpU3}jdH=LD_yLc#xS|1X!n zWA4fR@-O?4ak{-29f-@Ny~hfB2DN?A1rcC8u>xH0?*#%>v!MdTcwGVH;axGosP50CT3K3w}f z-=ppaowTp;JBdK#|2RD-cbL7`(N*YM&0g2P9BG19&7trUx;HY`3p=x-Xtiq>nht+j zGu&6$cg6gV(Qg;W_ntBH$?jn3^MSd?0QS5EIu5J7cyi1$1+H7zqY1)x1~~7O1z`y1 zI2k1vpi2QdGMGP4O2*+48PI1hdQYPbtA3Ds4#<_2v1gXYrZpNBUr+7aJIu^}J$1_8 z!IMo}F(JKar$w&QjR2jw2VITNj*c@5Pa@tI+V?h^Q++(9Fy_gph#lUr`89Bz>OQzK zkPY0Qj&tcceq2WI?%+i_x`Jc%bP)Zm9P)WmvhU&27jr%W$gT!IB?Fhi!0!TiRynyWG~n%6 z@+Z={0alAR{?;AqfpSKWxwWF7}1U63b zP}2#sx6I>h$b^|r5llmZm+GzPfNtr*6BSeuoVbdB4HhM&c#Uip!Np#Kt{K$gjCHj& zVT-#bC-?}*7u{7O@p>L+$(tDm_=N3J(paUPTwd(@IvaLJ*T*W+k}gb&gYBUI5iC_d z%u!mVfs8&-l=oDUeHT^eQ}uEASOzM@G;p0+s?x_3YFkitj;k&^_wsQ?J(!i6zYAsB z{UxS&euWnn*qVxX=ZH;b`QZ|{_D=Gm_r*pV$I0Y{;FINvb1jr~^n>(5%j=dz{vb&6 zJ*3&rrQEh1ejlqEE#yDx0^x#o{07-X(uLK{(G+2S)=>G6SPDM;CANS$wdnE+Y&{o6 z@~iP@8>ur@qUFO!Oby6XMxtvZ`~ z9+=tyjchfSg~Vk#3P@|>*hU!UfWX*{TLCNmGe>xXma?k<-oyosQLAs? zHb+j&wRjAZ2Mt5FI*ChsL)=5hU4WQAC|V&lP_^6Qhw9$u(_Jg`=bpQnQ~jyH?_T{E ztEOQMt@_(bjw$v`2N%<3JGyF;;?-16MD)Bw8U3IbQ1K1U1|J`GMaeJd=imHqJv35G z=3_axwsU#UrM6QWHz}BZmyNE-NAt;Ux+DzSL^}$-p3m_uL7fLlOoC9=pFthPm%avU z4{(UX#D|4@&mKP1yPb-1THn@(1Y6iRAw)A>BCn;`w z$BK`>{v^%VPFaUC_J?{22*V4M)onL=&LrWqgRY>WoJ z7xlYK2qW!8&d`|_*>Pj+ZrBk?$e#)9Mp!OAmxdE6{}cy3aHe2;NiZStq`9ld zXUH*$dHh~v%c{~pcO0|(P=i=W6L<~`bY7SfB*KqMJrvU%k#@&yW-XU z5UVktljIkNIb##<6U(b>{)4Cs`}OHsMa6n*a$eA~9884nf}<)e%y$rad2sgqxnZDP zd;c%D@%?GBifp6X^ibiA=PsFD0vaPTqT`Z94cao5$@;b`*P0}a;GMu`?)hhyY2L}% zrfUw>$&c0iyGUU9l)f72yX<8jino%T6K>>NZj{;v(*2_rLMO|0F>u!h&yKysj4-{+ zsqHybUxm}{El1SmosKK$G~4 z0j=e&oc$9M8>L%Kri_yeq!`J`hOBcji?p3c>X5zD{0AnDpBZcqBp(e2xz>>z^qh4T z$@qHUy@fC)`)i`RKJDS3lhXA$C%`jYke}r;v^ER_Yi>*_6y;w*Hi}#;7Oj>F0l(X8 zi$)mdgxje9^z^dn=F^qp%x&(M-y=#N*k^4UYxbK}*(&Mma|SE{_JQKeO>w4{VPCs4 zZ#X?vSof|XTI!x;y&ZGs{O75hbFhd)*>~I2`~6NDo%$X!80pG|R&JilHUIrvMhk|c zlOn&k18Ctdo0xY~$Xwi0kiq@Z#0azgRv;$L7^}igabZ+~J=na6v&(+nS2d$PcdeMe zh_dEO_jAbx7t;hKEJ3$oUgm~Y*fG3FUaa;tz1J8kV9X#w6Gpf55TUsVf7q7aFi8R6 zKn}bj&wjG;6#S&Tsn`d2|HR}Z;k>h>!g>o=#d(ovut@LjtoRbO|6-n%A&UCubrj7@o$*C^TCMpF59PCKgX z{av2VDP8U3R$WxvNmB0r%%L&|{vr%m7!EhpAo@L>yXG#`Rung$t5VIdRCXct?70cu z=?UL=*9)TQtf7igTjRHVFIIQt-;ce6Nl#s43FpKcxY(KO=miB|X24@_%H1GnxJXcy z_c)P%)vb6f1ZBsvG0Rakj27jf5Gl!X{0x}%Ca75^^Ggvc z&*sffRO+t=!WE_Ly91)yZK)b>M3xAEdYyOt?+Nmrx4MuopMJlZ+jpxLUpzgtY2Z_AT8g_fdef9K@JEAy@2}J&T*}65jmmUozCDxZ zA6Mv}>>HRhEhCpHwAJ=kalb_t{EX*?*n+f0HVGU;Wwm%t5txd$b9^+Pgx30Aa>;bT zDx;Zv9*myrE*r8Io7a$bb}L^3bRnhj1~jgW%^0|#-M^m=;ImM1kXT6&6cbqgHo-Cw zP#3o`-Ndz+L3XZc4t;dyy1)?`t2z~jCT5t|i&4oO&hH}h-~$`j_qx~RfJ%5QbJ1w} zR3v_5@XWH%YCH8nHSgBOTlow{m$EbI{dKo-w@C^MWI1fs`3o0WJ#wS7vk7?QFX})?K;12Le+R%T-c^{dD&wXoJ|*o&ecPj6t$FJe`1w6 zUgOU$0gFxq$4al>68$q|Sj>{LSkhyshoX*bV!KZzJIZ=TdG%v@3(ZPV{L?cM6yLxG!j=%ThC>>Le}Yfwjk@|XSj=dN8R8RZnlpK4n zi-bDcKv}<~(>=T(aj*%0Zx+eQWnTHb z8&bve@c*#)R$*}kUDqHk!QDN$6I_D_2u^S(xVtv)8a%kWySsY`(zv@jG>r^--|zpQ znP)EMX6|OLPCwn%=hRts&aT>Pue}RC87F2UC9LBd>WTDMjzKvHL4b=mRIGX2-aOb) zB9Q}sQE*?&&<%BXhH?uOb={>%@>qzH=ls{_@<;}BRsaF3p9yg`3~Kw-!YA%!2$m>Z>Pk8N{|2>ntF^-E7>c(m^PaG0!M~+MJG$>Hw8{@lqqZcwtH| zIP-VRr~GO{jciusjn148a(L?=iQFfP+J+TH?E6D}u{8Ai3R&;sEfrTN#szfpDW_b# ztuH;Y_I@ZF-)oZj=f{B@Jb-D>;lQ^gn-uFce8DD?O!KuQ$C0+KB=7CbkctIkcB>b} z`Bx+6v*gWdMBzW$=Nddlb+$yr#Pzf-Nr1NObS4|xiy-SD?dKip_WnE%+BFgpnWR=t zyu3}6Fy}Wy?P_gGr<5GJ8~Gcqm0d*+r`DQ?@)p1 z`){7VRg6&+?#dEnt%P-?wv5-yPs!FcF~wy(7X0-7`k1pNvVjHmdxqI)2F(9%ry#F` z^C=dfZAo|^%5o-RFD}>J6*Ek(t0ihhS_JM9VrRO?aZH(hkp3Rdu;?ns-Ci!W-S%<5 zsRE;3%Zpu&R8m_TvfAs75}W!ry71m2HMv8Q=MjhT!0q2Fp_^6P;V)b5wWIJ$>X+~% zozxEIlk~wP(E|fLCWBz}8~Pc!jg_BgxzNAwOnBb}*HmLy>&n}hgepQKXn0}=cE7>$ z9=DgX+hV!ig!GqCF9hwh3X8SSopx2+(myiEC4O@GgO zXkcm+Z9WdlnyV?BZuxb0l|M4z=Kmd ze)ilp20FM*vz7zE-STpKUNK!>>rM>{zJwQ6T`N3J+X~lU*KgfqBCQXp2LNrNZa=@Gg@1C!kBCLAFT728=mG@n$gG4``%*7+si^3gm|vfFGv}<8@1hY1QF63KTPnO{qSteQBv-6 zgCXmQ;|IitW=;oyg^URH-rz^CMI&~go) zNt$kPUU?hMa>88$!VvE^A_Rn*DJwy^@$MQ#pXUi{CS3_PaCV1+DZT`o+I3~#rf9J6 zYFw61S?l+=1-+b!9?(3LLj&W-MlKvW(WNHiQm!+k57OiQ8BULTD1;@Z%P+u(XpAnA zg%hg?EtcUX%H;AnXuJ6J`QH}ZU9F?dYT2xPO}lh!R{P|H()XCI?&J5?vjuzf%0=IhecZja z-&Xp6cNis=x>qn!jy&wKqiZx7@s5fBIOK)mEv=UiEbHA-}gNT29T zpc?mCoIA93t!hlKW!JCR^;H${;CzGeHS*lneT*f<12M&wQ}gS-ZXSksi}-7_3Nd)f z57cq*4*_qd$%~!11>Ml%J#814k$~AZf@mzeG<^kWx?sFz!7hncuiJTI*MTB#9aBk= z^dA3N@d8GVH^hte*zH#?I3VsYu<*l6!f$e`v(%{?@N7%;jQ(d~$Dka_>1&*`Gn3b% zT0KCdh5P-M7VcHmDd8;Kh<02FGZ9c;G&!`UIm)^Zd^6vD{eBB9!M-A)CD*k!8AN9Bhe@%cPq$U_)o^QU_yb>RIc`txW>=V!zb-7WY_~-MJwgmH zovfELYHh6TeWf<&Z?oWP6j_u@D#s546jf8YZMvoTJ=(zUZM5Ki#OF(GU4y1ByS719 z22OI8o8yZlR5fS`fWCFyzJsJ+t}TcG+S8{D+q{e)Nv$8;TL6z9gs(=lHUD$&(XbYu zK0cFbbwQ}~aU(l|$9t!C*i;oAFOX;B-SP~rEagBD_R)tsuX^9zDKk&!^RU@FK|~4h z;FWvOY)^Gnx5pjowP%fx!^;I@{P`ptJ9BNmh58ZNV9OgedrxKR?oRgwg>Z{K+U83g z!g!9)YrD$=YyR=P2cYoMDDBJ14&UrhMF@VIlT9L`0kN71rAD@6cwBX!fe3TQq@ymm zNRU6U(8fxj0mZj!52S16dG4mO}I6a-ML ziKZC24#>x$DopKl9Xr&XlY<3LQhHA}C9U*0dH=$$E)rw!t7~tkD6+(N^ux06c8qZ- z@~Dtf33~tVw`~}q1aIa1TpI&K(gD2~FXGaIJKB{bHhwd8Qj%-qSkv5~@RqH~xhZhk z`w(99#Zes1;X14y1$*bX1DXlpQu(qlKGQY_NiS*h9&}e+sB+?aW3$-0Z!6sT-rx&%mXo`5F+Z#EY>30A zn#nsf9Kke+FlO9z`QK`dnV|lM2-#wnuBH~UWDQ5`tjJ7U6aV^-a#iurE2wctd>W-J zCmi6+MHG$P3Mo*td&Qgq{a>S=aDl6yKN+9|aEK{aTFbFLrW#vd!^Y zpsG9mcBX3SdO-?%;8W2i0J8Zc%MW**eI)5{V15lZpl?EhWWUjs zmC~4B*f^mY6ac!-HMRHQMppcmt@i2oiv6HyDGMy zGRyPd(uojkOLXHlG$}p}M&-MoPU265xPRnWXCwi!a5Ai> zNKsew_fG3ssW-vjM}*2^jbyB|=V$&A(IA*D5NPtw%s*1k`C?(dyy8ZlUR%NSiJlUjl ztLbGM>_a7@BVQBuFQBjtn*^TSe}tMc@BQ;bJ_(#nX{ce?W=WRGGc_=Za&!BwwHt_0 zop;0keM;2uJ7srk7E*kN$xi`Cbsb(i5qK~?=;vyUe$C#^z~{kj);y6NiW}r5h>}wz zi8sPJ2SWN8&^)p2z^nf?n~$4#uQ_U{YbIoBC~&K}JK%;X&yH8Wl3=OANP0$xbU&Qs-c!A~O-R9@_ZGHmI*18_>P~A(zLI zHr`f@Zo{(Lm)`P6lt-OMkuq7QYHV}BnY*uR<$6NMzpTP*7 z(%TmP;xmumGU=xL5y26Z+f?>NlHVW-*t*<*&a~`N4|}JheToCmFE#5q|CeOe&xT+T z%C4A31q)Uedk6SI3PD|rdP}Jett*C%`Q*f2>d0rZOLLwi`>?7V{qh?+1cvzbUzcCi zMTgD}K(6oxXOBe%Gh0h0lW9bTrgrq-OZc`Tdou~wkVQj_91Ij>8bLWPB4!GQ$IIL8 z>Tmw-&%eQ4B3kV4vf;Jq(PRE(PZzM|dgBeGbl79%6%Z-m?-}*IXKa!XtC7Kfy{*B= zSS3WgCEPx;AR*o~2rcx!5k}@sa{t%|Vb?2*UuxBGNe3Fl@20wnzff0*t5_rP?O6VJ z*tWqy_P-G&8z_Wy#+vo{SqEf4@(HbK=&k1q*Es@qvqymGI^V)GyARq#6C;>W0HQ5+o$!8wVG1XXd^v+MB8kEwi zR}Rq`*MjclPP^^6gXe;r37z9-6SBX*WBkCZGh2EqfWT@T5grkOQQwLqrI$&W4rtQ` zbt}0o;Y`sJE>^G*&Z}f=VUce}1y6NGtz7dEv=r3)>K_`71JG?HAK-7g5vmlK?}>!C z$(@|Vm$IKpC?cX3@C9Wjz>lUvXF)7hX&a$38KEUakBl#X|At;Z=uJ6&ko#+4JOclz z@kWhchEcNTWMd450_{Tc+vbBfhGSmvBCQp1B2bns`p6%ufiYYwqQEf21YTFWI?(l^ zI={_;f(wsA`W;8)yI%F0D)lDSucsxr!-4yq+wzJbo73j}Z3d7p^yM#U50`dAOa=g@ zE^aI~X_mO8wRez%UWYy>Gj_m8_1n%;@7KZ9yO9M_^C6(IFVL-<6+bvGVrf;mM8wG&g42qSS&RL!HWYZH;V! zE?g?J8sHAo#{xN(3Sz_u{5OL@mn?wcHGymbhnQ+^R5Xa1 znRzaKHGZ?_lPGQJRL62|QP7x8WSVysUbN=0Du z7K8)u7xWRj8O}9;l69V&eRY3fJaEcFkNiZ`Mz&5w>hM)NIi(H+3tmv0oMsk_hFf2MFwgQ{ z$R>(A3yfyU6?GcnJL@k3dPpebTIS@hujct@Tl=WjwQN6-;@`o_i2ml|WA}n>bn0_?phMaF)6X`_%*b^CX zpNYQ0xlq^NmWJj-<`+F;@KVqPx2B)qlkKuw+vz(zwP7uB@lltAh4#`ttmEbkvBTJ} z4D`FFD%vqq6-S!jl*bTD>MZrq(E?CYAmLC1Rb$e#MhmN7;$MqUmXQ29&|Kws{^^3~ z({_m}QlsO}+z5d_79!)QHQU-+o%9r5j2)Mf+~*59ed(H8J%9&t(u{@r?n&tH$C~Yp z`r~@irZ@M`3q(vzZ{ez|`P+C^Mm@G%7s!c^lv_OJ0?Gn90<9NhP#FilOCEfmjJR(l zFQ`mSh2ivY^x@qrT<1{iG%Z&YYGQx&emQUqR+GOcsPGi|PXvh8e|TZULK?QC^?cYX zH_GP{WBC)eh6$zjL{q&Dn`+H|DfJCd4++>4{Ab3JaifJx-=M$i05EI3VMUShp>cV3 z-*N!(`zW*osv3KRI_4rO`&iJ|>uf*=#|oJv%NJA;Zj<#yoT zDmtLBNQ&_k7QAdq1oU0L(8$F}uCtd~F`*8{N%u;j5jgvm(23!WdJ7nNyATgoUKUPK zIju<29J*8>#hG3pycNI`(_YRSJRf~}er<+BB?DsP3WwF%51P&Xu?uy$=s>>Ck)&|) z5MIli#SC!W7kYj^eSO~E2tF0l9Bs~=Gk+WTz3+eyYj@$VsOJ}**+|0k7`yloBQ0Ot z2dJ4|+VGq7$f2`qVT3(}m(kAgM2wTvnKYUCtFB+uxp}TN?1cOgTGob`PW2mP%RzN` zHV#?XFFZle`hAj3?ZLxR5z||$dh-TVRh5Ep-<(>cmx&{VlLCy&uQMQP^`W`+L|3@J z9V!(s30Y`|sknvLh?ogOM&BT6CNFLj)ClU5$7`ke1hYU!eu${cE!Q^lX5K2ykCu^E zG8CA7vx39;KplZw^oD+En;A2gGyX`zTa|ozNSTq^i5fbfwcoMwr91If;_wx*8sl`! zkp|QNdD+t=dNBgRSP{rMb6@8Bo}%BuQ(AN!`jRs}pK-Z5EXK2!22%>YtrTPJe%oI`@lKtNFz)at9ci*+u?-*^2)IBw?$p+bs<<4e}ePj7} zP$wrw&X%1i&>fv!@mp=OA89eh^U<8R1p6Ex9q+`4bm>VkJBOnXXzAs0*RVyaMU!y_ zAk3)iIr2IdF4}ANPhH?Op~T%2nI50CqR6<;0WSUTiveZBUQO=y7lu_o>b zn~Yf6m%#&jZ(?Wbxoddu85TQ@c=-*TxWTXEM)`~7P3jsYG<`K|9nT8Z69YYyG;8(G zb1wSVV;AV2Or&pqC6PRpKM_}N$G{P7%@PN}FG;#9FKd4}Q(ZsS;#1iEsuljUBm`1} zSsGxY(-bRPmVMIOH;!!d7re97RI#hU;{NW!plH~zMgMc5w%8bWw8Tx5 zvx-%ULZ!+TRzh3Ss4-jIZTpHS4nMVvky;jIg9oiWW?GYnfi=m39EB)d#5uNR8>)}_ z_KL9STZ(UD4dq@hcWYSIFOqjKe1IR?w}ob`VQ1Mn53hR~ECteUtZ$9%OOH>FmLqH* zDFEMaEii@kOSvi-FHxi%l0B_R9QT8g!SHb7UP@h7^>;NHYq5HybgRwQc9d5WW6$}@ zS%19KMTZX>MOc}@h}X%4&NAaSr^sxq5Hi~FD<>3dsI&iTkdwW zkwYDUcd3sofkS8Wm#~WqOijd1^EuW!ka6Ctmh75gj5FRfFBHa7TtVmlyo1E{QO~wn z!9#dAg5RbFVv<|f+B^hC%;2VCE_ z-|21h4&KuPyS{tmS&AIS9yZHiZG;}e=JlJE-s;uUw$+kOu#wt+7ee)KAN%fsF=B+1 zP0U3W%W7+*D#nPf76boiV*5M@-8i})t*lElu8XMK!)?=+ts7TtBN0*>_z@-xB&f|plBF37sJ{5&w>rICM*F^v6 zYG7;ANp3priNP|&sLUJy0w>> zl}=SfSN{pkHs7pl#6a2kc)nQRMEV2OBtu7cD~o2#F{>K?XXi7*{m_x8$YRg@4OG9S ztgaCMrLbbhIsUVZtlrzX4r)1tTv%A zQ^Zp~G)LRUzJgE|GN-ic{nmQk3en=t&fz|p*HHg`iB+U$uoV2(PYK3+IwVCN*=qtQ z)0st0I+YDc!ek!@AaFbGB;#|oezReS{3>s~U_CC(k??TX$sHXS1jPQnu|Ndaq| zaH}?1^UVuQ*8I$<8BQ@x{Br*>GhhGMKTgIWcL(jaW3IuGVJySF!d0%qrkXebWTzwz z+YoG{7m^;_l;zX<{g3|&d!jGK{4Q??z`;n{wiVWMDpBKQm4A`qb)8n>=#(+f% z@}XspFq=Jre`Z|kFF1Gz-Ry3>Fbi0-0!I|bzhv6qB>^^+l|Kl3ULJPkfBLqyp1#H` zWfCfF`5$0IO~cOap|1j-`l++{|AZtT;)je=_$1eIh+wzrJ9}br4JHeYH|e(SLQ?iX zJMbt6Z(i2JCv>}aD&3VM(-*rIZtb;3wd}M+h?ZkN3Z|DYX@_kGm{8@FAp@l%N%uUv z-Xxh&L<5`kEIyfxxw}L^OsHKi4DQH;+?A!RV?Ykjgo35b5=yv$?knZ?&Gg{ z`@4Rr*ST&nTk%sKe$XdxuU*lrd>&)nB zua=#rHXGyqGeP0{gM)ldFpLKoK>GQt8}lCBM!tIp08K{uvpx{(l!+D5?6MqXuBvMl z8oTMis7LDB7|>+8i~p3z=TRn692RWB_c5UL#!ZVg?|hGXe5nI5#Pu##y0R&K$@}2U zN}@p4k7^Wf=3O0@Iu!%Ly1t9KO;d8nEh(3Y2iKL2MkLIDhJ*>?PfFycP_=0r@)M!v zxkOTp-~O(AoVMj&x{A!idfe4#-*@hd_GF`k*k(j6qfIAJ^jy_9sFtkKop96o`|U#e z=s7QZ^+?q`|EFdaDihpixP0G`nEVUH2KFJG$xJHqjh8Q%xOLU&E366O5m|m)%b6`KgFn&SlpK9 zl_{+$_8I9&>!9^|7kh2|Zc#47Rwtyqi9LRNgUR2 zVQqFjX{nmo)ca+=WY^cz{NSceR}t?u7=FY?e%JCvV=v-q3(bwBULdq-CNk79t67XA zn!BOAD$m4QGgWJRP_VfJaV_KmPF^)mtRM-XXH(0bfmum|IP@&k9_D-wD6RC!HsoX?o-*EZ zjQ9R6uSeVP-0#Y%Jw-exWHiPRKec&KN?o+OMR2G(h~^()u-NY$)La;cxxYtUb`UnKx6m!j3>y7 zKFX#(22o2nt%rs6t`2MFKNkh(vdm~Y42zoL-~fm|3HCv#74CR68Y!wzvl3X8>Q&s@ zqVnI17QMqJdA+?a*Ut~!9xpB~=Q3|a;`nYm#`dNs)4t5nq8Ff<&%BqPbJ_Vya{$R# z$b2=L_$>vSFXb+xB#jnyc7{!7imv}QKfPv4-+(wtSg}dv$HVOL-O+^L-k&a)8VmU< zfD5jipM=OFV;9EW8!T2|7Bt;B)6lNp`3?LOula98EQQyHpZm_T^$9ahxcM*IewN!d zQGGS^g56O(ALFC%0pf$69#n+AM6xQ^f3a4i#9joAb-nv|I?v5A=GR(!X0Bxk($Xd4 z^uW3>8Azu?1b~>)E8?=Q`6w>Jc{Eg_Y!zRq$>LbE1#C0HN9>u>ZuYcJS4V>z~vAX3~w7K@hRtj>jU48vqd0Z$wRD}Ft)h1o^xydD3NCYTBqGmR|$Whjxt_t-t+k(NA1-eUx}z%r4Zfy z_R?wsv}J$VF?F0+pewr+ zbK_|V1#^({)#bvz!bM`X;jB(YaF}H>8#uH?lnB07*36uwX12%k&gpCyRL_ok`@t%L zr1}0=(^D%wZWZnP``rD?@Sp2hulpi0D461p>N4GlQ;MaHBfQtUXCVFVPTn|%j+CfA zMLn{RjyD|!d%*rJ$ck&uaWxYD7AOC`IP!6Bc!7S6?}FfG_xF#XXro8BPH*5#n!WBm z^PQ8BCerEfGosr)lRgY0>)m3EjQ90WV^wy%0JhF#~PX6l?=ewEvkheO!TRl~ksx=W&js>GH z_&HPCb$r73b_qCcg0*ilk^63iML|!?HUgV}`O2!WkG?x`sF!Y!w~nUfQ%pbw&KU>F z%_)1FHMSvJrZGc8IUA6NYA0GZAH6Sz-1Dzk=+$@3YakOpEvY?6pS#mOj+ZyZ#P+=9 z?$6Zdt2MpcG8VhUEY&-JvaJA-Sma7%0SC4koyEdJ3oWTfZ7*FQ(x^)&{a-VRNwIyZ z?)#?_z~O11H=9C}`*=rictBLF)MnY{!6T0CjDFgT92WT>52)GenmrMDUAM=w2Cnua zz}cFtv&{xS}s+B1?J)V=ldUED#?>~ z-+>ViJ2b2X(w_ce`B|5%v9>=lh0mrW58diafl6na-kxR8X^Em9@T#+H^zISRf9pZb zK1R(bjD(vU9VgG#jb!=J>Jg`$>GPu>)M3Jn*bLBYs6R|&J(od-*?MKpQWH#wMj39@&Jbg0KXTmqbn zM@-&f5au<=Qyv6$Dn>N#LIx~7CtzC?pSwmH1dtziqLY91|N07Ry!RCU{8%piKi~A8VTC{BWLG|xnw{OG$hxn1|=qLt9lGmlTBwpPKA$ZkC9aL`a&rG)e)+iT|2f_N|KUH+!2d_kC}p}5Q5wrN zgn)p#gMfj6K+4jbKplZ#hJb{C;);iWfcOcc_KjT%*}}lu(oV|K#l*sr148>dLN^RV z77~O9cpMX#jZYGoG@Y+nIcDR!&Ba` zZO;%IG)z8-&ne{vlfi^+`!2eR*Gs1Gru@}~an392P-&K1f1i&Dtr8}AwalZW(o0yRYj-jF=j^`R*8wfQu5 zA$raf!9*{~*>TWYyR8?gEe7aUvxk+4dY?#`Tt&Eqj8jpVy5Ek1!zjs8?sA@O;iO^Y z8hEPC7(Jo-s?o}uqaQ;|A4%+|b7U@0{nV%}pG`N+Oqj-OF`?go%ut`65R zz;~L|46_9!?^_Hbh4H)Ax=n zd-PjfiyST(Vq51zg)`sEq57)AE6oK4jGA**@E7k1JF8B46T2Uw-7WtFAh2Vt*{!_v zmg}RjxZ$khYL#vM?e8!~n1&6Tj-BQ^)HYJT%q!f7!*dYw@sRu!g`^9v3KXJuH==p` zOA@b*m`K*xe*7%kCsXg-7XfWmOD4A{V3BO7Lx)Uvg9Zs!7r4}>W#%PqV^zCP4V08R zs`)hx3qDxp+pF~EwW?+3qCJ=Ql zy$)ff@YiOl8_n3Ejj+7Y?tKm#3-E#KUuO?p!n;5a!3Nyq33G1T={d%2l`3L|yf;05 z5BKHSvWqnw&a|e%-!7f-JyMqS9}y3_6JkK63P*5mF%RHap*k!(&JHWo~ZEq z=4ay9=5^|ixoy7sgi~H%zbkZn23ZPU*&uJP32LCX2{+MG7Dxqym5A+pyk46{QN>XU z`n{JSd>1u)hEKC^x;_)hbF>F+6F~%Pj=oGSh!9H;Gn#kDUF`V)8EBSqQ)Idk#wZx4 zxf0=noW=ryf*dm|@zJw;@jFQpDozofd8QFRACg3TP8=jHTtCqL%jkr`CsUhQ%FjwU zveqt&Ea*f|aN13+?ZG|>R3*dOKl{3KS4k)KYATdBUQW$I#fQ;l0;im*CLOGwCGRm> zj+o&{65Q2K77K!``(_|nYyTP3=xsSz>HQP`C^%QyIk&V9P9^K2*B4%cSAnC?zKQt3 z**N6Qn<0SNGm;U@2V&?w+@#$(z<}_RSvHd)sr!hPFqVC)ZSO1!^xd6D$ww${8tbZg zvZ0aXPUj8NoVbC)9jUa6pC5G6_!K7u1f&*t%m{BN5FYhmzV?fw}% zCP;``xDR9JY-lJj(ReN{&40teu74V zhTavarDQ%G0=C(JOgL@3Nl)MjV2q(n8~yoJ{qd2BDUF!EuLJ~8VA;^uPY`G_ilzkW zDpZ;pJ_bg&yhBjdLBpS={Foi&Fudw=(6okfix^;t-8BQIvhh~(*7x)czLpP+Gj4#5 zg){_g97cZ|yAHhc4&vAHink|qXpTJ*SY2>I5XUSso&)eOIiK|l;KYxI0TOY#p| z=$ijP%lQvlfvx`yE!KaaH88d`au&CDaxyh>G5z@u=#LgP(EkNmf9fC5gJb`I&K><< zKvQJ?1DYTwDNXY%(?BgLT{j`UA3|-guXhw1Rt4c_LqO7(9+>)8{NG=VA5f6Ve;xGp zDvkCcel8NtC#T4bN3O()z)2e-{zOXpY5Z$Lz+VPrCS>I3_uk0HN<4$Z`u(`sMvzx2 z*-!Lvl%!dxlkbqmY!2bUb!?XKaG~F8i~8wO)B~Ad+cGsLdM{uJ?B5|JjNwt2m@D!l zOnbMy1J((C=fl$s`@hJJ#FgA;{Qm#8$P`!;}1fP;@s0RbUi#7_(XfjsmNoY;~7 zfJ65W9KqNB4Gz48fvu*2s>(k=l8_-rV*gFEnVz~aAiR+r9ZQNrNs|hlfIY|$KqTww@(Zb(^|{oEv3>?EfrW(u-@^!?A+>9~$Z zqm!wI*eiOs`hQPZMIYM2MH#?H$(mQsA_mWUJTbn&2ks- z|FoqjC+zp5t!tyjm6ebuZK^h&{^$=OG+9QMpbC$gp^rzM5ku=T~4TKAKMhP@I{>F8kIREQzcTf z$3lwk_N|o?v#4#(baNb}U%4v$JsL}LTINURl`Udz@0X@;da*y$Fm2$s7DYeFafqJy z+BDrbT>`!x^0LGe$+jGI`I&-?7STN=ISmcG3%wI8b*58hJqlGS!v}fh*Vc4jg33;{ zmDYfzEjEUv(vaG|$SQg&yrcpGrb%G#*g)FO*Ik@$lDJQ3FT{eB$+`Eb6SEu87^dBS zwH+D_+2)Dk<)>wK#Io8zZ+(dbNv_jz4FtMj9423|uvzv*3x+v?S>ny&GLpR%Qcxj z6{)?9YjSqKaLcpxzP-++_-3a>uJCt8OQSfJuDZ4DTW>PVI{}VJDMb+OGmN3Ik(!Ma zv%0T0)}ZFwTl)O$W-k9220}TP^M7Q=B$KSFH4rW6wimH;QPW&&6t@XDlVZ^`dxWs7E*Duj_%1>Z(lF?q zQS~LFIPox3S3}h=z{Vx`C%Fp&{ik?0oU_A&c6!BNZO#mgw;!v`IZF1GUBj&vo)#Fb zj2jz5=u^da5#bTBQW`C+(2|pN(7^NQ91ge!c2-%6~D#bIvkhsi_2a z=3b`cx~M>j)!n2xbHkK%^HN#<15ZUV*Y1hZ?NiXabK-%?=0f^I4nQ@!E925@Uspv^ zzGtXo|KUfTYzxz>ViIet$uPb|IuGA4tsu-bB#vis_2n6_)y7f&Dc z3&Xtf+AS!XLvfNi1Dd%vzp4kq()4^4Kbq*(ylo!H^c5FBzRS9-DXK4b2Z8MSqr)}U zc^6j7*Qjrd;M{}pm`UCrZ>Q6yr@6A#g%u5*S8W~K{j+KY&kM}KY0gpDyrTmP3`U`JDt0%8o@Pv_W zXepl2mori>ShD_@xiEB)|2e#A!Q^fn){PZXzL>8sR9wPYEkvv9wQTpaC#Zi+b^kNt zK~P`$V*0nQR}nB&Kl$28x8(n?|NqZv{@*!#Mj#)!Gvt4LuDZ{+UrFse(&(1M%wwm% za;Jot7%#SBAXsHkg~lqd6~n)e%0qfPUZSG_ei; zkj93#FQu*+pn8ok7V)9fIAbM!3|KlGsfN$F3t{t9)KCW-;3j0QoEmyr)s>bhorB;`8_+c~k>a;my>dl>pO9Fa8$!{Cq7N}y5y*Qj>kE7qc_+TR#xKFfp2Ff-|pNv7RE*EP;kfo;+YS7yles~oZS#Hdg2$< zQo@Hd5HBNPT}DrEVJG`s^hn`M8Ma#{&MvWjC7gDsCW}l8<;zDb^KF%`zpF0BhF4Ec zEbB3zYtOsBzl>*lNaq*M;dA^iGsXJ(nZV4MO!0)@yPp+$f-4=FX~|$25}+q=6Lvw< zpQkQhWSUc`Zd-V;MCa8Kx-Z3@K5EVG30VFjYqXWQ2es{$mcw523IzR}zoaxLZHp(m zklG6_$JVNFOVmw@rGT&b9Um%4x}2FJ=3{41{CW zs*-Dya3MPX^a-GnHZ>|U<7FOTkNERS;cFKr_Buq=TIBMhatH2T5t96$g}zfF81Gdr zBYbV`lu?shSn+^aSaxpP1b!ysUzBBa?2~dS@Y#Pqar>r);M8OEx>xvUWiL>)nqr;y zjIW^TcwhbCvQKOwBEoy9_eD4zkf$YYQWtDe>vzrO+zPs-|xr< zao-wJA11aOmvsHd2D~i57%o?$=D5C>lNiq8_Zhh23Wa@Gk+&=ua(>~LP0z!-YWn|L zl>bLl@Z^m6f;ajrH3I?y<=20ln1%m1G2H*07@7Y6?Zn{xj}!BM_wkfbAQt}X(zvT7 z0T+kEVr7vKmPpFKVg15IJOgk_Nn8bL(lJOPb8FItSjgBL&6NIN^^(wBmQaII)y2gvZ|T_ zQ?F^oL~()kh-p;!83(ZblC?%`-sbu238Sb*h`rZEH@F%#)Fe|M9IWS|ZpSiBgkH97 z7NpfLh{DTs!ByyA5nK=FXfSf4mOZSOM2)+Rv5m(x^x&>@fjzaDejwy72+W_xG_4D6 z2T9pR`E3%}&uf=k^&-z?^dO`XEopu)#&XhvtXA<(r9lK{c*#VAQ zJ8SVis6v(R1a`BYc{h~K)Dz$tab4(+^n7q-+fMZTnIV=jIz7CvU$c&cI|Xm&Gvx}e zIMT>ioR24mK|W+yn?0`-u$REb|Fc=&`q+2NBF*8C-)63&ueg%N9ZP`Cq0h~h0VhP3 zFb;|g;~v}!sg-;6toQ;F5@ML~QZ7Nw_IvhDR(2pPT?qLQmbA^5jI zM=BFto>{W^4Ht9l*CX11m1GUH;GeZ=+?+USPfTSJqIw-APeb8KqB*l7++ycvm49?3 z$*d3GFt&C(Ww<`2L3#-5za1$U#OB(0s5sAjRjSW5wjS9%hF|{P(}Uppm->dv1n!Rg z_Rs$7dS2$FPGI}=tp3Kj1{)emnTq7&Zdx;WzK8K1MY1qqk3eoa`8v&GmLZ85Iw3<; z_3FCOI3yM4^fah#z1@J!h0#vC?gjCI`>SbuoY^QJcO%^5$O;qoU7nkBW`Pl7NlQ*y z9@sRagACy%dRn5?m&KH;GjnPlTJon>x(urmW+!ARD+y2geAd9EsK(^fPNC!yDM%N_cL-GXCLs`^A|#`2arG8XG%sg-~>Bt``Iy=P&VG20}PI#Is~ ztyGi6PHv&n2qkH=CLNlhq|?ew#It4h3WE2t{370iz`dHF%R4zL>O3aLSCooNUb+NL zANG+Tl=U(#%CI4H$&%3Vtc`utECI$J_M{f#mU_3eVykVpiZcRy9vZvfs_MV*-gNPD zG%i~VEfUdHslMvYEkc}p=4v2vSt>pHLQSF3h_a8B?_)YCU0~dwHkI+WQhDrpLc^XE zMVc$Fm2-b$@lTxypf7p*q4eps@P2jN?(5_4>cUP_1>QxAiQgS_l*-h0eXvu1I!ZZ) z-ZIl&V9S{XC8Nyv@(3Af&Ndzif7naZka+(^U8wIYmdc5hxIZPb9fSTc-_5oA^5+DC zSY+-#KCJ<>e&BVc_{dJW3pSO>9AFg8Z!HF}X{5TLH<*7|bGGHb%2sc~D6IW(;t_8B#H`!={j_o; za9H)V8+Frx;J&8#PzrWg|$F>xB0pye1;zYnQybF9$)?AD@J$_LdL# zgmw+TyEQRH8x75%Mg%u#1;t)RT3#SXJ0$A=;O#A=D@l?pVKJmqlwv8xETx#4nVFfH znU!KzikX?2nVFfHnfX&ySJlkcx4pC7XJ^idA1|I*qBr3Y(SN^jTbjcJoF=->Y7Apj)+CG| z0RBRg6ATY|35mGy*Jg+~aH%=WhgZ;u`mp7gqvFtz_5-DepiADoZE~sd6c~X$t?xvl z*oXWEdfAx`#8}||s1q7-!IN+0hSeUPXu~KZh3CU5VX}hYQWt~wyasEC8@ACEp9bG{ zsJIUTI{t(7!g43`IyHgPL2opxsBTwg>_;!pxC~&Ij*z?x zOwLkzI8zPs`b=C5^c^b{LXm3e>Go-ML3S)wp&u&syT)HySMzZ1#3Oo2Ki!?^8E6ZZ z&2;73rkI!3qslo*1zJ8tRNAThplrqAqf4?e1Pz((~<^)%iF}T_jCYveR*`l6pL@Q;IUcz+r?Jw zryrNE-WacaV3gQ1dMkl8?<);}=W7i;rM~YgD=>}NrxY}ax(kC?laDQcrWX^=j&xBs zRqyZa(o`~(9AecS_1uB3W8Wl}@anlAQ;4niRgcG^K3-P6pMi$DvtqcOHF!p1+MZXn z>^NP$(f_vb@tF_?Ku01jC4UdOL2G!Fiw`i2WaK-5{rGq-_#ugs^>^3Fhsz&;{_Kpi zfEwc?w(k({Kb)@Lqm6&LVE^7-r@?%t_b>1)bdCw^*`Qs(d|hx*`Tq#wWzm9B`7@h4i{ND&Su=;$Jay^%Hu3V?-<0$o zjf%URNG;i+yTitkusoOG2XBran;bHQ)N@Qi{4n3c+M;e>pQe zE;UoLcATS@-)NrMn7T|P4@J*?8+!m3OWPSx5=u$LqEf}=!0TFQSQe#YeeA(ho`HjC z&(;a+e^^Z!q{4mdlqmdAV(*Pe1Qv^ZyfMC&Mi{b41 z?}A*%@%@l|XN^XBwX2%qKEMKV8|xIoydt@kh8;B!m$A}kXl+yW7gTC8l0K2w4q9ii zPhJR^6FS$ESeQusq5oCPoc=P=@vC9_*B(23yDN7k2AQ#h&yeW8v#i4>Hl+yo$gmNb zGH!!;_ieJBAAiV@cZkj!AO$T~DrTpt2&k*B4xOeJ@h=Pb`R$71g__Y1DxP8J5AP8# z%ASj7-xDGn^tp*R^U(~6s7cA1ImLJ<{_K6zA$uyAf&O){$vZD`ipLXSC(=BLV_Sk3 z4f32A)mSe1t3@iLbc}?sZ;66H=@E=YcUkbdq;&8MX(MLt7&o`*65O_~KU7`3f;YRYot@cYi?>(8guH5{5V#aVzQg}Sg4Nrk^zt%a$m!5)qr!T1WhctM3q z>GkC^4{RpS30bnb7Igc~7u?SZkv26@^oj;Nv$P8D2c+VZQ`72<=*I~|+5DHzhppXQ zmWa&Fzl;r0{D~sXy>7zkfxR?N(%o+3__Ce#wOp;BeV1q4%s9+0DG4}ECervOG2S1J zBTw~MNC{seNADQ)80c_osW6d+xGuylin^v}VaH4TI;Y4uI5Nl^SmEO*)G&PKGfvH5 zg}g%3b}YRYAytIbrZIr`z@qD}1ZN4Vxy1A=??`LbiAZTcnm?`zHf z&P97K2YCl)E;(ie000vF-5;Cy-5;a=%^y>e{mUPN{nH<_cK9r9?85LHxdaUaF!8%5 zwn}4$$b$&5>4cI)LkvhKkpz_ zR7tNQTrD+(Z<%ihvZ{%-As$aau4Kt@?UAGyVXo`stkKz15^QIS8S`7M zDG#zOhZ!BT8_f>d`t>eWrZ)Pwt8<}xMZ5Z^!G&cC{yPQO6)=)8V_|7e@9v~bBQDRh z>B*cDn8hR+qZYYd93w%B43C%CKT)nX-JiX_*L&`-wml{fcaQ4frRD z#>fO@K2hZGW*4Xb0}O06n#I;|KbF9OR{ES9vf(wC9nb{~xB>@1$rZo_*pMi{`T@zI zf{i+Qs6jHV=7F`O&T#|y6mJ|mTbBO`@lBxDS$;Yun@v|+zhza0Tq%BJtzYwP)0k1V zi(9^V-cCmKVQ>08p%y))JXMW76mf1P)}&Y4RchCKJkN2;t^-Tr1(e3y`m zHRl^uphr53la~9~#kh<;mg6gN&$lhR1HISLbq!1U7_E)@kYkIJ^@#u1bNo-{tsOKZ zXzK8-wT^S6b_1*2-3q0O_+JH>&j->YK+6`V^5=p<`uC|;`}xnNn&!8uzWi&dtHcy! zPysG4Op;A-rjhw!ppO;J`Zy%cKy`7|(S5P>h3~k-I~ja=jqU9q(0v(gLh>^Oh_ARv z2qCf=*basfXanQ9kDRblU)Jon+Anq*TF-KwuSiu%kIR^o@WutmKdz6%QBm8KCdB8M ztY&M{0?!6+Q1FSr@|PSqiVWL$iJZOt%IP{JHJa1iWvGppVznW=I2bWu8QIIWIv-bm znL3(EdLEjcnW{Q*A|9|C_GgBldR`)sRM%Yk-pb0(;kh>un2@I&e3KBYZqJ}(tmw+I z0{!8fALKamIBFGsAhtvMrp36D(j;He9`|+`2V+%#DV1!{J+Y=!T!E3c%3hon*)ma1 zL6!f~Q0$~;v@mo3pk&2_LfNL3Y)N#^nUe5kVQj&L_{RbuB$)Zq;i(Ts3-PDK^uGl$ z?@B(1G~Ybj8s-yH?qMmF+OZL@BsZC%GA@ZkQ?Rf2ug@{tgt4 z(tie&-_?Qcz<;a>YZ}6cGKk=pEy-or7>dYHlH|4Fc)q|-iQyE&;vMr5-s<9V9`Xqmky@C*gNQjfs!ZA313TE)eL&DX zq`U2>({-!`dZ4qkuyxv}iu8z2pwZE$Jt7F<=yh%7$-4N&rr;~cYfvlA_tQqhjoJei z>=Mv?mO}=U43Z&%iqg|J*oHXy7EOkXHy&*(9}#?}EG;1t{*>J%PdSI8&WOqELd2z- zd#aa$`swHf(*&3CWesf!Oo?>3UJRuS=~aEhXFP*rV}^Ne?PgH7-wR8^^v6d=ERTa4 zS$k0)U8-qiTiUI8?wSjoGm#aCi@0$%!e^%>SR)HyzkidizT#)RU`sTNExdQu(Oa7m zI=WAP5s2Vlm~%-u`98mgzV!tVf*Sw`&Km&a@Z^Ns&8^C$O>EM>V{d1j$};08QAL}Z z%v0}M^O?Dhojj%%1$gqQSs7W1%}Qi7>~k9Jb*5gz!uz3`<^BD(Y{rAayv^9rO-~0t z8r8vl))8_~%9h|l^#Zv>q~ur3de<>IqRB^MzTtD47~1l?R73K7bXqC9vJ>r(Jjkdq z)Qsrl`q~tQ^X#qrRv)7^bpyyO2Dr=&HrWRP)JvCA9}ZDdDsIL%aoL;F4UY~JQLcJI zVr4e~`Nb%pS-Q#V+Kq<|e~fQ{u%Lf+2?qcW;?W=AjpWHL*E;q^fUaZ_#ACzd@Lv0u z1Cm%aBFJwIe(S!n3}AKLk{kZ@V~AzQ*q`5i4$8m#F*6Rp$Q%R8w!Kc%bEf_Jv#f6% zULxP77gA>SD7h*Zn@YdcXa$d<$GNXd&ra8qoz{Rna#CTu7`7#rT>p`JOl}zIL2O)u zRzx%*B~R0SkkUcQ>~=)muX9%?v-R!S+vE6#)Vo^A`C&$_=RA`3L%ZuePOp)y{xVmu z6BGOgzWKoh@;i6?cF+svJMW}vlcX0TF|6rIkbiXdl7xF)@cU(6me5%^E|NheI==`&nmhQLJy$I}&mp08!T+Rt` zfC>o^v@ffl_~zFWP`poyN`B@6Z9=f`AxIn=;v{O(B8-c0bRh~O(!M>cbtdJn!pH6f zM96HpKw)=tbo@}q&_Yni`aJHqfw1j!ig&Wrdf6`!ln1|7?ZzKkJs)Ory)FkR_$=B4 zRcPc3Q>zU~hLftd-y2I%1eRC?{X~8FfDZx$`vgMu5ID0Nf!KycYon;P-7(s07x2eV z#Dblnl|x!ip_mCHj(gUGuE;8Eb_&<4t&^Dhed7Iyz$)?vq_h|};>gh?RODh6V#+7S z%qGs-<-YT&x1D_HI0(GrOt9Gr*tbKlN2%coX#|VUBB`>x>QoFxc!|^(Q{u)rc~+2E!E#=!uEswg57=sBtYXsI8jF2_7El$R3E#>)!0i+_Hf^kr&db! zikeMMP~Q}~dIl8~hzyAXNZ<_;1@P^&iW>JxH2%=}%(=g`g8P_;WJ60u3p%#}_F~Ia zQOi8WDX2onw*vSRV`)PVl<1ti%+vEw8a=})Fn=IG(=WpbLWrKix}5~?nPIH!W63%N>DgnE%rqTI^X}OIeg9nd~SR`j}t2JF#e`y%9EpUoTQSK z0esB1lX~G-6+e#ektr?)lX{su#v9~WSeX&dxNX2e=X zWnKVGCiDD6$Ma*Boy5WB&M?!xH|*M;EA#+z;V0v!clS=FbUrto`Rq3Q6ww2>#S)&# zX~i?AbowasQD?Plmme^CUtDcB2K}s2pR?5L8#cERWMqXtmt@|`DHBaRkVDSQ)8l(B zHSF?cwA=IAF6V;!gT@F9#;ynl`)%!zg>^R19{ZH341UQ%hGP7@(zzRw85sF|S#(wA z^1(^jWhUCOyy)hquFk{5!tYGfiv{v7zADDN#r{^Bun=eUU`z1)$>XAF<7DCxN|RMO zCL=aA)~Jwa2?Z3~pzZlxS|g+F=>mz~I2BCs5i`%J zgZf$@<}9dV2lR7o%lyM*TPDTYi;n~T%nob_I6sguz+Xt`{%^n80YMFM4Ln|Zop*hg zcLfX8eVkMZCX}Pq%LG1q<)!;|CWn_moUhaddoRF7y}osEKGTW z=c%L$(eOa$#7W=S@tPGrk6Gz>FP#n0LK^3##kB-J%2_9-oVY)$QlVQIK=;F+7fqL{9NDyAx8G4tK@3y3BXO11 zGYuC0NC)S$`i2UySp<840t{5$eo&aJR>n>ED6b!zvr^CuVbKyF+mnRd64HgK1c_h>+6$jifgS}S2#=~IB3NVK z)kqz>?_Knfm8mI?%Q6X|${SUVhN>jEH~RvbwM0gPYuLc>qqIB;XyI@=2B_>*4e|YKjM{wL zw6dO%x{&eoC8Qf1*O8_2M6)CDMf1AhY0Xob)f2SLuCKWT5Y(6F~Q4i*JztO|X0eFN2#3TL~p2b8_z;cWXb4n&&f1<0v8_ zx zA*5U_8fkz|+nLC0!-@x=r#P1t$IG}JWVUX0)n!n7<)Ms@e>&KUZ*R}WT_^QB2L`!E ztxcn`-qe!Umf^*?ihLRb|Ag1-W+YSSV}>~qfjbD>_(LkBey-Lqw$T`ObAy|frzGZF z3K`T%DH4KE-f_dhP54oz?RK5?nS>Cb}daUGHZ z)9-lQMqZS!OKZY*j(0z^ve3QiVah)~;BX?HqSf8*I?nEhENFmLQo;a=~((e{f$4OZ!p>nM}dj_vX7BkR1YAF~s2`R9u_&t&w zR-wRY=TI6(`wiatD;4QowyxTfRr6X|LqPh~g(j4@>d7AB;$*{J^5a+2bBkZZf z0Fi<-k?+$oE)rCvIq(}PjHw*eP1p4;#6;NWigxs2B7O!YG@}ECif6=>_I>kC>hY>N zwFy%imuMg~a>Wn4vwcKw70*tw^42eln%jgZlG;8=)xm2&_u(ejzPrdZ;bNJab+A14 z5~G>-QyL?vw?P>)k+ot4o&a2}Ocw$I#8>+m0Bc@%x=zpNdZo};ifiGcndO4+69XF# zvq%EY0!mhWjJX|ONoI)Eu7vY79jx&VXKc(&E#B!e!qOhjPS%mb3Y%vnU>vvpoN zJX^Mbceh&SIi|O;DLbza3lC!gi5ZFc^pJ>AE2wG7v zcEl+w!QKn7%YF4u*PeAiYq0|AYiAtnXy?N5$iQ4Q6Q>HU@39GvMvZYiKM%;Dq`@(x zy?^V6dqWrn+G%<}t`vCWk1f02nT`{Yk+kF;f>1t?SzN{91Fy35@6)tmM=C=dADYCN zYphnoZPmS?!JQSmg{u~D16s=nU3)DKEzBQR%~WMnUP;xU(si=^9~V}(Mst3P;8(rYr{>oknTh1VxR z(5(JygFFh5l2UE0QJ1bhegjlKz!OE;&PF8Jj$K+=ne(QsD!*h&{=;nx&a*Xkqdb!v3DBZ#7rkwfhq!De$?V9fUkGwFQ@`bIar zxyJe!BIbZ;xCHg)a*g=%4EET7KDDX4ydD$l0w!qeLq4dksC-&~dfxREqDGGF9blwG zpT!H~^b)AO2#V|@$7*{6MdG#%>*Q-&p~;$b+uGvUkoQzC@A`PEJT6O8p0IM%5q<%QkbbrSP!FP zFpfYwNK`EogkVooMR$7S4v&gGV%0LmP)dU`6$2to`g#P>pL3uojy1($>56KN(=pbZ zsRF@h%3d^6$ zERHvSDZTfKa&Q^j9r7o~DMA!t4L|F`r3ENNK6Bv$5om~3ICt27kepDjWQ^n&5ou+6 zKhBw8Eh?QpN{S2-`LG@f)T^Fvf9ZJ?>nAAvc%~Za`TlQV-=_lq5+fTikPrX>9O$U+SW8#OT*p$+;E&_RzwO%kzyP{_J8E2~2qlkTgpBpgKPcNf z70;K}yWX3T-Tkt7l?|BJxo&C)n1T>2*c(EC$Gws}lUFZ`MEVO55@KQP91==i9#SOe zLY{F$bM=TB5;EK_E?86`R%pr)3&QdyRIYc?`h*~~r~>`fu5`S(}5DKoQNoYa*3 z-_WcGLsq^?xr)}4qL<_B!};~cR+rU@iNxFo2mmTth0mpH3(_geR4I-YE4jz{==?}d zipJ@VT~U86vB1))A4)y3!pvvq%jXzO+9?6n;y69LpcS|2!q$;#wk1}cM4jG06xQ|> zjDTK0?=CL~v)z8-9bU?sleZI_xf=z@iySjuvC?Ka&W+_fCT9y|Y-zIK8o1k1#oP8a z8HedDBmRLWKAq(1F1vT)h{jTDDQt`y3Q0?PopRR9U)2 zezA7GZ^PN3hc<;4c2_STmaCiUZLTX{at&18B{%4CB02`i#rHFz;(#pT!Qn5OGnSay z{Uudy?%60+f+bC`8XUdGdK?nM$FyL}g)p=@T(WHlST`yWwT9`1T5^CnR2WCB-3#J-lX#e_ zE%?a6J`|*Hn$@qJ?Ex9WEg4hF@CeN{Yf!tH%PGt-mw7Y@#W!_}-_Lho%*-F?W-~Mr zrvE11>bP122ko+uzUonhe!%WxH8nGGM7?>}&}q#9gWi}ymh@vk%k!zK*~!+jrv{4r zXmzIf@+dekEKs;a_5so zh5?i z%Nzy=?)uE%xC{>85S)&ODSwsq^xkvyYvem|Te?~urH}7WQ^&8h6S_6OckgWbRqhbn z5}P|Fj4T?2fb$$QAK!=B9@b7*{P+@A{KXW&^_WjHvWQRx4eR2V(X&?Si*0&bef0L$ zBsM~_g2=Z*c;^m^+EPr$Jfs^f8J3e#Opn&-^=7nD_cjM)v4o-APB%G+h!JqONHth5 zb?sd}`T#uzQc!HSrDm*&e&%KtjdOdRYUQV~=x4~Hum&IdpiG4s-VlPCaGt?tz{=9g zuRWZVD8C(AAE@0OW3cBn|ADFd@+-a$b|%|iYI!0zIlh)6Z-GB{>Yi$0vJ+v_)t1SX zFN$G|YK0HOW0~)Sepgy!h1Dc2!u&X+eWa+LpX=Dn%1!kC+@rW|Ibj$VztBvXN2JCx z7l^YVkJGv$^RR$)*0jemq+lSC?Gh|eSTypbsne=(x(mDyb>H#`DXw`zP2(k#Dq zl9U@_XoX78Mh$E~u#T_6oJBk+#%4X7D2T+m^AKD{`01$0kY4qZj-gB3VZ9H*+1P-3 zmoYyO`q*9x_l@a>bOr&o6onKKQ}&ti$;F)WcEQZwPTIsZU*- zER6dw4d}e_!bX^&cFcE(0QfVSF80e}a-TM1r&dm6m-VC@hwzXtL|F;<`tpvbL^HK| zk^!*T)}g-)SO*!-<7`wj3^+cpYV*Ymv$n={?!};Ma3yA!uNaG*5Hnjes)%cxd?*;^z|3j-GruG}l z9+Rtz0fooAU}$Yj+hlen;n*O}3(5W+1e=gh9$1F-7DfIQ8s^=9o8aA#QUi0PEVSfy zJ;*=tD`nn@6VSz)+xieo!Ugy$Ub|mE%U8+>j}IaN$}66x)drS8_#y>sfe8Nz8AodxE6tGlc`HkPT;}mSkIK zkSV*ff$pUaR;tv;ppKK#_!^Vf!NDnsAuQYTZ>;;o(m>+4X8L{q(945<-*(^b{}}83 z{sj?!gvQC~H@(G&PUH1kRuIR(Oyj<4`EW7U^DuuRfaUk7)qg^O>(hUMfZxgYr~g2} zA8MW8sYC>R5H-16>LYV=c}MeFrLR0dq5hkAEWZ0VGJdr@(x*R8`9ZvV_~GE8)GT_( z1*Q3Gs}zhF)i-s&$mPPdvm|=l+@G~>m6RtVI&BCL3%t?X=LHoV?rLG>!0!l^&qLYW z`QO~tq~yizM4$BM(AgHv?mJsO>E4P(5b5Ub7S9dlw4~F$EoL0#5USa_ zETF2jx2~=-Q#VO(B)4$5oUX<#9jVhIx#6*PEO#fxM6OGvax!yy93Pap8Pt3`V4`!G zF>(oX%q0%}d0Al;V!YfR7>HgG+rM}Fv1q0PyMkHR;0?9WTLX9tQJ7>onSBC$WL_v!hK3uJX zDxb+JfQSAL91q(60yw{u@xj1~nAU=?E$1!8q|0_|_y%&C5dAIqCnL<%rBGtkox+ADFW3J!iXxRd?Ym`)f)wJJf#Ds|0*$@jLdi)@B zhVg7rO@C*w?Ke;FxACGcPe2zdQCb>pF)U(j%B#8Vic4Vt$xXufesHwze_30&CP}kb zR1r{(;CQz42A(cyWm0!uJ9-!shP>|9vn>)UbRl=mlCPGoF$6*!-9aea|8JCD2Yl<;uc zaByux?{b%O|E1uS{SEasuHoIV)V*v@Sk5Bgpl3`q?&ZM2*i>KFI7RNJou1QlaEaP* zy0ub@C%GuyoQ!$UqnoFLz=_w@(^7MCA?psvxN(Htx**U@1Lcla%)7mOD13r?^MgBw z3!~|7Mumb7cSj`Vxe7@j8vP8*0OvDzB1oZAW?37TeTUI_1Jmlyzxwr?-~gu*5#&(p z>EX-(-<|Z-f#y7#vtrHFg?gk3bs>O(=O3zs&mYl-h-$H`ry3vqIfcRT8&&;>VB!D3 zQ2+VA|G&1Le*YK#fp_ zWtycV8o=VVq529ZTSZ6%&7XBiC0{KRONTV;LQ(ijuW$a2h5$^>hcS5;KVVKi6fe@ z-M(0p#|HjmY(NCODdkP?-&j#GGH3kDwQmKae(P^Lko~!6nbp^Y-v{oWj)7l&r`4QR z+x90j|9hsb|GWqAe)%t61bY#(G&qy->odM%c)?H%=+ zDQ97__I@5fVxjrHy(B`w`Nr`vhHEUoDnel&{3q;-N4^B|zdLSAaZ% zQ9Rsf?vlrWOvL#;1q6%`=uBOFQ#9fU3sbUIooCu%6*pCx_=Rf6q7C7uvR9L2O&jG= zdr++&ktQmh^O{3|0Vc!KPBX$JV>O{xGaDSo90llyT4(A%KGV@`!eUn#ITIGpJ<+I> zI-!`lltsJJha1yrZEdYhmNSI92nF0mh3yT4-f} z=CUK4Yt_eRJy*!AHnDd!>a(&ydjSc+7*G3gbCu3;mvBp~^tH1br0e>!P_NqI1CHAN zL|-0S0O2%TGg?%`_w#y8P3Vag-7C}Kl9T9ZyQw#L330~@25H%YlZ{}pu#Ok>P5|%z z6f-~7W!vp*PVfI@efQIE3KtGSCIE|Hi|eLMRZ}lcP*tIn7SHdN^Q>U$Q?)R@pZ-XN zlFz}~UC#ef)y`>yWojW8kw?vozUz{#cJEbB>?gVaQz$Nb!4O_>SHzuGZ75rv(teF_ zz|+=dJnQE{ze>@f>}Jb&m-{o5((QIw98}Mkt9Caob#Z@`yXV)bM+z5hZP@^;bZ-Z; zigOgV-BNPZ6=AG1Ky9nstZLfAmIu(V)!4n}@(d5vxtAi%>{UQu)^}Y-EF3>o#$FkljhSA-AGMVdU5A1!Lj5>RNre z#c$Kzf;ua{91q$>UjfYWIMI$E1zFX-O2}aw4>uzijJ>SR?Brc>Qj=M2UHv_)V%Sqe zj*2cne_r|-DNQN!T;|H)+o1Qe;nRsHy$>70Si4niRwiLjDRXXewuI*dOZ^@CnA1<& zzF#->oQT+5WuSLqGlBvv^jzS_x+rZGqPsnu4VgdQ?^f@(!m>g$*DHq0i6*t%vh1|% zF^y%Vup{nsp*^rNU0KR;o8Rnotv9lM1>5a!1-8esbR| zWL*I#A98B`+=&MG_TNv>|3mQd`5bO>Z=&Ah#QL?m^p=_S$8NRu&|vK_kSOj25bowv z&H`_U@O#CmC{&aDa6+4%=JV4uvPMj(ZDJpLhk+N9Yk_D`FLGF!;uW}hdC3dKTp@t5 zF~(-X#T}N!P#+QD>9LdNO4fqZP+aF_=(W~z*ipD6J)2guXv@_&*sFf%N|x#xFECyV z;V+bsJ`upfHf*>@wwaQ}YAEww2LN>q1=qY$Mh#!y`%m3kH!zU9#|3WnVS0O2u3RA~ zslkqNO(_HX4A|-z&9h3RVTJE^JoqStJ*s2)zK)(u{jrJxw~B-Y z$H0V8-v?O%{WU3@13OooX8(mpw)jq`#DPBHXVA}O>_8uqf;L}48y98*{Rot82XZKv z3`Y^R@fTgF70aQf?;y>|W)_17ddy-e>qcHd2Uk$2$KIA;-A-Ob7$?s-4y_=NJDR?r znoL=m7Lu?kjZr0hwGYx7X`I;g?^_jf;Hz)k8Tlpbya)08JKlvE000EV-#4#;7ypIL`<=2s1OL2@olb3@EcofGKTK0&~W?cJx3K>34*(38#ngZ5ij3M+zj}x(-OAHnBE?7&xRl1g*k&JUFNv7X~E|telzG}EC z{@AZyW6v0ZPPk4`7S#a5RlKP>c1osQwOCQXY`8ScaND=Huu-QKRp&a8+@=0K)NqBA z?{QQ+VC%LJ_>AMG0_MtgFwJ?jsxNtT*R zR@(fAf&6kbUVO@*<@&Y<)}e0x^pTtR>k{U)P<{i%)~;C8eHC>O5_YbPGD_}6#$q|KeeVR8g zFZkE>3t#$+atm6u;g_}>UCvM9X#px~|8X!pueF_9_9{t#sz+zCVbY3Q^;$T(^Vfpa zQ=MG(-b~iidW{bWV`+`$yq>V#3XjS0Q#*U^-0S1&=>YfnS*hvXb?nEc;O?tY%2W9Q zArVLS<^=H}U9MYBoaPk>$F#1pJR*r0E)v2FMoHgSm+JfbB!iURHWy*Luu__4!fdPc zvl*EL3^XZ3Pp+`oBOn*rHFrUSeR0%x^VO|^J;2OpPNl4?Xh!RPFSf?Xa~SIpAxI~C zP;bTuXZ@@v!^RTP?H4&n=v@kKyr=Un zC7pZGLh@?P7>&ycs%3QS;H6&t-J&+c&hhRb-L4vN-`7c02x2<&N6_mBH{Ij>c=5)&q<~Icwi`osw`Ug`!M6mKQ1jZE z&OyH%if!~Oy92`}KWRnC@c(%c5IwgQJie(S!%jL>_+|0Bk;sLQu5q>^*=b+S3a3%k(%VQ>_V#0{k*Ua(#eG`r;QN3btD%unLJ}YLOt?m_|5!SKI^Xm1p z79B@{vpyfJ_&1Kr3-dvM0U&=Dp<-NRifB*Is}j@7D>g+0b&Rj^$VT;qdlZ20;E`=e z0mPlzeOF>BGP;|W{v&jXe!hJK6Kly7-zq___yaqksFzD+RGkfotU;9!PfE$R)(nQQ zv;yLM440ORz1wzPI5QqXt0NdO6*!$)A{Ul|0K!yZ>$TFTQ4)#Wcr878PQroDYtun$ zfZ$!8#o_SKN`R{3+Wv1A3P2Qfk$9d*^|>JF8tAIfs*zh8d;k_qrXb#(%Odh6Vxjb(V&Y2JywykWfWx_QB;<^X(o zZ3a+DyxClE+8Bo!(xvP$A^a8>ca>j-`Y?ci6TJ~%Xt}51>i4pJCLE^zy#3l&)u2<# zAW|bn;H6++I6s80LlMkC4mf^1M%7>R(A;>m`wjyiEID+`c^wXELJ?cC5YwMj;)*)0 zAs{=(8=P%V_G6?SS`y45lTb9E(qDj^autMWMnnIq!waB`knggX8ee7Q8rMV=e74!K zXC8a44aTBFoJB!us|5`0lj8+%+6t$)=zzpjbBEH0Kc5v$=YA`Dn4C*)x|QZ8rJzs~ zfQ@gQ6w|nvRFj&RhKg6b)n6aDE#dR8%|4`On>Gfsn7k@T>tk2-81`kL$t@MyWK_iG z@MV~fu4(9D~RSeFJrf_^ez<(RTi z`KsnwY9>Wy(cTzbx5#@Gy({YKqziqLsw#K__A*mLj^_HDm^gleDnNxvkz+&Db0j(P zwK-Q#+@a!FwxX{lbD%z)br>k?C5A84qaT%3X(LPAmeXD+4b&&sHyK&AXSbDVwj5(@ z+gqof&*fH&d#7J{4&52e>{kR31*&W9nAy*&=N1V?qWYp8gaawLhiuEchs541slxrX zaC-sDBg~Fs;vzF!Vc+#Z(D9!RGzNV!O(2&gC^DaZ{HcL)hKNWYs$T`i zL61(~#Sec@C0vPu0o64vn(eQw0+~-8o|)$x5}pQT#6+MiuCo&zbAdV9p60=1wf_Q4 z6xq~QxF_QtWZ}}QJv&V$AjQA2KGN5#Z1XH{ljm@zY*w6@+CG(>j2SM!fKvC|RL!`j zHsW>bE~?@+JJM8&Ns10-V#r!wV3V0jaWGvx#b&3I?_einm)%I`*uY}{x}CHoPm8LC zXF8&=HJBAB_9o;Q0gL_qZriS2Iy#dOU3)lF%Zv1sGcD(L2Lw`y0oY7r1BR%rGEaczf+LL!cO9%ZgeHnab>spwTm)(mBw-a61hBB2@c3K>!G4@hc6vfb&1a!+x zi)dum&w^xWv*KqPGWkrq9j{TqOn!z-V`D6f~ws7Twy zsHn(RqN%h^)q(9_w#nTLd_R)IvHh*-jZ7{?)7LteQcAWPx=W9@k(s7guO3fUlte!q z#PRUBL4p9_ae(+Y`5?Ia81mY0k`H00PW0}*LylM*6!P00GA0|#Ey6^(8-)1UMxTB{ zjgl1JE?B^_^qe_veLzKN(J4t|hHpFISigwCrSXdCdfq4O!KzqopA{?@9L0u={DOB( zYZLLZhuk5~@Q<|%eQkD)nOOebjTNB7vdoMEw zrkq|L;=YC*&$#evtU+~E-02K>FTPaK2>COLdGb1!+i50BnQ#bR-IVC{pfwtAHg(zf!$1EC&%JZA(cKlxX`*47%v7=yn-K3u%{s_Cf8&*J{f9O4onS@^ve-YK{2@6)qC8Fm`x4{^as>OFRP5{=vy0!plno826kheZZzyYN z#7f+oas$;>5A`g`Nxx6Erwj)=FJ@FYce4Eqz4aij zms}M-T{_5Jp|CKT?P#zPR5bxC9u2<>`v8q{{H|z-i{QH)1CAD#&Ln^kdVJzc3$I{@ zc)p4m6L?K08Xvg)-G}jwxy{71+bdUz0;=A6OP6Xdb9a5^My4-k$20Qaz0m5!-G21e znBFIYjKg(_H0RY2Wt{jQDIj5g!F_f|-VnDmuI)P_vU#rs%e_ zfO9jl6I%W$gAlbSBDDK7>5Jc=NG63hsE7)C=jhIOE4w zpAN$|nqsDPDrU8IOrqF3dy4$VLUbf%DG_R{Vj&ywvKDT>k*sab=Q-0s$_|>mkb{8h zh=hneqLh#gt4YV%N6}Jxe=@1k6Fo0_-+AX77y(fJ`^_8?1kveCPX`fe8BEZ!e&TLZ zRf3G3OZzs_<1Ka7=>pr_*|DQ?`s%PIi!I=49_h^W32ky{i~YK>$S(+4wk5tP*)jTU z`dR}C#KZ1FxV5k_H*z8g?&-qEcl8Z%$z{^tpz2TOF7NXRZ9>zF5`47qhF#Vhm~Eq| z#zTdS-zPv$@G+XU8(ZM9n8XMKuGB`DPs`swzqMU_5+cSw>Nt7z zT4}-=93FZEH{sEbT_g4|Xw<;WdggK8Cdp{H)>w#6gn$G5%hY)PPux6u0}0C<$DW=P z%+pCNU${mKwL2l<(!f6wLwPs2Y`}VWRd()IHxip`-R--ycN6d<_w#kus%NqbK38XZ)3MCaSQJAKo{C8^J8!K@@8t22YfTZCmh`2TwQ%BZ}O zWo;aSyF0;yySoGrZo%E%Avgqw;O-XOT>~VzYjAgW`(Bv2Idd}Wo^{Xs_|^hm;d!dM zx_kF-*;Umc#8qtn&}JW;hzr*?!II>OnB{~R$kF6*1WaB35pim(opX$XuAc@L=R|q9 zlB~`A=vuEZ^mJDpa%rI4hk6F8tvaNWs~)aPmhAJ4cXJU(gL`1e`Y;KUVzn-C>Cna~ zqqM`aQ_nDd+KfZ``bqTC8s-C>43j73PxI1bOf<;=R4qE#x{h!JE>-nO3No^068J{y-7-<#qa#*n&{I57pW_v3Q|L zOc=E3ctKeq#ta=Hk#A7qy`3S#m#ZT?LdwmQew;oh6R@SFn+~W3@OhASA6#{YPNFG`k!rwtXF+_TNwhbY zIXk90ClWzKMUO-CR};ro)V8KpG}#MwKhgW_YVM&xuM*e=X>(Y2TqT?lb7h2=8>?F5&R8!GOLV}i^+L>VK|SPiHKFUt(g zEb~N!5KHWCQuvaoT%UZK*0p`MAe_^#&9Fwydy~fG7YM`$MImi;HV9r?AeCvFw!s6@ z0veIsa$M$^{h?x)y2iFfXKN6=J+b`M)^MIgAtTYQ)0%X4~0sa!RG~Maf65!96rGkHtS*j2FXUx(? zclKCQ9H5f~+!<5hxBWPu=Sf!;c5Rj?Oed5n(BwJikR{+rivokkiydMR4MmET7JQUR z4TUUYbF(M2Q*i_%)>A6)hvTQ~mbIFfr;d2b_ml4%kGI*|IW(W#Ad5zuW1-~XNn_v2 z$Fh=kJ+EtfQb-gpOF*jN1aY9?#dFe}Cf4*WF4`s)tlNd~NrfOI)uO;|){}yv+$o-E zWXNUvV%tzWk=lROKF!X(jZF3}&g|8WMZVTrJKP|WZ05A6nG@dkJYu)T{PZ1BA}m|j zWf3$el1KUGhYR?Xk+tBTBJ~SZp`LfkmeW zF62F8OkeiKuVQ&gsUb>eCu*;I+NVPXb3> zUWIk-Dy>ZE=;%*GaD|t%Pw&A*y1hQK)7vvVjTL~$F?7S^w`B7%6Hu1Z&6AHZ$dz8y z&d%l{L_CkWwO)ccSKa4~Gak$#Or_q-%!%?09B+28eAJp?QBw_~ifCFBil9F(17aV>Q(H{2F~_c&;ZGzJkfs+D`ge5x<&ohl%ss}*Y6 zm(}ypP#C$6q{uUZ>Y2pOPEly5 zXTTq3WPBOm8WhaSDz}OghXk^=QJ*i%UZfBzjZ8wG0Vx$DSq#Ndqc~(OvaQ(yLQSw* zY8U51V3C5m#NfcnHk%p4$P$yzEEP0F*N70DH`wCT3dbxC({ikM;Nnr-ou@k^lY(_| zn$T-g8}yl%K3!iU8!gn$YG>E%1e)q6Fc6Vq63$cdno6HI%CWGWQ~dEmOirt9HXi)c2b8r`YB zmK~1-1w?UjYn{MUx9naBt(9QjZQY@HuDQ)g6xMP`Tu`=f_tbf zu#h6oH~1md!k5YmY<|j`lJSXdgSMrx)L}Yx6Njy8@zNa4j}NHAKWnxU(O56= zfgHgp(&pd%2Bu|h4_-A-!X${_np@|kqF~0iGZQ@{(eZ%dlR34u~mSf@A?kFybGtY_Y+&r~eI-XB=qzjdWZfa?y zw$jj3Yr`1mvE(@+87&*#G|`3XyxhxFy6k&aZP$b&Zp3Ec@KqHqnm+vsbn{2jHDazu z!8>%+D010XxejsfL5lPGSP&knK&A!{K;H@CX7Rkcwk7COR8)vM(2kY&#kNK3g~qu# zMj1Mj&ajs5ZhQX$u5t~$!+mXJae@`*zAb8aYKm1T+;yq{)@@tdf|HcBx`y@ct?V8|zwP9t=h?RgZiX1vFaA&+a46@k0CqRTvuxGXz8I z<91>FWuf#sN*S)`sn}`cjAmRk(*6jeCbI0G7z#FiyYEr?G?M4kb_4sJ#AajA@8zDp z#X%}PjDYUv_crZEYbp{X>U!`lB9ammWETxFn_PccG$_Rb{iu6X#+E_UpOIiUk9Z7$ zhZgVZ-rFRg6q=Y;hw^-X#CN!t;K@NzfbS5iaR8B~=B7P#n)N~LFkRiWmw6@40rs*f zbktPKP*<)Y-*YU=<{S$1SC=zT|Nb|=*q|m80((Q z!ULB%tnb&#r=PO)M|_gcI*iGf!KcRYGp0t20%1rLYqb~97v6VQD@P|{xSJHV0enh0+2?@+j12=`?qqC%qx^_MMuFjt?PNbQz-vruG{%i?8m#>K;q) z*8=^Fc=VD7#6|%{{{De1j)N8J2R_?`;Zx25!p# zkCg{tGtC?7fe9=s8+MeTNf{qkI8~BNnUL5KLcuLnZv&0Yq`=NqkVfU)q!K^PUC~T< zadnBGyZYkBTX<~O>h*TqaY#$KKOCY+SHz&Vu~zJAUf;31h4C;!csxw=ccUR)z_tRH zImzn0k2YRV;egbQUKB+Twp_y7a4t;O(P0(;0%mx4ObI!cQ>Qm>o zj)p$uFxIus{U<@4K1n7QQ>+l7NM)de1t`iU$q#00dJQ#&zz1q?Dvm1DuHCfY^)qW7 zD4U$wvxDkMC#^MM6*lTJ=R9c&)fzBKFs6kDLPQ;=X#%$ktkxe|xN!?Az$J^vPt5jU z3rBzU=4;C6N${f>UFT(PMsT?p?hwy#fx+|~F!VP=@r>WE-`$%vn2)-7;I?4RM_%?M z4)j`FhT^%{+T$FBas}k%(dw7EQm3;s#L}2s`zrUTs&c;zD|K3@haj9e;aysEfZIP$(!&+B2!qQhd?K<3PUchX_mwlB_9I7Yts4zRx9ryi^85*KG zelEoMuvUFL+YcJ!v@MZA*LNf{d(7_qE9PMlHJ#yBWthAxRBoJMeo9!lKf98>Hv{%{ z77IUMnmXaulUaZJ7>R3BtwoX?h^bRTgy1PEoc-xg=G}BKKYeuI{4Ua{t2OZ50gU(7 zJiX140yK4uN|tfEj)@l&oc@JU){rF~bM6&J%QX8B2?Xiu1E6D((~8Rvtnw3xK{PuD zUIZta!_dU`oqOhs8K5o-xfF#y?oqH4L3$Wra^zzO$~&--k(BRj>KcYFe5$K>6B|DU zO#!bho@;R^Ifz-C^BD~id`5gX@+^>>L943a6k-ZPTtfA&-aa2rLo(oc3ZlBUeZLuD zRELi#<1-@rvfwPd*KNUbEMkLaG}zZqjcB~pGwnQGy@njmPJReH&!-~y3%tyM7byQ= zAHw4&$TK*yT*nN+IWqTkg);o=AVT-zAo3OS*9ryx-yK9=&MGWmfQJ9f5XT<3i_@n) zheEa#o#-j2mz|jy?jw3a<*_+$|$K9u}nZoDLv5Ex7y(Imcm<0}b6#J5wy38vdva=i{ za!c}2MIzn8`c1N}Vl65(DhfXFMbw+`i0!j?7tp4#2^uhD8UWTjN*2sjQcsQLm+qmW zsw}DDddUopCcWa5%#xD=-1I{U(p)0B6tbtip!1fvT^56>Z9yrIUPk#`P>FqP2p;D~ z=1V_}i2Y^hZJTf2ChF{Z5Y2{l-89WUxspO$d{>-78IlaAtD99mAi3#QeFCWpn#Rjk8~P#nAUowewF{_5r}=%l)- zlCt+5Lr|*%+FT5X*P2sg_hro8v4r<0TGz||g4Fs&0z-+?6lg8SyC!I*ei1W2-p7o4 zP`;v*%Bww@{Z$dK`EM*E43Y*j|REYih8b{JxKX-9ImO?)D4g`U;#olCD z_^XR%Lq=W-*{{MZ__&jfASfG?)TBF3hoxW*P2-U;Z$G6*U|`aD&`4!QUzH+W$j zTj*|DktmuSJv!0JuK5)Y-a)!KYs17O@yYNL;yu@xGCOU8tS%Xnx#v5w(2Qkmd2Np9 zyT&v%gZW2eT=X3X6*fB;F{W%eYzC1VK3de^JMxUk671O(CeKXWMR3*_pc`5;t_k=l z+_hawl1`kYSUb*M^iUuzG5YL5rDayXM`d2tU}ek>o~XpD32PcvkDl9g1*u*B-t#dc z?nZ##rHi@DvTt*7x&z^4HjcvhmDT8REmYmiiNQ03y->F~OR+~1@dQWi9@H5iVsM{sv*1sj$Wuxj9B=E7bkvgw>&%eSEVuj zueO#VYx20PdzGgZk67$?RzlkPyZpEW*XFa+SVE(d6qKaBdf>^}+wheaDZX1Nu|`Q{ z8K0*$h|AgA$s>)l@tjLtl_OBlq#k%RTJXs|%F;`3`+pSHY%H@T*?PUYn719D%cQ;F?OCL$<>%)R-jpcz!xS=oaRJZ0j{MB8iR4m}?(;S|(45RH>=O=j#& zVCs2JT7Lk)wh?AJp>Yh~_am|vWfM}ASY_xG=J|5iq?xJHVbutyW{QnFs@V`p#%rr- zJK?xpWS}L7Akaip#H#LjeVmauxu?NWo_a*=t9LmH?w6~z4N$S`T6EEz+oRfLfY)dk zihfMHQ=)kwiUgQ#2smGM^h8kgNC`(6I;VrhBb+m{RWMhv+H}ZzfeI&8;YPM?2!8>C z6kbqRwJW;014xiGhvP)nC~y!IsFLUKftcUz5G%-~=42`3FfJPfLwi+cb-j452&i< zCV$%=E3g}*zZ|%X*c#bH6_M^73R*7Z=y**!U`FdQ`CjBz^-T-UBD!c+Hn=L>b&E5a!h&je1!4`r;mnHeAmaZZB2*o%wJfK38u~> zWAV^bH430=RjkrN6}KIecLcqYNjLq{J$~wc!mt#6R&2IyzW_pLPJS-fk@Ijrzx18A z8hLYh+Gt7yzj!yh58@-LDikam`55C!DWXq4RJbm_x7Ve2FBTt@Jmt-OfLu_Kpj};!V4pTi{G(p%6j*fr$A3=jDMK%6qi*he4<3gNo(>-wAP+jQ-%2 zAoUX8iOGiezaeSB_@l<%oH{fgG+4<~kpE50zYF~*pZG_h2t_Un3_i7+^VkgpzO+3IWkkWazdR9Qqt!)Tq69aM7PZsF(4U|zTi-onKo z;D*h>x=Y_}goK4@3;5bzF5T;?$R5w^iTcVr0ufcmE+8rbi88d}aSb)TlJ}pej(T9k zb!#J#xQFrdnNz}0&Mdb(nrkvGhc*yxXrn%}?s)}P=nB)9pfZPC+RO-^Oz;NE<6L(@ zn)I6tdXLhRy3i5;vuNK5hL_>JmG*@1s*#`N{zUE{Hs<3!hdx`sN#$?Kwb~$SPfxL> zg3GeP+J76k)|Cf|RL0HERQg!)uu4+XlpiteI*)ki$`~kR_O0tPjm!9EvE$tmPR-<0 z!i~Nf18+sU{~X`us0N(J&X^c=#q44#zB0DBEQ?egTYvAwt`nAn=(OA2cLs$fmvgK; zwPZ$55!no0PaW_yl7+}8TSF9Q#6!UZN}0Tr2)iAPbs2le;t5T;#p0iV3kiFZ3?zf{?du;OT)9+xG2-8|j znT+r8h%)ciNHX;KO+k2Qfo`ZQC)GxKq%=;(Xz_k~H~PrANnDhec^;OYcj^rXWOL19 zbat;^-Hcpp8(;D*kItx{4j2Nde`wICrun<#!F0HN-;AzM$!bEEAF#ckZ8U2$3^zC% zj4WI$jeS&5&pqKqojJo1Q(U4@Fp+-zQ>A*#{+W<-3$@~QJ%J=O}BYWtzviFt{&#j2* zl=NNmSP$tOpF>~gcFvMOtOrnT^;}U$f4#2%_ltFO0qhB8>=9NQ2nc%P_c?l9%kOh^ z!M{W>DS`fTj-KYuJ#|gc*S=wASEOL|h66odu&FTb#Oo7VnCKWW&BrL(Y=#ndE@9?; z_vEwE&$2y*?{l`lem-glInfvo6 z4?fv#+^0K1vLj{^zrj>uQ6wzUglHs>H)XuA-MjTRGTwcukxMDnE@Q~|B1B;w+w_c8 z1TgMkjlLDtvT=k8dIka5Cs>_%9>SUajGo}jmjT6cC{p?x39d96s3l!6iPhu!EF(9d z+Ri8fp+qEo^o)nuq7$E+>8RDNubC^&hUW=!$p*nAigZkpb$oZaT7A}PB!vUj-p;EY zCWR-!u%Rz`(y`q?rUy)9Y2CEm!!$2j^bk}f0qK&8)`uK{&2Ys3ELmf~yuJD!)LmAt z!%}tb{81^bFCPp?_*y?D!ukyL^7DFieYwZRTr$H$2id85eo}3SQ_m!CAi7?>=|$-K?+Kox|%nXUKCU^vIlW?+k}!l2Iu* zwNik>!zzI#cNb}`?4?VYccm$~kUIi#_~fcTg4fP9%4>HzxjS@Ax3^!4p!7aJ;b70D z_3-)AvEN>DEADcI4F2fOJYwDx$(4guAxwh~(nCeHb`wIesC_!S{muAYsF}$M>vA)G zCx7jJy%oUm1(2AWt-P-LN@ShWlY*0trmv#fAd}4F8_@z*OM%2OV_^cvR&HAG=qv~W z`us=q&LJv|xsQ7fw4!w2CJWJ3d_k)r3t3L8p<5SzY3G?nheJ5$IXzD0BsHer3(e9u z-qU#pBl0-*o%@bx6x>jAwx7uj&oIpF4igrZ;a2Q9!6M*W!g1#B{k(nhC)&Jqa#zW` zz_o>oTpTo9uR<)I!Bt-F#2A3>uPv%U_!tEyJFQBgY2t{4Q$fyuSzIbi@TJ@YX{H4M zdohk(V%VMY9y=AS?8lIPCduXO4A=Jg>W54jO^Gs?SiEN2JWoo5`}#QW?=*OkR7Rl4 zoZQ@*Pt)a)E-9EUlODwH^lW&ql&bi+SdxR1?~kl+3T2tEMjF|vnHew|8@~kE!%qo$ z0-n`gAEsDBP+ETcxpaMnIJvYy>r9sxid~8!7S3fE+`kp5APpU|vf5*ho-q4%1HYQu zUQ;E4la&#U^M|Bug}^EPaUMrudii?krwQy!bbrfs{gF(o%UK1=`{HO6c0(ssK3e#e zFY6VbvN^HU8zvjS9|$X5Mlcv#P><>4Xbi|MQ|dfF)`=N=vEfS>G~Ol-H3T(TZRV}! zP>*U#X63C+a^l*O+#b{pDt%wD-CtbKOa2~eUauX`LBJvy!WK!v?L#swBFcKxl(U7^ zmZA4xi~A^`~aZ!tsD{JNWpvTdu}E!?wE zu*ndQ-&o)++MAM>VDY0dCy`KJ4` zA&2Xv^fU!+q)fwC^ms^RE0ykBeak?3aT=p=dfpm2?KML7mL|caJ&sX!U9zRckGD*? zds(x|#~Kl4@sWzPb);(@JI8+a5iDX#=k9Ty#2kg54SEAd0n+SpMwh2K5{-qfDQrD1 zpXlu{ocZ&TVeH5`YE1^VGCSL0d6wm`L|w7+^dKWuV^vrN?M;it(iD#wn~99RdyWt; z4AH_}-tDl)rHHKSxDT(JnBx~~TH|OH@j`Lv!q4%#;ubzm8Z8~Y!)JU$JDlVhmgOX< zS!+Z?U{>9J`*VO47foF~McHaKSX=ufb9~A`zz%uR>S({{f~Z`10mSCn=@ru zOK&?ozK6|ZOl)1Ny&r3SU(O?L2Bc^nxXgOCA^GE@1jV+2gR1nlBZC`a=F^zXs96`j z1w=nScH=jmNB72pwuGtGUZ>_JBy^9$M%3fu;{o@%%TM)Qo%bKGXph`B?FALXhA=%j zp1!8zV5b2Ru%@|9ZPIB%!le&MiXC@gus;2OljEW~cQZpRuU`<9o-PX0a=v!jOPPSY zE+cy@eX-rnL7x8w`5$b7{o}`Xo{YevbRp=^+WBg=ZgM?$L-B8ErTxu_PsotHOU(fh za^OOc5C9t{UR!r78Th1Ug6mwu3?}m&A1>@#Xv0`RV}|@ccnD19f!RI*>P6k?ni*73 z5B_T7{T?E#$cc&g5%PQK)NTqfXIomVEJ~*q1De6Csak&Z{W1vcp~RyLJ`K?JYRfJj zqNW~6J8RXnru(G%zFEzx_(3AQ8nk!JaGyliF+P4N>EYNJ;h`NQT3JV~B*XJ5ABAOL zA_#W0DRDnC2T$JKg?1;BJ68Dsd*Xyx9v3m1D@Qb4GJs+jh2frM z%(8d3u!gVeKTk*3-F3&P8=*gq?;l9_HJ~wEK{19t+rsp1F1`%v79xi#-aH9v=2=ii z$9N5d{zpt$W|@FmZK;4gQE88M6JmUysRpugShhZyK%s)ZU?YEsowdAkteb^in+s|d zfq3lMs=nzn&w*~q^O1MkUvf#sYkPmL2;9M>AD1HbvmBoi*HcHBT(*-Vg zOPFl|aF*kG7!CWdP1E{D)hpXw!UFD6xkX`Kc*by~-iCsr@b2_Hd{`Be9=N@jqJ!HR z-|ChO?pC&VR^WlS<{>0hU*=AC_e|vb^C9sP!f|BJ{*m7IXs6Uo7a(6FrL2-m3n*A@ zNSykQ-Jdh?5N&C>>2Z9iqzT*eRWw58Jjsewh57MYd z3VT9WMcqx3v1FG&;n;SSfvhZt>b8~-DY@6tkLMhR&XLog?V-B1ro*vwkKi`@4cE3B z$modzar1I@p_QOz=X&&b?#BeE#oJG{5Y(PB&r{d@_y1%U8qw#O)aMx_xU9t*;Ddqq zGRFlS|JOcrXXdXtE`*7;kRu?q3*Zl-k%hH0U>|xG7-$?65T(yvM~AnsW2d7-v%BM{ zql2)!1InMj<6B2ZXFSrern>wf@LSYzyR!kGGhEm(sSkuK{H!?Qr00@^p)iHG6h_M( zKp=wfuwl`#sqnC{U4$Q^5J#CIrbE7k4C+B-RzQQofP${`RpiEBuI+2qJuoD*Y9n0w z!2(tKFsk$8f$+mZz(dfZQyq46oUHO8`n$YEH@-1IPwQi5uvGTVGX-tGU(f(xb4)9ICXgoV{_jjc-jg)e0=EP&#sh&;A?V1H(7xv z-l+88kUkrXm0(t+MLsYQ7@0}1R|NcTomRXTtEiGyA*7_}a8U{2ZEt#XI?SdQS8mkX zSj{Ak--@l)Y{F<2Y1uGm-0W!dghYU%=yyQtG7Dp*qWV^6!uE-^Mk=5pW=BBM@>;qK zyJ3>8xn!Dd78ozrb=`tnB7o^zICtL`xmksLVVCK=#i#S&JwG=0J$*9{s94{fHz*<~ zKYtv_9CspHaTzOnV_Gc`xcZsQklB*b(`#Gl+SyqKXuuHYT)o*47RHkw5}~-_sXuAjql%P{}~l z0Bu0PiZ9y06vY`t!G)|HtsMUN3;0LhD|GY~O7#K-5%~puW1?*(q$gqM@Z#tJI{JbH zD}O~Yz97M1e<6`fv~3h+?Ff<`>5I-x(+-|2u=_g)#8TD1Ej3B{dun2K_GvAT^wgqMf1fU+w<- zJ0AOA5lVi;zgivkJ03s(f0O@eGt%#P;(vuQ`c3|e#USs0$CLhBr1!s;|HWRAZ?E{q zS9_UX>?IHTRUSZ`Q6UB8Urh~o|Jv3df7H=mI8<`~iStrmkfGo8(BS+h&Wr7T=g{r^ zC(f(=uYDY><<%b67ke0Me{lehEec613;fF}U+p4&v5RN#7Yo!xK@^w}@bUQ-l==#yd;#(OD@_@s ziHf1Av5CVA5SZ;1Sn#h_=l2EB{}?o&{sfA{{6QcT2hac$S7n6gwy^X24A&iX!p{W(&>w7@6gTJtp|1kC4iz4B? zUo03CZ81YDRc%XMdwal_q!uq&2CP>NuUOIIzhVvKwT%s}#P#$5UxL1dlLPa8#ge_q zwLt%c1vk-_7Eydb6~0IW3w%Yr4wBZgzfgcd5`faSF)@8XGQA)n=3mG8S7Z>}UyFulKpXYO`+s#d^{9N8S95hXx4O1*rSKXmcw0#e32AQd56pL59B8+xJ)7xL(Q_ zM)!+_4PgDMx4%)dW?pMC_?61@LjBV8CzVkY_up&rZ)9N77ro#LujJQ0<@)iLUO*3c z?fb8N1?)967EIbJ@}*@#SfYO+0WJGSU`%}z)0dG7SmQ-3#MmqNrR#%m2K)j8x;_B* zg2H=2fdcOO@O?lp_W}^Em0u{py#RpvTY+JFUN{kd@f78L{KfgxQ&b-C1zglC?k|s% zzwi2m`}1*f`M*j3?-I2FEZBe5@|VP}|0yLWV5p(|9si&5Is)qEze?{1sPVPm<^QM5 zV*hQPmVXi@9ANW5iK_~r{gYsvfEs%pB>oz~?f(#p5m0geB=8&1KZ~6MuXH~p6ManTAeA?pQBLH#;3@V^WVqy8_KFSw!CJ1-nfrxpsdxLw^+-3>nQB_=Q2;m zb*eoac5}*EED3YCwMjR`=F%NhDLVmpyjra=njxY%(Ey2agk_vYa658Fs zNZS*OM@o0$_U6KQo^ifk$Iq4H^sMw7m~?{DAZv&ZG@wlSf#~g?$!<2EQr&FZsewtd z1(B-NH%%}}(yE?jZ_h;*6WDIHVaufMhiR+{q}zAWlG6DCFjPrIuyjUuT_j;2QB528 zh(?`rv(8y3I7&tx3iMo~^|_S!g(n)Ux~A&T5~G3WgUcoKU(bp(Ss7y8u_r^Gd@dP5Cu@s!xF zP@UWot5pR1NEYTu6`Rd^g#AN9`-U**w{_(Udd3{}!tz^zfZ#wINBHmG+LbVj#$^MN z*vM2@CXd!knKXI#{gED57mU3EiUKrlfDUpolIJK}diX408zP<J-SivWTu?q?Kev(<2qn7bB~p+8HiJ+y&=Nq!(i{gmFfGQ*IF z@uc1yP_EzM2&)73y~BS8~spfN;(>XP9)ec$K=r81voDjaFVBd*mFx z>8JH{7xKp{fsl&JNJo+WWB*t>vI@eyH}Tl#m>Ce#pgq#QRtpbBDS7nJgLb(IE43F@ z=7G9^FwD!cPnXx$%wG1(nMIImKOPIqU@zSTCx%Ru$16}}K^%Y3tfR0_Qx6I5teZ<8(ak%Q?AGmsXl2yZN+z$k-lG9qJd_=uYTaAh66)Kq5DzPfQF;MBYmw8o z)84NI3?!Sd*`HQn>ayC|LdCkhN7T6ERJkp$YkW(g0MQf&r<86IT{5~PxZ+_=ux~PH zEwEj*XPHxt6l6~?-tu_dmS*S-g9JW72z6%oXfvO08^P*4wRi*1jFltRq!kly1;t=d zzG3eTl_N_`N7(~x|Ktx#D1XiY_6*C2*r{^I?-C=oHB`qfdwYy+^n&o%rw_q+vMAKz_7VFLC(>+4 z5tg9WW6kT!;1c8GHY1a0n(tT8!D#i%AEjnVj4JfNyNeef4o6GNA4q(;!K83t>x_+ zGcRLszaw@7+#@=DC`k2MnL4SB#xz|8Ki|h7){eO1hn_SLGCyV4@%=FHN>0_#Bl8?s~HYd zV`q5Kp5dQ9aju+zBAaWW+ZfV17j!z$6>ulEp}}V?{B)SaA)ZIm-che_gNAg8CvvYN zBlmOWn~jcSkJ$>&Q%TOM9u>@VMPK*h3Jiu+Qp96q4+2+R25!zR68I zerQ^yowxiUT>c`3gsAyK0bvE9x--|tI%uEQVHU@BdUepUPOC;;n5EZgMb_^o!)eBv zdd$(1r3_B-eQ1=;r^Xs)%9E^ykWtheA1T%js;L>AKz3cAk|drjH^A~7zb0-+|4Ca5$#ZrYf>PGB z1wqVz3z<5~GGLhF3N^#pSs=v-Q)uqkw90dVZ`wcybMk1q!iyu?$m%H9*(IS4vYTSDY(%OBmRgHnh}AKTLk*Iz7B%>zMCysG#hMs%;#w#Zp3U+%``B$a^pn8ya-f;bdn*H4g4fC zF`_`6)(HiV>>&^*k_?bqgmAJrT|R?GEs#A3 z*7)F&3Iaf-H!<>HwJ0QS*5siK)?zDzR0UQbONbW&6}o}=ydF@EdP{gmU>v`<%BvKO zg_g?aybZ}^=l|wrA9~}b z3G;LQd3p15s1WIRvGh>3!rM)46juvnw+>CTB2Yfzx$hz(T zu)#)DlA7@2vn#==(<_qhvC{q+R7neR?|U#rn^{wfU3ONX_me^2g3F?e5I-X7F>>Gw zCGA6+iQo8v!A^Zm)BRDF*lPx@fsv>{!eqlMg^~MB3`8?(HL5JdvjTY{j&+8tgkx(~ zysLh43!%hvQS)7~@>a4fjO+co#M<)C%Cs!a@FH7rrYOdcSjJVGjM&Nocz^V@c<4z& zGb)4XJhO)RI-d8NEzwe~xPIA8!RctD*14A+h{gy?=E~qwU)r2ui!@2R1pPzop!Zym z8||cN!rq~PW28`9DX+xN5nipuJm7l{OlzEZ&JY&QD5+M zO9(idmPqwy_ohq!WSm&X%GXl3Dn1Tu%)XU}^ro|6&$Tp!w}hFB65I!!6jvW?-nSm> za^pH2XQbd=0C{8KJ)khjo?Ejfq3a`tsid0A1b?UJZrN>!agL#p4RgQV3v$doTwg-< za`}S$#nFsvR>S~qmw7+^0{hM~U(#tG)GP%8p%E&K1TJG)ZH zgEufK9Wbs05K0zBgt2Qb=UcKs#CiI-H4%0<@DS26?2w&IzIL&HA z;}wBGX5YFbfXT*bGrC%2QS_8IX5~VV{h)L|kF13OC3xa`tOAZ*2$AN{otVUJz1>0( zJ7t-8EUGXyb10@}ZMD0IZm(76A+8^ZlulN`upGCjY#35dsd$r}k?j(v8ta5ClqEI) z*~oCsGCut9Q>GL$NiJxK)H_C#ksJxbqNdZ#houiljZ^9IZz|U8gTmvt;X_x3%Wec` qnk=`LR@VAJ)}%I2GPo>ic%4;opTkb3+2&L29sIq diff --git a/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/save/Histograms_GluGluToBulkGravitonToHHTo4B_M-550_narrow_13TeV-madgraph.root b/PreselectedWithRegressionDeepCSV/LMRSelection_chi2/save/Histograms_GluGluToBulkGravitonToHHTo4B_M-550_narrow_13TeV-madgraph.root deleted file mode 100644 index ebb9dbbaba1d05e726ea8f937b192b96f8cf61c3..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 227553 zcmeEuby(Ehy7s`(;DCUH45dg&4@!u2olm#(g;YWfJnELba!`s z18Rsb>y&W0RTc&fGY|N z3Y|59Izpl6jSZU(4K$4nSg%DJIvW}qR}&0BXrj{kI)L#)W#=3pcnt9m z;CO(~zMMLul+b+9yXlw=fOeyjymwX|>mt*oxbp;7(dvE8oKUGcyW@Trv|OqQXo(qWyDv75tN6<7p~vi97Q0WkaXs`A|K?o=6xaU)fOaJYO`q+eSz!{OE?E+j!+ z*(VMzCcw^)#aVv1?UxDQRz;#a13U6}Cd7V=<^51iM`-P#MnxccLnS&uRv36>P9M`#x1p*4u ze!;SK*L7|^B5rb<^jmJl+3(lUG}klIePNtLCYa{IWH`#F*KpqmCY*G<@6Ulu&%Lls z?K#+eo7XAGL>roYeT{H{4B@4~K)=^M7@S2K4>U|kESUlFs*C}Jplo$^HK`6ZmG3f- zm^2uBSlX06DJwjZ&il;K&!ygLr+8}s?L*4fhOZ3`$M{yEf9AkC>J0~)-ujT?f%%PC zoFxL#*vB6d;t``J=3trPu0Qw2{=JTDQN>}&P;3UKc;@S0{tiC-C=HGJ36&>7Vq z0WtP*5it|Eq6+q|HdnSi@9HtZNnGpMwfl~hChcnDv$*lY0>Tr0)vJ$^dwc^qXw2}~ z?{dS@pU@>|r{M=1vzq zVxdY={efT$B~MUAN4=4%(+HtAeCKqK4y2prEkFC#ZNA9gywPvufD%M;cJO>u(t$6} zpw@lDBR3x;`%vVO2LG!mqs#7oF1+_wl$qL7vRsRccCl)^d5L14h2k!C$Ao5HwurK! zKEC0D58w}icj~nFs`&=1qYMl-mKT(Swnk^S4=_Mx_*7c>UxRjC0FHo2cmSwy2>bHF%z#9x7(Oqy( zSmRW_)!czuJQ%fR%4?)EXOTcp@Tx0U6+!8d7NR#USPDKbd&Hv}3WaUgJ?dXRwoit4 z%mlm1lL}EL3=5tyX^wjjwTj%w6pvE)b<@j&3EM>wBm8LW4V;C zf7s2;I|k|5S8?vHa_k$m(En5-ZJJWDflF;(nHbS+Y$lsHs&$qiEbqQvs$i2nkZK{U zFyLHhuai{Ompz*trz+l$k+tICq@W!+k$`h|lmF=zvHiQFNc(pl&$s5?RGXwfS-l}@ zijV8o-5N&$*fW}RAt}A`S4v~9|7}WhUQ@c@AE$J{zeZ`5{}M{CQl_xT;V`NKoMVWC zsvnAN8f)4;lI>z8)U8IafNtnDScJoZvowI-_kCCTFX z%O#zQ{P+m$^~EQ$OF}NOE>lJ3lOGvC%&R6OhJ2?jMi;le(G8NHBjiIT>SpWtDS6Zl zjZ98o%oW+&PN$dHf&}v7uNHUfa*Z z{7%dl<-K#_I^&%!ZsuyyzDUm>Dl?1fkHj6TKup1$$IeUuE~6PETLN z?J$*Shr->bv{&LYSwIGR#V%}nw;k+kdR^0M9pd3Im0bmnEGkUi`bmE4L~_t0Sx2iW zrXwH1Fd85;yE+OAqqh;jm3XY{{Zg52Hgfv5FCUR+u!mkQP;n7LEMRs1MXII43=ADV$)Mb^a2h!RIkjkblEt^2@bLj~jR;S3$!Z{<=_9ov zw>!!+z0H{f+7V~tsfD{^rz2V%h!sUgnQ~4SK9*RWlQ7Q?5=2I(H<45OJXphH!-z9( zzr`qj+F-Mbu$A&hR$fH4*K}-CRoIglVbX3FtyWc5;iUs|#83@2XF}XKINGJHespWQ z!HA=E-Z1|$KL{pUU0wsddzCTXXSw=z>)e@g}2EGV>{}z#y8wLh@k4hLZilw00K zRZ|q>TWOHnTT6F^BWnBay*suF@3d#bKbD?;pPcFk*%Q?>@ci6!3h>lTWNEUPC9p5C z{9#JLg<#L-DPdm$Bf`ssUPP3qb0t`B=X5$i8k8vrI)A`YN#5mkIUFO#LMV^{6kGME97Y4Rtugx3Ds)R2@*338(NfO+QItORem2&LQbgB zSf7k?=|AM6)Caj_R~J`nRIXwKRlg$LvhV7Pf#vfW%;_9#XIt8rR$CGeqiT-3E$P$U znXIVMFX~z-+NOxn&XU)=TfkBAngOFamOHEZ`}(1sk+#aldC_wA-tBJ~OX>`Gi6v|a zFjk$c&2=c%X5O^*%>HMtk(G(n4Fv@Lm5WaGN#KAVZdPJdSQY>1gKWMNnGIO``S?up z&xV;}?;p0U@bO}>Zb=QeM*>5jK(C_tbHq&a+{+Tx?&y!j0Ok;A3zFRZehH}K*5(Cf}SdEb4Ae8ha0)HLLiv%`lNT{ z%EzVh_OnmCsxACXSVOBCbEHxyR7RrbZs`n ze?(P>8NE*wZy!~B-@k=JIjc%XO@3U#FX0}fekCw6M^IO#d!)7c03n)M&Ce{a2zkAs zaBF0HbdokjT+89}oFpcG@ChnYAsqZO3PgR%cMu96aIwXIEKiTwI`|_XS%?orf=Nvk z8*Z`*9rC^ybu3o|k>E!uDo&I(G@eiSo1|-YlK7Lb$EXwHT%b2x4o^WterVQtaNp8tcr?bmF;phn=j+++aLSncMaJBlPv?P zKUls{OUunQP0ZaXDJl5CjHgG3zg$^t;qBn&Ry48j+9SW?9g`621!|1m$CDGiJO;3n za%{}Z*NwgQlkQZC?)ZgG{+>~)1-*T%&#>6<&gM;+_TBAWuN0;VSRJb9I#)|g*2J@Z za0Mz*M7i({Z3)cHkJt~irOX6H2E2+Q%36HV3dhHzR1`W{uGoTR%(0F>YkelnBUyi^ zgOVs&9`>pzoft3%GW~*NbnjmoP4xP2Gy3s0qu>AIjE?%(7_I(q!03`N{Oi?vH~-Z^ z@G!E}UOyzQ67>9#HW75I#ejJOycF%gY`qlc0X4>xA_sy69`%vVVJ# zMo9wNOw?XkWt9gVPDEZ@%236uJcuaH3q%$hCa4aj-;BaDh;XRLi9>yx~w) zcYWQ>PgOq(Pv<{4S(jO=Wklq{+MP8Y@5L9?jGyS&y%BQaE9UMr(=H8=9S#&?&9=O( zc)_$(h2<~;sqfWWu92*2tz2S=hw1S~!Yb0rx!f1rvlxD0C@hscNLc({XWwoyxo)b{ zICC6tUPhFg@IEpY7Bbh?)Iqsa&}lDsS>MvPu_WA@>o)zqLg(LDXYAM3 z8R>uczxdbInS+`6AC0p(ARzxYekDj;X0oue>JT5ZuFzk=~a!cF(v(H5jl&FAI{5q#V6GzS+B+C-c0e%7FP19k+N_s z#cHi96%P%rPu1N+JRu*Q*xQYw@geJ7igs%!;jc-M9f!dxGW+_e_HPMP$ES*yo z;({9S{VQSJ$qrayiQa<7S*7r>*=qURFQoJ| z=eSs=roex^=c76uvIl*j8?Ky{VC8?2<-vabfoUn_EWmJnX@e0{zfT*XfAJFhz=fnM zB#x&^%qtta(5WH=Slt!u-BAH*crtO>v=aH)3>UmU#m4e#Owa`(j;FZs^=(p^XrN@c z@158jA3#(+J3xkbO!K`xL?=UCAm5|Bp>q2BQ_`VMN!GQAbGJ**hSUCGyt|Sq-^)2_8+y%Dy3#Tn%n|aJmhpy_ib*0FW`iwhQp*>b`W!~N*PIE-ly_e$a_MnExbq_@t)h>8JWQwZR$ok+ z9F48Kl%xO{xa+<`GP?6-h5iGhDd>M+q5s0@8{aJQA7wPsHTzc>{qNwK0e_$&U9-*A z3y*ER2qdF7hTr-NY=AEWJ@*yJ^c)07HW!@Lmp1;ONRI5>}bhm7>8uheoks2*Uq4%<+{7CST{w$kCe4x*;N4CwXez z>$ZJtxJdPG{)`?1gkF8Yd!Y@!8~3_LK?=*6G0shZw%yrZe3Lr^y+p(tCbe2>{^~UE z8!hX367y7f7O1iBomhE-3m;nSIkypC>DR_#deP?w)4Z6Pm)eGM2G|ft{-wLYsZuB$ zTQ!e(pobIlewoU1qxcR`=JUc#VsE|0lpa`0pR@i4_}5iGftN=~d@m};ip*`^I)u9$ ze^e8k34;Gbz}Pm@H^5OJG`HOJ_*=wQJ}jTT>5>M$tai|dhp^fcSXg>@FGH7TPGt5c zh5;yN?knikWmOOemQLd2eYbCezTOKPZu(>7Aiumi8O1?VaO?%iqL;_#1~DeP#vrl| ztTV&ntxeCD4tCoww>bHQII#b^JkRX~urE1y*^pk2>#@4!3g|74jaDWEdrr4oIgF{x znY_=nKjhU6E*H`7`Z!gwN|o!p;Fh(ydu*Q6@nPAVH9uEQFX6ti9>mMW$)E}v2-~Db zH@6=hQm|bJ`MSU5D-nb52XO0XU_97;s>@Mt@O1LClvi1kx2Az) z^_VtDBxy&W#)tz(429awSB?gfSfB$FC>>k{>o*l-M_`<8*5DUALTOA82eYa{BL25;cF2grFMm7 z<;FgXAqGMq(fg5*aST5{`dUj6Hj_X>(5J%#_oDMZTi^m6m+vcrln?}P@q+`Qs$Jef z{>}yORToCHs-}CRSy!XX9+V_K9-|iI&J#v`SES!`4Z2*k2-kk9*PM$e32wg`X|)9f zpL`kdU+|+OdBbBRu;e&wBxaG>o)(8mxybWUPv4EH$*9V}>@u&86Ctf@i^DFb>ag6w z?4nx>%M@R8NaaRJ(n08WmNl43Gf>J%l;>O5SAM0HWqSGJ;UW)0;)49SK=O*fYjWXA z4-e}U@rHGB)ywuH{$o9CrYI#_JG*nHu+`x!K$K zdzgz9+9*$kkd(=E@z%*m1~dMcvl`Ll@~!dR-Pc{O{^0?qA^yyK<$c~e5O z<5HnyJC~5B~wYw z`zQ!qW4_Q3L))>!sl&mD+>MAPi}#QW{k2o#FYD@!lZE$>auMlc{VQDjckr=hmTn=HGFXt| z#o;kSI0>Uvy~|Z_nsEzA(z?Djv`fRUkn*UA@;}-KkV2WT)gfHK%dx;eF-&|%KMg-~ zhnbS!>rgQAQm`>qz-%q5P}vA1bo=fGUp*JNign6m+`Oni^cUX2iEo6e2@t)!^0PZrz{vzD%X=9=(5}@%ajrQQ6NGgjdH;%*vm0>Vh39 z{;d;D(|-6dh)G5`9fiNMhPI8I`W6TzP8@M!#M26TCl7&hmr4hEm;gg$=U4P%cg zmQ{rAU4bUsI&Ha2c zUGRE+GIoOTNe>Ern1Vo&Rw5yrV2Tf`Lcmso`JvXrUK4ss^ZoA)ICAQufObPNfH^UL zaZS>CjmL&rj1s+5%ziDA-tN<+$_L$q&i3BVXN|WPlYkoB%6_j`Gq=tHCzB3g>9rC18x4hD-*ieo7g#p* zL@M{%hCV7ZC3j{X%A{ToRVGw3k@JYv> zSp^tX-Xj+$?J4;DW2n!r=ut9!c)ca^13e4^$s^!8Ey?O>RA$XxEwW31 zyG>Rh&hcJ>o@FYGDvGm!ajOIXIZYw088V9J}1uyEtc-AzshgB09SdYi+!| zh!Rn~B5@z7k5m(MdZylZiQB4PX~$gg3bTMrxh;czqQc_r%3RS(YTIwEDgPaW{7hu; zs@tmYfdYrrdms@0hr6N)%F8r6_PLSGdz1rg^td~p)pRzN1q*j zl20u_hUP-%a%fN_KQ9e~50fk$J~?07)}Ky4K=>1R^GS7)*cD}W07qXK8hn{lIPH=< z+hp@Uykir;ah4Akn*}|b1<~9kAF*W`59w@eDKoTw_(mQCaGjg*Kq9*JW?87bF;KX# z4HU-rzayIHg`v2r#_!EX$k)Gg9|fTTDt|RmM%!;pl=vGHCE_;|MI3T}k`L1PTl*2( z_fTF_z{6Q6)HDc{2@Tm|)*koA7Blwi7PF@77BkW77PE+7Tg<-Uh|UrFEHaTjOkW^n zGR=r4W{xtCHf0=S%!+>SV}xuaZk3U^Srak%aD<7Bg0Uj&4T`*q5!49T*@wxa*zsz| ziB@D249XnFv6drU=nbK=p8?p+O1YoJ<^ahU{7}`BT>dz8DWd z5f_nF7JE>lI*ouBimZBv56b1&8M7nQ@HB9ed2q&f0c3hx&m}cOQM|ONgn{?x^V&{( zR}J<0M^Za~>OcZvOqn?xe%g3~bqhZlXge{GR)&JPE;7V&b+zmd2fEbDm<_+q0C9Ft zRY{bSLl`sabD&j&D=9)^!AFUjf$*f^jrz@_Lw>UQj(V<^uWgMI_A7=&if)*gT$&lY zn$ZG~la;be(pEmmQQ2UW`9nyB|1ku!%WIKf-*wg`E{qp!d`d47Lw?~9z(>P<)X^CRF||!jby^%$K^UX>V%wHULk67@WTuzLE4{1W`ln9PK27QFEkt;v-}zYV zKYh{AnOoSFu)eG*QE5E1RhPhDwYC7zQHfz_Kyy%0m4urB^r1xkm&O78QVq1G86P~C zN)JFNJ(&=}nU^l}1_?{c2Rc0*v@LD+&z+0sI?bPi*3ZW#9(ywgNWZ$nzp^6aw5tDY z$+5{Re&9Z>qWK+R$|bT3-0p#-S|=~Mvi_$gZzDQNF9!79tAtfES5FqP?bM+I=8Bhc zkud(nHTVOJnf3l2jBlKSuzv!^#{UA0nf{GneD({B+j;%9!FH|%LSd4P9DOrwl;61T zXBC3NthG)*K6nh03qfHr@#%wt{MhY#yBuNblZOCW?ow?~4z;?Wo`~x7bab`xlF;QH z5N%vyEs}2_W&12{$5A#&bJC2Jk#6Y-ZKcma-jcIDBI;1yct=AL%t>7*n6*{XNsGwH zi4qd~mb%S2ckekm3F2J_8@-`W){2tTZ10mVcbeOZlNg%X6MSf z>SlAkpJ>&oBXyv`zmA?JQ`WaIsYd9$DE-B6HH#{AwFLqQ%_2b+?wfbwT zErqy{eN26OE&KE6CbTANM1Ay6yIAP?p6yrx3`E32v9OgSyvDxsWt{XXAreFcN{Wm> zS&3;fy#;RyrYdlWt+~p6S}R`D^kA_8xA6TYL@tgzVvf#z!04s9Z2v}xJ4lt3P1wb3 zj0>?M8`b^YQ^qCs(!o~taOyFrM8;LIfX`^2y_HtV#BahF;YJj5^q})%t!SE|b%)Ou z3?^9%I7{9sx6>lIN?9*CS4O;7&rYTm7Fa9V8M|z!G%uz+oRV`HU3!ichK`AW@yD52 z!QZ2vUBZH9S}?nLgf7uKLUyHuj`bE5oBk?;zFl^`^+JEH%3^=NU6(3H5ov$>b!sNwRW!^V(648u58#rb;mbh}f+fcj#asU~bfqyU9l zxI&@0V)2_51b^NN;H`J*hy--kUjfa2^7jCJQ+|g36M#1Q=K&qd`0oSgr*^>a%Ag+C zyPF1lbJN@VKPLH^Fo&%Gs^q`X=*)|H>{+d6Dyp|N#9Va~?K(pl)xp3pSSUapn-V!Z7I zg1kKp=)I!}k(;U=`nX;6zKJ+3eoCc2!7;XU&JN;Yq;|A+uKx)l zknW(?3Z@D^<=W~Vb;+Jcy?WxD5O5-o5C(;{;EYL9R$1~41||18EL$A(9(a}gOqG;y zc37Vg0oBSdn3i#Q+b=s^-qkvNJCthsCjPA5Ux4yd-$A!5g8?EJ+gq96Nsmc|i){G+ zt=q`s4T_u|WXiLNAj8+ka-ZeSaAbUjUY4A}%w4nAxt#l>bL}Rd=61_yI~ICZsaem$ z(kof8yX@nHS5i7&hi<=-Qn2+MS ztS#8HtZ%D`^gm=O+O5>=f{w@%(qibIAXY zcs@JdLvD3P$-I^vz}Oq{Om{7wMS#EK8Tdl=843-uMPc_bcSKC2L;=J;}-w$m7TSwxvYkD!4-xoAuW^W&}k8czGKfR~nd8j4T z@by_jtpLaLW0I=Yn$g4w_q|PV=vEV<7Ue#6xPMEq5s=CK3%5C+nrabY@R-qLuIE{t z_Fe2D9E`hnP;!=+`15jPegfOZ9P+C`?R@)yACkSDiqw;t=9nEOT(;)bRlbYs^KPv; zw_i(uCD&WxtS^7CK(g)<8_Zcfk)Q1q|3eyejeeYh~z)FzOg_-MkEK2yit zjIxOo^Xbt&QH-{&!oCUI-JpUNyy-3?Cu5+UVv`QuNkHq12-Rj(*i5y`g%3>J2=u00 zejC_PtFcc0MQy$Zu5* zTLkkVZW z^r)ui+H~2`z7yER4VOS3OB!R)$fMkkfo2U*_ZhomH{kb|j&~ot!MiS*VMg4=;Mfi1 z#{cgPK>@e$&@E_g^SV*s1uFac-a-M~TNLm^hCuWt1X(vBxVbGNmiK!Iuzn4J6z(sf zppilb1c_T93Lxv(Xc%-}*Lcm}uMZeV`TqL>0};2AKEx#{&oSM(d{&F!!l!UYw zD<#$w2*gU~V`n$zv_q9P3TKqUdT|eE`PBI7a}J=A)~}}!XsP_U*2VC-xjz(2OoIW$ zyiJB1>D*xRE2KClFM*kK?6)!3e>tzAsMhZIJ*bQVeklaosgLA?QC^-CB_!0FU-#QV zo!IX#LLtAys{$<~0>dO+RzMILwz01b)5gOM)BJ8g`1mRS!-YecMkuUNUJ>5tB#jDZ zwnc%<8Ux{bv=|uX!YQZp7#OY8qCWx6sG?R44buQqI3X(c9I4`^&iCHnR?osx_Ur(yHm6MId%@A~UF1!mc9bS9%1rU3a(cBU@jm3g+1K`pq0k?cyQ3;ZLW~oJA0SPbx_Lu~~1xhd( z1|{g^N_FkeNbScRl`mtjPXCz>R3 zeI%AsgZMEH-;q4AG>O%IZQ-WC*5m-+me=9%_w6#*5J&l-o&fFuNoq=i+ujF`KczdL z&2bTBM=fU>3Yw+yh|S5wFFtxf9L`xyqD@3u=TnfLA+w}W{c^Z8N{vOHg--P#HO`g) z1G%gKP&`hlI+AR&x0!^Abf>0bWoGkYPt;aEFKubYbs)O*^XBU>rBe^SyaSb(|2)!+ z-0ZC0pb#lFEZgu*^=)ZhemXXjL%;B!t||m zqcGNZsZXtf$C4`SBDaSj%X3ZfKD?{4`Z6eQ04ljh~PcRCjb;Q0?~i;$%`H;v6}wT(X!v*>|C(I;aK~% zE%Gwch3E;FCw#5z^H){)2e<#`Wseo6?`(fE5Ci}in6H7rL4HHY8z4w7{}BkLDu(7} zHd4mM*FZR=2at0hfw1t(TDYK^u*9ctWH^g#JKD8{ZN*ijgl+M&TYg+S6t< z#sEKKQ8fv6ngB*rOeHbpcb}jSKG`<$jk|{(Rj*BcsVo0+w)3j+@z9;B9OU;==RUxn zkO7@e3Cmrz7X=-8Xp2mL*x(OkrCzR0M`Uxs)C`63^ukjy<9<~o6~26&@YB*<T<$0L(6jU7X_W~X$)q%Q)K~AmbxaLB2ssFYk`mIMVmy6?qb>a^(ADkD*5OzQ z;sKM4n7o+SiHW?ytMS0bgK^#}DGP6#9^IkJF$Vi|>8dP^FZn#v$3&Nknkgw*`XxPQ zyl3{ghbylg(>%rR-IwCL%IFd?FM5gCHaa*J;Y~@|HY{nodT@#H~ zNJuijkrhf^H`8PU!4TZqg)YZq7O_qDttvlhNZh_`7a&0OGHYL|Vht=>=x;Bwi03SV znX{;kC1cio@Dg?tAtg|mu{C=Uh(=Gs|1bM&*7HF6SlzU9^& z!!rU#joL3Wo$}~T=a)qFTZW<^&uZL6&2e6|?M;R3@B-;AFniXIfY zk#j;Ak)o&AqW;Jm@IY8N+Kh7*)jD_G)&;E=MLj`FWwZz|?!IvWsZH{G9s<{E_IbR# zJmz-)EI!3zwP_}52(+5N#d}b<0qk<$D5sNP7In9xQGU2e?32Bm3#TYUJ#JV1@Yxep z2;s8TzSx8!5J$ijJL_FI6(D`}i!*!5>sn?;-BmJta{7CJnG zs~*lWNUNiDbMkuG5a*%9ZQ;uUC?vXM{m}@uI-9H`FT(O)!zZ`0V@7wd!75w%vj($ZY>w2-@PTiZVOtzj)@yrEX{@_S3#(fuvb8GiVMEC&VrI{re%e5e z<9qK@%p{hhO~R~O4QUUV9|>%cyIwpf78!9Otf?kB(3Np*Tzb*9A@q%Edf4q=P1;*( z4}=LrzKXsPrnnh+NSc1Tud?!FgAac@`>mG-IW@?O@?P})9QkPx9bHc184R!e5BC0^ zeFVpnZ#GBUUXJYKoyOUeQ=(0bdA$@fAVfti6Wl0Lc#{}%pW6l{zev_zv|Z(r1FeKo zRw%C%B~?<=rp>?=*vN%1K_7(wWVscCbm$Foemqhci|E0eX>GC{bTAWbw!h%|s{E3` z42I<`q=^zSu>Vr7E{67FA05mx9!27jJ{fDy?&}wK0*|OZaaJ1&3P6VqhX&koeYd`eVtsdTch4&dt!{( z8O56%2%nE^YZ;-%YP$=xh#%{xIoZVt_BxlAiZFNOFVFyH$AtP56U@;b43)8|n9I_7 z>W_|gO=!{*xnC~0O9-S}90oI}eG{vq6ca1_M#eehw&gYO9w9eL0e>i58lFU^Q4wQ| z!-)tr9FSIl3l`o<2-Pp1bn~FLPl*M6i>_#D*3j@5yGW%l*(p zIn*C-eWr5svyzm#mwI1$0S4zgRnS8DE3s!AP@Pp)Y^kkP_wW1)m=;`0*I*ca%mDWjtO(uQ?H9ZN7 zccZb3Mo6%rh^`P_C7v5x5u8u^<%!K&XV-J7xg8hxNs%W(9k8v-(pOS^H06a%uE6xF zJqK0mS}Z0HHhMg?V44Nix!6rfkd(!qEajts*HPy1A$*J|+LZyvC;E-JQpLKwVv&s) zZG+EA9R|0=92BJ&2Pk#IJBvCi_nrx@t7n-O4vOGNJL#XV}}Kn z(eY~zD3?*t+!E_=7tVBW$CZ*3JPN9UVGy>q+nTBB!<#$6!Y(D2MurayFY}*cj12Fc z7K^UCjli5F%o*8lj>Ah*saOIiJBRHuI4dczhTZ5ooUa$9c(HqI`d2E65zcb zkhoDHS5ilOh?e5M0i-L6e>RXcw~p4#Q|}#P?LaYm&>8?^hBQwkPm?VM!z-Rv246ZA z()`HT^P5$>(;WXgz0Z(#<-|(kmHR0G`vcBUJ);j~h^i#&&?-Q75icI(iOu1K+CIKL zKrqDV;ldnG(A?jL#SuqDQ?-=oZuyKxBARipE>+S0Q=3tp)h1N{;iKBm0zJ1sa#UU7 z#1jOVcJrM(YLI^nWRhOMNOxNBEZdcH;29U9J zdv7(N-i~(_)^#5i)6zWax>Q7-Ls2?dRQ?R(-m~+VtpE|Yo&P@my%KZUeb3-8)mhXM z65J=zhr41UN}p#(&m0N9N%oi~k)h8JpUA`*GK+nR<;nVJ&xs~7fBel_4=eQ@+jB}< zk|$0r&deDM;!=rI$QI=u+6R{dt`{_SUVq+g#rm1#+q<^MyFS4qx}9&!H7Bk~BX>_j z=4&3l-w=CK&P0@qs_Fj#`aFEatcY&@V>cD+zs{&~r=Gc!YKt+D@U>Z{us&dw^+!9n;{Q9qqMp`#u_$+(f^5A^KMDnZU<8#72_y zqd@%l_J%Fk6I+uo%46wUFCAEZz_0G3438vIPQy+@Lf)i3IJPyeiIy0;HCgVGpa&+z zoRX^o+H&*@Z<;lq>V2ekj(RGPZF_|x97-+|7nf1A2b8mw;s7R-Vo#tO=uB%qXk^lZ z5!S5A-_5ARZ46t?&@LGi-yYc_-A)MtdK?iC8h*UrRxhw4q$WiySk4EBe-+=JnY!1= zdKiYN6IP(c>Ur?H415P8&s`(;cY*&UNJWruU^hxqfV@E3E>9(VQx7kwQns35g z%V$!4x_7M8-951?szU|Ad~SCb7gn+ibPBW^hSq9m4>9Vb>3p8)t(r zF_OB=DcEq#;N$Nro66Zje08Jm)Gtv_H99SJfFFKF4KqozFF|Raj!-_Fo=J7Ji%HZk zh?qrF#CM7dnM<2?Sd@@!$P}6`st>PHKEt=e8Ljo6oS^#olU~5|kOIEfc;eHzAZJ&t z1aTPD$NPCu!qR@}ie*zWwz^XTnzowQuYerig>>Dy_-F!(oE(tgTi z)}@Hqrv9jM0&GR?eoS{%>3cDU6)LH52YQy^RlUvyPLL34?x%2Qm@yBHin`w>tX_IK zgz~J2zAlKTf*0>_P^(127j@)loSu}P4?bsR?|BuWRb-Q3`4)TZRv9m?_7f9Qt+?pU zlND60B$0P>U+J;R_>Jh}P)wi{JfByxElD8sRU8sma)9a{MH?1GpwHay&?r~ON2tJ& zv-GPMY$FL?QHo!-$@AX0U@(Owp=62g-+GGS2Oa)odz83$8=}T|u=b_bcj4@F#)D8@ zsK7Rp1)}yAM4Bxsq$m-C;&W+X;pC{Fzo?7r*JIpw6U|Zci9}H5ckX3}0SqGr)$}iq zH1P69#+}(?kNw{6-&x_n=Pil?>iV*X6`2Y&tTU!!m)XMLd@=7DxJwq5?;I!>d8PNq zm#pKJxvK)j@z1~Q#<96 zwaQP38O_%5T+(W2Hi+W&cF(_N@$5dhc zNK%}nM~Y`z(sKN`jNmWM^Ava<|IZhZdW-1DP`Q6BRT_5-0gLRJ$@ zwN!F2;{bje$%bC-n%pnIh+SvakvtphygJW&>yt1nyh_k`Ci81}_R!`42M-4Hwu&~? zqZEf_c93wT!>@r;)94n&R^{e-HH*%Bg(Qv%CEAlYugVJu z*vSWKV9HNX@h0jRHBJ?LKNpU)W)Xs*BNbt*U&nQdda-VcsLG6W7phAt^(;V$Q@$+8-HpfxiW7h)~|@D8)-ieiu8ZdYfi0tT9m+xIDK zd6)3n6Cy_LTIzw`Ftt+`)D{EgOuwZ1wWIYOrP+r;FrXDPsb3G8u^M`)X7pnF&@W^? z23n~iW=(l2w$#gSlkqt|#S!U6xo?~A@m`ybUC@s6o8fD07Ba_pllm`yOkrs$^2}^x zd$yV1YkL6CjwrHKZvNyXrC;k0VSj|o)lY=ve8b<#ar|OXFAop_fgJM)Ur+S z@8$6sqNd~LnLUBHz2?q}sSRrEO0m1UDkmtXNuVgMjX)ba3GuE6M zw(w%5JIZ_&R%^eHqelB2oUD9XWIB24x_7=R$Tw z9{F)GJbcr-hqh-GjIZaEWPU9yrB+=S&OI}f!gVM~of;ma-JVT69&dvx z{FPqv8XU!>U3Vgf2ug4%D3(ZY>$H$Txc(>Mt*ZBdRre>~`!shiSif^d%j0ZM;nBl% zd^cQCnoKU3y-ly6sHeWT+`qld1;aI1 zi$J?4uYXqJ+!~M41+2r6b01_S|A}n#)_}^b`~?I>`C%9?#i1&*6MIp4rw;xmXQuF~5PDMr+_jlbj zg?9#$HT;Zs3ZDILDxlJqpfi;NNE$=ZOg_835}tWvuOh*K2h_j)j}H#T?(fio(REvMvQosmhkjYAae9G#Ki&>CqzLh+Ztr3fV*a$OexBW4 z;7PE!hvD={1``lhu^C;72+63bAz>E^fr4boKKC34gX`L{Y|0~X?bchf-8l|DD;QWM zE%`(Vn5&{geAI%p9xz-H94{4cku6g7&PS=vdWv^h9RoKvPm`${iC?cPMG85KMTQh? ztE}bWo)v`XLiBTug|xnWa+u>)fpKRTpxS++Pp*$E^#uT)_c?IN2W zD_Y^$N-~l!Y%9TBCsS-LioSunElIc>q<%%I9%!M*2nAD5(pwFCc)cW%o$zvUu&q}kspdL@N1NA$@NJx?TS`MUSj#*U6qFUJp81)%C|-)O z9JvaQt4Osq79>BG5Q!d4xDbmjqQe6N56jB0F9&Kb{|!>!Ku937Uqi<;2CCT8c8;tG zWQ%c4%!irnkrmm~n~LE~jl$mX%cR*UKG+Hc6jI%$SN9Avtq)o@(RdgAt*?q;X;as= zOGwp?q5%1kkNY{R)6Ml{110V#4qBHMOubz zJU|;uKnKA5Qt87e=TzY`1eW-kgDJb3XxuWim&)H{2SruU2|W$z)+^&p!*Dy`%dp=K zWCJxo3LAcF$|lIgSu1iUfsEI0A~D@@Cy-GX`swYX>PiI;%6Y8=1kXXogCC9nw4o4V zZPJ70+5_C+DEe58`IB!i*j9H7s%osi=&g>T@(2HEottC}Tt@{7f*9-TB>=Q`eS=sb zRSdE8DDHUV-D-?Z9~|JV^h&*Tg(gUrbKhAcOj3P1ZQnA>24$^|3y0KU1wM#cmBuUn zAxdaq;Ci$wj;loAuPji+_6du0|MmEc*Ef5qYsKt%`JxS$(GqByfJRZSMm?((*-n>mZ<~=?as;_hFf;YFu-z|Tv&7eTX5?Ub)rbT;-{iZl z;rNrd@yE4T{oAg^DgI0TC2nlWKK&OE;e*3pcx5U2x3RgCvigg$@13^8-b`fP=Z!29 z2ITn#&95#5_cb>rt|^Q8`q3ZL#5yf>Rs=+ER&Vdn4v`;dl-KUpeAn>V$kW;cry#Z2 z#?OB6BOcFg*SnsSjAsO{tb6igRXZDJJzO{!LQUAjwFI?#j(on^gypzD2;*>yNyZY1 zx5n_TP)XuufR(=Ski&P+7sp|=4;Mt5gj-ea@7ygPbZ-yMZ`?k?kb>u7W)k|JUKfY2 zK4M-8XFgWWqnj%#6{1k6bUELh5KxZk@K4#xH2wG6@?Ref8=-nOt48y=BA+tAgkWymZjpXCENi}j(0e5Vu4U5=3T;4~R!M@snlc&% z2MuC*b#ON-j-j9;ZVlC<-hJJG^BF(c@*Pj91G%x}iIx0qZeXhx{oN}R7h`B4bU_xZ zsIoG~rQgNCp{S}_*{MdOU_{#b<499xZ3-3_rA!ooovS+aCSSvB4UTP#FtCBX&QRU1 zAHc3dXt)z5Z;)L!P*dfnL0nTqA##uw9lW3t$Ku4kJ^Eb)fw(PB!h(J~!a2zB#O4u=Zafs>`XEzk9b&p%rv@7AY52e ze%QUusWNjOp@haUL$1!OvhV=QN?x5;`^uKIwGqf=!#Q)+E8y%lkM9!ooWs{?>KyL@ zZJFc~L2!X9=(oBSDaMpJJuFXYnu z6}RLHWI<$AF$Xu+%BF|65aQBD(9k_T7Oc~+28sbAu_yMM`wqH(=vAIS(yQ?#oZcBp z6#HfJ&P0rmJA*FcdY><}Unu8hZ1L$;fcER-N#gC}?1M9jsu6uW@f(Fh5DSVXn-B5z z6VvCXp|@~DCU21i9n?G&H*Up*sF30xVnn4lKR*>d(nV<15{NtvWr-w9(dUgS@F<#c zg)}cbuqrnBF)Q{w@+fAQQ7T?Fb0}IkhERE7h3An9iiGf5^iOmMia2nK=Y@~ZlgK+^ zC@%K~P{qYb?y8E3j0oFBy!wudtgj%82)2A8i6Uc&CoN8Fmb}AqFq&nI_u0pa@7P9( z-zh+gcl9HRkE}_QxN!P0JWe52Ft-udg`-TSgt@y#$cYd>zfE{m1zj6nKcs$HHTrUe zo=EKds}mvHr|4T(moqG(mHD7qEY21eP@y(`SUko z2)Wb)v&&b*)hW*U%ev%tpoc2A7Sx-zLN?56&Q3*REZHaLT#FlMj-SRXa_K%0J}w+FRm`w`7CyZ8H8oy`2XCPDy-WVe zXuEmIHV^irZgm`cqFyYV4bUA4V}ey^_0!i$FwYnj5fu2(4wjPSx3_!9&Mv$;+!pwU zG5v_QD4F7keLCj0K14sHx}phWxbiB?E$W+5fBt|Gs)JQL9NqIN zF7)|~SYaj*tEx1;!~ZR39f3f_C-U=}q>a$hMQX0q6=Lzd9#kp)f(T}?UXEp$o^#tY zY=fGO_{29i#rI7{uCkfXAJ6pp+88~>yEjJ8uh&GQ$DDym#}S9$E3mk<(t;}azloYv z7|+=3K{`j0fF=9AhF^o9=e-1mO&{qtO(*yGP@Ofva7`M;a1ko!8EWyP(Xs`V9@Z=D z$%?CdK@F>A(NVB)XO{9b3rMg{$yG*GkJlc>P4cV8!S8S-KzB+dp51~k<&hC-)Q+49 zF<3E@`o7M9`s@MBc-sm>{?iXIS73;RJHCq?@= zw}PGq%)Q$YQXU<`!nv=x?MPh4&UTo!jk+SB8=i3~HsrPYze7Ij8RwP5pAO3bC>>w# z(T|Qti1Ul7M21-fw=fhX%x{TTo_-)(@ZSndLVCrI2SG~+@DP?Djpi`IGK)NVf^1Ee z!{qZsjkj9Gk>vBQtjmd5pN~tdkHDs#B@2ppKoziiz~qh^qPg1gJ67ijhT`_dcMh`5 z`pkr|aZ3{YDv&H_c}3#H`9=iGu3YcYgi?#bDr`A`8@Db3oiO_pfhO}7w>k^D>p6!j zsc}Gx8b}++Txh<7VJ1Q@5Y=qlfO2y#QSd4ZG2*F~8-w93QN06pPtpA8YSf)*%mx&{dM55CQ41mq z{YFGR6BGX10!>n~fVd)%QDmzfUUBN8kB?nf*s>UW<|>pp4OKdPPk`SQo;#qKd6HOa zGCzEd6{UjT8M;Q1gE;w?RH7~q&!%G_0K$=-i0c$KkC0%Nht?*!YSR%6a=v#z{EryX93M(6v zYV3lCxlsj@oJKknxNGJTmX&>J4@T!Apkqj*23~ee;{c<3GO_@W)gZkrn~AIeo($?r zmgdiD&NoOhJ6G+ZD5jBlOHwqy5QJVn)n_Qm4=`bvuaVXuZL~{(v~uPOvU$;nHt}8P z^=@o7@KTL6Ec&LNvvG-%(o!Dz^uz%#334#44qG1jn~U>Rh=*5wrR>R`HjjVGa#@zW&amd^~0V7BUR7l9gVd|{zr z5()ZJziha*gv$8q8fTb#gnVts!${i=aCvlzY<+UaBIB=*<9R0SFGzu#&-Sw)tpT~YH0HX+fIojdswtFiV8NewBZ%}a>XV4GJj|Y|O5eqsFyxh5z-`Iak z#$mEb3NR7E&nLxyn2~cd!fosbUQ(Y3m?_D;JeMNp>FC0wb!rUStcBR^3=cw_d1dt5 zr*?0m>e)6xswPhAJ$Sd~;3S7hgFel5*M=*PJqf+-zzjIEC!UA5?*VK(4A<2X;rFfk zSIP`Dc^_81x}jDZ6~T7c+Wy*f>^ z{aVkDuEC$kouE(RngZ9sug6Z{Te{s~TaTdB_EBE#gHx)hCGSqP75Y1AT`raP0j`^rX<`yi`T;Vr z7D65XqViZQO1!3DFHz#26q*Z7kyV2R=(c`+GRQKSo)EJ-uq&c0R_#IhOIey~FJ&=t zYALs77gID_2T=_Sqv}T0gML9GAA_;6&&72+WT|>p0?3XEymX9|1vfBk5 z%^-_k?_ERbJm>N){5ujw6@xy%y`R$-@DhhWcPj0Se=T^#oq^W5-B&r7q`qUEuzDm^ zvPwjr@DGLYgd(Whe3tM{xcY!f@Od%Q6e>E_qF1x%S~}d=eJ{Q1nsJ3FH5wr<{D5w? zO4I~80c`$^%0UGF9hIZ_Gc#$2`k$k6kmmZbqAGue{{4WEl-#Hi=(U^e)!J2;uf?@t+AUG9ln(RNuPr=Zk zFrc6Y{QxFfi&0fhzpjVOSG;-Wk(uE7p+?O??{NO`$>zC%3=A}dA`t5ew8(~JBCB8M zI%7&VQjr0c;SH##_HlIggaTx)o88@Uu#Kpk?N}OrXg9r4K-x{;RY+g#r~fmm0Bg=*OskJobg7Xu4JMi_fVH5#ZeTQ2-pThNU?z!(iE${mrQephb z_qBaHx8aeOjigjo9QMq2lvmuqoK0Iz-!0jwz@XDl zYb9=!m>l61BR(UpH9hYa^_h3%ok&RK#BG`Ke2VsfUkzS%uj^$KE?Lo* zrV>Z&0fz0=7PvV8ed0dsSA%chv^oa$Z$pI)Qo0*}@V?y{3+UYW{A-}}{wMm6H#PD@*!m ziwv_Ph2uaS%ytsqcEc6PZ)~UB)$hk#SR?h%3hgY;LZ~N>H1>5@Z-TMiX5E^VtLZ#~ zAx;`J{I+Ihyar?jmn067qv_Jwv*D7LnXNj#>Y#^X@36%O8oWwZan5qMikc70%Vk0L z7YOK{QnD8tS7M~CH&vw5pQF|Xqx@kl>z#B{_=93a_(i5rU?3?KU+sa-miM>W{$WG@ zMF%?i|7WuS(Sg8b)3-Ob_|tH9;2@!Y8m>XvM`qjr&+ojlnPw@9Y<#%XfnA*AqLAT% zXIvsbh3Z>*YTqx-L0DnpqMGG)XScNr-vbw!5M#|m8S&j8&Y~Q-oKbr1yApd(YyHvu zuRAZ+8y5#pzFjZgS?U6|*x}F;_E2|_!C)w{NS0v1!FehsWD$y%N~+;0!Qn&tqsd>+ z`&ePu6?Ow2b?6PDw`GuE3Q0fR_2{HXE0XM1>XxV$K0!e#Qtx4mw$RznXB22eluaQL z>ot{WbFJwdd^*o0f_+i(jWgP1tdRIJ@W?b1K8Zzp6G9lj|IR2Nv8VL#BJ0EabJB(w z>n;7e)fS$Y2=2j$?WJ4I?FWh2)C{QH9-Qr$O@xjVlDjWK412w2x)?MWmTf*ifR#b(g7)bS;5=yWRKl_ink&?38A6+Ug$6 z?x{!Y<>SltLt*l6Q-&`!E)ao|ys}_p$UzpmBPA`7XWe){o^Q1~bc{qXY5g}KMTUzO zG5sJijjTqEjHp<8U2-F!d{_%d;(9VkK?VXXIbL-b2xs3Ye`TpL@@UWUPF29&q7xb! zrlJR)FR0%wJVM6(uCwk~bYefO_1vDXRhph!p{7JG9zs^qkZoUWiM)EFf5KEp zndw9$S%ncP=M&&zpe6H;3W1>z-(m=fdF<=Md6k{@=VwRgx5zx39>j9BCUuj#FSF0`(tARyjh ze?IwCfPh4@13v+&v~H|PARiykB>#n-3UrzLH>sn*P3B*+EP)mO5|sz6_?OHrV8y=# z`2Z{aB`D-SkMVzGL;k;^2!QMVRnR$b{l5xR2Cn~Cfv-US%D>9C1g`(r$$`L{e;v~X ztohe*SiqWpoj3%n`5y$k0IU87AsWD{|3Ov(uEmnF3t(-@Ly9?(n{U_j$Dcz0Z5Y{kaqS|6`x` z2HLKD|C)FsIsWYK!0(p)&(R^3{~rDCec+!p{}Eyfybt_qRI~ppyskk&lp+7|_uiTP zL1rhI0Nj83>GyW78a0<^T{DJcM~mixVYOKCOQ;E327BtuF z@D|Ydx$iwutE_hVC5h0!7omKnByP-AA%h(JW<+iyL8aIIG`^t>gXban>$N$@xC%wqGNHj zjk(jw@4DFe!q%b@m?ga2q&e#3>EZurZ?fWc;d>$REO;@$dn(D(P4HzDBuH*3 z-Rw}hAlFYW=R#iiz^2GaBlk#d;hJQ~wcJ0P!eK4KYE2Cw2G&i~x|p--5bXq9DrSGn zBA2b}NV0?z9zfEWOV21Ea;_3|NFpZO-$0{Dux;rWXSiS8e%^aaXowf8!APEhBoT+eqoyG23Jfld%qSsnsUuJY=%n zOx0y53L#G`s2(yJ!{V?C?mU3Sc0J26&tCmkgmd^%#j%00*qws@eGs)^lYM@iW984kVS?~iA5U4yf|bnPInvosZ_XzSaAY!s{g?jfGjsllPp z2`&*-`rE8-GB0a>=vkpE z!Q0*{$Px?7{?!*rZr*~*%rpV2J1TD&8kGcwi$cz+33{sJrICQHpaJ9~yMLkN;MQm? zn{tAP3G#G{cDei}uh8pG>lYl>q+;Ng7G|voHfFmN5R-B?XkVi%zCq!f<$Ss)cPpQp)Wjk2w~BD3ug4b zA+nK75M4tcvW4*16X-y`SPwX^T~7ZPNx^5}VdV3FAb$wC^+Et)fU7_4>0*rWk3%z9wHBUqeR;u$1+_oesxuk@^bctnZxXNE;_G0 zz}wo|dOkHh$S}o(d71{^6oe9i)TP2Bo4j}cGxVO0kp2-g%&Y9{tIMo?6BU;;4`Ns5 zR<>K|Oz#_L22UG1o?~{ICfkSz+7@3lhx=d2Slj{5Jdh=W@`x>8)T8b-`HLrr zDDHzky<4c!Isgh5G72yd=}+%RlPvE(N_5+~bdli zFX@OvP<{BLwi>ipv&e6*kUb`e7J<6t3%Ysx&yXU%1%mMZfI6=;NE$Jm54kAy}U9JAt;|-ETcoz4J7O#QV-05!JEOS|RVa zr3g;!XT5MB*|%11P3Gi_c~;VDqYe5K6#UALw;z$%vVTEx`qDKNR_R#cYLk36+VniW z#1+l3xdT(#tGS%?1xD?z_7n~mtFM8$2GWHj+E9;J7Eyc##FuWro2FpPR+S@;Ga6d) z_0m-Fk^>uJI+Edwr~>8J1S0wn0SY-tvv70>-)`z!3l3I`tH`eX zpwy#qFm!lTmK7*2pR`nr>YZJazLrz0Sl35->O^B)%c^tiVI6>3h}Eqmme67tm1@{T z$zl~Yco5kXH+Vn{P>hjI4dBkdUfV_REK>6VD&b_07N@@PN8U9Web(WOBGI=&9{{1K zrh2!lWkhNXYyM59*s{A}T9saJnm22egM=x4$T@5OP=C1AS-*bw%Z&3YwocUbV+vO_ zK0O&=;t9)O?UCMYY5~sFFbW*ye-xaJ`9t1Qjb1?Lq5nYmqk3{q#js?^VBr!$e z&ex=t+O}`O{1V*?9V<8~8Icy{Db+6DI9Zt>5Bi)1rCufd;hFGeU7V2Aj9O>+R{~l4 z@Ngx8hkFeekTVrljuc&()M2(Iw#x>sb7kXfWKBBx%8FzGr6d-wM1gmn$aLR-J}tDW z6oMl{7h>J0f(X1)GL~epCzdQ3DIh@2M1eiW)Mp`Y{uZA2p$0nFe1R`Yy%e2|lAD(i z$dx5hsiO=}IwsOHupgO@&VkMrj^9kyHMHD#m*TU*8jgdAzE~a?+9q%xSSQ#qUQ0cy zXUY*7O_0GxYSopKzZe7^=3=$?o$r2m<|-mTmbWNY9?$DB-pI(i-4*q68F9q{;}95* zK6b>5Ms&;+I3P$r#9Uap3I=6oV;%Q4@-skDW)hh#$?Y8VqMaKQv`}f=09mXiHc@>%3q53(du)r2~%rJ#YIVlmKF zMZ;53d%$igfPIIFQREV?H7pn_z!sT`ay4c8@C{)J$}k)jqaky@pF4jLT zHBEuj#XR$fpmm_NQ7Ps`Wi=Hzs0IAXbA|sWv>h2?9TM3nX`L4d#EZFCy>E47+ZSLz z1fAuDc}UJI@50Ft&7dtqt`}aOx%g77?$FeCoWA>MReVpk){TE7ytvdVA3n0XOKV1f z3Std;dfT2A0dsG0%5n=Q<_zyWQ5{(}Dq&{J;aH>T7VZ^aZ06CephQ%H3L5S&?25tK|taDSc)?7bry z$;#FC+VDc3XZGV8)Y+fnU)n)_C0Of+*tI`Y&B?A&qsKYL=Vv;bzipVE9waQ=L3Ww9 zo}euOfvA?eq=(Owm_Iyn}(PK>efF+6Mo`x>)}6pltF#V_nidT^L|xr)%hp zgCzaKV~_*~J}eXcFAvN9q~|1k1?n}(|5LAhtrD{RN2rB*S$?Nbh=Bu#2M6Ebua=@a z8CYtuellXQ=_ELYPJ=Q8H>vkuQO4s5AVcBU<@UF*hESkDwXS1~oJb~07o4PAWU9^= z#8~zNiC+!?cO5G=H^gQ{(C5eqYaZN^Nv&fzZ1J{+r#GGO^}GdKO{e83efm7zcSvQs2%tTBm9mpX+sgXvrav8KNt$LQ4|p)^My zmK3Pd#OhmzpJ4XEG1WVA9yeKLefd!nE3CE#{8=txBSAuz`w=i`Zz-TP`Nm5=(u8eK ze1jV@N#RIZTy6TUntGwI_v;|@m2^F~Rlc~!UN}Mcj4$n{e&w30xe}MFo4Rej@QuSo zyJ>O@(!~D4?_j<$&U!hoW9{F^+tZDDTQ5?6ZS zDFeANGe!>`;_&!dK7E~6*~O0LOziGMo;v-x20wMCCL7f8j`_UD-2m{;#T?i!cet@t z!dC@Jrav|5k)D>$=8=KH^uy&ROnO8kr*Yoaku%_L@JL_R>DR69F}Z`s8?$l@U6zTf zx2<)^tRjNk#O~YTB53edV<%S$?W3l8SpCMXJ^Y^VGTypuf0I20oquARr31=*U=qG4 znhDmHphJq|$|KLzQRyPz&nCFe$yG1%%!XJht}>flH`gB{=NTIM$E&PYg*UWAg_C3N zAzXHKXRe)ACugrheo;3Mh#0`>OJyCExy2T$=U0cXE!xM1>1QX~gLUfzF8flL>1z+V z<9%(q2%H!#66G4(y&aP)Aw3ntPZ`qDH`{Yw8NXkXGx~JYIm^;UxjNd%x9eRK;^z9% zOXa>W+-CBqmS)OOt~w{^>&9&D5Cavpp9^jZ2ng0+wM|+6w_&LM$mbYf-0gp;ZRo!Z z^UuFGy0JjYDS_>B<^iiAr~UiGRxVOJai3tKfGk(?M6Zog6gq}l7Uvrob+VNFjYz^5 z$pkVZV~JoW6*S^tva}!KvOnJCGcS(zGL~L4FWNtD^p@OoH#{p(S}tB5+QJ%^R+iSS zDiDLc>3bl8i-~$bA&3PSXZ&slg-|l^2ymk@>@GFMr(xv+BYwFi6r7wU($ms8$3y|L z`cYzX*fG8kh2!@lJa>(gNrh3&p;!mV1!Q$P6^lic@Zkn7g(#sTuxrsfrt$9$NukK> zD6hlU%eC)nef@3Q>FRfsH4>f3m8mH(B~9QSuwoGg*<;RCdke{CQ(1ubpAJ~NbLDRZ`B3^yMD#Yr1W>@jga(JtGT@BO}eoRa~ zI7>D!Qib*<+tML~C!+_=0^fQ++gv-iEFa{D^!)oU*8MNHJ%{1HsC(`MpX*@eCti=< z-rFvfeRpeb7Vl0+5C|IRFB4j?N$ zu=iYojO)qUCv|*X=!w0>-4V>QE%u_g6oG6dsIUsfZZg$V z+@_d*+*v+8>-!j<+ow2XRg-{h>@klZP@lBe?m}bH$g9E!$^W#Z-1o3ZPTukT_7S%6I3A+N6NsF6@;4pS1_(x26I^l6eYu^?x36z(@~{Ap^JM~j>Z6K;ChCTr1jBQvi# zTPpESPZLR>pQDt?%ujS=RM|o2#MeuWKGMhmHkRDpZ9?fT>o9FThQ)=2Bi#n~H}b$t zfZ!#WGV4utm6aBaa_pGsbq(w#X-L6J#Qj=kN5R7i>6U&xVw7qo0xRVdkkW&mNaQmI z#+&|0u@C_ICMt7HrKuM5DZarmcqc)(SK$qFm<>j_%Tm%&A!A=VdK1U>E)0qpIE{m# zvZr4EYr+ydME~eE^#DhJ4JPM<)OS{ikaRx{wS2H^u+r2PWIo8otlGfxhxTqix2@qk zdgUAfm+uQdE9!YBY<$5BD_jib0*hfrl!GXXqwLcmd~oRcq&C@NcSNZohDT z1tWx6(k2>~AIE~^>jS(ldr}I^4rxZYt@y>CM(EZ=`>LxQ_Rbb+9CBtioWu9qpfC=K z+BAO!`?r3vOQ?Qyja%7JSNrJFP zLJ%|IGT|n8yu+Osu#}c#c$sT$*oPx(2CX43bIUJm5UqHZ%)&K?oRsz^<8*V7LtWJwSOqJvf+U0` zbR_?Kz#W4)pIVTs#b9NJHkp78=+F~*qnf~qfzKQquq`##LjcA(|$*VQPvU@&xs63GsVbpExwE z5j&@gas+77mbER^^Xwk;xisg>S(_ZchG!*HCrGRb+xqG6cCevol>~X*Vg`4P=TmH$ zmOa7FS|4QX2U=Q1&7MFh6YN3D^C|&6$_4aA(F+jqC#z(3znmyP^wP)dxoO-#GaYwoa?a0`h2N07o9=l`Q z?JrnOtGf+j)vG`n{TQ;vOeq93=h!Jj7oyj1xH{{7(?aIReeZV|Lj(DxToNKzp2NRi z6a!%k($c1My=qR1bz2|XhB*(WiFH#J>hKjSJhs}d5)GU;6I$t4iE0kva>rIRaYxqm z=a|50ErBU7M5DzoVD2JZ-sg7U9RsgYEic^ALX>uzII-F8m&;~F=zMjcgkRN zE~((pl4sSs--;}s%9N(DvpodA+|!x!OMZ;1uOVpYur}mN!KoE{s(qp02dQ`i|HM0M zCGeDHX`;K2H0`*A@oVVRor}d`Qm_3l#Yogv9xMm}y#r`(4SJS29E&+a{27p=g$Y$^PoS*S z1}428I8??Bex-8vAZZYv?%2t=J^`rptE?{Og?A3 z0(vL1bGfC|IrOO>9}#<>hP^I)TKWqy_I>a@9DOFMh^(u8XYJRtzI(CkYc=x1&ej~9 z^LE-pk-3II3}|Tu32f`#li4E2m77LHUcf@E&wtLW*byaiFAZkxkb@4+%#_2*Pylsc zuA;Q+IPq`oZ-2QBrwFgqYTfHmS4TNG&h(iYgO_dh`Bb>55ALMy=Bdrl0KPxie!}L9 z_Wdry&HQUB$~YqGR+1Mb)M}D_E*y}VG!$xKWLZMA>gskkq3k3;1ZZp4Oyq)bZNY@u zO%H@=l0{9mq()&D%W$OwL;2oK_&SOwP_0cQN&kp*>HWEDR5E)=Gez2l9cdBtg%w(x z=J_UF^E~Hb)`0pFL%Z4J7#CDuBN7-6w%Edu`(=hZxm(T%rnsGs6ott?ULwSd>eB9CCi@^=+AGb1fx>Eh@m(@I zOu0$E;kmmUF@1ct_?vmXJ1v#^D4uDHj*pvn5t#ihN(|*{u>S_9tC~U$%D6`Dx-K6G zpi#CHNZ2@+?b7EMpJm1HEAzR2P?nhAPCsH&kYLM3XK^$T(PKZ-zRuW~%FScc4shj% zbP}j}sy2z&foZr?5b$`ycYA5~@f|ck<8YtM7&Up|9^>pKIF}RoA2#ovUPy}K6{^++ zzm_mMy`S#-TjSVk?XJe5PKtmJr07k^c?HnDxLk%>6V59YPxX+9>JPE)$2F0t`qz?| zrSADq_~^EeTnFTk8g;r!rTe6zpsz zoDRM`&7{7Wm}!pG^c{II-VFcU?jhpo$q(u+xUhb$LNPy>^|IU;5Xn`ShfH2J<9`{S zqU#yb$#0<@sNMuxy_P$gi1XEVaSDTtYGug2vLQD5t$_;@KC>HP~piII1|atSxxp|86RVhqHHd zcyCpZ=YXx9Iz~ET-k!nZ>`e-(+bEIkU>HHFa+JnQiny97jSO+2DXvE?q;1s7&ronO4QM1(U3KM{jNs?5LJoSn3<`HgD}y;M6{aiY7NDtMj@%ZmDN zL5>Y&F^+yNKG=qDxwJ?W$RwtykJ)E|3iPxzBH5ledYScc+Sr(aWN|gMSpNzKc{hyz zYh5OHs4WXeBKN`U*1F+&h)p z-8?4y`9!yIH%`;F87F&+lc*}2nr~-a}V*x*Yt34>*Pxo6zM!k?f zA8a~Y8c*-#>6bRaQK9CjwFDv-gB~kDIdTc0#kSKEB{JL~Bb^eO&omXO~VD2Z;rH z{}#Vs8t>B0Q+yED(tnoQB#k8{3(KmOGwtW7O%SY7#qsh*YH>oc?~yd9c}%QxQweu#H^ zx1P--Djb7fUq^_m9w-3=Pe*&a&qqI+$t_+k)6;|9y?C>ymgiQ63Fo~@pA9OL75o*9*ho+(!rhS$_{B-V(Tf?BQLX&v)%kH^KRKwPq>d2v5$Lb#`MgjkOP5JUe79U2hBGH- zIikh5&us03*JZCYDT!P>QS2cUnxH&>0{B(GJqYY}m4*hdepfR^eU&Tp?*D{psFCT4 zHPtp1w2;DWc!0glkpuX|cD5dShiNkiADFtm%U*WH0588?{uA5%cQxy}c2cOawcS?a zA`&fUWt4oF+IFg#CkICa;YPVv5YPu!!(xZ|tq3uWC%}Y*i5!`5SvL?@#BNJBMwa73 zmgHNr;$!bmEv2ik{3DCG5ih9gTRr=V-dacGUsg3l9BJ@KFjpH$HK$S&OY9VMmqG?jK*kVcpb&b@sKkp9;;iaKit~!PRI6>9zz+oX z#9S*>34SNj+3amWD2Ad0OY^vTjA=4;3#zy->qQdPs-rmD*1}yOE0gO~FUf*YM(CE5 z6BNng_5PjM$PrG*&t$0`cqQ@aGH^#n2`gKv5{ggWjvh;nj_;@FyPwTGW;F`KjH8e# zei_n?JZYCaDu0KuMK&1F-*vZ-T87MMqlz$IPl)!CvX;!k&|mH7M)w;=7>b|ge&qGz z?ELHiwb9Cgt1m}2APUa&ID@O_T?xSV{ka(hErqMakXQ^n8zF}*^UkrUv{G*86Q<<|YorS8>f_gHGXw*A-X zuV1D6nW@}|LdmtQHhED45NQqo-?G*;>K*WIvem<&#V-s>5}q`;V=$dOm$%Vl;jUKG zV{?VyU{+1wd$*Gx44RMChpTRT%D173WEb(z$2lRVj$XrvZDh!P37&|5eN^}vFqkg7 zxkyVrzEda!%-|oWVlfzNsIvcQ4R*}6u<04ejMf&}GnPZoqG$;RNg8VZ`vDZ9+DYgU z-((&H^xWb; zdL$f6+YNFRIK3W~=n)_SeJgNLWZm7{An2@``P5; ziEFj-aUa9a=f-$naLQjAxcYDllVdBRuCU7EGf8HVFx_<3CRk9gO+odO7+#-@yR5+Q z&P<<=Xq)n-Iy~_c54IA`4F+8v5KuFbWp{(#zifFl?=X zVq)IWetfF&t#;QQ>E8(MO*8(&7u@^&5@W<#eE3;21X|%DF=>9++5$27@wjIc^jy(J zcyYaVeQ3DsKQc{ngG@vc6UZK^b^RSg`QbM~K-YAWWy^2<*U~{|ITw* z9%ROwc(JtbX?G@Ezb*M|8*$<20IJ(?b`h4sLGM%M-niIZ|3d;3Gs!O)i^QSlf;%$Y{B5va< ze1#lMC!TlzlYNqXO@ALQ`l$QX3OLXwylwi#By!}tQcTq1bykz_7G-&=&r!}xAds$v zTq)5BccJlCdzOCFEf>{Ndy;@N{Tf<-SZSvB3orDxRWt3Rj+k)tF$Lcjp8G=a_m|iA zkwqrtqDV&5d;C^j3_P<=cvgXJ#ceuAbeX;WTzY@ZF)0NZx6QWa$=7(sNiaFL2 z*Ezy0s)cOlRY9helM7)^b2q(j=8kU}lTIN_EJCAg{Re5zCw^K-xg~Fz z2OL)phX>l1E*3~RbMPq@^3j~^nX+29nVKMC2cL7&i&lH7z`e>rmY9m}?BVMh6jU%U zDo$b;Ffd%Vf1H^A9TApA{pZB|0}-<7{}&<@$Ne`V^yE^reS4(3<4c&PVx9WxsBgV; z$RbscrS0&c;3^M}vcTjzrd-xl$d`+K+G z=9=UAS^MN&XZ4%jQ`chsWm5o&cZ?9s4@?nAGZGX?IG030X>AFTT4wJKEsItt9#k4g zguocTJ2I)8G%U)oR~jPxKtEJb6Nn;)1PBPypkC>hBt0?OX(L<+1r`)om#s1@sD70!8;N!8gC*HbfqG5HnG$CB#4lpfxK_a!=}!$% z5WhoLc|rd7-S%})gQ9U%@A|Hf!@byJ1v7(NJ$BbiS>o@4CsC|`E=AC=MJ|VHQXV7> zxLuqCqsuwN(7pC6n$9SB-RWIg#LvvapHWrwsB`E3$o^^b{zHku1S&jQ{g}es**$g^ z^jv*aKh9G47!abR{mpd=AtiSMAAYR>Am{b%ja>>NI|pK0GdD_RL?n!rvH*0K;3yP4 z`N~dzEKFE=&2@squp%CZLbws=PkJK0_eYzNy*6K@uGNX)y(fqlFfL8{Fp}oJEU6Tz z#hh5=+FgYB@w1+`*od{o$at}FEt}w9$U#CsmTavYYfUeeBv4)9f=^I*@UJnFHEv4rcj;o0<&Z33UjS)Jd$2||QiL5=3%W@Tn!a+!21F7OK{*y(0t{hKiTTsb16 zya-z=)g{T94!&-x@h9g|1RXYB5ZQQbL5yv}M%o#kh({H>v7Eoid`#b4bQ`-nwblag z%GyW^9D<^{sa-F5q%87ogi4MqxbR?mJN;~mHRGY8PZs#+cEIi_1xiHp`oMAIiGh69 z?_gY!o>L-vtm(C~2H!s*r~9yZV*&Jh7Jl#L=64BL_YYz&Yw|&Wbp1~XsYgWA3ID1! z?cXrHG}Jv!Ct*;`?B$mnAF7B!_@``x=>35+cf2Lkw73(|oC#=I;LF-+N0%H{c{O_7 zH`zMKy@|WmgZ}+A>An?`s$o{(?Q;(rv0kXtOHhtE1yf+HndA`@F^ymq(w9eXzrlQp z!o#sjSnh9(ZdhprAkx?LoxhzzfDJzgI9-)v-ODArnsC#BT{ePIOKrZtH9Pk%J9InObWl6g%N9A>PYR0$^D`2|B|gX{Sske+i*Ch70@NA- zfo0d}f9+I&0ru$L2rcs{uzMeLaI=@a`(Bz0vTp?69jdRnIy#|nB#nyU5J8AfuqjI%U{?ifya~cmD2}{DxOd*<->1(G zUo3zm1%#@umLT_SS1%T)6HlhvdijTntV!^p(w!1{@t(kdE$~7(VbP{U>UiCll1?39 zMhY3TL4|Fz8ZH0u5&iVBpq2iosS@_0TkawS~*f_TdNlu0`d_G`#QLYp&zp7_Y(*GEMdX#Ig*|(Rq8nUd|{|$ zY%#^vse!y5ROq}2X%ZSvDHx+?Lz#bGN~xN}1Bd#Be6^whk*m3rQqnDr;bNq2!rsIO zS(LC2R6o0b>dGI_{ln>LfP)vla$gB)t35N`hRCZpb%>JIc7x2;qu=H+>5Ry>%1S=8 zTrA8xMNV;Nfmu4G^LkiljZ|Lp94RhGC8V+59LH#c6ZPFW%0+)PATPv`qp>z%=CI{r zM7=`TRzy0^BMJLHMykmv)dRvtaIBQz6ZXE1ci$u4NO;P5@>`}TBnr?s#d}A68pt(B zguw&lB`JdB6UXKR4N)`F_HE`6zY4|v9C&Fr8!cGjY!~Z7TmA1Gz z^r=;>ozu`LAkbJ6dGAPttJUJPXum@@^-*hg^$czAJ?)Z;*UQAzgjDm}Y_}m?);+{D z##99hU1WDhj}?Hp(=0gSKTtB*GYC=@EDhEw30NOx`BuvxSMll6g|w`mLr*~N8Dx3_ zAm_~HG)V88?7hc`G#@$0d20USl^<8z=KA=kZKBQU?P4nlzU?*8U zf-JGNMyuI#@L;sI(wbXofR^>>p2$R(x(e8{6M98ojH!X?B=)4+ zBH=hWxlDDoAb6oRFzc#t08oupaE$!}U@3`}xP+jzNJ>U#nno1I$jtQKtp+hZ;oDEl zEftVPey%ob9pF-Z)-8u>N*L48c22(verP$d>%8Y?5U=80F=v8pV3{tFfe{8aYtFdT zMH#q~v50ljYSKGpsjW}MgXqx|ocjltn?#E1w2HeDBA1K8- zbAwf(IM6yMXUt*@LXHj?~Nz)p)5Zdt*tKEZ+moM{0^Hg{tW-5 zF-Ow<1f@aT1xurk^`%vW`zld(&qt6#@iO)fNDaG0CN!w>WjyQw3|4;Bo(bz6w!S8T zuSdfUTFp-&_I0aIxb-XDsp}i!p9s1kFW*}5lkheZdpK~#7%od{QY)|lG&cAy`d)n; zVh-O)^!eBdeQ(DO)I{7iANCS1Aw8O@&W{eJKV=T{kCnwRGsZE7Q>k#dzy5scl$PLQ zAc)H;_d^O5tIXAvEuar@Azw!MHe(h_`3BSKdkf8)KsYar1SP5Ic4*l80$Axq?E1L_ zYwI6&W~4q@wt=iMQRz>?nAR;irDQ1qlAq{Gvdp-JU)brC6`%rplNmJ1gAs&T#W+_% zcZf7xn`4_Sj1cP}qpD4PJa~vc#|;fZS8!j2*$z_}ZK1fg_jVd$ski}%?@99VfkG|E zq-{+@B$hPowxU=-SZzHU@0v*jy7PC2wQ50Vfh77pi8w%vdX}s113_<&v8&C|gcM5J zK|6j5E9@>y%aI%MBe<{7@|-0R*)_l!)4i7K`ht!H_=1MK8$(w|lT3r+ebm}zh=7}_ z!SmgYs~pPbyO|MD78!}pvFn+ZE${ZG?Yybm06ru;Q=VNUJBjM(QvJoJL>%8AZk+-t z=$UPW`uB1Cz^g~Nh5c)R?bT$pzGE+}fq~?kWr=JsKW!*e(J zCU7&t17;C0=aMCh3;y6bEFal~8nEeL-P}+|UOPI9Mm6_sTC@5QX6Xsi!1Fhb`+F{d z!)VnJ!3H5Rq5^t9(h!Pu`#q2F>+H@KEj^qo(Q9?d z;+z^7Z%*dLF&50Ku%<_+(yZOv%G!J*x{8BG%i?2o0B*4?^VKlv!`1*DS5_HR{UI_O~+CN11T=*nuI zgN_XE*1y-)@O|qgSi{M6@HNb0-^4N99u`-w)IJk5CmPjQs|Dczq#G z;ZT0T?~o}UZk#g|1g|UeW8toG2Eid6N734!nQ)`ZQLBp<;DM26bulji>Q{6D2vSU zsO8DGfz%0lza`>BhYIot`5%7SCVu$2wppMY_~5ceJK4UAX-&bB(s!f==*1L1h_3_E zv(09%30qd4s1jcUul3sXf}zo;6=$f8qyfL6b3dW?+A8fJ(sz~~1j}J%o^|^7F(T1` zc+wLG?u)v!bI&~u7Ry`yLQe5c0?mVkm+#z!z7$Yyoc4JH!tuZf)0M_QtGGF{CIpEcN0{ZvgFe#YY-i1Da8q_ps^|0Xeas`wvAXUBuljk z;uUe+9xwM+>VsE2OlliMDX4Vh=ppaB?Y?2jd)`k1d!F%tW#I3hX9mq#&&$#0-8JBzpwTWg9NY^}s6 z)*h%zhs`IIL#GKyui!2-W@x+dW>=x1_p^pdQYW>D!<0uN=Mf-`7&1U zk01Pu;zC-ZLc>5#7zmK7bd|`7CaAyEGYgvI!V5^(DP}-bKB|gYU<1vL(MispIPtHq3ROx9wqhMz zQDu%UwRF-JazY5RQU&<3Sbxw|>yCes5BOZf`cG>rRrcnWZ$pNtA|oOcD{1W?`> z;KTQZ^Vn&Dem%zs<2wbBT$Q-)5_?Wp0gAoI?Gw5dC4(6CO(UXqUsP1}jsy;7ipP*K z(o~VO%Q+Z~B9WrqQ*u-N%-LkTns5NY*9^=?9-+u=Q~BDuCetV+!pH8~iHs}4o{2Cd z$JL@azQEjH3b+=XQbcSuFa7D~POTiDkd5C{3Q&W!V9~3@`M2hTdTgLhQJYHDZ$IaV2`HkMVjT%E&j-12B}BqGTHR!j^)6s_4CASe@7r4Nl#q*%8s&r9`#r} z7x+rbYp|vcgeF^em<3VrsV+l%A(-4x$b!wg(Fm!%x|Rxh62xfvgg7Cqly3hCTzALM zJJ_c`Xc%HE#<+oCH9z_tT`$L3fFIy>W9{(E4}xc+xxWd`l}2qHAW!h=z@iJ8ZTs*$ zwe`-hGnr_w!YL@>W|Y}{HKvT2O_ed88yLpTlJ%YG@ z8E23gTFq6qXa=g9D%D_!cbUbJl-0~x5XjrOYeP%nwX0;# zg{ZhZ?)${djV z!Lu8`W&dhuA#-sX{HkW}aHG2QXa}bCqHDsV(UviLNH4m7h>TD1mfg<94;{gKAxs9_JSlg$DRJe=&Eu>xPeSh;G|@q{D7(}-Pj zzZ!P!_UW@twclH&B=sp+$6l8R1jn{$58*v(**1f5c1S9t(7{>Uv2wiN%6^B{sQ)q; z{T0apurb$alnCtRsKuty%4+Ejp4#V`q$WXxl0I$>Fsc{(NLZ zxw7G$bDEM0`HnC%YYKT95z7BDwT;&#*g z7Q*J%X3E(t^9-@L(vHPjkQ;uH>mRk@a@{w|X!rY8`9~dH3z6}+v!+^OfwMZf{RK_4 zZQV-EP&o2L8ADQ6>)HTK23hQ_AL1t|LYVqsW{mqk2|ae;T7Z6!XRZIB zz4jl%QOD{_JJPvU;>Ewzc^H01o)fJbW{>ipL|jw6KwxQ`P@G?Z`J!j32uQ+7NySqY zBabS$Bwu$IfF)j{6P>)YM=2Kn(eNNUjai61r&iZ{>VzY`%qbjm#U&fn8T1sNZ(w5v z!5vsX%{C1&W67?VJpo|9oWnWNb@#yS0~c3OLHU&qr(fy2Ghk{TmMRGRx%+A0(*aoJ zRi+u{LTdB+8dqWqF=cd@o2QHztqGo~$`;T%DZutVM?}{bDu`c1fX?85rXSqLsiL?v-wX{?S z&IMiPw?P7(j&ZRc8ccI8b*(+&f$Lq#m&C?za4$MlB0D}dH0Rp9(?|G@$2#fs70o?=|c-z=9P0`d-kQpl@}u6 z^`q!-WdO}x#+^~u;Llx56UFHWxZJHJK=T+8iQvq`AB{}R5F*9=TVXw7McHFBmjMUD z^91Q!qpk5}MX@6{wln>pVvbGGJ)m9M9C z79K%pG2G-w(K&(hARiVOgNo#vS913m$1GbR4ZGm=zaT!~jm<$S5lpzkK&fFl>S9U> zboGI%G^CrX*L_^z5D&WmO>N2aJs>DgykmJSIPyv*{HMY&CqN22klk7NP3)+*H0;lVfa^>9zsKQ#k9WD=I~)qi2S zdoFZZuZ)fjS!?V0hf!$b^rwnETa=knz!mxalzKhJRa&F={fuFONqMxBz86$WA>4?h zFezM77{PmLdAPZ(c;4IQv`4x)Y0nKV$e0v@guFkXa{Y}f50zF z$qCkV5)?(AMsxbAVomYA<2~(-j#&IaF5mZbzDXRsO~zS#f>Ub$eT?8%hU!bsEY=Nq z>| zk^%#R?f3_EL1_Qy!z_k>Jk08c_z!hK{7YRV^^FW|4DF0f|6xKH0t?oT@b`6Ale)KN z)EXX0n$w6=PEtv3lxl=s?52BbNxUp|wh*6Ic>?u9ryZB7C{n^yB}48P7uh#z)=TXJ z;l`67-8{4d<+%?hWtGQqo3EKRQ_i2<*4bKTPoJAx-Y<)sQn$cioR*dM@{Y3&n zX>0Yak+HMOF*xDVkW*SuA^uK zb%HwMeZHv~myiwN)}u`P&poT>)2S%Ks=cOZpQS+ofd=JGI{ zy|$yP>2x29I~BRiM>eZ<38fc(W(}=iVn`+4o~e^pg~J1T;N3~x(zJ8T0qQF}qZeCa zW)%W=sGitz*&LF_%wFT*cq@s$a8nHyTW{5hO^Bh$C3 zu`5I#Fixd?nxZ(vcI5;U!#v*VW_HP#~IT$EjaR%PG> z*7NBi_GRF{PxG3V((1ck&_i#xc4WC%`n?hkYb~=Pz)UDM)o-qTs(^JWEfCf)m~8*C z@@2YunKP*H&Zp%kHtkufBlT9kw}~`#NM5`XJry89>_)TuvzMQqY`T^0qy6kMZMbq2Sfpww!o$~^u2=9oBC)3hX z(XNd$S7DDg-0B-^jvyQ9=xZ&dezn6{tlAEr*X@d&rR_ORV(LGGKlWR% zVJaK+{_^#<2%vTLfhIXl(`by^;LZePBTe9|p`|xF_8g_$PUG1hm8tiJJcR(&&kJQN zXL6qDgS!mjAv+cL-bJ;dO1EC@K6#1|JqU7t-R(1oQV~Gs7CAP8${!Fd+HFuxOWq3C2@#MgUOev7*a543>6hKK#Wbwx$)Qfi1@ghzMINZvd zg*+yW>HpY?wjtx_sGIFeRKf3_}DA(vV>$jS}GMQu0+qNJpHko;{E#? zOvGv5pdp&fb88$l8rA+PB-NWTtJBOF zL03OUW!hKjGUsly`3HQz`He#Id6rcUD^M%+sX53!KV3=nFOrJTcuF@i?JB{FmM%Wm z%PNd=FH-S}Y@%^>!w^ScqZ*5dRlff=N4rtzZL$|(WhEv_&2Dw+TR#`B&^_rPucy@! zFpqRXF}3Cq#}}-}YU%i;jgu!7ke%j`wAc(RcQBn}3$} z2?DohqCYpu5_ZvLmZBfJ6&HHCrZDQ{RpTa%Bd{dpJ?!KX^m}53VLHt$gmd;A8K@5H zP@BVWx(TOtGc9WDo|t3R2Icoo^VD$e;}N>RKr|+TtQW98_7&zooFRuBK4nDM2Y;#&l;zPyrsbT{QiS zA`~vDDikzFiSod>atH@JgWf~-SW_L5wj{)-s~m>GUCjK7J=&JbNdLccgOgVN3KiPF z(gmf->z~r)pAK$gUH_6UtP;o;`nLaYVfg#kh@rEm?LWlJO&^$76N(4;`39VhoPH12 z=bTUej>{L!*+n5-I?`WL@wD(#k|MCa(Wc`*ablzxNhg02x$k7Zn9z?Xnnk!wmN~~v zJCuW7H;-02t|lICKQ@m9dfs}b?i}@>Iv(+!R_v$F4(`5NUo?eppZjD(TiW3NnJWZc z^v#j-={aZPeF(mO3m)FX{}Gk3b0P-X@?3xBMlip&;Lj;3Cc5^<_p18vmWiIaFGu~` zxn)JU@!)IP7HBjPP)PYqdFe__{t&=Zp!4y0ws*cy!`;L3=3y{Be^bEQ5n5ZmWwR_< z1zD^VzipaFuOk5ny?o@hp5H8b^ykt!8pU~e2K?Vi8|FU!9*jjk&v=?9hCD=zkV!{jM%iG;rOByAcQ zO;1aDTx>NO`E70c+K2Ova)BTg*o@B-)D!(h|50OTC`GXUS^u*G|FZ-CvjhKs?Z9>q z16YnVdsEf`c8Kaq|uA6C}s1;}NP1jdAn2zSx!>sjMY+$?Jw_yw( zv^e5ZBiHzExpq#E=w_UO3JQpBGP+_moN+$Prw!p#W^EYdhc=`)sE8T?*faqU|FuBP z5Z5p3t=OAeI9Om9hT7|@F+V0i^dYNrSVl}tj6^~4E}>MRb8Ux;WTZp-XLmMGl8XxL zJ}epo2WmkpXGBn8!ZTYBO{Lh{<3+idM>#i#0)_~=?cyEkO!-hGaK~y39w>kk@gc$* zo&CW3<5T0#L$d0Pl*ZixK;+rm2(bwepoRQLZcoF`b~vfwVg5YkKJ!Oc%=jVk*z}4za@bAy%M)DEW19lK*NfAitsCd&#%Z&_7>$ zy=W`$l%$z}LY!!Aa{sGhlLn2zD}OQrNDV$d=1m^DC`&KNz33JCDq{u~)}U zFSW8tMiv{8zdHPF!Q;f{yCK$v~KFzRo=Q% zjWUppAlg}_jmcsY#8%2l(MeBHzD*p8T-B5A2N`|Jr$2VfEc5f&@j6B=JrTHNg6!by zJAh^nsgv&upCoOsPGJeE`oSI&+>cd zRQIJ_EZ8}{ODKDK!!554NFYD(B%aW#2P?cc(YEnRK6nHN#wM1h>!bgF-cw+sL1@kW(;Ed`;OZ7R{|Tg=}PG)`u)C=0~XI9wes}h(q-%S zvs6Gf?*%nuc1wKPv+Aq$9pY2?=eY;cS|CNui!P9<*pORkPL0Qn^(~Kp!Z-yAL|O@M zS|I1wF^m?Mlx2UDt26IF5clH`M@*AJE)TE8rn3fdGtoYyy~-jo70OJJ+PPvh@fA5J zv2lNpvak7XSVt5+&Z)~&*S61;OMgRMB1n9v0DLv?!+hU`u!5@51Ae}I*6X_rTVV)+ z|8oU`z`<$Y>R;7Q{AzX-6@Y>piNwh`~H!vGFc-F1u~%2F-cWG!te7HJ*>0IJ@Y{)vI;trwSd7NStNT zZi(-8xKWAU<`NHqr)jvEKbR0nlDp@y9NLW`KM5v_Z2WF~Xn%A59EKhU{EyW9>&C1+ zgMLK*CMIZmEvN%-T4nyd^J=uVUnHE2uc%Z2`A63QK-Lvm6 zl!}D#L!u&Q-8{^`y?}zhe*k_8A*wVc9h(;h>-ED!M{R{*cj!p-n}1T!yLBi!|Kev) zJK-kGzwaIe*noXarTYs1Pj5RUmfUiimoUG%0UK_~0yBbByFaxrIYlH_2j;|6A(Vn_ zfRm-Mmrr)V`XHC4?b7ONOJ^;ENKDUL~U5NWoInAljJZj$91B#rHw$TDf%WeKMd^xYO* zn37}Y&2GpXoWfV`Q_B>T{H6gJKbC1!3UVxdblfhRXVGwpneZYN*^?LaDF)*4XG#C7 z7yAa{fw-R+LN^8mek{KBN{^;BtUQ^4eVi~EP~Ovb6t9_EIXt=p%`hn&dBE5!e`NFU>Oy1gUJ290b9M=PGPKTUV@)XOVpF zzQ~+&c8Y$GjZ?|#*D|uW%xAOs!x6wqc^95`y@#0hVj*wF6UZeiv7<(WuZSu))#1h0 z*KI<8qR25*y+-D%TUYRHs^KL+Cpyge=Qoc9!_svB zbX&UU4?d-+0cY%nh!e2JTXYPCHSs&MC1=2GCQkHiTNWtt!|79bRE9#vK;`doMrCdL z`!AB5@E2Pv1`}t#SH0cC;Kvk80;(0wXNN$dXm>PiLSk&0y*fM?_bWTWMx2BYq6~P~Y9=N~ZeBb34LJfqpKl{lFsSn+kbqEtKc!Ix$T?#SE&Yg%*fTQC zMQggjz41lixmoEsFSiG5$P>%8U3jmYL~YGxCl(xKCX_mO4A8&R|116m+smN`Xd*Lo z;h`-kDCSa#Z6;yHu1_ySq+Nhv9L+i0_p@RBQcU2>mwL0h6^; z@3J+QG4=Fe_B9tL2R&!wX9ZY@maC_giU=EK|G3lafMUCt1)+axH*k4^T@jR?N*F6A z9G|DY{r7p)ZTZl|tDfz!&_q#D2Be>W4fl??;CW{J@6eWon&i!Pg{|22LY}sZ?yxGD z!T586Gyrf^PF^rmiS}oFRqPT_!@Sk&z%K8)oN6O9ndR&UTY$rXYeE8pXpNI+wNCx0 zwTu*6|KSQo;ofjpI#2kgz)e+t5Z1kK08qtz=+0^R^(QTjP7VKM{x`g2&;nngOHK9r zbNoxiNA165@jD&75FDbUhHTMMOtuaGUDvSx8|u#3x`KwffYG+9mBsZ_$^H~FWV|fC z;j$l>%_x;+thRQh0J~8*U}6j2#YJ zWY~HhT-rYmP;4o5w0ygA(O`xk>9Lq7JL;hTN#@& zNB%0dQ9RLbF$T+-UG7k9R$D1h)7fl0o50+h-pz@tfwD)lf7%uy=n3v*Zz)^@@NW|= zCA%U*#XvKz*=YOIGRMox4wP z@VJ;!fp-&lfPJ@lr*xah_T1xisN*KtGnbWDtXW9DATQf~gf+UoPw^c;3|o|Udsyys z($VgK&(8~msSvKib|sDRL;PaJ+uXW^KTfaRo5yg&?_Fm($(6VM0r;6?@^KCMv7j$0BSV;V+$7puUEi3lUO(%940rnij(N%q z;{4D)vhz<5KY3bG5EFT*-2^#ZdFG>Lh@bEA0^9kU_3yFJAG>X&J@{)hE@_N};_0;i zI=^MNFppS0bL%#z4>=QMWfS_*1?3-hPIJ2mc1?z4MI%-|+W_K5$IR}vg^q@^&+goa zMoIgq_1b=m0!}<{$l2jDBEuf>w1)ZH2Xkv($>m_CKTJ6#4mP(2da;+jayGoNioHq9 zALgGL8Etp=7?gGia#oA+Qu1!Ii@K=F6gNlgh(?!n-mN?ekl?G@g2*ENik3&Ij(IX(gCh3^6=_yYPR!|yc!NgY&aGBVAd(U; z71ThsK#l5BtNf-5O2a!F`0`q#20*oo@1?p~oCXk8%}H*j_u7J0MNW4|8FNRgR+El}$MYTOtcHwAczrjx2$BBePc3vUZxYfj9x#PJe@Vu|N>mu+?WH8cULbN?*tzZHsL zhR8;g;Z_m&I+x%X4B7?*uwYDFuqp*cy|G^YaPi`A7smp%){u;UONHGg~ z=fx&1?D_{)M?24qXPwfph62KNAjRw4<1BqMerzcW#j!QQ$rBp!c!cZPx1)vZRW06W zu5V`BILl5*q(7gWdU$~2WDsYc)`fqqE4!L=+7_QQ^DoXxvWYrFj=coAmTAI=zLFy$ zbdML_$=2A#q@i8_%JJ>1{oSv@PZk4yiCXG>cX!aeEra7GX_~k_a?f=X*^B79+S#gi?r5?GF-Ll95>eVrYDlA}6Ww zZSyC7&Zhxh2ch@`SX>Ve|J>@c_5XMAFGvb@JI#&U6%3o%E^zV?|K+xUG50!0(6Mq5 zxNy%mzJ}H2=<-=MzQn02`6R=>;>UY{lGUSSqG-TEhDkw~F<6vc^j6#0-&o=_N6+{C zUe0%U;E4w#N35RS`;NW$=+EZK&5y0xwp7-}q6@5i@mZ%Ly}|#pd8N&tJR~=$pL}3} z73p{U`~;zRam2}EPFj2gRUX3q_JZ;draRZ4G8n{a;LyE8J+GW$uT<~U_jkxsFuG}0|F6;*S*Zee9qy@3<8qL>Vmq%L%ywyu;?KOU% zLu-_G&O-9-50V>np-ii*)}ps)Zn`e!iQnKK;3~pAEoet2zJRPi&AtI*Ggg-OvRp zCr_!YjSY|=yAFy(|1Q}+MLf)J6{(1M6rF;b)f%o}{jT@+bgv^q>EWeZWtcO?ddA~? zvA9&3xSeUNcCG`5g?~72y9>4C6~$iIWc$`3)gA?t+uZpHT%fob+7|8fIJ+(Qzy z>e$b#k5nD&ZgpgT*9OuOeop$9Y1{Xrct*70zwg1Lkenlc5+Sa5t5Y#3$Imm>csr49 zeRnBxVlw+2UkuyL+7T%M_qTWV`+KoHwU-@#jZVjdH_;4Fdp?OlAb*zsU53xelka(x zI^mFi?v2*+ylYPRKrR<2C}G&8?^7pV@8S3K7r~^7;Qhzk;_q;XN^4z@KGq6EsKsog zgkPV~qu=$iJZ}ZZt>rX#I4Beb9<5VFHUa$ zHmq4mqvLNOo9U4ovVmWhYJtSN`nA&>WghzSqmw}rav{2!UWsFO7ircbXW4%A3_)>C z%>1=K*l4!U+53Q+uANcKsq0LHAN8%{nEOFsG1Q5b6two#ctiWc;_8a0gRwKUirT8Y z$eO4^Ow2nd#BC4zZ^hNV05C?AHWD_y_PN`vB5TfMyL4a9nK@WRjs9O$y@f-Q@%J{Y zq9THXNS7cf0@4y2t#n9BNjC_L91KOIyBnlybdFL|a>8gBh{PBO14fMzFTdycet+-# z{tNegKIfe4I@h_5OBY$0=I;~bHGYC-a~EOB)iNLUZMQ3+WXnCxF3l`9re7z71Jg&k zCI+|AD7VSU=x5{!N%sE`^N+{DQpg(+-Xb>q}_{a9>>A5#2C=_e@f-4^q)3kN~c zKm6H*oz&OPtGwc+#rxe89kaW+Nrb*zOgECY;So%aRGF#Ay0-d1;YJ`OeDCm4vV!*l zf{!>&+pB{j>$FH>?K=ZzHUmqra-tqmG%1L-AS3P z`AS3I@L?RtO#3@hta&=zftcn5;7a*GNF$!#j*6|&8ik>5Da|;jgt9pK6!Fi@T&2d< zDg*_H$U9=~RDheFGK7C_(jCFGiU6US4tdg@JZG0VUoX)uz!z4IrX4GRojA4& z^DW76X0A)x@|pOaAm%`aWl^qczt>ASK;Pgh21Bp*%UXU}Aq9)}2KnPgpW{oCA-d#3 zh(YY;|I!?KcTUA%>jwPAhrc(+XZCqBWTNHim#7{Wo=*9(38FJM?%y5g>h>K;qiB)g zo@H#z0DY;khl-3Mi#|r9yDP5XVO_077=+Sb?Xor-TVT-PPqHr(+LC4MCnDAlcRVGx zBj?f;`ZqIsQ%PduL#+V@zx^~g$~&ZR-)Y&a-kq#S9C8RA2>)AgX?~%jMLOOZ6LYU* z5;3ZO;_(2iP`E#LYgeW8Oiu}&=|=zJ;Q~wptbYAkOWzsN;Ox%a*NkF`tgrTr{x%hL z!T@|@OR+Yb$?!4?5D7Ei2nGMVuNP@Nb=TcG(%i@4%%zAt0JwYSiUELbKST`W%;}UJ zX3_Kutd0?=MCWQ~PQ6j-1`qUBf0t(aTtF?M36IR1$jTw+;+6ft5CD-ELW+xhW?@L; z{JZa7pv(K|GEE6ZM#xt`6Z2p=8%IPbqI9sSn2Z#(-tG>RKb7HLhX|xR9Movdgp-hgn7K4@U43ZJq3t@y^ zSjzE7GsjgAV!!4MBS_t!yGUe**eooX;pxOiOSDr#&9S;(EJlF6OmnbFm_sTH(vE5> z-1*>)_#!uJ(Vq%^Uo|gF@~rJG%6QC&%&`#uV<=m*Q_PF51t93ROP{Kn`EZ7pnv|}( zkz9`#JUV-P%<3eD1WlwwTIS%+%5V1}HD#)ucJLY`foeVHQ_9o(^kE!;8YaK&@ zLXY!&yhnDB&ub%BMoBA0HTqy+9m`3R{=G?OH+!6$>ElTT;9#Jio<62x4@z87cJ|v|yo3CSdm>iR!I>c&t=v_S(2RW1 z(5Yp2hHT*aj$9hghmH3Wo58bWqyNF&e^yoQ01Y6&q$&pM;3P?STmJ5s{O~k!_3sAZw@D z=~RWCXM%bi?6u_zX4fSR!lOl7=yX5v7@38T>S#{eOjUs6N z<}u_3EIgdU_8&hva|rb9>$+7X<)vNx@=2bH;rJI6nVOCZP#bt$7_@zOu`&}_=tw77 zfu{i%irU^p@VyUnaBf}zC=wal+T3;vu=4-^ovBEk((Z5K@_qSE4DnyFwM-C@S zU0kxc-`VFUjAgU<_LqEM4HAw|#TO=6+sU}`ocUQQ@O%MLq=@Wr(V>2~_f5>(@6S)v zgSn@_d)T$i3~F6HcrKB;)ja)mE$8RHVuwE*pXY*YV!L}}TrBOE%Q)~GW4PjM@e z%D-J?g6QAJAMoGu6!E9Lqjh<5io3B&WnTmwmfw5`8V`GY0p@3J+`hgz!yW==*woQ5 zN3vMfSx}yapXJ)vMmMKoaCo+U+naFOW!3n7!Q0pnu?C)-syvtX{kaJ*8jqaV73ZN) z^H#3hWNzXBy$E0DsmDCvVz;9aZy@MbkqY zVrj%h#P+qDIrf~nYa4>24$1~$lrSA1=2~Kl$kw19r}XxT4>-<9-OWpNgIU`1aUt0+ zDW;X)h2rf8pI%``5zd_(1ti4YD@_S`Lnqe*y+HspgvVoP0d@6ga_Oa1!GcsyMo>e9 zcx)?SMX-x}0aq;Ht~o%|R5rq3d+~P5w;_VAaoK)3&Fvq-XSRA-sfL7i^tlW-+ApRk z*g2*4UR3)lTJ-G3xmPhpn%i5{_e$m*bTWC9ynRQp_mfPlUHUQW2f2LgNR<47M?`m* zTiF#S&7aYlFApRJK!5}ZU#sD=``VfQFfFlMGF8loG$9#4Td9pfB=}{Bszq+lB+;Qu zu(qx1%RTaa0+!e~(&JB*V#@x3HI>a+%(Fb40~i;>*7MZj$d9vf|v_ zV#iTJG_u$A;XMj*bM%?LHUH}2#?cgVD@vSsns-bp_#NjJ7(crT>jW~}FHz)mTxTVg zJ<4{^2w|^qRf#Dpx0KlW|0GnK9`yd6h}rZ(rkv2qg74*o zEUJ&T!=ptSme-~@E^+IPvi(3&Iu^{RbZl>~$$NV_srkkE#NNX?u4_t zN6%KB3hzHbR(>s|U`Iu2og1HhYq>L^;ySVwrxx&L%8TKpL13QNs*H5;>eZ3)J^fYu zvt5ekOZ4?c6+O0}vSM~OuwphxuZZ%tapim0a`!E-u%@Mha^NX5x z@m*{QUHDWsEJ_xFEZBQbb}tDK>$~Jzf>oF->&jz#4l+A{G@DpZ0LVVh49-^F8rK3H zI7o|cCel@(WX~#jv~py{zfv&G`;8H6Jx`kzjQo-Qc4xOmpm4pMZkdI<@X+|Wb!-i^ zYA_xb^MC>V$>aWHUNCAmHCawOo$G1*>w;D67i5KaHYMBq2c4-NHO9%)^(uzb?mLx( z!hr^u0{o9bm#ire!$o_4gwQvc z=@pZ9){36bA~27Zf0btqZOuv;FpG=GN$w0YA%;lSGJ{u6cO+sl%N7X2Wv@t1}(ZAkXzvY(B@rujJgIj<;icD!VH~Np~altua;*4 zq`TdHtjvyV32{q1LLVgn?$#ZHS)4)VuRnfMKZ{67(=wtAUW&Tzp2{=BJd2Pxct}(5 zQX0F|Xc_WwKssRrG&)305bQQ&9QobG1nU1NmjxkaHq}<3dWQp?JKlOfD#DH*vGWKi zPy%<~m3G&>H#u@Cy*t4QtI2q(+g_8zYNr&YLg%cn=<2_Lye8iECn8hG&F8jWL+E{- z&J{7Qat8b^{|t$L*V>E^71k|!6rVUo0zF`ttQlR5-T$NdVR@0IZr})r?~@BqgZl;7 zM{EyI#nt3(znxZBRhR7f7_q5B)A&6K(*LHqqk3qIO3}-%XqL1Et`a@@jmc!Ao5LVH zAFxZ#$@%bgJ1DIhx%RTyMjPnF~J>8a>0fpyqiJtVh> zdXaFomR>ANqTwQy&A~A{n?^@575dOhT591Q87pYu2MJ zWK9Z@6W4`Id1z4g%S$`LDs;W}(n9qVJd+$bPh_VsHgJ6DKd>=-95_Xf`})lSYaOZi z!%t%~$FuOPB&%os_#Ssd3%;0cGRVeU9qOx0-tU`MpAIpoa3w%gL|Yl6MY| z1~Ga5;kWcG;o{!E=A;;+sOg?w#v64Kk{!X_1xbJkvaqTTofkvcO*B52msbj4*9Ng& zK&wqda%eVpQqN%CL9oytv;7%ROA-B7Eb~Fe+-o~jU&r|Zmc0C17p7C*eIR@n9v8`IrlngvbGAvajlxlM%1!THrXA*Qk|%41VCSgk zDPIh(hqr!2p}eXG8ZIwD)pp1I@_+WYWDx~r>s2ZqKB{y?)>IV) zAVZQq2CNXQE*@kJi)a;A1outtSI{~cj;zE{PT`wag6kb*Ec0ofP0Y3AmEuovxl&`K zm5p35`YkDpL|Nk7@o!)4#@b0a^0gu#cPfRp&W!%$%nx|j&lHsZGNi++q*fdq+2#T4 z_RP1WAKGj`Y9J*jg5Qsp_1RiMQSvVQ%`bgU47A?F_PsU*YeSeQ8*OPUiT`+=C&CS- z=U>!&IO`TND$vIT%ie2(E&^sCg7mLfR~{1~#aD~6WGbSi1RG5b z3e;(pV#>BuxmF$CHJwy8aDK^gV98%C6EWN&Lw#d>`hSLSxP4}E1csX3bw;7@I@Q_(-U#mn+y@zBgb!U z^1?8DlLaOr;tE;QC&&OvC!T4=31_G#+!zYpdIr=;QE19DZ?4Gx^A?Uu3N%en`FPVT zAgZwgj}Fh`e|Jf$e)c6xqRd^oV*T&OSpuiGd9RZ5Kg!Pfd>#LIaW>!PJXL0lkS}mK z|Gn7=Q2OMw`0e0y^^HsmOSU{Z%9xM|E_5K#m2RPYw=eBx;n@aY3qDhxZ;x-hs$=@E zlEdOz0qUV*%0VUFX)EO(cy7W?<_Cd3*J#w5`7xlAE2QYFGATE*6rOba+(imTwsiAe zv;I*r19+d&KlMveM?m6eFD*9{t((2I9Cp{FrGEJDm%6STp}fNtaGOJ`!vU|)LsLxL{1vrS+piN49vQHR;q-}{B_uRzQ1@w(cEb-0gV zO0RUh;OS%88grWg)!l&x>hOGe{Mw1MtnITeaXwC>~i% zq+9SJ6RmQe*CZ$hV@f)OH2(^YMoS}_88#unmxbv}kL#(^X-c!<91p*lz|X1E zDXx~EXt2a^bH3dfiNztzBA^W;^7U-VkH9wBRfX>;pi%-(J-97$h2}MTltv;Yw82j$ z1ZYNR*6yJQr;Jm46L8gg$gx*2!tdlW`&!VoY!wVj;u4e=x>*$QAYbdM=Ob~GNX<*9 zPh36cK*Cq;)!d`)2DAmwl%^sa?>n7To30OC$j;Q2yWZtPcL!R;#~U|W^IDB6q)28=4F@1Y0ONPd3r$E|rBGZFLvqiO*XxcP9Gm5++VN zT0vGh+$FeL?*7VlYnvK73HNNdhTjS=`EsXuqMb=ggo8VJQsA41_x>wyWqMF>j67aT zI#lnoFIz=ocNQRz2=b=PG_(S4@dF)^cy7<9y#iH;)%shRBLx{H#s9hGTFSB6;Xd59da1@@K3Z669~; zPp;~?FL&rDCTp3N{?48~>&@4>s63#Lbp~dG+y`2@9&Rm2B2w}Sl5$#E6wa(2o21`HrXOw{Y16Pkr?A2q6q)&iSZ-hJWA2@ zlC|9>q2fbuJleJ9t(5V(>!Uiuz4wSJ1MwjL{y$^y=GuC5SislNPzR{+N;{kE zov44*RD3~1DQQc4BwpVSrx&Gko#Li&)niXs%5o^ayo7>>hV-opuk6~EaHADM9GT0Ev97GB>uB>#Vm!|;rb?yV_yWCF}*Bcg+ zufexV-ITN!-N?na{k*Yx;sJXQ&mFPeIN2tAaAS}^RwBF1Bc=6Adcye8$J5>F&d0FY z-Njwe2gz1wKWhscv5vmFC$cN}=#^{@>2tfy1?pd03u2N-=eYPTcg$UJuMx zNt2TI@@6$-=L;?%m7G$BnG3%$vNG}6mo|_`Qp|$?@{Z&U)AL$SYGO4UJV;ZrI22Ld zMZ3OQW7SzR{!bCp+hbz(!jV5IV>>m0aoW!HvzpI2`pdZoLnyvcA^>o)y;B#>CN2K_ z8t_#3cEs1G0!rYgSC>Q#?|e#j!{%t1YW*Z4jbgW@HjP!81)0hd4+{yd@+N-A1+B#P z$WFg%I#(jzb2K$9671&+f0X|~9Z`nWT&!*J;fqmb-J%<^n^>|@%L;X`U&^x7Bw3N3 zV4$E^9b;n(H?0SSW`Q5#(sp4_P4Z8PL9yrkeuG5u?Su^xb(=8nEDJ93Tsx%O8yC&z zX|XJMt5gXpO~hv3%!{^hrB_0HXQ*?90S$(`=y7OkNTtp$`a+9n@-WK8f1p)!g3gq72aQ9ssa|MLzZ&u#4|lGQi6I*6@%gVguE(aZ`D?xdEzoq7Rn2PXFd{36D2o@ugI6zG)oJ&1Rmj;OVa;e^a z#vsYkx;FTE_H0b0C`T&2k@TTlbFfR8JIh@?E>s+Yw?x{(JLD3}O+9VOwM3T`Bd21} zmiEFHLZ?7om#VCl_4zo@8^Brw`F=5JGO!dSqnEMo)Ld{4jygCTA-_H!7a<*irI%{L zvs0H{c!3r@nqvX-`<;hMgEIR?gtiCI#lz~xwAvZ?`pd3{lh%#?j)eqwTB0q8J zJHs_s_WPHX!CK9oGxx?BS-2-NfM=WlnMPQnasT+IyK48{8_mZ=&^%VyC%OUM<#=dR zRsD0X80Jhn{*X$8br^eIyzSB#kj4T+k0Lfbu6@2)3q^6Yr7F7i{4Rxy)-ls|?vIui zmkKa?`m!iF(Piw+h8(b1=eRf)>Gj~bag!fdG&epO;<4)}zb^hgpw`2m1`Ro@AD}_; zm7&b{Domf9Ix&^UwL=#gVg{9XxP-!)iCHgmM;W06QIS7T<{O871O0!k5&Eb!9Qir~ z`S2u{S#yjGklCcr9#0E52K{K+e89Hs{a$eY3$de}5O5ZJYfnFo+VBBD*Ax?cbf3|y zuUBtC$-0_Wo|Z2Cz#6XSMjrhA(ncxa$rk8uYoj_qJLU5Iw28Rvib$pgPatmlXi|VU z*}Yr64JF(K*|6K;lMLnzgfxM@OxU;=x&YR#oPvkZ3{z(<5|f%qEPl(9_0)*ZPe7}oBJwnN7+WIA)eRLVjnIKe2Rz0sR^vWCCi zL;PHgt$5Z4nF##BN2ZHBh4<>%qg#dG-Cz5q@$-)GPyV*Q{{pm#vNzu+Xyw>??F+{u zMA9q(C~Ric`S62ZFLPZD?5>KbqyJ0QTj<^aYHcUDsgi}B<5`qP-Q0XP$vo1V`b3uc zeMt;0#8GZOw@^l){Ho>W)To5E&;~Zn!*KhesDA(ANwnWFc=|$Np9c-BM9}ZOjo6mJ z5Wx42zVF6FV{dC#SQ|Py1Y>iA>mc-0JDPO}-p3G&9Q z0pc#)F*q{K$Bc7tUR}M^)WUG4T3AqRLS5P@@137!8VzwDu7B`Q8NV&Hqd4UIyQ^Qv zSn+J*LO(n1KxKVMe4Kv@^Tug&fOb>uX~aV7me#1gfJ*Wo!MEA5rjb57Q#w$s$rHJm zC@D-OK_sWl^wDWfc=4o1)gX=iugEND7YP6ScF$(0MNN2RvJJE`0?K@Xq-jM>59&Dw zxTRw%52(`7l6xX$6)Gd{&jCy_&93AGNf8Si$DKs8(He5bB|bvY*Fl}Q2D^40@s?*7AVm5so)_=Z3PXvO0HJHfl; zC6=9?nHulXx;mzin_94V9U4*K)~LJDJ|W?vP$*?*AU7NR)F7-(82W9#Q*|&*ANfw*qn@RY|fiaM@nt=Jkmr7(9LZ6H*rm2=HlV0R@@co zCPlO_*$TD!2)o$a1&j*W5S}&3RF-aPAF;2#7S&t)$?CY%!ltZ+jm^ju8`t`Yh2q?{ zYK8qB#ZRe2TzXJ6`aHhUQ?y7q`N{j6Jgz8}(RyD}QGl6T)6l6&pcpdwppn5Wh*D|E zEC{S?ArY35)6!$Ka>(Hb8pO-xNnOP?yCRo|2+u)1-Mj9sLtK=c9X|5NVe%b2si7AU ztUJlD+{zWXv(a!y(U;gpLSB^UlGV1v(FGxDgUY;yZHL`9{na9&>KSs*M4?9*3i};+ z^rJ&0E=K~qK37Lx&WkWRIL;)~JKfo{O%-^)Qz$8LgR%LhGs9Yt^LC>BX6r}5 zR~O&Ff--(4E~mv`5}9l@m)QI9X|CTu!ReugG+;sP&LXcQo<4({gkC0m%?E+E!Uf5Y z)gOT?aE9yOl*Iqp1N~#6b?2E%c>2~`iqm1)t=&9-N%{LxIql|whBY}=>Apwwt_jL; z_iemgDw6wM0<=DIAEkmSIrVmEaZ{t#sq$W!Y8OTd*Z|Mb#vDtrg!$EqXRXg(Ya`}A zAo-JO29rwMx9`Kcx#v9t~rg-KJ zsBaY{QhpI~)pCfP*$y=D9OZFpBzEYSzv}QIq`YQ~Pui&NP~5x1&%hT+@9Sq@OB5Yh zN9tTknv23&Y#^lAR~HxZP>qd|kwi%GW+D;3nK2|nW#mq_+})MXU`$Xpk-3#snqFB8 zi2aJ$`T{nH`5R72{MDD!BYGQnNlKXeYxJ=ddYeCiOOtKOeIHK)_2tkw3Z$1YQ;u*v zKoA*nF>@>??HJZ%H~!h%ltOYMFiJZ)#vMW}2)}aNVoQq;Sx}FsRZpM0tCAxA&sXrf zWh-McZf9t4-8lFn#}d}pnkx|2FlJvtBtX}amp7WqoWNCrI{}$?LB4 zT-e-4_35jSsh^E(@miK`tH$eI9qYJ8U@>~eQJioA8*z{V)>kf+aqR7AK)9H)6biTt z21h&7PbP}(f3i`f7mQ4`&B?WYJi=vWmh6PSD7-n6=<3XSDz}v2i?GEjCoebsN{jP& ze&Y4mB3Mt+&nwL6CioxHTQ+5Mh47$6(Bb~SW{Gm6a-++^`wUba+B%8+cfnNTF8|~Q z+y({*-IV&@Dk&=Ys8A#Z+MngvAO1ZA1i)jxFjxC5_5peJGAqP=W7639mPtEF6$S(% zy~fgsKA@4`rNutA$xT!&TK(e%pysq(axrmco>|CyFj3K<{TE-|6tA`2e3RwwRm-=r z4Ij#@=vbUr0xv-r-|`Q_76#2R?KRBafVn*R3RrHa4bxeaPormhSS=O-V`TyA_m-P84@2BVAz z56&27)#gsOu$Es4*-A-uY_oix+{>vvLJ9G*XOW1mK{P+WVH**d4r5tIhEJP#Mtzsh z+gf6T&JYcrTY*`$OWHEQ3hO(@;N-6{Q2S#6azJK(rp6a{#nVZJ@|jM8dmAn=7n z?by5-*qRq?JHQg7J$o@ok^N+W%;25qBiTFm$UpxGZn|UpPeO2K(o|3d{OxUX{MveD z8nyjXb-w_gj@`*4>>reRrh4Bt~9xbbo~>UjlB6-%JjtqxBm>l`*yrL;a3OBBPQA< zQ+*FRKv$6^cI5q`nl-E3Ddz!Ni6oS(hK5M z?Aa?PbMv_q8v#4hn<*rpZ@eIsYlw8$9%B_YTAXVVEJV4VP8aCpyPg+DAPlizZ<~a1 zA{LU3Bn~nq5RTx&6-qT>1MjsT5rbOi_!k6&fr9x3@R$0JKP@}MVjX>-IA1Ng(I5or z$$^J807`F*->;j^pYgH;Uyi5o1Oj~J-ZzI=S!Gt1faR)M11*d;JX19l+LBRZ3t`fQS@w8wFb`%zAmsMd@2?%MSp!lLLJI!vaG&C=t`21PNSHey0k z8RmZ5@M5$;k^=**{O=uZ-m#YC9t1C169%)Hp+qxRX7KK7&mebRk_r#i!cqT;N} zAfO|2wA&s-{~Q4dY*-N(hS3u69j`^$U*nI}l{)(OJG;=|j-Cn_%tkrFkkEP1gLSx! z`9HgHc=WBBNx;$2%vMyjBto3)F^aoLAC4Lpcey0sskOv$ro~xhf^zNpxj<3<7uYP&o*7VGiTrX&S^6S#_9v{1nO)*_ss#@uol|#kA3Xhr!eH? z)O~xx*R5NP3;6c}o;lfplla)eo7dynYA4#|&S=&OVi8USU3h*x;y38-@2}XDwYL+K zv00-=*jD#Kf&A}u^;9k@PN{lq1G~qXN|8>3G&Vz~Mm}Ej!PoDD{(dXOCF=QoiA$}b zFSk(I zRPIm;6jxykex`{}VDt6Ys1y4SP!xW;hjv$lp3`zMT*kC*5}88>W7mI!@6XXUl(}eH zHr4smf_wdjjcy>Ji+oJ*rK0MH1nSl$;lY7w{l!2=}o1^?>nt)R*rhN7R4MxVFi zcvp%?FWBo;>+8)#SZWK#N+(6LRyXihRki`lI*nE{%#~V|nZh9z#~zM0Z6WzZwN{s) zVUzA)XFc_3!z-(d?{VuHTjE&_s!XNZF%VF;X8_p@_nX2Ak$~c9p^V0`BeH>AROesJ zz}OTSBmFBj;~BWbz-7?AP05WBbL131o=nwo`0EGc2X^Ws9JuC5&+;l8dk+zh>$!f% z+Ca&POw4lXQ+9rhT3F-GkKU=nD{-dh1h>`XHc1>&l6%xyx%({o>cK4rMl z3Ab`)&}dy4g^*#A)F30sswmz@fO8YF~i`*;5RHu;{LW#AG_QO4OZS(Mmh*QU`Iq=Y=%><_=TUoSnM<9i6}0BtGry z9~w#rng+>ajKXct$Q{l7#^9(6A+HF9-;YYyZ~Tl-u|?H6?VAZ_NERq@Vbg1Hy^%RJ$(uZUR;7R#Jl}mCGh9z{2N3lTx#)2#wN6qO1KT0=(3=e>xiypG?fXDw-#SU zC#3Ykv&qvtH5`(Ao75)I(ppiLGpp{iPq=pmUP^Ynt<4$9INca*>@=7cj^!zX!Cl*< z9W|cO@om9nDsyO=gK$8Wn>>Bz*W!lxLbbH5M$_u&7b6K#Q+l=iP_nXrNt{o@r!_WE zSu>R1Cf4xH4W`bniyW40>tZ^-N9-dHgUMOZnJ}Jr?rPklK?N%#>ZgP=Iwb$+XW#ab zm`B=>X3BJu^S}fV-@5Gz8otdXK(Z$V)9CJBW~mYrDwK}w z{E7cQU4|O$XIBp8MQ>B>f>*^IINOpe1Ov-@ia0s+QvXoZUo)&2>9%pfQ5xq2JGlg zHypzm>u9Ds6oWQps*?zOx=I*)Y^eq3x6k-Vv-L)oow5e5o+f4_ITgrKl~cA_u^(%e z(#3jw`oSHtl75=4L|MyKS1D!~cskQIHWqfVDs&9`_{4{*bU@PyuC6~OT}{?(AGRdT z=@<1kvn37r%QCt*<4Z}!TaTm{!v1#LQ#Fv7%x@M|Q|4}K85tN7&Vk$aHw=^9cH z5VRbvk!kMq6OjC!r{qee>nz&O!V#ZxJF?ZQ7(xj^m)Rb^`io8AGgw)W&@1OJY`SC8 zH<@-B81?lKCw|6_5>2HVQRMDxSoTvX2%X|z0Jr?XIvMMW$(W_yR*=itT(2j%o->cp zjkaCe53EH0H!#jI&z@IczF%;jJ{_r}d%rxYBhPCRUpp30RrYVMC+8SCi0Vq~A)-Up z1~0g4WyYHr>Hjvg6OK)Yv>t5p*IC0Vz!y!F%l)v6iDv8P7{_t7t}W<(Z&TPC&Fltk z9C6xh%O5L_KRkO~S-GI3wTb^ru%iFrxTQ%(XSB)7E*b~iA83~ndpIa`LbK;wTpd?Z z?bjitR(p81;KG=q_vUT3>RaEk?7%L;eaLYZ>|x1XbGhBM3NXLK`4jJC(+| z@qKIV@k?`9QyD7)%Tpe_V4S^rmH@6O8@QA{um0{F%_}tiqdT5?1%;{$bAvO9eCc74 z^wYSx5FXOD>`iLM_G}C9y`>TRS5EU*Nn=YZ%4Z!@I|1nC^8m3|W$7A&)yj&-o?oT| zq41T`-t^nMcj;lTi-4MTOdqf)dV!qnvLM#P9zuM1+twrAQp-S`&PKbpx`=N*=%nqn zfeJmKBop}vGSPo^UnS}VqBTQWtRs&S0e!zK=d;CMYPo0Y?~p-*$bY`iGrS^eyk~K~ z&_Ytgr~}z-92$BJ4Vgzfiwz|I`%%c(S9tygu~a3ON_*W|>awU%lzV9!(f&%RC|)Eazv=C$c|vHUl0JCn*MfAK%^LQfsQaq#5h`tf#?e0Z7uVU;oY1ZuA7 zW%E3!6G*A=z5RMTPsX0s90{M1&#hpo6<7E5Wv9Zw<7#%N8f|jWN z!)GA7j}gfcJ@#d%OGl(Ww+;WT8W*$p_-q)&^#;8l0=Kz1xmf9`7sz;@g?cC1kM$Co zRV=GILcLLo+dqMdYq!X?$?p}lMs#zwA}fr*lfCeH$Ai&rx|W^(bq}26TH6HkF#~q%n>2$^ zOcW&~#&s3B`Js+60vH)bBUUQ+fZsRDg`S;?96Pz@7}_5hgCy{B*ozdb*)yz@4Rm3* zU;aj3*>SI0|NEYCp@ov#NX*MVKYh@7{gzIi60#k>x6P`i2-Fa;@ubdH|1XP&};OGFQYy6db z82YEPRcWnGeMfvGC87?NE)Dq(u*KI(aRpV||u08Dt+lzBwacCTds6L8@Vc(9JN%7KgOtX9=C0xJn^u zWzrpID1yy}5{YgjM&NKxY%#pvlh0-G9QqgQJHf%_Ry$*_AI1XZIf__ArSWw%7<1ae z7AyTdoB~&%lZR9mAo$_gKB%rIDJAbL7#$NZ@??w z?Vb%(CqPcAY5sjWDS2v`05Defqy1kX>vU>4{yyZ z_xy4=@4Iy=5z-9cf8)^;jj^&X_19II{(TzVhlAi8MMq{>MplPt>qoZr#AMuiJ$^0n zMLyj;n^gP#Dc`wKO<8wv!BA58;gN?+l1ewGRFXZ{I!i{ugnR3z#ynk0Jc=5NeNXIq zOMdVYLxkirO+Mgz1_I}_8oo>ZUy339k#^}q%ukO%q_V-!N>fF218Y7Ry)k0t9gYvz zt|kPXL-dcttg@+Z)-Se~zGzJy7sxLC>*VZ>*gy1GHtU)2j;kRb;Q<_fQCjDQ>^t&y zgMlS!^UW-?HKTBd8dBhxyrjx;#6@fv^LA&yHZ^RruHtS7{ziAH1JdAvrxv!qy zwZh56?%dkkuWBMMwB>ZD780tj&h)SIw{YUrO9t5X`2og%%4uRJIxy$&??U|<{lFlM z&2z9GR+16`orVQ>MxcSle@rb#Gli(1>@L{pK3=uoJo-3jNBD9vg?W`@F%K=!wJqiW z5-EAM${jEOH=YYvyzXtOjH?bjFAF_wQOIcdj%PIsy6%2{R?$rbi>&zbzS&?H8zzL9 zAwnfT$v!%n-42(?x&%yQ3*gO$w@|)Mm>YRiWWETQO6vL3(G2SaSeQ^lYsQbEW$YLe zuM~4}AYJK8YC-7oUKZ(PPz*g~Q2b&KL+^C2;gHtC_?h#QHvd-zrZgPW?i3$@3qM=; zbgzTHzTC(i<0}9IHOK(8<70#|lMx~LlB0eUxS#W;+3^HQQ$ZKae77w~=~?rwcL4o7k2Zt7^q zvxRTYHzsu*amYs5eRc8*-5E(}V1r$}lIkA$ z@u*qnS-iKUptAAN+^rep-a`&z!>2jaL1Lcoanuv))(MCb5JPux;E`rH>?yEkrcA42 zb~ezW8-f`X@Wizfhx2I&P)B^b&T#8nJ|SHRTyE&e(DE?APi+MrY;H z-Ffpx6A!PgoD;9_LkFm65wL(CVlTg9k^}zEw|{z_A6#W`>(FPRXl;`vRxoR_`6fA^ zMrKt`=;9?}SMQ`CxdXs!--8G~FEtx`?vCh1O3?_-4Do;Anx;kUNsliV!GNp2wtAmp zI~>~$Dq6NHC4$|xak{6x=hs&c<71E$*ekb4sYb1>w>oKUN~;gVVj3>~ANJm|tqpDK z0FU~^ijQf;+jszrg09oB zkT1_HdMnUb7(+j2rVl{j0M;UFuQTALNKUlscuVeB!kDRrP^)U2qqdot@qAgvXTPxM zo2BU7R@u$~dT{+~oc}BX?tQzpxF4G@W$l%+ku}7Z_!uZ+{zEQRJ|nxP%t^tRK>#g{U@hYlUqs~zb3QW#LT>NynV^N z?y^0lp{P)_rMG5l-`F9Us9TA{)}EOJSTK6yh7@o4Lk!d)bqN_9K!bdsnS43#D zfU}q8t6>(l#pE+kw#)tKBKHxX6I;TO)xr*Jz*=qh5@FV1Ue6LIrF45ZoqY%{k7M($ zR5;+e2H^~y7b&CWCRiq%YccxV{mkAvV`@f%k;Jb9qN^m8FiOSkKh97R3JcddBAhaY zb!pr>Y^6z8C#ly}=h1=xu7Wvn)okqG1XcyXXrGd!;hWdpBeVznwhKiOzT%z{1;}P& zIYOmN>_JwK@TMHoW%*$mS0G)#n_uO^_X=H0NWYVyOA<38uQ3vlRKh}!Zrm~+axgv| z>7g}4iHvNn^UbAO`e||?fB8_B{pHgZIs3&Eu`QFg9`r|@D?^croMf&`|J-f!s{Wan z1OEDY<9EF~ZcpArfS&j}#GBm0tKg+D_{)bax;J|HYw;(@E#>RY$j6k(}EEH(>D zeJj45ZRCt|K97Nlv-nlai-Gg0#pdK&cX=#)rW6tl%Dg;c6y}XyS#pdQEbjL$!0p$r z(2r|&xM5MEn+`X}hHjiez^XDTs)VlhWk1)tEC)Epdw#ToyRNSwpu{#9uv}^`GplI0 z>&)5L=*;w}fz#^f6h)8kSmwh2z39MxzNR?1Qh~53!l8Ni%RE+*h^)=kk_7e_MO1Nh z7!2<6)p!%(D`GqDcN1TBeIrh;@-|{^=Ka_<3yqJ@9riHWAE#Sh-^}#al%g6fgwNkW z$1GvXZ3th0&U(T9YT>)K%G*LxAKh6BIMmkRzm=VUR_+g879_rt0LM0|qlIq*=>M+| z|8XzRafj>JlCzHntQXs656TLF(@Ya#XpKTkJ|E(jzp^eT3x`eBIOMT-!CI1TPLE|Iv^t{k(6zc?jUeCgvB$=G zdx-Fr0IvzXt&?f1>Mk-zsV2L;gKJ?N#C1OPNw9}e_UR0IE}9#*&xLr|<5x$uC;3lv z{N~NevDFcKR@s&{n@CeUt!aj-m35qig^SN*PvvF# zK^}L$pTIgoLYZ2$AfAVRW_`1PP$cW;Ro10NfrJc8f>y4XWOYkapR*3WFF>yabpUF; zY?-O#bBM#YGhujMUN<`-{>>b3O{`gfOml6vFufamc{z+sYUg4V%jA!6f7X_#Jh#ay zuGQSf)b-JRkWg$S-|>QhPZ;t|3%h5>ctyLd+gokcPJ4Y`NZG|PR4vn?CN`bCh18#!!mDD03a-`)cyrC7Y z`MVqTA_75CWa*gUXFGpTdF(smYyCXkBmVHSJxtd7EJ&=qJWt8$&lWKf!7VC0;m(_q_!O@N3ojrd*9kr#)#8o?vJ-v&9kNzHSjiH znE28QJ`(H0t087ZkS()Vk;dh5<_1K&(8=AD7l`JSgM~QDgO5A`s}@M$l6!wulYlxT zH5m7XV%Tj!xNk(*Gm~!f$dm2x^C_(dnC%^mQvdd_Gt3uTSUYkJY)P+)8Z+^0v##t8 z$Vk9mw>&kQI-7frZhT3A5`ChueI#CbNKt1SNDc-WV-r8|ps(k;YZikYu9B>+;}FkZ zrUzURN?3}h?GqQ8c4;*!`9Kaz`86lRHkRzO)74bEvOTFYcKc5#NDdO+^k0(nWj^+5 zW=0hAgDGJ0j1H0?`XVcx;uuV`(qCvyR}xxX_CMs%O{eC zTVH#oqqvEbipu5>uR*@tBX55QDqf>K8_O07Xfn9Ju;?xOdmnEEvxK zyK%gwK!=YHE1e(~l342FLqZzPQ&7`znVWF8!VedWxm(3aLAS53emgyCNm}ey`)0o& z&!>%Cj*G;3YishW+~238-kLgPX^5|zFMj4(HR`}bdPfifH+$zi4Vd+yQ%rB!7X^6% za~UCzMuf*uA&qL^#=QkcXr?svI5z%|Q|5d+N;Y4P&vbuEWp-)VTy7lNvq<5llKm0K_7U_T(SQ|aBR z)`7yI1XpGz(80-YAUgAHjMiM~(#`@@;MZc>)0h|u90dXDmM*SON-5s!?%o&Mh*(cP zGN8kbg!C$bxRrxKZfptJ5U+>K@wt$|l|DE2_38=h$qAS$Ii|ZhdK5bDhbwE)KtqWIXdJz&;P^cs`Pd&@85a~a=Q*d4D2C4^sx`uXaqpv6OS;4|Wr(kP_Z+ID)u;liu z+@1&-c4DEm?KWzklivX&x8zz2r&Z50dssnmmRuT|sG*`IFQv3#V;qZmsykz`?zyVK zCG>gCu=XJP7SeP=%EuvM<=jvwlp3(I&I`9~evQWS#cl+N1yU~Z?et{EeHgz{`BRS= zfmHeM2K}2PD~x|#V$vZnZ|}7#WhPPJW@Chmv)0y=9r<~mE5+ojoYg!LaF6%c(Ebhovl{hdcT7@OA7X0QfnPmQZtC@C zT>Ji@2RItG?9xHl?}=BeeQ!A0JgU>=zXO!6OUifr!i?DVy~0QT?zk&R-|Q}j5VYyJ zufgE98TCM7?SPw|#DbcU%!_xP7zg+MdC&4~Xli(_G%|hq?AD>R3J2=+7+CqAb?by-5?@L(l|3?2mCvR8!#j`?W6&^IX}Wo1c#CO1a?*2i$TBfo&1TQreogyM@Mjq~i5hge3MW+WIziD2{AYm;hV zi!UvPxU>&`&Yxe8RW6ePhx#Ckef%Axy6ASdNKxMNPlqlWfQJYCZ)M&q@Jv-x?X!~N zGO;^sU5E73qZERJ$G5MJEKCy5*|$#I7h1_A1%^4w-tb<>(SkovzgX1~8orKO$`brn zNB~p#%1y7HlfX^_IZ`}95k9UrjAcd}qiHtdl&sbft@CtkoY+5xQN&OC@avy6Xb62Y zO*y=Y-0ec1R~m2D8!M<82Zit(r3zXk@Q{eOhdcU)tIK?zlDe@qUG>hLGY=2(EaWa5 zR856VTdN@)kzukHRAmOM3+O!J39^#|^iBLuYpWM`XHuvgSX)GAk0&O850O_NI=-Y( zu8g;N^~Z89LwF{3#MTH|Cx)Fh1hwuX6-l2h_auEA8wI&iQ?eqfIm(wz_yVImi>Ec< zw<;1q;|jZ`$j$X!0Y!J}4^OAso-(_dk{ocZ`ueH(n)!~tbDqP68VQIVB+_Kyvn{*^ z{?kC*?Lu)LKv|~Yi`eu_pG3MMeVthC-3Hl0+1=#|n@O)CJ6WLpW23ggnS$J?a*oeu za>*5?nRPoBecUhOc)QQgf2BJPSQI2WhWBc1X(|=iPanX%Zok3TAU?!uv35iG0m6TLhLBPKcRE)fjGy<d3g}$E8$?V~z+iXILQs6W1Zn2qPIiecUk%z*B<a~6O-t7-zNt49Pw0M^hCA7&~3clU4@0cCHtv<<|U?v zG!@a&HG737t*%`b0|C5wnPoN03#xRv5dK`=o2F)+C{nxwrUl0KBME$>@!S3A@u_z_ ztj}Yvt1JAm|L)5m()VLYJZOZK8L*y9l=Ahn%lcj?L7b`rwz}nG4Q;1>yB%ntQD(SC zen4bWemd$PLC8``G3S?a?HNL8Qotz3idsC8Zclp?S<&Tt?Xrp4!S;JhnrW!^G`nve z@sz6P$;biy#+vQp?#}v5eUt3r0f+Cc?#$P{de-3N?g{qC%`~G0v9zi4DTM(%W77qi zdmH)DQwSbD0yjbjN%GizjrN#V5Ux!r$m}V1_){FMFLgE+{X?G_6kgeyWVoj*;CBb4 z&a>Q&rx0Rpl6A8A4w+LV)8xcV8fH4~RQf0)!zSdmFf)_AfQXiz?2sH;J)}nSkGACA zH^{ep5QyqyVA0c?{9v2gqrvFJd)C2kHCWRt*w6k+wpd_bL8$rlQ-cg?g!r@Qv0 z`#VH2Nw4Ed{z@u)p{Z|N^3&fJ0M?&DAB3SnM@9YjkT`C1iP?!UA1F`V=FNEnl6p2V*A0t`c` zsWf0){n%Dfu1)}B=esL*QH5%U=XmvGc{|PR)2PIiTBtRn;YTn#S*QvB(1q9Arxx2d zh9X40KU`Sq{HiAeROI}KH1spItl9?UyZDCB06K@9^?si(0+~C?0$s_Toh{y>n7YVZKs*@Iun+IQ(Lw5Kye$DhL(sC{zi zB^c@LNoSo=UX{@@PyQ8W+!Yh!`>{*-#@9qhMR+s5paP&=4=trpm!?oNV=SEg=Z7!L zyaBCf9S%Gy&r!T2M;IX9@&UcpQe->l916Uq?>3aI`Q!AJSS#<%svxr0&? zI;4Q)VU$s_76^Vyu2p5f;2%~lE|Mu-m2R7JFypsSIlAgd>kjw8AQ?Ki8*f|aai;p9 zIDhbw=2H=(Xts9HSybR#sfh4i*XRI*w8u6d6VI-whv9| zq0^rRx|UQVigF}9Aq`B~WY~v`M5nVfwVVbj8oR&u^_sgR#EAI(;+D}4q0!i}=-lQ^ zRhX9du=Jb z>VC5Szt$rBUY>)U2jm5SW?(1nva^PJ6mpn+jBxq76MWUoQ(7%FVI)#HlRi4xHAtE=LrUX`giem?;D)#XZV8fg*Eo1 ziK5T4Z5V+%Xi=LpmRDFd7(by8PmU^p!KHiTB1NTup|i z;Nry^9IwdcYfejezkn*H3BR!ulJ&>To7YP6DG58?PeR~1$+-ybg8*-+%d|@H-y8+j z6UX`*8h7fbN-NwA)&6-MF&xTGRy_a>()Op>oQa)Hl*}>%%4h6RIdnO(izB zzTeA9%OanfSxOE<6^o471QZN(GxKUWJN`3nWAz_wpg3+v770NSt?z0WN9LtZy@JSW zxOhS9_f7>blD?1J&_Q_?9Bww9PqiSQXh>Q8be>vB$dzZ7v+R|!mX|yc-;ZP<% zX)J!o^nO%=`sh7G58py>c3}OKfSp=Mov<#nDXaG~~*CdWX5##RZS$8xT5 ziWoGb!X>?9;~5s3%IwEKH`t7ljuG%|e=NN-*8CjA!Ab>3@6V|O7;*LwU||F}h09mQ zf}m#*C9!c^IIHa44YT7+){h=2mALgnvQx*88QWw`f7&_m)plkuisG z>`B~ZmgV#Ex;3psLCU5x7aaooGj0b`cYdFVaAX<+%?erSTz>Uvg zXnuvxU`))w72)XxzbJ)oHNR|f+h#x;b72hSCMrB@f46l5M103I(4CFoVfoTGB#{iS zt|{QJnF;jPWfL||+#aA?E*N*SBSJ;uHOuMo%9KB~6>I|0LHX%@KjVd=wn?xp>@|dW zXKymoF@W^%=~(ish?2o=>y3uZ_q8MbQ?Z*OI~rbt8^;UPn4^|q;&F3)o+s%F)JKow zP~oVJ^!F((65`P%XYnnfG_K_Dsiy2VtaksDHYw%&K9+?NP6XL6E~F|%UVLHq9R4Y| zo{BePnlP5$yY9g>BwCtOpnFDGoFIAM2cVf5X2kR!z_n!qtAX2RMPx@dW5y~b06l#< zt8^|0T4;obG^KpNlm+r{WfV5$!G>RU^YyUZv+V(dFV*dq<07&mU|Y7G4@C zH&jJ@>S&U1nU^wj#>9rPf~#Uy%>oSQxr=>Ddg;sS!vngW=Y^D=F-HD-~>nbx*ri3GO>r2&h25_$TXnUFVI^ z=@W|?ntE{-p*Q%UH6ul)tCTT1gT43yCHst-c`O_CsMu)E9~+Z`GQm8z3vZbQYoh5n zGKjqzSd~MAE$k5oKZ9BYJgkkG4o5vAPpue{cp_3Bj0wF9;~PAoCod3_61=f`I**Y45=X8e^wEL}D- z#0U#xoyen#q`BCkzlTh zl`GV(-(I`ez$+AYO=p5Q5rEPqCbzB(v@s#JQIF#$P0xBc;6~}6EYN2gxMuap)_pxa z+dk&RAcb!@O-zU&dou)|xU{529C!cKZ(dGajmfLe2Q#h2NHV6aGobO-BM=rP#@h^< zIZCjQztiA7L;v%IeIui;TT5bfBVeLY?J)efnYR!sTj>v;xu%QK@A%bE-GUJA1{x~O z$kT?Q>oxCFwad|s7}-8{S~5I~(*wvE=bs@a%iV_~oN{iMX7tfh&ev(j}m|{JVZJGU;mSvI5nqIt}OA z!$0oHOfV79>m!-!#2bDF1Me72|9oQl2dF6?i^nxNp1i7l?0MP9ztAad2*!6;PG zXahMBUy1TKAwkm8z{^v?ia*odh6RoIWI&faGE0jU$@X&LSBSD%gvxSUv)b<leeR%+-E_izMWbTop77Kn6f>tov%5Ykb>~MR zm10#Dz?V)fqZwJG`3cK1J=^!48>4MSnXy@2XI8G^fMPsr^B1>Ia+JhNxWORZi{TDi zFmoJmQ?u$ApihU9LEkrRs61ANdh=?cS)z-A8O>IAjcE#P(sL-{-A3QlLst&57yW$| zKt5XRZ2&LB>nmEU_#5b_l}xseJe-}kki?%q`B8G-49of39}GhGU>Wpx$tezXR;F{5 zbuFfNf2(GHI$QBs)y|RJ%`oP6HS1C4!y`HJD@XN}J(ymJIYk*8Qz828>4IlsTX=JE zA>d2?0H$svuVtcZv)+U6qzWBC{iP zpu)BjTSau`Ix11z67#HUqLxcqKO)x3dDKO_7GDP}YyCL&O~qkp-J}g*V`-Iz2XCIX zRMDKiz7#MUsoMOT*Sq!phVL11l+elo(j$%^GNaIO-}Uz)0Eso~TnD(*S((=wcNktCUW2jKa)%E@@ia2zF>$?N zFF&tGteYLV=T^Re7Mn?tF3Ni9^Q&_xb86#j`o@TOFv+Xxgqo8E1uJa(uD6N{`infnm{5 zO6GF62pnu;{JcW*cbq_}dp)jQT&Q4bmbZbiE;j2|Mi(*nX=*T% zAl(KDT@&^*3jF)`9ufYeeEBEGH=Wxf0 zAkC*DyW$K=IY9`B`SL{Uj(v~=o2lGu9)&_lbdf=?uBY&36u;$WKQn(sCEa7qX^)Qv z(;L3rwsQ{Tw%~Jei)(<7CzWwmWBGHDr|s<4l@GcU$398~mtLtHKL}VmjD6whN&B4) zkAwZN{F4H$T4-)Vvtn@EkK?jrLsns@*@L+&;dt;c4`gF18MN(bq&L&cb9A<^v`%T# zyGZe=fKP0ap1i83Yt9g=8;%#|UFGac+!|!`#sAjrxVPJ}w?30QT^pR?ln>GaHwtm|ReT0a@8q)yD?h{_R{SQ)kg!Q+pH&h5%*ibTjXRke4TSrE_2}+UO08T$I@VpYoF)G zKuta`2NmhVvSLFJN4T+N_nGi$YCA072}@167WU3gAeV7`X{PAP&!JR|N9#0z%&T+| zLY-W>awk3O3;X)yS`=r+#f5i&n4_wtv4D18$FM7s-^%^%)S|b}z}`0D-YxgOl??0o zF~I&Qkw32?MXFp!1jT(hY9Z$EG`mi<-h)kj;AuTbV?I#(;v`|s;N9*ueM%TXBtQV z_H|e;)wpW8{kbB07rkE{p7EIAt=*!6xzMnTOv?R4irW0HP4{ONF3)(b-qC^)w1Fe| zozUHMz411})`&LAi?8-h?DcW{Lkap~Ne;L(DGY2vegWM4OW(Edg1)z0eK zgH28;vOJ(WMiG9M{NiU_(Csv-*v1 zz9YE{Zsc7`cif;ZLiekhp<-U=d(WyeL?o?4+;Vlrq&eKAFdd-*GeHY{c#rgl{)F{f z8ou6B4s#D`P_6!GbbFu;K~xnjd)1rXYYt488V}hGPuBTst|D~IT+_n1p*n=}`Wn4d z9e-@^gi|N(9?%gv^K2wdhRkraQ&@FY&|H8jvCd*N&1&+jqP<(juNN0MqO!}X=j-{1 zJJI|XVqV^jAmv9Plyo1HAD%y+L}7>NFm!)bgsg#oXf}MT?l@&DcImbg>}}N4UY4J8 z_@QP*cna?Hmu=+T&duEnWjv)-vhXTq=5$2yt!+KqA_s`@#W$GDy+cjEA4nrgi=)d& z)iKT2IAwb!Nah!f6y}yuImThX{^Xb;gmkTA&fYHbDb%LvjZ@S&7=$Wq=ePa=lL-MsXy@|gst`bcn}^{}=-I!9XF6S{XDRI<8)7Zh_0C741}$m40d~MY30<1U7y9D4n*ao@ zX%Eh6uaC#CrJf2v!IyDWA%n-{8Q%g;aT#o;8%p zIJM|NvVU6Yw;-R27Q1Rwd~nFj^tyh`fftzbiE$9iPx^{q$}@GnV4`+>s+WRrr-!yW z?>EB*4L)CYf3y&tPh;t*vyC!yaen;h)#OHUK!Tx@JtsTB!II||&>&vVO%`R)RS~3} ze;y;M6!B_AS~qbNmHLFk&nT|F7FL7x?fCh{vseB9AN zW;wxN|6)KzDzj?hj6JKn>#e|00$bTX2?opxIh8k;BHZS0+)G1vW6*zm9{vlS9AOwO~ob_kEk;~M(wt~@}nQduqJ-t zu>F*>?5GTZH}Z-m{7$-A4X>J>=~Vg%Gl zo_57f4loCngowZHmjj*R%XKOT)XzRVSM6FE{fY@#&y`w4e1HR{NXXIeHu) zPUGuWl35dS2k0jcj!^`Y2hvxE#!Z_`x^>6T>eTj*_p#y`)yiU~xFZhsD>{qM2pQW7 zb`fq;%3^)a1?ll^yfBB}KFPr9K-jwljB!p+R`xuSm2CJ)rKEW-m#*VY=yH~iARAC{ ztc<&rhDvttrxgD#_}fz;_*D{A@h0!nbk}Rh${|%k&Eigf9nbU$Wk>xpg2T>DE7428 z2HN^~#Gi-8G9oSFF_IkH&U#UXK^CK2duMaYCVp@ekkb95XoL>h!bbPz0fgp$0~8=58aBdKfPn@e z1M1GgT$n|KQqt->H#AVI5K|t*sQvE?Z8CDnt`VgCjJ!+b=h8M%Z}H%KzIkVLWq>~0 z-dCkCl4pI%0iL4xJmyi)!(O3soI`5u_>Rf9=NMMZ*SK;?j-=NYi1g0Ji-TeM-8F<}Sf`<2Z1nT2(@OA#98uh~25m$(}cs}B$w1yQH7>G!(5BQ}?7ih9#$ z)yX-*=SP28WqJ!|0T6@#C#7B#OM^l{XIwZh4FLU^+8}lb~ih4 zJDxcwe4a%`T(SCmlB6NQxD-mL??B`ydiF%U=gLgO8E+CX79yP;Rb*emd6Y9ldEO@W zP=x=jYbVjA(+9>xieV#;?z0(0R4FIFtHZ^|L*VX+gKdSz#M?0A7~NMeo{px^3(bqG z+TX;EYMd|2@+;$yBsnH0^QDC!GN7l|mXrL#dxN*y_q}ZyD6?Z!f;>LhOJo} zG23w!peCu3Ldd7-ehZsbBFKv+lfNVk4AD|?T7O4-$b(-zAA)Br?o{)C9MIAmrMC~- zs2t5q72etVP8+3&l@-^hSI9o`Jv^}ZYVT9K*knQCV#H`(M)9qXlX_h_`}uw?e8YK9 z@6jPazKw(af{U{a78EnVVAg%qI8bfm;p|w-N^QioIV3tSxa%s5TnY|qF=)dfJK7mC zNKE0W9;AN6DLgo&QgLiEMwcL$+`EdO@77Awwf*qzB|?k9J1N0JZLFVHg<$m)tHC3D zBiT3sa80Gv{O54(isREy5A|oBN+|_Yl?v38np!1FZ?u0N>L7gV1g!QJd6o15XLSnZ z9|!YRE`3d;fZ^2Au=o@%?Wd&M8F=GFT|E3Q0Zs?`8}wQ3e=ts~*r%*mm^J;=_@RY~ zBs<~Z%S`4XhfgYjlp+%StCjYwcL3;f^t-6)ooI@_6K2*aFY+dp?bB(5P7Nzo@b!Y@ zH=j}CVc`TBUD1aZM*k9PY6xO^HQ^4&A( zxg>EV_ZW&WU{BOT92j)qG_yC<^yn{(r1X5Vt$OvLu(Szg)Gm1mrg|LMv+Ing66HNY z{fO|kTi@9`;jP%|-g>S;TRroLRNPjwqEPx6zagu%z+i>2k=jr4^k~e7l1+DyaKcyd zlaKY{i$OftPgaD67frk?J5^vV-7zEHmo($pD#fAYSsMjhGS>5Dk>&VMiFs?X*=e7^ z?Kb=*w|epj=SRTA@;Ajjt~Q5|{0o99+Xpm592cT~-%O~)f?Rj>F{G_QrI{YT+D^8g zlxR?J21cr3s#>i$Dd@?ob8hcO`5vuEfV%5oCCck^*1?kVEw8ZI9O;=XCTL?8KR~bcch}2XHs=gA)0`=gv zh`15kdkBq|n?9zv;3@z$3B(@h$S4>|<|f`GccBiyr5e0{jn_IsB#=chzpQOWf4nzK zZqY)+dE8L>(7A8*xLHI7=)X{sLW7E_dJ_DbhVy5mLC(sOh=rpQ6Io!(^|t-Kc|x$~ zoj0=f+%>Yq)jtymX>A|9^-PrK` zv4_J4`M;TklcznX?K;R7!NZSYumg>DQZG>+qsLMR$5PuP6_Xg#BcLP2V56-nj~n8z z!0EOm4 zt4^k|X(;dPypwMfug!`7a9-Gdy>k}H{p&D4UYUD&gsZc8Z_chokaAV{@Qe56+@7<~ zIYpSjRa6Pu83XtOo+Wri;-bQgARTH=3nCTRx;?zYX~M>a-hl$wgW$cN-5kHG?YNXU z0LS+1Khh#C77jv=eVam3RIWZ>f4wjes!wIk`MuJ$6z#3|&}U{~-f`DXYPRqiQM&K% ze!S8C()*xF15@c9_0mwSh>nqOuTLhm_mW87a4)?#PubhHf~1vvp^BCaYTPMrkWuZ8 zk)zjzbvH_@m{=~FQ#?bM80DQyln*V)r4nf;eQ6z@9~DcGpIY2$w;0^JOt1nl9CxN% zEdu#IU$u7WSpy0<2}OvK7s5~S#|7&$wIrwNg|$5Sd=A}I44 z0Ao@)dtIlw(+(Sk+s(%p1gOD)VVwpLOs(X zS&wcLqM+^)>Zs2UawHkYr&_7CKQa8}fQMp8$U|LvOZ|R-=yDi1YaraX@kKQ7a^v)~ z8)w5JCI#aoJ6iIcJe6a5{em=y+{G%n*5u}u@vF)-WP$2R8=?egyzNTydDya9I%1Z6 zm0^hA`#7bZN*T3GS5u)p-^1~x#~U<=J3pe+IJ9cK^@de{VU%qGM{kp+-F2mY((xKM zhVqKeZXM(|ha@{lLl?M@2d9WX#UEZOg6+QHE;yT>y6XpvCuXA%xomesUk~0J>jQ%i z4TugafX@efx$lUqtyhU2A>DOHyOdvwDer3_f_6_!0e*3@LH1$8Yz|s6mfDuI2bEk7 z&2{aFj)BJ6Wi@+eic*4|b|1HqM1Mk_>$S20vPSC0cuff>Uos&XBOSf2CZ+4Ky4z;L|z+cb=Ai3 z|4LHBA4|;ty=toMu}3E9UmXVp`?mbHT@ZnmZaj@@f4D*sbNjl()vCQYf(DiNAEaQs zx9xvGc=2A`Z;?H|l$#qTWAz}WO_pW^b`db68b-)1k$(G;9B1JwEoePYA-GgqhPeZt z7ZIzU%xj0+Y?3>mwk4G`+7OQn*dwa;||>_*Fa&%$-<6@&9KVpk}L9pc@LBMyaPFy zS`3!q`~zb>-Gdq~la#Qoxovm+>gAcu_H-p`gT zf}weq{a#QU!N)>EpI$RR9CD1Gb0Jz zpG~d!J`jgFW*gTb$9XVZ$}B=*D5rUJUT9yz5?BoEEWeodyq7upYgLB7WaH~#G1%I! z44Y7i{I%p|55TWTr+m|7f^XGU)VpL>F=pBGsyoVN_-fvi zS#4tkf0#IZ8O4w(**lgIUP##mC5Zzj#dqCVpfz~?)*5b}OHYmR=sG-foa5hpL_Li! zVaTZX0VXsQ>9f5PNwSO&FY4Jcnfa(&kRZBH3{UEsCEKgCElyX59O0p2TJ9=FCgaBm zzpfWXmV9<(Ljj7}Vhgs8gn!3L*%GAQpoJMJYxR!g8Yl`O~UkZn4B5f z-)v=kjk_6oWNTy|OrEO8$kkLw1#$7~iA{NGs6!i2&Ew!aMMNUNcrak9TIp6Jgta(`A^hNe7d`{#_vA9|V^Gzpdnh z-ONV)a%?$Im5zQd=|{2iD8;y9NY6c^Bz_~Eo5U1C9|r+gnd{ka^pusUD=Z^eJ!8n= z_x%)SPMSw0&-VWx_TH&Uvo6>gE!(zjb=kIU+qP|6UAApkciFaWKZVopzStKBf8fLy zv98yO$T@S4m1E@0u?ngbZg;LzOwr9|SNYPtaK;8o@Ns|i$sox!7yZc6#nczU$2Tsz z|4w6I6B5U0rDBRpuYEk1SitHdqOp-DZEijc+j9RCEfXJS{1(5M>j%Kq9!ZPPQKJm^ zq-b_AWhZ>W5ic*7vD&`Hlk0LQp(vt`p>GzF{v;30U?{&b&`QL{2wNAs9pEAZnlZ1h zSbZ|~pNt6DUz&wYa=G-?q$U540Z9QOPyqyNu_m0r=aYCnVM=b=KtL7~g}SZu)nocf zVbl8m!VdO9_ZZlvSD@DU^e)5B{lv3sBLeP2UH17`hj~XqZ0|H2AU3uvb_+JUy;{Dz z!)zvSEch>W!NybOIJM0(V4U;B#rS~FU0w(=tg)p&PWdag{q0o%+?mU9jNs%My-p+Z za?$5VJniauFhw7Hs}*Ww>vr zd0)TQ0$5dj@-vld=;aX5EE>$5{eS9omi`Sg_95AO@`#MzDoy9p7*|=;vs0Pq0tepw zcVK@jiNb9GwR>1Ovh)|(q^SO@mu67|O=^*$BzdYT+5FLrb2P?}=7GC)ezD!!h0#}5M+VcO;e0@r@ISn)@CYSh9= z=V=_$S$f&Q^tQW}?idP8!O58HbsVzkT#kcP58DQK!s>Ht9L0{GCTg1iW1o&D?_L!J z90~S4#h&Iy{L->sBC69)6YrOD&&B=Wn!eyD^q)bx$@dI|{MuwP^~URcY;oBU3gGmA#}(SiqaeAG?5f@8t`{{##%iM6bYhSQJaI zsu1`5C>r%e93I8l?U3KC`81m)4rx&0*wZ7Ce%NWgQi*M9V)S6peFuREOr!%s|au!?kXd-56WJ3)6mD{y`E5UYTWs*LY z;)=Ty3RlC5C0$qS*sShIbW5egS>uJ6-+paN2bcwohs)hX(t?-UlxvNxfTOO|j{>xB zm)S87SD~VLe{(rDv}|a7NB&EEGmyLWtcW`cj(v?owEX2$DRB* zi(QMwE`7aL-PtK1eWf5r>|2G$GFqce9l+1cTEU<`_QpHNDiK9V)Ju*@$X<^H-X!*v zsp(-g)I-DX1Otiqu9j$s(m1TSNATL}grZWhZ?2r(dA4|MO-P3e{6n>A7CT!l8}EcJ zh34^`&dYCQZ;RSuwfn)X{v#~qYXp};V~6aXgp(q5oeGVSpaL(By&`jy3XX4_qV%co z*)8=ymjN+uHL(?)D_}uF*0us6-8t3cNU2FM^^Y=poT7ZQ!M7*ecX(C#Ce+sj+DI5> zV{*P#au=fi!wZJS@jBH%h zY}T>Bwy3N=r_$wT|7-i3EfWcDGyPtYd20SC6aP0ZaZ#6CNck{~&q(i-N&9@iOX5TKNMud{&BsFk>x89nUGixcK--UI5{n>n4KB|RN{9oOFGxZAd z)nJqupvrqD?{X+?I?iBCTI)R)Mc_L8L-7Con&c?^h>zp~}kiUG%G9zL~y$bRL$Nf;E(Rxku5I8A41q;<&KKp$FlN>-#D+9AW zupX653vlCh&fwSRd~b8jQTwP_X~zDG3%=%g{AF-6Ip^$5!A&=ALr=U->btj=y0y;9 ze0<$82QPA}z4@0K<;-A`aRKd@E3C2mSB8(~9Zt#4sqzO=MY}hm+^WHU3)`;_lmbx` z+Al;x^1L7=^ZbKqUnWvBvz8%r*5ne2t7(8u%-ai>mijfr7kIo9=GgrUl_5u?q4pW5 z^-Hd@QqqSBbY@(7&n#ivu}WF@+F{-Xg6Ap5B848Ct-=%IuYUKPsjNyHba!#v>Sq;= zb3OjRF$rX%zCSL@DME?XGmv`>ZIBgg%6&z#x8CGCgiXiYg-tw*)kG7=t@Gs`?dQfm z=eEv>^=^Al-05Hh7ujX0JHq*=C*&-|%0-86{EqOzHtn6(QG+$;g&cfF{y4wr8H}0zfk*jRcqJLC_x@dz!_v-Ax`r(sQTr7 zpP(nEJ~CF$YN>iP$$s$JQ$!%kNai}RnF9CRAfGh7uIxUXnvUHEF(&p(W^;PAa<`eF ziMIT4&Z8Ci(J`01EYZ2us&xaN>mNixiJu%CP0;_*+6#Pwj(4mC=;Egc{dKe6_;{c^ zluu(f6M8!aymP(N{wu>g(B?+qdm|z%`??y9j1##n)P&Ystww`;9%~+4kAe43n?bJMwa;`Ovcmo|gn$ zY~Hcz{BY+@$B1S9=TS-F#F^?Q+1m)Xa9^xU?z~O?@v@G$9a8;R9j&=86h1Jl{53jC zRH)r$rvmc#yo*V;3ml-%xY}%B7O(|ZG%mkKg5cOFH!4$zPI+97&VfvqT|f!g?4Y7w$guMBSFX=+kC5a zZ1Rk(DMw{uIVYcV$C+RNT}<@yXYcj;f#Xlv z{?6d%!|CUjss4J|4XH^Jm-Dl;llLrE$NLzy+eC0htC|tlA@PAN1j$AR@>YLz$fWi& zhmswkpI9%1Do?kGFzC+OEV)6~RFFZ5NH%Mu{IdPexg0x@Al%8Aof~PL>d- zYcUQUAB?}kvK#9qD1t$~;-dhgyQt{2;KjL~;>3ioNQBTk*EQC{$CTm&R(Cs*x$tUP z+(I;$?q(y4uzM3AY&uXxz_MR|Y4 zTVFfEp77HjLWzPd=+|FdbUXY!0X%$@j;6r`_GU+wW`u_v7?@@GV-K(ZP19y~`S*~x z{qF-bpE&%Y-v0c6x~H-!!|fLWk2!KrtG$b>>t&VKB+)IQd&FPbA*=nZy;Tpgwef>xQ{e`kF_I8ZJftT8y#*JG(CN6TxucwOG3C;g7O|G4qs zhDU?WX7L)B9UVYM0>kdXZ~vR^wgHM+>NwKcWX*UFrvsmUD9p!v;80cXgQG9}>b>#K zgCMjK{jtEJkMA-l!-}BGZs2fy_@BG>vk%enGO6ee0)r)Nffmwm;miG6+1Tl@^*NlV z#pe0PmwMHDucTi9p#4KK=YM!epmG-Cu3pWy>+_09O!UOlx!y%;Mj=OUbm8UFU z+eFIkq`}jqA7^-}wdli0d`gRv}}m`8ap7>W`3J z3`uyaG%LJrz2BXXD_c*8p7%68!}=DVe|pglzm|5Vb}uQf|I6NZpx~z^pWCk9!O~~Q z*AutrF0>h);{B{WFph{{()gR>{9$%spB<1P`>%J_1^mI*)lSG5n7GxI3yAqzYN@JP zckVsj0W#AGZzM6|^N@+|8@Z!xOM$lw&ywv168+aXOD}6yl$@+`e5XQ7Zr3hj;u)>G+L_|d8g?L}n1bX`aLE8^LNaosQ2!Or8q5S)WN&<5Cx_Wu(U+Iz? zUoeNy+!K8hy7(6S$l5U-zEHM~Ua0S4g>Xe!SciF3^L=u*Vp2-@aLHHvT7B(>xp6oh z_z5^r8jod5+tmyCLT8<#>J|maHe%7X<&?eTY;`l_>%#=k4gi(fy6rRoPjgf`Av`%O zC|*B~6~`rCV8Hd;)=$z>*MKa!?I)Y+cYL=$K)q%@>Rc~S{MSi=A^0cbhf~3OUNkOk zH4bZD&BWD5sofg&&7F-|AqA#Ko6y`j;0Th)nPBrnFpQTb1PYwp9ggR^-896`r&WQA*ZTH?}*Vnl+&WcYobO!8Ll*G9IeCwBfmDZZ~)a`SU`+sYP z2Ye0SGjS_6O9Do9^D1!zk!Fuop1^XeWZZ)A)0xBAu>H+Y-)6Dmp|rSk!n3^e+mw;h zp{C}9Qpa6I*(_*rlKZ_=;b(N|uh_D`N>`uqV(OGx!OeU9D#_e&$mL9cA8b?jf7}f{ zkOHY&Uq-^Kjhpq0ODV$5^OEXnd?v%ZedYW$Ue)I=ae#AODdD?s@Y)?sqZWuuwHjd2PyaQgfn&?X_et@AOv;a^R_@4y1n zKI}H*!)bLWI?N|S+U)|WhbsWkiZc*w5w8_KgZI&NBknkCo5gdEBv6)WLUn1~A;NK-uVwe@+_A9BpJm>%ScZ;_di&YFSIFZ4H=hNAfAmQ``rOu3 z_J>3qkbN~=fWxL^r>5vR=&b$gzJYmIa(ni|UVJi!K9iTMkgw+cN5W%6eH(1Noq#9* zofF~zbeUN|56tYM1eNm86pIfB2Kz`BaKmsGWl)r@5rz7fjnxKJCDb9%7pz@AbfMiu zEPJZxy{k~OrL(4bdy0-@+DF(N26sdaJ@;ow>>V)a5z6xC)J*<(D2FbqnM{B4_?0I7 z2aEAQy0?}0B@>az&3h@UnUPs5p9T0yXg!xpaV2G_H(QaU$={%3w!RmXZQ^- zK8;(Ny3Z`xE3f*v!|Kn90P>d))_*niyXhan@PD5F6M_E|f&YI-U?8Aq;0N?OtWOLG z2;vY3350FI%_RkXJVGiA0 z!>a_Fwvo(X0T>M&9gUcT*}$^0@OL7Sq0*it(x5S~FqNR#U6>7wU-fz{pLw=@I)4-9E9Nm6QXs2oBrG+hW|~R`h0zr}tp`7T{O6>K;v=ewKuU=6s|A zcu`fr@;4{2@V)|U*1a%sW0kOK`Fqaa{5&CWh1iNQ0nE2Y)7vlFzn0RFg%?`C6tnKT zaAhEcMh`YAwM`I`S6n>TGwR%u!{nVt!MElwuJ+2&1qux445m-Sd=|1z_kN55q3+X~ zFLBmK?zX}UZ%Nk+gGilX#QB)F-pPEkn9vf}F+vu|vqfh}&S@E-f|7n(#&cdfLVjDO zaxag8yGw-);*p@8{0(jO3!)sT+uy9lL}liTb(9-glQ)#1$tHYX8U#5vF=&p2**oTM z*~z|vc`2(s+FlagTeo!k;IRowSy&|_uTZG0qO(o)c-~Yp7s`>xf_)aRvk}4(htcA6-54K6;@+R zND$_#;Mu* zAKa3VAaHm@%pvX;qoCg;1i}j3O9baaMDu^^?lpWtFXhwqY8fBF?lX6mRrdYYW?7 zu^fs(@##2gJGxWUG*YSl{PD)DkweXG=Jf>%U3uS;alj7=%*JCm*_6I}ZSoyhTSXLp zA1ZxyaR@fBMs`~*hX%7vS7CL*hC-v_PyNC1RO2M4k=7fONXqW#zlGPtb9lD)d9t`0 zdzQP{rK<<6$?4J>;fKkb25K_0*c};%9JprEP^X;&<}gxMgJcEX>QqXQxoQg; zZsY5O?qO+YuX2dBoCNDuL9W-2<$*~*SD#u-+aAE~asR8(jI!411790a7Wh5|Dj

{K%NASL{sE%8vnT^N?T*gK6hecQei6%ec$^@ZbAHy zvj+q@3wjxKP zTflscrrmx0)X+=6olr)Tmlb36Z6+whW3sFNlxSwWs<38+Dw!M96mecRSA-Sp6zZZ7 zs8FD~P|Y;zplKwEIpGm1wcYcjipU6zR>G9vy&+b<7d$Dl(;qJ7+9fS5p_`;K+aS@} zm{eL-AZvKg5ALe<#w4Wo#a@CH9P$Q;W1 zik@krUZy-n?WeB~bjTs!)-S7UbIk`_e;RD_CD|^@lUdyYs-LBP0%ivomriR4fPk=? z|ARQnuK$5J_WvL*?eG6W9Qyx2oTKXh6X0C2fVwFE12`>6RkZasI~FJ?$y8HRa+!2r z1$3pRXsF02GAb!SXqv@BDjJ%?U??gg8k&mYNK+{gb8#hEA|WKQUtGfunX5CL{NGbL z4m;Wbz0VHyYNz?VuUxN7wHH-7YJ!?s5{1CQiDW_0P+-s?@W&EXu3#Xn^{48rX|><( zI(j{AkT@UUU>)5Mo!!V(Eao8awTnHe3l_PEg_lK7=}4BR%%UWUIC-2%P)1-F6Y9)g_Ked1>1SB)r?Q4zB35K&XXt3;c@YdX$(s1$*yqP9%QuOi@ z)|pr8SUhsrq-68ogG$!760l&wt3zj7yKw~E0w4dn08qXc4Er(o3kZ@<+kbin1qkV` z1X!@lAh`Dj>z4)Zl}77~*g?>+=LyO`XLyUnYlVDeWl zV%chmvq}tm3>eoeP=B46`>W}P@KCYd z;datj;@S zPBrgD@yQS;n+*Q99B8iPn3^=*O(1>4X3WdB%#)}Aul{TU464#2>+<>VJs2D8r~2y6 zMv>5O>Dj;{SyB5}()%dTi-MkF|F$*^ITyw(^DPNc)W&8f{`y$OdJT;7H!%_t9p{n! zxYBeHps`1tY)NdOA#{Fe@cZ`x7FGV@pJXW6#n6<-Lsz(Eo3c1?A^XvdrRvs!<8I}% zHC<*p+L+Wdqt4havjV__(uvPYo2=m^g&-=|ul%sCLn7l1BhnHbIGM+{(wwWyKzr8Y zIxjoe9=a|>ydyk8$&rwT=5Gkc`ySrj3mHlzMn{cJDcV5A#hZuZdkf31s7O97lo)fp zx;k_&R9Ie-zJE@e%7H$cuqQU73e@9=sBTBQ zMIqSfI%HICtMc2=0y)qJf9+`HdTs;n8k`(UY;hb{EUlkek%bNhsxnSxnvF)A_chF# zbBVTEV|0DxQLv(P5^NHvLrMVtIm6}@1DBlEOqRa?Y~gn{-ya#JiFO(&l776&B*oz| zt0EjgKe%O@+Ge>DE3CJOURh=b5i}2rFaIwI7xKRxz&C`r*f|Iq{~i<{+2}g{z=fT^wP^Ehn+%?(*6Kf zc=!shN`q%&#zM!H^t|jJI=L7{zBt+YGpA(OVP8`rO@ucvX?%@Xcno$Ne;B@ z+7yUHMn;x%Dg!NkGl zkRyGlIc`RWBX3b!ZCsB)|gM`oIyIjV{F|nCw(mp3%=;dI6&14VkQg}6juprn7hQE*AM^rj1q@ZwWYzfq7;Lz?REtgR|&bCz`0@O&DsECXN) zABLW`?N>Be_G29<3|n9wf`~IoeB6d}=!Hj?D=^jwf*Rchgq2K@JxMd>8tR(16enNU zOS+UV?1@VwIgj<{lFO9_^U3w?^Itwj)0@M~63Yc4Zo^jF8JqPXe~6Y zs2z6FB?NH57D+j!7!Q~=$yrp%?l}jwk(>7iS8oTSL%yXx(B&JL zqBTEM5BW0v{m4BMJtLGYo@(@}ku&2a2;zA&Kvte)oROo8=#IuhG*D9 z@dU#Q7JTndt*~|ln)!Fspg05Haj!S{_o@a)MG#c?E6xaRE_hGFF~U&> z(6dKb5KIHB#%8k#%fp2>Ev)JT4y6D<6)~+grLV4T_31!_;a` z8Esd6q`&farUYOIC#;)m4Ja*yKCj|(Uvf{0E|Z2%WH`VMBxE=$4O$_M1tqWtHBm#| zs~B#3`Y=0=IcY=t&4Ui^(_jEDsL1s5lpo7i%B>Q|DjJjVq9d&b*tCnMdf4>ygB>6NFjp^GxKRDw` z0$>c};o8Bzn>rSCf)@iBQ+{H(^FaPw@ji>~2;pR=wOys1mTnoq<`MVgL6ULi%T&Cf z4LPS|XFeQW5YdeP?0w0TWaG;2bsmZU-9SGPouwl?*503yxTylKcDIloo;(i(O!E~Z zn1F_(i;Gw6Vx&7fq3QOe#W?@ms1;RGg8Xja{WX{dwS~M~8p ztFlAEYAFok&fvA4+HxAC4H3^fBR(5gL~~+nBiPbVyG*m(d=EMog;BIlp1T-(jM-*d zSbnd`s#~bc4q^yy{?tVXwPA9{LtE!8@Xzx6`M5T4dS#EhyXr3x^Yf%Hh3cZ9{ZNDA z@+&S)^N%F)&TKeYHN;wPc6Sho8d2!e92T|5j^7RtWjn$83&~q8 zZ`P^53wR_g)nmj+&RGL1M04^go!FUB`MY)0$3b+YZdO%fvgYZ0tmY!GnV3pAXQ#0z z3cr_Pv2KY_m@t~W?FMWW%$yr`Nzuxvv77_9XNGB#&+sFy0Rb3pMK9a*X96py`BAfJY;*}-+re#4+ zt~+_QHHO;{$1SVg4CT{e!*_TUQ&XG7OwmYr@8SbLq?Ad`aHA?Bwr)*OWJR0ZYL6ME zz?MvqRIStH2GNtD`a6;oZ{tFalu;)hCm4r&o!#07$bR8+ccn>ACwPwowsfIVImKgy z;$diHfw*@Xh4*Pi*-&Y=Imc4P$pcqd8v935;i0ND9%!0u<_Ge~9-Sw;!PU(V`Ae_p zROPKXoni^Su&9 z_%M(>;)BV@GpRVMQ^|j_z3aJDZt6ID*xq8fw=z1gj0HSh+L_;vA?l^iMb+^t3lAkF&qb&JTLjE6Upy3+Aq7jE`dCMA9JbufTQR%nBFmBQyklMlIjZA7jQLL- z+dsQ}Qkn4vNBKo~@x^P@U4NQ`*kbHQk&_!Z@iSi(Rmoe@EGAMFOAWuqfi+z!aP(>)sn9s+Powk z4yLKv02Kt$B5h!$Y#;MuSy9CJ9Cx|iKzAJ1$T|zAWF6}vio>;cH&-zsGT}%6T`;Vd;=cs=o5}S@{_@n@5As^p@La5UAM=wDM zkcgG$2%}93ZAW|W$j`CW;^B|lim(#6kEsknrCGu-T|giL8Y^)@+BOouYPh)fn9#Kn zSEvkEA!Cvhk)D3^d|5=`$~H2ZksJ8alQ*&EJE`R#LNL2|Q_DRb2&tBEM`j}6>yI^}KC2@#ap`Op)I4%V3ARw)WSMs6ma3RJ3GgW(h1#N7CJ5Hv$CsK^N;(eG%;l$W(g=05unEeWAH=c!@Sd(cD+ zKa3QNg>kT53=?NC(m71S;SyY6o$pveomNr|*4_PZEAgYjoS=}k6I5Cz{B?y)wSIn# zv8))b{`&!W0ml(vM*jhlv<#Cm{{$wE>3Yo_Sdpv9a1?WFjYzRBZKDVQ3L^z!W9IGi z)l4@7JoPMB?9FZuAV4N<#IJ|?;Tz0mBe@-UP1_8fm8^>JH1tc8b--lf(sPQYwGHQt zXEo~Na#vK^RcC^qReyA|9quUq{K494GvFSbRG2eif{8)t8^U6JBTg>=?^uRk^7uLY zr(^u4jZ>I3fv)of0)u-Jp~Y+3FuJ*}W2p1sh**XJ2!OGFLMgWD_$*UERuto~^) zIZ49NbqCEL89#V4g>Vm-49?La+|+k@)Q5BC6`{TAZoC)DtHY}tCcck%u(h}Jz9Q4& zZU0ws$McK%7CR4!M@iavO3m%z%*O8yk)2;#Nnh*)LXTj(r3PUIQ#0f3uG0JQT`V0j zER;7N7oa!mhEd}kWrsXfhxc*p?;WQLN?TJ#0tDW}Z~~*;!I0z-2Xz^IPR-N<9QNu1 zb_{8U0Q-VbHREU}(VhrMDaeBrEt8HW32KIGrsz#mlMc9Tr7Z_=MgncCh)FW`eQSI0 z4(A|*o0P0@-21M*90Iii-de8?cT1SM4Ex~6%7lZOee#Z@>F16LJ8*XFtuRIv>j7|9 zU#GT1>5j}(wcN^Ra9pm`kjFSGlXnA<##xJ4CyZyLT%=co?zh7yX zZc2$O-W;A4n)6V#wzNH79-l@s6`w0Pb4u}K&uDatJHtM=t~J1ehGyyr0&t2m8%&FgpqD0$E*llPc8vZ01^|b8i%cz z8M(PfEvC+Q5xfb$4!BDpJoWs(W`ilFd0Pg=X8856d(5T~H6-a6=Sg&!z{%KKo;Wjp zQh8>p9r{?)3Or4`+Ypzy#+hYS811uA=GhHOtbHDdFH2KMzMdWvO)LHmWr<;R@Z)da z5oDCB1feENTG_uECZ8s=dl&{V6y4hx2*26{88PDNTTRDWRw)F%F3Hd?9L60xbsD}+ zXiU+x427r76wzm4hR?Gt?JF5|r+nceoMniUU<;Qv@s_~N_YW&@vK_l2S_&wLr%f;> z$gcLs9wHQ%UeV`dB#u;;5X8Te8+w?5@Ts?9&&q?tY}Bd$2n#x}TIP}l<~MQVx<*Ne z06_NUBB32O^#Ti*Q*GERpvkT#z?on`6o83>LJxGMe}^c=N9rCU!mKbDK6C<2SHc$G zPlYh0=R=>lvxDX0hLe*@74Az3?)y*`WW(7CDTF}j8z~4KpAWHuL`(eu@!Mn*J(Dw5 zc#(bv}a*<7{*L{`{9mYe00}^)7^1TW1NYj@OO}UQ37s}Se+O?*XGaUKcLxm*BEMf_<&2-;M#Fd`a?|1jJo|5xpx}uFQI}U@ zWj41I3AQDB5r&nVFs==kJF(HafWM3SW6Hz{0S?tc?S8bX6k4hB#Ub$R@Ytyw<;#p! zV<2eW45h3XxlMU_5|mEte?y?*ECzxs*;aG~j27vE{Bs0O!>^9_`6< zpj!KR3*PofHV1y&h8V5bhuyM$+t?k1)pOnQ+<*HHl<>U&A^@ex8SZ~Q1)PmoVmfmZ zeM|TT!RGls&fbkOp}EQ$GTRgH>W2mW#2LhjFb9XlI0b~0DnAunwh6?1d3ZjljCj~^ zPW)Uw7{AZ`rbKy;e2@8_UZ5MWIE#WI5m)qsvCj*sb&tyAh_0|eHECw z@t^#s${+mSRrxyK|CKEMQ{`FyKUDeO|EtQ|D5|Vt@GA)o0Fh|uL&zcz5+TYZF+FhF z+=`GSAk>122CGiV{8kl&3bxdCl?JAzFGMTSqPWqe_a=9pF(^}@3sQ{#zL)6y(xLQ+2Z4xY(YZN|nM0lpJ_Su=&QBzR6 z6WF*-%Q-52$4Xg0=K{7o+kr|@=)dWc0yIRCXXPQ8eN2DcuZcF6KS#}HR|>-@Z>@F% z817D|m47IwEu|d>S7*zD!ue!)?J~h~AMh*Rh~Ht4dNeIk35~*|y^c|2?yRQbJh|^% z{GEKmCu6>2Ife&*GJxm!E>oW!hMO|Vfwt$HMB6>=g8rq%?H_OUwF;~Yi9v9~jDrRi z9$q{;QFh?f3qas@kA#axC6K+EN5!lZwWEqlcJoPV$R!wKy?F^TuUX{qa4_`xeoRRxXPXQBtsIX4pdOp zr=;0EXN}pkoXZ;nXfSPB{wO7kP-ep`W}Uu3D1UUVSE4h9aLTXym~dPnQ=H9!jt+vM zVg@wv>uKQmyqJO-HD;s3=irshUok`^%{o~csSvo{ksCQ*s7PA<(?2Fw)rg{DP+%`T7g$Gg70MNN80^ zQo@jcN$xCYbhMVCtMz&yNqDHrc(CzcU%cfA*k68(-frd^c_c0C27JS>7C3Hwa& zb;u0#oVR<)e!dONq?FMmISag-AD5$??H20jVyIczfeH1eWl@l)2P0;^Zfe~?Ul}bI zw^BAG$~C!DD_G<~+OkM~0;U8D9-8RZ$zCM3w0#`ueC;L@bcNZ3nJE^l0q-@CSb%!ZwW?IHEfmDNPwJ4Z@I+P8%y@c$)Sz2h)r>ctKJ1FUP0s$hhQ1JnaQ{u2Ve|@LSb=3u>{Q8H zWB?ffyh{~+<>c0EbKNM-2_b~_j$4|cGL^gHi!t~~?l{o!o>2II>m(&iN*h1?n*Fj0 z!4ogNna5_6cXv5<+G55pSSjIt63TZ%@WX;hN2bpb)Ia>fqpkLCcLTvoW zw`bKe$9iLA1p+e?KI83HvvwF`oSaI#G86w+Ayg+6;M0Qzo}gIsHm8q;-AYvH;?rf% z7c5({Qbp?rL1*9(=U>y0w_~PxQ&A2xd?~5(BB@A4x@JrS`*eG)(tMtn|IJo;=d9q3~9(W zQ=h1!`Wt2oF@sE1a^*o%4d0?t<4%)Lu#6=-KScjN>26Vxk$t4PY;jBN&Iopf#6I?v z6>EH%q|QhyPK~%_w_d)1m{@5GJdj*fnS6Ow+QN-&+DsMHBGW6mVz4cDC3vJNbLRO~ zfSCa4MEm{M3ug6pH^e5o=AJ{|u7kZ6CLBSXSMnk8vLiG;_+%tVWaO(D_hzQ!;T>6Jrt$D#9BxpeW+EyV2+OxV zf+wZP!*DgqwSE#J#*^GFb|t5Vyu4;(nO_0jHj{IP7v8xytvUA#O?K?1?la9hYiIq~ zfP;v3{y+I0YvTVd%D3wOFT(vN%Ci{!zlriO|0~LSajMyD?w(}HomA#g6SIhh^S)}A z$}bwpdyu^LE#A!{XxyN3}_h?CUT6nbtARu1mEbk zdvV$|LP5g2>NG1ahYX@PBx7RcnU%6)2k3&xFisy(FwHte3Kzm-a1kNBAaz(ugmI;d zPotAJgmp!HTp^JqwMqur`&^SsPGICC;OL~!xz&JyEW+v48fQLc`;-Pwq7>f)DqYY| zZM8+i)Wbw+MF;l5~MN~$0mA3Ayxr%r#XMd+Tfn(qn77l_>u zeg$lcuu@YvK=@KeRxu5iqQO~ujuW&$ehyRwhO_I#Em{{ceF_LK;d+<0<53o3d07k0 znuFlP*(+`}y`YLDgby3M$}9s7TM%W__hXg3M+4c?YZCMkA;HI$Tf|x>VL3q*efx+Q zgC|H1tnhh$aPfo5T2o%Lc8r z_KiPsKaHx3E66Ru>nZ8#CmB}kyM^TUJfRcrrdIPbUO z=U1me^%?^``67-!@Lcvr`N(g*=wVh2{E^>YN4B`|_029i{@cii`@Ckas4VrnaHl9S z#UG{Q{cX?7?J5%WE8DxEGi4c_dMC;8$-4-L>^{kNt{mVtsK?WQCl8#sdoU zz&*`_TLc%7PLyHG%e?kdf1ZQsE(c8Zc6)dMnargN=M*DjYOweMeXd-&ZQy`M%%MLD z^z)Wa4~1@Ipt;^KK}NnjD7*PC(C&sHo5&Yuqp1+i#eKEm3@rKYzu1uTh4Q#h_tFJE zjmXf?%RLA!$YjJ9i>#IIEj}tk9`!ugC-v`VxN zybgOfNc59JX?d?0;4Xn7xQ*7^Xr}+x3eow#Tq*mV%W8)gks?K;Y|sd3ZDYAx3V>BY zofK5jc&+##(1oxCp=HUnZJJMbxfTK?2`rG91T*HS8>r|3wr3k7QGp)TJUwp;+X>zy~4Ro z>Y|hfB+=Ot(QEr@Ab+XpXT58}K*j@^96K2-sF^DyDT6^+5}%njDf?&$6d%jGWNv&U zPNTPXsEZ)6d+`MycCO%(kYS&}L^q<+0OCH`FEUAk2Y`RQ0%R!ct$nVWDnwMdG8apC zda!bSHZgNBZVASntq+Z0=%_6~ry1l~=mz5F`FsbKDC;ngp0{v*M&@_b8PPe2yFH`dQrEu!05ZI&OW>GLDn}mToTkObH4WLhROV( z+|Jw6r`p4UyMK@q7^T3c_ceYw6bB1k_sF-uF~d}NCwU0%F{B22PZC=~kH- zHt_Nx^GoEd4VSY(4KXAhc?ZA`4<)Ym44O%CQF#2i{}+325fx|KbPMC|8XOV`1PvZs zLvRW179_ZP<0Lo)cbDMq?(VLQH}2Ln&_Ay{-#<8mGdz=Tt!v(^>%L@H?b@}`kn+Dx zo{z=BPUCJA=Io(A@;A~uDt+tr*tW>@*?#|-T;P;29)fr~N4Z{@h7}}}8?=gx<@dRj z+OyBv7T+J8$Wwa=O}?M(G{HayZbjDie)Z@39FCAPo>E>|Hf8yhkM(fOluN~TGJ*)> z!mS&QVaQsK);!m382%*>M&D;te|`=lcjeR~z%W1C^f?wcHPSGT%j}>dVa6Pl6G1b8 zuRWwOtZESH9+x=T%B|F@{+r`QMYoB31EJq@{_)r|4i2{)Hm0HWYi_f3WWcQsY@D+* zNHl8PbkkSMB~0ncc8TP9LQ2w`Z9hn-?Rlaxe+HM6YE`mz@U(2vru<^T4`T+SSP!q$ zrH&FB)!0JJ`lw{8c|>VorrZ(J*MAfjcyk+lxc}JXph}=sX#(Avphx~8*J~TGL94Z4 zeMl7d7pCkhy`dXILHF_bp;BWbLiNlTONYuOX?f!haigE?TC93HTE@_~wpB&xX7UBN zh^N4^crv`6RwigWz=XaWQ^tP2ix2)Fa1x>ACDUl5-hlr$k|>3kyo7aK3v)5q;G)q$ z3n7Vgkjk#{i~odF47J%=lz)6Gi{S%Tkl8xgZX;)f(ME??_`okh=EjV*ufFfmd1Qxx zF_Ha&N27CT{Ce9)6_ce$mtyF{WkBt#$sMCQOLRvdq3UPD$G!CILsV)D6dCSo?I2g! z^v?&aDCNRMw?uqx{)ML7#jkl7S`C}Wx6(^upHq)rT!DDld(BN#;+9LviQAQWn5(X$ zo2EA**UOa5=RdLsKa~GG$w*6XVWD#H-r?^zM^9?{b^1m`1`QxME{(-!8U;iR>5+FL z60we!FCluvKnwt{1BvFJ&m2b2>V?sY?ywf<2fy~b2Z!VY7Q?3;bqK`AdZS<3*-N0Z zA&VAD7uqH=z6(+N*g6J)v5C*WsBXvhZ^?WJX@~vHnXoSy*F?@7zJ_<+*@5tco?_~4 zkfZ{P(|AD2+n9&Ap;J0_E#1Zs(og@G8S2)du12&&c)yweZ8A? z9V;jo1F<}4c(!Own^GNpF&D-hTk9L=-pw-xj}${x%25uH3CQi0yHJs68pSf1*~Bii zTnimYv7sib!9#C3=zT)Qq$}BaV5E?X`*=PD;C5NR>yMa1SCjQRP!kmPja|l_v4qHdz>v@~K)46Ss9rrWl-3G9<*4KdEypb3>zc!*gZC0!M0bfAG z`np==PWR^<^*^US>-vcBT+lG6->+4un8JM>*#dxh{k8JAV-`CBu_Uuc@P=Cr=mdOq`^V#rv z9}gRc>p8ZyR0E};W3;ZeqfOK+d*YK-0UXXZHUbQm4$N8OgTjv@9HMT0;BP1Df}+AV znN!H<#5iNX`=}-x5)=~sBxSlEFl!3{gR*aI0S?dxHDIt0&f;pTl(7u=WlUYU<%AXN zA18D3#Q>|=5hiQe&eD(&b3QTIh(@>zD=R{8clc`h6)s!TG1wi)>}qN;jx>t)&#M$a z;L)Sl=$kQAM7PSyuEwQSg)9FukL;LYJ6x+YCm*YdJ^Dws#$nJ`lTcK9J4L|lc;_y# z8^S8+B67=@!B^ADEOZv%{m~n#zjxq6y}Lrv6K=V^Lhi0vsB>Hcs-hkZTsw|=w2#~NlQ%;BsF?c2=h z==qC8s((@IZvIKKd437xfk*pBAZPnqQ9#rz4EpJ228ZDE;PMpQg<45^MZfTtoD36J zCne%@;8n(jX`-0ggXp6#EAbXnyHhiVH&YtF>$3`(96Zj=F}KyS#yF_%_s@Ce zyH`6md!RJ10Dk;=y#pmUyCMOSI||(y2Y+DGzSmveT;4#2Vq43HWuiiwAkFA z3iZIDx|vnhBlGvzww;@%^oGFQj3s~ql?#q$(cM`BQ$OYG{lnxUziUj1|n4;RxAFv;=wdmbwJKkkg!DlozVX6yiNCBTKC?J0&S6{VrYXl^*mnWF) zf9s8j0|^Dh;ii3rN%>t_2khz1Iyd360KB9oeE}68nR!pvee}5;q^$ge&suUXY;bNI z+3-krZQ}IpVMIUwOm$3r)6dfJ(goGQ+!=E6jtR@_7USdTH#JRX?UH^a<{_rdWAkRc zmVJZNxw)Ce-?GOKe-|xrqB>+$!+xYgrO(z!;ObS0zx)&7|5r?D;JFvYGH20n{`f;! zE;4LLSyG;&?o3X)s)mdJYRYPz2B82LHp0wTP%hv`_di$%k>$tZ@V|e zatC?D-3OGv#oq^2+XI57i2eSu6FzId3Q)PGBDpQjQ2zBL{p-iS@}cjZ{(egTcHitr zEpM3r(@kd?OA=%bfve*=bp8!KLsI%fP#M`m{=DTsJQUMOFB{;VP zS9MX==vIOyQG=Aq@+(VJD3Q&F~#rk4Vmph7iV(B$D$oSg{)@dQ7XeFBDFkwJ=BN80k{E+Dv^$h( z@LIh3vH+?ge6&V<)d?`vgh4?NgIfc3K8*t^pFE!*vgM~A$gL&$;(~T64N}J>aRv1J zD*Xio$22vRxUDETN#Kp4_zLL{?^X6ftSNk=Eu4S-IAyMcxG|~$6SO>4&EI3*F%3pzK)PHef+m7F*S+T;MWvE)#G9b3-pNdL!ir|118L#zQ@do~a#g^NUxGZs_ z|LV);D4QWXEeWZZe1Df>6DuWHtQO!TAj{A=C72u|${o!;F#tW++YrEKnUO8am0 zaD!6>=-Hp{Q3+VvGs$_*F@$xFeVq7A7+DQ~fAbe=s}7v-@J=l4O>vxID1|NFD-69R zmS|W5W=;ZyL%lG;y(4j7lxFevmv1P?Zmz-B5qmT~b@T=9OMzm(A_x{d5>@m9 zXIeGN8@5?k4bP$hM+^OYB3(non;sEW{N0gtj4y#~q!Yarit0Oo#NrOBB^8f5?#7RJ zV~}P=TewOQhN!h--t9eRdOb}KPP<8GcwTRHi+T97mY(8uGxL%-#{o4nhym5Wtt4_M3`nI_q zAP;Nk+1eqh1F3mD!X(4C4U6Z|oSxOvi4w#tKgj*1*CBrGqB@!XTU1R%X;Gvn zhTF-^h!^d_)U|YQ`DRs*x$2liV}(7G&~|d5vM$DWB9T;U4c7j2^ZY$CO+9?sL0B(i z$gq~|68Gt|5vAJ~E!Z(k-d+@iz?4-07ITO*OH%c=&@U_*lb+urT5;t_ZnH}mV?>N0 z<}vQeq=~}J&O3CCt=u@AC0!vZcHcke`%>7nG@&$Bt&uvDbcC=RZwG#CCz`WA@59Iw zU@sKbc=X^RLT@>YM*Vaw8gXW81AefP?;a!0Dr5;Pt>tMhw)uV4e)&5xpD=~s24nD= z2W>N2p}VKqJw?e?fEJUlTM~zav@LDxZcxHOgZf?kCKI*=%L#ju43!5l5D64ZN*)P9 z%}XMs{-7CVO+xy;0m|7z#C4gx z76bGOaV>&jJm%1Ic>WOEuI(Y~0p||RlZ`lA5bBwEa-{>_OFJzE6zS_IPj36)`^ozQ z_=%_IlX1AL@Pa<>_o+M+qe_F!i$P}_1}JUJ^VB2Kc;Re_&9j4HNntO+j?{B_5|4pngCcqIhxe=jY)jy-L-`dsZbtQ^_h)<$ z#36L-+z)eDgB!<_ITpl`wf2bP3zEC9_R}7}%4Tdv#GBtc6(Rka87qWPxyBhVa1b)50b6 zrsS{2o5aRF;)GixONeKgx1Q6c43}+q@L9_ldoqm8rs~e7k{XB$bP2o zs*Fb7+3#YIf$@ai-IM2SMAtF6t%dNB$vd@z9PDyZ$i4Z`t1l(~u(VosU76N{4m9ge z(oyt91^lmG=cs2H!`BNxC-hcLZjpp)B);gdbysEeKqDC>&-t%GuNx3*F1JH!G+@6_ zad8J+1k{!?)UTgJm^87*c=^pn(ad5x0T%FzK^cX9E+v3X$Nmicl-Hj*26Bou`GU*$ zfX#WW;<5OJBMc;QRmQ{7416D+Ndc}9vG_2m`*hd6r7|6n;hFAaB%+TG_|@qr-e&(= z$%;1IuDBHZQ}OfltGeW$aotz-v#xvz@9fvPn{!~vo#rI8i|~<+)yVse$v}B?afX3G zAO5$zP~czk!byhzVKPYHm<(w{6Jr}=J5#g&Q)4KC0yB*MrZH^L@YYiR69GZD3FIAf z5f#a!ABvLmZge5VCAWFSdAE4)^LWGhr1eRJiUhwi>dO`p3{Z@^kgnqu%_=j*j^t4;~vf^EFp#uc!oII?>0Fg|NT?3JVU65!H5sXErJ&=|9QN(os z`CT0ye#%B#TZ>yb(46V+VY6*qT$&ygniCXC&9s~u%^R?wZk&j0d9uX_j!P$Y4NB)a zTp$B&(PibN4;ye`OkTPlaWF(m=MNG;J5A5k8s78n*_->7^N7-AI)c+H{b6P`kFUh= zB7y|eBL-oXwLcu+|=mTcsg%L4XpBRx!nm zBl$N+VW6wNB?$P@uM%p_-h%-?!cF#j@eb%>YrKJek8Ii!QtlygfdgT4KbAD%DI;Nd zLpLf=@h7}ES~K($G$T^@c1M&NjymD8l$ETYNjO1P0X>;|VNph0xOWN;GB7EOp60G3 zOR&+Ix)jGl{$^;EY(-v&y|vCqu(LZBMxIUzYTZ&Fzhnuo7#=AgFVRu8=3npj&zisXnPn@ zlY5A7hyr3{G|sYuU?{CVf$tw$yP24%clM1%E>+qXKi-c~Tt?B=Y0*>lF#h&(k08w4 z@(d@Tl)mpSr74~-qa|x!RgJ2(J@>a5O*&oIHQzG0v62!VB3_qBPbA~O?6zJ>`^A^eVJE0n4E+j}5=G}n zA}?p^shs6l*w=Kf<}M`>ey@Vvn2Bi(m{)_5DalOeSVr42{Y?;;QmyvBszqTE&;O%+ zOVv3S^VKw$tBz#g0$O5chpfDj1|^pgA0v8E4C)K}1)%zeLhO`za;j17ivnU@As*4= z(5%4+y3grm+U@L0xZ}PDf?L590U>|Nai4zsex9@g3MV|HMMjInIx+z;k%W1pK>L%y zAw(3>X$l-hZh3+vqc+{jWtqOYyjZtW_YT-?_x_Xac&T1aia8Yeh7CQbsA=K(mqkKY z^-L?&*&=YqW!EbJ{*|1U4#s@#E~Es7Ch6qj)%+PU+@G~#3ONR5>;yTb@Un%V7``>h zAX#dG6-epZP|-1qa#4+(FAS!aG*dW5EIdk4qi3)y=)X`uwC(yEi`VHoniCXdT07g` z@&uC9!3iSkBu)?2ZXnCjTT&N(NRHzpg26+?9+Le*lo#;Fn(7JfMRsyELoZ@*yvecBy4Ig4 zM^pqCiTaM!tZCi^Ct70ndMc>Q?I7Qg@x0Y1j$E2*;uGhZUZn7#ZOiAP_dBpEnHEY_ z+gHs~Hm2rWxndnawB8A6uIb!usdN5bGYa~P;Vkt6 zjhXVUHa6Zq9m|wj#LPRcD)O-RAwDSwX5WWg;wAJPoplvS16Yq0Di}!-xeNrf?5&y8 ze#gcb5bo2pG@#G~cuh6kj&D4mKE!`Hb}~nj?l)xJfcAJ=cm0BfxhHk{*qqNP^U`s&`w6)-5seO)Q(n}l*_==@T1 zF?JHP+BKKfMiqP{N$U7YqtCd~CvKx#azCJ5z;Ia%%ZhoS>vrxp4AkC74O4<5#)kzP zjRjaoKBzf(F{}4~?y=%MFgb(lXmv4@dcQgoZ7PrV{DwcNx%kEXxPD^Ryt+nZ__Q1` zrapJok*LwEUID+vapNEt%fV_QIIw_g*X&qEa8SRzZKw#@m9@2ApI-m9@*COVYc8vB zyfZ@fu}4^yR{0=!yK8rLhRbK|Jr4Bpl3j6LH(aTVeup5PAw!r2d#Gj51gNcg=_K`u z#}7Z4q=1MhJ~PJlAY&lOeT;o>24l{`%H(R6(dsjRI0++PRo}V&?>7s%5=UO*(gGI$ zV|wP2!0gTM-f|TswYe*5W|x3t>SPHzzwyGw`+ntU3A*{$4Dr(O$uK9DH&M}{ZNeg< zjI4q+K^8{1>al?Q_SLSKtnDL~TII1MfQ$YSux9(^K@ek-XxYD1oG62&JoxW;F;0yE zB3>PDPgbhT+jCvcwYXuA5_pl8`O`7}Yc z@c{8itp!7$WLyY}e{>`}{|{b?VPdO2eyP0ArUJrJGgpq5TcL3bjSClSFF7lSc~1;a zA|&Hh`^GfH7oTUJ;PLN`-C$tW65k*QPDALwA&AhwAjo3be<28m6uG6L?Z2k@ymeF< zJA2yxpCCkO4JNb!#{>3s164~w7y9LLLvTq&g`^fY4rerWyNw}%J+-)hLeOH=2Zw`- zR`Q254ecLoj*#~xat8&I^L#SjLGykaK9Qi9-fJM9e-88heD`~dY z5Mu5EH;5>oYTY~euB|`+j$^TNDL8k+GLj-+fh_S=sX(H*j}4Z1jjoS?f@xk+y8xvbv0Z-qU-vcbZb15;qfj4<2=Ew4exc_Yy5Xd953h`J^PRif8> z>hdb+Du*TxVW8!}{O|hT2>fpZ{x<^uk0Q|Rmk1*rjWDqHSmQUJjI>{=l8v`T~EJmf4G;KI{%Ir;Z&lN?9wb zH1^R)f?{>`sC@>1xc@AuBy6lF&#Iq*@}tED9K-i)o7p?a(fPKi{9fg(*r^h4`7}%d z?3f;i)r&hz?a$Ckm29F&+>9iVPUoLPJB zTEgw{>W@YPcTQTqup*8WpSSJIYO@-$ht!EjXlSx(Fq?0EJsoWEujXMlcMZQwMcEbx#Tg8qObdf8d6*MV=4V zeh6a~&`_;LeYOybt9R~xrt-79y)2(ms ztxpvSQv>|S5b62aElDi7Q$@q?>YPZnTcs6AMnnw;n5)y1!PHMSAtwA6?jmLyprgdm zmM^j8?dJ8;@nf&&1PL^(Y3#Xs?(Y7WD*x>D*UzxAjqc=?j{X&u60yIU-o5tf4-W+N zE9gMwY?H<`lktjN$0jR225Uyb%Uo_0rz@<4?-Sm{&M@@H?cu~eGCy!uX^nl(ajRr& z>-rVq(`Orm{TLgLE6FP(;eF%@7zWmO**6Qo&w|&enz(;34LW+__+>Wrg9IrIT{mi` zK^U6j{_pFgPkvHoLp!KMOWR!RpMc=^T}=`;zyEs>7%uJEV0wBYG#>JH3HAfi#UK2h zPyDsSnL9Ovfv~h?JLdFXYpJ~#i`;+Q-563|s9yNS>x!R8i^k1>@Byc|xA(=oBUi;Y zG9zZZZEi$?*W=6s(;tFk;-hCHn3k154Lr4&7v($QB#&{i_#5fbC)aI-!ml=c$u ziK8@HM#BsEnu=7vz>NJJ(d`Y>*SiuIpBtkehFzxH)cP*=3A=sQUMn9nSg>d#+~=%HF~w;n@_E ziBLFCvt~}xOu%IQMsy)(A)00hyj(fcr{r{KHiNHy5JV!cDu zwaPi@gh>^3ZUMR=)g=q5YIdVms3Ubh#>=#~V)xRN#Cd^Kf={O*ZOod6>S(iJ$O2%S zh!QQO$Q_Y$j|B&u(7E-+!|0+L-PDz<$@fV84?2zPPJbH>D@9_PGD{d+#fNM^UFb7I z(Eb%1N6Eq1HD(H>2CVjaZz@>rr7H6kd%@?i3oAsbz&eHK|lBhRW(tA7Q7RxZrmgzbcG zG?CK)wH)c=uTO?bd!tN6)E%o8V!uQTFnS|EqfCgDBcCVHRSRYArOTnc#J?0U9BH0 zzenS@$IoA2XrUR?C+eRIPwx2A5BgVhWY(XG&A$cfb(Rv)&I(7_1C3||w#}<1{VWXR z<3M=M)e7LiHG7JHTmQ8Or9N#Gb@t*1k)qwEk)c9;tQo+yy${Fw^-5`_W(|45R16-Pc$(=H`F5=3;LRLd+5FpnAv%; z8DSb`O{`kh8Z)*Ky?Zt}u^I{~*K)z=*D*U7w%~srSSdK_mW5%#oF@=&OBF&~%MEtd z?n6en)H6 z7Opw_>chw2c6KeBe?c;;t5>EwOykwTu8VO$=ytO7Ojlg9my#E*VR7^wd`sJ zOY?UMuD=;jYnqW$u|W8ZH79QH=nO@4-BZZD^71tZv&II$c#Tc@=H4g+0O8-UXC0%v7K30n!<3!$59??H zVvzTTig8J9!Qv})pnKdw@!{5Nrqr&?NeeUDg2u=67t7;CU#XkHY9A<_5Q3qO_Z9qS z<)iu=pCsn3lL3;or=qqw$AvMkPn@-5Ylz>PpwIl70kezo<5&uJaH)0`iMUK)uTH>9 z;rpQiTG-J2kkmi7dg>tfIx3CLgQ*ZsY7xPv&0%2IIZAChSsbbQ>qEC8jL3h})^5LC z7zE;hw>6l?YwAn5G$6aiU*JGoJ_ymA<<}DtN^(NZK{Z8(c z&)JEAJJw@!nM*gx#h^y4X>HD^ee_HC|6;gjVibQa%fT8&^V5r$QtHl`wzGa%^+sgR zx`fc*HHodr+G=|{eYfCFpS8SgcN9bH@C~ZwlS7fO*%(Lp3&&Vt;vw#pdI)+kdm5`HOst4Q>3A zcxYLERd+&(*zp@RddYGia6WH0e>jYJNhG=Vq2_xF^ z>zMy>p(6Bl_1TA16E<#xegPnr*re*qXNP0@?ePhZZTrA;;Qg@3dTZrC!}WFGSWsYZ zT?0+^w8es^F8{gA=+bH)Q4a|5sO`7coNMn}2l=WKKWp00Y$sFJfT@_SrEv!$ynwT| zB-eAHeMoXvjs1&uPw$eOR~fnlGF}CB8L#cp<0#Navh2vS^Kr5^4wdaPWxf-TB<%{jDP)UyA`>X!V6payU^_{>YQ8($#I+ zlT!xhY5hYcafkY)=pf-C6Ll&25a=c{YZ<|o3|%2em~eIX!}_Qvpv;JYoGEv3qsLeD z-(=`An;9mYG@Zv?B^C&w5M%eY0GgU7aw4Q|1MKt~16aq3`{#d-rM9|2)wRb? zzZDe25DXk-H!RLMCcnAg*b0B%YGX6@SHzP5=4S%$j!BZNQD#;8>T8eD!0jA`?q1Op z`dxZ!rCDp5Nr(LA5Hl*kMT*G6a=1jNGQ#LFnKXdjt6Hvv)fva zY3(aL8$L0ZhMQ70&`K)tn=Zz#ZcADi6?+#ap@eFm@)$#g$t&UWn!GH3A0>%1`~=#i zXh|MA`w5V7h2?;@{p75)d{_tzC`rA$rd_4XrX+u=fa}Sn7l3TUi2|a&YRMCv+>+FM z8mjBXxE&WPaIUh#fKHmdkpr5v`i@MdlCu&0q@<5=>Kn1i+!{4)ln39~?&)XOIomceV-(y-;cybN}(d9*$0COC3m? zk@c{-qW&0+IN-8tZ<|(*yug_4RjiLHjrkj~Y$HV3%C%0W;>-o$aGs6~QJQnpyh$q8 zml@L5t)pb+B650h`b6#syzrBk9rCuYU(l}3WGcGRZbCCjD=*q*s7fi!+J}sauF9{S zV^Unz2T8gP(60GrUr8*2X=VQ-@D8rHSH;N|DC+WYE`sekYQ=&&Z_k^ z;I;X$(#h|Vm_XlSSx!{k^yv0(;sly}ATF#^ za_JLuRu?n{kS?P6I?}0Y$L|q$Z?lPygu%WQ_FQLjkJknCwKr==?TJ4gDOiwyA&zAJ z{H-|t1NA2FX4Um$UG5K)r2>5PU`c_Xqtz*I4r8@@AY8@abM!#6`gVMXWZl|8g4{z8 zN?q51o%+!A$%u~;ZGv&^Tly7T2Av@&XqvM1O6Y#Ie4ZK%U>rJl%@r#V zS;N}>pG-{*W)Ks_$eykaiuUkkL*-uz1&>WAj15W99oJI}Q1L4oxqphD0T;z3+5y~> zLq+x649<8WqcwE|%kHl1heQ+x#x&_UVmYNv?WlzwZy1UpQ$zl(8#8gHiY^AF#!YK$6$p~n zKlPFttvIOI4C?nx^Aml%JM~H+KZjdw`28AO0?HpY9XxmokP6tWrhYakpl=gBD zqBU2wJB_R^z)t6*SZ7j<8L|fs-|ryu-gj~pnN^1pSxeV?FU_=1dS+{Mrh}IcUsKRc zQ-;}9o?m26e$si4Z=Z;*yH0yApm|Z%xj!moQg7|N&JbLm=^gjKTumuG=Rbs;{S#^t zF&NsHF|RD6vS&u>2@j&Dc^xfw7`0@b*Io6Cw#1xaOU|l?~T&Yh0o#u zW$rG=gl5gn8DkW-sF$$D(->K&kUNFZ?_cL$4w-DoGF{4Nf25daRvyM4+dtgifb{iNa9W6p+ZR z=*BP(|ECyIH{NcC4ySyBz%)d+gPS2NtIJ5hBXR5}?o4)vY*S}K7FCtwuGNbjGZ32W zMNBjBD|*gHU5IKN-)Udc@A9->KSI#x9AzmV_uNIqJHBzI2c-2l;Mm<0=F6u?o*<>4 ziBX2az9LkSUz94$@FdIGNd9|NhLvMM5$Ndm|fXKJG7u8fYz`YPP;Yo{NsM35}5?=SUrUA5V=lrZ-9 zu0On^lrvZJ19dS4PZ$NnzH;w~ziy>VJS?@bg`?Cp^l5^AiGMH499p|&Tgk+ZFv>*n!V|bzqwc5$=h5uDTnD~(VO9OE%1N$3F{ZLLp#PS z_b2@8^w|>%O2!6nxd(8Q%CY`c&J=2f**Yty`Vy@B->HD>6hIdq{b@z!)Jx@nN%#Wo@>LW zzgb6IBF!q@h=H`~i^}3lWOR09W-_ZrjG>`{VUN z`X#k6>&XiE%!2F4W4hb7FeU}3N2r$Vaa=W4fbU`)0C_WOf1CEK^@Y~P(W(068)$nH zfl`P+QTX9YUi7fH8RHW6jJ2`wWUe%oniSo(JQF|F-RH`_J8Ku81CloT`S{{}$38C> zs;vYxr``UK`jM6|8@>&$Zgr9nzywo}yN81#q3ZC3>oQHHNI+hn^?9RGiIWdvi;lH0 zaK?hEA$fx@H3y&N4S%RpzCBGH^-q%;>M{Qi2$$K^FrM%-i;%9mD!taVm-*Lp=DiaS zo-@&^;oB5FasaDp9_Q7_ox5fD;y-ztMBff&)T=Pk-N#D3V#s zlZYo^8ogiy%eJwha2LLEr~s`W~!FZLmy+8_)3-4Ph| z0YNDxE>KiZh@LOMbTpg$KWiV#2h4T?bYfIo(pSDwa3yq|6TouK~qRQw#5zTM)Wvy@2J zA0w(#6->hxG8*hEQ==s%3O{+C^@>l%Q`RgQUIMXY1v(jOWeD-|?}u&{m1gN9wXcp0 zc;iDGFHSbEy=B%BX+$PR9A1Tx_E_jE-Z2-PWZLht3BFA>O0Jc|g?~d)DiX%oa{-jp zEuCzWIW$X=N;Fkt9rk2^qh@aJ?Wo*q@=7>@pQ|s&hxmB{c{2qettvh(KFX(U<}Mp* zIt0!i&G9?zFH{uBc~D!tSP{)$_PnH8^pcdsh&*|%ttrQd)ox(j!qdGgiPZ5!7XCR! z7j&Y)3(cV`QXvr`2xO?(f=lcCT+C;%%Y7Z0RqnyPDvR8yn$K`bQ|%FE2gJSRQgp+% z6S<(9Ub($1Mt<~E0CpnU^lbz4AERX!tAI8y6d%5g45i*JJ%GGv#>+I?+@px`I$+E6 z31oc*yAg2$%(wqe>cflj(7N?cbc)9!>9Xjh_N#N|Xgw%)IpWbo&TW-|vZoy*+|N6s z$Bw)`b?k-LE%iJz>U+kwc6X1OYkyA#a%*Ggi(m*Z-xS88Qy=ilY}z7y!@WTo(=oTY z$iL`0|F|Lt{8n*lc5)*sxogY0=!b(Mw#0K*YmUwjR99VmI{l8_*YvYWKA}K^iw*YTkhQ}zjBT}*j4W3BG z(=c%SHiqmrn}N^eIsI18^Uwh+szkc)9w$YROU}np7!y)YYeS0}QJ=>BL+N zObzsj*Rr+f6F$ozZrZ+kH2K?Nd|}e-{=9~q*Jcr?5mfUG^sc0=4PHCOY{b6?&%SvK zS})S)V5O+f`{*+I@RWETVG2Ebx-d9NV1o~AZVvzSmrSbjO#&9kME?u6qj9r~R54|o z{i%uKhQ{xt8N8H?&)_LMt-r#Y@owDqy7VrBI<^5Pz0DqP7TjSR(WPW8O0iAl@WdyS ztX9*2+d;b5AV5KlK8dV;%rUiE3`Tuta^`KGvp+^AseGcslkOIfa&|ZJ(>08S|3SyB zEGUi|xa#or=$uyCebqz2IX3nXYvBgWkS05Rk#y!1PN{fHoGs$>X(ajZwgS*G!jH(F z6?X<;=t7x4&ZLhZn{@_#?X>u+a|?*XY`kFTw8D;q)Qm+QzH(?w%-Ng>Gd~Em5bS*r zZd;uLSk)#-!IGki$962VQHc#TjFuT~Tzr8YSngw4Uqy7fQZJ+yR(7_BxbSDCojk}_ z2UOObv!NQ+rB*O@n(*y$tDX&4UN5P!x33CH)6sK8S1$~{Si%e+v&dhOLi4xZ{lifC zmB1LgxVkS+-NKYu?d*dULJaW(4-b1(7+sKn-Tcm2L~N)^irQx?(~*2+y0 zaaG9%NqTL90gHZqWFCQ&-$w2udXp1oeNMizytht%$WP;0HXh&*RvIVWyTh8ggjx8L z6kuL_#D`)2@Sw+%Jw$_a`if$hj}Yr?4c;vBS%>5GIxciymH~n8qw0?|MjwzTDH_P! z@-GC`Fz)kIO@ilJi>(D*MRC|sOURr`G6PfCDmyBFN5sA{NU}u<9Kbj&6Z2(XyDJY^ zcA)*2kHQOhqm2{LJ)Yp`AuBG!4XvqU%l6C@-ZN#q&?;#x*^VRO%Du(Pt`v;oo9NE8 zG5lbcXKvpnPx@9iYry)#kc@a<{LG8EQ2_E@=Sod4eb^*+>!Q#;;TX<_bTOBhG=U!g zT& zBLi1xWpW9N+s0B@&JBw#@UA&dc4^4KCtTl>F0gjU81NMtk=k9*n{`(}AK1nv?YX!O zFI|B}E?sb=iWic6{|pezxg6fS_T<>M!+0C|{Q!hv&Svv8Hcb};C93t{lKp;9u|H5d;YZ_t$S1>28Rl&NQjGWW3vfwbHNoRZc92Af%h&;m(kng5{3Ob}W+G zhLs$sS5aXDRU8K0R4wW7C1nxoE}qEe+8jz(W*olbqg>ULp!%USfz0duA4+F)YSm13 zi7tW=9yox3j{I{x>)zE_dl;>RyFd3Dj7_)(-4tYyLR7@Ag>+1m*&xSFAM7Yl_Ar-=jM7t}Z4 zh_j^4W>u4l_*3gw(N~Gq&b!>=p59d-at0?-_ccxBEGjY{YXve*em4Ab&xh{>T~}xX z`kS4ufN@v3A(h<|!*?Rt(NzaF+Cl~XII2`oIkyPYW*7z`PWcNg*kG+V5_ z9?=6`INf+YWJgU1F(J~{hO2GB4qsOWXeK zm)VFz?PRXZg{6Sclp5cHKcEh4B8qf6ga)jyDR`Af<(~Yi@?4OVy4vCB!jrX{yV(}iJ5>xuZ`V=rb~E4Kl{+o<>b8eBRWAU+b+f&iAn8d z+0jcQGdnoX2RtztriB5SW%u3sVe;8wwT}b9_TFEo&~d^JH?xTKr?q&#bcIEyY*!CE z^$`W%jVbaIgpn+syHVt2lSwz7qiY(3TikdCx#9x=8*i+aT;yn^v9*|hZWb*kLDwy> ze~2TRnI*V*JPhB{gMD17a!&PU7UjqoCyLdV&a>6AJ>{m7e@z%ewU>rY^8VdA^X!f; z`sb&Z|EBR1dG0UAF@yEmqx6A#u5LO+=vCtI&pn2Z)QI=1;ABhBEbF zbc9r=rR6$GjPbK-*T(7etn`KLt=Mu(mkx*B_8$7CY9GDL$z9b1Z5NR^n~TQ{z$2JE zR?+>6pK}nqKeg?C@k}HoCHScIj5Y7ZRBZfk%28Z7`*g^sfWU@@fJ)a4Cmd;rcJdKScS3!@Vq)Ww1<*ko;naq9NnDGqFlr@)zZ4#lQCepHe< z#ik#oFzD0dPvNb<(HKYDZZeF0lq}vI{&?X1J&byqb$s)Cwj~dM3Q$-q><68V$*yN( zT@3zCKQtD>DIWS(k4`*3SO*~OL>enA}6~f z==6Ln$E$JAGb zMHP47s;Gz{AP7h!(ka~~-6b6(oq}}DfQWQALk-g1AvK7UK0wJUk!3+vEK-zG&IJy+6*)fgjz$<-gfe_WNTdYP{*E9BVQ zxs>}ktJ6O(Q)q=pJ4A*EX`Dp`KQ8bu45)(h zyp{B=iXUbVb_)9SGq;-V(Nyo;?&&}2j`UHP&V8Wojr*XgQ>yeJaB)y*O&kL0Wy#L&~Gk(1kTgnv$_09a|;`v7}La+}~Dp*n_7bgR1j=|^V z+^-ZekEsKt)fBveOE0Lzw4To7>cgD5@FSZZhP8T^oPJm(%eMp|!p&uLOx2qvTUmnp z>-RwrLwz1%_~q=W;WMeIj}u{v^NFd^$6pHVEOw`YsTEmj-T0_K5S3bHWeX)ZayQKh zS93EwbwFe&HJ>rtOMHa~KHrZvu_>BS_GKo97Y6Y$Kh#a?v0ME9V_A8-D{bD0wuh}y zV)nNZKXb%3GCi)73IEYm+Pn)<^fv|KKwHkAFRjV-*9JklBzzFK8)nUtBFeCk99x|e z^*6YN{h(();qTI3uvnl8%Vaknn<4x8SCm67LPkRVF;6NOr=2n4HO~>9w^g0gx{Q!m zm2yvAVAuYJk|w6Rdp(Cr#8$3CTH@HO>_g!}*8s4O3sAV>;gu>MBA##lPKnE1dniw! z=YrSy=bzIKSB-8`UoS0%JE^}wQ)}40^+Zi8eBZGh84FWamNu#1csqLktoT-2WVZR$ ze?;~2eHh4pDiT#@4H}UA?VzPtpQMQMh}eI_+x7te zS7pZoRfjDjByNMjjMqj%+*Q4&C9XJN5*t)bBqj1*`tq-La^Zq6Fi6q5k2a_O8%&*m zCI>C1FxN)70J+Qm{bg)H<95PF0#GM?KO=1kKW5OvJB4b(64@-@aV+nGpcEYLN|B(rXbBVf_*xZ%(-0 z@O>uY@7!2d&-(V2@9nnuzndT_?YMkRv<*m?!2R@$B(0XRS@5SYO`4y3bMDP=e5QtI zO8o6hm5}6+!6IB;1?Ba&?KK^u!cP0D9$n6tuUNS`1c}t1fOT>EEUhy-iLA3R1v%sE zqKuBDAA^31#~MoqEzGyJ$NZgk@eZ(G)zdj|LjBznMnulGg_^b(@$h+pgoad;6khXU z6W!e-!o-K~zWAm*Q)^P&eK+Av>vd6WCzheAP+%_E@6<10?Ynx5>*E(JLmpx=?q)PA z9;nH@u!SRuCVchv(nB}0RFSJZ5J5Rt!D|5+Z;)a*R(ayVeRUKk+fjEr97ZZc{>Nvq z_-XI}`$7SKCxG}W{)x};pRpZ~*E(F;3@|=M^Sd+Pi&7YY3=g)CU4`3bY0!ucS1$0H zP@qQ?gQ~Xwy|YrZBe_}zaaL=c1cjTG-DJVQQtB_JD+XP<%7|frr(dC$5i{}y_gvw*Jn!zvB zays5FW}p^VSAV2!XK4q%TFjp4@m@mSl(4^{lB1~i@xzJECR zd0Ditj9MOM@);yD?8{GEM#I%ofh;$m3`EjsqIQ@9x8un~3g zyN_QU6mt8t$!IYuC8zpAr0!B2Ys(w#Q}h(LGAOvr8#$t;ov!~aO`Ogud|bSN2kQqC z?p7P|Es78q&OLdh?lAa8&}k;q%fc8MBDKaIWL@hNs!;|hx8YaU2x@+JVwNWB?Rzi> z5)FNr-rHzJG2XW$ndz7rE-aPk(w~911}({GBdT=?Dv^8j%Jp+AL4eX+=qF)%q+b%V zxPW$#<*UQTC)h1vJIwJMjvYMHEa&RBV|fw1K5^(Ry}wefg%|C8E%Ir#yjSQ_v^Io? zSzK#(!HkTLfoFfF{%2M=uTnxw1h=)UDLFW4D(49pU=HGagA;72Psn!GZa-6+gl6-o zP$Dq1U|0{KZE_k4*0Z3Q{a=>0r|7|C#oCQ^P)P9CN6@p30AUEnIuxHz-HgWx1MPyk zT3giUSA9D=|2cNE7~%i5`Q1g~ieyIOoMrtU#AO5v$zt!e~CMd8W%*xyHfA zK1%!D6{0W}SJ(l`a?!4q+>&AI;LGcL$LE2d-jhn&I63Pc^Kt0Pk&QaOqB}9ieQBh{ zwL7Nz_XktdwuZUChzA#<>~435A(a7RNsn61lz@&$kc<-YCPkj8nD znON=2g{#?LZpaKGo-W*}1bMqJ3H(8*j@8W_gYacbmmk^ffZyg{m`fyWD40$V*tSb% zzTeqjI7J1*gL9c~Cq3TRc3D48<)kgH2I;1KBj9v3u(&4pNkKR}7YPwID*q=;** zFaVbB#m>iDMcNpA<$dXVdvWpm%~>uiA9s)kxb@^}k34WIfRrZzs{J{`utI{?&q)T_ z{!dE2**-Ycw|J{P^V=X#y9+Pl(;9(zz0t=>DDPu)_fHYqHKvUY6CQzOTJ{2 zex~bW4J?t{)lKE3h{*gsN9C&44(?}g(?e(AK^0glLUtnAEBfnw zAjvheO$zcw0l1Jenj}KDAmMdE_1#aE^W4FKk0!nHn;ScSQm^~HFhq37!{T3~M5{Wz z9yQFe;GIg#3DQT>y@&;Wl)YK$Go?k`C zTt0k%;rbkWdWv0=3p5h{{%MNH@=4$S+7bZrUnXRtPt;o*mJnaAZ_eJNcx(g=d_hq2 zXs%T5K=V;;H-d+xzflKS0Wz@li3#Wo${y|I6nO(uu^OW5AygI&d^3z!17vc>d{Ft8B7+0jD=(lc4f2R2D(zy%X{E#@~7LEdN@h$-q*1$KTD~^|VFk5-BoAxUQTMKWAYRy%}qDS|=8Mx^WBcmR6ox*@0Z+ zjGW$ZiNxHlSA9T8t?zr`)eIZbei8a#=9}~p13e~Kz8Kf60q?iG_^TFi^)30qmK|9n z+z3Im9+ahpB)`wsacz>hetmzBloq&8Vy>j+%UYRlJyjBi^m;Us_Fn z@;j1OMHB=8bJ-zUi*$7fUosN>yuy@u-Xggai9bDuuHws4!9hOzF^Ts93F$JjSA z!E5&r>k!Ear!>B$^Msl=TyGwDcx`tXhb=`*5P1#|?4N0mG@Y^ld)?``#pnUnWt0tM zqj%eqzj?(?%|DaeI`%NQxi$CP`;{j*|4XeN0T>^6QbclsTmJ4sc~nRxO3fxgu&IYq zb8SEqJ4rTr+N@TN0IK!&Gn$&3fuYd9h>~VD^=BlUip2tXL*lOfu$G^>PtH4Wse3Fm zYWzXJru}UfdBvhQBe8TbH=5hfpyMH;RNzy1KxUhILe@qXlLn$Rk!4Z4bgw}7YXt80 zl`d{ZrlzRuGyQ93@%JwYkzuqatc{O!g1*_e+yB`@FAcSVHuG_ug19kz&m%=bWD=&i_sw<%Jm?yd zg%38{%oV*$Ur$7tE5RV|+{k=aF|K;@3qeX?142Ht@-CwSMM&87Ysi^#w!+piCb&}; zZ3X^a1WOm(q&lwra_8xwO(; zyBa?%w+Ea{PEF#IEZ^!O#iK(T#e{+g|G19d(EWIoR-*!Wn78BK=J0pQW@C+1$B_%2 z^csFOHX$T6ezqfxO>bh%n`i)b@~7g8-?S3n4;hv8AZxr18}D6c;_GPPctd6bj=IVR zhXVvD(mR$0LO3J0v%+o{#Ul@@|LbfHMZS4(Qc9#`r)3k;%>H``ScNos z=Kh?$)g+#*gO51?nwYFRrh1jl-acIi^%tSV8yQfu!8IufVa_j{W$J7l9`HTOmtZh8 zg5*n7nt7J%Jg{ROdNw-InQBVzrcJni%p5pMM}H)pBhU3!jgDKZ{Q+}RI;Z7w!CtWm zuJ7|*{B1Goq1kX#DAVR~pAw5q!{$ACSmI4R?~%H;bTPR~>Vi zE<+^@TKFnx$KLk^$F?w>6|OFt?FF6V+|Tz$>m-04V7J)^@Ap18vWJM=^Spo%*aFm0 zf0%h!q<^_2U13)p)3Z#Ekh%DO5>4p?6}ao8Zce~MX)>S+CTBzGbA!a);h~KE>f zw!FSbniGqF5}5=)ww;8YFp{YgJQcgx=W)QZ>9Vo8199;+?Y_QQ_({hUU`e~Q*pw6^ zVrA_}1tR2yo-6bX9qMeCWm1#~Bp5$m0;p$WLaqNTDJk!WXRd=C^la2SZjIe1lO(|2 zG$h23d)fkLS1B$>^Kl-UzuCFoLs4`R3NWe<&WV~{(*3-D!}q4*yaE0lqy8v*e)4VS z;qm@lE-6_dxqGZt1|WyfD0Y$O?Cvn=~Cs;*T%e#TU`0~&geLwsko@`dmd)E zIXx<@hKsAFzA_=`&%|P-h`Xi7XN^lHk~^p{vos2fi)(~wau4BKX~F}TaEATCr+54UFkw( zy7AMK4snQQYw>AVgSKJ3rVYb;x?Mk4N&I|dPxNy3Q4hV2GQ_}sYD;?tKV%+tCPr4w zYXow~eyiK6g_RUsGj|V7`F(?B23uzL@vNVkU%^Tlpv!He8z*SRTUTt%akEUKZlH6k zwb3ZxJxginmYG>p`w05OC zy<~r`DwlS+XL<{?!1cXh`Hh&Lb^HAxjJ&ZRpa8iLaD*2pBXv->i_IN#Sj>tsI6(MjBP8AGMu>}x7!)W?u}c%Cgb zG~4ma^#um+y@EHb`{DBVOMIKC0vL4qcFmp?F_W|4%KnUTc24L~3}Fb^sh^%lxq4lWJ|sy5Q}kMc@y8hg2GC6G6W;#Ex09VK-~iAJ}V83xQ_*4*0RnT*vpC zj7jtxwMYp~^Ul01K_TI|Jl~ho$L%hOe%8?&_3`+S^9I(yU0$$#*|+{{ugeOFJ&~7H znP@Xy8qPLcb{wxQg)ppd9(gg4mC;NiRhM5iL_G zG|5-*7Jp5|!5Of&^IWr3<~vMNdg8P>SaryweGQpQOai4JCP=+DP<$_aXSmS7T3xc% zC7}B2AG>N&&mYxy{IOM~dubkx=u?*1kD8g+_Ldvex3al(?fs|BNFroGHqlZ0pO1%M z31twq*=`L~{~sCktE;8cC&uK@6ia) zoUpk|$CI=w0~<@N6+OMUUd56r&72#ZX)2SVhx2+pKeu%`EAC)wQ z$`qc0KD44ji3;cn$q>JVx~854bAG8C^-1iRC3y*_=nM+ZE!6f7;v&u8PnPwj$hru3 z!26awcy7_NfHSQ{#W`YH`ks9!Md}I(U{SKKu>8p(1yqm*)!aY!HjF*hJ#I)IK4<1R*A& zI{Xh)Z?%dqTDnVd`p)oDNj*M?^z$-g1Z0O$!jiHVB(mJUP88&hb;SoeEAI-wrkgvE zBcE*2tS4D0dD)#m?%HIwM;hCZSoUN;>T6@D1<}av;LFqalX8O&z5>VQpPbW?#4q-q z)-)CtMTHw;B-2lxHT=aA-1Sx6KiF{3%9Rg3>tjV;A5R{s{N0N^7jM> z6ihjF?A=q`N~GtwAQqI549KX1Y3>XAdp?D1joekgO4EAThoAlb&0GKL(SN{H>#LZ3 zYY-fu6F~>aAXoVDAgOvk&HIgt3S<=Ndv(kV&3(taO7(ht{9%CHTD{nWH(kl*45p2f zSK-&3jlck9v^V|CFTx;}#G(STtWS2cbHsqYf*?Db5yvq1WT~#36qQ@rg zLzVTWAkY%UM5em-ewPlUmU{&weL>V7eb-HJ%Kjf1+`B8Mt;=uS;5k^9O5f_|uV z1nW$LQ54XQzco3`EJ-4=oQ$xBF7wHNUdft|zbtyJpYtCm;++qchE5Lzz|M)hrBOGV ze>dfSaSj@c^)0ZX!f3Zq;D!&~5koVBMy`ng|Eq%;5kJ^iS;U(DFbd*i@Oe#(Xa-8* zrnOPilhd%0QGe}PaiN|HPv~6QJU_ki0bn2M)}Kqh*Ep#|s(yy!4*0+~M>|dr3f9%# z2coIHku!bcZ6eLz*Ba(E#v=k5t&7iceReM-3g>06!!b`04rw<+#@AnlEcSoSIz2D}b*X5Mb1Iw7)-!cHDnaAn@D_G|idrj6E9+lht7xDm z-EOZkDVvWl%Z&mDTDeACiR(zw?1s3eM@_T2b&gh`Z1p72$Mf6YiJ}k2`sB@P@}i!Y zoG*V`5U_UYmY8z@lDw*+vb4dIqL{f<(rgPo-I1K3bfCSXa{1Tf0N0*41BF&9)05By z!qFdP?)-fg_1=%ov1vL>>dQqp)+~0+b48uvxS-mtwBqFLznPB$Rh^w?q&qpeLydum zsWOMZEQk1V^AS%0tT74<-2yA#p}2_1bFq;Dey-eYV|tLw&6j+eN*@*=la*|#kP5#O zUY-#Nx*5A1v9Y*S^T)Ki8hA@mJm*^0M)-;(K5GWIEpp03doDNY_X4J$!Nmuq6ge_9 zFmLp9J8^Nsr%yH;{znu4F+mzs#|~1kc69AgXUbJNm(E)sK@2jL30Y!|eg8|Od=p2- zO@t`%?w6+(LxW&V5X|!TMwR+XJ}4;9sOazRYCYZmHY&2mvd8a}KLhbA4lQLzD&-|; zUw*Z+jIYEZOX&)D^VW zR5_li(f1!Ko)C8c%x3*Hku0+q9n+;rS7NWQO+ z6i0sA_Sc!ycYEzXr7(tqfY75CY=tf$f#4zC!2G#zSWI{PcE^%~y9H|WOe$s{W7Fa= z>2=UH=WSl{=~sJbBOlFWc4vInx@El{uQ#LNU1B#jA(l}U`#^e~O?9kdT+Hg%Wm?Sh z`-_r{j7&i313}TFuP;gMdIXxwOzGLDp&*sIs4=B*Kk>{+VC(A)xC|(I~@cVAp z?K&JvyAY9d{m+RLJ}y`M`X7{Q`x!EG|N86d{ukN#`57&A6=%dL5}g`7Cm2+Iy84iP zpJ;}Ac={D_ne*#+qDE>M+Kzk5i{|Z2ag#Zgwh*- zNsRQRfjU<~-$MyI`_*p5_4Kmb`A{qD<($D{3r?{H9ZCq3%BhOcT9$^3Q%8Y)RXjG zVto_dAc*`(vjUVy4>VKMQ&zvqUniV)-JMaqJoP*6nLdw)D7vM-ld5@m55}_iq%0!$ zs>q-4oigXBr(4kV2~yCSL)N6y8ut==h{by2O!iGc?H*ro;L(ta`r-Yj8V=Y-XK|Oe zS+-t!=0j@0kV$ExNFGY^i5@dhp@t$<%VOx`S541sX@T}BTe+q<2A1gq!SQZ6C&T7_ zf}3s`giVAGu+;^*cB-z5h zO#(hI@V#g9y_x-TCkCWXK0MY&;7@909H}aa=z5Y!KDNF#6k0`-mbPNd+&&y6jWn2Q zQ`r-m7+c@`8-d!J{+N*&Cax^gv{a8V6gH6FozJi@rliA(3hR4S2&74b~EB zH-BcEZHhmP#j@W8Z?u3cg<9BM;9qivBD;!>W-8|ZYe%Nlyj;vCsD>u*e6<15=RYVv ze~b>yVkNKA*9#A(5|OdU;9fthWv~h|3*8-8r*ETs(TV#(L%r)*6`3n{cu1m>* z-nij(ASJU8&7p3zj7$nTA(&s#P%V<~!X<<~RAvtQn%_z9^_>L0XNCLK<|Ah539vM8 zEW~eQ`0d2g>-L4J$vxC~LLq;X8Q1>$uPl?fMf5>yx9uQ~b$&B@W5SM9#~OM?m5UR@ zSdAq0ER2h+nIlZt+WSdu=kiTs>r_}P*~`t<jd9N3g^=8R?BV}r zdH#97qXHKIuy-))SR|813eHqSZfvj_Hk5ygrPySz&dSkG)6dfxX*L!8b98#08>$1s zxPlDZ+jp4Do_l32!&nBahfX};3r^Vli&(1-{!fIh_=)!79WABw?$De@;hcRml*Ouq z-mayyH3V;?tJZWzXerdw6%)7TpN(3ZK_`q49b8LfJ*4MA&Thf1B3Z;U+?x`5P=EgY zo`vd_2BCjrIkrwT3HZ9nI!${j_8D(2!M3)OEqo3f$z8v2c=dx03#2@c=fQH;AS?C* zW8vU1%Ss*NC3I!kA)g(67Uj*StvgF}c<`J1YLWdnM9$EzYl9?iK_`7L(0&Y)H$fDru`+d zQ;W!h1ipHRapEOh7OEYlwA;zti3I4kjozOR3K0)Ooly90f{Xnbv&DBb zbax5S=hffrcUsVM^GzfYhUBASD%Alf;%d}BRzfGL))I@O#*6nAbsNMmk zg9OCvRL^`yxd>f6WKAEMmkOH;iiP4;5=TbdZt+vCy0v zAQO3n-1%1dkUcY>6D|}W#P;iRKiof5sf>uP$&5;v{M%dLAS22p8`coYl@!ALq5FOc zoF$NL?Io@KW2^z_K*65+N`zWq@8?hpybL}c7aTRp|0C6D zMlEs+%8#TEn&#U?32Bvge4epk8BBH!S*!H9I+YEuP41KuIXPF^(9p!ltRqD<=9~;Y zZ~!4fWvXR#eV4$Is2CqQ``xNVyT94_F!s^9pkIf5r-9GL#(JtU%Pd|ohx-PJkD?Lc7cB6u21#@)kMXuEH;L4@H){G&2*ue&HIeo`ddl`RReoeyj>J=v-m z6gXf0K~yOh!y-gW%vX7j0`;1Gb1LoaBYL7Mq4JO& z!4MfY0EEnn1TR&vN2pJAqMwi*8njf}do86f4|Q>wL$Vzy6uVB_eHjkKy9et5y-O{- z7uGUkj;G41VKlcl`7Yyv-7e3q#fCFwMEq@dONLWN81?z-Bb| zHq5wT^OP|YV)lNResj#dxEJXzd92d1nTKyDd1%~yImVCzqnh=+T4G7_SS$!dq%xG+ zH24J~RvNBvx~qLxiXN9D-OIK2T#~CD*QzLTBYvDH?*D6A%nx%1EirOIiD zvF+B&OPsJa$mSL`>)Luyy2#Sk0$?{Qm0Cbq4`duyr`3)&i5Y^c`;+9pZnnEKDzU#wh(q0FjV;(}OUe%(qf) zf92~PZPX1z`2WQmvJ6IFY*8Gve}srt#6~M8R)^wLS%O~ssx_Q%Hz?i|q^!0L9{_ew173!`tkY`SIFPu|u7+iX-JQs*(vvFFKgUYmd0F*U z?f?Ph;KlB`HUho59yqv7+mDEzcbjeSAaNaOK;t#uTa(7k9>-#UY&Q6q;**M@%O6r< z#y2%#&5}XyE^>6nlOgXw-`kM8&fmv=48?Pw3X8o1!CGg$VMi#DGG(9oPaO&CInIK# z*o3-M%#qbya|JLjxLccDM4vV*dZuAyK2{UFQB+d3XOhLYMykp!!R;t3Hm>Q4PE_%O=87L6$g6f zGL=y5>EL_n<1*l&5S~Hvo2!zoMaczbMS>z9by-x>pE!?SFrxrBcy?CjI>bj=*#|fN z?(@6_xy_|Lm)g6~$Ff(KN|IlSYVfuMUi{6!?$*Fg&aY8(f_;A%FBr-%T?SLr>4MNZ z0>gh=Timri=xr(`9<+2lZs^Y9N5mTBztCLAmau%_UT8IV)zKt zNz&dVEs0w0gq?SES@#(e(zFY48QN2MrA@#-t99s*g!RiN$;im>d23Rjy1~0&GqTmR zzM|DiYH-~t)~zj?IdWhmX??$k@AaqP(XAF=iLu#`ibDvcpeV@wlt3DJcGfYvzNa_h zT;$=Lo{odOE5Ic5YP+(#q5q6-Egm1w94{vH9mr4L?6jQ&Evxk&3oPr+7TJg*>zc2M z!cf0T>kIu*FT~!7tHhD&t9iq#1#%MAV=TMeOhF!koB^e%iD;3pS+>{UfCkn}@mdk7 z4R?S*DJp2MI94+1!zgF*a^7H;Z)14+cg1JJ92z@Ipu@+d6ooG4V`5(^&s5lg#v54$ z*lft_MRg$S1{~0Y1Ty1x5>;LT$xFXlm%IyF56-Cc<-frAS$1Cg6KC_C{%j(X3QBi3 zw^=W%KvgX*)mjP@u-#5k1OhSkcu0wRPb-_(k{2#!y0g*o{QFols>vgwyN2BhPR0RB zM&Xox_UuTph7D;J3HqMwag$U@wil5iBVB^mZcD}p^?mDTDL5$N3%N4Eo@=LsX*2ap zM-zxE&;g2CU}g?-M<+Abd?yK+KeGL~Tm^*kjtxNnR+7IGW&s8wUJXL99fSle>6LZz zo}Z(xF1zKdEj3gPg|046C4fk7C(KchMWLgnx9U*ZC|4VFp`{I7c69Z}!0yK7@5xQC zVLsLEcHxI=3Vl7*Enni-`dfAzR1@1$Dmq&mEe5T5=3b|bBl*m2N5`P4a5Gr!R!|qW zu>AA?b|SMUD$pY2q%VE(s-lkd*5ONGFbjRP;gXzMO!Es;!c+9?4dz2>p|;JP zu_-iws9pY8ox>HZW2AGBkA9-l(RBI(ezbyc)tl*x5J^6;mv=5-O-ezv6@*YX zF9l|GPXs#``)ZHR&DEVsQh88iy)el3FL5=h`Uca?gt#4MuBK%{f98!>Em2*TBe)e# z+Z`U+%*V5Y1 z@)${~MZ8sMxXis+iGKv5xmmDJR60Z{-&&h$Vy>lJ61B*~_V8Y1>I!2lvSjDe>&}g# zqJH_Di^bC^y{7iXqIW=QDlqqPz+yhgeMnav4 zm=^G(<95%@Vhz}0ZY%@d8f5T*)(tg@N0Z;*Bb<98=2q>Ynxk#W+)=d7A2C&MxAzCf z*PP|j?qU^Bzh!)OYmMhe2~+9Vb0CSD5tnaACJC=rUxD~hiJPay^G@C^wV~hA5DqWuw3@Lp%8@Jzcr6;=34}iNhCc`p}I8R3(GGdtj15u!5bpSi37O#mF$T?OjA*g@?- z9sdv2a*u?O245I$oR)J-ohyt!xV_2M+mx;lK6O3;(R`J^U~RRgYPx{X7aN7I7S(?6G!sg=&tI%+^&Vgu zX^j!v1^1!9J2o-6ITpw;`>*V~^;gIunX zcY7Pg&gw6Y53f6CFhQdlQetrpt9H_=fGRGNWV~}20`%*Kko9*ApuU)^N_=*x`|^jN z{UJ;V-yA%c@sGBST=CsOOP;V&kkZkO5v|+BDRAVh6zrZQ)t`wPoh-;ckp|pt7UYmt zMy+Gt(@<}e_p$}0cdfKm+@@Jnmk#dsUJVU+B4h1at{#(&+T^D6iYjm0rL*$Nw>q^O+*vwr`!RdKQrcfS&Ze$-sr^d{&&lvT!b zq=$Egz1#OWcCr?K4(ET0;!f+~$n5Kno-VIOgZ!9Wa$062^(-_f^SW5O9S6}6ae(lF zW+{W=J47+-a-!>WKtt}TJCipUsyRlUl`>Vow)pMw?b80?nE1dY20dmyGVj(WBQun1 zdG~_8t>oGqw3OWn%rn|OQE+mXt|K|}92JvJH1G~O|FB!E4YADrggR5b`4=N?U<$W! z$Cu^-BOF5;$&l_=+ZBvv2MD&+GcH>jwS$mO>-J%CfM$e!G6+G|VTkJ);`5pSf-jidKEdE=UIe{ykmRQYPn z_s3*$Yf0R;K1`jK78W`xl`a|1uLZnZ8HkhOztD7i^$X%hwWH3XtfS>pmiF_n=*WJ< z;CG;ufFTobCg0hwhONqPbaqIfjjySCq%&N5Vr)8~H*6lxsOll%cxw}U2WC+OROgM) z892q!kl4|w&r>u8I}1dils&4$j^PB-5dW@rF8ycU_u*a%F8lb_fp7J53}xzG^|F^( zVD&V4PS6@MY`isreGnY__9Uk+?aJEB_&?~_t+mqP8|bK^q)<^LY7p!oMOb*bKmL5q zJJhn&!A>NL`_G%$ybac7n=|3&(>J(I~Z?1PN;~h7X^Vs`pn=!HL zS-O`YxfbJ4{d!2S!<>L1MsH3(p%{Bo6+htYqjpkjBS3HPs{av7gXFnd86kuf+_Iv% zrM~NVo40*WIZY6b882@rnH)SVo{l=~U{8xaxD;<5RdNE-Db4N#eu|HI1aNn+9$Gj? z6Lhj%PX{G`d$kfdsHCBf9y+UPvv{}o4aRvMdt#aNPbsFGV=cuAuX>EFM{D5x5_3`L zalpL%!nk4UkVQG+=-%dWdsG-CetosE1D2Yi zVLrRm2SeWrN%Q(SeLBSxf5a@3BktECLoZ?}3jZ7giGC$vuY|JNdSYm=c3z~IFIkw& zD#oXNsA{Y#aGD>X3QcSJ(P9>U@yU32HroueTJ>(UZOX-+pIM_S`F5Tz)1|(VehBcR zVLS`mNfX^bM?3CqLG7F;Ie>q5Ay>cAk@l&Qvxesa0NlDCIv2fioXOEJ z?N87pJ5{ETTQ*Y6Qy<-+a-3kXf_-&f>Ba+HCcjVafr6#hv%;U(N4fpM%S54f?itx>CvW zzf0rumIbbnq2n$2>Q2~MmqV)SPHFoZmb8pQJVhA6xXim5`2bn6!b=Ia= zI&qC}T)PYmL=0_>PS=*$ri7};l!AiuMVLC=?{(#+wE%0qkWYZpoJ(M+iw~~7sLAP4 zDOOj*eSF~9jP6-l39V^`T=UNu`s|q=`_-+h62>A(+`l!}u$qN|%iA;NUweDsgp%Ji zO;2Ze^6|0{+s)PozCfR#__xNYclxuwJ7vw5Y`JOF?PpsI*Et`7dOBJ?pAk89u(rxb z@+ZKC(nSFcUI1$Q?AfXoZ{UlUNuG3nxd=LjwjR#0t2@R2LwgJ(oPybdd-Cj6O}$%6 zzm0CT?F(Ll!09ymqG{MAG#~J~Dxkdoc5Rf&7%$BhR6`NM%YY){v<~W>-%!CB3G_mI zTvR*vQi`E99&RHG(Pm`dYSeAN2d3lgd1ezH4oscS-NUtYNo|m>fEdEP{92dPwjVzw zr2@pavl~*5Z|uw*mqowlx4oj)`MJQg*x#s;mk1E6mRA<3$fD3siD&N1k?QBt`yZC= z%TFR^*_dh)BA( z5rUXuj)X1I$Z-^%5M!DiqBZ!)CO4l|Amg&epKGL6`n4g=|Vx|{#Cp$jebX8ThpKGkJ9Y+fXj%Y^(x z!Va4&C*t+1z*kpu=*Am<;>O_mL;6o=fn-Z_h*N_1; zB0E+enBcSsm#~aFUQQGHgH`r}8t~!K(VSfvRe2o%*=YaaVEKERFIr236wCG>0=rWG zS2AuyTy1xpvv&apeO*lrm|q2&P!|Rf+FmsawWg>Oh(1XC9eGnep^moX0+>g%i^wPj^{)~KfHGWS(sy25YnE3X8$=nfha3ju(`tGn&7 zq-Rj=-m=qDLN|k}j)N~R849JWm3 zRDD^7h%!z*WX+=hldsq-GF*c}T~F!nmd3=pywne`wVl&ny$F-VRU_as9kbSeVhi_$ z_)1)k10cCmVd5EP6a#{RbRqL2%X#4N47W|Pu^xxNteEv8oQyNwJslK?^a@&5gr2c% z)RBVqF==WTW4uBsxrHk7X118^X7@l>ZvphBeigxJbXyBJw6s{hX^J)L_+@1G^0_*H z9$2rFpZ?0PUCN#(7i|e?yz2T$3q^&m#GmwLZejUjA5@&1aNb(lPFzDYwUzWry^o^j zl7Tnrnl?Aj!C1i$+EWtipm!Jh? zfC&H*w_1vdmzX)MT6_8IzXXNAliwTW$#6fzV4qB2-bLV6sNRl|$R%^qYTe)Su3e_2 zed|G<@!D%Ku<9J)qS-NUZEOJCjt$gZP?YF4X`}3>%GnoNtiZMN)$Bk(J&A`$Wybj8 zUY_JS9ljC*-X&WX{G2EP<0ag$K zcTkF$c6~giOZzrQEI2#o3f(5}9`1xBvg%;g*lIra`_4t1c)+QycpSj5jT|83zq&{l9kA>EF?{_g;JLb0US%cowavT;8d= z04`sWT}nnJ1|mU-V!Z60e77bPgR7V7UyAG!_%8Nak!D)y%(U)>Fws{Dc#RS-&asmO zZOws`mSWcHPYzkU3X|J7NDi+)I*kK$qH!$hauR!*~kefG{N z$(-Dy%#dERz&}2izf1sTQC^^C)rYHfb`74DVnqwf~H zBrZ$qIhXWn`_E%rc9ZkM);1puN`4ao*gvjlT4%4zBp7CtG(U}Q+Zwx82QFBl+KpZ7 zcmTaf@0`bz&_~g$mva(JG}e`3z@C+9jTxkm-7CVnv)^Xr}KmBlQmS7=%0m-K~(ms6-$RR>^VOT>`~QAT)viF%QQLd z#BE^Tn}kb2^{nBKDrG?CC6h>j^!WL@Vwc((jS^LkKLgIPZ%kHL0d{N0Lm%4%)lwbx zZ;FbbQorH-dC8V~@Yhb!Us6$mBuA`Nu`!?y%p?40FZ$gV0;slfRy2og!sbc+(ioeL za{b9y@9J_m1Nj?N)%V{0BloqR`Ah%~Ond)kXk#F8w!3S#G1#o4p*AH)23RtdyGc7s z%VJcF#q&F2dx0QPXTBucK+iuO|Mu$Cs&Bt@4A<=T5Wml5tr|bYZ#Z>eBM8=G2Zj+< zy%~FKS&eimJ3740KInGI;x5-`!Y}P{ztx`$RmoTDHN6>s$-wsqCpEs1poB(w6odg8rdvx3D2{LMX2r6jot*w6&R0gn*xeGXn zY4gNS8be-g_wiQax}2u=d(H}8wjVANt=kcu>?8qSE>yvd;2UDf3c&J*P7Hng7@N+b zFZbWLb~#P{fNxrnl@_YNDz~MHwbE-iytjbwN!2Jxba@=3 z;%9e#%JCC%gcmc$L+lZT2|2+2PDQ)Ee(aiMXx6U2cm2~9{z*a#N^m+iOYH-K#MeVt zza1gQySMUB`&Nn)&{5-l?sQw~5Bg+h45&$D5Q{rQUWBe#7hdm(Vu!_V7X z$lg_~WI8wAC)4#iXd_nk!AD5u*3S|JaQ^2(%Fn&-4jMD85F(sqGjRR7o+2k^e><|Q z39Is54w*!`mBjeWJwV&r7Yd4WpxE6A;G5qnNbNi9-T>T)(QX5LW-{|Tvi>Y*t99JF zqtu_zd1#jlu%p^e33++QjAWZ}$g#_OSweq@(5JNPcy4Bd*7_;0U4hR>JJr%I$L2y2l#&eMMj7OmyaNo4ocW`#MtNd(4eJv)(=WBCO#*@D<$oWOT0N ziyFLf?Oa{;I?TWK=~xJe>Rb*Mo;1MqSeG(j3Wl8}3M@l>^aDYXc(5y&aN!+FY1T|@^N z>6a3W^i}Xtr6nJ^ZkMRm2B>H7$?JM5e+l8Uv2KlhHki<_Y`!(4dgto9Ra1ooe~aX@ zZ*lXh)`vva&qp)a^vwIIkhVZ&qLGJ`l**#&^7sW6lv11WxzClpk-9{8y_L}kHn&@j z+CDD9Oz}bVAd;z@<+XHfycg2{6Ji7b?91v9Ge44=~&dai88OYE&uEz(vL3h;E z;X!Ve!Q&Y88}ns;;UF!qN)rj1=IPVfM1TM3v+eQ;=Q}?z#rV-0(n86OY&!f(`sID& zl|;SSz3jm@W{#5H0CHkB+u4a93Uzi$H4VS12m6m0dy~oFAc;$umf$jx+xtzZQzidC z(GI<78>8XmSDu{ey0p)K&cFhRlF;asyOxXDidQ9`5TewDK^XkXcmob}G(+{Fg7^?t zaPL*wSC4`3S%xgS^iJt+6-U8yed@Ags2u|2tazl~X<^7O0wQo1k4;l1}h zapj{-+vtzHy7N#y8jj6f8j^;yls|pJF7As{3(K2F9oiG&P1$#s17hys=SK6KGurgY zYGX%-?`E~+=t{@85l{(UxK)y&O4}erRGQ*%?UnYiAZyi=cFX$1&pA0q>-m9=4RGuv zt@#j)kPp;!OH^w1#)zh<0u=M>>E}-`vIXz93x}$%2Xt!Fc3!iSt59Rz#(a8VwJQiy zOs8r?mz`t+BU)qUDDayp$Va}nj&g3vd--rt2D8o0UFS*{w0fLuM4)prB1A`pX3^Al zfJ!Rtd!RDkfM-Mss?zUlQ6f*INMRgJ?a5*1YL?NyW^Oi6^tkSchulM4HPcUY)Ky|1 zuX-U%>7U8Kv{+zc+3L)|c9%8UP*2ufXs0HLY2QAMK^sxsG=E&R5cfpq4-Mh(XZ#n+ z7%|l!Lptkg+3ZI5adr(RD^^XZaiI70YVo$(D3#X(z1Vu^mIayGOk}ikt`5X3# z)yr2tz={R3+;*1MrXv$6?A;7i4u?}Ri($du>US(*Mz9Ug5jA)qFUP*ZslhYx6wm-cZ(#8pU@(_Lhwau1-L7dMaNiq`t+)zOnt?EGGA0Q&DcA@z#{U3ql=XWZ3}>P!QJaw;VWAn<-l-L`#4n-Xqc zO9$PoplXNlWNls|reDb}$#`GKjd8Y#W=cln2(ec9ZWlL|=YyVx(;whXB`p5S_H-XG zxu>~F?7!~1XaL*HNY+$2O;OBtd^-?gyd{`W*ON?ZAf%`kY2@W=WG~7%nGw&J-!V$b^V15vUqqnDIx(2bMbCR>7CNBS!?ttu_v&e&iAHdLCNxzN=+GT==VgHvfQrq z7S)uS{e?$V%Ks?&5J45Kmwuo|k~AN))$-&_sv@lE>S>IVeH*Zm3ED+j2s`ad#02M_Rk+226m3uDTBQ%v1_7fZ%rI;fi#CBY_-PgZCnjOFJvS*6hiz=va zfGDyQ+ykyoNz);`G@&<%wS`xyXkr89V2snBm3pWez=&OA*(=q82ax0bHji7f#Mmy# zV65rR!hCelbWbV=RIMJUUbc-+j{v^hS|+^3TfVx~8@#xR#`EwZyKk&zcvg%ZY|0zt z3W|V*(aqX_)h(Np1;l72ATZ(GUqKjr;oo{@I~TmCy7Ayv8{wD)co^yjs_3SdTrclG z{mhUQGN9wyzw8e>T>i<&LZaMp^zwT9j~K9Q1Ab?jB;XZ5$?9tgOe;{jsa3VGpRRO~ z*`XG%GJMg@6T7AAdLH?k^Oz^<`|puJvwZcacodKbW}0sYCeJ9v|^+6 z$F8l^RR(IwSj!NIFtR<{&#Odh{h`B?#C$+KT7`1d%A*MMPNS{v zLe()VW=?r$c(lGCF+%BTylsA>Cv)}bd=EV)F8s!Lg!1M=ukaf0px<@HpbT5`N=79` z({=<;sx1A_gtHu5?b^A5Oe5zP^I6ifJxKObdn1L$VP%Y8V@{ttKL%g$-;%M%px5$H zFG2Tqq$5YUbv3Z>td_ph(rg@NkXTuZET*bVdFT97-yl}m$I;JE0<6qTZUya$=heyz zI5*uYS$(I79`ShV#oEaufe}|z!9k4Wgq5l>TaeL z*`4>x58?`@i%`vcKn>8+$|%n=FW^paHlY!>7L}+o+t;oRBYPO$BB#H2MJcRP&l= zX!At%Me4k&O8leu3Fx**RMt21TKGxdW3TS3 zhCzih>I0h&^HnQ&#+1LD-fOE4K{Q6}2W5El#+=8*Hn>GNT{6_(p_lmh%nMFj@cENY z*-jQIe@|`}ll3~}J}E43OI4S1i%GO(lRfaPOV>gzZTmC{SDMcd?5D4pw$n&+eU!}j zd02gTap9Y&@yFqnma*$-7Ya|2zSNNNA|GGRbGZyRHra*BJlocVNK7+MLk?-R_beQy z@km+A*eD;6Q3@$@2*=0Q+r}C;kcK0p&V@Nxt^%rpUIAPwI8d6n?`&yBwU@u z{UkM5EoFy6fdY{4cf!z8Y??J|Mvx&jCu<84Byi`W*|Z`0Ts-hU^30-8G)l z3Bgvk!yb7vR2QzsMU4l8p4v-o5x*Ng!*h-$16B;Ir|lqUPy+jz%P=I|PC7aiMu$Dnl}Z*-eSIYvr6|)eJ&K-Qh85 zN53P_uCya?8T``*oauX@k>hvWA23xP(*EVGcPJIloh2noZaDCxP#)~L?1lH4?&YOA zqVxA7bhlaaS2G$xJ~;kraKpF2P#&{~Uj0c>U%>2tbWza0TF^rL;T&`lUG-LY5Lrb4X*_xY z|3Yk;wani7w8@x|P;};!tNYWbj`OyV+XdmyW**6q@dFdn=QD0Z#g`-x($$? zKvRK4IlZXy{ka02kjsv8!r6<{574pH`*PO_%O(DsFnsk|xat)Z5md)~!zwSAf%5(- zZLAu=1HL&D2`| z?3!J-ax27P^A-d;p6TiSq)}KnXSb}fSzYx~vPB@Zgr;9$pnQX_rdVcKaO}o(#|uJt z&TIMbw~zJe4KfbdQfnWk@a`Ezq$~o=?1pS=EXKFbr$J(%Nxz38OXsKtMxTDwB z2w(j^yA>~rE~tn@Ur}oNsIJVP=x+oU&VN*EX+yUO%|___7hdGy!o5jr-KNR%YRW0@ zhc)!L=uo0YSI~zEw2HjB=T4=$SfzB%OGR`VPfrvckmo$r@ly0O3XS=l;slMFsrk75 zwOTyO6rW(&eIBeulz+g@n%)Vkj)RxJjc;5tPb55|G8S4rJ)dhuy?oYBZ0g-`aU$4V z^&jW;){L1i&*dMMTys)Z3@cb@i&{1kaMkX-ymiXQP1jj4k;9?wBXofNZ`KHaggf{9 z?T&vASv3Y(EA;cO4~i=-T`@0*FiG(Qo{LD?!t$Q^wa%ZL>M!}sM59?7^t3erPO>g_ zL>}hxZOMtSaYIHenIWo!{nXMkRqAQO-SbZFP$we&{Wr(5^FO-40oYXX{5NTgj}v?M z>2bziGOv0Dge$vzXhh)t-8(_Z7dMBS*)xEdp4T!yM&`_c{F|^R6mj$$N-SNG0)kBLZmL2k&YD~pCG1mqI!HK+MCZL zUC&t?@BbMbsZ>D6dy^ZjLgX!+xFd%p%nZev)sA90-+NA1Lql6pSFGanI56bNc|-&ejHKN zE9v}MNy*3vTz5r35z))z=gx(CU+`#v?BMxUyqlHZ-sDkLGoxiw`kRNiems3r#)CosC0K@_`evi-T6x_mksOC5(?7*t(QTE3dasMKsHHxeI3IkjB|1_PmB>Ce zx2DoFsX#otk8BJ_cf|4DPf#@rZxmdNUGA=Z^jI_1(s2slQYzD;h_={?p8v_K~JzFA7bC{aKj;!mkQ^XQI$@;bl=(wN6=bh^{&1X$5mK^ zFA`T>Ehz~*C9f{@0moEJk+{6x0Fcj0OwrHse|rB||Ay9bFP9-LXHodL>=~vdH`tNE zxWvBG4x$|hPV-@}uaC zX&l#k?A@2)^xWI{igoL5K-=FBZ3G=tgznR%iB16uyZlI01%&^RO1ydlFbwE1TTx$D zlUNJD{CV7HuuZ0c_xJ~1cG;)6SNYkeQ+cK;e1*VpOzWu;Ay`NYLRI>?s#V~!di*o1e&TSd3q+8q8V~t(YYNXs1e*bfUXED! zyd*)R(Z1j*D4Ql|J{<>s5XFB!DE8#A(KKhZFmdY4__j{Yf62282z#Mr8OWL0mmo)^ zuzv)`FO}Z*IAjvd9?kJHFL$PT{A&rwE~;PX?a>7-8k|R1`p;L=8s{N*xr6kg=V^l~ zF5jyN$r2=V_7GSi;rxI46c*X8DX22SuwEECAbm@HTLQQJOZesLt9Sowmlq*45J7s~ zJ$it1(?1Ii^3OK9%fZaOV?wou2pJs+CXBJO9anTJTWkn32AFU-W_(h3KyN<*`L<%q zzZJg6!SQo{XYo(J{!&(df>X^h>Z-qlfKp&AZN!=X0?B_r`5zW-;~hrsoB7r@VkW@K zyz=8lQ2REr|I@=7^DE+iEY-hc+keXD|F4Z-jC$lNy5%z~KC8ToUi}ZuZ~g@<|ISxb z**rRp3)F|gH;xnCRep3>`9u)-e*ua+8lY^g4{VT$u6QStg?AjaA z?RQ~iqK)oY`8}w@vDOCJ=OJir5oXflD48xdduk(AnDVA!p()NF2$u?<<^OEIv@b9| zFMVHm#o{_!0?fbo%zdRvd>5aiW8D9u{F{X9*}sl?oGM(ieU|oacqs*cGK9NI%ebu6 z5?SXDd2B-+){`5abRO7eOHVaS7=ZfXGr;)vz^vBmVq%O1ao$#;gI!58A6Je!&NO4S zrMB6NXIq*HcCeDq(1G&kL;g+ELI-r$o_Lub&y=oJhR{ z&v9lcH%IkxqE5XS?br4N5>A|OM=e*^RkvzWRd-Q^rx!yJU7vba-|N!qG4AO^tnBU3 zpcIFFNA0Vdq>EDIS2V1q@#Qt#FasaAf%uA%$|L>DiA-M>=Q&%15WK801bxGBGGTcg zrD^;=icmX4;AoG~fBL;#&Lk_x)6;0OlDgu~H*6&#LMuNy=g9-9?Y;2_r;dtNiu-Ji zM<4wubkB2d$T8oQz|HeIe!fb`1FY={%*u({ncjS&cg5k?ozmKEZyBhK_*Vh_>MxYm zR*<_m7PsM3ax#a-q~M7B2}M&LhHt(w>FiMSaaSRjPoY?C(rcz~>AY*F#LWNRUR>7q z&XhR+4#O zb5|0A5k32x{NW`i@zt&AL0NkoxB_83Z$2h%&qA^GfO`4jp?}CpdoC=?p zp6)|C`2FzD8vuS9uxF|Uhu=9KXz}lC@(SgM({|RM^++WW;xnc{E}>k7f*1zE=@iB#2BAlWoOZGN@Q9mKUmBa(_SGnNq~FppZU)8Vl0D(YwT?U zU*ez*C~~acR|iq^T*tu^-sE6RaKw74w`W>eZQz;n-0l0xZ53tu0Nyv>OX`=_5^ zlr6KLim;J1SH(iJ&xu!wWozFe^*K9j$*z*Mymb%9M#gq$P+nc5`>=&XPWhvwJ;8l8 zfh-6&+bE|5@)W0M?lut;(Q0O9ZjQ0)ofB%gP(iDG=F9c7`sG%Q$7jCa0M+{E>XmMY z`RixYH@Q`gr0LUKPI})uKZBkLd7Avb3n7&(S6{4E3J)0nIkjf!!b-P_PzR;Ui&=#7 z5|R3s+%-}y3^xDN3WSBDV{mqT!ipfdSe(PVolbI~)4SGE|8_^lbIYN5WrDQN@KE*332zNHchi4 z^2#RzY(hIJrLfEzCePz-L?dCeOO3Kz`4LwP=eg?F88mSh0@|XBe-uu@BP)qUl?Qbk z)}CUEhy*_HeqF$z8}!}FJD0aV({FxkUl1riFXKN!gWNVSYr}(0e?i0OE=Ocw(J9PzAdwwXnvIR zDl+WZv`+DPn#MPk0IaOmIed(3ZbF6T5UDp3c3!S3aBhBOKfPM!OR{tSPz5u{%l7*4 z4J(_TwL>~RRI9$dyLgDvLu-=ooZMu1tAl7#UQ8l|>b2n2`H$3A)r!hLrCn6|$Dy#I z18QAm!vVDr| z)5ZE(Vic&hN8Z;cqkKexuKwlgCbLKF7{Ne&@sOXDrZ-%0PPl~C7Os_`f8bJro1FvS zSyAGj_+;}BGxJ1PRzy;&Q&yD0k~{s(!bG_Tb>bt}VKt<2;n({VU%%tL1u{~ID_Bq& ztMvP0&sbT7Gd8k#a2ldP3&WO$7Sdi}-I-&Eh`4v6+hTC=8{v%wol3Bh^elduwkK;; zU*|zaYbP1LN6cAL9%|Xx3N52q7_BLp)d#azYLf5%dMk#i^vP$4of487@U6L8EkL4d z2&fJ3PLfj`yltN$h28ZNI2rz_Z}3etUy8WEdevKem2Y_&Nl$O9Z(B#&oc@%`b1z!^ zjnrGO__7?&*=a^@d1r_ZonY3HZf<(|?yX!c4*us51OzB@g0%QwLrA8gd!unJR>Gs> z=e70@&y0Y<<9Q@?QHASx*upqVi)!Fhoo>2~T4|5zSEsVD&?UZ(U%t93dF_MyQKdt(el&IdXFoTr*K67Z2UdqnYp$bj zN#aT-3@J=J@;G?xoyZFuY6sHB`KB7R>#JXk7Z_X!((@Dc*rg-<0c-G>D^j@g7 z>_@%eaD1mvUBA4d2*0?pi^G_$B?xOMC71Q8@sQ6S6uz?W(0%cV32(V^w=APgsorEi z`Gm=J)5FuX=AfSi5rD(6Hlv3OzC5Fg)0z8g1&M~|Tq$4$N8!)nejV$X_|<+{#3HXkp(%kCU z^$F27)?4_d+3q(xl|3;LhE^Z=%`PBZTsg`f#~==|%~5GV1sp`O+SW16{pZiD^swph z%l3F?f?L!bv}%3@z>35GP`;X%jet0P^=uBr3>mo7yOwWCwyjVkF1o`B>+5fJto+s# zy0T&vw8p#Bzj`}~={J}=@}-RMTFfeLl{H~DEJ1p7ji$P7Ul{kc+;#Kg=M(^=H;H44 zn_9Vbf9cfCl>;Ad)R9o=C&9*47UQEubMcurjfv8_Axqv@KS~E`s>m10FY} zJp22fSc{04G1GlL&G#*!pdyOK!$1%* z7l6*0$t`nNS&bK87s?8~M8mK^e(Qm|X^zvMTJ3eH)DRlZ`Bk^21Rd2x z{9lHH5st^jo*Xp&m}$Mfto8?&Y`VPQB=Eb{Pq+76etM4fi;a(f@m6c`S#KALH6d$> z*24C|Z!U~d2NaqvL2`v3pJS&7R`-J@8gqJUt=}Fc3Wm&v?aNdjurHsT|4?rBoNI|x zpVV!nC0usL-I7h}ZzNAEq|^O4LC7L=e(?Af_?tfT!HYb(B9KW*z+5HqG#666M$P zj|lsAc2!kphzxHP2oYN4T?lSv+!2VhxWW`p$qb91URMjExjYrj86o*%m z#)>t6?6*a0HaWRC=b?&r3``(TucN2$9VZtyAev$DPkj$EPjFYd30m34QT2{2^ptN3g@Nz01&yB4Hwaxz;&WC`Uep2h*30{d0ex|Kf`6{0Gb`EX8 zGh26wgF?eHh2v;r{dDa?$vs9fi>i#CGmA5V7K5_Um60$$_!7ln@TB{O&Sguym7p*G zo0Dx989Uzw-f1{E5y7(zy4J-Y!)ijt47pNV z@AEH}B6>~<-FXK0qmzCD?ti*0EXJ)Lf-oFR@-pFFr>)Au4DpKY^A4;nZs)T&O3Yn< zk*{ZE5Q zagUs6slMM|zwr;?;K1?janzJvL_IYnY(YO-+AW$8{zU)iFONU*VnHNdJA?xLLFbwh z3RY!a#^!I#%bO>WP6;&ne)Z!e@(mTvP)kU~lo+pv$ODNz>^yOgoSAAKC4(_jsBm=X z2k7Qpjg20hv;{udyGiwIip@D1+PAbNB@TE4B_6DM@(pH9a#UG~B0~ zRfJRbris;Xu3?cRRSZ|ea`yKnQAGS09NJh_bh2ytz{1SjSFY7KEMla~ka0^?bs9o% z8=wWMx}ZHpj}Zl9+*;#TJa5Hfs!`eu07VO}tu4`L*DEz2!+)KtUdn6Kf~YpxwxV2N z&AUB~5{=FGOMkg4Mic>=QB1iD9o|_&3+xJ2_}L6_-Vkj1ry;4u^t6mkjt+v=c3{X_ zxouC1ji!F`PWkg2I;N066N-_Jzs0uC9MTvcaOcltOKTiUS@zQu{8m5w=%ksN@V?!- zt-xYp#r37zGIk!?|K=Wk7)zN2=lD|>bS!e?6&YN4hQsFL`Rd5>X=la}yMy7TplKZP z-6o;@LO?K3o@1*OuEV}k++tI2DB716Bn60_rEy1{D6J1`=;~^_SQ7UteIO>&0Rm#N zlA5(p(TqGS2Zhu_psJTdw_;%4m=~yY$LdamZ?zVDVmPPMsWEg{T-YoC$_^Q(lFK=z zx}=0BSHI3l8vJG8RZfmS9zWrB9t*XZ8el=PKs!Ff3MtHe_g@Ga!)qk3-Z~A+YQ1squv>YzKA)@{CFc6U-9p*0liU!8wU;q? zPyeF~1;L^UDAKPGyozOr@A|FLnmmmwTVe%`Nn&C-OxnoiCpH%QDozZdIL@521OA&B zeo;Ftso24>{f6B8W)4*dZO}L;S)iAzvoULDpa)bP=K1Uc1)?s%>d_r{2KS zVQ8wO8dt%T-}Bl(_Pd=?_l=DF9o25<3QUH6M>e&)EAo{c6AwB~&g{r!@JmUnHD_o9 zYp{8H_)rBTDic1&bYTyxT`S~U$bti+7o*P;JpZ>#rB?7jES9R#0k)zYgu2^vzgZgc zfOIyfNO7;j=p!W{@>SZLNBbGE>tJ`s+z>ZPf>sgm4+-}EirqL|5g!f(O1X2#%uUy zV8;JeLedJl37~(Y!r!N_u`zCwN?@%3uTj=8pTa86XS*tKxZ|V4l1g3J{W5o}VO&|`7Wt8RXY5j7wN+l|( z8z+dhUEsK424p-gwCMB%w^N^fsk`M6nPtE>T2HrY{| zU^XNZ{rG`v(TOWL-PKSr>Z~b13}%kF>X)IL!ir^UC9Ew_f_G%4Y-L-_e$vWBcOQtt)gty7YHACT1c)sg2P)+>j0*Q=J?X zv=LZl;g|g+UT%VEsOYT%+ANBvk{{)l))Uc_Sc0THqWJ8pdDR8<|uHbS|N9I`uu;F+@)blKdv6aoCQlV3p8cRz6o7Nsd3+ z8Cv3A*1h}VW3RG^39*_51OxElT;QBWTE|OXyI?v`SvBK`8qGv z+D`g;I$=3Ay9f+gR0T@~O2FL8X0bbcFjOa-axs$=92@c$r6jCk$_lX@;&i>o$=~s- zm33KvWYV^k;C@G_EP}=Vi#p~Gw|M)2>^N*}%W~fQ@w)2G%E@|a zO+K4GS7*S=2Vd|Ret%L+Q=i8?Axwb!{SM>>v}z~b2(iPl(YERW5SmCaw`mBB1l>Ws z<>b|l%g@aE`TbxKt0m*&8SE?PQu1RL--Ry(PUI2~1Dh&Knu5zqXo~w<@ruTB0w{uV zOl!Ic)YhNV^iSX#B^Y%K`00FCDwuG(TEhjB(WrA83a(dHzpA7hHwe{<-~KKwyzHR& ziG$#&WY{spIc#gGl4i&B>8=e|{wA5rK>h9T-96nKls%T5C4O62#8L5#s8SrNht(%J z5g-S(J`n0eV0vFI8nm|`jU)J&wL^6OWuT)-+5MgiI0B1!wc@ng)Px3{Y79q(&=6u9 z==E?(MB=d8Nom*$AO97z6T!7C5n82)ka2YnOwXPy+CAKldflDIqT!!hNbRh@t3wYf&meo8@wHlh7b=V`CC0V(<(E5G8fmE{ zxVRq^fuxWt#rQ)S#+L{_YiV=SS2LgbJl>MyD5|aicZb{uDcE@Q(s12cM6=qMsC(;Y z5BSa1=((wgjuPyyeLU!I&RPk;6_8lZeH9nF@fiX7-M2Gm=((x)grzU9mL?irJBa6ee{y(uZjU|-9Xf#WSZ9QBK2qT6(fyp_Yp=keEjj&^2~i}~!(7NJ*$=`=f; z+OL(eq3hmh1J>pc*|JjkaqFFR#hr5`LY)qKeM;X~U_6g7b~(`Jm^XM2!_#Y) zq6Q5l_Mb`&B+jXxK*V*W16GBsu<)olGu9%nBS+#CugC?^*J+`R_JUaD}D4xPTwB_uxAZv$ZdLqoNOnLC<8X#M7Y;9$ZX*d}6w4_8}{*)D|^h zwrq(KGCweZTTy8xR~piYVHXf*@G5%yj4If4=cbl4Pe3-%3fnqvi}4Haeyfaew`$%@xD;Y_OB}@~S`B!gJ&(-{)lmZOJ*KElo2d zR9%BFC|^nzMdStqemV!gW@D{~WQk>x8uAL$YW ze5gC}Ui4>qzihO4Yc{WC((ARnfHks=OkOy@y3r~NUF&Ka7U$mlaF-;j6hqz7 z=PJ@Xu9{+jkC?gSavti+Mhjx;QbH4wUuA2 zPd$z#7Tr)>juLL{n3LboT#MR&f**LPW<_BoiO(ij4DWv)BJJ`4#-3&xM1H4&tF9SX zI+T6uuypnoh{e8r@OD7WO}z4qaV@m7#*R8K%F z$rWt{fYr7u5vaam_E%cs@lD~m<^4XSW9=spuX*EEnh(o*hLSgMY|RPEa#NAu zq0+&|sjr)~ti3AH2Ebo!YYKjjzm-)`Z<$6Y!@&qF-E-WjuS6fWC#dXGPhjZGcQc5f z@R38;B{-5qr7@XJb`v{z_iSc1&a@wUTz-bl+Q5!)#8%)e7os-SaI;enA*)OkGx4F$ zNM=GWv;{tXZiA@J@YX~Hx0}Z4k^2@Z3CTqmrGIc!DDgA^PL-;4d6i7H1{@PW&zEhufDoBgQ8c z@xV5V(ZC@fDR&0kd2!go_iG)IsAQ4Df7i9Kn$#F!7*#X0mZ0 zCVor_Ia8-VD?)bOa>8-^XlMCOyzWo8oS0leHS=k=-b!qqO>Q=%WjO}()%@dVNaM<;pc7#6cK{CsS?7LxuN zJzI7CtdPURQM0OZh4@ZqLSK6RfqL8GJl>(fDh7xWLQ(l(`=+dY>h4j?hLs>45*$<99UopSap_F-UvExduv^hx2NdGfsWZ#l))O3&bE*GsE!a{kyw@lo zDV${lvCB{m{Kd>FiM{&v{TR0b>4>`0gtUhwNyYfWrQ_Aj$%wY04W;LtP(be7*SLg5 zMl=l7(=(v6@1dq_s#WJj6HLJARU{Q@8*kJfdV{jwm9}l3v~AnA)mh)W_m0=2|8$S>e)g|3&e{6} z=8nB$%@uP+1mVL%{-%X>z*D|dgz{@%h8i+RDP_(>lmNp`5TAF z0|rAJ^7Iuhfj;RWwIlby=k7S$wrc^ILu4GwW9=k_4U}qs+Gn@gNhQjz{$6V$Eo5*l z^W?*?8swBF9Nc;)WN{$S%n>v*q5?Ur7m3%9^5CpZv5qjjc`l%*0`ac!LJ6|YrKsl& z%g7oFFrBuh_}*WjI96smG*pc(y|5|U-=v)XEC|SV|2nt^mnrKwPSh84Wpz01XPHvr zHI*b$Ne+Q9B%8l(QlXNQ9J#WVQ|tlQQMaKTKI7X5IHQv+QG<@)UOroXqfWz6^)AEn zRV+kwT2LocpN64eL~F|L<5(|~%Ct%^%lZB0-+QZe)Ofz*9qSzrg1ur2<#rFWIaJwZ#`T8B2RNY*1=kK0>l4(|D zW)Z(O8wD?!Y0`6@iajqInp%i8NoN?cbc*uQB1BsBVIDV^OKFesmBj8$W;JTB zF6__@HFWFHW-byDoHkjc7i0(Xr8%#u7M}1=a8oY8JHFs0TJb4(L{T5XK*z-uZ@upf zahKlnxcLlz4;ZZ#Ro-{f`M#VyG3RD@2|92T?itbis#o(tck0FP*RO{X+oWlTKkz?p zW@1#S1O`SdaNO)&C2!!b%VW+BkrwU~KOTE7npLXnlqX;@AUqbf?sjW~y;@<@!0K&I zo#*xN1EE#UzCJ`p$!EC@cEu;$ULrOsCzpai#6eaEuqwQ9#cibEDH-@dDpy$Xk>Xa) z0N@diE%SWPJ(?Pk;HAhCOGTM-@n?Qe+1_ZY1YEdY<+9vT_F7$u=bEk;_b%>JOAOEz zpjl)6C=rx5uR7I>fboGHezVd}CH1ZECFzYzyx^PXOtHWTDf|9iVWa9sYmxMP)e2MasBWAIhhoS_l7m(V zG(B*Mt%F8V(**4;pU|-~3r@39 zfONinti6^C@w?n=R{_t8VF=POe|4=m;~ zbUw#2A~UJ+o9)8PbhQLD9^A&mw|bMnt-0oliHij6sd&!k3OP0>f~0;ARP{gdn3 zpwYXZnYH5>UruaR2+%+kMc|=o5k&(*>G9&#=XHU>=r`zrTQqDP_`>dmI${9~B_xKy zaFZE#$e7|QIe{J58au8tK@oF9A?l0J1GkGr5k*{FB$i^tKY(VMw`&aDxXmqjJ2O?> zOpN@?dI`^6#5=K~O;4U8!J?wsv#QsrfSzM9o|^(@-n+rmbwe|ax_M?2NzT)%4e%w` zbbiN7YT^icGV=o`-jfA;u<=uh2M4*LRZ`|oVWw0=w^%b{w6(NFaR3>3c^E0myUA}8 zdf}IYT~LP$qI=m{nFRIGq`kHIZ?uMwJB5Qj>}W5*$o+~pZs7uFc08}t2&c|VCF`6*t5Lq%5cDK831Y~pi;gdO|a$!HL>A+RPe#cEr#ft2lCe9yYl z#$9q<4kB~xXVYe2T0xglR7p?`Jg|$KK$~Z354C$tuzPJJY_WDF3PqkD+Nn-$v2Jq+W;D9$B$&JgKznZmagb)K6Z>V3h*8>iW? zCHGK5sa>3t_^bvU=xNE*2zU557D5W#9JU)*a2+oVZg%pZ%DA=RR9fEK7G2^lv`T)A z{S6)oMv_EEx(y@LFo$oskid0hhHy74j#X2*!9YFP!b7N6e~=4yqlyDB}8Kv|$aP_e8} z1F1_E#X1g#=5xJMgM`l)9BEbvAR*?JXc)gR`x`~GA!w2E8fg(EPG znMp3EXQbK@tVuYCv+wQM`=*!`3F@_lubP6ef>StjTH=QHT@<$mpQu2I>!qg0{pKCO zd4E&N?{A^q>eNhlJhvJh*2W@k`(cq!T_u{tXa#-lTWHdWlbq?UGjP-K2yOU6wC^l` zlRU9--Ek}sRfO-a`9PGey-(y5Be@H0r^$k0xcCtU7u9fOtQ0>X+;PR!1A(W=PX29T z{F0(|$hrNU#!EJwL4&9BC56@w3#;BXqhUJ6`<15JwDU`c`bnZvUq8H<=pm&F|QU zS>-D#lUT?}Av5U&Ew{xSMUGjEf6^U<_jWrR)Z5*#qObM2ha(M;QKu0oOiX&Rv^K)9 z=Dza}cq8;YU-($GSysq91bBCTW5EH`4D26kZqIFEx+bIL1P6)` zu$n{{-`dN1&U9!c9xSxvuGrfZ)j!|~i!g_As#kW`{RXeUnPU?hV(>GWg1x!mO_o_N z7m&Psi5(q|nt2VF`HqmW5_@~J!`$#9L8<;k98W8oKP3Y&1O_~Df{=(2@yaNEq`-rF6=@Jszsh0K?Iie5nc zQ!{gNb}(N%*_pA@S$BwVzb}=$*5z_yR30DcQY}Gd*1>MoQDP5GhFhGrcSP(|lgJnw zE3dU0e_J%-WL@;(dfjfbQE*TGoW7PGK47!-#i>l2_vW`}f(!n4f{G|y!pFki;@v%~ zwdD>p{Z7&?%|LCt7~7~{8D(1!nc`3S$EtUI*RXqVn*v3%Y(GpTm{vNO)05}11)?g@ zXFz*bQ7!HQB3JX}Yd%iRyevhV@0Ot+U+s4`NO5hujDP?B9B%X?U~+_;Yw`_xt*+8{ zY^!#1>2Q01l-_nEyl`j$J+7c2aN3kkGb$LfoIB!g>}rzAJ%=h><~+)lOA%T5Hw&@b zifK7sPXyD&tn1nxAmx-TPgFZ=u=r>!3Dad1A8b|(+SBm3V^=Qmrb;4sPp6ED<+~rV zu}ntmYMg=3F1Gm}7E)~vK4b|*Tomr%cOQ2zYT@K881hVl$R**43#}sw%YNO=zB+7- z%L_pVN}2+@L?T0-&>ZWjM2v?}%$_##dL?OB6xv~t5}4h>Y_4$oY!6&QV=VGMye+MZ z$rBSzsK&n4^*wlY4eqP``y7qC@af#9^tgE)UT3%yllN$#+trCy=tV- z42A~^`NQU2UU^@IYRk=;DIVizP!$ik#U*Al28V2GTPWcmhsYjwk-x(eYxs8 zFZ%^}L5)PLD4`NW%l5HQi2gn~g0fj=w+pX!tFL zWwdhYBz(Ag25sR_re9%M!kdJL;)kfZB34P9L(H2XuQwlJ(U~zpXVPM+R#F~J_rrIu zy2vUAIEBG~!rv^77rQr$G93_&G^_+wxx`nmBoX(J{zL#K|$zXxBX-c*$iSe?q0P&fN_!(F8OhEK^bKxvEckz>sMS7O2o^&2~_M9Nl(@px>4ywn&{(==s6N z%|=VGd-Gb7$PfRUMV2`9PG^X^H3$v_JNEV2yLywf17m%_AFk~vAr6475Mw&E6S6SJ zYDKmzQ^UVTAc^xj{jKua-l*1v!QJ#8`SGS6F;sO2q;F;NM+Q^BJmt)9r%{~H!W9p& zi&dh-A&jqWE#u4HuQ5)(`?{aqiPDt+<=L)KUAl*{3L9hDMS;1Nk|melsaC5qP(#B+ z8j>)z;6`9NMTNA3RK~k!11-0$nX#ZvZE_pq@Oon4Q0-q6s^qB5Bd4;IPD9I)KyQzJ zMc41>2_I`dS`V>kwNnKy@{sN0n0L+_-eB1yrH&V6o6Binb)KUdJ5oDdnl|aPkOD6J zMHlbPe;08RvPtK(Oo-1F44UL-mC5%%Jwr((PE;?o$FHRPAwHqDA3-5N8SENwfggaR z3tWGCG5S`Mw4%yMJGd{&iFgewG(nzaDc(pb_-50O&Y^>CVX=x|+RL;}kh!l0pwVrx z1}q^$wuO<{M%4ZD{K)+58wvq*k}Ud1-W&+87spU#zaM3?T)sCKhTYQzsZvG;3CM~y zEnzwwQ@+s3FLbL%TFN~_a^EtMV8>mgILBTIx;I;8h!(Ou#?Mw;)SD>^zjz2Jw|d=B zolND@HBd0&i6=4XFZzNzcfP@XUvw-ajB5IkP#d>?#`s;ey02CFaBH!SHK`o{CCUwl z%m@Gtwnm-A6=M+-BR+EvwknzktFnQXjhMF^(-3S;dh8j_rOI9T-ObC5##86um?3!3 z)iPif6qOn}&1FO0DSyAe-hNLjTdR z00&Iek0({^`ayV>Eh?MHDCSKtU}WU7E81T~gWTy`QfhjGl5d4cl>zIEos*zkoz@oP zv{ES~u;T5;G5*b&)MhGJ^4xUj!-P;Ex~i~;fzqs!hH%!vb-PiS^K`kDq80(2O!;*< z?BoJ=F>16}J3(2k!H46R^+7;k7s05t3{;2vRQe;Q<9a5(c&dsaXi9_}zNS)0SSI`f ztb5*zA^TjM`m>dlSyOlGk0lG^%SytX*qLE=_@M|zC$N9#=J4#g&!;kr{)=;S;r>OO z>&hqUmv}-CU=|*K%VUmro1xgvUg*^%^FVMC>!u@5uQMg$w3h>lv5u)8AYg3|(gC0ou1D+}(3I5i_9bCm+q> zV)(mk9F*07r^YA6C+1qTFB~v28Zij59&UJ2YX{ z-L8WK-grugz=F2~jPE2KL)cO*;hl7p=Zva8Wpn5~iHB1{dRp`k+`2|Lo0m2PmA#Ii z1P@%>1wM3?+9WvQ(y6~i6Rm>Ezw)j!leLS&afu#=Bwp(qdnQRyYhp+xUa=^D9HyNQ z;i;+3UAL~Ft3BMJc=Vl#O1#sj-GpB7Y^bY z^cAYJQ~MOWVGsSXvz@X)lNeza?IuA5VJ_XwupivO0c9EU6ps1l_4CLuQ_a40E1SWiG0QtF3(UzG^oqbF_B8 z1D(xz$KDwb(5SZ~C<8|Hvj)!b43CHZj6lOETbjH=mLK)2?`rb}qawDh@*VIUp6V?ai zr%HwB9_sa5bSY*S1IiyT8UKU97O}LHCKn-VwmX8lxlyPJ^T1&bhFm~?#{kp}2duOg zJ5C#Joc9RH`7fycx04D~&E#r2;ui_)%~hx7zP++jYmQpkmjmnDf64lNGl9NAifqq; z47rN*TM9Ih< z8c+>4Hx`_cb@FNdY{rDdc%-8U8W`qzQn3YDgk6@4!IYAw5*p=s4jA-Lx{|_&)D6`r zmFB9FZ>b!-YL@10pIau{5!8|5dm1_}PH4f?7wp4ADk1v#jp4!ZL3-2fDQW6MvYBwt z+opH;t(bC_??oq9WQ=V4_I~_67V@{wD{q$G z$|)G-nC}ED9AQ8IxMl_w_a2LX`%`%@=MW3{0DF@-_`sK~kQ09>YkXNDw^#2u?)J_f z*Cp$yTZ)N<*%WcRLp#Qq5s;&s3@{NQ1h1U%WaZ;t`GmTkI*01)M1*ddR2&|Dx3d*S zK28%v5!QCmcegyR_O3;i`I1SC5?r`=vZoKTAtnN>6WKoJZBYIScHV4}x~l2W`4WE0 zzAkoQIiq54M-(0&r>-g%a9{FLH4?_{CL)lv0n~Jk$ok17`%cpcw2Cm=Q7jFPL*y9U zJ>(x0ho`ZH-2r0A%ZYN2yql;;wPv>8$68*3X0) z?iqSp%!m`ofezdbpFi)TTqqcX39W)Org@u$#4dP#O?u;3X8nyT%bGPb=CDGV0c1m} zE**k4Y+x{|N-^8^DxYodakrI^UcKC9PBQE?bmix{dC*l%eFj!MPUG(G($n)+47?DC zWOZVl*@MgdM0H`=;VNlY!Rd~5)ZI38$M}_FCPazO21o346!<3sdq30&ERThMG>by? zh~5heRh`>OKgyr*JAIzJdz|jK8L!_7oM=84Q@B(ARiPgu`MKHwT2@yzOl)4hgcTJG zk|ZHD-&;~Z0Sguo#3mAFn?z`V4P}7sIM`d5oEN@ z;&_7q{9f7cj2akS;U3xz032EIvceXZ%E}+!0be0wpZ)wxt3*V;Y8mt%%7{bwDYyMe zhPqL|mZ~ZR84pO&$ki=7*XSL?zu7yyfj|Q`GH-RsKXM)Rvi67Uk5{X^TV`HNg-pU- z13$`fm`l;1w6vs#dxLf!a-*vmtG4D<&R|C)f=%fHTl=CtuG?e!`57lV3nB%@V-42A#&Ar!`wjB!uv5cLjZN;g8qKL{U zo*?bFu36CKLp0UD_h8HbB2ESp+iO(1pEhfd&p2-{6Ax?uj_X4xK5ql$HC@21J8rpT z3!sdpnri>omT*xbdr!fo#b>NC)OJGV{_{_`QL0wLZA%WFh3$n4YAsEbe5~Mp&xk9Z zpF+bF&FSZdcchDy^7b+It{6vj+@XiX;kz8sYsY*r(_vlrxHaipj z$#z_QQ+c~Nr(;8f^7NHBPy?!p_9i_w#>by!&J$x|aE z(mMbslUVXOysuQ_=N0j#I50RsIo+Vad{tr{&~d+XRCgop?7mi9PdnBBV)naGzq5W5 zJSY)Zx%;*d2YjVMwh^6uyLb3HanqXWm4Ky}AwPjUMScbBg-*sS#ea~3%q{i8?{*Bw zx^pN-%=6Kwx&+%N=yJ*ie6)R%)pL&g+}l3-Fa4S%0ZMbx<|%ZxyS^ki?7besex2bh z%}ghvslOf9)P7H3 zat1w4tDg87#!-d;lbPmA2mF+Da;56q;bc?ttV?Uzq$k>4JM*l$3j4BQ+H327q`8^W z%ka1H>tIN4^!M6edY+-Lv98_vynm|?1|l@P*?9MVk8}m-zMHazI=;8N7H%fP+HNx0 z-hL`)-F4vABtyI&1}AcE>BTl76g{c^T|nQI1d2;wNLsYS~3 z8fU$0k=ua*I)Tdoh#iJ z!@C!4H&${*;GX`K+Wpl(G9*7v^AX-0+%<^5&*K(MZ})cKIm50C`>?~eGP!#rfAO&N z)%(7*mComojc`*n+VG!7JtFfhMaf@AI7a?$@mCFh2aePhBFNS9t^8qgugBUpuSDIz zzkdJf#(!@5Q~|Mjzqid;zp~vQ=uG=-Qmw#0m)e`p@5_ zwmQ@NC~J?lJ}-2;D*mS4Wk~_~>vFs&tPWa##bUoy&=w$OAA5O##g~%H$@?!j{@tqo zt(gDmFJ3wzcASd`w;TSJUyb^oF8#mt|Nj^L|Ka`nj{QH6gD2TPB5-E9mgY7h=1zuY=8QlZQcwxtKpC(=ZovD> zu=L92IJ`a5Lxju%j>3C!_vKpJo1f_@62^P-@k1Trs^k|HchwgvTD1kSs&&q*`Rgk` z>y{ah85-o3X3&lAme884Xf38kG9682&u1pAxMpRTUU?k>o1c%bynxT=gE22Z^F2ce zzY<{sL*QOgeTg~2Ka3$I=9LJVL}B-+VNYe?(U@q;y@>;0v)>aZb8i#5C}eT51uexQ zr&S;^lLMmiR6I2bNJ=pZQ;{-%Af;AwvkLWvFHM{kLm{VG;31>Xe!E&WnM25lR*K>% z4A7UTLQ7h(3B4?KI_l7)n^jQxRlYL$3BC zS{5^G6%#(XZKKzj=o;!uEE(F{wEKe`&z?Wo|jhEKJHcDJ6+ zsCgJ%>C)$$71q@Ve%8jhB6NFK1Lt6`w|`2CY95IP9DyW&Qw=#CY*fG@KFzTosg<^u z;zbS$j7;gOqIE}4TqdoiBM>LxgqUO6zq{J)HR`Q#r36W?p^g1B83OEqg_xHs72(5v z5t4c*zKeH`b9t2&9DUttCRLsh(JR07c-50G;POh|K4}%@it){)o`v*^F5d`mQUW?8m)3Vmcf01Buyw9#q0-YxZEIzh zKoBsTGBba2Aed0sQJ1|gBjX^D_n#BNcR{?WOsUucHMV93v#3V-xzLtzfE*ThU{hQ9P`C05OlE zT$c>s(%ZKW0)%be^^m^JCuOi;khZ5bZaAi5l49AMbD&iNC7$KN!Q&No6PIy}OG5*) zJ#^|>RJ}kGgK^_8G%vC{q^rbcd_kFKd1m*GuBI$K^Kvk=xU-jm0ukF3|9txMD=i(x z(Jb`Kr36!VGN6GbM}`0SWSiaSYs)Vq^THh$5kx=Me4_RABk?9YBU(x zxe+C-4uZ{l*9G?QSmGI+RgdJ{#W{mom47~Z=F7~=e3ItCYQ!;B81fw57X?e8>Mh~8 zd=00B5SeHCRa`W-{7ORagql0?(G}rxo#%{4m8BR*iHG(i$XBImKdcB2@Wn87noBBl z3797^dFm8aGNpx{zceO#rf-zAfWKUYT;V?7MMob>~FwfOiBR<7?NaXrgX6T@hBF z@>$f$RpfBhU(Ie8xW+$g8NMTqigmG6dFDKn=1M9@m)spwR53N_KNt8h08$|`$RahMvFL=bg z#p?56OsqZmEzJTqo#!xq!{hjr2Z%aEGqo@WSpFdiKd$GaI%KEkl(5j{e?4l7nun44 zb&wNvn=;E|Xm&WGFi?bC!HL;rNBeu30YJzaTfZ}@l~a*o8a*fC@JQyxMqF}?Tf&6X zkKa1}gbyRXFtvj?|Jr%>$_0aoj|~I_tnt^7Lrni;$VvYi@@DA&7;Ubloc1raSUnpuTLbV;AiskdfEw5PaVq*@!r>6=Q%kM*`xBs8QPhrpSEJ%j4$zV* zH`aR$h-~@abfvw2$h|q&2qWz=H@~r@dU%qS4)}_I!BZtzrVh zL1^c0Aa^~S07WtEq79ign~)8>#$7n49YJk3+pDJDz5IpoX^At_!=uc!;R}_3Umz-| z#|-92u=UmJp{{W9etHn_^a3qxC0K21&PUGGwWo+210_8^0U#j8HVu<6WO4r@3tIIL zvdn*xZ87{0vMB!`t7~Ac?N;9zX%WNh>o=Pe+hD$xJJS!et&&V9pwan2t4H_im< ze{uevmH0>PEL~SAF;y!*wFgM4ue)mq6+pkJy8*F1evD zXyO9?+#dwlad72mztH~lA(K{cP=F9fFHO%a|jG11Oz{Xicq;8xmYjKcQi~?0w5s40!|ztAVizL;6xAp0}lCL za9aKT0}iB_uCVD)U|3C zJ;7+a>g;^g)q0PS zlX$}VK~nrpkUmO{SWPz4m#%+m8hbbgd|KaWkFzXtp@0SakbZzc`Cmo=p_bf~hum$y zRZYO?T%!9rn}2*-JR>Xyt1`K8I9xalfse34y5T(>y37G>1WlYVt5oJWh1x$&eHKUr z2Res>;}T~xa{^Y^?P!&3xhyv6w3NULFsd}cDc(vf?=U7Ud7^UpupvtW9Y$W?7xV$r zEn>NM&4;MAhb;2hQJ~VKRi39Mji4aP_u9VX8NqV9`>edJ?|^JVqlWj144f^rHCIoE z$l1aQF#+`rnqfl}A$K!qa*J36By)LvY{(G>%T1-2Z^Hf<8&?y}ew~@m#$r$WsGkau zndK^Yc+tL|Sj-%ok_c{_HXw<*EG<;KWA9}ma`v~C_Xp8sdZ+$+2}y&iXnaZK&1>}A zmx%fZrR}HX8wggqsy1>vr(UVO#9PMRhsHiHT3cuXKg%~L!`4n%4 zipOtj@;J|OS=xP8?3x)!jmzYw|1v$?is{}-vP`69imwT;_As;)a{vpq#!%#1qOHbJ_ z?jeM|2fSXiSF8q>_pBmoC<@&Qf%|Ur-L6OO-2u|FS+zNgnwS{(;5ne&1&q zvrX?NKt5C=iMq8v0&f`GFQdydIATbOR1p^K@-o)Dnn70-$-_bgtS?{Ujehb{$IrQ*?l&Ru{w)I{E8goD%0IcU+4Q4Y26+mDeMT zRyA4Od+-fH3Fv_#Enf@DGmL!sbUOwO@IAWkB@^9tdxdBt}kNim))FCtEX* zne)WKAms2Zu_2s!$MPBO;KYbR$J2bcJJ#rP_8(B`Cqp{Kl{KoE5z6bZfL$xX+!4y) zz00D55)3~#-@J+qR0{F^abAN{Qz*8)UWHI{TmzZ4KOt<0u*&je1gkKb#E7?+EbtQC zYWp0fFNR3#j#l>o+)3L)K~E27zUWusc%;RA59QW3VIeh{EmkE#b|*20KVn=|3gmJ$H~69ustNwo zEZKFVyz&}pZm5>2LN-r(}7 z7jAq~45K!|WrrBISDS;&C2!fV%3VZqBG-7XPhJ^<(X29-m7#G7xv2Uy!6fbGaaS%6 z8nR=W{6XaUO1@~CxW9?P6b_N>lHIiE!VVQaro7`wt}I;SW}nS^(k*v*;(5k+7N3Y@ zp6R|P%8fY}y@1B8_?IFlzBqyga=^eZMtAXhN_OYlJBalJ4YR$+p6aew;FLUPTFBTOTm({vYBAqwTJHFd)zV8sq*)ZB#M36`>?cowu9D?ALq=u z!UP?3C%DqkRjEh*ySCbR?VQF0(TYCydYicTANTAm4X^05(Y%hN)7iH%#ip#X4Gz6B zI694D_I)KDN=b?9dqItDr=-vF@*9BzDr{P7=>P9gJ`jre~ zq$kkHY+v;0Mvv`_=F9B)e#Oj=T%ePyF8{t7BF6KSUC&(jp%Zq)i^$E~yiZIi%aGB$ zSItp-lbaIbqz)^sGitCwp=S7r9YIHXz%yV2iR*xPke^e(Qp!USgS4UPaWZ6ddnr1| z1i3!a5fc7U85SxW)umo>a$T13cc5XswR#CxrL-RNRZS@5g%j3kFtRy1{D8ZiWkhy{`&Snl=H(idL?agV z`1WnL(RC)9t#2bk4hEqK0-5FV%Vg)0(d8mh)tk)---SLedGUXdeuN_YbngII?Wgc| zy4K^gA15KR>|j`>g%%-Fo# zUyozoeT%@h#`BTGmp6}xy$|ZMOY1bZNs1+^D+ zR%ygk2*LjCpZwcRsS*LQFvcq#!;8_i2A=u-*LC^VrT^iNEnXr&>g1o2H@ljr;I=Ea zTtifwtKSGxk)Bq-fM#z#(pY{N?ejiNpsQ`vRo?4#J^z{~^XR>+t8li&Pqk*&JYC>n zk2Vh)Vt@$1WQVUpTWMJRe99*!zVB zOOC8JdDMt*5$+;jWl{SBA#+0e&rfO`&Og_|En*Q&)ob+M-dx&|PE=L#1>LJz-1;cG zbFpjLGx7T8^7yS@T^Vl^kkA=~+1U&hg&BEvHAN;faRiZ_4n9(}to45n0fTxg7rR|*`{D$j$1R3SuRKq%$WPFNU$-`_t0-m94V`xe<6oAII*pl{X%8xjIquNMwzt0yT|_TcP{w*GAbj zh6#R|a52xUOJkYe?0T~K%alexAdrrFv$1IYPP@2QW#eQk_>-Y1b?r0bI7 zoW3xHz5!|G8|70Ud;+y1J{E?D$(n#yJ)WLf-4&PVdIUCqLz;jWOD2iUnLn*fWo@2R z3*^zgomu}<&*G$3Ls+43$5lbc7J%0~pGS!wG0P2?dL&OVqm((V=rIFey8Dp?sMiW& zq^U5GWJy+5D2T~5Q~5A&9ql-+kJn;%CgBVk(QWW=ZK2BKG}@Nhx9ybB*0K_FAEPR? zk_sqUJGMY|orSV!wW3d&n);=|`i$g5&nx{$-6oH9#7wa@p6bdt9iO#4y4R@RtKGW% z7e2G^Ky#{um%;~n6DyubrVWn75v^Z1_pw@{u|I)n*;H3Io<&)^+#7N5FU@p&n_nR1 zFq&lT8z7@Ld~><;0-ZKb@@DKteg-hVs(p+psa>6s`ZN)*(wXqzW>4h^%krJmul4(J zr@i4+#;4ys`@b@QTbd|O z7@Y`BCtqy4(|q#1C2P1C6^(|Rf-te*O1dX;1b~AYEI^zth$Gpkm_cpNIfAZUYivHlDB<}s z9=XYcGy0gm`_%GQc?xK&boXt1b@cTZXPO=3mF27GkPrt#d-6MhKrN6Ihw=d{gB2dW zgMo*8gvB{W!~97@9?wlhNN6;(7CW4nEfo?Ui$g|@wlvcNuT2S_j6*^ZNkB`Ywk``z zcuTI{o!3ZD83~=LpdimLKTEi;zU>eDj$RWP68eM*D{)s`iAr)UqGV=}WiL4)KfSrM zeQ$djG#=FW!;sJ{mFVb)Mzt%ep-(=a{HzdU*~jq~cu!#P?B{sz#su|Q^hr=mmd@32 zZ|fe3BZSp+uC#aq#gfV*g5jU z{q3UY;|wL{zfEQSG0@qA@9sqRuhl#gUb@IiX|(FvNN?Wo_rJ{L_Cvt+U-O!!z9eVj zX+xAI3?GXsN^B2Xts^a01>W*$I=ob7axXLQS*xKZh8=AP?u+Q;74jV!@UHat#WI&s z<@{juJb7VRUUmYTZUbmkJD%xb-f_@j_>N_zm*9Hej+EWZu1a?evVJjz>y)qL%6*$O z_7d^GAvd~&mJ_fJjHHG$Iph18;z-^fA<+I*h+Y&*t#q!JT{_oeaPnQ)If}bo=Lx8k zJI<%bx=Yl(@In$z8PB5lQ1k8lJnZqx!%Y3b^pKCvm+pG$s%iBXto(eiyzSnnP#%jfl|q+Wevn(5fQ5IWniSr3a`!dk9reze+tzMjmUkJRXx)AT*6fqf*OEIid!oL_Nf?DN zVA4tQQWb5ld<({uYhIyx&*qb@pKdEv9qF#d$wyA;ScOz$e42zW@QHu1cZlsl>=L+KdyeBX^x=gjE6&a%f zqA-N>3KGD?3rUp0KcR)&XYMITDW$l&Z}IJwCfqGx#eD8LfHC?TNsdC7Bllz(@pU_{jNm<`}^kr#$SpH!IzwtWec&&MQhDci9N_H$pQXcpA zu&&~Q?NFcU)ZGLDvS?k1oS67FXW|pl*=Wx(WI{XLoH#C=aTpV+U`Yd9QU8(&+R-zm zVDrlgDnh`zU&ICN1W4i8OLMIXEMMvkCVV$BJMF|cvmyqvINuEtr-=^izQpC-fgNpiU>GY=!y zF$gtH*GUAdB4AE+LlEicj-ZcmWbCF^e8_uy$%^wb3cUurpUT$CP}GO(e{7k7A%?{j zAtp2VbT=O;Fd|Js%E))cF9h6=vTQBn_1++yR_j*0+=8ccMNip_Qkdb$tLEtJL)pS;bK>I+uNO;r~ibev}(_Bow4u0+7 z=8&cPmfFpK-Lo!Xijuu(iSv`P02ni0;p{cd&u|rdLj?gpc74RU6gLG}!?WvQWP`qb z+1{%+%-pX;yAB42qibQal&6pz%}%@Qb9a%;Pmz&x#tQ|}4EJ-Km#!V8k#bN0C1MSD z;Ha%YsSS9QewnPk7-R`urAg&@9_X-MTRrle)NbFXGQ-vfWQp{c+_MRqoq`)I7>{v_ zdBAOWw;fAwGu2yT(vfva>7+cEDM5cp+EMpYnY8P>f}27u3xwULM4-X{Ak|Gf*^FQfC>+MRl&i5pA}BZNzgM z+BhB%Ju!x6Vi-u4yV296c(t4#>JT%}m zEMukRej>op2=XSJP_J1w#vZR|#t-F$<@rI6#g2A`ZB)bp#m=D(?MNyva619v_HxVw zn6~cF8Icy;Ylw21qX;>@kxI*weHSzxpM`6>R<~Q6!|sf4)Ur!P(L9fO2MBUK!BMFZ z$OG_L+@~(nC37{*o;ME6r?~*{W``5&qSksjS*AB+*_*uk=nI@CjtkKFU+leQP-M-r z@6F)uGPv8|?hXTkyE}usySu~S?l!o)4K}#DySp^j@bWy{PV9U3ksJ4%PjAGEsI|IR zM|V`_%Klf?uQG4Z{OM?x2W0FyYE~_)W!lM*a(~ev#@j-)orfZ7VLK>;i6+M4f zVkGqaZq!%DrQck=$DU=6XqB_?s@t*+yI?-S0igfTHbqEtXcR$xJzqvE(7R=8?CNS$ zyJjJzwMH~=mL2q6)>g%s92wOiJ-GRbRRfH#Ny`efc6-haaARu@g7tS9vwSIBAmM+S zQfj)^2faD$7Uq;hff|*RA2Y;ggOS!pb<{vX>fa?6ZNBB>J7stq7S@mH`-!c_S&nAp z+4f{J4s6m1^#YR)i$qzb06%b3Ss74R_jr?o>3pGQJS|@f8c75@4?D5tcANZEAK;g7 zt+}S8Zl?)}9XxU~ms`GGBEl7pW96LxW(G~;O_^iUvKB1n??0M4L!D!`E{wF-g`q+R z{J7H82U|a%ptaEkn`)HWB)z)BDMcJDMe8umkAZmIp!PrXGsH#WUl)Ng>z z7Z(dfH|_?Z#+8|56RArB=zUcf4|Z$5^3CDo5Mdc2Ks|loom~7EweiIL+f3? zFzt+AIP!#HzT)p$#V(stRG}?)uPOJBQWXjcH_q~1x8Alt=0n)OMDTy?go(noZ!!gUaM`J`zqkooc)9RrWOT`y;M-B>jdb!lL;suM>IU&_p*S(Po{P&XeE znKttXr)BGV(OFs6Ke0sv^`axYJbLkMk->mLO#&uwf} zRa~0nUOFN7A0FFS|9q4!AvHn)4FdU#B>j7Hbq<{inUdVX!k>z##QDy2U2HKm}8xT*Egj{lc3!9J?xTi1=1fy!uLP@9S1|J{yS+qSaYB#$Ewo9MuQNzL#BiH~jSk#LW zsAO`o7%MqirEkvQKh0tcZo({GvTCu#TzT%NSdnP&6wJKyB?|14IlG^&*flkq@W$a= z0*bTe1Qm<`VHS!9XQ<`@v3V^nRji@4Vy(w1`|?31+-M?FWZ-}Wqa2L=$CQ`whWZ%F znMbHzGj}H*&D!^l-__Atk;2WMh&ru0goO*71;>s!LH6?Sm00_iZEQqufp7Us!#_;o zi)}uK2~H)sPDf2e8%! z4_N2Ng=LGZamW!@A1nY9KktHMgwq-0kJw8EN3R_tjCl;k1PEfmSN&ATUvDb$dvFnbT}o;rIK=AN?Qwcc3~ z#dUfpdBOXcA4&l+3#Vvhei^dbpkvFI?gC$o?;@MKe#&>8x9iS&0itQV&ZTKjl*3;1 z*sy*MuIX$4rBbasMRh$#)biENZ(;qjpcDk;G^)7sbso&|;~+MFr3RfGF2YqoQS`+O zkkw-c)?4JYLj+Qi!yngVd|j285u1Dq4-kd4PlPard;Z;<`1T`tfmj z+s*%gB{Lm2tYBnvJE;c#@;m@QD?b}yayLd$ObQxX&be0c`wA0^*+LI;FlhX0qDWWAE;|S_q-lE zda%=CAU2U-dRJ^A&b$?4CXgb7H}+Ae_I|MSXIgIP!Rpm<9)ct1Q z=pvn&I%A=-vZ|TFq-QOeKx%uPept}0S48)^{M2{}gSKBKTIr+>94g_jP!#cmsk$7N zJ-D<+%Mh8oL+zYM?U8SsLmvDJ%s`#`dD>?9F0c_F1tgDv@9XRSzA3N_rh^Oi_6^uw zDYk77c(;zVZ6&PK?RnNbB(CyVSv(4+urhnb@$ND~YOtEe}f8>oA3T$22TGRs89YmP-pyOpuU{)_klXn-v;V-&JN~I?reW7 zkJo(ynf!BzzBc|vOaUEa%NgjH^qm$Ga;+7`!Q>#3%$ZsKLJ+3;wUGCdJ0w^&5owwS zh&z}GMR6Sf!?~J=F@CsNHme@MUEb)j33f&@L71;7`h*S?>vvP0Nyz6h)c@YTra_~Y zJi0!p3*0heSL_v3Zd-6v&;;zyT%wC!USxpqVOnbJtt8Wr! zuTje_$WoT1G^v^@4lCb@DsN;2H@21!tHQydF zQSJ}6YLk1#-R<~+458lHT&{XvHi2nZhDi=t(1zwXOOE)^93bR zm~e{eJfY2nsqgk5nKKxmVYYXO9wCLk?52SOA;f$GC4ey7=t9VB>=H^1%RlHUcevED z)crsg;{V!kQ@~w7!KyPbEt75^Ey;J!dM4gXGgw96}xj+A2c@TL^-9jXAPy8F8r(< zIAp1JRU;THO2oA%&bL>mY&vKL3|>gnj<3JnZmVq24js$TSU=OB%g5e~doa8n>V9=P z`IX>{u`w3x2sos5S##Xze9Stm7k785HGMBqCt15>Q^I4l-A|6tTLcJPdPm$G$7U@I z(JZc9dwW>Eo&I`RlyV;G^aR>5M_*3J6mSpvL|4pSk!O z`Ewe4JveWG4PmAqzW_d6aN4>Xzrpr~@4p_Adi3G&K3(lAVuOHyC;hXdY$pFJNBI-1 z)&~D;_+Ph{R#N*6b){4o!A&{R^oZJMpCQ|P7MPJ?d+Yni7?q9;)tBe5f+bO^m6l)n zsEHnhm=ync(ROcwl^l6ED<1p%4F+|7SI&3baIrka-Cp@KS% zq9KUP;G6nSO7mTRj}t!%YgSRRBc_%h7lh7Sv4{cvbH@OJc_U3O1D$TKPNRD%_7ZQS z2a{E;+Z!yoX~hlXaA9?B?{FnkUtiDP;(d+Eh9#e?Ho8hf6^ z&KcdU50_m=Thhu}yEQiHyoWTEl6FULH@y>jhNj^BiJ{PQK_I9E{W;NlI>RsSIK)?X zuBNk3N%JaMY3x1fwh6X$9DdfBN3*t}L}NhdbtxRcu7?gvsm*dk!z0ifnk_r6vNY*_ zK|_Z-lCEC1I~gGvaH#Gx+o%KHl8Rf|y+2v@u7BKsrD!EOd;HLpY_6laovjxtf~~VN zjo9Nze*RT4n`Y(kD>o8=2eMk1r_WB$?sC+(hI1LS%%@>t`{_C%!De?d?*wV1A8F?8 zNwu*8Sle(~?F{82VI0s4;dW56_VTEb(Q92?RPgkD!2jn5)1H&fPerg+J(^7n=3U_K z**6%9Mrsqf`X;4nud1)tj}QUgfGI2aBn$K|SSp4uIPcr3e0i?Uz9FJd{o*&V5XHbC zAjy6o=R+H_V06FH>JC)D9{3WRd^`_lDfzsH{vbDEran#lqD}P`F86$522nhUeXF=k=&7fv-ZESD# z8q79?aY$eP@s8mC{V9$hl}3HB`=SenfW^3+mk8gO z0HMX#-HiGXpYq;5SmLu)ZgJxsxY7%ze&>eV z?7({DiVndVp>HG2VgWSvJ;ghWX%B7iiH}#jcUT(L&0<$UaW;#cyHaQyEry)>GyS7O zr9ewFv#_Orb!vZq?O%4K6Xg{+P!PoUW0MEPKL@2fntv6PSpN9;I*0vhP|EaFM|Z{= z3VjhnS5EA?$^!p}AOknkVdsOBmWqRop&<$Dz(fy6`&-OjMG*Qj;#;!(Rr>E2s_-B2 zC=46S2-m_9=mwa*y85mtLK<6H8rj$j11i`1KYrjV-W`(00ym2fYY|lttqhAKW9T8H?`juxiAjY{!yu=2)`1 ziY6_H@>A!l!xZwVSPmYMRE^n+@r}{zIVq@S0uZmm0lME}J&cdF3er%;N8h1Wh|LgOnx6^l!;};pNsS&-dZC_mRFARxZ2`@9I6XkuJ`RR&^a7) zf#UM)cp-5m!~_Un4-!?75|2rk#2dGRRor9aHhAkENoP#{uGEKP`PpURabmf5Q~R3! zgYL5Il(QW1QKXw>LktRr=o6VAcpM1okt66-Y8eAhQ{m*xTQh>tLF0?}GhSsm(wuEH z!Uh)UOp>oU{`cYSzG$C(LXU34p*OKURA(Eg{lXeom0(fRUJ(kxizR~t^t^h8hH)z| z!yRav^9Q2tWnZ6lE$~EQf2kRQw~pMm6vF76k|}N9qcC9QfEzNQ<1>&p3{A_Xb@9$4 z$3?GH+wxtSWIEY-aO%L7n4<~U%VFjWdYtAkS*e--75bQq#&poTEYGQxh-0xCr|9i1 z4^xm}g}3^?EZg}uo`1r`po+Be7hV)dj7o z^+Xu5x?XevPcsHg_I65m+s^hsorTw6+jz1|@3MWr^$#Ff3bmT_1bu20^%VI1cJCun z9&z9l_n1)}5lj-dNznFe5<8R`knwABvXR}?e`lb&Df=kx@cF1N_sctb^KToLHL5zf z-*=>KC!F~GBCANSSz_81)%hEk-ld=+z(bfeiEns3dv?SO)GOWvB zB{$2{_2%ALMt5E-acpv^9`PH~SPp^{t-SXA%%;YqX;pHy5~YSw`kymPnv8J^sn3Y!}UEXU~V_?9;h- zoa*Z8GLJs^t3FgkCuxTb`pd76S!0fC7TaE(Q6V8#LK}9`??^V)YXxowDwy5X!~?rJ zqo^oYj+kWC!p}b|(OH!%shdCdt_^M7NsYzQNNiGPTmay2@i3!321^pRyX}Hx&Uvzl zLWu<)hcwa9d`q6}>$rapcblbstkG5etcFpauJ`4MCuHXv-!nQHv*I=Lu?gLf`8u(g^J3QwLiQ~(KZPdknUuh{u%b9zVeKwO9B~B>zfuJDR*!^e8D0I7 zKg=+@oG%Aa>H79JNZQA4cp(@jhp|T!pDjQQDZ721E-b_sRLrzm|8BxpuWv7|N;)Rt zg63o%dsk~gOu_H2{hK~j! z^l(1E83(|r7$y6i^jRjOP1sO8KSX9pIAb=))(1(Jmp6Bed(p!lj&b=0+i^SLUw8C%{5Zdwf zD$C0&71w2QtxbWOPJa4~<1nFFK~v22sjw=Pl8}21|9$xtzZUD(-gQ0kOcqNCg>bY& zo7q~rwPuo*71pPV&zM2r&;VB?u-w(J^J25ya~13RJUK9_s^Nj(O#4wh#MK!|r(KpO zmcN5d-l9v_~zv7f3ME>_jZMNUz zpw;+VuS?pDbJ0j{JLBzMLT*;jcjLhU!e=$*`+zR<5S@>}EeI+B^7knIKXu`ON`%f9 z$9&>p$@fz1eI8uxwMY@b^s#M|5(LKH`-5T&!&#|t@7z-3l4I#gK~iWexk!_9N&A@= zni%^w6?M5EXr|R+pk8E zKE%$K0Xe$+_aHK>SHcRUm-W!TvxdaFYrv?Gli_05mL;6NHTgTeVrh#NV)$WV@jIV&rm+vC|4yl9?1=WB3k_Xzd8kDBc*iD}KCeAD|ZWGN;c7{uF5kVp$C35Fl-uIbry$vjKx_*LvBRnSsJ4U&!iogjzGy1aN zFW&NUyyyr(;XkS@xIsI050g2Wh#S6ANpTYBX6Kgt_Fn3Vfs)}U26tg1hwfpWv zw~&eZUm$x=z(|nS@L;Al2|^#j2WzydNM@}H)(=!w1?ST6y@1gHykRSs&W@C zV-)l(mPBNXSov@WVV1(!4de|XzngITr|SJGNw4!rc9^$iIGXv!ERB_(Oh5e+e&}nX z5w0sJJ6++99uks%ygk{V7FJ`PufX7MN&kdf4=1R=7?~P_RnO&u0*r?vqJGCa4IJr_ zu?Bl3L+)~6b|O%RHL$e}N%li@b046PNM5dUZ&oWg3mII@G4Xa0YB6+AS@aGvpxihh z33CG~LBH*=6H+3y?>d6)pw4#+UTr`&L1I$e00ohqg(}6G2JK!hO%05{^?6$wMqE5r zET|xjZbt1n)F?h89$IQ$Ip%;|1AS-ah^yNKa77$km`d95@n`ymMrF>u)M~&0Jo22oq!r4w?kM4kBJfko-(o6dC!& z38`)u2fR7zD>;c2x-o{6U=M_t{0=5E`o~5_J23qEf zt`OY&34(@f)HlO_7ZeJ&{Jq$|p{4fm;oYD<=aRNcwynS0mv<{RW8jr;Tr_AhZ|`wS zW-Cl~yv>!8lXI;>;7-vOg&eKAI&Ik{T-T9*sgZ%Ql*Ic@Kl}UJ`8~$un@cPYy5OgO zbNF{F`8fq0ws{oezGm^&Jm|s2EjSa*dg=uIke*rb*x*kGjOwDk+m7$;zy1>IGuj5+ zOQh_F@eB!o%n&l$uM~PON^CZ+W?==)kh$l&-D+Ke*>e@LmF~^X%|jN-*t?V@MVZCq zU|RC&gWMo&BXuWN#qA|bR3x5-azXy!v)cefsaE>HNiu*Pgq|GwMV-(mAt>RI9~Sau zyzipC~Z1YiEBla-WJtjBFWZH>NJo@gCnmZ*&1}x2A z`*h^xIJf0NwjVB!=V%><$czXji)CcSa8VM9XaF>O2Vm_C<~2ABS@8df}IVpb%g_*K=xxE z!GtzJ#(2^PD(gX1clF=&vA|3-DA5RMWkHrM_T%c52#;Dz*=VWoa$n+g^+g$aX32wx z?=5;JS2-rRm_WDo6^vKQ9C}n$xj#~NW87n3`EXWX_H^erj&-7&)nBD$*5ODW&xcbp z;vvRisg9m*LfS;5d66a@258y2I|u8qxMk8u`Lyw3r-m-1TY0Oc{wPsoZlEDdt+mJ# z%Aj+@|6SJT>xI+t#igmRe9k{o@iltHh<*#FRRA#D>R`7i2%2Sh+FMTQXm4as?glfi z$4g@kx=8Hs$vr;C#e=@OM&~2xSA2|k(RM?kR5;Rhj@z%I@kK zs=xK7A=VT+q*ByQ`3}5Qugb!mfukg`beqNW=XY-q`LetFo0H(J84OMR0~If zsGRupoyJXA+GiVSH>V4csk&FgibZGQ&n0;3R~?q%OTVKm2)7;KqOb@$GFgu?qvjZa zRD+y|ck2wvJcTa5Jeej0Hgu`LWpXsIOQiJzsw~z6F~_5GXP#Uptryp?bmv7HGxbg7 zfj7VaCNN6DRnH7tyHHv?1nTYGWE(PX;&Me_?~Vtzq~UO>6l)137L+S6~CIq~~y=x?-#u{&hu4=+DBQ3z~_7$}{8 zOsrAZ!wbV@4A)g)ll|694tnfFvLX_~qh$JY9eDVKd5CCc5@w9`0e-O0ss7vIZ%48g zUcZWDM~JeIqFdY@&Wx_YLX6@3ElC~r_=wnmmErPC6E_PZ$+rE*-mxlJ;Z*Dn8y#o^ zN~xpYSx?G~P8{ELssggpMy`4ypv=FWE0?TdkW}Y-Nnpl-ZCgkmD_}@Q`%c ztND5qzL@9812lJN;-O>Z6Fy|uF19S_J5r0aFc<8^pp$PZ$*BBd-kMK8Znh+3D<_lh z8cH>L_KR>S4q~Ih;0gEnY7Km)(Gs!JVx?~`6q5zNQbAf)BW5_8cj!(Qzo=7oJPKgL zK8uXboV`V-^cpoen4HF_3v?{Lw977A2x5fL@nm-xr8CjX>v3E0AG6$JAAIi$@J=lp z{tA9qdrf(sI=F#}DbJco2h@$n=6Pa5rPU{(E~A~gqj*to3g=o0VtTKhS+0nbN;6Pk zFE}WpWv0q({my3+S@<}{*qd@Zcdq|n#GLkG%#VLmrk_6UJjPTNO6@#hx&n2{*quye z!pRp7gGA0Oqle3Gb4q1G(@>J-Jd^La&s5%c-Qe$=!=+|YJN>*81+XGb(BMpJa*4n@ zP?@z^M5NGj$tYW!&r4BUn0Zb{X*iQdrMuD<#&z|Un&jpD8hF5_@fBL5)tN=2%s8HoX@HDZkSONeBW{a}FcR?HIOV;1_Xk_}Yn5i*AU1?N$bb8I z%K?9b$gKeV0RjRY^@nJM>-|THf@jFTi`I`61ric^h6Yv!Hb%yOP3ZH7aFv4w>HQ;_ zPopZ7ywWjd7ZJ&L5$uR&RRFq%5V~r=!$fB-NCb(PAWUZ%q-c7DUkGXhL_aKMKWN>l zXP94pSdz+gFX)%jQRduIWFo(~q@N7K8Q`lEXJZ+z%&nV%EXND3!*|;s0uofZ4m--Iwh(p>!*^N=b{}SqT!>SqF5W_Na4hjI=Iks zIf}ORw~0eNLJZ+}i1G~n7=2xUhCM-L1}DB(P<9!7RdR-fOInA=y0R^T(}HUyViuVy zSG>Z+hKyKl4g*J_!chW7GWnv!P-~wGSW{@`)$lsORBv*;`qWpxrb zc0LgM@{`x-o4f4AGlda)q0-|0WGPd@F_^qSr|pQ}rWirnRomUfvdrALOnA5mgQq8O zesbRR1Z$AISDKi#{@M=KNPWri7A0F`3GbHCK0WWYP1RcHYM+-FflS&Vyy8yn2LJQN#aX z!B?A#0dZje&6rwC_{+2lgt7kcj9~j)_(UKr*LU>A0~Kd$5zABFV7hO;Enaky@0^3U z$MyD5Rg?R~&Z|D}!Eu^}oc!mO))IvpyzQ^Zu7!vdLuzJH#6!HlL=m9^(J z2%PoaEr@yI&d>9zHX06)Dm`tz{$YUyX9`q*t!9__*)$OZB^MbVS$9mkjE z*-~7pDFfssWiqeHhZ(JYA4OU&&&@X+j-1nTly8(9;!%`DT#<97FRLN3 zy9>Q@Pw%7OnZ$MaJtbgyU#oC2+49ZB-BZE(0I|A~-R0`qNPcV$2b3F>eb!WG>9G%^ zbtYZsOKI^Dp^C*B=-Occ<)$i$LY7+gydGYVQ60i#@jR}+dNqgfh$N5Mp>tn_HYy~| zhJ8K-KIPyE zCs#*{4QGBxYbjY>PugjGl#=9??{S7eSLk(@B6~V_su+n0e}vD9;%*na%5BTNa2|!SDUak9tlQ z7V943HS`A=v?-9Nnv?Slp9doQ0tjoR$YmUvp|{*?^ft6H5&GB(b7;BC0_si{xR62@ zBGD91>Ygzt7s*iP$Jx>kZwGvsetqoZZ05obc%B@?RulMvDloZ5u0K;Sd6%|3{19-s zY&jl3?-@pAl+Qv=V)k9Yy`((xM|J$w1;bN~1YA?0Y(}^C7miE>>+WOYC4LNjcRL;p zQp9(opoJCfmTDkD3jv!fiY(b(>B*@C3&i1A3ZxDNcV?;W+7GfL2RaE`1o0!c0`#pd z5n(_rOo_Fm{EsUP|Lj(jRlw!b2oFhKC9?oyuTTHA0JE9a75f^11SX649_;pZSuX{w ztJUU)g5GEMkiCfSlwa^y#`h-8&EM8jY`NHgln65Xkmm|%nn9E+5`!NKI}+Gi6h23K zYZCdD%Tu-aM-tn^KP96Gp7e;yh$!+&L(@n3MJC;5g;ui(#4mr}6f?M~PRS*|W^~1E zhyy6ra$CnJ+T8Pb0vWILOBZn%i!n}^3YDBbkKFS@+HXYX{jSY_k(@s&*;PJHCa?c2 zIRoRgPNLFwRf?&j*!H99b43YZtL02^S@|*0mib5ormms;$%4C$C43|6IVStUGu~yv zvcTIkbtWOY{@A|updlg;2DsbA)vyu>tyxwTck*o_FPp+bUS<`y)MIy7*}sXch=EXo zJex2VbflwfSz2s__zK*ZQ^Q{}qFZQL+D$SZh*TQPFk*LoLOc?o6wdMe`}O0XT56iP zzpeA_)%PVgNqZ|Q2Mvab%(?x01sTS~{MI2-3UZ zgvXifFP6VYK~-C+MkWly#PKFet-5o!&{huZ6pMn1WvSo=4+= zuW%&FMv0rv0?JPZD&eERYWkL|%%F*uqhux`mDvBGC zdB5TYWJv}+dqS2?()T|1)Y=*M+1ukS?dy3h5>EgKtd{%z3o(jz@Q8m^8Si#a_417I zFZvGo8`r@b+FteBFAc5HZR5(`^_&PPmJ)A^ML>Ig6s%N|3kq|~opIq-k9;Q#-nTpa zfTTeGoIqRnQ;TqXppRgGD3rfu6vX@+`uLZ;f_i@;ApgYTetiO2_zMBaB&GES0hv&! zi3>*}yl7%)#@uRoE#uNGFAT$r2Tn--k$Ovk`VLF^6#?-rc!%sQh+YSOwKB5&ZX+x> z6`sCm)D`q{-E(7@E9DYujik#bRug64nU{`4wIJDt8V3cA;bFw5*{fa0rpiP_YV-Z{E;dZKj2cjF{w zXnnF$&DLeJQEAwMH@tK`29D>{R3N=N#p66WqdegcA~HqR;+f9*v$#Efi=J#}WS9l7 zo3Y`Q0YRqR`)>nR(}{Hs-^0T*Dib80=Rb(Z$>pKc3Ek|6!QmIc_ko>(z5g{L@(mUp zWt7R))zZ7m{N14C2ACJd_upnQU-kS2IGcnxKRkfrpFIFP@jvl^KWRC@-#wt)5?$!S z1Dc=mOi99^H7Uek6DEX_m0f20`2)aVXfXpKMFS`t6u^N{=vrEEr0mJWg~&AD%pEI@ zt>y+*vzB)Q2GQA3K{t6)y?HnQ8@uII>0h#aqVgl2mGCM_it{CM(ECubW}8onf}c;k zyxUt@7AxjP%Uv^)8Xe;&obx}oWlt8rO1uqR9VSK($ZyaPibq_JH`L<{&2Y!N-s=9u zDOkr{KiIe)E_&YnRWMwyW}}-SD_(3!mj5_SklFfJ$KmqSzjODoZ9Qk-kV|fJtS}$9 zOc-~*d|&8!u|C3VWw7MUtRors@c6w}!}mbD^EG)9Sg_K)9QZy%i*f-ULf!2$aTq_s zVCvH3NtoaEUf6v9JRZE9`u_AVAaQ;1WXN;9wcK?^znjrs7W5B1&L0fx^J}%hl@R=Y zmuUU3+j|PDltgyW?0wpG!o={a7w)me=7T)_pA^U zR^k>eyr5+v_WJzFGq_YgrvlO)zvUo5Dh&zN-w>Y|r13-{g7hU4i9-Bvu*jw>&*ABC z+Zjdq4&!FWVh)`6&f7xXHD&;(?%4pYZmVUTq9sR-rNSCLETcl?r(eZyrIS>|b(AWr zS;h}P3|}%3)#3{_y1Mcf6gD}1xUR(t>Z|^S#)k(c17; zBHG^=qYKYZYpDl%4|CtiRgjOYzl>+5SbFdU(8M-Aofv;75+3cgI^pLv+YAf5oCun# z!a_H)W+!Rbx6nUvH}B7Dzwd)$a9e!jNz;~1@y`I|_+S-w_l-6DvM^Z{v;n85p9`B`vKsaqS`>{58HX+uztCRdv- zK00j(K5;F8XJ_Arc#A)}+*Y$5y)~80^2@HtVr$*g%nk6!yUJj7Bk!F+bAO0#@vb8_ z^j){yJGQ}VjoXXArIgvgnt17Y;L@=ZraYxW_^6B~HPu()n<`NKl!Ub!xIY_R8&cwp z_aMV?p}oj3`zAKC2QlSot{&ONx`|K|$F~Ky7GpT4Z!9`%d(3m%pV^OfsR? z-ED;F8~ekZb2JC59lmu8n;bxlr@k%L`P_8OBKPMjN`0#TVJX3FXKl!+QsKD5hQsud z)B?2HQ!dYzy6)#wZ!;fe8co`@*2VnnP8BZxm9%Akix{t;1Gx|L^(M8$yyA_d7p_w; zn+tE%8oo=7dkXcbW`|1}_GBx|63as`jz-TsLbnVj#)1w9g|f?7hu5+|XZ|3OFn zL6LrfEmYkSIO0b5pnT!f|2bg6dHp8=>rbxkGu&ST)<-Ht<$atXq>KR2A7&CQcxV^{ z_}Z|0fDLld8%zMbm=_s+eaybj#6H|skty(ZJ1;NS6nRkZ#-LK(cpoK0kmqAM7BzaI57 zh|O_36SvRhfm3~w^h3@4quF8tmrpFL=4JvismNuAd||KYoHl+K<{?nd*9YdixA(P_ zoX=KLO6QhnC9plo_uJXqHhg!!o%|BA(ll5og*=^wG+vxo#y;J~{7%|1XJz#k1bMGW zoH(e|b+jS}``#cn-CJmx^gydTp+igeWoZyn=#<0r`KJ@fzQWQ-$2k{|Y(!3@Se~Qq z?=dG;S3>l)*A1%iGJpDcVxFH_-mLM$kP%09u!~yJ3!}l@h;!q2bZ7nVmi_RFnXw)`L`tWBD^y<;#=dD&vq7Gua~+pUkEWd~2BVAY!>zQP@}-Qi)RojvC>Qq7n?6xpr|P2@1*&#$L7 zq{k++_cR)bK8-(Dr-a%zLWBq+y6E=GCp{*pY@L89A@~7QyX+NjyAg4aqdfb8Gd` zlR!eeu#G*?Oj&0T^D{!1{kIH76f;ZZd5S&jyS)$!(6B>Z#uEcLn4M6Dx z%h*A!RM#-;7rGCAwMFHQ^8eyACwoYXm~Kh%oB{Wls`6cxitQUa6ZHa zlghA?gW)sTq`${-dVhiZI<5Ixw}!IMqrxb@t%M2ZXjB8SE0+GK;f+s7)NymuY{ljjOgZEAAjlGEo=S1@ljPBdpPekkNh9HroSd*cZ3OBCmn(=BJl|j^lIyK!eHk#9)HC|}t zD6cR41lINUM3Fngwr`qwF2Og384unhCl{wHGn2j&6XQQmBk$;+(%v&ws$}k2`M&#G zobC}zimm&kU%t>DFeOlw|4a`hgcdY*`bA`13W469u%Y=5>l>qenm`KUyFQuhWw@!r zFSqX1$1)vk8Yr)xT{GV9CmEg7M-`SXY zs<*PCka9QF#sA(HvjL$p?D<8&8}iE{;(;o>FTQ}5jTS|>4x}cjjc{Y-+~8(6E*;|G zrHS#jE7ZuqxDR9fJ{f*6Pq)R>fgNJ^N5-6U^ol}(iJP20%rX~Al6fJPk(=^TLi8)W)GXA-E4(I*maSrSV1`y2&fFHeum}M zYIkdZUmr!!cwj+a9&lCylXi`4Wa^=;6OFztHcnMN=uDAmsueSlUunbSx~a>J!c96$ zwQ2By%4dvC@NKKeJ-yq-Zw{4=yS;_7>G)cLPEm1_Cj)PqO$0Z2$pvBLK@&m#7n-YI zC`9nLs77~NW%s`l9-Ohf_uA=EaFjq3d%!@$;C=H=qls8ArH#fISv;MLxV}+(oX%`n z`iMp33XD>Ayj^IyEM7O+@eym8R zF1{d?L2j&@eCyJmw)gZi^Oi|jSUi2%I=dT4&n-_wItB=25uaQVj+9jkOt_jSp^-g2 z;rWO)T;ux+pDU!m!40e!$dJoP6Y4DGz>=NHKdZEs@(vQl`yMZEvc_iB1g{g#Ia zcR2K_(3vPwDpj!uhe_j-^DEO22Fd(w7fD}e$9imi3I{HKabXe#^)$kuUFDuFWqX@q z36BeX#YKl4pN677K)~%WO%$BR2E{8SLM0MhDpiUFf`+biR1BXu8!;fnI8=`K=#}8n z$=P+n6e@hBVpyusgXux56Cq(lHJsnIA6Z+BZf)EHj%ivd8uOlu4=RC};5eUf#)(GDH4s{S7>ia?^2MO-I97t@4LRw6!N@ol%%ms- zmdj8Xn`G%3uE?AkS|&ZB5nT~>)WR6o)U@3ansnB$GSKd{@{Q=#V9FQBVUOOzFp z#vPWA5uG~olqFnp5CE;wSVkAk+I$aX%$3pq%er1za4>{k4p}F6`>*a4%vwr#WP&tK zH+f~knQqVGILcl`lze>TgV6n#=7NVkDB-A70N$`kW!_Qu`?T@g4(@a;4^B`kdq!@p z9{nIc3tadoF0$u5Y8JaiQZ!EwuZYL49c+2rmV2R#L>^@r8vAOQkw7lU>%GRCYk8S> z#4b-HR4^n;+R_FrhhM_4l?JIF^@d0llIWfbMy`06u*&Pcex7`kzO^H!h*Uc<*zWog zq+RN-w;bp=po7s$Dqk;Oih>DRpo>+hrvO_lI@*@{3WS)p4;@JVoB{G`<*0oZINEoz z7^bN|`2Y=_R2`ovKG3Bo`h8>I*LClY2U^;Py;OtRW#jebuytZxN}-{0W4XKK#jI;q zCRLr2JJx&OCQKHc7uZgEaZRk#iJl0!9l*~j*sxM&;wlDD zT~DA2KuB9Zw)dSa@c~(KtFp0;)dZHYOqN41Lf*;thubq}&&Bo);Of1x?;}`( zPewc_MQ%JcG`!JoiE!O~iay305lkrBeaNvJcxX5s6G9w(+>WD>A4eaIA+|((IKrSh;oz`+L3dBe+ zX))rEF_4h>lLYW|nPnvwv!4+;W#^GOO<@V)L;3hD3Nxq*klzA<@xVTTyB@~8ACYYQ zEu5-ewJp!@w{@;;k@X2K*DpC7kGG>c{G-Mszf3q?gcV`%rpu*0Jb(E2MYkvGTyXUV zuqdTgBc4@ypY%0po6)QuP==pg3ef7+-t}=!{L|Vre<%pb)x#2x?XFkMS}Ga@eWrhp4* zUr0*gm6bsr*OgATYZLSG;@tZ+&jf&n=+6E1VwKSSa`y%B{*$uO7MKCL_I87JoT|A& z32*qjd}V}fAcNjJGlf^-&K#Gfk9ht5G`&JoWq7ulx#*YECkkB;Col*tONmS%v?u?uuxiSP_#$^DLYlfBC z{ZREq0s={Wmh3mB_x`rlf=mSo!}-}-HN?+{MX(4RNLVBIbs-Uc1HHBfU6P~aWmU!T zPtI8f{*IU2Kbmoz>9;KuaupS_^zLajvEZBAz(OGN6U1ysqgVQh_fpgUcH#}!9K+; z@VGaukZ{M6Kmsl)XO%#^cGO-!UQN><6-Bpz^=oQ>OenCBa(`UR{xQH ze4G<{vk=C5OlrlTZf0%d1e(7FpfZ!4-3?VyEnH$*i+~Ja5HlLKxK%UiL)C2n!l}mU zEFj(R=>;FH#l7>Tr%Q;d+6o;?o2%BggJZ-$(njUC@hGZYU0e5r^gDSA7HjCy1P?Sp z3dQ5eev;p5qEh3bTyalS+;m9vJVUQ@+uEL$1{0>>}Epi}4bteuB7;dm_pHuu#Hkb0wH zy-W%Cemv}IS~T{YcHSbU&l>blm)I}d6qtN|8dBzMHQw}YnO)c`cKE&MG}y4AWa~S3HE}nqcaK13VTtP5MlITSWJrUb zN~6LgGa3!PX0$S|s{k}*bG|tV!Ybja^^>fje-Q1;(<&>>2FQJ!9 z8h1C#H_iM5Qw<(c3KV-@behgpcg}LT=7VkxI1}n_i{>5_O_3+ew-l`QO{8v~&C7EQ z(SjT!-EPp_A1B;aw#x<2d^SE1zGk3@Q*U_6Y~r7 z@gY9pPpjcv<)hMUrqPdfs7OO2Y^(*Lg6_Dr3AtVmXDlPU(Lio9u6K^zuF)>@>x2KKEV%N!+Bc+)batiW3cs>Wa{qMv=}R^ktq7EyO{pWE@l*K`dtjY>=(XI#m@&9XyQNGH&=IKQpNAwc#y#F zFH2+TN~p}9G_iwSsR_pIuL)G6#o-|$!3$Mvkdd@#*il>rff#!6qP9@r5KHtvRFtRv zd^i_SpwCxsLO|LI&OoHvcds}&dFJrM-YEj>oab_|g-ZsnvIeW)^#rX8VCSJiC&gjTl_HNlPA=r<9EDTxa0Yr<~%7qjM8O z9_NmGNp$XOhdldsKNChA!*cl@e*ONLGHL3m4t^yM`7;Ct>-X5&Roq@po^Bd^HiaPN zd`fX^1-}M3m97(5Be?_Tpo_eT3qz3l@HG<)CxL(3f+{q1!LK5C*K)=9Ji+Nu%Yy6X_wqymMA*pyEgD1xESFS?Gbx2Wm!%q>2m4h0H}ku^ zc;K#-zMoq0^tqJ97P=w(Z^*S(q#p-nqu{o!h^eJzkq2Smqb{Rm2=->7c0)Yuh;}(% zZg0?dOr9IH$9YEE{2ZAJZbn=E(}|0vACULEu;l;O*PZcXwAr|mehdE3QoRIT|AQN~ z_hL8yRjRjw)9nAHdjCgRv%eC4|MO|PKN5of+fuzC82sF?1&RMi_WvdS1NzD5&mQm( z`5%F|#fIbX|B(MlbK{CPduYR73`UHHR+ouj6N6%m-fpnY9}+`S)R2XV`6L-ZvM==6 zXe_(?M~s5>qNd_PXq?i5WM~y@0FI`DzxS@IPwyqg$&aL!B$u6Ln~YJ1qggNRRfiFW z^hn-xKdB8f5opX6=3Ep8DFhLTOEL`xSfbVb#NCsA2bV8Gz-}TE?oDju6Y3kNNea<3 zNzv#Jd~M$oHsqtp;^Yx=ow{|(Wv2q8VKT6I7=?n5MpJe%hj-v_@C=A0#!U<{MGERk z#^;PLjz*j*P{J*BcS(a&f}P~M)TS=W0D^-ZR=&trM8U9(l}4M#FBNwFt_Ek9xJ!o_ zjG>K!@wc~o0U0Y)=e!k3ka|$LGG<91W@VOt9yvv{GwZtb$xuO&2GT1U9G33I2pUCu z1(+43qM>M>6IXPba+Bj(Dd!9P^MS}C92DOOT5(Hn+H)17U(7fPY#7RiBRC+|+4ET$ z^>Lls%7?6PuiKbe8<*X99s*m-3FFT2@YJi~dIr!Vid8~|a#?D*8WNoy#2s$RJ z@G@AyP7cmiWO30_u1m-i>MB5>!J8zbTxdMWl_!mlQrT3KxV5SZ)L(>Wwt;07(<(vV zw~Syu$n(0^aCquInfn^*+&YVB*RH3JGC56yj_fyOP1vF44t#ul=Jq< z=uOKgB_f!DZ`|T2wpyTFkaM5csnM+9i-9y6HI9FrI=hpz20AfL*qoTThkmZb+Z?5r zOIfovX+(xtCrJ{ov>bg~U`7DBgh~1x@WR@{v|i zdH^}~Lnfv2Acgz4Q|pbZtKLcFto&}0P&VE0a$Pa- zVq%HX)GY~ulX#IJuSk-F4JWUMq`{Xs&Lw{Xlm*sOnz=wtg?|e~hEsJV^e~yR-aY~_ zAhxcMTm~ddQrtb}7s#bw@~!Vd0yA9}FYhTGhE(vT4(nPN1QyXM6UjuB2ne_C1vc*H z3C0Ip_|qI(LS~I*+<1iIr0#Aebz9cG~-$;Zd*= zOd*{-_5?3VdCh+yQq{JJqF~Jnfa2q2Ox=W$n+lmP*KMsSYc`7Qjl|5HQmjIY`sHLF zgE5ypKFjh}Rrj}5l>mETbNnuHtzeE`WZj*MMRf5{|4kTfn0YRmEHv3dcB&v?GtiUl zFnX8QKIT|3PI8(RO-E6PBuiM}b`xhx;!gDP{;T&~ZR_wEKgMR1L5unG2#97}f4WX< zZaH*gW!O`T)V?oHfHsAuE_k+v*U3P36XTrK#R6!w!+rKhMV0&tkMG>B=Sz`zM>}9h zCN!O{9j(!Hd5~6IE2yEIb}8<1CtIYaHtiaHFgv<7zDalhZz}G(5r4F@d!^$@a07!i zt08eEh17+`*?FPaQ1OsM>DX;QSb#n|qM-J;8_YxANol!Ipxt^Z&GCB1#p%9p+ne_i zY!ql-R&qNC4lz?Nxl?{vNqXyk-u?9Mr0m7AwM-|r`gKn%yF$T(DO1!nPuV#?ti9|! z$%?yH1n6MI!>Z3RnsjSqJ;sAI29|1RDL3j1dc8-YZlC-`2hS{9em#1&mwC|uNT*`d zVqCL;+fPt?uV=gK@%xX5&A+T&Bc7C}INJuf((nQ}G_e^EOZ&2{v&Ls{s0PP}C>+K+ z8$X+FY#h-fZiNI+I#V86Y<$WSbyNI3!f48}rQs;FTb+hV7(W9?QoCIi`w!vy^B2&fwsLY)9NLjZb23jfGpZhsZI%Ewq+XLK`6&ZE1cYvh#UK)Bs{nJ9mD>MgUqqWs6fzz|J?%xN)~w z1UH|kV4KG>92#hqtD6Auu4z0rr#_FvdZ6XYNY1VK;sgOZOEzw2N@PzyrVQfB)oU$` zKg5xlqqBnHG{wV4Mo4=pMbQqt3d>bJey3{M*D2`Z=*;Zd8D1!Ds+NnNEWYG_#5Jss zRFGRd4lUR#-LKfW%kEi_v9@LoCucpo?oP?M&gMEfDw=Q1C7@g+yL;BAX=-3&@2gXA zT=s}9(PQ`#KA{^qzGQFuIS$*unbiq-`6mD5@YhT@zfpQekFT{1zN6d=YrVF@To(3w%_<*N| z)O~LAQJkxe9kzYTR#H)j8Y1(V%(bqXuC8|+s$WVEKm~>~1JqQpZtX@}E-(Ad(2g=p=Jvffj@QYr&9J|Rm zd-dth2n}qWJPW)Ck0O{u7eOqCbhQ4ybv$&2#h%-RrIVP7%5&ftYg z`=5Ax`@awJOb60Or;SnXeHo)>r5 zeO-Fk#BqmGei6>dFBF4+tJL(i5wa9?4Hpg#3v2k4fUAz^%2X)mHa`40hRYT+nqo$; z$^;>}v^yd_{x*wxyxn6oONCpgb(&~BTWa?fl$fk2WFa^s1?ycb(EIz*O{S2 z)Eh#enb(hXy`~a-p*0?w8uNmkI~Z_`Q^8qralbt7IfgCt1PJcbBRWPR&>C~-x9%vK zRx3l90^{0jYv};RY}wx8Pc8o5n`s*12-w3H!ZdB=HLA55{=tjCL)tRjV~tR_Tw zOF?ff)f2R;w$`_S(N%ngBjR}?c&UhQ@Kh+N23V6sMZoLqU6RT+#0>6$(k{z%V;|=j z12cH&)>A9vL{D-8&5)n}v3!S1H9Fa$sqMaT-o|6Pe8SZ8o4Z5P{9yceM3@*|p3PN? zYOBFbpf7|UFzdwe;aUem9wnYm>4l~Te-NY9X1pT<>-*<=##Ar;Knk?fU=inDbk_U<@-eU2q zZl$3FB&IV9L)=fdF)v;-K8h?c0Y7ksz&IgiEO-S`zmCu1X3uiF#1zTfoN!aoKU0;y zTcHR1^tmXux{Hf_o@Ot;dKon+zDYlMm`|Lwpq_EpF?8lO{19d5-Ts}hvkVh>1;Yl4 zKCG?-+62MFB&B~ORF&qOUVHQCsKK!KKp`-ZbOaKTqbl#*ar_!2%RZg79kS-(Yv-xT zsw7t=?PQS4wCPRFgR3+qQme2xr5CX}-U#*)sCvVs_U_)9Le)pTKqS)xv8fE(%V7WD zu$+~y9&FxPR*P9TBrlywC7qy%05Yz-eG_C%W24@+=ND#I!H2c$(b?_K(bCnawXa>gdHKp~~ zB6qYj6rnL~cJcJ0N<1affV&jY{LI$o24&&45HPhaIoq%~_dM z138k^^Jx`0zLwVCMAzW#=oq<9m0Fqx!>-|>aS^fA7F&_GzOhjhTf@YyXD_eJUFtU> zkkQM;RX*FbIiQ3tV3O1sb#r+OX}@qZJ9jm!&V)ZHYp-IcoXYj2cbY1WFK*!4 zR(l)A*IodF)i9b06_sALZ1_tSU&Uq$B^CPA!SAAUh75l3@~A|&jdb#~X5G6?MKlSG z1N;Vdc4!CycN3N8FcO&2YjMDygsi9zn)X=rbaG;L?iS(|NF!mY_Gdu(uns-KeloglvNqPYaX`zlAKA5>52&`0BH zprM|e{!(ncIm#B5?YVKc4~kOGELBQJd4fI;hQ)LLBSk<_A*0NIF;+)oMGSN6aH*$F5Y?@>UO|&!>D{#mzuNs7aod;f#e1^H4@MB%4mgzT`%iWlbHVY2*AgqD*uDz zNPFt}oil#nxl!hhmcC+i8<574|D5-AKN>wzpYl3uU}MY-bc9>D zCPu3rr@9{yuo5d_)E!;?rS`!fpJsoE0`5iyx{W`0Q+6xTg)jWRpy4a7ruty(V^*uT713;C>pV9yIr#f^aHwgQgOoUU4yz9$M487|sR^>W;W^$WnD1Tz+Rk9n)b zLyS1DfQ;d9PbIg=MWKp9oeE_opN*mDWQ=5o={fs3i!+$lJq(-nON;m>6u59I3dnI0x;&K5UdS75e6X^c z_{zW@TW95Ul(n%{Kl}huDW`GZFFo*uF-}#N?n$MbYG7!_v&zK{Go<&st>y_4lY6d3 z67?4Mjdh=ExHzj|ePJCXk16EKUATUM3%Jci?5k{CAn`;9=+%g5mGdc?pUx8dX<%C2tP9qZTljf+OB=Qv-Ur=z|qgJ9h-nkErxtmcBv)7$wSV z#`sMe@$5*ef80P!O<{HF{*?W8vDZi<8H#CoK~+^?IqX{lg}+ln9ld?xN1G+Bb7s5F z?Ju#*mJ-{v>po2#@zMv5&by*5(0{s^%Tb&<`iPHjPR=c|^^hgKZyX)R0D5JSt*D#g zbbohND!$foUN&rOmuar63+$(=D|r&;C#mIJUP_iXdDg0w*>HS6W@g`95{T72)BKCD zdE~_ElM*v_rC+6c%JZAaev5G^w@a^i?zdqq=;k;}rKph^zG= zd=uCgnMv0dL%{sLd*vF{ZX@$!kBFSn?ERedBX*&;Cx|R&Nhs<^+R_FHYk`nv^L8tp8Dieztgyj#oGXH!G|9^gY;-e4ISJ=r& zq`T4lt0S@_7v0Ogn`0q>^y?Wk6VZL9mddvvy~K{6n?5dv9|=5JaM1Hx{Jk>c8Oa4% zQ*p0=uU0+*`|bR&1@$2YVX5?0zgaKTW)*(Vt9o;p^ij(;HnnT^&K@~Gtz))P0`RJ! zJbhf?H|Xc>iOof;y>{S3(#}ipP`bh0-6kptC4pRZYiBFn1nFxPeZ*qPGPL{9O58p> zgl(+Rb83M2yCt;rg2Xb7p-3CzWKR4v7Qh&Ch`WgCKs~c{pc^AsYdMto=!sudces17 zOj5_I3mOdVR_3;IcKxwwULDA~ei)a-MHQ&X`y-66YFC@8JFx3gnMm`32f1fwhRc)% z*P=sTr4+hL(tPKKJ2Awsm}z?VJHaMm7JP%3sd0$A|PuKeI}{g54%ZT5xSi5JCQA#yflaSxd#t9 zp*iRWgfMb{k%&H#eJ~p_JgMfC3ko$AG2^H-@kI(szxTFp*On0r=9!8=)rmt0o7o4% zthh!Y(@uAN)tV64w7NvtRk{c&PlsfoEiO{O6&hke8t+dIqs-Cc0|sJJ?)Vjh5}~ki z?)+M+xMcSrNL}lXL}9I!2#XyI-=+Pjle8%Lh~bAx?t?}Rma6QLQxnAbG?E}Qyd^I4 zj(Q4PT*Q9#+C2_afnH30`+k4<@zc?q0GnIonb`p@6?+{f3Qutlfb#;$Ce+UTre zUoA{lxvi&{n$6Am<9?hc@i)m1JJ&VIqT;d+AWhlF-))@9mrn3Bw+0kDHVhroNx5ao zZeiY?$n>8XK|v|BZ38v%`&c46)`&I3&ScG6TgUksksn!mJJYHqZ8wi5ZT-%AzrsPU zIXrV){=ft#T)_d<^?fTgp%s+8b5P>A95*!d(KMBT{+ipHRtoWrH0NQBMEk?RK+M9! zIfmMNz0>|l9mx>~lep}+F{89mYVTCqc4|V<88fQwMeSexb7Q6H?NHd0*bOtMPLSVO zHxG1U%bt65c}5#%J2h%VT~=o;A$4waTT$ExAY{(MO6VcIh?l32#e<|7a920eH*_!j zO0QR)M~Ld!FLb7aXCprW>6yv;OdXyuV|@Cl-zrLby1VZc$x{XK-&tz?c=0NG<7xKm zb?+1W?)zkT3Kd7JpA+^! zyA=op00-`P*}@`16eI!U6+d%{an)nv%#sAUe6g`BJ&TF|A-L^!4e2Q^|>v?5Ek!mV0T~O zTu|dIvDG!(ITk(JREYcj+mj#OhnBGKP`Q2eDpv>$>y-R?KXyb_MRDS>cO67I^Q=*R z!y;{_p>%)n%2CUv)wj_6SU;~v7E?S}K2EHWPJWp@A8@nf4R7Als7!M>dhGWKXp`XMbs`ueC}6 zrH28kaG1X@qJRQ82{dAxf99P+9LS;UFiJf-_i~v+SD>Zz-7WK+nhV9x$D!)X3YnI1 zpeT7mHtrW8pjka(XMdzQAllwEB}LMPkI!ndy^!T_WPyhR7FL!>EbpXUtq`rD^Y6Xa zrdEOgrwxhRb)Ig#m*cI_cCVs!p2T*>*Zhe(K`7{^QexCb_K1)*YFIRQ)UaI{EJs~^ znnI7Fc9TOrmBwzHr|bvA+>^7-Mq9_t{7po*mPAvA2s?pPe29@T( zrzjv~YbQ7Gcos~#r}dUS<9G(2;#e0=mVQ6C@*<1a6(9mxK?6pcNR73@3|NGLFR&ki z{*~%x`H9PmwAnnoU9+{NmRwZ%wpru{$n;%+N=D`UGIf;+)@L(Iet>$KAq!C;%oU|i zwWa)V`t1w!6h*==n)V+3vj_0p)igNc%Oh%5jaMv$@~(-GrdgZc&R!OB4h-Vw zZT0YSh);7urZV_gu5FlE_IZ+NxIu%jYMJJ|f_c3ys7kL*HeD9#gX?v*o%|Rb{*oRr zqYmM>MMI=iFJV=3x%s5SgB|2f&s~{(RJ1rO@DS%ug*)iN6*;+`E~UKIn(lMlIAr{} zR&!kxTCP&e?g${+ls*t`Z_bNi&jL(gV}VifeV6~LRaX%}m8f13Y5fI@&uoVvO{(h3uX& z)GCtuQpg0s8U%~1@tm5iVO7bj50bGDzeY{B1uQ~r7Q2xPYu&p^E}kj;qi?@Hr7QN)xcS~%7fE$L;MAM}St$dbEeak?nW zcz|Gkb(fAGtJX(V@Z-69acrcBn}KWK+#~gQ-b%ejCxd=C*O%%hqU1cMq{VR4yxP_0 z<$i8uus$30qOFr^jRCdt=;d0%Z^R|ploDXYqY%ZE@KCN(=C&`$fM6m{>*UesM^{Ne z8oMT+rQf(+ysI_=*KSbg6h<2P1t+8QA>)GG5FenAlVqVA`WE^8z1K; zvl^|}+vs;_l6wLGOV^eo$$1n7k8?9zUo3Q$l6cMo6O`c!u(sl9irK$) zR_B7TyG^alEo}`i|?~N6y6I(IJt0?xVZ6i#ac9?XjVi}-GUu+ zJ_!&%y&(DU+iFVlk&9QW7vyRXe<@Ap5ixwkDz!3)1ncUPh}IZKmcQaBO;~2dgK@f2 z%b9(22*Vv~i?YX0xO;aK;plmANWa*_MLva&ag9sSU$=Z5kz#C7KE?{%(I0LX%tgy| z)9_}RvmO7|STfC`1!4kEqjlZsuaxS27$YGsz&R4pr@-96gk)0N6F$16?28_Rpxscl z%Q51fdhJ+fgsEYvRxV|x#;#Exe%i#Ng=3`|*eA_l;Wwl7)5GXQA~i>^saKs5=BRdM zXz)jFckRU`yRqV!@iBtJ!7qjJT)oWaU*gcFjGh49J=yxYwh}JmEODrX$W>N3LR<2M zUP;|5mkQyW!>$GL&V7Rv?qs5s$4FJ+zU}IA&PQG?-SpQ<`uJRc-3k5sf*4 zks^i5i}x7|C!sSQk{F8-6GEYa&pA~3PIe>SNmDZnnyK^zk_#tSSgGmJdaP_ktRs&+ z2fJ6240ikDvBH59&ZZ=G%oLjWczGtfyvbO!A!=wx)ppsq$sbd7Vp0=*=ML7DR2NN5 zvzxNA9d&Jfo@hT^<+qD56-*lx`7n2!Sw~vQ+CNg=%!%;A}>5Q)A!ij5?S28$ciaWQNzf3Eo zDBwU#>qOEU+d_}es4?ceRz%2h*hI)lt##J?l8Rjw8REm`6Nx5Km<}9dgeoDHOFqmH zEdbA@9v?Rt`M|pTS?ti&C)?HaOKDo(g`AMp#GoBEkzCUpk7#u^2rp)OlC5_Sj%ky- z_R9sN;cDcm#A^vA8(cTndxNLn;*qzlq9b>jwL`gbKhGLH{pNAq9*1>SsyG$KChQsQ z`Cgplin*;{pq_bAEZ7<#P=Aq|BF4i8nA}H%-vsZ>((pwh5*}o;6j$cF@!7^YshFlQ8;1$PIV_fM`kw zzWlUl)-H`37XqurhQ_Dsm})7k%~M&wBXd|;qJ+5%V&{)Ifp2D9KGqKc<@10 zFm|JUcvEKWLG`hjF{?w=gNrd?FdeyKh*%QV+3B`uL<6v}L3uyOMZ+XgUmETD@bo?W zMIQZ_qeeRud=r1VHLpdE_N zHMS|I-$Q95ojpIk5D*rH@4(4WAill{+xzkc0WnD~W3kL4zNDHNLjO%J z_TP&j{;w&-KIT9Y2w&xOtu9sT*ycTzgf5*oQzC7kfV?P!d^Nk_)aCqe-#XhY^5u$_ z{Ts)edF(>H4uDzv!k8ISIc?xLfPQuh+E+OG2dZr%wY~wOJGIhB-J*w>Y5x{kDM1rm zz?m~~IhOw(77R04xH05N^WeU~Fr`dO<}5<@>+~h(s$nieTwcde8&WA*p4Rl}x=t8Nm{? zPtVsB)Y78h`129eq`&AAyeW>##tGhVrs=ZSkoaX|Wr?+S(Hegz@ zgQHjOL-v>YTHM=_eq$#!GY{mMuK13SH0Ux?L+nBrD*YdyrMML))l(RTb+N8LFpRM| z!WMQKLzH~sb<>c+nHq5T;2~DJ3=Bu#Ew*fne)|n9%h^DVY~{m%A9MStJcPhaA%U0_ z(CW7wIqZChjAFDA2#lbwtY|iP?Ti$75=ImL+^(4VV(hwKF&UB(&uyWsU0tOBwD_!; zpi_!j_L9_03gv9|AmyU9p8!>CtMR3B>}ex^SZhS+`pzrPVEfobAJ? zyW75WUjkjQxo=$sR3+!IT3uA(=niX&J$UPj)3Q$IM&?RRdN>U4rF4e>&Sr4pAhl#j zTNwO4a^uCXy5&B$>ohxY#JiG*kD+C>#fqTM79t$>v)5%P>})5@LJEhGL?Sw=g+Bc( z)ntguiAsNmES`>YfNkh_G=ah5`i|jQ7r?L*%p-LxjIcAc&0##tgTGU_D8hbj}l@N#23sLuJ?lVMy_xT#QxIe0WWweL|AP&$cbVF1o?WSt0JiUn1e%Ghgn5KV4OLf#Jo=Z+|^`fGl z-xru1lKsJw1BLB}T3%#BI#Et*7OFaIs|NxBs+G9T^8#zCz8gu3W(`fCkOKmd%jZ`kg^(NU04 zjkr|77e%RNTXOdKHVhklrLeSB{x-R{iKJsL6lHWRfEEKTx1pk(x1(bmf}u=j$9Z-I zF~JcpyOtEv@#EQJ^U6cVQh3TIuxmjK%lfSIEN1*zgpu5ZZw;R@p{3If+8rjn<~*fu zJ*q38c|1OD?%naYoeTh{Pb9nSy(qzD&)B`>n_#43yXIWKsP6^|XYjsM8b4|8^3{#b zwI0m()&FCZ<4FawWURP5rBL99MEs9p*#GJ1c4|X%>T^BroCE{}_aCOYvQB@W<_i2v zrPWfne@t`JJlLl1u6tVtmPw^PeQul=$_L+O>DR!Q>CS3Yq{s>sfIAvMc@Y@?eOu5vI^r4AbjOU5q0wpi-LlBCVt(ej`iC)?#hRlr7ooWsozhx{jeH=~UK16t%eeL(@f z@XheHuVN+sPd%vSHT@hm5vcY_iI^iU>yXBx|2m%ICREd7%!!*8Z3Z!MookkU~X z#0q;uXFGG^go;0-FR>2$s!r?+#xh48f%1pQI~8$f46m{X7#u!#f8&|cY zrBx3ym)W|)(WYU#?l;{}B~nM<9b5Bqd4V*Pn;w>Iw~{NVBOuH)p4d9b+a_6Zk^Rn}`b(NyXG@VqBZq zgsiAyzD<4Y6RYFFcLtB4(>+{1kxHR6Ix`PhZP(gz4_zl$`|?^pAr&FKyFKDO0TP5d z-WQbSEP9h-*0W_jrmoe<=qk?z4T%EdTsmyJPR>BFZM`_}Pt=F(7!Q=xRaEd| zq5Sc;RQz+@%Zd#S(_2Xo+ImK00KrbimG-z2vrY=o_VyKjd;;(y`CPxV{wfy z!317>sq*lF%?2@?_DNw{L{>CK0zA z04I)si1ep%!0#!Ca8%8$X|gBR+yTU^${60HY9b`J;fzaM9s7@NJ6JTj$5=suhDr;l z*7W-$?sxrhNWOqx>2v$kpT0eM5luE4Gi$#myBDC6w@sti?rsxIP@*x;NA+*uwoN^= z4|VD16VEEcO@cIpl-AfVMoJC9cr)ED^RW}$?p{ml%_}N-zzjQc+ps&>z-g>7i7RkX z_<=h$rf!pl35WJ)u+FE^3x$4uP^{^*9b4*by!YN#tJ>)?!xUP~vhxSs)v?D+PHJ+0 zWO9Q|-hG)%$}9OU()-PIlIUuTVq!Mt^^W>#22EYpP&oU}VR<2Nhoh=NlR5WM1Umwj z{kZ=53snRYZ{|SJfWRbBJ4oy=+Oa9?kr9Bjn`ygC;~*~LHx-Y(d!dv15Ca1iO2#ii z=vi15^47kl`>5G@uGjDp%SIC?Q@?{uA3OVNJalNswt50aP*f|&Ov}%TNJw^V9fdx> zFeF8QH~3`it}X=T>k=h4dKi?3xguMdc#7`N;cMa7sP2hxRQSBHgVge>(JlpFfC)kJ|Px|}0%7cY#%n_r zdJd}(i>S2<1W#u}T8Jh(k2W^-=^DG-5Lh}Pr3enFV4QBxeNCR%n=v3Nvc&4#KSpX| zaQ8v5xanavJ-yy@N5FB#eJ-z6IVD#*(DB>eZD`s2*+`a8=-JQr{r3{-p3A7-bT?jV z!)&7kB+CraHsa5lhf%`{#Q}?}uSK!T7sps2*tmrH{VLHA@)gIHa0z+yW%r|>T$Q~k z&h-LA0}XK(uuq((A8Cf7iptq76^_3+sh)&nZIpiU6)sl&;5t z62E-GJBgU34gY+RJ%?pEH%Bocr_u(TA%=J05?Lm%_iW+z<+ZG(vh$TdtRIM_dzqqA z5E>b)OLvm-86@_o%O1NRIDhYRsc>>LfzS@IKgkP-{1cX5erRTUq?H{lW*VyX83cr7;XYW5wm9-{QizP@S>@pc5J`a~AoagZ%_}uqVLZT&E{Mw9~ z=&n#%JVg8ByhmA77w&pY7q_rsv=fwiVH}?vQIvn0EKy6%WZy;@a+9YE{#l}zMBOt+ z`C*XSMj1t9*nI+^Bas#(?~HDyiBT)(eKgs!U#Gd*{bq8E#t(wQ3W z-}ctx>D7&rR^j4<$lr;cTB>151nl##Wz&AaR0N?#Yj{o=KTI?+O-TtM#jW004YKpa zWaIa6n?0E@SB3Y-%UJp4cVf!_J3t`?IJdF=M1^H>R0MMJ8445E$25btwvcyCkJ7U4 zTtG`UEw1ggYn6Zry|Ipr| z&Fa%EC!r4eQK{@59ST8_`)$yC(y_#UXO+fDXj?0AtOJ

-J{Ew`?Zp#9!G=ZLL42 zdElnHf=-SOkgqQU#+EiNui4BwV4w-mS3wPjFJE|i+kUsTX?3<8x3v*;wn6&ywRN?% zwI?8*XlW=60TZK6*q;yjp5wrVNy!s1^RZxykz7a;gu(!D$cBH@^b1^6v$@)2q6H+c(T7zd3=91IEmpu5J#M{=iN9AJm~j7A=%#o@f7ATO_svb1$2=dU z7XJ$}UHGtNa~JTD6Dp)foxNMw5!$sd-lUaFgdQ?6PC7csY%(cSXJ{Cl_r+neiT zQ2jcO9a`{lYtQK;f`u#bOw=FNa>XFyzkz_}Nh3IcfMBQI`U9-_dw(#0%WmshzV!z% zB@r`ABQY^E2S*zddp#=$T~SM?*B>Pt0VhifQF}dSGe;Y1B^xm@B^xFIU1@4&W;$JK zJ$ri_7hQTrB_kDTD?P(kqOB>7y^W3It4SdK*Wa@@Zy?BOgOJBSl&{`^fR*07eNYmk z7XcHrak6&&dt{GEYN@$VT- zZ;Y|OGf@2hJ%jl#AI0yH)4fHG@z=+R@D{nfk;%WtJ@oG3U+~zZe|q>E{ypk<37!xC zg2y}mclh_1h5v5dRrvo3==G03A{zZWizVv6X1&Msem#Bo7hmkU|26A9sz3VVzp%L8 z4*zk%{-N2q-%JqT*`hW+sE9ZULV z*9PTJESRaTw6M|}D*GK3_>OuXB<;WciFzF*Us1ZYre<$Q`Zpx_!uvS?jtqHKHTZ|` zSELyIKhN^x`xs4D^o}Hd^Bn$W;EyJMEr0Qfw0-x@@OO*38h_&6EHeDlBBt{j@?S0H zhy96sv&is=MaafC98ANzXX-c4ogjbWU|(^6Dt^5l?fm=-Myz&!2fr=L`u{q+>bNGi zH_k>gaCD3=Q4plN6p$7Hr9>K(4FqXK5CsH@(G43Q(p>@Gg#S_#yGe%00$xG zPh>OTyuyys-(G6M!(*(*+5W>OY*v60-<0OU;yhRZa+~+69Fn^Z5WQKfTd!J ze^)4aiRG_R{D}Qk`@oU7l0dVPf)6{T!uh?jivjQeT8P8_@%|h5&B_T57zSq(OGAU7q=S}ltR9?2*xeXBoP5Fp zcGn-QAKhWFyV=k9(TD$p2bwtJfw38nhy0WLPuR@Hx9_4bYgJ^DipQKcpoiNF?_MsSRnP&Vr#fw>$n^A~;b8_5RK9q`X z|6R}XV~Km|9R&+>qZ?0e<^{EmO|GJ{QM(WndugZ(k-i|lnC&C_7XP%nuJ<$U-f0m4 zapzp5sy3Uu#mJpmbv(4Uq4p_RYIlLWOy{6m(1l&MWic}qr4+(o!mY++)%)2;oBW8@ zv0jO@*E=_RL-K=6Nv}t~jc=^2oRPBXhx*&?AM5B+V)2B-$_CDQgO9)f^tAL{SbmR? zY%GGJQ<+NX3Iihtmv`f352|L)=@GOJ^p1qIhKRd~g_P|sv=^#!j*(iMxVaNb)Thnl zK)M>iT+GFvEKXh#g0v;2q*|_H-^nPJSnB$!D{@xCx4UWu!Z;jJ?95!^n_WF?O804v zE2zMX&zY%N4Yr~OSuuf0x%5cu*SE~7%D$K}+7uRjVpdSTcOfL~k*nva*DqSGF*x+= zg``TIHklk)nRXO2S6m9FI+_~284yw!a(x%?Yc50D@Y$x9N>1eU$Yas1Nef!oiq1T5 z&b`=$F}bBdt(8YBvg2fn-b{IF?g0l&=zL458u=cCZ+;p5cWu+d=L7`W`W&?PQLiQk zMN$}!&3+3hw{7(#H%SZ;$i6R;8XvYzyHHxp=RX({CHvePf`TU**LB4qKF`fID=N5C zKT*OQ&!Bwxj;bz%S8PRls=ZwePB?$Mg5xP^5^RGJO{9zeQupEQ(Zj;@r@~}iZn?>m zwVPFlN7g`}t_i*4tsNKf0QZTkLgMK+M+If%TYeWmymw6Nub|Zfd%h8zp^?N0yubKm zYM3I27we$AYtH2xGGg)Kcowv3iV2h#dPVM}5zG5r{`73?mP{$(?sxIB%L@7I*N>?k ziDJ)M?Krf}XWkV2RD4a_sMR$IacwG3r5>5E4vI6aeM$o~^|9V#DG}I<48M0?6d=c(B@|^oqkh<&^sR;Fsz#dciL=$=EotlTGB#dT|u8-GtQ+&|vT5?I` zw_v+jLQXIr%OUX$2SdHJO&*1Nd!=ZrZt$aHB9%7u155FZ1qX7gd^>jxFeU4 z-*ly@kk0r!eZS325Nh@JyY>vwnQKnc6A0OsAL$HnJ5<;Zb`*^gE%%m|A96ovj}{-< zsBF8G%cP3RYRmf;iU}&VLJM3kV`du{AC8*|v5l_|MJ}$h`#Zt6V*+;9Y!}K+A1v=9 zx~z{qt}jW1wd)Lk5ij#zz`SC`$F6y#4tpJZC3OEp8p`0YvKda7gnv_FU8d8IauDrW z>%2EDt|%Jz))Q7waYQd10j}OP?J%cIfuKp|8%)AD9kVo3XM!9#w@1YsT*vEF1RC9) z+-z)Y#*#x-Y?64zdf&Zsz~dw5_AKQ^^A@~hXv7Gz3mt$${g_1#ul0Yc;ga>>qG(B< zLVNJ{t+SH(N8P_KJNXTt8eu{2YA@uS-{w7>FQ4+9?i6}-%wvF=YlO~n(d^lCGGd=3 zPQN-11zi{_f&H~=?Q61jGf(H-MfJSmp24D~mQvI1ezzCo%V7S<$7WP#w59J_rWHJV znAWHeL}yXjwx=8}7pzvmL7S%%5}6-iJ-Bnzith0Yb!scB3-kIqbgtrigR0)O@)GuT2ix?L|jHMDS; zB^#PD1iiGI|5>&tErVpSuIVfCMe_CCRmbQh(r+rT6>YAeayusf{vECs`Z1weVukgs zaGJ8lc_J?5J>raBiFfu-d`Si++wyfpAq5D}#wmqOHplw&kZ(thlZwoj8YDfhw6$wl zl{uXgT+U;*ljc0jn48&q!*TYZe?X$Id{ZPrpCy^jX^^JC!@| z(S05UHYv*WS4PbmFx0#~XX=q(E2?m~j?NV(%=jInB2Srf$vl&QqWoqG$5SLN6vh4i z)+}2pT%Gd~b90JW2QTZedPR1!-8GX|f-=F!f(5MBEHh+|aOrTOZ`vZn7913M%(E)E*aPu= z-E3f7*cVZ1@PsEkS6cbSUH6FHhhl>+lA*^5;~jn8%GIg8U+8vT|=3jqri~Aj%3tmmquD0vQI8?hnMD=r6yyN>6N4 zWa3N=6V^g(D32HbMUKODlhjcWQU!Z+mNdRjMt57y>C*atb3xU!Z!C9m)VtBEJ?}pk zeu3Od|8T<2n#BXU=A5oNclJB?cB3YOhrgNVi)&>t3h+8Qe4JHh=?2;#NfWP-uFs}q zKwQ@mLeSMf%Uu(-y1sq!q;2*^JcXIj50OX-A@U1vx!A-~6^uMbL&%UWaNB4yVVGlkI_{9o{~hM~y8j?Y(cm?c>dP<`*c7r&v?cNm zu8a|VrEll4Q^I8GO)3jl@VTS<3=_RX17%6iklk*@-=7^=^IMfuY#T*Lfue8ZH!lRD zPL)2-uuuWz2yvQ>bEZMaCL(%Vu-8fPFbhrJe-Z~9yx=N%`g7wNb2CDb!_ zd1jn8z$cz1-V@G0q-IC)S$qk#3EOwh)Am}zho=)k8%QF#DH7hNI8gIqdY?IKinJov z`q$sq2ZDIdgIKiiXtG7LZfY1sdOQ{nTGZ_8)|sCukC~4#Bp)TF{fE1@R%HW#!NCwxBMzuGa`xZ7;p zphkXL>(!MoZR1V;@aPh{%=p?;`YPiN&LW$s*QX(-->-($3p6>aVamUyMENm0jd5b? zs6?u%YaVy5YKtodVHz;ciuzc(N2;?bF{|1&0en^jFQutBuB~9O1?uW!V=o{6+0CT<`^tK+}fNrSJo(x+z7p<&}HV zpp_5AjM1#fahG|;4P?W_1L(X=$bpKNn{0nGi7Wv%Rc>Ho0{+IL)r~a`R=yQo9SGTA z1dktboYnt8?Mlz#9;I!n(s!pzpJtari)Vsl z;Wd|%uHu1*czlux^b##aeVww;yex0X&Luki=B(dFbS(s*{aEg(3Y0J!t}A2xVSuH1 zZyu_?Ch_5@u)-1UQ6wPQ?6w)(QfsEb^{gjaH_e#Ax!{=K1b1!)dC$0yMw!HZfY zTW934gZ;E~Qq=POEFEg@T>KK9bE3C;o@m(@Hm+qIj_Xr3d_*OYR!qBxMkOtrikR#! t+r2p0=sZ6@IsFPetusr5mUF66^fqDn9{CL;HIm`(5v2Z|5DmH!{69XVUXB0& diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_1000_crystal_1_550_1200/data_bkg.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_1000_crystal_1_550_1200/data_bkg.log deleted file mode 100644 index a966e12..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_1000_crystal_1_550_1200/data_bkg.log +++ /dev/null @@ -1,690 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10879.7 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 6.74624e-01 5.09000e-01 -8.31364e-01 -1.01971e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -3.20610e+01 - 3 par_crystal_2 5.00000e+02 2.00000e+01 0.00000e+00 -9.48837e+00 - 4 par_crystal_3 1.05000e+02 1.90000e+01 0.00000e+00 2.45317e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7116e+01 9.9978e-01 1.9597e+00 1.8156e+01 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 17.134017 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 27 CALLS 314 TOTAL - EDM=0.131054 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.06594e+00 6.09301e-02 1.43210e-03 -8.77809e-01 - 2 par_crystal_1 5.09576e+00 7.69298e-02 8.09031e-02 -5.13188e-02 - 3 par_crystal_2 4.95224e+02 7.91481e+01 2.17679e-03 -5.43249e-01 - 4 par_crystal_3 1.90900e+02 9.54958e+00 1.13079e-02 4.60762e-02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 477 CALLS 478 TOTAL - EDM=0.0370129 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.11079e+00 8.93309e-02 0.00000e+00 -4.75984e-01 - 2 par_crystal_1 5.08061e+00 3.60144e-01 0.00000e+00 -1.14416e-01 - 3 par_crystal_2 4.76040e+02 1.75614e+01 0.00000e+00 -2.32451e-01 - 4 par_crystal_3 1.99914e+02 2.77391e+01 0.00000e+00 -7.67572e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.985e-03 -2.091e-03 1.499e+00 2.820e-01 - -2.091e-03 2.873e-02 -7.387e-01 -2.900e-02 - 1.499e+00 -7.387e-01 3.118e+02 5.244e+01 - 2.820e-01 -2.900e-02 5.244e+01 1.008e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99775 1.000 -0.138 0.950 0.994 - 2 0.79882 -0.138 1.000 -0.247 -0.054 - 3 0.95717 0.950 -0.247 1.000 0.935 - 4 0.99764 0.994 -0.054 0.935 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.8 FROM HESSE STATUS=OK 27 CALLS 505 TOTAL - EDM=0.0183624 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.11079e+00 4.31984e-02 1.44775e-03 -6.03431e-01 - 2 par_crystal_1 5.08061e+00 3.28337e+00 6.64371e-02 1.44728e+00 - 3 par_crystal_2 4.76040e+02 8.02153e+00 1.45036e-02 3.38355e+00 - 4 par_crystal_3 1.99914e+02 2.26294e+01 4.50606e-02 1.52819e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.866e-03 -1.951e-03 -2.584e-03 1.946e-02 - -1.951e-03 1.028e-01 6.675e-04 3.793e-04 - -2.584e-03 6.675e-04 6.449e+01 1.116e+00 - 1.946e-02 3.793e-04 1.116e+00 8.140e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.21215 1.000 -0.141 -0.007 0.158 - 2 0.14274 -0.141 1.000 0.000 0.000 - 3 0.05109 -0.007 0.000 1.000 0.049 - 4 0.16712 0.158 0.000 0.049 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10978.6 FROM MIGRAD STATUS=INITIATE 68 CALLS 69 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 6.03110e+02 3.00000e+01 -8.97402e-01 -6.52175e+01 - 2 par_gaus_exp_1 5.45000e+01 9.10000e+00 0.00000e+00 -4.62060e+02 - 3 par_gaus_exp_2 4.12114e-01 3.05000e-01 0.00000e+00 1.25553e+03 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.9 FROM HESSE STATUS=OK 18 CALLS 182 TOTAL - EDM=0.000691453 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.46431e+02 6.06936e+00 3.17833e-03 -3.92855e-01 - 2 par_gaus_exp_1 6.65716e+01 1.75685e+01 2.62647e-03 1.43349e-01 - 3 par_gaus_exp_2 3.07505e-01 8.37981e-02 8.79822e-04 -3.06196e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM MIGRAD STATUS=CONVERGED 316 CALLS 317 TOTAL - EDM=9.19369e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.62504e+02 3.53152e+00 1.63243e-03 -1.66316e-01 - 2 par_gaus_exp_1 2.46552e+01 1.25211e+01 1.75085e-03 -3.48771e-01 - 3 par_gaus_exp_2 1.14604e-01 5.89219e-02 6.31447e-04 9.83138e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.247e+01 -1.544e+01 -6.961e-02 - -1.544e+01 1.643e+02 7.558e-01 - -6.961e-02 7.558e-01 3.493e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.35636 1.000 -0.341 -0.333 - 2 0.99789 -0.341 1.000 0.998 - 3 0.99788 -0.333 0.998 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM HESSE STATUS=OK 16 CALLS 333 TOTAL - EDM=9.89177e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 5.62504e+02 3.77274e+00 6.52972e-05 8.34552e-02 - 2 par_gaus_exp_1 2.46552e+01 1.46349e+01 3.50170e-04 -7.15413e-01 - 3 par_gaus_exp_2 1.14604e-01 6.93856e-02 1.26289e-04 -1.27868e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.424e+01 -2.545e+01 -1.157e-01 - -2.545e+01 2.286e+02 1.052e+00 - -1.157e-01 1.052e+00 4.855e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.45683 1.000 -0.446 -0.440 - 2 0.99849 -0.446 1.000 0.998 - 3 0.99848 -0.440 0.998 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (13168.6) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=575, par_novo_1=100, par_novo_2=1.58864 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 575,par_novo_1 = 100,par_novo_2 = 1.58864) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=645, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=655, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=665, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=675, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=685, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=695, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=705, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=715, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=725, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=735, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=745, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=755, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - ... (remaining 46 messages suppressed) - - FCN=13054.5 FROM MIGRAD STATUS=INITIATE 14 CALLS 15 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.75000e+02 1.50000e+01 2.01358e-01 -1.22938e+03 - 2 par_novo_1 1.00000e+02 2.00000e+01 2.01358e-01 -6.98326e+03 - 3 par_novo_2 0.00000e+00 2.00000e+01 2.01358e-01 1.51249e+06 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM MIGRAD STATUS=CONVERGED 220 CALLS 221 TOTAL - EDM=2.09668e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.00000e+02 1.21837e+02 1.25149e-01 -7.30463e-04 - 2 par_novo_1 1.30637e+02 1.58558e+01 3.16845e-03 -1.76078e-02 - 3 par_novo_2 -6.95187e-01 1.36663e-01 2.61078e-05 1.74080e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.121e-01 -9.460e-01 -6.449e-03 - -9.460e-01 2.538e+02 2.099e+00 - -6.449e-03 2.099e+00 1.868e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.21023 1.000 -0.177 -0.141 - 2 0.96488 -0.177 1.000 0.964 - 3 0.96445 -0.141 0.964 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM HESSE STATUS=OK 20 CALLS 241 TOTAL - EDM=1.01397e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 5.00000e+02 1.20312e+02 5.00000e-01 -1.57325e+00 - 2 par_novo_1 1.30637e+02 2.01762e+01 1.26738e-04 3.11381e-01 - 3 par_novo_2 -6.95187e-01 1.62575e-01 1.04431e-06 -6.95192e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.070e-01 -4.278e+00 -2.995e-02 - -4.278e+00 4.133e+02 3.212e+00 - -2.995e-02 3.212e+00 2.643e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.69436 1.000 -0.643 -0.563 - 2 0.97859 -0.643 1.000 0.972 - 3 0.97501 -0.563 0.972 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10877 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 6.33849e-01 5.09000e-01 -8.55460e-01 -1.25390e+02 - 2 par_crystal_1_1 2.55500e+00 5.09000e-01 0.00000e+00 -2.69495e+01 - 3 par_crystal_1_2 5.50000e+02 3.00000e+01 0.00000e+00 -1.44080e+01 - 4 par_crystal_1_3 1.04500e+02 1.91000e+01 0.00000e+00 3.07979e+01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.43469 added to diagonal of error matrix - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.5401e+00 8.4221e-02 1.8087e+00 3.6472e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 1.543714 TO DIAGONAL. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.9 FROM HESSE STATUS=OK 25 CALLS 485 TOTAL - EDM=0.0491336 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.05623e+00 1.52463e-01 1.42446e-03 -1.90900e+00 - 2 par_crystal_1_1 5.09988e+00 3.18944e+00 7.54811e-02 -8.93342e-03 - 3 par_crystal_1_2 4.96280e+02 4.98347e+01 9.02051e-03 3.58498e-02 - 4 par_crystal_1_3 1.89188e+02 2.78069e+01 1.02856e-02 -2.38185e-01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 538 CALLS 539 TOTAL - EDM=10.0867 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 14.1 per cent - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.09723e+00 3.02575e-02 -0.00000e+00 5.47416e+01 - 2 par_crystal_1_1 5.09997e+00 3.18368e+00 0.00000e+00 -3.90351e-03 - 3 par_crystal_1_2 4.83329e+02 2.76558e+01 0.00000e+00 7.05236e+00 - 4 par_crystal_1_3 1.96552e+02 5.80629e+00 -0.00000e+00 4.39990e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.156e-04 -1.804e-07 -6.742e-01 1.111e-01 - -1.804e-07 1.763e-04 7.888e-03 -2.154e-03 - -6.742e-01 7.888e-03 7.759e+02 -1.463e+02 - 1.111e-01 -2.154e-03 -1.463e+02 3.432e+01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.82553 1.000 -0.000 -0.800 0.627 - 2 0.03650 -0.000 1.000 0.021 -0.028 - 3 0.94703 -0.800 0.021 1.000 -0.896 - 4 0.90888 0.627 -0.028 -0.896 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -9.7852e-01 9.9996e-01 1.9836e+00 1.9949e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.980510 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 29 CALLS 568 TOTAL - EDM=238.514 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 1.09723e+00 4.25322e-02 2.54943e-04 -6.09913e-01 - 2 par_crystal_1_1 5.09997e+00 7.84798e-01 8.54763e-02 1.56580e+00 - 3 par_crystal_1_2 4.83329e+02 1.87856e+01 1.76414e-03 -4.60588e-01 - 4 par_crystal_1_3 1.96552e+02 5.33115e+00 2.63738e-03 1.30128e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.809e-03 -2.197e-07 8.001e-01 2.280e-01 - -2.197e-07 1.053e-04 -1.173e-04 -3.665e-05 - 8.001e-01 -1.173e-04 3.552e+02 1.010e+02 - 2.280e-01 -3.665e-05 1.010e+02 2.885e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99849 1.000 -0.001 0.998 0.998 - 2 0.00265 -0.001 1.000 -0.001 -0.001 - 3 0.99848 0.998 -0.001 1.000 0.998 - 4 0.99849 0.998 -0.001 0.998 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_550_1200 = 1266.17 - Background number of gaus_exp_550_1200 = 1266.17 - Background number of novo_550_1200 = 1266.17 - Background number of crystal_1_550_1200 = 1266.17 - Background number of gaus_bern_550_1200 = 1266.17 - Background number of landau_550_1200 = 1266.17 -par_crystal_0 param 1.11079 0.0431984 -par_crystal_1 param 5.08061 3.28337 -par_crystal_2 param 476.04 8.02153 -par_crystal_3 param 199.914 22.6294 -par_crystal_1_0 param 1.09723 0.0425322 -par_crystal_1_1 param 5.09997 0.784798 -par_crystal_1_2 param 483.329 18.7856 -par_crystal_1_3 param 196.552 5.33115 -par_gaus_exp_0 param 562.504 3.77274 -par_gaus_exp_1 param 24.6552 14.6349 -par_gaus_exp_2 param 0.114604 0.0693856 -par_novo_0 param 500 120.312 -par_novo_1 param 130.637 20.1762 -par_novo_2 param -0.695187 0.162575 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_1000_crystal_1_550_1200/datacard_1000_crystal_1_550_1200.txt b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_1000_crystal_1_550_1200/datacard_1000_crystal_1_550_1200.txt deleted file mode 100644 index 3d13d0b..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_1000_crystal_1_550_1200/datacard_1000_crystal_1_550_1200.txt +++ /dev/null @@ -1,30 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_1000.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_crystal_1_550_1200.root HbbHbb:f_crystal_1 -shapes data_obs HbbHbb w_background_crystal_1_550_1200.root HbbHbb:data_obs_crystal_1_550_1200 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 6.61454 1266.17 -lumi_13TeV lnN 1.026 - -bTag lnN 1.35523 - -JER lnN 1.0152 - -JEC lnN 1.01006 - -trigger lnN 1.10 - -PDF lnN 1.03016737915 - -sg_p0 param 1016.58 -3.74805/+1.77868 -sg_p1 param 40 -0.302396/+0.234552 -sg_p2 param 1.2224 -0.101761/+0.0537708 -sg_p3 param 1.49206 -0.0476241/+0.0617959 -par_crystal_1_0 param 1.09723 0.0425322 -par_crystal_1_1 param 5.09997 0.784798 -par_crystal_1_2 param 483.329 18.7856 -par_crystal_1_3 param 196.552 5.33115 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_1000_crystal_1_550_1200/pdf.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_1000_crystal_1_550_1200/pdf.log deleted file mode 100644 index 5768702..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_1000_crystal_1_550_1200/pdf.log +++ /dev/null @@ -1,10 +0,0 @@ -[?1034h FCN=17.9412 FROM MIGRAD STATUS=CONVERGED 82 CALLS 83 TOTAL - EDM=1.43821e-08 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 Constant 9.72377e+00 1.32726e+00 2.28094e-03 -1.17855e-04 - 2 Mean 9.96311e-01 4.40706e-03 8.75365e-06 -2.32534e-02 - 3 Sigma 3.01674e-02 3.89013e-03 7.78171e-05 -4.31616e-03 -0.996310506796 +/- 0.00440706428391 -0.0301673791494 +/- 0.00389013367801 -PDF lnN 1.03016737915 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_1000_crystal_1_550_1200/signal1000_sig.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_1000_crystal_1_550_1200/signal1000_sig.log deleted file mode 100644 index 626a232..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_1000_crystal_1_550_1200/signal1000_sig.log +++ /dev/null @@ -1,945 +0,0 @@ - -Processing test.c... -nSignal_init = 50000 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [700,1250] --> [700,1250] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [800,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [700,1250] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [800,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=24889.5 FROM MIGRAD STATUS=INITIATE 56 CALLS 57 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.00000e+03 1.00000e+01 0.00000e+00 2.22453e+02 - 2 sg_p1 3.50000e+01 2.00000e+00 0.00000e+00 -1.53589e+02 - 3 sg_p2 9.89758e-01 5.00000e-01 0.00000e+00 2.96541e+02 - 4 sg_p3 7.78994e-01 7.00000e-01 -8.90570e-01 5.10370e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24811.7 FROM MIGRAD STATUS=CONVERGED 191 CALLS 192 TOTAL - EDM=1.15992e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.90383e+02 1.26314e+00 1.88989e-03 1.21344e-01 - 2 sg_p1 4.50000e+01 1.21905e-01 1.69196e-02** at limit ** - 3 sg_p2 1.02011e+00 4.11152e-02 1.91933e-03 2.89472e-02 - 4 sg_p3 1.18700e+00 6.01449e-02 1.87537e-03 1.46355e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.596e+00 4.010e-06 2.573e-02 -4.941e-02 - 4.010e-06 1.885e-07 -1.275e-07 -4.838e-07 - 2.573e-02 -1.275e-07 1.691e-03 -5.988e-04 - -4.941e-02 -4.838e-07 -5.988e-04 3.618e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.73763 1.000 0.007 0.495 -0.650 - 2 0.02208 0.007 1.000 -0.007 -0.019 - 3 0.50646 0.495 -0.007 1.000 -0.242 - 4 0.65685 -0.650 -0.019 -0.242 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24811.7 FROM HESSE STATUS=OK 23 CALLS 215 TOTAL - EDM=1.17259e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 9.90383e+02 1.26342e+00 3.77979e-04 -1.93551e-01 - 2 sg_p1 4.50000e+01 1.21891e-01 3.38391e-03 1.57107e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 3 sg_p2 1.02011e+00 4.11293e-02 7.67732e-05 -6.33481e-01 - 4 sg_p3 1.18700e+00 6.01270e-02 7.50148e-05 -7.21959e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.597e+00 9.064e-07 2.577e-02 -4.939e-02 - 9.064e-07 1.885e-07 -2.868e-08 -1.091e-07 - 2.577e-02 -2.868e-08 1.692e-03 -5.978e-04 - -4.939e-02 -1.091e-07 -5.978e-04 3.616e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.73776 1.000 0.002 0.496 -0.650 - 2 0.00498 0.002 1.000 -0.002 -0.004 - 3 0.50696 0.496 -0.002 1.000 -0.242 - 4 0.65659 -0.650 -0.004 -0.242 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -1000 -990.383 +- 1.26342 -45 +- 0.121891 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [700,1250] --> [700,1250] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [800,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [700,1250] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [800,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=24403.1 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.00000e+03 1.00000e+01 0.00000e+00 2.26882e+02 - 2 sg_p1 3.50000e+01 2.00000e+00 0.00000e+00 -1.93966e+02 - 3 sg_p2 9.63072e-01 5.00000e-01 0.00000e+00 2.31928e+02 - 4 sg_p3 8.86770e-01 7.00000e-01 -8.42993e-01 8.03262e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24325.5 FROM MIGRAD STATUS=CONVERGED 218 CALLS 219 TOTAL - EDM=6.49551e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.95493e+02 9.33476e-01 1.79739e-03 -1.13004e-01 - 2 sg_p1 4.50000e+01 1.21162e-01 1.67946e-02** at limit ** - 3 sg_p2 1.13607e+00 4.42015e-02 2.25943e-03 -2.24141e-01 - 4 sg_p3 1.13155e+00 4.13228e-02 1.53138e-03 2.62522e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 8.715e-01 4.578e-06 3.814e-04 -1.748e-02 - 4.578e-06 9.111e-07 -4.559e-07 -5.336e-07 - 3.814e-04 -4.559e-07 1.954e-03 1.592e-04 - -1.748e-02 -5.336e-07 1.592e-04 1.708e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.45573 1.000 0.005 0.009 -0.453 - 2 0.01663 0.005 1.000 -0.011 -0.014 - 3 0.10332 0.009 -0.011 1.000 0.087 - 4 0.46232 -0.453 -0.014 0.087 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24325.5 FROM HESSE STATUS=OK 23 CALLS 242 TOTAL - EDM=9.33859e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 9.95493e+02 1.04671e+00 3.59477e-04 -9.02624e-02 - 2 sg_p1 4.50000e+01 1.21173e-01 3.35892e-03 1.57018e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 3 sg_p2 1.13607e+00 4.95685e-02 4.51887e-04 -5.77071e-01 - 4 sg_p3 1.13155e+00 4.14941e-02 3.06277e-04 -7.43270e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.096e+00 5.239e-08 2.349e-02 -1.999e-02 - 5.239e-08 9.112e-07 -6.164e-08 -6.151e-08 - 2.349e-02 -6.164e-08 2.457e-03 -2.607e-04 - -1.999e-02 -6.151e-08 -2.607e-04 1.722e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.60817 1.000 0.000 0.453 -0.460 - 2 0.00217 0.000 1.000 -0.001 -0.002 - 3 0.46189 0.453 -0.001 1.000 -0.127 - 4 0.46928 -0.460 -0.002 -0.127 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -1000 -995.493 +- 1.04671 -45 +- 0.121173 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [700,1250] --> [700,1250] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [800,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [700,1250] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [800,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=25056.4 FROM MIGRAD STATUS=INITIATE 59 CALLS 60 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.00000e+03 1.00000e+01 0.00000e+00 4.08464e+01 - 2 sg_p1 3.50000e+01 2.00000e+00 0.00000e+00 -1.81870e+02 - 3 sg_p2 1.21059e+00 5.00000e-01 0.00000e+00 5.34510e+02 - 4 sg_p3 6.71391e-01 7.00000e-01 -2.20055e+00 -8.87064e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24915.3 FROM MIGRAD STATUS=CONVERGED 228 CALLS 229 TOTAL - EDM=5.5921e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.84744e+02 1.19560e+00 1.95809e-03 2.95439e-02 - 2 sg_p1 4.50000e+01 1.21031e-01 1.69661e-02** at limit ** - 3 sg_p2 9.63081e-01 3.97444e-02 1.82185e-03 -6.76282e-03 - 4 sg_p3 1.23132e+00 5.50596e-02 1.88577e-03 -4.12979e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.430e+00 -3.803e-08 2.612e-02 3.540e-02 - -3.803e-08 3.884e-10 -9.020e-09 1.301e-08 - 2.612e-02 -9.020e-09 1.580e-03 4.623e-04 - 3.540e-02 1.301e-08 4.623e-04 3.032e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.69869 1.000 -0.002 0.550 0.538 - 2 0.01886 -0.002 1.000 -0.012 0.012 - 3 0.55874 0.550 -0.012 1.000 0.211 - 4 0.54722 0.538 0.012 0.211 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24915.3 FROM HESSE STATUS=OK 23 CALLS 252 TOTAL - EDM=5.61522e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 9.84744e+02 1.19463e+00 7.83235e-05 -3.10063e-01 - 2 sg_p1 4.50000e+01 1.21032e-01 3.39322e-03 1.57081e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 3 sg_p2 9.63081e-01 3.97567e-02 7.28742e-05 -6.62091e-01 - 4 sg_p3 1.23132e+00 5.49819e-02 7.54308e-05 -2.43638e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.427e+00 -7.637e-09 2.613e-02 3.521e-02 - -7.637e-09 3.884e-10 -1.811e-09 2.617e-09 - 2.613e-02 -1.811e-09 1.581e-03 4.609e-04 - 3.521e-02 2.617e-09 4.609e-04 3.023e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.69809 1.000 -0.000 0.550 0.536 - 2 0.00379 -0.000 1.000 -0.002 0.002 - 3 0.55912 0.550 -0.002 1.000 0.211 - 4 0.54541 0.536 0.002 0.211 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -1000 -984.744 +- 1.19463 -45 +- 0.121032 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [750,1250] --> [750,1250] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [750,1250] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=23747 FROM MIGRAD STATUS=INITIATE 58 CALLS 59 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01500e+03 7.00000e+00 0.00000e+00 1.99056e+02 - 2 sg_p1 3.25000e+01 1.50000e+00 0.00000e+00 -1.60594e+02 - 3 sg_p2 9.21832e-01 5.00000e-01 0.00000e+00 1.22069e+02 - 4 sg_p3 1.41673e+00 7.00000e-01 -6.37540e-01 4.87774e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23690.5 FROM MIGRAD STATUS=CONVERGED 248 CALLS 249 TOTAL - EDM=7.40636e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01658e+03 8.13144e-01 2.06376e-03 -3.76416e-01 - 2 sg_p1 4.00000e+01 4.68280e-01 3.89370e-02** at limit ** - 3 sg_p2 1.22240e+00 5.07108e-02 2.32615e-03 2.98325e-01 - 4 sg_p3 1.49206e+00 7.79105e-02 2.55089e-03 -7.56703e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 6.613e-01 1.056e-05 1.493e-02 -2.862e-02 - 1.056e-05 1.856e-06 -2.776e-06 -7.148e-06 - 1.493e-02 -2.776e-06 2.572e-03 -4.218e-04 - -2.862e-02 -7.148e-06 -4.218e-04 6.072e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.55096 1.000 0.010 0.362 -0.452 - 2 0.08279 0.010 1.000 -0.040 -0.067 - 3 0.36961 0.362 -0.040 1.000 -0.107 - 4 0.45964 -0.452 -0.067 -0.107 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23690.5 FROM HESSE STATUS=OK 23 CALLS 272 TOTAL - EDM=7.50694e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 1.01658e+03 8.10249e-01 4.12751e-04 4.50469e-02 - 2 sg_p1 4.00000e+01 4.69104e-01 7.78740e-03 1.57131e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 3 sg_p2 1.22240e+00 5.04194e-02 4.65229e-04 -5.36395e-01 - 4 sg_p3 1.49206e+00 7.77461e-02 1.02036e-04 -6.11014e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 6.566e-01 2.550e-06 1.440e-02 -2.848e-02 - 2.550e-06 1.859e-06 -6.023e-07 -1.591e-06 - 1.440e-02 -6.023e-07 2.543e-03 -4.084e-04 - -2.848e-02 -1.591e-06 -4.084e-04 6.046e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.54642 1.000 0.002 0.353 -0.452 - 2 0.01831 0.002 1.000 -0.009 -0.015 - 3 0.35800 0.353 -0.009 1.000 -0.104 - 4 0.45596 -0.452 -0.015 -0.104 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -1000 -1016.58 +- 0.810249 -40 +- 0.469104 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 - fit done -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [750,1250] --> [750,1250] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [750,1250] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=23321 FROM MIGRAD STATUS=INITIATE 62 CALLS 63 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01500e+03 7.00000e+00 0.00000e+00 -2.15456e+02 - 2 sg_p1 3.25000e+01 1.50000e+00 0.00000e+00 8.44246e+00 - 3 sg_p2 8.58947e-01 5.00000e-01 0.00000e+00 1.85345e+02 - 4 sg_p3 9.45698e-01 7.00000e-01 -8.18030e-01 -4.63007e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23288 FROM HESSE STATUS=OK 25 CALLS 397 TOTAL - EDM=0.00260498 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01832e+03 7.86712e-01 2.07176e-03 2.20958e+00 - 2 sg_p1 3.99993e+01 1.77184e+00 7.04451e-02 -2.46019e-02 - 3 sg_p2 1.21002e+00 5.23460e-02 1.24212e-03 -3.03189e+00 - 4 sg_p3 1.46453e+00 6.41490e-02 2.20715e-03 4.63062e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=23288 FROM MIGRAD STATUS=CONVERGED 405 CALLS 406 TOTAL - EDM=3.27684e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 0.7 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01831e+03 7.85112e-01 -4.32924e-04 -2.09259e-02 - 2 sg_p1 3.99999e+01 1.83061e+00 8.35977e-03 -1.12946e-02 - 3 sg_p2 1.21288e+00 5.27607e-02 1.33598e-03 -8.93872e-02 - 4 sg_p3 1.46454e+00 6.41540e-02 6.09141e-06 -1.12247e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 6.165e-01 -9.032e-04 1.537e-02 -1.778e-02 - -9.032e-04 7.440e-04 -2.479e-05 -1.812e-04 - 1.537e-02 -2.479e-05 2.784e-03 -1.646e-04 - -1.778e-02 -1.812e-04 -1.646e-04 4.116e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.50511 1.000 -0.042 0.371 -0.353 - 2 0.13383 -0.042 1.000 -0.017 -0.104 - 3 0.38141 0.371 -0.017 1.000 -0.049 - 4 0.38267 -0.353 -0.104 -0.049 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23288 FROM HESSE STATUS=OK 27 CALLS 433 TOTAL - EDM=6.045e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 1.01831e+03 7.86243e-01 2.07195e-03 9.46567e-02 - 2 sg_p1 3.99999e+01 1.65716e+00 2.81780e-02 1.56570e+00 - 3 sg_p2 1.21288e+00 5.23867e-02 2.37732e-03 -5.40830e-01 - 4 sg_p3 1.46454e+00 6.37794e-02 2.20581e-03 -6.20643e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 6.183e-01 -1.323e-04 1.524e-02 -1.755e-02 - -1.323e-04 6.707e-04 -5.377e-05 -7.207e-05 - 1.524e-02 -5.377e-05 2.745e-03 -2.465e-04 - -1.755e-02 -7.207e-05 -2.465e-04 4.068e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.49151 1.000 -0.006 0.370 -0.350 - 2 0.06175 -0.006 1.000 -0.040 -0.044 - 3 0.37636 0.370 -0.040 1.000 -0.074 - 4 0.35760 -0.350 -0.044 -0.074 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -1000 -1018.31 +- 0.786243 -39.9999 +- 1.65716 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [750,1250] --> [750,1250] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [750,1250] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=23875.8 FROM MIGRAD STATUS=INITIATE 55 CALLS 56 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01500e+03 7.00000e+00 0.00000e+00 4.43398e+02 - 2 sg_p1 3.25000e+01 1.50000e+00 0.00000e+00 -1.77680e+02 - 3 sg_p2 9.21219e-01 5.00000e-01 0.00000e+00 7.52454e+00 - 4 sg_p3 1.40649e+00 7.00000e-01 -6.41185e-01 5.95628e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23798.4 FROM MIGRAD STATUS=CONVERGED 217 CALLS 218 TOTAL - EDM=7.75608e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01285e+03 8.33665e-01 2.07912e-03 1.70866e-02 - 2 sg_p1 3.98091e+01 8.48923e-01 3.16082e-02 -1.03759e-02 - 3 sg_p2 1.12381e+00 5.95622e-02 2.13485e-03 3.30200e-01 - 4 sg_p3 1.54010e+00 8.22224e-02 2.41055e-03 -1.53820e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 6.951e-01 2.065e-01 2.518e-02 -6.574e-03 - 2.065e-01 6.697e-01 3.047e-02 3.584e-02 - 2.518e-02 3.047e-02 3.549e-03 1.365e-03 - -6.574e-03 3.584e-02 1.365e-03 6.762e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.57532 1.000 0.303 0.507 -0.096 - 2 0.73404 0.303 1.000 0.625 0.533 - 3 0.70991 0.507 0.625 1.000 0.279 - 4 0.59907 -0.096 0.533 0.279 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23798.4 FROM HESSE STATUS=OK 23 CALLS 241 TOTAL - EDM=7.73708e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 1.01285e+03 8.49657e-01 4.15824e-04 -6.14668e-02 - 2 sg_p1 3.98091e+01 1.04461e+00 1.26433e-03 1.34471e+00 - 3 sg_p2 1.12381e+00 6.43212e-02 4.26970e-04 -5.82935e-01 - 4 sg_p3 1.54010e+00 8.72084e-02 9.64222e-05 -5.94353e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.221e-01 2.723e-01 2.914e-02 -1.973e-03 - 2.723e-01 8.279e-01 4.043e-02 4.780e-02 - 2.914e-02 4.043e-02 4.139e-03 2.068e-03 - -1.973e-03 4.780e-02 2.068e-03 7.608e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.59661 1.000 0.352 0.533 -0.027 - 2 0.79068 0.352 1.000 0.691 0.602 - 3 0.75807 0.533 0.691 1.000 0.369 - 4 0.65582 -0.027 0.602 0.369 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -1000 -1012.85 +- 0.849657 -39.8091 +- 1.04461 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [750,1250] --> [750,1250] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [750,1250] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=23239.4 FROM MIGRAD STATUS=INITIATE 64 CALLS 65 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01500e+03 7.00000e+00 0.00000e+00 -1.27750e+02 - 2 sg_p1 3.25000e+01 1.50000e+00 0.00000e+00 1.26948e-01 - 3 sg_p2 8.74738e-01 5.00000e-01 0.00000e+00 1.80702e+02 - 4 sg_p3 9.26595e-01 7.00000e-01 -8.26048e-01 -4.27618e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23209.7 FROM MIGRAD STATUS=CONVERGED 237 CALLS 238 TOTAL - EDM=0.00014251 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01577e+03 8.64818e-01 2.10463e-03 2.40523e-01 - 2 sg_p1 3.99999e+01 1.00303e+00 5.37328e-02 -1.94869e-02 - 3 sg_p2 1.13318e+00 5.62974e-02 2.39200e-03 -5.76330e-02 - 4 sg_p3 1.52247e+00 6.86424e-02 2.34430e-03 1.64373e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.481e-01 -1.096e-03 2.562e-02 -1.857e-02 - -1.096e-03 4.530e-04 -1.315e-04 -8.807e-05 - 2.562e-02 -1.315e-04 3.170e-03 -3.976e-04 - -1.857e-02 -8.807e-05 -3.976e-04 4.713e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.58719 1.000 -0.060 0.526 -0.313 - 2 0.13360 -0.060 1.000 -0.110 -0.060 - 3 0.53513 0.526 -0.110 1.000 -0.103 - 4 0.32913 -0.313 -0.060 -0.103 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23209.7 FROM HESSE STATUS=OK 29 CALLS 267 TOTAL - EDM=0.000133982 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 1.01577e+03 8.73102e-01 4.20925e-04 2.20882e-02 - 2 sg_p1 3.99999e+01 1.01940e+00 2.14931e-03 1.56537e+00 - 3 sg_p2 1.13318e+00 5.62622e-02 9.56802e-05 -5.78450e-01 - 4 sg_p3 1.52247e+00 7.21948e-02 7.98704e-02 -6.00445e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.625e-01 2.144e-04 2.611e-02 -2.173e-02 - 2.144e-04 4.606e-04 2.659e-05 2.032e-05 - 2.611e-02 2.659e-05 3.166e-03 -5.636e-04 - -2.173e-02 2.032e-05 -5.636e-04 5.213e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.59764 1.000 0.011 0.531 -0.345 - 2 0.02791 0.011 1.000 0.022 0.013 - 3 0.53363 0.531 0.022 1.000 -0.139 - 4 0.34900 -0.345 0.013 -0.139 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -1000 -1015.77 +- 0.873102 -39.9999 +- 1.0194 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [750,1250] --> [750,1250] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [750,1250] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=23904.2 FROM MIGRAD STATUS=INITIATE 63 CALLS 64 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01500e+03 7.00000e+00 0.00000e+00 -1.58334e+02 - 2 sg_p1 3.25000e+01 1.50000e+00 0.00000e+00 -6.45414e+00 - 3 sg_p2 9.40575e-01 5.00000e-01 0.00000e+00 2.02619e+02 - 4 sg_p3 9.50207e-01 7.00000e-01 -8.16148e-01 -4.42963e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23871.3 FROM MIGRAD STATUS=CONVERGED 250 CALLS 251 TOTAL - EDM=1.36548e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01639e+03 7.28586e-01 2.01823e-03 -1.76359e-02 - 2 sg_p1 4.00000e+01 7.49353e-01 4.69202e-02 -5.91552e-03 - 3 sg_p2 1.26989e+00 5.63661e-02 2.54093e-03 8.80770e-02 - 4 sg_p3 1.53945e+00 6.56083e-02 2.27702e-03 -7.24550e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.309e-01 -7.297e-05 1.348e-02 -1.019e-02 - -7.297e-05 1.681e-05 -1.973e-05 -2.021e-05 - 1.348e-02 -1.973e-05 3.178e-03 5.005e-04 - -1.019e-02 -2.021e-05 5.005e-04 4.305e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.41880 1.000 -0.024 0.328 -0.213 - 2 0.10777 -0.024 1.000 -0.085 -0.075 - 3 0.39425 0.328 -0.085 1.000 0.135 - 4 0.31076 -0.213 -0.075 0.135 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23871.3 FROM HESSE STATUS=OK 23 CALLS 274 TOTAL - EDM=1.44816e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 1.01639e+03 7.40109e-01 4.03646e-04 3.97032e-02 - 2 sg_p1 4.00000e+01 7.56384e-01 9.38403e-03 1.56958e+00 - 3 sg_p2 1.26989e+00 5.58118e-02 1.01637e-04 -5.14435e-01 - 4 sg_p3 1.53945e+00 6.43105e-02 9.10809e-05 -5.94577e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.478e-01 -1.128e-05 1.525e-02 -1.306e-02 - -1.128e-05 1.697e-05 -2.641e-06 -2.503e-06 - 1.525e-02 -2.641e-06 3.116e-03 -1.984e-04 - -1.306e-02 -2.503e-06 -1.984e-04 4.137e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.44819 1.000 -0.004 0.369 -0.274 - 2 0.01546 -0.004 1.000 -0.011 -0.009 - 3 0.37224 0.369 -0.011 1.000 -0.055 - 4 0.27895 -0.274 -0.009 -0.055 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -1000 -1016.39 +- 0.740109 -40 +- 0.756384 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [750,1250] --> [750,1250] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [750,1250] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=16426.3 FROM MIGRAD STATUS=INITIATE 52 CALLS 53 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01500e+03 7.00000e+00 0.00000e+00 2.76971e+02 - 2 sg_p1 3.25000e+01 1.50000e+00 0.00000e+00 -7.40412e+01 - 3 sg_p2 7.53407e-01 5.00000e-01 0.00000e+00 -2.61313e+02 - 4 sg_p3 1.41708e+00 7.00000e-01 -6.37416e-01 3.61680e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16380.4 FROM MIGRAD STATUS=CONVERGED 204 CALLS 205 TOTAL - EDM=1.2739e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01657e+03 9.77555e-01 2.06312e-03 -3.61028e-03 - 2 sg_p1 4.00000e+01 6.78180e-01 3.73477e-02 -7.76696e-03 - 3 sg_p2 1.22238e+00 6.09231e-02 2.33024e-03 -3.84112e-02 - 4 sg_p3 1.49153e+00 9.35612e-02 2.57411e-03 -3.75876e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.559e-01 3.743e-05 2.152e-02 -4.133e-02 - 3.743e-05 2.111e-05 -9.720e-06 -2.510e-05 - 2.152e-02 -9.720e-06 3.713e-03 -6.103e-04 - -4.133e-02 -2.510e-05 -6.103e-04 8.757e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.55051 1.000 0.008 0.361 -0.452 - 2 0.07170 0.008 1.000 -0.035 -0.058 - 3 0.36817 0.361 -0.035 1.000 -0.107 - 4 0.45868 -0.452 -0.058 -0.107 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16380.4 FROM HESSE STATUS=OK 23 CALLS 228 TOTAL - EDM=1.33694e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 1.01657e+03 9.74476e-01 4.12624e-04 4.48931e-02 - 2 sg_p1 4.00000e+01 6.79952e-01 7.46954e-03 1.56937e+00 - 3 sg_p2 1.22238e+00 6.06205e-02 9.32097e-05 -5.36402e-01 - 4 sg_p3 1.49153e+00 9.34142e-02 1.02965e-04 -6.11196e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.499e-01 5.447e-06 2.083e-02 -4.116e-02 - 5.447e-06 2.117e-05 -1.283e-06 -3.388e-06 - 2.083e-02 -1.283e-06 3.676e-03 -5.904e-04 - -4.116e-02 -3.388e-06 -5.904e-04 8.729e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.54649 1.000 0.001 0.353 -0.452 - 2 0.00962 0.001 1.000 -0.005 -0.008 - 3 0.35791 0.353 -0.005 1.000 -0.104 - 4 0.45594 -0.452 -0.008 -0.104 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -1000 -1016.57 +- 0.974476 -40 +- 0.679952 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [750,1250] --> [750,1250] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [750,1250] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=33287.9 FROM MIGRAD STATUS=INITIATE 55 CALLS 56 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01500e+03 7.00000e+00 0.00000e+00 3.29127e+02 - 2 sg_p1 3.25000e+01 1.50000e+00 0.00000e+00 -2.09458e+02 - 3 sg_p2 8.91728e-01 5.00000e-01 0.00000e+00 7.37516e+01 - 4 sg_p3 1.41601e+00 7.00000e-01 -6.37796e-01 6.89934e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=33210.9 FROM MIGRAD STATUS=CONVERGED 218 CALLS 219 TOTAL - EDM=5.9663e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01659e+03 6.86602e-01 2.06298e-03 6.23454e-02 - 2 sg_p1 4.00000e+01 3.36413e-01 3.74809e-02** at limit ** - 3 sg_p2 1.22194e+00 4.27738e-02 2.32926e-03 -6.40806e-02 - 4 sg_p3 1.49222e+00 6.57997e-02 2.57024e-03 -1.52134e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.715e-01 8.305e-06 1.061e-02 -2.041e-02 - 8.305e-06 1.928e-06 -2.165e-06 -5.598e-06 - 1.061e-02 -2.165e-06 1.830e-03 -3.008e-04 - -2.041e-02 -5.598e-06 -3.008e-04 4.330e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.55055 1.000 0.009 0.361 -0.452 - 2 0.07527 0.009 1.000 -0.036 -0.061 - 3 0.36846 0.361 -0.036 1.000 -0.107 - 4 0.45894 -0.452 -0.061 -0.107 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=33210.9 FROM HESSE STATUS=OK 23 CALLS 242 TOTAL - EDM=6.1799e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 1.01659e+03 6.84411e-01 4.12596e-04 4.54194e-02 - 2 sg_p1 4.00000e+01 3.37160e-01 7.49617e-03 1.57018e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 3 sg_p2 1.22194e+00 4.25566e-02 9.31704e-05 -5.36608e-01 - 4 sg_p3 1.49222e+00 6.56863e-02 1.02809e-04 -6.10958e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.685e-01 1.563e-06 1.027e-02 -2.032e-02 - 1.563e-06 1.932e-06 -3.692e-07 -9.768e-07 - 1.027e-02 -3.692e-07 1.811e-03 -2.913e-04 - -2.032e-02 -9.768e-07 -2.913e-04 4.315e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.54648 1.000 0.002 0.353 -0.452 - 2 0.01305 0.002 1.000 -0.006 -0.011 - 3 0.35799 0.353 -0.006 1.000 -0.104 - 4 0.45593 -0.452 -0.011 -0.104 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -1000 -1016.59 +- 0.684411 -40 +- 0.33716 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 1016.58 +- 0.810249 (stat) - 3.72609 + 1.73193 (syst); -3.74805/+1.77868 (total) - Uncertainty on sg_p1 = 40 +- 0.469104 (stat) - 0.190863 + 0 (syst); -0.302396/+0.234552 (total) - Uncertainty on sg_p2 = 1.2224 +- 0.0504194 (stat) - 0.0985888 + 0.0474949 (syst); -0.101761/+0.0537708 (total) - Uncertainty on sg_p3 = 1.49206 +- 0.0777461 (stat) - 0.0275125 + 0.0480377 (syst); -0.0476241/+0.0617959 (total) - === Baseline plot ===
- norm = 330.727 -JEC lnN 1.01006 - -JER lnN 1.0152 - -btag lnN 1.35523 - -sg_p0 param 1016.58 -3.74805/+1.77868 -sg_p1 param 40 -0.302396/+0.234552 -sg_p2 param 1.2224 -0.101761/+0.0537708 -sg_p3 param 1.49206 -0.0476241/+0.0617959 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_1000_novo_550_1200/data_bkg.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_1000_novo_550_1200/data_bkg.log deleted file mode 100644 index a966e12..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_1000_novo_550_1200/data_bkg.log +++ /dev/null @@ -1,690 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10879.7 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 6.74624e-01 5.09000e-01 -8.31364e-01 -1.01971e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -3.20610e+01 - 3 par_crystal_2 5.00000e+02 2.00000e+01 0.00000e+00 -9.48837e+00 - 4 par_crystal_3 1.05000e+02 1.90000e+01 0.00000e+00 2.45317e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7116e+01 9.9978e-01 1.9597e+00 1.8156e+01 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 17.134017 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 27 CALLS 314 TOTAL - EDM=0.131054 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.06594e+00 6.09301e-02 1.43210e-03 -8.77809e-01 - 2 par_crystal_1 5.09576e+00 7.69298e-02 8.09031e-02 -5.13188e-02 - 3 par_crystal_2 4.95224e+02 7.91481e+01 2.17679e-03 -5.43249e-01 - 4 par_crystal_3 1.90900e+02 9.54958e+00 1.13079e-02 4.60762e-02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 477 CALLS 478 TOTAL - EDM=0.0370129 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.11079e+00 8.93309e-02 0.00000e+00 -4.75984e-01 - 2 par_crystal_1 5.08061e+00 3.60144e-01 0.00000e+00 -1.14416e-01 - 3 par_crystal_2 4.76040e+02 1.75614e+01 0.00000e+00 -2.32451e-01 - 4 par_crystal_3 1.99914e+02 2.77391e+01 0.00000e+00 -7.67572e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.985e-03 -2.091e-03 1.499e+00 2.820e-01 - -2.091e-03 2.873e-02 -7.387e-01 -2.900e-02 - 1.499e+00 -7.387e-01 3.118e+02 5.244e+01 - 2.820e-01 -2.900e-02 5.244e+01 1.008e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99775 1.000 -0.138 0.950 0.994 - 2 0.79882 -0.138 1.000 -0.247 -0.054 - 3 0.95717 0.950 -0.247 1.000 0.935 - 4 0.99764 0.994 -0.054 0.935 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.8 FROM HESSE STATUS=OK 27 CALLS 505 TOTAL - EDM=0.0183624 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.11079e+00 4.31984e-02 1.44775e-03 -6.03431e-01 - 2 par_crystal_1 5.08061e+00 3.28337e+00 6.64371e-02 1.44728e+00 - 3 par_crystal_2 4.76040e+02 8.02153e+00 1.45036e-02 3.38355e+00 - 4 par_crystal_3 1.99914e+02 2.26294e+01 4.50606e-02 1.52819e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.866e-03 -1.951e-03 -2.584e-03 1.946e-02 - -1.951e-03 1.028e-01 6.675e-04 3.793e-04 - -2.584e-03 6.675e-04 6.449e+01 1.116e+00 - 1.946e-02 3.793e-04 1.116e+00 8.140e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.21215 1.000 -0.141 -0.007 0.158 - 2 0.14274 -0.141 1.000 0.000 0.000 - 3 0.05109 -0.007 0.000 1.000 0.049 - 4 0.16712 0.158 0.000 0.049 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10978.6 FROM MIGRAD STATUS=INITIATE 68 CALLS 69 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 6.03110e+02 3.00000e+01 -8.97402e-01 -6.52175e+01 - 2 par_gaus_exp_1 5.45000e+01 9.10000e+00 0.00000e+00 -4.62060e+02 - 3 par_gaus_exp_2 4.12114e-01 3.05000e-01 0.00000e+00 1.25553e+03 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.9 FROM HESSE STATUS=OK 18 CALLS 182 TOTAL - EDM=0.000691453 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.46431e+02 6.06936e+00 3.17833e-03 -3.92855e-01 - 2 par_gaus_exp_1 6.65716e+01 1.75685e+01 2.62647e-03 1.43349e-01 - 3 par_gaus_exp_2 3.07505e-01 8.37981e-02 8.79822e-04 -3.06196e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM MIGRAD STATUS=CONVERGED 316 CALLS 317 TOTAL - EDM=9.19369e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.62504e+02 3.53152e+00 1.63243e-03 -1.66316e-01 - 2 par_gaus_exp_1 2.46552e+01 1.25211e+01 1.75085e-03 -3.48771e-01 - 3 par_gaus_exp_2 1.14604e-01 5.89219e-02 6.31447e-04 9.83138e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.247e+01 -1.544e+01 -6.961e-02 - -1.544e+01 1.643e+02 7.558e-01 - -6.961e-02 7.558e-01 3.493e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.35636 1.000 -0.341 -0.333 - 2 0.99789 -0.341 1.000 0.998 - 3 0.99788 -0.333 0.998 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM HESSE STATUS=OK 16 CALLS 333 TOTAL - EDM=9.89177e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 5.62504e+02 3.77274e+00 6.52972e-05 8.34552e-02 - 2 par_gaus_exp_1 2.46552e+01 1.46349e+01 3.50170e-04 -7.15413e-01 - 3 par_gaus_exp_2 1.14604e-01 6.93856e-02 1.26289e-04 -1.27868e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.424e+01 -2.545e+01 -1.157e-01 - -2.545e+01 2.286e+02 1.052e+00 - -1.157e-01 1.052e+00 4.855e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.45683 1.000 -0.446 -0.440 - 2 0.99849 -0.446 1.000 0.998 - 3 0.99848 -0.440 0.998 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (13168.6) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=575, par_novo_1=100, par_novo_2=1.58864 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 575,par_novo_1 = 100,par_novo_2 = 1.58864) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=645, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=655, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=665, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=675, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=685, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=695, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=705, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=715, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=725, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=735, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=745, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=755, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - ... (remaining 46 messages suppressed) - - FCN=13054.5 FROM MIGRAD STATUS=INITIATE 14 CALLS 15 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.75000e+02 1.50000e+01 2.01358e-01 -1.22938e+03 - 2 par_novo_1 1.00000e+02 2.00000e+01 2.01358e-01 -6.98326e+03 - 3 par_novo_2 0.00000e+00 2.00000e+01 2.01358e-01 1.51249e+06 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM MIGRAD STATUS=CONVERGED 220 CALLS 221 TOTAL - EDM=2.09668e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.00000e+02 1.21837e+02 1.25149e-01 -7.30463e-04 - 2 par_novo_1 1.30637e+02 1.58558e+01 3.16845e-03 -1.76078e-02 - 3 par_novo_2 -6.95187e-01 1.36663e-01 2.61078e-05 1.74080e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.121e-01 -9.460e-01 -6.449e-03 - -9.460e-01 2.538e+02 2.099e+00 - -6.449e-03 2.099e+00 1.868e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.21023 1.000 -0.177 -0.141 - 2 0.96488 -0.177 1.000 0.964 - 3 0.96445 -0.141 0.964 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM HESSE STATUS=OK 20 CALLS 241 TOTAL - EDM=1.01397e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 5.00000e+02 1.20312e+02 5.00000e-01 -1.57325e+00 - 2 par_novo_1 1.30637e+02 2.01762e+01 1.26738e-04 3.11381e-01 - 3 par_novo_2 -6.95187e-01 1.62575e-01 1.04431e-06 -6.95192e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.070e-01 -4.278e+00 -2.995e-02 - -4.278e+00 4.133e+02 3.212e+00 - -2.995e-02 3.212e+00 2.643e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.69436 1.000 -0.643 -0.563 - 2 0.97859 -0.643 1.000 0.972 - 3 0.97501 -0.563 0.972 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10877 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 6.33849e-01 5.09000e-01 -8.55460e-01 -1.25390e+02 - 2 par_crystal_1_1 2.55500e+00 5.09000e-01 0.00000e+00 -2.69495e+01 - 3 par_crystal_1_2 5.50000e+02 3.00000e+01 0.00000e+00 -1.44080e+01 - 4 par_crystal_1_3 1.04500e+02 1.91000e+01 0.00000e+00 3.07979e+01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.43469 added to diagonal of error matrix - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.5401e+00 8.4221e-02 1.8087e+00 3.6472e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 1.543714 TO DIAGONAL. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.9 FROM HESSE STATUS=OK 25 CALLS 485 TOTAL - EDM=0.0491336 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.05623e+00 1.52463e-01 1.42446e-03 -1.90900e+00 - 2 par_crystal_1_1 5.09988e+00 3.18944e+00 7.54811e-02 -8.93342e-03 - 3 par_crystal_1_2 4.96280e+02 4.98347e+01 9.02051e-03 3.58498e-02 - 4 par_crystal_1_3 1.89188e+02 2.78069e+01 1.02856e-02 -2.38185e-01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 538 CALLS 539 TOTAL - EDM=10.0867 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 14.1 per cent - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.09723e+00 3.02575e-02 -0.00000e+00 5.47416e+01 - 2 par_crystal_1_1 5.09997e+00 3.18368e+00 0.00000e+00 -3.90351e-03 - 3 par_crystal_1_2 4.83329e+02 2.76558e+01 0.00000e+00 7.05236e+00 - 4 par_crystal_1_3 1.96552e+02 5.80629e+00 -0.00000e+00 4.39990e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.156e-04 -1.804e-07 -6.742e-01 1.111e-01 - -1.804e-07 1.763e-04 7.888e-03 -2.154e-03 - -6.742e-01 7.888e-03 7.759e+02 -1.463e+02 - 1.111e-01 -2.154e-03 -1.463e+02 3.432e+01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.82553 1.000 -0.000 -0.800 0.627 - 2 0.03650 -0.000 1.000 0.021 -0.028 - 3 0.94703 -0.800 0.021 1.000 -0.896 - 4 0.90888 0.627 -0.028 -0.896 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -9.7852e-01 9.9996e-01 1.9836e+00 1.9949e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.980510 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 29 CALLS 568 TOTAL - EDM=238.514 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 1.09723e+00 4.25322e-02 2.54943e-04 -6.09913e-01 - 2 par_crystal_1_1 5.09997e+00 7.84798e-01 8.54763e-02 1.56580e+00 - 3 par_crystal_1_2 4.83329e+02 1.87856e+01 1.76414e-03 -4.60588e-01 - 4 par_crystal_1_3 1.96552e+02 5.33115e+00 2.63738e-03 1.30128e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.809e-03 -2.197e-07 8.001e-01 2.280e-01 - -2.197e-07 1.053e-04 -1.173e-04 -3.665e-05 - 8.001e-01 -1.173e-04 3.552e+02 1.010e+02 - 2.280e-01 -3.665e-05 1.010e+02 2.885e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99849 1.000 -0.001 0.998 0.998 - 2 0.00265 -0.001 1.000 -0.001 -0.001 - 3 0.99848 0.998 -0.001 1.000 0.998 - 4 0.99849 0.998 -0.001 0.998 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_550_1200 = 1266.17 - Background number of gaus_exp_550_1200 = 1266.17 - Background number of novo_550_1200 = 1266.17 - Background number of crystal_1_550_1200 = 1266.17 - Background number of gaus_bern_550_1200 = 1266.17 - Background number of landau_550_1200 = 1266.17 -par_crystal_0 param 1.11079 0.0431984 -par_crystal_1 param 5.08061 3.28337 -par_crystal_2 param 476.04 8.02153 -par_crystal_3 param 199.914 22.6294 -par_crystal_1_0 param 1.09723 0.0425322 -par_crystal_1_1 param 5.09997 0.784798 -par_crystal_1_2 param 483.329 18.7856 -par_crystal_1_3 param 196.552 5.33115 -par_gaus_exp_0 param 562.504 3.77274 -par_gaus_exp_1 param 24.6552 14.6349 -par_gaus_exp_2 param 0.114604 0.0693856 -par_novo_0 param 500 120.312 -par_novo_1 param 130.637 20.1762 -par_novo_2 param -0.695187 0.162575 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_1000_novo_550_1200/datacard_1000_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_1000_novo_550_1200/datacard_1000_novo_550_1200.txt deleted file mode 100644 index 90070d8..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_1000_novo_550_1200/datacard_1000_novo_550_1200.txt +++ /dev/null @@ -1,29 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_1000.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo -shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 6.61454 1266.17 -lumi_13TeV lnN 1.026 - -bTag lnN 1.35523 - -JER lnN 1.0152 - -JEC lnN 1.01006 - -trigger lnN 1.10 - -PDF lnN 1.03016737915 - -sg_p0 param 1016.58 -3.74805/+1.77868 -sg_p1 param 40 -0.302396/+0.234552 -sg_p2 param 1.2224 -0.101761/+0.0537708 -sg_p3 param 1.49206 -0.0476241/+0.0617959 -par_novo_0 param 500 120.312 -par_novo_1 param 130.637 20.1762 -par_novo_2 param -0.695187 0.162575 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_1000_novo_550_1200/pdf.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_1000_novo_550_1200/pdf.log deleted file mode 100644 index 5768702..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_1000_novo_550_1200/pdf.log +++ /dev/null @@ -1,10 +0,0 @@ -[?1034h FCN=17.9412 FROM MIGRAD STATUS=CONVERGED 82 CALLS 83 TOTAL - EDM=1.43821e-08 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 Constant 9.72377e+00 1.32726e+00 2.28094e-03 -1.17855e-04 - 2 Mean 9.96311e-01 4.40706e-03 8.75365e-06 -2.32534e-02 - 3 Sigma 3.01674e-02 3.89013e-03 7.78171e-05 -4.31616e-03 -0.996310506796 +/- 0.00440706428391 -0.0301673791494 +/- 0.00389013367801 -PDF lnN 1.03016737915 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_1000_novo_550_1200/signal1000_sig.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_1000_novo_550_1200/signal1000_sig.log deleted file mode 100644 index 626a232..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_1000_novo_550_1200/signal1000_sig.log +++ /dev/null @@ -1,945 +0,0 @@ - -Processing test.c... -nSignal_init = 50000 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [700,1250] --> [700,1250] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [800,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [700,1250] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [800,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=24889.5 FROM MIGRAD STATUS=INITIATE 56 CALLS 57 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.00000e+03 1.00000e+01 0.00000e+00 2.22453e+02 - 2 sg_p1 3.50000e+01 2.00000e+00 0.00000e+00 -1.53589e+02 - 3 sg_p2 9.89758e-01 5.00000e-01 0.00000e+00 2.96541e+02 - 4 sg_p3 7.78994e-01 7.00000e-01 -8.90570e-01 5.10370e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24811.7 FROM MIGRAD STATUS=CONVERGED 191 CALLS 192 TOTAL - EDM=1.15992e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.90383e+02 1.26314e+00 1.88989e-03 1.21344e-01 - 2 sg_p1 4.50000e+01 1.21905e-01 1.69196e-02** at limit ** - 3 sg_p2 1.02011e+00 4.11152e-02 1.91933e-03 2.89472e-02 - 4 sg_p3 1.18700e+00 6.01449e-02 1.87537e-03 1.46355e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.596e+00 4.010e-06 2.573e-02 -4.941e-02 - 4.010e-06 1.885e-07 -1.275e-07 -4.838e-07 - 2.573e-02 -1.275e-07 1.691e-03 -5.988e-04 - -4.941e-02 -4.838e-07 -5.988e-04 3.618e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.73763 1.000 0.007 0.495 -0.650 - 2 0.02208 0.007 1.000 -0.007 -0.019 - 3 0.50646 0.495 -0.007 1.000 -0.242 - 4 0.65685 -0.650 -0.019 -0.242 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24811.7 FROM HESSE STATUS=OK 23 CALLS 215 TOTAL - EDM=1.17259e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 9.90383e+02 1.26342e+00 3.77979e-04 -1.93551e-01 - 2 sg_p1 4.50000e+01 1.21891e-01 3.38391e-03 1.57107e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 3 sg_p2 1.02011e+00 4.11293e-02 7.67732e-05 -6.33481e-01 - 4 sg_p3 1.18700e+00 6.01270e-02 7.50148e-05 -7.21959e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.597e+00 9.064e-07 2.577e-02 -4.939e-02 - 9.064e-07 1.885e-07 -2.868e-08 -1.091e-07 - 2.577e-02 -2.868e-08 1.692e-03 -5.978e-04 - -4.939e-02 -1.091e-07 -5.978e-04 3.616e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.73776 1.000 0.002 0.496 -0.650 - 2 0.00498 0.002 1.000 -0.002 -0.004 - 3 0.50696 0.496 -0.002 1.000 -0.242 - 4 0.65659 -0.650 -0.004 -0.242 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -1000 -990.383 +- 1.26342 -45 +- 0.121891 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [700,1250] --> [700,1250] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [800,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [700,1250] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [800,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=24403.1 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.00000e+03 1.00000e+01 0.00000e+00 2.26882e+02 - 2 sg_p1 3.50000e+01 2.00000e+00 0.00000e+00 -1.93966e+02 - 3 sg_p2 9.63072e-01 5.00000e-01 0.00000e+00 2.31928e+02 - 4 sg_p3 8.86770e-01 7.00000e-01 -8.42993e-01 8.03262e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24325.5 FROM MIGRAD STATUS=CONVERGED 218 CALLS 219 TOTAL - EDM=6.49551e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.95493e+02 9.33476e-01 1.79739e-03 -1.13004e-01 - 2 sg_p1 4.50000e+01 1.21162e-01 1.67946e-02** at limit ** - 3 sg_p2 1.13607e+00 4.42015e-02 2.25943e-03 -2.24141e-01 - 4 sg_p3 1.13155e+00 4.13228e-02 1.53138e-03 2.62522e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 8.715e-01 4.578e-06 3.814e-04 -1.748e-02 - 4.578e-06 9.111e-07 -4.559e-07 -5.336e-07 - 3.814e-04 -4.559e-07 1.954e-03 1.592e-04 - -1.748e-02 -5.336e-07 1.592e-04 1.708e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.45573 1.000 0.005 0.009 -0.453 - 2 0.01663 0.005 1.000 -0.011 -0.014 - 3 0.10332 0.009 -0.011 1.000 0.087 - 4 0.46232 -0.453 -0.014 0.087 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24325.5 FROM HESSE STATUS=OK 23 CALLS 242 TOTAL - EDM=9.33859e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 9.95493e+02 1.04671e+00 3.59477e-04 -9.02624e-02 - 2 sg_p1 4.50000e+01 1.21173e-01 3.35892e-03 1.57018e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 3 sg_p2 1.13607e+00 4.95685e-02 4.51887e-04 -5.77071e-01 - 4 sg_p3 1.13155e+00 4.14941e-02 3.06277e-04 -7.43270e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.096e+00 5.239e-08 2.349e-02 -1.999e-02 - 5.239e-08 9.112e-07 -6.164e-08 -6.151e-08 - 2.349e-02 -6.164e-08 2.457e-03 -2.607e-04 - -1.999e-02 -6.151e-08 -2.607e-04 1.722e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.60817 1.000 0.000 0.453 -0.460 - 2 0.00217 0.000 1.000 -0.001 -0.002 - 3 0.46189 0.453 -0.001 1.000 -0.127 - 4 0.46928 -0.460 -0.002 -0.127 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -1000 -995.493 +- 1.04671 -45 +- 0.121173 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [700,1250] --> [700,1250] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [800,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [700,1250] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [800,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=25056.4 FROM MIGRAD STATUS=INITIATE 59 CALLS 60 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.00000e+03 1.00000e+01 0.00000e+00 4.08464e+01 - 2 sg_p1 3.50000e+01 2.00000e+00 0.00000e+00 -1.81870e+02 - 3 sg_p2 1.21059e+00 5.00000e-01 0.00000e+00 5.34510e+02 - 4 sg_p3 6.71391e-01 7.00000e-01 -2.20055e+00 -8.87064e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24915.3 FROM MIGRAD STATUS=CONVERGED 228 CALLS 229 TOTAL - EDM=5.5921e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.84744e+02 1.19560e+00 1.95809e-03 2.95439e-02 - 2 sg_p1 4.50000e+01 1.21031e-01 1.69661e-02** at limit ** - 3 sg_p2 9.63081e-01 3.97444e-02 1.82185e-03 -6.76282e-03 - 4 sg_p3 1.23132e+00 5.50596e-02 1.88577e-03 -4.12979e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.430e+00 -3.803e-08 2.612e-02 3.540e-02 - -3.803e-08 3.884e-10 -9.020e-09 1.301e-08 - 2.612e-02 -9.020e-09 1.580e-03 4.623e-04 - 3.540e-02 1.301e-08 4.623e-04 3.032e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.69869 1.000 -0.002 0.550 0.538 - 2 0.01886 -0.002 1.000 -0.012 0.012 - 3 0.55874 0.550 -0.012 1.000 0.211 - 4 0.54722 0.538 0.012 0.211 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24915.3 FROM HESSE STATUS=OK 23 CALLS 252 TOTAL - EDM=5.61522e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 9.84744e+02 1.19463e+00 7.83235e-05 -3.10063e-01 - 2 sg_p1 4.50000e+01 1.21032e-01 3.39322e-03 1.57081e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 3 sg_p2 9.63081e-01 3.97567e-02 7.28742e-05 -6.62091e-01 - 4 sg_p3 1.23132e+00 5.49819e-02 7.54308e-05 -2.43638e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.427e+00 -7.637e-09 2.613e-02 3.521e-02 - -7.637e-09 3.884e-10 -1.811e-09 2.617e-09 - 2.613e-02 -1.811e-09 1.581e-03 4.609e-04 - 3.521e-02 2.617e-09 4.609e-04 3.023e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.69809 1.000 -0.000 0.550 0.536 - 2 0.00379 -0.000 1.000 -0.002 0.002 - 3 0.55912 0.550 -0.002 1.000 0.211 - 4 0.54541 0.536 0.002 0.211 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -1000 -984.744 +- 1.19463 -45 +- 0.121032 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [750,1250] --> [750,1250] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [750,1250] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=23747 FROM MIGRAD STATUS=INITIATE 58 CALLS 59 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01500e+03 7.00000e+00 0.00000e+00 1.99056e+02 - 2 sg_p1 3.25000e+01 1.50000e+00 0.00000e+00 -1.60594e+02 - 3 sg_p2 9.21832e-01 5.00000e-01 0.00000e+00 1.22069e+02 - 4 sg_p3 1.41673e+00 7.00000e-01 -6.37540e-01 4.87774e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23690.5 FROM MIGRAD STATUS=CONVERGED 248 CALLS 249 TOTAL - EDM=7.40636e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01658e+03 8.13144e-01 2.06376e-03 -3.76416e-01 - 2 sg_p1 4.00000e+01 4.68280e-01 3.89370e-02** at limit ** - 3 sg_p2 1.22240e+00 5.07108e-02 2.32615e-03 2.98325e-01 - 4 sg_p3 1.49206e+00 7.79105e-02 2.55089e-03 -7.56703e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 6.613e-01 1.056e-05 1.493e-02 -2.862e-02 - 1.056e-05 1.856e-06 -2.776e-06 -7.148e-06 - 1.493e-02 -2.776e-06 2.572e-03 -4.218e-04 - -2.862e-02 -7.148e-06 -4.218e-04 6.072e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.55096 1.000 0.010 0.362 -0.452 - 2 0.08279 0.010 1.000 -0.040 -0.067 - 3 0.36961 0.362 -0.040 1.000 -0.107 - 4 0.45964 -0.452 -0.067 -0.107 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23690.5 FROM HESSE STATUS=OK 23 CALLS 272 TOTAL - EDM=7.50694e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 1.01658e+03 8.10249e-01 4.12751e-04 4.50469e-02 - 2 sg_p1 4.00000e+01 4.69104e-01 7.78740e-03 1.57131e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 3 sg_p2 1.22240e+00 5.04194e-02 4.65229e-04 -5.36395e-01 - 4 sg_p3 1.49206e+00 7.77461e-02 1.02036e-04 -6.11014e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 6.566e-01 2.550e-06 1.440e-02 -2.848e-02 - 2.550e-06 1.859e-06 -6.023e-07 -1.591e-06 - 1.440e-02 -6.023e-07 2.543e-03 -4.084e-04 - -2.848e-02 -1.591e-06 -4.084e-04 6.046e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.54642 1.000 0.002 0.353 -0.452 - 2 0.01831 0.002 1.000 -0.009 -0.015 - 3 0.35800 0.353 -0.009 1.000 -0.104 - 4 0.45596 -0.452 -0.015 -0.104 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -1000 -1016.58 +- 0.810249 -40 +- 0.469104 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 - fit done -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [750,1250] --> [750,1250] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [750,1250] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=23321 FROM MIGRAD STATUS=INITIATE 62 CALLS 63 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01500e+03 7.00000e+00 0.00000e+00 -2.15456e+02 - 2 sg_p1 3.25000e+01 1.50000e+00 0.00000e+00 8.44246e+00 - 3 sg_p2 8.58947e-01 5.00000e-01 0.00000e+00 1.85345e+02 - 4 sg_p3 9.45698e-01 7.00000e-01 -8.18030e-01 -4.63007e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23288 FROM HESSE STATUS=OK 25 CALLS 397 TOTAL - EDM=0.00260498 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01832e+03 7.86712e-01 2.07176e-03 2.20958e+00 - 2 sg_p1 3.99993e+01 1.77184e+00 7.04451e-02 -2.46019e-02 - 3 sg_p2 1.21002e+00 5.23460e-02 1.24212e-03 -3.03189e+00 - 4 sg_p3 1.46453e+00 6.41490e-02 2.20715e-03 4.63062e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=23288 FROM MIGRAD STATUS=CONVERGED 405 CALLS 406 TOTAL - EDM=3.27684e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 0.7 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01831e+03 7.85112e-01 -4.32924e-04 -2.09259e-02 - 2 sg_p1 3.99999e+01 1.83061e+00 8.35977e-03 -1.12946e-02 - 3 sg_p2 1.21288e+00 5.27607e-02 1.33598e-03 -8.93872e-02 - 4 sg_p3 1.46454e+00 6.41540e-02 6.09141e-06 -1.12247e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 6.165e-01 -9.032e-04 1.537e-02 -1.778e-02 - -9.032e-04 7.440e-04 -2.479e-05 -1.812e-04 - 1.537e-02 -2.479e-05 2.784e-03 -1.646e-04 - -1.778e-02 -1.812e-04 -1.646e-04 4.116e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.50511 1.000 -0.042 0.371 -0.353 - 2 0.13383 -0.042 1.000 -0.017 -0.104 - 3 0.38141 0.371 -0.017 1.000 -0.049 - 4 0.38267 -0.353 -0.104 -0.049 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23288 FROM HESSE STATUS=OK 27 CALLS 433 TOTAL - EDM=6.045e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 1.01831e+03 7.86243e-01 2.07195e-03 9.46567e-02 - 2 sg_p1 3.99999e+01 1.65716e+00 2.81780e-02 1.56570e+00 - 3 sg_p2 1.21288e+00 5.23867e-02 2.37732e-03 -5.40830e-01 - 4 sg_p3 1.46454e+00 6.37794e-02 2.20581e-03 -6.20643e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 6.183e-01 -1.323e-04 1.524e-02 -1.755e-02 - -1.323e-04 6.707e-04 -5.377e-05 -7.207e-05 - 1.524e-02 -5.377e-05 2.745e-03 -2.465e-04 - -1.755e-02 -7.207e-05 -2.465e-04 4.068e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.49151 1.000 -0.006 0.370 -0.350 - 2 0.06175 -0.006 1.000 -0.040 -0.044 - 3 0.37636 0.370 -0.040 1.000 -0.074 - 4 0.35760 -0.350 -0.044 -0.074 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -1000 -1018.31 +- 0.786243 -39.9999 +- 1.65716 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [750,1250] --> [750,1250] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [750,1250] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=23875.8 FROM MIGRAD STATUS=INITIATE 55 CALLS 56 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01500e+03 7.00000e+00 0.00000e+00 4.43398e+02 - 2 sg_p1 3.25000e+01 1.50000e+00 0.00000e+00 -1.77680e+02 - 3 sg_p2 9.21219e-01 5.00000e-01 0.00000e+00 7.52454e+00 - 4 sg_p3 1.40649e+00 7.00000e-01 -6.41185e-01 5.95628e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23798.4 FROM MIGRAD STATUS=CONVERGED 217 CALLS 218 TOTAL - EDM=7.75608e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01285e+03 8.33665e-01 2.07912e-03 1.70866e-02 - 2 sg_p1 3.98091e+01 8.48923e-01 3.16082e-02 -1.03759e-02 - 3 sg_p2 1.12381e+00 5.95622e-02 2.13485e-03 3.30200e-01 - 4 sg_p3 1.54010e+00 8.22224e-02 2.41055e-03 -1.53820e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 6.951e-01 2.065e-01 2.518e-02 -6.574e-03 - 2.065e-01 6.697e-01 3.047e-02 3.584e-02 - 2.518e-02 3.047e-02 3.549e-03 1.365e-03 - -6.574e-03 3.584e-02 1.365e-03 6.762e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.57532 1.000 0.303 0.507 -0.096 - 2 0.73404 0.303 1.000 0.625 0.533 - 3 0.70991 0.507 0.625 1.000 0.279 - 4 0.59907 -0.096 0.533 0.279 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23798.4 FROM HESSE STATUS=OK 23 CALLS 241 TOTAL - EDM=7.73708e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 1.01285e+03 8.49657e-01 4.15824e-04 -6.14668e-02 - 2 sg_p1 3.98091e+01 1.04461e+00 1.26433e-03 1.34471e+00 - 3 sg_p2 1.12381e+00 6.43212e-02 4.26970e-04 -5.82935e-01 - 4 sg_p3 1.54010e+00 8.72084e-02 9.64222e-05 -5.94353e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.221e-01 2.723e-01 2.914e-02 -1.973e-03 - 2.723e-01 8.279e-01 4.043e-02 4.780e-02 - 2.914e-02 4.043e-02 4.139e-03 2.068e-03 - -1.973e-03 4.780e-02 2.068e-03 7.608e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.59661 1.000 0.352 0.533 -0.027 - 2 0.79068 0.352 1.000 0.691 0.602 - 3 0.75807 0.533 0.691 1.000 0.369 - 4 0.65582 -0.027 0.602 0.369 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -1000 -1012.85 +- 0.849657 -39.8091 +- 1.04461 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [750,1250] --> [750,1250] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [750,1250] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=23239.4 FROM MIGRAD STATUS=INITIATE 64 CALLS 65 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01500e+03 7.00000e+00 0.00000e+00 -1.27750e+02 - 2 sg_p1 3.25000e+01 1.50000e+00 0.00000e+00 1.26948e-01 - 3 sg_p2 8.74738e-01 5.00000e-01 0.00000e+00 1.80702e+02 - 4 sg_p3 9.26595e-01 7.00000e-01 -8.26048e-01 -4.27618e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23209.7 FROM MIGRAD STATUS=CONVERGED 237 CALLS 238 TOTAL - EDM=0.00014251 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01577e+03 8.64818e-01 2.10463e-03 2.40523e-01 - 2 sg_p1 3.99999e+01 1.00303e+00 5.37328e-02 -1.94869e-02 - 3 sg_p2 1.13318e+00 5.62974e-02 2.39200e-03 -5.76330e-02 - 4 sg_p3 1.52247e+00 6.86424e-02 2.34430e-03 1.64373e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.481e-01 -1.096e-03 2.562e-02 -1.857e-02 - -1.096e-03 4.530e-04 -1.315e-04 -8.807e-05 - 2.562e-02 -1.315e-04 3.170e-03 -3.976e-04 - -1.857e-02 -8.807e-05 -3.976e-04 4.713e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.58719 1.000 -0.060 0.526 -0.313 - 2 0.13360 -0.060 1.000 -0.110 -0.060 - 3 0.53513 0.526 -0.110 1.000 -0.103 - 4 0.32913 -0.313 -0.060 -0.103 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23209.7 FROM HESSE STATUS=OK 29 CALLS 267 TOTAL - EDM=0.000133982 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 1.01577e+03 8.73102e-01 4.20925e-04 2.20882e-02 - 2 sg_p1 3.99999e+01 1.01940e+00 2.14931e-03 1.56537e+00 - 3 sg_p2 1.13318e+00 5.62622e-02 9.56802e-05 -5.78450e-01 - 4 sg_p3 1.52247e+00 7.21948e-02 7.98704e-02 -6.00445e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.625e-01 2.144e-04 2.611e-02 -2.173e-02 - 2.144e-04 4.606e-04 2.659e-05 2.032e-05 - 2.611e-02 2.659e-05 3.166e-03 -5.636e-04 - -2.173e-02 2.032e-05 -5.636e-04 5.213e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.59764 1.000 0.011 0.531 -0.345 - 2 0.02791 0.011 1.000 0.022 0.013 - 3 0.53363 0.531 0.022 1.000 -0.139 - 4 0.34900 -0.345 0.013 -0.139 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -1000 -1015.77 +- 0.873102 -39.9999 +- 1.0194 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [750,1250] --> [750,1250] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [750,1250] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=23904.2 FROM MIGRAD STATUS=INITIATE 63 CALLS 64 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01500e+03 7.00000e+00 0.00000e+00 -1.58334e+02 - 2 sg_p1 3.25000e+01 1.50000e+00 0.00000e+00 -6.45414e+00 - 3 sg_p2 9.40575e-01 5.00000e-01 0.00000e+00 2.02619e+02 - 4 sg_p3 9.50207e-01 7.00000e-01 -8.16148e-01 -4.42963e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23871.3 FROM MIGRAD STATUS=CONVERGED 250 CALLS 251 TOTAL - EDM=1.36548e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01639e+03 7.28586e-01 2.01823e-03 -1.76359e-02 - 2 sg_p1 4.00000e+01 7.49353e-01 4.69202e-02 -5.91552e-03 - 3 sg_p2 1.26989e+00 5.63661e-02 2.54093e-03 8.80770e-02 - 4 sg_p3 1.53945e+00 6.56083e-02 2.27702e-03 -7.24550e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.309e-01 -7.297e-05 1.348e-02 -1.019e-02 - -7.297e-05 1.681e-05 -1.973e-05 -2.021e-05 - 1.348e-02 -1.973e-05 3.178e-03 5.005e-04 - -1.019e-02 -2.021e-05 5.005e-04 4.305e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.41880 1.000 -0.024 0.328 -0.213 - 2 0.10777 -0.024 1.000 -0.085 -0.075 - 3 0.39425 0.328 -0.085 1.000 0.135 - 4 0.31076 -0.213 -0.075 0.135 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23871.3 FROM HESSE STATUS=OK 23 CALLS 274 TOTAL - EDM=1.44816e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 1.01639e+03 7.40109e-01 4.03646e-04 3.97032e-02 - 2 sg_p1 4.00000e+01 7.56384e-01 9.38403e-03 1.56958e+00 - 3 sg_p2 1.26989e+00 5.58118e-02 1.01637e-04 -5.14435e-01 - 4 sg_p3 1.53945e+00 6.43105e-02 9.10809e-05 -5.94577e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.478e-01 -1.128e-05 1.525e-02 -1.306e-02 - -1.128e-05 1.697e-05 -2.641e-06 -2.503e-06 - 1.525e-02 -2.641e-06 3.116e-03 -1.984e-04 - -1.306e-02 -2.503e-06 -1.984e-04 4.137e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.44819 1.000 -0.004 0.369 -0.274 - 2 0.01546 -0.004 1.000 -0.011 -0.009 - 3 0.37224 0.369 -0.011 1.000 -0.055 - 4 0.27895 -0.274 -0.009 -0.055 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -1000 -1016.39 +- 0.740109 -40 +- 0.756384 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [750,1250] --> [750,1250] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [750,1250] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=16426.3 FROM MIGRAD STATUS=INITIATE 52 CALLS 53 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01500e+03 7.00000e+00 0.00000e+00 2.76971e+02 - 2 sg_p1 3.25000e+01 1.50000e+00 0.00000e+00 -7.40412e+01 - 3 sg_p2 7.53407e-01 5.00000e-01 0.00000e+00 -2.61313e+02 - 4 sg_p3 1.41708e+00 7.00000e-01 -6.37416e-01 3.61680e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16380.4 FROM MIGRAD STATUS=CONVERGED 204 CALLS 205 TOTAL - EDM=1.2739e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01657e+03 9.77555e-01 2.06312e-03 -3.61028e-03 - 2 sg_p1 4.00000e+01 6.78180e-01 3.73477e-02 -7.76696e-03 - 3 sg_p2 1.22238e+00 6.09231e-02 2.33024e-03 -3.84112e-02 - 4 sg_p3 1.49153e+00 9.35612e-02 2.57411e-03 -3.75876e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.559e-01 3.743e-05 2.152e-02 -4.133e-02 - 3.743e-05 2.111e-05 -9.720e-06 -2.510e-05 - 2.152e-02 -9.720e-06 3.713e-03 -6.103e-04 - -4.133e-02 -2.510e-05 -6.103e-04 8.757e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.55051 1.000 0.008 0.361 -0.452 - 2 0.07170 0.008 1.000 -0.035 -0.058 - 3 0.36817 0.361 -0.035 1.000 -0.107 - 4 0.45868 -0.452 -0.058 -0.107 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16380.4 FROM HESSE STATUS=OK 23 CALLS 228 TOTAL - EDM=1.33694e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 1.01657e+03 9.74476e-01 4.12624e-04 4.48931e-02 - 2 sg_p1 4.00000e+01 6.79952e-01 7.46954e-03 1.56937e+00 - 3 sg_p2 1.22238e+00 6.06205e-02 9.32097e-05 -5.36402e-01 - 4 sg_p3 1.49153e+00 9.34142e-02 1.02965e-04 -6.11196e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.499e-01 5.447e-06 2.083e-02 -4.116e-02 - 5.447e-06 2.117e-05 -1.283e-06 -3.388e-06 - 2.083e-02 -1.283e-06 3.676e-03 -5.904e-04 - -4.116e-02 -3.388e-06 -5.904e-04 8.729e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.54649 1.000 0.001 0.353 -0.452 - 2 0.00962 0.001 1.000 -0.005 -0.008 - 3 0.35791 0.353 -0.005 1.000 -0.104 - 4 0.45594 -0.452 -0.008 -0.104 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -1000 -1016.57 +- 0.974476 -40 +- 0.679952 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [750,1250] --> [750,1250] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [750,1250] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=33287.9 FROM MIGRAD STATUS=INITIATE 55 CALLS 56 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01500e+03 7.00000e+00 0.00000e+00 3.29127e+02 - 2 sg_p1 3.25000e+01 1.50000e+00 0.00000e+00 -2.09458e+02 - 3 sg_p2 8.91728e-01 5.00000e-01 0.00000e+00 7.37516e+01 - 4 sg_p3 1.41601e+00 7.00000e-01 -6.37796e-01 6.89934e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=33210.9 FROM MIGRAD STATUS=CONVERGED 218 CALLS 219 TOTAL - EDM=5.9663e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01659e+03 6.86602e-01 2.06298e-03 6.23454e-02 - 2 sg_p1 4.00000e+01 3.36413e-01 3.74809e-02** at limit ** - 3 sg_p2 1.22194e+00 4.27738e-02 2.32926e-03 -6.40806e-02 - 4 sg_p3 1.49222e+00 6.57997e-02 2.57024e-03 -1.52134e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.715e-01 8.305e-06 1.061e-02 -2.041e-02 - 8.305e-06 1.928e-06 -2.165e-06 -5.598e-06 - 1.061e-02 -2.165e-06 1.830e-03 -3.008e-04 - -2.041e-02 -5.598e-06 -3.008e-04 4.330e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.55055 1.000 0.009 0.361 -0.452 - 2 0.07527 0.009 1.000 -0.036 -0.061 - 3 0.36846 0.361 -0.036 1.000 -0.107 - 4 0.45894 -0.452 -0.061 -0.107 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=33210.9 FROM HESSE STATUS=OK 23 CALLS 242 TOTAL - EDM=6.1799e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 1.01659e+03 6.84411e-01 4.12596e-04 4.54194e-02 - 2 sg_p1 4.00000e+01 3.37160e-01 7.49617e-03 1.57018e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 3 sg_p2 1.22194e+00 4.25566e-02 9.31704e-05 -5.36608e-01 - 4 sg_p3 1.49222e+00 6.56863e-02 1.02809e-04 -6.10958e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.685e-01 1.563e-06 1.027e-02 -2.032e-02 - 1.563e-06 1.932e-06 -3.692e-07 -9.768e-07 - 1.027e-02 -3.692e-07 1.811e-03 -2.913e-04 - -2.032e-02 -9.768e-07 -2.913e-04 4.315e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.54648 1.000 0.002 0.353 -0.452 - 2 0.01305 0.002 1.000 -0.006 -0.011 - 3 0.35799 0.353 -0.006 1.000 -0.104 - 4 0.45593 -0.452 -0.011 -0.104 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -1000 -1016.59 +- 0.684411 -40 +- 0.33716 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 1016.58 +- 0.810249 (stat) - 3.72609 + 1.73193 (syst); -3.74805/+1.77868 (total) - Uncertainty on sg_p1 = 40 +- 0.469104 (stat) - 0.190863 + 0 (syst); -0.302396/+0.234552 (total) - Uncertainty on sg_p2 = 1.2224 +- 0.0504194 (stat) - 0.0985888 + 0.0474949 (syst); -0.101761/+0.0537708 (total) - Uncertainty on sg_p3 = 1.49206 +- 0.0777461 (stat) - 0.0275125 + 0.0480377 (syst); -0.0476241/+0.0617959 (total) - === Baseline plot ===
- norm = 330.727 -JEC lnN 1.01006 - -JER lnN 1.0152 - -btag lnN 1.35523 - -sg_p0 param 1016.58 -3.74805/+1.77868 -sg_p1 param 40 -0.302396/+0.234552 -sg_p2 param 1.2224 -0.101761/+0.0537708 -sg_p3 param 1.49206 -0.0476241/+0.0617959 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_550_crystal_1_550_1200/data_bkg.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_550_crystal_1_550_1200/data_bkg.log deleted file mode 100644 index a966e12..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_550_crystal_1_550_1200/data_bkg.log +++ /dev/null @@ -1,690 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10879.7 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 6.74624e-01 5.09000e-01 -8.31364e-01 -1.01971e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -3.20610e+01 - 3 par_crystal_2 5.00000e+02 2.00000e+01 0.00000e+00 -9.48837e+00 - 4 par_crystal_3 1.05000e+02 1.90000e+01 0.00000e+00 2.45317e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7116e+01 9.9978e-01 1.9597e+00 1.8156e+01 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 17.134017 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 27 CALLS 314 TOTAL - EDM=0.131054 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.06594e+00 6.09301e-02 1.43210e-03 -8.77809e-01 - 2 par_crystal_1 5.09576e+00 7.69298e-02 8.09031e-02 -5.13188e-02 - 3 par_crystal_2 4.95224e+02 7.91481e+01 2.17679e-03 -5.43249e-01 - 4 par_crystal_3 1.90900e+02 9.54958e+00 1.13079e-02 4.60762e-02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 477 CALLS 478 TOTAL - EDM=0.0370129 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.11079e+00 8.93309e-02 0.00000e+00 -4.75984e-01 - 2 par_crystal_1 5.08061e+00 3.60144e-01 0.00000e+00 -1.14416e-01 - 3 par_crystal_2 4.76040e+02 1.75614e+01 0.00000e+00 -2.32451e-01 - 4 par_crystal_3 1.99914e+02 2.77391e+01 0.00000e+00 -7.67572e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.985e-03 -2.091e-03 1.499e+00 2.820e-01 - -2.091e-03 2.873e-02 -7.387e-01 -2.900e-02 - 1.499e+00 -7.387e-01 3.118e+02 5.244e+01 - 2.820e-01 -2.900e-02 5.244e+01 1.008e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99775 1.000 -0.138 0.950 0.994 - 2 0.79882 -0.138 1.000 -0.247 -0.054 - 3 0.95717 0.950 -0.247 1.000 0.935 - 4 0.99764 0.994 -0.054 0.935 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.8 FROM HESSE STATUS=OK 27 CALLS 505 TOTAL - EDM=0.0183624 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.11079e+00 4.31984e-02 1.44775e-03 -6.03431e-01 - 2 par_crystal_1 5.08061e+00 3.28337e+00 6.64371e-02 1.44728e+00 - 3 par_crystal_2 4.76040e+02 8.02153e+00 1.45036e-02 3.38355e+00 - 4 par_crystal_3 1.99914e+02 2.26294e+01 4.50606e-02 1.52819e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.866e-03 -1.951e-03 -2.584e-03 1.946e-02 - -1.951e-03 1.028e-01 6.675e-04 3.793e-04 - -2.584e-03 6.675e-04 6.449e+01 1.116e+00 - 1.946e-02 3.793e-04 1.116e+00 8.140e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.21215 1.000 -0.141 -0.007 0.158 - 2 0.14274 -0.141 1.000 0.000 0.000 - 3 0.05109 -0.007 0.000 1.000 0.049 - 4 0.16712 0.158 0.000 0.049 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10978.6 FROM MIGRAD STATUS=INITIATE 68 CALLS 69 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 6.03110e+02 3.00000e+01 -8.97402e-01 -6.52175e+01 - 2 par_gaus_exp_1 5.45000e+01 9.10000e+00 0.00000e+00 -4.62060e+02 - 3 par_gaus_exp_2 4.12114e-01 3.05000e-01 0.00000e+00 1.25553e+03 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.9 FROM HESSE STATUS=OK 18 CALLS 182 TOTAL - EDM=0.000691453 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.46431e+02 6.06936e+00 3.17833e-03 -3.92855e-01 - 2 par_gaus_exp_1 6.65716e+01 1.75685e+01 2.62647e-03 1.43349e-01 - 3 par_gaus_exp_2 3.07505e-01 8.37981e-02 8.79822e-04 -3.06196e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM MIGRAD STATUS=CONVERGED 316 CALLS 317 TOTAL - EDM=9.19369e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.62504e+02 3.53152e+00 1.63243e-03 -1.66316e-01 - 2 par_gaus_exp_1 2.46552e+01 1.25211e+01 1.75085e-03 -3.48771e-01 - 3 par_gaus_exp_2 1.14604e-01 5.89219e-02 6.31447e-04 9.83138e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.247e+01 -1.544e+01 -6.961e-02 - -1.544e+01 1.643e+02 7.558e-01 - -6.961e-02 7.558e-01 3.493e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.35636 1.000 -0.341 -0.333 - 2 0.99789 -0.341 1.000 0.998 - 3 0.99788 -0.333 0.998 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM HESSE STATUS=OK 16 CALLS 333 TOTAL - EDM=9.89177e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 5.62504e+02 3.77274e+00 6.52972e-05 8.34552e-02 - 2 par_gaus_exp_1 2.46552e+01 1.46349e+01 3.50170e-04 -7.15413e-01 - 3 par_gaus_exp_2 1.14604e-01 6.93856e-02 1.26289e-04 -1.27868e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.424e+01 -2.545e+01 -1.157e-01 - -2.545e+01 2.286e+02 1.052e+00 - -1.157e-01 1.052e+00 4.855e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.45683 1.000 -0.446 -0.440 - 2 0.99849 -0.446 1.000 0.998 - 3 0.99848 -0.440 0.998 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (13168.6) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=575, par_novo_1=100, par_novo_2=1.58864 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 575,par_novo_1 = 100,par_novo_2 = 1.58864) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=645, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=655, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=665, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=675, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=685, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=695, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=705, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=715, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=725, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=735, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=745, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=755, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - ... (remaining 46 messages suppressed) - - FCN=13054.5 FROM MIGRAD STATUS=INITIATE 14 CALLS 15 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.75000e+02 1.50000e+01 2.01358e-01 -1.22938e+03 - 2 par_novo_1 1.00000e+02 2.00000e+01 2.01358e-01 -6.98326e+03 - 3 par_novo_2 0.00000e+00 2.00000e+01 2.01358e-01 1.51249e+06 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM MIGRAD STATUS=CONVERGED 220 CALLS 221 TOTAL - EDM=2.09668e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.00000e+02 1.21837e+02 1.25149e-01 -7.30463e-04 - 2 par_novo_1 1.30637e+02 1.58558e+01 3.16845e-03 -1.76078e-02 - 3 par_novo_2 -6.95187e-01 1.36663e-01 2.61078e-05 1.74080e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.121e-01 -9.460e-01 -6.449e-03 - -9.460e-01 2.538e+02 2.099e+00 - -6.449e-03 2.099e+00 1.868e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.21023 1.000 -0.177 -0.141 - 2 0.96488 -0.177 1.000 0.964 - 3 0.96445 -0.141 0.964 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM HESSE STATUS=OK 20 CALLS 241 TOTAL - EDM=1.01397e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 5.00000e+02 1.20312e+02 5.00000e-01 -1.57325e+00 - 2 par_novo_1 1.30637e+02 2.01762e+01 1.26738e-04 3.11381e-01 - 3 par_novo_2 -6.95187e-01 1.62575e-01 1.04431e-06 -6.95192e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.070e-01 -4.278e+00 -2.995e-02 - -4.278e+00 4.133e+02 3.212e+00 - -2.995e-02 3.212e+00 2.643e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.69436 1.000 -0.643 -0.563 - 2 0.97859 -0.643 1.000 0.972 - 3 0.97501 -0.563 0.972 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10877 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 6.33849e-01 5.09000e-01 -8.55460e-01 -1.25390e+02 - 2 par_crystal_1_1 2.55500e+00 5.09000e-01 0.00000e+00 -2.69495e+01 - 3 par_crystal_1_2 5.50000e+02 3.00000e+01 0.00000e+00 -1.44080e+01 - 4 par_crystal_1_3 1.04500e+02 1.91000e+01 0.00000e+00 3.07979e+01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.43469 added to diagonal of error matrix - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.5401e+00 8.4221e-02 1.8087e+00 3.6472e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 1.543714 TO DIAGONAL. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.9 FROM HESSE STATUS=OK 25 CALLS 485 TOTAL - EDM=0.0491336 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.05623e+00 1.52463e-01 1.42446e-03 -1.90900e+00 - 2 par_crystal_1_1 5.09988e+00 3.18944e+00 7.54811e-02 -8.93342e-03 - 3 par_crystal_1_2 4.96280e+02 4.98347e+01 9.02051e-03 3.58498e-02 - 4 par_crystal_1_3 1.89188e+02 2.78069e+01 1.02856e-02 -2.38185e-01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 538 CALLS 539 TOTAL - EDM=10.0867 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 14.1 per cent - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.09723e+00 3.02575e-02 -0.00000e+00 5.47416e+01 - 2 par_crystal_1_1 5.09997e+00 3.18368e+00 0.00000e+00 -3.90351e-03 - 3 par_crystal_1_2 4.83329e+02 2.76558e+01 0.00000e+00 7.05236e+00 - 4 par_crystal_1_3 1.96552e+02 5.80629e+00 -0.00000e+00 4.39990e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.156e-04 -1.804e-07 -6.742e-01 1.111e-01 - -1.804e-07 1.763e-04 7.888e-03 -2.154e-03 - -6.742e-01 7.888e-03 7.759e+02 -1.463e+02 - 1.111e-01 -2.154e-03 -1.463e+02 3.432e+01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.82553 1.000 -0.000 -0.800 0.627 - 2 0.03650 -0.000 1.000 0.021 -0.028 - 3 0.94703 -0.800 0.021 1.000 -0.896 - 4 0.90888 0.627 -0.028 -0.896 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -9.7852e-01 9.9996e-01 1.9836e+00 1.9949e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.980510 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 29 CALLS 568 TOTAL - EDM=238.514 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 1.09723e+00 4.25322e-02 2.54943e-04 -6.09913e-01 - 2 par_crystal_1_1 5.09997e+00 7.84798e-01 8.54763e-02 1.56580e+00 - 3 par_crystal_1_2 4.83329e+02 1.87856e+01 1.76414e-03 -4.60588e-01 - 4 par_crystal_1_3 1.96552e+02 5.33115e+00 2.63738e-03 1.30128e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.809e-03 -2.197e-07 8.001e-01 2.280e-01 - -2.197e-07 1.053e-04 -1.173e-04 -3.665e-05 - 8.001e-01 -1.173e-04 3.552e+02 1.010e+02 - 2.280e-01 -3.665e-05 1.010e+02 2.885e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99849 1.000 -0.001 0.998 0.998 - 2 0.00265 -0.001 1.000 -0.001 -0.001 - 3 0.99848 0.998 -0.001 1.000 0.998 - 4 0.99849 0.998 -0.001 0.998 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_550_1200 = 1266.17 - Background number of gaus_exp_550_1200 = 1266.17 - Background number of novo_550_1200 = 1266.17 - Background number of crystal_1_550_1200 = 1266.17 - Background number of gaus_bern_550_1200 = 1266.17 - Background number of landau_550_1200 = 1266.17 -par_crystal_0 param 1.11079 0.0431984 -par_crystal_1 param 5.08061 3.28337 -par_crystal_2 param 476.04 8.02153 -par_crystal_3 param 199.914 22.6294 -par_crystal_1_0 param 1.09723 0.0425322 -par_crystal_1_1 param 5.09997 0.784798 -par_crystal_1_2 param 483.329 18.7856 -par_crystal_1_3 param 196.552 5.33115 -par_gaus_exp_0 param 562.504 3.77274 -par_gaus_exp_1 param 24.6552 14.6349 -par_gaus_exp_2 param 0.114604 0.0693856 -par_novo_0 param 500 120.312 -par_novo_1 param 130.637 20.1762 -par_novo_2 param -0.695187 0.162575 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_550_crystal_1_550_1200/datacard_550_crystal_1_550_1200.txt b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_550_crystal_1_550_1200/datacard_550_crystal_1_550_1200.txt deleted file mode 100644 index 76afcc1..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_550_crystal_1_550_1200/datacard_550_crystal_1_550_1200.txt +++ /dev/null @@ -1,30 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_550.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_crystal_1_550_1200.root HbbHbb:f_crystal_1 -shapes data_obs HbbHbb w_background_crystal_1_550_1200.root HbbHbb:data_obs_crystal_1_550_1200 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 2.47576 1266.17 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06518 - -JER lnN 1.01484 - -JEC lnN 1.02905 - -trigger lnN 1.10 - -PDF lnN 1.02229693932 - -sg_p0 param 557.153 -0.841572/+1.72896 -sg_p1 param 15.9907 -1.40739/+0.147463 -sg_p2 param 1.40719 -0.132995/+0.0332402 -sg_p3 param 1.40947 -0.296917/+0.0302524 -par_crystal_1_0 param 1.09723 0.0425322 -par_crystal_1_1 param 5.09997 0.784798 -par_crystal_1_2 param 483.329 18.7856 -par_crystal_1_3 param 196.552 5.33115 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_550_crystal_1_550_1200/pdf.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_550_crystal_1_550_1200/pdf.log deleted file mode 100644 index 259cbcf..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_550_crystal_1_550_1200/pdf.log +++ /dev/null @@ -1,10 +0,0 @@ -[?1034h FCN=13.8549 FROM MIGRAD STATUS=CONVERGED 70 CALLS 71 TOTAL - EDM=1.39547e-10 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 Constant 1.33669e+01 1.80554e+00 2.71051e-03 4.30284e-06 - 2 Mean 9.99344e-01 2.90546e-03 5.44875e-06 -4.96208e-03 - 3 Sigma 2.22969e-02 2.61448e-03 6.50610e-05 1.72213e-05 -0.999344037733 +/- 0.0029054638886 -0.0222969393194 +/- 0.00261447795001 -PDF lnN 1.02229693932 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_550_crystal_1_550_1200/signal550_sig.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_550_crystal_1_550_1200/signal550_sig.log deleted file mode 100644 index 95176bb..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_550_crystal_1_550_1200/signal550_sig.log +++ /dev/null @@ -1,949 +0,0 @@ - -Processing test.c... -nSignal_init = 100000 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [350,750] --> [350,750] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [450,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [350,750] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [450,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=16548.5 FROM MIGRAD STATUS=INITIATE 59 CALLS 60 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.40000e+02 6.00000e+00 0.00000e+00 8.36856e+01 - 2 sg_p1 2.25000e+01 2.50000e+00 0.00000e+00 -2.13036e+02 - 3 sg_p2 9.96389e-01 5.00000e-01 0.00000e+00 -2.10001e+01 - 4 sg_p3 1.33793e+00 7.00000e-01 -6.65859e-01 1.43037e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.05392 added to diagonal of error matrix - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16467.8 FROM MIGRAD STATUS=CONVERGED 433 CALLS 434 TOTAL - EDM=1.19101e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.41842e+02 5.12497e-01 1.51068e-03 3.12657e-02 - 2 sg_p1 2.95617e+01 3.82692e-01 3.23918e-03 3.18610e-03 - 3 sg_p2 2.26823e+00 2.06532e-01 7.22656e-03 -7.81355e-04 - 4 sg_p3 3.13392e+00 1.77814e+00 6.15202e-02 -1.76290e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.627e-01 2.925e-03 9.483e-03 -3.748e-10 - 2.925e-03 1.465e-01 1.367e-02 -4.881e-11 - 9.483e-03 1.367e-02 4.275e-02 -1.530e-10 - -3.748e-10 -4.881e-11 -1.530e-10 3.483e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.08948 1.000 0.015 0.089 -0.000 - 2 0.17277 0.015 1.000 0.173 -0.000 - 3 0.19340 0.089 0.173 1.000 -0.000 - 4 0.00000 -0.000 -0.000 -0.000 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16467.8 FROM HESSE STATUS=OK 29 CALLS 463 TOTAL - EDM=3.87994e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.41842e+02 5.12297e-01 3.02136e-04 6.14367e-02 - 2 sg_p1 2.95617e+01 3.82068e-01 1.29567e-04 6.00358e-01 - 3 sg_p2 2.26823e+00 2.05837e-01 2.89062e-04 -9.28432e-02 - 4 sg_p3 3.13392e+00 6.62343e-01 3.58606e-01 -1.04787e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.625e-01 2.466e-03 8.976e-03 1.615e-11 - 2.466e-03 1.460e-01 1.286e-02 2.313e-11 - 8.976e-03 1.286e-02 4.247e-02 7.639e-11 - 1.615e-11 2.313e-11 7.639e-11 4.441e-01 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.08503 1.000 0.013 0.085 0.000 - 2 0.16331 0.013 1.000 0.163 0.000 - 3 0.18317 0.085 0.163 1.000 0.000 - 4 0.00000 0.000 0.000 0.000 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -550 -541.842 +- 0.512297 -29.5617 +- 0.382068 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [350,750] --> [350,750] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [450,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [350,750] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [450,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=16779.6 FROM MIGRAD STATUS=INITIATE 54 CALLS 55 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.40000e+02 6.00000e+00 0.00000e+00 -8.37041e+01 - 2 sg_p1 2.25000e+01 2.50000e+00 0.00000e+00 -1.07475e+02 - 3 sg_p2 8.65799e-01 5.00000e-01 0.00000e+00 -7.40551e+01 - 4 sg_p3 1.35564e+00 7.00000e-01 -6.59439e-01 6.28488e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16685.9 FROM HESSE STATUS=OK 27 CALLS 282 TOTAL - EDM=0.102246 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.44552e+02 5.08282e-01 1.52398e-03 -1.54852e-01 - 2 sg_p1 2.95922e+01 3.76777e-01 3.22494e-03 -3.69769e-02 - 3 sg_p2 2.45278e+00 3.27164e-01 1.16491e-02 1.26745e-02 - 4 sg_p3 3.35460e+00 1.18039e+00 3.11390e-01 -1.31335e+00 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=16685.9 FROM MIGRAD STATUS=CONVERGED 295 CALLS 296 TOTAL - EDM=2.81269e-08 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 0.0 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.44554e+02 5.08278e-01 4.34002e-05 -1.50856e-04 - 2 sg_p1 2.95926e+01 3.76767e-01 4.09576e-05 -4.62961e-04 - 3 sg_p2 2.45238e+00 3.27162e-01 -1.58660e-04 -1.77907e-03 - 4 sg_p3 3.89863e+00 1.17372e+00 1.55695e-01 0.00000e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.584e-01 3.013e-03 1.443e-02 3.104e-05 - 3.013e-03 1.420e-01 2.058e-02 5.573e-05 - 1.443e-02 2.058e-02 1.077e-01 2.055e-04 - 3.104e-05 5.573e-05 2.055e-04 1.433e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.08655 1.000 0.016 0.087 0.000 - 2 0.16643 0.016 1.000 0.166 0.000 - 3 0.18640 0.087 0.166 1.000 0.001 - 4 0.00052 0.000 0.000 0.001 1.000 - ********** - ** 18 **HESSE 2000 - ********** - MINUIT WARNING IN HESSE - ============== Second derivative enters zero, param 4 - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16685.9 FROM HESSE STATUS=OK 31 CALLS 327 TOTAL - EDM=0.378043 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.44554e+02 5.08418e-01 1.52334e-03 1.52374e-01 - 2 sg_p1 2.95926e+01 3.77155e-01 1.28998e-03 6.03355e-01 - 3 sg_p2 2.45238e+00 3.27373e-01 4.65962e-03 -1.90491e-02 - 4 sg_p3 3.89863e+00 1.40113e+00 5.10000e-01 1.14141e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.585e-01 3.222e-03 1.491e-02 4.426e-12 - 3.222e-03 1.423e-01 2.127e-02 -3.793e-11 - 1.491e-02 2.127e-02 1.078e-01 3.265e-11 - 4.426e-12 -3.793e-11 3.265e-11 2.080e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.08933 1.000 0.017 0.089 0.000 - 2 0.17177 0.017 1.000 0.172 -0.000 - 3 0.19229 0.089 0.172 1.000 0.000 - 4 0.00000 0.000 -0.000 0.000 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -550 -544.554 +- 0.508418 -29.5926 +- 0.377155 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [350,750] --> [350,750] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [450,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [350,750] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [450,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=15773.3 FROM MIGRAD STATUS=INITIATE 56 CALLS 57 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.40000e+02 6.00000e+00 0.00000e+00 1.21147e+02 - 2 sg_p1 2.25000e+01 2.50000e+00 0.00000e+00 -1.80759e+02 - 3 sg_p2 1.10607e+00 5.00000e-01 0.00000e+00 -3.61854e+01 - 4 sg_p3 1.15878e+00 7.00000e-01 -7.32755e-01 8.10605e+01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.37034 added to diagonal of error matrix - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15704.6 FROM MIGRAD STATUS=CONVERGED 357 CALLS 358 TOTAL - EDM=1.29397e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.39647e+02 5.17185e-01 1.48655e-03 -1.89345e-02 - 2 sg_p1 2.91881e+01 3.85671e-01 3.11579e-03 3.89872e-03 - 3 sg_p2 2.31906e+00 2.28533e-01 7.79945e-03 -3.76001e-04 - 4 sg_p3 3.12530e+00 1.84829e+00 8.28757e-02 -7.72724e-05 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.675e-01 1.706e-03 1.012e-02 1.242e-12 - 1.706e-03 1.488e-01 1.489e-02 1.083e-10 - 1.012e-02 1.489e-02 5.237e-02 1.084e-11 - 1.242e-12 1.083e-10 1.084e-11 3.797e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.08574 1.000 0.009 0.086 0.000 - 2 0.16875 0.009 1.000 0.169 0.000 - 3 0.18845 0.086 0.169 1.000 0.000 - 4 0.00000 0.000 0.000 0.000 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15704.6 FROM HESSE STATUS=OK 27 CALLS 385 TOTAL - EDM=0.802787 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.39647e+02 5.17333e-01 2.97309e-04 -1.17805e-02 - 2 sg_p1 2.91881e+01 3.86088e-01 1.24632e-04 5.64568e-01 - 3 sg_p2 2.31906e+00 2.28870e-01 3.11978e-04 -7.24379e-02 - 4 sg_p3 3.12530e+00 7.00822e-01 3.63374e-01 -1.07263e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.677e-01 1.770e-03 1.052e-02 3.022e-11 - 1.770e-03 1.491e-01 1.546e-02 -6.678e-11 - 1.052e-02 1.546e-02 5.253e-02 4.080e-11 - 3.022e-11 -6.678e-11 4.080e-11 4.979e-01 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.08899 1.000 0.009 0.089 0.000 - 2 0.17483 0.009 1.000 0.175 -0.000 - 3 0.19525 0.089 0.175 1.000 0.000 - 4 0.00000 0.000 -0.000 0.000 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -550 -539.647 +- 0.517333 -29.1881 +- 0.386088 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [390,750] --> [390,750] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [390,750] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=14837.3 FROM MIGRAD STATUS=INITIATE 51 CALLS 52 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.55000e+02 5.00000e+00 0.00000e+00 -5.62915e+02 - 2 sg_p1 1.50000e+01 2.00000e+00 0.00000e+00 -2.92186e+02 - 3 sg_p2 1.33485e+00 5.00000e-01 0.00000e+00 1.12519e+02 - 4 sg_p3 1.63806e+00 7.00000e-01 -5.60940e-01 1.42255e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14796.3 FROM MIGRAD STATUS=CONVERGED 175 CALLS 176 TOTAL - EDM=1.79394e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.57153e+02 3.21384e-01 1.00803e-03 -2.87826e-01 - 2 sg_p1 1.59907e+01 2.94249e-01 1.95331e-03 -7.46933e-02 - 3 sg_p2 1.40719e+00 6.63431e-02 1.98696e-03 1.23037e-01 - 4 sg_p3 1.40947e+00 6.04329e-02 1.61506e-03 3.47616e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.033e-01 1.010e-02 6.404e-03 -2.894e-03 - 1.010e-02 8.661e-02 1.063e-02 7.128e-03 - 6.404e-03 1.063e-02 4.403e-03 8.132e-04 - -2.894e-03 7.128e-03 8.132e-04 3.653e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.36907 1.000 0.107 0.300 -0.149 - 2 0.62006 0.107 1.000 0.545 0.401 - 3 0.59757 0.300 0.545 1.000 0.203 - 4 0.44647 -0.149 0.401 0.203 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14796.3 FROM HESSE STATUS=OK 23 CALLS 199 TOTAL - EDM=1.79239e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.57153e+02 3.21538e-01 2.01606e-04 8.62318e-02 - 2 sg_p1 1.59907e+01 2.94927e-01 3.90662e-04 9.92360e-02 - 3 sg_p2 1.40719e+00 6.64804e-02 7.94782e-05 -4.52397e-01 - 4 sg_p3 1.40947e+00 6.05049e-02 6.46026e-05 -6.40123e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.034e-01 1.015e-02 6.439e-03 -2.895e-03 - 1.015e-02 8.701e-02 1.072e-02 7.193e-03 - 6.439e-03 1.072e-02 4.421e-03 8.247e-04 - -2.895e-03 7.193e-03 8.247e-04 3.661e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.37018 1.000 0.107 0.301 -0.149 - 2 0.62233 0.107 1.000 0.547 0.403 - 3 0.59978 0.301 0.547 1.000 0.205 - 4 0.44859 -0.149 0.403 0.205 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -550 -557.153 +- 0.321538 -15.9907 +- 0.294927 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 - fit done -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [390,750] --> [390,750] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [390,750] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=15106.5 FROM MIGRAD STATUS=INITIATE 55 CALLS 56 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.55000e+02 5.00000e+00 0.00000e+00 -4.27508e+02 - 2 sg_p1 1.50000e+01 2.00000e+00 0.00000e+00 5.60673e+01 - 3 sg_p2 9.57872e-01 5.00000e-01 0.00000e+00 -1.96076e+02 - 4 sg_p3 1.43385e+00 7.00000e-01 -6.31466e-01 3.52996e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15049.6 FROM MIGRAD STATUS=CONVERGED 145 CALLS 146 TOTAL - EDM=1.59039e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.58875e+02 3.28831e-01 1.01097e-03 2.51867e-01 - 2 sg_p1 1.50106e+01 3.27326e-01 1.94006e-03 -7.48907e-02 - 3 sg_p2 1.28146e+00 5.35843e-02 1.64296e-03 -7.25386e-02 - 4 sg_p3 1.13283e+00 5.00773e-02 1.24085e-03 1.93411e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.081e-01 -1.435e-02 2.668e-03 -5.685e-03 - -1.435e-02 1.072e-01 9.872e-03 9.778e-03 - 2.668e-03 9.872e-03 2.872e-03 8.529e-04 - -5.685e-03 9.778e-03 8.529e-04 2.508e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.44454 1.000 -0.133 0.151 -0.345 - 2 0.71564 -0.133 1.000 0.563 0.596 - 3 0.61000 0.151 0.563 1.000 0.318 - 4 0.65614 -0.345 0.596 0.318 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15049.6 FROM HESSE STATUS=OK 23 CALLS 169 TOTAL - EDM=1.59031e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.58875e+02 3.28953e-01 2.02195e-04 1.55611e-01 - 2 sg_p1 1.50106e+01 3.28179e-01 3.88013e-04 1.06416e-03 - 3 sg_p2 1.28146e+00 5.36907e-02 6.57184e-05 -5.09126e-01 - 4 sg_p3 1.13283e+00 5.01651e-02 2.48171e-04 -7.42776e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.082e-01 -1.448e-02 2.668e-03 -5.699e-03 - -1.448e-02 1.077e-01 9.953e-03 9.852e-03 - 2.668e-03 9.953e-03 2.883e-03 8.627e-04 - -5.699e-03 9.852e-03 8.627e-04 2.517e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.44521 1.000 -0.134 0.151 -0.345 - 2 0.71741 -0.134 1.000 0.565 0.598 - 3 0.61203 0.151 0.565 1.000 0.320 - 4 0.65766 -0.345 0.598 0.320 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -550 -558.875 +- 0.328953 -15.0106 +- 0.328179 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [390,750] --> [390,750] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [390,750] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=14133.8 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.55000e+02 5.00000e+00 0.00000e+00 -3.22550e+02 - 2 sg_p1 1.50000e+01 2.00000e+00 0.00000e+00 -8.95889e+01 - 3 sg_p2 1.26916e+00 5.00000e-01 0.00000e+00 3.67893e+01 - 4 sg_p3 1.35775e+00 7.00000e-01 -6.58678e-01 -5.62243e+00 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14121.3 FROM MIGRAD STATUS=CONVERGED 210 CALLS 211 TOTAL - EDM=0.000238073 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.56327e+02 3.14482e-01 9.83418e-04 8.55741e-01 - 2 sg_p1 1.57284e+01 2.76951e-01 1.90229e-03 -1.45089e-01 - 3 sg_p2 1.38542e+00 5.70093e-02 1.81418e-03 3.93447e-01 - 4 sg_p3 1.37775e+00 5.81896e-02 1.54738e-03 1.23982e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.890e-02 1.894e-03 3.842e-03 -3.325e-03 - 1.894e-03 7.672e-02 7.163e-03 6.201e-03 - 3.842e-03 7.163e-03 3.251e-03 5.637e-04 - -3.325e-03 6.201e-03 5.637e-04 3.387e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.30810 1.000 0.022 0.214 -0.182 - 2 0.55065 0.022 1.000 0.454 0.385 - 3 0.49896 0.214 0.454 1.000 0.170 - 4 0.43088 -0.182 0.385 0.170 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14121.3 FROM HESSE STATUS=OK 23 CALLS 234 TOTAL - EDM=0.000238571 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.56327e+02 3.14566e-01 1.96684e-04 5.31070e-02 - 2 sg_p1 1.57284e+01 2.77362e-01 3.80459e-04 7.29003e-02 - 3 sg_p2 1.38542e+00 5.70763e-02 3.62837e-04 -4.62101e-01 - 4 sg_p3 1.37775e+00 5.82399e-02 3.09477e-04 -6.51471e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.896e-02 1.863e-03 3.856e-03 -3.331e-03 - 1.863e-03 7.695e-02 7.208e-03 6.244e-03 - 3.856e-03 7.208e-03 3.258e-03 5.699e-04 - -3.331e-03 6.244e-03 5.699e-04 3.392e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.30889 1.000 0.021 0.215 -0.182 - 2 0.55252 0.021 1.000 0.455 0.386 - 3 0.50072 0.215 0.455 1.000 0.171 - 4 0.43251 -0.182 0.386 0.171 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -550 -556.327 +- 0.314566 -15.7284 +- 0.277362 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [390,750] --> [390,750] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [390,750] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=14534.5 FROM MIGRAD STATUS=INITIATE 58 CALLS 59 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.55000e+02 5.00000e+00 0.00000e+00 -5.04994e+02 - 2 sg_p1 1.50000e+01 2.00000e+00 0.00000e+00 -1.14427e+02 - 3 sg_p2 1.18464e+00 5.00000e-01 0.00000e+00 9.96830e+01 - 4 sg_p3 1.38937e+00 7.00000e-01 -6.47305e-01 1.30603e+00 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14500.5 FROM MIGRAD STATUS=CONVERGED 185 CALLS 186 TOTAL - EDM=5.50119e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.58137e+02 3.32100e-01 9.95556e-04 1.68841e-01 - 2 sg_p1 1.48812e+01 3.22440e-01 1.91611e-03 3.95624e-02 - 3 sg_p2 1.27842e+00 5.09588e-02 1.60067e-03 -7.54823e-02 - 4 sg_p3 1.11410e+00 4.98337e-02 1.21814e-03 6.18485e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.103e-01 -2.020e-02 1.794e-03 -6.256e-03 - -2.020e-02 1.040e-01 8.614e-03 9.577e-03 - 1.794e-03 8.614e-03 2.597e-03 7.646e-04 - -6.256e-03 9.577e-03 7.646e-04 2.484e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.44749 1.000 -0.189 0.106 -0.378 - 2 0.69890 -0.189 1.000 0.524 0.596 - 3 0.56724 0.106 0.524 1.000 0.301 - 4 0.65666 -0.378 0.596 0.301 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14500.5 FROM HESSE STATUS=OK 23 CALLS 209 TOTAL - EDM=5.49735e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.58137e+02 3.32253e-01 1.99111e-04 1.25809e-01 - 2 sg_p1 1.48812e+01 3.23301e-01 7.66446e-05 -1.18793e-02 - 3 sg_p2 1.27842e+00 5.10516e-02 6.40269e-05 -5.10521e-01 - 4 sg_p3 1.11410e+00 4.99281e-02 4.87255e-05 -7.50065e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.104e-01 -2.039e-02 1.786e-03 -6.279e-03 - -2.039e-02 1.046e-01 8.688e-03 9.654e-03 - 1.786e-03 8.688e-03 2.607e-03 7.739e-04 - -6.279e-03 9.654e-03 7.739e-04 2.493e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.44831 1.000 -0.190 0.105 -0.378 - 2 0.70084 -0.190 1.000 0.526 0.598 - 3 0.56941 0.105 0.526 1.000 0.304 - 4 0.65830 -0.378 0.598 0.304 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -550 -558.137 +- 0.332253 -14.8812 +- 0.323301 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [390,750] --> [390,750] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [390,750] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=14860.1 FROM MIGRAD STATUS=INITIATE 55 CALLS 56 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.55000e+02 5.00000e+00 0.00000e+00 -5.96476e+02 - 2 sg_p1 1.50000e+01 2.00000e+00 0.00000e+00 -1.39102e+02 - 3 sg_p2 1.31219e+00 5.00000e-01 0.00000e+00 8.51723e+01 - 4 sg_p3 1.40309e+00 7.00000e-01 -6.42399e-01 -3.16309e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14830.1 FROM MIGRAD STATUS=CONVERGED 206 CALLS 207 TOTAL - EDM=2.32867e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.57839e+02 3.16310e-01 9.64235e-04 -9.53938e-03 - 2 sg_p1 1.45911e+01 3.04213e-01 1.85567e-03 -1.11765e-02 - 3 sg_p2 1.30884e+00 5.20626e-02 1.65224e-03 2.13112e-02 - 4 sg_p3 1.13165e+00 4.90247e-02 1.22393e-03 1.25630e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.001e-01 -1.679e-02 1.892e-03 -5.645e-03 - -1.679e-02 9.257e-02 8.162e-03 8.712e-03 - 1.892e-03 8.162e-03 2.711e-03 7.376e-04 - -5.645e-03 8.712e-03 7.376e-04 2.404e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.43494 1.000 -0.174 0.115 -0.364 - 2 0.68887 -0.174 1.000 0.515 0.584 - 3 0.55849 0.115 0.515 1.000 0.289 - 4 0.64393 -0.364 0.584 0.289 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14830.1 FROM HESSE STATUS=OK 23 CALLS 230 TOTAL - EDM=2.3344e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.57839e+02 3.16455e-01 3.85694e-05 1.13812e-01 - 2 sg_p1 1.45911e+01 3.05011e-01 7.42270e-05 -4.09030e-02 - 3 sg_p2 1.30884e+00 5.21549e-02 6.60897e-05 -4.96630e-01 - 4 sg_p3 1.13165e+00 4.91147e-02 4.89571e-05 -7.43231e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.001e-01 -1.696e-02 1.886e-03 -5.665e-03 - -1.696e-02 9.306e-02 8.232e-03 8.781e-03 - 1.886e-03 8.232e-03 2.721e-03 7.467e-04 - -5.665e-03 8.781e-03 7.467e-04 2.413e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.43580 1.000 -0.176 0.114 -0.364 - 2 0.69086 -0.176 1.000 0.517 0.586 - 3 0.56066 0.114 0.517 1.000 0.291 - 4 0.64559 -0.364 0.586 0.291 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -550 -557.839 +- 0.316455 -14.5911 +- 0.305011 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [390,750] --> [390,750] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [390,750] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=13882.6 FROM MIGRAD STATUS=INITIATE 72 CALLS 73 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.55000e+02 5.00000e+00 0.00000e+00 -3.85565e+02 - 2 sg_p1 1.50000e+01 2.00000e+00 0.00000e+00 -4.99994e+01 - 3 sg_p2 1.14901e+00 5.00000e-01 -8.51477e-02 2.28635e+00 - 4 sg_p3 1.41391e+00 7.00000e-01 0.00000e+00 1.79604e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=13854.1 FROM MIGRAD STATUS=CONVERGED 182 CALLS 183 TOTAL - EDM=1.65564e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.57980e+02 3.34363e-01 9.81953e-04 6.44675e-02 - 2 sg_p1 1.47979e+01 3.20681e-01 1.89110e-03 8.04335e-02 - 3 sg_p2 1.31085e+00 5.36609e-02 1.65482e-03 -1.47147e-01 - 4 sg_p3 1.12068e+00 5.06777e-02 1.22086e-03 1.27989e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.118e-01 -2.084e-02 1.817e-03 -6.408e-03 - -2.084e-02 1.029e-01 8.748e-03 9.557e-03 - 1.817e-03 8.748e-03 2.880e-03 7.828e-04 - -6.408e-03 9.557e-03 7.828e-04 2.569e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.44246 1.000 -0.194 0.101 -0.378 - 2 0.68849 -0.194 1.000 0.508 0.588 - 3 0.55062 0.101 0.508 1.000 0.288 - 4 0.64866 -0.378 0.588 0.288 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=13854.1 FROM HESSE STATUS=OK 23 CALLS 206 TOTAL - EDM=1.65875e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.57980e+02 3.34499e-01 1.96391e-04 1.19503e-01 - 2 sg_p1 1.47979e+01 3.21384e-01 3.78219e-04 -2.02134e-02 - 3 sg_p2 1.31085e+00 5.37405e-02 3.30963e-04 -4.95716e-01 - 4 sg_p3 1.12068e+00 5.07549e-02 2.44171e-04 -7.47499e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.119e-01 -2.101e-02 1.811e-03 -6.428e-03 - -2.101e-02 1.033e-01 8.812e-03 9.620e-03 - 1.811e-03 8.812e-03 2.889e-03 7.908e-04 - -6.428e-03 9.620e-03 7.908e-04 2.576e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.44320 1.000 -0.195 0.101 -0.379 - 2 0.69016 -0.195 1.000 0.510 0.590 - 3 0.55249 0.101 0.510 1.000 0.290 - 4 0.65002 -0.379 0.590 0.290 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -550 -557.98 +- 0.334499 -14.7979 +- 0.321384 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [390,750] --> [390,750] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [390,750] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=15819.8 FROM MIGRAD STATUS=INITIATE 54 CALLS 55 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.55000e+02 5.00000e+00 0.00000e+00 -5.00618e+02 - 2 sg_p1 1.50000e+01 2.00000e+00 0.00000e+00 -2.06424e+02 - 3 sg_p2 1.24250e+00 5.00000e-01 0.00000e+00 8.72112e+01 - 4 sg_p3 1.58707e+00 7.00000e-01 -5.78240e-01 1.36356e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15779.8 FROM MIGRAD STATUS=CONVERGED 201 CALLS 202 TOTAL - EDM=3.72733e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.57991e+02 3.13470e-01 9.81807e-04 1.43269e-02 - 2 sg_p1 1.48025e+01 3.00871e-01 1.88933e-03 1.01623e-01 - 3 sg_p2 1.30793e+00 5.01308e-02 1.66000e-03 -7.41075e-02 - 4 sg_p3 1.12096e+00 4.75155e-02 1.22457e-03 -3.73256e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.827e-02 -1.818e-02 1.608e-03 -5.619e-03 - -1.818e-02 9.055e-02 7.685e-03 8.406e-03 - 1.608e-03 7.685e-03 2.514e-03 6.873e-04 - -5.619e-03 8.406e-03 6.873e-04 2.258e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.44218 1.000 -0.193 0.102 -0.377 - 2 0.68889 -0.193 1.000 0.509 0.588 - 3 0.55187 0.102 0.509 1.000 0.288 - 4 0.64863 -0.377 0.588 0.288 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15779.8 FROM HESSE STATUS=OK 23 CALLS 225 TOTAL - EDM=3.72671e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.57991e+02 3.13600e-01 1.96361e-04 1.19946e-01 - 2 sg_p1 1.48025e+01 3.01553e-01 3.77865e-04 -1.97513e-02 - 3 sg_p2 1.30793e+00 5.02105e-02 6.64000e-05 -4.97043e-01 - 4 sg_p3 1.12096e+00 4.75893e-02 2.44915e-04 -7.47388e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.835e-02 -1.832e-02 1.604e-03 -5.636e-03 - -1.832e-02 9.096e-02 7.744e-03 8.463e-03 - 1.604e-03 7.744e-03 2.522e-03 6.946e-04 - -5.636e-03 8.463e-03 6.946e-04 2.265e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.44293 1.000 -0.194 0.102 -0.378 - 2 0.69061 -0.194 1.000 0.511 0.590 - 3 0.55387 0.102 0.511 1.000 0.291 - 4 0.65001 -0.378 0.590 0.291 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -550 -557.991 +- 0.3136 -14.8025 +- 0.301553 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 557.153 +- 0.321538 (stat) - 0.826073 + 1.72147 (syst); -0.841572/+1.72896 (total) - Uncertainty on sg_p1 = 15.9907 +- 0.294927 (stat) - 1.39965 + 0 (syst); -1.40739/+0.147463 (total) - Uncertainty on sg_p2 = 1.40719 +- 0.0664804 (stat) - 0.128774 + 0 (syst); -0.132995/+0.0332402 (total) - Uncertainty on sg_p3 = 1.40947 +- 0.0605049 (stat) - 0.295372 + 0 (syst); -0.296917/+0.0302524 (total) - === Baseline plot ===
- norm = 123.788 -JEC lnN 1.02905 - -JER lnN 1.01484 - -btag lnN 1.06518 - -sg_p0 param 557.153 -0.841572/+1.72896 -sg_p1 param 15.9907 -1.40739/+0.147463 -sg_p2 param 1.40719 -0.132995/+0.0332402 -sg_p3 param 1.40947 -0.296917/+0.0302524 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_550_novo_550_1200/data_bkg.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_550_novo_550_1200/data_bkg.log deleted file mode 100644 index 9081393..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_550_novo_550_1200/data_bkg.log +++ /dev/null @@ -1,690 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10879.7 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 6.74624e-01 5.09000e-01 -8.31364e-01 -1.01971e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -3.20610e+01 - 3 par_crystal_2 5.00000e+02 2.00000e+01 0.00000e+00 -9.48837e+00 - 4 par_crystal_3 1.05000e+02 1.90000e+01 0.00000e+00 2.45317e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7116e+01 9.9978e-01 1.9597e+00 1.8156e+01 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 17.134017 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 27 CALLS 314 TOTAL - EDM=0.131054 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.06594e+00 6.09301e-02 1.43210e-03 -8.77809e-01 - 2 par_crystal_1 5.09576e+00 7.69298e-02 8.09031e-02 -5.13188e-02 - 3 par_crystal_2 4.95224e+02 7.91481e+01 2.17679e-03 -5.43249e-01 - 4 par_crystal_3 1.90900e+02 9.54958e+00 1.13079e-02 4.60762e-02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 477 CALLS 478 TOTAL - EDM=0.0370129 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.11079e+00 8.93309e-02 0.00000e+00 -4.75984e-01 - 2 par_crystal_1 5.08061e+00 3.60144e-01 0.00000e+00 -1.14416e-01 - 3 par_crystal_2 4.76040e+02 1.75614e+01 0.00000e+00 -2.32451e-01 - 4 par_crystal_3 1.99914e+02 2.77391e+01 0.00000e+00 -7.67572e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.985e-03 -2.091e-03 1.499e+00 2.820e-01 - -2.091e-03 2.873e-02 -7.387e-01 -2.900e-02 - 1.499e+00 -7.387e-01 3.118e+02 5.244e+01 - 2.820e-01 -2.900e-02 5.244e+01 1.008e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99775 1.000 -0.138 0.950 0.994 - 2 0.79882 -0.138 1.000 -0.247 -0.054 - 3 0.95717 0.950 -0.247 1.000 0.935 - 4 0.99764 0.994 -0.054 0.935 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.8 FROM HESSE STATUS=OK 27 CALLS 505 TOTAL - EDM=0.0183624 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.11079e+00 4.31984e-02 1.44775e-03 -6.03431e-01 - 2 par_crystal_1 5.08061e+00 3.28337e+00 6.64371e-02 1.44728e+00 - 3 par_crystal_2 4.76040e+02 8.02153e+00 1.45036e-02 3.38355e+00 - 4 par_crystal_3 1.99914e+02 2.26294e+01 4.50606e-02 1.52819e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.866e-03 -1.951e-03 -2.584e-03 1.946e-02 - -1.951e-03 1.028e-01 6.675e-04 3.793e-04 - -2.584e-03 6.675e-04 6.449e+01 1.116e+00 - 1.946e-02 3.793e-04 1.116e+00 8.140e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.21215 1.000 -0.141 -0.007 0.158 - 2 0.14274 -0.141 1.000 0.000 0.000 - 3 0.05109 -0.007 0.000 1.000 0.049 - 4 0.16712 0.158 0.000 0.049 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10978.6 FROM MIGRAD STATUS=INITIATE 68 CALLS 69 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 6.03110e+02 3.00000e+01 -8.97402e-01 -6.52175e+01 - 2 par_gaus_exp_1 5.45000e+01 9.10000e+00 0.00000e+00 -4.62060e+02 - 3 par_gaus_exp_2 4.12114e-01 3.05000e-01 0.00000e+00 1.25553e+03 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.9 FROM HESSE STATUS=OK 18 CALLS 182 TOTAL - EDM=0.000691453 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.46431e+02 6.06936e+00 3.17833e-03 -3.92855e-01 - 2 par_gaus_exp_1 6.65716e+01 1.75685e+01 2.62647e-03 1.43349e-01 - 3 par_gaus_exp_2 3.07505e-01 8.37981e-02 8.79822e-04 -3.06196e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM MIGRAD STATUS=CONVERGED 316 CALLS 317 TOTAL - EDM=9.19369e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.62504e+02 3.53152e+00 1.63243e-03 -1.66316e-01 - 2 par_gaus_exp_1 2.46552e+01 1.25211e+01 1.75085e-03 -3.48771e-01 - 3 par_gaus_exp_2 1.14604e-01 5.89219e-02 6.31447e-04 9.83138e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.247e+01 -1.544e+01 -6.961e-02 - -1.544e+01 1.643e+02 7.558e-01 - -6.961e-02 7.558e-01 3.493e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.35636 1.000 -0.341 -0.333 - 2 0.99789 -0.341 1.000 0.998 - 3 0.99788 -0.333 0.998 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM HESSE STATUS=OK 16 CALLS 333 TOTAL - EDM=9.89177e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 5.62504e+02 3.77274e+00 6.52972e-05 8.34552e-02 - 2 par_gaus_exp_1 2.46552e+01 1.46349e+01 3.50170e-04 -7.15413e-01 - 3 par_gaus_exp_2 1.14604e-01 6.93856e-02 1.26289e-04 -1.27868e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.424e+01 -2.545e+01 -1.157e-01 - -2.545e+01 2.286e+02 1.052e+00 - -1.157e-01 1.052e+00 4.855e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.45683 1.000 -0.446 -0.440 - 2 0.99849 -0.446 1.000 0.998 - 3 0.99848 -0.440 0.998 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (13168.6) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=575, par_novo_1=100, par_novo_2=1.58864 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=645, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=655, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=665, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=675, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=685, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=695, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=705, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=715, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=725, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=735, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=745, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=755, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - ... (remaining 46 messages suppressed) -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 575,par_novo_1 = 100,par_novo_2 = 1.58864) - - FCN=13054.5 FROM MIGRAD STATUS=INITIATE 14 CALLS 15 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.75000e+02 1.50000e+01 2.01358e-01 -1.22938e+03 - 2 par_novo_1 1.00000e+02 2.00000e+01 2.01358e-01 -6.98326e+03 - 3 par_novo_2 0.00000e+00 2.00000e+01 2.01358e-01 1.51249e+06 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM MIGRAD STATUS=CONVERGED 220 CALLS 221 TOTAL - EDM=2.09668e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.00000e+02 1.21837e+02 1.25149e-01 -7.30463e-04 - 2 par_novo_1 1.30637e+02 1.58558e+01 3.16845e-03 -1.76078e-02 - 3 par_novo_2 -6.95187e-01 1.36663e-01 2.61078e-05 1.74080e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.121e-01 -9.460e-01 -6.449e-03 - -9.460e-01 2.538e+02 2.099e+00 - -6.449e-03 2.099e+00 1.868e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.21023 1.000 -0.177 -0.141 - 2 0.96488 -0.177 1.000 0.964 - 3 0.96445 -0.141 0.964 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM HESSE STATUS=OK 20 CALLS 241 TOTAL - EDM=1.01397e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 5.00000e+02 1.20312e+02 5.00000e-01 -1.57325e+00 - 2 par_novo_1 1.30637e+02 2.01762e+01 1.26738e-04 3.11381e-01 - 3 par_novo_2 -6.95187e-01 1.62575e-01 1.04431e-06 -6.95192e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.070e-01 -4.278e+00 -2.995e-02 - -4.278e+00 4.133e+02 3.212e+00 - -2.995e-02 3.212e+00 2.643e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.69436 1.000 -0.643 -0.563 - 2 0.97859 -0.643 1.000 0.972 - 3 0.97501 -0.563 0.972 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10877 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 6.33849e-01 5.09000e-01 -8.55460e-01 -1.25390e+02 - 2 par_crystal_1_1 2.55500e+00 5.09000e-01 0.00000e+00 -2.69495e+01 - 3 par_crystal_1_2 5.50000e+02 3.00000e+01 0.00000e+00 -1.44080e+01 - 4 par_crystal_1_3 1.04500e+02 1.91000e+01 0.00000e+00 3.07979e+01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.43469 added to diagonal of error matrix - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.5401e+00 8.4221e-02 1.8087e+00 3.6472e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 1.543714 TO DIAGONAL. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.9 FROM HESSE STATUS=OK 25 CALLS 485 TOTAL - EDM=0.0491336 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.05623e+00 1.52463e-01 1.42446e-03 -1.90900e+00 - 2 par_crystal_1_1 5.09988e+00 3.18944e+00 7.54811e-02 -8.93342e-03 - 3 par_crystal_1_2 4.96280e+02 4.98347e+01 9.02051e-03 3.58498e-02 - 4 par_crystal_1_3 1.89188e+02 2.78069e+01 1.02856e-02 -2.38185e-01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 538 CALLS 539 TOTAL - EDM=10.0867 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 14.1 per cent - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.09723e+00 3.02575e-02 -0.00000e+00 5.47416e+01 - 2 par_crystal_1_1 5.09997e+00 3.18368e+00 0.00000e+00 -3.90351e-03 - 3 par_crystal_1_2 4.83329e+02 2.76558e+01 0.00000e+00 7.05236e+00 - 4 par_crystal_1_3 1.96552e+02 5.80629e+00 -0.00000e+00 4.39990e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.156e-04 -1.804e-07 -6.742e-01 1.111e-01 - -1.804e-07 1.763e-04 7.888e-03 -2.154e-03 - -6.742e-01 7.888e-03 7.759e+02 -1.463e+02 - 1.111e-01 -2.154e-03 -1.463e+02 3.432e+01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.82553 1.000 -0.000 -0.800 0.627 - 2 0.03650 -0.000 1.000 0.021 -0.028 - 3 0.94703 -0.800 0.021 1.000 -0.896 - 4 0.90888 0.627 -0.028 -0.896 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -9.7852e-01 9.9996e-01 1.9836e+00 1.9949e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.980510 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 29 CALLS 568 TOTAL - EDM=238.514 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 1.09723e+00 4.25322e-02 2.54943e-04 -6.09913e-01 - 2 par_crystal_1_1 5.09997e+00 7.84798e-01 8.54763e-02 1.56580e+00 - 3 par_crystal_1_2 4.83329e+02 1.87856e+01 1.76414e-03 -4.60588e-01 - 4 par_crystal_1_3 1.96552e+02 5.33115e+00 2.63738e-03 1.30128e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.809e-03 -2.197e-07 8.001e-01 2.280e-01 - -2.197e-07 1.053e-04 -1.173e-04 -3.665e-05 - 8.001e-01 -1.173e-04 3.552e+02 1.010e+02 - 2.280e-01 -3.665e-05 1.010e+02 2.885e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99849 1.000 -0.001 0.998 0.998 - 2 0.00265 -0.001 1.000 -0.001 -0.001 - 3 0.99848 0.998 -0.001 1.000 0.998 - 4 0.99849 0.998 -0.001 0.998 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_550_1200 = 1266.17 - Background number of gaus_exp_550_1200 = 1266.17 - Background number of novo_550_1200 = 1266.17 - Background number of crystal_1_550_1200 = 1266.17 - Background number of gaus_bern_550_1200 = 1266.17 - Background number of landau_550_1200 = 1266.17 -par_crystal_0 param 1.11079 0.0431984 -par_crystal_1 param 5.08061 3.28337 -par_crystal_2 param 476.04 8.02153 -par_crystal_3 param 199.914 22.6294 -par_crystal_1_0 param 1.09723 0.0425322 -par_crystal_1_1 param 5.09997 0.784798 -par_crystal_1_2 param 483.329 18.7856 -par_crystal_1_3 param 196.552 5.33115 -par_gaus_exp_0 param 562.504 3.77274 -par_gaus_exp_1 param 24.6552 14.6349 -par_gaus_exp_2 param 0.114604 0.0693856 -par_novo_0 param 500 120.312 -par_novo_1 param 130.637 20.1762 -par_novo_2 param -0.695187 0.162575 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_550_novo_550_1200/datacard_550_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_550_novo_550_1200/datacard_550_novo_550_1200.txt deleted file mode 100644 index bb72e45..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_550_novo_550_1200/datacard_550_novo_550_1200.txt +++ /dev/null @@ -1,29 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_550.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo -shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 2.47576 1266.17 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06518 - -JER lnN 1.01484 - -JEC lnN 1.02905 - -trigger lnN 1.10 - -PDF lnN 1.02229693932 - -sg_p0 param 557.153 -0.841572/+1.72896 -sg_p1 param 15.9907 -1.40739/+0.147463 -sg_p2 param 1.40719 -0.132995/+0.0332402 -sg_p3 param 1.40947 -0.296917/+0.0302524 -par_novo_0 param 500 120.312 -par_novo_1 param 130.637 20.1762 -par_novo_2 param -0.695187 0.162575 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_550_novo_550_1200/pdf.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_550_novo_550_1200/pdf.log deleted file mode 100644 index 259cbcf..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_550_novo_550_1200/pdf.log +++ /dev/null @@ -1,10 +0,0 @@ -[?1034h FCN=13.8549 FROM MIGRAD STATUS=CONVERGED 70 CALLS 71 TOTAL - EDM=1.39547e-10 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 Constant 1.33669e+01 1.80554e+00 2.71051e-03 4.30284e-06 - 2 Mean 9.99344e-01 2.90546e-03 5.44875e-06 -4.96208e-03 - 3 Sigma 2.22969e-02 2.61448e-03 6.50610e-05 1.72213e-05 -0.999344037733 +/- 0.0029054638886 -0.0222969393194 +/- 0.00261447795001 -PDF lnN 1.02229693932 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_550_novo_550_1200/signal550_sig.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_550_novo_550_1200/signal550_sig.log deleted file mode 100644 index 95176bb..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_550_novo_550_1200/signal550_sig.log +++ /dev/null @@ -1,949 +0,0 @@ - -Processing test.c... -nSignal_init = 100000 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [350,750] --> [350,750] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [450,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [350,750] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [450,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=16548.5 FROM MIGRAD STATUS=INITIATE 59 CALLS 60 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.40000e+02 6.00000e+00 0.00000e+00 8.36856e+01 - 2 sg_p1 2.25000e+01 2.50000e+00 0.00000e+00 -2.13036e+02 - 3 sg_p2 9.96389e-01 5.00000e-01 0.00000e+00 -2.10001e+01 - 4 sg_p3 1.33793e+00 7.00000e-01 -6.65859e-01 1.43037e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.05392 added to diagonal of error matrix - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16467.8 FROM MIGRAD STATUS=CONVERGED 433 CALLS 434 TOTAL - EDM=1.19101e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.41842e+02 5.12497e-01 1.51068e-03 3.12657e-02 - 2 sg_p1 2.95617e+01 3.82692e-01 3.23918e-03 3.18610e-03 - 3 sg_p2 2.26823e+00 2.06532e-01 7.22656e-03 -7.81355e-04 - 4 sg_p3 3.13392e+00 1.77814e+00 6.15202e-02 -1.76290e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.627e-01 2.925e-03 9.483e-03 -3.748e-10 - 2.925e-03 1.465e-01 1.367e-02 -4.881e-11 - 9.483e-03 1.367e-02 4.275e-02 -1.530e-10 - -3.748e-10 -4.881e-11 -1.530e-10 3.483e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.08948 1.000 0.015 0.089 -0.000 - 2 0.17277 0.015 1.000 0.173 -0.000 - 3 0.19340 0.089 0.173 1.000 -0.000 - 4 0.00000 -0.000 -0.000 -0.000 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16467.8 FROM HESSE STATUS=OK 29 CALLS 463 TOTAL - EDM=3.87994e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.41842e+02 5.12297e-01 3.02136e-04 6.14367e-02 - 2 sg_p1 2.95617e+01 3.82068e-01 1.29567e-04 6.00358e-01 - 3 sg_p2 2.26823e+00 2.05837e-01 2.89062e-04 -9.28432e-02 - 4 sg_p3 3.13392e+00 6.62343e-01 3.58606e-01 -1.04787e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.625e-01 2.466e-03 8.976e-03 1.615e-11 - 2.466e-03 1.460e-01 1.286e-02 2.313e-11 - 8.976e-03 1.286e-02 4.247e-02 7.639e-11 - 1.615e-11 2.313e-11 7.639e-11 4.441e-01 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.08503 1.000 0.013 0.085 0.000 - 2 0.16331 0.013 1.000 0.163 0.000 - 3 0.18317 0.085 0.163 1.000 0.000 - 4 0.00000 0.000 0.000 0.000 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -550 -541.842 +- 0.512297 -29.5617 +- 0.382068 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [350,750] --> [350,750] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [450,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [350,750] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [450,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=16779.6 FROM MIGRAD STATUS=INITIATE 54 CALLS 55 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.40000e+02 6.00000e+00 0.00000e+00 -8.37041e+01 - 2 sg_p1 2.25000e+01 2.50000e+00 0.00000e+00 -1.07475e+02 - 3 sg_p2 8.65799e-01 5.00000e-01 0.00000e+00 -7.40551e+01 - 4 sg_p3 1.35564e+00 7.00000e-01 -6.59439e-01 6.28488e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16685.9 FROM HESSE STATUS=OK 27 CALLS 282 TOTAL - EDM=0.102246 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.44552e+02 5.08282e-01 1.52398e-03 -1.54852e-01 - 2 sg_p1 2.95922e+01 3.76777e-01 3.22494e-03 -3.69769e-02 - 3 sg_p2 2.45278e+00 3.27164e-01 1.16491e-02 1.26745e-02 - 4 sg_p3 3.35460e+00 1.18039e+00 3.11390e-01 -1.31335e+00 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=16685.9 FROM MIGRAD STATUS=CONVERGED 295 CALLS 296 TOTAL - EDM=2.81269e-08 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 0.0 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.44554e+02 5.08278e-01 4.34002e-05 -1.50856e-04 - 2 sg_p1 2.95926e+01 3.76767e-01 4.09576e-05 -4.62961e-04 - 3 sg_p2 2.45238e+00 3.27162e-01 -1.58660e-04 -1.77907e-03 - 4 sg_p3 3.89863e+00 1.17372e+00 1.55695e-01 0.00000e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.584e-01 3.013e-03 1.443e-02 3.104e-05 - 3.013e-03 1.420e-01 2.058e-02 5.573e-05 - 1.443e-02 2.058e-02 1.077e-01 2.055e-04 - 3.104e-05 5.573e-05 2.055e-04 1.433e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.08655 1.000 0.016 0.087 0.000 - 2 0.16643 0.016 1.000 0.166 0.000 - 3 0.18640 0.087 0.166 1.000 0.001 - 4 0.00052 0.000 0.000 0.001 1.000 - ********** - ** 18 **HESSE 2000 - ********** - MINUIT WARNING IN HESSE - ============== Second derivative enters zero, param 4 - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16685.9 FROM HESSE STATUS=OK 31 CALLS 327 TOTAL - EDM=0.378043 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.44554e+02 5.08418e-01 1.52334e-03 1.52374e-01 - 2 sg_p1 2.95926e+01 3.77155e-01 1.28998e-03 6.03355e-01 - 3 sg_p2 2.45238e+00 3.27373e-01 4.65962e-03 -1.90491e-02 - 4 sg_p3 3.89863e+00 1.40113e+00 5.10000e-01 1.14141e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.585e-01 3.222e-03 1.491e-02 4.426e-12 - 3.222e-03 1.423e-01 2.127e-02 -3.793e-11 - 1.491e-02 2.127e-02 1.078e-01 3.265e-11 - 4.426e-12 -3.793e-11 3.265e-11 2.080e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.08933 1.000 0.017 0.089 0.000 - 2 0.17177 0.017 1.000 0.172 -0.000 - 3 0.19229 0.089 0.172 1.000 0.000 - 4 0.00000 0.000 -0.000 0.000 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -550 -544.554 +- 0.508418 -29.5926 +- 0.377155 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [350,750] --> [350,750] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [450,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [350,750] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [450,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=15773.3 FROM MIGRAD STATUS=INITIATE 56 CALLS 57 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.40000e+02 6.00000e+00 0.00000e+00 1.21147e+02 - 2 sg_p1 2.25000e+01 2.50000e+00 0.00000e+00 -1.80759e+02 - 3 sg_p2 1.10607e+00 5.00000e-01 0.00000e+00 -3.61854e+01 - 4 sg_p3 1.15878e+00 7.00000e-01 -7.32755e-01 8.10605e+01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.37034 added to diagonal of error matrix - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15704.6 FROM MIGRAD STATUS=CONVERGED 357 CALLS 358 TOTAL - EDM=1.29397e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.39647e+02 5.17185e-01 1.48655e-03 -1.89345e-02 - 2 sg_p1 2.91881e+01 3.85671e-01 3.11579e-03 3.89872e-03 - 3 sg_p2 2.31906e+00 2.28533e-01 7.79945e-03 -3.76001e-04 - 4 sg_p3 3.12530e+00 1.84829e+00 8.28757e-02 -7.72724e-05 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.675e-01 1.706e-03 1.012e-02 1.242e-12 - 1.706e-03 1.488e-01 1.489e-02 1.083e-10 - 1.012e-02 1.489e-02 5.237e-02 1.084e-11 - 1.242e-12 1.083e-10 1.084e-11 3.797e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.08574 1.000 0.009 0.086 0.000 - 2 0.16875 0.009 1.000 0.169 0.000 - 3 0.18845 0.086 0.169 1.000 0.000 - 4 0.00000 0.000 0.000 0.000 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15704.6 FROM HESSE STATUS=OK 27 CALLS 385 TOTAL - EDM=0.802787 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.39647e+02 5.17333e-01 2.97309e-04 -1.17805e-02 - 2 sg_p1 2.91881e+01 3.86088e-01 1.24632e-04 5.64568e-01 - 3 sg_p2 2.31906e+00 2.28870e-01 3.11978e-04 -7.24379e-02 - 4 sg_p3 3.12530e+00 7.00822e-01 3.63374e-01 -1.07263e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.677e-01 1.770e-03 1.052e-02 3.022e-11 - 1.770e-03 1.491e-01 1.546e-02 -6.678e-11 - 1.052e-02 1.546e-02 5.253e-02 4.080e-11 - 3.022e-11 -6.678e-11 4.080e-11 4.979e-01 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.08899 1.000 0.009 0.089 0.000 - 2 0.17483 0.009 1.000 0.175 -0.000 - 3 0.19525 0.089 0.175 1.000 0.000 - 4 0.00000 0.000 -0.000 0.000 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -550 -539.647 +- 0.517333 -29.1881 +- 0.386088 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [390,750] --> [390,750] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [390,750] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=14837.3 FROM MIGRAD STATUS=INITIATE 51 CALLS 52 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.55000e+02 5.00000e+00 0.00000e+00 -5.62915e+02 - 2 sg_p1 1.50000e+01 2.00000e+00 0.00000e+00 -2.92186e+02 - 3 sg_p2 1.33485e+00 5.00000e-01 0.00000e+00 1.12519e+02 - 4 sg_p3 1.63806e+00 7.00000e-01 -5.60940e-01 1.42255e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14796.3 FROM MIGRAD STATUS=CONVERGED 175 CALLS 176 TOTAL - EDM=1.79394e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.57153e+02 3.21384e-01 1.00803e-03 -2.87826e-01 - 2 sg_p1 1.59907e+01 2.94249e-01 1.95331e-03 -7.46933e-02 - 3 sg_p2 1.40719e+00 6.63431e-02 1.98696e-03 1.23037e-01 - 4 sg_p3 1.40947e+00 6.04329e-02 1.61506e-03 3.47616e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.033e-01 1.010e-02 6.404e-03 -2.894e-03 - 1.010e-02 8.661e-02 1.063e-02 7.128e-03 - 6.404e-03 1.063e-02 4.403e-03 8.132e-04 - -2.894e-03 7.128e-03 8.132e-04 3.653e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.36907 1.000 0.107 0.300 -0.149 - 2 0.62006 0.107 1.000 0.545 0.401 - 3 0.59757 0.300 0.545 1.000 0.203 - 4 0.44647 -0.149 0.401 0.203 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14796.3 FROM HESSE STATUS=OK 23 CALLS 199 TOTAL - EDM=1.79239e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.57153e+02 3.21538e-01 2.01606e-04 8.62318e-02 - 2 sg_p1 1.59907e+01 2.94927e-01 3.90662e-04 9.92360e-02 - 3 sg_p2 1.40719e+00 6.64804e-02 7.94782e-05 -4.52397e-01 - 4 sg_p3 1.40947e+00 6.05049e-02 6.46026e-05 -6.40123e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.034e-01 1.015e-02 6.439e-03 -2.895e-03 - 1.015e-02 8.701e-02 1.072e-02 7.193e-03 - 6.439e-03 1.072e-02 4.421e-03 8.247e-04 - -2.895e-03 7.193e-03 8.247e-04 3.661e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.37018 1.000 0.107 0.301 -0.149 - 2 0.62233 0.107 1.000 0.547 0.403 - 3 0.59978 0.301 0.547 1.000 0.205 - 4 0.44859 -0.149 0.403 0.205 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -550 -557.153 +- 0.321538 -15.9907 +- 0.294927 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 - fit done -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [390,750] --> [390,750] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [390,750] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=15106.5 FROM MIGRAD STATUS=INITIATE 55 CALLS 56 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.55000e+02 5.00000e+00 0.00000e+00 -4.27508e+02 - 2 sg_p1 1.50000e+01 2.00000e+00 0.00000e+00 5.60673e+01 - 3 sg_p2 9.57872e-01 5.00000e-01 0.00000e+00 -1.96076e+02 - 4 sg_p3 1.43385e+00 7.00000e-01 -6.31466e-01 3.52996e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15049.6 FROM MIGRAD STATUS=CONVERGED 145 CALLS 146 TOTAL - EDM=1.59039e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.58875e+02 3.28831e-01 1.01097e-03 2.51867e-01 - 2 sg_p1 1.50106e+01 3.27326e-01 1.94006e-03 -7.48907e-02 - 3 sg_p2 1.28146e+00 5.35843e-02 1.64296e-03 -7.25386e-02 - 4 sg_p3 1.13283e+00 5.00773e-02 1.24085e-03 1.93411e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.081e-01 -1.435e-02 2.668e-03 -5.685e-03 - -1.435e-02 1.072e-01 9.872e-03 9.778e-03 - 2.668e-03 9.872e-03 2.872e-03 8.529e-04 - -5.685e-03 9.778e-03 8.529e-04 2.508e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.44454 1.000 -0.133 0.151 -0.345 - 2 0.71564 -0.133 1.000 0.563 0.596 - 3 0.61000 0.151 0.563 1.000 0.318 - 4 0.65614 -0.345 0.596 0.318 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15049.6 FROM HESSE STATUS=OK 23 CALLS 169 TOTAL - EDM=1.59031e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.58875e+02 3.28953e-01 2.02195e-04 1.55611e-01 - 2 sg_p1 1.50106e+01 3.28179e-01 3.88013e-04 1.06416e-03 - 3 sg_p2 1.28146e+00 5.36907e-02 6.57184e-05 -5.09126e-01 - 4 sg_p3 1.13283e+00 5.01651e-02 2.48171e-04 -7.42776e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.082e-01 -1.448e-02 2.668e-03 -5.699e-03 - -1.448e-02 1.077e-01 9.953e-03 9.852e-03 - 2.668e-03 9.953e-03 2.883e-03 8.627e-04 - -5.699e-03 9.852e-03 8.627e-04 2.517e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.44521 1.000 -0.134 0.151 -0.345 - 2 0.71741 -0.134 1.000 0.565 0.598 - 3 0.61203 0.151 0.565 1.000 0.320 - 4 0.65766 -0.345 0.598 0.320 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -550 -558.875 +- 0.328953 -15.0106 +- 0.328179 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [390,750] --> [390,750] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [390,750] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=14133.8 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.55000e+02 5.00000e+00 0.00000e+00 -3.22550e+02 - 2 sg_p1 1.50000e+01 2.00000e+00 0.00000e+00 -8.95889e+01 - 3 sg_p2 1.26916e+00 5.00000e-01 0.00000e+00 3.67893e+01 - 4 sg_p3 1.35775e+00 7.00000e-01 -6.58678e-01 -5.62243e+00 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14121.3 FROM MIGRAD STATUS=CONVERGED 210 CALLS 211 TOTAL - EDM=0.000238073 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.56327e+02 3.14482e-01 9.83418e-04 8.55741e-01 - 2 sg_p1 1.57284e+01 2.76951e-01 1.90229e-03 -1.45089e-01 - 3 sg_p2 1.38542e+00 5.70093e-02 1.81418e-03 3.93447e-01 - 4 sg_p3 1.37775e+00 5.81896e-02 1.54738e-03 1.23982e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.890e-02 1.894e-03 3.842e-03 -3.325e-03 - 1.894e-03 7.672e-02 7.163e-03 6.201e-03 - 3.842e-03 7.163e-03 3.251e-03 5.637e-04 - -3.325e-03 6.201e-03 5.637e-04 3.387e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.30810 1.000 0.022 0.214 -0.182 - 2 0.55065 0.022 1.000 0.454 0.385 - 3 0.49896 0.214 0.454 1.000 0.170 - 4 0.43088 -0.182 0.385 0.170 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14121.3 FROM HESSE STATUS=OK 23 CALLS 234 TOTAL - EDM=0.000238571 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.56327e+02 3.14566e-01 1.96684e-04 5.31070e-02 - 2 sg_p1 1.57284e+01 2.77362e-01 3.80459e-04 7.29003e-02 - 3 sg_p2 1.38542e+00 5.70763e-02 3.62837e-04 -4.62101e-01 - 4 sg_p3 1.37775e+00 5.82399e-02 3.09477e-04 -6.51471e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.896e-02 1.863e-03 3.856e-03 -3.331e-03 - 1.863e-03 7.695e-02 7.208e-03 6.244e-03 - 3.856e-03 7.208e-03 3.258e-03 5.699e-04 - -3.331e-03 6.244e-03 5.699e-04 3.392e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.30889 1.000 0.021 0.215 -0.182 - 2 0.55252 0.021 1.000 0.455 0.386 - 3 0.50072 0.215 0.455 1.000 0.171 - 4 0.43251 -0.182 0.386 0.171 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -550 -556.327 +- 0.314566 -15.7284 +- 0.277362 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [390,750] --> [390,750] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [390,750] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=14534.5 FROM MIGRAD STATUS=INITIATE 58 CALLS 59 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.55000e+02 5.00000e+00 0.00000e+00 -5.04994e+02 - 2 sg_p1 1.50000e+01 2.00000e+00 0.00000e+00 -1.14427e+02 - 3 sg_p2 1.18464e+00 5.00000e-01 0.00000e+00 9.96830e+01 - 4 sg_p3 1.38937e+00 7.00000e-01 -6.47305e-01 1.30603e+00 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14500.5 FROM MIGRAD STATUS=CONVERGED 185 CALLS 186 TOTAL - EDM=5.50119e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.58137e+02 3.32100e-01 9.95556e-04 1.68841e-01 - 2 sg_p1 1.48812e+01 3.22440e-01 1.91611e-03 3.95624e-02 - 3 sg_p2 1.27842e+00 5.09588e-02 1.60067e-03 -7.54823e-02 - 4 sg_p3 1.11410e+00 4.98337e-02 1.21814e-03 6.18485e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.103e-01 -2.020e-02 1.794e-03 -6.256e-03 - -2.020e-02 1.040e-01 8.614e-03 9.577e-03 - 1.794e-03 8.614e-03 2.597e-03 7.646e-04 - -6.256e-03 9.577e-03 7.646e-04 2.484e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.44749 1.000 -0.189 0.106 -0.378 - 2 0.69890 -0.189 1.000 0.524 0.596 - 3 0.56724 0.106 0.524 1.000 0.301 - 4 0.65666 -0.378 0.596 0.301 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14500.5 FROM HESSE STATUS=OK 23 CALLS 209 TOTAL - EDM=5.49735e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.58137e+02 3.32253e-01 1.99111e-04 1.25809e-01 - 2 sg_p1 1.48812e+01 3.23301e-01 7.66446e-05 -1.18793e-02 - 3 sg_p2 1.27842e+00 5.10516e-02 6.40269e-05 -5.10521e-01 - 4 sg_p3 1.11410e+00 4.99281e-02 4.87255e-05 -7.50065e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.104e-01 -2.039e-02 1.786e-03 -6.279e-03 - -2.039e-02 1.046e-01 8.688e-03 9.654e-03 - 1.786e-03 8.688e-03 2.607e-03 7.739e-04 - -6.279e-03 9.654e-03 7.739e-04 2.493e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.44831 1.000 -0.190 0.105 -0.378 - 2 0.70084 -0.190 1.000 0.526 0.598 - 3 0.56941 0.105 0.526 1.000 0.304 - 4 0.65830 -0.378 0.598 0.304 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -550 -558.137 +- 0.332253 -14.8812 +- 0.323301 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [390,750] --> [390,750] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [390,750] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=14860.1 FROM MIGRAD STATUS=INITIATE 55 CALLS 56 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.55000e+02 5.00000e+00 0.00000e+00 -5.96476e+02 - 2 sg_p1 1.50000e+01 2.00000e+00 0.00000e+00 -1.39102e+02 - 3 sg_p2 1.31219e+00 5.00000e-01 0.00000e+00 8.51723e+01 - 4 sg_p3 1.40309e+00 7.00000e-01 -6.42399e-01 -3.16309e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14830.1 FROM MIGRAD STATUS=CONVERGED 206 CALLS 207 TOTAL - EDM=2.32867e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.57839e+02 3.16310e-01 9.64235e-04 -9.53938e-03 - 2 sg_p1 1.45911e+01 3.04213e-01 1.85567e-03 -1.11765e-02 - 3 sg_p2 1.30884e+00 5.20626e-02 1.65224e-03 2.13112e-02 - 4 sg_p3 1.13165e+00 4.90247e-02 1.22393e-03 1.25630e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.001e-01 -1.679e-02 1.892e-03 -5.645e-03 - -1.679e-02 9.257e-02 8.162e-03 8.712e-03 - 1.892e-03 8.162e-03 2.711e-03 7.376e-04 - -5.645e-03 8.712e-03 7.376e-04 2.404e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.43494 1.000 -0.174 0.115 -0.364 - 2 0.68887 -0.174 1.000 0.515 0.584 - 3 0.55849 0.115 0.515 1.000 0.289 - 4 0.64393 -0.364 0.584 0.289 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14830.1 FROM HESSE STATUS=OK 23 CALLS 230 TOTAL - EDM=2.3344e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.57839e+02 3.16455e-01 3.85694e-05 1.13812e-01 - 2 sg_p1 1.45911e+01 3.05011e-01 7.42270e-05 -4.09030e-02 - 3 sg_p2 1.30884e+00 5.21549e-02 6.60897e-05 -4.96630e-01 - 4 sg_p3 1.13165e+00 4.91147e-02 4.89571e-05 -7.43231e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.001e-01 -1.696e-02 1.886e-03 -5.665e-03 - -1.696e-02 9.306e-02 8.232e-03 8.781e-03 - 1.886e-03 8.232e-03 2.721e-03 7.467e-04 - -5.665e-03 8.781e-03 7.467e-04 2.413e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.43580 1.000 -0.176 0.114 -0.364 - 2 0.69086 -0.176 1.000 0.517 0.586 - 3 0.56066 0.114 0.517 1.000 0.291 - 4 0.64559 -0.364 0.586 0.291 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -550 -557.839 +- 0.316455 -14.5911 +- 0.305011 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [390,750] --> [390,750] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [390,750] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=13882.6 FROM MIGRAD STATUS=INITIATE 72 CALLS 73 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.55000e+02 5.00000e+00 0.00000e+00 -3.85565e+02 - 2 sg_p1 1.50000e+01 2.00000e+00 0.00000e+00 -4.99994e+01 - 3 sg_p2 1.14901e+00 5.00000e-01 -8.51477e-02 2.28635e+00 - 4 sg_p3 1.41391e+00 7.00000e-01 0.00000e+00 1.79604e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=13854.1 FROM MIGRAD STATUS=CONVERGED 182 CALLS 183 TOTAL - EDM=1.65564e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.57980e+02 3.34363e-01 9.81953e-04 6.44675e-02 - 2 sg_p1 1.47979e+01 3.20681e-01 1.89110e-03 8.04335e-02 - 3 sg_p2 1.31085e+00 5.36609e-02 1.65482e-03 -1.47147e-01 - 4 sg_p3 1.12068e+00 5.06777e-02 1.22086e-03 1.27989e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.118e-01 -2.084e-02 1.817e-03 -6.408e-03 - -2.084e-02 1.029e-01 8.748e-03 9.557e-03 - 1.817e-03 8.748e-03 2.880e-03 7.828e-04 - -6.408e-03 9.557e-03 7.828e-04 2.569e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.44246 1.000 -0.194 0.101 -0.378 - 2 0.68849 -0.194 1.000 0.508 0.588 - 3 0.55062 0.101 0.508 1.000 0.288 - 4 0.64866 -0.378 0.588 0.288 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=13854.1 FROM HESSE STATUS=OK 23 CALLS 206 TOTAL - EDM=1.65875e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.57980e+02 3.34499e-01 1.96391e-04 1.19503e-01 - 2 sg_p1 1.47979e+01 3.21384e-01 3.78219e-04 -2.02134e-02 - 3 sg_p2 1.31085e+00 5.37405e-02 3.30963e-04 -4.95716e-01 - 4 sg_p3 1.12068e+00 5.07549e-02 2.44171e-04 -7.47499e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.119e-01 -2.101e-02 1.811e-03 -6.428e-03 - -2.101e-02 1.033e-01 8.812e-03 9.620e-03 - 1.811e-03 8.812e-03 2.889e-03 7.908e-04 - -6.428e-03 9.620e-03 7.908e-04 2.576e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.44320 1.000 -0.195 0.101 -0.379 - 2 0.69016 -0.195 1.000 0.510 0.590 - 3 0.55249 0.101 0.510 1.000 0.290 - 4 0.65002 -0.379 0.590 0.290 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -550 -557.98 +- 0.334499 -14.7979 +- 0.321384 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [390,750] --> [390,750] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [390,750] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=15819.8 FROM MIGRAD STATUS=INITIATE 54 CALLS 55 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.55000e+02 5.00000e+00 0.00000e+00 -5.00618e+02 - 2 sg_p1 1.50000e+01 2.00000e+00 0.00000e+00 -2.06424e+02 - 3 sg_p2 1.24250e+00 5.00000e-01 0.00000e+00 8.72112e+01 - 4 sg_p3 1.58707e+00 7.00000e-01 -5.78240e-01 1.36356e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15779.8 FROM MIGRAD STATUS=CONVERGED 201 CALLS 202 TOTAL - EDM=3.72733e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.57991e+02 3.13470e-01 9.81807e-04 1.43269e-02 - 2 sg_p1 1.48025e+01 3.00871e-01 1.88933e-03 1.01623e-01 - 3 sg_p2 1.30793e+00 5.01308e-02 1.66000e-03 -7.41075e-02 - 4 sg_p3 1.12096e+00 4.75155e-02 1.22457e-03 -3.73256e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.827e-02 -1.818e-02 1.608e-03 -5.619e-03 - -1.818e-02 9.055e-02 7.685e-03 8.406e-03 - 1.608e-03 7.685e-03 2.514e-03 6.873e-04 - -5.619e-03 8.406e-03 6.873e-04 2.258e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.44218 1.000 -0.193 0.102 -0.377 - 2 0.68889 -0.193 1.000 0.509 0.588 - 3 0.55187 0.102 0.509 1.000 0.288 - 4 0.64863 -0.377 0.588 0.288 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15779.8 FROM HESSE STATUS=OK 23 CALLS 225 TOTAL - EDM=3.72671e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.57991e+02 3.13600e-01 1.96361e-04 1.19946e-01 - 2 sg_p1 1.48025e+01 3.01553e-01 3.77865e-04 -1.97513e-02 - 3 sg_p2 1.30793e+00 5.02105e-02 6.64000e-05 -4.97043e-01 - 4 sg_p3 1.12096e+00 4.75893e-02 2.44915e-04 -7.47388e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.835e-02 -1.832e-02 1.604e-03 -5.636e-03 - -1.832e-02 9.096e-02 7.744e-03 8.463e-03 - 1.604e-03 7.744e-03 2.522e-03 6.946e-04 - -5.636e-03 8.463e-03 6.946e-04 2.265e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.44293 1.000 -0.194 0.102 -0.378 - 2 0.69061 -0.194 1.000 0.511 0.590 - 3 0.55387 0.102 0.511 1.000 0.291 - 4 0.65001 -0.378 0.590 0.291 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -550 -557.991 +- 0.3136 -14.8025 +- 0.301553 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 557.153 +- 0.321538 (stat) - 0.826073 + 1.72147 (syst); -0.841572/+1.72896 (total) - Uncertainty on sg_p1 = 15.9907 +- 0.294927 (stat) - 1.39965 + 0 (syst); -1.40739/+0.147463 (total) - Uncertainty on sg_p2 = 1.40719 +- 0.0664804 (stat) - 0.128774 + 0 (syst); -0.132995/+0.0332402 (total) - Uncertainty on sg_p3 = 1.40947 +- 0.0605049 (stat) - 0.295372 + 0 (syst); -0.296917/+0.0302524 (total) - === Baseline plot ===
- norm = 123.788 -JEC lnN 1.02905 - -JER lnN 1.01484 - -btag lnN 1.06518 - -sg_p0 param 557.153 -0.841572/+1.72896 -sg_p1 param 15.9907 -1.40739/+0.147463 -sg_p2 param 1.40719 -0.132995/+0.0332402 -sg_p3 param 1.40947 -0.296917/+0.0302524 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_600_crystal_1_550_1200/data_bkg.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_600_crystal_1_550_1200/data_bkg.log deleted file mode 100644 index a966e12..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_600_crystal_1_550_1200/data_bkg.log +++ /dev/null @@ -1,690 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10879.7 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 6.74624e-01 5.09000e-01 -8.31364e-01 -1.01971e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -3.20610e+01 - 3 par_crystal_2 5.00000e+02 2.00000e+01 0.00000e+00 -9.48837e+00 - 4 par_crystal_3 1.05000e+02 1.90000e+01 0.00000e+00 2.45317e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7116e+01 9.9978e-01 1.9597e+00 1.8156e+01 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 17.134017 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 27 CALLS 314 TOTAL - EDM=0.131054 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.06594e+00 6.09301e-02 1.43210e-03 -8.77809e-01 - 2 par_crystal_1 5.09576e+00 7.69298e-02 8.09031e-02 -5.13188e-02 - 3 par_crystal_2 4.95224e+02 7.91481e+01 2.17679e-03 -5.43249e-01 - 4 par_crystal_3 1.90900e+02 9.54958e+00 1.13079e-02 4.60762e-02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 477 CALLS 478 TOTAL - EDM=0.0370129 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.11079e+00 8.93309e-02 0.00000e+00 -4.75984e-01 - 2 par_crystal_1 5.08061e+00 3.60144e-01 0.00000e+00 -1.14416e-01 - 3 par_crystal_2 4.76040e+02 1.75614e+01 0.00000e+00 -2.32451e-01 - 4 par_crystal_3 1.99914e+02 2.77391e+01 0.00000e+00 -7.67572e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.985e-03 -2.091e-03 1.499e+00 2.820e-01 - -2.091e-03 2.873e-02 -7.387e-01 -2.900e-02 - 1.499e+00 -7.387e-01 3.118e+02 5.244e+01 - 2.820e-01 -2.900e-02 5.244e+01 1.008e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99775 1.000 -0.138 0.950 0.994 - 2 0.79882 -0.138 1.000 -0.247 -0.054 - 3 0.95717 0.950 -0.247 1.000 0.935 - 4 0.99764 0.994 -0.054 0.935 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.8 FROM HESSE STATUS=OK 27 CALLS 505 TOTAL - EDM=0.0183624 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.11079e+00 4.31984e-02 1.44775e-03 -6.03431e-01 - 2 par_crystal_1 5.08061e+00 3.28337e+00 6.64371e-02 1.44728e+00 - 3 par_crystal_2 4.76040e+02 8.02153e+00 1.45036e-02 3.38355e+00 - 4 par_crystal_3 1.99914e+02 2.26294e+01 4.50606e-02 1.52819e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.866e-03 -1.951e-03 -2.584e-03 1.946e-02 - -1.951e-03 1.028e-01 6.675e-04 3.793e-04 - -2.584e-03 6.675e-04 6.449e+01 1.116e+00 - 1.946e-02 3.793e-04 1.116e+00 8.140e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.21215 1.000 -0.141 -0.007 0.158 - 2 0.14274 -0.141 1.000 0.000 0.000 - 3 0.05109 -0.007 0.000 1.000 0.049 - 4 0.16712 0.158 0.000 0.049 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10978.6 FROM MIGRAD STATUS=INITIATE 68 CALLS 69 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 6.03110e+02 3.00000e+01 -8.97402e-01 -6.52175e+01 - 2 par_gaus_exp_1 5.45000e+01 9.10000e+00 0.00000e+00 -4.62060e+02 - 3 par_gaus_exp_2 4.12114e-01 3.05000e-01 0.00000e+00 1.25553e+03 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.9 FROM HESSE STATUS=OK 18 CALLS 182 TOTAL - EDM=0.000691453 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.46431e+02 6.06936e+00 3.17833e-03 -3.92855e-01 - 2 par_gaus_exp_1 6.65716e+01 1.75685e+01 2.62647e-03 1.43349e-01 - 3 par_gaus_exp_2 3.07505e-01 8.37981e-02 8.79822e-04 -3.06196e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM MIGRAD STATUS=CONVERGED 316 CALLS 317 TOTAL - EDM=9.19369e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.62504e+02 3.53152e+00 1.63243e-03 -1.66316e-01 - 2 par_gaus_exp_1 2.46552e+01 1.25211e+01 1.75085e-03 -3.48771e-01 - 3 par_gaus_exp_2 1.14604e-01 5.89219e-02 6.31447e-04 9.83138e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.247e+01 -1.544e+01 -6.961e-02 - -1.544e+01 1.643e+02 7.558e-01 - -6.961e-02 7.558e-01 3.493e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.35636 1.000 -0.341 -0.333 - 2 0.99789 -0.341 1.000 0.998 - 3 0.99788 -0.333 0.998 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM HESSE STATUS=OK 16 CALLS 333 TOTAL - EDM=9.89177e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 5.62504e+02 3.77274e+00 6.52972e-05 8.34552e-02 - 2 par_gaus_exp_1 2.46552e+01 1.46349e+01 3.50170e-04 -7.15413e-01 - 3 par_gaus_exp_2 1.14604e-01 6.93856e-02 1.26289e-04 -1.27868e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.424e+01 -2.545e+01 -1.157e-01 - -2.545e+01 2.286e+02 1.052e+00 - -1.157e-01 1.052e+00 4.855e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.45683 1.000 -0.446 -0.440 - 2 0.99849 -0.446 1.000 0.998 - 3 0.99848 -0.440 0.998 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (13168.6) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=575, par_novo_1=100, par_novo_2=1.58864 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 575,par_novo_1 = 100,par_novo_2 = 1.58864) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=645, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=655, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=665, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=675, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=685, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=695, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=705, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=715, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=725, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=735, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=745, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=755, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - ... (remaining 46 messages suppressed) - - FCN=13054.5 FROM MIGRAD STATUS=INITIATE 14 CALLS 15 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.75000e+02 1.50000e+01 2.01358e-01 -1.22938e+03 - 2 par_novo_1 1.00000e+02 2.00000e+01 2.01358e-01 -6.98326e+03 - 3 par_novo_2 0.00000e+00 2.00000e+01 2.01358e-01 1.51249e+06 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM MIGRAD STATUS=CONVERGED 220 CALLS 221 TOTAL - EDM=2.09668e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.00000e+02 1.21837e+02 1.25149e-01 -7.30463e-04 - 2 par_novo_1 1.30637e+02 1.58558e+01 3.16845e-03 -1.76078e-02 - 3 par_novo_2 -6.95187e-01 1.36663e-01 2.61078e-05 1.74080e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.121e-01 -9.460e-01 -6.449e-03 - -9.460e-01 2.538e+02 2.099e+00 - -6.449e-03 2.099e+00 1.868e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.21023 1.000 -0.177 -0.141 - 2 0.96488 -0.177 1.000 0.964 - 3 0.96445 -0.141 0.964 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM HESSE STATUS=OK 20 CALLS 241 TOTAL - EDM=1.01397e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 5.00000e+02 1.20312e+02 5.00000e-01 -1.57325e+00 - 2 par_novo_1 1.30637e+02 2.01762e+01 1.26738e-04 3.11381e-01 - 3 par_novo_2 -6.95187e-01 1.62575e-01 1.04431e-06 -6.95192e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.070e-01 -4.278e+00 -2.995e-02 - -4.278e+00 4.133e+02 3.212e+00 - -2.995e-02 3.212e+00 2.643e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.69436 1.000 -0.643 -0.563 - 2 0.97859 -0.643 1.000 0.972 - 3 0.97501 -0.563 0.972 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10877 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 6.33849e-01 5.09000e-01 -8.55460e-01 -1.25390e+02 - 2 par_crystal_1_1 2.55500e+00 5.09000e-01 0.00000e+00 -2.69495e+01 - 3 par_crystal_1_2 5.50000e+02 3.00000e+01 0.00000e+00 -1.44080e+01 - 4 par_crystal_1_3 1.04500e+02 1.91000e+01 0.00000e+00 3.07979e+01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.43469 added to diagonal of error matrix - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.5401e+00 8.4221e-02 1.8087e+00 3.6472e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 1.543714 TO DIAGONAL. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.9 FROM HESSE STATUS=OK 25 CALLS 485 TOTAL - EDM=0.0491336 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.05623e+00 1.52463e-01 1.42446e-03 -1.90900e+00 - 2 par_crystal_1_1 5.09988e+00 3.18944e+00 7.54811e-02 -8.93342e-03 - 3 par_crystal_1_2 4.96280e+02 4.98347e+01 9.02051e-03 3.58498e-02 - 4 par_crystal_1_3 1.89188e+02 2.78069e+01 1.02856e-02 -2.38185e-01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 538 CALLS 539 TOTAL - EDM=10.0867 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 14.1 per cent - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.09723e+00 3.02575e-02 -0.00000e+00 5.47416e+01 - 2 par_crystal_1_1 5.09997e+00 3.18368e+00 0.00000e+00 -3.90351e-03 - 3 par_crystal_1_2 4.83329e+02 2.76558e+01 0.00000e+00 7.05236e+00 - 4 par_crystal_1_3 1.96552e+02 5.80629e+00 -0.00000e+00 4.39990e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.156e-04 -1.804e-07 -6.742e-01 1.111e-01 - -1.804e-07 1.763e-04 7.888e-03 -2.154e-03 - -6.742e-01 7.888e-03 7.759e+02 -1.463e+02 - 1.111e-01 -2.154e-03 -1.463e+02 3.432e+01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.82553 1.000 -0.000 -0.800 0.627 - 2 0.03650 -0.000 1.000 0.021 -0.028 - 3 0.94703 -0.800 0.021 1.000 -0.896 - 4 0.90888 0.627 -0.028 -0.896 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -9.7852e-01 9.9996e-01 1.9836e+00 1.9949e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.980510 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 29 CALLS 568 TOTAL - EDM=238.514 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 1.09723e+00 4.25322e-02 2.54943e-04 -6.09913e-01 - 2 par_crystal_1_1 5.09997e+00 7.84798e-01 8.54763e-02 1.56580e+00 - 3 par_crystal_1_2 4.83329e+02 1.87856e+01 1.76414e-03 -4.60588e-01 - 4 par_crystal_1_3 1.96552e+02 5.33115e+00 2.63738e-03 1.30128e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.809e-03 -2.197e-07 8.001e-01 2.280e-01 - -2.197e-07 1.053e-04 -1.173e-04 -3.665e-05 - 8.001e-01 -1.173e-04 3.552e+02 1.010e+02 - 2.280e-01 -3.665e-05 1.010e+02 2.885e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99849 1.000 -0.001 0.998 0.998 - 2 0.00265 -0.001 1.000 -0.001 -0.001 - 3 0.99848 0.998 -0.001 1.000 0.998 - 4 0.99849 0.998 -0.001 0.998 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_550_1200 = 1266.17 - Background number of gaus_exp_550_1200 = 1266.17 - Background number of novo_550_1200 = 1266.17 - Background number of crystal_1_550_1200 = 1266.17 - Background number of gaus_bern_550_1200 = 1266.17 - Background number of landau_550_1200 = 1266.17 -par_crystal_0 param 1.11079 0.0431984 -par_crystal_1 param 5.08061 3.28337 -par_crystal_2 param 476.04 8.02153 -par_crystal_3 param 199.914 22.6294 -par_crystal_1_0 param 1.09723 0.0425322 -par_crystal_1_1 param 5.09997 0.784798 -par_crystal_1_2 param 483.329 18.7856 -par_crystal_1_3 param 196.552 5.33115 -par_gaus_exp_0 param 562.504 3.77274 -par_gaus_exp_1 param 24.6552 14.6349 -par_gaus_exp_2 param 0.114604 0.0693856 -par_novo_0 param 500 120.312 -par_novo_1 param 130.637 20.1762 -par_novo_2 param -0.695187 0.162575 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_600_crystal_1_550_1200/datacard_600_crystal_1_550_1200.txt b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_600_crystal_1_550_1200/datacard_600_crystal_1_550_1200.txt deleted file mode 100644 index fe3b242..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_600_crystal_1_550_1200/datacard_600_crystal_1_550_1200.txt +++ /dev/null @@ -1,30 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_600.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_crystal_1_550_1200.root HbbHbb:f_crystal_1 -shapes data_obs HbbHbb w_background_crystal_1_550_1200.root HbbHbb:data_obs_crystal_1_550_1200 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 3.01596 1266.17 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06702 - -JER lnN 1.01328 - -JEC lnN 1.02779 - -trigger lnN 1.10 - -PDF lnN 1.0229477477 - -sg_p0 param 608.692 -1.29492/+1.15383 -sg_p1 param 18.3569 -0.660364/+0.181204 -sg_p2 param 1.48767 -0.0836517/+0.0287548 -sg_p3 param 1.40613 -0.0665205/+0.0307738 -par_crystal_1_0 param 1.09723 0.0425322 -par_crystal_1_1 param 5.09997 0.784798 -par_crystal_1_2 param 483.329 18.7856 -par_crystal_1_3 param 196.552 5.33115 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_600_crystal_1_550_1200/pdf.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_600_crystal_1_550_1200/pdf.log deleted file mode 100644 index 1900262..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_600_crystal_1_550_1200/pdf.log +++ /dev/null @@ -1,10 +0,0 @@ -[?1034h FCN=13.9498 FROM MIGRAD STATUS=CONVERGED 71 CALLS 72 TOTAL - EDM=6.95637e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 Constant 1.30566e+01 1.77733e+00 2.65488e-03 2.23742e-05 - 2 Mean 1.00046e+00 3.03346e-03 5.72003e-06 3.78371e-01 - 3 Sigma 2.29477e-02 2.84199e-03 6.88862e-05 6.32201e-03 -1.00046088083 +/- 0.0030334648545 -0.0229477477015 +/- 0.00284199080585 -PDF lnN 1.0229477477 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_600_crystal_1_550_1200/signal600_sig.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_600_crystal_1_550_1200/signal600_sig.log deleted file mode 100644 index 2b9a4cd..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_600_crystal_1_550_1200/signal600_sig.log +++ /dev/null @@ -1,985 +0,0 @@ - -Processing test.c... -nSignal_init = 100000 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [390,800] --> [390,800] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [490,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [390,800] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [490,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=20407.2 FROM MIGRAD STATUS=INITIATE 56 CALLS 57 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.90000e+02 6.00000e+00 0.00000e+00 -2.37960e+02 - 2 sg_p1 2.25000e+01 2.50000e+00 0.00000e+00 -1.20569e+02 - 3 sg_p2 9.48780e-01 5.00000e-01 0.00000e+00 2.19249e+02 - 4 sg_p3 9.35752e-01 7.00000e-01 -8.22196e-01 -2.16926e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20303.7 FROM MIGRAD STATUS=CONVERGED 258 CALLS 259 TOTAL - EDM=3.54203e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.92104e+02 4.94229e-01 1.62450e-03 -2.33203e-01 - 2 sg_p1 3.16035e+01 3.64838e-01 4.18602e-03 4.92054e-02 - 3 sg_p2 2.32184e+00 1.74449e-01 2.49592e-03 4.15288e-02 - 4 sg_p3 2.56533e+00 2.80149e-01 3.09113e-03 3.31222e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.443e-01 4.410e-04 2.284e-03 -4.332e-04 - 4.410e-04 1.332e-01 3.420e-03 4.258e-04 - 2.284e-03 3.420e-03 3.048e-02 4.517e-05 - -4.332e-04 4.258e-04 4.517e-05 7.866e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.02667 1.000 0.002 0.026 -0.003 - 2 0.05384 0.002 1.000 0.054 0.004 - 3 0.05979 0.026 0.054 1.000 0.001 - 4 0.00527 -0.003 0.004 0.001 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20303.7 FROM HESSE STATUS=OK 23 CALLS 282 TOTAL - EDM=3.55279e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.92104e+02 4.94244e-01 3.24901e-04 7.01930e-02 - 2 sg_p1 3.16035e+01 3.64897e-01 1.67441e-04 8.15808e-01 - 3 sg_p2 2.32184e+00 1.74479e-01 4.99183e-04 -7.13248e-02 - 4 sg_p3 2.56533e+00 2.80163e-01 6.18226e-04 -2.70328e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.443e-01 3.135e-04 2.378e-03 -5.538e-04 - 3.135e-04 1.332e-01 3.580e-03 7.538e-04 - 2.378e-03 3.580e-03 3.049e-02 5.456e-05 - -5.538e-04 7.538e-04 5.456e-05 7.867e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.02784 1.000 0.002 0.028 -0.004 - 2 0.05664 0.002 1.000 0.056 0.007 - 3 0.06252 0.028 0.056 1.000 0.001 - 4 0.00842 -0.004 0.007 0.001 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -600 -592.104 +- 0.494244 -31.6035 +- 0.364897 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [390,800] --> [390,800] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [490,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [390,800] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [490,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=20903.6 FROM MIGRAD STATUS=INITIATE 59 CALLS 60 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.90000e+02 6.00000e+00 0.00000e+00 -2.76905e+02 - 2 sg_p1 2.25000e+01 2.50000e+00 0.00000e+00 -1.33312e+02 - 3 sg_p2 8.35066e-01 5.00000e-01 0.00000e+00 1.55262e+02 - 4 sg_p3 1.06407e+00 7.00000e-01 -7.69784e-01 -6.62795e+01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.01877 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20782.7 FROM HESSE STATUS=OK 27 CALLS 327 TOTAL - EDM=0.353557 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.94811e+02 4.92616e-01 1.65618e-03 2.97074e-02 - 2 sg_p1 3.19678e+01 3.59009e-01 4.38078e-03 7.51718e-03 - 3 sg_p2 3.30884e+00 1.90897e+00 9.40463e-02 -2.17700e-03 - 4 sg_p3 3.57858e+00 1.02503e+00 5.00000e-01 -2.82844e+00 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MACHINE ACCURACY LIMITS FURTHER IMPROVEMENT. - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=20782.7 FROM MIGRAD STATUS=CONVERGED 349 CALLS 350 TOTAL - EDM=0.00116564 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 0.5 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.94811e+02 4.92616e-01 0.00000e+00 -7.95791e-04 - 2 sg_p1 3.19677e+01 3.59015e-01 0.00000e+00 -1.29854e-03 - 3 sg_p2 3.31338e+00 1.90573e+00 0.00000e+00 -5.13595e-02 - 4 sg_p3 4.44183e+00 9.90294e-01 0.00000e+00 -7.71997e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.427e-01 1.206e-04 -3.792e-05 6.874e-06 - 1.206e-04 1.290e-01 -2.103e-05 2.400e-05 - -3.792e-05 -2.103e-05 4.913e+00 1.276e-01 - 6.874e-06 2.400e-05 1.276e-01 1.010e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.00068 1.000 0.001 -0.000 0.000 - 2 0.00069 0.001 1.000 -0.000 0.000 - 3 0.05726 -0.000 -0.000 1.000 0.057 - 4 0.05726 0.000 0.000 0.057 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20782.7 FROM HESSE STATUS=OK 29 CALLS 379 TOTAL - EDM=0.00193193 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.94811e+02 4.92614e-01 1.65617e-03 1.61052e-01 - 2 sg_p1 3.19677e+01 3.59005e-01 1.75231e-03 8.59341e-01 - 3 sg_p2 3.31338e+00 1.92835e+00 9.34815e-02 3.31384e-01 - 4 sg_p3 4.44183e+00 4.36098e+00 5.00000e-01 2.72453e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.427e-01 1.189e-04 4.150e-10 3.937e-09 - 1.189e-04 1.290e-01 7.552e-10 7.164e-09 - 4.150e-10 7.552e-10 5.086e+00 4.866e-17 - 3.937e-09 7.164e-09 4.866e-17 3.680e+02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.00067 1.000 0.001 0.000 0.000 - 2 0.00067 0.001 1.000 0.000 0.000 - 3 0.00000 0.000 0.000 1.000 0.000 - 4 0.00000 0.000 0.000 0.000 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -600 -594.811 +- 0.492614 -31.9677 +- 0.359005 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [390,800] --> [390,800] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [490,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [390,800] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [490,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=19759.2 FROM MIGRAD STATUS=INITIATE 61 CALLS 62 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.90000e+02 6.00000e+00 0.00000e+00 -3.08252e+02 - 2 sg_p1 2.25000e+01 2.50000e+00 0.00000e+00 3.47377e+00 - 3 sg_p2 1.03803e+00 5.00000e-01 0.00000e+00 1.96966e+02 - 4 sg_p3 6.78922e-01 7.00000e-01 -9.37400e-01 -9.51087e+02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19618.4 FROM HESSE STATUS=OK 27 CALLS 295 TOTAL - EDM=0.000519933 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.89106e+02 4.99310e-01 1.60340e-03 -1.77687e-01 - 2 sg_p1 3.11952e+01 3.74439e-01 3.97599e-03 1.75125e-01 - 3 sg_p2 2.15446e+00 1.55638e-01 6.05904e-03 5.07493e-02 - 4 sg_p3 2.86472e+00 1.00280e+00 2.23604e-02 1.02315e-01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.00142 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=19618.4 FROM MIGRAD STATUS=FAILED 359 CALLS 360 TOTAL - EDM=0.026975 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 42.7 per cent - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.89107e+02 1.06052e+00 0.00000e+00 3.45243e-02 - 2 sg_p1 3.11930e+01 5.01209e-01 0.00000e+00 3.04828e-02 - 3 sg_p2 2.15412e+00 1.61274e+00 -0.00000e+00 1.77468e-02 - 4 sg_p3 2.85260e+00 2.27046e+00 0.00000e+00 -1.96724e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.125e+00 -5.647e-02 7.612e-01 2.001e+00 - -5.647e-02 2.515e-01 -5.717e-01 8.039e-02 - 7.612e-01 -5.717e-01 3.085e+00 -2.479e-02 - 2.001e+00 8.039e-02 -2.479e-02 6.149e+00 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.87825 1.000 -0.106 0.409 0.761 - 2 0.68964 -0.106 1.000 -0.649 0.065 - 3 0.81697 0.409 -0.649 1.000 -0.006 - 4 0.84389 0.761 0.065 -0.006 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19618.4 FROM HESSE STATUS=OK 29 CALLS 389 TOTAL - EDM=1.78558e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.89107e+02 4.98832e-01 1.60273e-03 -2.97585e-02 - 2 sg_p1 3.11930e+01 3.72807e-01 3.96095e-03 7.69036e-01 - 3 sg_p2 2.15412e+00 1.55604e-01 5.99006e-03 -1.38798e-01 - 4 sg_p3 2.85260e+00 7.77091e-01 2.18365e-02 -1.86043e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.489e-01 3.933e-03 6.510e-03 -1.038e-02 - 3.933e-03 1.391e-01 8.935e-03 1.739e-02 - 6.510e-03 8.935e-03 2.424e-02 8.994e-04 - -1.038e-02 1.739e-02 8.994e-04 6.144e-01 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.08866 1.000 0.021 0.084 -0.027 - 2 0.16487 0.021 1.000 0.154 0.059 - 3 0.17370 0.084 0.154 1.000 0.007 - 4 0.06566 -0.027 0.059 0.007 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -600 -589.107 +- 0.498832 -31.193 +- 0.372807 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [440,800] --> [440,800] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [440,800] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=18511.3 FROM MIGRAD STATUS=INITIATE 60 CALLS 61 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 5.00000e+00 0.00000e+00 -7.40396e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 -3.52378e+01 - 3 sg_p2 1.18490e+00 5.00000e-01 0.00000e+00 2.04158e+01 - 4 sg_p3 1.47860e+00 7.00000e-01 -6.15717e-01 -1.54349e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18460.6 FROM MIGRAD STATUS=CONVERGED 198 CALLS 199 TOTAL - EDM=1.54851e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.08692e+02 3.23280e-01 1.16514e-03 -7.99199e-03 - 2 sg_p1 1.83569e+01 2.79934e-01 3.02518e-03 -2.66369e-02 - 3 sg_p2 1.48767e+00 5.44286e-02 2.05315e-03 4.94574e-02 - 4 sg_p3 1.40613e+00 6.14668e-02 1.81455e-03 2.39101e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.045e-01 -9.051e-03 2.188e-03 -5.216e-03 - -9.051e-03 7.840e-02 5.474e-03 7.094e-03 - 2.188e-03 5.474e-03 2.963e-03 4.768e-04 - -5.216e-03 7.094e-03 4.768e-04 3.779e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.31290 1.000 -0.100 0.124 -0.262 - 2 0.51370 -0.100 1.000 0.359 0.412 - 3 0.39510 0.124 0.359 1.000 0.142 - 4 0.46945 -0.262 0.412 0.142 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18460.6 FROM HESSE STATUS=OK 23 CALLS 222 TOTAL - EDM=1.54744e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.08692e+02 3.23426e-01 4.66057e-05 1.48232e-01 - 2 sg_p1 1.83569e+01 2.80464e-01 1.21007e-04 1.14504e-01 - 3 sg_p2 1.48767e+00 5.44911e-02 8.21259e-05 -4.16906e-01 - 4 sg_p3 1.40613e+00 6.15475e-02 7.25820e-05 -6.41314e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.046e-01 -9.179e-03 2.197e-03 -5.241e-03 - -9.179e-03 7.870e-02 5.524e-03 7.158e-03 - 2.197e-03 5.524e-03 2.970e-03 4.840e-04 - -5.241e-03 7.158e-03 4.840e-04 3.789e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.31420 1.000 -0.101 0.125 -0.263 - 2 0.51639 -0.101 1.000 0.361 0.415 - 3 0.39754 0.125 0.361 1.000 0.144 - 4 0.47162 -0.263 0.415 0.144 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -600 -608.692 +- 0.323426 -18.3569 +- 0.280464 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 - fit done -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [440,800] --> [440,800] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [440,800] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=18914.3 FROM MIGRAD STATUS=INITIATE 77 CALLS 78 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.07615e+02 5.00000e+00 0.00000e+00 -3.22775e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 5.18097e+00 - 3 sg_p2 1.14423e+00 5.00000e-01 0.00000e+00 -1.00194e+02 - 4 sg_p3 1.45830e+00 7.00000e-01 -6.22838e-01 5.05414e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18893.8 FROM MIGRAD STATUS=CONVERGED 217 CALLS 218 TOTAL - EDM=2.83441e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.09835e+02 3.20458e-01 1.18122e-03 1.99716e-02 - 2 sg_p1 1.84026e+01 2.81622e-01 3.04842e-03 -4.57325e-03 - 3 sg_p2 1.46608e+00 5.89939e-02 2.13709e-03 -5.15374e-04 - 4 sg_p3 1.40527e+00 5.47157e-02 1.70241e-03 2.83643e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.027e-01 2.191e-03 4.166e-03 -3.049e-03 - 2.191e-03 7.935e-02 7.350e-03 5.397e-03 - 4.166e-03 7.350e-03 3.481e-03 4.765e-04 - -3.049e-03 5.397e-03 4.765e-04 2.994e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.30388 1.000 0.024 0.220 -0.174 - 2 0.52791 0.024 1.000 0.442 0.350 - 3 0.49057 0.220 0.442 1.000 0.148 - 4 0.39639 -0.174 0.350 0.148 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18893.8 FROM HESSE STATUS=OK 23 CALLS 241 TOTAL - EDM=2.83854e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.09835e+02 3.20577e-01 2.36244e-04 1.94613e-01 - 2 sg_p1 1.84026e+01 2.82160e-01 1.21937e-04 1.20635e-01 - 3 sg_p2 1.46608e+00 5.90852e-02 8.54835e-05 -4.26369e-01 - 4 sg_p3 1.40527e+00 5.47727e-02 6.80964e-05 -6.41619e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.028e-01 2.166e-03 4.187e-03 -3.058e-03 - 2.166e-03 7.965e-02 7.413e-03 5.449e-03 - 4.187e-03 7.413e-03 3.492e-03 4.840e-04 - -3.058e-03 5.449e-03 4.840e-04 3.000e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.30498 1.000 0.024 0.221 -0.174 - 2 0.53050 0.024 1.000 0.444 0.352 - 3 0.49295 0.221 0.444 1.000 0.150 - 4 0.39859 -0.174 0.352 0.150 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -600 -609.835 +- 0.320577 -18.4026 +- 0.28216 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [440,800] --> [440,800] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [440,800] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17827.8 FROM MIGRAD STATUS=INITIATE 52 CALLS 53 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 5.00000e+00 0.00000e+00 -3.81579e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 -1.00435e+02 - 3 sg_p2 1.28822e+00 5.00000e-01 0.00000e+00 2.73039e+01 - 4 sg_p3 1.80614e+00 7.00000e-01 -5.05175e-01 1.07828e+02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.0886e+00 1.1061e+00 1.8427e+00 2.1398e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 1.090718 TO DIAGONAL. - FCN=17796.1 FROM HESSE STATUS=NOT POSDEF 29 CALLS 194 TOTAL - EDM=0.416197 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.07398e+02 2.64955e+00 1.52214e-04 -1.22217e+01 - 2 sg_p1 1.77156e+01 1.07159e+00 3.05183e-03 -2.94405e+00 - 3 sg_p2 1.40875e+00 4.86527e-02 4.22960e-04 -1.06232e+01 - 4 sg_p3 1.34786e+00 1.92678e-01 1.78861e-03 3.70210e+00 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=17796.1 FROM MIGRAD STATUS=FAILED 231 CALLS 232 TOTAL - EDM=854.994 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.07407e+02 1.35903e-01 -0.00000e+00 6.05600e+02 - 2 sg_p1 1.77116e+01 1.50263e-01 0.00000e+00 1.62850e+02 - 3 sg_p2 1.40858e+00 6.28910e-03 0.00000e+00 -1.08286e+01 - 4 sg_p3 1.34715e+00 2.75057e-02 0.00000e+00 3.92805e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.847e-02 -2.028e-02 -7.414e-04 -3.202e-03 - -2.028e-02 2.258e-02 8.238e-04 3.560e-03 - -7.414e-04 8.238e-04 3.955e-05 1.478e-04 - -3.202e-03 3.560e-03 1.478e-04 7.566e-04 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99312 1.000 -0.993 -0.867 -0.856 - 2 0.99342 -0.993 1.000 0.872 0.861 - 3 0.89539 -0.867 0.872 1.000 0.855 - 4 0.88698 -0.856 0.861 0.855 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -7.1751e+01 9.9679e-01 1.9909e+00 7.2763e+01 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 71.823632 TO DIAGONAL. - FCN=17796.1 FROM HESSE STATUS=NOT POSDEF 27 CALLS 259 TOTAL - EDM=0.0450234 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.07407e+02 8.84526e-03 4.47722e-05 9.64479e-02 - 2 sg_p1 1.77116e+01 9.83564e-03 1.65224e-04 2.82174e-02 - 3 sg_p2 1.40858e+00 7.59554e-03 2.51140e-05 -4.51783e-01 - 4 sg_p3 1.34715e+00 1.39806e-01 8.90793e-05 -6.62511e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.824e-05 8.666e-05 -3.386e-05 1.235e-03 - 8.666e-05 9.674e-05 -3.765e-05 1.373e-03 - -3.386e-05 -3.765e-05 5.769e-05 -5.353e-04 - 1.235e-03 1.373e-03 -5.353e-04 1.956e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99802 1.000 0.996 -0.504 0.998 - 2 0.99801 0.996 1.000 -0.504 0.998 - 3 0.50444 -0.504 -0.504 1.000 -0.504 - 4 0.99899 0.998 0.998 -0.504 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -600 -607.407 +- 0.00884526 -17.7116 +- 0.00983564 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [440,800] --> [440,800] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [440,800] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=18313.7 FROM MIGRAD STATUS=INITIATE 63 CALLS 64 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 5.00000e+00 0.00000e+00 -7.10963e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 -2.40680e+01 - 3 sg_p2 1.12814e+00 5.00000e-01 0.00000e+00 -1.98843e+01 - 4 sg_p3 1.45064e+00 7.00000e-01 -6.25537e-01 -1.20812e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18262.1 FROM MIGRAD STATUS=CONVERGED 166 CALLS 167 TOTAL - EDM=7.98313e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.08803e+02 3.30506e-01 1.18077e-03 -1.43643e-02 - 2 sg_p1 1.84717e+01 2.89622e-01 3.07900e-03 -7.62757e-02 - 3 sg_p2 1.45856e+00 5.36517e-02 1.98838e-03 -2.33437e-02 - 4 sg_p3 1.38960e+00 6.15342e-02 1.80011e-03 4.41451e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.092e-01 -9.440e-03 2.340e-03 -5.461e-03 - -9.440e-03 8.392e-02 5.863e-03 7.559e-03 - 2.340e-03 5.863e-03 2.879e-03 5.057e-04 - -5.461e-03 7.559e-03 5.057e-04 3.787e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.32401 1.000 -0.099 0.132 -0.268 - 2 0.53046 -0.099 1.000 0.377 0.424 - 3 0.41529 0.132 0.377 1.000 0.153 - 4 0.48258 -0.268 0.424 0.153 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18262.1 FROM HESSE STATUS=OK 23 CALLS 190 TOTAL - EDM=8.00182e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.08803e+02 3.30636e-01 2.36154e-04 1.52717e-01 - 2 sg_p1 1.84717e+01 2.90111e-01 6.15801e-04 1.29921e-01 - 3 sg_p2 1.45856e+00 5.37098e-02 7.95354e-05 -4.29674e-01 - 4 sg_p3 1.38960e+00 6.16044e-02 3.60021e-04 -6.47219e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.093e-01 -9.548e-03 2.348e-03 -5.481e-03 - -9.548e-03 8.421e-02 5.909e-03 7.616e-03 - 2.348e-03 5.909e-03 2.885e-03 5.122e-04 - -5.481e-03 7.616e-03 5.122e-04 3.796e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.32509 1.000 -0.100 0.132 -0.269 - 2 0.53273 -0.100 1.000 0.379 0.426 - 3 0.41743 0.132 0.379 1.000 0.155 - 4 0.48438 -0.269 0.426 0.155 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -600 -608.803 +- 0.330636 -18.4717 +- 0.290111 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [440,800] --> [440,800] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [440,800] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=18711.2 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 5.00000e+00 0.00000e+00 -7.18390e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 -3.18392e+01 - 3 sg_p2 1.20377e+00 5.00000e-01 0.00000e+00 8.44187e+00 - 4 sg_p3 1.54524e+00 7.00000e-01 -5.92581e-01 1.53539e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18661.3 FROM MIGRAD STATUS=CONVERGED 205 CALLS 206 TOTAL - EDM=3.64592e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.08629e+02 3.18788e-01 1.15078e-03 -3.36230e-01 - 2 sg_p1 1.81384e+01 2.76492e-01 2.97751e-03 -6.31530e-02 - 3 sg_p2 1.49686e+00 5.44757e-02 2.06505e-03 2.07196e-02 - 4 sg_p3 1.39306e+00 6.05611e-02 1.78870e-03 1.70313e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.016e-01 -1.019e-02 2.021e-03 -5.340e-03 - -1.019e-02 7.648e-02 5.389e-03 7.151e-03 - 2.021e-03 5.389e-03 2.968e-03 4.840e-04 - -5.340e-03 7.151e-03 4.840e-04 3.668e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.32316 1.000 -0.116 0.116 -0.277 - 2 0.52296 -0.116 1.000 0.358 0.427 - 3 0.39289 0.116 0.358 1.000 0.147 - 4 0.48547 -0.277 0.427 0.147 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18661.3 FROM HESSE STATUS=OK 23 CALLS 229 TOTAL - EDM=3.64813e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.08629e+02 3.18930e-01 2.30156e-04 1.45672e-01 - 2 sg_p1 1.81384e+01 2.76957e-01 5.95502e-04 8.52226e-02 - 3 sg_p2 1.49686e+00 5.45322e-02 8.26022e-05 -4.12888e-01 - 4 sg_p3 1.39306e+00 6.06332e-02 7.15481e-05 -6.45981e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.017e-01 -1.031e-02 2.029e-03 -5.364e-03 - -1.031e-02 7.674e-02 5.434e-03 7.205e-03 - 2.029e-03 5.434e-03 2.974e-03 4.905e-04 - -5.364e-03 7.205e-03 4.905e-04 3.677e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.32439 1.000 -0.117 0.117 -0.277 - 2 0.52528 -0.117 1.000 0.360 0.429 - 3 0.39510 0.117 0.360 1.000 0.148 - 4 0.48733 -0.277 0.429 0.148 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -600 -608.629 +- 0.31893 -18.1384 +- 0.276957 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [440,800] --> [440,800] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [440,800] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17303.3 FROM MIGRAD STATUS=INITIATE 59 CALLS 60 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 5.00000e+00 0.00000e+00 -6.79986e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 -3.47913e+01 - 3 sg_p2 1.18392e+00 5.00000e-01 0.00000e+00 1.09112e+01 - 4 sg_p3 1.50179e+00 7.00000e-01 -6.07622e-01 -1.34120e+00 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17256.2 FROM MIGRAD STATUS=CONVERGED 162 CALLS 163 TOTAL - EDM=1.97081e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.08678e+02 3.33992e-01 1.16426e-03 9.30660e-02 - 2 sg_p1 1.83420e+01 2.89061e-01 3.02407e-03 -5.38511e-02 - 3 sg_p2 1.48991e+00 5.64139e-02 2.05472e-03 -1.38092e-01 - 4 sg_p3 1.40621e+00 6.35546e-02 1.81513e-03 1.01686e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.116e-01 -9.726e-03 2.331e-03 -5.579e-03 - -9.726e-03 8.360e-02 5.845e-03 7.576e-03 - 2.331e-03 5.845e-03 3.183e-03 5.099e-04 - -5.579e-03 7.576e-03 5.099e-04 4.040e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.31288 1.000 -0.101 0.124 -0.263 - 2 0.51335 -0.101 1.000 0.358 0.412 - 3 0.39415 0.124 0.358 1.000 0.142 - 4 0.46956 -0.263 0.412 0.142 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17256.2 FROM HESSE STATUS=OK 23 CALLS 186 TOTAL - EDM=1.96909e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.08678e+02 3.34135e-01 2.32851e-04 1.47652e-01 - 2 sg_p1 1.83420e+01 2.89586e-01 1.20963e-04 1.12504e-01 - 3 sg_p2 1.48991e+00 5.64735e-02 4.10945e-04 -4.15923e-01 - 4 sg_p3 1.40621e+00 6.36376e-02 7.26053e-05 -6.41285e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.117e-01 -9.856e-03 2.338e-03 -5.606e-03 - -9.856e-03 8.390e-02 5.896e-03 7.643e-03 - 2.338e-03 5.896e-03 3.190e-03 5.173e-04 - -5.606e-03 7.643e-03 5.173e-04 4.050e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.31411 1.000 -0.102 0.124 -0.264 - 2 0.51594 -0.102 1.000 0.360 0.415 - 3 0.39639 0.124 0.360 1.000 0.144 - 4 0.47171 -0.264 0.415 0.144 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -600 -608.678 +- 0.334135 -18.342 +- 0.289586 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [440,800] --> [440,800] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [440,800] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=19781.5 FROM MIGRAD STATUS=INITIATE 60 CALLS 61 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 5.00000e+00 0.00000e+00 -7.94070e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 -2.71988e+01 - 3 sg_p2 1.17009e+00 5.00000e-01 0.00000e+00 -7.70001e-01 - 4 sg_p3 1.45286e+00 7.00000e-01 -6.24753e-01 -3.36178e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19726.9 FROM MIGRAD STATUS=CONVERGED 182 CALLS 183 TOTAL - EDM=4.57234e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.08706e+02 3.13081e-01 1.16661e-03 7.50814e-02 - 2 sg_p1 1.83713e+01 2.71251e-01 3.02919e-03 4.52649e-02 - 3 sg_p2 1.48521e+00 5.25283e-02 2.04671e-03 -2.57882e-02 - 4 sg_p3 1.40613e+00 5.94897e-02 1.81550e-03 4.82439e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.802e-02 -8.423e-03 2.056e-03 -4.882e-03 - -8.423e-03 7.361e-02 5.131e-03 6.652e-03 - 2.056e-03 5.131e-03 2.760e-03 4.464e-04 - -4.882e-03 6.652e-03 4.464e-04 3.540e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.31292 1.000 -0.099 0.125 -0.262 - 2 0.51406 -0.099 1.000 0.360 0.412 - 3 0.39608 0.125 0.360 1.000 0.143 - 4 0.46939 -0.262 0.412 0.143 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19726.9 FROM HESSE STATUS=OK 23 CALLS 206 TOTAL - EDM=4.58525e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.08706e+02 3.13220e-01 2.33322e-04 1.48803e-01 - 2 sg_p1 1.83713e+01 2.71761e-01 1.21167e-04 1.16438e-01 - 3 sg_p2 1.48521e+00 5.25885e-02 8.18685e-05 -4.17982e-01 - 4 sg_p3 1.40613e+00 5.95681e-02 7.26199e-05 -6.41314e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.811e-02 -8.532e-03 2.065e-03 -4.905e-03 - -8.532e-03 7.389e-02 5.178e-03 6.711e-03 - 2.065e-03 5.178e-03 2.766e-03 4.531e-04 - -4.905e-03 6.711e-03 4.531e-04 3.549e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.31420 1.000 -0.100 0.125 -0.263 - 2 0.51674 -0.100 1.000 0.362 0.414 - 3 0.39850 0.125 0.362 1.000 0.145 - 4 0.47156 -0.263 0.414 0.145 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -600 -608.706 +- 0.31322 -18.3713 +- 0.271761 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 608.692 +- 0.323426 (stat) - 1.28478 + 1.14244 (syst); -1.29492/+1.15383 (total) - Uncertainty on sg_p1 = 18.3569 +- 0.280464 (stat) - 0.645303 + 0.114761 (syst); -0.660364/+0.181204 (total) - Uncertainty on sg_p2 = 1.48767 +- 0.0544911 (stat) - 0.0790904 + 0.00919321 (syst); -0.0836517/+0.0287548 (total) - Uncertainty on sg_p3 = 1.40613 +- 0.0615475 (stat) - 0.0589742 + 8.24765e-05 (syst); -0.0665205/+0.0307738 (total) - === Baseline plot ===
- norm = 150.798 -JEC lnN 1.02779 - -JER lnN 1.01328 - -btag lnN 1.06702 - -sg_p0 param 608.692 -1.29492/+1.15383 -sg_p1 param 18.3569 -0.660364/+0.181204 -sg_p2 param 1.48767 -0.0836517/+0.0287548 -sg_p3 param 1.40613 -0.0665205/+0.0307738 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_600_novo_550_1200/data_bkg.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_600_novo_550_1200/data_bkg.log deleted file mode 100644 index 9081393..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_600_novo_550_1200/data_bkg.log +++ /dev/null @@ -1,690 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10879.7 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 6.74624e-01 5.09000e-01 -8.31364e-01 -1.01971e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -3.20610e+01 - 3 par_crystal_2 5.00000e+02 2.00000e+01 0.00000e+00 -9.48837e+00 - 4 par_crystal_3 1.05000e+02 1.90000e+01 0.00000e+00 2.45317e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7116e+01 9.9978e-01 1.9597e+00 1.8156e+01 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 17.134017 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 27 CALLS 314 TOTAL - EDM=0.131054 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.06594e+00 6.09301e-02 1.43210e-03 -8.77809e-01 - 2 par_crystal_1 5.09576e+00 7.69298e-02 8.09031e-02 -5.13188e-02 - 3 par_crystal_2 4.95224e+02 7.91481e+01 2.17679e-03 -5.43249e-01 - 4 par_crystal_3 1.90900e+02 9.54958e+00 1.13079e-02 4.60762e-02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 477 CALLS 478 TOTAL - EDM=0.0370129 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.11079e+00 8.93309e-02 0.00000e+00 -4.75984e-01 - 2 par_crystal_1 5.08061e+00 3.60144e-01 0.00000e+00 -1.14416e-01 - 3 par_crystal_2 4.76040e+02 1.75614e+01 0.00000e+00 -2.32451e-01 - 4 par_crystal_3 1.99914e+02 2.77391e+01 0.00000e+00 -7.67572e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.985e-03 -2.091e-03 1.499e+00 2.820e-01 - -2.091e-03 2.873e-02 -7.387e-01 -2.900e-02 - 1.499e+00 -7.387e-01 3.118e+02 5.244e+01 - 2.820e-01 -2.900e-02 5.244e+01 1.008e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99775 1.000 -0.138 0.950 0.994 - 2 0.79882 -0.138 1.000 -0.247 -0.054 - 3 0.95717 0.950 -0.247 1.000 0.935 - 4 0.99764 0.994 -0.054 0.935 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.8 FROM HESSE STATUS=OK 27 CALLS 505 TOTAL - EDM=0.0183624 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.11079e+00 4.31984e-02 1.44775e-03 -6.03431e-01 - 2 par_crystal_1 5.08061e+00 3.28337e+00 6.64371e-02 1.44728e+00 - 3 par_crystal_2 4.76040e+02 8.02153e+00 1.45036e-02 3.38355e+00 - 4 par_crystal_3 1.99914e+02 2.26294e+01 4.50606e-02 1.52819e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.866e-03 -1.951e-03 -2.584e-03 1.946e-02 - -1.951e-03 1.028e-01 6.675e-04 3.793e-04 - -2.584e-03 6.675e-04 6.449e+01 1.116e+00 - 1.946e-02 3.793e-04 1.116e+00 8.140e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.21215 1.000 -0.141 -0.007 0.158 - 2 0.14274 -0.141 1.000 0.000 0.000 - 3 0.05109 -0.007 0.000 1.000 0.049 - 4 0.16712 0.158 0.000 0.049 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10978.6 FROM MIGRAD STATUS=INITIATE 68 CALLS 69 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 6.03110e+02 3.00000e+01 -8.97402e-01 -6.52175e+01 - 2 par_gaus_exp_1 5.45000e+01 9.10000e+00 0.00000e+00 -4.62060e+02 - 3 par_gaus_exp_2 4.12114e-01 3.05000e-01 0.00000e+00 1.25553e+03 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.9 FROM HESSE STATUS=OK 18 CALLS 182 TOTAL - EDM=0.000691453 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.46431e+02 6.06936e+00 3.17833e-03 -3.92855e-01 - 2 par_gaus_exp_1 6.65716e+01 1.75685e+01 2.62647e-03 1.43349e-01 - 3 par_gaus_exp_2 3.07505e-01 8.37981e-02 8.79822e-04 -3.06196e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM MIGRAD STATUS=CONVERGED 316 CALLS 317 TOTAL - EDM=9.19369e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.62504e+02 3.53152e+00 1.63243e-03 -1.66316e-01 - 2 par_gaus_exp_1 2.46552e+01 1.25211e+01 1.75085e-03 -3.48771e-01 - 3 par_gaus_exp_2 1.14604e-01 5.89219e-02 6.31447e-04 9.83138e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.247e+01 -1.544e+01 -6.961e-02 - -1.544e+01 1.643e+02 7.558e-01 - -6.961e-02 7.558e-01 3.493e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.35636 1.000 -0.341 -0.333 - 2 0.99789 -0.341 1.000 0.998 - 3 0.99788 -0.333 0.998 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM HESSE STATUS=OK 16 CALLS 333 TOTAL - EDM=9.89177e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 5.62504e+02 3.77274e+00 6.52972e-05 8.34552e-02 - 2 par_gaus_exp_1 2.46552e+01 1.46349e+01 3.50170e-04 -7.15413e-01 - 3 par_gaus_exp_2 1.14604e-01 6.93856e-02 1.26289e-04 -1.27868e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.424e+01 -2.545e+01 -1.157e-01 - -2.545e+01 2.286e+02 1.052e+00 - -1.157e-01 1.052e+00 4.855e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.45683 1.000 -0.446 -0.440 - 2 0.99849 -0.446 1.000 0.998 - 3 0.99848 -0.440 0.998 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (13168.6) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=575, par_novo_1=100, par_novo_2=1.58864 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=645, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=655, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=665, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=675, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=685, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=695, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=705, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=715, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=725, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=735, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=745, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=755, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - ... (remaining 46 messages suppressed) -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 575,par_novo_1 = 100,par_novo_2 = 1.58864) - - FCN=13054.5 FROM MIGRAD STATUS=INITIATE 14 CALLS 15 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.75000e+02 1.50000e+01 2.01358e-01 -1.22938e+03 - 2 par_novo_1 1.00000e+02 2.00000e+01 2.01358e-01 -6.98326e+03 - 3 par_novo_2 0.00000e+00 2.00000e+01 2.01358e-01 1.51249e+06 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM MIGRAD STATUS=CONVERGED 220 CALLS 221 TOTAL - EDM=2.09668e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.00000e+02 1.21837e+02 1.25149e-01 -7.30463e-04 - 2 par_novo_1 1.30637e+02 1.58558e+01 3.16845e-03 -1.76078e-02 - 3 par_novo_2 -6.95187e-01 1.36663e-01 2.61078e-05 1.74080e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.121e-01 -9.460e-01 -6.449e-03 - -9.460e-01 2.538e+02 2.099e+00 - -6.449e-03 2.099e+00 1.868e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.21023 1.000 -0.177 -0.141 - 2 0.96488 -0.177 1.000 0.964 - 3 0.96445 -0.141 0.964 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM HESSE STATUS=OK 20 CALLS 241 TOTAL - EDM=1.01397e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 5.00000e+02 1.20312e+02 5.00000e-01 -1.57325e+00 - 2 par_novo_1 1.30637e+02 2.01762e+01 1.26738e-04 3.11381e-01 - 3 par_novo_2 -6.95187e-01 1.62575e-01 1.04431e-06 -6.95192e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.070e-01 -4.278e+00 -2.995e-02 - -4.278e+00 4.133e+02 3.212e+00 - -2.995e-02 3.212e+00 2.643e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.69436 1.000 -0.643 -0.563 - 2 0.97859 -0.643 1.000 0.972 - 3 0.97501 -0.563 0.972 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10877 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 6.33849e-01 5.09000e-01 -8.55460e-01 -1.25390e+02 - 2 par_crystal_1_1 2.55500e+00 5.09000e-01 0.00000e+00 -2.69495e+01 - 3 par_crystal_1_2 5.50000e+02 3.00000e+01 0.00000e+00 -1.44080e+01 - 4 par_crystal_1_3 1.04500e+02 1.91000e+01 0.00000e+00 3.07979e+01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.43469 added to diagonal of error matrix - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.5401e+00 8.4221e-02 1.8087e+00 3.6472e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 1.543714 TO DIAGONAL. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.9 FROM HESSE STATUS=OK 25 CALLS 485 TOTAL - EDM=0.0491336 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.05623e+00 1.52463e-01 1.42446e-03 -1.90900e+00 - 2 par_crystal_1_1 5.09988e+00 3.18944e+00 7.54811e-02 -8.93342e-03 - 3 par_crystal_1_2 4.96280e+02 4.98347e+01 9.02051e-03 3.58498e-02 - 4 par_crystal_1_3 1.89188e+02 2.78069e+01 1.02856e-02 -2.38185e-01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 538 CALLS 539 TOTAL - EDM=10.0867 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 14.1 per cent - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.09723e+00 3.02575e-02 -0.00000e+00 5.47416e+01 - 2 par_crystal_1_1 5.09997e+00 3.18368e+00 0.00000e+00 -3.90351e-03 - 3 par_crystal_1_2 4.83329e+02 2.76558e+01 0.00000e+00 7.05236e+00 - 4 par_crystal_1_3 1.96552e+02 5.80629e+00 -0.00000e+00 4.39990e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.156e-04 -1.804e-07 -6.742e-01 1.111e-01 - -1.804e-07 1.763e-04 7.888e-03 -2.154e-03 - -6.742e-01 7.888e-03 7.759e+02 -1.463e+02 - 1.111e-01 -2.154e-03 -1.463e+02 3.432e+01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.82553 1.000 -0.000 -0.800 0.627 - 2 0.03650 -0.000 1.000 0.021 -0.028 - 3 0.94703 -0.800 0.021 1.000 -0.896 - 4 0.90888 0.627 -0.028 -0.896 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -9.7852e-01 9.9996e-01 1.9836e+00 1.9949e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.980510 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 29 CALLS 568 TOTAL - EDM=238.514 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 1.09723e+00 4.25322e-02 2.54943e-04 -6.09913e-01 - 2 par_crystal_1_1 5.09997e+00 7.84798e-01 8.54763e-02 1.56580e+00 - 3 par_crystal_1_2 4.83329e+02 1.87856e+01 1.76414e-03 -4.60588e-01 - 4 par_crystal_1_3 1.96552e+02 5.33115e+00 2.63738e-03 1.30128e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.809e-03 -2.197e-07 8.001e-01 2.280e-01 - -2.197e-07 1.053e-04 -1.173e-04 -3.665e-05 - 8.001e-01 -1.173e-04 3.552e+02 1.010e+02 - 2.280e-01 -3.665e-05 1.010e+02 2.885e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99849 1.000 -0.001 0.998 0.998 - 2 0.00265 -0.001 1.000 -0.001 -0.001 - 3 0.99848 0.998 -0.001 1.000 0.998 - 4 0.99849 0.998 -0.001 0.998 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_550_1200 = 1266.17 - Background number of gaus_exp_550_1200 = 1266.17 - Background number of novo_550_1200 = 1266.17 - Background number of crystal_1_550_1200 = 1266.17 - Background number of gaus_bern_550_1200 = 1266.17 - Background number of landau_550_1200 = 1266.17 -par_crystal_0 param 1.11079 0.0431984 -par_crystal_1 param 5.08061 3.28337 -par_crystal_2 param 476.04 8.02153 -par_crystal_3 param 199.914 22.6294 -par_crystal_1_0 param 1.09723 0.0425322 -par_crystal_1_1 param 5.09997 0.784798 -par_crystal_1_2 param 483.329 18.7856 -par_crystal_1_3 param 196.552 5.33115 -par_gaus_exp_0 param 562.504 3.77274 -par_gaus_exp_1 param 24.6552 14.6349 -par_gaus_exp_2 param 0.114604 0.0693856 -par_novo_0 param 500 120.312 -par_novo_1 param 130.637 20.1762 -par_novo_2 param -0.695187 0.162575 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_600_novo_550_1200/datacard_600_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_600_novo_550_1200/datacard_600_novo_550_1200.txt deleted file mode 100644 index 9ac03b3..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_600_novo_550_1200/datacard_600_novo_550_1200.txt +++ /dev/null @@ -1,29 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_600.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo -shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 3.01596 1266.17 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06702 - -JER lnN 1.01328 - -JEC lnN 1.02779 - -trigger lnN 1.10 - -PDF lnN 1.0229477477 - -sg_p0 param 608.692 -1.29492/+1.15383 -sg_p1 param 18.3569 -0.660364/+0.181204 -sg_p2 param 1.48767 -0.0836517/+0.0287548 -sg_p3 param 1.40613 -0.0665205/+0.0307738 -par_novo_0 param 500 120.312 -par_novo_1 param 130.637 20.1762 -par_novo_2 param -0.695187 0.162575 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_600_novo_550_1200/pdf.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_600_novo_550_1200/pdf.log deleted file mode 100644 index 1900262..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_600_novo_550_1200/pdf.log +++ /dev/null @@ -1,10 +0,0 @@ -[?1034h FCN=13.9498 FROM MIGRAD STATUS=CONVERGED 71 CALLS 72 TOTAL - EDM=6.95637e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 Constant 1.30566e+01 1.77733e+00 2.65488e-03 2.23742e-05 - 2 Mean 1.00046e+00 3.03346e-03 5.72003e-06 3.78371e-01 - 3 Sigma 2.29477e-02 2.84199e-03 6.88862e-05 6.32201e-03 -1.00046088083 +/- 0.0030334648545 -0.0229477477015 +/- 0.00284199080585 -PDF lnN 1.0229477477 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_600_novo_550_1200/signal600_sig.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_600_novo_550_1200/signal600_sig.log deleted file mode 100644 index 2b9a4cd..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_600_novo_550_1200/signal600_sig.log +++ /dev/null @@ -1,985 +0,0 @@ - -Processing test.c... -nSignal_init = 100000 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [390,800] --> [390,800] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [490,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [390,800] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [490,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=20407.2 FROM MIGRAD STATUS=INITIATE 56 CALLS 57 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.90000e+02 6.00000e+00 0.00000e+00 -2.37960e+02 - 2 sg_p1 2.25000e+01 2.50000e+00 0.00000e+00 -1.20569e+02 - 3 sg_p2 9.48780e-01 5.00000e-01 0.00000e+00 2.19249e+02 - 4 sg_p3 9.35752e-01 7.00000e-01 -8.22196e-01 -2.16926e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20303.7 FROM MIGRAD STATUS=CONVERGED 258 CALLS 259 TOTAL - EDM=3.54203e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.92104e+02 4.94229e-01 1.62450e-03 -2.33203e-01 - 2 sg_p1 3.16035e+01 3.64838e-01 4.18602e-03 4.92054e-02 - 3 sg_p2 2.32184e+00 1.74449e-01 2.49592e-03 4.15288e-02 - 4 sg_p3 2.56533e+00 2.80149e-01 3.09113e-03 3.31222e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.443e-01 4.410e-04 2.284e-03 -4.332e-04 - 4.410e-04 1.332e-01 3.420e-03 4.258e-04 - 2.284e-03 3.420e-03 3.048e-02 4.517e-05 - -4.332e-04 4.258e-04 4.517e-05 7.866e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.02667 1.000 0.002 0.026 -0.003 - 2 0.05384 0.002 1.000 0.054 0.004 - 3 0.05979 0.026 0.054 1.000 0.001 - 4 0.00527 -0.003 0.004 0.001 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20303.7 FROM HESSE STATUS=OK 23 CALLS 282 TOTAL - EDM=3.55279e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.92104e+02 4.94244e-01 3.24901e-04 7.01930e-02 - 2 sg_p1 3.16035e+01 3.64897e-01 1.67441e-04 8.15808e-01 - 3 sg_p2 2.32184e+00 1.74479e-01 4.99183e-04 -7.13248e-02 - 4 sg_p3 2.56533e+00 2.80163e-01 6.18226e-04 -2.70328e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.443e-01 3.135e-04 2.378e-03 -5.538e-04 - 3.135e-04 1.332e-01 3.580e-03 7.538e-04 - 2.378e-03 3.580e-03 3.049e-02 5.456e-05 - -5.538e-04 7.538e-04 5.456e-05 7.867e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.02784 1.000 0.002 0.028 -0.004 - 2 0.05664 0.002 1.000 0.056 0.007 - 3 0.06252 0.028 0.056 1.000 0.001 - 4 0.00842 -0.004 0.007 0.001 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -600 -592.104 +- 0.494244 -31.6035 +- 0.364897 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [390,800] --> [390,800] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [490,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [390,800] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [490,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=20903.6 FROM MIGRAD STATUS=INITIATE 59 CALLS 60 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.90000e+02 6.00000e+00 0.00000e+00 -2.76905e+02 - 2 sg_p1 2.25000e+01 2.50000e+00 0.00000e+00 -1.33312e+02 - 3 sg_p2 8.35066e-01 5.00000e-01 0.00000e+00 1.55262e+02 - 4 sg_p3 1.06407e+00 7.00000e-01 -7.69784e-01 -6.62795e+01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.01877 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20782.7 FROM HESSE STATUS=OK 27 CALLS 327 TOTAL - EDM=0.353557 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.94811e+02 4.92616e-01 1.65618e-03 2.97074e-02 - 2 sg_p1 3.19678e+01 3.59009e-01 4.38078e-03 7.51718e-03 - 3 sg_p2 3.30884e+00 1.90897e+00 9.40463e-02 -2.17700e-03 - 4 sg_p3 3.57858e+00 1.02503e+00 5.00000e-01 -2.82844e+00 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MACHINE ACCURACY LIMITS FURTHER IMPROVEMENT. - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=20782.7 FROM MIGRAD STATUS=CONVERGED 349 CALLS 350 TOTAL - EDM=0.00116564 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 0.5 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.94811e+02 4.92616e-01 0.00000e+00 -7.95791e-04 - 2 sg_p1 3.19677e+01 3.59015e-01 0.00000e+00 -1.29854e-03 - 3 sg_p2 3.31338e+00 1.90573e+00 0.00000e+00 -5.13595e-02 - 4 sg_p3 4.44183e+00 9.90294e-01 0.00000e+00 -7.71997e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.427e-01 1.206e-04 -3.792e-05 6.874e-06 - 1.206e-04 1.290e-01 -2.103e-05 2.400e-05 - -3.792e-05 -2.103e-05 4.913e+00 1.276e-01 - 6.874e-06 2.400e-05 1.276e-01 1.010e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.00068 1.000 0.001 -0.000 0.000 - 2 0.00069 0.001 1.000 -0.000 0.000 - 3 0.05726 -0.000 -0.000 1.000 0.057 - 4 0.05726 0.000 0.000 0.057 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20782.7 FROM HESSE STATUS=OK 29 CALLS 379 TOTAL - EDM=0.00193193 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.94811e+02 4.92614e-01 1.65617e-03 1.61052e-01 - 2 sg_p1 3.19677e+01 3.59005e-01 1.75231e-03 8.59341e-01 - 3 sg_p2 3.31338e+00 1.92835e+00 9.34815e-02 3.31384e-01 - 4 sg_p3 4.44183e+00 4.36098e+00 5.00000e-01 2.72453e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.427e-01 1.189e-04 4.150e-10 3.937e-09 - 1.189e-04 1.290e-01 7.552e-10 7.164e-09 - 4.150e-10 7.552e-10 5.086e+00 4.866e-17 - 3.937e-09 7.164e-09 4.866e-17 3.680e+02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.00067 1.000 0.001 0.000 0.000 - 2 0.00067 0.001 1.000 0.000 0.000 - 3 0.00000 0.000 0.000 1.000 0.000 - 4 0.00000 0.000 0.000 0.000 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -600 -594.811 +- 0.492614 -31.9677 +- 0.359005 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [390,800] --> [390,800] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [490,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [390,800] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [490,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=19759.2 FROM MIGRAD STATUS=INITIATE 61 CALLS 62 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.90000e+02 6.00000e+00 0.00000e+00 -3.08252e+02 - 2 sg_p1 2.25000e+01 2.50000e+00 0.00000e+00 3.47377e+00 - 3 sg_p2 1.03803e+00 5.00000e-01 0.00000e+00 1.96966e+02 - 4 sg_p3 6.78922e-01 7.00000e-01 -9.37400e-01 -9.51087e+02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19618.4 FROM HESSE STATUS=OK 27 CALLS 295 TOTAL - EDM=0.000519933 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.89106e+02 4.99310e-01 1.60340e-03 -1.77687e-01 - 2 sg_p1 3.11952e+01 3.74439e-01 3.97599e-03 1.75125e-01 - 3 sg_p2 2.15446e+00 1.55638e-01 6.05904e-03 5.07493e-02 - 4 sg_p3 2.86472e+00 1.00280e+00 2.23604e-02 1.02315e-01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.00142 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=19618.4 FROM MIGRAD STATUS=FAILED 359 CALLS 360 TOTAL - EDM=0.026975 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 42.7 per cent - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.89107e+02 1.06052e+00 0.00000e+00 3.45243e-02 - 2 sg_p1 3.11930e+01 5.01209e-01 0.00000e+00 3.04828e-02 - 3 sg_p2 2.15412e+00 1.61274e+00 -0.00000e+00 1.77468e-02 - 4 sg_p3 2.85260e+00 2.27046e+00 0.00000e+00 -1.96724e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.125e+00 -5.647e-02 7.612e-01 2.001e+00 - -5.647e-02 2.515e-01 -5.717e-01 8.039e-02 - 7.612e-01 -5.717e-01 3.085e+00 -2.479e-02 - 2.001e+00 8.039e-02 -2.479e-02 6.149e+00 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.87825 1.000 -0.106 0.409 0.761 - 2 0.68964 -0.106 1.000 -0.649 0.065 - 3 0.81697 0.409 -0.649 1.000 -0.006 - 4 0.84389 0.761 0.065 -0.006 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19618.4 FROM HESSE STATUS=OK 29 CALLS 389 TOTAL - EDM=1.78558e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.89107e+02 4.98832e-01 1.60273e-03 -2.97585e-02 - 2 sg_p1 3.11930e+01 3.72807e-01 3.96095e-03 7.69036e-01 - 3 sg_p2 2.15412e+00 1.55604e-01 5.99006e-03 -1.38798e-01 - 4 sg_p3 2.85260e+00 7.77091e-01 2.18365e-02 -1.86043e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.489e-01 3.933e-03 6.510e-03 -1.038e-02 - 3.933e-03 1.391e-01 8.935e-03 1.739e-02 - 6.510e-03 8.935e-03 2.424e-02 8.994e-04 - -1.038e-02 1.739e-02 8.994e-04 6.144e-01 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.08866 1.000 0.021 0.084 -0.027 - 2 0.16487 0.021 1.000 0.154 0.059 - 3 0.17370 0.084 0.154 1.000 0.007 - 4 0.06566 -0.027 0.059 0.007 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -600 -589.107 +- 0.498832 -31.193 +- 0.372807 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [440,800] --> [440,800] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [440,800] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=18511.3 FROM MIGRAD STATUS=INITIATE 60 CALLS 61 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 5.00000e+00 0.00000e+00 -7.40396e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 -3.52378e+01 - 3 sg_p2 1.18490e+00 5.00000e-01 0.00000e+00 2.04158e+01 - 4 sg_p3 1.47860e+00 7.00000e-01 -6.15717e-01 -1.54349e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18460.6 FROM MIGRAD STATUS=CONVERGED 198 CALLS 199 TOTAL - EDM=1.54851e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.08692e+02 3.23280e-01 1.16514e-03 -7.99199e-03 - 2 sg_p1 1.83569e+01 2.79934e-01 3.02518e-03 -2.66369e-02 - 3 sg_p2 1.48767e+00 5.44286e-02 2.05315e-03 4.94574e-02 - 4 sg_p3 1.40613e+00 6.14668e-02 1.81455e-03 2.39101e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.045e-01 -9.051e-03 2.188e-03 -5.216e-03 - -9.051e-03 7.840e-02 5.474e-03 7.094e-03 - 2.188e-03 5.474e-03 2.963e-03 4.768e-04 - -5.216e-03 7.094e-03 4.768e-04 3.779e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.31290 1.000 -0.100 0.124 -0.262 - 2 0.51370 -0.100 1.000 0.359 0.412 - 3 0.39510 0.124 0.359 1.000 0.142 - 4 0.46945 -0.262 0.412 0.142 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18460.6 FROM HESSE STATUS=OK 23 CALLS 222 TOTAL - EDM=1.54744e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.08692e+02 3.23426e-01 4.66057e-05 1.48232e-01 - 2 sg_p1 1.83569e+01 2.80464e-01 1.21007e-04 1.14504e-01 - 3 sg_p2 1.48767e+00 5.44911e-02 8.21259e-05 -4.16906e-01 - 4 sg_p3 1.40613e+00 6.15475e-02 7.25820e-05 -6.41314e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.046e-01 -9.179e-03 2.197e-03 -5.241e-03 - -9.179e-03 7.870e-02 5.524e-03 7.158e-03 - 2.197e-03 5.524e-03 2.970e-03 4.840e-04 - -5.241e-03 7.158e-03 4.840e-04 3.789e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.31420 1.000 -0.101 0.125 -0.263 - 2 0.51639 -0.101 1.000 0.361 0.415 - 3 0.39754 0.125 0.361 1.000 0.144 - 4 0.47162 -0.263 0.415 0.144 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -600 -608.692 +- 0.323426 -18.3569 +- 0.280464 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 - fit done -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [440,800] --> [440,800] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [440,800] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=18914.3 FROM MIGRAD STATUS=INITIATE 77 CALLS 78 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.07615e+02 5.00000e+00 0.00000e+00 -3.22775e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 5.18097e+00 - 3 sg_p2 1.14423e+00 5.00000e-01 0.00000e+00 -1.00194e+02 - 4 sg_p3 1.45830e+00 7.00000e-01 -6.22838e-01 5.05414e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18893.8 FROM MIGRAD STATUS=CONVERGED 217 CALLS 218 TOTAL - EDM=2.83441e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.09835e+02 3.20458e-01 1.18122e-03 1.99716e-02 - 2 sg_p1 1.84026e+01 2.81622e-01 3.04842e-03 -4.57325e-03 - 3 sg_p2 1.46608e+00 5.89939e-02 2.13709e-03 -5.15374e-04 - 4 sg_p3 1.40527e+00 5.47157e-02 1.70241e-03 2.83643e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.027e-01 2.191e-03 4.166e-03 -3.049e-03 - 2.191e-03 7.935e-02 7.350e-03 5.397e-03 - 4.166e-03 7.350e-03 3.481e-03 4.765e-04 - -3.049e-03 5.397e-03 4.765e-04 2.994e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.30388 1.000 0.024 0.220 -0.174 - 2 0.52791 0.024 1.000 0.442 0.350 - 3 0.49057 0.220 0.442 1.000 0.148 - 4 0.39639 -0.174 0.350 0.148 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18893.8 FROM HESSE STATUS=OK 23 CALLS 241 TOTAL - EDM=2.83854e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.09835e+02 3.20577e-01 2.36244e-04 1.94613e-01 - 2 sg_p1 1.84026e+01 2.82160e-01 1.21937e-04 1.20635e-01 - 3 sg_p2 1.46608e+00 5.90852e-02 8.54835e-05 -4.26369e-01 - 4 sg_p3 1.40527e+00 5.47727e-02 6.80964e-05 -6.41619e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.028e-01 2.166e-03 4.187e-03 -3.058e-03 - 2.166e-03 7.965e-02 7.413e-03 5.449e-03 - 4.187e-03 7.413e-03 3.492e-03 4.840e-04 - -3.058e-03 5.449e-03 4.840e-04 3.000e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.30498 1.000 0.024 0.221 -0.174 - 2 0.53050 0.024 1.000 0.444 0.352 - 3 0.49295 0.221 0.444 1.000 0.150 - 4 0.39859 -0.174 0.352 0.150 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -600 -609.835 +- 0.320577 -18.4026 +- 0.28216 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [440,800] --> [440,800] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [440,800] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17827.8 FROM MIGRAD STATUS=INITIATE 52 CALLS 53 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 5.00000e+00 0.00000e+00 -3.81579e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 -1.00435e+02 - 3 sg_p2 1.28822e+00 5.00000e-01 0.00000e+00 2.73039e+01 - 4 sg_p3 1.80614e+00 7.00000e-01 -5.05175e-01 1.07828e+02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.0886e+00 1.1061e+00 1.8427e+00 2.1398e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 1.090718 TO DIAGONAL. - FCN=17796.1 FROM HESSE STATUS=NOT POSDEF 29 CALLS 194 TOTAL - EDM=0.416197 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.07398e+02 2.64955e+00 1.52214e-04 -1.22217e+01 - 2 sg_p1 1.77156e+01 1.07159e+00 3.05183e-03 -2.94405e+00 - 3 sg_p2 1.40875e+00 4.86527e-02 4.22960e-04 -1.06232e+01 - 4 sg_p3 1.34786e+00 1.92678e-01 1.78861e-03 3.70210e+00 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=17796.1 FROM MIGRAD STATUS=FAILED 231 CALLS 232 TOTAL - EDM=854.994 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.07407e+02 1.35903e-01 -0.00000e+00 6.05600e+02 - 2 sg_p1 1.77116e+01 1.50263e-01 0.00000e+00 1.62850e+02 - 3 sg_p2 1.40858e+00 6.28910e-03 0.00000e+00 -1.08286e+01 - 4 sg_p3 1.34715e+00 2.75057e-02 0.00000e+00 3.92805e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.847e-02 -2.028e-02 -7.414e-04 -3.202e-03 - -2.028e-02 2.258e-02 8.238e-04 3.560e-03 - -7.414e-04 8.238e-04 3.955e-05 1.478e-04 - -3.202e-03 3.560e-03 1.478e-04 7.566e-04 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99312 1.000 -0.993 -0.867 -0.856 - 2 0.99342 -0.993 1.000 0.872 0.861 - 3 0.89539 -0.867 0.872 1.000 0.855 - 4 0.88698 -0.856 0.861 0.855 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -7.1751e+01 9.9679e-01 1.9909e+00 7.2763e+01 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 71.823632 TO DIAGONAL. - FCN=17796.1 FROM HESSE STATUS=NOT POSDEF 27 CALLS 259 TOTAL - EDM=0.0450234 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.07407e+02 8.84526e-03 4.47722e-05 9.64479e-02 - 2 sg_p1 1.77116e+01 9.83564e-03 1.65224e-04 2.82174e-02 - 3 sg_p2 1.40858e+00 7.59554e-03 2.51140e-05 -4.51783e-01 - 4 sg_p3 1.34715e+00 1.39806e-01 8.90793e-05 -6.62511e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.824e-05 8.666e-05 -3.386e-05 1.235e-03 - 8.666e-05 9.674e-05 -3.765e-05 1.373e-03 - -3.386e-05 -3.765e-05 5.769e-05 -5.353e-04 - 1.235e-03 1.373e-03 -5.353e-04 1.956e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99802 1.000 0.996 -0.504 0.998 - 2 0.99801 0.996 1.000 -0.504 0.998 - 3 0.50444 -0.504 -0.504 1.000 -0.504 - 4 0.99899 0.998 0.998 -0.504 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -600 -607.407 +- 0.00884526 -17.7116 +- 0.00983564 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [440,800] --> [440,800] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [440,800] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=18313.7 FROM MIGRAD STATUS=INITIATE 63 CALLS 64 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 5.00000e+00 0.00000e+00 -7.10963e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 -2.40680e+01 - 3 sg_p2 1.12814e+00 5.00000e-01 0.00000e+00 -1.98843e+01 - 4 sg_p3 1.45064e+00 7.00000e-01 -6.25537e-01 -1.20812e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18262.1 FROM MIGRAD STATUS=CONVERGED 166 CALLS 167 TOTAL - EDM=7.98313e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.08803e+02 3.30506e-01 1.18077e-03 -1.43643e-02 - 2 sg_p1 1.84717e+01 2.89622e-01 3.07900e-03 -7.62757e-02 - 3 sg_p2 1.45856e+00 5.36517e-02 1.98838e-03 -2.33437e-02 - 4 sg_p3 1.38960e+00 6.15342e-02 1.80011e-03 4.41451e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.092e-01 -9.440e-03 2.340e-03 -5.461e-03 - -9.440e-03 8.392e-02 5.863e-03 7.559e-03 - 2.340e-03 5.863e-03 2.879e-03 5.057e-04 - -5.461e-03 7.559e-03 5.057e-04 3.787e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.32401 1.000 -0.099 0.132 -0.268 - 2 0.53046 -0.099 1.000 0.377 0.424 - 3 0.41529 0.132 0.377 1.000 0.153 - 4 0.48258 -0.268 0.424 0.153 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18262.1 FROM HESSE STATUS=OK 23 CALLS 190 TOTAL - EDM=8.00182e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.08803e+02 3.30636e-01 2.36154e-04 1.52717e-01 - 2 sg_p1 1.84717e+01 2.90111e-01 6.15801e-04 1.29921e-01 - 3 sg_p2 1.45856e+00 5.37098e-02 7.95354e-05 -4.29674e-01 - 4 sg_p3 1.38960e+00 6.16044e-02 3.60021e-04 -6.47219e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.093e-01 -9.548e-03 2.348e-03 -5.481e-03 - -9.548e-03 8.421e-02 5.909e-03 7.616e-03 - 2.348e-03 5.909e-03 2.885e-03 5.122e-04 - -5.481e-03 7.616e-03 5.122e-04 3.796e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.32509 1.000 -0.100 0.132 -0.269 - 2 0.53273 -0.100 1.000 0.379 0.426 - 3 0.41743 0.132 0.379 1.000 0.155 - 4 0.48438 -0.269 0.426 0.155 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -600 -608.803 +- 0.330636 -18.4717 +- 0.290111 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [440,800] --> [440,800] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [440,800] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=18711.2 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 5.00000e+00 0.00000e+00 -7.18390e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 -3.18392e+01 - 3 sg_p2 1.20377e+00 5.00000e-01 0.00000e+00 8.44187e+00 - 4 sg_p3 1.54524e+00 7.00000e-01 -5.92581e-01 1.53539e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18661.3 FROM MIGRAD STATUS=CONVERGED 205 CALLS 206 TOTAL - EDM=3.64592e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.08629e+02 3.18788e-01 1.15078e-03 -3.36230e-01 - 2 sg_p1 1.81384e+01 2.76492e-01 2.97751e-03 -6.31530e-02 - 3 sg_p2 1.49686e+00 5.44757e-02 2.06505e-03 2.07196e-02 - 4 sg_p3 1.39306e+00 6.05611e-02 1.78870e-03 1.70313e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.016e-01 -1.019e-02 2.021e-03 -5.340e-03 - -1.019e-02 7.648e-02 5.389e-03 7.151e-03 - 2.021e-03 5.389e-03 2.968e-03 4.840e-04 - -5.340e-03 7.151e-03 4.840e-04 3.668e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.32316 1.000 -0.116 0.116 -0.277 - 2 0.52296 -0.116 1.000 0.358 0.427 - 3 0.39289 0.116 0.358 1.000 0.147 - 4 0.48547 -0.277 0.427 0.147 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18661.3 FROM HESSE STATUS=OK 23 CALLS 229 TOTAL - EDM=3.64813e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.08629e+02 3.18930e-01 2.30156e-04 1.45672e-01 - 2 sg_p1 1.81384e+01 2.76957e-01 5.95502e-04 8.52226e-02 - 3 sg_p2 1.49686e+00 5.45322e-02 8.26022e-05 -4.12888e-01 - 4 sg_p3 1.39306e+00 6.06332e-02 7.15481e-05 -6.45981e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.017e-01 -1.031e-02 2.029e-03 -5.364e-03 - -1.031e-02 7.674e-02 5.434e-03 7.205e-03 - 2.029e-03 5.434e-03 2.974e-03 4.905e-04 - -5.364e-03 7.205e-03 4.905e-04 3.677e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.32439 1.000 -0.117 0.117 -0.277 - 2 0.52528 -0.117 1.000 0.360 0.429 - 3 0.39510 0.117 0.360 1.000 0.148 - 4 0.48733 -0.277 0.429 0.148 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -600 -608.629 +- 0.31893 -18.1384 +- 0.276957 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [440,800] --> [440,800] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [440,800] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17303.3 FROM MIGRAD STATUS=INITIATE 59 CALLS 60 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 5.00000e+00 0.00000e+00 -6.79986e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 -3.47913e+01 - 3 sg_p2 1.18392e+00 5.00000e-01 0.00000e+00 1.09112e+01 - 4 sg_p3 1.50179e+00 7.00000e-01 -6.07622e-01 -1.34120e+00 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17256.2 FROM MIGRAD STATUS=CONVERGED 162 CALLS 163 TOTAL - EDM=1.97081e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.08678e+02 3.33992e-01 1.16426e-03 9.30660e-02 - 2 sg_p1 1.83420e+01 2.89061e-01 3.02407e-03 -5.38511e-02 - 3 sg_p2 1.48991e+00 5.64139e-02 2.05472e-03 -1.38092e-01 - 4 sg_p3 1.40621e+00 6.35546e-02 1.81513e-03 1.01686e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.116e-01 -9.726e-03 2.331e-03 -5.579e-03 - -9.726e-03 8.360e-02 5.845e-03 7.576e-03 - 2.331e-03 5.845e-03 3.183e-03 5.099e-04 - -5.579e-03 7.576e-03 5.099e-04 4.040e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.31288 1.000 -0.101 0.124 -0.263 - 2 0.51335 -0.101 1.000 0.358 0.412 - 3 0.39415 0.124 0.358 1.000 0.142 - 4 0.46956 -0.263 0.412 0.142 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17256.2 FROM HESSE STATUS=OK 23 CALLS 186 TOTAL - EDM=1.96909e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.08678e+02 3.34135e-01 2.32851e-04 1.47652e-01 - 2 sg_p1 1.83420e+01 2.89586e-01 1.20963e-04 1.12504e-01 - 3 sg_p2 1.48991e+00 5.64735e-02 4.10945e-04 -4.15923e-01 - 4 sg_p3 1.40621e+00 6.36376e-02 7.26053e-05 -6.41285e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.117e-01 -9.856e-03 2.338e-03 -5.606e-03 - -9.856e-03 8.390e-02 5.896e-03 7.643e-03 - 2.338e-03 5.896e-03 3.190e-03 5.173e-04 - -5.606e-03 7.643e-03 5.173e-04 4.050e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.31411 1.000 -0.102 0.124 -0.264 - 2 0.51594 -0.102 1.000 0.360 0.415 - 3 0.39639 0.124 0.360 1.000 0.144 - 4 0.47171 -0.264 0.415 0.144 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -600 -608.678 +- 0.334135 -18.342 +- 0.289586 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [440,800] --> [440,800] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [440,800] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=19781.5 FROM MIGRAD STATUS=INITIATE 60 CALLS 61 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 5.00000e+00 0.00000e+00 -7.94070e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 -2.71988e+01 - 3 sg_p2 1.17009e+00 5.00000e-01 0.00000e+00 -7.70001e-01 - 4 sg_p3 1.45286e+00 7.00000e-01 -6.24753e-01 -3.36178e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19726.9 FROM MIGRAD STATUS=CONVERGED 182 CALLS 183 TOTAL - EDM=4.57234e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.08706e+02 3.13081e-01 1.16661e-03 7.50814e-02 - 2 sg_p1 1.83713e+01 2.71251e-01 3.02919e-03 4.52649e-02 - 3 sg_p2 1.48521e+00 5.25283e-02 2.04671e-03 -2.57882e-02 - 4 sg_p3 1.40613e+00 5.94897e-02 1.81550e-03 4.82439e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.802e-02 -8.423e-03 2.056e-03 -4.882e-03 - -8.423e-03 7.361e-02 5.131e-03 6.652e-03 - 2.056e-03 5.131e-03 2.760e-03 4.464e-04 - -4.882e-03 6.652e-03 4.464e-04 3.540e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.31292 1.000 -0.099 0.125 -0.262 - 2 0.51406 -0.099 1.000 0.360 0.412 - 3 0.39608 0.125 0.360 1.000 0.143 - 4 0.46939 -0.262 0.412 0.143 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19726.9 FROM HESSE STATUS=OK 23 CALLS 206 TOTAL - EDM=4.58525e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.08706e+02 3.13220e-01 2.33322e-04 1.48803e-01 - 2 sg_p1 1.83713e+01 2.71761e-01 1.21167e-04 1.16438e-01 - 3 sg_p2 1.48521e+00 5.25885e-02 8.18685e-05 -4.17982e-01 - 4 sg_p3 1.40613e+00 5.95681e-02 7.26199e-05 -6.41314e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.811e-02 -8.532e-03 2.065e-03 -4.905e-03 - -8.532e-03 7.389e-02 5.178e-03 6.711e-03 - 2.065e-03 5.178e-03 2.766e-03 4.531e-04 - -4.905e-03 6.711e-03 4.531e-04 3.549e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.31420 1.000 -0.100 0.125 -0.263 - 2 0.51674 -0.100 1.000 0.362 0.414 - 3 0.39850 0.125 0.362 1.000 0.145 - 4 0.47156 -0.263 0.414 0.145 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -600 -608.706 +- 0.31322 -18.3713 +- 0.271761 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 608.692 +- 0.323426 (stat) - 1.28478 + 1.14244 (syst); -1.29492/+1.15383 (total) - Uncertainty on sg_p1 = 18.3569 +- 0.280464 (stat) - 0.645303 + 0.114761 (syst); -0.660364/+0.181204 (total) - Uncertainty on sg_p2 = 1.48767 +- 0.0544911 (stat) - 0.0790904 + 0.00919321 (syst); -0.0836517/+0.0287548 (total) - Uncertainty on sg_p3 = 1.40613 +- 0.0615475 (stat) - 0.0589742 + 8.24765e-05 (syst); -0.0665205/+0.0307738 (total) - === Baseline plot ===
- norm = 150.798 -JEC lnN 1.02779 - -JER lnN 1.01328 - -btag lnN 1.06702 - -sg_p0 param 608.692 -1.29492/+1.15383 -sg_p1 param 18.3569 -0.660364/+0.181204 -sg_p2 param 1.48767 -0.0836517/+0.0287548 -sg_p3 param 1.40613 -0.0665205/+0.0307738 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_650_crystal_1_550_1200/data_bkg.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_650_crystal_1_550_1200/data_bkg.log deleted file mode 100644 index 9081393..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_650_crystal_1_550_1200/data_bkg.log +++ /dev/null @@ -1,690 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10879.7 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 6.74624e-01 5.09000e-01 -8.31364e-01 -1.01971e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -3.20610e+01 - 3 par_crystal_2 5.00000e+02 2.00000e+01 0.00000e+00 -9.48837e+00 - 4 par_crystal_3 1.05000e+02 1.90000e+01 0.00000e+00 2.45317e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7116e+01 9.9978e-01 1.9597e+00 1.8156e+01 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 17.134017 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 27 CALLS 314 TOTAL - EDM=0.131054 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.06594e+00 6.09301e-02 1.43210e-03 -8.77809e-01 - 2 par_crystal_1 5.09576e+00 7.69298e-02 8.09031e-02 -5.13188e-02 - 3 par_crystal_2 4.95224e+02 7.91481e+01 2.17679e-03 -5.43249e-01 - 4 par_crystal_3 1.90900e+02 9.54958e+00 1.13079e-02 4.60762e-02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 477 CALLS 478 TOTAL - EDM=0.0370129 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.11079e+00 8.93309e-02 0.00000e+00 -4.75984e-01 - 2 par_crystal_1 5.08061e+00 3.60144e-01 0.00000e+00 -1.14416e-01 - 3 par_crystal_2 4.76040e+02 1.75614e+01 0.00000e+00 -2.32451e-01 - 4 par_crystal_3 1.99914e+02 2.77391e+01 0.00000e+00 -7.67572e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.985e-03 -2.091e-03 1.499e+00 2.820e-01 - -2.091e-03 2.873e-02 -7.387e-01 -2.900e-02 - 1.499e+00 -7.387e-01 3.118e+02 5.244e+01 - 2.820e-01 -2.900e-02 5.244e+01 1.008e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99775 1.000 -0.138 0.950 0.994 - 2 0.79882 -0.138 1.000 -0.247 -0.054 - 3 0.95717 0.950 -0.247 1.000 0.935 - 4 0.99764 0.994 -0.054 0.935 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.8 FROM HESSE STATUS=OK 27 CALLS 505 TOTAL - EDM=0.0183624 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.11079e+00 4.31984e-02 1.44775e-03 -6.03431e-01 - 2 par_crystal_1 5.08061e+00 3.28337e+00 6.64371e-02 1.44728e+00 - 3 par_crystal_2 4.76040e+02 8.02153e+00 1.45036e-02 3.38355e+00 - 4 par_crystal_3 1.99914e+02 2.26294e+01 4.50606e-02 1.52819e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.866e-03 -1.951e-03 -2.584e-03 1.946e-02 - -1.951e-03 1.028e-01 6.675e-04 3.793e-04 - -2.584e-03 6.675e-04 6.449e+01 1.116e+00 - 1.946e-02 3.793e-04 1.116e+00 8.140e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.21215 1.000 -0.141 -0.007 0.158 - 2 0.14274 -0.141 1.000 0.000 0.000 - 3 0.05109 -0.007 0.000 1.000 0.049 - 4 0.16712 0.158 0.000 0.049 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10978.6 FROM MIGRAD STATUS=INITIATE 68 CALLS 69 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 6.03110e+02 3.00000e+01 -8.97402e-01 -6.52175e+01 - 2 par_gaus_exp_1 5.45000e+01 9.10000e+00 0.00000e+00 -4.62060e+02 - 3 par_gaus_exp_2 4.12114e-01 3.05000e-01 0.00000e+00 1.25553e+03 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.9 FROM HESSE STATUS=OK 18 CALLS 182 TOTAL - EDM=0.000691453 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.46431e+02 6.06936e+00 3.17833e-03 -3.92855e-01 - 2 par_gaus_exp_1 6.65716e+01 1.75685e+01 2.62647e-03 1.43349e-01 - 3 par_gaus_exp_2 3.07505e-01 8.37981e-02 8.79822e-04 -3.06196e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM MIGRAD STATUS=CONVERGED 316 CALLS 317 TOTAL - EDM=9.19369e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.62504e+02 3.53152e+00 1.63243e-03 -1.66316e-01 - 2 par_gaus_exp_1 2.46552e+01 1.25211e+01 1.75085e-03 -3.48771e-01 - 3 par_gaus_exp_2 1.14604e-01 5.89219e-02 6.31447e-04 9.83138e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.247e+01 -1.544e+01 -6.961e-02 - -1.544e+01 1.643e+02 7.558e-01 - -6.961e-02 7.558e-01 3.493e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.35636 1.000 -0.341 -0.333 - 2 0.99789 -0.341 1.000 0.998 - 3 0.99788 -0.333 0.998 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM HESSE STATUS=OK 16 CALLS 333 TOTAL - EDM=9.89177e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 5.62504e+02 3.77274e+00 6.52972e-05 8.34552e-02 - 2 par_gaus_exp_1 2.46552e+01 1.46349e+01 3.50170e-04 -7.15413e-01 - 3 par_gaus_exp_2 1.14604e-01 6.93856e-02 1.26289e-04 -1.27868e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.424e+01 -2.545e+01 -1.157e-01 - -2.545e+01 2.286e+02 1.052e+00 - -1.157e-01 1.052e+00 4.855e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.45683 1.000 -0.446 -0.440 - 2 0.99849 -0.446 1.000 0.998 - 3 0.99848 -0.440 0.998 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (13168.6) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=575, par_novo_1=100, par_novo_2=1.58864 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=645, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=655, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=665, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=675, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=685, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=695, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=705, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=715, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=725, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=735, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=745, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=755, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - ... (remaining 46 messages suppressed) -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 575,par_novo_1 = 100,par_novo_2 = 1.58864) - - FCN=13054.5 FROM MIGRAD STATUS=INITIATE 14 CALLS 15 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.75000e+02 1.50000e+01 2.01358e-01 -1.22938e+03 - 2 par_novo_1 1.00000e+02 2.00000e+01 2.01358e-01 -6.98326e+03 - 3 par_novo_2 0.00000e+00 2.00000e+01 2.01358e-01 1.51249e+06 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM MIGRAD STATUS=CONVERGED 220 CALLS 221 TOTAL - EDM=2.09668e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.00000e+02 1.21837e+02 1.25149e-01 -7.30463e-04 - 2 par_novo_1 1.30637e+02 1.58558e+01 3.16845e-03 -1.76078e-02 - 3 par_novo_2 -6.95187e-01 1.36663e-01 2.61078e-05 1.74080e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.121e-01 -9.460e-01 -6.449e-03 - -9.460e-01 2.538e+02 2.099e+00 - -6.449e-03 2.099e+00 1.868e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.21023 1.000 -0.177 -0.141 - 2 0.96488 -0.177 1.000 0.964 - 3 0.96445 -0.141 0.964 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM HESSE STATUS=OK 20 CALLS 241 TOTAL - EDM=1.01397e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 5.00000e+02 1.20312e+02 5.00000e-01 -1.57325e+00 - 2 par_novo_1 1.30637e+02 2.01762e+01 1.26738e-04 3.11381e-01 - 3 par_novo_2 -6.95187e-01 1.62575e-01 1.04431e-06 -6.95192e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.070e-01 -4.278e+00 -2.995e-02 - -4.278e+00 4.133e+02 3.212e+00 - -2.995e-02 3.212e+00 2.643e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.69436 1.000 -0.643 -0.563 - 2 0.97859 -0.643 1.000 0.972 - 3 0.97501 -0.563 0.972 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10877 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 6.33849e-01 5.09000e-01 -8.55460e-01 -1.25390e+02 - 2 par_crystal_1_1 2.55500e+00 5.09000e-01 0.00000e+00 -2.69495e+01 - 3 par_crystal_1_2 5.50000e+02 3.00000e+01 0.00000e+00 -1.44080e+01 - 4 par_crystal_1_3 1.04500e+02 1.91000e+01 0.00000e+00 3.07979e+01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.43469 added to diagonal of error matrix - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.5401e+00 8.4221e-02 1.8087e+00 3.6472e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 1.543714 TO DIAGONAL. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.9 FROM HESSE STATUS=OK 25 CALLS 485 TOTAL - EDM=0.0491336 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.05623e+00 1.52463e-01 1.42446e-03 -1.90900e+00 - 2 par_crystal_1_1 5.09988e+00 3.18944e+00 7.54811e-02 -8.93342e-03 - 3 par_crystal_1_2 4.96280e+02 4.98347e+01 9.02051e-03 3.58498e-02 - 4 par_crystal_1_3 1.89188e+02 2.78069e+01 1.02856e-02 -2.38185e-01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 538 CALLS 539 TOTAL - EDM=10.0867 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 14.1 per cent - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.09723e+00 3.02575e-02 -0.00000e+00 5.47416e+01 - 2 par_crystal_1_1 5.09997e+00 3.18368e+00 0.00000e+00 -3.90351e-03 - 3 par_crystal_1_2 4.83329e+02 2.76558e+01 0.00000e+00 7.05236e+00 - 4 par_crystal_1_3 1.96552e+02 5.80629e+00 -0.00000e+00 4.39990e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.156e-04 -1.804e-07 -6.742e-01 1.111e-01 - -1.804e-07 1.763e-04 7.888e-03 -2.154e-03 - -6.742e-01 7.888e-03 7.759e+02 -1.463e+02 - 1.111e-01 -2.154e-03 -1.463e+02 3.432e+01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.82553 1.000 -0.000 -0.800 0.627 - 2 0.03650 -0.000 1.000 0.021 -0.028 - 3 0.94703 -0.800 0.021 1.000 -0.896 - 4 0.90888 0.627 -0.028 -0.896 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -9.7852e-01 9.9996e-01 1.9836e+00 1.9949e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.980510 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 29 CALLS 568 TOTAL - EDM=238.514 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 1.09723e+00 4.25322e-02 2.54943e-04 -6.09913e-01 - 2 par_crystal_1_1 5.09997e+00 7.84798e-01 8.54763e-02 1.56580e+00 - 3 par_crystal_1_2 4.83329e+02 1.87856e+01 1.76414e-03 -4.60588e-01 - 4 par_crystal_1_3 1.96552e+02 5.33115e+00 2.63738e-03 1.30128e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.809e-03 -2.197e-07 8.001e-01 2.280e-01 - -2.197e-07 1.053e-04 -1.173e-04 -3.665e-05 - 8.001e-01 -1.173e-04 3.552e+02 1.010e+02 - 2.280e-01 -3.665e-05 1.010e+02 2.885e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99849 1.000 -0.001 0.998 0.998 - 2 0.00265 -0.001 1.000 -0.001 -0.001 - 3 0.99848 0.998 -0.001 1.000 0.998 - 4 0.99849 0.998 -0.001 0.998 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_550_1200 = 1266.17 - Background number of gaus_exp_550_1200 = 1266.17 - Background number of novo_550_1200 = 1266.17 - Background number of crystal_1_550_1200 = 1266.17 - Background number of gaus_bern_550_1200 = 1266.17 - Background number of landau_550_1200 = 1266.17 -par_crystal_0 param 1.11079 0.0431984 -par_crystal_1 param 5.08061 3.28337 -par_crystal_2 param 476.04 8.02153 -par_crystal_3 param 199.914 22.6294 -par_crystal_1_0 param 1.09723 0.0425322 -par_crystal_1_1 param 5.09997 0.784798 -par_crystal_1_2 param 483.329 18.7856 -par_crystal_1_3 param 196.552 5.33115 -par_gaus_exp_0 param 562.504 3.77274 -par_gaus_exp_1 param 24.6552 14.6349 -par_gaus_exp_2 param 0.114604 0.0693856 -par_novo_0 param 500 120.312 -par_novo_1 param 130.637 20.1762 -par_novo_2 param -0.695187 0.162575 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_650_crystal_1_550_1200/datacard_650_crystal_1_550_1200.txt b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_650_crystal_1_550_1200/datacard_650_crystal_1_550_1200.txt deleted file mode 100644 index b656fc9..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_650_crystal_1_550_1200/datacard_650_crystal_1_550_1200.txt +++ /dev/null @@ -1,30 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_650.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_crystal_1_550_1200.root HbbHbb:f_crystal_1 -shapes data_obs HbbHbb w_background_crystal_1_550_1200.root HbbHbb:data_obs_crystal_1_550_1200 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 3.4471 1266.17 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06923 - -JER lnN 1.01174 - -JEC lnN 1.021 - -trigger lnN 1.10 - -PDF lnN 1.02353914841 - -sg_p0 param 661.215 -1.96221/+1.32271 -sg_p1 param 18.9981 -0.484023/+0.727675 -sg_p2 param 1.45525 -0.0666212/+0.0596291 -sg_p3 param 1.13503 -0.0623326/+0.179225 -par_crystal_1_0 param 1.09723 0.0425322 -par_crystal_1_1 param 5.09997 0.784798 -par_crystal_1_2 param 483.329 18.7856 -par_crystal_1_3 param 196.552 5.33115 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_650_crystal_1_550_1200/pdf.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_650_crystal_1_550_1200/pdf.log deleted file mode 100644 index aa6e6c7..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_650_crystal_1_550_1200/pdf.log +++ /dev/null @@ -1,10 +0,0 @@ -[?1034h FCN=15.5092 FROM MIGRAD STATUS=CONVERGED 78 CALLS 79 TOTAL - EDM=7.02832e-09 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 Constant 1.26172e+01 1.73351e+00 2.72316e-03 -7.30163e-05 - 2 Mean 1.00012e+00 3.19011e-03 6.31280e-06 1.69814e-02 - 3 Sigma 2.35391e-02 3.03053e-03 7.58042e-05 -1.28772e-03 -1.00012141421 +/- 0.00319010963973 -0.0235391484052 +/- 0.00303053171895 -PDF lnN 1.02353914841 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_650_crystal_1_550_1200/signal650_sig.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_650_crystal_1_550_1200/signal650_sig.log deleted file mode 100644 index f094607..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_650_crystal_1_550_1200/signal650_sig.log +++ /dev/null @@ -1,1006 +0,0 @@ - -Processing test.c... -nSignal_init = 49200 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [440,850] --> [440,850] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [540,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [440,850] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [540,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11612.3 FROM MIGRAD STATUS=INITIATE 60 CALLS 61 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.40000e+02 6.00000e+00 0.00000e+00 -5.60818e+01 - 2 sg_p1 3.00000e+01 2.00000e+00 0.00000e+00 -8.83799e+01 - 3 sg_p2 1.51156e+00 5.00000e-01 0.00000e+00 4.45918e-01 - 4 sg_p3 1.65144e+00 7.00000e-01 -5.56433e-01 1.01665e+01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.07974 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11585.6 FROM HESSE STATUS=OK 27 CALLS 322 TOTAL - EDM=0.104656 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.41163e+02 7.06029e-01 1.74995e-03 -3.76296e-02 - 2 sg_p1 3.38688e+01 5.23325e-01 4.21353e-03 4.07382e-02 - 3 sg_p2 3.61832e+00 1.16199e+00 5.00000e-01 -8.37095e-01 - 4 sg_p3 2.97717e+00 1.74320e+00 3.82781e-02 -1.08231e-02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=11585.6 FROM MIGRAD STATUS=CONVERGED 333 CALLS 334 TOTAL - EDM=3.51417e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 0.3 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.41164e+02 7.06029e-01 2.17492e-05 -2.69889e-03 - 2 sg_p1 3.38675e+01 5.23355e-01 -1.32565e-04 1.94685e-03 - 3 sg_p2 4.13673e+00 9.85565e-01 2.50000e-01 -6.51974e-03 - 4 sg_p3 2.98762e+00 1.74432e+00 3.01848e-03 -1.43731e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.986e-01 -5.029e-03 1.165e-04 1.304e-03 - -5.029e-03 2.742e-01 -1.478e-04 -1.655e-03 - 1.165e-04 -1.478e-04 1.075e+00 3.155e-02 - 1.304e-03 -1.655e-03 3.155e-02 3.342e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.01364 1.000 -0.014 0.000 0.001 - 2 0.01371 -0.014 1.000 -0.000 -0.002 - 3 0.01665 0.000 -0.000 1.000 0.017 - 4 0.01677 0.001 -0.002 0.017 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11585.6 FROM HESSE STATUS=OK 27 CALLS 361 TOTAL - EDM=0.00163365 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.41164e+02 7.06040e-01 1.75058e-03 3.88127e-02 - 2 sg_p1 3.38675e+01 5.23398e-01 1.68541e-03 3.97108e-01 - 3 sg_p2 4.13673e+00 2.58234e+00 5.00000e-01 7.13776e-01 - 4 sg_p3 2.98762e+00 2.30843e+00 1.53112e-02 -1.46921e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.986e-01 -5.100e-03 8.651e-11 1.748e-04 - -5.100e-03 2.742e-01 -4.651e-09 -1.792e-06 - 8.651e-11 -4.651e-09 1.369e+02 3.040e-14 - 1.748e-04 -1.792e-06 3.040e-14 6.385e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.01379 1.000 -0.014 0.000 0.000 - 2 0.01379 -0.014 1.000 -0.000 -0.000 - 3 0.00000 0.000 -0.000 1.000 0.000 - 4 0.00010 0.000 -0.000 0.000 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -650 -641.164 +- 0.70604 -33.8675 +- 0.523398 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [440,850] --> [440,850] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [540,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [440,850] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [540,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11904.9 FROM MIGRAD STATUS=INITIATE 38 CALLS 39 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.40000e+02 6.00000e+00 0.00000e+00 -1.02677e+02 - 2 sg_p1 3.00000e+01 2.00000e+00 0.00000e+00 -8.17543e+01 - 3 sg_p2 1.12614e+00 5.00000e-01 -5.81819e-01 2.25140e+01 - 4 sg_p3 3.50000e+00 7.00000e-01 0.00000e+00 -3.65465e-02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11868.8 FROM HESSE STATUS=OK 23 CALLS 155 TOTAL - EDM=1.60817 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.44838e+02 7.48080e-01 1.83180e-03 5.58516e+00 - 2 sg_p1 3.44259e+01 5.95973e-01 5.44743e-03 -4.45013e+00 - 3 sg_p2 2.01408e+00 1.75526e-01 9.79574e-03 -1.65119e+01 - 4 sg_p3 3.37744e+00 1.00364e+00 5.00000e-01 3.60429e+00 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - MINUIT WARNING IN HESSE - ============== Second derivative enters zero, param 4 - MINUIT WARNING IN HESSE - ============== Second derivative zero for parameter4 - MNHESS FAILS AND WILL RETURN DIAGONAL MATRIX. - FCN=11867 FROM MIGRAD STATUS=CONVERGED 279 CALLS 280 TOTAL - EDM=0.000394861 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 100.0 per cent - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.44830e+02 7.16643e-01 1.82097e-03 6.16255e-03 - 2 sg_p1 3.46586e+01 5.34936e-01 4.55140e-03 -9.30316e-04 - 3 sg_p2 3.09000e+00 3.87436e+00 7.61219e-02 -2.32163e-02 - 4 sg_p3 5.67282e+00 1.35691e+00 -0.00000e+00 0.00000e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.137e-01 0.000e+00 0.000e+00 0.000e+00 - 0.000e+00 2.865e-01 0.000e+00 0.000e+00 - 0.000e+00 0.000e+00 9.676e+00 0.000e+00 - 0.000e+00 0.000e+00 0.000e+00 2.015e+00 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.00000 1.000 0.000 0.000 0.000 - 2 0.00000 0.000 1.000 0.000 0.000 - 3 0.00000 0.000 0.000 1.000 0.000 - 4 0.00000 0.000 0.000 0.000 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - MINUIT WARNING IN HESSE - ============== Second derivative zero for parameter4 - MNHESS FAILS AND WILL RETURN DIAGONAL MATRIX. - FCN=11867 FROM HESSE STATUS=FAILED 9 CALLS 289 TOTAL - EDM=0.000394861 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 100.0 per cent - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.44830e+02 7.16643e-01 1.82097e-03 1.61714e-01 - 2 sg_p1 3.46586e+01 5.34936e-01 4.55140e-03 4.84601e-01 - 3 sg_p2 3.09000e+00 3.87436e+00 7.61219e-02 2.38245e-01 - 4 sg_p3 6.72231e+00 1.35691e+00 -0.00000e+00 2.47182e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.137e-01 0.000e+00 0.000e+00 0.000e+00 - 0.000e+00 2.865e-01 0.000e+00 0.000e+00 - 0.000e+00 0.000e+00 9.676e+00 0.000e+00 - 0.000e+00 0.000e+00 0.000e+00 2.015e+00 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.00000 1.000 0.000 0.000 0.000 - 2 0.00000 0.000 1.000 0.000 0.000 - 3 0.00000 0.000 0.000 1.000 0.000 - 4 0.00000 0.000 0.000 0.000 1.000 - ERR MATRIX APPROXIMATE -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -650 -644.83 +- 0.716643 -34.6586 +- 0.534936 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [440,850] --> [440,850] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [540,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [440,850] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [540,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11362.2 FROM MIGRAD STATUS=INITIATE 104 CALLS 105 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.40000e+02 6.00000e+00 0.00000e+00 7.10893e+01 - 2 sg_p1 3.00000e+01 2.00000e+00 0.00000e+00 -1.05256e+02 - 3 sg_p2 1.85778e+00 5.00000e-01 0.00000e+00 7.21734e-01 - 4 sg_p3 1.67742e+00 7.00000e-01 -5.47714e-01 2.76085e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11340.9 FROM MIGRAD STATUS=CONVERGED 228 CALLS 229 TOTAL - EDM=7.99199e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.38708e+02 7.08102e-01 1.73490e-03 8.50047e-02 - 2 sg_p1 3.35052e+01 5.28951e-01 4.14123e-03 -3.90699e-02 - 3 sg_p2 2.94947e+00 9.95349e-01 2.87844e-02 1.61687e-02 - 4 sg_p3 2.32505e+00 3.50639e-01 7.88914e-03 4.91799e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.015e-01 -1.242e-02 4.478e-03 -8.703e-03 - -1.242e-02 2.801e-01 6.824e-03 9.967e-03 - 4.478e-03 6.824e-03 1.050e+00 2.470e-04 - -8.703e-03 9.967e-03 2.470e-04 1.234e-01 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.04741 1.000 -0.033 0.006 -0.035 - 2 0.06336 -0.033 1.000 0.013 0.054 - 3 0.01421 0.006 0.013 1.000 0.001 - 4 0.06307 -0.035 0.054 0.001 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11340.9 FROM HESSE STATUS=OK 27 CALLS 256 TOTAL - EDM=9.40062e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.38708e+02 7.08265e-01 3.46979e-04 -4.30894e-02 - 2 sg_p1 3.35052e+01 5.29379e-01 1.65649e-04 3.58121e-01 - 3 sg_p2 2.94947e+00 1.13847e+00 1.17440e-01 1.80769e-01 - 4 sg_p3 2.32505e+00 3.50890e-01 3.15565e-04 -3.42349e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.017e-01 -1.287e-02 1.066e-02 -9.624e-03 - -1.287e-02 2.805e-01 1.877e-02 1.130e-02 - 1.066e-02 1.877e-02 1.401e+00 6.030e-04 - -9.624e-03 1.130e-02 6.030e-04 1.236e-01 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.05204 1.000 -0.034 0.013 -0.039 - 2 0.07498 -0.034 1.000 0.030 0.061 - 3 0.03295 0.013 0.030 1.000 0.001 - 4 0.07086 -0.039 0.061 0.001 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -650 -638.708 +- 0.708265 -33.5052 +- 0.529379 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [480,850] --> [480,850] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [480,850] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10721.2 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.55000e+02 5.00000e+00 0.00000e+00 -2.43808e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 4.21270e+01 - 3 sg_p2 7.95726e-01 5.00000e-01 0.00000e+00 -2.45454e+02 - 4 sg_p3 1.33597e+00 7.00000e-01 -6.66570e-01 4.99104e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10655.4 FROM MIGRAD STATUS=CONVERGED 213 CALLS 214 TOTAL - EDM=1.33202e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.61215e+02 1.25169e+00 1.34687e-03 3.04499e-03 - 2 sg_p1 1.89981e+01 1.55542e+00 3.49164e-03 1.91712e-04 - 3 sg_p2 1.45525e+00 1.90355e-01 2.29593e-03 -6.77581e-03 - 4 sg_p3 1.13503e+00 2.26730e-01 1.46146e-03 4.83701e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.568e+00 -1.781e+00 -1.994e-01 -2.643e-01 - -1.781e+00 2.456e+00 2.755e-01 3.428e-01 - -1.994e-01 2.755e-01 3.632e-02 3.869e-02 - -2.643e-01 3.428e-01 3.869e-02 5.154e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.93090 1.000 -0.907 -0.835 -0.930 - 2 0.97333 -0.907 1.000 0.922 0.963 - 3 0.92278 -0.835 0.922 1.000 0.894 - 4 0.97249 -0.930 0.963 0.894 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10655.4 FROM HESSE STATUS=OK 23 CALLS 237 TOTAL - EDM=4.47094e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.61215e+02 7.20486e-01 5.38748e-05 2.51223e-01 - 2 sg_p1 1.89981e+01 8.37759e-01 1.39666e-04 2.01106e-01 - 3 sg_p2 1.45525e+00 1.05708e-01 9.18371e-05 -4.31134e-01 - 4 sg_p3 1.13503e+00 1.24010e-01 5.84582e-05 -7.41920e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.193e-01 -3.889e-01 -2.078e-02 -6.678e-02 - -3.889e-01 7.049e-01 6.093e-02 9.065e-02 - -2.078e-02 6.093e-02 1.118e-02 7.399e-03 - -6.678e-02 9.065e-02 7.399e-03 1.539e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.77269 1.000 -0.643 -0.273 -0.747 - 2 0.90365 -0.643 1.000 0.686 0.870 - 3 0.72233 -0.273 0.686 1.000 0.564 - 4 0.90460 -0.747 0.870 0.564 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -650 -661.215 +- 0.720486 -18.9981 +- 0.837759 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 - fit done -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [480,850] --> [480,850] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [480,850] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10990.4 FROM MIGRAD STATUS=INITIATE 53 CALLS 54 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.55000e+02 5.00000e+00 0.00000e+00 -5.27265e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 -9.02997e+01 - 3 sg_p2 9.67628e-01 5.00000e-01 0.00000e+00 1.90034e+02 - 4 sg_p3 1.53208e+00 7.00000e-01 -5.97119e-01 9.04631e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10899.1 FROM MIGRAD STATUS=CONVERGED 170 CALLS 171 TOTAL - EDM=0.000119297 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.62487e+02 5.44568e-01 1.37103e-03 3.37887e-01 - 2 sg_p1 1.91861e+01 6.48831e-01 3.54018e-03 5.42529e-02 - 3 sg_p2 1.42329e+00 1.09535e-01 2.32356e-03 -1.51053e-01 - 4 sg_p3 1.14846e+00 8.06823e-02 1.37891e-03 -1.67722e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.966e-01 -7.261e-02 6.903e-03 -1.862e-02 - -7.261e-02 4.221e-01 4.896e-02 3.840e-02 - 6.903e-03 4.896e-02 1.201e-02 4.066e-03 - -1.862e-02 3.840e-02 4.066e-03 6.512e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.55262 1.000 -0.205 0.116 -0.424 - 2 0.83317 -0.205 1.000 0.688 0.732 - 3 0.73763 0.116 0.688 1.000 0.460 - 4 0.78506 -0.424 0.732 0.460 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10899.1 FROM HESSE STATUS=OK 23 CALLS 194 TOTAL - EDM=0.000109915 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.62487e+02 5.36215e-01 2.74206e-04 3.04165e-01 - 2 sg_p1 1.91861e+01 6.18928e-01 7.08036e-04 2.26745e-01 - 3 sg_p2 1.42329e+00 1.07941e-01 4.64712e-04 -4.45250e-01 - 4 sg_p3 1.14846e+00 7.57926e-02 5.51562e-05 -7.36728e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.876e-01 -5.330e-02 8.935e-03 -1.590e-02 - -5.330e-02 3.840e-01 4.525e-02 3.283e-02 - 8.935e-03 4.525e-02 1.166e-02 3.512e-03 - -1.590e-02 3.283e-02 3.512e-03 5.746e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.53288 1.000 -0.160 0.154 -0.391 - 2 0.81480 -0.160 1.000 0.676 0.699 - 3 0.72837 0.154 0.676 1.000 0.429 - 4 0.75539 -0.391 0.699 0.429 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -650 -662.487 +- 0.536215 -19.1861 +- 0.618928 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [480,850] --> [480,850] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [480,850] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10453.2 FROM MIGRAD STATUS=INITIATE 55 CALLS 56 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.55000e+02 5.00000e+00 0.00000e+00 -3.71248e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 -3.97336e+01 - 3 sg_p2 1.05577e+00 5.00000e-01 0.00000e+00 6.59080e+01 - 4 sg_p3 1.28275e+00 7.00000e-01 -6.86067e-01 1.15714e+00 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1 added to diagonal of error matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.00026 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.0624e+00 1.0038e+00 2.0034e+00 2.0551e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 1.064428 TO DIAGONAL. - FCN=10417.7 FROM HESSE STATUS=NOT POSDEF 31 CALLS 501 TOTAL - EDM=0.153481 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.59286e+02 1.34383e-01 1.00195e-04 -2.17921e+00 - 2 sg_p1 1.95932e+01 1.42607e+00 3.48397e-03 -1.51809e-02 - 3 sg_p2 1.48285e+00 2.38933e-02 1.91254e-04 7.07461e+02 - 4 sg_p3 1.30319e+00 1.20299e-02 8.43062e-05 -1.60765e+03 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10417.7 FROM MIGRAD STATUS=FAILED 511 CALLS 512 TOTAL - EDM=0.153481 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.59286e+02 1.34383e-01 -0.00000e+00 -2.17921e+00 - 2 sg_p1 1.95932e+01 1.42607e+00 -0.00000e+00 -1.51809e-02 - 3 sg_p2 1.48285e+00 2.38933e-02 -0.00000e+00 7.07461e+02 - 4 sg_p3 1.30319e+00 1.20299e-02 -0.00000e+00 -1.60765e+03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.806e-02 1.899e-01 3.204e-03 1.613e-03 - 1.899e-01 2.061e+00 3.377e-02 1.698e-02 - 3.204e-03 3.377e-02 5.709e-04 2.868e-04 - 1.613e-03 1.698e-02 2.868e-04 1.447e-04 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99849 1.000 0.984 0.998 0.998 - 2 0.98497 0.984 1.000 0.984 0.983 - 3 0.99849 0.998 0.984 1.000 0.998 - 4 0.99838 0.998 0.983 0.998 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10417.7 FROM HESSE STATUS=OK 53 CALLS 565 TOTAL - EDM=36.107 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.59286e+02 4.94375e-01 4.11775e-02 1.72285e-01 - 2 sg_p1 1.95932e+01 4.96180e-01 1.39359e-04 2.82846e-01 - 3 sg_p2 1.48285e+00 9.77917e-02 7.54293e-02 -4.19013e-01 - 4 sg_p3 1.30319e+00 7.96802e-02 5.20393e-02 -6.78543e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.444e-01 2.547e-03 1.237e-02 -9.665e-03 - 2.547e-03 2.466e-01 2.750e-02 2.146e-02 - 1.237e-02 2.750e-02 9.569e-03 2.078e-03 - -9.665e-03 2.146e-02 2.078e-03 6.351e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.41374 1.000 0.010 0.256 -0.245 - 2 0.69659 0.010 1.000 0.566 0.542 - 3 0.61938 0.256 0.566 1.000 0.267 - 4 0.59812 -0.245 0.542 0.267 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -650 -659.286 +- 0.494375 -19.5932 +- 0.49618 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [480,850] --> [480,850] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [480,850] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10619.9 FROM MIGRAD STATUS=INITIATE 56 CALLS 57 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.55000e+02 5.00000e+00 0.00000e+00 -4.21165e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 4.34414e+00 - 3 sg_p2 9.15926e-01 5.00000e-01 0.00000e+00 4.72583e+01 - 4 sg_p3 1.18271e+00 7.00000e-01 -7.23594e-01 -8.98084e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10560.4 FROM MIGRAD STATUS=CONVERGED 181 CALLS 182 TOTAL - EDM=7.5268e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.61397e+02 5.44897e-01 1.34246e-03 4.14273e-01 - 2 sg_p1 1.90727e+01 5.64070e-01 3.46865e-03 -1.30068e-03 - 3 sg_p2 1.41469e+00 8.73074e-02 2.15873e-03 1.72287e-02 - 4 sg_p3 1.12865e+00 7.39900e-02 1.34213e-03 2.26005e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.970e-01 -9.007e-02 2.908e-03 -1.929e-02 - -9.007e-02 3.188e-01 2.788e-02 2.852e-02 - 2.908e-03 2.788e-02 7.626e-03 2.278e-03 - -1.929e-02 2.852e-02 2.278e-03 5.476e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.54360 1.000 -0.293 0.061 -0.478 - 2 0.76817 -0.293 1.000 0.566 0.683 - 3 0.61547 0.061 0.566 1.000 0.353 - 4 0.74345 -0.478 0.683 0.353 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10560.4 FROM HESSE STATUS=OK 23 CALLS 205 TOTAL - EDM=7.54443e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.61397e+02 5.45454e-01 2.68492e-04 2.58749e-01 - 2 sg_p1 1.90727e+01 5.66991e-01 1.38746e-04 2.11267e-01 - 3 sg_p2 1.41469e+00 8.76116e-02 8.63490e-05 -4.49065e-01 - 4 sg_p3 1.12865e+00 7.42730e-02 2.68425e-04 -7.44396e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.976e-01 -9.125e-02 2.820e-03 -1.942e-02 - -9.125e-02 3.221e-01 2.831e-02 2.890e-02 - 2.820e-03 2.831e-02 7.680e-03 2.324e-03 - -1.942e-02 2.890e-02 2.324e-03 5.518e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.54492 1.000 -0.295 0.059 -0.479 - 2 0.77092 -0.295 1.000 0.569 0.685 - 3 0.61896 0.059 0.569 1.000 0.357 - 4 0.74573 -0.479 0.685 0.357 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -650 -661.397 +- 0.545454 -19.0727 +- 0.566991 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [480,850] --> [480,850] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [480,850] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10830.7 FROM MIGRAD STATUS=INITIATE 54 CALLS 55 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.55000e+02 5.00000e+00 0.00000e+00 -4.44740e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 -4.26729e+01 - 3 sg_p2 1.00225e+00 5.00000e-01 0.00000e+00 7.37985e+01 - 4 sg_p3 1.39341e+00 7.00000e-01 -6.45856e-01 4.14284e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10770.7 FROM MIGRAD STATUS=CONVERGED 158 CALLS 159 TOTAL - EDM=5.54438e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.61183e+02 5.58601e-01 1.30703e-03 7.27339e-02 - 2 sg_p1 1.87556e+01 6.26067e-01 3.36619e-03 1.16170e-01 - 3 sg_p2 1.45666e+00 9.85527e-02 2.30722e-03 -2.01954e-01 - 4 sg_p3 1.14103e+00 8.65798e-02 1.35416e-03 -1.57200e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.121e-01 -1.357e-01 -1.260e-03 -2.677e-02 - -1.357e-01 3.929e-01 3.854e-02 4.159e-02 - -1.260e-03 3.854e-02 9.719e-03 3.757e-03 - -2.677e-02 4.159e-02 3.757e-03 7.499e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.61009 1.000 -0.388 -0.023 -0.553 - 2 0.83171 -0.388 1.000 0.624 0.766 - 3 0.66919 -0.023 0.624 1.000 0.440 - 4 0.81600 -0.553 0.766 0.440 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10770.7 FROM HESSE STATUS=OK 23 CALLS 182 TOTAL - EDM=5.46307e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.61183e+02 5.24911e-01 5.22814e-05 2.49922e-01 - 2 sg_p1 1.87556e+01 5.52841e-01 6.73237e-04 1.68209e-01 - 3 sg_p2 1.45666e+00 9.52773e-02 4.61444e-04 -4.30514e-01 - 4 sg_p3 1.14103e+00 7.38096e-02 5.41663e-05 -7.39598e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.756e-01 -7.938e-02 3.701e-03 -1.800e-02 - -7.938e-02 3.062e-01 3.107e-02 2.800e-02 - 3.701e-03 3.107e-02 9.083e-03 2.581e-03 - -1.800e-02 2.800e-02 2.581e-03 5.449e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.53953 1.000 -0.273 0.074 -0.465 - 2 0.77793 -0.273 1.000 0.589 0.686 - 3 0.63966 0.074 0.589 1.000 0.367 - 4 0.74489 -0.465 0.686 0.367 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -650 -661.183 +- 0.524911 -18.7556 +- 0.552841 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [480,850] --> [480,850] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [480,850] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=9992.6 FROM MIGRAD STATUS=INITIATE 54 CALLS 55 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.55000e+02 5.00000e+00 0.00000e+00 -3.62893e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 -5.90807e+01 - 3 sg_p2 9.83939e-01 5.00000e-01 0.00000e+00 6.33616e+01 - 4 sg_p3 1.46565e+00 7.00000e-01 -6.20255e-01 8.16516e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9935.37 FROM MIGRAD STATUS=CONVERGED 169 CALLS 170 TOTAL - EDM=0.000159227 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.61178e+02 7.39572e-01 1.34451e-03 -1.70686e-01 - 2 sg_p1 1.89964e+01 8.67158e-01 3.47868e-03 7.20693e-02 - 3 sg_p2 1.45598e+00 1.10743e-01 2.29383e-03 -2.60727e-02 - 4 sg_p3 1.13815e+00 1.28466e-01 1.46277e-03 -4.42263e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.471e-01 -4.069e-01 -2.161e-02 -7.041e-02 - -4.069e-01 7.555e-01 6.659e-02 9.706e-02 - -2.161e-02 6.659e-02 1.227e-02 8.055e-03 - -7.041e-02 9.706e-02 8.055e-03 1.652e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.76850 1.000 -0.633 -0.264 -0.741 - 2 0.90376 -0.633 1.000 0.692 0.869 - 3 0.72860 -0.264 0.692 1.000 0.566 - 4 0.90364 -0.741 0.869 0.566 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9935.37 FROM HESSE STATUS=OK 23 CALLS 193 TOTAL - EDM=0.000158903 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.61178e+02 7.43466e-01 2.68901e-04 2.49690e-01 - 2 sg_p1 1.89964e+01 8.64124e-01 6.95735e-04 2.00873e-01 - 3 sg_p2 1.45598e+00 1.09398e-01 9.17533e-05 -4.30811e-01 - 4 sg_p3 1.13815e+00 1.28692e-01 2.92554e-04 -7.40712e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.529e-01 -4.125e-01 -2.195e-02 -7.136e-02 - -4.125e-01 7.502e-01 6.495e-02 9.696e-02 - -2.195e-02 6.495e-02 1.198e-02 7.923e-03 - -7.136e-02 9.696e-02 7.923e-03 1.658e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.77128 1.000 -0.641 -0.270 -0.745 - 2 0.90304 -0.641 1.000 0.685 0.870 - 3 0.72136 -0.270 0.685 1.000 0.562 - 4 0.90400 -0.745 0.870 0.562 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -650 -661.178 +- 0.743466 -18.9964 +- 0.864124 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [480,850] --> [480,850] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [480,850] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11483.6 FROM MIGRAD STATUS=INITIATE 55 CALLS 56 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.55000e+02 5.00000e+00 0.00000e+00 -2.74697e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 4.72491e+01 - 3 sg_p2 7.99758e-01 5.00000e-01 0.00000e+00 -2.45884e+02 - 4 sg_p3 1.30853e+00 7.00000e-01 -6.76585e-01 3.62491e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11413.9 FROM HESSE STATUS=OK 31 CALLS 214 TOTAL - EDM=0.000179347 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.61256e+02 8.07788e-01 1.02475e-03 4.77630e-01 - 2 sg_p1 1.89964e+01 1.08091e+00 3.49772e-03 1.37583e-01 - 3 sg_p2 1.45364e+00 1.98903e-01 2.28196e-03 -3.12364e-01 - 4 sg_p3 1.13104e+00 1.04915e-01 1.45795e-03 2.20302e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=11413.9 FROM MIGRAD STATUS=CONVERGED 223 CALLS 224 TOTAL - EDM=4.35241e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 100.0 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.61254e+02 3.21033e-01 -6.85513e-05 2.09409e-01 - 2 sg_p1 1.89941e+01 4.43174e-01 -3.15216e-04 9.14503e-02 - 3 sg_p2 1.45327e+00 7.44907e-02 -1.59636e-04 -3.27444e-01 - 4 sg_p3 1.13082e+00 4.34031e-02 -8.50837e-05 8.12827e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.031e-01 3.647e-02 1.175e-02 3.896e-03 - 3.647e-02 1.966e-01 1.850e-02 1.029e-02 - 1.175e-02 1.850e-02 5.551e-03 1.469e-03 - 3.896e-03 1.029e-02 1.469e-03 1.884e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.49775 1.000 0.256 0.491 0.280 - 2 0.64400 0.256 1.000 0.560 0.535 - 3 0.67669 0.491 0.560 1.000 0.454 - 4 0.57117 0.280 0.535 0.454 1.000 - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -4.6515e+00 2.2931e-01 1.6841e+00 6.7381e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 4.658200 TO DIAGONAL. - FCN=11413.9 FROM HESSE STATUS=NOT POSDEF 25 CALLS 249 TOTAL - EDM=0.0178461 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.61254e+02 3.25109e+00 4.09899e-04 2.52855e-01 - 2 sg_p1 1.89941e+01 1.45159e+00 1.39909e-03 2.00554e-01 - 3 sg_p2 1.45327e+00 6.02184e-01 9.12783e-04 -4.32003e-01 - 4 sg_p3 1.13082e+00 2.35099e-02 5.83181e-04 -7.43554e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.063e+01 4.733e+00 -1.984e+00 -3.774e-02 - 4.733e+00 2.135e+00 -8.861e-01 -1.641e-02 - -1.984e+00 -8.861e-01 3.715e-01 7.009e-03 - -3.774e-02 -1.641e-02 7.009e-03 5.527e-04 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99842 1.000 0.993 -0.998 -0.492 - 2 0.99509 0.993 1.000 -0.995 -0.478 - 3 0.99882 -0.998 -0.995 1.000 0.489 - 4 0.50219 -0.492 -0.478 0.489 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -650 -661.254 +- 3.25109 -18.9941 +- 1.45159 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 661.215 +- 0.720486 (stat) - 1.92885 + 1.27271 (syst); -1.96221/+1.32271 (total) - Uncertainty on sg_p1 = 18.9981 +- 0.837759 (stat) - 0.242524 + 0.595022 (syst); -0.484023/+0.727675 (total) - Uncertainty on sg_p2 = 1.45525 +- 0.105708 (stat) - 0.0405567 + 0.0276059 (syst); -0.0666212/+0.0596291 (total) - Uncertainty on sg_p3 = 1.13503 +- 0.12401 (stat) - 0.00638242 + 0.168157 (syst); -0.0623326/+0.179225 (total) - === Baseline plot ===
- norm = 172.355 -JEC lnN 1.021 - -JER lnN 1.01174 - -btag lnN 1.06923 - -sg_p0 param 661.215 -1.96221/+1.32271 -sg_p1 param 18.9981 -0.484023/+0.727675 -sg_p2 param 1.45525 -0.0666212/+0.0596291 -sg_p3 param 1.13503 -0.0623326/+0.179225 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_650_novo_550_1200/data_bkg.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_650_novo_550_1200/data_bkg.log deleted file mode 100644 index a966e12..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_650_novo_550_1200/data_bkg.log +++ /dev/null @@ -1,690 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10879.7 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 6.74624e-01 5.09000e-01 -8.31364e-01 -1.01971e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -3.20610e+01 - 3 par_crystal_2 5.00000e+02 2.00000e+01 0.00000e+00 -9.48837e+00 - 4 par_crystal_3 1.05000e+02 1.90000e+01 0.00000e+00 2.45317e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7116e+01 9.9978e-01 1.9597e+00 1.8156e+01 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 17.134017 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 27 CALLS 314 TOTAL - EDM=0.131054 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.06594e+00 6.09301e-02 1.43210e-03 -8.77809e-01 - 2 par_crystal_1 5.09576e+00 7.69298e-02 8.09031e-02 -5.13188e-02 - 3 par_crystal_2 4.95224e+02 7.91481e+01 2.17679e-03 -5.43249e-01 - 4 par_crystal_3 1.90900e+02 9.54958e+00 1.13079e-02 4.60762e-02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 477 CALLS 478 TOTAL - EDM=0.0370129 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.11079e+00 8.93309e-02 0.00000e+00 -4.75984e-01 - 2 par_crystal_1 5.08061e+00 3.60144e-01 0.00000e+00 -1.14416e-01 - 3 par_crystal_2 4.76040e+02 1.75614e+01 0.00000e+00 -2.32451e-01 - 4 par_crystal_3 1.99914e+02 2.77391e+01 0.00000e+00 -7.67572e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.985e-03 -2.091e-03 1.499e+00 2.820e-01 - -2.091e-03 2.873e-02 -7.387e-01 -2.900e-02 - 1.499e+00 -7.387e-01 3.118e+02 5.244e+01 - 2.820e-01 -2.900e-02 5.244e+01 1.008e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99775 1.000 -0.138 0.950 0.994 - 2 0.79882 -0.138 1.000 -0.247 -0.054 - 3 0.95717 0.950 -0.247 1.000 0.935 - 4 0.99764 0.994 -0.054 0.935 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.8 FROM HESSE STATUS=OK 27 CALLS 505 TOTAL - EDM=0.0183624 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.11079e+00 4.31984e-02 1.44775e-03 -6.03431e-01 - 2 par_crystal_1 5.08061e+00 3.28337e+00 6.64371e-02 1.44728e+00 - 3 par_crystal_2 4.76040e+02 8.02153e+00 1.45036e-02 3.38355e+00 - 4 par_crystal_3 1.99914e+02 2.26294e+01 4.50606e-02 1.52819e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.866e-03 -1.951e-03 -2.584e-03 1.946e-02 - -1.951e-03 1.028e-01 6.675e-04 3.793e-04 - -2.584e-03 6.675e-04 6.449e+01 1.116e+00 - 1.946e-02 3.793e-04 1.116e+00 8.140e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.21215 1.000 -0.141 -0.007 0.158 - 2 0.14274 -0.141 1.000 0.000 0.000 - 3 0.05109 -0.007 0.000 1.000 0.049 - 4 0.16712 0.158 0.000 0.049 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10978.6 FROM MIGRAD STATUS=INITIATE 68 CALLS 69 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 6.03110e+02 3.00000e+01 -8.97402e-01 -6.52175e+01 - 2 par_gaus_exp_1 5.45000e+01 9.10000e+00 0.00000e+00 -4.62060e+02 - 3 par_gaus_exp_2 4.12114e-01 3.05000e-01 0.00000e+00 1.25553e+03 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.9 FROM HESSE STATUS=OK 18 CALLS 182 TOTAL - EDM=0.000691453 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.46431e+02 6.06936e+00 3.17833e-03 -3.92855e-01 - 2 par_gaus_exp_1 6.65716e+01 1.75685e+01 2.62647e-03 1.43349e-01 - 3 par_gaus_exp_2 3.07505e-01 8.37981e-02 8.79822e-04 -3.06196e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM MIGRAD STATUS=CONVERGED 316 CALLS 317 TOTAL - EDM=9.19369e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.62504e+02 3.53152e+00 1.63243e-03 -1.66316e-01 - 2 par_gaus_exp_1 2.46552e+01 1.25211e+01 1.75085e-03 -3.48771e-01 - 3 par_gaus_exp_2 1.14604e-01 5.89219e-02 6.31447e-04 9.83138e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.247e+01 -1.544e+01 -6.961e-02 - -1.544e+01 1.643e+02 7.558e-01 - -6.961e-02 7.558e-01 3.493e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.35636 1.000 -0.341 -0.333 - 2 0.99789 -0.341 1.000 0.998 - 3 0.99788 -0.333 0.998 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM HESSE STATUS=OK 16 CALLS 333 TOTAL - EDM=9.89177e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 5.62504e+02 3.77274e+00 6.52972e-05 8.34552e-02 - 2 par_gaus_exp_1 2.46552e+01 1.46349e+01 3.50170e-04 -7.15413e-01 - 3 par_gaus_exp_2 1.14604e-01 6.93856e-02 1.26289e-04 -1.27868e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.424e+01 -2.545e+01 -1.157e-01 - -2.545e+01 2.286e+02 1.052e+00 - -1.157e-01 1.052e+00 4.855e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.45683 1.000 -0.446 -0.440 - 2 0.99849 -0.446 1.000 0.998 - 3 0.99848 -0.440 0.998 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (13168.6) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=575, par_novo_1=100, par_novo_2=1.58864 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 575,par_novo_1 = 100,par_novo_2 = 1.58864) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=645, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=655, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=665, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=675, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=685, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=695, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=705, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=715, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=725, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=735, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=745, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=755, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - ... (remaining 46 messages suppressed) - - FCN=13054.5 FROM MIGRAD STATUS=INITIATE 14 CALLS 15 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.75000e+02 1.50000e+01 2.01358e-01 -1.22938e+03 - 2 par_novo_1 1.00000e+02 2.00000e+01 2.01358e-01 -6.98326e+03 - 3 par_novo_2 0.00000e+00 2.00000e+01 2.01358e-01 1.51249e+06 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM MIGRAD STATUS=CONVERGED 220 CALLS 221 TOTAL - EDM=2.09668e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.00000e+02 1.21837e+02 1.25149e-01 -7.30463e-04 - 2 par_novo_1 1.30637e+02 1.58558e+01 3.16845e-03 -1.76078e-02 - 3 par_novo_2 -6.95187e-01 1.36663e-01 2.61078e-05 1.74080e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.121e-01 -9.460e-01 -6.449e-03 - -9.460e-01 2.538e+02 2.099e+00 - -6.449e-03 2.099e+00 1.868e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.21023 1.000 -0.177 -0.141 - 2 0.96488 -0.177 1.000 0.964 - 3 0.96445 -0.141 0.964 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM HESSE STATUS=OK 20 CALLS 241 TOTAL - EDM=1.01397e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 5.00000e+02 1.20312e+02 5.00000e-01 -1.57325e+00 - 2 par_novo_1 1.30637e+02 2.01762e+01 1.26738e-04 3.11381e-01 - 3 par_novo_2 -6.95187e-01 1.62575e-01 1.04431e-06 -6.95192e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.070e-01 -4.278e+00 -2.995e-02 - -4.278e+00 4.133e+02 3.212e+00 - -2.995e-02 3.212e+00 2.643e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.69436 1.000 -0.643 -0.563 - 2 0.97859 -0.643 1.000 0.972 - 3 0.97501 -0.563 0.972 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10877 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 6.33849e-01 5.09000e-01 -8.55460e-01 -1.25390e+02 - 2 par_crystal_1_1 2.55500e+00 5.09000e-01 0.00000e+00 -2.69495e+01 - 3 par_crystal_1_2 5.50000e+02 3.00000e+01 0.00000e+00 -1.44080e+01 - 4 par_crystal_1_3 1.04500e+02 1.91000e+01 0.00000e+00 3.07979e+01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.43469 added to diagonal of error matrix - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.5401e+00 8.4221e-02 1.8087e+00 3.6472e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 1.543714 TO DIAGONAL. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.9 FROM HESSE STATUS=OK 25 CALLS 485 TOTAL - EDM=0.0491336 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.05623e+00 1.52463e-01 1.42446e-03 -1.90900e+00 - 2 par_crystal_1_1 5.09988e+00 3.18944e+00 7.54811e-02 -8.93342e-03 - 3 par_crystal_1_2 4.96280e+02 4.98347e+01 9.02051e-03 3.58498e-02 - 4 par_crystal_1_3 1.89188e+02 2.78069e+01 1.02856e-02 -2.38185e-01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 538 CALLS 539 TOTAL - EDM=10.0867 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 14.1 per cent - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.09723e+00 3.02575e-02 -0.00000e+00 5.47416e+01 - 2 par_crystal_1_1 5.09997e+00 3.18368e+00 0.00000e+00 -3.90351e-03 - 3 par_crystal_1_2 4.83329e+02 2.76558e+01 0.00000e+00 7.05236e+00 - 4 par_crystal_1_3 1.96552e+02 5.80629e+00 -0.00000e+00 4.39990e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.156e-04 -1.804e-07 -6.742e-01 1.111e-01 - -1.804e-07 1.763e-04 7.888e-03 -2.154e-03 - -6.742e-01 7.888e-03 7.759e+02 -1.463e+02 - 1.111e-01 -2.154e-03 -1.463e+02 3.432e+01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.82553 1.000 -0.000 -0.800 0.627 - 2 0.03650 -0.000 1.000 0.021 -0.028 - 3 0.94703 -0.800 0.021 1.000 -0.896 - 4 0.90888 0.627 -0.028 -0.896 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -9.7852e-01 9.9996e-01 1.9836e+00 1.9949e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.980510 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 29 CALLS 568 TOTAL - EDM=238.514 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 1.09723e+00 4.25322e-02 2.54943e-04 -6.09913e-01 - 2 par_crystal_1_1 5.09997e+00 7.84798e-01 8.54763e-02 1.56580e+00 - 3 par_crystal_1_2 4.83329e+02 1.87856e+01 1.76414e-03 -4.60588e-01 - 4 par_crystal_1_3 1.96552e+02 5.33115e+00 2.63738e-03 1.30128e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.809e-03 -2.197e-07 8.001e-01 2.280e-01 - -2.197e-07 1.053e-04 -1.173e-04 -3.665e-05 - 8.001e-01 -1.173e-04 3.552e+02 1.010e+02 - 2.280e-01 -3.665e-05 1.010e+02 2.885e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99849 1.000 -0.001 0.998 0.998 - 2 0.00265 -0.001 1.000 -0.001 -0.001 - 3 0.99848 0.998 -0.001 1.000 0.998 - 4 0.99849 0.998 -0.001 0.998 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_550_1200 = 1266.17 - Background number of gaus_exp_550_1200 = 1266.17 - Background number of novo_550_1200 = 1266.17 - Background number of crystal_1_550_1200 = 1266.17 - Background number of gaus_bern_550_1200 = 1266.17 - Background number of landau_550_1200 = 1266.17 -par_crystal_0 param 1.11079 0.0431984 -par_crystal_1 param 5.08061 3.28337 -par_crystal_2 param 476.04 8.02153 -par_crystal_3 param 199.914 22.6294 -par_crystal_1_0 param 1.09723 0.0425322 -par_crystal_1_1 param 5.09997 0.784798 -par_crystal_1_2 param 483.329 18.7856 -par_crystal_1_3 param 196.552 5.33115 -par_gaus_exp_0 param 562.504 3.77274 -par_gaus_exp_1 param 24.6552 14.6349 -par_gaus_exp_2 param 0.114604 0.0693856 -par_novo_0 param 500 120.312 -par_novo_1 param 130.637 20.1762 -par_novo_2 param -0.695187 0.162575 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_650_novo_550_1200/datacard_650_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_650_novo_550_1200/datacard_650_novo_550_1200.txt deleted file mode 100644 index bde6670..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_650_novo_550_1200/datacard_650_novo_550_1200.txt +++ /dev/null @@ -1,29 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_650.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo -shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 3.4471 1266.17 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06923 - -JER lnN 1.01174 - -JEC lnN 1.021 - -trigger lnN 1.10 - -PDF lnN 1.02353914841 - -sg_p0 param 661.215 -1.96221/+1.32271 -sg_p1 param 18.9981 -0.484023/+0.727675 -sg_p2 param 1.45525 -0.0666212/+0.0596291 -sg_p3 param 1.13503 -0.0623326/+0.179225 -par_novo_0 param 500 120.312 -par_novo_1 param 130.637 20.1762 -par_novo_2 param -0.695187 0.162575 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_650_novo_550_1200/pdf.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_650_novo_550_1200/pdf.log deleted file mode 100644 index aa6e6c7..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_650_novo_550_1200/pdf.log +++ /dev/null @@ -1,10 +0,0 @@ -[?1034h FCN=15.5092 FROM MIGRAD STATUS=CONVERGED 78 CALLS 79 TOTAL - EDM=7.02832e-09 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 Constant 1.26172e+01 1.73351e+00 2.72316e-03 -7.30163e-05 - 2 Mean 1.00012e+00 3.19011e-03 6.31280e-06 1.69814e-02 - 3 Sigma 2.35391e-02 3.03053e-03 7.58042e-05 -1.28772e-03 -1.00012141421 +/- 0.00319010963973 -0.0235391484052 +/- 0.00303053171895 -PDF lnN 1.02353914841 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_650_novo_550_1200/signal650_sig.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_650_novo_550_1200/signal650_sig.log deleted file mode 100644 index f094607..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_650_novo_550_1200/signal650_sig.log +++ /dev/null @@ -1,1006 +0,0 @@ - -Processing test.c... -nSignal_init = 49200 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [440,850] --> [440,850] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [540,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [440,850] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [540,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11612.3 FROM MIGRAD STATUS=INITIATE 60 CALLS 61 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.40000e+02 6.00000e+00 0.00000e+00 -5.60818e+01 - 2 sg_p1 3.00000e+01 2.00000e+00 0.00000e+00 -8.83799e+01 - 3 sg_p2 1.51156e+00 5.00000e-01 0.00000e+00 4.45918e-01 - 4 sg_p3 1.65144e+00 7.00000e-01 -5.56433e-01 1.01665e+01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.07974 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11585.6 FROM HESSE STATUS=OK 27 CALLS 322 TOTAL - EDM=0.104656 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.41163e+02 7.06029e-01 1.74995e-03 -3.76296e-02 - 2 sg_p1 3.38688e+01 5.23325e-01 4.21353e-03 4.07382e-02 - 3 sg_p2 3.61832e+00 1.16199e+00 5.00000e-01 -8.37095e-01 - 4 sg_p3 2.97717e+00 1.74320e+00 3.82781e-02 -1.08231e-02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=11585.6 FROM MIGRAD STATUS=CONVERGED 333 CALLS 334 TOTAL - EDM=3.51417e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 0.3 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.41164e+02 7.06029e-01 2.17492e-05 -2.69889e-03 - 2 sg_p1 3.38675e+01 5.23355e-01 -1.32565e-04 1.94685e-03 - 3 sg_p2 4.13673e+00 9.85565e-01 2.50000e-01 -6.51974e-03 - 4 sg_p3 2.98762e+00 1.74432e+00 3.01848e-03 -1.43731e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.986e-01 -5.029e-03 1.165e-04 1.304e-03 - -5.029e-03 2.742e-01 -1.478e-04 -1.655e-03 - 1.165e-04 -1.478e-04 1.075e+00 3.155e-02 - 1.304e-03 -1.655e-03 3.155e-02 3.342e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.01364 1.000 -0.014 0.000 0.001 - 2 0.01371 -0.014 1.000 -0.000 -0.002 - 3 0.01665 0.000 -0.000 1.000 0.017 - 4 0.01677 0.001 -0.002 0.017 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11585.6 FROM HESSE STATUS=OK 27 CALLS 361 TOTAL - EDM=0.00163365 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.41164e+02 7.06040e-01 1.75058e-03 3.88127e-02 - 2 sg_p1 3.38675e+01 5.23398e-01 1.68541e-03 3.97108e-01 - 3 sg_p2 4.13673e+00 2.58234e+00 5.00000e-01 7.13776e-01 - 4 sg_p3 2.98762e+00 2.30843e+00 1.53112e-02 -1.46921e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.986e-01 -5.100e-03 8.651e-11 1.748e-04 - -5.100e-03 2.742e-01 -4.651e-09 -1.792e-06 - 8.651e-11 -4.651e-09 1.369e+02 3.040e-14 - 1.748e-04 -1.792e-06 3.040e-14 6.385e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.01379 1.000 -0.014 0.000 0.000 - 2 0.01379 -0.014 1.000 -0.000 -0.000 - 3 0.00000 0.000 -0.000 1.000 0.000 - 4 0.00010 0.000 -0.000 0.000 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -650 -641.164 +- 0.70604 -33.8675 +- 0.523398 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [440,850] --> [440,850] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [540,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [440,850] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [540,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11904.9 FROM MIGRAD STATUS=INITIATE 38 CALLS 39 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.40000e+02 6.00000e+00 0.00000e+00 -1.02677e+02 - 2 sg_p1 3.00000e+01 2.00000e+00 0.00000e+00 -8.17543e+01 - 3 sg_p2 1.12614e+00 5.00000e-01 -5.81819e-01 2.25140e+01 - 4 sg_p3 3.50000e+00 7.00000e-01 0.00000e+00 -3.65465e-02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11868.8 FROM HESSE STATUS=OK 23 CALLS 155 TOTAL - EDM=1.60817 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.44838e+02 7.48080e-01 1.83180e-03 5.58516e+00 - 2 sg_p1 3.44259e+01 5.95973e-01 5.44743e-03 -4.45013e+00 - 3 sg_p2 2.01408e+00 1.75526e-01 9.79574e-03 -1.65119e+01 - 4 sg_p3 3.37744e+00 1.00364e+00 5.00000e-01 3.60429e+00 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - MINUIT WARNING IN HESSE - ============== Second derivative enters zero, param 4 - MINUIT WARNING IN HESSE - ============== Second derivative zero for parameter4 - MNHESS FAILS AND WILL RETURN DIAGONAL MATRIX. - FCN=11867 FROM MIGRAD STATUS=CONVERGED 279 CALLS 280 TOTAL - EDM=0.000394861 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 100.0 per cent - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.44830e+02 7.16643e-01 1.82097e-03 6.16255e-03 - 2 sg_p1 3.46586e+01 5.34936e-01 4.55140e-03 -9.30316e-04 - 3 sg_p2 3.09000e+00 3.87436e+00 7.61219e-02 -2.32163e-02 - 4 sg_p3 5.67282e+00 1.35691e+00 -0.00000e+00 0.00000e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.137e-01 0.000e+00 0.000e+00 0.000e+00 - 0.000e+00 2.865e-01 0.000e+00 0.000e+00 - 0.000e+00 0.000e+00 9.676e+00 0.000e+00 - 0.000e+00 0.000e+00 0.000e+00 2.015e+00 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.00000 1.000 0.000 0.000 0.000 - 2 0.00000 0.000 1.000 0.000 0.000 - 3 0.00000 0.000 0.000 1.000 0.000 - 4 0.00000 0.000 0.000 0.000 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - MINUIT WARNING IN HESSE - ============== Second derivative zero for parameter4 - MNHESS FAILS AND WILL RETURN DIAGONAL MATRIX. - FCN=11867 FROM HESSE STATUS=FAILED 9 CALLS 289 TOTAL - EDM=0.000394861 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 100.0 per cent - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.44830e+02 7.16643e-01 1.82097e-03 1.61714e-01 - 2 sg_p1 3.46586e+01 5.34936e-01 4.55140e-03 4.84601e-01 - 3 sg_p2 3.09000e+00 3.87436e+00 7.61219e-02 2.38245e-01 - 4 sg_p3 6.72231e+00 1.35691e+00 -0.00000e+00 2.47182e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.137e-01 0.000e+00 0.000e+00 0.000e+00 - 0.000e+00 2.865e-01 0.000e+00 0.000e+00 - 0.000e+00 0.000e+00 9.676e+00 0.000e+00 - 0.000e+00 0.000e+00 0.000e+00 2.015e+00 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.00000 1.000 0.000 0.000 0.000 - 2 0.00000 0.000 1.000 0.000 0.000 - 3 0.00000 0.000 0.000 1.000 0.000 - 4 0.00000 0.000 0.000 0.000 1.000 - ERR MATRIX APPROXIMATE -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -650 -644.83 +- 0.716643 -34.6586 +- 0.534936 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [440,850] --> [440,850] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [540,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [440,850] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [540,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11362.2 FROM MIGRAD STATUS=INITIATE 104 CALLS 105 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.40000e+02 6.00000e+00 0.00000e+00 7.10893e+01 - 2 sg_p1 3.00000e+01 2.00000e+00 0.00000e+00 -1.05256e+02 - 3 sg_p2 1.85778e+00 5.00000e-01 0.00000e+00 7.21734e-01 - 4 sg_p3 1.67742e+00 7.00000e-01 -5.47714e-01 2.76085e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11340.9 FROM MIGRAD STATUS=CONVERGED 228 CALLS 229 TOTAL - EDM=7.99199e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.38708e+02 7.08102e-01 1.73490e-03 8.50047e-02 - 2 sg_p1 3.35052e+01 5.28951e-01 4.14123e-03 -3.90699e-02 - 3 sg_p2 2.94947e+00 9.95349e-01 2.87844e-02 1.61687e-02 - 4 sg_p3 2.32505e+00 3.50639e-01 7.88914e-03 4.91799e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.015e-01 -1.242e-02 4.478e-03 -8.703e-03 - -1.242e-02 2.801e-01 6.824e-03 9.967e-03 - 4.478e-03 6.824e-03 1.050e+00 2.470e-04 - -8.703e-03 9.967e-03 2.470e-04 1.234e-01 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.04741 1.000 -0.033 0.006 -0.035 - 2 0.06336 -0.033 1.000 0.013 0.054 - 3 0.01421 0.006 0.013 1.000 0.001 - 4 0.06307 -0.035 0.054 0.001 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11340.9 FROM HESSE STATUS=OK 27 CALLS 256 TOTAL - EDM=9.40062e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.38708e+02 7.08265e-01 3.46979e-04 -4.30894e-02 - 2 sg_p1 3.35052e+01 5.29379e-01 1.65649e-04 3.58121e-01 - 3 sg_p2 2.94947e+00 1.13847e+00 1.17440e-01 1.80769e-01 - 4 sg_p3 2.32505e+00 3.50890e-01 3.15565e-04 -3.42349e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.017e-01 -1.287e-02 1.066e-02 -9.624e-03 - -1.287e-02 2.805e-01 1.877e-02 1.130e-02 - 1.066e-02 1.877e-02 1.401e+00 6.030e-04 - -9.624e-03 1.130e-02 6.030e-04 1.236e-01 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.05204 1.000 -0.034 0.013 -0.039 - 2 0.07498 -0.034 1.000 0.030 0.061 - 3 0.03295 0.013 0.030 1.000 0.001 - 4 0.07086 -0.039 0.061 0.001 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -650 -638.708 +- 0.708265 -33.5052 +- 0.529379 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [480,850] --> [480,850] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [480,850] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10721.2 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.55000e+02 5.00000e+00 0.00000e+00 -2.43808e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 4.21270e+01 - 3 sg_p2 7.95726e-01 5.00000e-01 0.00000e+00 -2.45454e+02 - 4 sg_p3 1.33597e+00 7.00000e-01 -6.66570e-01 4.99104e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10655.4 FROM MIGRAD STATUS=CONVERGED 213 CALLS 214 TOTAL - EDM=1.33202e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.61215e+02 1.25169e+00 1.34687e-03 3.04499e-03 - 2 sg_p1 1.89981e+01 1.55542e+00 3.49164e-03 1.91712e-04 - 3 sg_p2 1.45525e+00 1.90355e-01 2.29593e-03 -6.77581e-03 - 4 sg_p3 1.13503e+00 2.26730e-01 1.46146e-03 4.83701e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.568e+00 -1.781e+00 -1.994e-01 -2.643e-01 - -1.781e+00 2.456e+00 2.755e-01 3.428e-01 - -1.994e-01 2.755e-01 3.632e-02 3.869e-02 - -2.643e-01 3.428e-01 3.869e-02 5.154e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.93090 1.000 -0.907 -0.835 -0.930 - 2 0.97333 -0.907 1.000 0.922 0.963 - 3 0.92278 -0.835 0.922 1.000 0.894 - 4 0.97249 -0.930 0.963 0.894 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10655.4 FROM HESSE STATUS=OK 23 CALLS 237 TOTAL - EDM=4.47094e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.61215e+02 7.20486e-01 5.38748e-05 2.51223e-01 - 2 sg_p1 1.89981e+01 8.37759e-01 1.39666e-04 2.01106e-01 - 3 sg_p2 1.45525e+00 1.05708e-01 9.18371e-05 -4.31134e-01 - 4 sg_p3 1.13503e+00 1.24010e-01 5.84582e-05 -7.41920e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.193e-01 -3.889e-01 -2.078e-02 -6.678e-02 - -3.889e-01 7.049e-01 6.093e-02 9.065e-02 - -2.078e-02 6.093e-02 1.118e-02 7.399e-03 - -6.678e-02 9.065e-02 7.399e-03 1.539e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.77269 1.000 -0.643 -0.273 -0.747 - 2 0.90365 -0.643 1.000 0.686 0.870 - 3 0.72233 -0.273 0.686 1.000 0.564 - 4 0.90460 -0.747 0.870 0.564 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -650 -661.215 +- 0.720486 -18.9981 +- 0.837759 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 - fit done -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [480,850] --> [480,850] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [480,850] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10990.4 FROM MIGRAD STATUS=INITIATE 53 CALLS 54 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.55000e+02 5.00000e+00 0.00000e+00 -5.27265e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 -9.02997e+01 - 3 sg_p2 9.67628e-01 5.00000e-01 0.00000e+00 1.90034e+02 - 4 sg_p3 1.53208e+00 7.00000e-01 -5.97119e-01 9.04631e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10899.1 FROM MIGRAD STATUS=CONVERGED 170 CALLS 171 TOTAL - EDM=0.000119297 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.62487e+02 5.44568e-01 1.37103e-03 3.37887e-01 - 2 sg_p1 1.91861e+01 6.48831e-01 3.54018e-03 5.42529e-02 - 3 sg_p2 1.42329e+00 1.09535e-01 2.32356e-03 -1.51053e-01 - 4 sg_p3 1.14846e+00 8.06823e-02 1.37891e-03 -1.67722e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.966e-01 -7.261e-02 6.903e-03 -1.862e-02 - -7.261e-02 4.221e-01 4.896e-02 3.840e-02 - 6.903e-03 4.896e-02 1.201e-02 4.066e-03 - -1.862e-02 3.840e-02 4.066e-03 6.512e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.55262 1.000 -0.205 0.116 -0.424 - 2 0.83317 -0.205 1.000 0.688 0.732 - 3 0.73763 0.116 0.688 1.000 0.460 - 4 0.78506 -0.424 0.732 0.460 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10899.1 FROM HESSE STATUS=OK 23 CALLS 194 TOTAL - EDM=0.000109915 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.62487e+02 5.36215e-01 2.74206e-04 3.04165e-01 - 2 sg_p1 1.91861e+01 6.18928e-01 7.08036e-04 2.26745e-01 - 3 sg_p2 1.42329e+00 1.07941e-01 4.64712e-04 -4.45250e-01 - 4 sg_p3 1.14846e+00 7.57926e-02 5.51562e-05 -7.36728e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.876e-01 -5.330e-02 8.935e-03 -1.590e-02 - -5.330e-02 3.840e-01 4.525e-02 3.283e-02 - 8.935e-03 4.525e-02 1.166e-02 3.512e-03 - -1.590e-02 3.283e-02 3.512e-03 5.746e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.53288 1.000 -0.160 0.154 -0.391 - 2 0.81480 -0.160 1.000 0.676 0.699 - 3 0.72837 0.154 0.676 1.000 0.429 - 4 0.75539 -0.391 0.699 0.429 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -650 -662.487 +- 0.536215 -19.1861 +- 0.618928 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [480,850] --> [480,850] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [480,850] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10453.2 FROM MIGRAD STATUS=INITIATE 55 CALLS 56 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.55000e+02 5.00000e+00 0.00000e+00 -3.71248e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 -3.97336e+01 - 3 sg_p2 1.05577e+00 5.00000e-01 0.00000e+00 6.59080e+01 - 4 sg_p3 1.28275e+00 7.00000e-01 -6.86067e-01 1.15714e+00 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1 added to diagonal of error matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.00026 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.0624e+00 1.0038e+00 2.0034e+00 2.0551e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 1.064428 TO DIAGONAL. - FCN=10417.7 FROM HESSE STATUS=NOT POSDEF 31 CALLS 501 TOTAL - EDM=0.153481 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.59286e+02 1.34383e-01 1.00195e-04 -2.17921e+00 - 2 sg_p1 1.95932e+01 1.42607e+00 3.48397e-03 -1.51809e-02 - 3 sg_p2 1.48285e+00 2.38933e-02 1.91254e-04 7.07461e+02 - 4 sg_p3 1.30319e+00 1.20299e-02 8.43062e-05 -1.60765e+03 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10417.7 FROM MIGRAD STATUS=FAILED 511 CALLS 512 TOTAL - EDM=0.153481 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.59286e+02 1.34383e-01 -0.00000e+00 -2.17921e+00 - 2 sg_p1 1.95932e+01 1.42607e+00 -0.00000e+00 -1.51809e-02 - 3 sg_p2 1.48285e+00 2.38933e-02 -0.00000e+00 7.07461e+02 - 4 sg_p3 1.30319e+00 1.20299e-02 -0.00000e+00 -1.60765e+03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.806e-02 1.899e-01 3.204e-03 1.613e-03 - 1.899e-01 2.061e+00 3.377e-02 1.698e-02 - 3.204e-03 3.377e-02 5.709e-04 2.868e-04 - 1.613e-03 1.698e-02 2.868e-04 1.447e-04 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99849 1.000 0.984 0.998 0.998 - 2 0.98497 0.984 1.000 0.984 0.983 - 3 0.99849 0.998 0.984 1.000 0.998 - 4 0.99838 0.998 0.983 0.998 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10417.7 FROM HESSE STATUS=OK 53 CALLS 565 TOTAL - EDM=36.107 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.59286e+02 4.94375e-01 4.11775e-02 1.72285e-01 - 2 sg_p1 1.95932e+01 4.96180e-01 1.39359e-04 2.82846e-01 - 3 sg_p2 1.48285e+00 9.77917e-02 7.54293e-02 -4.19013e-01 - 4 sg_p3 1.30319e+00 7.96802e-02 5.20393e-02 -6.78543e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.444e-01 2.547e-03 1.237e-02 -9.665e-03 - 2.547e-03 2.466e-01 2.750e-02 2.146e-02 - 1.237e-02 2.750e-02 9.569e-03 2.078e-03 - -9.665e-03 2.146e-02 2.078e-03 6.351e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.41374 1.000 0.010 0.256 -0.245 - 2 0.69659 0.010 1.000 0.566 0.542 - 3 0.61938 0.256 0.566 1.000 0.267 - 4 0.59812 -0.245 0.542 0.267 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -650 -659.286 +- 0.494375 -19.5932 +- 0.49618 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [480,850] --> [480,850] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [480,850] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10619.9 FROM MIGRAD STATUS=INITIATE 56 CALLS 57 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.55000e+02 5.00000e+00 0.00000e+00 -4.21165e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 4.34414e+00 - 3 sg_p2 9.15926e-01 5.00000e-01 0.00000e+00 4.72583e+01 - 4 sg_p3 1.18271e+00 7.00000e-01 -7.23594e-01 -8.98084e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10560.4 FROM MIGRAD STATUS=CONVERGED 181 CALLS 182 TOTAL - EDM=7.5268e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.61397e+02 5.44897e-01 1.34246e-03 4.14273e-01 - 2 sg_p1 1.90727e+01 5.64070e-01 3.46865e-03 -1.30068e-03 - 3 sg_p2 1.41469e+00 8.73074e-02 2.15873e-03 1.72287e-02 - 4 sg_p3 1.12865e+00 7.39900e-02 1.34213e-03 2.26005e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.970e-01 -9.007e-02 2.908e-03 -1.929e-02 - -9.007e-02 3.188e-01 2.788e-02 2.852e-02 - 2.908e-03 2.788e-02 7.626e-03 2.278e-03 - -1.929e-02 2.852e-02 2.278e-03 5.476e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.54360 1.000 -0.293 0.061 -0.478 - 2 0.76817 -0.293 1.000 0.566 0.683 - 3 0.61547 0.061 0.566 1.000 0.353 - 4 0.74345 -0.478 0.683 0.353 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10560.4 FROM HESSE STATUS=OK 23 CALLS 205 TOTAL - EDM=7.54443e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.61397e+02 5.45454e-01 2.68492e-04 2.58749e-01 - 2 sg_p1 1.90727e+01 5.66991e-01 1.38746e-04 2.11267e-01 - 3 sg_p2 1.41469e+00 8.76116e-02 8.63490e-05 -4.49065e-01 - 4 sg_p3 1.12865e+00 7.42730e-02 2.68425e-04 -7.44396e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.976e-01 -9.125e-02 2.820e-03 -1.942e-02 - -9.125e-02 3.221e-01 2.831e-02 2.890e-02 - 2.820e-03 2.831e-02 7.680e-03 2.324e-03 - -1.942e-02 2.890e-02 2.324e-03 5.518e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.54492 1.000 -0.295 0.059 -0.479 - 2 0.77092 -0.295 1.000 0.569 0.685 - 3 0.61896 0.059 0.569 1.000 0.357 - 4 0.74573 -0.479 0.685 0.357 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -650 -661.397 +- 0.545454 -19.0727 +- 0.566991 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [480,850] --> [480,850] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [480,850] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10830.7 FROM MIGRAD STATUS=INITIATE 54 CALLS 55 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.55000e+02 5.00000e+00 0.00000e+00 -4.44740e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 -4.26729e+01 - 3 sg_p2 1.00225e+00 5.00000e-01 0.00000e+00 7.37985e+01 - 4 sg_p3 1.39341e+00 7.00000e-01 -6.45856e-01 4.14284e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10770.7 FROM MIGRAD STATUS=CONVERGED 158 CALLS 159 TOTAL - EDM=5.54438e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.61183e+02 5.58601e-01 1.30703e-03 7.27339e-02 - 2 sg_p1 1.87556e+01 6.26067e-01 3.36619e-03 1.16170e-01 - 3 sg_p2 1.45666e+00 9.85527e-02 2.30722e-03 -2.01954e-01 - 4 sg_p3 1.14103e+00 8.65798e-02 1.35416e-03 -1.57200e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.121e-01 -1.357e-01 -1.260e-03 -2.677e-02 - -1.357e-01 3.929e-01 3.854e-02 4.159e-02 - -1.260e-03 3.854e-02 9.719e-03 3.757e-03 - -2.677e-02 4.159e-02 3.757e-03 7.499e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.61009 1.000 -0.388 -0.023 -0.553 - 2 0.83171 -0.388 1.000 0.624 0.766 - 3 0.66919 -0.023 0.624 1.000 0.440 - 4 0.81600 -0.553 0.766 0.440 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10770.7 FROM HESSE STATUS=OK 23 CALLS 182 TOTAL - EDM=5.46307e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.61183e+02 5.24911e-01 5.22814e-05 2.49922e-01 - 2 sg_p1 1.87556e+01 5.52841e-01 6.73237e-04 1.68209e-01 - 3 sg_p2 1.45666e+00 9.52773e-02 4.61444e-04 -4.30514e-01 - 4 sg_p3 1.14103e+00 7.38096e-02 5.41663e-05 -7.39598e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.756e-01 -7.938e-02 3.701e-03 -1.800e-02 - -7.938e-02 3.062e-01 3.107e-02 2.800e-02 - 3.701e-03 3.107e-02 9.083e-03 2.581e-03 - -1.800e-02 2.800e-02 2.581e-03 5.449e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.53953 1.000 -0.273 0.074 -0.465 - 2 0.77793 -0.273 1.000 0.589 0.686 - 3 0.63966 0.074 0.589 1.000 0.367 - 4 0.74489 -0.465 0.686 0.367 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -650 -661.183 +- 0.524911 -18.7556 +- 0.552841 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [480,850] --> [480,850] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [480,850] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=9992.6 FROM MIGRAD STATUS=INITIATE 54 CALLS 55 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.55000e+02 5.00000e+00 0.00000e+00 -3.62893e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 -5.90807e+01 - 3 sg_p2 9.83939e-01 5.00000e-01 0.00000e+00 6.33616e+01 - 4 sg_p3 1.46565e+00 7.00000e-01 -6.20255e-01 8.16516e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9935.37 FROM MIGRAD STATUS=CONVERGED 169 CALLS 170 TOTAL - EDM=0.000159227 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.61178e+02 7.39572e-01 1.34451e-03 -1.70686e-01 - 2 sg_p1 1.89964e+01 8.67158e-01 3.47868e-03 7.20693e-02 - 3 sg_p2 1.45598e+00 1.10743e-01 2.29383e-03 -2.60727e-02 - 4 sg_p3 1.13815e+00 1.28466e-01 1.46277e-03 -4.42263e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.471e-01 -4.069e-01 -2.161e-02 -7.041e-02 - -4.069e-01 7.555e-01 6.659e-02 9.706e-02 - -2.161e-02 6.659e-02 1.227e-02 8.055e-03 - -7.041e-02 9.706e-02 8.055e-03 1.652e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.76850 1.000 -0.633 -0.264 -0.741 - 2 0.90376 -0.633 1.000 0.692 0.869 - 3 0.72860 -0.264 0.692 1.000 0.566 - 4 0.90364 -0.741 0.869 0.566 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9935.37 FROM HESSE STATUS=OK 23 CALLS 193 TOTAL - EDM=0.000158903 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.61178e+02 7.43466e-01 2.68901e-04 2.49690e-01 - 2 sg_p1 1.89964e+01 8.64124e-01 6.95735e-04 2.00873e-01 - 3 sg_p2 1.45598e+00 1.09398e-01 9.17533e-05 -4.30811e-01 - 4 sg_p3 1.13815e+00 1.28692e-01 2.92554e-04 -7.40712e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.529e-01 -4.125e-01 -2.195e-02 -7.136e-02 - -4.125e-01 7.502e-01 6.495e-02 9.696e-02 - -2.195e-02 6.495e-02 1.198e-02 7.923e-03 - -7.136e-02 9.696e-02 7.923e-03 1.658e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.77128 1.000 -0.641 -0.270 -0.745 - 2 0.90304 -0.641 1.000 0.685 0.870 - 3 0.72136 -0.270 0.685 1.000 0.562 - 4 0.90400 -0.745 0.870 0.562 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -650 -661.178 +- 0.743466 -18.9964 +- 0.864124 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [480,850] --> [480,850] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [480,850] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11483.6 FROM MIGRAD STATUS=INITIATE 55 CALLS 56 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.55000e+02 5.00000e+00 0.00000e+00 -2.74697e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 4.72491e+01 - 3 sg_p2 7.99758e-01 5.00000e-01 0.00000e+00 -2.45884e+02 - 4 sg_p3 1.30853e+00 7.00000e-01 -6.76585e-01 3.62491e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11413.9 FROM HESSE STATUS=OK 31 CALLS 214 TOTAL - EDM=0.000179347 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.61256e+02 8.07788e-01 1.02475e-03 4.77630e-01 - 2 sg_p1 1.89964e+01 1.08091e+00 3.49772e-03 1.37583e-01 - 3 sg_p2 1.45364e+00 1.98903e-01 2.28196e-03 -3.12364e-01 - 4 sg_p3 1.13104e+00 1.04915e-01 1.45795e-03 2.20302e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=11413.9 FROM MIGRAD STATUS=CONVERGED 223 CALLS 224 TOTAL - EDM=4.35241e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 100.0 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.61254e+02 3.21033e-01 -6.85513e-05 2.09409e-01 - 2 sg_p1 1.89941e+01 4.43174e-01 -3.15216e-04 9.14503e-02 - 3 sg_p2 1.45327e+00 7.44907e-02 -1.59636e-04 -3.27444e-01 - 4 sg_p3 1.13082e+00 4.34031e-02 -8.50837e-05 8.12827e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.031e-01 3.647e-02 1.175e-02 3.896e-03 - 3.647e-02 1.966e-01 1.850e-02 1.029e-02 - 1.175e-02 1.850e-02 5.551e-03 1.469e-03 - 3.896e-03 1.029e-02 1.469e-03 1.884e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.49775 1.000 0.256 0.491 0.280 - 2 0.64400 0.256 1.000 0.560 0.535 - 3 0.67669 0.491 0.560 1.000 0.454 - 4 0.57117 0.280 0.535 0.454 1.000 - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -4.6515e+00 2.2931e-01 1.6841e+00 6.7381e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 4.658200 TO DIAGONAL. - FCN=11413.9 FROM HESSE STATUS=NOT POSDEF 25 CALLS 249 TOTAL - EDM=0.0178461 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.61254e+02 3.25109e+00 4.09899e-04 2.52855e-01 - 2 sg_p1 1.89941e+01 1.45159e+00 1.39909e-03 2.00554e-01 - 3 sg_p2 1.45327e+00 6.02184e-01 9.12783e-04 -4.32003e-01 - 4 sg_p3 1.13082e+00 2.35099e-02 5.83181e-04 -7.43554e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.063e+01 4.733e+00 -1.984e+00 -3.774e-02 - 4.733e+00 2.135e+00 -8.861e-01 -1.641e-02 - -1.984e+00 -8.861e-01 3.715e-01 7.009e-03 - -3.774e-02 -1.641e-02 7.009e-03 5.527e-04 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99842 1.000 0.993 -0.998 -0.492 - 2 0.99509 0.993 1.000 -0.995 -0.478 - 3 0.99882 -0.998 -0.995 1.000 0.489 - 4 0.50219 -0.492 -0.478 0.489 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -650 -661.254 +- 3.25109 -18.9941 +- 1.45159 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 661.215 +- 0.720486 (stat) - 1.92885 + 1.27271 (syst); -1.96221/+1.32271 (total) - Uncertainty on sg_p1 = 18.9981 +- 0.837759 (stat) - 0.242524 + 0.595022 (syst); -0.484023/+0.727675 (total) - Uncertainty on sg_p2 = 1.45525 +- 0.105708 (stat) - 0.0405567 + 0.0276059 (syst); -0.0666212/+0.0596291 (total) - Uncertainty on sg_p3 = 1.13503 +- 0.12401 (stat) - 0.00638242 + 0.168157 (syst); -0.0623326/+0.179225 (total) - === Baseline plot ===
- norm = 172.355 -JEC lnN 1.021 - -JER lnN 1.01174 - -btag lnN 1.06923 - -sg_p0 param 661.215 -1.96221/+1.32271 -sg_p1 param 18.9981 -0.484023/+0.727675 -sg_p2 param 1.45525 -0.0666212/+0.0596291 -sg_p3 param 1.13503 -0.0623326/+0.179225 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_750_crystal_1_550_1200/data_bkg.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_750_crystal_1_550_1200/data_bkg.log deleted file mode 100644 index a966e12..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_750_crystal_1_550_1200/data_bkg.log +++ /dev/null @@ -1,690 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10879.7 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 6.74624e-01 5.09000e-01 -8.31364e-01 -1.01971e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -3.20610e+01 - 3 par_crystal_2 5.00000e+02 2.00000e+01 0.00000e+00 -9.48837e+00 - 4 par_crystal_3 1.05000e+02 1.90000e+01 0.00000e+00 2.45317e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7116e+01 9.9978e-01 1.9597e+00 1.8156e+01 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 17.134017 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 27 CALLS 314 TOTAL - EDM=0.131054 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.06594e+00 6.09301e-02 1.43210e-03 -8.77809e-01 - 2 par_crystal_1 5.09576e+00 7.69298e-02 8.09031e-02 -5.13188e-02 - 3 par_crystal_2 4.95224e+02 7.91481e+01 2.17679e-03 -5.43249e-01 - 4 par_crystal_3 1.90900e+02 9.54958e+00 1.13079e-02 4.60762e-02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 477 CALLS 478 TOTAL - EDM=0.0370129 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.11079e+00 8.93309e-02 0.00000e+00 -4.75984e-01 - 2 par_crystal_1 5.08061e+00 3.60144e-01 0.00000e+00 -1.14416e-01 - 3 par_crystal_2 4.76040e+02 1.75614e+01 0.00000e+00 -2.32451e-01 - 4 par_crystal_3 1.99914e+02 2.77391e+01 0.00000e+00 -7.67572e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.985e-03 -2.091e-03 1.499e+00 2.820e-01 - -2.091e-03 2.873e-02 -7.387e-01 -2.900e-02 - 1.499e+00 -7.387e-01 3.118e+02 5.244e+01 - 2.820e-01 -2.900e-02 5.244e+01 1.008e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99775 1.000 -0.138 0.950 0.994 - 2 0.79882 -0.138 1.000 -0.247 -0.054 - 3 0.95717 0.950 -0.247 1.000 0.935 - 4 0.99764 0.994 -0.054 0.935 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.8 FROM HESSE STATUS=OK 27 CALLS 505 TOTAL - EDM=0.0183624 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.11079e+00 4.31984e-02 1.44775e-03 -6.03431e-01 - 2 par_crystal_1 5.08061e+00 3.28337e+00 6.64371e-02 1.44728e+00 - 3 par_crystal_2 4.76040e+02 8.02153e+00 1.45036e-02 3.38355e+00 - 4 par_crystal_3 1.99914e+02 2.26294e+01 4.50606e-02 1.52819e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.866e-03 -1.951e-03 -2.584e-03 1.946e-02 - -1.951e-03 1.028e-01 6.675e-04 3.793e-04 - -2.584e-03 6.675e-04 6.449e+01 1.116e+00 - 1.946e-02 3.793e-04 1.116e+00 8.140e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.21215 1.000 -0.141 -0.007 0.158 - 2 0.14274 -0.141 1.000 0.000 0.000 - 3 0.05109 -0.007 0.000 1.000 0.049 - 4 0.16712 0.158 0.000 0.049 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10978.6 FROM MIGRAD STATUS=INITIATE 68 CALLS 69 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 6.03110e+02 3.00000e+01 -8.97402e-01 -6.52175e+01 - 2 par_gaus_exp_1 5.45000e+01 9.10000e+00 0.00000e+00 -4.62060e+02 - 3 par_gaus_exp_2 4.12114e-01 3.05000e-01 0.00000e+00 1.25553e+03 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.9 FROM HESSE STATUS=OK 18 CALLS 182 TOTAL - EDM=0.000691453 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.46431e+02 6.06936e+00 3.17833e-03 -3.92855e-01 - 2 par_gaus_exp_1 6.65716e+01 1.75685e+01 2.62647e-03 1.43349e-01 - 3 par_gaus_exp_2 3.07505e-01 8.37981e-02 8.79822e-04 -3.06196e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM MIGRAD STATUS=CONVERGED 316 CALLS 317 TOTAL - EDM=9.19369e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.62504e+02 3.53152e+00 1.63243e-03 -1.66316e-01 - 2 par_gaus_exp_1 2.46552e+01 1.25211e+01 1.75085e-03 -3.48771e-01 - 3 par_gaus_exp_2 1.14604e-01 5.89219e-02 6.31447e-04 9.83138e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.247e+01 -1.544e+01 -6.961e-02 - -1.544e+01 1.643e+02 7.558e-01 - -6.961e-02 7.558e-01 3.493e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.35636 1.000 -0.341 -0.333 - 2 0.99789 -0.341 1.000 0.998 - 3 0.99788 -0.333 0.998 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM HESSE STATUS=OK 16 CALLS 333 TOTAL - EDM=9.89177e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 5.62504e+02 3.77274e+00 6.52972e-05 8.34552e-02 - 2 par_gaus_exp_1 2.46552e+01 1.46349e+01 3.50170e-04 -7.15413e-01 - 3 par_gaus_exp_2 1.14604e-01 6.93856e-02 1.26289e-04 -1.27868e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.424e+01 -2.545e+01 -1.157e-01 - -2.545e+01 2.286e+02 1.052e+00 - -1.157e-01 1.052e+00 4.855e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.45683 1.000 -0.446 -0.440 - 2 0.99849 -0.446 1.000 0.998 - 3 0.99848 -0.440 0.998 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (13168.6) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=575, par_novo_1=100, par_novo_2=1.58864 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 575,par_novo_1 = 100,par_novo_2 = 1.58864) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=645, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=655, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=665, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=675, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=685, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=695, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=705, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=715, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=725, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=735, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=745, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=755, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - ... (remaining 46 messages suppressed) - - FCN=13054.5 FROM MIGRAD STATUS=INITIATE 14 CALLS 15 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.75000e+02 1.50000e+01 2.01358e-01 -1.22938e+03 - 2 par_novo_1 1.00000e+02 2.00000e+01 2.01358e-01 -6.98326e+03 - 3 par_novo_2 0.00000e+00 2.00000e+01 2.01358e-01 1.51249e+06 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM MIGRAD STATUS=CONVERGED 220 CALLS 221 TOTAL - EDM=2.09668e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.00000e+02 1.21837e+02 1.25149e-01 -7.30463e-04 - 2 par_novo_1 1.30637e+02 1.58558e+01 3.16845e-03 -1.76078e-02 - 3 par_novo_2 -6.95187e-01 1.36663e-01 2.61078e-05 1.74080e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.121e-01 -9.460e-01 -6.449e-03 - -9.460e-01 2.538e+02 2.099e+00 - -6.449e-03 2.099e+00 1.868e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.21023 1.000 -0.177 -0.141 - 2 0.96488 -0.177 1.000 0.964 - 3 0.96445 -0.141 0.964 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM HESSE STATUS=OK 20 CALLS 241 TOTAL - EDM=1.01397e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 5.00000e+02 1.20312e+02 5.00000e-01 -1.57325e+00 - 2 par_novo_1 1.30637e+02 2.01762e+01 1.26738e-04 3.11381e-01 - 3 par_novo_2 -6.95187e-01 1.62575e-01 1.04431e-06 -6.95192e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.070e-01 -4.278e+00 -2.995e-02 - -4.278e+00 4.133e+02 3.212e+00 - -2.995e-02 3.212e+00 2.643e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.69436 1.000 -0.643 -0.563 - 2 0.97859 -0.643 1.000 0.972 - 3 0.97501 -0.563 0.972 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10877 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 6.33849e-01 5.09000e-01 -8.55460e-01 -1.25390e+02 - 2 par_crystal_1_1 2.55500e+00 5.09000e-01 0.00000e+00 -2.69495e+01 - 3 par_crystal_1_2 5.50000e+02 3.00000e+01 0.00000e+00 -1.44080e+01 - 4 par_crystal_1_3 1.04500e+02 1.91000e+01 0.00000e+00 3.07979e+01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.43469 added to diagonal of error matrix - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.5401e+00 8.4221e-02 1.8087e+00 3.6472e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 1.543714 TO DIAGONAL. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.9 FROM HESSE STATUS=OK 25 CALLS 485 TOTAL - EDM=0.0491336 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.05623e+00 1.52463e-01 1.42446e-03 -1.90900e+00 - 2 par_crystal_1_1 5.09988e+00 3.18944e+00 7.54811e-02 -8.93342e-03 - 3 par_crystal_1_2 4.96280e+02 4.98347e+01 9.02051e-03 3.58498e-02 - 4 par_crystal_1_3 1.89188e+02 2.78069e+01 1.02856e-02 -2.38185e-01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 538 CALLS 539 TOTAL - EDM=10.0867 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 14.1 per cent - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.09723e+00 3.02575e-02 -0.00000e+00 5.47416e+01 - 2 par_crystal_1_1 5.09997e+00 3.18368e+00 0.00000e+00 -3.90351e-03 - 3 par_crystal_1_2 4.83329e+02 2.76558e+01 0.00000e+00 7.05236e+00 - 4 par_crystal_1_3 1.96552e+02 5.80629e+00 -0.00000e+00 4.39990e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.156e-04 -1.804e-07 -6.742e-01 1.111e-01 - -1.804e-07 1.763e-04 7.888e-03 -2.154e-03 - -6.742e-01 7.888e-03 7.759e+02 -1.463e+02 - 1.111e-01 -2.154e-03 -1.463e+02 3.432e+01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.82553 1.000 -0.000 -0.800 0.627 - 2 0.03650 -0.000 1.000 0.021 -0.028 - 3 0.94703 -0.800 0.021 1.000 -0.896 - 4 0.90888 0.627 -0.028 -0.896 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -9.7852e-01 9.9996e-01 1.9836e+00 1.9949e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.980510 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 29 CALLS 568 TOTAL - EDM=238.514 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 1.09723e+00 4.25322e-02 2.54943e-04 -6.09913e-01 - 2 par_crystal_1_1 5.09997e+00 7.84798e-01 8.54763e-02 1.56580e+00 - 3 par_crystal_1_2 4.83329e+02 1.87856e+01 1.76414e-03 -4.60588e-01 - 4 par_crystal_1_3 1.96552e+02 5.33115e+00 2.63738e-03 1.30128e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.809e-03 -2.197e-07 8.001e-01 2.280e-01 - -2.197e-07 1.053e-04 -1.173e-04 -3.665e-05 - 8.001e-01 -1.173e-04 3.552e+02 1.010e+02 - 2.280e-01 -3.665e-05 1.010e+02 2.885e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99849 1.000 -0.001 0.998 0.998 - 2 0.00265 -0.001 1.000 -0.001 -0.001 - 3 0.99848 0.998 -0.001 1.000 0.998 - 4 0.99849 0.998 -0.001 0.998 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_550_1200 = 1266.17 - Background number of gaus_exp_550_1200 = 1266.17 - Background number of novo_550_1200 = 1266.17 - Background number of crystal_1_550_1200 = 1266.17 - Background number of gaus_bern_550_1200 = 1266.17 - Background number of landau_550_1200 = 1266.17 -par_crystal_0 param 1.11079 0.0431984 -par_crystal_1 param 5.08061 3.28337 -par_crystal_2 param 476.04 8.02153 -par_crystal_3 param 199.914 22.6294 -par_crystal_1_0 param 1.09723 0.0425322 -par_crystal_1_1 param 5.09997 0.784798 -par_crystal_1_2 param 483.329 18.7856 -par_crystal_1_3 param 196.552 5.33115 -par_gaus_exp_0 param 562.504 3.77274 -par_gaus_exp_1 param 24.6552 14.6349 -par_gaus_exp_2 param 0.114604 0.0693856 -par_novo_0 param 500 120.312 -par_novo_1 param 130.637 20.1762 -par_novo_2 param -0.695187 0.162575 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_750_crystal_1_550_1200/datacard_750_crystal_1_550_1200.txt b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_750_crystal_1_550_1200/datacard_750_crystal_1_550_1200.txt deleted file mode 100644 index 62e7bf4..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_750_crystal_1_550_1200/datacard_750_crystal_1_550_1200.txt +++ /dev/null @@ -1,30 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_750.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_crystal_1_550_1200.root HbbHbb:f_crystal_1 -shapes data_obs HbbHbb w_background_crystal_1_550_1200.root HbbHbb:data_obs_crystal_1_550_1200 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 4.13008 1266.17 -lumi_13TeV lnN 1.026 - -bTag lnN 1.07417 - -JER lnN 1.01351 - -JEC lnN 1.01674 - -trigger lnN 1.10 - -PDF lnN 1.0236949058 - -sg_p0 param 762.526 -1.90284/+1.87677 -sg_p1 param 23.7778 -2.48927/+0.18602 -sg_p2 param 1.45537 -0.326977/+0.0355188 -sg_p3 param 1.20603 -0.183096/+0.0190539 -par_crystal_1_0 param 1.09723 0.0425322 -par_crystal_1_1 param 5.09997 0.784798 -par_crystal_1_2 param 483.329 18.7856 -par_crystal_1_3 param 196.552 5.33115 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_750_crystal_1_550_1200/pdf.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_750_crystal_1_550_1200/pdf.log deleted file mode 100644 index 7aa5c80..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_750_crystal_1_550_1200/pdf.log +++ /dev/null @@ -1,10 +0,0 @@ -[?1034h FCN=11.2801 FROM MIGRAD STATUS=CONVERGED 70 CALLS 71 TOTAL - EDM=1.81578e-08 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 Constant 1.31719e+01 1.75595e+00 2.39310e-03 -1.10521e-04 - 2 Mean 1.00082e+00 3.14264e-03 5.36666e-06 2.77743e-02 - 3 Sigma 2.36949e-02 2.95964e-03 6.37166e-05 -1.30765e-03 -1.00081608364 +/- 0.00314264221278 -0.0236949057959 +/- 0.00295963910815 -PDF lnN 1.0236949058 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_750_crystal_1_550_1200/signal750_sig.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_750_crystal_1_550_1200/signal750_sig.log deleted file mode 100644 index e4e749b..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_750_crystal_1_550_1200/signal750_sig.log +++ /dev/null @@ -1,1000 +0,0 @@ - -Processing test.c... -nSignal_init = 99200 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [480,930] --> [480,930] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [580,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [480,930] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [580,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=28581.6 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.45000e+02 7.00000e+00 0.00000e+00 -1.97285e+02 - 2 sg_p1 3.25000e+01 2.50000e+00 0.00000e+00 -5.26336e+01 - 3 sg_p2 2.50000e+00 5.00000e-01 0.00000e+00 -1.34034e+00 - 4 sg_p3 8.83623e-01 7.00000e-01 -8.44345e-01 -8.85145e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - MINUIT WARNING IN HESSE - ============== Second derivative enters zero, param 3 - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=28481.9 FROM HESSE STATUS=OK 29 CALLS 226 TOTAL - EDM=0.176135 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.41076e+02 5.65606e-01 1.82652e-03 1.78201e-02 - 2 sg_p1 3.85553e+01 5.02370e-01 4.68920e-03 -1.33549e-02 - 3 sg_p2 2.98442e+00 1.00281e+00 5.00000e-01 -1.40904e+00 - 4 sg_p3 1.76206e+00 9.56239e-02 3.11054e-03 1.18363e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=28481.9 FROM MIGRAD STATUS=CONVERGED 237 CALLS 238 TOTAL - EDM=7.28057e-09 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 0.0 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.41076e+02 5.65607e-01 1.02030e-05 -2.48246e-04 - 2 sg_p1 3.85547e+01 5.02385e-01 -5.28821e-05 -6.46421e-04 - 3 sg_p2 3.57615e+00 9.22634e-01 2.50000e-01 0.00000e+00 - 4 sg_p3 1.76174e+00 9.56180e-02 -1.05757e-04 -3.32008e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.199e-01 -1.433e-02 -2.179e-05 -1.376e-02 - -1.433e-02 2.526e-01 6.391e-05 2.295e-02 - -2.179e-05 6.391e-05 9.034e-01 1.802e-05 - -1.376e-02 2.295e-02 1.802e-05 9.146e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.26700 1.000 -0.050 -0.000 -0.254 - 2 0.48307 -0.050 1.000 0.000 0.477 - 3 0.00020 -0.000 0.000 1.000 0.000 - 4 0.53025 -0.254 0.477 0.000 1.000 - ********** - ** 18 **HESSE 2000 - ********** - MINUIT WARNING IN HESSE - ============== Second derivative enters zero, param 3 - MINUIT WARNING IN HESSE - ============== Second derivative zero for parameter3 - MNHESS FAILS AND WILL RETURN DIAGONAL MATRIX. - FCN=28481.9 FROM HESSE STATUS=FAILED 7 CALLS 245 TOTAL - EDM=7.28057e-09 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 100.0 per cent - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.41076e+02 5.45075e-01 1.82653e-03 -1.12350e-01 - 2 sg_p1 3.85547e+01 4.39914e-01 1.87568e-03 5.05653e-01 - 3 sg_p2 2.36258e+00 1.23330e+00 2.50000e-01 4.45003e-01 - 4 sg_p3 1.76174e+00 8.10352e-02 -1.05757e-04 -5.19731e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.971e-01 0.000e+00 0.000e+00 0.000e+00 - 0.000e+00 1.936e-01 0.000e+00 0.000e+00 - 0.000e+00 0.000e+00 1.703e+00 0.000e+00 - 0.000e+00 0.000e+00 0.000e+00 6.568e-03 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.00000 1.000 0.000 0.000 0.000 - 2 0.00000 0.000 1.000 0.000 0.000 - 3 0.00000 0.000 0.000 1.000 0.000 - 4 0.00000 0.000 0.000 0.000 1.000 - ERR MATRIX APPROXIMATE -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -750 -741.076 +- 0.545075 -38.5547 +- 0.439914 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [480,930] --> [480,930] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [580,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [480,930] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [580,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=28878.9 FROM MIGRAD STATUS=INITIATE 112 CALLS 113 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.45000e+02 7.00000e+00 0.00000e+00 -1.25454e+02 - 2 sg_p1 3.56130e+01 2.50000e+00 0.00000e+00 6.94117e+01 - 3 sg_p2 1.20743e+00 5.00000e-01 -5.43373e-01 -2.30464e+01 - 4 sg_p3 1.10042e+00 7.00000e-01 0.00000e+00 -5.72255e+02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=28834.9 FROM HESSE STATUS=OK 29 CALLS 423 TOTAL - EDM=0.262248 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.44466e+02 5.73304e-01 1.86583e-03 -3.18372e-03 - 2 sg_p1 3.93530e+01 5.09571e-01 5.09296e-03 1.74419e-02 - 3 sg_p2 2.25372e+00 5.17025e-01 3.03226e-01 -3.45943e+00 - 4 sg_p3 1.81743e+00 9.76205e-02 3.26395e-03 -1.13200e-02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=28834.9 FROM MIGRAD STATUS=CONVERGED 436 CALLS 437 TOTAL - EDM=1.01318e-08 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 0.0 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.44466e+02 5.73304e-01 -7.43401e-07 -1.39873e-04 - 2 sg_p1 3.93527e+01 5.09582e-01 -3.36925e-05 -1.24591e-03 - 3 sg_p2 2.63229e+00 5.18825e-01 1.51613e-01 0.00000e+00 - 4 sg_p3 1.81743e+00 9.76204e-02 -7.43797e-07 -3.30431e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.287e-01 8.912e-03 -6.933e-06 -1.113e-02 - 8.912e-03 2.599e-01 3.934e-05 2.184e-02 - -6.933e-06 3.934e-05 2.731e-01 9.253e-06 - -1.113e-02 2.184e-02 9.253e-06 9.533e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.23810 1.000 0.030 -0.000 -0.199 - 2 0.45486 0.030 1.000 0.000 0.439 - 3 0.00020 -0.000 0.000 1.000 0.000 - 4 0.48738 -0.199 0.439 0.000 1.000 - ********** - ** 18 **HESSE 2000 - ********** - MINUIT WARNING IN HESSE - ============== Second derivative enters zero, param 3 - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=28834.9 FROM HESSE STATUS=OK 31 CALLS 468 TOTAL - EDM=0.968431 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.44466e+02 5.73402e-01 7.46332e-04 -1.52619e-02 - 2 sg_p1 3.93527e+01 5.10469e-01 2.03719e-03 5.80225e-01 - 3 sg_p2 2.63229e+00 6.39685e-01 5.10000e-01 5.29399e-02 - 4 sg_p3 1.81743e+00 9.78361e-02 1.30558e-03 -5.01491e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.288e-01 8.226e-03 3.816e-12 -1.124e-02 - 8.226e-03 2.608e-01 8.047e-12 2.210e-02 - 3.816e-12 8.047e-12 4.185e-01 -1.617e-12 - -1.124e-02 2.210e-02 -1.617e-12 9.575e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.23882 1.000 0.028 0.000 -0.200 - 2 0.45797 0.028 1.000 0.000 0.442 - 3 0.00000 0.000 0.000 1.000 -0.000 - 4 0.49076 -0.200 0.442 -0.000 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -750 -744.466 +- 0.573402 -39.3527 +- 0.510469 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [480,930] --> [480,930] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [580,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [480,930] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [580,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=28016 FROM MIGRAD STATUS=INITIATE 72 CALLS 73 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.45000e+02 7.00000e+00 0.00000e+00 3.75442e+02 - 2 sg_p1 3.34297e+01 2.50000e+00 7.44428e-02 -3.45085e+00 - 3 sg_p2 2.50000e+00 5.00000e-01 0.00000e+00 -3.67110e-01 - 4 sg_p3 9.50531e-01 7.00000e-01 0.00000e+00 -4.25357e+02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.1257e+00 1.0000e+00 1.0212e+00 3.1045e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 1.128794 TO DIAGONAL. - FCN=27907.7 FROM HESSE STATUS=NOT POSDEF 25 CALLS 189 TOTAL - EDM=0.288891 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.37485e+02 6.72582e+00 1.83947e-03 6.18860e+00 - 2 sg_p1 3.83510e+01 1.04522e+00 4.63621e-03 1.08179e+00 - 3 sg_p2 3.44126e+00 3.98936e+00 5.00000e-01 -6.55275e-02 - 4 sg_p3 1.83188e+00 4.34020e-01 3.32682e-03 -4.03275e+00 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=27907.7 FROM MIGRAD STATUS=FAILED 299 CALLS 300 TOTAL - EDM=0.0114055 STRATEGY= 1 ERR MATRIX APPROXIMATE - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.37435e+02 5.50832e-01 1.82376e-03 7.13141e-01 - 2 sg_p1 3.83308e+01 4.54574e-01 4.46650e-03 -6.17184e-02 - 3 sg_p2 3.40751e+00 3.90281e+00 5.00000e-01 -3.55749e-02 - 4 sg_p3 1.83269e+00 3.76328e-02 3.32811e-03 -3.75326e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.034e-01 1.043e-03 0.000e+00 -3.749e-03 - 1.043e-03 2.068e-01 0.000e+00 5.570e-03 - 0.000e+00 0.000e+00 3.813e+01 0.000e+00 - -3.749e-03 5.570e-03 0.000e+00 1.416e-03 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.19272 1.000 0.004 0.000 -0.181 - 2 0.33174 0.004 1.000 0.000 0.325 - 3 0.00000 0.000 0.000 1.000 0.000 - 4 0.37301 -0.181 0.325 0.000 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=27907.7 FROM HESSE STATUS=OK 29 CALLS 329 TOTAL - EDM=0.0259975 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.37435e+02 5.53707e-01 3.64751e-04 -2.17856e-01 - 2 sg_p1 3.83308e+01 4.70224e-01 1.78660e-04 4.85291e-01 - 3 sg_p2 3.40751e+00 3.90281e+00 5.00000e-01 3.71491e-01 - 4 sg_p3 1.83269e+00 1.03955e-01 8.87511e-02 -4.96528e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.066e-01 -6.417e-03 3.317e-09 -1.192e-02 - -6.417e-03 2.212e-01 -1.340e-08 1.984e-02 - 3.317e-09 -1.340e-08 3.813e+01 -1.310e-09 - -1.192e-02 1.984e-02 -1.310e-09 1.081e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.21706 1.000 -0.025 0.000 -0.207 - 2 0.41028 -0.025 1.000 -0.000 0.406 - 3 0.00000 0.000 -0.000 1.000 -0.000 - 4 0.45113 -0.207 0.406 -0.000 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -750 -737.435 +- 0.553707 -38.3308 +- 0.470224 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [520,930] --> [520,930] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [520,930] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=26875.6 FROM MIGRAD STATUS=INITIATE 56 CALLS 57 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.50000e+02 6.00000e+00 0.00000e+00 -1.68092e+03 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 1.28555e+02 - 3 sg_p2 9.73975e-01 5.00000e-01 0.00000e+00 1.06582e+02 - 4 sg_p3 1.78677e+00 7.00000e-01 -5.11511e-01 -3.22236e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=26474.3 FROM MIGRAD STATUS=CONVERGED 164 CALLS 165 TOTAL - EDM=2.25921e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.62526e+02 3.87529e-01 1.47757e-03 1.66856e-01 - 2 sg_p1 2.37778e+01 3.73075e-01 5.01466e-03 1.71102e-02 - 3 sg_p2 1.45537e+00 7.21350e-02 3.19921e-03 -4.87398e-02 - 4 sg_p3 1.20603e+00 3.81131e-02 1.25918e-03 -2.52445e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.502e-01 -1.364e-02 4.886e-03 -4.422e-03 - -1.364e-02 1.393e-01 9.457e-03 8.215e-03 - 4.886e-03 9.457e-03 5.205e-03 5.123e-04 - -4.422e-03 8.215e-03 5.123e-04 1.453e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.38125 1.000 -0.094 0.175 -0.299 - 2 0.62877 -0.094 1.000 0.351 0.577 - 3 0.41098 0.175 0.351 1.000 0.186 - 4 0.62880 -0.299 0.577 0.186 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=26474.3 FROM HESSE STATUS=OK 23 CALLS 188 TOTAL - EDM=2.25799e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.62526e+02 3.86914e-01 2.95513e-04 4.30739e-01 - 2 sg_p1 2.37778e+01 3.70943e-01 2.00586e-04 -5.19330e-01 - 3 sg_p2 1.45537e+00 7.09082e-02 1.27968e-04 -4.31078e-01 - 4 sg_p3 1.20603e+00 3.81052e-02 2.51836e-04 -7.14737e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.497e-01 -1.520e-02 4.447e-03 -4.507e-03 - -1.520e-02 1.377e-01 8.786e-03 8.163e-03 - 4.447e-03 8.786e-03 5.030e-03 4.843e-04 - -4.507e-03 8.163e-03 4.843e-04 1.452e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.37767 1.000 -0.106 0.162 -0.306 - 2 0.62321 -0.106 1.000 0.334 0.577 - 3 0.39101 0.162 0.334 1.000 0.179 - 4 0.62860 -0.306 0.577 0.179 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -750 -762.526 +- 0.386914 -23.7778 +- 0.370943 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 - fit done -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [520,930] --> [520,930] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [520,930] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=27294.4 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.50000e+02 6.00000e+00 0.00000e+00 -1.46095e+03 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 1.72944e+02 - 3 sg_p2 7.03339e-01 5.00000e-01 0.00000e+00 4.74696e+01 - 4 sg_p3 1.99296e+00 7.00000e-01 -4.45137e-01 5.15362e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=26829.4 FROM MIGRAD STATUS=CONVERGED 184 CALLS 185 TOTAL - EDM=3.95104e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.64393e+02 4.66702e-01 1.57008e-03 -7.87347e-02 - 2 sg_p1 2.18741e+01 6.89309e-01 6.78283e-03 4.79306e-02 - 3 sg_p2 1.13032e+00 8.74630e-02 2.49913e-03 -1.65710e-02 - 4 sg_p3 1.03518e+00 4.60093e-02 1.05785e-03 -5.74757e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.178e-01 6.647e-02 1.847e-02 -1.062e-03 - 6.647e-02 4.782e-01 4.788e-02 2.645e-02 - 1.847e-02 4.788e-02 7.654e-03 2.499e-03 - -1.062e-03 2.645e-02 2.499e-03 2.117e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.62194 1.000 0.206 0.452 -0.049 - 2 0.90325 0.206 1.000 0.791 0.831 - 3 0.84679 0.452 0.791 1.000 0.621 - 4 0.86298 -0.049 0.831 0.621 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=26829.4 FROM HESSE STATUS=OK 23 CALLS 208 TOTAL - EDM=3.92733e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.64393e+02 4.66923e-01 3.14016e-04 5.00390e-01 - 2 sg_p1 2.18741e+01 6.85574e-01 2.71313e-04 -8.48247e-01 - 3 sg_p2 1.13032e+00 8.71717e-02 9.99652e-05 -5.79816e-01 - 4 sg_p3 1.03518e+00 4.58105e-02 2.11569e-04 -7.81343e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.180e-01 6.562e-02 1.843e-02 -1.114e-03 - 6.562e-02 4.730e-01 4.734e-02 2.614e-02 - 1.843e-02 4.734e-02 7.603e-03 2.467e-03 - -1.114e-03 2.614e-02 2.467e-03 2.099e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.62241 1.000 0.204 0.453 -0.052 - 2 0.90213 0.204 1.000 0.789 0.830 - 3 0.84567 0.453 0.789 1.000 0.617 - 4 0.86169 -0.052 0.830 0.617 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -750 -764.393 +- 0.466923 -21.8741 +- 0.685574 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [520,930] --> [520,930] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [520,930] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=26264.2 FROM MIGRAD STATUS=INITIATE 52 CALLS 53 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.50000e+02 6.00000e+00 0.00000e+00 -1.46794e+03 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 1.17400e+02 - 3 sg_p2 1.05302e+00 5.00000e-01 0.00000e+00 5.34210e+01 - 4 sg_p3 2.10879e+00 7.00000e-01 -4.08780e-01 9.24467e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=25933.1 FROM MIGRAD STATUS=CONVERGED 173 CALLS 174 TOTAL - EDM=5.02008e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.60633e+02 4.10250e-01 1.42251e-03 1.29588e-01 - 2 sg_p1 2.27934e+01 4.40097e-01 5.56534e-03 -9.52994e-03 - 3 sg_p2 1.26768e+00 7.07747e-02 2.70462e-03 -3.34938e-03 - 4 sg_p3 1.17410e+00 3.88711e-02 1.21241e-03 -3.97072e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.683e-01 2.199e-02 1.072e-02 -2.580e-03 - 2.199e-02 1.941e-01 1.837e-02 1.084e-02 - 1.072e-02 1.837e-02 5.011e-03 9.405e-04 - -2.580e-03 1.084e-02 9.405e-04 1.511e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.48460 1.000 0.122 0.369 -0.162 - 2 0.74869 0.122 1.000 0.589 0.633 - 3 0.66331 0.369 0.589 1.000 0.342 - 4 0.67935 -0.162 0.633 0.342 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=25933.1 FROM HESSE STATUS=OK 23 CALLS 197 TOTAL - EDM=5.03332e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.60633e+02 4.10594e-01 2.84502e-04 3.62318e-01 - 2 sg_p1 2.27934e+01 4.40772e-01 2.22614e-04 -6.78399e-01 - 3 sg_p2 1.26768e+00 7.09147e-02 1.08185e-04 -5.15453e-01 - 4 sg_p3 1.17410e+00 3.89135e-02 4.84963e-05 -7.26883e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.686e-01 2.210e-02 1.079e-02 -2.577e-03 - 2.210e-02 1.946e-01 1.847e-02 1.088e-02 - 1.079e-02 1.847e-02 5.031e-03 9.476e-04 - -2.577e-03 1.088e-02 9.476e-04 1.514e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.48592 1.000 0.122 0.371 -0.161 - 2 0.74959 0.122 1.000 0.590 0.634 - 3 0.66497 0.371 0.590 1.000 0.343 - 4 0.68021 -0.161 0.634 0.343 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -750 -760.633 +- 0.410594 -22.7934 +- 0.440772 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [520,930] --> [520,930] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [520,930] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=26499.7 FROM MIGRAD STATUS=INITIATE 54 CALLS 55 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.50000e+02 6.00000e+00 0.00000e+00 -1.41562e+03 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 1.39733e+02 - 3 sg_p2 8.25062e-01 5.00000e-01 0.00000e+00 1.45082e+01 - 4 sg_p3 2.10061e+00 7.00000e-01 -4.11326e-01 8.60481e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.2210e+00 1.2206e+00 2.0001e+00 2.0003e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 1.223025 TO DIAGONAL. - FCN=26111.1 FROM HESSE STATUS=NOT POSDEF 29 CALLS 181 TOTAL - EDM=41.1386 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.62134e+02 2.03776e-03 1.58217e-05 4.03447e+01 - 2 sg_p1 2.29588e+01 1.67018e-03 5.95918e-05 2.08825e+01 - 3 sg_p2 1.19457e+00 2.72680e-04 2.72376e-05 7.30730e+01 - 4 sg_p3 1.16508e+00 2.68104e-01 1.29100e-06 8.78813e+01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.00425 added to diagonal of error matrix - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -4.5660e-01 -1.6788e-04 2.0585e-14 4.4568e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 0.461061 TO DIAGONAL. - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=26110.6 FROM MIGRAD STATUS=FAILED 468 CALLS 469 TOTAL - EDM=1.25872e+08 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.62214e+02 1.17532e-01 -0.00000e+00 -5.57867e+04 - 2 sg_p1 2.29537e+01 1.01617e-02 0.00000e+00 -1.48052e+04 - 3 sg_p2 1.18371e+00 1.47620e-02 0.00000e+00 -3.24026e+04 - 4 sg_p3 1.15581e+00 5.85135e-04 0.00000e+00 -2.25593e+04 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.381e-02 -5.016e-04 -1.726e-03 -6.872e-05 - -5.016e-04 1.033e-04 4.890e-05 2.365e-06 - -1.726e-03 4.890e-05 2.179e-04 8.608e-06 - -6.872e-05 2.365e-06 8.608e-06 3.424e-07 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99999 1.000 -0.420 -0.995 -0.999 - 2 0.99909 -0.420 1.000 0.326 0.398 - 3 0.99999 -0.995 0.326 1.000 0.997 - 4 0.99958 -0.999 0.398 0.997 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=26110.6 FROM HESSE STATUS=OK 31 CALLS 500 TOTAL - EDM=4.07569e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.62214e+02 6.72563e-04 6.72704e-05 4.19323e-01 - 2 sg_p1 2.29537e+01 5.51296e-04 2.53393e-04 -6.51238e-01 - 3 sg_p2 1.18371e+00 8.97773e-05 1.15823e-04 -5.54498e-01 - 4 sg_p3 1.15581e+00 1.57378e-04 1.66079e-04 -7.33896e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.523e-07 -1.618e-13 9.783e-15 -6.573e-13 - -1.618e-13 3.039e-07 2.059e-14 7.746e-13 - 9.783e-15 2.059e-14 8.060e-09 1.090e-14 - -6.573e-13 7.746e-13 1.090e-14 2.477e-08 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.00001 1.000 -0.000 0.000 -0.000 - 2 0.00001 -0.000 1.000 0.000 0.000 - 3 0.00000 0.000 0.000 1.000 0.000 - 4 0.00001 -0.000 0.000 0.000 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -750 -762.214 +- 0.000672563 -22.9537 +- 0.000551296 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [520,930] --> [520,930] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [520,930] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=27208.5 FROM MIGRAD STATUS=INITIATE 50 CALLS 51 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.50000e+02 6.00000e+00 0.00000e+00 -1.71181e+03 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 1.11815e+02 - 3 sg_p2 9.86241e-01 5.00000e-01 0.00000e+00 8.13644e+01 - 4 sg_p3 2.10880e+00 7.00000e-01 -4.08775e-01 8.43786e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=26768.5 FROM MIGRAD STATUS=CONVERGED 251 CALLS 252 TOTAL - EDM=2.19426e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.62956e+02 4.19070e-01 1.45249e-03 -5.27598e-02 - 2 sg_p1 2.12954e+01 4.98544e-01 7.45088e-03 6.83394e-02 - 3 sg_p2 1.18806e+00 5.51337e-02 2.26922e-03 -3.48477e-02 - 4 sg_p3 1.02393e+00 4.08580e-02 1.04829e-03 -3.83312e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.756e-01 -5.320e-02 2.758e-03 -7.610e-03 - -5.320e-02 2.497e-01 1.564e-02 1.606e-02 - 2.758e-03 1.564e-02 3.040e-03 9.429e-04 - -7.610e-03 1.606e-02 9.429e-04 1.670e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.55737 1.000 -0.254 0.119 -0.444 - 2 0.82936 -0.254 1.000 0.568 0.787 - 3 0.63378 0.119 0.568 1.000 0.419 - 4 0.82799 -0.444 0.787 0.419 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=26768.5 FROM HESSE STATUS=OK 23 CALLS 275 TOTAL - EDM=2.19263e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.62956e+02 4.19119e-01 5.80997e-05 4.46547e-01 - 2 sg_p1 2.12954e+01 4.95694e-01 2.98035e-04 -9.74247e-01 - 3 sg_p2 1.18806e+00 5.50237e-02 9.07687e-05 -5.52454e-01 - 4 sg_p3 1.02393e+00 4.06459e-02 2.09657e-04 -7.85881e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.757e-01 -5.257e-02 2.838e-03 -7.560e-03 - -5.257e-02 2.469e-01 1.543e-02 1.584e-02 - 2.838e-03 1.543e-02 3.028e-03 9.269e-04 - -7.560e-03 1.584e-02 9.269e-04 1.652e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.55751 1.000 -0.252 0.123 -0.444 - 2 0.82718 -0.252 1.000 0.564 0.784 - 3 0.63189 0.123 0.564 1.000 0.414 - 4 0.82600 -0.444 0.784 0.414 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -750 -762.956 +- 0.419119 -21.2954 +- 0.495694 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [520,930] --> [520,930] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [520,930] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=24938.9 FROM MIGRAD STATUS=INITIATE 78 CALLS 79 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.50000e+02 6.00000e+00 0.00000e+00 -1.47220e+03 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 1.27544e+02 - 3 sg_p2 9.01698e-01 5.00000e-01 1.92174e-02 -8.96650e-02 - 4 sg_p3 1.90374e+00 7.00000e-01 0.00000e+00 2.84089e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24568.6 FROM MIGRAD STATUS=CONVERGED 280 CALLS 281 TOTAL - EDM=9.56937e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.62504e+02 4.01949e-01 1.47474e-03 -4.25141e-02 - 2 sg_p1 2.37637e+01 3.86910e-01 5.01010e-03 -4.75722e-02 - 3 sg_p2 1.45752e+00 7.51498e-02 3.25318e-03 8.87634e-02 - 4 sg_p3 1.20613e+00 3.95609e-02 1.25939e-03 3.14350e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.616e-01 -1.460e-02 5.296e-03 -4.757e-03 - -1.460e-02 1.499e-01 1.026e-02 8.842e-03 - 5.296e-03 1.026e-02 5.650e-03 5.555e-04 - -4.757e-03 8.842e-03 5.555e-04 1.565e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.38149 1.000 -0.094 0.175 -0.299 - 2 0.62911 -0.094 1.000 0.352 0.577 - 3 0.41238 0.175 0.352 1.000 0.187 - 4 0.62872 -0.299 0.577 0.187 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24568.6 FROM HESSE STATUS=OK 23 CALLS 304 TOTAL - EDM=9.61039e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.62504e+02 4.01306e-01 5.89896e-05 4.29922e-01 - 2 sg_p1 2.37637e+01 3.84472e-01 1.00202e-03 -5.21496e-01 - 3 sg_p2 1.45752e+00 7.37104e-02 1.30127e-04 -4.30134e-01 - 4 sg_p3 1.20613e+00 3.95531e-02 5.03756e-05 -7.14699e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.611e-01 -1.655e-02 4.777e-03 -4.865e-03 - -1.655e-02 1.480e-01 9.452e-03 8.781e-03 - 4.777e-03 9.452e-03 5.435e-03 5.216e-04 - -4.865e-03 8.781e-03 5.216e-04 1.565e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.37788 1.000 -0.107 0.161 -0.306 - 2 0.62297 -0.107 1.000 0.333 0.577 - 3 0.39044 0.161 0.333 1.000 0.179 - 4 0.62853 -0.306 0.577 0.179 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -750 -762.504 +- 0.401306 -23.7637 +- 0.384472 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [520,930] --> [520,930] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [520,930] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=28920.4 FROM MIGRAD STATUS=INITIATE 56 CALLS 57 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.50000e+02 6.00000e+00 0.00000e+00 -1.80937e+03 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 1.38006e+02 - 3 sg_p2 9.71765e-01 5.00000e-01 0.00000e+00 1.16073e+02 - 4 sg_p3 1.78443e+00 7.00000e-01 -5.12276e-01 -3.52605e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=28488.2 FROM MIGRAD STATUS=CONVERGED 163 CALLS 164 TOTAL - EDM=3.69493e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.62545e+02 3.73878e-01 1.47900e-03 5.87554e-02 - 2 sg_p1 2.37920e+01 3.60128e-01 5.01141e-03 -3.15083e-02 - 3 sg_p2 1.45371e+00 6.94889e-02 3.21558e-03 3.10664e-02 - 4 sg_p3 1.20626e+00 3.67580e-02 1.25830e-03 1.44527e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.398e-01 -1.256e-02 4.559e-03 -4.105e-03 - -1.256e-02 1.298e-01 8.802e-03 7.648e-03 - 4.559e-03 8.802e-03 4.830e-03 4.765e-04 - -4.105e-03 7.648e-03 4.765e-04 1.351e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.38118 1.000 -0.093 0.175 -0.299 - 2 0.62894 -0.093 1.000 0.352 0.577 - 3 0.41146 0.175 0.352 1.000 0.187 - 4 0.62883 -0.299 0.577 0.187 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=28488.2 FROM HESSE STATUS=OK 23 CALLS 187 TOTAL - EDM=3.68603e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.62545e+02 3.73300e-01 5.91598e-05 4.31441e-01 - 2 sg_p1 2.37920e+01 3.58022e-01 1.00228e-03 -5.17141e-01 - 3 sg_p2 1.45371e+00 6.82924e-02 1.28623e-04 -4.31812e-01 - 4 sg_p3 1.20626e+00 3.67501e-02 5.03319e-05 -7.14653e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.394e-01 -1.405e-02 4.150e-03 -4.188e-03 - -1.405e-02 1.283e-01 8.166e-03 7.599e-03 - 4.150e-03 8.166e-03 4.665e-03 4.498e-04 - -4.188e-03 7.599e-03 4.498e-04 1.351e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.37769 1.000 -0.105 0.163 -0.305 - 2 0.62325 -0.105 1.000 0.334 0.577 - 3 0.39121 0.163 0.334 1.000 0.179 - 4 0.62862 -0.305 0.577 0.179 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -750 -762.545 +- 0.3733 -23.792 +- 0.358022 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 762.526 +- 0.386914 (stat) - 1.89298 + 1.86678 (syst); -1.90284/+1.87677 (total) - Uncertainty on sg_p1 = 23.7778 +- 0.370943 (stat) - 2.48235 + 0.0142669 (syst); -2.48927/+0.18602 (total) - Uncertainty on sg_p2 = 1.45537 +- 0.0709082 (stat) - 0.32505 + 0.00214348 (syst); -0.326977/+0.0355188 (total) - Uncertainty on sg_p3 = 1.20603 +- 0.0381052 (stat) - 0.182102 + 0.000222545 (syst); -0.183096/+0.0190539 (total) - === Baseline plot ===
- norm = 206.504 -JEC lnN 1.01674 - -JER lnN 1.01351 - -btag lnN 1.07417 - -sg_p0 param 762.526 -1.90284/+1.87677 -sg_p1 param 23.7778 -2.48927/+0.18602 -sg_p2 param 1.45537 -0.326977/+0.0355188 -sg_p3 param 1.20603 -0.183096/+0.0190539 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_750_novo_550_1200/data_bkg.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_750_novo_550_1200/data_bkg.log deleted file mode 100644 index 9081393..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_750_novo_550_1200/data_bkg.log +++ /dev/null @@ -1,690 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10879.7 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 6.74624e-01 5.09000e-01 -8.31364e-01 -1.01971e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -3.20610e+01 - 3 par_crystal_2 5.00000e+02 2.00000e+01 0.00000e+00 -9.48837e+00 - 4 par_crystal_3 1.05000e+02 1.90000e+01 0.00000e+00 2.45317e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7116e+01 9.9978e-01 1.9597e+00 1.8156e+01 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 17.134017 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 27 CALLS 314 TOTAL - EDM=0.131054 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.06594e+00 6.09301e-02 1.43210e-03 -8.77809e-01 - 2 par_crystal_1 5.09576e+00 7.69298e-02 8.09031e-02 -5.13188e-02 - 3 par_crystal_2 4.95224e+02 7.91481e+01 2.17679e-03 -5.43249e-01 - 4 par_crystal_3 1.90900e+02 9.54958e+00 1.13079e-02 4.60762e-02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 477 CALLS 478 TOTAL - EDM=0.0370129 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.11079e+00 8.93309e-02 0.00000e+00 -4.75984e-01 - 2 par_crystal_1 5.08061e+00 3.60144e-01 0.00000e+00 -1.14416e-01 - 3 par_crystal_2 4.76040e+02 1.75614e+01 0.00000e+00 -2.32451e-01 - 4 par_crystal_3 1.99914e+02 2.77391e+01 0.00000e+00 -7.67572e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.985e-03 -2.091e-03 1.499e+00 2.820e-01 - -2.091e-03 2.873e-02 -7.387e-01 -2.900e-02 - 1.499e+00 -7.387e-01 3.118e+02 5.244e+01 - 2.820e-01 -2.900e-02 5.244e+01 1.008e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99775 1.000 -0.138 0.950 0.994 - 2 0.79882 -0.138 1.000 -0.247 -0.054 - 3 0.95717 0.950 -0.247 1.000 0.935 - 4 0.99764 0.994 -0.054 0.935 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.8 FROM HESSE STATUS=OK 27 CALLS 505 TOTAL - EDM=0.0183624 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.11079e+00 4.31984e-02 1.44775e-03 -6.03431e-01 - 2 par_crystal_1 5.08061e+00 3.28337e+00 6.64371e-02 1.44728e+00 - 3 par_crystal_2 4.76040e+02 8.02153e+00 1.45036e-02 3.38355e+00 - 4 par_crystal_3 1.99914e+02 2.26294e+01 4.50606e-02 1.52819e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.866e-03 -1.951e-03 -2.584e-03 1.946e-02 - -1.951e-03 1.028e-01 6.675e-04 3.793e-04 - -2.584e-03 6.675e-04 6.449e+01 1.116e+00 - 1.946e-02 3.793e-04 1.116e+00 8.140e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.21215 1.000 -0.141 -0.007 0.158 - 2 0.14274 -0.141 1.000 0.000 0.000 - 3 0.05109 -0.007 0.000 1.000 0.049 - 4 0.16712 0.158 0.000 0.049 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10978.6 FROM MIGRAD STATUS=INITIATE 68 CALLS 69 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 6.03110e+02 3.00000e+01 -8.97402e-01 -6.52175e+01 - 2 par_gaus_exp_1 5.45000e+01 9.10000e+00 0.00000e+00 -4.62060e+02 - 3 par_gaus_exp_2 4.12114e-01 3.05000e-01 0.00000e+00 1.25553e+03 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.9 FROM HESSE STATUS=OK 18 CALLS 182 TOTAL - EDM=0.000691453 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.46431e+02 6.06936e+00 3.17833e-03 -3.92855e-01 - 2 par_gaus_exp_1 6.65716e+01 1.75685e+01 2.62647e-03 1.43349e-01 - 3 par_gaus_exp_2 3.07505e-01 8.37981e-02 8.79822e-04 -3.06196e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM MIGRAD STATUS=CONVERGED 316 CALLS 317 TOTAL - EDM=9.19369e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.62504e+02 3.53152e+00 1.63243e-03 -1.66316e-01 - 2 par_gaus_exp_1 2.46552e+01 1.25211e+01 1.75085e-03 -3.48771e-01 - 3 par_gaus_exp_2 1.14604e-01 5.89219e-02 6.31447e-04 9.83138e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.247e+01 -1.544e+01 -6.961e-02 - -1.544e+01 1.643e+02 7.558e-01 - -6.961e-02 7.558e-01 3.493e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.35636 1.000 -0.341 -0.333 - 2 0.99789 -0.341 1.000 0.998 - 3 0.99788 -0.333 0.998 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM HESSE STATUS=OK 16 CALLS 333 TOTAL - EDM=9.89177e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 5.62504e+02 3.77274e+00 6.52972e-05 8.34552e-02 - 2 par_gaus_exp_1 2.46552e+01 1.46349e+01 3.50170e-04 -7.15413e-01 - 3 par_gaus_exp_2 1.14604e-01 6.93856e-02 1.26289e-04 -1.27868e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.424e+01 -2.545e+01 -1.157e-01 - -2.545e+01 2.286e+02 1.052e+00 - -1.157e-01 1.052e+00 4.855e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.45683 1.000 -0.446 -0.440 - 2 0.99849 -0.446 1.000 0.998 - 3 0.99848 -0.440 0.998 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (13168.6) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=575, par_novo_1=100, par_novo_2=1.58864 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=645, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=655, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=665, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=675, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=685, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=695, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=705, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=715, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=725, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=735, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=745, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=755, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - ... (remaining 46 messages suppressed) -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 575,par_novo_1 = 100,par_novo_2 = 1.58864) - - FCN=13054.5 FROM MIGRAD STATUS=INITIATE 14 CALLS 15 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.75000e+02 1.50000e+01 2.01358e-01 -1.22938e+03 - 2 par_novo_1 1.00000e+02 2.00000e+01 2.01358e-01 -6.98326e+03 - 3 par_novo_2 0.00000e+00 2.00000e+01 2.01358e-01 1.51249e+06 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM MIGRAD STATUS=CONVERGED 220 CALLS 221 TOTAL - EDM=2.09668e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.00000e+02 1.21837e+02 1.25149e-01 -7.30463e-04 - 2 par_novo_1 1.30637e+02 1.58558e+01 3.16845e-03 -1.76078e-02 - 3 par_novo_2 -6.95187e-01 1.36663e-01 2.61078e-05 1.74080e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.121e-01 -9.460e-01 -6.449e-03 - -9.460e-01 2.538e+02 2.099e+00 - -6.449e-03 2.099e+00 1.868e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.21023 1.000 -0.177 -0.141 - 2 0.96488 -0.177 1.000 0.964 - 3 0.96445 -0.141 0.964 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM HESSE STATUS=OK 20 CALLS 241 TOTAL - EDM=1.01397e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 5.00000e+02 1.20312e+02 5.00000e-01 -1.57325e+00 - 2 par_novo_1 1.30637e+02 2.01762e+01 1.26738e-04 3.11381e-01 - 3 par_novo_2 -6.95187e-01 1.62575e-01 1.04431e-06 -6.95192e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.070e-01 -4.278e+00 -2.995e-02 - -4.278e+00 4.133e+02 3.212e+00 - -2.995e-02 3.212e+00 2.643e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.69436 1.000 -0.643 -0.563 - 2 0.97859 -0.643 1.000 0.972 - 3 0.97501 -0.563 0.972 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10877 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 6.33849e-01 5.09000e-01 -8.55460e-01 -1.25390e+02 - 2 par_crystal_1_1 2.55500e+00 5.09000e-01 0.00000e+00 -2.69495e+01 - 3 par_crystal_1_2 5.50000e+02 3.00000e+01 0.00000e+00 -1.44080e+01 - 4 par_crystal_1_3 1.04500e+02 1.91000e+01 0.00000e+00 3.07979e+01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.43469 added to diagonal of error matrix - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.5401e+00 8.4221e-02 1.8087e+00 3.6472e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 1.543714 TO DIAGONAL. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.9 FROM HESSE STATUS=OK 25 CALLS 485 TOTAL - EDM=0.0491336 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.05623e+00 1.52463e-01 1.42446e-03 -1.90900e+00 - 2 par_crystal_1_1 5.09988e+00 3.18944e+00 7.54811e-02 -8.93342e-03 - 3 par_crystal_1_2 4.96280e+02 4.98347e+01 9.02051e-03 3.58498e-02 - 4 par_crystal_1_3 1.89188e+02 2.78069e+01 1.02856e-02 -2.38185e-01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 538 CALLS 539 TOTAL - EDM=10.0867 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 14.1 per cent - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.09723e+00 3.02575e-02 -0.00000e+00 5.47416e+01 - 2 par_crystal_1_1 5.09997e+00 3.18368e+00 0.00000e+00 -3.90351e-03 - 3 par_crystal_1_2 4.83329e+02 2.76558e+01 0.00000e+00 7.05236e+00 - 4 par_crystal_1_3 1.96552e+02 5.80629e+00 -0.00000e+00 4.39990e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.156e-04 -1.804e-07 -6.742e-01 1.111e-01 - -1.804e-07 1.763e-04 7.888e-03 -2.154e-03 - -6.742e-01 7.888e-03 7.759e+02 -1.463e+02 - 1.111e-01 -2.154e-03 -1.463e+02 3.432e+01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.82553 1.000 -0.000 -0.800 0.627 - 2 0.03650 -0.000 1.000 0.021 -0.028 - 3 0.94703 -0.800 0.021 1.000 -0.896 - 4 0.90888 0.627 -0.028 -0.896 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -9.7852e-01 9.9996e-01 1.9836e+00 1.9949e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.980510 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 29 CALLS 568 TOTAL - EDM=238.514 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 1.09723e+00 4.25322e-02 2.54943e-04 -6.09913e-01 - 2 par_crystal_1_1 5.09997e+00 7.84798e-01 8.54763e-02 1.56580e+00 - 3 par_crystal_1_2 4.83329e+02 1.87856e+01 1.76414e-03 -4.60588e-01 - 4 par_crystal_1_3 1.96552e+02 5.33115e+00 2.63738e-03 1.30128e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.809e-03 -2.197e-07 8.001e-01 2.280e-01 - -2.197e-07 1.053e-04 -1.173e-04 -3.665e-05 - 8.001e-01 -1.173e-04 3.552e+02 1.010e+02 - 2.280e-01 -3.665e-05 1.010e+02 2.885e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99849 1.000 -0.001 0.998 0.998 - 2 0.00265 -0.001 1.000 -0.001 -0.001 - 3 0.99848 0.998 -0.001 1.000 0.998 - 4 0.99849 0.998 -0.001 0.998 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_550_1200 = 1266.17 - Background number of gaus_exp_550_1200 = 1266.17 - Background number of novo_550_1200 = 1266.17 - Background number of crystal_1_550_1200 = 1266.17 - Background number of gaus_bern_550_1200 = 1266.17 - Background number of landau_550_1200 = 1266.17 -par_crystal_0 param 1.11079 0.0431984 -par_crystal_1 param 5.08061 3.28337 -par_crystal_2 param 476.04 8.02153 -par_crystal_3 param 199.914 22.6294 -par_crystal_1_0 param 1.09723 0.0425322 -par_crystal_1_1 param 5.09997 0.784798 -par_crystal_1_2 param 483.329 18.7856 -par_crystal_1_3 param 196.552 5.33115 -par_gaus_exp_0 param 562.504 3.77274 -par_gaus_exp_1 param 24.6552 14.6349 -par_gaus_exp_2 param 0.114604 0.0693856 -par_novo_0 param 500 120.312 -par_novo_1 param 130.637 20.1762 -par_novo_2 param -0.695187 0.162575 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_750_novo_550_1200/datacard_750_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_750_novo_550_1200/datacard_750_novo_550_1200.txt deleted file mode 100644 index 4cdd398..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_750_novo_550_1200/datacard_750_novo_550_1200.txt +++ /dev/null @@ -1,29 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_750.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo -shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 4.13008 1266.17 -lumi_13TeV lnN 1.026 - -bTag lnN 1.07417 - -JER lnN 1.01351 - -JEC lnN 1.01674 - -trigger lnN 1.10 - -PDF lnN 1.0236949058 - -sg_p0 param 762.526 -1.90284/+1.87677 -sg_p1 param 23.7778 -2.48927/+0.18602 -sg_p2 param 1.45537 -0.326977/+0.0355188 -sg_p3 param 1.20603 -0.183096/+0.0190539 -par_novo_0 param 500 120.312 -par_novo_1 param 130.637 20.1762 -par_novo_2 param -0.695187 0.162575 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_750_novo_550_1200/pdf.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_750_novo_550_1200/pdf.log deleted file mode 100644 index 7aa5c80..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_750_novo_550_1200/pdf.log +++ /dev/null @@ -1,10 +0,0 @@ -[?1034h FCN=11.2801 FROM MIGRAD STATUS=CONVERGED 70 CALLS 71 TOTAL - EDM=1.81578e-08 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 Constant 1.31719e+01 1.75595e+00 2.39310e-03 -1.10521e-04 - 2 Mean 1.00082e+00 3.14264e-03 5.36666e-06 2.77743e-02 - 3 Sigma 2.36949e-02 2.95964e-03 6.37166e-05 -1.30765e-03 -1.00081608364 +/- 0.00314264221278 -0.0236949057959 +/- 0.00295963910815 -PDF lnN 1.0236949058 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_750_novo_550_1200/signal750_sig.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_750_novo_550_1200/signal750_sig.log deleted file mode 100644 index e4e749b..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_750_novo_550_1200/signal750_sig.log +++ /dev/null @@ -1,1000 +0,0 @@ - -Processing test.c... -nSignal_init = 99200 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [480,930] --> [480,930] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [580,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [480,930] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [580,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=28581.6 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.45000e+02 7.00000e+00 0.00000e+00 -1.97285e+02 - 2 sg_p1 3.25000e+01 2.50000e+00 0.00000e+00 -5.26336e+01 - 3 sg_p2 2.50000e+00 5.00000e-01 0.00000e+00 -1.34034e+00 - 4 sg_p3 8.83623e-01 7.00000e-01 -8.44345e-01 -8.85145e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - MINUIT WARNING IN HESSE - ============== Second derivative enters zero, param 3 - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=28481.9 FROM HESSE STATUS=OK 29 CALLS 226 TOTAL - EDM=0.176135 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.41076e+02 5.65606e-01 1.82652e-03 1.78201e-02 - 2 sg_p1 3.85553e+01 5.02370e-01 4.68920e-03 -1.33549e-02 - 3 sg_p2 2.98442e+00 1.00281e+00 5.00000e-01 -1.40904e+00 - 4 sg_p3 1.76206e+00 9.56239e-02 3.11054e-03 1.18363e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=28481.9 FROM MIGRAD STATUS=CONVERGED 237 CALLS 238 TOTAL - EDM=7.28057e-09 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 0.0 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.41076e+02 5.65607e-01 1.02030e-05 -2.48246e-04 - 2 sg_p1 3.85547e+01 5.02385e-01 -5.28821e-05 -6.46421e-04 - 3 sg_p2 3.57615e+00 9.22634e-01 2.50000e-01 0.00000e+00 - 4 sg_p3 1.76174e+00 9.56180e-02 -1.05757e-04 -3.32008e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.199e-01 -1.433e-02 -2.179e-05 -1.376e-02 - -1.433e-02 2.526e-01 6.391e-05 2.295e-02 - -2.179e-05 6.391e-05 9.034e-01 1.802e-05 - -1.376e-02 2.295e-02 1.802e-05 9.146e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.26700 1.000 -0.050 -0.000 -0.254 - 2 0.48307 -0.050 1.000 0.000 0.477 - 3 0.00020 -0.000 0.000 1.000 0.000 - 4 0.53025 -0.254 0.477 0.000 1.000 - ********** - ** 18 **HESSE 2000 - ********** - MINUIT WARNING IN HESSE - ============== Second derivative enters zero, param 3 - MINUIT WARNING IN HESSE - ============== Second derivative zero for parameter3 - MNHESS FAILS AND WILL RETURN DIAGONAL MATRIX. - FCN=28481.9 FROM HESSE STATUS=FAILED 7 CALLS 245 TOTAL - EDM=7.28057e-09 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 100.0 per cent - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.41076e+02 5.45075e-01 1.82653e-03 -1.12350e-01 - 2 sg_p1 3.85547e+01 4.39914e-01 1.87568e-03 5.05653e-01 - 3 sg_p2 2.36258e+00 1.23330e+00 2.50000e-01 4.45003e-01 - 4 sg_p3 1.76174e+00 8.10352e-02 -1.05757e-04 -5.19731e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.971e-01 0.000e+00 0.000e+00 0.000e+00 - 0.000e+00 1.936e-01 0.000e+00 0.000e+00 - 0.000e+00 0.000e+00 1.703e+00 0.000e+00 - 0.000e+00 0.000e+00 0.000e+00 6.568e-03 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.00000 1.000 0.000 0.000 0.000 - 2 0.00000 0.000 1.000 0.000 0.000 - 3 0.00000 0.000 0.000 1.000 0.000 - 4 0.00000 0.000 0.000 0.000 1.000 - ERR MATRIX APPROXIMATE -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -750 -741.076 +- 0.545075 -38.5547 +- 0.439914 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [480,930] --> [480,930] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [580,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [480,930] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [580,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=28878.9 FROM MIGRAD STATUS=INITIATE 112 CALLS 113 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.45000e+02 7.00000e+00 0.00000e+00 -1.25454e+02 - 2 sg_p1 3.56130e+01 2.50000e+00 0.00000e+00 6.94117e+01 - 3 sg_p2 1.20743e+00 5.00000e-01 -5.43373e-01 -2.30464e+01 - 4 sg_p3 1.10042e+00 7.00000e-01 0.00000e+00 -5.72255e+02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=28834.9 FROM HESSE STATUS=OK 29 CALLS 423 TOTAL - EDM=0.262248 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.44466e+02 5.73304e-01 1.86583e-03 -3.18372e-03 - 2 sg_p1 3.93530e+01 5.09571e-01 5.09296e-03 1.74419e-02 - 3 sg_p2 2.25372e+00 5.17025e-01 3.03226e-01 -3.45943e+00 - 4 sg_p3 1.81743e+00 9.76205e-02 3.26395e-03 -1.13200e-02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=28834.9 FROM MIGRAD STATUS=CONVERGED 436 CALLS 437 TOTAL - EDM=1.01318e-08 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 0.0 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.44466e+02 5.73304e-01 -7.43401e-07 -1.39873e-04 - 2 sg_p1 3.93527e+01 5.09582e-01 -3.36925e-05 -1.24591e-03 - 3 sg_p2 2.63229e+00 5.18825e-01 1.51613e-01 0.00000e+00 - 4 sg_p3 1.81743e+00 9.76204e-02 -7.43797e-07 -3.30431e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.287e-01 8.912e-03 -6.933e-06 -1.113e-02 - 8.912e-03 2.599e-01 3.934e-05 2.184e-02 - -6.933e-06 3.934e-05 2.731e-01 9.253e-06 - -1.113e-02 2.184e-02 9.253e-06 9.533e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.23810 1.000 0.030 -0.000 -0.199 - 2 0.45486 0.030 1.000 0.000 0.439 - 3 0.00020 -0.000 0.000 1.000 0.000 - 4 0.48738 -0.199 0.439 0.000 1.000 - ********** - ** 18 **HESSE 2000 - ********** - MINUIT WARNING IN HESSE - ============== Second derivative enters zero, param 3 - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=28834.9 FROM HESSE STATUS=OK 31 CALLS 468 TOTAL - EDM=0.968431 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.44466e+02 5.73402e-01 7.46332e-04 -1.52619e-02 - 2 sg_p1 3.93527e+01 5.10469e-01 2.03719e-03 5.80225e-01 - 3 sg_p2 2.63229e+00 6.39685e-01 5.10000e-01 5.29399e-02 - 4 sg_p3 1.81743e+00 9.78361e-02 1.30558e-03 -5.01491e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.288e-01 8.226e-03 3.816e-12 -1.124e-02 - 8.226e-03 2.608e-01 8.047e-12 2.210e-02 - 3.816e-12 8.047e-12 4.185e-01 -1.617e-12 - -1.124e-02 2.210e-02 -1.617e-12 9.575e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.23882 1.000 0.028 0.000 -0.200 - 2 0.45797 0.028 1.000 0.000 0.442 - 3 0.00000 0.000 0.000 1.000 -0.000 - 4 0.49076 -0.200 0.442 -0.000 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -750 -744.466 +- 0.573402 -39.3527 +- 0.510469 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [480,930] --> [480,930] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [580,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [480,930] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [580,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=28016 FROM MIGRAD STATUS=INITIATE 72 CALLS 73 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.45000e+02 7.00000e+00 0.00000e+00 3.75442e+02 - 2 sg_p1 3.34297e+01 2.50000e+00 7.44428e-02 -3.45085e+00 - 3 sg_p2 2.50000e+00 5.00000e-01 0.00000e+00 -3.67110e-01 - 4 sg_p3 9.50531e-01 7.00000e-01 0.00000e+00 -4.25357e+02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.1257e+00 1.0000e+00 1.0212e+00 3.1045e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 1.128794 TO DIAGONAL. - FCN=27907.7 FROM HESSE STATUS=NOT POSDEF 25 CALLS 189 TOTAL - EDM=0.288891 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.37485e+02 6.72582e+00 1.83947e-03 6.18860e+00 - 2 sg_p1 3.83510e+01 1.04522e+00 4.63621e-03 1.08179e+00 - 3 sg_p2 3.44126e+00 3.98936e+00 5.00000e-01 -6.55275e-02 - 4 sg_p3 1.83188e+00 4.34020e-01 3.32682e-03 -4.03275e+00 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=27907.7 FROM MIGRAD STATUS=FAILED 299 CALLS 300 TOTAL - EDM=0.0114055 STRATEGY= 1 ERR MATRIX APPROXIMATE - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.37435e+02 5.50832e-01 1.82376e-03 7.13141e-01 - 2 sg_p1 3.83308e+01 4.54574e-01 4.46650e-03 -6.17184e-02 - 3 sg_p2 3.40751e+00 3.90281e+00 5.00000e-01 -3.55749e-02 - 4 sg_p3 1.83269e+00 3.76328e-02 3.32811e-03 -3.75326e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.034e-01 1.043e-03 0.000e+00 -3.749e-03 - 1.043e-03 2.068e-01 0.000e+00 5.570e-03 - 0.000e+00 0.000e+00 3.813e+01 0.000e+00 - -3.749e-03 5.570e-03 0.000e+00 1.416e-03 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.19272 1.000 0.004 0.000 -0.181 - 2 0.33174 0.004 1.000 0.000 0.325 - 3 0.00000 0.000 0.000 1.000 0.000 - 4 0.37301 -0.181 0.325 0.000 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=27907.7 FROM HESSE STATUS=OK 29 CALLS 329 TOTAL - EDM=0.0259975 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.37435e+02 5.53707e-01 3.64751e-04 -2.17856e-01 - 2 sg_p1 3.83308e+01 4.70224e-01 1.78660e-04 4.85291e-01 - 3 sg_p2 3.40751e+00 3.90281e+00 5.00000e-01 3.71491e-01 - 4 sg_p3 1.83269e+00 1.03955e-01 8.87511e-02 -4.96528e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.066e-01 -6.417e-03 3.317e-09 -1.192e-02 - -6.417e-03 2.212e-01 -1.340e-08 1.984e-02 - 3.317e-09 -1.340e-08 3.813e+01 -1.310e-09 - -1.192e-02 1.984e-02 -1.310e-09 1.081e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.21706 1.000 -0.025 0.000 -0.207 - 2 0.41028 -0.025 1.000 -0.000 0.406 - 3 0.00000 0.000 -0.000 1.000 -0.000 - 4 0.45113 -0.207 0.406 -0.000 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -750 -737.435 +- 0.553707 -38.3308 +- 0.470224 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [520,930] --> [520,930] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [520,930] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=26875.6 FROM MIGRAD STATUS=INITIATE 56 CALLS 57 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.50000e+02 6.00000e+00 0.00000e+00 -1.68092e+03 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 1.28555e+02 - 3 sg_p2 9.73975e-01 5.00000e-01 0.00000e+00 1.06582e+02 - 4 sg_p3 1.78677e+00 7.00000e-01 -5.11511e-01 -3.22236e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=26474.3 FROM MIGRAD STATUS=CONVERGED 164 CALLS 165 TOTAL - EDM=2.25921e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.62526e+02 3.87529e-01 1.47757e-03 1.66856e-01 - 2 sg_p1 2.37778e+01 3.73075e-01 5.01466e-03 1.71102e-02 - 3 sg_p2 1.45537e+00 7.21350e-02 3.19921e-03 -4.87398e-02 - 4 sg_p3 1.20603e+00 3.81131e-02 1.25918e-03 -2.52445e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.502e-01 -1.364e-02 4.886e-03 -4.422e-03 - -1.364e-02 1.393e-01 9.457e-03 8.215e-03 - 4.886e-03 9.457e-03 5.205e-03 5.123e-04 - -4.422e-03 8.215e-03 5.123e-04 1.453e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.38125 1.000 -0.094 0.175 -0.299 - 2 0.62877 -0.094 1.000 0.351 0.577 - 3 0.41098 0.175 0.351 1.000 0.186 - 4 0.62880 -0.299 0.577 0.186 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=26474.3 FROM HESSE STATUS=OK 23 CALLS 188 TOTAL - EDM=2.25799e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.62526e+02 3.86914e-01 2.95513e-04 4.30739e-01 - 2 sg_p1 2.37778e+01 3.70943e-01 2.00586e-04 -5.19330e-01 - 3 sg_p2 1.45537e+00 7.09082e-02 1.27968e-04 -4.31078e-01 - 4 sg_p3 1.20603e+00 3.81052e-02 2.51836e-04 -7.14737e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.497e-01 -1.520e-02 4.447e-03 -4.507e-03 - -1.520e-02 1.377e-01 8.786e-03 8.163e-03 - 4.447e-03 8.786e-03 5.030e-03 4.843e-04 - -4.507e-03 8.163e-03 4.843e-04 1.452e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.37767 1.000 -0.106 0.162 -0.306 - 2 0.62321 -0.106 1.000 0.334 0.577 - 3 0.39101 0.162 0.334 1.000 0.179 - 4 0.62860 -0.306 0.577 0.179 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -750 -762.526 +- 0.386914 -23.7778 +- 0.370943 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 - fit done -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [520,930] --> [520,930] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [520,930] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=27294.4 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.50000e+02 6.00000e+00 0.00000e+00 -1.46095e+03 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 1.72944e+02 - 3 sg_p2 7.03339e-01 5.00000e-01 0.00000e+00 4.74696e+01 - 4 sg_p3 1.99296e+00 7.00000e-01 -4.45137e-01 5.15362e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=26829.4 FROM MIGRAD STATUS=CONVERGED 184 CALLS 185 TOTAL - EDM=3.95104e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.64393e+02 4.66702e-01 1.57008e-03 -7.87347e-02 - 2 sg_p1 2.18741e+01 6.89309e-01 6.78283e-03 4.79306e-02 - 3 sg_p2 1.13032e+00 8.74630e-02 2.49913e-03 -1.65710e-02 - 4 sg_p3 1.03518e+00 4.60093e-02 1.05785e-03 -5.74757e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.178e-01 6.647e-02 1.847e-02 -1.062e-03 - 6.647e-02 4.782e-01 4.788e-02 2.645e-02 - 1.847e-02 4.788e-02 7.654e-03 2.499e-03 - -1.062e-03 2.645e-02 2.499e-03 2.117e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.62194 1.000 0.206 0.452 -0.049 - 2 0.90325 0.206 1.000 0.791 0.831 - 3 0.84679 0.452 0.791 1.000 0.621 - 4 0.86298 -0.049 0.831 0.621 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=26829.4 FROM HESSE STATUS=OK 23 CALLS 208 TOTAL - EDM=3.92733e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.64393e+02 4.66923e-01 3.14016e-04 5.00390e-01 - 2 sg_p1 2.18741e+01 6.85574e-01 2.71313e-04 -8.48247e-01 - 3 sg_p2 1.13032e+00 8.71717e-02 9.99652e-05 -5.79816e-01 - 4 sg_p3 1.03518e+00 4.58105e-02 2.11569e-04 -7.81343e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.180e-01 6.562e-02 1.843e-02 -1.114e-03 - 6.562e-02 4.730e-01 4.734e-02 2.614e-02 - 1.843e-02 4.734e-02 7.603e-03 2.467e-03 - -1.114e-03 2.614e-02 2.467e-03 2.099e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.62241 1.000 0.204 0.453 -0.052 - 2 0.90213 0.204 1.000 0.789 0.830 - 3 0.84567 0.453 0.789 1.000 0.617 - 4 0.86169 -0.052 0.830 0.617 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -750 -764.393 +- 0.466923 -21.8741 +- 0.685574 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [520,930] --> [520,930] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [520,930] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=26264.2 FROM MIGRAD STATUS=INITIATE 52 CALLS 53 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.50000e+02 6.00000e+00 0.00000e+00 -1.46794e+03 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 1.17400e+02 - 3 sg_p2 1.05302e+00 5.00000e-01 0.00000e+00 5.34210e+01 - 4 sg_p3 2.10879e+00 7.00000e-01 -4.08780e-01 9.24467e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=25933.1 FROM MIGRAD STATUS=CONVERGED 173 CALLS 174 TOTAL - EDM=5.02008e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.60633e+02 4.10250e-01 1.42251e-03 1.29588e-01 - 2 sg_p1 2.27934e+01 4.40097e-01 5.56534e-03 -9.52994e-03 - 3 sg_p2 1.26768e+00 7.07747e-02 2.70462e-03 -3.34938e-03 - 4 sg_p3 1.17410e+00 3.88711e-02 1.21241e-03 -3.97072e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.683e-01 2.199e-02 1.072e-02 -2.580e-03 - 2.199e-02 1.941e-01 1.837e-02 1.084e-02 - 1.072e-02 1.837e-02 5.011e-03 9.405e-04 - -2.580e-03 1.084e-02 9.405e-04 1.511e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.48460 1.000 0.122 0.369 -0.162 - 2 0.74869 0.122 1.000 0.589 0.633 - 3 0.66331 0.369 0.589 1.000 0.342 - 4 0.67935 -0.162 0.633 0.342 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=25933.1 FROM HESSE STATUS=OK 23 CALLS 197 TOTAL - EDM=5.03332e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.60633e+02 4.10594e-01 2.84502e-04 3.62318e-01 - 2 sg_p1 2.27934e+01 4.40772e-01 2.22614e-04 -6.78399e-01 - 3 sg_p2 1.26768e+00 7.09147e-02 1.08185e-04 -5.15453e-01 - 4 sg_p3 1.17410e+00 3.89135e-02 4.84963e-05 -7.26883e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.686e-01 2.210e-02 1.079e-02 -2.577e-03 - 2.210e-02 1.946e-01 1.847e-02 1.088e-02 - 1.079e-02 1.847e-02 5.031e-03 9.476e-04 - -2.577e-03 1.088e-02 9.476e-04 1.514e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.48592 1.000 0.122 0.371 -0.161 - 2 0.74959 0.122 1.000 0.590 0.634 - 3 0.66497 0.371 0.590 1.000 0.343 - 4 0.68021 -0.161 0.634 0.343 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -750 -760.633 +- 0.410594 -22.7934 +- 0.440772 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [520,930] --> [520,930] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [520,930] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=26499.7 FROM MIGRAD STATUS=INITIATE 54 CALLS 55 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.50000e+02 6.00000e+00 0.00000e+00 -1.41562e+03 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 1.39733e+02 - 3 sg_p2 8.25062e-01 5.00000e-01 0.00000e+00 1.45082e+01 - 4 sg_p3 2.10061e+00 7.00000e-01 -4.11326e-01 8.60481e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.2210e+00 1.2206e+00 2.0001e+00 2.0003e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 1.223025 TO DIAGONAL. - FCN=26111.1 FROM HESSE STATUS=NOT POSDEF 29 CALLS 181 TOTAL - EDM=41.1386 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.62134e+02 2.03776e-03 1.58217e-05 4.03447e+01 - 2 sg_p1 2.29588e+01 1.67018e-03 5.95918e-05 2.08825e+01 - 3 sg_p2 1.19457e+00 2.72680e-04 2.72376e-05 7.30730e+01 - 4 sg_p3 1.16508e+00 2.68104e-01 1.29100e-06 8.78813e+01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.00425 added to diagonal of error matrix - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -4.5660e-01 -1.6788e-04 2.0585e-14 4.4568e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 0.461061 TO DIAGONAL. - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=26110.6 FROM MIGRAD STATUS=FAILED 468 CALLS 469 TOTAL - EDM=1.25872e+08 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.62214e+02 1.17532e-01 -0.00000e+00 -5.57867e+04 - 2 sg_p1 2.29537e+01 1.01617e-02 0.00000e+00 -1.48052e+04 - 3 sg_p2 1.18371e+00 1.47620e-02 0.00000e+00 -3.24026e+04 - 4 sg_p3 1.15581e+00 5.85135e-04 0.00000e+00 -2.25593e+04 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.381e-02 -5.016e-04 -1.726e-03 -6.872e-05 - -5.016e-04 1.033e-04 4.890e-05 2.365e-06 - -1.726e-03 4.890e-05 2.179e-04 8.608e-06 - -6.872e-05 2.365e-06 8.608e-06 3.424e-07 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99999 1.000 -0.420 -0.995 -0.999 - 2 0.99909 -0.420 1.000 0.326 0.398 - 3 0.99999 -0.995 0.326 1.000 0.997 - 4 0.99958 -0.999 0.398 0.997 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=26110.6 FROM HESSE STATUS=OK 31 CALLS 500 TOTAL - EDM=4.07569e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.62214e+02 6.72563e-04 6.72704e-05 4.19323e-01 - 2 sg_p1 2.29537e+01 5.51296e-04 2.53393e-04 -6.51238e-01 - 3 sg_p2 1.18371e+00 8.97773e-05 1.15823e-04 -5.54498e-01 - 4 sg_p3 1.15581e+00 1.57378e-04 1.66079e-04 -7.33896e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.523e-07 -1.618e-13 9.783e-15 -6.573e-13 - -1.618e-13 3.039e-07 2.059e-14 7.746e-13 - 9.783e-15 2.059e-14 8.060e-09 1.090e-14 - -6.573e-13 7.746e-13 1.090e-14 2.477e-08 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.00001 1.000 -0.000 0.000 -0.000 - 2 0.00001 -0.000 1.000 0.000 0.000 - 3 0.00000 0.000 0.000 1.000 0.000 - 4 0.00001 -0.000 0.000 0.000 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -750 -762.214 +- 0.000672563 -22.9537 +- 0.000551296 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [520,930] --> [520,930] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [520,930] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=27208.5 FROM MIGRAD STATUS=INITIATE 50 CALLS 51 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.50000e+02 6.00000e+00 0.00000e+00 -1.71181e+03 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 1.11815e+02 - 3 sg_p2 9.86241e-01 5.00000e-01 0.00000e+00 8.13644e+01 - 4 sg_p3 2.10880e+00 7.00000e-01 -4.08775e-01 8.43786e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=26768.5 FROM MIGRAD STATUS=CONVERGED 251 CALLS 252 TOTAL - EDM=2.19426e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.62956e+02 4.19070e-01 1.45249e-03 -5.27598e-02 - 2 sg_p1 2.12954e+01 4.98544e-01 7.45088e-03 6.83394e-02 - 3 sg_p2 1.18806e+00 5.51337e-02 2.26922e-03 -3.48477e-02 - 4 sg_p3 1.02393e+00 4.08580e-02 1.04829e-03 -3.83312e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.756e-01 -5.320e-02 2.758e-03 -7.610e-03 - -5.320e-02 2.497e-01 1.564e-02 1.606e-02 - 2.758e-03 1.564e-02 3.040e-03 9.429e-04 - -7.610e-03 1.606e-02 9.429e-04 1.670e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.55737 1.000 -0.254 0.119 -0.444 - 2 0.82936 -0.254 1.000 0.568 0.787 - 3 0.63378 0.119 0.568 1.000 0.419 - 4 0.82799 -0.444 0.787 0.419 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=26768.5 FROM HESSE STATUS=OK 23 CALLS 275 TOTAL - EDM=2.19263e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.62956e+02 4.19119e-01 5.80997e-05 4.46547e-01 - 2 sg_p1 2.12954e+01 4.95694e-01 2.98035e-04 -9.74247e-01 - 3 sg_p2 1.18806e+00 5.50237e-02 9.07687e-05 -5.52454e-01 - 4 sg_p3 1.02393e+00 4.06459e-02 2.09657e-04 -7.85881e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.757e-01 -5.257e-02 2.838e-03 -7.560e-03 - -5.257e-02 2.469e-01 1.543e-02 1.584e-02 - 2.838e-03 1.543e-02 3.028e-03 9.269e-04 - -7.560e-03 1.584e-02 9.269e-04 1.652e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.55751 1.000 -0.252 0.123 -0.444 - 2 0.82718 -0.252 1.000 0.564 0.784 - 3 0.63189 0.123 0.564 1.000 0.414 - 4 0.82600 -0.444 0.784 0.414 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -750 -762.956 +- 0.419119 -21.2954 +- 0.495694 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [520,930] --> [520,930] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [520,930] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=24938.9 FROM MIGRAD STATUS=INITIATE 78 CALLS 79 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.50000e+02 6.00000e+00 0.00000e+00 -1.47220e+03 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 1.27544e+02 - 3 sg_p2 9.01698e-01 5.00000e-01 1.92174e-02 -8.96650e-02 - 4 sg_p3 1.90374e+00 7.00000e-01 0.00000e+00 2.84089e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24568.6 FROM MIGRAD STATUS=CONVERGED 280 CALLS 281 TOTAL - EDM=9.56937e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.62504e+02 4.01949e-01 1.47474e-03 -4.25141e-02 - 2 sg_p1 2.37637e+01 3.86910e-01 5.01010e-03 -4.75722e-02 - 3 sg_p2 1.45752e+00 7.51498e-02 3.25318e-03 8.87634e-02 - 4 sg_p3 1.20613e+00 3.95609e-02 1.25939e-03 3.14350e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.616e-01 -1.460e-02 5.296e-03 -4.757e-03 - -1.460e-02 1.499e-01 1.026e-02 8.842e-03 - 5.296e-03 1.026e-02 5.650e-03 5.555e-04 - -4.757e-03 8.842e-03 5.555e-04 1.565e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.38149 1.000 -0.094 0.175 -0.299 - 2 0.62911 -0.094 1.000 0.352 0.577 - 3 0.41238 0.175 0.352 1.000 0.187 - 4 0.62872 -0.299 0.577 0.187 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24568.6 FROM HESSE STATUS=OK 23 CALLS 304 TOTAL - EDM=9.61039e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.62504e+02 4.01306e-01 5.89896e-05 4.29922e-01 - 2 sg_p1 2.37637e+01 3.84472e-01 1.00202e-03 -5.21496e-01 - 3 sg_p2 1.45752e+00 7.37104e-02 1.30127e-04 -4.30134e-01 - 4 sg_p3 1.20613e+00 3.95531e-02 5.03756e-05 -7.14699e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.611e-01 -1.655e-02 4.777e-03 -4.865e-03 - -1.655e-02 1.480e-01 9.452e-03 8.781e-03 - 4.777e-03 9.452e-03 5.435e-03 5.216e-04 - -4.865e-03 8.781e-03 5.216e-04 1.565e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.37788 1.000 -0.107 0.161 -0.306 - 2 0.62297 -0.107 1.000 0.333 0.577 - 3 0.39044 0.161 0.333 1.000 0.179 - 4 0.62853 -0.306 0.577 0.179 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -750 -762.504 +- 0.401306 -23.7637 +- 0.384472 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [520,930] --> [520,930] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [520,930] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=28920.4 FROM MIGRAD STATUS=INITIATE 56 CALLS 57 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.50000e+02 6.00000e+00 0.00000e+00 -1.80937e+03 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 1.38006e+02 - 3 sg_p2 9.71765e-01 5.00000e-01 0.00000e+00 1.16073e+02 - 4 sg_p3 1.78443e+00 7.00000e-01 -5.12276e-01 -3.52605e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=28488.2 FROM MIGRAD STATUS=CONVERGED 163 CALLS 164 TOTAL - EDM=3.69493e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.62545e+02 3.73878e-01 1.47900e-03 5.87554e-02 - 2 sg_p1 2.37920e+01 3.60128e-01 5.01141e-03 -3.15083e-02 - 3 sg_p2 1.45371e+00 6.94889e-02 3.21558e-03 3.10664e-02 - 4 sg_p3 1.20626e+00 3.67580e-02 1.25830e-03 1.44527e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.398e-01 -1.256e-02 4.559e-03 -4.105e-03 - -1.256e-02 1.298e-01 8.802e-03 7.648e-03 - 4.559e-03 8.802e-03 4.830e-03 4.765e-04 - -4.105e-03 7.648e-03 4.765e-04 1.351e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.38118 1.000 -0.093 0.175 -0.299 - 2 0.62894 -0.093 1.000 0.352 0.577 - 3 0.41146 0.175 0.352 1.000 0.187 - 4 0.62883 -0.299 0.577 0.187 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=28488.2 FROM HESSE STATUS=OK 23 CALLS 187 TOTAL - EDM=3.68603e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.62545e+02 3.73300e-01 5.91598e-05 4.31441e-01 - 2 sg_p1 2.37920e+01 3.58022e-01 1.00228e-03 -5.17141e-01 - 3 sg_p2 1.45371e+00 6.82924e-02 1.28623e-04 -4.31812e-01 - 4 sg_p3 1.20626e+00 3.67501e-02 5.03319e-05 -7.14653e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.394e-01 -1.405e-02 4.150e-03 -4.188e-03 - -1.405e-02 1.283e-01 8.166e-03 7.599e-03 - 4.150e-03 8.166e-03 4.665e-03 4.498e-04 - -4.188e-03 7.599e-03 4.498e-04 1.351e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.37769 1.000 -0.105 0.163 -0.305 - 2 0.62325 -0.105 1.000 0.334 0.577 - 3 0.39121 0.163 0.334 1.000 0.179 - 4 0.62862 -0.305 0.577 0.179 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -750 -762.545 +- 0.3733 -23.792 +- 0.358022 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 762.526 +- 0.386914 (stat) - 1.89298 + 1.86678 (syst); -1.90284/+1.87677 (total) - Uncertainty on sg_p1 = 23.7778 +- 0.370943 (stat) - 2.48235 + 0.0142669 (syst); -2.48927/+0.18602 (total) - Uncertainty on sg_p2 = 1.45537 +- 0.0709082 (stat) - 0.32505 + 0.00214348 (syst); -0.326977/+0.0355188 (total) - Uncertainty on sg_p3 = 1.20603 +- 0.0381052 (stat) - 0.182102 + 0.000222545 (syst); -0.183096/+0.0190539 (total) - === Baseline plot ===
- norm = 206.504 -JEC lnN 1.01674 - -JER lnN 1.01351 - -btag lnN 1.07417 - -sg_p0 param 762.526 -1.90284/+1.87677 -sg_p1 param 23.7778 -2.48927/+0.18602 -sg_p2 param 1.45537 -0.326977/+0.0355188 -sg_p3 param 1.20603 -0.183096/+0.0190539 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_800_crystal_1_550_1200/data_bkg.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_800_crystal_1_550_1200/data_bkg.log deleted file mode 100644 index 9081393..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_800_crystal_1_550_1200/data_bkg.log +++ /dev/null @@ -1,690 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10879.7 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 6.74624e-01 5.09000e-01 -8.31364e-01 -1.01971e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -3.20610e+01 - 3 par_crystal_2 5.00000e+02 2.00000e+01 0.00000e+00 -9.48837e+00 - 4 par_crystal_3 1.05000e+02 1.90000e+01 0.00000e+00 2.45317e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7116e+01 9.9978e-01 1.9597e+00 1.8156e+01 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 17.134017 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 27 CALLS 314 TOTAL - EDM=0.131054 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.06594e+00 6.09301e-02 1.43210e-03 -8.77809e-01 - 2 par_crystal_1 5.09576e+00 7.69298e-02 8.09031e-02 -5.13188e-02 - 3 par_crystal_2 4.95224e+02 7.91481e+01 2.17679e-03 -5.43249e-01 - 4 par_crystal_3 1.90900e+02 9.54958e+00 1.13079e-02 4.60762e-02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 477 CALLS 478 TOTAL - EDM=0.0370129 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.11079e+00 8.93309e-02 0.00000e+00 -4.75984e-01 - 2 par_crystal_1 5.08061e+00 3.60144e-01 0.00000e+00 -1.14416e-01 - 3 par_crystal_2 4.76040e+02 1.75614e+01 0.00000e+00 -2.32451e-01 - 4 par_crystal_3 1.99914e+02 2.77391e+01 0.00000e+00 -7.67572e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.985e-03 -2.091e-03 1.499e+00 2.820e-01 - -2.091e-03 2.873e-02 -7.387e-01 -2.900e-02 - 1.499e+00 -7.387e-01 3.118e+02 5.244e+01 - 2.820e-01 -2.900e-02 5.244e+01 1.008e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99775 1.000 -0.138 0.950 0.994 - 2 0.79882 -0.138 1.000 -0.247 -0.054 - 3 0.95717 0.950 -0.247 1.000 0.935 - 4 0.99764 0.994 -0.054 0.935 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.8 FROM HESSE STATUS=OK 27 CALLS 505 TOTAL - EDM=0.0183624 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.11079e+00 4.31984e-02 1.44775e-03 -6.03431e-01 - 2 par_crystal_1 5.08061e+00 3.28337e+00 6.64371e-02 1.44728e+00 - 3 par_crystal_2 4.76040e+02 8.02153e+00 1.45036e-02 3.38355e+00 - 4 par_crystal_3 1.99914e+02 2.26294e+01 4.50606e-02 1.52819e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.866e-03 -1.951e-03 -2.584e-03 1.946e-02 - -1.951e-03 1.028e-01 6.675e-04 3.793e-04 - -2.584e-03 6.675e-04 6.449e+01 1.116e+00 - 1.946e-02 3.793e-04 1.116e+00 8.140e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.21215 1.000 -0.141 -0.007 0.158 - 2 0.14274 -0.141 1.000 0.000 0.000 - 3 0.05109 -0.007 0.000 1.000 0.049 - 4 0.16712 0.158 0.000 0.049 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10978.6 FROM MIGRAD STATUS=INITIATE 68 CALLS 69 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 6.03110e+02 3.00000e+01 -8.97402e-01 -6.52175e+01 - 2 par_gaus_exp_1 5.45000e+01 9.10000e+00 0.00000e+00 -4.62060e+02 - 3 par_gaus_exp_2 4.12114e-01 3.05000e-01 0.00000e+00 1.25553e+03 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.9 FROM HESSE STATUS=OK 18 CALLS 182 TOTAL - EDM=0.000691453 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.46431e+02 6.06936e+00 3.17833e-03 -3.92855e-01 - 2 par_gaus_exp_1 6.65716e+01 1.75685e+01 2.62647e-03 1.43349e-01 - 3 par_gaus_exp_2 3.07505e-01 8.37981e-02 8.79822e-04 -3.06196e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM MIGRAD STATUS=CONVERGED 316 CALLS 317 TOTAL - EDM=9.19369e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.62504e+02 3.53152e+00 1.63243e-03 -1.66316e-01 - 2 par_gaus_exp_1 2.46552e+01 1.25211e+01 1.75085e-03 -3.48771e-01 - 3 par_gaus_exp_2 1.14604e-01 5.89219e-02 6.31447e-04 9.83138e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.247e+01 -1.544e+01 -6.961e-02 - -1.544e+01 1.643e+02 7.558e-01 - -6.961e-02 7.558e-01 3.493e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.35636 1.000 -0.341 -0.333 - 2 0.99789 -0.341 1.000 0.998 - 3 0.99788 -0.333 0.998 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM HESSE STATUS=OK 16 CALLS 333 TOTAL - EDM=9.89177e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 5.62504e+02 3.77274e+00 6.52972e-05 8.34552e-02 - 2 par_gaus_exp_1 2.46552e+01 1.46349e+01 3.50170e-04 -7.15413e-01 - 3 par_gaus_exp_2 1.14604e-01 6.93856e-02 1.26289e-04 -1.27868e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.424e+01 -2.545e+01 -1.157e-01 - -2.545e+01 2.286e+02 1.052e+00 - -1.157e-01 1.052e+00 4.855e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.45683 1.000 -0.446 -0.440 - 2 0.99849 -0.446 1.000 0.998 - 3 0.99848 -0.440 0.998 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (13168.6) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=575, par_novo_1=100, par_novo_2=1.58864 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=645, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=655, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=665, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=675, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=685, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=695, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=705, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=715, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=725, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=735, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=745, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=755, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - ... (remaining 46 messages suppressed) -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 575,par_novo_1 = 100,par_novo_2 = 1.58864) - - FCN=13054.5 FROM MIGRAD STATUS=INITIATE 14 CALLS 15 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.75000e+02 1.50000e+01 2.01358e-01 -1.22938e+03 - 2 par_novo_1 1.00000e+02 2.00000e+01 2.01358e-01 -6.98326e+03 - 3 par_novo_2 0.00000e+00 2.00000e+01 2.01358e-01 1.51249e+06 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM MIGRAD STATUS=CONVERGED 220 CALLS 221 TOTAL - EDM=2.09668e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.00000e+02 1.21837e+02 1.25149e-01 -7.30463e-04 - 2 par_novo_1 1.30637e+02 1.58558e+01 3.16845e-03 -1.76078e-02 - 3 par_novo_2 -6.95187e-01 1.36663e-01 2.61078e-05 1.74080e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.121e-01 -9.460e-01 -6.449e-03 - -9.460e-01 2.538e+02 2.099e+00 - -6.449e-03 2.099e+00 1.868e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.21023 1.000 -0.177 -0.141 - 2 0.96488 -0.177 1.000 0.964 - 3 0.96445 -0.141 0.964 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM HESSE STATUS=OK 20 CALLS 241 TOTAL - EDM=1.01397e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 5.00000e+02 1.20312e+02 5.00000e-01 -1.57325e+00 - 2 par_novo_1 1.30637e+02 2.01762e+01 1.26738e-04 3.11381e-01 - 3 par_novo_2 -6.95187e-01 1.62575e-01 1.04431e-06 -6.95192e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.070e-01 -4.278e+00 -2.995e-02 - -4.278e+00 4.133e+02 3.212e+00 - -2.995e-02 3.212e+00 2.643e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.69436 1.000 -0.643 -0.563 - 2 0.97859 -0.643 1.000 0.972 - 3 0.97501 -0.563 0.972 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10877 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 6.33849e-01 5.09000e-01 -8.55460e-01 -1.25390e+02 - 2 par_crystal_1_1 2.55500e+00 5.09000e-01 0.00000e+00 -2.69495e+01 - 3 par_crystal_1_2 5.50000e+02 3.00000e+01 0.00000e+00 -1.44080e+01 - 4 par_crystal_1_3 1.04500e+02 1.91000e+01 0.00000e+00 3.07979e+01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.43469 added to diagonal of error matrix - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.5401e+00 8.4221e-02 1.8087e+00 3.6472e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 1.543714 TO DIAGONAL. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.9 FROM HESSE STATUS=OK 25 CALLS 485 TOTAL - EDM=0.0491336 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.05623e+00 1.52463e-01 1.42446e-03 -1.90900e+00 - 2 par_crystal_1_1 5.09988e+00 3.18944e+00 7.54811e-02 -8.93342e-03 - 3 par_crystal_1_2 4.96280e+02 4.98347e+01 9.02051e-03 3.58498e-02 - 4 par_crystal_1_3 1.89188e+02 2.78069e+01 1.02856e-02 -2.38185e-01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 538 CALLS 539 TOTAL - EDM=10.0867 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 14.1 per cent - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.09723e+00 3.02575e-02 -0.00000e+00 5.47416e+01 - 2 par_crystal_1_1 5.09997e+00 3.18368e+00 0.00000e+00 -3.90351e-03 - 3 par_crystal_1_2 4.83329e+02 2.76558e+01 0.00000e+00 7.05236e+00 - 4 par_crystal_1_3 1.96552e+02 5.80629e+00 -0.00000e+00 4.39990e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.156e-04 -1.804e-07 -6.742e-01 1.111e-01 - -1.804e-07 1.763e-04 7.888e-03 -2.154e-03 - -6.742e-01 7.888e-03 7.759e+02 -1.463e+02 - 1.111e-01 -2.154e-03 -1.463e+02 3.432e+01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.82553 1.000 -0.000 -0.800 0.627 - 2 0.03650 -0.000 1.000 0.021 -0.028 - 3 0.94703 -0.800 0.021 1.000 -0.896 - 4 0.90888 0.627 -0.028 -0.896 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -9.7852e-01 9.9996e-01 1.9836e+00 1.9949e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.980510 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 29 CALLS 568 TOTAL - EDM=238.514 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 1.09723e+00 4.25322e-02 2.54943e-04 -6.09913e-01 - 2 par_crystal_1_1 5.09997e+00 7.84798e-01 8.54763e-02 1.56580e+00 - 3 par_crystal_1_2 4.83329e+02 1.87856e+01 1.76414e-03 -4.60588e-01 - 4 par_crystal_1_3 1.96552e+02 5.33115e+00 2.63738e-03 1.30128e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.809e-03 -2.197e-07 8.001e-01 2.280e-01 - -2.197e-07 1.053e-04 -1.173e-04 -3.665e-05 - 8.001e-01 -1.173e-04 3.552e+02 1.010e+02 - 2.280e-01 -3.665e-05 1.010e+02 2.885e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99849 1.000 -0.001 0.998 0.998 - 2 0.00265 -0.001 1.000 -0.001 -0.001 - 3 0.99848 0.998 -0.001 1.000 0.998 - 4 0.99849 0.998 -0.001 0.998 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_550_1200 = 1266.17 - Background number of gaus_exp_550_1200 = 1266.17 - Background number of novo_550_1200 = 1266.17 - Background number of crystal_1_550_1200 = 1266.17 - Background number of gaus_bern_550_1200 = 1266.17 - Background number of landau_550_1200 = 1266.17 -par_crystal_0 param 1.11079 0.0431984 -par_crystal_1 param 5.08061 3.28337 -par_crystal_2 param 476.04 8.02153 -par_crystal_3 param 199.914 22.6294 -par_crystal_1_0 param 1.09723 0.0425322 -par_crystal_1_1 param 5.09997 0.784798 -par_crystal_1_2 param 483.329 18.7856 -par_crystal_1_3 param 196.552 5.33115 -par_gaus_exp_0 param 562.504 3.77274 -par_gaus_exp_1 param 24.6552 14.6349 -par_gaus_exp_2 param 0.114604 0.0693856 -par_novo_0 param 500 120.312 -par_novo_1 param 130.637 20.1762 -par_novo_2 param -0.695187 0.162575 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_800_crystal_1_550_1200/datacard_800_crystal_1_550_1200.txt b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_800_crystal_1_550_1200/datacard_800_crystal_1_550_1200.txt deleted file mode 100644 index f08ad78..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_800_crystal_1_550_1200/datacard_800_crystal_1_550_1200.txt +++ /dev/null @@ -1,30 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_800.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_crystal_1_550_1200.root HbbHbb:f_crystal_1 -shapes data_obs HbbHbb w_background_crystal_1_550_1200.root HbbHbb:data_obs_crystal_1_550_1200 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 4.34388 1266.17 -lumi_13TeV lnN 1.026 - -bTag lnN 1.07603 - -JER lnN 1.01239 - -JEC lnN 1.00978 - -trigger lnN 1.10 - -PDF lnN 1.02582057265 - -sg_p0 param 814.374 -1.84261/+1.57282 -sg_p1 param 25.8336 -0.55502/+0.437122 -sg_p2 param 1.67359 -0.0683089/+0.0448595 -sg_p3 param 1.19124 -0.0194827/+0.0318297 -par_crystal_1_0 param 1.09723 0.0425322 -par_crystal_1_1 param 5.09997 0.784798 -par_crystal_1_2 param 483.329 18.7856 -par_crystal_1_3 param 196.552 5.33115 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_800_crystal_1_550_1200/pdf.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_800_crystal_1_550_1200/pdf.log deleted file mode 100644 index 5c6918c..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_800_crystal_1_550_1200/pdf.log +++ /dev/null @@ -1,10 +0,0 @@ -[?1034h FCN=11.654 FROM MIGRAD STATUS=CONVERGED 69 CALLS 70 TOTAL - EDM=8.09882e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 Constant 1.23667e+01 1.57858e+00 2.28932e-03 -7.62719e-04 - 2 Mean 9.96794e-01 3.97718e-03 5.94251e-06 1.30367e-01 - 3 Sigma 2.58206e-02 3.15532e-03 5.93010e-05 -1.75592e-02 -0.996794053439 +/- 0.00397717769168 -0.0258205726549 +/- 0.00315531854748 -PDF lnN 1.02582057265 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_800_crystal_1_550_1200/signal800_sig.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_800_crystal_1_550_1200/signal800_sig.log deleted file mode 100644 index 9bb688f..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_800_crystal_1_550_1200/signal800_sig.log +++ /dev/null @@ -1,986 +0,0 @@ - -Processing test.c... -nSignal_init = 100000 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [550,1000] --> [550,1000] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [650,900] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1000] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [650,900] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=30655.7 FROM MIGRAD STATUS=INITIATE 50 CALLS 51 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.90000e+02 6.00000e+00 0.00000e+00 -1.30426e+02 - 2 sg_p1 3.75000e+01 2.50000e+00 0.00000e+00 -1.66737e+02 - 3 sg_p2 2.94124e+00 5.00000e-01 0.00000e+00 -1.49475e-01 - 4 sg_p3 1.57852e+00 7.00000e-01 -5.81159e-01 2.58563e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - MINUIT WARNING IN HESSE - ============== Second derivative enters zero, param 3 - MINUIT WARNING IN HESSE - ============== Second derivative zero for parameter3 - MNHESS FAILS AND WILL RETURN DIAGONAL MATRIX. - FCN=30638 FROM MIGRAD STATUS=CONVERGED 151 CALLS 152 TOTAL - EDM=3.50906e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 100.0 per cent - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.90259e+02 5.37023e-01 2.16671e-03 1.11551e-01 - 2 sg_p1 4.03199e+01 4.16552e-01 4.14293e-03 1.05806e-01 - 3 sg_p2 4.91276e+00 3.42658e+00 -3.03050e-03 0.00000e+00 - 4 sg_p3 1.92775e+00 1.16850e-01 -5.45644e-04 -1.47920e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.884e-01 0.000e+00 0.000e+00 0.000e+00 - 0.000e+00 1.736e-01 0.000e+00 0.000e+00 - 0.000e+00 0.000e+00 5.000e-01 0.000e+00 - 0.000e+00 0.000e+00 0.000e+00 1.366e-02 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.00000 1.000 0.000 0.000 0.000 - 2 0.00000 0.000 1.000 0.000 0.000 - 3 0.00000 0.000 0.000 1.000 0.000 - 4 0.00000 0.000 0.000 0.000 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - MINUIT WARNING IN HESSE - ============== Second derivative zero for parameter3 - MNHESS FAILS AND WILL RETURN DIAGONAL MATRIX. - FCN=30638 FROM HESSE STATUS=FAILED 7 CALLS 159 TOTAL - EDM=3.50906e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 100.0 per cent - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.90259e+02 5.37023e-01 2.16671e-03 8.63427e-03 - 2 sg_p1 4.03199e+01 4.16552e-01 4.14293e-03 2.27549e-01 - 3 sg_p2 4.30353e+00 3.12197e+00 -3.03050e-03 1.30584e+00 - 4 sg_p3 1.92775e+00 1.16850e-01 -5.45644e-04 -4.65886e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.884e-01 0.000e+00 0.000e+00 0.000e+00 - 0.000e+00 1.736e-01 0.000e+00 0.000e+00 - 0.000e+00 0.000e+00 5.000e-01 0.000e+00 - 0.000e+00 0.000e+00 0.000e+00 1.366e-02 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.00000 1.000 0.000 0.000 0.000 - 2 0.00000 0.000 1.000 0.000 0.000 - 3 0.00000 0.000 0.000 1.000 0.000 - 4 0.00000 0.000 0.000 0.000 1.000 - ERR MATRIX APPROXIMATE -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -800 -790.259 +- 0.537023 -40.3199 +- 0.416552 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [550,1000] --> [550,1000] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [650,900] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1000] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [650,900] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=30957.8 FROM MIGRAD STATUS=INITIATE 78 CALLS 79 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.90000e+02 6.00000e+00 0.00000e+00 -4.59580e+02 - 2 sg_p1 3.75000e+01 2.50000e+00 0.00000e+00 -2.30328e+02 - 3 sg_p2 1.77977e+00 5.00000e-01 0.00000e+00 5.54337e-01 - 4 sg_p3 1.71207e+00 7.00000e-01 -5.36159e-01 1.57191e-01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.02296 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=30898 FROM HESSE STATUS=OK 31 CALLS 326 TOTAL - EDM=1.52673e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.93825e+02 5.57072e-01 2.22239e-03 2.71391e-03 - 2 sg_p1 4.08795e+01 4.57494e-01 4.30357e-03 8.95731e-02 - 3 sg_p2 2.60706e+00 9.43716e-01 4.61396e-02 -1.14830e-02 - 4 sg_p3 1.95465e+00 1.29415e-01 4.57004e-03 -4.88228e-02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.02637 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - MACHINE ACCURACY LIMITS FURTHER IMPROVEMENT. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=30898 FROM MIGRAD STATUS=CONVERGED 377 CALLS 378 TOTAL - EDM=5.46872e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.93825e+02 5.57319e-01 8.88956e-04 -1.24563e-04 - 2 sg_p1 4.08783e+01 4.58216e-01 1.72143e-03 -1.67615e-04 - 3 sg_p2 2.61137e+00 9.86696e-01 4.70300e-02 -5.75769e-03 - 4 sg_p3 1.95475e+00 1.29727e-01 1.82801e-03 4.70590e-04 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.106e-01 -1.282e-02 1.973e-11 -1.514e-02 - -1.282e-02 2.101e-01 -3.231e-10 2.168e-02 - 1.973e-11 -3.231e-10 1.029e+00 -3.334e-11 - -1.514e-02 2.168e-02 -3.334e-11 1.684e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.21127 1.000 -0.050 0.000 -0.209 - 2 0.36542 -0.050 1.000 -0.000 0.364 - 3 0.00000 0.000 -0.000 1.000 -0.000 - 4 0.41162 -0.209 0.364 -0.000 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=30898 FROM HESSE STATUS=OK 29 CALLS 407 TOTAL - EDM=1.45739e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.93825e+02 5.57488e-01 3.55582e-05 1.27840e-01 - 2 sg_p1 4.08783e+01 4.58705e-01 6.88571e-05 2.73664e-01 - 3 sg_p2 2.61137e+00 3.15165e-01 3.77936e-01 4.45612e-02 - 4 sg_p3 1.95475e+00 1.29897e-01 7.31206e-05 -4.57269e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.108e-01 -1.327e-02 9.363e-11 -1.527e-02 - -1.327e-02 2.105e-01 -6.593e-11 2.188e-02 - 9.363e-11 -6.593e-11 9.986e-02 1.258e-11 - -1.527e-02 2.188e-02 1.258e-11 1.688e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.21263 1.000 -0.052 0.000 -0.211 - 2 0.36794 -0.052 1.000 -0.000 0.367 - 3 0.00000 0.000 -0.000 1.000 0.000 - 4 0.41424 -0.211 0.367 0.000 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -800 -793.825 +- 0.557488 -40.8783 +- 0.458705 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [550,1000] --> [550,1000] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [650,900] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1000] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [650,900] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=30291.5 FROM MIGRAD STATUS=INITIATE 41 CALLS 42 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.90000e+02 6.00000e+00 0.00000e+00 1.95885e+02 - 2 sg_p1 3.75000e+01 2.50000e+00 0.00000e+00 -7.27088e+01 - 3 sg_p2 2.50000e+00 5.00000e-01 0.00000e+00 -9.73752e-02 - 4 sg_p3 1.38901e+00 7.00000e-01 -6.47432e-01 2.33654e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=30270.6 FROM MIGRAD STATUS=CONVERGED 162 CALLS 163 TOTAL - EDM=8.78757e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.86674e+02 5.58720e-01 2.15921e-03 -1.99988e-01 - 2 sg_p1 4.00594e+01 4.59169e-01 4.05661e-03 3.84165e-02 - 3 sg_p2 2.51479e+00 3.25925e-01 2.03755e-02 4.90232e-02 - 4 sg_p3 1.92655e+00 1.49829e-01 4.93143e-03 8.21834e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.122e-01 -3.425e-02 1.692e-03 -2.360e-02 - -3.425e-02 2.109e-01 3.630e-03 2.988e-02 - 1.692e-03 3.630e-03 1.068e-01 4.290e-04 - -2.360e-02 2.988e-02 4.290e-04 2.247e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.28235 1.000 -0.133 0.009 -0.282 - 2 0.43476 -0.133 1.000 0.024 0.434 - 3 0.02730 0.009 0.024 1.000 0.009 - 4 0.48938 -0.282 0.434 0.009 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=30270.6 FROM HESSE STATUS=OK 33 CALLS 196 TOTAL - EDM=6.62467e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.86674e+02 5.59678e-01 4.31843e-04 -1.11107e-01 - 2 sg_p1 4.00594e+01 4.61116e-01 1.62264e-04 2.06214e-01 - 3 sg_p2 2.51479e+00 2.22927e-01 4.53587e-01 5.91504e-03 - 4 sg_p3 1.92655e+00 1.50658e-01 1.97257e-04 -4.66270e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.133e-01 -3.601e-02 1.955e-04 -2.426e-02 - -3.601e-02 2.127e-01 4.139e-04 3.075e-02 - 1.955e-04 4.139e-04 4.983e-02 4.614e-05 - -2.426e-02 3.075e-02 4.614e-05 2.272e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.28788 1.000 -0.140 0.002 -0.288 - 2 0.44255 -0.140 1.000 0.004 0.442 - 3 0.00456 0.002 0.004 1.000 0.001 - 4 0.49768 -0.288 0.442 0.001 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -800 -786.674 +- 0.559678 -40.0594 +- 0.461116 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [550,1020] --> [550,1020] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1020] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=29080.5 FROM MIGRAD STATUS=INITIATE 63 CALLS 64 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.10000e+02 6.00000e+00 0.00000e+00 -8.86811e+02 - 2 sg_p1 2.25000e+01 1.50000e+00 0.00000e+00 -5.59388e+01 - 3 sg_p2 1.11453e+00 5.00000e-01 0.00000e+00 1.02248e+02 - 4 sg_p3 1.01032e+00 7.00000e-01 -7.91400e-01 -4.01707e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=28998.7 FROM MIGRAD STATUS=CONVERGED 208 CALLS 209 TOTAL - EDM=2.80961e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.14374e+02 3.98724e-01 1.45304e-03 -1.70387e-01 - 2 sg_p1 2.58336e+01 3.59782e-01 4.89449e-03 8.13003e-02 - 3 sg_p2 1.67359e+00 7.19571e-02 3.19487e-03 5.88230e-02 - 4 sg_p3 1.19124e+00 3.46142e-02 1.23219e-03 -4.28854e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.590e-01 -2.453e-02 3.541e-03 -4.624e-03 - -2.453e-02 1.296e-01 1.051e-02 6.871e-03 - 3.541e-03 1.051e-02 5.179e-03 5.110e-04 - -4.624e-03 6.871e-03 5.110e-04 1.198e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.39250 1.000 -0.171 0.123 -0.335 - 2 0.62921 -0.171 1.000 0.406 0.551 - 3 0.45197 0.123 0.406 1.000 0.205 - 4 0.60406 -0.335 0.551 0.205 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=28998.7 FROM HESSE STATUS=OK 23 CALLS 232 TOTAL - EDM=2.80811e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 8.14374e+02 3.98978e-01 2.90608e-04 1.46314e-01 - 2 sg_p1 2.58336e+01 3.61130e-01 1.95780e-04 4.60594e-01 - 3 sg_p2 1.67359e+00 7.21418e-02 1.27795e-04 -3.36900e-01 - 4 sg_p3 1.19124e+00 3.46971e-02 2.46437e-04 -7.20348e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.592e-01 -2.477e-02 3.557e-03 -4.644e-03 - -2.477e-02 1.305e-01 1.069e-02 6.950e-03 - 3.557e-03 1.069e-02 5.206e-03 5.225e-04 - -4.644e-03 6.950e-03 5.225e-04 1.204e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.39387 1.000 -0.172 0.124 -0.335 - 2 0.63278 -0.172 1.000 0.410 0.554 - 3 0.45643 0.124 0.410 1.000 0.209 - 4 0.60656 -0.335 0.554 0.209 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -800 -814.374 +- 0.398978 -25.8336 +- 0.36113 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 - fit done -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [550,1020] --> [550,1020] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1020] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=29394.8 FROM MIGRAD STATUS=INITIATE 76 CALLS 77 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.09344e+02 6.00000e+00 0.00000e+00 -9.04905e+02 - 2 sg_p1 2.25000e+01 1.50000e+00 0.00000e+00 -1.79169e+02 - 3 sg_p2 1.02066e+00 5.00000e-01 0.00000e+00 2.33092e+02 - 4 sg_p3 1.24736e+00 7.00000e-01 -6.99207e-01 3.18929e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=29246.6 FROM MIGRAD STATUS=CONVERGED 227 CALLS 228 TOTAL - EDM=6.02107e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.15934e+02 4.09344e-01 1.49430e-03 -1.08719e-01 - 2 sg_p1 2.62317e+01 4.03039e-01 5.19030e-03 1.33417e-01 - 3 sg_p2 1.65790e+00 9.28346e-02 3.66697e-03 4.58391e-02 - 4 sg_p3 1.21792e+00 3.62585e-02 1.27250e-03 -4.88031e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.676e-01 -5.450e-03 9.103e-03 -3.808e-03 - -5.450e-03 1.626e-01 2.111e-02 8.287e-03 - 9.103e-03 2.111e-02 8.623e-03 9.650e-04 - -3.808e-03 8.287e-03 9.650e-04 1.315e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.41684 1.000 -0.033 0.239 -0.257 - 2 0.70520 -0.033 1.000 0.564 0.567 - 3 0.62110 0.239 0.564 1.000 0.287 - 4 0.61571 -0.257 0.567 0.287 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=29246.6 FROM HESSE STATUS=OK 23 CALLS 251 TOTAL - EDM=6.06559e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 8.15934e+02 4.09665e-01 2.98861e-04 1.99109e-01 - 2 sg_p1 2.62317e+01 4.05359e-01 1.03806e-03 5.20781e-01 - 3 sg_p2 1.65790e+00 9.33088e-02 1.46679e-04 -3.43559e-01 - 4 sg_p3 1.21792e+00 3.63707e-02 2.54500e-04 -7.10248e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.678e-01 -5.327e-03 9.198e-03 -3.807e-03 - -5.327e-03 1.645e-01 2.154e-02 8.414e-03 - 9.198e-03 2.154e-02 8.711e-03 9.903e-04 - -3.807e-03 8.414e-03 9.903e-04 1.323e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.41838 1.000 -0.032 0.241 -0.256 - 2 0.70926 -0.032 1.000 0.569 0.570 - 3 0.62607 0.241 0.569 1.000 0.292 - 4 0.61881 -0.256 0.570 0.292 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -800 -815.934 +- 0.409665 -26.2317 +- 0.405359 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [550,1020] --> [550,1020] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1020] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=28612.4 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.10000e+02 6.00000e+00 0.00000e+00 -3.00114e+02 - 2 sg_p1 2.25000e+01 1.50000e+00 0.00000e+00 -1.67115e+02 - 3 sg_p2 1.20214e+00 5.00000e-01 0.00000e+00 4.55233e+01 - 4 sg_p3 1.18762e+00 7.00000e-01 -7.21725e-01 3.91659e+02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -8.9336e-01 9.8220e-01 1.9260e+00 1.9851e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.895346 TO DIAGONAL. - FCN=28570.4 FROM HESSE STATUS=NOT POSDEF 29 CALLS 216 TOTAL - EDM=0.158425 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.12468e+02 1.41859e+00 1.44554e-03 6.97099e+00 - 2 sg_p1 2.52532e+01 1.08302e+00 4.75756e-03 -1.78654e+00 - 3 sg_p2 1.59901e+00 3.19025e-01 4.11832e-03 -4.02743e+00 - 4 sg_p3 1.18510e+00 2.53698e-02 1.13700e-04 9.82264e+00 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.00001 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=28570.4 FROM MIGRAD STATUS=FAILED 279 CALLS 280 TOTAL - EDM=10.5145 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.12542e+02 1.94194e+01 -0.00000e+00 1.21944e+01 - 2 sg_p1 2.53088e+01 4.51787e+00 -0.00000e+00 3.98569e-01 - 3 sg_p2 1.61558e+00 1.51911e+00 0.00000e+00 -5.79777e+00 - 4 sg_p3 1.18237e+00 1.70381e+00 -0.00000e+00 1.97176e+02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.468e+02 5.233e-03 1.508e-03 6.862e-04 - 5.233e-03 2.418e+01 -1.914e-04 5.328e-04 - 1.508e-03 -1.914e-04 2.734e+00 1.653e-04 - 6.862e-04 5.328e-04 1.653e-04 3.439e+00 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.00007 1.000 0.000 0.000 0.000 - 2 0.00008 0.000 1.000 -0.000 0.000 - 3 0.00007 0.000 -0.000 1.000 0.000 - 4 0.00008 0.000 0.000 0.000 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.2546e+02 -1.0036e+01 1.2036e+01 1.2746e+02 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 125.585418 TO DIAGONAL. - FCN=28570.4 FROM HESSE STATUS=NOT POSDEF 25 CALLS 305 TOTAL - EDM=0.206098 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 8.12542e+02 3.32392e-02 4.24522e-04 8.48346e-02 - 2 sg_p1 2.53088e+01 5.64200e-01 1.39644e-03 3.83861e-01 - 3 sg_p2 1.61558e+00 1.70424e-01 1.23980e-03 -3.61595e-01 - 4 sg_p3 1.18237e+00 2.19991e-04 3.58849e-04 -7.23724e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.105e-03 -1.843e-03 5.571e-04 6.264e-07 - -1.843e-03 3.190e-01 -9.625e-02 1.380e-06 - 5.571e-04 -9.625e-02 2.910e-02 -4.175e-07 - 6.264e-07 1.380e-06 -4.175e-07 4.840e-08 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.13108 1.000 -0.098 0.098 0.086 - 2 0.99899 -0.098 1.000 -0.999 0.011 - 3 0.99899 0.098 -0.999 1.000 -0.011 - 4 0.08788 0.086 0.011 -0.011 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -800 -812.542 +- 0.0332392 -25.3088 +- 0.5642 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [550,1020] --> [550,1020] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1020] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=28766.4 FROM MIGRAD STATUS=INITIATE 59 CALLS 60 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.10000e+02 6.00000e+00 0.00000e+00 -7.66248e+02 - 2 sg_p1 2.25000e+01 1.50000e+00 0.00000e+00 -9.03266e+01 - 3 sg_p2 1.08494e+00 5.00000e-01 0.00000e+00 1.09698e+02 - 4 sg_p3 1.05971e+00 7.00000e-01 -7.71521e-01 -1.09172e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=28687.7 FROM MIGRAD STATUS=CONVERGED 199 CALLS 200 TOTAL - EDM=5.14966e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.14565e+02 4.05653e-01 1.46940e-03 3.96359e-01 - 2 sg_p1 2.60283e+01 3.68198e-01 5.02230e-03 5.50486e-02 - 3 sg_p2 1.66109e+00 7.22853e-02 3.19557e-03 8.70441e-02 - 4 sg_p3 1.18488e+00 3.46494e-02 1.22798e-03 -1.02684e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.646e-01 -2.497e-02 3.759e-03 -4.697e-03 - -2.497e-02 1.357e-01 1.103e-02 7.081e-03 - 3.759e-03 1.103e-02 5.227e-03 5.271e-04 - -4.697e-03 7.081e-03 5.271e-04 1.201e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.39503 1.000 -0.167 0.128 -0.334 - 2 0.63439 -0.167 1.000 0.414 0.555 - 3 0.46146 0.128 0.414 1.000 0.210 - 4 0.60729 -0.334 0.555 0.210 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=28687.7 FROM HESSE STATUS=OK 23 CALLS 223 TOTAL - EDM=5.16859e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 8.14565e+02 4.05931e-01 2.93880e-04 1.52758e-01 - 2 sg_p1 2.60283e+01 3.69660e-01 2.00892e-04 4.89788e-01 - 3 sg_p2 1.66109e+00 7.24828e-02 1.27823e-04 -3.42202e-01 - 4 sg_p3 1.18488e+00 3.47387e-02 4.91192e-05 -7.22769e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.648e-01 -2.523e-02 3.775e-03 -4.720e-03 - -2.523e-02 1.368e-01 1.122e-02 7.167e-03 - 3.775e-03 1.122e-02 5.255e-03 5.394e-04 - -4.720e-03 7.167e-03 5.394e-04 1.207e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.39649 1.000 -0.168 0.128 -0.335 - 2 0.63810 -0.168 1.000 0.419 0.558 - 3 0.46606 0.128 0.419 1.000 0.214 - 4 0.60995 -0.335 0.558 0.214 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -800 -814.565 +- 0.405931 -26.0283 +- 0.36966 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [550,1020] --> [550,1020] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1020] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=29348.4 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.10000e+02 6.00000e+00 0.00000e+00 -6.36592e+02 - 2 sg_p1 2.25000e+01 1.50000e+00 0.00000e+00 -1.83918e+02 - 3 sg_p2 1.15597e+00 5.00000e-01 0.00000e+00 8.24903e+01 - 4 sg_p3 1.21818e+00 7.00000e-01 -7.10151e-01 3.68287e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=29268.2 FROM MIGRAD STATUS=CONVERGED 199 CALLS 200 TOTAL - EDM=1.20841e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.14234e+02 3.90817e-01 1.43143e-03 -2.25892e-01 - 2 sg_p1 2.55644e+01 3.48997e-01 4.72433e-03 4.76414e-02 - 3 sg_p2 1.70026e+00 7.24860e-02 3.26136e-03 -2.01102e-02 - 4 sg_p3 1.19325e+00 3.43060e-02 1.23128e-03 -1.60765e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.527e-01 -2.472e-02 3.207e-03 -4.545e-03 - -2.472e-02 1.219e-01 9.868e-03 6.557e-03 - 3.207e-03 9.868e-03 5.256e-03 4.874e-04 - -4.545e-03 6.557e-03 4.874e-04 1.177e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.39017 1.000 -0.181 0.113 -0.339 - 2 0.62081 -0.181 1.000 0.390 0.547 - 3 0.43378 0.113 0.390 1.000 0.196 - 4 0.60004 -0.339 0.547 0.196 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=29268.2 FROM HESSE STATUS=OK 23 CALLS 223 TOTAL - EDM=1.20945e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 8.14234e+02 3.91082e-01 2.86287e-04 1.41589e-01 - 2 sg_p1 2.55644e+01 3.50246e-01 1.88973e-04 4.20910e-01 - 3 sg_p2 1.70026e+00 7.26609e-02 1.30454e-04 -3.25619e-01 - 4 sg_p3 1.19325e+00 3.43857e-02 4.92513e-05 -7.19583e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.530e-01 -2.496e-02 3.222e-03 -4.567e-03 - -2.496e-02 1.228e-01 1.004e-02 6.630e-03 - 3.222e-03 1.004e-02 5.281e-03 4.983e-04 - -4.567e-03 6.630e-03 4.983e-04 1.182e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.39164 1.000 -0.182 0.113 -0.340 - 2 0.62433 -0.182 1.000 0.394 0.550 - 3 0.43823 0.113 0.394 1.000 0.199 - 4 0.60250 -0.340 0.550 0.199 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -800 -814.234 +- 0.391082 -25.5644 +- 0.350246 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [550,1020] --> [550,1020] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1020] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=26933.9 FROM MIGRAD STATUS=INITIATE 65 CALLS 66 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.10000e+02 6.00000e+00 0.00000e+00 -8.02085e+02 - 2 sg_p1 2.25000e+01 1.50000e+00 0.00000e+00 -6.48182e+01 - 3 sg_p2 1.12090e+00 5.00000e-01 0.00000e+00 8.31490e+01 - 4 sg_p3 1.00741e+00 7.00000e-01 -7.92584e-01 -3.93256e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=26858 FROM MIGRAD STATUS=CONVERGED 255 CALLS 256 TOTAL - EDM=5.05705e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.14343e+02 4.13939e-01 1.45196e-03 -9.37591e-03 - 2 sg_p1 2.58276e+01 3.73340e-01 4.89042e-03 1.50340e-02 - 3 sg_p2 1.67484e+00 7.48885e-02 3.20560e-03 -1.09220e-03 - 4 sg_p3 1.19229e+00 3.59871e-02 1.23468e-03 -4.69920e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.714e-01 -2.629e-02 3.837e-03 -4.978e-03 - -2.629e-02 1.395e-01 1.135e-02 7.403e-03 - 3.837e-03 1.135e-02 5.610e-03 5.519e-04 - -4.978e-03 7.403e-03 5.519e-04 1.295e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.39181 1.000 -0.170 0.124 -0.334 - 2 0.62863 -0.170 1.000 0.406 0.551 - 3 0.45181 0.124 0.406 1.000 0.205 - 4 0.60326 -0.334 0.551 0.205 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=26858 FROM HESSE STATUS=OK 23 CALLS 279 TOTAL - EDM=5.06656e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 8.14343e+02 4.14229e-01 5.80783e-05 1.45269e-01 - 2 sg_p1 2.58276e+01 3.74765e-01 1.95617e-04 4.59703e-01 - 3 sg_p2 1.67484e+00 7.50817e-02 1.28224e-04 -3.36369e-01 - 4 sg_p3 1.19229e+00 3.60762e-02 4.93874e-05 -7.19948e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.716e-01 -2.658e-02 3.854e-03 -5.003e-03 - -2.658e-02 1.406e-01 1.154e-02 7.491e-03 - 3.854e-03 1.154e-02 5.639e-03 5.644e-04 - -5.003e-03 7.491e-03 5.644e-04 1.302e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.39332 1.000 -0.171 0.124 -0.335 - 2 0.63227 -0.171 1.000 0.410 0.554 - 3 0.45629 0.124 0.410 1.000 0.208 - 4 0.60585 -0.335 0.554 0.208 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -800 -814.343 +- 0.414229 -25.8276 +- 0.374765 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [550,1020] --> [550,1020] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1020] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=31351.8 FROM MIGRAD STATUS=INITIATE 59 CALLS 60 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.10000e+02 6.00000e+00 0.00000e+00 -9.46989e+02 - 2 sg_p1 2.25000e+01 1.50000e+00 0.00000e+00 -5.83441e+01 - 3 sg_p2 1.10816e+00 5.00000e-01 0.00000e+00 1.09432e+02 - 4 sg_p3 1.01312e+00 7.00000e-01 -7.90261e-01 -4.08568e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31263.7 FROM MIGRAD STATUS=CONVERGED 190 CALLS 191 TOTAL - EDM=0.000282451 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.14404e+02 3.84308e-01 1.45349e-03 -2.57491e-01 - 2 sg_p1 2.58356e+01 3.46779e-01 4.90055e-03 -2.87296e-01 - 3 sg_p2 1.67287e+00 6.92592e-02 3.19853e-03 5.88350e-01 - 4 sg_p3 1.19029e+00 3.33252e-02 1.23266e-03 1.10421e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.477e-01 -2.290e-02 3.276e-03 -4.302e-03 - -2.290e-02 1.204e-01 9.759e-03 6.385e-03 - 3.276e-03 9.759e-03 4.798e-03 4.745e-04 - -4.302e-03 6.385e-03 4.745e-04 1.111e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.39330 1.000 -0.172 0.123 -0.336 - 2 0.62986 -0.172 1.000 0.406 0.552 - 3 0.45226 0.123 0.406 1.000 0.206 - 4 0.60490 -0.336 0.552 0.206 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31263.7 FROM HESSE STATUS=OK 23 CALLS 214 TOTAL - EDM=0.000282194 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 8.14404e+02 3.84550e-01 2.90698e-04 1.47348e-01 - 2 sg_p1 2.58356e+01 3.47902e-01 9.80110e-04 4.60888e-01 - 3 sg_p2 1.67287e+00 6.94090e-02 6.39706e-04 -3.37208e-01 - 4 sg_p3 1.19029e+00 3.33968e-02 4.93065e-05 -7.20709e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.479e-01 -2.313e-02 3.287e-03 -4.322e-03 - -2.313e-02 1.211e-01 9.898e-03 6.450e-03 - 3.287e-03 9.898e-03 4.819e-03 4.836e-04 - -4.322e-03 6.450e-03 4.836e-04 1.115e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.39464 1.000 -0.173 0.123 -0.336 - 2 0.63294 -0.173 1.000 0.410 0.555 - 3 0.45602 0.123 0.410 1.000 0.209 - 4 0.60714 -0.336 0.555 0.209 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -800 -814.404 +- 0.38455 -25.8356 +- 0.347902 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 814.374 +- 0.398978 (stat) - 1.83178 + 1.56012 (syst); -1.84261/+1.57282 (total) - Uncertainty on sg_p1 = 25.8336 +- 0.36113 (stat) - 0.524827 + 0.398085 (syst); -0.55502/+0.437122 (total) - Uncertainty on sg_p2 = 1.67359 +- 0.0721418 (stat) - 0.0580086 + 0.0266696 (syst); -0.0683089/+0.0448595 (total) - Uncertainty on sg_p3 = 1.19124 +- 0.0346971 (stat) - 0.00886586 + 0.0266863 (syst); -0.0194827/+0.0318297 (total) - === Baseline plot ===
- norm = 217.194 -JEC lnN 1.00978 - -JER lnN 1.01239 - -btag lnN 1.07603 - -sg_p0 param 814.374 -1.84261/+1.57282 -sg_p1 param 25.8336 -0.55502/+0.437122 -sg_p2 param 1.67359 -0.0683089/+0.0448595 -sg_p3 param 1.19124 -0.0194827/+0.0318297 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_800_novo_550_1200/data_bkg.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_800_novo_550_1200/data_bkg.log deleted file mode 100644 index a966e12..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_800_novo_550_1200/data_bkg.log +++ /dev/null @@ -1,690 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10879.7 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 6.74624e-01 5.09000e-01 -8.31364e-01 -1.01971e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -3.20610e+01 - 3 par_crystal_2 5.00000e+02 2.00000e+01 0.00000e+00 -9.48837e+00 - 4 par_crystal_3 1.05000e+02 1.90000e+01 0.00000e+00 2.45317e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7116e+01 9.9978e-01 1.9597e+00 1.8156e+01 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 17.134017 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 27 CALLS 314 TOTAL - EDM=0.131054 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.06594e+00 6.09301e-02 1.43210e-03 -8.77809e-01 - 2 par_crystal_1 5.09576e+00 7.69298e-02 8.09031e-02 -5.13188e-02 - 3 par_crystal_2 4.95224e+02 7.91481e+01 2.17679e-03 -5.43249e-01 - 4 par_crystal_3 1.90900e+02 9.54958e+00 1.13079e-02 4.60762e-02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 477 CALLS 478 TOTAL - EDM=0.0370129 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.11079e+00 8.93309e-02 0.00000e+00 -4.75984e-01 - 2 par_crystal_1 5.08061e+00 3.60144e-01 0.00000e+00 -1.14416e-01 - 3 par_crystal_2 4.76040e+02 1.75614e+01 0.00000e+00 -2.32451e-01 - 4 par_crystal_3 1.99914e+02 2.77391e+01 0.00000e+00 -7.67572e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.985e-03 -2.091e-03 1.499e+00 2.820e-01 - -2.091e-03 2.873e-02 -7.387e-01 -2.900e-02 - 1.499e+00 -7.387e-01 3.118e+02 5.244e+01 - 2.820e-01 -2.900e-02 5.244e+01 1.008e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99775 1.000 -0.138 0.950 0.994 - 2 0.79882 -0.138 1.000 -0.247 -0.054 - 3 0.95717 0.950 -0.247 1.000 0.935 - 4 0.99764 0.994 -0.054 0.935 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.8 FROM HESSE STATUS=OK 27 CALLS 505 TOTAL - EDM=0.0183624 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.11079e+00 4.31984e-02 1.44775e-03 -6.03431e-01 - 2 par_crystal_1 5.08061e+00 3.28337e+00 6.64371e-02 1.44728e+00 - 3 par_crystal_2 4.76040e+02 8.02153e+00 1.45036e-02 3.38355e+00 - 4 par_crystal_3 1.99914e+02 2.26294e+01 4.50606e-02 1.52819e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.866e-03 -1.951e-03 -2.584e-03 1.946e-02 - -1.951e-03 1.028e-01 6.675e-04 3.793e-04 - -2.584e-03 6.675e-04 6.449e+01 1.116e+00 - 1.946e-02 3.793e-04 1.116e+00 8.140e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.21215 1.000 -0.141 -0.007 0.158 - 2 0.14274 -0.141 1.000 0.000 0.000 - 3 0.05109 -0.007 0.000 1.000 0.049 - 4 0.16712 0.158 0.000 0.049 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10978.6 FROM MIGRAD STATUS=INITIATE 68 CALLS 69 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 6.03110e+02 3.00000e+01 -8.97402e-01 -6.52175e+01 - 2 par_gaus_exp_1 5.45000e+01 9.10000e+00 0.00000e+00 -4.62060e+02 - 3 par_gaus_exp_2 4.12114e-01 3.05000e-01 0.00000e+00 1.25553e+03 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.9 FROM HESSE STATUS=OK 18 CALLS 182 TOTAL - EDM=0.000691453 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.46431e+02 6.06936e+00 3.17833e-03 -3.92855e-01 - 2 par_gaus_exp_1 6.65716e+01 1.75685e+01 2.62647e-03 1.43349e-01 - 3 par_gaus_exp_2 3.07505e-01 8.37981e-02 8.79822e-04 -3.06196e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM MIGRAD STATUS=CONVERGED 316 CALLS 317 TOTAL - EDM=9.19369e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.62504e+02 3.53152e+00 1.63243e-03 -1.66316e-01 - 2 par_gaus_exp_1 2.46552e+01 1.25211e+01 1.75085e-03 -3.48771e-01 - 3 par_gaus_exp_2 1.14604e-01 5.89219e-02 6.31447e-04 9.83138e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.247e+01 -1.544e+01 -6.961e-02 - -1.544e+01 1.643e+02 7.558e-01 - -6.961e-02 7.558e-01 3.493e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.35636 1.000 -0.341 -0.333 - 2 0.99789 -0.341 1.000 0.998 - 3 0.99788 -0.333 0.998 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM HESSE STATUS=OK 16 CALLS 333 TOTAL - EDM=9.89177e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 5.62504e+02 3.77274e+00 6.52972e-05 8.34552e-02 - 2 par_gaus_exp_1 2.46552e+01 1.46349e+01 3.50170e-04 -7.15413e-01 - 3 par_gaus_exp_2 1.14604e-01 6.93856e-02 1.26289e-04 -1.27868e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.424e+01 -2.545e+01 -1.157e-01 - -2.545e+01 2.286e+02 1.052e+00 - -1.157e-01 1.052e+00 4.855e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.45683 1.000 -0.446 -0.440 - 2 0.99849 -0.446 1.000 0.998 - 3 0.99848 -0.440 0.998 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (13168.6) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=575, par_novo_1=100, par_novo_2=1.58864 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 575,par_novo_1 = 100,par_novo_2 = 1.58864) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=645, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=655, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=665, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=675, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=685, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=695, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=705, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=715, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=725, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=735, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=745, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=755, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - ... (remaining 46 messages suppressed) - - FCN=13054.5 FROM MIGRAD STATUS=INITIATE 14 CALLS 15 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.75000e+02 1.50000e+01 2.01358e-01 -1.22938e+03 - 2 par_novo_1 1.00000e+02 2.00000e+01 2.01358e-01 -6.98326e+03 - 3 par_novo_2 0.00000e+00 2.00000e+01 2.01358e-01 1.51249e+06 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM MIGRAD STATUS=CONVERGED 220 CALLS 221 TOTAL - EDM=2.09668e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.00000e+02 1.21837e+02 1.25149e-01 -7.30463e-04 - 2 par_novo_1 1.30637e+02 1.58558e+01 3.16845e-03 -1.76078e-02 - 3 par_novo_2 -6.95187e-01 1.36663e-01 2.61078e-05 1.74080e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.121e-01 -9.460e-01 -6.449e-03 - -9.460e-01 2.538e+02 2.099e+00 - -6.449e-03 2.099e+00 1.868e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.21023 1.000 -0.177 -0.141 - 2 0.96488 -0.177 1.000 0.964 - 3 0.96445 -0.141 0.964 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM HESSE STATUS=OK 20 CALLS 241 TOTAL - EDM=1.01397e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 5.00000e+02 1.20312e+02 5.00000e-01 -1.57325e+00 - 2 par_novo_1 1.30637e+02 2.01762e+01 1.26738e-04 3.11381e-01 - 3 par_novo_2 -6.95187e-01 1.62575e-01 1.04431e-06 -6.95192e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.070e-01 -4.278e+00 -2.995e-02 - -4.278e+00 4.133e+02 3.212e+00 - -2.995e-02 3.212e+00 2.643e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.69436 1.000 -0.643 -0.563 - 2 0.97859 -0.643 1.000 0.972 - 3 0.97501 -0.563 0.972 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10877 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 6.33849e-01 5.09000e-01 -8.55460e-01 -1.25390e+02 - 2 par_crystal_1_1 2.55500e+00 5.09000e-01 0.00000e+00 -2.69495e+01 - 3 par_crystal_1_2 5.50000e+02 3.00000e+01 0.00000e+00 -1.44080e+01 - 4 par_crystal_1_3 1.04500e+02 1.91000e+01 0.00000e+00 3.07979e+01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.43469 added to diagonal of error matrix - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.5401e+00 8.4221e-02 1.8087e+00 3.6472e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 1.543714 TO DIAGONAL. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.9 FROM HESSE STATUS=OK 25 CALLS 485 TOTAL - EDM=0.0491336 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.05623e+00 1.52463e-01 1.42446e-03 -1.90900e+00 - 2 par_crystal_1_1 5.09988e+00 3.18944e+00 7.54811e-02 -8.93342e-03 - 3 par_crystal_1_2 4.96280e+02 4.98347e+01 9.02051e-03 3.58498e-02 - 4 par_crystal_1_3 1.89188e+02 2.78069e+01 1.02856e-02 -2.38185e-01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 538 CALLS 539 TOTAL - EDM=10.0867 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 14.1 per cent - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.09723e+00 3.02575e-02 -0.00000e+00 5.47416e+01 - 2 par_crystal_1_1 5.09997e+00 3.18368e+00 0.00000e+00 -3.90351e-03 - 3 par_crystal_1_2 4.83329e+02 2.76558e+01 0.00000e+00 7.05236e+00 - 4 par_crystal_1_3 1.96552e+02 5.80629e+00 -0.00000e+00 4.39990e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.156e-04 -1.804e-07 -6.742e-01 1.111e-01 - -1.804e-07 1.763e-04 7.888e-03 -2.154e-03 - -6.742e-01 7.888e-03 7.759e+02 -1.463e+02 - 1.111e-01 -2.154e-03 -1.463e+02 3.432e+01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.82553 1.000 -0.000 -0.800 0.627 - 2 0.03650 -0.000 1.000 0.021 -0.028 - 3 0.94703 -0.800 0.021 1.000 -0.896 - 4 0.90888 0.627 -0.028 -0.896 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -9.7852e-01 9.9996e-01 1.9836e+00 1.9949e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.980510 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 29 CALLS 568 TOTAL - EDM=238.514 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 1.09723e+00 4.25322e-02 2.54943e-04 -6.09913e-01 - 2 par_crystal_1_1 5.09997e+00 7.84798e-01 8.54763e-02 1.56580e+00 - 3 par_crystal_1_2 4.83329e+02 1.87856e+01 1.76414e-03 -4.60588e-01 - 4 par_crystal_1_3 1.96552e+02 5.33115e+00 2.63738e-03 1.30128e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.809e-03 -2.197e-07 8.001e-01 2.280e-01 - -2.197e-07 1.053e-04 -1.173e-04 -3.665e-05 - 8.001e-01 -1.173e-04 3.552e+02 1.010e+02 - 2.280e-01 -3.665e-05 1.010e+02 2.885e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99849 1.000 -0.001 0.998 0.998 - 2 0.00265 -0.001 1.000 -0.001 -0.001 - 3 0.99848 0.998 -0.001 1.000 0.998 - 4 0.99849 0.998 -0.001 0.998 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_550_1200 = 1266.17 - Background number of gaus_exp_550_1200 = 1266.17 - Background number of novo_550_1200 = 1266.17 - Background number of crystal_1_550_1200 = 1266.17 - Background number of gaus_bern_550_1200 = 1266.17 - Background number of landau_550_1200 = 1266.17 -par_crystal_0 param 1.11079 0.0431984 -par_crystal_1 param 5.08061 3.28337 -par_crystal_2 param 476.04 8.02153 -par_crystal_3 param 199.914 22.6294 -par_crystal_1_0 param 1.09723 0.0425322 -par_crystal_1_1 param 5.09997 0.784798 -par_crystal_1_2 param 483.329 18.7856 -par_crystal_1_3 param 196.552 5.33115 -par_gaus_exp_0 param 562.504 3.77274 -par_gaus_exp_1 param 24.6552 14.6349 -par_gaus_exp_2 param 0.114604 0.0693856 -par_novo_0 param 500 120.312 -par_novo_1 param 130.637 20.1762 -par_novo_2 param -0.695187 0.162575 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_800_novo_550_1200/datacard_800_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_800_novo_550_1200/datacard_800_novo_550_1200.txt deleted file mode 100644 index 893f9c6..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_800_novo_550_1200/datacard_800_novo_550_1200.txt +++ /dev/null @@ -1,29 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_800.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo -shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 4.34388 1266.17 -lumi_13TeV lnN 1.026 - -bTag lnN 1.07603 - -JER lnN 1.01239 - -JEC lnN 1.00978 - -trigger lnN 1.10 - -PDF lnN 1.02582057265 - -sg_p0 param 814.374 -1.84261/+1.57282 -sg_p1 param 25.8336 -0.55502/+0.437122 -sg_p2 param 1.67359 -0.0683089/+0.0448595 -sg_p3 param 1.19124 -0.0194827/+0.0318297 -par_novo_0 param 500 120.312 -par_novo_1 param 130.637 20.1762 -par_novo_2 param -0.695187 0.162575 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_800_novo_550_1200/pdf.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_800_novo_550_1200/pdf.log deleted file mode 100644 index 5c6918c..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_800_novo_550_1200/pdf.log +++ /dev/null @@ -1,10 +0,0 @@ -[?1034h FCN=11.654 FROM MIGRAD STATUS=CONVERGED 69 CALLS 70 TOTAL - EDM=8.09882e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 Constant 1.23667e+01 1.57858e+00 2.28932e-03 -7.62719e-04 - 2 Mean 9.96794e-01 3.97718e-03 5.94251e-06 1.30367e-01 - 3 Sigma 2.58206e-02 3.15532e-03 5.93010e-05 -1.75592e-02 -0.996794053439 +/- 0.00397717769168 -0.0258205726549 +/- 0.00315531854748 -PDF lnN 1.02582057265 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_800_novo_550_1200/signal800_sig.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_800_novo_550_1200/signal800_sig.log deleted file mode 100644 index 9bb688f..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_800_novo_550_1200/signal800_sig.log +++ /dev/null @@ -1,986 +0,0 @@ - -Processing test.c... -nSignal_init = 100000 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [550,1000] --> [550,1000] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [650,900] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1000] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [650,900] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=30655.7 FROM MIGRAD STATUS=INITIATE 50 CALLS 51 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.90000e+02 6.00000e+00 0.00000e+00 -1.30426e+02 - 2 sg_p1 3.75000e+01 2.50000e+00 0.00000e+00 -1.66737e+02 - 3 sg_p2 2.94124e+00 5.00000e-01 0.00000e+00 -1.49475e-01 - 4 sg_p3 1.57852e+00 7.00000e-01 -5.81159e-01 2.58563e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - MINUIT WARNING IN HESSE - ============== Second derivative enters zero, param 3 - MINUIT WARNING IN HESSE - ============== Second derivative zero for parameter3 - MNHESS FAILS AND WILL RETURN DIAGONAL MATRIX. - FCN=30638 FROM MIGRAD STATUS=CONVERGED 151 CALLS 152 TOTAL - EDM=3.50906e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 100.0 per cent - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.90259e+02 5.37023e-01 2.16671e-03 1.11551e-01 - 2 sg_p1 4.03199e+01 4.16552e-01 4.14293e-03 1.05806e-01 - 3 sg_p2 4.91276e+00 3.42658e+00 -3.03050e-03 0.00000e+00 - 4 sg_p3 1.92775e+00 1.16850e-01 -5.45644e-04 -1.47920e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.884e-01 0.000e+00 0.000e+00 0.000e+00 - 0.000e+00 1.736e-01 0.000e+00 0.000e+00 - 0.000e+00 0.000e+00 5.000e-01 0.000e+00 - 0.000e+00 0.000e+00 0.000e+00 1.366e-02 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.00000 1.000 0.000 0.000 0.000 - 2 0.00000 0.000 1.000 0.000 0.000 - 3 0.00000 0.000 0.000 1.000 0.000 - 4 0.00000 0.000 0.000 0.000 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - MINUIT WARNING IN HESSE - ============== Second derivative zero for parameter3 - MNHESS FAILS AND WILL RETURN DIAGONAL MATRIX. - FCN=30638 FROM HESSE STATUS=FAILED 7 CALLS 159 TOTAL - EDM=3.50906e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 100.0 per cent - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.90259e+02 5.37023e-01 2.16671e-03 8.63427e-03 - 2 sg_p1 4.03199e+01 4.16552e-01 4.14293e-03 2.27549e-01 - 3 sg_p2 4.30353e+00 3.12197e+00 -3.03050e-03 1.30584e+00 - 4 sg_p3 1.92775e+00 1.16850e-01 -5.45644e-04 -4.65886e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.884e-01 0.000e+00 0.000e+00 0.000e+00 - 0.000e+00 1.736e-01 0.000e+00 0.000e+00 - 0.000e+00 0.000e+00 5.000e-01 0.000e+00 - 0.000e+00 0.000e+00 0.000e+00 1.366e-02 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.00000 1.000 0.000 0.000 0.000 - 2 0.00000 0.000 1.000 0.000 0.000 - 3 0.00000 0.000 0.000 1.000 0.000 - 4 0.00000 0.000 0.000 0.000 1.000 - ERR MATRIX APPROXIMATE -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -800 -790.259 +- 0.537023 -40.3199 +- 0.416552 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [550,1000] --> [550,1000] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [650,900] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1000] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [650,900] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=30957.8 FROM MIGRAD STATUS=INITIATE 78 CALLS 79 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.90000e+02 6.00000e+00 0.00000e+00 -4.59580e+02 - 2 sg_p1 3.75000e+01 2.50000e+00 0.00000e+00 -2.30328e+02 - 3 sg_p2 1.77977e+00 5.00000e-01 0.00000e+00 5.54337e-01 - 4 sg_p3 1.71207e+00 7.00000e-01 -5.36159e-01 1.57191e-01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.02296 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=30898 FROM HESSE STATUS=OK 31 CALLS 326 TOTAL - EDM=1.52673e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.93825e+02 5.57072e-01 2.22239e-03 2.71391e-03 - 2 sg_p1 4.08795e+01 4.57494e-01 4.30357e-03 8.95731e-02 - 3 sg_p2 2.60706e+00 9.43716e-01 4.61396e-02 -1.14830e-02 - 4 sg_p3 1.95465e+00 1.29415e-01 4.57004e-03 -4.88228e-02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.02637 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - MACHINE ACCURACY LIMITS FURTHER IMPROVEMENT. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=30898 FROM MIGRAD STATUS=CONVERGED 377 CALLS 378 TOTAL - EDM=5.46872e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.93825e+02 5.57319e-01 8.88956e-04 -1.24563e-04 - 2 sg_p1 4.08783e+01 4.58216e-01 1.72143e-03 -1.67615e-04 - 3 sg_p2 2.61137e+00 9.86696e-01 4.70300e-02 -5.75769e-03 - 4 sg_p3 1.95475e+00 1.29727e-01 1.82801e-03 4.70590e-04 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.106e-01 -1.282e-02 1.973e-11 -1.514e-02 - -1.282e-02 2.101e-01 -3.231e-10 2.168e-02 - 1.973e-11 -3.231e-10 1.029e+00 -3.334e-11 - -1.514e-02 2.168e-02 -3.334e-11 1.684e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.21127 1.000 -0.050 0.000 -0.209 - 2 0.36542 -0.050 1.000 -0.000 0.364 - 3 0.00000 0.000 -0.000 1.000 -0.000 - 4 0.41162 -0.209 0.364 -0.000 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=30898 FROM HESSE STATUS=OK 29 CALLS 407 TOTAL - EDM=1.45739e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.93825e+02 5.57488e-01 3.55582e-05 1.27840e-01 - 2 sg_p1 4.08783e+01 4.58705e-01 6.88571e-05 2.73664e-01 - 3 sg_p2 2.61137e+00 3.15165e-01 3.77936e-01 4.45612e-02 - 4 sg_p3 1.95475e+00 1.29897e-01 7.31206e-05 -4.57269e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.108e-01 -1.327e-02 9.363e-11 -1.527e-02 - -1.327e-02 2.105e-01 -6.593e-11 2.188e-02 - 9.363e-11 -6.593e-11 9.986e-02 1.258e-11 - -1.527e-02 2.188e-02 1.258e-11 1.688e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.21263 1.000 -0.052 0.000 -0.211 - 2 0.36794 -0.052 1.000 -0.000 0.367 - 3 0.00000 0.000 -0.000 1.000 0.000 - 4 0.41424 -0.211 0.367 0.000 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -800 -793.825 +- 0.557488 -40.8783 +- 0.458705 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [550,1000] --> [550,1000] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [650,900] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1000] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [650,900] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=30291.5 FROM MIGRAD STATUS=INITIATE 41 CALLS 42 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.90000e+02 6.00000e+00 0.00000e+00 1.95885e+02 - 2 sg_p1 3.75000e+01 2.50000e+00 0.00000e+00 -7.27088e+01 - 3 sg_p2 2.50000e+00 5.00000e-01 0.00000e+00 -9.73752e-02 - 4 sg_p3 1.38901e+00 7.00000e-01 -6.47432e-01 2.33654e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=30270.6 FROM MIGRAD STATUS=CONVERGED 162 CALLS 163 TOTAL - EDM=8.78757e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.86674e+02 5.58720e-01 2.15921e-03 -1.99988e-01 - 2 sg_p1 4.00594e+01 4.59169e-01 4.05661e-03 3.84165e-02 - 3 sg_p2 2.51479e+00 3.25925e-01 2.03755e-02 4.90232e-02 - 4 sg_p3 1.92655e+00 1.49829e-01 4.93143e-03 8.21834e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.122e-01 -3.425e-02 1.692e-03 -2.360e-02 - -3.425e-02 2.109e-01 3.630e-03 2.988e-02 - 1.692e-03 3.630e-03 1.068e-01 4.290e-04 - -2.360e-02 2.988e-02 4.290e-04 2.247e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.28235 1.000 -0.133 0.009 -0.282 - 2 0.43476 -0.133 1.000 0.024 0.434 - 3 0.02730 0.009 0.024 1.000 0.009 - 4 0.48938 -0.282 0.434 0.009 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=30270.6 FROM HESSE STATUS=OK 33 CALLS 196 TOTAL - EDM=6.62467e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.86674e+02 5.59678e-01 4.31843e-04 -1.11107e-01 - 2 sg_p1 4.00594e+01 4.61116e-01 1.62264e-04 2.06214e-01 - 3 sg_p2 2.51479e+00 2.22927e-01 4.53587e-01 5.91504e-03 - 4 sg_p3 1.92655e+00 1.50658e-01 1.97257e-04 -4.66270e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.133e-01 -3.601e-02 1.955e-04 -2.426e-02 - -3.601e-02 2.127e-01 4.139e-04 3.075e-02 - 1.955e-04 4.139e-04 4.983e-02 4.614e-05 - -2.426e-02 3.075e-02 4.614e-05 2.272e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.28788 1.000 -0.140 0.002 -0.288 - 2 0.44255 -0.140 1.000 0.004 0.442 - 3 0.00456 0.002 0.004 1.000 0.001 - 4 0.49768 -0.288 0.442 0.001 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -800 -786.674 +- 0.559678 -40.0594 +- 0.461116 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [550,1020] --> [550,1020] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1020] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=29080.5 FROM MIGRAD STATUS=INITIATE 63 CALLS 64 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.10000e+02 6.00000e+00 0.00000e+00 -8.86811e+02 - 2 sg_p1 2.25000e+01 1.50000e+00 0.00000e+00 -5.59388e+01 - 3 sg_p2 1.11453e+00 5.00000e-01 0.00000e+00 1.02248e+02 - 4 sg_p3 1.01032e+00 7.00000e-01 -7.91400e-01 -4.01707e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=28998.7 FROM MIGRAD STATUS=CONVERGED 208 CALLS 209 TOTAL - EDM=2.80961e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.14374e+02 3.98724e-01 1.45304e-03 -1.70387e-01 - 2 sg_p1 2.58336e+01 3.59782e-01 4.89449e-03 8.13003e-02 - 3 sg_p2 1.67359e+00 7.19571e-02 3.19487e-03 5.88230e-02 - 4 sg_p3 1.19124e+00 3.46142e-02 1.23219e-03 -4.28854e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.590e-01 -2.453e-02 3.541e-03 -4.624e-03 - -2.453e-02 1.296e-01 1.051e-02 6.871e-03 - 3.541e-03 1.051e-02 5.179e-03 5.110e-04 - -4.624e-03 6.871e-03 5.110e-04 1.198e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.39250 1.000 -0.171 0.123 -0.335 - 2 0.62921 -0.171 1.000 0.406 0.551 - 3 0.45197 0.123 0.406 1.000 0.205 - 4 0.60406 -0.335 0.551 0.205 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=28998.7 FROM HESSE STATUS=OK 23 CALLS 232 TOTAL - EDM=2.80811e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 8.14374e+02 3.98978e-01 2.90608e-04 1.46314e-01 - 2 sg_p1 2.58336e+01 3.61130e-01 1.95780e-04 4.60594e-01 - 3 sg_p2 1.67359e+00 7.21418e-02 1.27795e-04 -3.36900e-01 - 4 sg_p3 1.19124e+00 3.46971e-02 2.46437e-04 -7.20348e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.592e-01 -2.477e-02 3.557e-03 -4.644e-03 - -2.477e-02 1.305e-01 1.069e-02 6.950e-03 - 3.557e-03 1.069e-02 5.206e-03 5.225e-04 - -4.644e-03 6.950e-03 5.225e-04 1.204e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.39387 1.000 -0.172 0.124 -0.335 - 2 0.63278 -0.172 1.000 0.410 0.554 - 3 0.45643 0.124 0.410 1.000 0.209 - 4 0.60656 -0.335 0.554 0.209 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -800 -814.374 +- 0.398978 -25.8336 +- 0.36113 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 - fit done -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [550,1020] --> [550,1020] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1020] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=29394.8 FROM MIGRAD STATUS=INITIATE 76 CALLS 77 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.09344e+02 6.00000e+00 0.00000e+00 -9.04905e+02 - 2 sg_p1 2.25000e+01 1.50000e+00 0.00000e+00 -1.79169e+02 - 3 sg_p2 1.02066e+00 5.00000e-01 0.00000e+00 2.33092e+02 - 4 sg_p3 1.24736e+00 7.00000e-01 -6.99207e-01 3.18929e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=29246.6 FROM MIGRAD STATUS=CONVERGED 227 CALLS 228 TOTAL - EDM=6.02107e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.15934e+02 4.09344e-01 1.49430e-03 -1.08719e-01 - 2 sg_p1 2.62317e+01 4.03039e-01 5.19030e-03 1.33417e-01 - 3 sg_p2 1.65790e+00 9.28346e-02 3.66697e-03 4.58391e-02 - 4 sg_p3 1.21792e+00 3.62585e-02 1.27250e-03 -4.88031e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.676e-01 -5.450e-03 9.103e-03 -3.808e-03 - -5.450e-03 1.626e-01 2.111e-02 8.287e-03 - 9.103e-03 2.111e-02 8.623e-03 9.650e-04 - -3.808e-03 8.287e-03 9.650e-04 1.315e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.41684 1.000 -0.033 0.239 -0.257 - 2 0.70520 -0.033 1.000 0.564 0.567 - 3 0.62110 0.239 0.564 1.000 0.287 - 4 0.61571 -0.257 0.567 0.287 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=29246.6 FROM HESSE STATUS=OK 23 CALLS 251 TOTAL - EDM=6.06559e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 8.15934e+02 4.09665e-01 2.98861e-04 1.99109e-01 - 2 sg_p1 2.62317e+01 4.05359e-01 1.03806e-03 5.20781e-01 - 3 sg_p2 1.65790e+00 9.33088e-02 1.46679e-04 -3.43559e-01 - 4 sg_p3 1.21792e+00 3.63707e-02 2.54500e-04 -7.10248e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.678e-01 -5.327e-03 9.198e-03 -3.807e-03 - -5.327e-03 1.645e-01 2.154e-02 8.414e-03 - 9.198e-03 2.154e-02 8.711e-03 9.903e-04 - -3.807e-03 8.414e-03 9.903e-04 1.323e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.41838 1.000 -0.032 0.241 -0.256 - 2 0.70926 -0.032 1.000 0.569 0.570 - 3 0.62607 0.241 0.569 1.000 0.292 - 4 0.61881 -0.256 0.570 0.292 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -800 -815.934 +- 0.409665 -26.2317 +- 0.405359 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [550,1020] --> [550,1020] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1020] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=28612.4 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.10000e+02 6.00000e+00 0.00000e+00 -3.00114e+02 - 2 sg_p1 2.25000e+01 1.50000e+00 0.00000e+00 -1.67115e+02 - 3 sg_p2 1.20214e+00 5.00000e-01 0.00000e+00 4.55233e+01 - 4 sg_p3 1.18762e+00 7.00000e-01 -7.21725e-01 3.91659e+02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -8.9336e-01 9.8220e-01 1.9260e+00 1.9851e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.895346 TO DIAGONAL. - FCN=28570.4 FROM HESSE STATUS=NOT POSDEF 29 CALLS 216 TOTAL - EDM=0.158425 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.12468e+02 1.41859e+00 1.44554e-03 6.97099e+00 - 2 sg_p1 2.52532e+01 1.08302e+00 4.75756e-03 -1.78654e+00 - 3 sg_p2 1.59901e+00 3.19025e-01 4.11832e-03 -4.02743e+00 - 4 sg_p3 1.18510e+00 2.53698e-02 1.13700e-04 9.82264e+00 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.00001 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=28570.4 FROM MIGRAD STATUS=FAILED 279 CALLS 280 TOTAL - EDM=10.5145 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.12542e+02 1.94194e+01 -0.00000e+00 1.21944e+01 - 2 sg_p1 2.53088e+01 4.51787e+00 -0.00000e+00 3.98569e-01 - 3 sg_p2 1.61558e+00 1.51911e+00 0.00000e+00 -5.79777e+00 - 4 sg_p3 1.18237e+00 1.70381e+00 -0.00000e+00 1.97176e+02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.468e+02 5.233e-03 1.508e-03 6.862e-04 - 5.233e-03 2.418e+01 -1.914e-04 5.328e-04 - 1.508e-03 -1.914e-04 2.734e+00 1.653e-04 - 6.862e-04 5.328e-04 1.653e-04 3.439e+00 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.00007 1.000 0.000 0.000 0.000 - 2 0.00008 0.000 1.000 -0.000 0.000 - 3 0.00007 0.000 -0.000 1.000 0.000 - 4 0.00008 0.000 0.000 0.000 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.2546e+02 -1.0036e+01 1.2036e+01 1.2746e+02 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 125.585418 TO DIAGONAL. - FCN=28570.4 FROM HESSE STATUS=NOT POSDEF 25 CALLS 305 TOTAL - EDM=0.206098 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 8.12542e+02 3.32392e-02 4.24522e-04 8.48346e-02 - 2 sg_p1 2.53088e+01 5.64200e-01 1.39644e-03 3.83861e-01 - 3 sg_p2 1.61558e+00 1.70424e-01 1.23980e-03 -3.61595e-01 - 4 sg_p3 1.18237e+00 2.19991e-04 3.58849e-04 -7.23724e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.105e-03 -1.843e-03 5.571e-04 6.264e-07 - -1.843e-03 3.190e-01 -9.625e-02 1.380e-06 - 5.571e-04 -9.625e-02 2.910e-02 -4.175e-07 - 6.264e-07 1.380e-06 -4.175e-07 4.840e-08 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.13108 1.000 -0.098 0.098 0.086 - 2 0.99899 -0.098 1.000 -0.999 0.011 - 3 0.99899 0.098 -0.999 1.000 -0.011 - 4 0.08788 0.086 0.011 -0.011 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -800 -812.542 +- 0.0332392 -25.3088 +- 0.5642 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [550,1020] --> [550,1020] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1020] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=28766.4 FROM MIGRAD STATUS=INITIATE 59 CALLS 60 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.10000e+02 6.00000e+00 0.00000e+00 -7.66248e+02 - 2 sg_p1 2.25000e+01 1.50000e+00 0.00000e+00 -9.03266e+01 - 3 sg_p2 1.08494e+00 5.00000e-01 0.00000e+00 1.09698e+02 - 4 sg_p3 1.05971e+00 7.00000e-01 -7.71521e-01 -1.09172e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=28687.7 FROM MIGRAD STATUS=CONVERGED 199 CALLS 200 TOTAL - EDM=5.14966e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.14565e+02 4.05653e-01 1.46940e-03 3.96359e-01 - 2 sg_p1 2.60283e+01 3.68198e-01 5.02230e-03 5.50486e-02 - 3 sg_p2 1.66109e+00 7.22853e-02 3.19557e-03 8.70441e-02 - 4 sg_p3 1.18488e+00 3.46494e-02 1.22798e-03 -1.02684e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.646e-01 -2.497e-02 3.759e-03 -4.697e-03 - -2.497e-02 1.357e-01 1.103e-02 7.081e-03 - 3.759e-03 1.103e-02 5.227e-03 5.271e-04 - -4.697e-03 7.081e-03 5.271e-04 1.201e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.39503 1.000 -0.167 0.128 -0.334 - 2 0.63439 -0.167 1.000 0.414 0.555 - 3 0.46146 0.128 0.414 1.000 0.210 - 4 0.60729 -0.334 0.555 0.210 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=28687.7 FROM HESSE STATUS=OK 23 CALLS 223 TOTAL - EDM=5.16859e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 8.14565e+02 4.05931e-01 2.93880e-04 1.52758e-01 - 2 sg_p1 2.60283e+01 3.69660e-01 2.00892e-04 4.89788e-01 - 3 sg_p2 1.66109e+00 7.24828e-02 1.27823e-04 -3.42202e-01 - 4 sg_p3 1.18488e+00 3.47387e-02 4.91192e-05 -7.22769e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.648e-01 -2.523e-02 3.775e-03 -4.720e-03 - -2.523e-02 1.368e-01 1.122e-02 7.167e-03 - 3.775e-03 1.122e-02 5.255e-03 5.394e-04 - -4.720e-03 7.167e-03 5.394e-04 1.207e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.39649 1.000 -0.168 0.128 -0.335 - 2 0.63810 -0.168 1.000 0.419 0.558 - 3 0.46606 0.128 0.419 1.000 0.214 - 4 0.60995 -0.335 0.558 0.214 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -800 -814.565 +- 0.405931 -26.0283 +- 0.36966 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [550,1020] --> [550,1020] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1020] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=29348.4 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.10000e+02 6.00000e+00 0.00000e+00 -6.36592e+02 - 2 sg_p1 2.25000e+01 1.50000e+00 0.00000e+00 -1.83918e+02 - 3 sg_p2 1.15597e+00 5.00000e-01 0.00000e+00 8.24903e+01 - 4 sg_p3 1.21818e+00 7.00000e-01 -7.10151e-01 3.68287e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=29268.2 FROM MIGRAD STATUS=CONVERGED 199 CALLS 200 TOTAL - EDM=1.20841e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.14234e+02 3.90817e-01 1.43143e-03 -2.25892e-01 - 2 sg_p1 2.55644e+01 3.48997e-01 4.72433e-03 4.76414e-02 - 3 sg_p2 1.70026e+00 7.24860e-02 3.26136e-03 -2.01102e-02 - 4 sg_p3 1.19325e+00 3.43060e-02 1.23128e-03 -1.60765e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.527e-01 -2.472e-02 3.207e-03 -4.545e-03 - -2.472e-02 1.219e-01 9.868e-03 6.557e-03 - 3.207e-03 9.868e-03 5.256e-03 4.874e-04 - -4.545e-03 6.557e-03 4.874e-04 1.177e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.39017 1.000 -0.181 0.113 -0.339 - 2 0.62081 -0.181 1.000 0.390 0.547 - 3 0.43378 0.113 0.390 1.000 0.196 - 4 0.60004 -0.339 0.547 0.196 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=29268.2 FROM HESSE STATUS=OK 23 CALLS 223 TOTAL - EDM=1.20945e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 8.14234e+02 3.91082e-01 2.86287e-04 1.41589e-01 - 2 sg_p1 2.55644e+01 3.50246e-01 1.88973e-04 4.20910e-01 - 3 sg_p2 1.70026e+00 7.26609e-02 1.30454e-04 -3.25619e-01 - 4 sg_p3 1.19325e+00 3.43857e-02 4.92513e-05 -7.19583e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.530e-01 -2.496e-02 3.222e-03 -4.567e-03 - -2.496e-02 1.228e-01 1.004e-02 6.630e-03 - 3.222e-03 1.004e-02 5.281e-03 4.983e-04 - -4.567e-03 6.630e-03 4.983e-04 1.182e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.39164 1.000 -0.182 0.113 -0.340 - 2 0.62433 -0.182 1.000 0.394 0.550 - 3 0.43823 0.113 0.394 1.000 0.199 - 4 0.60250 -0.340 0.550 0.199 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -800 -814.234 +- 0.391082 -25.5644 +- 0.350246 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [550,1020] --> [550,1020] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1020] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=26933.9 FROM MIGRAD STATUS=INITIATE 65 CALLS 66 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.10000e+02 6.00000e+00 0.00000e+00 -8.02085e+02 - 2 sg_p1 2.25000e+01 1.50000e+00 0.00000e+00 -6.48182e+01 - 3 sg_p2 1.12090e+00 5.00000e-01 0.00000e+00 8.31490e+01 - 4 sg_p3 1.00741e+00 7.00000e-01 -7.92584e-01 -3.93256e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=26858 FROM MIGRAD STATUS=CONVERGED 255 CALLS 256 TOTAL - EDM=5.05705e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.14343e+02 4.13939e-01 1.45196e-03 -9.37591e-03 - 2 sg_p1 2.58276e+01 3.73340e-01 4.89042e-03 1.50340e-02 - 3 sg_p2 1.67484e+00 7.48885e-02 3.20560e-03 -1.09220e-03 - 4 sg_p3 1.19229e+00 3.59871e-02 1.23468e-03 -4.69920e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.714e-01 -2.629e-02 3.837e-03 -4.978e-03 - -2.629e-02 1.395e-01 1.135e-02 7.403e-03 - 3.837e-03 1.135e-02 5.610e-03 5.519e-04 - -4.978e-03 7.403e-03 5.519e-04 1.295e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.39181 1.000 -0.170 0.124 -0.334 - 2 0.62863 -0.170 1.000 0.406 0.551 - 3 0.45181 0.124 0.406 1.000 0.205 - 4 0.60326 -0.334 0.551 0.205 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=26858 FROM HESSE STATUS=OK 23 CALLS 279 TOTAL - EDM=5.06656e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 8.14343e+02 4.14229e-01 5.80783e-05 1.45269e-01 - 2 sg_p1 2.58276e+01 3.74765e-01 1.95617e-04 4.59703e-01 - 3 sg_p2 1.67484e+00 7.50817e-02 1.28224e-04 -3.36369e-01 - 4 sg_p3 1.19229e+00 3.60762e-02 4.93874e-05 -7.19948e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.716e-01 -2.658e-02 3.854e-03 -5.003e-03 - -2.658e-02 1.406e-01 1.154e-02 7.491e-03 - 3.854e-03 1.154e-02 5.639e-03 5.644e-04 - -5.003e-03 7.491e-03 5.644e-04 1.302e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.39332 1.000 -0.171 0.124 -0.335 - 2 0.63227 -0.171 1.000 0.410 0.554 - 3 0.45629 0.124 0.410 1.000 0.208 - 4 0.60585 -0.335 0.554 0.208 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -800 -814.343 +- 0.414229 -25.8276 +- 0.374765 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [550,1020] --> [550,1020] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1020] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=31351.8 FROM MIGRAD STATUS=INITIATE 59 CALLS 60 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.10000e+02 6.00000e+00 0.00000e+00 -9.46989e+02 - 2 sg_p1 2.25000e+01 1.50000e+00 0.00000e+00 -5.83441e+01 - 3 sg_p2 1.10816e+00 5.00000e-01 0.00000e+00 1.09432e+02 - 4 sg_p3 1.01312e+00 7.00000e-01 -7.90261e-01 -4.08568e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31263.7 FROM MIGRAD STATUS=CONVERGED 190 CALLS 191 TOTAL - EDM=0.000282451 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.14404e+02 3.84308e-01 1.45349e-03 -2.57491e-01 - 2 sg_p1 2.58356e+01 3.46779e-01 4.90055e-03 -2.87296e-01 - 3 sg_p2 1.67287e+00 6.92592e-02 3.19853e-03 5.88350e-01 - 4 sg_p3 1.19029e+00 3.33252e-02 1.23266e-03 1.10421e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.477e-01 -2.290e-02 3.276e-03 -4.302e-03 - -2.290e-02 1.204e-01 9.759e-03 6.385e-03 - 3.276e-03 9.759e-03 4.798e-03 4.745e-04 - -4.302e-03 6.385e-03 4.745e-04 1.111e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.39330 1.000 -0.172 0.123 -0.336 - 2 0.62986 -0.172 1.000 0.406 0.552 - 3 0.45226 0.123 0.406 1.000 0.206 - 4 0.60490 -0.336 0.552 0.206 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31263.7 FROM HESSE STATUS=OK 23 CALLS 214 TOTAL - EDM=0.000282194 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 8.14404e+02 3.84550e-01 2.90698e-04 1.47348e-01 - 2 sg_p1 2.58356e+01 3.47902e-01 9.80110e-04 4.60888e-01 - 3 sg_p2 1.67287e+00 6.94090e-02 6.39706e-04 -3.37208e-01 - 4 sg_p3 1.19029e+00 3.33968e-02 4.93065e-05 -7.20709e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.479e-01 -2.313e-02 3.287e-03 -4.322e-03 - -2.313e-02 1.211e-01 9.898e-03 6.450e-03 - 3.287e-03 9.898e-03 4.819e-03 4.836e-04 - -4.322e-03 6.450e-03 4.836e-04 1.115e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.39464 1.000 -0.173 0.123 -0.336 - 2 0.63294 -0.173 1.000 0.410 0.555 - 3 0.45602 0.123 0.410 1.000 0.209 - 4 0.60714 -0.336 0.555 0.209 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -800 -814.404 +- 0.38455 -25.8356 +- 0.347902 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 814.374 +- 0.398978 (stat) - 1.83178 + 1.56012 (syst); -1.84261/+1.57282 (total) - Uncertainty on sg_p1 = 25.8336 +- 0.36113 (stat) - 0.524827 + 0.398085 (syst); -0.55502/+0.437122 (total) - Uncertainty on sg_p2 = 1.67359 +- 0.0721418 (stat) - 0.0580086 + 0.0266696 (syst); -0.0683089/+0.0448595 (total) - Uncertainty on sg_p3 = 1.19124 +- 0.0346971 (stat) - 0.00886586 + 0.0266863 (syst); -0.0194827/+0.0318297 (total) - === Baseline plot ===
- norm = 217.194 -JEC lnN 1.00978 - -JER lnN 1.01239 - -btag lnN 1.07603 - -sg_p0 param 814.374 -1.84261/+1.57282 -sg_p1 param 25.8336 -0.55502/+0.437122 -sg_p2 param 1.67359 -0.0683089/+0.0448595 -sg_p3 param 1.19124 -0.0194827/+0.0318297 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_900_crystal_1_550_1200/data_bkg.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_900_crystal_1_550_1200/data_bkg.log deleted file mode 100644 index a966e12..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_900_crystal_1_550_1200/data_bkg.log +++ /dev/null @@ -1,690 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10879.7 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 6.74624e-01 5.09000e-01 -8.31364e-01 -1.01971e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -3.20610e+01 - 3 par_crystal_2 5.00000e+02 2.00000e+01 0.00000e+00 -9.48837e+00 - 4 par_crystal_3 1.05000e+02 1.90000e+01 0.00000e+00 2.45317e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7116e+01 9.9978e-01 1.9597e+00 1.8156e+01 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 17.134017 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 27 CALLS 314 TOTAL - EDM=0.131054 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.06594e+00 6.09301e-02 1.43210e-03 -8.77809e-01 - 2 par_crystal_1 5.09576e+00 7.69298e-02 8.09031e-02 -5.13188e-02 - 3 par_crystal_2 4.95224e+02 7.91481e+01 2.17679e-03 -5.43249e-01 - 4 par_crystal_3 1.90900e+02 9.54958e+00 1.13079e-02 4.60762e-02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 477 CALLS 478 TOTAL - EDM=0.0370129 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.11079e+00 8.93309e-02 0.00000e+00 -4.75984e-01 - 2 par_crystal_1 5.08061e+00 3.60144e-01 0.00000e+00 -1.14416e-01 - 3 par_crystal_2 4.76040e+02 1.75614e+01 0.00000e+00 -2.32451e-01 - 4 par_crystal_3 1.99914e+02 2.77391e+01 0.00000e+00 -7.67572e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.985e-03 -2.091e-03 1.499e+00 2.820e-01 - -2.091e-03 2.873e-02 -7.387e-01 -2.900e-02 - 1.499e+00 -7.387e-01 3.118e+02 5.244e+01 - 2.820e-01 -2.900e-02 5.244e+01 1.008e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99775 1.000 -0.138 0.950 0.994 - 2 0.79882 -0.138 1.000 -0.247 -0.054 - 3 0.95717 0.950 -0.247 1.000 0.935 - 4 0.99764 0.994 -0.054 0.935 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.8 FROM HESSE STATUS=OK 27 CALLS 505 TOTAL - EDM=0.0183624 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.11079e+00 4.31984e-02 1.44775e-03 -6.03431e-01 - 2 par_crystal_1 5.08061e+00 3.28337e+00 6.64371e-02 1.44728e+00 - 3 par_crystal_2 4.76040e+02 8.02153e+00 1.45036e-02 3.38355e+00 - 4 par_crystal_3 1.99914e+02 2.26294e+01 4.50606e-02 1.52819e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.866e-03 -1.951e-03 -2.584e-03 1.946e-02 - -1.951e-03 1.028e-01 6.675e-04 3.793e-04 - -2.584e-03 6.675e-04 6.449e+01 1.116e+00 - 1.946e-02 3.793e-04 1.116e+00 8.140e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.21215 1.000 -0.141 -0.007 0.158 - 2 0.14274 -0.141 1.000 0.000 0.000 - 3 0.05109 -0.007 0.000 1.000 0.049 - 4 0.16712 0.158 0.000 0.049 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10978.6 FROM MIGRAD STATUS=INITIATE 68 CALLS 69 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 6.03110e+02 3.00000e+01 -8.97402e-01 -6.52175e+01 - 2 par_gaus_exp_1 5.45000e+01 9.10000e+00 0.00000e+00 -4.62060e+02 - 3 par_gaus_exp_2 4.12114e-01 3.05000e-01 0.00000e+00 1.25553e+03 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.9 FROM HESSE STATUS=OK 18 CALLS 182 TOTAL - EDM=0.000691453 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.46431e+02 6.06936e+00 3.17833e-03 -3.92855e-01 - 2 par_gaus_exp_1 6.65716e+01 1.75685e+01 2.62647e-03 1.43349e-01 - 3 par_gaus_exp_2 3.07505e-01 8.37981e-02 8.79822e-04 -3.06196e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM MIGRAD STATUS=CONVERGED 316 CALLS 317 TOTAL - EDM=9.19369e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.62504e+02 3.53152e+00 1.63243e-03 -1.66316e-01 - 2 par_gaus_exp_1 2.46552e+01 1.25211e+01 1.75085e-03 -3.48771e-01 - 3 par_gaus_exp_2 1.14604e-01 5.89219e-02 6.31447e-04 9.83138e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.247e+01 -1.544e+01 -6.961e-02 - -1.544e+01 1.643e+02 7.558e-01 - -6.961e-02 7.558e-01 3.493e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.35636 1.000 -0.341 -0.333 - 2 0.99789 -0.341 1.000 0.998 - 3 0.99788 -0.333 0.998 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM HESSE STATUS=OK 16 CALLS 333 TOTAL - EDM=9.89177e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 5.62504e+02 3.77274e+00 6.52972e-05 8.34552e-02 - 2 par_gaus_exp_1 2.46552e+01 1.46349e+01 3.50170e-04 -7.15413e-01 - 3 par_gaus_exp_2 1.14604e-01 6.93856e-02 1.26289e-04 -1.27868e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.424e+01 -2.545e+01 -1.157e-01 - -2.545e+01 2.286e+02 1.052e+00 - -1.157e-01 1.052e+00 4.855e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.45683 1.000 -0.446 -0.440 - 2 0.99849 -0.446 1.000 0.998 - 3 0.99848 -0.440 0.998 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (13168.6) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=575, par_novo_1=100, par_novo_2=1.58864 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 575,par_novo_1 = 100,par_novo_2 = 1.58864) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=645, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=655, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=665, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=675, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=685, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=695, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=705, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=715, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=725, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=735, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=745, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=755, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - ... (remaining 46 messages suppressed) - - FCN=13054.5 FROM MIGRAD STATUS=INITIATE 14 CALLS 15 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.75000e+02 1.50000e+01 2.01358e-01 -1.22938e+03 - 2 par_novo_1 1.00000e+02 2.00000e+01 2.01358e-01 -6.98326e+03 - 3 par_novo_2 0.00000e+00 2.00000e+01 2.01358e-01 1.51249e+06 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM MIGRAD STATUS=CONVERGED 220 CALLS 221 TOTAL - EDM=2.09668e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.00000e+02 1.21837e+02 1.25149e-01 -7.30463e-04 - 2 par_novo_1 1.30637e+02 1.58558e+01 3.16845e-03 -1.76078e-02 - 3 par_novo_2 -6.95187e-01 1.36663e-01 2.61078e-05 1.74080e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.121e-01 -9.460e-01 -6.449e-03 - -9.460e-01 2.538e+02 2.099e+00 - -6.449e-03 2.099e+00 1.868e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.21023 1.000 -0.177 -0.141 - 2 0.96488 -0.177 1.000 0.964 - 3 0.96445 -0.141 0.964 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM HESSE STATUS=OK 20 CALLS 241 TOTAL - EDM=1.01397e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 5.00000e+02 1.20312e+02 5.00000e-01 -1.57325e+00 - 2 par_novo_1 1.30637e+02 2.01762e+01 1.26738e-04 3.11381e-01 - 3 par_novo_2 -6.95187e-01 1.62575e-01 1.04431e-06 -6.95192e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.070e-01 -4.278e+00 -2.995e-02 - -4.278e+00 4.133e+02 3.212e+00 - -2.995e-02 3.212e+00 2.643e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.69436 1.000 -0.643 -0.563 - 2 0.97859 -0.643 1.000 0.972 - 3 0.97501 -0.563 0.972 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10877 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 6.33849e-01 5.09000e-01 -8.55460e-01 -1.25390e+02 - 2 par_crystal_1_1 2.55500e+00 5.09000e-01 0.00000e+00 -2.69495e+01 - 3 par_crystal_1_2 5.50000e+02 3.00000e+01 0.00000e+00 -1.44080e+01 - 4 par_crystal_1_3 1.04500e+02 1.91000e+01 0.00000e+00 3.07979e+01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.43469 added to diagonal of error matrix - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.5401e+00 8.4221e-02 1.8087e+00 3.6472e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 1.543714 TO DIAGONAL. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.9 FROM HESSE STATUS=OK 25 CALLS 485 TOTAL - EDM=0.0491336 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.05623e+00 1.52463e-01 1.42446e-03 -1.90900e+00 - 2 par_crystal_1_1 5.09988e+00 3.18944e+00 7.54811e-02 -8.93342e-03 - 3 par_crystal_1_2 4.96280e+02 4.98347e+01 9.02051e-03 3.58498e-02 - 4 par_crystal_1_3 1.89188e+02 2.78069e+01 1.02856e-02 -2.38185e-01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 538 CALLS 539 TOTAL - EDM=10.0867 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 14.1 per cent - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.09723e+00 3.02575e-02 -0.00000e+00 5.47416e+01 - 2 par_crystal_1_1 5.09997e+00 3.18368e+00 0.00000e+00 -3.90351e-03 - 3 par_crystal_1_2 4.83329e+02 2.76558e+01 0.00000e+00 7.05236e+00 - 4 par_crystal_1_3 1.96552e+02 5.80629e+00 -0.00000e+00 4.39990e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.156e-04 -1.804e-07 -6.742e-01 1.111e-01 - -1.804e-07 1.763e-04 7.888e-03 -2.154e-03 - -6.742e-01 7.888e-03 7.759e+02 -1.463e+02 - 1.111e-01 -2.154e-03 -1.463e+02 3.432e+01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.82553 1.000 -0.000 -0.800 0.627 - 2 0.03650 -0.000 1.000 0.021 -0.028 - 3 0.94703 -0.800 0.021 1.000 -0.896 - 4 0.90888 0.627 -0.028 -0.896 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -9.7852e-01 9.9996e-01 1.9836e+00 1.9949e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.980510 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 29 CALLS 568 TOTAL - EDM=238.514 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 1.09723e+00 4.25322e-02 2.54943e-04 -6.09913e-01 - 2 par_crystal_1_1 5.09997e+00 7.84798e-01 8.54763e-02 1.56580e+00 - 3 par_crystal_1_2 4.83329e+02 1.87856e+01 1.76414e-03 -4.60588e-01 - 4 par_crystal_1_3 1.96552e+02 5.33115e+00 2.63738e-03 1.30128e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.809e-03 -2.197e-07 8.001e-01 2.280e-01 - -2.197e-07 1.053e-04 -1.173e-04 -3.665e-05 - 8.001e-01 -1.173e-04 3.552e+02 1.010e+02 - 2.280e-01 -3.665e-05 1.010e+02 2.885e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99849 1.000 -0.001 0.998 0.998 - 2 0.00265 -0.001 1.000 -0.001 -0.001 - 3 0.99848 0.998 -0.001 1.000 0.998 - 4 0.99849 0.998 -0.001 0.998 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_550_1200 = 1266.17 - Background number of gaus_exp_550_1200 = 1266.17 - Background number of novo_550_1200 = 1266.17 - Background number of crystal_1_550_1200 = 1266.17 - Background number of gaus_bern_550_1200 = 1266.17 - Background number of landau_550_1200 = 1266.17 -par_crystal_0 param 1.11079 0.0431984 -par_crystal_1 param 5.08061 3.28337 -par_crystal_2 param 476.04 8.02153 -par_crystal_3 param 199.914 22.6294 -par_crystal_1_0 param 1.09723 0.0425322 -par_crystal_1_1 param 5.09997 0.784798 -par_crystal_1_2 param 483.329 18.7856 -par_crystal_1_3 param 196.552 5.33115 -par_gaus_exp_0 param 562.504 3.77274 -par_gaus_exp_1 param 24.6552 14.6349 -par_gaus_exp_2 param 0.114604 0.0693856 -par_novo_0 param 500 120.312 -par_novo_1 param 130.637 20.1762 -par_novo_2 param -0.695187 0.162575 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_900_crystal_1_550_1200/datacard_900_crystal_1_550_1200.txt b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_900_crystal_1_550_1200/datacard_900_crystal_1_550_1200.txt deleted file mode 100644 index 1da177d..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_900_crystal_1_550_1200/datacard_900_crystal_1_550_1200.txt +++ /dev/null @@ -1,30 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_900.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_crystal_1_550_1200.root HbbHbb:f_crystal_1 -shapes data_obs HbbHbb w_background_crystal_1_550_1200.root HbbHbb:data_obs_crystal_1_550_1200 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 4.64156 1266.17 -lumi_13TeV lnN 1.026 - -bTag lnN 1.0799 - -JER lnN 1.01164 - -JEC lnN 1.00857 - -trigger lnN 1.10 - -PDF lnN 1.02549102587 - -sg_p0 param 914.708 -2.06678/+2.54301 -sg_p1 param 30.2451 -0.964886/+0.328936 -sg_p2 param 2.07933 -0.225661/+0.2111 -sg_p3 param 1.21527 -0.055531/+0.0332555 -par_crystal_1_0 param 1.09723 0.0425322 -par_crystal_1_1 param 5.09997 0.784798 -par_crystal_1_2 param 483.329 18.7856 -par_crystal_1_3 param 196.552 5.33115 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_900_crystal_1_550_1200/pdf.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_900_crystal_1_550_1200/pdf.log deleted file mode 100644 index d309f86..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_900_crystal_1_550_1200/pdf.log +++ /dev/null @@ -1,10 +0,0 @@ -[?1034h FCN=13.6412 FROM MIGRAD STATUS=CONVERGED 69 CALLS 70 TOTAL - EDM=1.32214e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 Constant 1.20921e+01 1.56255e+00 2.43180e-03 2.41961e-04 - 2 Mean 9.98237e-01 3.72269e-03 6.33611e-06 -4.15570e-02 - 3 Sigma 2.54910e-02 2.98572e-03 6.27464e-05 -4.89863e-03 -0.998236892348 +/- 0.00372268649896 -0.0254910258695 +/- 0.00298571979086 -PDF lnN 1.02549102587 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_900_crystal_1_550_1200/signal900_sig.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_900_crystal_1_550_1200/signal900_sig.log deleted file mode 100644 index d4cc812..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_900_crystal_1_550_1200/signal900_sig.log +++ /dev/null @@ -1,985 +0,0 @@ - -Processing test.c... -nSignal_init = 100000 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [620,1100] --> [620,1100] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [720,1000] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [620,1100] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [720,1000] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=33664.2 FROM MIGRAD STATUS=INITIATE 54 CALLS 55 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.70000e+02 1.20000e+01 0.00000e+00 -1.87024e+03 - 2 sg_p1 4.00000e+01 3.00000e+00 0.00000e+00 1.70564e+01 - 3 sg_p2 8.67563e-01 5.00000e-01 0.00000e+00 3.77923e+02 - 4 sg_p3 1.75058e+00 7.00000e-01 -5.23409e-01 -9.51811e+01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.14138 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=33371.1 FROM HESSE STATUS=OK 27 CALLS 373 TOTAL - EDM=0.00332624 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.87145e+02 6.18636e-01 1.26596e-03 7.76547e-02 - 2 sg_p1 4.38895e+01 5.43360e-01 3.99187e-03 5.04266e-02 - 3 sg_p2 2.61266e+00 9.39365e-01 6.28602e-02 -2.11368e-01 - 4 sg_p3 1.68218e+00 9.36801e-02 3.16921e-03 5.53803e-02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=33371.1 FROM MIGRAD STATUS=CONVERGED 386 CALLS 387 TOTAL - EDM=8.86352e-09 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 0.0 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.87145e+02 6.18635e-01 1.67624e-06 -3.95438e-03 - 2 sg_p1 4.38881e+01 5.43356e-01 -9.98687e-05 -6.98133e-04 - 3 sg_p2 2.69108e+00 9.37644e-01 3.14301e-02 -2.30056e-05 - 4 sg_p3 1.68195e+00 9.36715e-02 -7.67431e-05 -4.02566e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.827e-01 -6.502e-02 -5.811e-05 -2.090e-02 - -6.502e-02 2.954e-01 5.476e-04 2.735e-02 - -5.811e-05 5.476e-04 9.241e-01 1.376e-04 - -2.090e-02 2.735e-02 1.376e-04 8.777e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.36054 1.000 -0.193 -0.000 -0.361 - 2 0.53708 -0.193 1.000 0.001 0.537 - 3 0.00163 -0.000 0.001 1.000 0.002 - 4 0.59741 -0.361 0.537 0.002 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=33371.1 FROM HESSE STATUS=OK 29 CALLS 416 TOTAL - EDM=5.60701e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 8.87145e+02 6.19206e-01 1.26598e-03 2.89787e-01 - 2 sg_p1 4.38881e+01 5.44560e-01 1.59675e-03 2.62200e-01 - 3 sg_p2 2.69108e+00 3.66223e+00 4.86437e-02 7.65081e-02 - 4 sg_p3 1.68195e+00 9.38964e-02 1.26768e-03 -5.46198e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.834e-01 -6.608e-02 9.504e-07 -2.110e-02 - -6.608e-02 2.967e-01 4.698e-06 2.763e-02 - 9.504e-07 4.698e-06 6.569e+03 3.565e-07 - -2.110e-02 2.763e-02 3.565e-07 8.819e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.36280 1.000 -0.196 0.000 -0.363 - 2 0.54009 -0.196 1.000 0.000 0.540 - 3 0.00000 0.000 0.000 1.000 0.000 - 4 0.60032 -0.363 0.540 0.000 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -900 -887.145 +- 0.619206 -43.8881 +- 0.54456 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [620,1100] --> [620,1100] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [720,1000] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [620,1100] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [720,1000] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=33829.5 FROM MIGRAD STATUS=INITIATE 40 CALLS 41 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.70000e+02 1.20000e+01 0.00000e+00 -1.37162e+03 - 2 sg_p1 4.00000e+01 3.00000e+00 0.00000e+00 7.33519e+01 - 3 sg_p2 5.87771e-01 5.00000e-01 -8.70873e-01 9.57906e+01 - 4 sg_p3 3.50000e+00 7.00000e-01 0.00000e+00 -3.46120e-01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.00007 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=33473.2 FROM HESSE STATUS=OK 25 CALLS 331 TOTAL - EDM=0.315109 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.91582e+02 6.17824e-01 1.32224e-03 -7.77130e-01 - 2 sg_p1 4.40907e+01 5.43395e-01 4.14838e-03 2.19978e+00 - 3 sg_p2 2.59937e+00 4.57998e-01 2.91245e-01 -4.28319e+00 - 4 sg_p3 1.56794e+00 6.89875e-02 2.49674e-03 -3.53414e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=33473.2 FROM MIGRAD STATUS=CONVERGED 344 CALLS 345 TOTAL - EDM=1.81644e-07 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 0.0 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.91593e+02 6.17785e-01 1.97446e-04 -3.22562e-02 - 2 sg_p1 4.40472e+01 5.43856e-01 -3.01296e-03 -7.86524e-03 - 3 sg_p2 2.96080e+00 4.50508e-01 1.45623e-01 0.00000e+00 - 4 sg_p3 1.56553e+00 6.89514e-02 -8.25067e-04 1.93280e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.817e-01 -4.853e-02 1.606e-04 -1.348e-02 - -4.853e-02 2.959e-01 6.495e-06 1.836e-02 - 1.606e-04 6.495e-06 2.053e-01 -1.663e-05 - -1.348e-02 1.836e-02 -1.663e-05 4.755e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.31670 1.000 -0.144 0.001 -0.316 - 2 0.48950 -0.144 1.000 0.000 0.489 - 3 0.00076 0.001 0.000 1.000 -0.001 - 4 0.54881 -0.316 0.489 -0.001 1.000 - ********** - ** 18 **HESSE 2000 - ********** - MINUIT WARNING IN HESSE - ============== Second derivative enters zero, param 3 - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=33473.2 FROM HESSE STATUS=OK 31 CALLS 376 TOTAL - EDM=1.33661 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 8.91593e+02 6.18180e-01 1.32251e-03 3.68142e-01 - 2 sg_p1 4.40472e+01 5.43127e-01 4.14931e-03 2.73201e-01 - 3 sg_p2 2.96080e+00 5.37583e-01 5.10000e-01 1.85380e-01 - 4 sg_p3 1.56553e+00 6.89873e-02 9.98698e-04 -5.85607e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.822e-01 -4.972e-02 -6.585e-12 -1.366e-02 - -4.972e-02 2.951e-01 2.406e-12 1.846e-02 - -6.585e-12 2.406e-12 2.937e-01 2.262e-12 - -1.366e-02 1.846e-02 2.262e-12 4.760e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.32056 1.000 -0.148 -0.000 -0.320 - 2 0.49249 -0.148 1.000 0.000 0.492 - 3 0.00000 -0.000 0.000 1.000 0.000 - 4 0.55232 -0.320 0.492 0.000 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -900 -891.593 +- 0.61818 -44.0472 +- 0.543127 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [620,1100] --> [620,1100] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [720,1000] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [620,1100] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [720,1000] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=33025.6 FROM MIGRAD STATUS=INITIATE 55 CALLS 56 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.70000e+02 1.20000e+01 0.00000e+00 -1.21902e+03 - 2 sg_p1 4.00000e+01 3.00000e+00 0.00000e+00 3.56266e+01 - 3 sg_p2 8.48797e-01 5.00000e-01 0.00000e+00 8.71721e+00 - 4 sg_p3 1.96916e+00 7.00000e-01 -4.52685e-01 1.33827e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=32836 FROM HESSE STATUS=OK 31 CALLS 284 TOTAL - EDM=0.000111741 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.83274e+02 5.75489e-01 1.22716e-03 3.79802e-02 - 2 sg_p1 4.40176e+01 4.49467e-01 3.85966e-03 -7.57641e-02 - 3 sg_p2 2.44289e+00 2.23488e-01 1.00126e-02 8.24918e-02 - 4 sg_p3 1.81465e+00 3.14767e-02 3.33332e-03 1.27746e+00 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=32836 FROM MIGRAD STATUS=FAILED 321 CALLS 322 TOTAL - EDM=0.034586 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 18.3 per cent - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.83276e+02 5.73266e-01 -0.00000e+00 5.01334e-02 - 2 sg_p1 4.40177e+01 4.48511e-01 0.00000e+00 1.03605e-01 - 3 sg_p2 2.44263e+00 1.46331e-01 -0.00000e+00 -1.44978e-01 - 4 sg_p3 1.81329e+00 9.50131e-03 0.00000e+00 -1.27604e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.286e-01 1.600e-03 -3.893e-03 -4.127e-05 - 1.600e-03 2.012e-01 2.014e-03 3.934e-04 - -3.893e-03 2.014e-03 2.144e-02 -5.698e-04 - -4.127e-05 3.934e-04 -5.698e-04 9.028e-05 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.05588 1.000 0.006 -0.046 -0.008 - 2 0.11947 0.006 1.000 0.031 0.092 - 3 0.41831 -0.046 0.031 1.000 -0.410 - 4 0.42369 -0.008 0.092 -0.410 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=32836 FROM HESSE STATUS=OK 29 CALLS 351 TOTAL - EDM=0.000104468 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 8.83276e+02 5.75584e-01 1.22738e-03 2.23108e-01 - 2 sg_p1 4.40177e+01 4.49699e-01 3.86131e-03 2.71159e-01 - 3 sg_p2 2.44263e+00 2.24450e-01 1.04348e-02 -2.29498e-02 - 4 sg_p3 1.81329e+00 3.18671e-02 3.32746e-03 -5.02843e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.313e-01 -1.034e-03 -3.993e-04 -1.393e-03 - -1.034e-03 2.023e-01 -9.138e-05 1.874e-03 - -3.993e-04 -9.138e-05 5.051e-02 1.806e-06 - -1.393e-03 1.874e-03 1.806e-06 1.016e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.07626 1.000 -0.004 -0.003 -0.076 - 2 0.13085 -0.004 1.000 -0.001 0.131 - 3 0.00322 -0.003 -0.001 1.000 0.000 - 4 0.15092 -0.076 0.131 0.000 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -900 -883.276 +- 0.575584 -44.0177 +- 0.449699 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [650,1130] --> [650,1130] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [650,1130] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=31847.2 FROM MIGRAD STATUS=INITIATE 55 CALLS 56 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.10000e+02 8.00000e+00 0.00000e+00 -9.15004e+02 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 -1.07919e+02 - 3 sg_p2 1.34843e+00 5.00000e-01 0.00000e+00 1.01663e+02 - 4 sg_p3 1.18098e+00 7.00000e-01 -7.24255e-01 -8.67138e+00 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31775.1 FROM MIGRAD STATUS=CONVERGED 191 CALLS 192 TOTAL - EDM=1.8133e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.14708e+02 6.08444e-01 1.29613e-03 1.05815e-01 - 2 sg_p1 3.02451e+01 5.68219e-01 5.56289e-03 1.74811e-02 - 3 sg_p2 2.07933e+00 1.35380e-01 6.08573e-03 1.51761e-02 - 4 sg_p3 1.21527e+00 6.15917e-02 1.48479e-03 1.57009e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.702e-01 -2.155e-01 -1.002e-02 -2.676e-02 - -2.155e-01 3.236e-01 3.008e-02 2.846e-02 - -1.002e-02 3.008e-02 1.835e-02 2.403e-03 - -2.676e-02 2.846e-02 2.403e-03 3.794e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.72659 1.000 -0.623 -0.122 -0.714 - 2 0.83258 -0.623 1.000 0.390 0.812 - 3 0.42083 -0.122 0.390 1.000 0.288 - 4 0.85489 -0.714 0.812 0.288 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31775.1 FROM HESSE STATUS=OK 23 CALLS 215 TOTAL - EDM=2.07761e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 9.14708e+02 6.37633e-01 5.18452e-05 1.17968e-01 - 2 sg_p1 3.02451e+01 6.04034e-01 2.22516e-04 3.74720e-01 - 3 sg_p2 2.07933e+00 1.39479e-01 2.43429e-04 -1.69071e-01 - 4 sg_p3 1.21527e+00 6.62844e-02 5.93916e-05 -7.11249e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.066e-01 -2.540e-01 -1.389e-02 -3.139e-02 - -2.540e-01 3.658e-01 3.536e-02 3.345e-02 - -1.389e-02 3.536e-02 1.948e-02 2.966e-03 - -3.139e-02 3.345e-02 2.966e-03 4.395e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.75434 1.000 -0.659 -0.156 -0.743 - 2 0.85324 -0.659 1.000 0.419 0.834 - 3 0.44886 -0.156 0.419 1.000 0.321 - 4 0.87300 -0.743 0.834 0.321 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -900 -914.708 +- 0.637633 -30.2451 +- 0.604034 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 - fit done -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [650,1130] --> [650,1130] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [650,1130] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=32076.3 FROM MIGRAD STATUS=INITIATE 56 CALLS 57 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.10000e+02 8.00000e+00 0.00000e+00 -9.42825e+02 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 -2.66341e+02 - 3 sg_p2 1.24756e+00 5.00000e-01 0.00000e+00 1.32032e+02 - 4 sg_p3 1.51475e+00 7.00000e-01 -6.03120e-01 6.41643e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.2508e+00 8.3406e-01 1.1303e+00 4.2864e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 2.255047 TO DIAGONAL. - FCN=31897 FROM HESSE STATUS=NOT POSDEF 27 CALLS 293 TOTAL - EDM=0.00241152 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.17231e+02 6.95098e-01 1.30051e-03 1.46076e-01 - 2 sg_p1 3.03755e+01 3.97597e-01 5.52810e-03 7.58612e-03 - 3 sg_p2 2.27801e+00 1.55888e+00 7.81545e-03 6.54139e-02 - 4 sg_p3 1.17081e+00 2.99817e-01 1.31225e-03 1.00535e+00 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31897 FROM MIGRAD STATUS=CONVERGED 328 CALLS 329 TOTAL - EDM=0.000214971 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.17231e+02 4.88559e-01 1.30052e-03 3.06873e-02 - 2 sg_p1 3.03754e+01 4.10963e-01 2.21124e-03 2.67746e-02 - 3 sg_p2 2.27858e+00 1.68057e-01 3.12618e-03 1.19850e-01 - 4 sg_p3 1.17071e+00 3.83284e-02 1.31215e-03 6.94100e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.387e-01 -8.067e-02 2.183e-04 -9.547e-03 - -8.067e-02 1.691e-01 1.601e-02 9.908e-03 - 2.183e-04 1.601e-02 2.829e-02 8.281e-04 - -9.547e-03 9.908e-03 8.281e-04 1.469e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.52820 1.000 -0.402 0.003 -0.510 - 2 0.65548 -0.402 1.000 0.231 0.629 - 3 0.25444 0.003 0.231 1.000 0.128 - 4 0.68871 -0.510 0.629 0.128 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31897 FROM HESSE STATUS=OK 23 CALLS 352 TOTAL - EDM=0.000216668 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 9.17231e+02 4.89066e-01 5.20206e-05 1.81768e-01 - 2 sg_p1 3.03754e+01 4.11848e-01 4.42248e-04 3.93462e-01 - 3 sg_p2 2.27858e+00 1.68511e-01 6.25236e-04 -8.86838e-02 - 4 sg_p3 1.17071e+00 3.83872e-02 2.62429e-04 -7.28178e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.392e-01 -8.128e-02 1.943e-04 -9.592e-03 - -8.128e-02 1.698e-01 1.629e-02 9.968e-03 - 1.943e-04 1.629e-02 2.844e-02 8.443e-04 - -9.592e-03 9.968e-03 8.443e-04 1.474e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.52961 1.000 -0.403 0.002 -0.511 - 2 0.65734 -0.403 1.000 0.234 0.630 - 3 0.25774 0.002 0.234 1.000 0.130 - 4 0.68988 -0.511 0.630 0.130 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -900 -917.231 +- 0.489066 -30.3754 +- 0.411848 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [650,1130] --> [650,1130] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [650,1130] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=31270.8 FROM MIGRAD STATUS=INITIATE 78 CALLS 79 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.11670e+02 8.00000e+00 4.17695e-02 1.48625e+01 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 -1.41145e+02 - 3 sg_p2 1.45615e+00 5.00000e-01 0.00000e+00 -1.80733e+01 - 4 sg_p3 1.27355e+00 7.00000e-01 0.00000e+00 5.00168e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31241.1 FROM MIGRAD STATUS=CONVERGED 201 CALLS 202 TOTAL - EDM=1.00647e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.12666e+02 5.93671e-01 1.27735e-03 2.63765e-02 - 2 sg_p1 2.96697e+01 6.13867e-01 5.39370e-03 1.70034e-02 - 3 sg_p2 1.86746e+00 1.16178e-01 4.79471e-03 1.24233e-02 - 4 sg_p3 1.20141e+00 6.21896e-02 1.45289e-03 7.47047e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.525e-01 -2.113e-01 -9.800e-03 -2.540e-02 - -2.113e-01 3.778e-01 3.879e-02 3.144e-02 - -9.800e-03 3.879e-02 1.351e-02 2.946e-03 - -2.540e-02 3.144e-02 2.946e-03 3.868e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.71041 1.000 -0.579 -0.142 -0.688 - 2 0.85591 -0.579 1.000 0.543 0.822 - 3 0.58356 -0.142 0.543 1.000 0.408 - 4 0.86266 -0.688 0.822 0.408 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31241.1 FROM HESSE STATUS=OK 23 CALLS 225 TOTAL - EDM=1.03715e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 9.12666e+02 5.96901e-01 2.55470e-04 6.66929e-02 - 2 sg_p1 2.96697e+01 6.22112e-01 2.15748e-04 2.93491e-01 - 3 sg_p2 1.86746e+00 1.17183e-01 1.91788e-04 -2.55796e-01 - 4 sg_p3 1.20141e+00 6.28752e-02 5.81156e-05 -7.16489e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.563e-01 -2.172e-01 -1.053e-02 -2.596e-02 - -2.172e-01 3.880e-01 4.037e-02 3.237e-02 - -1.053e-02 4.037e-02 1.374e-02 3.084e-03 - -2.596e-02 3.237e-02 3.084e-03 3.954e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.71417 1.000 -0.584 -0.151 -0.692 - 2 0.86002 -0.584 1.000 0.553 0.827 - 3 0.59309 -0.151 0.553 1.000 0.418 - 4 0.86587 -0.692 0.827 0.418 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -900 -912.666 +- 0.596901 -29.6697 +- 0.622112 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [650,1130] --> [650,1130] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [650,1130] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=31402.8 FROM MIGRAD STATUS=INITIATE 56 CALLS 57 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.10000e+02 8.00000e+00 0.00000e+00 -6.41887e+02 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 -1.32609e+02 - 3 sg_p2 1.21873e+00 5.00000e-01 0.00000e+00 2.82004e+01 - 4 sg_p3 1.29003e+00 7.00000e-01 -6.83382e-01 3.00498e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31327.2 FROM MIGRAD STATUS=CONVERGED 202 CALLS 203 TOTAL - EDM=9.20948e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.14895e+02 5.51583e-01 1.31460e-03 1.61689e-01 - 2 sg_p1 3.03350e+01 7.44882e-01 5.76073e-03 -3.27245e-02 - 3 sg_p2 1.86472e+00 2.01246e-01 6.02311e-03 -3.75996e-03 - 4 sg_p3 1.20817e+00 6.26611e-02 1.44547e-03 2.50672e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.043e-01 -1.559e-01 -6.728e-03 -1.871e-02 - -1.559e-01 5.570e-01 1.146e-01 3.885e-02 - -6.728e-03 1.146e-01 4.059e-02 7.410e-03 - -1.871e-02 3.885e-02 7.410e-03 3.927e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.63293 1.000 -0.379 -0.061 -0.541 - 2 0.89852 -0.379 1.000 0.762 0.831 - 3 0.80154 -0.061 0.762 1.000 0.587 - 4 0.86629 -0.541 0.831 0.587 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31327.2 FROM HESSE STATUS=OK 23 CALLS 226 TOTAL - EDM=9.24142e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 9.14895e+02 5.53867e-01 2.62920e-04 1.22682e-01 - 2 sg_p1 3.03350e+01 7.70523e-01 2.30429e-04 3.87633e-01 - 3 sg_p2 1.86472e+00 2.07594e-01 2.40925e-04 -2.56930e-01 - 4 sg_p3 1.20817e+00 6.42645e-02 5.78186e-05 -7.13930e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.068e-01 -1.637e-01 -8.469e-03 -1.930e-02 - -1.637e-01 5.962e-01 1.248e-01 4.167e-02 - -8.469e-03 1.248e-01 4.320e-02 8.128e-03 - -1.930e-02 4.167e-02 8.128e-03 4.131e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.63682 1.000 -0.383 -0.074 -0.542 - 2 0.90554 -0.383 1.000 0.777 0.840 - 3 0.81484 -0.074 0.777 1.000 0.608 - 4 0.87336 -0.542 0.840 0.608 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -900 -914.895 +- 0.553867 -30.335 +- 0.770523 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [650,1130] --> [650,1130] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [650,1130] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=31997 FROM MIGRAD STATUS=INITIATE 59 CALLS 60 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.10000e+02 8.00000e+00 0.00000e+00 -8.37823e+02 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 -7.64703e+01 - 3 sg_p2 1.30597e+00 5.00000e-01 0.00000e+00 -1.46520e+01 - 4 sg_p3 1.20892e+00 7.00000e-01 -7.13644e-01 4.56011e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31928.6 FROM MIGRAD STATUS=CONVERGED 187 CALLS 188 TOTAL - EDM=0.000455256 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.14847e+02 4.88994e-01 1.26432e-03 4.89756e-01 - 2 sg_p1 2.93287e+01 6.86296e-01 5.26048e-03 5.85295e-02 - 3 sg_p2 1.92235e+00 2.48995e-01 6.70981e-03 1.75003e-01 - 4 sg_p3 1.17091e+00 4.94270e-02 1.31942e-03 -2.75253e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.391e-01 -5.711e-02 1.273e-02 -9.083e-03 - -5.711e-02 4.724e-01 1.369e-01 2.673e-02 - 1.273e-02 1.369e-01 6.222e-02 7.189e-03 - -9.083e-03 2.673e-02 7.189e-03 2.443e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.55484 1.000 -0.170 0.104 -0.376 - 2 0.89241 -0.170 1.000 0.799 0.787 - 3 0.83537 0.104 0.799 1.000 0.583 - 4 0.82462 -0.376 0.787 0.583 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31928.6 FROM HESSE STATUS=OK 29 CALLS 217 TOTAL - EDM=0.000126642 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 9.14847e+02 4.87177e-01 2.52865e-04 1.21475e-01 - 2 sg_p1 2.93287e+01 4.44229e-01 2.10419e-04 2.46308e-01 - 3 sg_p2 1.92235e+00 1.10134e-01 2.00630e-01 -2.33169e-01 - 4 sg_p3 1.17091e+00 4.11749e-02 5.27768e-05 -7.28101e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.374e-01 -8.558e-02 4.043e-04 -1.061e-02 - -8.558e-02 1.976e-01 1.759e-02 1.238e-02 - 4.043e-04 1.759e-02 1.214e-02 9.448e-04 - -1.061e-02 1.238e-02 9.448e-04 1.696e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.55015 1.000 -0.395 0.008 -0.529 - 2 0.71638 -0.395 1.000 0.359 0.676 - 3 0.39465 0.008 0.359 1.000 0.208 - 4 0.73407 -0.529 0.676 0.208 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -900 -914.847 +- 0.487177 -29.3287 +- 0.444229 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [650,1130] --> [650,1130] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [650,1130] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=29376.3 FROM MIGRAD STATUS=INITIATE 53 CALLS 54 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.10000e+02 8.00000e+00 0.00000e+00 -8.21334e+02 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 -1.14912e+02 - 3 sg_p2 1.36391e+00 5.00000e-01 0.00000e+00 1.01339e+02 - 4 sg_p3 1.20442e+00 7.00000e-01 -7.15346e-01 5.08593e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=29309.7 FROM MIGRAD STATUS=CONVERGED 194 CALLS 195 TOTAL - EDM=0.000205755 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.14660e+02 4.99096e-01 1.29653e-03 -5.11216e-02 - 2 sg_p1 3.02540e+01 3.59225e-01 5.55826e-03 5.44144e-02 - 3 sg_p2 2.08275e+00 1.37518e-01 6.20642e-03 1.37624e-01 - 4 sg_p3 1.21801e+00 3.97286e-02 1.50718e-03 -6.59977e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.491e-01 5.789e-03 1.174e-02 -9.048e-03 - 5.789e-03 1.292e-01 1.502e-02 -3.879e-03 - 1.174e-02 1.502e-02 1.893e-02 -7.314e-04 - -9.048e-03 -3.879e-03 -7.314e-04 1.578e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.48768 1.000 0.032 0.171 -0.456 - 2 0.40688 0.032 1.000 0.304 -0.272 - 3 0.34471 0.171 0.304 1.000 -0.134 - 4 0.52420 -0.456 -0.272 -0.134 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=29309.7 FROM HESSE STATUS=OK 23 CALLS 218 TOTAL - EDM=0.000176487 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 9.14660e+02 6.63602e-01 2.59307e-04 1.16777e-01 - 2 sg_p1 3.02540e+01 6.28299e-01 2.22330e-04 3.75996e-01 - 3 sg_p2 2.08275e+00 1.45711e-01 2.48257e-04 -1.67686e-01 - 4 sg_p3 1.21801e+00 6.93582e-02 3.01436e-04 -7.10215e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.404e-01 -2.750e-01 -1.507e-02 -3.419e-02 - -2.750e-01 3.958e-01 3.829e-02 3.641e-02 - -1.507e-02 3.829e-02 2.126e-02 3.230e-03 - -3.419e-02 3.641e-02 3.230e-03 4.812e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.75425 1.000 -0.659 -0.156 -0.743 - 2 0.85307 -0.659 1.000 0.417 0.834 - 3 0.44715 -0.156 0.417 1.000 0.319 - 4 0.87298 -0.743 0.834 0.319 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -900 -914.66 +- 0.663602 -30.254 +- 0.628299 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [650,1130] --> [650,1130] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [650,1130] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=34491.6 FROM MIGRAD STATUS=INITIATE 56 CALLS 57 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.10000e+02 8.00000e+00 0.00000e+00 -1.23996e+03 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 -2.14064e+01 - 3 sg_p2 1.33344e+00 5.00000e-01 0.00000e+00 1.23543e+02 - 4 sg_p3 1.01604e+00 7.00000e-01 -7.89075e-01 -7.54461e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=34391.1 FROM MIGRAD STATUS=CONVERGED 188 CALLS 189 TOTAL - EDM=1.48214e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.14750e+02 5.25007e-01 1.29029e-03 2.37283e-01 - 2 sg_p1 3.02408e+01 4.81625e-01 5.53748e-03 -1.27642e-02 - 3 sg_p2 2.07745e+00 1.27929e-01 6.14558e-03 4.69647e-02 - 4 sg_p3 1.21295e+00 5.03011e-02 1.45362e-03 1.82273e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.756e-01 -1.325e-01 -3.877e-03 -1.666e-02 - -1.325e-01 2.323e-01 2.235e-02 1.825e-02 - -3.877e-03 2.235e-02 1.638e-02 1.568e-03 - -1.666e-02 1.825e-02 1.568e-03 2.531e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.64731 1.000 -0.523 -0.058 -0.631 - 2 0.77971 -0.523 1.000 0.362 0.753 - 3 0.39469 -0.058 0.362 1.000 0.244 - 4 0.80244 -0.631 0.753 0.244 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=34391.1 FROM HESSE STATUS=OK 23 CALLS 212 TOTAL - EDM=1.52019e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 9.14750e+02 5.22645e-01 2.58059e-04 1.19022e-01 - 2 sg_p1 3.02408e+01 4.78916e-01 2.21499e-04 3.74107e-01 - 3 sg_p2 2.07745e+00 1.30836e-01 2.45823e-04 -1.69835e-01 - 4 sg_p3 1.21295e+00 4.98205e-02 5.81447e-05 -7.12123e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.732e-01 -1.292e-01 -3.790e-03 -1.629e-02 - -1.292e-01 2.297e-01 2.340e-02 1.784e-02 - -3.790e-03 2.340e-02 1.713e-02 1.620e-03 - -1.629e-02 1.784e-02 1.620e-03 2.482e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.64323 1.000 -0.516 -0.055 -0.626 - 2 0.77685 -0.516 1.000 0.373 0.747 - 3 0.40646 -0.055 0.373 1.000 0.248 - 4 0.79826 -0.626 0.747 0.248 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -900 -914.75 +- 0.522645 -30.2408 +- 0.478916 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 914.708 +- 0.637633 (stat) - 2.04205 + 2.52294 (syst); -2.06678/+2.54301 (total) - Uncertainty on sg_p1 = 30.2451 +- 0.604034 (stat) - 0.916401 + 0.130325 (syst); -0.964886/+0.328936 (total) - Uncertainty on sg_p2 = 2.07933 +- 0.139479 (stat) - 0.214614 + 0.199247 (syst); -0.225661/+0.2111 (total) - Uncertainty on sg_p3 = 1.21527 +- 0.0662844 (stat) - 0.0445565 + 0.00274258 (syst); -0.055531/+0.0332555 (total) - === Baseline plot ===
- norm = 232.078 -JEC lnN 1.00857 - -JER lnN 1.01164 - -btag lnN 1.0799 - -sg_p0 param 914.708 -2.06678/+2.54301 -sg_p1 param 30.2451 -0.964886/+0.328936 -sg_p2 param 2.07933 -0.225661/+0.2111 -sg_p3 param 1.21527 -0.055531/+0.0332555 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_900_novo_550_1200/data_bkg.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_900_novo_550_1200/data_bkg.log deleted file mode 100644 index a966e12..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_900_novo_550_1200/data_bkg.log +++ /dev/null @@ -1,690 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10879.7 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 6.74624e-01 5.09000e-01 -8.31364e-01 -1.01971e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -3.20610e+01 - 3 par_crystal_2 5.00000e+02 2.00000e+01 0.00000e+00 -9.48837e+00 - 4 par_crystal_3 1.05000e+02 1.90000e+01 0.00000e+00 2.45317e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7116e+01 9.9978e-01 1.9597e+00 1.8156e+01 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 17.134017 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 27 CALLS 314 TOTAL - EDM=0.131054 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.06594e+00 6.09301e-02 1.43210e-03 -8.77809e-01 - 2 par_crystal_1 5.09576e+00 7.69298e-02 8.09031e-02 -5.13188e-02 - 3 par_crystal_2 4.95224e+02 7.91481e+01 2.17679e-03 -5.43249e-01 - 4 par_crystal_3 1.90900e+02 9.54958e+00 1.13079e-02 4.60762e-02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 477 CALLS 478 TOTAL - EDM=0.0370129 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.11079e+00 8.93309e-02 0.00000e+00 -4.75984e-01 - 2 par_crystal_1 5.08061e+00 3.60144e-01 0.00000e+00 -1.14416e-01 - 3 par_crystal_2 4.76040e+02 1.75614e+01 0.00000e+00 -2.32451e-01 - 4 par_crystal_3 1.99914e+02 2.77391e+01 0.00000e+00 -7.67572e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.985e-03 -2.091e-03 1.499e+00 2.820e-01 - -2.091e-03 2.873e-02 -7.387e-01 -2.900e-02 - 1.499e+00 -7.387e-01 3.118e+02 5.244e+01 - 2.820e-01 -2.900e-02 5.244e+01 1.008e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99775 1.000 -0.138 0.950 0.994 - 2 0.79882 -0.138 1.000 -0.247 -0.054 - 3 0.95717 0.950 -0.247 1.000 0.935 - 4 0.99764 0.994 -0.054 0.935 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.8 FROM HESSE STATUS=OK 27 CALLS 505 TOTAL - EDM=0.0183624 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.11079e+00 4.31984e-02 1.44775e-03 -6.03431e-01 - 2 par_crystal_1 5.08061e+00 3.28337e+00 6.64371e-02 1.44728e+00 - 3 par_crystal_2 4.76040e+02 8.02153e+00 1.45036e-02 3.38355e+00 - 4 par_crystal_3 1.99914e+02 2.26294e+01 4.50606e-02 1.52819e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.866e-03 -1.951e-03 -2.584e-03 1.946e-02 - -1.951e-03 1.028e-01 6.675e-04 3.793e-04 - -2.584e-03 6.675e-04 6.449e+01 1.116e+00 - 1.946e-02 3.793e-04 1.116e+00 8.140e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.21215 1.000 -0.141 -0.007 0.158 - 2 0.14274 -0.141 1.000 0.000 0.000 - 3 0.05109 -0.007 0.000 1.000 0.049 - 4 0.16712 0.158 0.000 0.049 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10978.6 FROM MIGRAD STATUS=INITIATE 68 CALLS 69 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 6.03110e+02 3.00000e+01 -8.97402e-01 -6.52175e+01 - 2 par_gaus_exp_1 5.45000e+01 9.10000e+00 0.00000e+00 -4.62060e+02 - 3 par_gaus_exp_2 4.12114e-01 3.05000e-01 0.00000e+00 1.25553e+03 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.9 FROM HESSE STATUS=OK 18 CALLS 182 TOTAL - EDM=0.000691453 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.46431e+02 6.06936e+00 3.17833e-03 -3.92855e-01 - 2 par_gaus_exp_1 6.65716e+01 1.75685e+01 2.62647e-03 1.43349e-01 - 3 par_gaus_exp_2 3.07505e-01 8.37981e-02 8.79822e-04 -3.06196e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM MIGRAD STATUS=CONVERGED 316 CALLS 317 TOTAL - EDM=9.19369e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.62504e+02 3.53152e+00 1.63243e-03 -1.66316e-01 - 2 par_gaus_exp_1 2.46552e+01 1.25211e+01 1.75085e-03 -3.48771e-01 - 3 par_gaus_exp_2 1.14604e-01 5.89219e-02 6.31447e-04 9.83138e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.247e+01 -1.544e+01 -6.961e-02 - -1.544e+01 1.643e+02 7.558e-01 - -6.961e-02 7.558e-01 3.493e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.35636 1.000 -0.341 -0.333 - 2 0.99789 -0.341 1.000 0.998 - 3 0.99788 -0.333 0.998 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM HESSE STATUS=OK 16 CALLS 333 TOTAL - EDM=9.89177e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 5.62504e+02 3.77274e+00 6.52972e-05 8.34552e-02 - 2 par_gaus_exp_1 2.46552e+01 1.46349e+01 3.50170e-04 -7.15413e-01 - 3 par_gaus_exp_2 1.14604e-01 6.93856e-02 1.26289e-04 -1.27868e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.424e+01 -2.545e+01 -1.157e-01 - -2.545e+01 2.286e+02 1.052e+00 - -1.157e-01 1.052e+00 4.855e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.45683 1.000 -0.446 -0.440 - 2 0.99849 -0.446 1.000 0.998 - 3 0.99848 -0.440 0.998 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (13168.6) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=575, par_novo_1=100, par_novo_2=1.58864 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 575,par_novo_1 = 100,par_novo_2 = 1.58864) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=645, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=655, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=665, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=675, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=685, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=695, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=705, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=715, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=725, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=735, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=745, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=755, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - ... (remaining 46 messages suppressed) - - FCN=13054.5 FROM MIGRAD STATUS=INITIATE 14 CALLS 15 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.75000e+02 1.50000e+01 2.01358e-01 -1.22938e+03 - 2 par_novo_1 1.00000e+02 2.00000e+01 2.01358e-01 -6.98326e+03 - 3 par_novo_2 0.00000e+00 2.00000e+01 2.01358e-01 1.51249e+06 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM MIGRAD STATUS=CONVERGED 220 CALLS 221 TOTAL - EDM=2.09668e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.00000e+02 1.21837e+02 1.25149e-01 -7.30463e-04 - 2 par_novo_1 1.30637e+02 1.58558e+01 3.16845e-03 -1.76078e-02 - 3 par_novo_2 -6.95187e-01 1.36663e-01 2.61078e-05 1.74080e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.121e-01 -9.460e-01 -6.449e-03 - -9.460e-01 2.538e+02 2.099e+00 - -6.449e-03 2.099e+00 1.868e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.21023 1.000 -0.177 -0.141 - 2 0.96488 -0.177 1.000 0.964 - 3 0.96445 -0.141 0.964 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM HESSE STATUS=OK 20 CALLS 241 TOTAL - EDM=1.01397e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 5.00000e+02 1.20312e+02 5.00000e-01 -1.57325e+00 - 2 par_novo_1 1.30637e+02 2.01762e+01 1.26738e-04 3.11381e-01 - 3 par_novo_2 -6.95187e-01 1.62575e-01 1.04431e-06 -6.95192e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.070e-01 -4.278e+00 -2.995e-02 - -4.278e+00 4.133e+02 3.212e+00 - -2.995e-02 3.212e+00 2.643e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.69436 1.000 -0.643 -0.563 - 2 0.97859 -0.643 1.000 0.972 - 3 0.97501 -0.563 0.972 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10877 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 6.33849e-01 5.09000e-01 -8.55460e-01 -1.25390e+02 - 2 par_crystal_1_1 2.55500e+00 5.09000e-01 0.00000e+00 -2.69495e+01 - 3 par_crystal_1_2 5.50000e+02 3.00000e+01 0.00000e+00 -1.44080e+01 - 4 par_crystal_1_3 1.04500e+02 1.91000e+01 0.00000e+00 3.07979e+01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.43469 added to diagonal of error matrix - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.5401e+00 8.4221e-02 1.8087e+00 3.6472e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 1.543714 TO DIAGONAL. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.9 FROM HESSE STATUS=OK 25 CALLS 485 TOTAL - EDM=0.0491336 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.05623e+00 1.52463e-01 1.42446e-03 -1.90900e+00 - 2 par_crystal_1_1 5.09988e+00 3.18944e+00 7.54811e-02 -8.93342e-03 - 3 par_crystal_1_2 4.96280e+02 4.98347e+01 9.02051e-03 3.58498e-02 - 4 par_crystal_1_3 1.89188e+02 2.78069e+01 1.02856e-02 -2.38185e-01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 538 CALLS 539 TOTAL - EDM=10.0867 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 14.1 per cent - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.09723e+00 3.02575e-02 -0.00000e+00 5.47416e+01 - 2 par_crystal_1_1 5.09997e+00 3.18368e+00 0.00000e+00 -3.90351e-03 - 3 par_crystal_1_2 4.83329e+02 2.76558e+01 0.00000e+00 7.05236e+00 - 4 par_crystal_1_3 1.96552e+02 5.80629e+00 -0.00000e+00 4.39990e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.156e-04 -1.804e-07 -6.742e-01 1.111e-01 - -1.804e-07 1.763e-04 7.888e-03 -2.154e-03 - -6.742e-01 7.888e-03 7.759e+02 -1.463e+02 - 1.111e-01 -2.154e-03 -1.463e+02 3.432e+01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.82553 1.000 -0.000 -0.800 0.627 - 2 0.03650 -0.000 1.000 0.021 -0.028 - 3 0.94703 -0.800 0.021 1.000 -0.896 - 4 0.90888 0.627 -0.028 -0.896 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -9.7852e-01 9.9996e-01 1.9836e+00 1.9949e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.980510 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 29 CALLS 568 TOTAL - EDM=238.514 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 1.09723e+00 4.25322e-02 2.54943e-04 -6.09913e-01 - 2 par_crystal_1_1 5.09997e+00 7.84798e-01 8.54763e-02 1.56580e+00 - 3 par_crystal_1_2 4.83329e+02 1.87856e+01 1.76414e-03 -4.60588e-01 - 4 par_crystal_1_3 1.96552e+02 5.33115e+00 2.63738e-03 1.30128e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.809e-03 -2.197e-07 8.001e-01 2.280e-01 - -2.197e-07 1.053e-04 -1.173e-04 -3.665e-05 - 8.001e-01 -1.173e-04 3.552e+02 1.010e+02 - 2.280e-01 -3.665e-05 1.010e+02 2.885e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99849 1.000 -0.001 0.998 0.998 - 2 0.00265 -0.001 1.000 -0.001 -0.001 - 3 0.99848 0.998 -0.001 1.000 0.998 - 4 0.99849 0.998 -0.001 0.998 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_550_1200 = 1266.17 - Background number of gaus_exp_550_1200 = 1266.17 - Background number of novo_550_1200 = 1266.17 - Background number of crystal_1_550_1200 = 1266.17 - Background number of gaus_bern_550_1200 = 1266.17 - Background number of landau_550_1200 = 1266.17 -par_crystal_0 param 1.11079 0.0431984 -par_crystal_1 param 5.08061 3.28337 -par_crystal_2 param 476.04 8.02153 -par_crystal_3 param 199.914 22.6294 -par_crystal_1_0 param 1.09723 0.0425322 -par_crystal_1_1 param 5.09997 0.784798 -par_crystal_1_2 param 483.329 18.7856 -par_crystal_1_3 param 196.552 5.33115 -par_gaus_exp_0 param 562.504 3.77274 -par_gaus_exp_1 param 24.6552 14.6349 -par_gaus_exp_2 param 0.114604 0.0693856 -par_novo_0 param 500 120.312 -par_novo_1 param 130.637 20.1762 -par_novo_2 param -0.695187 0.162575 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_900_novo_550_1200/datacard_900_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_900_novo_550_1200/datacard_900_novo_550_1200.txt deleted file mode 100644 index c4b6481..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_900_novo_550_1200/datacard_900_novo_550_1200.txt +++ /dev/null @@ -1,29 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_900.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo -shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 4.64156 1266.17 -lumi_13TeV lnN 1.026 - -bTag lnN 1.0799 - -JER lnN 1.01164 - -JEC lnN 1.00857 - -trigger lnN 1.10 - -PDF lnN 1.02549102587 - -sg_p0 param 914.708 -2.06678/+2.54301 -sg_p1 param 30.2451 -0.964886/+0.328936 -sg_p2 param 2.07933 -0.225661/+0.2111 -sg_p3 param 1.21527 -0.055531/+0.0332555 -par_novo_0 param 500 120.312 -par_novo_1 param 130.637 20.1762 -par_novo_2 param -0.695187 0.162575 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_900_novo_550_1200/pdf.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_900_novo_550_1200/pdf.log deleted file mode 100644 index d309f86..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_900_novo_550_1200/pdf.log +++ /dev/null @@ -1,10 +0,0 @@ -[?1034h FCN=13.6412 FROM MIGRAD STATUS=CONVERGED 69 CALLS 70 TOTAL - EDM=1.32214e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 Constant 1.20921e+01 1.56255e+00 2.43180e-03 2.41961e-04 - 2 Mean 9.98237e-01 3.72269e-03 6.33611e-06 -4.15570e-02 - 3 Sigma 2.54910e-02 2.98572e-03 6.27464e-05 -4.89863e-03 -0.998236892348 +/- 0.00372268649896 -0.0254910258695 +/- 0.00298571979086 -PDF lnN 1.02549102587 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_900_novo_550_1200/signal900_sig.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_900_novo_550_1200/signal900_sig.log deleted file mode 100644 index d4cc812..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/3GeV/MMR_900_novo_550_1200/signal900_sig.log +++ /dev/null @@ -1,985 +0,0 @@ - -Processing test.c... -nSignal_init = 100000 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [620,1100] --> [620,1100] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [720,1000] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [620,1100] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [720,1000] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=33664.2 FROM MIGRAD STATUS=INITIATE 54 CALLS 55 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.70000e+02 1.20000e+01 0.00000e+00 -1.87024e+03 - 2 sg_p1 4.00000e+01 3.00000e+00 0.00000e+00 1.70564e+01 - 3 sg_p2 8.67563e-01 5.00000e-01 0.00000e+00 3.77923e+02 - 4 sg_p3 1.75058e+00 7.00000e-01 -5.23409e-01 -9.51811e+01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.14138 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=33371.1 FROM HESSE STATUS=OK 27 CALLS 373 TOTAL - EDM=0.00332624 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.87145e+02 6.18636e-01 1.26596e-03 7.76547e-02 - 2 sg_p1 4.38895e+01 5.43360e-01 3.99187e-03 5.04266e-02 - 3 sg_p2 2.61266e+00 9.39365e-01 6.28602e-02 -2.11368e-01 - 4 sg_p3 1.68218e+00 9.36801e-02 3.16921e-03 5.53803e-02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=33371.1 FROM MIGRAD STATUS=CONVERGED 386 CALLS 387 TOTAL - EDM=8.86352e-09 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 0.0 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.87145e+02 6.18635e-01 1.67624e-06 -3.95438e-03 - 2 sg_p1 4.38881e+01 5.43356e-01 -9.98687e-05 -6.98133e-04 - 3 sg_p2 2.69108e+00 9.37644e-01 3.14301e-02 -2.30056e-05 - 4 sg_p3 1.68195e+00 9.36715e-02 -7.67431e-05 -4.02566e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.827e-01 -6.502e-02 -5.811e-05 -2.090e-02 - -6.502e-02 2.954e-01 5.476e-04 2.735e-02 - -5.811e-05 5.476e-04 9.241e-01 1.376e-04 - -2.090e-02 2.735e-02 1.376e-04 8.777e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.36054 1.000 -0.193 -0.000 -0.361 - 2 0.53708 -0.193 1.000 0.001 0.537 - 3 0.00163 -0.000 0.001 1.000 0.002 - 4 0.59741 -0.361 0.537 0.002 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=33371.1 FROM HESSE STATUS=OK 29 CALLS 416 TOTAL - EDM=5.60701e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 8.87145e+02 6.19206e-01 1.26598e-03 2.89787e-01 - 2 sg_p1 4.38881e+01 5.44560e-01 1.59675e-03 2.62200e-01 - 3 sg_p2 2.69108e+00 3.66223e+00 4.86437e-02 7.65081e-02 - 4 sg_p3 1.68195e+00 9.38964e-02 1.26768e-03 -5.46198e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.834e-01 -6.608e-02 9.504e-07 -2.110e-02 - -6.608e-02 2.967e-01 4.698e-06 2.763e-02 - 9.504e-07 4.698e-06 6.569e+03 3.565e-07 - -2.110e-02 2.763e-02 3.565e-07 8.819e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.36280 1.000 -0.196 0.000 -0.363 - 2 0.54009 -0.196 1.000 0.000 0.540 - 3 0.00000 0.000 0.000 1.000 0.000 - 4 0.60032 -0.363 0.540 0.000 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -900 -887.145 +- 0.619206 -43.8881 +- 0.54456 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [620,1100] --> [620,1100] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [720,1000] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [620,1100] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [720,1000] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=33829.5 FROM MIGRAD STATUS=INITIATE 40 CALLS 41 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.70000e+02 1.20000e+01 0.00000e+00 -1.37162e+03 - 2 sg_p1 4.00000e+01 3.00000e+00 0.00000e+00 7.33519e+01 - 3 sg_p2 5.87771e-01 5.00000e-01 -8.70873e-01 9.57906e+01 - 4 sg_p3 3.50000e+00 7.00000e-01 0.00000e+00 -3.46120e-01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.00007 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=33473.2 FROM HESSE STATUS=OK 25 CALLS 331 TOTAL - EDM=0.315109 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.91582e+02 6.17824e-01 1.32224e-03 -7.77130e-01 - 2 sg_p1 4.40907e+01 5.43395e-01 4.14838e-03 2.19978e+00 - 3 sg_p2 2.59937e+00 4.57998e-01 2.91245e-01 -4.28319e+00 - 4 sg_p3 1.56794e+00 6.89875e-02 2.49674e-03 -3.53414e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=33473.2 FROM MIGRAD STATUS=CONVERGED 344 CALLS 345 TOTAL - EDM=1.81644e-07 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 0.0 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.91593e+02 6.17785e-01 1.97446e-04 -3.22562e-02 - 2 sg_p1 4.40472e+01 5.43856e-01 -3.01296e-03 -7.86524e-03 - 3 sg_p2 2.96080e+00 4.50508e-01 1.45623e-01 0.00000e+00 - 4 sg_p3 1.56553e+00 6.89514e-02 -8.25067e-04 1.93280e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.817e-01 -4.853e-02 1.606e-04 -1.348e-02 - -4.853e-02 2.959e-01 6.495e-06 1.836e-02 - 1.606e-04 6.495e-06 2.053e-01 -1.663e-05 - -1.348e-02 1.836e-02 -1.663e-05 4.755e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.31670 1.000 -0.144 0.001 -0.316 - 2 0.48950 -0.144 1.000 0.000 0.489 - 3 0.00076 0.001 0.000 1.000 -0.001 - 4 0.54881 -0.316 0.489 -0.001 1.000 - ********** - ** 18 **HESSE 2000 - ********** - MINUIT WARNING IN HESSE - ============== Second derivative enters zero, param 3 - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=33473.2 FROM HESSE STATUS=OK 31 CALLS 376 TOTAL - EDM=1.33661 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 8.91593e+02 6.18180e-01 1.32251e-03 3.68142e-01 - 2 sg_p1 4.40472e+01 5.43127e-01 4.14931e-03 2.73201e-01 - 3 sg_p2 2.96080e+00 5.37583e-01 5.10000e-01 1.85380e-01 - 4 sg_p3 1.56553e+00 6.89873e-02 9.98698e-04 -5.85607e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.822e-01 -4.972e-02 -6.585e-12 -1.366e-02 - -4.972e-02 2.951e-01 2.406e-12 1.846e-02 - -6.585e-12 2.406e-12 2.937e-01 2.262e-12 - -1.366e-02 1.846e-02 2.262e-12 4.760e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.32056 1.000 -0.148 -0.000 -0.320 - 2 0.49249 -0.148 1.000 0.000 0.492 - 3 0.00000 -0.000 0.000 1.000 0.000 - 4 0.55232 -0.320 0.492 0.000 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -900 -891.593 +- 0.61818 -44.0472 +- 0.543127 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [620,1100] --> [620,1100] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [720,1000] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [620,1100] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [720,1000] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=33025.6 FROM MIGRAD STATUS=INITIATE 55 CALLS 56 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.70000e+02 1.20000e+01 0.00000e+00 -1.21902e+03 - 2 sg_p1 4.00000e+01 3.00000e+00 0.00000e+00 3.56266e+01 - 3 sg_p2 8.48797e-01 5.00000e-01 0.00000e+00 8.71721e+00 - 4 sg_p3 1.96916e+00 7.00000e-01 -4.52685e-01 1.33827e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=32836 FROM HESSE STATUS=OK 31 CALLS 284 TOTAL - EDM=0.000111741 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.83274e+02 5.75489e-01 1.22716e-03 3.79802e-02 - 2 sg_p1 4.40176e+01 4.49467e-01 3.85966e-03 -7.57641e-02 - 3 sg_p2 2.44289e+00 2.23488e-01 1.00126e-02 8.24918e-02 - 4 sg_p3 1.81465e+00 3.14767e-02 3.33332e-03 1.27746e+00 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=32836 FROM MIGRAD STATUS=FAILED 321 CALLS 322 TOTAL - EDM=0.034586 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 18.3 per cent - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.83276e+02 5.73266e-01 -0.00000e+00 5.01334e-02 - 2 sg_p1 4.40177e+01 4.48511e-01 0.00000e+00 1.03605e-01 - 3 sg_p2 2.44263e+00 1.46331e-01 -0.00000e+00 -1.44978e-01 - 4 sg_p3 1.81329e+00 9.50131e-03 0.00000e+00 -1.27604e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.286e-01 1.600e-03 -3.893e-03 -4.127e-05 - 1.600e-03 2.012e-01 2.014e-03 3.934e-04 - -3.893e-03 2.014e-03 2.144e-02 -5.698e-04 - -4.127e-05 3.934e-04 -5.698e-04 9.028e-05 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.05588 1.000 0.006 -0.046 -0.008 - 2 0.11947 0.006 1.000 0.031 0.092 - 3 0.41831 -0.046 0.031 1.000 -0.410 - 4 0.42369 -0.008 0.092 -0.410 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=32836 FROM HESSE STATUS=OK 29 CALLS 351 TOTAL - EDM=0.000104468 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 8.83276e+02 5.75584e-01 1.22738e-03 2.23108e-01 - 2 sg_p1 4.40177e+01 4.49699e-01 3.86131e-03 2.71159e-01 - 3 sg_p2 2.44263e+00 2.24450e-01 1.04348e-02 -2.29498e-02 - 4 sg_p3 1.81329e+00 3.18671e-02 3.32746e-03 -5.02843e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.313e-01 -1.034e-03 -3.993e-04 -1.393e-03 - -1.034e-03 2.023e-01 -9.138e-05 1.874e-03 - -3.993e-04 -9.138e-05 5.051e-02 1.806e-06 - -1.393e-03 1.874e-03 1.806e-06 1.016e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.07626 1.000 -0.004 -0.003 -0.076 - 2 0.13085 -0.004 1.000 -0.001 0.131 - 3 0.00322 -0.003 -0.001 1.000 0.000 - 4 0.15092 -0.076 0.131 0.000 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -900 -883.276 +- 0.575584 -44.0177 +- 0.449699 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [650,1130] --> [650,1130] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [650,1130] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=31847.2 FROM MIGRAD STATUS=INITIATE 55 CALLS 56 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.10000e+02 8.00000e+00 0.00000e+00 -9.15004e+02 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 -1.07919e+02 - 3 sg_p2 1.34843e+00 5.00000e-01 0.00000e+00 1.01663e+02 - 4 sg_p3 1.18098e+00 7.00000e-01 -7.24255e-01 -8.67138e+00 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31775.1 FROM MIGRAD STATUS=CONVERGED 191 CALLS 192 TOTAL - EDM=1.8133e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.14708e+02 6.08444e-01 1.29613e-03 1.05815e-01 - 2 sg_p1 3.02451e+01 5.68219e-01 5.56289e-03 1.74811e-02 - 3 sg_p2 2.07933e+00 1.35380e-01 6.08573e-03 1.51761e-02 - 4 sg_p3 1.21527e+00 6.15917e-02 1.48479e-03 1.57009e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.702e-01 -2.155e-01 -1.002e-02 -2.676e-02 - -2.155e-01 3.236e-01 3.008e-02 2.846e-02 - -1.002e-02 3.008e-02 1.835e-02 2.403e-03 - -2.676e-02 2.846e-02 2.403e-03 3.794e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.72659 1.000 -0.623 -0.122 -0.714 - 2 0.83258 -0.623 1.000 0.390 0.812 - 3 0.42083 -0.122 0.390 1.000 0.288 - 4 0.85489 -0.714 0.812 0.288 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31775.1 FROM HESSE STATUS=OK 23 CALLS 215 TOTAL - EDM=2.07761e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 9.14708e+02 6.37633e-01 5.18452e-05 1.17968e-01 - 2 sg_p1 3.02451e+01 6.04034e-01 2.22516e-04 3.74720e-01 - 3 sg_p2 2.07933e+00 1.39479e-01 2.43429e-04 -1.69071e-01 - 4 sg_p3 1.21527e+00 6.62844e-02 5.93916e-05 -7.11249e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.066e-01 -2.540e-01 -1.389e-02 -3.139e-02 - -2.540e-01 3.658e-01 3.536e-02 3.345e-02 - -1.389e-02 3.536e-02 1.948e-02 2.966e-03 - -3.139e-02 3.345e-02 2.966e-03 4.395e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.75434 1.000 -0.659 -0.156 -0.743 - 2 0.85324 -0.659 1.000 0.419 0.834 - 3 0.44886 -0.156 0.419 1.000 0.321 - 4 0.87300 -0.743 0.834 0.321 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -900 -914.708 +- 0.637633 -30.2451 +- 0.604034 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 - fit done -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [650,1130] --> [650,1130] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [650,1130] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=32076.3 FROM MIGRAD STATUS=INITIATE 56 CALLS 57 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.10000e+02 8.00000e+00 0.00000e+00 -9.42825e+02 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 -2.66341e+02 - 3 sg_p2 1.24756e+00 5.00000e-01 0.00000e+00 1.32032e+02 - 4 sg_p3 1.51475e+00 7.00000e-01 -6.03120e-01 6.41643e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.2508e+00 8.3406e-01 1.1303e+00 4.2864e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 2.255047 TO DIAGONAL. - FCN=31897 FROM HESSE STATUS=NOT POSDEF 27 CALLS 293 TOTAL - EDM=0.00241152 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.17231e+02 6.95098e-01 1.30051e-03 1.46076e-01 - 2 sg_p1 3.03755e+01 3.97597e-01 5.52810e-03 7.58612e-03 - 3 sg_p2 2.27801e+00 1.55888e+00 7.81545e-03 6.54139e-02 - 4 sg_p3 1.17081e+00 2.99817e-01 1.31225e-03 1.00535e+00 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31897 FROM MIGRAD STATUS=CONVERGED 328 CALLS 329 TOTAL - EDM=0.000214971 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.17231e+02 4.88559e-01 1.30052e-03 3.06873e-02 - 2 sg_p1 3.03754e+01 4.10963e-01 2.21124e-03 2.67746e-02 - 3 sg_p2 2.27858e+00 1.68057e-01 3.12618e-03 1.19850e-01 - 4 sg_p3 1.17071e+00 3.83284e-02 1.31215e-03 6.94100e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.387e-01 -8.067e-02 2.183e-04 -9.547e-03 - -8.067e-02 1.691e-01 1.601e-02 9.908e-03 - 2.183e-04 1.601e-02 2.829e-02 8.281e-04 - -9.547e-03 9.908e-03 8.281e-04 1.469e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.52820 1.000 -0.402 0.003 -0.510 - 2 0.65548 -0.402 1.000 0.231 0.629 - 3 0.25444 0.003 0.231 1.000 0.128 - 4 0.68871 -0.510 0.629 0.128 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31897 FROM HESSE STATUS=OK 23 CALLS 352 TOTAL - EDM=0.000216668 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 9.17231e+02 4.89066e-01 5.20206e-05 1.81768e-01 - 2 sg_p1 3.03754e+01 4.11848e-01 4.42248e-04 3.93462e-01 - 3 sg_p2 2.27858e+00 1.68511e-01 6.25236e-04 -8.86838e-02 - 4 sg_p3 1.17071e+00 3.83872e-02 2.62429e-04 -7.28178e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.392e-01 -8.128e-02 1.943e-04 -9.592e-03 - -8.128e-02 1.698e-01 1.629e-02 9.968e-03 - 1.943e-04 1.629e-02 2.844e-02 8.443e-04 - -9.592e-03 9.968e-03 8.443e-04 1.474e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.52961 1.000 -0.403 0.002 -0.511 - 2 0.65734 -0.403 1.000 0.234 0.630 - 3 0.25774 0.002 0.234 1.000 0.130 - 4 0.68988 -0.511 0.630 0.130 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -900 -917.231 +- 0.489066 -30.3754 +- 0.411848 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [650,1130] --> [650,1130] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [650,1130] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=31270.8 FROM MIGRAD STATUS=INITIATE 78 CALLS 79 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.11670e+02 8.00000e+00 4.17695e-02 1.48625e+01 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 -1.41145e+02 - 3 sg_p2 1.45615e+00 5.00000e-01 0.00000e+00 -1.80733e+01 - 4 sg_p3 1.27355e+00 7.00000e-01 0.00000e+00 5.00168e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31241.1 FROM MIGRAD STATUS=CONVERGED 201 CALLS 202 TOTAL - EDM=1.00647e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.12666e+02 5.93671e-01 1.27735e-03 2.63765e-02 - 2 sg_p1 2.96697e+01 6.13867e-01 5.39370e-03 1.70034e-02 - 3 sg_p2 1.86746e+00 1.16178e-01 4.79471e-03 1.24233e-02 - 4 sg_p3 1.20141e+00 6.21896e-02 1.45289e-03 7.47047e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.525e-01 -2.113e-01 -9.800e-03 -2.540e-02 - -2.113e-01 3.778e-01 3.879e-02 3.144e-02 - -9.800e-03 3.879e-02 1.351e-02 2.946e-03 - -2.540e-02 3.144e-02 2.946e-03 3.868e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.71041 1.000 -0.579 -0.142 -0.688 - 2 0.85591 -0.579 1.000 0.543 0.822 - 3 0.58356 -0.142 0.543 1.000 0.408 - 4 0.86266 -0.688 0.822 0.408 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31241.1 FROM HESSE STATUS=OK 23 CALLS 225 TOTAL - EDM=1.03715e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 9.12666e+02 5.96901e-01 2.55470e-04 6.66929e-02 - 2 sg_p1 2.96697e+01 6.22112e-01 2.15748e-04 2.93491e-01 - 3 sg_p2 1.86746e+00 1.17183e-01 1.91788e-04 -2.55796e-01 - 4 sg_p3 1.20141e+00 6.28752e-02 5.81156e-05 -7.16489e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.563e-01 -2.172e-01 -1.053e-02 -2.596e-02 - -2.172e-01 3.880e-01 4.037e-02 3.237e-02 - -1.053e-02 4.037e-02 1.374e-02 3.084e-03 - -2.596e-02 3.237e-02 3.084e-03 3.954e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.71417 1.000 -0.584 -0.151 -0.692 - 2 0.86002 -0.584 1.000 0.553 0.827 - 3 0.59309 -0.151 0.553 1.000 0.418 - 4 0.86587 -0.692 0.827 0.418 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -900 -912.666 +- 0.596901 -29.6697 +- 0.622112 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [650,1130] --> [650,1130] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [650,1130] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=31402.8 FROM MIGRAD STATUS=INITIATE 56 CALLS 57 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.10000e+02 8.00000e+00 0.00000e+00 -6.41887e+02 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 -1.32609e+02 - 3 sg_p2 1.21873e+00 5.00000e-01 0.00000e+00 2.82004e+01 - 4 sg_p3 1.29003e+00 7.00000e-01 -6.83382e-01 3.00498e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31327.2 FROM MIGRAD STATUS=CONVERGED 202 CALLS 203 TOTAL - EDM=9.20948e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.14895e+02 5.51583e-01 1.31460e-03 1.61689e-01 - 2 sg_p1 3.03350e+01 7.44882e-01 5.76073e-03 -3.27245e-02 - 3 sg_p2 1.86472e+00 2.01246e-01 6.02311e-03 -3.75996e-03 - 4 sg_p3 1.20817e+00 6.26611e-02 1.44547e-03 2.50672e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.043e-01 -1.559e-01 -6.728e-03 -1.871e-02 - -1.559e-01 5.570e-01 1.146e-01 3.885e-02 - -6.728e-03 1.146e-01 4.059e-02 7.410e-03 - -1.871e-02 3.885e-02 7.410e-03 3.927e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.63293 1.000 -0.379 -0.061 -0.541 - 2 0.89852 -0.379 1.000 0.762 0.831 - 3 0.80154 -0.061 0.762 1.000 0.587 - 4 0.86629 -0.541 0.831 0.587 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31327.2 FROM HESSE STATUS=OK 23 CALLS 226 TOTAL - EDM=9.24142e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 9.14895e+02 5.53867e-01 2.62920e-04 1.22682e-01 - 2 sg_p1 3.03350e+01 7.70523e-01 2.30429e-04 3.87633e-01 - 3 sg_p2 1.86472e+00 2.07594e-01 2.40925e-04 -2.56930e-01 - 4 sg_p3 1.20817e+00 6.42645e-02 5.78186e-05 -7.13930e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.068e-01 -1.637e-01 -8.469e-03 -1.930e-02 - -1.637e-01 5.962e-01 1.248e-01 4.167e-02 - -8.469e-03 1.248e-01 4.320e-02 8.128e-03 - -1.930e-02 4.167e-02 8.128e-03 4.131e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.63682 1.000 -0.383 -0.074 -0.542 - 2 0.90554 -0.383 1.000 0.777 0.840 - 3 0.81484 -0.074 0.777 1.000 0.608 - 4 0.87336 -0.542 0.840 0.608 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -900 -914.895 +- 0.553867 -30.335 +- 0.770523 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [650,1130] --> [650,1130] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [650,1130] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=31997 FROM MIGRAD STATUS=INITIATE 59 CALLS 60 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.10000e+02 8.00000e+00 0.00000e+00 -8.37823e+02 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 -7.64703e+01 - 3 sg_p2 1.30597e+00 5.00000e-01 0.00000e+00 -1.46520e+01 - 4 sg_p3 1.20892e+00 7.00000e-01 -7.13644e-01 4.56011e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31928.6 FROM MIGRAD STATUS=CONVERGED 187 CALLS 188 TOTAL - EDM=0.000455256 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.14847e+02 4.88994e-01 1.26432e-03 4.89756e-01 - 2 sg_p1 2.93287e+01 6.86296e-01 5.26048e-03 5.85295e-02 - 3 sg_p2 1.92235e+00 2.48995e-01 6.70981e-03 1.75003e-01 - 4 sg_p3 1.17091e+00 4.94270e-02 1.31942e-03 -2.75253e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.391e-01 -5.711e-02 1.273e-02 -9.083e-03 - -5.711e-02 4.724e-01 1.369e-01 2.673e-02 - 1.273e-02 1.369e-01 6.222e-02 7.189e-03 - -9.083e-03 2.673e-02 7.189e-03 2.443e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.55484 1.000 -0.170 0.104 -0.376 - 2 0.89241 -0.170 1.000 0.799 0.787 - 3 0.83537 0.104 0.799 1.000 0.583 - 4 0.82462 -0.376 0.787 0.583 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31928.6 FROM HESSE STATUS=OK 29 CALLS 217 TOTAL - EDM=0.000126642 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 9.14847e+02 4.87177e-01 2.52865e-04 1.21475e-01 - 2 sg_p1 2.93287e+01 4.44229e-01 2.10419e-04 2.46308e-01 - 3 sg_p2 1.92235e+00 1.10134e-01 2.00630e-01 -2.33169e-01 - 4 sg_p3 1.17091e+00 4.11749e-02 5.27768e-05 -7.28101e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.374e-01 -8.558e-02 4.043e-04 -1.061e-02 - -8.558e-02 1.976e-01 1.759e-02 1.238e-02 - 4.043e-04 1.759e-02 1.214e-02 9.448e-04 - -1.061e-02 1.238e-02 9.448e-04 1.696e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.55015 1.000 -0.395 0.008 -0.529 - 2 0.71638 -0.395 1.000 0.359 0.676 - 3 0.39465 0.008 0.359 1.000 0.208 - 4 0.73407 -0.529 0.676 0.208 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -900 -914.847 +- 0.487177 -29.3287 +- 0.444229 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [650,1130] --> [650,1130] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [650,1130] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=29376.3 FROM MIGRAD STATUS=INITIATE 53 CALLS 54 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.10000e+02 8.00000e+00 0.00000e+00 -8.21334e+02 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 -1.14912e+02 - 3 sg_p2 1.36391e+00 5.00000e-01 0.00000e+00 1.01339e+02 - 4 sg_p3 1.20442e+00 7.00000e-01 -7.15346e-01 5.08593e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=29309.7 FROM MIGRAD STATUS=CONVERGED 194 CALLS 195 TOTAL - EDM=0.000205755 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.14660e+02 4.99096e-01 1.29653e-03 -5.11216e-02 - 2 sg_p1 3.02540e+01 3.59225e-01 5.55826e-03 5.44144e-02 - 3 sg_p2 2.08275e+00 1.37518e-01 6.20642e-03 1.37624e-01 - 4 sg_p3 1.21801e+00 3.97286e-02 1.50718e-03 -6.59977e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.491e-01 5.789e-03 1.174e-02 -9.048e-03 - 5.789e-03 1.292e-01 1.502e-02 -3.879e-03 - 1.174e-02 1.502e-02 1.893e-02 -7.314e-04 - -9.048e-03 -3.879e-03 -7.314e-04 1.578e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.48768 1.000 0.032 0.171 -0.456 - 2 0.40688 0.032 1.000 0.304 -0.272 - 3 0.34471 0.171 0.304 1.000 -0.134 - 4 0.52420 -0.456 -0.272 -0.134 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=29309.7 FROM HESSE STATUS=OK 23 CALLS 218 TOTAL - EDM=0.000176487 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 9.14660e+02 6.63602e-01 2.59307e-04 1.16777e-01 - 2 sg_p1 3.02540e+01 6.28299e-01 2.22330e-04 3.75996e-01 - 3 sg_p2 2.08275e+00 1.45711e-01 2.48257e-04 -1.67686e-01 - 4 sg_p3 1.21801e+00 6.93582e-02 3.01436e-04 -7.10215e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.404e-01 -2.750e-01 -1.507e-02 -3.419e-02 - -2.750e-01 3.958e-01 3.829e-02 3.641e-02 - -1.507e-02 3.829e-02 2.126e-02 3.230e-03 - -3.419e-02 3.641e-02 3.230e-03 4.812e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.75425 1.000 -0.659 -0.156 -0.743 - 2 0.85307 -0.659 1.000 0.417 0.834 - 3 0.44715 -0.156 0.417 1.000 0.319 - 4 0.87298 -0.743 0.834 0.319 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -900 -914.66 +- 0.663602 -30.254 +- 0.628299 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [650,1130] --> [650,1130] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [650,1130] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=34491.6 FROM MIGRAD STATUS=INITIATE 56 CALLS 57 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.10000e+02 8.00000e+00 0.00000e+00 -1.23996e+03 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 -2.14064e+01 - 3 sg_p2 1.33344e+00 5.00000e-01 0.00000e+00 1.23543e+02 - 4 sg_p3 1.01604e+00 7.00000e-01 -7.89075e-01 -7.54461e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=34391.1 FROM MIGRAD STATUS=CONVERGED 188 CALLS 189 TOTAL - EDM=1.48214e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.14750e+02 5.25007e-01 1.29029e-03 2.37283e-01 - 2 sg_p1 3.02408e+01 4.81625e-01 5.53748e-03 -1.27642e-02 - 3 sg_p2 2.07745e+00 1.27929e-01 6.14558e-03 4.69647e-02 - 4 sg_p3 1.21295e+00 5.03011e-02 1.45362e-03 1.82273e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.756e-01 -1.325e-01 -3.877e-03 -1.666e-02 - -1.325e-01 2.323e-01 2.235e-02 1.825e-02 - -3.877e-03 2.235e-02 1.638e-02 1.568e-03 - -1.666e-02 1.825e-02 1.568e-03 2.531e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.64731 1.000 -0.523 -0.058 -0.631 - 2 0.77971 -0.523 1.000 0.362 0.753 - 3 0.39469 -0.058 0.362 1.000 0.244 - 4 0.80244 -0.631 0.753 0.244 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=34391.1 FROM HESSE STATUS=OK 23 CALLS 212 TOTAL - EDM=1.52019e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 9.14750e+02 5.22645e-01 2.58059e-04 1.19022e-01 - 2 sg_p1 3.02408e+01 4.78916e-01 2.21499e-04 3.74107e-01 - 3 sg_p2 2.07745e+00 1.30836e-01 2.45823e-04 -1.69835e-01 - 4 sg_p3 1.21295e+00 4.98205e-02 5.81447e-05 -7.12123e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.732e-01 -1.292e-01 -3.790e-03 -1.629e-02 - -1.292e-01 2.297e-01 2.340e-02 1.784e-02 - -3.790e-03 2.340e-02 1.713e-02 1.620e-03 - -1.629e-02 1.784e-02 1.620e-03 2.482e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.64323 1.000 -0.516 -0.055 -0.626 - 2 0.77685 -0.516 1.000 0.373 0.747 - 3 0.40646 -0.055 0.373 1.000 0.248 - 4 0.79826 -0.626 0.747 0.248 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -900 -914.75 +- 0.522645 -30.2408 +- 0.478916 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 914.708 +- 0.637633 (stat) - 2.04205 + 2.52294 (syst); -2.06678/+2.54301 (total) - Uncertainty on sg_p1 = 30.2451 +- 0.604034 (stat) - 0.916401 + 0.130325 (syst); -0.964886/+0.328936 (total) - Uncertainty on sg_p2 = 2.07933 +- 0.139479 (stat) - 0.214614 + 0.199247 (syst); -0.225661/+0.2111 (total) - Uncertainty on sg_p3 = 1.21527 +- 0.0662844 (stat) - 0.0445565 + 0.00274258 (syst); -0.055531/+0.0332555 (total) - === Baseline plot ===
- norm = 232.078 -JEC lnN 1.00857 - -JER lnN 1.01164 - -btag lnN 1.0799 - -sg_p0 param 914.708 -2.06678/+2.54301 -sg_p1 param 30.2451 -0.964886/+0.328936 -sg_p2 param 2.07933 -0.225661/+0.2111 -sg_p3 param 1.21527 -0.055531/+0.0332555 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_1000_crystal_1_550_1200/data_bkg.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_1000_crystal_1_550_1200/data_bkg.log deleted file mode 100644 index a966e12..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_1000_crystal_1_550_1200/data_bkg.log +++ /dev/null @@ -1,690 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10879.7 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 6.74624e-01 5.09000e-01 -8.31364e-01 -1.01971e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -3.20610e+01 - 3 par_crystal_2 5.00000e+02 2.00000e+01 0.00000e+00 -9.48837e+00 - 4 par_crystal_3 1.05000e+02 1.90000e+01 0.00000e+00 2.45317e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7116e+01 9.9978e-01 1.9597e+00 1.8156e+01 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 17.134017 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 27 CALLS 314 TOTAL - EDM=0.131054 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.06594e+00 6.09301e-02 1.43210e-03 -8.77809e-01 - 2 par_crystal_1 5.09576e+00 7.69298e-02 8.09031e-02 -5.13188e-02 - 3 par_crystal_2 4.95224e+02 7.91481e+01 2.17679e-03 -5.43249e-01 - 4 par_crystal_3 1.90900e+02 9.54958e+00 1.13079e-02 4.60762e-02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 477 CALLS 478 TOTAL - EDM=0.0370129 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.11079e+00 8.93309e-02 0.00000e+00 -4.75984e-01 - 2 par_crystal_1 5.08061e+00 3.60144e-01 0.00000e+00 -1.14416e-01 - 3 par_crystal_2 4.76040e+02 1.75614e+01 0.00000e+00 -2.32451e-01 - 4 par_crystal_3 1.99914e+02 2.77391e+01 0.00000e+00 -7.67572e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.985e-03 -2.091e-03 1.499e+00 2.820e-01 - -2.091e-03 2.873e-02 -7.387e-01 -2.900e-02 - 1.499e+00 -7.387e-01 3.118e+02 5.244e+01 - 2.820e-01 -2.900e-02 5.244e+01 1.008e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99775 1.000 -0.138 0.950 0.994 - 2 0.79882 -0.138 1.000 -0.247 -0.054 - 3 0.95717 0.950 -0.247 1.000 0.935 - 4 0.99764 0.994 -0.054 0.935 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.8 FROM HESSE STATUS=OK 27 CALLS 505 TOTAL - EDM=0.0183624 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.11079e+00 4.31984e-02 1.44775e-03 -6.03431e-01 - 2 par_crystal_1 5.08061e+00 3.28337e+00 6.64371e-02 1.44728e+00 - 3 par_crystal_2 4.76040e+02 8.02153e+00 1.45036e-02 3.38355e+00 - 4 par_crystal_3 1.99914e+02 2.26294e+01 4.50606e-02 1.52819e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.866e-03 -1.951e-03 -2.584e-03 1.946e-02 - -1.951e-03 1.028e-01 6.675e-04 3.793e-04 - -2.584e-03 6.675e-04 6.449e+01 1.116e+00 - 1.946e-02 3.793e-04 1.116e+00 8.140e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.21215 1.000 -0.141 -0.007 0.158 - 2 0.14274 -0.141 1.000 0.000 0.000 - 3 0.05109 -0.007 0.000 1.000 0.049 - 4 0.16712 0.158 0.000 0.049 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10978.6 FROM MIGRAD STATUS=INITIATE 68 CALLS 69 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 6.03110e+02 3.00000e+01 -8.97402e-01 -6.52175e+01 - 2 par_gaus_exp_1 5.45000e+01 9.10000e+00 0.00000e+00 -4.62060e+02 - 3 par_gaus_exp_2 4.12114e-01 3.05000e-01 0.00000e+00 1.25553e+03 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.9 FROM HESSE STATUS=OK 18 CALLS 182 TOTAL - EDM=0.000691453 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.46431e+02 6.06936e+00 3.17833e-03 -3.92855e-01 - 2 par_gaus_exp_1 6.65716e+01 1.75685e+01 2.62647e-03 1.43349e-01 - 3 par_gaus_exp_2 3.07505e-01 8.37981e-02 8.79822e-04 -3.06196e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM MIGRAD STATUS=CONVERGED 316 CALLS 317 TOTAL - EDM=9.19369e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.62504e+02 3.53152e+00 1.63243e-03 -1.66316e-01 - 2 par_gaus_exp_1 2.46552e+01 1.25211e+01 1.75085e-03 -3.48771e-01 - 3 par_gaus_exp_2 1.14604e-01 5.89219e-02 6.31447e-04 9.83138e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.247e+01 -1.544e+01 -6.961e-02 - -1.544e+01 1.643e+02 7.558e-01 - -6.961e-02 7.558e-01 3.493e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.35636 1.000 -0.341 -0.333 - 2 0.99789 -0.341 1.000 0.998 - 3 0.99788 -0.333 0.998 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM HESSE STATUS=OK 16 CALLS 333 TOTAL - EDM=9.89177e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 5.62504e+02 3.77274e+00 6.52972e-05 8.34552e-02 - 2 par_gaus_exp_1 2.46552e+01 1.46349e+01 3.50170e-04 -7.15413e-01 - 3 par_gaus_exp_2 1.14604e-01 6.93856e-02 1.26289e-04 -1.27868e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.424e+01 -2.545e+01 -1.157e-01 - -2.545e+01 2.286e+02 1.052e+00 - -1.157e-01 1.052e+00 4.855e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.45683 1.000 -0.446 -0.440 - 2 0.99849 -0.446 1.000 0.998 - 3 0.99848 -0.440 0.998 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (13168.6) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=575, par_novo_1=100, par_novo_2=1.58864 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 575,par_novo_1 = 100,par_novo_2 = 1.58864) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=645, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=655, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=665, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=675, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=685, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=695, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=705, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=715, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=725, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=735, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=745, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=755, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - ... (remaining 46 messages suppressed) - - FCN=13054.5 FROM MIGRAD STATUS=INITIATE 14 CALLS 15 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.75000e+02 1.50000e+01 2.01358e-01 -1.22938e+03 - 2 par_novo_1 1.00000e+02 2.00000e+01 2.01358e-01 -6.98326e+03 - 3 par_novo_2 0.00000e+00 2.00000e+01 2.01358e-01 1.51249e+06 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM MIGRAD STATUS=CONVERGED 220 CALLS 221 TOTAL - EDM=2.09668e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.00000e+02 1.21837e+02 1.25149e-01 -7.30463e-04 - 2 par_novo_1 1.30637e+02 1.58558e+01 3.16845e-03 -1.76078e-02 - 3 par_novo_2 -6.95187e-01 1.36663e-01 2.61078e-05 1.74080e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.121e-01 -9.460e-01 -6.449e-03 - -9.460e-01 2.538e+02 2.099e+00 - -6.449e-03 2.099e+00 1.868e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.21023 1.000 -0.177 -0.141 - 2 0.96488 -0.177 1.000 0.964 - 3 0.96445 -0.141 0.964 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM HESSE STATUS=OK 20 CALLS 241 TOTAL - EDM=1.01397e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 5.00000e+02 1.20312e+02 5.00000e-01 -1.57325e+00 - 2 par_novo_1 1.30637e+02 2.01762e+01 1.26738e-04 3.11381e-01 - 3 par_novo_2 -6.95187e-01 1.62575e-01 1.04431e-06 -6.95192e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.070e-01 -4.278e+00 -2.995e-02 - -4.278e+00 4.133e+02 3.212e+00 - -2.995e-02 3.212e+00 2.643e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.69436 1.000 -0.643 -0.563 - 2 0.97859 -0.643 1.000 0.972 - 3 0.97501 -0.563 0.972 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10877 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 6.33849e-01 5.09000e-01 -8.55460e-01 -1.25390e+02 - 2 par_crystal_1_1 2.55500e+00 5.09000e-01 0.00000e+00 -2.69495e+01 - 3 par_crystal_1_2 5.50000e+02 3.00000e+01 0.00000e+00 -1.44080e+01 - 4 par_crystal_1_3 1.04500e+02 1.91000e+01 0.00000e+00 3.07979e+01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.43469 added to diagonal of error matrix - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.5401e+00 8.4221e-02 1.8087e+00 3.6472e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 1.543714 TO DIAGONAL. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.9 FROM HESSE STATUS=OK 25 CALLS 485 TOTAL - EDM=0.0491336 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.05623e+00 1.52463e-01 1.42446e-03 -1.90900e+00 - 2 par_crystal_1_1 5.09988e+00 3.18944e+00 7.54811e-02 -8.93342e-03 - 3 par_crystal_1_2 4.96280e+02 4.98347e+01 9.02051e-03 3.58498e-02 - 4 par_crystal_1_3 1.89188e+02 2.78069e+01 1.02856e-02 -2.38185e-01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 538 CALLS 539 TOTAL - EDM=10.0867 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 14.1 per cent - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.09723e+00 3.02575e-02 -0.00000e+00 5.47416e+01 - 2 par_crystal_1_1 5.09997e+00 3.18368e+00 0.00000e+00 -3.90351e-03 - 3 par_crystal_1_2 4.83329e+02 2.76558e+01 0.00000e+00 7.05236e+00 - 4 par_crystal_1_3 1.96552e+02 5.80629e+00 -0.00000e+00 4.39990e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.156e-04 -1.804e-07 -6.742e-01 1.111e-01 - -1.804e-07 1.763e-04 7.888e-03 -2.154e-03 - -6.742e-01 7.888e-03 7.759e+02 -1.463e+02 - 1.111e-01 -2.154e-03 -1.463e+02 3.432e+01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.82553 1.000 -0.000 -0.800 0.627 - 2 0.03650 -0.000 1.000 0.021 -0.028 - 3 0.94703 -0.800 0.021 1.000 -0.896 - 4 0.90888 0.627 -0.028 -0.896 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -9.7852e-01 9.9996e-01 1.9836e+00 1.9949e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.980510 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 29 CALLS 568 TOTAL - EDM=238.514 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 1.09723e+00 4.25322e-02 2.54943e-04 -6.09913e-01 - 2 par_crystal_1_1 5.09997e+00 7.84798e-01 8.54763e-02 1.56580e+00 - 3 par_crystal_1_2 4.83329e+02 1.87856e+01 1.76414e-03 -4.60588e-01 - 4 par_crystal_1_3 1.96552e+02 5.33115e+00 2.63738e-03 1.30128e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.809e-03 -2.197e-07 8.001e-01 2.280e-01 - -2.197e-07 1.053e-04 -1.173e-04 -3.665e-05 - 8.001e-01 -1.173e-04 3.552e+02 1.010e+02 - 2.280e-01 -3.665e-05 1.010e+02 2.885e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99849 1.000 -0.001 0.998 0.998 - 2 0.00265 -0.001 1.000 -0.001 -0.001 - 3 0.99848 0.998 -0.001 1.000 0.998 - 4 0.99849 0.998 -0.001 0.998 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_550_1200 = 1266.17 - Background number of gaus_exp_550_1200 = 1266.17 - Background number of novo_550_1200 = 1266.17 - Background number of crystal_1_550_1200 = 1266.17 - Background number of gaus_bern_550_1200 = 1266.17 - Background number of landau_550_1200 = 1266.17 -par_crystal_0 param 1.11079 0.0431984 -par_crystal_1 param 5.08061 3.28337 -par_crystal_2 param 476.04 8.02153 -par_crystal_3 param 199.914 22.6294 -par_crystal_1_0 param 1.09723 0.0425322 -par_crystal_1_1 param 5.09997 0.784798 -par_crystal_1_2 param 483.329 18.7856 -par_crystal_1_3 param 196.552 5.33115 -par_gaus_exp_0 param 562.504 3.77274 -par_gaus_exp_1 param 24.6552 14.6349 -par_gaus_exp_2 param 0.114604 0.0693856 -par_novo_0 param 500 120.312 -par_novo_1 param 130.637 20.1762 -par_novo_2 param -0.695187 0.162575 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_1000_crystal_1_550_1200/datacard_1000_crystal_1_550_1200.txt b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_1000_crystal_1_550_1200/datacard_1000_crystal_1_550_1200.txt deleted file mode 100644 index 87552f0..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_1000_crystal_1_550_1200/datacard_1000_crystal_1_550_1200.txt +++ /dev/null @@ -1,29 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_1000.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_crystal_1_550_1200.root HbbHbb:f_crystal_1 -shapes data_obs HbbHbb w_background_crystal_1_550_1200.root HbbHbb:data_obs_crystal_1_550_1200 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 6.61454 1266.17 -lumi_13TeV lnN 1.026 - -bTag lnN 1.35523 - -JER lnN 1.0152 - -JEC lnN 1.01006 - -trigger lnN 1.10 - -sg_p0 param 1016.58 -3.74805/+1.77868 -sg_p1 param 40 -0.302396/+0.234552 -sg_p2 param 1.2224 -0.101761/+0.0537708 -sg_p3 param 1.49206 -0.0476241/+0.0617959 -par_crystal_1_0 param 1.09723 0.0425322 -par_crystal_1_1 param 5.09997 0.784798 -par_crystal_1_2 param 483.329 18.7856 -par_crystal_1_3 param 196.552 5.33115 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_1000_crystal_1_550_1200/signal1000_sig.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_1000_crystal_1_550_1200/signal1000_sig.log deleted file mode 100644 index 626a232..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_1000_crystal_1_550_1200/signal1000_sig.log +++ /dev/null @@ -1,945 +0,0 @@ - -Processing test.c... -nSignal_init = 50000 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [700,1250] --> [700,1250] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [800,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [700,1250] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [800,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=24889.5 FROM MIGRAD STATUS=INITIATE 56 CALLS 57 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.00000e+03 1.00000e+01 0.00000e+00 2.22453e+02 - 2 sg_p1 3.50000e+01 2.00000e+00 0.00000e+00 -1.53589e+02 - 3 sg_p2 9.89758e-01 5.00000e-01 0.00000e+00 2.96541e+02 - 4 sg_p3 7.78994e-01 7.00000e-01 -8.90570e-01 5.10370e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24811.7 FROM MIGRAD STATUS=CONVERGED 191 CALLS 192 TOTAL - EDM=1.15992e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.90383e+02 1.26314e+00 1.88989e-03 1.21344e-01 - 2 sg_p1 4.50000e+01 1.21905e-01 1.69196e-02** at limit ** - 3 sg_p2 1.02011e+00 4.11152e-02 1.91933e-03 2.89472e-02 - 4 sg_p3 1.18700e+00 6.01449e-02 1.87537e-03 1.46355e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.596e+00 4.010e-06 2.573e-02 -4.941e-02 - 4.010e-06 1.885e-07 -1.275e-07 -4.838e-07 - 2.573e-02 -1.275e-07 1.691e-03 -5.988e-04 - -4.941e-02 -4.838e-07 -5.988e-04 3.618e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.73763 1.000 0.007 0.495 -0.650 - 2 0.02208 0.007 1.000 -0.007 -0.019 - 3 0.50646 0.495 -0.007 1.000 -0.242 - 4 0.65685 -0.650 -0.019 -0.242 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24811.7 FROM HESSE STATUS=OK 23 CALLS 215 TOTAL - EDM=1.17259e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 9.90383e+02 1.26342e+00 3.77979e-04 -1.93551e-01 - 2 sg_p1 4.50000e+01 1.21891e-01 3.38391e-03 1.57107e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 3 sg_p2 1.02011e+00 4.11293e-02 7.67732e-05 -6.33481e-01 - 4 sg_p3 1.18700e+00 6.01270e-02 7.50148e-05 -7.21959e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.597e+00 9.064e-07 2.577e-02 -4.939e-02 - 9.064e-07 1.885e-07 -2.868e-08 -1.091e-07 - 2.577e-02 -2.868e-08 1.692e-03 -5.978e-04 - -4.939e-02 -1.091e-07 -5.978e-04 3.616e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.73776 1.000 0.002 0.496 -0.650 - 2 0.00498 0.002 1.000 -0.002 -0.004 - 3 0.50696 0.496 -0.002 1.000 -0.242 - 4 0.65659 -0.650 -0.004 -0.242 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -1000 -990.383 +- 1.26342 -45 +- 0.121891 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [700,1250] --> [700,1250] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [800,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [700,1250] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [800,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=24403.1 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.00000e+03 1.00000e+01 0.00000e+00 2.26882e+02 - 2 sg_p1 3.50000e+01 2.00000e+00 0.00000e+00 -1.93966e+02 - 3 sg_p2 9.63072e-01 5.00000e-01 0.00000e+00 2.31928e+02 - 4 sg_p3 8.86770e-01 7.00000e-01 -8.42993e-01 8.03262e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24325.5 FROM MIGRAD STATUS=CONVERGED 218 CALLS 219 TOTAL - EDM=6.49551e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.95493e+02 9.33476e-01 1.79739e-03 -1.13004e-01 - 2 sg_p1 4.50000e+01 1.21162e-01 1.67946e-02** at limit ** - 3 sg_p2 1.13607e+00 4.42015e-02 2.25943e-03 -2.24141e-01 - 4 sg_p3 1.13155e+00 4.13228e-02 1.53138e-03 2.62522e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 8.715e-01 4.578e-06 3.814e-04 -1.748e-02 - 4.578e-06 9.111e-07 -4.559e-07 -5.336e-07 - 3.814e-04 -4.559e-07 1.954e-03 1.592e-04 - -1.748e-02 -5.336e-07 1.592e-04 1.708e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.45573 1.000 0.005 0.009 -0.453 - 2 0.01663 0.005 1.000 -0.011 -0.014 - 3 0.10332 0.009 -0.011 1.000 0.087 - 4 0.46232 -0.453 -0.014 0.087 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24325.5 FROM HESSE STATUS=OK 23 CALLS 242 TOTAL - EDM=9.33859e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 9.95493e+02 1.04671e+00 3.59477e-04 -9.02624e-02 - 2 sg_p1 4.50000e+01 1.21173e-01 3.35892e-03 1.57018e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 3 sg_p2 1.13607e+00 4.95685e-02 4.51887e-04 -5.77071e-01 - 4 sg_p3 1.13155e+00 4.14941e-02 3.06277e-04 -7.43270e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.096e+00 5.239e-08 2.349e-02 -1.999e-02 - 5.239e-08 9.112e-07 -6.164e-08 -6.151e-08 - 2.349e-02 -6.164e-08 2.457e-03 -2.607e-04 - -1.999e-02 -6.151e-08 -2.607e-04 1.722e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.60817 1.000 0.000 0.453 -0.460 - 2 0.00217 0.000 1.000 -0.001 -0.002 - 3 0.46189 0.453 -0.001 1.000 -0.127 - 4 0.46928 -0.460 -0.002 -0.127 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -1000 -995.493 +- 1.04671 -45 +- 0.121173 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [700,1250] --> [700,1250] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [800,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [700,1250] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [800,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=25056.4 FROM MIGRAD STATUS=INITIATE 59 CALLS 60 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.00000e+03 1.00000e+01 0.00000e+00 4.08464e+01 - 2 sg_p1 3.50000e+01 2.00000e+00 0.00000e+00 -1.81870e+02 - 3 sg_p2 1.21059e+00 5.00000e-01 0.00000e+00 5.34510e+02 - 4 sg_p3 6.71391e-01 7.00000e-01 -2.20055e+00 -8.87064e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24915.3 FROM MIGRAD STATUS=CONVERGED 228 CALLS 229 TOTAL - EDM=5.5921e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.84744e+02 1.19560e+00 1.95809e-03 2.95439e-02 - 2 sg_p1 4.50000e+01 1.21031e-01 1.69661e-02** at limit ** - 3 sg_p2 9.63081e-01 3.97444e-02 1.82185e-03 -6.76282e-03 - 4 sg_p3 1.23132e+00 5.50596e-02 1.88577e-03 -4.12979e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.430e+00 -3.803e-08 2.612e-02 3.540e-02 - -3.803e-08 3.884e-10 -9.020e-09 1.301e-08 - 2.612e-02 -9.020e-09 1.580e-03 4.623e-04 - 3.540e-02 1.301e-08 4.623e-04 3.032e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.69869 1.000 -0.002 0.550 0.538 - 2 0.01886 -0.002 1.000 -0.012 0.012 - 3 0.55874 0.550 -0.012 1.000 0.211 - 4 0.54722 0.538 0.012 0.211 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24915.3 FROM HESSE STATUS=OK 23 CALLS 252 TOTAL - EDM=5.61522e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 9.84744e+02 1.19463e+00 7.83235e-05 -3.10063e-01 - 2 sg_p1 4.50000e+01 1.21032e-01 3.39322e-03 1.57081e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 3 sg_p2 9.63081e-01 3.97567e-02 7.28742e-05 -6.62091e-01 - 4 sg_p3 1.23132e+00 5.49819e-02 7.54308e-05 -2.43638e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.427e+00 -7.637e-09 2.613e-02 3.521e-02 - -7.637e-09 3.884e-10 -1.811e-09 2.617e-09 - 2.613e-02 -1.811e-09 1.581e-03 4.609e-04 - 3.521e-02 2.617e-09 4.609e-04 3.023e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.69809 1.000 -0.000 0.550 0.536 - 2 0.00379 -0.000 1.000 -0.002 0.002 - 3 0.55912 0.550 -0.002 1.000 0.211 - 4 0.54541 0.536 0.002 0.211 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -1000 -984.744 +- 1.19463 -45 +- 0.121032 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [750,1250] --> [750,1250] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [750,1250] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=23747 FROM MIGRAD STATUS=INITIATE 58 CALLS 59 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01500e+03 7.00000e+00 0.00000e+00 1.99056e+02 - 2 sg_p1 3.25000e+01 1.50000e+00 0.00000e+00 -1.60594e+02 - 3 sg_p2 9.21832e-01 5.00000e-01 0.00000e+00 1.22069e+02 - 4 sg_p3 1.41673e+00 7.00000e-01 -6.37540e-01 4.87774e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23690.5 FROM MIGRAD STATUS=CONVERGED 248 CALLS 249 TOTAL - EDM=7.40636e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01658e+03 8.13144e-01 2.06376e-03 -3.76416e-01 - 2 sg_p1 4.00000e+01 4.68280e-01 3.89370e-02** at limit ** - 3 sg_p2 1.22240e+00 5.07108e-02 2.32615e-03 2.98325e-01 - 4 sg_p3 1.49206e+00 7.79105e-02 2.55089e-03 -7.56703e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 6.613e-01 1.056e-05 1.493e-02 -2.862e-02 - 1.056e-05 1.856e-06 -2.776e-06 -7.148e-06 - 1.493e-02 -2.776e-06 2.572e-03 -4.218e-04 - -2.862e-02 -7.148e-06 -4.218e-04 6.072e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.55096 1.000 0.010 0.362 -0.452 - 2 0.08279 0.010 1.000 -0.040 -0.067 - 3 0.36961 0.362 -0.040 1.000 -0.107 - 4 0.45964 -0.452 -0.067 -0.107 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23690.5 FROM HESSE STATUS=OK 23 CALLS 272 TOTAL - EDM=7.50694e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 1.01658e+03 8.10249e-01 4.12751e-04 4.50469e-02 - 2 sg_p1 4.00000e+01 4.69104e-01 7.78740e-03 1.57131e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 3 sg_p2 1.22240e+00 5.04194e-02 4.65229e-04 -5.36395e-01 - 4 sg_p3 1.49206e+00 7.77461e-02 1.02036e-04 -6.11014e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 6.566e-01 2.550e-06 1.440e-02 -2.848e-02 - 2.550e-06 1.859e-06 -6.023e-07 -1.591e-06 - 1.440e-02 -6.023e-07 2.543e-03 -4.084e-04 - -2.848e-02 -1.591e-06 -4.084e-04 6.046e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.54642 1.000 0.002 0.353 -0.452 - 2 0.01831 0.002 1.000 -0.009 -0.015 - 3 0.35800 0.353 -0.009 1.000 -0.104 - 4 0.45596 -0.452 -0.015 -0.104 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -1000 -1016.58 +- 0.810249 -40 +- 0.469104 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 - fit done -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [750,1250] --> [750,1250] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [750,1250] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=23321 FROM MIGRAD STATUS=INITIATE 62 CALLS 63 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01500e+03 7.00000e+00 0.00000e+00 -2.15456e+02 - 2 sg_p1 3.25000e+01 1.50000e+00 0.00000e+00 8.44246e+00 - 3 sg_p2 8.58947e-01 5.00000e-01 0.00000e+00 1.85345e+02 - 4 sg_p3 9.45698e-01 7.00000e-01 -8.18030e-01 -4.63007e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23288 FROM HESSE STATUS=OK 25 CALLS 397 TOTAL - EDM=0.00260498 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01832e+03 7.86712e-01 2.07176e-03 2.20958e+00 - 2 sg_p1 3.99993e+01 1.77184e+00 7.04451e-02 -2.46019e-02 - 3 sg_p2 1.21002e+00 5.23460e-02 1.24212e-03 -3.03189e+00 - 4 sg_p3 1.46453e+00 6.41490e-02 2.20715e-03 4.63062e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=23288 FROM MIGRAD STATUS=CONVERGED 405 CALLS 406 TOTAL - EDM=3.27684e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 0.7 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01831e+03 7.85112e-01 -4.32924e-04 -2.09259e-02 - 2 sg_p1 3.99999e+01 1.83061e+00 8.35977e-03 -1.12946e-02 - 3 sg_p2 1.21288e+00 5.27607e-02 1.33598e-03 -8.93872e-02 - 4 sg_p3 1.46454e+00 6.41540e-02 6.09141e-06 -1.12247e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 6.165e-01 -9.032e-04 1.537e-02 -1.778e-02 - -9.032e-04 7.440e-04 -2.479e-05 -1.812e-04 - 1.537e-02 -2.479e-05 2.784e-03 -1.646e-04 - -1.778e-02 -1.812e-04 -1.646e-04 4.116e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.50511 1.000 -0.042 0.371 -0.353 - 2 0.13383 -0.042 1.000 -0.017 -0.104 - 3 0.38141 0.371 -0.017 1.000 -0.049 - 4 0.38267 -0.353 -0.104 -0.049 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23288 FROM HESSE STATUS=OK 27 CALLS 433 TOTAL - EDM=6.045e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 1.01831e+03 7.86243e-01 2.07195e-03 9.46567e-02 - 2 sg_p1 3.99999e+01 1.65716e+00 2.81780e-02 1.56570e+00 - 3 sg_p2 1.21288e+00 5.23867e-02 2.37732e-03 -5.40830e-01 - 4 sg_p3 1.46454e+00 6.37794e-02 2.20581e-03 -6.20643e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 6.183e-01 -1.323e-04 1.524e-02 -1.755e-02 - -1.323e-04 6.707e-04 -5.377e-05 -7.207e-05 - 1.524e-02 -5.377e-05 2.745e-03 -2.465e-04 - -1.755e-02 -7.207e-05 -2.465e-04 4.068e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.49151 1.000 -0.006 0.370 -0.350 - 2 0.06175 -0.006 1.000 -0.040 -0.044 - 3 0.37636 0.370 -0.040 1.000 -0.074 - 4 0.35760 -0.350 -0.044 -0.074 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -1000 -1018.31 +- 0.786243 -39.9999 +- 1.65716 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [750,1250] --> [750,1250] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [750,1250] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=23875.8 FROM MIGRAD STATUS=INITIATE 55 CALLS 56 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01500e+03 7.00000e+00 0.00000e+00 4.43398e+02 - 2 sg_p1 3.25000e+01 1.50000e+00 0.00000e+00 -1.77680e+02 - 3 sg_p2 9.21219e-01 5.00000e-01 0.00000e+00 7.52454e+00 - 4 sg_p3 1.40649e+00 7.00000e-01 -6.41185e-01 5.95628e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23798.4 FROM MIGRAD STATUS=CONVERGED 217 CALLS 218 TOTAL - EDM=7.75608e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01285e+03 8.33665e-01 2.07912e-03 1.70866e-02 - 2 sg_p1 3.98091e+01 8.48923e-01 3.16082e-02 -1.03759e-02 - 3 sg_p2 1.12381e+00 5.95622e-02 2.13485e-03 3.30200e-01 - 4 sg_p3 1.54010e+00 8.22224e-02 2.41055e-03 -1.53820e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 6.951e-01 2.065e-01 2.518e-02 -6.574e-03 - 2.065e-01 6.697e-01 3.047e-02 3.584e-02 - 2.518e-02 3.047e-02 3.549e-03 1.365e-03 - -6.574e-03 3.584e-02 1.365e-03 6.762e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.57532 1.000 0.303 0.507 -0.096 - 2 0.73404 0.303 1.000 0.625 0.533 - 3 0.70991 0.507 0.625 1.000 0.279 - 4 0.59907 -0.096 0.533 0.279 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23798.4 FROM HESSE STATUS=OK 23 CALLS 241 TOTAL - EDM=7.73708e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 1.01285e+03 8.49657e-01 4.15824e-04 -6.14668e-02 - 2 sg_p1 3.98091e+01 1.04461e+00 1.26433e-03 1.34471e+00 - 3 sg_p2 1.12381e+00 6.43212e-02 4.26970e-04 -5.82935e-01 - 4 sg_p3 1.54010e+00 8.72084e-02 9.64222e-05 -5.94353e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.221e-01 2.723e-01 2.914e-02 -1.973e-03 - 2.723e-01 8.279e-01 4.043e-02 4.780e-02 - 2.914e-02 4.043e-02 4.139e-03 2.068e-03 - -1.973e-03 4.780e-02 2.068e-03 7.608e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.59661 1.000 0.352 0.533 -0.027 - 2 0.79068 0.352 1.000 0.691 0.602 - 3 0.75807 0.533 0.691 1.000 0.369 - 4 0.65582 -0.027 0.602 0.369 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -1000 -1012.85 +- 0.849657 -39.8091 +- 1.04461 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [750,1250] --> [750,1250] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [750,1250] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=23239.4 FROM MIGRAD STATUS=INITIATE 64 CALLS 65 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01500e+03 7.00000e+00 0.00000e+00 -1.27750e+02 - 2 sg_p1 3.25000e+01 1.50000e+00 0.00000e+00 1.26948e-01 - 3 sg_p2 8.74738e-01 5.00000e-01 0.00000e+00 1.80702e+02 - 4 sg_p3 9.26595e-01 7.00000e-01 -8.26048e-01 -4.27618e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23209.7 FROM MIGRAD STATUS=CONVERGED 237 CALLS 238 TOTAL - EDM=0.00014251 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01577e+03 8.64818e-01 2.10463e-03 2.40523e-01 - 2 sg_p1 3.99999e+01 1.00303e+00 5.37328e-02 -1.94869e-02 - 3 sg_p2 1.13318e+00 5.62974e-02 2.39200e-03 -5.76330e-02 - 4 sg_p3 1.52247e+00 6.86424e-02 2.34430e-03 1.64373e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.481e-01 -1.096e-03 2.562e-02 -1.857e-02 - -1.096e-03 4.530e-04 -1.315e-04 -8.807e-05 - 2.562e-02 -1.315e-04 3.170e-03 -3.976e-04 - -1.857e-02 -8.807e-05 -3.976e-04 4.713e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.58719 1.000 -0.060 0.526 -0.313 - 2 0.13360 -0.060 1.000 -0.110 -0.060 - 3 0.53513 0.526 -0.110 1.000 -0.103 - 4 0.32913 -0.313 -0.060 -0.103 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23209.7 FROM HESSE STATUS=OK 29 CALLS 267 TOTAL - EDM=0.000133982 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 1.01577e+03 8.73102e-01 4.20925e-04 2.20882e-02 - 2 sg_p1 3.99999e+01 1.01940e+00 2.14931e-03 1.56537e+00 - 3 sg_p2 1.13318e+00 5.62622e-02 9.56802e-05 -5.78450e-01 - 4 sg_p3 1.52247e+00 7.21948e-02 7.98704e-02 -6.00445e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.625e-01 2.144e-04 2.611e-02 -2.173e-02 - 2.144e-04 4.606e-04 2.659e-05 2.032e-05 - 2.611e-02 2.659e-05 3.166e-03 -5.636e-04 - -2.173e-02 2.032e-05 -5.636e-04 5.213e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.59764 1.000 0.011 0.531 -0.345 - 2 0.02791 0.011 1.000 0.022 0.013 - 3 0.53363 0.531 0.022 1.000 -0.139 - 4 0.34900 -0.345 0.013 -0.139 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -1000 -1015.77 +- 0.873102 -39.9999 +- 1.0194 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [750,1250] --> [750,1250] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [750,1250] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=23904.2 FROM MIGRAD STATUS=INITIATE 63 CALLS 64 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01500e+03 7.00000e+00 0.00000e+00 -1.58334e+02 - 2 sg_p1 3.25000e+01 1.50000e+00 0.00000e+00 -6.45414e+00 - 3 sg_p2 9.40575e-01 5.00000e-01 0.00000e+00 2.02619e+02 - 4 sg_p3 9.50207e-01 7.00000e-01 -8.16148e-01 -4.42963e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23871.3 FROM MIGRAD STATUS=CONVERGED 250 CALLS 251 TOTAL - EDM=1.36548e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01639e+03 7.28586e-01 2.01823e-03 -1.76359e-02 - 2 sg_p1 4.00000e+01 7.49353e-01 4.69202e-02 -5.91552e-03 - 3 sg_p2 1.26989e+00 5.63661e-02 2.54093e-03 8.80770e-02 - 4 sg_p3 1.53945e+00 6.56083e-02 2.27702e-03 -7.24550e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.309e-01 -7.297e-05 1.348e-02 -1.019e-02 - -7.297e-05 1.681e-05 -1.973e-05 -2.021e-05 - 1.348e-02 -1.973e-05 3.178e-03 5.005e-04 - -1.019e-02 -2.021e-05 5.005e-04 4.305e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.41880 1.000 -0.024 0.328 -0.213 - 2 0.10777 -0.024 1.000 -0.085 -0.075 - 3 0.39425 0.328 -0.085 1.000 0.135 - 4 0.31076 -0.213 -0.075 0.135 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23871.3 FROM HESSE STATUS=OK 23 CALLS 274 TOTAL - EDM=1.44816e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 1.01639e+03 7.40109e-01 4.03646e-04 3.97032e-02 - 2 sg_p1 4.00000e+01 7.56384e-01 9.38403e-03 1.56958e+00 - 3 sg_p2 1.26989e+00 5.58118e-02 1.01637e-04 -5.14435e-01 - 4 sg_p3 1.53945e+00 6.43105e-02 9.10809e-05 -5.94577e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.478e-01 -1.128e-05 1.525e-02 -1.306e-02 - -1.128e-05 1.697e-05 -2.641e-06 -2.503e-06 - 1.525e-02 -2.641e-06 3.116e-03 -1.984e-04 - -1.306e-02 -2.503e-06 -1.984e-04 4.137e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.44819 1.000 -0.004 0.369 -0.274 - 2 0.01546 -0.004 1.000 -0.011 -0.009 - 3 0.37224 0.369 -0.011 1.000 -0.055 - 4 0.27895 -0.274 -0.009 -0.055 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -1000 -1016.39 +- 0.740109 -40 +- 0.756384 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [750,1250] --> [750,1250] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [750,1250] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=16426.3 FROM MIGRAD STATUS=INITIATE 52 CALLS 53 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01500e+03 7.00000e+00 0.00000e+00 2.76971e+02 - 2 sg_p1 3.25000e+01 1.50000e+00 0.00000e+00 -7.40412e+01 - 3 sg_p2 7.53407e-01 5.00000e-01 0.00000e+00 -2.61313e+02 - 4 sg_p3 1.41708e+00 7.00000e-01 -6.37416e-01 3.61680e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16380.4 FROM MIGRAD STATUS=CONVERGED 204 CALLS 205 TOTAL - EDM=1.2739e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01657e+03 9.77555e-01 2.06312e-03 -3.61028e-03 - 2 sg_p1 4.00000e+01 6.78180e-01 3.73477e-02 -7.76696e-03 - 3 sg_p2 1.22238e+00 6.09231e-02 2.33024e-03 -3.84112e-02 - 4 sg_p3 1.49153e+00 9.35612e-02 2.57411e-03 -3.75876e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.559e-01 3.743e-05 2.152e-02 -4.133e-02 - 3.743e-05 2.111e-05 -9.720e-06 -2.510e-05 - 2.152e-02 -9.720e-06 3.713e-03 -6.103e-04 - -4.133e-02 -2.510e-05 -6.103e-04 8.757e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.55051 1.000 0.008 0.361 -0.452 - 2 0.07170 0.008 1.000 -0.035 -0.058 - 3 0.36817 0.361 -0.035 1.000 -0.107 - 4 0.45868 -0.452 -0.058 -0.107 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16380.4 FROM HESSE STATUS=OK 23 CALLS 228 TOTAL - EDM=1.33694e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 1.01657e+03 9.74476e-01 4.12624e-04 4.48931e-02 - 2 sg_p1 4.00000e+01 6.79952e-01 7.46954e-03 1.56937e+00 - 3 sg_p2 1.22238e+00 6.06205e-02 9.32097e-05 -5.36402e-01 - 4 sg_p3 1.49153e+00 9.34142e-02 1.02965e-04 -6.11196e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.499e-01 5.447e-06 2.083e-02 -4.116e-02 - 5.447e-06 2.117e-05 -1.283e-06 -3.388e-06 - 2.083e-02 -1.283e-06 3.676e-03 -5.904e-04 - -4.116e-02 -3.388e-06 -5.904e-04 8.729e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.54649 1.000 0.001 0.353 -0.452 - 2 0.00962 0.001 1.000 -0.005 -0.008 - 3 0.35791 0.353 -0.005 1.000 -0.104 - 4 0.45594 -0.452 -0.008 -0.104 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -1000 -1016.57 +- 0.974476 -40 +- 0.679952 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [750,1250] --> [750,1250] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [750,1250] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=33287.9 FROM MIGRAD STATUS=INITIATE 55 CALLS 56 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01500e+03 7.00000e+00 0.00000e+00 3.29127e+02 - 2 sg_p1 3.25000e+01 1.50000e+00 0.00000e+00 -2.09458e+02 - 3 sg_p2 8.91728e-01 5.00000e-01 0.00000e+00 7.37516e+01 - 4 sg_p3 1.41601e+00 7.00000e-01 -6.37796e-01 6.89934e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=33210.9 FROM MIGRAD STATUS=CONVERGED 218 CALLS 219 TOTAL - EDM=5.9663e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01659e+03 6.86602e-01 2.06298e-03 6.23454e-02 - 2 sg_p1 4.00000e+01 3.36413e-01 3.74809e-02** at limit ** - 3 sg_p2 1.22194e+00 4.27738e-02 2.32926e-03 -6.40806e-02 - 4 sg_p3 1.49222e+00 6.57997e-02 2.57024e-03 -1.52134e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.715e-01 8.305e-06 1.061e-02 -2.041e-02 - 8.305e-06 1.928e-06 -2.165e-06 -5.598e-06 - 1.061e-02 -2.165e-06 1.830e-03 -3.008e-04 - -2.041e-02 -5.598e-06 -3.008e-04 4.330e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.55055 1.000 0.009 0.361 -0.452 - 2 0.07527 0.009 1.000 -0.036 -0.061 - 3 0.36846 0.361 -0.036 1.000 -0.107 - 4 0.45894 -0.452 -0.061 -0.107 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=33210.9 FROM HESSE STATUS=OK 23 CALLS 242 TOTAL - EDM=6.1799e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 1.01659e+03 6.84411e-01 4.12596e-04 4.54194e-02 - 2 sg_p1 4.00000e+01 3.37160e-01 7.49617e-03 1.57018e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 3 sg_p2 1.22194e+00 4.25566e-02 9.31704e-05 -5.36608e-01 - 4 sg_p3 1.49222e+00 6.56863e-02 1.02809e-04 -6.10958e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.685e-01 1.563e-06 1.027e-02 -2.032e-02 - 1.563e-06 1.932e-06 -3.692e-07 -9.768e-07 - 1.027e-02 -3.692e-07 1.811e-03 -2.913e-04 - -2.032e-02 -9.768e-07 -2.913e-04 4.315e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.54648 1.000 0.002 0.353 -0.452 - 2 0.01305 0.002 1.000 -0.006 -0.011 - 3 0.35799 0.353 -0.006 1.000 -0.104 - 4 0.45593 -0.452 -0.011 -0.104 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -1000 -1016.59 +- 0.684411 -40 +- 0.33716 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 1016.58 +- 0.810249 (stat) - 3.72609 + 1.73193 (syst); -3.74805/+1.77868 (total) - Uncertainty on sg_p1 = 40 +- 0.469104 (stat) - 0.190863 + 0 (syst); -0.302396/+0.234552 (total) - Uncertainty on sg_p2 = 1.2224 +- 0.0504194 (stat) - 0.0985888 + 0.0474949 (syst); -0.101761/+0.0537708 (total) - Uncertainty on sg_p3 = 1.49206 +- 0.0777461 (stat) - 0.0275125 + 0.0480377 (syst); -0.0476241/+0.0617959 (total) - === Baseline plot ===
- norm = 330.727 -JEC lnN 1.01006 - -JER lnN 1.0152 - -btag lnN 1.35523 - -sg_p0 param 1016.58 -3.74805/+1.77868 -sg_p1 param 40 -0.302396/+0.234552 -sg_p2 param 1.2224 -0.101761/+0.0537708 -sg_p3 param 1.49206 -0.0476241/+0.0617959 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_1000_novo_550_1200/data_bkg.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_1000_novo_550_1200/data_bkg.log deleted file mode 100644 index 9081393..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_1000_novo_550_1200/data_bkg.log +++ /dev/null @@ -1,690 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10879.7 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 6.74624e-01 5.09000e-01 -8.31364e-01 -1.01971e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -3.20610e+01 - 3 par_crystal_2 5.00000e+02 2.00000e+01 0.00000e+00 -9.48837e+00 - 4 par_crystal_3 1.05000e+02 1.90000e+01 0.00000e+00 2.45317e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7116e+01 9.9978e-01 1.9597e+00 1.8156e+01 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 17.134017 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 27 CALLS 314 TOTAL - EDM=0.131054 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.06594e+00 6.09301e-02 1.43210e-03 -8.77809e-01 - 2 par_crystal_1 5.09576e+00 7.69298e-02 8.09031e-02 -5.13188e-02 - 3 par_crystal_2 4.95224e+02 7.91481e+01 2.17679e-03 -5.43249e-01 - 4 par_crystal_3 1.90900e+02 9.54958e+00 1.13079e-02 4.60762e-02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 477 CALLS 478 TOTAL - EDM=0.0370129 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.11079e+00 8.93309e-02 0.00000e+00 -4.75984e-01 - 2 par_crystal_1 5.08061e+00 3.60144e-01 0.00000e+00 -1.14416e-01 - 3 par_crystal_2 4.76040e+02 1.75614e+01 0.00000e+00 -2.32451e-01 - 4 par_crystal_3 1.99914e+02 2.77391e+01 0.00000e+00 -7.67572e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.985e-03 -2.091e-03 1.499e+00 2.820e-01 - -2.091e-03 2.873e-02 -7.387e-01 -2.900e-02 - 1.499e+00 -7.387e-01 3.118e+02 5.244e+01 - 2.820e-01 -2.900e-02 5.244e+01 1.008e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99775 1.000 -0.138 0.950 0.994 - 2 0.79882 -0.138 1.000 -0.247 -0.054 - 3 0.95717 0.950 -0.247 1.000 0.935 - 4 0.99764 0.994 -0.054 0.935 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.8 FROM HESSE STATUS=OK 27 CALLS 505 TOTAL - EDM=0.0183624 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.11079e+00 4.31984e-02 1.44775e-03 -6.03431e-01 - 2 par_crystal_1 5.08061e+00 3.28337e+00 6.64371e-02 1.44728e+00 - 3 par_crystal_2 4.76040e+02 8.02153e+00 1.45036e-02 3.38355e+00 - 4 par_crystal_3 1.99914e+02 2.26294e+01 4.50606e-02 1.52819e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.866e-03 -1.951e-03 -2.584e-03 1.946e-02 - -1.951e-03 1.028e-01 6.675e-04 3.793e-04 - -2.584e-03 6.675e-04 6.449e+01 1.116e+00 - 1.946e-02 3.793e-04 1.116e+00 8.140e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.21215 1.000 -0.141 -0.007 0.158 - 2 0.14274 -0.141 1.000 0.000 0.000 - 3 0.05109 -0.007 0.000 1.000 0.049 - 4 0.16712 0.158 0.000 0.049 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10978.6 FROM MIGRAD STATUS=INITIATE 68 CALLS 69 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 6.03110e+02 3.00000e+01 -8.97402e-01 -6.52175e+01 - 2 par_gaus_exp_1 5.45000e+01 9.10000e+00 0.00000e+00 -4.62060e+02 - 3 par_gaus_exp_2 4.12114e-01 3.05000e-01 0.00000e+00 1.25553e+03 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.9 FROM HESSE STATUS=OK 18 CALLS 182 TOTAL - EDM=0.000691453 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.46431e+02 6.06936e+00 3.17833e-03 -3.92855e-01 - 2 par_gaus_exp_1 6.65716e+01 1.75685e+01 2.62647e-03 1.43349e-01 - 3 par_gaus_exp_2 3.07505e-01 8.37981e-02 8.79822e-04 -3.06196e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM MIGRAD STATUS=CONVERGED 316 CALLS 317 TOTAL - EDM=9.19369e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.62504e+02 3.53152e+00 1.63243e-03 -1.66316e-01 - 2 par_gaus_exp_1 2.46552e+01 1.25211e+01 1.75085e-03 -3.48771e-01 - 3 par_gaus_exp_2 1.14604e-01 5.89219e-02 6.31447e-04 9.83138e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.247e+01 -1.544e+01 -6.961e-02 - -1.544e+01 1.643e+02 7.558e-01 - -6.961e-02 7.558e-01 3.493e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.35636 1.000 -0.341 -0.333 - 2 0.99789 -0.341 1.000 0.998 - 3 0.99788 -0.333 0.998 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM HESSE STATUS=OK 16 CALLS 333 TOTAL - EDM=9.89177e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 5.62504e+02 3.77274e+00 6.52972e-05 8.34552e-02 - 2 par_gaus_exp_1 2.46552e+01 1.46349e+01 3.50170e-04 -7.15413e-01 - 3 par_gaus_exp_2 1.14604e-01 6.93856e-02 1.26289e-04 -1.27868e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.424e+01 -2.545e+01 -1.157e-01 - -2.545e+01 2.286e+02 1.052e+00 - -1.157e-01 1.052e+00 4.855e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.45683 1.000 -0.446 -0.440 - 2 0.99849 -0.446 1.000 0.998 - 3 0.99848 -0.440 0.998 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (13168.6) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=575, par_novo_1=100, par_novo_2=1.58864 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=645, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=655, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=665, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=675, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=685, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=695, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=705, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=715, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=725, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=735, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=745, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=755, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - ... (remaining 46 messages suppressed) -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 575,par_novo_1 = 100,par_novo_2 = 1.58864) - - FCN=13054.5 FROM MIGRAD STATUS=INITIATE 14 CALLS 15 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.75000e+02 1.50000e+01 2.01358e-01 -1.22938e+03 - 2 par_novo_1 1.00000e+02 2.00000e+01 2.01358e-01 -6.98326e+03 - 3 par_novo_2 0.00000e+00 2.00000e+01 2.01358e-01 1.51249e+06 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM MIGRAD STATUS=CONVERGED 220 CALLS 221 TOTAL - EDM=2.09668e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.00000e+02 1.21837e+02 1.25149e-01 -7.30463e-04 - 2 par_novo_1 1.30637e+02 1.58558e+01 3.16845e-03 -1.76078e-02 - 3 par_novo_2 -6.95187e-01 1.36663e-01 2.61078e-05 1.74080e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.121e-01 -9.460e-01 -6.449e-03 - -9.460e-01 2.538e+02 2.099e+00 - -6.449e-03 2.099e+00 1.868e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.21023 1.000 -0.177 -0.141 - 2 0.96488 -0.177 1.000 0.964 - 3 0.96445 -0.141 0.964 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM HESSE STATUS=OK 20 CALLS 241 TOTAL - EDM=1.01397e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 5.00000e+02 1.20312e+02 5.00000e-01 -1.57325e+00 - 2 par_novo_1 1.30637e+02 2.01762e+01 1.26738e-04 3.11381e-01 - 3 par_novo_2 -6.95187e-01 1.62575e-01 1.04431e-06 -6.95192e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.070e-01 -4.278e+00 -2.995e-02 - -4.278e+00 4.133e+02 3.212e+00 - -2.995e-02 3.212e+00 2.643e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.69436 1.000 -0.643 -0.563 - 2 0.97859 -0.643 1.000 0.972 - 3 0.97501 -0.563 0.972 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10877 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 6.33849e-01 5.09000e-01 -8.55460e-01 -1.25390e+02 - 2 par_crystal_1_1 2.55500e+00 5.09000e-01 0.00000e+00 -2.69495e+01 - 3 par_crystal_1_2 5.50000e+02 3.00000e+01 0.00000e+00 -1.44080e+01 - 4 par_crystal_1_3 1.04500e+02 1.91000e+01 0.00000e+00 3.07979e+01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.43469 added to diagonal of error matrix - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.5401e+00 8.4221e-02 1.8087e+00 3.6472e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 1.543714 TO DIAGONAL. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.9 FROM HESSE STATUS=OK 25 CALLS 485 TOTAL - EDM=0.0491336 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.05623e+00 1.52463e-01 1.42446e-03 -1.90900e+00 - 2 par_crystal_1_1 5.09988e+00 3.18944e+00 7.54811e-02 -8.93342e-03 - 3 par_crystal_1_2 4.96280e+02 4.98347e+01 9.02051e-03 3.58498e-02 - 4 par_crystal_1_3 1.89188e+02 2.78069e+01 1.02856e-02 -2.38185e-01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 538 CALLS 539 TOTAL - EDM=10.0867 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 14.1 per cent - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.09723e+00 3.02575e-02 -0.00000e+00 5.47416e+01 - 2 par_crystal_1_1 5.09997e+00 3.18368e+00 0.00000e+00 -3.90351e-03 - 3 par_crystal_1_2 4.83329e+02 2.76558e+01 0.00000e+00 7.05236e+00 - 4 par_crystal_1_3 1.96552e+02 5.80629e+00 -0.00000e+00 4.39990e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.156e-04 -1.804e-07 -6.742e-01 1.111e-01 - -1.804e-07 1.763e-04 7.888e-03 -2.154e-03 - -6.742e-01 7.888e-03 7.759e+02 -1.463e+02 - 1.111e-01 -2.154e-03 -1.463e+02 3.432e+01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.82553 1.000 -0.000 -0.800 0.627 - 2 0.03650 -0.000 1.000 0.021 -0.028 - 3 0.94703 -0.800 0.021 1.000 -0.896 - 4 0.90888 0.627 -0.028 -0.896 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -9.7852e-01 9.9996e-01 1.9836e+00 1.9949e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.980510 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 29 CALLS 568 TOTAL - EDM=238.514 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 1.09723e+00 4.25322e-02 2.54943e-04 -6.09913e-01 - 2 par_crystal_1_1 5.09997e+00 7.84798e-01 8.54763e-02 1.56580e+00 - 3 par_crystal_1_2 4.83329e+02 1.87856e+01 1.76414e-03 -4.60588e-01 - 4 par_crystal_1_3 1.96552e+02 5.33115e+00 2.63738e-03 1.30128e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.809e-03 -2.197e-07 8.001e-01 2.280e-01 - -2.197e-07 1.053e-04 -1.173e-04 -3.665e-05 - 8.001e-01 -1.173e-04 3.552e+02 1.010e+02 - 2.280e-01 -3.665e-05 1.010e+02 2.885e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99849 1.000 -0.001 0.998 0.998 - 2 0.00265 -0.001 1.000 -0.001 -0.001 - 3 0.99848 0.998 -0.001 1.000 0.998 - 4 0.99849 0.998 -0.001 0.998 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_550_1200 = 1266.17 - Background number of gaus_exp_550_1200 = 1266.17 - Background number of novo_550_1200 = 1266.17 - Background number of crystal_1_550_1200 = 1266.17 - Background number of gaus_bern_550_1200 = 1266.17 - Background number of landau_550_1200 = 1266.17 -par_crystal_0 param 1.11079 0.0431984 -par_crystal_1 param 5.08061 3.28337 -par_crystal_2 param 476.04 8.02153 -par_crystal_3 param 199.914 22.6294 -par_crystal_1_0 param 1.09723 0.0425322 -par_crystal_1_1 param 5.09997 0.784798 -par_crystal_1_2 param 483.329 18.7856 -par_crystal_1_3 param 196.552 5.33115 -par_gaus_exp_0 param 562.504 3.77274 -par_gaus_exp_1 param 24.6552 14.6349 -par_gaus_exp_2 param 0.114604 0.0693856 -par_novo_0 param 500 120.312 -par_novo_1 param 130.637 20.1762 -par_novo_2 param -0.695187 0.162575 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_1000_novo_550_1200/datacard_1000_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_1000_novo_550_1200/datacard_1000_novo_550_1200.txt deleted file mode 100644 index e9ef472..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_1000_novo_550_1200/datacard_1000_novo_550_1200.txt +++ /dev/null @@ -1,28 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_1000.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo -shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 6.61454 1266.17 -lumi_13TeV lnN 1.026 - -bTag lnN 1.35523 - -JER lnN 1.0152 - -JEC lnN 1.01006 - -trigger lnN 1.10 - -sg_p0 param 1016.58 -3.74805/+1.77868 -sg_p1 param 40 -0.302396/+0.234552 -sg_p2 param 1.2224 -0.101761/+0.0537708 -sg_p3 param 1.49206 -0.0476241/+0.0617959 -par_novo_0 param 500 120.312 -par_novo_1 param 130.637 20.1762 -par_novo_2 param -0.695187 0.162575 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_1000_novo_550_1200/signal1000_sig.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_1000_novo_550_1200/signal1000_sig.log deleted file mode 100644 index 626a232..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_1000_novo_550_1200/signal1000_sig.log +++ /dev/null @@ -1,945 +0,0 @@ - -Processing test.c... -nSignal_init = 50000 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [700,1250] --> [700,1250] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [800,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [700,1250] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [800,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=24889.5 FROM MIGRAD STATUS=INITIATE 56 CALLS 57 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.00000e+03 1.00000e+01 0.00000e+00 2.22453e+02 - 2 sg_p1 3.50000e+01 2.00000e+00 0.00000e+00 -1.53589e+02 - 3 sg_p2 9.89758e-01 5.00000e-01 0.00000e+00 2.96541e+02 - 4 sg_p3 7.78994e-01 7.00000e-01 -8.90570e-01 5.10370e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24811.7 FROM MIGRAD STATUS=CONVERGED 191 CALLS 192 TOTAL - EDM=1.15992e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.90383e+02 1.26314e+00 1.88989e-03 1.21344e-01 - 2 sg_p1 4.50000e+01 1.21905e-01 1.69196e-02** at limit ** - 3 sg_p2 1.02011e+00 4.11152e-02 1.91933e-03 2.89472e-02 - 4 sg_p3 1.18700e+00 6.01449e-02 1.87537e-03 1.46355e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.596e+00 4.010e-06 2.573e-02 -4.941e-02 - 4.010e-06 1.885e-07 -1.275e-07 -4.838e-07 - 2.573e-02 -1.275e-07 1.691e-03 -5.988e-04 - -4.941e-02 -4.838e-07 -5.988e-04 3.618e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.73763 1.000 0.007 0.495 -0.650 - 2 0.02208 0.007 1.000 -0.007 -0.019 - 3 0.50646 0.495 -0.007 1.000 -0.242 - 4 0.65685 -0.650 -0.019 -0.242 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24811.7 FROM HESSE STATUS=OK 23 CALLS 215 TOTAL - EDM=1.17259e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 9.90383e+02 1.26342e+00 3.77979e-04 -1.93551e-01 - 2 sg_p1 4.50000e+01 1.21891e-01 3.38391e-03 1.57107e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 3 sg_p2 1.02011e+00 4.11293e-02 7.67732e-05 -6.33481e-01 - 4 sg_p3 1.18700e+00 6.01270e-02 7.50148e-05 -7.21959e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.597e+00 9.064e-07 2.577e-02 -4.939e-02 - 9.064e-07 1.885e-07 -2.868e-08 -1.091e-07 - 2.577e-02 -2.868e-08 1.692e-03 -5.978e-04 - -4.939e-02 -1.091e-07 -5.978e-04 3.616e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.73776 1.000 0.002 0.496 -0.650 - 2 0.00498 0.002 1.000 -0.002 -0.004 - 3 0.50696 0.496 -0.002 1.000 -0.242 - 4 0.65659 -0.650 -0.004 -0.242 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -1000 -990.383 +- 1.26342 -45 +- 0.121891 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [700,1250] --> [700,1250] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [800,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [700,1250] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [800,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=24403.1 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.00000e+03 1.00000e+01 0.00000e+00 2.26882e+02 - 2 sg_p1 3.50000e+01 2.00000e+00 0.00000e+00 -1.93966e+02 - 3 sg_p2 9.63072e-01 5.00000e-01 0.00000e+00 2.31928e+02 - 4 sg_p3 8.86770e-01 7.00000e-01 -8.42993e-01 8.03262e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24325.5 FROM MIGRAD STATUS=CONVERGED 218 CALLS 219 TOTAL - EDM=6.49551e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.95493e+02 9.33476e-01 1.79739e-03 -1.13004e-01 - 2 sg_p1 4.50000e+01 1.21162e-01 1.67946e-02** at limit ** - 3 sg_p2 1.13607e+00 4.42015e-02 2.25943e-03 -2.24141e-01 - 4 sg_p3 1.13155e+00 4.13228e-02 1.53138e-03 2.62522e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 8.715e-01 4.578e-06 3.814e-04 -1.748e-02 - 4.578e-06 9.111e-07 -4.559e-07 -5.336e-07 - 3.814e-04 -4.559e-07 1.954e-03 1.592e-04 - -1.748e-02 -5.336e-07 1.592e-04 1.708e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.45573 1.000 0.005 0.009 -0.453 - 2 0.01663 0.005 1.000 -0.011 -0.014 - 3 0.10332 0.009 -0.011 1.000 0.087 - 4 0.46232 -0.453 -0.014 0.087 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24325.5 FROM HESSE STATUS=OK 23 CALLS 242 TOTAL - EDM=9.33859e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 9.95493e+02 1.04671e+00 3.59477e-04 -9.02624e-02 - 2 sg_p1 4.50000e+01 1.21173e-01 3.35892e-03 1.57018e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 3 sg_p2 1.13607e+00 4.95685e-02 4.51887e-04 -5.77071e-01 - 4 sg_p3 1.13155e+00 4.14941e-02 3.06277e-04 -7.43270e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.096e+00 5.239e-08 2.349e-02 -1.999e-02 - 5.239e-08 9.112e-07 -6.164e-08 -6.151e-08 - 2.349e-02 -6.164e-08 2.457e-03 -2.607e-04 - -1.999e-02 -6.151e-08 -2.607e-04 1.722e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.60817 1.000 0.000 0.453 -0.460 - 2 0.00217 0.000 1.000 -0.001 -0.002 - 3 0.46189 0.453 -0.001 1.000 -0.127 - 4 0.46928 -0.460 -0.002 -0.127 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -1000 -995.493 +- 1.04671 -45 +- 0.121173 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [700,1250] --> [700,1250] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [800,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [700,1250] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [800,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=25056.4 FROM MIGRAD STATUS=INITIATE 59 CALLS 60 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.00000e+03 1.00000e+01 0.00000e+00 4.08464e+01 - 2 sg_p1 3.50000e+01 2.00000e+00 0.00000e+00 -1.81870e+02 - 3 sg_p2 1.21059e+00 5.00000e-01 0.00000e+00 5.34510e+02 - 4 sg_p3 6.71391e-01 7.00000e-01 -2.20055e+00 -8.87064e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24915.3 FROM MIGRAD STATUS=CONVERGED 228 CALLS 229 TOTAL - EDM=5.5921e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.84744e+02 1.19560e+00 1.95809e-03 2.95439e-02 - 2 sg_p1 4.50000e+01 1.21031e-01 1.69661e-02** at limit ** - 3 sg_p2 9.63081e-01 3.97444e-02 1.82185e-03 -6.76282e-03 - 4 sg_p3 1.23132e+00 5.50596e-02 1.88577e-03 -4.12979e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.430e+00 -3.803e-08 2.612e-02 3.540e-02 - -3.803e-08 3.884e-10 -9.020e-09 1.301e-08 - 2.612e-02 -9.020e-09 1.580e-03 4.623e-04 - 3.540e-02 1.301e-08 4.623e-04 3.032e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.69869 1.000 -0.002 0.550 0.538 - 2 0.01886 -0.002 1.000 -0.012 0.012 - 3 0.55874 0.550 -0.012 1.000 0.211 - 4 0.54722 0.538 0.012 0.211 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24915.3 FROM HESSE STATUS=OK 23 CALLS 252 TOTAL - EDM=5.61522e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 9.84744e+02 1.19463e+00 7.83235e-05 -3.10063e-01 - 2 sg_p1 4.50000e+01 1.21032e-01 3.39322e-03 1.57081e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 3 sg_p2 9.63081e-01 3.97567e-02 7.28742e-05 -6.62091e-01 - 4 sg_p3 1.23132e+00 5.49819e-02 7.54308e-05 -2.43638e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.427e+00 -7.637e-09 2.613e-02 3.521e-02 - -7.637e-09 3.884e-10 -1.811e-09 2.617e-09 - 2.613e-02 -1.811e-09 1.581e-03 4.609e-04 - 3.521e-02 2.617e-09 4.609e-04 3.023e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.69809 1.000 -0.000 0.550 0.536 - 2 0.00379 -0.000 1.000 -0.002 0.002 - 3 0.55912 0.550 -0.002 1.000 0.211 - 4 0.54541 0.536 0.002 0.211 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -1000 -984.744 +- 1.19463 -45 +- 0.121032 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [750,1250] --> [750,1250] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [750,1250] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=23747 FROM MIGRAD STATUS=INITIATE 58 CALLS 59 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01500e+03 7.00000e+00 0.00000e+00 1.99056e+02 - 2 sg_p1 3.25000e+01 1.50000e+00 0.00000e+00 -1.60594e+02 - 3 sg_p2 9.21832e-01 5.00000e-01 0.00000e+00 1.22069e+02 - 4 sg_p3 1.41673e+00 7.00000e-01 -6.37540e-01 4.87774e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23690.5 FROM MIGRAD STATUS=CONVERGED 248 CALLS 249 TOTAL - EDM=7.40636e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01658e+03 8.13144e-01 2.06376e-03 -3.76416e-01 - 2 sg_p1 4.00000e+01 4.68280e-01 3.89370e-02** at limit ** - 3 sg_p2 1.22240e+00 5.07108e-02 2.32615e-03 2.98325e-01 - 4 sg_p3 1.49206e+00 7.79105e-02 2.55089e-03 -7.56703e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 6.613e-01 1.056e-05 1.493e-02 -2.862e-02 - 1.056e-05 1.856e-06 -2.776e-06 -7.148e-06 - 1.493e-02 -2.776e-06 2.572e-03 -4.218e-04 - -2.862e-02 -7.148e-06 -4.218e-04 6.072e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.55096 1.000 0.010 0.362 -0.452 - 2 0.08279 0.010 1.000 -0.040 -0.067 - 3 0.36961 0.362 -0.040 1.000 -0.107 - 4 0.45964 -0.452 -0.067 -0.107 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23690.5 FROM HESSE STATUS=OK 23 CALLS 272 TOTAL - EDM=7.50694e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 1.01658e+03 8.10249e-01 4.12751e-04 4.50469e-02 - 2 sg_p1 4.00000e+01 4.69104e-01 7.78740e-03 1.57131e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 3 sg_p2 1.22240e+00 5.04194e-02 4.65229e-04 -5.36395e-01 - 4 sg_p3 1.49206e+00 7.77461e-02 1.02036e-04 -6.11014e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 6.566e-01 2.550e-06 1.440e-02 -2.848e-02 - 2.550e-06 1.859e-06 -6.023e-07 -1.591e-06 - 1.440e-02 -6.023e-07 2.543e-03 -4.084e-04 - -2.848e-02 -1.591e-06 -4.084e-04 6.046e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.54642 1.000 0.002 0.353 -0.452 - 2 0.01831 0.002 1.000 -0.009 -0.015 - 3 0.35800 0.353 -0.009 1.000 -0.104 - 4 0.45596 -0.452 -0.015 -0.104 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -1000 -1016.58 +- 0.810249 -40 +- 0.469104 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 - fit done -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [750,1250] --> [750,1250] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [750,1250] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=23321 FROM MIGRAD STATUS=INITIATE 62 CALLS 63 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01500e+03 7.00000e+00 0.00000e+00 -2.15456e+02 - 2 sg_p1 3.25000e+01 1.50000e+00 0.00000e+00 8.44246e+00 - 3 sg_p2 8.58947e-01 5.00000e-01 0.00000e+00 1.85345e+02 - 4 sg_p3 9.45698e-01 7.00000e-01 -8.18030e-01 -4.63007e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23288 FROM HESSE STATUS=OK 25 CALLS 397 TOTAL - EDM=0.00260498 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01832e+03 7.86712e-01 2.07176e-03 2.20958e+00 - 2 sg_p1 3.99993e+01 1.77184e+00 7.04451e-02 -2.46019e-02 - 3 sg_p2 1.21002e+00 5.23460e-02 1.24212e-03 -3.03189e+00 - 4 sg_p3 1.46453e+00 6.41490e-02 2.20715e-03 4.63062e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=23288 FROM MIGRAD STATUS=CONVERGED 405 CALLS 406 TOTAL - EDM=3.27684e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 0.7 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01831e+03 7.85112e-01 -4.32924e-04 -2.09259e-02 - 2 sg_p1 3.99999e+01 1.83061e+00 8.35977e-03 -1.12946e-02 - 3 sg_p2 1.21288e+00 5.27607e-02 1.33598e-03 -8.93872e-02 - 4 sg_p3 1.46454e+00 6.41540e-02 6.09141e-06 -1.12247e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 6.165e-01 -9.032e-04 1.537e-02 -1.778e-02 - -9.032e-04 7.440e-04 -2.479e-05 -1.812e-04 - 1.537e-02 -2.479e-05 2.784e-03 -1.646e-04 - -1.778e-02 -1.812e-04 -1.646e-04 4.116e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.50511 1.000 -0.042 0.371 -0.353 - 2 0.13383 -0.042 1.000 -0.017 -0.104 - 3 0.38141 0.371 -0.017 1.000 -0.049 - 4 0.38267 -0.353 -0.104 -0.049 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23288 FROM HESSE STATUS=OK 27 CALLS 433 TOTAL - EDM=6.045e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 1.01831e+03 7.86243e-01 2.07195e-03 9.46567e-02 - 2 sg_p1 3.99999e+01 1.65716e+00 2.81780e-02 1.56570e+00 - 3 sg_p2 1.21288e+00 5.23867e-02 2.37732e-03 -5.40830e-01 - 4 sg_p3 1.46454e+00 6.37794e-02 2.20581e-03 -6.20643e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 6.183e-01 -1.323e-04 1.524e-02 -1.755e-02 - -1.323e-04 6.707e-04 -5.377e-05 -7.207e-05 - 1.524e-02 -5.377e-05 2.745e-03 -2.465e-04 - -1.755e-02 -7.207e-05 -2.465e-04 4.068e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.49151 1.000 -0.006 0.370 -0.350 - 2 0.06175 -0.006 1.000 -0.040 -0.044 - 3 0.37636 0.370 -0.040 1.000 -0.074 - 4 0.35760 -0.350 -0.044 -0.074 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -1000 -1018.31 +- 0.786243 -39.9999 +- 1.65716 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [750,1250] --> [750,1250] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [750,1250] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=23875.8 FROM MIGRAD STATUS=INITIATE 55 CALLS 56 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01500e+03 7.00000e+00 0.00000e+00 4.43398e+02 - 2 sg_p1 3.25000e+01 1.50000e+00 0.00000e+00 -1.77680e+02 - 3 sg_p2 9.21219e-01 5.00000e-01 0.00000e+00 7.52454e+00 - 4 sg_p3 1.40649e+00 7.00000e-01 -6.41185e-01 5.95628e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23798.4 FROM MIGRAD STATUS=CONVERGED 217 CALLS 218 TOTAL - EDM=7.75608e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01285e+03 8.33665e-01 2.07912e-03 1.70866e-02 - 2 sg_p1 3.98091e+01 8.48923e-01 3.16082e-02 -1.03759e-02 - 3 sg_p2 1.12381e+00 5.95622e-02 2.13485e-03 3.30200e-01 - 4 sg_p3 1.54010e+00 8.22224e-02 2.41055e-03 -1.53820e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 6.951e-01 2.065e-01 2.518e-02 -6.574e-03 - 2.065e-01 6.697e-01 3.047e-02 3.584e-02 - 2.518e-02 3.047e-02 3.549e-03 1.365e-03 - -6.574e-03 3.584e-02 1.365e-03 6.762e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.57532 1.000 0.303 0.507 -0.096 - 2 0.73404 0.303 1.000 0.625 0.533 - 3 0.70991 0.507 0.625 1.000 0.279 - 4 0.59907 -0.096 0.533 0.279 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23798.4 FROM HESSE STATUS=OK 23 CALLS 241 TOTAL - EDM=7.73708e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 1.01285e+03 8.49657e-01 4.15824e-04 -6.14668e-02 - 2 sg_p1 3.98091e+01 1.04461e+00 1.26433e-03 1.34471e+00 - 3 sg_p2 1.12381e+00 6.43212e-02 4.26970e-04 -5.82935e-01 - 4 sg_p3 1.54010e+00 8.72084e-02 9.64222e-05 -5.94353e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.221e-01 2.723e-01 2.914e-02 -1.973e-03 - 2.723e-01 8.279e-01 4.043e-02 4.780e-02 - 2.914e-02 4.043e-02 4.139e-03 2.068e-03 - -1.973e-03 4.780e-02 2.068e-03 7.608e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.59661 1.000 0.352 0.533 -0.027 - 2 0.79068 0.352 1.000 0.691 0.602 - 3 0.75807 0.533 0.691 1.000 0.369 - 4 0.65582 -0.027 0.602 0.369 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -1000 -1012.85 +- 0.849657 -39.8091 +- 1.04461 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [750,1250] --> [750,1250] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [750,1250] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=23239.4 FROM MIGRAD STATUS=INITIATE 64 CALLS 65 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01500e+03 7.00000e+00 0.00000e+00 -1.27750e+02 - 2 sg_p1 3.25000e+01 1.50000e+00 0.00000e+00 1.26948e-01 - 3 sg_p2 8.74738e-01 5.00000e-01 0.00000e+00 1.80702e+02 - 4 sg_p3 9.26595e-01 7.00000e-01 -8.26048e-01 -4.27618e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23209.7 FROM MIGRAD STATUS=CONVERGED 237 CALLS 238 TOTAL - EDM=0.00014251 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01577e+03 8.64818e-01 2.10463e-03 2.40523e-01 - 2 sg_p1 3.99999e+01 1.00303e+00 5.37328e-02 -1.94869e-02 - 3 sg_p2 1.13318e+00 5.62974e-02 2.39200e-03 -5.76330e-02 - 4 sg_p3 1.52247e+00 6.86424e-02 2.34430e-03 1.64373e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.481e-01 -1.096e-03 2.562e-02 -1.857e-02 - -1.096e-03 4.530e-04 -1.315e-04 -8.807e-05 - 2.562e-02 -1.315e-04 3.170e-03 -3.976e-04 - -1.857e-02 -8.807e-05 -3.976e-04 4.713e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.58719 1.000 -0.060 0.526 -0.313 - 2 0.13360 -0.060 1.000 -0.110 -0.060 - 3 0.53513 0.526 -0.110 1.000 -0.103 - 4 0.32913 -0.313 -0.060 -0.103 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23209.7 FROM HESSE STATUS=OK 29 CALLS 267 TOTAL - EDM=0.000133982 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 1.01577e+03 8.73102e-01 4.20925e-04 2.20882e-02 - 2 sg_p1 3.99999e+01 1.01940e+00 2.14931e-03 1.56537e+00 - 3 sg_p2 1.13318e+00 5.62622e-02 9.56802e-05 -5.78450e-01 - 4 sg_p3 1.52247e+00 7.21948e-02 7.98704e-02 -6.00445e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.625e-01 2.144e-04 2.611e-02 -2.173e-02 - 2.144e-04 4.606e-04 2.659e-05 2.032e-05 - 2.611e-02 2.659e-05 3.166e-03 -5.636e-04 - -2.173e-02 2.032e-05 -5.636e-04 5.213e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.59764 1.000 0.011 0.531 -0.345 - 2 0.02791 0.011 1.000 0.022 0.013 - 3 0.53363 0.531 0.022 1.000 -0.139 - 4 0.34900 -0.345 0.013 -0.139 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -1000 -1015.77 +- 0.873102 -39.9999 +- 1.0194 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [750,1250] --> [750,1250] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [750,1250] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=23904.2 FROM MIGRAD STATUS=INITIATE 63 CALLS 64 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01500e+03 7.00000e+00 0.00000e+00 -1.58334e+02 - 2 sg_p1 3.25000e+01 1.50000e+00 0.00000e+00 -6.45414e+00 - 3 sg_p2 9.40575e-01 5.00000e-01 0.00000e+00 2.02619e+02 - 4 sg_p3 9.50207e-01 7.00000e-01 -8.16148e-01 -4.42963e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23871.3 FROM MIGRAD STATUS=CONVERGED 250 CALLS 251 TOTAL - EDM=1.36548e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01639e+03 7.28586e-01 2.01823e-03 -1.76359e-02 - 2 sg_p1 4.00000e+01 7.49353e-01 4.69202e-02 -5.91552e-03 - 3 sg_p2 1.26989e+00 5.63661e-02 2.54093e-03 8.80770e-02 - 4 sg_p3 1.53945e+00 6.56083e-02 2.27702e-03 -7.24550e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.309e-01 -7.297e-05 1.348e-02 -1.019e-02 - -7.297e-05 1.681e-05 -1.973e-05 -2.021e-05 - 1.348e-02 -1.973e-05 3.178e-03 5.005e-04 - -1.019e-02 -2.021e-05 5.005e-04 4.305e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.41880 1.000 -0.024 0.328 -0.213 - 2 0.10777 -0.024 1.000 -0.085 -0.075 - 3 0.39425 0.328 -0.085 1.000 0.135 - 4 0.31076 -0.213 -0.075 0.135 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=23871.3 FROM HESSE STATUS=OK 23 CALLS 274 TOTAL - EDM=1.44816e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 1.01639e+03 7.40109e-01 4.03646e-04 3.97032e-02 - 2 sg_p1 4.00000e+01 7.56384e-01 9.38403e-03 1.56958e+00 - 3 sg_p2 1.26989e+00 5.58118e-02 1.01637e-04 -5.14435e-01 - 4 sg_p3 1.53945e+00 6.43105e-02 9.10809e-05 -5.94577e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.478e-01 -1.128e-05 1.525e-02 -1.306e-02 - -1.128e-05 1.697e-05 -2.641e-06 -2.503e-06 - 1.525e-02 -2.641e-06 3.116e-03 -1.984e-04 - -1.306e-02 -2.503e-06 -1.984e-04 4.137e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.44819 1.000 -0.004 0.369 -0.274 - 2 0.01546 -0.004 1.000 -0.011 -0.009 - 3 0.37224 0.369 -0.011 1.000 -0.055 - 4 0.27895 -0.274 -0.009 -0.055 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -1000 -1016.39 +- 0.740109 -40 +- 0.756384 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [750,1250] --> [750,1250] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [750,1250] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=16426.3 FROM MIGRAD STATUS=INITIATE 52 CALLS 53 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01500e+03 7.00000e+00 0.00000e+00 2.76971e+02 - 2 sg_p1 3.25000e+01 1.50000e+00 0.00000e+00 -7.40412e+01 - 3 sg_p2 7.53407e-01 5.00000e-01 0.00000e+00 -2.61313e+02 - 4 sg_p3 1.41708e+00 7.00000e-01 -6.37416e-01 3.61680e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16380.4 FROM MIGRAD STATUS=CONVERGED 204 CALLS 205 TOTAL - EDM=1.2739e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01657e+03 9.77555e-01 2.06312e-03 -3.61028e-03 - 2 sg_p1 4.00000e+01 6.78180e-01 3.73477e-02 -7.76696e-03 - 3 sg_p2 1.22238e+00 6.09231e-02 2.33024e-03 -3.84112e-02 - 4 sg_p3 1.49153e+00 9.35612e-02 2.57411e-03 -3.75876e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.559e-01 3.743e-05 2.152e-02 -4.133e-02 - 3.743e-05 2.111e-05 -9.720e-06 -2.510e-05 - 2.152e-02 -9.720e-06 3.713e-03 -6.103e-04 - -4.133e-02 -2.510e-05 -6.103e-04 8.757e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.55051 1.000 0.008 0.361 -0.452 - 2 0.07170 0.008 1.000 -0.035 -0.058 - 3 0.36817 0.361 -0.035 1.000 -0.107 - 4 0.45868 -0.452 -0.058 -0.107 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16380.4 FROM HESSE STATUS=OK 23 CALLS 228 TOTAL - EDM=1.33694e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 1.01657e+03 9.74476e-01 4.12624e-04 4.48931e-02 - 2 sg_p1 4.00000e+01 6.79952e-01 7.46954e-03 1.56937e+00 - 3 sg_p2 1.22238e+00 6.06205e-02 9.32097e-05 -5.36402e-01 - 4 sg_p3 1.49153e+00 9.34142e-02 1.02965e-04 -6.11196e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.499e-01 5.447e-06 2.083e-02 -4.116e-02 - 5.447e-06 2.117e-05 -1.283e-06 -3.388e-06 - 2.083e-02 -1.283e-06 3.676e-03 -5.904e-04 - -4.116e-02 -3.388e-06 -5.904e-04 8.729e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.54649 1.000 0.001 0.353 -0.452 - 2 0.00962 0.001 1.000 -0.005 -0.008 - 3 0.35791 0.353 -0.005 1.000 -0.104 - 4 0.45594 -0.452 -0.008 -0.104 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -1000 -1016.57 +- 0.974476 -40 +- 0.679952 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [750,1250] --> [750,1250] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [750,1250] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [850,1150] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=33287.9 FROM MIGRAD STATUS=INITIATE 55 CALLS 56 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01500e+03 7.00000e+00 0.00000e+00 3.29127e+02 - 2 sg_p1 3.25000e+01 1.50000e+00 0.00000e+00 -2.09458e+02 - 3 sg_p2 8.91728e-01 5.00000e-01 0.00000e+00 7.37516e+01 - 4 sg_p3 1.41601e+00 7.00000e-01 -6.37796e-01 6.89934e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=33210.9 FROM MIGRAD STATUS=CONVERGED 218 CALLS 219 TOTAL - EDM=5.9663e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 1.01659e+03 6.86602e-01 2.06298e-03 6.23454e-02 - 2 sg_p1 4.00000e+01 3.36413e-01 3.74809e-02** at limit ** - 3 sg_p2 1.22194e+00 4.27738e-02 2.32926e-03 -6.40806e-02 - 4 sg_p3 1.49222e+00 6.57997e-02 2.57024e-03 -1.52134e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.715e-01 8.305e-06 1.061e-02 -2.041e-02 - 8.305e-06 1.928e-06 -2.165e-06 -5.598e-06 - 1.061e-02 -2.165e-06 1.830e-03 -3.008e-04 - -2.041e-02 -5.598e-06 -3.008e-04 4.330e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.55055 1.000 0.009 0.361 -0.452 - 2 0.07527 0.009 1.000 -0.036 -0.061 - 3 0.36846 0.361 -0.036 1.000 -0.107 - 4 0.45894 -0.452 -0.061 -0.107 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=33210.9 FROM HESSE STATUS=OK 23 CALLS 242 TOTAL - EDM=6.1799e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 1.01659e+03 6.84411e-01 4.12596e-04 4.54194e-02 - 2 sg_p1 4.00000e+01 3.37160e-01 7.49617e-03 1.57018e+00 - WARNING - - ABOVE PARAMETER IS AT LIMIT. - 3 sg_p2 1.22194e+00 4.25566e-02 9.31704e-05 -5.36608e-01 - 4 sg_p3 1.49222e+00 6.56863e-02 1.02809e-04 -6.10958e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.685e-01 1.563e-06 1.027e-02 -2.032e-02 - 1.563e-06 1.932e-06 -3.692e-07 -9.768e-07 - 1.027e-02 -3.692e-07 1.811e-03 -2.913e-04 - -2.032e-02 -9.768e-07 -2.913e-04 4.315e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.54648 1.000 0.002 0.353 -0.452 - 2 0.01305 0.002 1.000 -0.006 -0.011 - 3 0.35799 0.353 -0.006 1.000 -0.104 - 4 0.45593 -0.452 -0.011 -0.104 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -1000 -1016.59 +- 0.684411 -40 +- 0.33716 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 1016.58 +- 0.810249 (stat) - 3.72609 + 1.73193 (syst); -3.74805/+1.77868 (total) - Uncertainty on sg_p1 = 40 +- 0.469104 (stat) - 0.190863 + 0 (syst); -0.302396/+0.234552 (total) - Uncertainty on sg_p2 = 1.2224 +- 0.0504194 (stat) - 0.0985888 + 0.0474949 (syst); -0.101761/+0.0537708 (total) - Uncertainty on sg_p3 = 1.49206 +- 0.0777461 (stat) - 0.0275125 + 0.0480377 (syst); -0.0476241/+0.0617959 (total) - === Baseline plot ===
- norm = 330.727 -JEC lnN 1.01006 - -JER lnN 1.0152 - -btag lnN 1.35523 - -sg_p0 param 1016.58 -3.74805/+1.77868 -sg_p1 param 40 -0.302396/+0.234552 -sg_p2 param 1.2224 -0.101761/+0.0537708 -sg_p3 param 1.49206 -0.0476241/+0.0617959 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_550_crystal_1_550_1200/data_bkg.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_550_crystal_1_550_1200/data_bkg.log deleted file mode 100644 index 9081393..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_550_crystal_1_550_1200/data_bkg.log +++ /dev/null @@ -1,690 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10879.7 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 6.74624e-01 5.09000e-01 -8.31364e-01 -1.01971e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -3.20610e+01 - 3 par_crystal_2 5.00000e+02 2.00000e+01 0.00000e+00 -9.48837e+00 - 4 par_crystal_3 1.05000e+02 1.90000e+01 0.00000e+00 2.45317e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7116e+01 9.9978e-01 1.9597e+00 1.8156e+01 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 17.134017 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 27 CALLS 314 TOTAL - EDM=0.131054 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.06594e+00 6.09301e-02 1.43210e-03 -8.77809e-01 - 2 par_crystal_1 5.09576e+00 7.69298e-02 8.09031e-02 -5.13188e-02 - 3 par_crystal_2 4.95224e+02 7.91481e+01 2.17679e-03 -5.43249e-01 - 4 par_crystal_3 1.90900e+02 9.54958e+00 1.13079e-02 4.60762e-02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 477 CALLS 478 TOTAL - EDM=0.0370129 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.11079e+00 8.93309e-02 0.00000e+00 -4.75984e-01 - 2 par_crystal_1 5.08061e+00 3.60144e-01 0.00000e+00 -1.14416e-01 - 3 par_crystal_2 4.76040e+02 1.75614e+01 0.00000e+00 -2.32451e-01 - 4 par_crystal_3 1.99914e+02 2.77391e+01 0.00000e+00 -7.67572e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.985e-03 -2.091e-03 1.499e+00 2.820e-01 - -2.091e-03 2.873e-02 -7.387e-01 -2.900e-02 - 1.499e+00 -7.387e-01 3.118e+02 5.244e+01 - 2.820e-01 -2.900e-02 5.244e+01 1.008e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99775 1.000 -0.138 0.950 0.994 - 2 0.79882 -0.138 1.000 -0.247 -0.054 - 3 0.95717 0.950 -0.247 1.000 0.935 - 4 0.99764 0.994 -0.054 0.935 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.8 FROM HESSE STATUS=OK 27 CALLS 505 TOTAL - EDM=0.0183624 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.11079e+00 4.31984e-02 1.44775e-03 -6.03431e-01 - 2 par_crystal_1 5.08061e+00 3.28337e+00 6.64371e-02 1.44728e+00 - 3 par_crystal_2 4.76040e+02 8.02153e+00 1.45036e-02 3.38355e+00 - 4 par_crystal_3 1.99914e+02 2.26294e+01 4.50606e-02 1.52819e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.866e-03 -1.951e-03 -2.584e-03 1.946e-02 - -1.951e-03 1.028e-01 6.675e-04 3.793e-04 - -2.584e-03 6.675e-04 6.449e+01 1.116e+00 - 1.946e-02 3.793e-04 1.116e+00 8.140e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.21215 1.000 -0.141 -0.007 0.158 - 2 0.14274 -0.141 1.000 0.000 0.000 - 3 0.05109 -0.007 0.000 1.000 0.049 - 4 0.16712 0.158 0.000 0.049 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10978.6 FROM MIGRAD STATUS=INITIATE 68 CALLS 69 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 6.03110e+02 3.00000e+01 -8.97402e-01 -6.52175e+01 - 2 par_gaus_exp_1 5.45000e+01 9.10000e+00 0.00000e+00 -4.62060e+02 - 3 par_gaus_exp_2 4.12114e-01 3.05000e-01 0.00000e+00 1.25553e+03 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.9 FROM HESSE STATUS=OK 18 CALLS 182 TOTAL - EDM=0.000691453 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.46431e+02 6.06936e+00 3.17833e-03 -3.92855e-01 - 2 par_gaus_exp_1 6.65716e+01 1.75685e+01 2.62647e-03 1.43349e-01 - 3 par_gaus_exp_2 3.07505e-01 8.37981e-02 8.79822e-04 -3.06196e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM MIGRAD STATUS=CONVERGED 316 CALLS 317 TOTAL - EDM=9.19369e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.62504e+02 3.53152e+00 1.63243e-03 -1.66316e-01 - 2 par_gaus_exp_1 2.46552e+01 1.25211e+01 1.75085e-03 -3.48771e-01 - 3 par_gaus_exp_2 1.14604e-01 5.89219e-02 6.31447e-04 9.83138e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.247e+01 -1.544e+01 -6.961e-02 - -1.544e+01 1.643e+02 7.558e-01 - -6.961e-02 7.558e-01 3.493e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.35636 1.000 -0.341 -0.333 - 2 0.99789 -0.341 1.000 0.998 - 3 0.99788 -0.333 0.998 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM HESSE STATUS=OK 16 CALLS 333 TOTAL - EDM=9.89177e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 5.62504e+02 3.77274e+00 6.52972e-05 8.34552e-02 - 2 par_gaus_exp_1 2.46552e+01 1.46349e+01 3.50170e-04 -7.15413e-01 - 3 par_gaus_exp_2 1.14604e-01 6.93856e-02 1.26289e-04 -1.27868e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.424e+01 -2.545e+01 -1.157e-01 - -2.545e+01 2.286e+02 1.052e+00 - -1.157e-01 1.052e+00 4.855e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.45683 1.000 -0.446 -0.440 - 2 0.99849 -0.446 1.000 0.998 - 3 0.99848 -0.440 0.998 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (13168.6) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=575, par_novo_1=100, par_novo_2=1.58864 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=645, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=655, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=665, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=675, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=685, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=695, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=705, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=715, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=725, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=735, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=745, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=755, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - ... (remaining 46 messages suppressed) -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 575,par_novo_1 = 100,par_novo_2 = 1.58864) - - FCN=13054.5 FROM MIGRAD STATUS=INITIATE 14 CALLS 15 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.75000e+02 1.50000e+01 2.01358e-01 -1.22938e+03 - 2 par_novo_1 1.00000e+02 2.00000e+01 2.01358e-01 -6.98326e+03 - 3 par_novo_2 0.00000e+00 2.00000e+01 2.01358e-01 1.51249e+06 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM MIGRAD STATUS=CONVERGED 220 CALLS 221 TOTAL - EDM=2.09668e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.00000e+02 1.21837e+02 1.25149e-01 -7.30463e-04 - 2 par_novo_1 1.30637e+02 1.58558e+01 3.16845e-03 -1.76078e-02 - 3 par_novo_2 -6.95187e-01 1.36663e-01 2.61078e-05 1.74080e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.121e-01 -9.460e-01 -6.449e-03 - -9.460e-01 2.538e+02 2.099e+00 - -6.449e-03 2.099e+00 1.868e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.21023 1.000 -0.177 -0.141 - 2 0.96488 -0.177 1.000 0.964 - 3 0.96445 -0.141 0.964 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM HESSE STATUS=OK 20 CALLS 241 TOTAL - EDM=1.01397e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 5.00000e+02 1.20312e+02 5.00000e-01 -1.57325e+00 - 2 par_novo_1 1.30637e+02 2.01762e+01 1.26738e-04 3.11381e-01 - 3 par_novo_2 -6.95187e-01 1.62575e-01 1.04431e-06 -6.95192e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.070e-01 -4.278e+00 -2.995e-02 - -4.278e+00 4.133e+02 3.212e+00 - -2.995e-02 3.212e+00 2.643e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.69436 1.000 -0.643 -0.563 - 2 0.97859 -0.643 1.000 0.972 - 3 0.97501 -0.563 0.972 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10877 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 6.33849e-01 5.09000e-01 -8.55460e-01 -1.25390e+02 - 2 par_crystal_1_1 2.55500e+00 5.09000e-01 0.00000e+00 -2.69495e+01 - 3 par_crystal_1_2 5.50000e+02 3.00000e+01 0.00000e+00 -1.44080e+01 - 4 par_crystal_1_3 1.04500e+02 1.91000e+01 0.00000e+00 3.07979e+01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.43469 added to diagonal of error matrix - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.5401e+00 8.4221e-02 1.8087e+00 3.6472e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 1.543714 TO DIAGONAL. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.9 FROM HESSE STATUS=OK 25 CALLS 485 TOTAL - EDM=0.0491336 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.05623e+00 1.52463e-01 1.42446e-03 -1.90900e+00 - 2 par_crystal_1_1 5.09988e+00 3.18944e+00 7.54811e-02 -8.93342e-03 - 3 par_crystal_1_2 4.96280e+02 4.98347e+01 9.02051e-03 3.58498e-02 - 4 par_crystal_1_3 1.89188e+02 2.78069e+01 1.02856e-02 -2.38185e-01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 538 CALLS 539 TOTAL - EDM=10.0867 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 14.1 per cent - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.09723e+00 3.02575e-02 -0.00000e+00 5.47416e+01 - 2 par_crystal_1_1 5.09997e+00 3.18368e+00 0.00000e+00 -3.90351e-03 - 3 par_crystal_1_2 4.83329e+02 2.76558e+01 0.00000e+00 7.05236e+00 - 4 par_crystal_1_3 1.96552e+02 5.80629e+00 -0.00000e+00 4.39990e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.156e-04 -1.804e-07 -6.742e-01 1.111e-01 - -1.804e-07 1.763e-04 7.888e-03 -2.154e-03 - -6.742e-01 7.888e-03 7.759e+02 -1.463e+02 - 1.111e-01 -2.154e-03 -1.463e+02 3.432e+01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.82553 1.000 -0.000 -0.800 0.627 - 2 0.03650 -0.000 1.000 0.021 -0.028 - 3 0.94703 -0.800 0.021 1.000 -0.896 - 4 0.90888 0.627 -0.028 -0.896 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -9.7852e-01 9.9996e-01 1.9836e+00 1.9949e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.980510 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 29 CALLS 568 TOTAL - EDM=238.514 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 1.09723e+00 4.25322e-02 2.54943e-04 -6.09913e-01 - 2 par_crystal_1_1 5.09997e+00 7.84798e-01 8.54763e-02 1.56580e+00 - 3 par_crystal_1_2 4.83329e+02 1.87856e+01 1.76414e-03 -4.60588e-01 - 4 par_crystal_1_3 1.96552e+02 5.33115e+00 2.63738e-03 1.30128e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.809e-03 -2.197e-07 8.001e-01 2.280e-01 - -2.197e-07 1.053e-04 -1.173e-04 -3.665e-05 - 8.001e-01 -1.173e-04 3.552e+02 1.010e+02 - 2.280e-01 -3.665e-05 1.010e+02 2.885e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99849 1.000 -0.001 0.998 0.998 - 2 0.00265 -0.001 1.000 -0.001 -0.001 - 3 0.99848 0.998 -0.001 1.000 0.998 - 4 0.99849 0.998 -0.001 0.998 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_550_1200 = 1266.17 - Background number of gaus_exp_550_1200 = 1266.17 - Background number of novo_550_1200 = 1266.17 - Background number of crystal_1_550_1200 = 1266.17 - Background number of gaus_bern_550_1200 = 1266.17 - Background number of landau_550_1200 = 1266.17 -par_crystal_0 param 1.11079 0.0431984 -par_crystal_1 param 5.08061 3.28337 -par_crystal_2 param 476.04 8.02153 -par_crystal_3 param 199.914 22.6294 -par_crystal_1_0 param 1.09723 0.0425322 -par_crystal_1_1 param 5.09997 0.784798 -par_crystal_1_2 param 483.329 18.7856 -par_crystal_1_3 param 196.552 5.33115 -par_gaus_exp_0 param 562.504 3.77274 -par_gaus_exp_1 param 24.6552 14.6349 -par_gaus_exp_2 param 0.114604 0.0693856 -par_novo_0 param 500 120.312 -par_novo_1 param 130.637 20.1762 -par_novo_2 param -0.695187 0.162575 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_550_crystal_1_550_1200/datacard_550_crystal_1_550_1200.txt b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_550_crystal_1_550_1200/datacard_550_crystal_1_550_1200.txt deleted file mode 100644 index 8988606..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_550_crystal_1_550_1200/datacard_550_crystal_1_550_1200.txt +++ /dev/null @@ -1,29 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_550.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_crystal_1_550_1200.root HbbHbb:f_crystal_1 -shapes data_obs HbbHbb w_background_crystal_1_550_1200.root HbbHbb:data_obs_crystal_1_550_1200 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 2.47576 1266.17 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06518 - -JER lnN 1.01484 - -JEC lnN 1.02905 - -trigger lnN 1.10 - -sg_p0 param 557.153 -0.841572/+1.72896 -sg_p1 param 15.9907 -1.40739/+0.147463 -sg_p2 param 1.40719 -0.132995/+0.0332402 -sg_p3 param 1.40947 -0.296917/+0.0302524 -par_crystal_1_0 param 1.09723 0.0425322 -par_crystal_1_1 param 5.09997 0.784798 -par_crystal_1_2 param 483.329 18.7856 -par_crystal_1_3 param 196.552 5.33115 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_550_crystal_1_550_1200/signal550_sig.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_550_crystal_1_550_1200/signal550_sig.log deleted file mode 100644 index 95176bb..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_550_crystal_1_550_1200/signal550_sig.log +++ /dev/null @@ -1,949 +0,0 @@ - -Processing test.c... -nSignal_init = 100000 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [350,750] --> [350,750] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [450,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [350,750] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [450,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=16548.5 FROM MIGRAD STATUS=INITIATE 59 CALLS 60 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.40000e+02 6.00000e+00 0.00000e+00 8.36856e+01 - 2 sg_p1 2.25000e+01 2.50000e+00 0.00000e+00 -2.13036e+02 - 3 sg_p2 9.96389e-01 5.00000e-01 0.00000e+00 -2.10001e+01 - 4 sg_p3 1.33793e+00 7.00000e-01 -6.65859e-01 1.43037e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.05392 added to diagonal of error matrix - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16467.8 FROM MIGRAD STATUS=CONVERGED 433 CALLS 434 TOTAL - EDM=1.19101e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.41842e+02 5.12497e-01 1.51068e-03 3.12657e-02 - 2 sg_p1 2.95617e+01 3.82692e-01 3.23918e-03 3.18610e-03 - 3 sg_p2 2.26823e+00 2.06532e-01 7.22656e-03 -7.81355e-04 - 4 sg_p3 3.13392e+00 1.77814e+00 6.15202e-02 -1.76290e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.627e-01 2.925e-03 9.483e-03 -3.748e-10 - 2.925e-03 1.465e-01 1.367e-02 -4.881e-11 - 9.483e-03 1.367e-02 4.275e-02 -1.530e-10 - -3.748e-10 -4.881e-11 -1.530e-10 3.483e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.08948 1.000 0.015 0.089 -0.000 - 2 0.17277 0.015 1.000 0.173 -0.000 - 3 0.19340 0.089 0.173 1.000 -0.000 - 4 0.00000 -0.000 -0.000 -0.000 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16467.8 FROM HESSE STATUS=OK 29 CALLS 463 TOTAL - EDM=3.87994e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.41842e+02 5.12297e-01 3.02136e-04 6.14367e-02 - 2 sg_p1 2.95617e+01 3.82068e-01 1.29567e-04 6.00358e-01 - 3 sg_p2 2.26823e+00 2.05837e-01 2.89062e-04 -9.28432e-02 - 4 sg_p3 3.13392e+00 6.62343e-01 3.58606e-01 -1.04787e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.625e-01 2.466e-03 8.976e-03 1.615e-11 - 2.466e-03 1.460e-01 1.286e-02 2.313e-11 - 8.976e-03 1.286e-02 4.247e-02 7.639e-11 - 1.615e-11 2.313e-11 7.639e-11 4.441e-01 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.08503 1.000 0.013 0.085 0.000 - 2 0.16331 0.013 1.000 0.163 0.000 - 3 0.18317 0.085 0.163 1.000 0.000 - 4 0.00000 0.000 0.000 0.000 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -550 -541.842 +- 0.512297 -29.5617 +- 0.382068 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [350,750] --> [350,750] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [450,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [350,750] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [450,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=16779.6 FROM MIGRAD STATUS=INITIATE 54 CALLS 55 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.40000e+02 6.00000e+00 0.00000e+00 -8.37041e+01 - 2 sg_p1 2.25000e+01 2.50000e+00 0.00000e+00 -1.07475e+02 - 3 sg_p2 8.65799e-01 5.00000e-01 0.00000e+00 -7.40551e+01 - 4 sg_p3 1.35564e+00 7.00000e-01 -6.59439e-01 6.28488e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16685.9 FROM HESSE STATUS=OK 27 CALLS 282 TOTAL - EDM=0.102246 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.44552e+02 5.08282e-01 1.52398e-03 -1.54852e-01 - 2 sg_p1 2.95922e+01 3.76777e-01 3.22494e-03 -3.69769e-02 - 3 sg_p2 2.45278e+00 3.27164e-01 1.16491e-02 1.26745e-02 - 4 sg_p3 3.35460e+00 1.18039e+00 3.11390e-01 -1.31335e+00 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=16685.9 FROM MIGRAD STATUS=CONVERGED 295 CALLS 296 TOTAL - EDM=2.81269e-08 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 0.0 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.44554e+02 5.08278e-01 4.34002e-05 -1.50856e-04 - 2 sg_p1 2.95926e+01 3.76767e-01 4.09576e-05 -4.62961e-04 - 3 sg_p2 2.45238e+00 3.27162e-01 -1.58660e-04 -1.77907e-03 - 4 sg_p3 3.89863e+00 1.17372e+00 1.55695e-01 0.00000e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.584e-01 3.013e-03 1.443e-02 3.104e-05 - 3.013e-03 1.420e-01 2.058e-02 5.573e-05 - 1.443e-02 2.058e-02 1.077e-01 2.055e-04 - 3.104e-05 5.573e-05 2.055e-04 1.433e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.08655 1.000 0.016 0.087 0.000 - 2 0.16643 0.016 1.000 0.166 0.000 - 3 0.18640 0.087 0.166 1.000 0.001 - 4 0.00052 0.000 0.000 0.001 1.000 - ********** - ** 18 **HESSE 2000 - ********** - MINUIT WARNING IN HESSE - ============== Second derivative enters zero, param 4 - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16685.9 FROM HESSE STATUS=OK 31 CALLS 327 TOTAL - EDM=0.378043 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.44554e+02 5.08418e-01 1.52334e-03 1.52374e-01 - 2 sg_p1 2.95926e+01 3.77155e-01 1.28998e-03 6.03355e-01 - 3 sg_p2 2.45238e+00 3.27373e-01 4.65962e-03 -1.90491e-02 - 4 sg_p3 3.89863e+00 1.40113e+00 5.10000e-01 1.14141e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.585e-01 3.222e-03 1.491e-02 4.426e-12 - 3.222e-03 1.423e-01 2.127e-02 -3.793e-11 - 1.491e-02 2.127e-02 1.078e-01 3.265e-11 - 4.426e-12 -3.793e-11 3.265e-11 2.080e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.08933 1.000 0.017 0.089 0.000 - 2 0.17177 0.017 1.000 0.172 -0.000 - 3 0.19229 0.089 0.172 1.000 0.000 - 4 0.00000 0.000 -0.000 0.000 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -550 -544.554 +- 0.508418 -29.5926 +- 0.377155 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [350,750] --> [350,750] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [450,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [350,750] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [450,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=15773.3 FROM MIGRAD STATUS=INITIATE 56 CALLS 57 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.40000e+02 6.00000e+00 0.00000e+00 1.21147e+02 - 2 sg_p1 2.25000e+01 2.50000e+00 0.00000e+00 -1.80759e+02 - 3 sg_p2 1.10607e+00 5.00000e-01 0.00000e+00 -3.61854e+01 - 4 sg_p3 1.15878e+00 7.00000e-01 -7.32755e-01 8.10605e+01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.37034 added to diagonal of error matrix - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15704.6 FROM MIGRAD STATUS=CONVERGED 357 CALLS 358 TOTAL - EDM=1.29397e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.39647e+02 5.17185e-01 1.48655e-03 -1.89345e-02 - 2 sg_p1 2.91881e+01 3.85671e-01 3.11579e-03 3.89872e-03 - 3 sg_p2 2.31906e+00 2.28533e-01 7.79945e-03 -3.76001e-04 - 4 sg_p3 3.12530e+00 1.84829e+00 8.28757e-02 -7.72724e-05 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.675e-01 1.706e-03 1.012e-02 1.242e-12 - 1.706e-03 1.488e-01 1.489e-02 1.083e-10 - 1.012e-02 1.489e-02 5.237e-02 1.084e-11 - 1.242e-12 1.083e-10 1.084e-11 3.797e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.08574 1.000 0.009 0.086 0.000 - 2 0.16875 0.009 1.000 0.169 0.000 - 3 0.18845 0.086 0.169 1.000 0.000 - 4 0.00000 0.000 0.000 0.000 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15704.6 FROM HESSE STATUS=OK 27 CALLS 385 TOTAL - EDM=0.802787 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.39647e+02 5.17333e-01 2.97309e-04 -1.17805e-02 - 2 sg_p1 2.91881e+01 3.86088e-01 1.24632e-04 5.64568e-01 - 3 sg_p2 2.31906e+00 2.28870e-01 3.11978e-04 -7.24379e-02 - 4 sg_p3 3.12530e+00 7.00822e-01 3.63374e-01 -1.07263e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.677e-01 1.770e-03 1.052e-02 3.022e-11 - 1.770e-03 1.491e-01 1.546e-02 -6.678e-11 - 1.052e-02 1.546e-02 5.253e-02 4.080e-11 - 3.022e-11 -6.678e-11 4.080e-11 4.979e-01 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.08899 1.000 0.009 0.089 0.000 - 2 0.17483 0.009 1.000 0.175 -0.000 - 3 0.19525 0.089 0.175 1.000 0.000 - 4 0.00000 0.000 -0.000 0.000 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -550 -539.647 +- 0.517333 -29.1881 +- 0.386088 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [390,750] --> [390,750] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [390,750] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=14837.3 FROM MIGRAD STATUS=INITIATE 51 CALLS 52 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.55000e+02 5.00000e+00 0.00000e+00 -5.62915e+02 - 2 sg_p1 1.50000e+01 2.00000e+00 0.00000e+00 -2.92186e+02 - 3 sg_p2 1.33485e+00 5.00000e-01 0.00000e+00 1.12519e+02 - 4 sg_p3 1.63806e+00 7.00000e-01 -5.60940e-01 1.42255e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14796.3 FROM MIGRAD STATUS=CONVERGED 175 CALLS 176 TOTAL - EDM=1.79394e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.57153e+02 3.21384e-01 1.00803e-03 -2.87826e-01 - 2 sg_p1 1.59907e+01 2.94249e-01 1.95331e-03 -7.46933e-02 - 3 sg_p2 1.40719e+00 6.63431e-02 1.98696e-03 1.23037e-01 - 4 sg_p3 1.40947e+00 6.04329e-02 1.61506e-03 3.47616e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.033e-01 1.010e-02 6.404e-03 -2.894e-03 - 1.010e-02 8.661e-02 1.063e-02 7.128e-03 - 6.404e-03 1.063e-02 4.403e-03 8.132e-04 - -2.894e-03 7.128e-03 8.132e-04 3.653e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.36907 1.000 0.107 0.300 -0.149 - 2 0.62006 0.107 1.000 0.545 0.401 - 3 0.59757 0.300 0.545 1.000 0.203 - 4 0.44647 -0.149 0.401 0.203 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14796.3 FROM HESSE STATUS=OK 23 CALLS 199 TOTAL - EDM=1.79239e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.57153e+02 3.21538e-01 2.01606e-04 8.62318e-02 - 2 sg_p1 1.59907e+01 2.94927e-01 3.90662e-04 9.92360e-02 - 3 sg_p2 1.40719e+00 6.64804e-02 7.94782e-05 -4.52397e-01 - 4 sg_p3 1.40947e+00 6.05049e-02 6.46026e-05 -6.40123e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.034e-01 1.015e-02 6.439e-03 -2.895e-03 - 1.015e-02 8.701e-02 1.072e-02 7.193e-03 - 6.439e-03 1.072e-02 4.421e-03 8.247e-04 - -2.895e-03 7.193e-03 8.247e-04 3.661e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.37018 1.000 0.107 0.301 -0.149 - 2 0.62233 0.107 1.000 0.547 0.403 - 3 0.59978 0.301 0.547 1.000 0.205 - 4 0.44859 -0.149 0.403 0.205 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -550 -557.153 +- 0.321538 -15.9907 +- 0.294927 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 - fit done -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [390,750] --> [390,750] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [390,750] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=15106.5 FROM MIGRAD STATUS=INITIATE 55 CALLS 56 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.55000e+02 5.00000e+00 0.00000e+00 -4.27508e+02 - 2 sg_p1 1.50000e+01 2.00000e+00 0.00000e+00 5.60673e+01 - 3 sg_p2 9.57872e-01 5.00000e-01 0.00000e+00 -1.96076e+02 - 4 sg_p3 1.43385e+00 7.00000e-01 -6.31466e-01 3.52996e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15049.6 FROM MIGRAD STATUS=CONVERGED 145 CALLS 146 TOTAL - EDM=1.59039e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.58875e+02 3.28831e-01 1.01097e-03 2.51867e-01 - 2 sg_p1 1.50106e+01 3.27326e-01 1.94006e-03 -7.48907e-02 - 3 sg_p2 1.28146e+00 5.35843e-02 1.64296e-03 -7.25386e-02 - 4 sg_p3 1.13283e+00 5.00773e-02 1.24085e-03 1.93411e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.081e-01 -1.435e-02 2.668e-03 -5.685e-03 - -1.435e-02 1.072e-01 9.872e-03 9.778e-03 - 2.668e-03 9.872e-03 2.872e-03 8.529e-04 - -5.685e-03 9.778e-03 8.529e-04 2.508e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.44454 1.000 -0.133 0.151 -0.345 - 2 0.71564 -0.133 1.000 0.563 0.596 - 3 0.61000 0.151 0.563 1.000 0.318 - 4 0.65614 -0.345 0.596 0.318 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15049.6 FROM HESSE STATUS=OK 23 CALLS 169 TOTAL - EDM=1.59031e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.58875e+02 3.28953e-01 2.02195e-04 1.55611e-01 - 2 sg_p1 1.50106e+01 3.28179e-01 3.88013e-04 1.06416e-03 - 3 sg_p2 1.28146e+00 5.36907e-02 6.57184e-05 -5.09126e-01 - 4 sg_p3 1.13283e+00 5.01651e-02 2.48171e-04 -7.42776e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.082e-01 -1.448e-02 2.668e-03 -5.699e-03 - -1.448e-02 1.077e-01 9.953e-03 9.852e-03 - 2.668e-03 9.953e-03 2.883e-03 8.627e-04 - -5.699e-03 9.852e-03 8.627e-04 2.517e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.44521 1.000 -0.134 0.151 -0.345 - 2 0.71741 -0.134 1.000 0.565 0.598 - 3 0.61203 0.151 0.565 1.000 0.320 - 4 0.65766 -0.345 0.598 0.320 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -550 -558.875 +- 0.328953 -15.0106 +- 0.328179 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [390,750] --> [390,750] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [390,750] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=14133.8 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.55000e+02 5.00000e+00 0.00000e+00 -3.22550e+02 - 2 sg_p1 1.50000e+01 2.00000e+00 0.00000e+00 -8.95889e+01 - 3 sg_p2 1.26916e+00 5.00000e-01 0.00000e+00 3.67893e+01 - 4 sg_p3 1.35775e+00 7.00000e-01 -6.58678e-01 -5.62243e+00 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14121.3 FROM MIGRAD STATUS=CONVERGED 210 CALLS 211 TOTAL - EDM=0.000238073 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.56327e+02 3.14482e-01 9.83418e-04 8.55741e-01 - 2 sg_p1 1.57284e+01 2.76951e-01 1.90229e-03 -1.45089e-01 - 3 sg_p2 1.38542e+00 5.70093e-02 1.81418e-03 3.93447e-01 - 4 sg_p3 1.37775e+00 5.81896e-02 1.54738e-03 1.23982e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.890e-02 1.894e-03 3.842e-03 -3.325e-03 - 1.894e-03 7.672e-02 7.163e-03 6.201e-03 - 3.842e-03 7.163e-03 3.251e-03 5.637e-04 - -3.325e-03 6.201e-03 5.637e-04 3.387e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.30810 1.000 0.022 0.214 -0.182 - 2 0.55065 0.022 1.000 0.454 0.385 - 3 0.49896 0.214 0.454 1.000 0.170 - 4 0.43088 -0.182 0.385 0.170 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14121.3 FROM HESSE STATUS=OK 23 CALLS 234 TOTAL - EDM=0.000238571 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.56327e+02 3.14566e-01 1.96684e-04 5.31070e-02 - 2 sg_p1 1.57284e+01 2.77362e-01 3.80459e-04 7.29003e-02 - 3 sg_p2 1.38542e+00 5.70763e-02 3.62837e-04 -4.62101e-01 - 4 sg_p3 1.37775e+00 5.82399e-02 3.09477e-04 -6.51471e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.896e-02 1.863e-03 3.856e-03 -3.331e-03 - 1.863e-03 7.695e-02 7.208e-03 6.244e-03 - 3.856e-03 7.208e-03 3.258e-03 5.699e-04 - -3.331e-03 6.244e-03 5.699e-04 3.392e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.30889 1.000 0.021 0.215 -0.182 - 2 0.55252 0.021 1.000 0.455 0.386 - 3 0.50072 0.215 0.455 1.000 0.171 - 4 0.43251 -0.182 0.386 0.171 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -550 -556.327 +- 0.314566 -15.7284 +- 0.277362 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [390,750] --> [390,750] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [390,750] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=14534.5 FROM MIGRAD STATUS=INITIATE 58 CALLS 59 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.55000e+02 5.00000e+00 0.00000e+00 -5.04994e+02 - 2 sg_p1 1.50000e+01 2.00000e+00 0.00000e+00 -1.14427e+02 - 3 sg_p2 1.18464e+00 5.00000e-01 0.00000e+00 9.96830e+01 - 4 sg_p3 1.38937e+00 7.00000e-01 -6.47305e-01 1.30603e+00 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14500.5 FROM MIGRAD STATUS=CONVERGED 185 CALLS 186 TOTAL - EDM=5.50119e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.58137e+02 3.32100e-01 9.95556e-04 1.68841e-01 - 2 sg_p1 1.48812e+01 3.22440e-01 1.91611e-03 3.95624e-02 - 3 sg_p2 1.27842e+00 5.09588e-02 1.60067e-03 -7.54823e-02 - 4 sg_p3 1.11410e+00 4.98337e-02 1.21814e-03 6.18485e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.103e-01 -2.020e-02 1.794e-03 -6.256e-03 - -2.020e-02 1.040e-01 8.614e-03 9.577e-03 - 1.794e-03 8.614e-03 2.597e-03 7.646e-04 - -6.256e-03 9.577e-03 7.646e-04 2.484e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.44749 1.000 -0.189 0.106 -0.378 - 2 0.69890 -0.189 1.000 0.524 0.596 - 3 0.56724 0.106 0.524 1.000 0.301 - 4 0.65666 -0.378 0.596 0.301 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14500.5 FROM HESSE STATUS=OK 23 CALLS 209 TOTAL - EDM=5.49735e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.58137e+02 3.32253e-01 1.99111e-04 1.25809e-01 - 2 sg_p1 1.48812e+01 3.23301e-01 7.66446e-05 -1.18793e-02 - 3 sg_p2 1.27842e+00 5.10516e-02 6.40269e-05 -5.10521e-01 - 4 sg_p3 1.11410e+00 4.99281e-02 4.87255e-05 -7.50065e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.104e-01 -2.039e-02 1.786e-03 -6.279e-03 - -2.039e-02 1.046e-01 8.688e-03 9.654e-03 - 1.786e-03 8.688e-03 2.607e-03 7.739e-04 - -6.279e-03 9.654e-03 7.739e-04 2.493e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.44831 1.000 -0.190 0.105 -0.378 - 2 0.70084 -0.190 1.000 0.526 0.598 - 3 0.56941 0.105 0.526 1.000 0.304 - 4 0.65830 -0.378 0.598 0.304 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -550 -558.137 +- 0.332253 -14.8812 +- 0.323301 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [390,750] --> [390,750] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [390,750] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=14860.1 FROM MIGRAD STATUS=INITIATE 55 CALLS 56 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.55000e+02 5.00000e+00 0.00000e+00 -5.96476e+02 - 2 sg_p1 1.50000e+01 2.00000e+00 0.00000e+00 -1.39102e+02 - 3 sg_p2 1.31219e+00 5.00000e-01 0.00000e+00 8.51723e+01 - 4 sg_p3 1.40309e+00 7.00000e-01 -6.42399e-01 -3.16309e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14830.1 FROM MIGRAD STATUS=CONVERGED 206 CALLS 207 TOTAL - EDM=2.32867e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.57839e+02 3.16310e-01 9.64235e-04 -9.53938e-03 - 2 sg_p1 1.45911e+01 3.04213e-01 1.85567e-03 -1.11765e-02 - 3 sg_p2 1.30884e+00 5.20626e-02 1.65224e-03 2.13112e-02 - 4 sg_p3 1.13165e+00 4.90247e-02 1.22393e-03 1.25630e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.001e-01 -1.679e-02 1.892e-03 -5.645e-03 - -1.679e-02 9.257e-02 8.162e-03 8.712e-03 - 1.892e-03 8.162e-03 2.711e-03 7.376e-04 - -5.645e-03 8.712e-03 7.376e-04 2.404e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.43494 1.000 -0.174 0.115 -0.364 - 2 0.68887 -0.174 1.000 0.515 0.584 - 3 0.55849 0.115 0.515 1.000 0.289 - 4 0.64393 -0.364 0.584 0.289 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14830.1 FROM HESSE STATUS=OK 23 CALLS 230 TOTAL - EDM=2.3344e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.57839e+02 3.16455e-01 3.85694e-05 1.13812e-01 - 2 sg_p1 1.45911e+01 3.05011e-01 7.42270e-05 -4.09030e-02 - 3 sg_p2 1.30884e+00 5.21549e-02 6.60897e-05 -4.96630e-01 - 4 sg_p3 1.13165e+00 4.91147e-02 4.89571e-05 -7.43231e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.001e-01 -1.696e-02 1.886e-03 -5.665e-03 - -1.696e-02 9.306e-02 8.232e-03 8.781e-03 - 1.886e-03 8.232e-03 2.721e-03 7.467e-04 - -5.665e-03 8.781e-03 7.467e-04 2.413e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.43580 1.000 -0.176 0.114 -0.364 - 2 0.69086 -0.176 1.000 0.517 0.586 - 3 0.56066 0.114 0.517 1.000 0.291 - 4 0.64559 -0.364 0.586 0.291 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -550 -557.839 +- 0.316455 -14.5911 +- 0.305011 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [390,750] --> [390,750] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [390,750] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=13882.6 FROM MIGRAD STATUS=INITIATE 72 CALLS 73 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.55000e+02 5.00000e+00 0.00000e+00 -3.85565e+02 - 2 sg_p1 1.50000e+01 2.00000e+00 0.00000e+00 -4.99994e+01 - 3 sg_p2 1.14901e+00 5.00000e-01 -8.51477e-02 2.28635e+00 - 4 sg_p3 1.41391e+00 7.00000e-01 0.00000e+00 1.79604e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=13854.1 FROM MIGRAD STATUS=CONVERGED 182 CALLS 183 TOTAL - EDM=1.65564e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.57980e+02 3.34363e-01 9.81953e-04 6.44675e-02 - 2 sg_p1 1.47979e+01 3.20681e-01 1.89110e-03 8.04335e-02 - 3 sg_p2 1.31085e+00 5.36609e-02 1.65482e-03 -1.47147e-01 - 4 sg_p3 1.12068e+00 5.06777e-02 1.22086e-03 1.27989e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.118e-01 -2.084e-02 1.817e-03 -6.408e-03 - -2.084e-02 1.029e-01 8.748e-03 9.557e-03 - 1.817e-03 8.748e-03 2.880e-03 7.828e-04 - -6.408e-03 9.557e-03 7.828e-04 2.569e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.44246 1.000 -0.194 0.101 -0.378 - 2 0.68849 -0.194 1.000 0.508 0.588 - 3 0.55062 0.101 0.508 1.000 0.288 - 4 0.64866 -0.378 0.588 0.288 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=13854.1 FROM HESSE STATUS=OK 23 CALLS 206 TOTAL - EDM=1.65875e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.57980e+02 3.34499e-01 1.96391e-04 1.19503e-01 - 2 sg_p1 1.47979e+01 3.21384e-01 3.78219e-04 -2.02134e-02 - 3 sg_p2 1.31085e+00 5.37405e-02 3.30963e-04 -4.95716e-01 - 4 sg_p3 1.12068e+00 5.07549e-02 2.44171e-04 -7.47499e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.119e-01 -2.101e-02 1.811e-03 -6.428e-03 - -2.101e-02 1.033e-01 8.812e-03 9.620e-03 - 1.811e-03 8.812e-03 2.889e-03 7.908e-04 - -6.428e-03 9.620e-03 7.908e-04 2.576e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.44320 1.000 -0.195 0.101 -0.379 - 2 0.69016 -0.195 1.000 0.510 0.590 - 3 0.55249 0.101 0.510 1.000 0.290 - 4 0.65002 -0.379 0.590 0.290 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -550 -557.98 +- 0.334499 -14.7979 +- 0.321384 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [390,750] --> [390,750] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [390,750] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=15819.8 FROM MIGRAD STATUS=INITIATE 54 CALLS 55 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.55000e+02 5.00000e+00 0.00000e+00 -5.00618e+02 - 2 sg_p1 1.50000e+01 2.00000e+00 0.00000e+00 -2.06424e+02 - 3 sg_p2 1.24250e+00 5.00000e-01 0.00000e+00 8.72112e+01 - 4 sg_p3 1.58707e+00 7.00000e-01 -5.78240e-01 1.36356e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15779.8 FROM MIGRAD STATUS=CONVERGED 201 CALLS 202 TOTAL - EDM=3.72733e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.57991e+02 3.13470e-01 9.81807e-04 1.43269e-02 - 2 sg_p1 1.48025e+01 3.00871e-01 1.88933e-03 1.01623e-01 - 3 sg_p2 1.30793e+00 5.01308e-02 1.66000e-03 -7.41075e-02 - 4 sg_p3 1.12096e+00 4.75155e-02 1.22457e-03 -3.73256e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.827e-02 -1.818e-02 1.608e-03 -5.619e-03 - -1.818e-02 9.055e-02 7.685e-03 8.406e-03 - 1.608e-03 7.685e-03 2.514e-03 6.873e-04 - -5.619e-03 8.406e-03 6.873e-04 2.258e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.44218 1.000 -0.193 0.102 -0.377 - 2 0.68889 -0.193 1.000 0.509 0.588 - 3 0.55187 0.102 0.509 1.000 0.288 - 4 0.64863 -0.377 0.588 0.288 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15779.8 FROM HESSE STATUS=OK 23 CALLS 225 TOTAL - EDM=3.72671e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.57991e+02 3.13600e-01 1.96361e-04 1.19946e-01 - 2 sg_p1 1.48025e+01 3.01553e-01 3.77865e-04 -1.97513e-02 - 3 sg_p2 1.30793e+00 5.02105e-02 6.64000e-05 -4.97043e-01 - 4 sg_p3 1.12096e+00 4.75893e-02 2.44915e-04 -7.47388e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.835e-02 -1.832e-02 1.604e-03 -5.636e-03 - -1.832e-02 9.096e-02 7.744e-03 8.463e-03 - 1.604e-03 7.744e-03 2.522e-03 6.946e-04 - -5.636e-03 8.463e-03 6.946e-04 2.265e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.44293 1.000 -0.194 0.102 -0.378 - 2 0.69061 -0.194 1.000 0.511 0.590 - 3 0.55387 0.102 0.511 1.000 0.291 - 4 0.65001 -0.378 0.590 0.291 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -550 -557.991 +- 0.3136 -14.8025 +- 0.301553 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 557.153 +- 0.321538 (stat) - 0.826073 + 1.72147 (syst); -0.841572/+1.72896 (total) - Uncertainty on sg_p1 = 15.9907 +- 0.294927 (stat) - 1.39965 + 0 (syst); -1.40739/+0.147463 (total) - Uncertainty on sg_p2 = 1.40719 +- 0.0664804 (stat) - 0.128774 + 0 (syst); -0.132995/+0.0332402 (total) - Uncertainty on sg_p3 = 1.40947 +- 0.0605049 (stat) - 0.295372 + 0 (syst); -0.296917/+0.0302524 (total) - === Baseline plot ===
- norm = 123.788 -JEC lnN 1.02905 - -JER lnN 1.01484 - -btag lnN 1.06518 - -sg_p0 param 557.153 -0.841572/+1.72896 -sg_p1 param 15.9907 -1.40739/+0.147463 -sg_p2 param 1.40719 -0.132995/+0.0332402 -sg_p3 param 1.40947 -0.296917/+0.0302524 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_550_novo_550_1200/data_bkg.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_550_novo_550_1200/data_bkg.log deleted file mode 100644 index 9081393..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_550_novo_550_1200/data_bkg.log +++ /dev/null @@ -1,690 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10879.7 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 6.74624e-01 5.09000e-01 -8.31364e-01 -1.01971e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -3.20610e+01 - 3 par_crystal_2 5.00000e+02 2.00000e+01 0.00000e+00 -9.48837e+00 - 4 par_crystal_3 1.05000e+02 1.90000e+01 0.00000e+00 2.45317e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7116e+01 9.9978e-01 1.9597e+00 1.8156e+01 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 17.134017 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 27 CALLS 314 TOTAL - EDM=0.131054 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.06594e+00 6.09301e-02 1.43210e-03 -8.77809e-01 - 2 par_crystal_1 5.09576e+00 7.69298e-02 8.09031e-02 -5.13188e-02 - 3 par_crystal_2 4.95224e+02 7.91481e+01 2.17679e-03 -5.43249e-01 - 4 par_crystal_3 1.90900e+02 9.54958e+00 1.13079e-02 4.60762e-02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 477 CALLS 478 TOTAL - EDM=0.0370129 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.11079e+00 8.93309e-02 0.00000e+00 -4.75984e-01 - 2 par_crystal_1 5.08061e+00 3.60144e-01 0.00000e+00 -1.14416e-01 - 3 par_crystal_2 4.76040e+02 1.75614e+01 0.00000e+00 -2.32451e-01 - 4 par_crystal_3 1.99914e+02 2.77391e+01 0.00000e+00 -7.67572e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.985e-03 -2.091e-03 1.499e+00 2.820e-01 - -2.091e-03 2.873e-02 -7.387e-01 -2.900e-02 - 1.499e+00 -7.387e-01 3.118e+02 5.244e+01 - 2.820e-01 -2.900e-02 5.244e+01 1.008e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99775 1.000 -0.138 0.950 0.994 - 2 0.79882 -0.138 1.000 -0.247 -0.054 - 3 0.95717 0.950 -0.247 1.000 0.935 - 4 0.99764 0.994 -0.054 0.935 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.8 FROM HESSE STATUS=OK 27 CALLS 505 TOTAL - EDM=0.0183624 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.11079e+00 4.31984e-02 1.44775e-03 -6.03431e-01 - 2 par_crystal_1 5.08061e+00 3.28337e+00 6.64371e-02 1.44728e+00 - 3 par_crystal_2 4.76040e+02 8.02153e+00 1.45036e-02 3.38355e+00 - 4 par_crystal_3 1.99914e+02 2.26294e+01 4.50606e-02 1.52819e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.866e-03 -1.951e-03 -2.584e-03 1.946e-02 - -1.951e-03 1.028e-01 6.675e-04 3.793e-04 - -2.584e-03 6.675e-04 6.449e+01 1.116e+00 - 1.946e-02 3.793e-04 1.116e+00 8.140e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.21215 1.000 -0.141 -0.007 0.158 - 2 0.14274 -0.141 1.000 0.000 0.000 - 3 0.05109 -0.007 0.000 1.000 0.049 - 4 0.16712 0.158 0.000 0.049 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10978.6 FROM MIGRAD STATUS=INITIATE 68 CALLS 69 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 6.03110e+02 3.00000e+01 -8.97402e-01 -6.52175e+01 - 2 par_gaus_exp_1 5.45000e+01 9.10000e+00 0.00000e+00 -4.62060e+02 - 3 par_gaus_exp_2 4.12114e-01 3.05000e-01 0.00000e+00 1.25553e+03 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.9 FROM HESSE STATUS=OK 18 CALLS 182 TOTAL - EDM=0.000691453 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.46431e+02 6.06936e+00 3.17833e-03 -3.92855e-01 - 2 par_gaus_exp_1 6.65716e+01 1.75685e+01 2.62647e-03 1.43349e-01 - 3 par_gaus_exp_2 3.07505e-01 8.37981e-02 8.79822e-04 -3.06196e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM MIGRAD STATUS=CONVERGED 316 CALLS 317 TOTAL - EDM=9.19369e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.62504e+02 3.53152e+00 1.63243e-03 -1.66316e-01 - 2 par_gaus_exp_1 2.46552e+01 1.25211e+01 1.75085e-03 -3.48771e-01 - 3 par_gaus_exp_2 1.14604e-01 5.89219e-02 6.31447e-04 9.83138e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.247e+01 -1.544e+01 -6.961e-02 - -1.544e+01 1.643e+02 7.558e-01 - -6.961e-02 7.558e-01 3.493e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.35636 1.000 -0.341 -0.333 - 2 0.99789 -0.341 1.000 0.998 - 3 0.99788 -0.333 0.998 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM HESSE STATUS=OK 16 CALLS 333 TOTAL - EDM=9.89177e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 5.62504e+02 3.77274e+00 6.52972e-05 8.34552e-02 - 2 par_gaus_exp_1 2.46552e+01 1.46349e+01 3.50170e-04 -7.15413e-01 - 3 par_gaus_exp_2 1.14604e-01 6.93856e-02 1.26289e-04 -1.27868e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.424e+01 -2.545e+01 -1.157e-01 - -2.545e+01 2.286e+02 1.052e+00 - -1.157e-01 1.052e+00 4.855e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.45683 1.000 -0.446 -0.440 - 2 0.99849 -0.446 1.000 0.998 - 3 0.99848 -0.440 0.998 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (13168.6) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=575, par_novo_1=100, par_novo_2=1.58864 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=645, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=655, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=665, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=675, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=685, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=695, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=705, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=715, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=725, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=735, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=745, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=755, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - ... (remaining 46 messages suppressed) -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 575,par_novo_1 = 100,par_novo_2 = 1.58864) - - FCN=13054.5 FROM MIGRAD STATUS=INITIATE 14 CALLS 15 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.75000e+02 1.50000e+01 2.01358e-01 -1.22938e+03 - 2 par_novo_1 1.00000e+02 2.00000e+01 2.01358e-01 -6.98326e+03 - 3 par_novo_2 0.00000e+00 2.00000e+01 2.01358e-01 1.51249e+06 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM MIGRAD STATUS=CONVERGED 220 CALLS 221 TOTAL - EDM=2.09668e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.00000e+02 1.21837e+02 1.25149e-01 -7.30463e-04 - 2 par_novo_1 1.30637e+02 1.58558e+01 3.16845e-03 -1.76078e-02 - 3 par_novo_2 -6.95187e-01 1.36663e-01 2.61078e-05 1.74080e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.121e-01 -9.460e-01 -6.449e-03 - -9.460e-01 2.538e+02 2.099e+00 - -6.449e-03 2.099e+00 1.868e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.21023 1.000 -0.177 -0.141 - 2 0.96488 -0.177 1.000 0.964 - 3 0.96445 -0.141 0.964 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM HESSE STATUS=OK 20 CALLS 241 TOTAL - EDM=1.01397e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 5.00000e+02 1.20312e+02 5.00000e-01 -1.57325e+00 - 2 par_novo_1 1.30637e+02 2.01762e+01 1.26738e-04 3.11381e-01 - 3 par_novo_2 -6.95187e-01 1.62575e-01 1.04431e-06 -6.95192e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.070e-01 -4.278e+00 -2.995e-02 - -4.278e+00 4.133e+02 3.212e+00 - -2.995e-02 3.212e+00 2.643e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.69436 1.000 -0.643 -0.563 - 2 0.97859 -0.643 1.000 0.972 - 3 0.97501 -0.563 0.972 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10877 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 6.33849e-01 5.09000e-01 -8.55460e-01 -1.25390e+02 - 2 par_crystal_1_1 2.55500e+00 5.09000e-01 0.00000e+00 -2.69495e+01 - 3 par_crystal_1_2 5.50000e+02 3.00000e+01 0.00000e+00 -1.44080e+01 - 4 par_crystal_1_3 1.04500e+02 1.91000e+01 0.00000e+00 3.07979e+01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.43469 added to diagonal of error matrix - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.5401e+00 8.4221e-02 1.8087e+00 3.6472e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 1.543714 TO DIAGONAL. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.9 FROM HESSE STATUS=OK 25 CALLS 485 TOTAL - EDM=0.0491336 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.05623e+00 1.52463e-01 1.42446e-03 -1.90900e+00 - 2 par_crystal_1_1 5.09988e+00 3.18944e+00 7.54811e-02 -8.93342e-03 - 3 par_crystal_1_2 4.96280e+02 4.98347e+01 9.02051e-03 3.58498e-02 - 4 par_crystal_1_3 1.89188e+02 2.78069e+01 1.02856e-02 -2.38185e-01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 538 CALLS 539 TOTAL - EDM=10.0867 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 14.1 per cent - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.09723e+00 3.02575e-02 -0.00000e+00 5.47416e+01 - 2 par_crystal_1_1 5.09997e+00 3.18368e+00 0.00000e+00 -3.90351e-03 - 3 par_crystal_1_2 4.83329e+02 2.76558e+01 0.00000e+00 7.05236e+00 - 4 par_crystal_1_3 1.96552e+02 5.80629e+00 -0.00000e+00 4.39990e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.156e-04 -1.804e-07 -6.742e-01 1.111e-01 - -1.804e-07 1.763e-04 7.888e-03 -2.154e-03 - -6.742e-01 7.888e-03 7.759e+02 -1.463e+02 - 1.111e-01 -2.154e-03 -1.463e+02 3.432e+01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.82553 1.000 -0.000 -0.800 0.627 - 2 0.03650 -0.000 1.000 0.021 -0.028 - 3 0.94703 -0.800 0.021 1.000 -0.896 - 4 0.90888 0.627 -0.028 -0.896 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -9.7852e-01 9.9996e-01 1.9836e+00 1.9949e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.980510 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 29 CALLS 568 TOTAL - EDM=238.514 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 1.09723e+00 4.25322e-02 2.54943e-04 -6.09913e-01 - 2 par_crystal_1_1 5.09997e+00 7.84798e-01 8.54763e-02 1.56580e+00 - 3 par_crystal_1_2 4.83329e+02 1.87856e+01 1.76414e-03 -4.60588e-01 - 4 par_crystal_1_3 1.96552e+02 5.33115e+00 2.63738e-03 1.30128e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.809e-03 -2.197e-07 8.001e-01 2.280e-01 - -2.197e-07 1.053e-04 -1.173e-04 -3.665e-05 - 8.001e-01 -1.173e-04 3.552e+02 1.010e+02 - 2.280e-01 -3.665e-05 1.010e+02 2.885e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99849 1.000 -0.001 0.998 0.998 - 2 0.00265 -0.001 1.000 -0.001 -0.001 - 3 0.99848 0.998 -0.001 1.000 0.998 - 4 0.99849 0.998 -0.001 0.998 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_550_1200 = 1266.17 - Background number of gaus_exp_550_1200 = 1266.17 - Background number of novo_550_1200 = 1266.17 - Background number of crystal_1_550_1200 = 1266.17 - Background number of gaus_bern_550_1200 = 1266.17 - Background number of landau_550_1200 = 1266.17 -par_crystal_0 param 1.11079 0.0431984 -par_crystal_1 param 5.08061 3.28337 -par_crystal_2 param 476.04 8.02153 -par_crystal_3 param 199.914 22.6294 -par_crystal_1_0 param 1.09723 0.0425322 -par_crystal_1_1 param 5.09997 0.784798 -par_crystal_1_2 param 483.329 18.7856 -par_crystal_1_3 param 196.552 5.33115 -par_gaus_exp_0 param 562.504 3.77274 -par_gaus_exp_1 param 24.6552 14.6349 -par_gaus_exp_2 param 0.114604 0.0693856 -par_novo_0 param 500 120.312 -par_novo_1 param 130.637 20.1762 -par_novo_2 param -0.695187 0.162575 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_550_novo_550_1200/datacard_550_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_550_novo_550_1200/datacard_550_novo_550_1200.txt deleted file mode 100644 index 1c00fc4..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_550_novo_550_1200/datacard_550_novo_550_1200.txt +++ /dev/null @@ -1,28 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_550.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo -shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 2.47576 1266.17 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06518 - -JER lnN 1.01484 - -JEC lnN 1.02905 - -trigger lnN 1.10 - -sg_p0 param 557.153 -0.841572/+1.72896 -sg_p1 param 15.9907 -1.40739/+0.147463 -sg_p2 param 1.40719 -0.132995/+0.0332402 -sg_p3 param 1.40947 -0.296917/+0.0302524 -par_novo_0 param 500 120.312 -par_novo_1 param 130.637 20.1762 -par_novo_2 param -0.695187 0.162575 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_550_novo_550_1200/signal550_sig.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_550_novo_550_1200/signal550_sig.log deleted file mode 100644 index 95176bb..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_550_novo_550_1200/signal550_sig.log +++ /dev/null @@ -1,949 +0,0 @@ - -Processing test.c... -nSignal_init = 100000 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [350,750] --> [350,750] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [450,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [350,750] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [450,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=16548.5 FROM MIGRAD STATUS=INITIATE 59 CALLS 60 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.40000e+02 6.00000e+00 0.00000e+00 8.36856e+01 - 2 sg_p1 2.25000e+01 2.50000e+00 0.00000e+00 -2.13036e+02 - 3 sg_p2 9.96389e-01 5.00000e-01 0.00000e+00 -2.10001e+01 - 4 sg_p3 1.33793e+00 7.00000e-01 -6.65859e-01 1.43037e+02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.05392 added to diagonal of error matrix - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16467.8 FROM MIGRAD STATUS=CONVERGED 433 CALLS 434 TOTAL - EDM=1.19101e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.41842e+02 5.12497e-01 1.51068e-03 3.12657e-02 - 2 sg_p1 2.95617e+01 3.82692e-01 3.23918e-03 3.18610e-03 - 3 sg_p2 2.26823e+00 2.06532e-01 7.22656e-03 -7.81355e-04 - 4 sg_p3 3.13392e+00 1.77814e+00 6.15202e-02 -1.76290e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.627e-01 2.925e-03 9.483e-03 -3.748e-10 - 2.925e-03 1.465e-01 1.367e-02 -4.881e-11 - 9.483e-03 1.367e-02 4.275e-02 -1.530e-10 - -3.748e-10 -4.881e-11 -1.530e-10 3.483e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.08948 1.000 0.015 0.089 -0.000 - 2 0.17277 0.015 1.000 0.173 -0.000 - 3 0.19340 0.089 0.173 1.000 -0.000 - 4 0.00000 -0.000 -0.000 -0.000 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16467.8 FROM HESSE STATUS=OK 29 CALLS 463 TOTAL - EDM=3.87994e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.41842e+02 5.12297e-01 3.02136e-04 6.14367e-02 - 2 sg_p1 2.95617e+01 3.82068e-01 1.29567e-04 6.00358e-01 - 3 sg_p2 2.26823e+00 2.05837e-01 2.89062e-04 -9.28432e-02 - 4 sg_p3 3.13392e+00 6.62343e-01 3.58606e-01 -1.04787e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.625e-01 2.466e-03 8.976e-03 1.615e-11 - 2.466e-03 1.460e-01 1.286e-02 2.313e-11 - 8.976e-03 1.286e-02 4.247e-02 7.639e-11 - 1.615e-11 2.313e-11 7.639e-11 4.441e-01 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.08503 1.000 0.013 0.085 0.000 - 2 0.16331 0.013 1.000 0.163 0.000 - 3 0.18317 0.085 0.163 1.000 0.000 - 4 0.00000 0.000 0.000 0.000 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -550 -541.842 +- 0.512297 -29.5617 +- 0.382068 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [350,750] --> [350,750] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [450,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [350,750] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [450,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=16779.6 FROM MIGRAD STATUS=INITIATE 54 CALLS 55 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.40000e+02 6.00000e+00 0.00000e+00 -8.37041e+01 - 2 sg_p1 2.25000e+01 2.50000e+00 0.00000e+00 -1.07475e+02 - 3 sg_p2 8.65799e-01 5.00000e-01 0.00000e+00 -7.40551e+01 - 4 sg_p3 1.35564e+00 7.00000e-01 -6.59439e-01 6.28488e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16685.9 FROM HESSE STATUS=OK 27 CALLS 282 TOTAL - EDM=0.102246 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.44552e+02 5.08282e-01 1.52398e-03 -1.54852e-01 - 2 sg_p1 2.95922e+01 3.76777e-01 3.22494e-03 -3.69769e-02 - 3 sg_p2 2.45278e+00 3.27164e-01 1.16491e-02 1.26745e-02 - 4 sg_p3 3.35460e+00 1.18039e+00 3.11390e-01 -1.31335e+00 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=16685.9 FROM MIGRAD STATUS=CONVERGED 295 CALLS 296 TOTAL - EDM=2.81269e-08 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 0.0 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.44554e+02 5.08278e-01 4.34002e-05 -1.50856e-04 - 2 sg_p1 2.95926e+01 3.76767e-01 4.09576e-05 -4.62961e-04 - 3 sg_p2 2.45238e+00 3.27162e-01 -1.58660e-04 -1.77907e-03 - 4 sg_p3 3.89863e+00 1.17372e+00 1.55695e-01 0.00000e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.584e-01 3.013e-03 1.443e-02 3.104e-05 - 3.013e-03 1.420e-01 2.058e-02 5.573e-05 - 1.443e-02 2.058e-02 1.077e-01 2.055e-04 - 3.104e-05 5.573e-05 2.055e-04 1.433e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.08655 1.000 0.016 0.087 0.000 - 2 0.16643 0.016 1.000 0.166 0.000 - 3 0.18640 0.087 0.166 1.000 0.001 - 4 0.00052 0.000 0.000 0.001 1.000 - ********** - ** 18 **HESSE 2000 - ********** - MINUIT WARNING IN HESSE - ============== Second derivative enters zero, param 4 - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=16685.9 FROM HESSE STATUS=OK 31 CALLS 327 TOTAL - EDM=0.378043 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.44554e+02 5.08418e-01 1.52334e-03 1.52374e-01 - 2 sg_p1 2.95926e+01 3.77155e-01 1.28998e-03 6.03355e-01 - 3 sg_p2 2.45238e+00 3.27373e-01 4.65962e-03 -1.90491e-02 - 4 sg_p3 3.89863e+00 1.40113e+00 5.10000e-01 1.14141e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.585e-01 3.222e-03 1.491e-02 4.426e-12 - 3.222e-03 1.423e-01 2.127e-02 -3.793e-11 - 1.491e-02 2.127e-02 1.078e-01 3.265e-11 - 4.426e-12 -3.793e-11 3.265e-11 2.080e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.08933 1.000 0.017 0.089 0.000 - 2 0.17177 0.017 1.000 0.172 -0.000 - 3 0.19229 0.089 0.172 1.000 0.000 - 4 0.00000 0.000 -0.000 0.000 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -550 -544.554 +- 0.508418 -29.5926 +- 0.377155 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [350,750] --> [350,750] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [450,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [350,750] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [450,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=15773.3 FROM MIGRAD STATUS=INITIATE 56 CALLS 57 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.40000e+02 6.00000e+00 0.00000e+00 1.21147e+02 - 2 sg_p1 2.25000e+01 2.50000e+00 0.00000e+00 -1.80759e+02 - 3 sg_p2 1.10607e+00 5.00000e-01 0.00000e+00 -3.61854e+01 - 4 sg_p3 1.15878e+00 7.00000e-01 -7.32755e-01 8.10605e+01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.37034 added to diagonal of error matrix - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15704.6 FROM MIGRAD STATUS=CONVERGED 357 CALLS 358 TOTAL - EDM=1.29397e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.39647e+02 5.17185e-01 1.48655e-03 -1.89345e-02 - 2 sg_p1 2.91881e+01 3.85671e-01 3.11579e-03 3.89872e-03 - 3 sg_p2 2.31906e+00 2.28533e-01 7.79945e-03 -3.76001e-04 - 4 sg_p3 3.12530e+00 1.84829e+00 8.28757e-02 -7.72724e-05 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.675e-01 1.706e-03 1.012e-02 1.242e-12 - 1.706e-03 1.488e-01 1.489e-02 1.083e-10 - 1.012e-02 1.489e-02 5.237e-02 1.084e-11 - 1.242e-12 1.083e-10 1.084e-11 3.797e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.08574 1.000 0.009 0.086 0.000 - 2 0.16875 0.009 1.000 0.169 0.000 - 3 0.18845 0.086 0.169 1.000 0.000 - 4 0.00000 0.000 0.000 0.000 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15704.6 FROM HESSE STATUS=OK 27 CALLS 385 TOTAL - EDM=0.802787 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.39647e+02 5.17333e-01 2.97309e-04 -1.17805e-02 - 2 sg_p1 2.91881e+01 3.86088e-01 1.24632e-04 5.64568e-01 - 3 sg_p2 2.31906e+00 2.28870e-01 3.11978e-04 -7.24379e-02 - 4 sg_p3 3.12530e+00 7.00822e-01 3.63374e-01 -1.07263e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.677e-01 1.770e-03 1.052e-02 3.022e-11 - 1.770e-03 1.491e-01 1.546e-02 -6.678e-11 - 1.052e-02 1.546e-02 5.253e-02 4.080e-11 - 3.022e-11 -6.678e-11 4.080e-11 4.979e-01 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.08899 1.000 0.009 0.089 0.000 - 2 0.17483 0.009 1.000 0.175 -0.000 - 3 0.19525 0.089 0.175 1.000 0.000 - 4 0.00000 0.000 -0.000 0.000 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -550 -539.647 +- 0.517333 -29.1881 +- 0.386088 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [390,750] --> [390,750] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [390,750] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=14837.3 FROM MIGRAD STATUS=INITIATE 51 CALLS 52 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.55000e+02 5.00000e+00 0.00000e+00 -5.62915e+02 - 2 sg_p1 1.50000e+01 2.00000e+00 0.00000e+00 -2.92186e+02 - 3 sg_p2 1.33485e+00 5.00000e-01 0.00000e+00 1.12519e+02 - 4 sg_p3 1.63806e+00 7.00000e-01 -5.60940e-01 1.42255e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14796.3 FROM MIGRAD STATUS=CONVERGED 175 CALLS 176 TOTAL - EDM=1.79394e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.57153e+02 3.21384e-01 1.00803e-03 -2.87826e-01 - 2 sg_p1 1.59907e+01 2.94249e-01 1.95331e-03 -7.46933e-02 - 3 sg_p2 1.40719e+00 6.63431e-02 1.98696e-03 1.23037e-01 - 4 sg_p3 1.40947e+00 6.04329e-02 1.61506e-03 3.47616e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.033e-01 1.010e-02 6.404e-03 -2.894e-03 - 1.010e-02 8.661e-02 1.063e-02 7.128e-03 - 6.404e-03 1.063e-02 4.403e-03 8.132e-04 - -2.894e-03 7.128e-03 8.132e-04 3.653e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.36907 1.000 0.107 0.300 -0.149 - 2 0.62006 0.107 1.000 0.545 0.401 - 3 0.59757 0.300 0.545 1.000 0.203 - 4 0.44647 -0.149 0.401 0.203 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14796.3 FROM HESSE STATUS=OK 23 CALLS 199 TOTAL - EDM=1.79239e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.57153e+02 3.21538e-01 2.01606e-04 8.62318e-02 - 2 sg_p1 1.59907e+01 2.94927e-01 3.90662e-04 9.92360e-02 - 3 sg_p2 1.40719e+00 6.64804e-02 7.94782e-05 -4.52397e-01 - 4 sg_p3 1.40947e+00 6.05049e-02 6.46026e-05 -6.40123e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.034e-01 1.015e-02 6.439e-03 -2.895e-03 - 1.015e-02 8.701e-02 1.072e-02 7.193e-03 - 6.439e-03 1.072e-02 4.421e-03 8.247e-04 - -2.895e-03 7.193e-03 8.247e-04 3.661e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.37018 1.000 0.107 0.301 -0.149 - 2 0.62233 0.107 1.000 0.547 0.403 - 3 0.59978 0.301 0.547 1.000 0.205 - 4 0.44859 -0.149 0.403 0.205 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -550 -557.153 +- 0.321538 -15.9907 +- 0.294927 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 - fit done -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [390,750] --> [390,750] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [390,750] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=15106.5 FROM MIGRAD STATUS=INITIATE 55 CALLS 56 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.55000e+02 5.00000e+00 0.00000e+00 -4.27508e+02 - 2 sg_p1 1.50000e+01 2.00000e+00 0.00000e+00 5.60673e+01 - 3 sg_p2 9.57872e-01 5.00000e-01 0.00000e+00 -1.96076e+02 - 4 sg_p3 1.43385e+00 7.00000e-01 -6.31466e-01 3.52996e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15049.6 FROM MIGRAD STATUS=CONVERGED 145 CALLS 146 TOTAL - EDM=1.59039e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.58875e+02 3.28831e-01 1.01097e-03 2.51867e-01 - 2 sg_p1 1.50106e+01 3.27326e-01 1.94006e-03 -7.48907e-02 - 3 sg_p2 1.28146e+00 5.35843e-02 1.64296e-03 -7.25386e-02 - 4 sg_p3 1.13283e+00 5.00773e-02 1.24085e-03 1.93411e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.081e-01 -1.435e-02 2.668e-03 -5.685e-03 - -1.435e-02 1.072e-01 9.872e-03 9.778e-03 - 2.668e-03 9.872e-03 2.872e-03 8.529e-04 - -5.685e-03 9.778e-03 8.529e-04 2.508e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.44454 1.000 -0.133 0.151 -0.345 - 2 0.71564 -0.133 1.000 0.563 0.596 - 3 0.61000 0.151 0.563 1.000 0.318 - 4 0.65614 -0.345 0.596 0.318 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15049.6 FROM HESSE STATUS=OK 23 CALLS 169 TOTAL - EDM=1.59031e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.58875e+02 3.28953e-01 2.02195e-04 1.55611e-01 - 2 sg_p1 1.50106e+01 3.28179e-01 3.88013e-04 1.06416e-03 - 3 sg_p2 1.28146e+00 5.36907e-02 6.57184e-05 -5.09126e-01 - 4 sg_p3 1.13283e+00 5.01651e-02 2.48171e-04 -7.42776e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.082e-01 -1.448e-02 2.668e-03 -5.699e-03 - -1.448e-02 1.077e-01 9.953e-03 9.852e-03 - 2.668e-03 9.953e-03 2.883e-03 8.627e-04 - -5.699e-03 9.852e-03 8.627e-04 2.517e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.44521 1.000 -0.134 0.151 -0.345 - 2 0.71741 -0.134 1.000 0.565 0.598 - 3 0.61203 0.151 0.565 1.000 0.320 - 4 0.65766 -0.345 0.598 0.320 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -550 -558.875 +- 0.328953 -15.0106 +- 0.328179 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [390,750] --> [390,750] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [390,750] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=14133.8 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.55000e+02 5.00000e+00 0.00000e+00 -3.22550e+02 - 2 sg_p1 1.50000e+01 2.00000e+00 0.00000e+00 -8.95889e+01 - 3 sg_p2 1.26916e+00 5.00000e-01 0.00000e+00 3.67893e+01 - 4 sg_p3 1.35775e+00 7.00000e-01 -6.58678e-01 -5.62243e+00 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14121.3 FROM MIGRAD STATUS=CONVERGED 210 CALLS 211 TOTAL - EDM=0.000238073 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.56327e+02 3.14482e-01 9.83418e-04 8.55741e-01 - 2 sg_p1 1.57284e+01 2.76951e-01 1.90229e-03 -1.45089e-01 - 3 sg_p2 1.38542e+00 5.70093e-02 1.81418e-03 3.93447e-01 - 4 sg_p3 1.37775e+00 5.81896e-02 1.54738e-03 1.23982e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.890e-02 1.894e-03 3.842e-03 -3.325e-03 - 1.894e-03 7.672e-02 7.163e-03 6.201e-03 - 3.842e-03 7.163e-03 3.251e-03 5.637e-04 - -3.325e-03 6.201e-03 5.637e-04 3.387e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.30810 1.000 0.022 0.214 -0.182 - 2 0.55065 0.022 1.000 0.454 0.385 - 3 0.49896 0.214 0.454 1.000 0.170 - 4 0.43088 -0.182 0.385 0.170 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14121.3 FROM HESSE STATUS=OK 23 CALLS 234 TOTAL - EDM=0.000238571 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.56327e+02 3.14566e-01 1.96684e-04 5.31070e-02 - 2 sg_p1 1.57284e+01 2.77362e-01 3.80459e-04 7.29003e-02 - 3 sg_p2 1.38542e+00 5.70763e-02 3.62837e-04 -4.62101e-01 - 4 sg_p3 1.37775e+00 5.82399e-02 3.09477e-04 -6.51471e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.896e-02 1.863e-03 3.856e-03 -3.331e-03 - 1.863e-03 7.695e-02 7.208e-03 6.244e-03 - 3.856e-03 7.208e-03 3.258e-03 5.699e-04 - -3.331e-03 6.244e-03 5.699e-04 3.392e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.30889 1.000 0.021 0.215 -0.182 - 2 0.55252 0.021 1.000 0.455 0.386 - 3 0.50072 0.215 0.455 1.000 0.171 - 4 0.43251 -0.182 0.386 0.171 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -550 -556.327 +- 0.314566 -15.7284 +- 0.277362 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [390,750] --> [390,750] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [390,750] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=14534.5 FROM MIGRAD STATUS=INITIATE 58 CALLS 59 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.55000e+02 5.00000e+00 0.00000e+00 -5.04994e+02 - 2 sg_p1 1.50000e+01 2.00000e+00 0.00000e+00 -1.14427e+02 - 3 sg_p2 1.18464e+00 5.00000e-01 0.00000e+00 9.96830e+01 - 4 sg_p3 1.38937e+00 7.00000e-01 -6.47305e-01 1.30603e+00 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14500.5 FROM MIGRAD STATUS=CONVERGED 185 CALLS 186 TOTAL - EDM=5.50119e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.58137e+02 3.32100e-01 9.95556e-04 1.68841e-01 - 2 sg_p1 1.48812e+01 3.22440e-01 1.91611e-03 3.95624e-02 - 3 sg_p2 1.27842e+00 5.09588e-02 1.60067e-03 -7.54823e-02 - 4 sg_p3 1.11410e+00 4.98337e-02 1.21814e-03 6.18485e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.103e-01 -2.020e-02 1.794e-03 -6.256e-03 - -2.020e-02 1.040e-01 8.614e-03 9.577e-03 - 1.794e-03 8.614e-03 2.597e-03 7.646e-04 - -6.256e-03 9.577e-03 7.646e-04 2.484e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.44749 1.000 -0.189 0.106 -0.378 - 2 0.69890 -0.189 1.000 0.524 0.596 - 3 0.56724 0.106 0.524 1.000 0.301 - 4 0.65666 -0.378 0.596 0.301 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14500.5 FROM HESSE STATUS=OK 23 CALLS 209 TOTAL - EDM=5.49735e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.58137e+02 3.32253e-01 1.99111e-04 1.25809e-01 - 2 sg_p1 1.48812e+01 3.23301e-01 7.66446e-05 -1.18793e-02 - 3 sg_p2 1.27842e+00 5.10516e-02 6.40269e-05 -5.10521e-01 - 4 sg_p3 1.11410e+00 4.99281e-02 4.87255e-05 -7.50065e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.104e-01 -2.039e-02 1.786e-03 -6.279e-03 - -2.039e-02 1.046e-01 8.688e-03 9.654e-03 - 1.786e-03 8.688e-03 2.607e-03 7.739e-04 - -6.279e-03 9.654e-03 7.739e-04 2.493e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.44831 1.000 -0.190 0.105 -0.378 - 2 0.70084 -0.190 1.000 0.526 0.598 - 3 0.56941 0.105 0.526 1.000 0.304 - 4 0.65830 -0.378 0.598 0.304 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -550 -558.137 +- 0.332253 -14.8812 +- 0.323301 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [390,750] --> [390,750] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [390,750] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=14860.1 FROM MIGRAD STATUS=INITIATE 55 CALLS 56 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.55000e+02 5.00000e+00 0.00000e+00 -5.96476e+02 - 2 sg_p1 1.50000e+01 2.00000e+00 0.00000e+00 -1.39102e+02 - 3 sg_p2 1.31219e+00 5.00000e-01 0.00000e+00 8.51723e+01 - 4 sg_p3 1.40309e+00 7.00000e-01 -6.42399e-01 -3.16309e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14830.1 FROM MIGRAD STATUS=CONVERGED 206 CALLS 207 TOTAL - EDM=2.32867e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.57839e+02 3.16310e-01 9.64235e-04 -9.53938e-03 - 2 sg_p1 1.45911e+01 3.04213e-01 1.85567e-03 -1.11765e-02 - 3 sg_p2 1.30884e+00 5.20626e-02 1.65224e-03 2.13112e-02 - 4 sg_p3 1.13165e+00 4.90247e-02 1.22393e-03 1.25630e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.001e-01 -1.679e-02 1.892e-03 -5.645e-03 - -1.679e-02 9.257e-02 8.162e-03 8.712e-03 - 1.892e-03 8.162e-03 2.711e-03 7.376e-04 - -5.645e-03 8.712e-03 7.376e-04 2.404e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.43494 1.000 -0.174 0.115 -0.364 - 2 0.68887 -0.174 1.000 0.515 0.584 - 3 0.55849 0.115 0.515 1.000 0.289 - 4 0.64393 -0.364 0.584 0.289 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=14830.1 FROM HESSE STATUS=OK 23 CALLS 230 TOTAL - EDM=2.3344e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.57839e+02 3.16455e-01 3.85694e-05 1.13812e-01 - 2 sg_p1 1.45911e+01 3.05011e-01 7.42270e-05 -4.09030e-02 - 3 sg_p2 1.30884e+00 5.21549e-02 6.60897e-05 -4.96630e-01 - 4 sg_p3 1.13165e+00 4.91147e-02 4.89571e-05 -7.43231e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.001e-01 -1.696e-02 1.886e-03 -5.665e-03 - -1.696e-02 9.306e-02 8.232e-03 8.781e-03 - 1.886e-03 8.232e-03 2.721e-03 7.467e-04 - -5.665e-03 8.781e-03 7.467e-04 2.413e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.43580 1.000 -0.176 0.114 -0.364 - 2 0.69086 -0.176 1.000 0.517 0.586 - 3 0.56066 0.114 0.517 1.000 0.291 - 4 0.64559 -0.364 0.586 0.291 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -550 -557.839 +- 0.316455 -14.5911 +- 0.305011 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [390,750] --> [390,750] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [390,750] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=13882.6 FROM MIGRAD STATUS=INITIATE 72 CALLS 73 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.55000e+02 5.00000e+00 0.00000e+00 -3.85565e+02 - 2 sg_p1 1.50000e+01 2.00000e+00 0.00000e+00 -4.99994e+01 - 3 sg_p2 1.14901e+00 5.00000e-01 -8.51477e-02 2.28635e+00 - 4 sg_p3 1.41391e+00 7.00000e-01 0.00000e+00 1.79604e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=13854.1 FROM MIGRAD STATUS=CONVERGED 182 CALLS 183 TOTAL - EDM=1.65564e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.57980e+02 3.34363e-01 9.81953e-04 6.44675e-02 - 2 sg_p1 1.47979e+01 3.20681e-01 1.89110e-03 8.04335e-02 - 3 sg_p2 1.31085e+00 5.36609e-02 1.65482e-03 -1.47147e-01 - 4 sg_p3 1.12068e+00 5.06777e-02 1.22086e-03 1.27989e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.118e-01 -2.084e-02 1.817e-03 -6.408e-03 - -2.084e-02 1.029e-01 8.748e-03 9.557e-03 - 1.817e-03 8.748e-03 2.880e-03 7.828e-04 - -6.408e-03 9.557e-03 7.828e-04 2.569e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.44246 1.000 -0.194 0.101 -0.378 - 2 0.68849 -0.194 1.000 0.508 0.588 - 3 0.55062 0.101 0.508 1.000 0.288 - 4 0.64866 -0.378 0.588 0.288 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=13854.1 FROM HESSE STATUS=OK 23 CALLS 206 TOTAL - EDM=1.65875e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.57980e+02 3.34499e-01 1.96391e-04 1.19503e-01 - 2 sg_p1 1.47979e+01 3.21384e-01 3.78219e-04 -2.02134e-02 - 3 sg_p2 1.31085e+00 5.37405e-02 3.30963e-04 -4.95716e-01 - 4 sg_p3 1.12068e+00 5.07549e-02 2.44171e-04 -7.47499e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.119e-01 -2.101e-02 1.811e-03 -6.428e-03 - -2.101e-02 1.033e-01 8.812e-03 9.620e-03 - 1.811e-03 8.812e-03 2.889e-03 7.908e-04 - -6.428e-03 9.620e-03 7.908e-04 2.576e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.44320 1.000 -0.195 0.101 -0.379 - 2 0.69016 -0.195 1.000 0.510 0.590 - 3 0.55249 0.101 0.510 1.000 0.290 - 4 0.65002 -0.379 0.590 0.290 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -550 -557.98 +- 0.334499 -14.7979 +- 0.321384 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [390,750] --> [390,750] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [390,750] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [490,650] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=15819.8 FROM MIGRAD STATUS=INITIATE 54 CALLS 55 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.55000e+02 5.00000e+00 0.00000e+00 -5.00618e+02 - 2 sg_p1 1.50000e+01 2.00000e+00 0.00000e+00 -2.06424e+02 - 3 sg_p2 1.24250e+00 5.00000e-01 0.00000e+00 8.72112e+01 - 4 sg_p3 1.58707e+00 7.00000e-01 -5.78240e-01 1.36356e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15779.8 FROM MIGRAD STATUS=CONVERGED 201 CALLS 202 TOTAL - EDM=3.72733e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.57991e+02 3.13470e-01 9.81807e-04 1.43269e-02 - 2 sg_p1 1.48025e+01 3.00871e-01 1.88933e-03 1.01623e-01 - 3 sg_p2 1.30793e+00 5.01308e-02 1.66000e-03 -7.41075e-02 - 4 sg_p3 1.12096e+00 4.75155e-02 1.22457e-03 -3.73256e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.827e-02 -1.818e-02 1.608e-03 -5.619e-03 - -1.818e-02 9.055e-02 7.685e-03 8.406e-03 - 1.608e-03 7.685e-03 2.514e-03 6.873e-04 - -5.619e-03 8.406e-03 6.873e-04 2.258e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.44218 1.000 -0.193 0.102 -0.377 - 2 0.68889 -0.193 1.000 0.509 0.588 - 3 0.55187 0.102 0.509 1.000 0.288 - 4 0.64863 -0.377 0.588 0.288 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=15779.8 FROM HESSE STATUS=OK 23 CALLS 225 TOTAL - EDM=3.72671e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.57991e+02 3.13600e-01 1.96361e-04 1.19946e-01 - 2 sg_p1 1.48025e+01 3.01553e-01 3.77865e-04 -1.97513e-02 - 3 sg_p2 1.30793e+00 5.02105e-02 6.64000e-05 -4.97043e-01 - 4 sg_p3 1.12096e+00 4.75893e-02 2.44915e-04 -7.47388e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.835e-02 -1.832e-02 1.604e-03 -5.636e-03 - -1.832e-02 9.096e-02 7.744e-03 8.463e-03 - 1.604e-03 7.744e-03 2.522e-03 6.946e-04 - -5.636e-03 8.463e-03 6.946e-04 2.265e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.44293 1.000 -0.194 0.102 -0.378 - 2 0.69061 -0.194 1.000 0.511 0.590 - 3 0.55387 0.102 0.511 1.000 0.291 - 4 0.65001 -0.378 0.590 0.291 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -550 -557.991 +- 0.3136 -14.8025 +- 0.301553 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 557.153 +- 0.321538 (stat) - 0.826073 + 1.72147 (syst); -0.841572/+1.72896 (total) - Uncertainty on sg_p1 = 15.9907 +- 0.294927 (stat) - 1.39965 + 0 (syst); -1.40739/+0.147463 (total) - Uncertainty on sg_p2 = 1.40719 +- 0.0664804 (stat) - 0.128774 + 0 (syst); -0.132995/+0.0332402 (total) - Uncertainty on sg_p3 = 1.40947 +- 0.0605049 (stat) - 0.295372 + 0 (syst); -0.296917/+0.0302524 (total) - === Baseline plot ===
- norm = 123.788 -JEC lnN 1.02905 - -JER lnN 1.01484 - -btag lnN 1.06518 - -sg_p0 param 557.153 -0.841572/+1.72896 -sg_p1 param 15.9907 -1.40739/+0.147463 -sg_p2 param 1.40719 -0.132995/+0.0332402 -sg_p3 param 1.40947 -0.296917/+0.0302524 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_600_crystal_1_550_1200/data_bkg.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_600_crystal_1_550_1200/data_bkg.log deleted file mode 100644 index a966e12..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_600_crystal_1_550_1200/data_bkg.log +++ /dev/null @@ -1,690 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10879.7 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 6.74624e-01 5.09000e-01 -8.31364e-01 -1.01971e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -3.20610e+01 - 3 par_crystal_2 5.00000e+02 2.00000e+01 0.00000e+00 -9.48837e+00 - 4 par_crystal_3 1.05000e+02 1.90000e+01 0.00000e+00 2.45317e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7116e+01 9.9978e-01 1.9597e+00 1.8156e+01 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 17.134017 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 27 CALLS 314 TOTAL - EDM=0.131054 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.06594e+00 6.09301e-02 1.43210e-03 -8.77809e-01 - 2 par_crystal_1 5.09576e+00 7.69298e-02 8.09031e-02 -5.13188e-02 - 3 par_crystal_2 4.95224e+02 7.91481e+01 2.17679e-03 -5.43249e-01 - 4 par_crystal_3 1.90900e+02 9.54958e+00 1.13079e-02 4.60762e-02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 477 CALLS 478 TOTAL - EDM=0.0370129 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.11079e+00 8.93309e-02 0.00000e+00 -4.75984e-01 - 2 par_crystal_1 5.08061e+00 3.60144e-01 0.00000e+00 -1.14416e-01 - 3 par_crystal_2 4.76040e+02 1.75614e+01 0.00000e+00 -2.32451e-01 - 4 par_crystal_3 1.99914e+02 2.77391e+01 0.00000e+00 -7.67572e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.985e-03 -2.091e-03 1.499e+00 2.820e-01 - -2.091e-03 2.873e-02 -7.387e-01 -2.900e-02 - 1.499e+00 -7.387e-01 3.118e+02 5.244e+01 - 2.820e-01 -2.900e-02 5.244e+01 1.008e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99775 1.000 -0.138 0.950 0.994 - 2 0.79882 -0.138 1.000 -0.247 -0.054 - 3 0.95717 0.950 -0.247 1.000 0.935 - 4 0.99764 0.994 -0.054 0.935 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.8 FROM HESSE STATUS=OK 27 CALLS 505 TOTAL - EDM=0.0183624 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.11079e+00 4.31984e-02 1.44775e-03 -6.03431e-01 - 2 par_crystal_1 5.08061e+00 3.28337e+00 6.64371e-02 1.44728e+00 - 3 par_crystal_2 4.76040e+02 8.02153e+00 1.45036e-02 3.38355e+00 - 4 par_crystal_3 1.99914e+02 2.26294e+01 4.50606e-02 1.52819e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.866e-03 -1.951e-03 -2.584e-03 1.946e-02 - -1.951e-03 1.028e-01 6.675e-04 3.793e-04 - -2.584e-03 6.675e-04 6.449e+01 1.116e+00 - 1.946e-02 3.793e-04 1.116e+00 8.140e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.21215 1.000 -0.141 -0.007 0.158 - 2 0.14274 -0.141 1.000 0.000 0.000 - 3 0.05109 -0.007 0.000 1.000 0.049 - 4 0.16712 0.158 0.000 0.049 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10978.6 FROM MIGRAD STATUS=INITIATE 68 CALLS 69 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 6.03110e+02 3.00000e+01 -8.97402e-01 -6.52175e+01 - 2 par_gaus_exp_1 5.45000e+01 9.10000e+00 0.00000e+00 -4.62060e+02 - 3 par_gaus_exp_2 4.12114e-01 3.05000e-01 0.00000e+00 1.25553e+03 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.9 FROM HESSE STATUS=OK 18 CALLS 182 TOTAL - EDM=0.000691453 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.46431e+02 6.06936e+00 3.17833e-03 -3.92855e-01 - 2 par_gaus_exp_1 6.65716e+01 1.75685e+01 2.62647e-03 1.43349e-01 - 3 par_gaus_exp_2 3.07505e-01 8.37981e-02 8.79822e-04 -3.06196e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM MIGRAD STATUS=CONVERGED 316 CALLS 317 TOTAL - EDM=9.19369e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.62504e+02 3.53152e+00 1.63243e-03 -1.66316e-01 - 2 par_gaus_exp_1 2.46552e+01 1.25211e+01 1.75085e-03 -3.48771e-01 - 3 par_gaus_exp_2 1.14604e-01 5.89219e-02 6.31447e-04 9.83138e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.247e+01 -1.544e+01 -6.961e-02 - -1.544e+01 1.643e+02 7.558e-01 - -6.961e-02 7.558e-01 3.493e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.35636 1.000 -0.341 -0.333 - 2 0.99789 -0.341 1.000 0.998 - 3 0.99788 -0.333 0.998 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM HESSE STATUS=OK 16 CALLS 333 TOTAL - EDM=9.89177e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 5.62504e+02 3.77274e+00 6.52972e-05 8.34552e-02 - 2 par_gaus_exp_1 2.46552e+01 1.46349e+01 3.50170e-04 -7.15413e-01 - 3 par_gaus_exp_2 1.14604e-01 6.93856e-02 1.26289e-04 -1.27868e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.424e+01 -2.545e+01 -1.157e-01 - -2.545e+01 2.286e+02 1.052e+00 - -1.157e-01 1.052e+00 4.855e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.45683 1.000 -0.446 -0.440 - 2 0.99849 -0.446 1.000 0.998 - 3 0.99848 -0.440 0.998 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (13168.6) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=575, par_novo_1=100, par_novo_2=1.58864 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 575,par_novo_1 = 100,par_novo_2 = 1.58864) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=645, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=655, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=665, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=675, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=685, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=695, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=705, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=715, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=725, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=735, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=745, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=755, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - ... (remaining 46 messages suppressed) - - FCN=13054.5 FROM MIGRAD STATUS=INITIATE 14 CALLS 15 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.75000e+02 1.50000e+01 2.01358e-01 -1.22938e+03 - 2 par_novo_1 1.00000e+02 2.00000e+01 2.01358e-01 -6.98326e+03 - 3 par_novo_2 0.00000e+00 2.00000e+01 2.01358e-01 1.51249e+06 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM MIGRAD STATUS=CONVERGED 220 CALLS 221 TOTAL - EDM=2.09668e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.00000e+02 1.21837e+02 1.25149e-01 -7.30463e-04 - 2 par_novo_1 1.30637e+02 1.58558e+01 3.16845e-03 -1.76078e-02 - 3 par_novo_2 -6.95187e-01 1.36663e-01 2.61078e-05 1.74080e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.121e-01 -9.460e-01 -6.449e-03 - -9.460e-01 2.538e+02 2.099e+00 - -6.449e-03 2.099e+00 1.868e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.21023 1.000 -0.177 -0.141 - 2 0.96488 -0.177 1.000 0.964 - 3 0.96445 -0.141 0.964 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM HESSE STATUS=OK 20 CALLS 241 TOTAL - EDM=1.01397e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 5.00000e+02 1.20312e+02 5.00000e-01 -1.57325e+00 - 2 par_novo_1 1.30637e+02 2.01762e+01 1.26738e-04 3.11381e-01 - 3 par_novo_2 -6.95187e-01 1.62575e-01 1.04431e-06 -6.95192e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.070e-01 -4.278e+00 -2.995e-02 - -4.278e+00 4.133e+02 3.212e+00 - -2.995e-02 3.212e+00 2.643e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.69436 1.000 -0.643 -0.563 - 2 0.97859 -0.643 1.000 0.972 - 3 0.97501 -0.563 0.972 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10877 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 6.33849e-01 5.09000e-01 -8.55460e-01 -1.25390e+02 - 2 par_crystal_1_1 2.55500e+00 5.09000e-01 0.00000e+00 -2.69495e+01 - 3 par_crystal_1_2 5.50000e+02 3.00000e+01 0.00000e+00 -1.44080e+01 - 4 par_crystal_1_3 1.04500e+02 1.91000e+01 0.00000e+00 3.07979e+01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.43469 added to diagonal of error matrix - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.5401e+00 8.4221e-02 1.8087e+00 3.6472e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 1.543714 TO DIAGONAL. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.9 FROM HESSE STATUS=OK 25 CALLS 485 TOTAL - EDM=0.0491336 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.05623e+00 1.52463e-01 1.42446e-03 -1.90900e+00 - 2 par_crystal_1_1 5.09988e+00 3.18944e+00 7.54811e-02 -8.93342e-03 - 3 par_crystal_1_2 4.96280e+02 4.98347e+01 9.02051e-03 3.58498e-02 - 4 par_crystal_1_3 1.89188e+02 2.78069e+01 1.02856e-02 -2.38185e-01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 538 CALLS 539 TOTAL - EDM=10.0867 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 14.1 per cent - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.09723e+00 3.02575e-02 -0.00000e+00 5.47416e+01 - 2 par_crystal_1_1 5.09997e+00 3.18368e+00 0.00000e+00 -3.90351e-03 - 3 par_crystal_1_2 4.83329e+02 2.76558e+01 0.00000e+00 7.05236e+00 - 4 par_crystal_1_3 1.96552e+02 5.80629e+00 -0.00000e+00 4.39990e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.156e-04 -1.804e-07 -6.742e-01 1.111e-01 - -1.804e-07 1.763e-04 7.888e-03 -2.154e-03 - -6.742e-01 7.888e-03 7.759e+02 -1.463e+02 - 1.111e-01 -2.154e-03 -1.463e+02 3.432e+01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.82553 1.000 -0.000 -0.800 0.627 - 2 0.03650 -0.000 1.000 0.021 -0.028 - 3 0.94703 -0.800 0.021 1.000 -0.896 - 4 0.90888 0.627 -0.028 -0.896 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -9.7852e-01 9.9996e-01 1.9836e+00 1.9949e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.980510 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 29 CALLS 568 TOTAL - EDM=238.514 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 1.09723e+00 4.25322e-02 2.54943e-04 -6.09913e-01 - 2 par_crystal_1_1 5.09997e+00 7.84798e-01 8.54763e-02 1.56580e+00 - 3 par_crystal_1_2 4.83329e+02 1.87856e+01 1.76414e-03 -4.60588e-01 - 4 par_crystal_1_3 1.96552e+02 5.33115e+00 2.63738e-03 1.30128e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.809e-03 -2.197e-07 8.001e-01 2.280e-01 - -2.197e-07 1.053e-04 -1.173e-04 -3.665e-05 - 8.001e-01 -1.173e-04 3.552e+02 1.010e+02 - 2.280e-01 -3.665e-05 1.010e+02 2.885e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99849 1.000 -0.001 0.998 0.998 - 2 0.00265 -0.001 1.000 -0.001 -0.001 - 3 0.99848 0.998 -0.001 1.000 0.998 - 4 0.99849 0.998 -0.001 0.998 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_550_1200 = 1266.17 - Background number of gaus_exp_550_1200 = 1266.17 - Background number of novo_550_1200 = 1266.17 - Background number of crystal_1_550_1200 = 1266.17 - Background number of gaus_bern_550_1200 = 1266.17 - Background number of landau_550_1200 = 1266.17 -par_crystal_0 param 1.11079 0.0431984 -par_crystal_1 param 5.08061 3.28337 -par_crystal_2 param 476.04 8.02153 -par_crystal_3 param 199.914 22.6294 -par_crystal_1_0 param 1.09723 0.0425322 -par_crystal_1_1 param 5.09997 0.784798 -par_crystal_1_2 param 483.329 18.7856 -par_crystal_1_3 param 196.552 5.33115 -par_gaus_exp_0 param 562.504 3.77274 -par_gaus_exp_1 param 24.6552 14.6349 -par_gaus_exp_2 param 0.114604 0.0693856 -par_novo_0 param 500 120.312 -par_novo_1 param 130.637 20.1762 -par_novo_2 param -0.695187 0.162575 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_600_crystal_1_550_1200/datacard_600_crystal_1_550_1200.txt b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_600_crystal_1_550_1200/datacard_600_crystal_1_550_1200.txt deleted file mode 100644 index 4ac6661..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_600_crystal_1_550_1200/datacard_600_crystal_1_550_1200.txt +++ /dev/null @@ -1,29 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_600.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_crystal_1_550_1200.root HbbHbb:f_crystal_1 -shapes data_obs HbbHbb w_background_crystal_1_550_1200.root HbbHbb:data_obs_crystal_1_550_1200 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 3.01596 1266.17 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06702 - -JER lnN 1.01328 - -JEC lnN 1.02779 - -trigger lnN 1.10 - -sg_p0 param 608.692 -1.29492/+1.15383 -sg_p1 param 18.3569 -0.660364/+0.181204 -sg_p2 param 1.48767 -0.0836517/+0.0287548 -sg_p3 param 1.40613 -0.0665205/+0.0307738 -par_crystal_1_0 param 1.09723 0.0425322 -par_crystal_1_1 param 5.09997 0.784798 -par_crystal_1_2 param 483.329 18.7856 -par_crystal_1_3 param 196.552 5.33115 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_600_crystal_1_550_1200/signal600_sig.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_600_crystal_1_550_1200/signal600_sig.log deleted file mode 100644 index 2b9a4cd..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_600_crystal_1_550_1200/signal600_sig.log +++ /dev/null @@ -1,985 +0,0 @@ - -Processing test.c... -nSignal_init = 100000 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [390,800] --> [390,800] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [490,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [390,800] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [490,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=20407.2 FROM MIGRAD STATUS=INITIATE 56 CALLS 57 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.90000e+02 6.00000e+00 0.00000e+00 -2.37960e+02 - 2 sg_p1 2.25000e+01 2.50000e+00 0.00000e+00 -1.20569e+02 - 3 sg_p2 9.48780e-01 5.00000e-01 0.00000e+00 2.19249e+02 - 4 sg_p3 9.35752e-01 7.00000e-01 -8.22196e-01 -2.16926e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20303.7 FROM MIGRAD STATUS=CONVERGED 258 CALLS 259 TOTAL - EDM=3.54203e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.92104e+02 4.94229e-01 1.62450e-03 -2.33203e-01 - 2 sg_p1 3.16035e+01 3.64838e-01 4.18602e-03 4.92054e-02 - 3 sg_p2 2.32184e+00 1.74449e-01 2.49592e-03 4.15288e-02 - 4 sg_p3 2.56533e+00 2.80149e-01 3.09113e-03 3.31222e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.443e-01 4.410e-04 2.284e-03 -4.332e-04 - 4.410e-04 1.332e-01 3.420e-03 4.258e-04 - 2.284e-03 3.420e-03 3.048e-02 4.517e-05 - -4.332e-04 4.258e-04 4.517e-05 7.866e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.02667 1.000 0.002 0.026 -0.003 - 2 0.05384 0.002 1.000 0.054 0.004 - 3 0.05979 0.026 0.054 1.000 0.001 - 4 0.00527 -0.003 0.004 0.001 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20303.7 FROM HESSE STATUS=OK 23 CALLS 282 TOTAL - EDM=3.55279e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.92104e+02 4.94244e-01 3.24901e-04 7.01930e-02 - 2 sg_p1 3.16035e+01 3.64897e-01 1.67441e-04 8.15808e-01 - 3 sg_p2 2.32184e+00 1.74479e-01 4.99183e-04 -7.13248e-02 - 4 sg_p3 2.56533e+00 2.80163e-01 6.18226e-04 -2.70328e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.443e-01 3.135e-04 2.378e-03 -5.538e-04 - 3.135e-04 1.332e-01 3.580e-03 7.538e-04 - 2.378e-03 3.580e-03 3.049e-02 5.456e-05 - -5.538e-04 7.538e-04 5.456e-05 7.867e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.02784 1.000 0.002 0.028 -0.004 - 2 0.05664 0.002 1.000 0.056 0.007 - 3 0.06252 0.028 0.056 1.000 0.001 - 4 0.00842 -0.004 0.007 0.001 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -600 -592.104 +- 0.494244 -31.6035 +- 0.364897 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [390,800] --> [390,800] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [490,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [390,800] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [490,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=20903.6 FROM MIGRAD STATUS=INITIATE 59 CALLS 60 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.90000e+02 6.00000e+00 0.00000e+00 -2.76905e+02 - 2 sg_p1 2.25000e+01 2.50000e+00 0.00000e+00 -1.33312e+02 - 3 sg_p2 8.35066e-01 5.00000e-01 0.00000e+00 1.55262e+02 - 4 sg_p3 1.06407e+00 7.00000e-01 -7.69784e-01 -6.62795e+01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.01877 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20782.7 FROM HESSE STATUS=OK 27 CALLS 327 TOTAL - EDM=0.353557 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.94811e+02 4.92616e-01 1.65618e-03 2.97074e-02 - 2 sg_p1 3.19678e+01 3.59009e-01 4.38078e-03 7.51718e-03 - 3 sg_p2 3.30884e+00 1.90897e+00 9.40463e-02 -2.17700e-03 - 4 sg_p3 3.57858e+00 1.02503e+00 5.00000e-01 -2.82844e+00 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MACHINE ACCURACY LIMITS FURTHER IMPROVEMENT. - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=20782.7 FROM MIGRAD STATUS=CONVERGED 349 CALLS 350 TOTAL - EDM=0.00116564 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 0.5 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.94811e+02 4.92616e-01 0.00000e+00 -7.95791e-04 - 2 sg_p1 3.19677e+01 3.59015e-01 0.00000e+00 -1.29854e-03 - 3 sg_p2 3.31338e+00 1.90573e+00 0.00000e+00 -5.13595e-02 - 4 sg_p3 4.44183e+00 9.90294e-01 0.00000e+00 -7.71997e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.427e-01 1.206e-04 -3.792e-05 6.874e-06 - 1.206e-04 1.290e-01 -2.103e-05 2.400e-05 - -3.792e-05 -2.103e-05 4.913e+00 1.276e-01 - 6.874e-06 2.400e-05 1.276e-01 1.010e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.00068 1.000 0.001 -0.000 0.000 - 2 0.00069 0.001 1.000 -0.000 0.000 - 3 0.05726 -0.000 -0.000 1.000 0.057 - 4 0.05726 0.000 0.000 0.057 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20782.7 FROM HESSE STATUS=OK 29 CALLS 379 TOTAL - EDM=0.00193193 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.94811e+02 4.92614e-01 1.65617e-03 1.61052e-01 - 2 sg_p1 3.19677e+01 3.59005e-01 1.75231e-03 8.59341e-01 - 3 sg_p2 3.31338e+00 1.92835e+00 9.34815e-02 3.31384e-01 - 4 sg_p3 4.44183e+00 4.36098e+00 5.00000e-01 2.72453e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.427e-01 1.189e-04 4.150e-10 3.937e-09 - 1.189e-04 1.290e-01 7.552e-10 7.164e-09 - 4.150e-10 7.552e-10 5.086e+00 4.866e-17 - 3.937e-09 7.164e-09 4.866e-17 3.680e+02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.00067 1.000 0.001 0.000 0.000 - 2 0.00067 0.001 1.000 0.000 0.000 - 3 0.00000 0.000 0.000 1.000 0.000 - 4 0.00000 0.000 0.000 0.000 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -600 -594.811 +- 0.492614 -31.9677 +- 0.359005 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [390,800] --> [390,800] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [490,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [390,800] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [490,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=19759.2 FROM MIGRAD STATUS=INITIATE 61 CALLS 62 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.90000e+02 6.00000e+00 0.00000e+00 -3.08252e+02 - 2 sg_p1 2.25000e+01 2.50000e+00 0.00000e+00 3.47377e+00 - 3 sg_p2 1.03803e+00 5.00000e-01 0.00000e+00 1.96966e+02 - 4 sg_p3 6.78922e-01 7.00000e-01 -9.37400e-01 -9.51087e+02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19618.4 FROM HESSE STATUS=OK 27 CALLS 295 TOTAL - EDM=0.000519933 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.89106e+02 4.99310e-01 1.60340e-03 -1.77687e-01 - 2 sg_p1 3.11952e+01 3.74439e-01 3.97599e-03 1.75125e-01 - 3 sg_p2 2.15446e+00 1.55638e-01 6.05904e-03 5.07493e-02 - 4 sg_p3 2.86472e+00 1.00280e+00 2.23604e-02 1.02315e-01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.00142 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=19618.4 FROM MIGRAD STATUS=FAILED 359 CALLS 360 TOTAL - EDM=0.026975 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 42.7 per cent - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.89107e+02 1.06052e+00 0.00000e+00 3.45243e-02 - 2 sg_p1 3.11930e+01 5.01209e-01 0.00000e+00 3.04828e-02 - 3 sg_p2 2.15412e+00 1.61274e+00 -0.00000e+00 1.77468e-02 - 4 sg_p3 2.85260e+00 2.27046e+00 0.00000e+00 -1.96724e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.125e+00 -5.647e-02 7.612e-01 2.001e+00 - -5.647e-02 2.515e-01 -5.717e-01 8.039e-02 - 7.612e-01 -5.717e-01 3.085e+00 -2.479e-02 - 2.001e+00 8.039e-02 -2.479e-02 6.149e+00 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.87825 1.000 -0.106 0.409 0.761 - 2 0.68964 -0.106 1.000 -0.649 0.065 - 3 0.81697 0.409 -0.649 1.000 -0.006 - 4 0.84389 0.761 0.065 -0.006 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19618.4 FROM HESSE STATUS=OK 29 CALLS 389 TOTAL - EDM=1.78558e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.89107e+02 4.98832e-01 1.60273e-03 -2.97585e-02 - 2 sg_p1 3.11930e+01 3.72807e-01 3.96095e-03 7.69036e-01 - 3 sg_p2 2.15412e+00 1.55604e-01 5.99006e-03 -1.38798e-01 - 4 sg_p3 2.85260e+00 7.77091e-01 2.18365e-02 -1.86043e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.489e-01 3.933e-03 6.510e-03 -1.038e-02 - 3.933e-03 1.391e-01 8.935e-03 1.739e-02 - 6.510e-03 8.935e-03 2.424e-02 8.994e-04 - -1.038e-02 1.739e-02 8.994e-04 6.144e-01 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.08866 1.000 0.021 0.084 -0.027 - 2 0.16487 0.021 1.000 0.154 0.059 - 3 0.17370 0.084 0.154 1.000 0.007 - 4 0.06566 -0.027 0.059 0.007 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -600 -589.107 +- 0.498832 -31.193 +- 0.372807 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [440,800] --> [440,800] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [440,800] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=18511.3 FROM MIGRAD STATUS=INITIATE 60 CALLS 61 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 5.00000e+00 0.00000e+00 -7.40396e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 -3.52378e+01 - 3 sg_p2 1.18490e+00 5.00000e-01 0.00000e+00 2.04158e+01 - 4 sg_p3 1.47860e+00 7.00000e-01 -6.15717e-01 -1.54349e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18460.6 FROM MIGRAD STATUS=CONVERGED 198 CALLS 199 TOTAL - EDM=1.54851e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.08692e+02 3.23280e-01 1.16514e-03 -7.99199e-03 - 2 sg_p1 1.83569e+01 2.79934e-01 3.02518e-03 -2.66369e-02 - 3 sg_p2 1.48767e+00 5.44286e-02 2.05315e-03 4.94574e-02 - 4 sg_p3 1.40613e+00 6.14668e-02 1.81455e-03 2.39101e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.045e-01 -9.051e-03 2.188e-03 -5.216e-03 - -9.051e-03 7.840e-02 5.474e-03 7.094e-03 - 2.188e-03 5.474e-03 2.963e-03 4.768e-04 - -5.216e-03 7.094e-03 4.768e-04 3.779e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.31290 1.000 -0.100 0.124 -0.262 - 2 0.51370 -0.100 1.000 0.359 0.412 - 3 0.39510 0.124 0.359 1.000 0.142 - 4 0.46945 -0.262 0.412 0.142 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18460.6 FROM HESSE STATUS=OK 23 CALLS 222 TOTAL - EDM=1.54744e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.08692e+02 3.23426e-01 4.66057e-05 1.48232e-01 - 2 sg_p1 1.83569e+01 2.80464e-01 1.21007e-04 1.14504e-01 - 3 sg_p2 1.48767e+00 5.44911e-02 8.21259e-05 -4.16906e-01 - 4 sg_p3 1.40613e+00 6.15475e-02 7.25820e-05 -6.41314e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.046e-01 -9.179e-03 2.197e-03 -5.241e-03 - -9.179e-03 7.870e-02 5.524e-03 7.158e-03 - 2.197e-03 5.524e-03 2.970e-03 4.840e-04 - -5.241e-03 7.158e-03 4.840e-04 3.789e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.31420 1.000 -0.101 0.125 -0.263 - 2 0.51639 -0.101 1.000 0.361 0.415 - 3 0.39754 0.125 0.361 1.000 0.144 - 4 0.47162 -0.263 0.415 0.144 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -600 -608.692 +- 0.323426 -18.3569 +- 0.280464 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 - fit done -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [440,800] --> [440,800] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [440,800] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=18914.3 FROM MIGRAD STATUS=INITIATE 77 CALLS 78 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.07615e+02 5.00000e+00 0.00000e+00 -3.22775e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 5.18097e+00 - 3 sg_p2 1.14423e+00 5.00000e-01 0.00000e+00 -1.00194e+02 - 4 sg_p3 1.45830e+00 7.00000e-01 -6.22838e-01 5.05414e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18893.8 FROM MIGRAD STATUS=CONVERGED 217 CALLS 218 TOTAL - EDM=2.83441e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.09835e+02 3.20458e-01 1.18122e-03 1.99716e-02 - 2 sg_p1 1.84026e+01 2.81622e-01 3.04842e-03 -4.57325e-03 - 3 sg_p2 1.46608e+00 5.89939e-02 2.13709e-03 -5.15374e-04 - 4 sg_p3 1.40527e+00 5.47157e-02 1.70241e-03 2.83643e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.027e-01 2.191e-03 4.166e-03 -3.049e-03 - 2.191e-03 7.935e-02 7.350e-03 5.397e-03 - 4.166e-03 7.350e-03 3.481e-03 4.765e-04 - -3.049e-03 5.397e-03 4.765e-04 2.994e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.30388 1.000 0.024 0.220 -0.174 - 2 0.52791 0.024 1.000 0.442 0.350 - 3 0.49057 0.220 0.442 1.000 0.148 - 4 0.39639 -0.174 0.350 0.148 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18893.8 FROM HESSE STATUS=OK 23 CALLS 241 TOTAL - EDM=2.83854e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.09835e+02 3.20577e-01 2.36244e-04 1.94613e-01 - 2 sg_p1 1.84026e+01 2.82160e-01 1.21937e-04 1.20635e-01 - 3 sg_p2 1.46608e+00 5.90852e-02 8.54835e-05 -4.26369e-01 - 4 sg_p3 1.40527e+00 5.47727e-02 6.80964e-05 -6.41619e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.028e-01 2.166e-03 4.187e-03 -3.058e-03 - 2.166e-03 7.965e-02 7.413e-03 5.449e-03 - 4.187e-03 7.413e-03 3.492e-03 4.840e-04 - -3.058e-03 5.449e-03 4.840e-04 3.000e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.30498 1.000 0.024 0.221 -0.174 - 2 0.53050 0.024 1.000 0.444 0.352 - 3 0.49295 0.221 0.444 1.000 0.150 - 4 0.39859 -0.174 0.352 0.150 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -600 -609.835 +- 0.320577 -18.4026 +- 0.28216 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [440,800] --> [440,800] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [440,800] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17827.8 FROM MIGRAD STATUS=INITIATE 52 CALLS 53 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 5.00000e+00 0.00000e+00 -3.81579e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 -1.00435e+02 - 3 sg_p2 1.28822e+00 5.00000e-01 0.00000e+00 2.73039e+01 - 4 sg_p3 1.80614e+00 7.00000e-01 -5.05175e-01 1.07828e+02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.0886e+00 1.1061e+00 1.8427e+00 2.1398e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 1.090718 TO DIAGONAL. - FCN=17796.1 FROM HESSE STATUS=NOT POSDEF 29 CALLS 194 TOTAL - EDM=0.416197 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.07398e+02 2.64955e+00 1.52214e-04 -1.22217e+01 - 2 sg_p1 1.77156e+01 1.07159e+00 3.05183e-03 -2.94405e+00 - 3 sg_p2 1.40875e+00 4.86527e-02 4.22960e-04 -1.06232e+01 - 4 sg_p3 1.34786e+00 1.92678e-01 1.78861e-03 3.70210e+00 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=17796.1 FROM MIGRAD STATUS=FAILED 231 CALLS 232 TOTAL - EDM=854.994 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.07407e+02 1.35903e-01 -0.00000e+00 6.05600e+02 - 2 sg_p1 1.77116e+01 1.50263e-01 0.00000e+00 1.62850e+02 - 3 sg_p2 1.40858e+00 6.28910e-03 0.00000e+00 -1.08286e+01 - 4 sg_p3 1.34715e+00 2.75057e-02 0.00000e+00 3.92805e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.847e-02 -2.028e-02 -7.414e-04 -3.202e-03 - -2.028e-02 2.258e-02 8.238e-04 3.560e-03 - -7.414e-04 8.238e-04 3.955e-05 1.478e-04 - -3.202e-03 3.560e-03 1.478e-04 7.566e-04 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99312 1.000 -0.993 -0.867 -0.856 - 2 0.99342 -0.993 1.000 0.872 0.861 - 3 0.89539 -0.867 0.872 1.000 0.855 - 4 0.88698 -0.856 0.861 0.855 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -7.1751e+01 9.9679e-01 1.9909e+00 7.2763e+01 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 71.823632 TO DIAGONAL. - FCN=17796.1 FROM HESSE STATUS=NOT POSDEF 27 CALLS 259 TOTAL - EDM=0.0450234 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.07407e+02 8.84526e-03 4.47722e-05 9.64479e-02 - 2 sg_p1 1.77116e+01 9.83564e-03 1.65224e-04 2.82174e-02 - 3 sg_p2 1.40858e+00 7.59554e-03 2.51140e-05 -4.51783e-01 - 4 sg_p3 1.34715e+00 1.39806e-01 8.90793e-05 -6.62511e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.824e-05 8.666e-05 -3.386e-05 1.235e-03 - 8.666e-05 9.674e-05 -3.765e-05 1.373e-03 - -3.386e-05 -3.765e-05 5.769e-05 -5.353e-04 - 1.235e-03 1.373e-03 -5.353e-04 1.956e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99802 1.000 0.996 -0.504 0.998 - 2 0.99801 0.996 1.000 -0.504 0.998 - 3 0.50444 -0.504 -0.504 1.000 -0.504 - 4 0.99899 0.998 0.998 -0.504 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -600 -607.407 +- 0.00884526 -17.7116 +- 0.00983564 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [440,800] --> [440,800] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [440,800] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=18313.7 FROM MIGRAD STATUS=INITIATE 63 CALLS 64 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 5.00000e+00 0.00000e+00 -7.10963e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 -2.40680e+01 - 3 sg_p2 1.12814e+00 5.00000e-01 0.00000e+00 -1.98843e+01 - 4 sg_p3 1.45064e+00 7.00000e-01 -6.25537e-01 -1.20812e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18262.1 FROM MIGRAD STATUS=CONVERGED 166 CALLS 167 TOTAL - EDM=7.98313e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.08803e+02 3.30506e-01 1.18077e-03 -1.43643e-02 - 2 sg_p1 1.84717e+01 2.89622e-01 3.07900e-03 -7.62757e-02 - 3 sg_p2 1.45856e+00 5.36517e-02 1.98838e-03 -2.33437e-02 - 4 sg_p3 1.38960e+00 6.15342e-02 1.80011e-03 4.41451e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.092e-01 -9.440e-03 2.340e-03 -5.461e-03 - -9.440e-03 8.392e-02 5.863e-03 7.559e-03 - 2.340e-03 5.863e-03 2.879e-03 5.057e-04 - -5.461e-03 7.559e-03 5.057e-04 3.787e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.32401 1.000 -0.099 0.132 -0.268 - 2 0.53046 -0.099 1.000 0.377 0.424 - 3 0.41529 0.132 0.377 1.000 0.153 - 4 0.48258 -0.268 0.424 0.153 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18262.1 FROM HESSE STATUS=OK 23 CALLS 190 TOTAL - EDM=8.00182e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.08803e+02 3.30636e-01 2.36154e-04 1.52717e-01 - 2 sg_p1 1.84717e+01 2.90111e-01 6.15801e-04 1.29921e-01 - 3 sg_p2 1.45856e+00 5.37098e-02 7.95354e-05 -4.29674e-01 - 4 sg_p3 1.38960e+00 6.16044e-02 3.60021e-04 -6.47219e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.093e-01 -9.548e-03 2.348e-03 -5.481e-03 - -9.548e-03 8.421e-02 5.909e-03 7.616e-03 - 2.348e-03 5.909e-03 2.885e-03 5.122e-04 - -5.481e-03 7.616e-03 5.122e-04 3.796e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.32509 1.000 -0.100 0.132 -0.269 - 2 0.53273 -0.100 1.000 0.379 0.426 - 3 0.41743 0.132 0.379 1.000 0.155 - 4 0.48438 -0.269 0.426 0.155 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -600 -608.803 +- 0.330636 -18.4717 +- 0.290111 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [440,800] --> [440,800] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [440,800] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=18711.2 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 5.00000e+00 0.00000e+00 -7.18390e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 -3.18392e+01 - 3 sg_p2 1.20377e+00 5.00000e-01 0.00000e+00 8.44187e+00 - 4 sg_p3 1.54524e+00 7.00000e-01 -5.92581e-01 1.53539e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18661.3 FROM MIGRAD STATUS=CONVERGED 205 CALLS 206 TOTAL - EDM=3.64592e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.08629e+02 3.18788e-01 1.15078e-03 -3.36230e-01 - 2 sg_p1 1.81384e+01 2.76492e-01 2.97751e-03 -6.31530e-02 - 3 sg_p2 1.49686e+00 5.44757e-02 2.06505e-03 2.07196e-02 - 4 sg_p3 1.39306e+00 6.05611e-02 1.78870e-03 1.70313e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.016e-01 -1.019e-02 2.021e-03 -5.340e-03 - -1.019e-02 7.648e-02 5.389e-03 7.151e-03 - 2.021e-03 5.389e-03 2.968e-03 4.840e-04 - -5.340e-03 7.151e-03 4.840e-04 3.668e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.32316 1.000 -0.116 0.116 -0.277 - 2 0.52296 -0.116 1.000 0.358 0.427 - 3 0.39289 0.116 0.358 1.000 0.147 - 4 0.48547 -0.277 0.427 0.147 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18661.3 FROM HESSE STATUS=OK 23 CALLS 229 TOTAL - EDM=3.64813e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.08629e+02 3.18930e-01 2.30156e-04 1.45672e-01 - 2 sg_p1 1.81384e+01 2.76957e-01 5.95502e-04 8.52226e-02 - 3 sg_p2 1.49686e+00 5.45322e-02 8.26022e-05 -4.12888e-01 - 4 sg_p3 1.39306e+00 6.06332e-02 7.15481e-05 -6.45981e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.017e-01 -1.031e-02 2.029e-03 -5.364e-03 - -1.031e-02 7.674e-02 5.434e-03 7.205e-03 - 2.029e-03 5.434e-03 2.974e-03 4.905e-04 - -5.364e-03 7.205e-03 4.905e-04 3.677e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.32439 1.000 -0.117 0.117 -0.277 - 2 0.52528 -0.117 1.000 0.360 0.429 - 3 0.39510 0.117 0.360 1.000 0.148 - 4 0.48733 -0.277 0.429 0.148 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -600 -608.629 +- 0.31893 -18.1384 +- 0.276957 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [440,800] --> [440,800] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [440,800] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17303.3 FROM MIGRAD STATUS=INITIATE 59 CALLS 60 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 5.00000e+00 0.00000e+00 -6.79986e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 -3.47913e+01 - 3 sg_p2 1.18392e+00 5.00000e-01 0.00000e+00 1.09112e+01 - 4 sg_p3 1.50179e+00 7.00000e-01 -6.07622e-01 -1.34120e+00 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17256.2 FROM MIGRAD STATUS=CONVERGED 162 CALLS 163 TOTAL - EDM=1.97081e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.08678e+02 3.33992e-01 1.16426e-03 9.30660e-02 - 2 sg_p1 1.83420e+01 2.89061e-01 3.02407e-03 -5.38511e-02 - 3 sg_p2 1.48991e+00 5.64139e-02 2.05472e-03 -1.38092e-01 - 4 sg_p3 1.40621e+00 6.35546e-02 1.81513e-03 1.01686e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.116e-01 -9.726e-03 2.331e-03 -5.579e-03 - -9.726e-03 8.360e-02 5.845e-03 7.576e-03 - 2.331e-03 5.845e-03 3.183e-03 5.099e-04 - -5.579e-03 7.576e-03 5.099e-04 4.040e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.31288 1.000 -0.101 0.124 -0.263 - 2 0.51335 -0.101 1.000 0.358 0.412 - 3 0.39415 0.124 0.358 1.000 0.142 - 4 0.46956 -0.263 0.412 0.142 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17256.2 FROM HESSE STATUS=OK 23 CALLS 186 TOTAL - EDM=1.96909e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.08678e+02 3.34135e-01 2.32851e-04 1.47652e-01 - 2 sg_p1 1.83420e+01 2.89586e-01 1.20963e-04 1.12504e-01 - 3 sg_p2 1.48991e+00 5.64735e-02 4.10945e-04 -4.15923e-01 - 4 sg_p3 1.40621e+00 6.36376e-02 7.26053e-05 -6.41285e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.117e-01 -9.856e-03 2.338e-03 -5.606e-03 - -9.856e-03 8.390e-02 5.896e-03 7.643e-03 - 2.338e-03 5.896e-03 3.190e-03 5.173e-04 - -5.606e-03 7.643e-03 5.173e-04 4.050e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.31411 1.000 -0.102 0.124 -0.264 - 2 0.51594 -0.102 1.000 0.360 0.415 - 3 0.39639 0.124 0.360 1.000 0.144 - 4 0.47171 -0.264 0.415 0.144 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -600 -608.678 +- 0.334135 -18.342 +- 0.289586 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [440,800] --> [440,800] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [440,800] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=19781.5 FROM MIGRAD STATUS=INITIATE 60 CALLS 61 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 5.00000e+00 0.00000e+00 -7.94070e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 -2.71988e+01 - 3 sg_p2 1.17009e+00 5.00000e-01 0.00000e+00 -7.70001e-01 - 4 sg_p3 1.45286e+00 7.00000e-01 -6.24753e-01 -3.36178e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19726.9 FROM MIGRAD STATUS=CONVERGED 182 CALLS 183 TOTAL - EDM=4.57234e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.08706e+02 3.13081e-01 1.16661e-03 7.50814e-02 - 2 sg_p1 1.83713e+01 2.71251e-01 3.02919e-03 4.52649e-02 - 3 sg_p2 1.48521e+00 5.25283e-02 2.04671e-03 -2.57882e-02 - 4 sg_p3 1.40613e+00 5.94897e-02 1.81550e-03 4.82439e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.802e-02 -8.423e-03 2.056e-03 -4.882e-03 - -8.423e-03 7.361e-02 5.131e-03 6.652e-03 - 2.056e-03 5.131e-03 2.760e-03 4.464e-04 - -4.882e-03 6.652e-03 4.464e-04 3.540e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.31292 1.000 -0.099 0.125 -0.262 - 2 0.51406 -0.099 1.000 0.360 0.412 - 3 0.39608 0.125 0.360 1.000 0.143 - 4 0.46939 -0.262 0.412 0.143 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19726.9 FROM HESSE STATUS=OK 23 CALLS 206 TOTAL - EDM=4.58525e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.08706e+02 3.13220e-01 2.33322e-04 1.48803e-01 - 2 sg_p1 1.83713e+01 2.71761e-01 1.21167e-04 1.16438e-01 - 3 sg_p2 1.48521e+00 5.25885e-02 8.18685e-05 -4.17982e-01 - 4 sg_p3 1.40613e+00 5.95681e-02 7.26199e-05 -6.41314e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.811e-02 -8.532e-03 2.065e-03 -4.905e-03 - -8.532e-03 7.389e-02 5.178e-03 6.711e-03 - 2.065e-03 5.178e-03 2.766e-03 4.531e-04 - -4.905e-03 6.711e-03 4.531e-04 3.549e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.31420 1.000 -0.100 0.125 -0.263 - 2 0.51674 -0.100 1.000 0.362 0.414 - 3 0.39850 0.125 0.362 1.000 0.145 - 4 0.47156 -0.263 0.414 0.145 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -600 -608.706 +- 0.31322 -18.3713 +- 0.271761 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 608.692 +- 0.323426 (stat) - 1.28478 + 1.14244 (syst); -1.29492/+1.15383 (total) - Uncertainty on sg_p1 = 18.3569 +- 0.280464 (stat) - 0.645303 + 0.114761 (syst); -0.660364/+0.181204 (total) - Uncertainty on sg_p2 = 1.48767 +- 0.0544911 (stat) - 0.0790904 + 0.00919321 (syst); -0.0836517/+0.0287548 (total) - Uncertainty on sg_p3 = 1.40613 +- 0.0615475 (stat) - 0.0589742 + 8.24765e-05 (syst); -0.0665205/+0.0307738 (total) - === Baseline plot ===
- norm = 150.798 -JEC lnN 1.02779 - -JER lnN 1.01328 - -btag lnN 1.06702 - -sg_p0 param 608.692 -1.29492/+1.15383 -sg_p1 param 18.3569 -0.660364/+0.181204 -sg_p2 param 1.48767 -0.0836517/+0.0287548 -sg_p3 param 1.40613 -0.0665205/+0.0307738 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_600_novo_550_1200/data_bkg.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_600_novo_550_1200/data_bkg.log deleted file mode 100644 index a966e12..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_600_novo_550_1200/data_bkg.log +++ /dev/null @@ -1,690 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10879.7 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 6.74624e-01 5.09000e-01 -8.31364e-01 -1.01971e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -3.20610e+01 - 3 par_crystal_2 5.00000e+02 2.00000e+01 0.00000e+00 -9.48837e+00 - 4 par_crystal_3 1.05000e+02 1.90000e+01 0.00000e+00 2.45317e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7116e+01 9.9978e-01 1.9597e+00 1.8156e+01 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 17.134017 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 27 CALLS 314 TOTAL - EDM=0.131054 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.06594e+00 6.09301e-02 1.43210e-03 -8.77809e-01 - 2 par_crystal_1 5.09576e+00 7.69298e-02 8.09031e-02 -5.13188e-02 - 3 par_crystal_2 4.95224e+02 7.91481e+01 2.17679e-03 -5.43249e-01 - 4 par_crystal_3 1.90900e+02 9.54958e+00 1.13079e-02 4.60762e-02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 477 CALLS 478 TOTAL - EDM=0.0370129 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.11079e+00 8.93309e-02 0.00000e+00 -4.75984e-01 - 2 par_crystal_1 5.08061e+00 3.60144e-01 0.00000e+00 -1.14416e-01 - 3 par_crystal_2 4.76040e+02 1.75614e+01 0.00000e+00 -2.32451e-01 - 4 par_crystal_3 1.99914e+02 2.77391e+01 0.00000e+00 -7.67572e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.985e-03 -2.091e-03 1.499e+00 2.820e-01 - -2.091e-03 2.873e-02 -7.387e-01 -2.900e-02 - 1.499e+00 -7.387e-01 3.118e+02 5.244e+01 - 2.820e-01 -2.900e-02 5.244e+01 1.008e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99775 1.000 -0.138 0.950 0.994 - 2 0.79882 -0.138 1.000 -0.247 -0.054 - 3 0.95717 0.950 -0.247 1.000 0.935 - 4 0.99764 0.994 -0.054 0.935 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.8 FROM HESSE STATUS=OK 27 CALLS 505 TOTAL - EDM=0.0183624 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.11079e+00 4.31984e-02 1.44775e-03 -6.03431e-01 - 2 par_crystal_1 5.08061e+00 3.28337e+00 6.64371e-02 1.44728e+00 - 3 par_crystal_2 4.76040e+02 8.02153e+00 1.45036e-02 3.38355e+00 - 4 par_crystal_3 1.99914e+02 2.26294e+01 4.50606e-02 1.52819e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.866e-03 -1.951e-03 -2.584e-03 1.946e-02 - -1.951e-03 1.028e-01 6.675e-04 3.793e-04 - -2.584e-03 6.675e-04 6.449e+01 1.116e+00 - 1.946e-02 3.793e-04 1.116e+00 8.140e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.21215 1.000 -0.141 -0.007 0.158 - 2 0.14274 -0.141 1.000 0.000 0.000 - 3 0.05109 -0.007 0.000 1.000 0.049 - 4 0.16712 0.158 0.000 0.049 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10978.6 FROM MIGRAD STATUS=INITIATE 68 CALLS 69 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 6.03110e+02 3.00000e+01 -8.97402e-01 -6.52175e+01 - 2 par_gaus_exp_1 5.45000e+01 9.10000e+00 0.00000e+00 -4.62060e+02 - 3 par_gaus_exp_2 4.12114e-01 3.05000e-01 0.00000e+00 1.25553e+03 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.9 FROM HESSE STATUS=OK 18 CALLS 182 TOTAL - EDM=0.000691453 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.46431e+02 6.06936e+00 3.17833e-03 -3.92855e-01 - 2 par_gaus_exp_1 6.65716e+01 1.75685e+01 2.62647e-03 1.43349e-01 - 3 par_gaus_exp_2 3.07505e-01 8.37981e-02 8.79822e-04 -3.06196e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM MIGRAD STATUS=CONVERGED 316 CALLS 317 TOTAL - EDM=9.19369e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.62504e+02 3.53152e+00 1.63243e-03 -1.66316e-01 - 2 par_gaus_exp_1 2.46552e+01 1.25211e+01 1.75085e-03 -3.48771e-01 - 3 par_gaus_exp_2 1.14604e-01 5.89219e-02 6.31447e-04 9.83138e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.247e+01 -1.544e+01 -6.961e-02 - -1.544e+01 1.643e+02 7.558e-01 - -6.961e-02 7.558e-01 3.493e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.35636 1.000 -0.341 -0.333 - 2 0.99789 -0.341 1.000 0.998 - 3 0.99788 -0.333 0.998 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM HESSE STATUS=OK 16 CALLS 333 TOTAL - EDM=9.89177e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 5.62504e+02 3.77274e+00 6.52972e-05 8.34552e-02 - 2 par_gaus_exp_1 2.46552e+01 1.46349e+01 3.50170e-04 -7.15413e-01 - 3 par_gaus_exp_2 1.14604e-01 6.93856e-02 1.26289e-04 -1.27868e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.424e+01 -2.545e+01 -1.157e-01 - -2.545e+01 2.286e+02 1.052e+00 - -1.157e-01 1.052e+00 4.855e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.45683 1.000 -0.446 -0.440 - 2 0.99849 -0.446 1.000 0.998 - 3 0.99848 -0.440 0.998 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (13168.6) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=575, par_novo_1=100, par_novo_2=1.58864 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 575,par_novo_1 = 100,par_novo_2 = 1.58864) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=645, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=655, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=665, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=675, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=685, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=695, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=705, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=715, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=725, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=735, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=745, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=755, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - ... (remaining 46 messages suppressed) - - FCN=13054.5 FROM MIGRAD STATUS=INITIATE 14 CALLS 15 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.75000e+02 1.50000e+01 2.01358e-01 -1.22938e+03 - 2 par_novo_1 1.00000e+02 2.00000e+01 2.01358e-01 -6.98326e+03 - 3 par_novo_2 0.00000e+00 2.00000e+01 2.01358e-01 1.51249e+06 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM MIGRAD STATUS=CONVERGED 220 CALLS 221 TOTAL - EDM=2.09668e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.00000e+02 1.21837e+02 1.25149e-01 -7.30463e-04 - 2 par_novo_1 1.30637e+02 1.58558e+01 3.16845e-03 -1.76078e-02 - 3 par_novo_2 -6.95187e-01 1.36663e-01 2.61078e-05 1.74080e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.121e-01 -9.460e-01 -6.449e-03 - -9.460e-01 2.538e+02 2.099e+00 - -6.449e-03 2.099e+00 1.868e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.21023 1.000 -0.177 -0.141 - 2 0.96488 -0.177 1.000 0.964 - 3 0.96445 -0.141 0.964 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM HESSE STATUS=OK 20 CALLS 241 TOTAL - EDM=1.01397e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 5.00000e+02 1.20312e+02 5.00000e-01 -1.57325e+00 - 2 par_novo_1 1.30637e+02 2.01762e+01 1.26738e-04 3.11381e-01 - 3 par_novo_2 -6.95187e-01 1.62575e-01 1.04431e-06 -6.95192e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.070e-01 -4.278e+00 -2.995e-02 - -4.278e+00 4.133e+02 3.212e+00 - -2.995e-02 3.212e+00 2.643e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.69436 1.000 -0.643 -0.563 - 2 0.97859 -0.643 1.000 0.972 - 3 0.97501 -0.563 0.972 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10877 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 6.33849e-01 5.09000e-01 -8.55460e-01 -1.25390e+02 - 2 par_crystal_1_1 2.55500e+00 5.09000e-01 0.00000e+00 -2.69495e+01 - 3 par_crystal_1_2 5.50000e+02 3.00000e+01 0.00000e+00 -1.44080e+01 - 4 par_crystal_1_3 1.04500e+02 1.91000e+01 0.00000e+00 3.07979e+01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.43469 added to diagonal of error matrix - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.5401e+00 8.4221e-02 1.8087e+00 3.6472e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 1.543714 TO DIAGONAL. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.9 FROM HESSE STATUS=OK 25 CALLS 485 TOTAL - EDM=0.0491336 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.05623e+00 1.52463e-01 1.42446e-03 -1.90900e+00 - 2 par_crystal_1_1 5.09988e+00 3.18944e+00 7.54811e-02 -8.93342e-03 - 3 par_crystal_1_2 4.96280e+02 4.98347e+01 9.02051e-03 3.58498e-02 - 4 par_crystal_1_3 1.89188e+02 2.78069e+01 1.02856e-02 -2.38185e-01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 538 CALLS 539 TOTAL - EDM=10.0867 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 14.1 per cent - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.09723e+00 3.02575e-02 -0.00000e+00 5.47416e+01 - 2 par_crystal_1_1 5.09997e+00 3.18368e+00 0.00000e+00 -3.90351e-03 - 3 par_crystal_1_2 4.83329e+02 2.76558e+01 0.00000e+00 7.05236e+00 - 4 par_crystal_1_3 1.96552e+02 5.80629e+00 -0.00000e+00 4.39990e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.156e-04 -1.804e-07 -6.742e-01 1.111e-01 - -1.804e-07 1.763e-04 7.888e-03 -2.154e-03 - -6.742e-01 7.888e-03 7.759e+02 -1.463e+02 - 1.111e-01 -2.154e-03 -1.463e+02 3.432e+01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.82553 1.000 -0.000 -0.800 0.627 - 2 0.03650 -0.000 1.000 0.021 -0.028 - 3 0.94703 -0.800 0.021 1.000 -0.896 - 4 0.90888 0.627 -0.028 -0.896 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -9.7852e-01 9.9996e-01 1.9836e+00 1.9949e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.980510 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 29 CALLS 568 TOTAL - EDM=238.514 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 1.09723e+00 4.25322e-02 2.54943e-04 -6.09913e-01 - 2 par_crystal_1_1 5.09997e+00 7.84798e-01 8.54763e-02 1.56580e+00 - 3 par_crystal_1_2 4.83329e+02 1.87856e+01 1.76414e-03 -4.60588e-01 - 4 par_crystal_1_3 1.96552e+02 5.33115e+00 2.63738e-03 1.30128e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.809e-03 -2.197e-07 8.001e-01 2.280e-01 - -2.197e-07 1.053e-04 -1.173e-04 -3.665e-05 - 8.001e-01 -1.173e-04 3.552e+02 1.010e+02 - 2.280e-01 -3.665e-05 1.010e+02 2.885e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99849 1.000 -0.001 0.998 0.998 - 2 0.00265 -0.001 1.000 -0.001 -0.001 - 3 0.99848 0.998 -0.001 1.000 0.998 - 4 0.99849 0.998 -0.001 0.998 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_550_1200 = 1266.17 - Background number of gaus_exp_550_1200 = 1266.17 - Background number of novo_550_1200 = 1266.17 - Background number of crystal_1_550_1200 = 1266.17 - Background number of gaus_bern_550_1200 = 1266.17 - Background number of landau_550_1200 = 1266.17 -par_crystal_0 param 1.11079 0.0431984 -par_crystal_1 param 5.08061 3.28337 -par_crystal_2 param 476.04 8.02153 -par_crystal_3 param 199.914 22.6294 -par_crystal_1_0 param 1.09723 0.0425322 -par_crystal_1_1 param 5.09997 0.784798 -par_crystal_1_2 param 483.329 18.7856 -par_crystal_1_3 param 196.552 5.33115 -par_gaus_exp_0 param 562.504 3.77274 -par_gaus_exp_1 param 24.6552 14.6349 -par_gaus_exp_2 param 0.114604 0.0693856 -par_novo_0 param 500 120.312 -par_novo_1 param 130.637 20.1762 -par_novo_2 param -0.695187 0.162575 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_600_novo_550_1200/datacard_600_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_600_novo_550_1200/datacard_600_novo_550_1200.txt deleted file mode 100644 index 396f0ac..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_600_novo_550_1200/datacard_600_novo_550_1200.txt +++ /dev/null @@ -1,28 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_600.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo -shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 3.01596 1266.17 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06702 - -JER lnN 1.01328 - -JEC lnN 1.02779 - -trigger lnN 1.10 - -sg_p0 param 608.692 -1.29492/+1.15383 -sg_p1 param 18.3569 -0.660364/+0.181204 -sg_p2 param 1.48767 -0.0836517/+0.0287548 -sg_p3 param 1.40613 -0.0665205/+0.0307738 -par_novo_0 param 500 120.312 -par_novo_1 param 130.637 20.1762 -par_novo_2 param -0.695187 0.162575 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_600_novo_550_1200/signal600_sig.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_600_novo_550_1200/signal600_sig.log deleted file mode 100644 index 2b9a4cd..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_600_novo_550_1200/signal600_sig.log +++ /dev/null @@ -1,985 +0,0 @@ - -Processing test.c... -nSignal_init = 100000 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [390,800] --> [390,800] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [490,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [390,800] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [490,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=20407.2 FROM MIGRAD STATUS=INITIATE 56 CALLS 57 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.90000e+02 6.00000e+00 0.00000e+00 -2.37960e+02 - 2 sg_p1 2.25000e+01 2.50000e+00 0.00000e+00 -1.20569e+02 - 3 sg_p2 9.48780e-01 5.00000e-01 0.00000e+00 2.19249e+02 - 4 sg_p3 9.35752e-01 7.00000e-01 -8.22196e-01 -2.16926e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20303.7 FROM MIGRAD STATUS=CONVERGED 258 CALLS 259 TOTAL - EDM=3.54203e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.92104e+02 4.94229e-01 1.62450e-03 -2.33203e-01 - 2 sg_p1 3.16035e+01 3.64838e-01 4.18602e-03 4.92054e-02 - 3 sg_p2 2.32184e+00 1.74449e-01 2.49592e-03 4.15288e-02 - 4 sg_p3 2.56533e+00 2.80149e-01 3.09113e-03 3.31222e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.443e-01 4.410e-04 2.284e-03 -4.332e-04 - 4.410e-04 1.332e-01 3.420e-03 4.258e-04 - 2.284e-03 3.420e-03 3.048e-02 4.517e-05 - -4.332e-04 4.258e-04 4.517e-05 7.866e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.02667 1.000 0.002 0.026 -0.003 - 2 0.05384 0.002 1.000 0.054 0.004 - 3 0.05979 0.026 0.054 1.000 0.001 - 4 0.00527 -0.003 0.004 0.001 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20303.7 FROM HESSE STATUS=OK 23 CALLS 282 TOTAL - EDM=3.55279e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.92104e+02 4.94244e-01 3.24901e-04 7.01930e-02 - 2 sg_p1 3.16035e+01 3.64897e-01 1.67441e-04 8.15808e-01 - 3 sg_p2 2.32184e+00 1.74479e-01 4.99183e-04 -7.13248e-02 - 4 sg_p3 2.56533e+00 2.80163e-01 6.18226e-04 -2.70328e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.443e-01 3.135e-04 2.378e-03 -5.538e-04 - 3.135e-04 1.332e-01 3.580e-03 7.538e-04 - 2.378e-03 3.580e-03 3.049e-02 5.456e-05 - -5.538e-04 7.538e-04 5.456e-05 7.867e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.02784 1.000 0.002 0.028 -0.004 - 2 0.05664 0.002 1.000 0.056 0.007 - 3 0.06252 0.028 0.056 1.000 0.001 - 4 0.00842 -0.004 0.007 0.001 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -600 -592.104 +- 0.494244 -31.6035 +- 0.364897 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [390,800] --> [390,800] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [490,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [390,800] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [490,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=20903.6 FROM MIGRAD STATUS=INITIATE 59 CALLS 60 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.90000e+02 6.00000e+00 0.00000e+00 -2.76905e+02 - 2 sg_p1 2.25000e+01 2.50000e+00 0.00000e+00 -1.33312e+02 - 3 sg_p2 8.35066e-01 5.00000e-01 0.00000e+00 1.55262e+02 - 4 sg_p3 1.06407e+00 7.00000e-01 -7.69784e-01 -6.62795e+01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.01877 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20782.7 FROM HESSE STATUS=OK 27 CALLS 327 TOTAL - EDM=0.353557 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.94811e+02 4.92616e-01 1.65618e-03 2.97074e-02 - 2 sg_p1 3.19678e+01 3.59009e-01 4.38078e-03 7.51718e-03 - 3 sg_p2 3.30884e+00 1.90897e+00 9.40463e-02 -2.17700e-03 - 4 sg_p3 3.57858e+00 1.02503e+00 5.00000e-01 -2.82844e+00 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MACHINE ACCURACY LIMITS FURTHER IMPROVEMENT. - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=20782.7 FROM MIGRAD STATUS=CONVERGED 349 CALLS 350 TOTAL - EDM=0.00116564 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 0.5 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.94811e+02 4.92616e-01 0.00000e+00 -7.95791e-04 - 2 sg_p1 3.19677e+01 3.59015e-01 0.00000e+00 -1.29854e-03 - 3 sg_p2 3.31338e+00 1.90573e+00 0.00000e+00 -5.13595e-02 - 4 sg_p3 4.44183e+00 9.90294e-01 0.00000e+00 -7.71997e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.427e-01 1.206e-04 -3.792e-05 6.874e-06 - 1.206e-04 1.290e-01 -2.103e-05 2.400e-05 - -3.792e-05 -2.103e-05 4.913e+00 1.276e-01 - 6.874e-06 2.400e-05 1.276e-01 1.010e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.00068 1.000 0.001 -0.000 0.000 - 2 0.00069 0.001 1.000 -0.000 0.000 - 3 0.05726 -0.000 -0.000 1.000 0.057 - 4 0.05726 0.000 0.000 0.057 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=20782.7 FROM HESSE STATUS=OK 29 CALLS 379 TOTAL - EDM=0.00193193 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.94811e+02 4.92614e-01 1.65617e-03 1.61052e-01 - 2 sg_p1 3.19677e+01 3.59005e-01 1.75231e-03 8.59341e-01 - 3 sg_p2 3.31338e+00 1.92835e+00 9.34815e-02 3.31384e-01 - 4 sg_p3 4.44183e+00 4.36098e+00 5.00000e-01 2.72453e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.427e-01 1.189e-04 4.150e-10 3.937e-09 - 1.189e-04 1.290e-01 7.552e-10 7.164e-09 - 4.150e-10 7.552e-10 5.086e+00 4.866e-17 - 3.937e-09 7.164e-09 4.866e-17 3.680e+02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.00067 1.000 0.001 0.000 0.000 - 2 0.00067 0.001 1.000 0.000 0.000 - 3 0.00000 0.000 0.000 1.000 0.000 - 4 0.00000 0.000 0.000 0.000 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -600 -594.811 +- 0.492614 -31.9677 +- 0.359005 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [390,800] --> [390,800] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [490,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [390,800] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [490,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=19759.2 FROM MIGRAD STATUS=INITIATE 61 CALLS 62 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.90000e+02 6.00000e+00 0.00000e+00 -3.08252e+02 - 2 sg_p1 2.25000e+01 2.50000e+00 0.00000e+00 3.47377e+00 - 3 sg_p2 1.03803e+00 5.00000e-01 0.00000e+00 1.96966e+02 - 4 sg_p3 6.78922e-01 7.00000e-01 -9.37400e-01 -9.51087e+02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19618.4 FROM HESSE STATUS=OK 27 CALLS 295 TOTAL - EDM=0.000519933 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.89106e+02 4.99310e-01 1.60340e-03 -1.77687e-01 - 2 sg_p1 3.11952e+01 3.74439e-01 3.97599e-03 1.75125e-01 - 3 sg_p2 2.15446e+00 1.55638e-01 6.05904e-03 5.07493e-02 - 4 sg_p3 2.86472e+00 1.00280e+00 2.23604e-02 1.02315e-01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.00142 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=19618.4 FROM MIGRAD STATUS=FAILED 359 CALLS 360 TOTAL - EDM=0.026975 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 42.7 per cent - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 5.89107e+02 1.06052e+00 0.00000e+00 3.45243e-02 - 2 sg_p1 3.11930e+01 5.01209e-01 0.00000e+00 3.04828e-02 - 3 sg_p2 2.15412e+00 1.61274e+00 -0.00000e+00 1.77468e-02 - 4 sg_p3 2.85260e+00 2.27046e+00 0.00000e+00 -1.96724e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.125e+00 -5.647e-02 7.612e-01 2.001e+00 - -5.647e-02 2.515e-01 -5.717e-01 8.039e-02 - 7.612e-01 -5.717e-01 3.085e+00 -2.479e-02 - 2.001e+00 8.039e-02 -2.479e-02 6.149e+00 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.87825 1.000 -0.106 0.409 0.761 - 2 0.68964 -0.106 1.000 -0.649 0.065 - 3 0.81697 0.409 -0.649 1.000 -0.006 - 4 0.84389 0.761 0.065 -0.006 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19618.4 FROM HESSE STATUS=OK 29 CALLS 389 TOTAL - EDM=1.78558e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 5.89107e+02 4.98832e-01 1.60273e-03 -2.97585e-02 - 2 sg_p1 3.11930e+01 3.72807e-01 3.96095e-03 7.69036e-01 - 3 sg_p2 2.15412e+00 1.55604e-01 5.99006e-03 -1.38798e-01 - 4 sg_p3 2.85260e+00 7.77091e-01 2.18365e-02 -1.86043e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.489e-01 3.933e-03 6.510e-03 -1.038e-02 - 3.933e-03 1.391e-01 8.935e-03 1.739e-02 - 6.510e-03 8.935e-03 2.424e-02 8.994e-04 - -1.038e-02 1.739e-02 8.994e-04 6.144e-01 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.08866 1.000 0.021 0.084 -0.027 - 2 0.16487 0.021 1.000 0.154 0.059 - 3 0.17370 0.084 0.154 1.000 0.007 - 4 0.06566 -0.027 0.059 0.007 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -600 -589.107 +- 0.498832 -31.193 +- 0.372807 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [440,800] --> [440,800] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [440,800] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=18511.3 FROM MIGRAD STATUS=INITIATE 60 CALLS 61 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 5.00000e+00 0.00000e+00 -7.40396e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 -3.52378e+01 - 3 sg_p2 1.18490e+00 5.00000e-01 0.00000e+00 2.04158e+01 - 4 sg_p3 1.47860e+00 7.00000e-01 -6.15717e-01 -1.54349e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18460.6 FROM MIGRAD STATUS=CONVERGED 198 CALLS 199 TOTAL - EDM=1.54851e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.08692e+02 3.23280e-01 1.16514e-03 -7.99199e-03 - 2 sg_p1 1.83569e+01 2.79934e-01 3.02518e-03 -2.66369e-02 - 3 sg_p2 1.48767e+00 5.44286e-02 2.05315e-03 4.94574e-02 - 4 sg_p3 1.40613e+00 6.14668e-02 1.81455e-03 2.39101e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.045e-01 -9.051e-03 2.188e-03 -5.216e-03 - -9.051e-03 7.840e-02 5.474e-03 7.094e-03 - 2.188e-03 5.474e-03 2.963e-03 4.768e-04 - -5.216e-03 7.094e-03 4.768e-04 3.779e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.31290 1.000 -0.100 0.124 -0.262 - 2 0.51370 -0.100 1.000 0.359 0.412 - 3 0.39510 0.124 0.359 1.000 0.142 - 4 0.46945 -0.262 0.412 0.142 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18460.6 FROM HESSE STATUS=OK 23 CALLS 222 TOTAL - EDM=1.54744e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.08692e+02 3.23426e-01 4.66057e-05 1.48232e-01 - 2 sg_p1 1.83569e+01 2.80464e-01 1.21007e-04 1.14504e-01 - 3 sg_p2 1.48767e+00 5.44911e-02 8.21259e-05 -4.16906e-01 - 4 sg_p3 1.40613e+00 6.15475e-02 7.25820e-05 -6.41314e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.046e-01 -9.179e-03 2.197e-03 -5.241e-03 - -9.179e-03 7.870e-02 5.524e-03 7.158e-03 - 2.197e-03 5.524e-03 2.970e-03 4.840e-04 - -5.241e-03 7.158e-03 4.840e-04 3.789e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.31420 1.000 -0.101 0.125 -0.263 - 2 0.51639 -0.101 1.000 0.361 0.415 - 3 0.39754 0.125 0.361 1.000 0.144 - 4 0.47162 -0.263 0.415 0.144 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -600 -608.692 +- 0.323426 -18.3569 +- 0.280464 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 - fit done -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [440,800] --> [440,800] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [440,800] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=18914.3 FROM MIGRAD STATUS=INITIATE 77 CALLS 78 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.07615e+02 5.00000e+00 0.00000e+00 -3.22775e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 5.18097e+00 - 3 sg_p2 1.14423e+00 5.00000e-01 0.00000e+00 -1.00194e+02 - 4 sg_p3 1.45830e+00 7.00000e-01 -6.22838e-01 5.05414e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18893.8 FROM MIGRAD STATUS=CONVERGED 217 CALLS 218 TOTAL - EDM=2.83441e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.09835e+02 3.20458e-01 1.18122e-03 1.99716e-02 - 2 sg_p1 1.84026e+01 2.81622e-01 3.04842e-03 -4.57325e-03 - 3 sg_p2 1.46608e+00 5.89939e-02 2.13709e-03 -5.15374e-04 - 4 sg_p3 1.40527e+00 5.47157e-02 1.70241e-03 2.83643e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.027e-01 2.191e-03 4.166e-03 -3.049e-03 - 2.191e-03 7.935e-02 7.350e-03 5.397e-03 - 4.166e-03 7.350e-03 3.481e-03 4.765e-04 - -3.049e-03 5.397e-03 4.765e-04 2.994e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.30388 1.000 0.024 0.220 -0.174 - 2 0.52791 0.024 1.000 0.442 0.350 - 3 0.49057 0.220 0.442 1.000 0.148 - 4 0.39639 -0.174 0.350 0.148 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18893.8 FROM HESSE STATUS=OK 23 CALLS 241 TOTAL - EDM=2.83854e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.09835e+02 3.20577e-01 2.36244e-04 1.94613e-01 - 2 sg_p1 1.84026e+01 2.82160e-01 1.21937e-04 1.20635e-01 - 3 sg_p2 1.46608e+00 5.90852e-02 8.54835e-05 -4.26369e-01 - 4 sg_p3 1.40527e+00 5.47727e-02 6.80964e-05 -6.41619e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.028e-01 2.166e-03 4.187e-03 -3.058e-03 - 2.166e-03 7.965e-02 7.413e-03 5.449e-03 - 4.187e-03 7.413e-03 3.492e-03 4.840e-04 - -3.058e-03 5.449e-03 4.840e-04 3.000e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.30498 1.000 0.024 0.221 -0.174 - 2 0.53050 0.024 1.000 0.444 0.352 - 3 0.49295 0.221 0.444 1.000 0.150 - 4 0.39859 -0.174 0.352 0.150 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -600 -609.835 +- 0.320577 -18.4026 +- 0.28216 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [440,800] --> [440,800] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [440,800] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17827.8 FROM MIGRAD STATUS=INITIATE 52 CALLS 53 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 5.00000e+00 0.00000e+00 -3.81579e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 -1.00435e+02 - 3 sg_p2 1.28822e+00 5.00000e-01 0.00000e+00 2.73039e+01 - 4 sg_p3 1.80614e+00 7.00000e-01 -5.05175e-01 1.07828e+02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.0886e+00 1.1061e+00 1.8427e+00 2.1398e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 1.090718 TO DIAGONAL. - FCN=17796.1 FROM HESSE STATUS=NOT POSDEF 29 CALLS 194 TOTAL - EDM=0.416197 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.07398e+02 2.64955e+00 1.52214e-04 -1.22217e+01 - 2 sg_p1 1.77156e+01 1.07159e+00 3.05183e-03 -2.94405e+00 - 3 sg_p2 1.40875e+00 4.86527e-02 4.22960e-04 -1.06232e+01 - 4 sg_p3 1.34786e+00 1.92678e-01 1.78861e-03 3.70210e+00 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=17796.1 FROM MIGRAD STATUS=FAILED 231 CALLS 232 TOTAL - EDM=854.994 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.07407e+02 1.35903e-01 -0.00000e+00 6.05600e+02 - 2 sg_p1 1.77116e+01 1.50263e-01 0.00000e+00 1.62850e+02 - 3 sg_p2 1.40858e+00 6.28910e-03 0.00000e+00 -1.08286e+01 - 4 sg_p3 1.34715e+00 2.75057e-02 0.00000e+00 3.92805e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.847e-02 -2.028e-02 -7.414e-04 -3.202e-03 - -2.028e-02 2.258e-02 8.238e-04 3.560e-03 - -7.414e-04 8.238e-04 3.955e-05 1.478e-04 - -3.202e-03 3.560e-03 1.478e-04 7.566e-04 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99312 1.000 -0.993 -0.867 -0.856 - 2 0.99342 -0.993 1.000 0.872 0.861 - 3 0.89539 -0.867 0.872 1.000 0.855 - 4 0.88698 -0.856 0.861 0.855 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -7.1751e+01 9.9679e-01 1.9909e+00 7.2763e+01 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 71.823632 TO DIAGONAL. - FCN=17796.1 FROM HESSE STATUS=NOT POSDEF 27 CALLS 259 TOTAL - EDM=0.0450234 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.07407e+02 8.84526e-03 4.47722e-05 9.64479e-02 - 2 sg_p1 1.77116e+01 9.83564e-03 1.65224e-04 2.82174e-02 - 3 sg_p2 1.40858e+00 7.59554e-03 2.51140e-05 -4.51783e-01 - 4 sg_p3 1.34715e+00 1.39806e-01 8.90793e-05 -6.62511e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.824e-05 8.666e-05 -3.386e-05 1.235e-03 - 8.666e-05 9.674e-05 -3.765e-05 1.373e-03 - -3.386e-05 -3.765e-05 5.769e-05 -5.353e-04 - 1.235e-03 1.373e-03 -5.353e-04 1.956e-02 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99802 1.000 0.996 -0.504 0.998 - 2 0.99801 0.996 1.000 -0.504 0.998 - 3 0.50444 -0.504 -0.504 1.000 -0.504 - 4 0.99899 0.998 0.998 -0.504 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -600 -607.407 +- 0.00884526 -17.7116 +- 0.00983564 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [440,800] --> [440,800] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [440,800] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=18313.7 FROM MIGRAD STATUS=INITIATE 63 CALLS 64 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 5.00000e+00 0.00000e+00 -7.10963e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 -2.40680e+01 - 3 sg_p2 1.12814e+00 5.00000e-01 0.00000e+00 -1.98843e+01 - 4 sg_p3 1.45064e+00 7.00000e-01 -6.25537e-01 -1.20812e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18262.1 FROM MIGRAD STATUS=CONVERGED 166 CALLS 167 TOTAL - EDM=7.98313e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.08803e+02 3.30506e-01 1.18077e-03 -1.43643e-02 - 2 sg_p1 1.84717e+01 2.89622e-01 3.07900e-03 -7.62757e-02 - 3 sg_p2 1.45856e+00 5.36517e-02 1.98838e-03 -2.33437e-02 - 4 sg_p3 1.38960e+00 6.15342e-02 1.80011e-03 4.41451e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.092e-01 -9.440e-03 2.340e-03 -5.461e-03 - -9.440e-03 8.392e-02 5.863e-03 7.559e-03 - 2.340e-03 5.863e-03 2.879e-03 5.057e-04 - -5.461e-03 7.559e-03 5.057e-04 3.787e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.32401 1.000 -0.099 0.132 -0.268 - 2 0.53046 -0.099 1.000 0.377 0.424 - 3 0.41529 0.132 0.377 1.000 0.153 - 4 0.48258 -0.268 0.424 0.153 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18262.1 FROM HESSE STATUS=OK 23 CALLS 190 TOTAL - EDM=8.00182e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.08803e+02 3.30636e-01 2.36154e-04 1.52717e-01 - 2 sg_p1 1.84717e+01 2.90111e-01 6.15801e-04 1.29921e-01 - 3 sg_p2 1.45856e+00 5.37098e-02 7.95354e-05 -4.29674e-01 - 4 sg_p3 1.38960e+00 6.16044e-02 3.60021e-04 -6.47219e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.093e-01 -9.548e-03 2.348e-03 -5.481e-03 - -9.548e-03 8.421e-02 5.909e-03 7.616e-03 - 2.348e-03 5.909e-03 2.885e-03 5.122e-04 - -5.481e-03 7.616e-03 5.122e-04 3.796e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.32509 1.000 -0.100 0.132 -0.269 - 2 0.53273 -0.100 1.000 0.379 0.426 - 3 0.41743 0.132 0.379 1.000 0.155 - 4 0.48438 -0.269 0.426 0.155 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -600 -608.803 +- 0.330636 -18.4717 +- 0.290111 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [440,800] --> [440,800] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [440,800] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=18711.2 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 5.00000e+00 0.00000e+00 -7.18390e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 -3.18392e+01 - 3 sg_p2 1.20377e+00 5.00000e-01 0.00000e+00 8.44187e+00 - 4 sg_p3 1.54524e+00 7.00000e-01 -5.92581e-01 1.53539e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18661.3 FROM MIGRAD STATUS=CONVERGED 205 CALLS 206 TOTAL - EDM=3.64592e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.08629e+02 3.18788e-01 1.15078e-03 -3.36230e-01 - 2 sg_p1 1.81384e+01 2.76492e-01 2.97751e-03 -6.31530e-02 - 3 sg_p2 1.49686e+00 5.44757e-02 2.06505e-03 2.07196e-02 - 4 sg_p3 1.39306e+00 6.05611e-02 1.78870e-03 1.70313e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.016e-01 -1.019e-02 2.021e-03 -5.340e-03 - -1.019e-02 7.648e-02 5.389e-03 7.151e-03 - 2.021e-03 5.389e-03 2.968e-03 4.840e-04 - -5.340e-03 7.151e-03 4.840e-04 3.668e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.32316 1.000 -0.116 0.116 -0.277 - 2 0.52296 -0.116 1.000 0.358 0.427 - 3 0.39289 0.116 0.358 1.000 0.147 - 4 0.48547 -0.277 0.427 0.147 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=18661.3 FROM HESSE STATUS=OK 23 CALLS 229 TOTAL - EDM=3.64813e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.08629e+02 3.18930e-01 2.30156e-04 1.45672e-01 - 2 sg_p1 1.81384e+01 2.76957e-01 5.95502e-04 8.52226e-02 - 3 sg_p2 1.49686e+00 5.45322e-02 8.26022e-05 -4.12888e-01 - 4 sg_p3 1.39306e+00 6.06332e-02 7.15481e-05 -6.45981e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.017e-01 -1.031e-02 2.029e-03 -5.364e-03 - -1.031e-02 7.674e-02 5.434e-03 7.205e-03 - 2.029e-03 5.434e-03 2.974e-03 4.905e-04 - -5.364e-03 7.205e-03 4.905e-04 3.677e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.32439 1.000 -0.117 0.117 -0.277 - 2 0.52528 -0.117 1.000 0.360 0.429 - 3 0.39510 0.117 0.360 1.000 0.148 - 4 0.48733 -0.277 0.429 0.148 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -600 -608.629 +- 0.31893 -18.1384 +- 0.276957 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [440,800] --> [440,800] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [440,800] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=17303.3 FROM MIGRAD STATUS=INITIATE 59 CALLS 60 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 5.00000e+00 0.00000e+00 -6.79986e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 -3.47913e+01 - 3 sg_p2 1.18392e+00 5.00000e-01 0.00000e+00 1.09112e+01 - 4 sg_p3 1.50179e+00 7.00000e-01 -6.07622e-01 -1.34120e+00 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17256.2 FROM MIGRAD STATUS=CONVERGED 162 CALLS 163 TOTAL - EDM=1.97081e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.08678e+02 3.33992e-01 1.16426e-03 9.30660e-02 - 2 sg_p1 1.83420e+01 2.89061e-01 3.02407e-03 -5.38511e-02 - 3 sg_p2 1.48991e+00 5.64139e-02 2.05472e-03 -1.38092e-01 - 4 sg_p3 1.40621e+00 6.35546e-02 1.81513e-03 1.01686e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.116e-01 -9.726e-03 2.331e-03 -5.579e-03 - -9.726e-03 8.360e-02 5.845e-03 7.576e-03 - 2.331e-03 5.845e-03 3.183e-03 5.099e-04 - -5.579e-03 7.576e-03 5.099e-04 4.040e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.31288 1.000 -0.101 0.124 -0.263 - 2 0.51335 -0.101 1.000 0.358 0.412 - 3 0.39415 0.124 0.358 1.000 0.142 - 4 0.46956 -0.263 0.412 0.142 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=17256.2 FROM HESSE STATUS=OK 23 CALLS 186 TOTAL - EDM=1.96909e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.08678e+02 3.34135e-01 2.32851e-04 1.47652e-01 - 2 sg_p1 1.83420e+01 2.89586e-01 1.20963e-04 1.12504e-01 - 3 sg_p2 1.48991e+00 5.64735e-02 4.10945e-04 -4.15923e-01 - 4 sg_p3 1.40621e+00 6.36376e-02 7.26053e-05 -6.41285e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.117e-01 -9.856e-03 2.338e-03 -5.606e-03 - -9.856e-03 8.390e-02 5.896e-03 7.643e-03 - 2.338e-03 5.896e-03 3.190e-03 5.173e-04 - -5.606e-03 7.643e-03 5.173e-04 4.050e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.31411 1.000 -0.102 0.124 -0.264 - 2 0.51594 -0.102 1.000 0.360 0.415 - 3 0.39639 0.124 0.360 1.000 0.144 - 4 0.47171 -0.264 0.415 0.144 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -600 -608.678 +- 0.334135 -18.342 +- 0.289586 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [440,800] --> [440,800] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [440,800] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [540,700] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=19781.5 FROM MIGRAD STATUS=INITIATE 60 CALLS 61 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.05000e+02 5.00000e+00 0.00000e+00 -7.94070e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 -2.71988e+01 - 3 sg_p2 1.17009e+00 5.00000e-01 0.00000e+00 -7.70001e-01 - 4 sg_p3 1.45286e+00 7.00000e-01 -6.24753e-01 -3.36178e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19726.9 FROM MIGRAD STATUS=CONVERGED 182 CALLS 183 TOTAL - EDM=4.57234e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.08706e+02 3.13081e-01 1.16661e-03 7.50814e-02 - 2 sg_p1 1.83713e+01 2.71251e-01 3.02919e-03 4.52649e-02 - 3 sg_p2 1.48521e+00 5.25283e-02 2.04671e-03 -2.57882e-02 - 4 sg_p3 1.40613e+00 5.94897e-02 1.81550e-03 4.82439e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.802e-02 -8.423e-03 2.056e-03 -4.882e-03 - -8.423e-03 7.361e-02 5.131e-03 6.652e-03 - 2.056e-03 5.131e-03 2.760e-03 4.464e-04 - -4.882e-03 6.652e-03 4.464e-04 3.540e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.31292 1.000 -0.099 0.125 -0.262 - 2 0.51406 -0.099 1.000 0.360 0.412 - 3 0.39608 0.125 0.360 1.000 0.143 - 4 0.46939 -0.262 0.412 0.143 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=19726.9 FROM HESSE STATUS=OK 23 CALLS 206 TOTAL - EDM=4.58525e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.08706e+02 3.13220e-01 2.33322e-04 1.48803e-01 - 2 sg_p1 1.83713e+01 2.71761e-01 1.21167e-04 1.16438e-01 - 3 sg_p2 1.48521e+00 5.25885e-02 8.18685e-05 -4.17982e-01 - 4 sg_p3 1.40613e+00 5.95681e-02 7.26199e-05 -6.41314e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.811e-02 -8.532e-03 2.065e-03 -4.905e-03 - -8.532e-03 7.389e-02 5.178e-03 6.711e-03 - 2.065e-03 5.178e-03 2.766e-03 4.531e-04 - -4.905e-03 6.711e-03 4.531e-04 3.549e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.31420 1.000 -0.100 0.125 -0.263 - 2 0.51674 -0.100 1.000 0.362 0.414 - 3 0.39850 0.125 0.362 1.000 0.145 - 4 0.47156 -0.263 0.414 0.145 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -600 -608.706 +- 0.31322 -18.3713 +- 0.271761 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 608.692 +- 0.323426 (stat) - 1.28478 + 1.14244 (syst); -1.29492/+1.15383 (total) - Uncertainty on sg_p1 = 18.3569 +- 0.280464 (stat) - 0.645303 + 0.114761 (syst); -0.660364/+0.181204 (total) - Uncertainty on sg_p2 = 1.48767 +- 0.0544911 (stat) - 0.0790904 + 0.00919321 (syst); -0.0836517/+0.0287548 (total) - Uncertainty on sg_p3 = 1.40613 +- 0.0615475 (stat) - 0.0589742 + 8.24765e-05 (syst); -0.0665205/+0.0307738 (total) - === Baseline plot ===
- norm = 150.798 -JEC lnN 1.02779 - -JER lnN 1.01328 - -btag lnN 1.06702 - -sg_p0 param 608.692 -1.29492/+1.15383 -sg_p1 param 18.3569 -0.660364/+0.181204 -sg_p2 param 1.48767 -0.0836517/+0.0287548 -sg_p3 param 1.40613 -0.0665205/+0.0307738 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_650_crystal_1_550_1200/data_bkg.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_650_crystal_1_550_1200/data_bkg.log deleted file mode 100644 index a966e12..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_650_crystal_1_550_1200/data_bkg.log +++ /dev/null @@ -1,690 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10879.7 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 6.74624e-01 5.09000e-01 -8.31364e-01 -1.01971e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -3.20610e+01 - 3 par_crystal_2 5.00000e+02 2.00000e+01 0.00000e+00 -9.48837e+00 - 4 par_crystal_3 1.05000e+02 1.90000e+01 0.00000e+00 2.45317e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7116e+01 9.9978e-01 1.9597e+00 1.8156e+01 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 17.134017 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 27 CALLS 314 TOTAL - EDM=0.131054 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.06594e+00 6.09301e-02 1.43210e-03 -8.77809e-01 - 2 par_crystal_1 5.09576e+00 7.69298e-02 8.09031e-02 -5.13188e-02 - 3 par_crystal_2 4.95224e+02 7.91481e+01 2.17679e-03 -5.43249e-01 - 4 par_crystal_3 1.90900e+02 9.54958e+00 1.13079e-02 4.60762e-02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 477 CALLS 478 TOTAL - EDM=0.0370129 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.11079e+00 8.93309e-02 0.00000e+00 -4.75984e-01 - 2 par_crystal_1 5.08061e+00 3.60144e-01 0.00000e+00 -1.14416e-01 - 3 par_crystal_2 4.76040e+02 1.75614e+01 0.00000e+00 -2.32451e-01 - 4 par_crystal_3 1.99914e+02 2.77391e+01 0.00000e+00 -7.67572e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.985e-03 -2.091e-03 1.499e+00 2.820e-01 - -2.091e-03 2.873e-02 -7.387e-01 -2.900e-02 - 1.499e+00 -7.387e-01 3.118e+02 5.244e+01 - 2.820e-01 -2.900e-02 5.244e+01 1.008e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99775 1.000 -0.138 0.950 0.994 - 2 0.79882 -0.138 1.000 -0.247 -0.054 - 3 0.95717 0.950 -0.247 1.000 0.935 - 4 0.99764 0.994 -0.054 0.935 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.8 FROM HESSE STATUS=OK 27 CALLS 505 TOTAL - EDM=0.0183624 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.11079e+00 4.31984e-02 1.44775e-03 -6.03431e-01 - 2 par_crystal_1 5.08061e+00 3.28337e+00 6.64371e-02 1.44728e+00 - 3 par_crystal_2 4.76040e+02 8.02153e+00 1.45036e-02 3.38355e+00 - 4 par_crystal_3 1.99914e+02 2.26294e+01 4.50606e-02 1.52819e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.866e-03 -1.951e-03 -2.584e-03 1.946e-02 - -1.951e-03 1.028e-01 6.675e-04 3.793e-04 - -2.584e-03 6.675e-04 6.449e+01 1.116e+00 - 1.946e-02 3.793e-04 1.116e+00 8.140e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.21215 1.000 -0.141 -0.007 0.158 - 2 0.14274 -0.141 1.000 0.000 0.000 - 3 0.05109 -0.007 0.000 1.000 0.049 - 4 0.16712 0.158 0.000 0.049 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10978.6 FROM MIGRAD STATUS=INITIATE 68 CALLS 69 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 6.03110e+02 3.00000e+01 -8.97402e-01 -6.52175e+01 - 2 par_gaus_exp_1 5.45000e+01 9.10000e+00 0.00000e+00 -4.62060e+02 - 3 par_gaus_exp_2 4.12114e-01 3.05000e-01 0.00000e+00 1.25553e+03 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.9 FROM HESSE STATUS=OK 18 CALLS 182 TOTAL - EDM=0.000691453 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.46431e+02 6.06936e+00 3.17833e-03 -3.92855e-01 - 2 par_gaus_exp_1 6.65716e+01 1.75685e+01 2.62647e-03 1.43349e-01 - 3 par_gaus_exp_2 3.07505e-01 8.37981e-02 8.79822e-04 -3.06196e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM MIGRAD STATUS=CONVERGED 316 CALLS 317 TOTAL - EDM=9.19369e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.62504e+02 3.53152e+00 1.63243e-03 -1.66316e-01 - 2 par_gaus_exp_1 2.46552e+01 1.25211e+01 1.75085e-03 -3.48771e-01 - 3 par_gaus_exp_2 1.14604e-01 5.89219e-02 6.31447e-04 9.83138e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.247e+01 -1.544e+01 -6.961e-02 - -1.544e+01 1.643e+02 7.558e-01 - -6.961e-02 7.558e-01 3.493e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.35636 1.000 -0.341 -0.333 - 2 0.99789 -0.341 1.000 0.998 - 3 0.99788 -0.333 0.998 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM HESSE STATUS=OK 16 CALLS 333 TOTAL - EDM=9.89177e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 5.62504e+02 3.77274e+00 6.52972e-05 8.34552e-02 - 2 par_gaus_exp_1 2.46552e+01 1.46349e+01 3.50170e-04 -7.15413e-01 - 3 par_gaus_exp_2 1.14604e-01 6.93856e-02 1.26289e-04 -1.27868e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.424e+01 -2.545e+01 -1.157e-01 - -2.545e+01 2.286e+02 1.052e+00 - -1.157e-01 1.052e+00 4.855e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.45683 1.000 -0.446 -0.440 - 2 0.99849 -0.446 1.000 0.998 - 3 0.99848 -0.440 0.998 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (13168.6) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=575, par_novo_1=100, par_novo_2=1.58864 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 575,par_novo_1 = 100,par_novo_2 = 1.58864) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=645, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=655, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=665, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=675, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=685, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=695, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=705, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=715, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=725, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=735, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=745, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=755, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - ... (remaining 46 messages suppressed) - - FCN=13054.5 FROM MIGRAD STATUS=INITIATE 14 CALLS 15 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.75000e+02 1.50000e+01 2.01358e-01 -1.22938e+03 - 2 par_novo_1 1.00000e+02 2.00000e+01 2.01358e-01 -6.98326e+03 - 3 par_novo_2 0.00000e+00 2.00000e+01 2.01358e-01 1.51249e+06 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM MIGRAD STATUS=CONVERGED 220 CALLS 221 TOTAL - EDM=2.09668e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.00000e+02 1.21837e+02 1.25149e-01 -7.30463e-04 - 2 par_novo_1 1.30637e+02 1.58558e+01 3.16845e-03 -1.76078e-02 - 3 par_novo_2 -6.95187e-01 1.36663e-01 2.61078e-05 1.74080e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.121e-01 -9.460e-01 -6.449e-03 - -9.460e-01 2.538e+02 2.099e+00 - -6.449e-03 2.099e+00 1.868e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.21023 1.000 -0.177 -0.141 - 2 0.96488 -0.177 1.000 0.964 - 3 0.96445 -0.141 0.964 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM HESSE STATUS=OK 20 CALLS 241 TOTAL - EDM=1.01397e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 5.00000e+02 1.20312e+02 5.00000e-01 -1.57325e+00 - 2 par_novo_1 1.30637e+02 2.01762e+01 1.26738e-04 3.11381e-01 - 3 par_novo_2 -6.95187e-01 1.62575e-01 1.04431e-06 -6.95192e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.070e-01 -4.278e+00 -2.995e-02 - -4.278e+00 4.133e+02 3.212e+00 - -2.995e-02 3.212e+00 2.643e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.69436 1.000 -0.643 -0.563 - 2 0.97859 -0.643 1.000 0.972 - 3 0.97501 -0.563 0.972 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10877 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 6.33849e-01 5.09000e-01 -8.55460e-01 -1.25390e+02 - 2 par_crystal_1_1 2.55500e+00 5.09000e-01 0.00000e+00 -2.69495e+01 - 3 par_crystal_1_2 5.50000e+02 3.00000e+01 0.00000e+00 -1.44080e+01 - 4 par_crystal_1_3 1.04500e+02 1.91000e+01 0.00000e+00 3.07979e+01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.43469 added to diagonal of error matrix - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.5401e+00 8.4221e-02 1.8087e+00 3.6472e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 1.543714 TO DIAGONAL. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.9 FROM HESSE STATUS=OK 25 CALLS 485 TOTAL - EDM=0.0491336 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.05623e+00 1.52463e-01 1.42446e-03 -1.90900e+00 - 2 par_crystal_1_1 5.09988e+00 3.18944e+00 7.54811e-02 -8.93342e-03 - 3 par_crystal_1_2 4.96280e+02 4.98347e+01 9.02051e-03 3.58498e-02 - 4 par_crystal_1_3 1.89188e+02 2.78069e+01 1.02856e-02 -2.38185e-01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 538 CALLS 539 TOTAL - EDM=10.0867 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 14.1 per cent - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.09723e+00 3.02575e-02 -0.00000e+00 5.47416e+01 - 2 par_crystal_1_1 5.09997e+00 3.18368e+00 0.00000e+00 -3.90351e-03 - 3 par_crystal_1_2 4.83329e+02 2.76558e+01 0.00000e+00 7.05236e+00 - 4 par_crystal_1_3 1.96552e+02 5.80629e+00 -0.00000e+00 4.39990e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.156e-04 -1.804e-07 -6.742e-01 1.111e-01 - -1.804e-07 1.763e-04 7.888e-03 -2.154e-03 - -6.742e-01 7.888e-03 7.759e+02 -1.463e+02 - 1.111e-01 -2.154e-03 -1.463e+02 3.432e+01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.82553 1.000 -0.000 -0.800 0.627 - 2 0.03650 -0.000 1.000 0.021 -0.028 - 3 0.94703 -0.800 0.021 1.000 -0.896 - 4 0.90888 0.627 -0.028 -0.896 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -9.7852e-01 9.9996e-01 1.9836e+00 1.9949e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.980510 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 29 CALLS 568 TOTAL - EDM=238.514 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 1.09723e+00 4.25322e-02 2.54943e-04 -6.09913e-01 - 2 par_crystal_1_1 5.09997e+00 7.84798e-01 8.54763e-02 1.56580e+00 - 3 par_crystal_1_2 4.83329e+02 1.87856e+01 1.76414e-03 -4.60588e-01 - 4 par_crystal_1_3 1.96552e+02 5.33115e+00 2.63738e-03 1.30128e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.809e-03 -2.197e-07 8.001e-01 2.280e-01 - -2.197e-07 1.053e-04 -1.173e-04 -3.665e-05 - 8.001e-01 -1.173e-04 3.552e+02 1.010e+02 - 2.280e-01 -3.665e-05 1.010e+02 2.885e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99849 1.000 -0.001 0.998 0.998 - 2 0.00265 -0.001 1.000 -0.001 -0.001 - 3 0.99848 0.998 -0.001 1.000 0.998 - 4 0.99849 0.998 -0.001 0.998 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_550_1200 = 1266.17 - Background number of gaus_exp_550_1200 = 1266.17 - Background number of novo_550_1200 = 1266.17 - Background number of crystal_1_550_1200 = 1266.17 - Background number of gaus_bern_550_1200 = 1266.17 - Background number of landau_550_1200 = 1266.17 -par_crystal_0 param 1.11079 0.0431984 -par_crystal_1 param 5.08061 3.28337 -par_crystal_2 param 476.04 8.02153 -par_crystal_3 param 199.914 22.6294 -par_crystal_1_0 param 1.09723 0.0425322 -par_crystal_1_1 param 5.09997 0.784798 -par_crystal_1_2 param 483.329 18.7856 -par_crystal_1_3 param 196.552 5.33115 -par_gaus_exp_0 param 562.504 3.77274 -par_gaus_exp_1 param 24.6552 14.6349 -par_gaus_exp_2 param 0.114604 0.0693856 -par_novo_0 param 500 120.312 -par_novo_1 param 130.637 20.1762 -par_novo_2 param -0.695187 0.162575 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_650_crystal_1_550_1200/datacard_650_crystal_1_550_1200.txt b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_650_crystal_1_550_1200/datacard_650_crystal_1_550_1200.txt deleted file mode 100644 index ebbf8ba..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_650_crystal_1_550_1200/datacard_650_crystal_1_550_1200.txt +++ /dev/null @@ -1,29 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_650.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_crystal_1_550_1200.root HbbHbb:f_crystal_1 -shapes data_obs HbbHbb w_background_crystal_1_550_1200.root HbbHbb:data_obs_crystal_1_550_1200 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 3.4471 1266.17 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06923 - -JER lnN 1.01174 - -JEC lnN 1.021 - -trigger lnN 1.10 - -sg_p0 param 661.215 -1.96221/+1.32271 -sg_p1 param 18.9981 -0.484023/+0.727675 -sg_p2 param 1.45525 -0.0666212/+0.0596291 -sg_p3 param 1.13503 -0.0623326/+0.179225 -par_crystal_1_0 param 1.09723 0.0425322 -par_crystal_1_1 param 5.09997 0.784798 -par_crystal_1_2 param 483.329 18.7856 -par_crystal_1_3 param 196.552 5.33115 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_650_crystal_1_550_1200/signal650_sig.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_650_crystal_1_550_1200/signal650_sig.log deleted file mode 100644 index f094607..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_650_crystal_1_550_1200/signal650_sig.log +++ /dev/null @@ -1,1006 +0,0 @@ - -Processing test.c... -nSignal_init = 49200 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [440,850] --> [440,850] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [540,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [440,850] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [540,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11612.3 FROM MIGRAD STATUS=INITIATE 60 CALLS 61 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.40000e+02 6.00000e+00 0.00000e+00 -5.60818e+01 - 2 sg_p1 3.00000e+01 2.00000e+00 0.00000e+00 -8.83799e+01 - 3 sg_p2 1.51156e+00 5.00000e-01 0.00000e+00 4.45918e-01 - 4 sg_p3 1.65144e+00 7.00000e-01 -5.56433e-01 1.01665e+01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.07974 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11585.6 FROM HESSE STATUS=OK 27 CALLS 322 TOTAL - EDM=0.104656 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.41163e+02 7.06029e-01 1.74995e-03 -3.76296e-02 - 2 sg_p1 3.38688e+01 5.23325e-01 4.21353e-03 4.07382e-02 - 3 sg_p2 3.61832e+00 1.16199e+00 5.00000e-01 -8.37095e-01 - 4 sg_p3 2.97717e+00 1.74320e+00 3.82781e-02 -1.08231e-02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=11585.6 FROM MIGRAD STATUS=CONVERGED 333 CALLS 334 TOTAL - EDM=3.51417e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 0.3 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.41164e+02 7.06029e-01 2.17492e-05 -2.69889e-03 - 2 sg_p1 3.38675e+01 5.23355e-01 -1.32565e-04 1.94685e-03 - 3 sg_p2 4.13673e+00 9.85565e-01 2.50000e-01 -6.51974e-03 - 4 sg_p3 2.98762e+00 1.74432e+00 3.01848e-03 -1.43731e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.986e-01 -5.029e-03 1.165e-04 1.304e-03 - -5.029e-03 2.742e-01 -1.478e-04 -1.655e-03 - 1.165e-04 -1.478e-04 1.075e+00 3.155e-02 - 1.304e-03 -1.655e-03 3.155e-02 3.342e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.01364 1.000 -0.014 0.000 0.001 - 2 0.01371 -0.014 1.000 -0.000 -0.002 - 3 0.01665 0.000 -0.000 1.000 0.017 - 4 0.01677 0.001 -0.002 0.017 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11585.6 FROM HESSE STATUS=OK 27 CALLS 361 TOTAL - EDM=0.00163365 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.41164e+02 7.06040e-01 1.75058e-03 3.88127e-02 - 2 sg_p1 3.38675e+01 5.23398e-01 1.68541e-03 3.97108e-01 - 3 sg_p2 4.13673e+00 2.58234e+00 5.00000e-01 7.13776e-01 - 4 sg_p3 2.98762e+00 2.30843e+00 1.53112e-02 -1.46921e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.986e-01 -5.100e-03 8.651e-11 1.748e-04 - -5.100e-03 2.742e-01 -4.651e-09 -1.792e-06 - 8.651e-11 -4.651e-09 1.369e+02 3.040e-14 - 1.748e-04 -1.792e-06 3.040e-14 6.385e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.01379 1.000 -0.014 0.000 0.000 - 2 0.01379 -0.014 1.000 -0.000 -0.000 - 3 0.00000 0.000 -0.000 1.000 0.000 - 4 0.00010 0.000 -0.000 0.000 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -650 -641.164 +- 0.70604 -33.8675 +- 0.523398 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [440,850] --> [440,850] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [540,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [440,850] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [540,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11904.9 FROM MIGRAD STATUS=INITIATE 38 CALLS 39 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.40000e+02 6.00000e+00 0.00000e+00 -1.02677e+02 - 2 sg_p1 3.00000e+01 2.00000e+00 0.00000e+00 -8.17543e+01 - 3 sg_p2 1.12614e+00 5.00000e-01 -5.81819e-01 2.25140e+01 - 4 sg_p3 3.50000e+00 7.00000e-01 0.00000e+00 -3.65465e-02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11868.8 FROM HESSE STATUS=OK 23 CALLS 155 TOTAL - EDM=1.60817 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.44838e+02 7.48080e-01 1.83180e-03 5.58516e+00 - 2 sg_p1 3.44259e+01 5.95973e-01 5.44743e-03 -4.45013e+00 - 3 sg_p2 2.01408e+00 1.75526e-01 9.79574e-03 -1.65119e+01 - 4 sg_p3 3.37744e+00 1.00364e+00 5.00000e-01 3.60429e+00 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - MINUIT WARNING IN HESSE - ============== Second derivative enters zero, param 4 - MINUIT WARNING IN HESSE - ============== Second derivative zero for parameter4 - MNHESS FAILS AND WILL RETURN DIAGONAL MATRIX. - FCN=11867 FROM MIGRAD STATUS=CONVERGED 279 CALLS 280 TOTAL - EDM=0.000394861 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 100.0 per cent - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.44830e+02 7.16643e-01 1.82097e-03 6.16255e-03 - 2 sg_p1 3.46586e+01 5.34936e-01 4.55140e-03 -9.30316e-04 - 3 sg_p2 3.09000e+00 3.87436e+00 7.61219e-02 -2.32163e-02 - 4 sg_p3 5.67282e+00 1.35691e+00 -0.00000e+00 0.00000e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.137e-01 0.000e+00 0.000e+00 0.000e+00 - 0.000e+00 2.865e-01 0.000e+00 0.000e+00 - 0.000e+00 0.000e+00 9.676e+00 0.000e+00 - 0.000e+00 0.000e+00 0.000e+00 2.015e+00 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.00000 1.000 0.000 0.000 0.000 - 2 0.00000 0.000 1.000 0.000 0.000 - 3 0.00000 0.000 0.000 1.000 0.000 - 4 0.00000 0.000 0.000 0.000 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - MINUIT WARNING IN HESSE - ============== Second derivative zero for parameter4 - MNHESS FAILS AND WILL RETURN DIAGONAL MATRIX. - FCN=11867 FROM HESSE STATUS=FAILED 9 CALLS 289 TOTAL - EDM=0.000394861 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 100.0 per cent - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.44830e+02 7.16643e-01 1.82097e-03 1.61714e-01 - 2 sg_p1 3.46586e+01 5.34936e-01 4.55140e-03 4.84601e-01 - 3 sg_p2 3.09000e+00 3.87436e+00 7.61219e-02 2.38245e-01 - 4 sg_p3 6.72231e+00 1.35691e+00 -0.00000e+00 2.47182e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.137e-01 0.000e+00 0.000e+00 0.000e+00 - 0.000e+00 2.865e-01 0.000e+00 0.000e+00 - 0.000e+00 0.000e+00 9.676e+00 0.000e+00 - 0.000e+00 0.000e+00 0.000e+00 2.015e+00 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.00000 1.000 0.000 0.000 0.000 - 2 0.00000 0.000 1.000 0.000 0.000 - 3 0.00000 0.000 0.000 1.000 0.000 - 4 0.00000 0.000 0.000 0.000 1.000 - ERR MATRIX APPROXIMATE -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -650 -644.83 +- 0.716643 -34.6586 +- 0.534936 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [440,850] --> [440,850] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [540,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [440,850] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [540,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11362.2 FROM MIGRAD STATUS=INITIATE 104 CALLS 105 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.40000e+02 6.00000e+00 0.00000e+00 7.10893e+01 - 2 sg_p1 3.00000e+01 2.00000e+00 0.00000e+00 -1.05256e+02 - 3 sg_p2 1.85778e+00 5.00000e-01 0.00000e+00 7.21734e-01 - 4 sg_p3 1.67742e+00 7.00000e-01 -5.47714e-01 2.76085e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11340.9 FROM MIGRAD STATUS=CONVERGED 228 CALLS 229 TOTAL - EDM=7.99199e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.38708e+02 7.08102e-01 1.73490e-03 8.50047e-02 - 2 sg_p1 3.35052e+01 5.28951e-01 4.14123e-03 -3.90699e-02 - 3 sg_p2 2.94947e+00 9.95349e-01 2.87844e-02 1.61687e-02 - 4 sg_p3 2.32505e+00 3.50639e-01 7.88914e-03 4.91799e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.015e-01 -1.242e-02 4.478e-03 -8.703e-03 - -1.242e-02 2.801e-01 6.824e-03 9.967e-03 - 4.478e-03 6.824e-03 1.050e+00 2.470e-04 - -8.703e-03 9.967e-03 2.470e-04 1.234e-01 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.04741 1.000 -0.033 0.006 -0.035 - 2 0.06336 -0.033 1.000 0.013 0.054 - 3 0.01421 0.006 0.013 1.000 0.001 - 4 0.06307 -0.035 0.054 0.001 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11340.9 FROM HESSE STATUS=OK 27 CALLS 256 TOTAL - EDM=9.40062e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.38708e+02 7.08265e-01 3.46979e-04 -4.30894e-02 - 2 sg_p1 3.35052e+01 5.29379e-01 1.65649e-04 3.58121e-01 - 3 sg_p2 2.94947e+00 1.13847e+00 1.17440e-01 1.80769e-01 - 4 sg_p3 2.32505e+00 3.50890e-01 3.15565e-04 -3.42349e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.017e-01 -1.287e-02 1.066e-02 -9.624e-03 - -1.287e-02 2.805e-01 1.877e-02 1.130e-02 - 1.066e-02 1.877e-02 1.401e+00 6.030e-04 - -9.624e-03 1.130e-02 6.030e-04 1.236e-01 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.05204 1.000 -0.034 0.013 -0.039 - 2 0.07498 -0.034 1.000 0.030 0.061 - 3 0.03295 0.013 0.030 1.000 0.001 - 4 0.07086 -0.039 0.061 0.001 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -650 -638.708 +- 0.708265 -33.5052 +- 0.529379 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [480,850] --> [480,850] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [480,850] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10721.2 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.55000e+02 5.00000e+00 0.00000e+00 -2.43808e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 4.21270e+01 - 3 sg_p2 7.95726e-01 5.00000e-01 0.00000e+00 -2.45454e+02 - 4 sg_p3 1.33597e+00 7.00000e-01 -6.66570e-01 4.99104e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10655.4 FROM MIGRAD STATUS=CONVERGED 213 CALLS 214 TOTAL - EDM=1.33202e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.61215e+02 1.25169e+00 1.34687e-03 3.04499e-03 - 2 sg_p1 1.89981e+01 1.55542e+00 3.49164e-03 1.91712e-04 - 3 sg_p2 1.45525e+00 1.90355e-01 2.29593e-03 -6.77581e-03 - 4 sg_p3 1.13503e+00 2.26730e-01 1.46146e-03 4.83701e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.568e+00 -1.781e+00 -1.994e-01 -2.643e-01 - -1.781e+00 2.456e+00 2.755e-01 3.428e-01 - -1.994e-01 2.755e-01 3.632e-02 3.869e-02 - -2.643e-01 3.428e-01 3.869e-02 5.154e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.93090 1.000 -0.907 -0.835 -0.930 - 2 0.97333 -0.907 1.000 0.922 0.963 - 3 0.92278 -0.835 0.922 1.000 0.894 - 4 0.97249 -0.930 0.963 0.894 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10655.4 FROM HESSE STATUS=OK 23 CALLS 237 TOTAL - EDM=4.47094e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.61215e+02 7.20486e-01 5.38748e-05 2.51223e-01 - 2 sg_p1 1.89981e+01 8.37759e-01 1.39666e-04 2.01106e-01 - 3 sg_p2 1.45525e+00 1.05708e-01 9.18371e-05 -4.31134e-01 - 4 sg_p3 1.13503e+00 1.24010e-01 5.84582e-05 -7.41920e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.193e-01 -3.889e-01 -2.078e-02 -6.678e-02 - -3.889e-01 7.049e-01 6.093e-02 9.065e-02 - -2.078e-02 6.093e-02 1.118e-02 7.399e-03 - -6.678e-02 9.065e-02 7.399e-03 1.539e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.77269 1.000 -0.643 -0.273 -0.747 - 2 0.90365 -0.643 1.000 0.686 0.870 - 3 0.72233 -0.273 0.686 1.000 0.564 - 4 0.90460 -0.747 0.870 0.564 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -650 -661.215 +- 0.720486 -18.9981 +- 0.837759 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 - fit done -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [480,850] --> [480,850] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [480,850] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10990.4 FROM MIGRAD STATUS=INITIATE 53 CALLS 54 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.55000e+02 5.00000e+00 0.00000e+00 -5.27265e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 -9.02997e+01 - 3 sg_p2 9.67628e-01 5.00000e-01 0.00000e+00 1.90034e+02 - 4 sg_p3 1.53208e+00 7.00000e-01 -5.97119e-01 9.04631e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10899.1 FROM MIGRAD STATUS=CONVERGED 170 CALLS 171 TOTAL - EDM=0.000119297 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.62487e+02 5.44568e-01 1.37103e-03 3.37887e-01 - 2 sg_p1 1.91861e+01 6.48831e-01 3.54018e-03 5.42529e-02 - 3 sg_p2 1.42329e+00 1.09535e-01 2.32356e-03 -1.51053e-01 - 4 sg_p3 1.14846e+00 8.06823e-02 1.37891e-03 -1.67722e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.966e-01 -7.261e-02 6.903e-03 -1.862e-02 - -7.261e-02 4.221e-01 4.896e-02 3.840e-02 - 6.903e-03 4.896e-02 1.201e-02 4.066e-03 - -1.862e-02 3.840e-02 4.066e-03 6.512e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.55262 1.000 -0.205 0.116 -0.424 - 2 0.83317 -0.205 1.000 0.688 0.732 - 3 0.73763 0.116 0.688 1.000 0.460 - 4 0.78506 -0.424 0.732 0.460 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10899.1 FROM HESSE STATUS=OK 23 CALLS 194 TOTAL - EDM=0.000109915 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.62487e+02 5.36215e-01 2.74206e-04 3.04165e-01 - 2 sg_p1 1.91861e+01 6.18928e-01 7.08036e-04 2.26745e-01 - 3 sg_p2 1.42329e+00 1.07941e-01 4.64712e-04 -4.45250e-01 - 4 sg_p3 1.14846e+00 7.57926e-02 5.51562e-05 -7.36728e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.876e-01 -5.330e-02 8.935e-03 -1.590e-02 - -5.330e-02 3.840e-01 4.525e-02 3.283e-02 - 8.935e-03 4.525e-02 1.166e-02 3.512e-03 - -1.590e-02 3.283e-02 3.512e-03 5.746e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.53288 1.000 -0.160 0.154 -0.391 - 2 0.81480 -0.160 1.000 0.676 0.699 - 3 0.72837 0.154 0.676 1.000 0.429 - 4 0.75539 -0.391 0.699 0.429 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -650 -662.487 +- 0.536215 -19.1861 +- 0.618928 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [480,850] --> [480,850] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [480,850] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10453.2 FROM MIGRAD STATUS=INITIATE 55 CALLS 56 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.55000e+02 5.00000e+00 0.00000e+00 -3.71248e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 -3.97336e+01 - 3 sg_p2 1.05577e+00 5.00000e-01 0.00000e+00 6.59080e+01 - 4 sg_p3 1.28275e+00 7.00000e-01 -6.86067e-01 1.15714e+00 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1 added to diagonal of error matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.00026 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.0624e+00 1.0038e+00 2.0034e+00 2.0551e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 1.064428 TO DIAGONAL. - FCN=10417.7 FROM HESSE STATUS=NOT POSDEF 31 CALLS 501 TOTAL - EDM=0.153481 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.59286e+02 1.34383e-01 1.00195e-04 -2.17921e+00 - 2 sg_p1 1.95932e+01 1.42607e+00 3.48397e-03 -1.51809e-02 - 3 sg_p2 1.48285e+00 2.38933e-02 1.91254e-04 7.07461e+02 - 4 sg_p3 1.30319e+00 1.20299e-02 8.43062e-05 -1.60765e+03 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10417.7 FROM MIGRAD STATUS=FAILED 511 CALLS 512 TOTAL - EDM=0.153481 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.59286e+02 1.34383e-01 -0.00000e+00 -2.17921e+00 - 2 sg_p1 1.95932e+01 1.42607e+00 -0.00000e+00 -1.51809e-02 - 3 sg_p2 1.48285e+00 2.38933e-02 -0.00000e+00 7.07461e+02 - 4 sg_p3 1.30319e+00 1.20299e-02 -0.00000e+00 -1.60765e+03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.806e-02 1.899e-01 3.204e-03 1.613e-03 - 1.899e-01 2.061e+00 3.377e-02 1.698e-02 - 3.204e-03 3.377e-02 5.709e-04 2.868e-04 - 1.613e-03 1.698e-02 2.868e-04 1.447e-04 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99849 1.000 0.984 0.998 0.998 - 2 0.98497 0.984 1.000 0.984 0.983 - 3 0.99849 0.998 0.984 1.000 0.998 - 4 0.99838 0.998 0.983 0.998 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10417.7 FROM HESSE STATUS=OK 53 CALLS 565 TOTAL - EDM=36.107 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.59286e+02 4.94375e-01 4.11775e-02 1.72285e-01 - 2 sg_p1 1.95932e+01 4.96180e-01 1.39359e-04 2.82846e-01 - 3 sg_p2 1.48285e+00 9.77917e-02 7.54293e-02 -4.19013e-01 - 4 sg_p3 1.30319e+00 7.96802e-02 5.20393e-02 -6.78543e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.444e-01 2.547e-03 1.237e-02 -9.665e-03 - 2.547e-03 2.466e-01 2.750e-02 2.146e-02 - 1.237e-02 2.750e-02 9.569e-03 2.078e-03 - -9.665e-03 2.146e-02 2.078e-03 6.351e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.41374 1.000 0.010 0.256 -0.245 - 2 0.69659 0.010 1.000 0.566 0.542 - 3 0.61938 0.256 0.566 1.000 0.267 - 4 0.59812 -0.245 0.542 0.267 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -650 -659.286 +- 0.494375 -19.5932 +- 0.49618 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [480,850] --> [480,850] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [480,850] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10619.9 FROM MIGRAD STATUS=INITIATE 56 CALLS 57 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.55000e+02 5.00000e+00 0.00000e+00 -4.21165e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 4.34414e+00 - 3 sg_p2 9.15926e-01 5.00000e-01 0.00000e+00 4.72583e+01 - 4 sg_p3 1.18271e+00 7.00000e-01 -7.23594e-01 -8.98084e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10560.4 FROM MIGRAD STATUS=CONVERGED 181 CALLS 182 TOTAL - EDM=7.5268e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.61397e+02 5.44897e-01 1.34246e-03 4.14273e-01 - 2 sg_p1 1.90727e+01 5.64070e-01 3.46865e-03 -1.30068e-03 - 3 sg_p2 1.41469e+00 8.73074e-02 2.15873e-03 1.72287e-02 - 4 sg_p3 1.12865e+00 7.39900e-02 1.34213e-03 2.26005e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.970e-01 -9.007e-02 2.908e-03 -1.929e-02 - -9.007e-02 3.188e-01 2.788e-02 2.852e-02 - 2.908e-03 2.788e-02 7.626e-03 2.278e-03 - -1.929e-02 2.852e-02 2.278e-03 5.476e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.54360 1.000 -0.293 0.061 -0.478 - 2 0.76817 -0.293 1.000 0.566 0.683 - 3 0.61547 0.061 0.566 1.000 0.353 - 4 0.74345 -0.478 0.683 0.353 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10560.4 FROM HESSE STATUS=OK 23 CALLS 205 TOTAL - EDM=7.54443e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.61397e+02 5.45454e-01 2.68492e-04 2.58749e-01 - 2 sg_p1 1.90727e+01 5.66991e-01 1.38746e-04 2.11267e-01 - 3 sg_p2 1.41469e+00 8.76116e-02 8.63490e-05 -4.49065e-01 - 4 sg_p3 1.12865e+00 7.42730e-02 2.68425e-04 -7.44396e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.976e-01 -9.125e-02 2.820e-03 -1.942e-02 - -9.125e-02 3.221e-01 2.831e-02 2.890e-02 - 2.820e-03 2.831e-02 7.680e-03 2.324e-03 - -1.942e-02 2.890e-02 2.324e-03 5.518e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.54492 1.000 -0.295 0.059 -0.479 - 2 0.77092 -0.295 1.000 0.569 0.685 - 3 0.61896 0.059 0.569 1.000 0.357 - 4 0.74573 -0.479 0.685 0.357 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -650 -661.397 +- 0.545454 -19.0727 +- 0.566991 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [480,850] --> [480,850] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [480,850] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10830.7 FROM MIGRAD STATUS=INITIATE 54 CALLS 55 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.55000e+02 5.00000e+00 0.00000e+00 -4.44740e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 -4.26729e+01 - 3 sg_p2 1.00225e+00 5.00000e-01 0.00000e+00 7.37985e+01 - 4 sg_p3 1.39341e+00 7.00000e-01 -6.45856e-01 4.14284e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10770.7 FROM MIGRAD STATUS=CONVERGED 158 CALLS 159 TOTAL - EDM=5.54438e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.61183e+02 5.58601e-01 1.30703e-03 7.27339e-02 - 2 sg_p1 1.87556e+01 6.26067e-01 3.36619e-03 1.16170e-01 - 3 sg_p2 1.45666e+00 9.85527e-02 2.30722e-03 -2.01954e-01 - 4 sg_p3 1.14103e+00 8.65798e-02 1.35416e-03 -1.57200e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.121e-01 -1.357e-01 -1.260e-03 -2.677e-02 - -1.357e-01 3.929e-01 3.854e-02 4.159e-02 - -1.260e-03 3.854e-02 9.719e-03 3.757e-03 - -2.677e-02 4.159e-02 3.757e-03 7.499e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.61009 1.000 -0.388 -0.023 -0.553 - 2 0.83171 -0.388 1.000 0.624 0.766 - 3 0.66919 -0.023 0.624 1.000 0.440 - 4 0.81600 -0.553 0.766 0.440 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10770.7 FROM HESSE STATUS=OK 23 CALLS 182 TOTAL - EDM=5.46307e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.61183e+02 5.24911e-01 5.22814e-05 2.49922e-01 - 2 sg_p1 1.87556e+01 5.52841e-01 6.73237e-04 1.68209e-01 - 3 sg_p2 1.45666e+00 9.52773e-02 4.61444e-04 -4.30514e-01 - 4 sg_p3 1.14103e+00 7.38096e-02 5.41663e-05 -7.39598e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.756e-01 -7.938e-02 3.701e-03 -1.800e-02 - -7.938e-02 3.062e-01 3.107e-02 2.800e-02 - 3.701e-03 3.107e-02 9.083e-03 2.581e-03 - -1.800e-02 2.800e-02 2.581e-03 5.449e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.53953 1.000 -0.273 0.074 -0.465 - 2 0.77793 -0.273 1.000 0.589 0.686 - 3 0.63966 0.074 0.589 1.000 0.367 - 4 0.74489 -0.465 0.686 0.367 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -650 -661.183 +- 0.524911 -18.7556 +- 0.552841 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [480,850] --> [480,850] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [480,850] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=9992.6 FROM MIGRAD STATUS=INITIATE 54 CALLS 55 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.55000e+02 5.00000e+00 0.00000e+00 -3.62893e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 -5.90807e+01 - 3 sg_p2 9.83939e-01 5.00000e-01 0.00000e+00 6.33616e+01 - 4 sg_p3 1.46565e+00 7.00000e-01 -6.20255e-01 8.16516e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9935.37 FROM MIGRAD STATUS=CONVERGED 169 CALLS 170 TOTAL - EDM=0.000159227 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.61178e+02 7.39572e-01 1.34451e-03 -1.70686e-01 - 2 sg_p1 1.89964e+01 8.67158e-01 3.47868e-03 7.20693e-02 - 3 sg_p2 1.45598e+00 1.10743e-01 2.29383e-03 -2.60727e-02 - 4 sg_p3 1.13815e+00 1.28466e-01 1.46277e-03 -4.42263e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.471e-01 -4.069e-01 -2.161e-02 -7.041e-02 - -4.069e-01 7.555e-01 6.659e-02 9.706e-02 - -2.161e-02 6.659e-02 1.227e-02 8.055e-03 - -7.041e-02 9.706e-02 8.055e-03 1.652e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.76850 1.000 -0.633 -0.264 -0.741 - 2 0.90376 -0.633 1.000 0.692 0.869 - 3 0.72860 -0.264 0.692 1.000 0.566 - 4 0.90364 -0.741 0.869 0.566 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9935.37 FROM HESSE STATUS=OK 23 CALLS 193 TOTAL - EDM=0.000158903 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.61178e+02 7.43466e-01 2.68901e-04 2.49690e-01 - 2 sg_p1 1.89964e+01 8.64124e-01 6.95735e-04 2.00873e-01 - 3 sg_p2 1.45598e+00 1.09398e-01 9.17533e-05 -4.30811e-01 - 4 sg_p3 1.13815e+00 1.28692e-01 2.92554e-04 -7.40712e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.529e-01 -4.125e-01 -2.195e-02 -7.136e-02 - -4.125e-01 7.502e-01 6.495e-02 9.696e-02 - -2.195e-02 6.495e-02 1.198e-02 7.923e-03 - -7.136e-02 9.696e-02 7.923e-03 1.658e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.77128 1.000 -0.641 -0.270 -0.745 - 2 0.90304 -0.641 1.000 0.685 0.870 - 3 0.72136 -0.270 0.685 1.000 0.562 - 4 0.90400 -0.745 0.870 0.562 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -650 -661.178 +- 0.743466 -18.9964 +- 0.864124 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [480,850] --> [480,850] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [480,850] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11483.6 FROM MIGRAD STATUS=INITIATE 55 CALLS 56 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.55000e+02 5.00000e+00 0.00000e+00 -2.74697e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 4.72491e+01 - 3 sg_p2 7.99758e-01 5.00000e-01 0.00000e+00 -2.45884e+02 - 4 sg_p3 1.30853e+00 7.00000e-01 -6.76585e-01 3.62491e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11413.9 FROM HESSE STATUS=OK 31 CALLS 214 TOTAL - EDM=0.000179347 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.61256e+02 8.07788e-01 1.02475e-03 4.77630e-01 - 2 sg_p1 1.89964e+01 1.08091e+00 3.49772e-03 1.37583e-01 - 3 sg_p2 1.45364e+00 1.98903e-01 2.28196e-03 -3.12364e-01 - 4 sg_p3 1.13104e+00 1.04915e-01 1.45795e-03 2.20302e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=11413.9 FROM MIGRAD STATUS=CONVERGED 223 CALLS 224 TOTAL - EDM=4.35241e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 100.0 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.61254e+02 3.21033e-01 -6.85513e-05 2.09409e-01 - 2 sg_p1 1.89941e+01 4.43174e-01 -3.15216e-04 9.14503e-02 - 3 sg_p2 1.45327e+00 7.44907e-02 -1.59636e-04 -3.27444e-01 - 4 sg_p3 1.13082e+00 4.34031e-02 -8.50837e-05 8.12827e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.031e-01 3.647e-02 1.175e-02 3.896e-03 - 3.647e-02 1.966e-01 1.850e-02 1.029e-02 - 1.175e-02 1.850e-02 5.551e-03 1.469e-03 - 3.896e-03 1.029e-02 1.469e-03 1.884e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.49775 1.000 0.256 0.491 0.280 - 2 0.64400 0.256 1.000 0.560 0.535 - 3 0.67669 0.491 0.560 1.000 0.454 - 4 0.57117 0.280 0.535 0.454 1.000 - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -4.6515e+00 2.2931e-01 1.6841e+00 6.7381e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 4.658200 TO DIAGONAL. - FCN=11413.9 FROM HESSE STATUS=NOT POSDEF 25 CALLS 249 TOTAL - EDM=0.0178461 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.61254e+02 3.25109e+00 4.09899e-04 2.52855e-01 - 2 sg_p1 1.89941e+01 1.45159e+00 1.39909e-03 2.00554e-01 - 3 sg_p2 1.45327e+00 6.02184e-01 9.12783e-04 -4.32003e-01 - 4 sg_p3 1.13082e+00 2.35099e-02 5.83181e-04 -7.43554e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.063e+01 4.733e+00 -1.984e+00 -3.774e-02 - 4.733e+00 2.135e+00 -8.861e-01 -1.641e-02 - -1.984e+00 -8.861e-01 3.715e-01 7.009e-03 - -3.774e-02 -1.641e-02 7.009e-03 5.527e-04 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99842 1.000 0.993 -0.998 -0.492 - 2 0.99509 0.993 1.000 -0.995 -0.478 - 3 0.99882 -0.998 -0.995 1.000 0.489 - 4 0.50219 -0.492 -0.478 0.489 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -650 -661.254 +- 3.25109 -18.9941 +- 1.45159 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 661.215 +- 0.720486 (stat) - 1.92885 + 1.27271 (syst); -1.96221/+1.32271 (total) - Uncertainty on sg_p1 = 18.9981 +- 0.837759 (stat) - 0.242524 + 0.595022 (syst); -0.484023/+0.727675 (total) - Uncertainty on sg_p2 = 1.45525 +- 0.105708 (stat) - 0.0405567 + 0.0276059 (syst); -0.0666212/+0.0596291 (total) - Uncertainty on sg_p3 = 1.13503 +- 0.12401 (stat) - 0.00638242 + 0.168157 (syst); -0.0623326/+0.179225 (total) - === Baseline plot ===
- norm = 172.355 -JEC lnN 1.021 - -JER lnN 1.01174 - -btag lnN 1.06923 - -sg_p0 param 661.215 -1.96221/+1.32271 -sg_p1 param 18.9981 -0.484023/+0.727675 -sg_p2 param 1.45525 -0.0666212/+0.0596291 -sg_p3 param 1.13503 -0.0623326/+0.179225 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_650_novo_550_1200/data_bkg.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_650_novo_550_1200/data_bkg.log deleted file mode 100644 index a966e12..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_650_novo_550_1200/data_bkg.log +++ /dev/null @@ -1,690 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10879.7 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 6.74624e-01 5.09000e-01 -8.31364e-01 -1.01971e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -3.20610e+01 - 3 par_crystal_2 5.00000e+02 2.00000e+01 0.00000e+00 -9.48837e+00 - 4 par_crystal_3 1.05000e+02 1.90000e+01 0.00000e+00 2.45317e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7116e+01 9.9978e-01 1.9597e+00 1.8156e+01 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 17.134017 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 27 CALLS 314 TOTAL - EDM=0.131054 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.06594e+00 6.09301e-02 1.43210e-03 -8.77809e-01 - 2 par_crystal_1 5.09576e+00 7.69298e-02 8.09031e-02 -5.13188e-02 - 3 par_crystal_2 4.95224e+02 7.91481e+01 2.17679e-03 -5.43249e-01 - 4 par_crystal_3 1.90900e+02 9.54958e+00 1.13079e-02 4.60762e-02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 477 CALLS 478 TOTAL - EDM=0.0370129 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.11079e+00 8.93309e-02 0.00000e+00 -4.75984e-01 - 2 par_crystal_1 5.08061e+00 3.60144e-01 0.00000e+00 -1.14416e-01 - 3 par_crystal_2 4.76040e+02 1.75614e+01 0.00000e+00 -2.32451e-01 - 4 par_crystal_3 1.99914e+02 2.77391e+01 0.00000e+00 -7.67572e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.985e-03 -2.091e-03 1.499e+00 2.820e-01 - -2.091e-03 2.873e-02 -7.387e-01 -2.900e-02 - 1.499e+00 -7.387e-01 3.118e+02 5.244e+01 - 2.820e-01 -2.900e-02 5.244e+01 1.008e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99775 1.000 -0.138 0.950 0.994 - 2 0.79882 -0.138 1.000 -0.247 -0.054 - 3 0.95717 0.950 -0.247 1.000 0.935 - 4 0.99764 0.994 -0.054 0.935 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.8 FROM HESSE STATUS=OK 27 CALLS 505 TOTAL - EDM=0.0183624 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.11079e+00 4.31984e-02 1.44775e-03 -6.03431e-01 - 2 par_crystal_1 5.08061e+00 3.28337e+00 6.64371e-02 1.44728e+00 - 3 par_crystal_2 4.76040e+02 8.02153e+00 1.45036e-02 3.38355e+00 - 4 par_crystal_3 1.99914e+02 2.26294e+01 4.50606e-02 1.52819e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.866e-03 -1.951e-03 -2.584e-03 1.946e-02 - -1.951e-03 1.028e-01 6.675e-04 3.793e-04 - -2.584e-03 6.675e-04 6.449e+01 1.116e+00 - 1.946e-02 3.793e-04 1.116e+00 8.140e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.21215 1.000 -0.141 -0.007 0.158 - 2 0.14274 -0.141 1.000 0.000 0.000 - 3 0.05109 -0.007 0.000 1.000 0.049 - 4 0.16712 0.158 0.000 0.049 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10978.6 FROM MIGRAD STATUS=INITIATE 68 CALLS 69 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 6.03110e+02 3.00000e+01 -8.97402e-01 -6.52175e+01 - 2 par_gaus_exp_1 5.45000e+01 9.10000e+00 0.00000e+00 -4.62060e+02 - 3 par_gaus_exp_2 4.12114e-01 3.05000e-01 0.00000e+00 1.25553e+03 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.9 FROM HESSE STATUS=OK 18 CALLS 182 TOTAL - EDM=0.000691453 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.46431e+02 6.06936e+00 3.17833e-03 -3.92855e-01 - 2 par_gaus_exp_1 6.65716e+01 1.75685e+01 2.62647e-03 1.43349e-01 - 3 par_gaus_exp_2 3.07505e-01 8.37981e-02 8.79822e-04 -3.06196e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM MIGRAD STATUS=CONVERGED 316 CALLS 317 TOTAL - EDM=9.19369e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.62504e+02 3.53152e+00 1.63243e-03 -1.66316e-01 - 2 par_gaus_exp_1 2.46552e+01 1.25211e+01 1.75085e-03 -3.48771e-01 - 3 par_gaus_exp_2 1.14604e-01 5.89219e-02 6.31447e-04 9.83138e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.247e+01 -1.544e+01 -6.961e-02 - -1.544e+01 1.643e+02 7.558e-01 - -6.961e-02 7.558e-01 3.493e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.35636 1.000 -0.341 -0.333 - 2 0.99789 -0.341 1.000 0.998 - 3 0.99788 -0.333 0.998 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM HESSE STATUS=OK 16 CALLS 333 TOTAL - EDM=9.89177e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 5.62504e+02 3.77274e+00 6.52972e-05 8.34552e-02 - 2 par_gaus_exp_1 2.46552e+01 1.46349e+01 3.50170e-04 -7.15413e-01 - 3 par_gaus_exp_2 1.14604e-01 6.93856e-02 1.26289e-04 -1.27868e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.424e+01 -2.545e+01 -1.157e-01 - -2.545e+01 2.286e+02 1.052e+00 - -1.157e-01 1.052e+00 4.855e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.45683 1.000 -0.446 -0.440 - 2 0.99849 -0.446 1.000 0.998 - 3 0.99848 -0.440 0.998 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (13168.6) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=575, par_novo_1=100, par_novo_2=1.58864 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 575,par_novo_1 = 100,par_novo_2 = 1.58864) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=645, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=655, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=665, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=675, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=685, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=695, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=705, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=715, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=725, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=735, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=745, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=755, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - ... (remaining 46 messages suppressed) - - FCN=13054.5 FROM MIGRAD STATUS=INITIATE 14 CALLS 15 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.75000e+02 1.50000e+01 2.01358e-01 -1.22938e+03 - 2 par_novo_1 1.00000e+02 2.00000e+01 2.01358e-01 -6.98326e+03 - 3 par_novo_2 0.00000e+00 2.00000e+01 2.01358e-01 1.51249e+06 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM MIGRAD STATUS=CONVERGED 220 CALLS 221 TOTAL - EDM=2.09668e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.00000e+02 1.21837e+02 1.25149e-01 -7.30463e-04 - 2 par_novo_1 1.30637e+02 1.58558e+01 3.16845e-03 -1.76078e-02 - 3 par_novo_2 -6.95187e-01 1.36663e-01 2.61078e-05 1.74080e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.121e-01 -9.460e-01 -6.449e-03 - -9.460e-01 2.538e+02 2.099e+00 - -6.449e-03 2.099e+00 1.868e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.21023 1.000 -0.177 -0.141 - 2 0.96488 -0.177 1.000 0.964 - 3 0.96445 -0.141 0.964 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM HESSE STATUS=OK 20 CALLS 241 TOTAL - EDM=1.01397e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 5.00000e+02 1.20312e+02 5.00000e-01 -1.57325e+00 - 2 par_novo_1 1.30637e+02 2.01762e+01 1.26738e-04 3.11381e-01 - 3 par_novo_2 -6.95187e-01 1.62575e-01 1.04431e-06 -6.95192e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.070e-01 -4.278e+00 -2.995e-02 - -4.278e+00 4.133e+02 3.212e+00 - -2.995e-02 3.212e+00 2.643e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.69436 1.000 -0.643 -0.563 - 2 0.97859 -0.643 1.000 0.972 - 3 0.97501 -0.563 0.972 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10877 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 6.33849e-01 5.09000e-01 -8.55460e-01 -1.25390e+02 - 2 par_crystal_1_1 2.55500e+00 5.09000e-01 0.00000e+00 -2.69495e+01 - 3 par_crystal_1_2 5.50000e+02 3.00000e+01 0.00000e+00 -1.44080e+01 - 4 par_crystal_1_3 1.04500e+02 1.91000e+01 0.00000e+00 3.07979e+01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.43469 added to diagonal of error matrix - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.5401e+00 8.4221e-02 1.8087e+00 3.6472e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 1.543714 TO DIAGONAL. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.9 FROM HESSE STATUS=OK 25 CALLS 485 TOTAL - EDM=0.0491336 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.05623e+00 1.52463e-01 1.42446e-03 -1.90900e+00 - 2 par_crystal_1_1 5.09988e+00 3.18944e+00 7.54811e-02 -8.93342e-03 - 3 par_crystal_1_2 4.96280e+02 4.98347e+01 9.02051e-03 3.58498e-02 - 4 par_crystal_1_3 1.89188e+02 2.78069e+01 1.02856e-02 -2.38185e-01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 538 CALLS 539 TOTAL - EDM=10.0867 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 14.1 per cent - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.09723e+00 3.02575e-02 -0.00000e+00 5.47416e+01 - 2 par_crystal_1_1 5.09997e+00 3.18368e+00 0.00000e+00 -3.90351e-03 - 3 par_crystal_1_2 4.83329e+02 2.76558e+01 0.00000e+00 7.05236e+00 - 4 par_crystal_1_3 1.96552e+02 5.80629e+00 -0.00000e+00 4.39990e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.156e-04 -1.804e-07 -6.742e-01 1.111e-01 - -1.804e-07 1.763e-04 7.888e-03 -2.154e-03 - -6.742e-01 7.888e-03 7.759e+02 -1.463e+02 - 1.111e-01 -2.154e-03 -1.463e+02 3.432e+01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.82553 1.000 -0.000 -0.800 0.627 - 2 0.03650 -0.000 1.000 0.021 -0.028 - 3 0.94703 -0.800 0.021 1.000 -0.896 - 4 0.90888 0.627 -0.028 -0.896 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -9.7852e-01 9.9996e-01 1.9836e+00 1.9949e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.980510 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 29 CALLS 568 TOTAL - EDM=238.514 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 1.09723e+00 4.25322e-02 2.54943e-04 -6.09913e-01 - 2 par_crystal_1_1 5.09997e+00 7.84798e-01 8.54763e-02 1.56580e+00 - 3 par_crystal_1_2 4.83329e+02 1.87856e+01 1.76414e-03 -4.60588e-01 - 4 par_crystal_1_3 1.96552e+02 5.33115e+00 2.63738e-03 1.30128e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.809e-03 -2.197e-07 8.001e-01 2.280e-01 - -2.197e-07 1.053e-04 -1.173e-04 -3.665e-05 - 8.001e-01 -1.173e-04 3.552e+02 1.010e+02 - 2.280e-01 -3.665e-05 1.010e+02 2.885e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99849 1.000 -0.001 0.998 0.998 - 2 0.00265 -0.001 1.000 -0.001 -0.001 - 3 0.99848 0.998 -0.001 1.000 0.998 - 4 0.99849 0.998 -0.001 0.998 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_550_1200 = 1266.17 - Background number of gaus_exp_550_1200 = 1266.17 - Background number of novo_550_1200 = 1266.17 - Background number of crystal_1_550_1200 = 1266.17 - Background number of gaus_bern_550_1200 = 1266.17 - Background number of landau_550_1200 = 1266.17 -par_crystal_0 param 1.11079 0.0431984 -par_crystal_1 param 5.08061 3.28337 -par_crystal_2 param 476.04 8.02153 -par_crystal_3 param 199.914 22.6294 -par_crystal_1_0 param 1.09723 0.0425322 -par_crystal_1_1 param 5.09997 0.784798 -par_crystal_1_2 param 483.329 18.7856 -par_crystal_1_3 param 196.552 5.33115 -par_gaus_exp_0 param 562.504 3.77274 -par_gaus_exp_1 param 24.6552 14.6349 -par_gaus_exp_2 param 0.114604 0.0693856 -par_novo_0 param 500 120.312 -par_novo_1 param 130.637 20.1762 -par_novo_2 param -0.695187 0.162575 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_650_novo_550_1200/datacard_650_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_650_novo_550_1200/datacard_650_novo_550_1200.txt deleted file mode 100644 index 94c489c..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_650_novo_550_1200/datacard_650_novo_550_1200.txt +++ /dev/null @@ -1,28 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_650.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo -shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 3.4471 1266.17 -lumi_13TeV lnN 1.026 - -bTag lnN 1.06923 - -JER lnN 1.01174 - -JEC lnN 1.021 - -trigger lnN 1.10 - -sg_p0 param 661.215 -1.96221/+1.32271 -sg_p1 param 18.9981 -0.484023/+0.727675 -sg_p2 param 1.45525 -0.0666212/+0.0596291 -sg_p3 param 1.13503 -0.0623326/+0.179225 -par_novo_0 param 500 120.312 -par_novo_1 param 130.637 20.1762 -par_novo_2 param -0.695187 0.162575 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_650_novo_550_1200/signal650_sig.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_650_novo_550_1200/signal650_sig.log deleted file mode 100644 index f094607..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_650_novo_550_1200/signal650_sig.log +++ /dev/null @@ -1,1006 +0,0 @@ - -Processing test.c... -nSignal_init = 49200 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [440,850] --> [440,850] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [540,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [440,850] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [540,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11612.3 FROM MIGRAD STATUS=INITIATE 60 CALLS 61 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.40000e+02 6.00000e+00 0.00000e+00 -5.60818e+01 - 2 sg_p1 3.00000e+01 2.00000e+00 0.00000e+00 -8.83799e+01 - 3 sg_p2 1.51156e+00 5.00000e-01 0.00000e+00 4.45918e-01 - 4 sg_p3 1.65144e+00 7.00000e-01 -5.56433e-01 1.01665e+01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.07974 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11585.6 FROM HESSE STATUS=OK 27 CALLS 322 TOTAL - EDM=0.104656 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.41163e+02 7.06029e-01 1.74995e-03 -3.76296e-02 - 2 sg_p1 3.38688e+01 5.23325e-01 4.21353e-03 4.07382e-02 - 3 sg_p2 3.61832e+00 1.16199e+00 5.00000e-01 -8.37095e-01 - 4 sg_p3 2.97717e+00 1.74320e+00 3.82781e-02 -1.08231e-02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=11585.6 FROM MIGRAD STATUS=CONVERGED 333 CALLS 334 TOTAL - EDM=3.51417e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 0.3 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.41164e+02 7.06029e-01 2.17492e-05 -2.69889e-03 - 2 sg_p1 3.38675e+01 5.23355e-01 -1.32565e-04 1.94685e-03 - 3 sg_p2 4.13673e+00 9.85565e-01 2.50000e-01 -6.51974e-03 - 4 sg_p3 2.98762e+00 1.74432e+00 3.01848e-03 -1.43731e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.986e-01 -5.029e-03 1.165e-04 1.304e-03 - -5.029e-03 2.742e-01 -1.478e-04 -1.655e-03 - 1.165e-04 -1.478e-04 1.075e+00 3.155e-02 - 1.304e-03 -1.655e-03 3.155e-02 3.342e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.01364 1.000 -0.014 0.000 0.001 - 2 0.01371 -0.014 1.000 -0.000 -0.002 - 3 0.01665 0.000 -0.000 1.000 0.017 - 4 0.01677 0.001 -0.002 0.017 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11585.6 FROM HESSE STATUS=OK 27 CALLS 361 TOTAL - EDM=0.00163365 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.41164e+02 7.06040e-01 1.75058e-03 3.88127e-02 - 2 sg_p1 3.38675e+01 5.23398e-01 1.68541e-03 3.97108e-01 - 3 sg_p2 4.13673e+00 2.58234e+00 5.00000e-01 7.13776e-01 - 4 sg_p3 2.98762e+00 2.30843e+00 1.53112e-02 -1.46921e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.986e-01 -5.100e-03 8.651e-11 1.748e-04 - -5.100e-03 2.742e-01 -4.651e-09 -1.792e-06 - 8.651e-11 -4.651e-09 1.369e+02 3.040e-14 - 1.748e-04 -1.792e-06 3.040e-14 6.385e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.01379 1.000 -0.014 0.000 0.000 - 2 0.01379 -0.014 1.000 -0.000 -0.000 - 3 0.00000 0.000 -0.000 1.000 0.000 - 4 0.00010 0.000 -0.000 0.000 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -650 -641.164 +- 0.70604 -33.8675 +- 0.523398 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [440,850] --> [440,850] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [540,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [440,850] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [540,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11904.9 FROM MIGRAD STATUS=INITIATE 38 CALLS 39 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.40000e+02 6.00000e+00 0.00000e+00 -1.02677e+02 - 2 sg_p1 3.00000e+01 2.00000e+00 0.00000e+00 -8.17543e+01 - 3 sg_p2 1.12614e+00 5.00000e-01 -5.81819e-01 2.25140e+01 - 4 sg_p3 3.50000e+00 7.00000e-01 0.00000e+00 -3.65465e-02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11868.8 FROM HESSE STATUS=OK 23 CALLS 155 TOTAL - EDM=1.60817 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.44838e+02 7.48080e-01 1.83180e-03 5.58516e+00 - 2 sg_p1 3.44259e+01 5.95973e-01 5.44743e-03 -4.45013e+00 - 3 sg_p2 2.01408e+00 1.75526e-01 9.79574e-03 -1.65119e+01 - 4 sg_p3 3.37744e+00 1.00364e+00 5.00000e-01 3.60429e+00 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - MINUIT WARNING IN HESSE - ============== Second derivative enters zero, param 4 - MINUIT WARNING IN HESSE - ============== Second derivative zero for parameter4 - MNHESS FAILS AND WILL RETURN DIAGONAL MATRIX. - FCN=11867 FROM MIGRAD STATUS=CONVERGED 279 CALLS 280 TOTAL - EDM=0.000394861 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 100.0 per cent - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.44830e+02 7.16643e-01 1.82097e-03 6.16255e-03 - 2 sg_p1 3.46586e+01 5.34936e-01 4.55140e-03 -9.30316e-04 - 3 sg_p2 3.09000e+00 3.87436e+00 7.61219e-02 -2.32163e-02 - 4 sg_p3 5.67282e+00 1.35691e+00 -0.00000e+00 0.00000e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.137e-01 0.000e+00 0.000e+00 0.000e+00 - 0.000e+00 2.865e-01 0.000e+00 0.000e+00 - 0.000e+00 0.000e+00 9.676e+00 0.000e+00 - 0.000e+00 0.000e+00 0.000e+00 2.015e+00 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.00000 1.000 0.000 0.000 0.000 - 2 0.00000 0.000 1.000 0.000 0.000 - 3 0.00000 0.000 0.000 1.000 0.000 - 4 0.00000 0.000 0.000 0.000 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - MINUIT WARNING IN HESSE - ============== Second derivative zero for parameter4 - MNHESS FAILS AND WILL RETURN DIAGONAL MATRIX. - FCN=11867 FROM HESSE STATUS=FAILED 9 CALLS 289 TOTAL - EDM=0.000394861 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 100.0 per cent - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.44830e+02 7.16643e-01 1.82097e-03 1.61714e-01 - 2 sg_p1 3.46586e+01 5.34936e-01 4.55140e-03 4.84601e-01 - 3 sg_p2 3.09000e+00 3.87436e+00 7.61219e-02 2.38245e-01 - 4 sg_p3 6.72231e+00 1.35691e+00 -0.00000e+00 2.47182e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.137e-01 0.000e+00 0.000e+00 0.000e+00 - 0.000e+00 2.865e-01 0.000e+00 0.000e+00 - 0.000e+00 0.000e+00 9.676e+00 0.000e+00 - 0.000e+00 0.000e+00 0.000e+00 2.015e+00 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.00000 1.000 0.000 0.000 0.000 - 2 0.00000 0.000 1.000 0.000 0.000 - 3 0.00000 0.000 0.000 1.000 0.000 - 4 0.00000 0.000 0.000 0.000 1.000 - ERR MATRIX APPROXIMATE -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -650 -644.83 +- 0.716643 -34.6586 +- 0.534936 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [440,850] --> [440,850] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [540,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [440,850] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [540,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11362.2 FROM MIGRAD STATUS=INITIATE 104 CALLS 105 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.40000e+02 6.00000e+00 0.00000e+00 7.10893e+01 - 2 sg_p1 3.00000e+01 2.00000e+00 0.00000e+00 -1.05256e+02 - 3 sg_p2 1.85778e+00 5.00000e-01 0.00000e+00 7.21734e-01 - 4 sg_p3 1.67742e+00 7.00000e-01 -5.47714e-01 2.76085e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11340.9 FROM MIGRAD STATUS=CONVERGED 228 CALLS 229 TOTAL - EDM=7.99199e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.38708e+02 7.08102e-01 1.73490e-03 8.50047e-02 - 2 sg_p1 3.35052e+01 5.28951e-01 4.14123e-03 -3.90699e-02 - 3 sg_p2 2.94947e+00 9.95349e-01 2.87844e-02 1.61687e-02 - 4 sg_p3 2.32505e+00 3.50639e-01 7.88914e-03 4.91799e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.015e-01 -1.242e-02 4.478e-03 -8.703e-03 - -1.242e-02 2.801e-01 6.824e-03 9.967e-03 - 4.478e-03 6.824e-03 1.050e+00 2.470e-04 - -8.703e-03 9.967e-03 2.470e-04 1.234e-01 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.04741 1.000 -0.033 0.006 -0.035 - 2 0.06336 -0.033 1.000 0.013 0.054 - 3 0.01421 0.006 0.013 1.000 0.001 - 4 0.06307 -0.035 0.054 0.001 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11340.9 FROM HESSE STATUS=OK 27 CALLS 256 TOTAL - EDM=9.40062e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.38708e+02 7.08265e-01 3.46979e-04 -4.30894e-02 - 2 sg_p1 3.35052e+01 5.29379e-01 1.65649e-04 3.58121e-01 - 3 sg_p2 2.94947e+00 1.13847e+00 1.17440e-01 1.80769e-01 - 4 sg_p3 2.32505e+00 3.50890e-01 3.15565e-04 -3.42349e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.017e-01 -1.287e-02 1.066e-02 -9.624e-03 - -1.287e-02 2.805e-01 1.877e-02 1.130e-02 - 1.066e-02 1.877e-02 1.401e+00 6.030e-04 - -9.624e-03 1.130e-02 6.030e-04 1.236e-01 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.05204 1.000 -0.034 0.013 -0.039 - 2 0.07498 -0.034 1.000 0.030 0.061 - 3 0.03295 0.013 0.030 1.000 0.001 - 4 0.07086 -0.039 0.061 0.001 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -650 -638.708 +- 0.708265 -33.5052 +- 0.529379 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [480,850] --> [480,850] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [480,850] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10721.2 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.55000e+02 5.00000e+00 0.00000e+00 -2.43808e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 4.21270e+01 - 3 sg_p2 7.95726e-01 5.00000e-01 0.00000e+00 -2.45454e+02 - 4 sg_p3 1.33597e+00 7.00000e-01 -6.66570e-01 4.99104e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10655.4 FROM MIGRAD STATUS=CONVERGED 213 CALLS 214 TOTAL - EDM=1.33202e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.61215e+02 1.25169e+00 1.34687e-03 3.04499e-03 - 2 sg_p1 1.89981e+01 1.55542e+00 3.49164e-03 1.91712e-04 - 3 sg_p2 1.45525e+00 1.90355e-01 2.29593e-03 -6.77581e-03 - 4 sg_p3 1.13503e+00 2.26730e-01 1.46146e-03 4.83701e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.568e+00 -1.781e+00 -1.994e-01 -2.643e-01 - -1.781e+00 2.456e+00 2.755e-01 3.428e-01 - -1.994e-01 2.755e-01 3.632e-02 3.869e-02 - -2.643e-01 3.428e-01 3.869e-02 5.154e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.93090 1.000 -0.907 -0.835 -0.930 - 2 0.97333 -0.907 1.000 0.922 0.963 - 3 0.92278 -0.835 0.922 1.000 0.894 - 4 0.97249 -0.930 0.963 0.894 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10655.4 FROM HESSE STATUS=OK 23 CALLS 237 TOTAL - EDM=4.47094e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.61215e+02 7.20486e-01 5.38748e-05 2.51223e-01 - 2 sg_p1 1.89981e+01 8.37759e-01 1.39666e-04 2.01106e-01 - 3 sg_p2 1.45525e+00 1.05708e-01 9.18371e-05 -4.31134e-01 - 4 sg_p3 1.13503e+00 1.24010e-01 5.84582e-05 -7.41920e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.193e-01 -3.889e-01 -2.078e-02 -6.678e-02 - -3.889e-01 7.049e-01 6.093e-02 9.065e-02 - -2.078e-02 6.093e-02 1.118e-02 7.399e-03 - -6.678e-02 9.065e-02 7.399e-03 1.539e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.77269 1.000 -0.643 -0.273 -0.747 - 2 0.90365 -0.643 1.000 0.686 0.870 - 3 0.72233 -0.273 0.686 1.000 0.564 - 4 0.90460 -0.747 0.870 0.564 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -650 -661.215 +- 0.720486 -18.9981 +- 0.837759 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 - fit done -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [480,850] --> [480,850] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [480,850] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10990.4 FROM MIGRAD STATUS=INITIATE 53 CALLS 54 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.55000e+02 5.00000e+00 0.00000e+00 -5.27265e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 -9.02997e+01 - 3 sg_p2 9.67628e-01 5.00000e-01 0.00000e+00 1.90034e+02 - 4 sg_p3 1.53208e+00 7.00000e-01 -5.97119e-01 9.04631e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10899.1 FROM MIGRAD STATUS=CONVERGED 170 CALLS 171 TOTAL - EDM=0.000119297 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.62487e+02 5.44568e-01 1.37103e-03 3.37887e-01 - 2 sg_p1 1.91861e+01 6.48831e-01 3.54018e-03 5.42529e-02 - 3 sg_p2 1.42329e+00 1.09535e-01 2.32356e-03 -1.51053e-01 - 4 sg_p3 1.14846e+00 8.06823e-02 1.37891e-03 -1.67722e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.966e-01 -7.261e-02 6.903e-03 -1.862e-02 - -7.261e-02 4.221e-01 4.896e-02 3.840e-02 - 6.903e-03 4.896e-02 1.201e-02 4.066e-03 - -1.862e-02 3.840e-02 4.066e-03 6.512e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.55262 1.000 -0.205 0.116 -0.424 - 2 0.83317 -0.205 1.000 0.688 0.732 - 3 0.73763 0.116 0.688 1.000 0.460 - 4 0.78506 -0.424 0.732 0.460 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10899.1 FROM HESSE STATUS=OK 23 CALLS 194 TOTAL - EDM=0.000109915 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.62487e+02 5.36215e-01 2.74206e-04 3.04165e-01 - 2 sg_p1 1.91861e+01 6.18928e-01 7.08036e-04 2.26745e-01 - 3 sg_p2 1.42329e+00 1.07941e-01 4.64712e-04 -4.45250e-01 - 4 sg_p3 1.14846e+00 7.57926e-02 5.51562e-05 -7.36728e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.876e-01 -5.330e-02 8.935e-03 -1.590e-02 - -5.330e-02 3.840e-01 4.525e-02 3.283e-02 - 8.935e-03 4.525e-02 1.166e-02 3.512e-03 - -1.590e-02 3.283e-02 3.512e-03 5.746e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.53288 1.000 -0.160 0.154 -0.391 - 2 0.81480 -0.160 1.000 0.676 0.699 - 3 0.72837 0.154 0.676 1.000 0.429 - 4 0.75539 -0.391 0.699 0.429 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -650 -662.487 +- 0.536215 -19.1861 +- 0.618928 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [480,850] --> [480,850] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [480,850] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10453.2 FROM MIGRAD STATUS=INITIATE 55 CALLS 56 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.55000e+02 5.00000e+00 0.00000e+00 -3.71248e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 -3.97336e+01 - 3 sg_p2 1.05577e+00 5.00000e-01 0.00000e+00 6.59080e+01 - 4 sg_p3 1.28275e+00 7.00000e-01 -6.86067e-01 1.15714e+00 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1 added to diagonal of error matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.00026 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.0624e+00 1.0038e+00 2.0034e+00 2.0551e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 1.064428 TO DIAGONAL. - FCN=10417.7 FROM HESSE STATUS=NOT POSDEF 31 CALLS 501 TOTAL - EDM=0.153481 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.59286e+02 1.34383e-01 1.00195e-04 -2.17921e+00 - 2 sg_p1 1.95932e+01 1.42607e+00 3.48397e-03 -1.51809e-02 - 3 sg_p2 1.48285e+00 2.38933e-02 1.91254e-04 7.07461e+02 - 4 sg_p3 1.30319e+00 1.20299e-02 8.43062e-05 -1.60765e+03 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10417.7 FROM MIGRAD STATUS=FAILED 511 CALLS 512 TOTAL - EDM=0.153481 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.59286e+02 1.34383e-01 -0.00000e+00 -2.17921e+00 - 2 sg_p1 1.95932e+01 1.42607e+00 -0.00000e+00 -1.51809e-02 - 3 sg_p2 1.48285e+00 2.38933e-02 -0.00000e+00 7.07461e+02 - 4 sg_p3 1.30319e+00 1.20299e-02 -0.00000e+00 -1.60765e+03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.806e-02 1.899e-01 3.204e-03 1.613e-03 - 1.899e-01 2.061e+00 3.377e-02 1.698e-02 - 3.204e-03 3.377e-02 5.709e-04 2.868e-04 - 1.613e-03 1.698e-02 2.868e-04 1.447e-04 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99849 1.000 0.984 0.998 0.998 - 2 0.98497 0.984 1.000 0.984 0.983 - 3 0.99849 0.998 0.984 1.000 0.998 - 4 0.99838 0.998 0.983 0.998 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10417.7 FROM HESSE STATUS=OK 53 CALLS 565 TOTAL - EDM=36.107 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.59286e+02 4.94375e-01 4.11775e-02 1.72285e-01 - 2 sg_p1 1.95932e+01 4.96180e-01 1.39359e-04 2.82846e-01 - 3 sg_p2 1.48285e+00 9.77917e-02 7.54293e-02 -4.19013e-01 - 4 sg_p3 1.30319e+00 7.96802e-02 5.20393e-02 -6.78543e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.444e-01 2.547e-03 1.237e-02 -9.665e-03 - 2.547e-03 2.466e-01 2.750e-02 2.146e-02 - 1.237e-02 2.750e-02 9.569e-03 2.078e-03 - -9.665e-03 2.146e-02 2.078e-03 6.351e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.41374 1.000 0.010 0.256 -0.245 - 2 0.69659 0.010 1.000 0.566 0.542 - 3 0.61938 0.256 0.566 1.000 0.267 - 4 0.59812 -0.245 0.542 0.267 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -650 -659.286 +- 0.494375 -19.5932 +- 0.49618 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [480,850] --> [480,850] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [480,850] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10619.9 FROM MIGRAD STATUS=INITIATE 56 CALLS 57 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.55000e+02 5.00000e+00 0.00000e+00 -4.21165e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 4.34414e+00 - 3 sg_p2 9.15926e-01 5.00000e-01 0.00000e+00 4.72583e+01 - 4 sg_p3 1.18271e+00 7.00000e-01 -7.23594e-01 -8.98084e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10560.4 FROM MIGRAD STATUS=CONVERGED 181 CALLS 182 TOTAL - EDM=7.5268e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.61397e+02 5.44897e-01 1.34246e-03 4.14273e-01 - 2 sg_p1 1.90727e+01 5.64070e-01 3.46865e-03 -1.30068e-03 - 3 sg_p2 1.41469e+00 8.73074e-02 2.15873e-03 1.72287e-02 - 4 sg_p3 1.12865e+00 7.39900e-02 1.34213e-03 2.26005e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.970e-01 -9.007e-02 2.908e-03 -1.929e-02 - -9.007e-02 3.188e-01 2.788e-02 2.852e-02 - 2.908e-03 2.788e-02 7.626e-03 2.278e-03 - -1.929e-02 2.852e-02 2.278e-03 5.476e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.54360 1.000 -0.293 0.061 -0.478 - 2 0.76817 -0.293 1.000 0.566 0.683 - 3 0.61547 0.061 0.566 1.000 0.353 - 4 0.74345 -0.478 0.683 0.353 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10560.4 FROM HESSE STATUS=OK 23 CALLS 205 TOTAL - EDM=7.54443e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.61397e+02 5.45454e-01 2.68492e-04 2.58749e-01 - 2 sg_p1 1.90727e+01 5.66991e-01 1.38746e-04 2.11267e-01 - 3 sg_p2 1.41469e+00 8.76116e-02 8.63490e-05 -4.49065e-01 - 4 sg_p3 1.12865e+00 7.42730e-02 2.68425e-04 -7.44396e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.976e-01 -9.125e-02 2.820e-03 -1.942e-02 - -9.125e-02 3.221e-01 2.831e-02 2.890e-02 - 2.820e-03 2.831e-02 7.680e-03 2.324e-03 - -1.942e-02 2.890e-02 2.324e-03 5.518e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.54492 1.000 -0.295 0.059 -0.479 - 2 0.77092 -0.295 1.000 0.569 0.685 - 3 0.61896 0.059 0.569 1.000 0.357 - 4 0.74573 -0.479 0.685 0.357 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -650 -661.397 +- 0.545454 -19.0727 +- 0.566991 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [480,850] --> [480,850] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [480,850] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10830.7 FROM MIGRAD STATUS=INITIATE 54 CALLS 55 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.55000e+02 5.00000e+00 0.00000e+00 -4.44740e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 -4.26729e+01 - 3 sg_p2 1.00225e+00 5.00000e-01 0.00000e+00 7.37985e+01 - 4 sg_p3 1.39341e+00 7.00000e-01 -6.45856e-01 4.14284e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10770.7 FROM MIGRAD STATUS=CONVERGED 158 CALLS 159 TOTAL - EDM=5.54438e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.61183e+02 5.58601e-01 1.30703e-03 7.27339e-02 - 2 sg_p1 1.87556e+01 6.26067e-01 3.36619e-03 1.16170e-01 - 3 sg_p2 1.45666e+00 9.85527e-02 2.30722e-03 -2.01954e-01 - 4 sg_p3 1.14103e+00 8.65798e-02 1.35416e-03 -1.57200e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.121e-01 -1.357e-01 -1.260e-03 -2.677e-02 - -1.357e-01 3.929e-01 3.854e-02 4.159e-02 - -1.260e-03 3.854e-02 9.719e-03 3.757e-03 - -2.677e-02 4.159e-02 3.757e-03 7.499e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.61009 1.000 -0.388 -0.023 -0.553 - 2 0.83171 -0.388 1.000 0.624 0.766 - 3 0.66919 -0.023 0.624 1.000 0.440 - 4 0.81600 -0.553 0.766 0.440 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10770.7 FROM HESSE STATUS=OK 23 CALLS 182 TOTAL - EDM=5.46307e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.61183e+02 5.24911e-01 5.22814e-05 2.49922e-01 - 2 sg_p1 1.87556e+01 5.52841e-01 6.73237e-04 1.68209e-01 - 3 sg_p2 1.45666e+00 9.52773e-02 4.61444e-04 -4.30514e-01 - 4 sg_p3 1.14103e+00 7.38096e-02 5.41663e-05 -7.39598e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.756e-01 -7.938e-02 3.701e-03 -1.800e-02 - -7.938e-02 3.062e-01 3.107e-02 2.800e-02 - 3.701e-03 3.107e-02 9.083e-03 2.581e-03 - -1.800e-02 2.800e-02 2.581e-03 5.449e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.53953 1.000 -0.273 0.074 -0.465 - 2 0.77793 -0.273 1.000 0.589 0.686 - 3 0.63966 0.074 0.589 1.000 0.367 - 4 0.74489 -0.465 0.686 0.367 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -650 -661.183 +- 0.524911 -18.7556 +- 0.552841 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [480,850] --> [480,850] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [480,850] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=9992.6 FROM MIGRAD STATUS=INITIATE 54 CALLS 55 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.55000e+02 5.00000e+00 0.00000e+00 -3.62893e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 -5.90807e+01 - 3 sg_p2 9.83939e-01 5.00000e-01 0.00000e+00 6.33616e+01 - 4 sg_p3 1.46565e+00 7.00000e-01 -6.20255e-01 8.16516e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9935.37 FROM MIGRAD STATUS=CONVERGED 169 CALLS 170 TOTAL - EDM=0.000159227 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.61178e+02 7.39572e-01 1.34451e-03 -1.70686e-01 - 2 sg_p1 1.89964e+01 8.67158e-01 3.47868e-03 7.20693e-02 - 3 sg_p2 1.45598e+00 1.10743e-01 2.29383e-03 -2.60727e-02 - 4 sg_p3 1.13815e+00 1.28466e-01 1.46277e-03 -4.42263e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.471e-01 -4.069e-01 -2.161e-02 -7.041e-02 - -4.069e-01 7.555e-01 6.659e-02 9.706e-02 - -2.161e-02 6.659e-02 1.227e-02 8.055e-03 - -7.041e-02 9.706e-02 8.055e-03 1.652e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.76850 1.000 -0.633 -0.264 -0.741 - 2 0.90376 -0.633 1.000 0.692 0.869 - 3 0.72860 -0.264 0.692 1.000 0.566 - 4 0.90364 -0.741 0.869 0.566 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=9935.37 FROM HESSE STATUS=OK 23 CALLS 193 TOTAL - EDM=0.000158903 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.61178e+02 7.43466e-01 2.68901e-04 2.49690e-01 - 2 sg_p1 1.89964e+01 8.64124e-01 6.95735e-04 2.00873e-01 - 3 sg_p2 1.45598e+00 1.09398e-01 9.17533e-05 -4.30811e-01 - 4 sg_p3 1.13815e+00 1.28692e-01 2.92554e-04 -7.40712e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 5.529e-01 -4.125e-01 -2.195e-02 -7.136e-02 - -4.125e-01 7.502e-01 6.495e-02 9.696e-02 - -2.195e-02 6.495e-02 1.198e-02 7.923e-03 - -7.136e-02 9.696e-02 7.923e-03 1.658e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.77128 1.000 -0.641 -0.270 -0.745 - 2 0.90304 -0.641 1.000 0.685 0.870 - 3 0.72136 -0.270 0.685 1.000 0.562 - 4 0.90400 -0.745 0.870 0.562 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -650 -661.178 +- 0.743466 -18.9964 +- 0.864124 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [480,850] --> [480,850] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [480,850] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [580,750] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=11483.6 FROM MIGRAD STATUS=INITIATE 55 CALLS 56 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.55000e+02 5.00000e+00 0.00000e+00 -2.74697e+02 - 2 sg_p1 1.75000e+01 1.50000e+00 0.00000e+00 4.72491e+01 - 3 sg_p2 7.99758e-01 5.00000e-01 0.00000e+00 -2.45884e+02 - 4 sg_p3 1.30853e+00 7.00000e-01 -6.76585e-01 3.62491e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=11413.9 FROM HESSE STATUS=OK 31 CALLS 214 TOTAL - EDM=0.000179347 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.61256e+02 8.07788e-01 1.02475e-03 4.77630e-01 - 2 sg_p1 1.89964e+01 1.08091e+00 3.49772e-03 1.37583e-01 - 3 sg_p2 1.45364e+00 1.98903e-01 2.28196e-03 -3.12364e-01 - 4 sg_p3 1.13104e+00 1.04915e-01 1.45795e-03 2.20302e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=11413.9 FROM MIGRAD STATUS=CONVERGED 223 CALLS 224 TOTAL - EDM=4.35241e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 100.0 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 6.61254e+02 3.21033e-01 -6.85513e-05 2.09409e-01 - 2 sg_p1 1.89941e+01 4.43174e-01 -3.15216e-04 9.14503e-02 - 3 sg_p2 1.45327e+00 7.44907e-02 -1.59636e-04 -3.27444e-01 - 4 sg_p3 1.13082e+00 4.34031e-02 -8.50837e-05 8.12827e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.031e-01 3.647e-02 1.175e-02 3.896e-03 - 3.647e-02 1.966e-01 1.850e-02 1.029e-02 - 1.175e-02 1.850e-02 5.551e-03 1.469e-03 - 3.896e-03 1.029e-02 1.469e-03 1.884e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.49775 1.000 0.256 0.491 0.280 - 2 0.64400 0.256 1.000 0.560 0.535 - 3 0.67669 0.491 0.560 1.000 0.454 - 4 0.57117 0.280 0.535 0.454 1.000 - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -4.6515e+00 2.2931e-01 1.6841e+00 6.7381e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 4.658200 TO DIAGONAL. - FCN=11413.9 FROM HESSE STATUS=NOT POSDEF 25 CALLS 249 TOTAL - EDM=0.0178461 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 6.61254e+02 3.25109e+00 4.09899e-04 2.52855e-01 - 2 sg_p1 1.89941e+01 1.45159e+00 1.39909e-03 2.00554e-01 - 3 sg_p2 1.45327e+00 6.02184e-01 9.12783e-04 -4.32003e-01 - 4 sg_p3 1.13082e+00 2.35099e-02 5.83181e-04 -7.43554e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.063e+01 4.733e+00 -1.984e+00 -3.774e-02 - 4.733e+00 2.135e+00 -8.861e-01 -1.641e-02 - -1.984e+00 -8.861e-01 3.715e-01 7.009e-03 - -3.774e-02 -1.641e-02 7.009e-03 5.527e-04 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99842 1.000 0.993 -0.998 -0.492 - 2 0.99509 0.993 1.000 -0.995 -0.478 - 3 0.99882 -0.998 -0.995 1.000 0.489 - 4 0.50219 -0.492 -0.478 0.489 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -650 -661.254 +- 3.25109 -18.9941 +- 1.45159 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 661.215 +- 0.720486 (stat) - 1.92885 + 1.27271 (syst); -1.96221/+1.32271 (total) - Uncertainty on sg_p1 = 18.9981 +- 0.837759 (stat) - 0.242524 + 0.595022 (syst); -0.484023/+0.727675 (total) - Uncertainty on sg_p2 = 1.45525 +- 0.105708 (stat) - 0.0405567 + 0.0276059 (syst); -0.0666212/+0.0596291 (total) - Uncertainty on sg_p3 = 1.13503 +- 0.12401 (stat) - 0.00638242 + 0.168157 (syst); -0.0623326/+0.179225 (total) - === Baseline plot ===
- norm = 172.355 -JEC lnN 1.021 - -JER lnN 1.01174 - -btag lnN 1.06923 - -sg_p0 param 661.215 -1.96221/+1.32271 -sg_p1 param 18.9981 -0.484023/+0.727675 -sg_p2 param 1.45525 -0.0666212/+0.0596291 -sg_p3 param 1.13503 -0.0623326/+0.179225 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_750_crystal_1_550_1200/data_bkg.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_750_crystal_1_550_1200/data_bkg.log deleted file mode 100644 index a966e12..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_750_crystal_1_550_1200/data_bkg.log +++ /dev/null @@ -1,690 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10879.7 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 6.74624e-01 5.09000e-01 -8.31364e-01 -1.01971e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -3.20610e+01 - 3 par_crystal_2 5.00000e+02 2.00000e+01 0.00000e+00 -9.48837e+00 - 4 par_crystal_3 1.05000e+02 1.90000e+01 0.00000e+00 2.45317e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7116e+01 9.9978e-01 1.9597e+00 1.8156e+01 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 17.134017 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 27 CALLS 314 TOTAL - EDM=0.131054 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.06594e+00 6.09301e-02 1.43210e-03 -8.77809e-01 - 2 par_crystal_1 5.09576e+00 7.69298e-02 8.09031e-02 -5.13188e-02 - 3 par_crystal_2 4.95224e+02 7.91481e+01 2.17679e-03 -5.43249e-01 - 4 par_crystal_3 1.90900e+02 9.54958e+00 1.13079e-02 4.60762e-02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 477 CALLS 478 TOTAL - EDM=0.0370129 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.11079e+00 8.93309e-02 0.00000e+00 -4.75984e-01 - 2 par_crystal_1 5.08061e+00 3.60144e-01 0.00000e+00 -1.14416e-01 - 3 par_crystal_2 4.76040e+02 1.75614e+01 0.00000e+00 -2.32451e-01 - 4 par_crystal_3 1.99914e+02 2.77391e+01 0.00000e+00 -7.67572e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.985e-03 -2.091e-03 1.499e+00 2.820e-01 - -2.091e-03 2.873e-02 -7.387e-01 -2.900e-02 - 1.499e+00 -7.387e-01 3.118e+02 5.244e+01 - 2.820e-01 -2.900e-02 5.244e+01 1.008e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99775 1.000 -0.138 0.950 0.994 - 2 0.79882 -0.138 1.000 -0.247 -0.054 - 3 0.95717 0.950 -0.247 1.000 0.935 - 4 0.99764 0.994 -0.054 0.935 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.8 FROM HESSE STATUS=OK 27 CALLS 505 TOTAL - EDM=0.0183624 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.11079e+00 4.31984e-02 1.44775e-03 -6.03431e-01 - 2 par_crystal_1 5.08061e+00 3.28337e+00 6.64371e-02 1.44728e+00 - 3 par_crystal_2 4.76040e+02 8.02153e+00 1.45036e-02 3.38355e+00 - 4 par_crystal_3 1.99914e+02 2.26294e+01 4.50606e-02 1.52819e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.866e-03 -1.951e-03 -2.584e-03 1.946e-02 - -1.951e-03 1.028e-01 6.675e-04 3.793e-04 - -2.584e-03 6.675e-04 6.449e+01 1.116e+00 - 1.946e-02 3.793e-04 1.116e+00 8.140e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.21215 1.000 -0.141 -0.007 0.158 - 2 0.14274 -0.141 1.000 0.000 0.000 - 3 0.05109 -0.007 0.000 1.000 0.049 - 4 0.16712 0.158 0.000 0.049 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10978.6 FROM MIGRAD STATUS=INITIATE 68 CALLS 69 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 6.03110e+02 3.00000e+01 -8.97402e-01 -6.52175e+01 - 2 par_gaus_exp_1 5.45000e+01 9.10000e+00 0.00000e+00 -4.62060e+02 - 3 par_gaus_exp_2 4.12114e-01 3.05000e-01 0.00000e+00 1.25553e+03 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.9 FROM HESSE STATUS=OK 18 CALLS 182 TOTAL - EDM=0.000691453 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.46431e+02 6.06936e+00 3.17833e-03 -3.92855e-01 - 2 par_gaus_exp_1 6.65716e+01 1.75685e+01 2.62647e-03 1.43349e-01 - 3 par_gaus_exp_2 3.07505e-01 8.37981e-02 8.79822e-04 -3.06196e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM MIGRAD STATUS=CONVERGED 316 CALLS 317 TOTAL - EDM=9.19369e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.62504e+02 3.53152e+00 1.63243e-03 -1.66316e-01 - 2 par_gaus_exp_1 2.46552e+01 1.25211e+01 1.75085e-03 -3.48771e-01 - 3 par_gaus_exp_2 1.14604e-01 5.89219e-02 6.31447e-04 9.83138e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.247e+01 -1.544e+01 -6.961e-02 - -1.544e+01 1.643e+02 7.558e-01 - -6.961e-02 7.558e-01 3.493e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.35636 1.000 -0.341 -0.333 - 2 0.99789 -0.341 1.000 0.998 - 3 0.99788 -0.333 0.998 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM HESSE STATUS=OK 16 CALLS 333 TOTAL - EDM=9.89177e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 5.62504e+02 3.77274e+00 6.52972e-05 8.34552e-02 - 2 par_gaus_exp_1 2.46552e+01 1.46349e+01 3.50170e-04 -7.15413e-01 - 3 par_gaus_exp_2 1.14604e-01 6.93856e-02 1.26289e-04 -1.27868e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.424e+01 -2.545e+01 -1.157e-01 - -2.545e+01 2.286e+02 1.052e+00 - -1.157e-01 1.052e+00 4.855e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.45683 1.000 -0.446 -0.440 - 2 0.99849 -0.446 1.000 0.998 - 3 0.99848 -0.440 0.998 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (13168.6) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=575, par_novo_1=100, par_novo_2=1.58864 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 575,par_novo_1 = 100,par_novo_2 = 1.58864) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=645, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=655, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=665, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=675, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=685, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=695, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=705, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=715, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=725, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=735, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=745, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=755, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - ... (remaining 46 messages suppressed) - - FCN=13054.5 FROM MIGRAD STATUS=INITIATE 14 CALLS 15 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.75000e+02 1.50000e+01 2.01358e-01 -1.22938e+03 - 2 par_novo_1 1.00000e+02 2.00000e+01 2.01358e-01 -6.98326e+03 - 3 par_novo_2 0.00000e+00 2.00000e+01 2.01358e-01 1.51249e+06 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM MIGRAD STATUS=CONVERGED 220 CALLS 221 TOTAL - EDM=2.09668e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.00000e+02 1.21837e+02 1.25149e-01 -7.30463e-04 - 2 par_novo_1 1.30637e+02 1.58558e+01 3.16845e-03 -1.76078e-02 - 3 par_novo_2 -6.95187e-01 1.36663e-01 2.61078e-05 1.74080e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.121e-01 -9.460e-01 -6.449e-03 - -9.460e-01 2.538e+02 2.099e+00 - -6.449e-03 2.099e+00 1.868e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.21023 1.000 -0.177 -0.141 - 2 0.96488 -0.177 1.000 0.964 - 3 0.96445 -0.141 0.964 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM HESSE STATUS=OK 20 CALLS 241 TOTAL - EDM=1.01397e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 5.00000e+02 1.20312e+02 5.00000e-01 -1.57325e+00 - 2 par_novo_1 1.30637e+02 2.01762e+01 1.26738e-04 3.11381e-01 - 3 par_novo_2 -6.95187e-01 1.62575e-01 1.04431e-06 -6.95192e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.070e-01 -4.278e+00 -2.995e-02 - -4.278e+00 4.133e+02 3.212e+00 - -2.995e-02 3.212e+00 2.643e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.69436 1.000 -0.643 -0.563 - 2 0.97859 -0.643 1.000 0.972 - 3 0.97501 -0.563 0.972 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10877 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 6.33849e-01 5.09000e-01 -8.55460e-01 -1.25390e+02 - 2 par_crystal_1_1 2.55500e+00 5.09000e-01 0.00000e+00 -2.69495e+01 - 3 par_crystal_1_2 5.50000e+02 3.00000e+01 0.00000e+00 -1.44080e+01 - 4 par_crystal_1_3 1.04500e+02 1.91000e+01 0.00000e+00 3.07979e+01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.43469 added to diagonal of error matrix - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.5401e+00 8.4221e-02 1.8087e+00 3.6472e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 1.543714 TO DIAGONAL. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.9 FROM HESSE STATUS=OK 25 CALLS 485 TOTAL - EDM=0.0491336 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.05623e+00 1.52463e-01 1.42446e-03 -1.90900e+00 - 2 par_crystal_1_1 5.09988e+00 3.18944e+00 7.54811e-02 -8.93342e-03 - 3 par_crystal_1_2 4.96280e+02 4.98347e+01 9.02051e-03 3.58498e-02 - 4 par_crystal_1_3 1.89188e+02 2.78069e+01 1.02856e-02 -2.38185e-01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 538 CALLS 539 TOTAL - EDM=10.0867 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 14.1 per cent - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.09723e+00 3.02575e-02 -0.00000e+00 5.47416e+01 - 2 par_crystal_1_1 5.09997e+00 3.18368e+00 0.00000e+00 -3.90351e-03 - 3 par_crystal_1_2 4.83329e+02 2.76558e+01 0.00000e+00 7.05236e+00 - 4 par_crystal_1_3 1.96552e+02 5.80629e+00 -0.00000e+00 4.39990e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.156e-04 -1.804e-07 -6.742e-01 1.111e-01 - -1.804e-07 1.763e-04 7.888e-03 -2.154e-03 - -6.742e-01 7.888e-03 7.759e+02 -1.463e+02 - 1.111e-01 -2.154e-03 -1.463e+02 3.432e+01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.82553 1.000 -0.000 -0.800 0.627 - 2 0.03650 -0.000 1.000 0.021 -0.028 - 3 0.94703 -0.800 0.021 1.000 -0.896 - 4 0.90888 0.627 -0.028 -0.896 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -9.7852e-01 9.9996e-01 1.9836e+00 1.9949e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.980510 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 29 CALLS 568 TOTAL - EDM=238.514 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 1.09723e+00 4.25322e-02 2.54943e-04 -6.09913e-01 - 2 par_crystal_1_1 5.09997e+00 7.84798e-01 8.54763e-02 1.56580e+00 - 3 par_crystal_1_2 4.83329e+02 1.87856e+01 1.76414e-03 -4.60588e-01 - 4 par_crystal_1_3 1.96552e+02 5.33115e+00 2.63738e-03 1.30128e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.809e-03 -2.197e-07 8.001e-01 2.280e-01 - -2.197e-07 1.053e-04 -1.173e-04 -3.665e-05 - 8.001e-01 -1.173e-04 3.552e+02 1.010e+02 - 2.280e-01 -3.665e-05 1.010e+02 2.885e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99849 1.000 -0.001 0.998 0.998 - 2 0.00265 -0.001 1.000 -0.001 -0.001 - 3 0.99848 0.998 -0.001 1.000 0.998 - 4 0.99849 0.998 -0.001 0.998 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_550_1200 = 1266.17 - Background number of gaus_exp_550_1200 = 1266.17 - Background number of novo_550_1200 = 1266.17 - Background number of crystal_1_550_1200 = 1266.17 - Background number of gaus_bern_550_1200 = 1266.17 - Background number of landau_550_1200 = 1266.17 -par_crystal_0 param 1.11079 0.0431984 -par_crystal_1 param 5.08061 3.28337 -par_crystal_2 param 476.04 8.02153 -par_crystal_3 param 199.914 22.6294 -par_crystal_1_0 param 1.09723 0.0425322 -par_crystal_1_1 param 5.09997 0.784798 -par_crystal_1_2 param 483.329 18.7856 -par_crystal_1_3 param 196.552 5.33115 -par_gaus_exp_0 param 562.504 3.77274 -par_gaus_exp_1 param 24.6552 14.6349 -par_gaus_exp_2 param 0.114604 0.0693856 -par_novo_0 param 500 120.312 -par_novo_1 param 130.637 20.1762 -par_novo_2 param -0.695187 0.162575 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_750_crystal_1_550_1200/datacard_750_crystal_1_550_1200.txt b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_750_crystal_1_550_1200/datacard_750_crystal_1_550_1200.txt deleted file mode 100644 index c484fa9..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_750_crystal_1_550_1200/datacard_750_crystal_1_550_1200.txt +++ /dev/null @@ -1,29 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_750.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_crystal_1_550_1200.root HbbHbb:f_crystal_1 -shapes data_obs HbbHbb w_background_crystal_1_550_1200.root HbbHbb:data_obs_crystal_1_550_1200 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 4.13008 1266.17 -lumi_13TeV lnN 1.026 - -bTag lnN 1.07417 - -JER lnN 1.01351 - -JEC lnN 1.01674 - -trigger lnN 1.10 - -sg_p0 param 762.526 -1.90284/+1.87677 -sg_p1 param 23.7778 -2.48927/+0.18602 -sg_p2 param 1.45537 -0.326977/+0.0355188 -sg_p3 param 1.20603 -0.183096/+0.0190539 -par_crystal_1_0 param 1.09723 0.0425322 -par_crystal_1_1 param 5.09997 0.784798 -par_crystal_1_2 param 483.329 18.7856 -par_crystal_1_3 param 196.552 5.33115 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_750_crystal_1_550_1200/signal750_sig.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_750_crystal_1_550_1200/signal750_sig.log deleted file mode 100644 index e4e749b..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_750_crystal_1_550_1200/signal750_sig.log +++ /dev/null @@ -1,1000 +0,0 @@ - -Processing test.c... -nSignal_init = 99200 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [480,930] --> [480,930] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [580,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [480,930] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [580,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=28581.6 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.45000e+02 7.00000e+00 0.00000e+00 -1.97285e+02 - 2 sg_p1 3.25000e+01 2.50000e+00 0.00000e+00 -5.26336e+01 - 3 sg_p2 2.50000e+00 5.00000e-01 0.00000e+00 -1.34034e+00 - 4 sg_p3 8.83623e-01 7.00000e-01 -8.44345e-01 -8.85145e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - MINUIT WARNING IN HESSE - ============== Second derivative enters zero, param 3 - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=28481.9 FROM HESSE STATUS=OK 29 CALLS 226 TOTAL - EDM=0.176135 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.41076e+02 5.65606e-01 1.82652e-03 1.78201e-02 - 2 sg_p1 3.85553e+01 5.02370e-01 4.68920e-03 -1.33549e-02 - 3 sg_p2 2.98442e+00 1.00281e+00 5.00000e-01 -1.40904e+00 - 4 sg_p3 1.76206e+00 9.56239e-02 3.11054e-03 1.18363e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=28481.9 FROM MIGRAD STATUS=CONVERGED 237 CALLS 238 TOTAL - EDM=7.28057e-09 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 0.0 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.41076e+02 5.65607e-01 1.02030e-05 -2.48246e-04 - 2 sg_p1 3.85547e+01 5.02385e-01 -5.28821e-05 -6.46421e-04 - 3 sg_p2 3.57615e+00 9.22634e-01 2.50000e-01 0.00000e+00 - 4 sg_p3 1.76174e+00 9.56180e-02 -1.05757e-04 -3.32008e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.199e-01 -1.433e-02 -2.179e-05 -1.376e-02 - -1.433e-02 2.526e-01 6.391e-05 2.295e-02 - -2.179e-05 6.391e-05 9.034e-01 1.802e-05 - -1.376e-02 2.295e-02 1.802e-05 9.146e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.26700 1.000 -0.050 -0.000 -0.254 - 2 0.48307 -0.050 1.000 0.000 0.477 - 3 0.00020 -0.000 0.000 1.000 0.000 - 4 0.53025 -0.254 0.477 0.000 1.000 - ********** - ** 18 **HESSE 2000 - ********** - MINUIT WARNING IN HESSE - ============== Second derivative enters zero, param 3 - MINUIT WARNING IN HESSE - ============== Second derivative zero for parameter3 - MNHESS FAILS AND WILL RETURN DIAGONAL MATRIX. - FCN=28481.9 FROM HESSE STATUS=FAILED 7 CALLS 245 TOTAL - EDM=7.28057e-09 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 100.0 per cent - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.41076e+02 5.45075e-01 1.82653e-03 -1.12350e-01 - 2 sg_p1 3.85547e+01 4.39914e-01 1.87568e-03 5.05653e-01 - 3 sg_p2 2.36258e+00 1.23330e+00 2.50000e-01 4.45003e-01 - 4 sg_p3 1.76174e+00 8.10352e-02 -1.05757e-04 -5.19731e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.971e-01 0.000e+00 0.000e+00 0.000e+00 - 0.000e+00 1.936e-01 0.000e+00 0.000e+00 - 0.000e+00 0.000e+00 1.703e+00 0.000e+00 - 0.000e+00 0.000e+00 0.000e+00 6.568e-03 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.00000 1.000 0.000 0.000 0.000 - 2 0.00000 0.000 1.000 0.000 0.000 - 3 0.00000 0.000 0.000 1.000 0.000 - 4 0.00000 0.000 0.000 0.000 1.000 - ERR MATRIX APPROXIMATE -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -750 -741.076 +- 0.545075 -38.5547 +- 0.439914 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [480,930] --> [480,930] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [580,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [480,930] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [580,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=28878.9 FROM MIGRAD STATUS=INITIATE 112 CALLS 113 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.45000e+02 7.00000e+00 0.00000e+00 -1.25454e+02 - 2 sg_p1 3.56130e+01 2.50000e+00 0.00000e+00 6.94117e+01 - 3 sg_p2 1.20743e+00 5.00000e-01 -5.43373e-01 -2.30464e+01 - 4 sg_p3 1.10042e+00 7.00000e-01 0.00000e+00 -5.72255e+02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=28834.9 FROM HESSE STATUS=OK 29 CALLS 423 TOTAL - EDM=0.262248 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.44466e+02 5.73304e-01 1.86583e-03 -3.18372e-03 - 2 sg_p1 3.93530e+01 5.09571e-01 5.09296e-03 1.74419e-02 - 3 sg_p2 2.25372e+00 5.17025e-01 3.03226e-01 -3.45943e+00 - 4 sg_p3 1.81743e+00 9.76205e-02 3.26395e-03 -1.13200e-02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=28834.9 FROM MIGRAD STATUS=CONVERGED 436 CALLS 437 TOTAL - EDM=1.01318e-08 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 0.0 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.44466e+02 5.73304e-01 -7.43401e-07 -1.39873e-04 - 2 sg_p1 3.93527e+01 5.09582e-01 -3.36925e-05 -1.24591e-03 - 3 sg_p2 2.63229e+00 5.18825e-01 1.51613e-01 0.00000e+00 - 4 sg_p3 1.81743e+00 9.76204e-02 -7.43797e-07 -3.30431e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.287e-01 8.912e-03 -6.933e-06 -1.113e-02 - 8.912e-03 2.599e-01 3.934e-05 2.184e-02 - -6.933e-06 3.934e-05 2.731e-01 9.253e-06 - -1.113e-02 2.184e-02 9.253e-06 9.533e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.23810 1.000 0.030 -0.000 -0.199 - 2 0.45486 0.030 1.000 0.000 0.439 - 3 0.00020 -0.000 0.000 1.000 0.000 - 4 0.48738 -0.199 0.439 0.000 1.000 - ********** - ** 18 **HESSE 2000 - ********** - MINUIT WARNING IN HESSE - ============== Second derivative enters zero, param 3 - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=28834.9 FROM HESSE STATUS=OK 31 CALLS 468 TOTAL - EDM=0.968431 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.44466e+02 5.73402e-01 7.46332e-04 -1.52619e-02 - 2 sg_p1 3.93527e+01 5.10469e-01 2.03719e-03 5.80225e-01 - 3 sg_p2 2.63229e+00 6.39685e-01 5.10000e-01 5.29399e-02 - 4 sg_p3 1.81743e+00 9.78361e-02 1.30558e-03 -5.01491e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.288e-01 8.226e-03 3.816e-12 -1.124e-02 - 8.226e-03 2.608e-01 8.047e-12 2.210e-02 - 3.816e-12 8.047e-12 4.185e-01 -1.617e-12 - -1.124e-02 2.210e-02 -1.617e-12 9.575e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.23882 1.000 0.028 0.000 -0.200 - 2 0.45797 0.028 1.000 0.000 0.442 - 3 0.00000 0.000 0.000 1.000 -0.000 - 4 0.49076 -0.200 0.442 -0.000 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -750 -744.466 +- 0.573402 -39.3527 +- 0.510469 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [480,930] --> [480,930] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [580,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [480,930] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [580,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=28016 FROM MIGRAD STATUS=INITIATE 72 CALLS 73 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.45000e+02 7.00000e+00 0.00000e+00 3.75442e+02 - 2 sg_p1 3.34297e+01 2.50000e+00 7.44428e-02 -3.45085e+00 - 3 sg_p2 2.50000e+00 5.00000e-01 0.00000e+00 -3.67110e-01 - 4 sg_p3 9.50531e-01 7.00000e-01 0.00000e+00 -4.25357e+02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.1257e+00 1.0000e+00 1.0212e+00 3.1045e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 1.128794 TO DIAGONAL. - FCN=27907.7 FROM HESSE STATUS=NOT POSDEF 25 CALLS 189 TOTAL - EDM=0.288891 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.37485e+02 6.72582e+00 1.83947e-03 6.18860e+00 - 2 sg_p1 3.83510e+01 1.04522e+00 4.63621e-03 1.08179e+00 - 3 sg_p2 3.44126e+00 3.98936e+00 5.00000e-01 -6.55275e-02 - 4 sg_p3 1.83188e+00 4.34020e-01 3.32682e-03 -4.03275e+00 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=27907.7 FROM MIGRAD STATUS=FAILED 299 CALLS 300 TOTAL - EDM=0.0114055 STRATEGY= 1 ERR MATRIX APPROXIMATE - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.37435e+02 5.50832e-01 1.82376e-03 7.13141e-01 - 2 sg_p1 3.83308e+01 4.54574e-01 4.46650e-03 -6.17184e-02 - 3 sg_p2 3.40751e+00 3.90281e+00 5.00000e-01 -3.55749e-02 - 4 sg_p3 1.83269e+00 3.76328e-02 3.32811e-03 -3.75326e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.034e-01 1.043e-03 0.000e+00 -3.749e-03 - 1.043e-03 2.068e-01 0.000e+00 5.570e-03 - 0.000e+00 0.000e+00 3.813e+01 0.000e+00 - -3.749e-03 5.570e-03 0.000e+00 1.416e-03 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.19272 1.000 0.004 0.000 -0.181 - 2 0.33174 0.004 1.000 0.000 0.325 - 3 0.00000 0.000 0.000 1.000 0.000 - 4 0.37301 -0.181 0.325 0.000 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=27907.7 FROM HESSE STATUS=OK 29 CALLS 329 TOTAL - EDM=0.0259975 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.37435e+02 5.53707e-01 3.64751e-04 -2.17856e-01 - 2 sg_p1 3.83308e+01 4.70224e-01 1.78660e-04 4.85291e-01 - 3 sg_p2 3.40751e+00 3.90281e+00 5.00000e-01 3.71491e-01 - 4 sg_p3 1.83269e+00 1.03955e-01 8.87511e-02 -4.96528e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.066e-01 -6.417e-03 3.317e-09 -1.192e-02 - -6.417e-03 2.212e-01 -1.340e-08 1.984e-02 - 3.317e-09 -1.340e-08 3.813e+01 -1.310e-09 - -1.192e-02 1.984e-02 -1.310e-09 1.081e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.21706 1.000 -0.025 0.000 -0.207 - 2 0.41028 -0.025 1.000 -0.000 0.406 - 3 0.00000 0.000 -0.000 1.000 -0.000 - 4 0.45113 -0.207 0.406 -0.000 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -750 -737.435 +- 0.553707 -38.3308 +- 0.470224 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [520,930] --> [520,930] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [520,930] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=26875.6 FROM MIGRAD STATUS=INITIATE 56 CALLS 57 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.50000e+02 6.00000e+00 0.00000e+00 -1.68092e+03 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 1.28555e+02 - 3 sg_p2 9.73975e-01 5.00000e-01 0.00000e+00 1.06582e+02 - 4 sg_p3 1.78677e+00 7.00000e-01 -5.11511e-01 -3.22236e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=26474.3 FROM MIGRAD STATUS=CONVERGED 164 CALLS 165 TOTAL - EDM=2.25921e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.62526e+02 3.87529e-01 1.47757e-03 1.66856e-01 - 2 sg_p1 2.37778e+01 3.73075e-01 5.01466e-03 1.71102e-02 - 3 sg_p2 1.45537e+00 7.21350e-02 3.19921e-03 -4.87398e-02 - 4 sg_p3 1.20603e+00 3.81131e-02 1.25918e-03 -2.52445e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.502e-01 -1.364e-02 4.886e-03 -4.422e-03 - -1.364e-02 1.393e-01 9.457e-03 8.215e-03 - 4.886e-03 9.457e-03 5.205e-03 5.123e-04 - -4.422e-03 8.215e-03 5.123e-04 1.453e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.38125 1.000 -0.094 0.175 -0.299 - 2 0.62877 -0.094 1.000 0.351 0.577 - 3 0.41098 0.175 0.351 1.000 0.186 - 4 0.62880 -0.299 0.577 0.186 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=26474.3 FROM HESSE STATUS=OK 23 CALLS 188 TOTAL - EDM=2.25799e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.62526e+02 3.86914e-01 2.95513e-04 4.30739e-01 - 2 sg_p1 2.37778e+01 3.70943e-01 2.00586e-04 -5.19330e-01 - 3 sg_p2 1.45537e+00 7.09082e-02 1.27968e-04 -4.31078e-01 - 4 sg_p3 1.20603e+00 3.81052e-02 2.51836e-04 -7.14737e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.497e-01 -1.520e-02 4.447e-03 -4.507e-03 - -1.520e-02 1.377e-01 8.786e-03 8.163e-03 - 4.447e-03 8.786e-03 5.030e-03 4.843e-04 - -4.507e-03 8.163e-03 4.843e-04 1.452e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.37767 1.000 -0.106 0.162 -0.306 - 2 0.62321 -0.106 1.000 0.334 0.577 - 3 0.39101 0.162 0.334 1.000 0.179 - 4 0.62860 -0.306 0.577 0.179 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -750 -762.526 +- 0.386914 -23.7778 +- 0.370943 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 - fit done -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [520,930] --> [520,930] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [520,930] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=27294.4 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.50000e+02 6.00000e+00 0.00000e+00 -1.46095e+03 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 1.72944e+02 - 3 sg_p2 7.03339e-01 5.00000e-01 0.00000e+00 4.74696e+01 - 4 sg_p3 1.99296e+00 7.00000e-01 -4.45137e-01 5.15362e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=26829.4 FROM MIGRAD STATUS=CONVERGED 184 CALLS 185 TOTAL - EDM=3.95104e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.64393e+02 4.66702e-01 1.57008e-03 -7.87347e-02 - 2 sg_p1 2.18741e+01 6.89309e-01 6.78283e-03 4.79306e-02 - 3 sg_p2 1.13032e+00 8.74630e-02 2.49913e-03 -1.65710e-02 - 4 sg_p3 1.03518e+00 4.60093e-02 1.05785e-03 -5.74757e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.178e-01 6.647e-02 1.847e-02 -1.062e-03 - 6.647e-02 4.782e-01 4.788e-02 2.645e-02 - 1.847e-02 4.788e-02 7.654e-03 2.499e-03 - -1.062e-03 2.645e-02 2.499e-03 2.117e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.62194 1.000 0.206 0.452 -0.049 - 2 0.90325 0.206 1.000 0.791 0.831 - 3 0.84679 0.452 0.791 1.000 0.621 - 4 0.86298 -0.049 0.831 0.621 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=26829.4 FROM HESSE STATUS=OK 23 CALLS 208 TOTAL - EDM=3.92733e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.64393e+02 4.66923e-01 3.14016e-04 5.00390e-01 - 2 sg_p1 2.18741e+01 6.85574e-01 2.71313e-04 -8.48247e-01 - 3 sg_p2 1.13032e+00 8.71717e-02 9.99652e-05 -5.79816e-01 - 4 sg_p3 1.03518e+00 4.58105e-02 2.11569e-04 -7.81343e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.180e-01 6.562e-02 1.843e-02 -1.114e-03 - 6.562e-02 4.730e-01 4.734e-02 2.614e-02 - 1.843e-02 4.734e-02 7.603e-03 2.467e-03 - -1.114e-03 2.614e-02 2.467e-03 2.099e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.62241 1.000 0.204 0.453 -0.052 - 2 0.90213 0.204 1.000 0.789 0.830 - 3 0.84567 0.453 0.789 1.000 0.617 - 4 0.86169 -0.052 0.830 0.617 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -750 -764.393 +- 0.466923 -21.8741 +- 0.685574 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [520,930] --> [520,930] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [520,930] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=26264.2 FROM MIGRAD STATUS=INITIATE 52 CALLS 53 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.50000e+02 6.00000e+00 0.00000e+00 -1.46794e+03 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 1.17400e+02 - 3 sg_p2 1.05302e+00 5.00000e-01 0.00000e+00 5.34210e+01 - 4 sg_p3 2.10879e+00 7.00000e-01 -4.08780e-01 9.24467e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=25933.1 FROM MIGRAD STATUS=CONVERGED 173 CALLS 174 TOTAL - EDM=5.02008e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.60633e+02 4.10250e-01 1.42251e-03 1.29588e-01 - 2 sg_p1 2.27934e+01 4.40097e-01 5.56534e-03 -9.52994e-03 - 3 sg_p2 1.26768e+00 7.07747e-02 2.70462e-03 -3.34938e-03 - 4 sg_p3 1.17410e+00 3.88711e-02 1.21241e-03 -3.97072e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.683e-01 2.199e-02 1.072e-02 -2.580e-03 - 2.199e-02 1.941e-01 1.837e-02 1.084e-02 - 1.072e-02 1.837e-02 5.011e-03 9.405e-04 - -2.580e-03 1.084e-02 9.405e-04 1.511e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.48460 1.000 0.122 0.369 -0.162 - 2 0.74869 0.122 1.000 0.589 0.633 - 3 0.66331 0.369 0.589 1.000 0.342 - 4 0.67935 -0.162 0.633 0.342 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=25933.1 FROM HESSE STATUS=OK 23 CALLS 197 TOTAL - EDM=5.03332e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.60633e+02 4.10594e-01 2.84502e-04 3.62318e-01 - 2 sg_p1 2.27934e+01 4.40772e-01 2.22614e-04 -6.78399e-01 - 3 sg_p2 1.26768e+00 7.09147e-02 1.08185e-04 -5.15453e-01 - 4 sg_p3 1.17410e+00 3.89135e-02 4.84963e-05 -7.26883e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.686e-01 2.210e-02 1.079e-02 -2.577e-03 - 2.210e-02 1.946e-01 1.847e-02 1.088e-02 - 1.079e-02 1.847e-02 5.031e-03 9.476e-04 - -2.577e-03 1.088e-02 9.476e-04 1.514e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.48592 1.000 0.122 0.371 -0.161 - 2 0.74959 0.122 1.000 0.590 0.634 - 3 0.66497 0.371 0.590 1.000 0.343 - 4 0.68021 -0.161 0.634 0.343 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -750 -760.633 +- 0.410594 -22.7934 +- 0.440772 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [520,930] --> [520,930] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [520,930] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=26499.7 FROM MIGRAD STATUS=INITIATE 54 CALLS 55 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.50000e+02 6.00000e+00 0.00000e+00 -1.41562e+03 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 1.39733e+02 - 3 sg_p2 8.25062e-01 5.00000e-01 0.00000e+00 1.45082e+01 - 4 sg_p3 2.10061e+00 7.00000e-01 -4.11326e-01 8.60481e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.2210e+00 1.2206e+00 2.0001e+00 2.0003e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 1.223025 TO DIAGONAL. - FCN=26111.1 FROM HESSE STATUS=NOT POSDEF 29 CALLS 181 TOTAL - EDM=41.1386 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.62134e+02 2.03776e-03 1.58217e-05 4.03447e+01 - 2 sg_p1 2.29588e+01 1.67018e-03 5.95918e-05 2.08825e+01 - 3 sg_p2 1.19457e+00 2.72680e-04 2.72376e-05 7.30730e+01 - 4 sg_p3 1.16508e+00 2.68104e-01 1.29100e-06 8.78813e+01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.00425 added to diagonal of error matrix - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -4.5660e-01 -1.6788e-04 2.0585e-14 4.4568e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 0.461061 TO DIAGONAL. - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=26110.6 FROM MIGRAD STATUS=FAILED 468 CALLS 469 TOTAL - EDM=1.25872e+08 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.62214e+02 1.17532e-01 -0.00000e+00 -5.57867e+04 - 2 sg_p1 2.29537e+01 1.01617e-02 0.00000e+00 -1.48052e+04 - 3 sg_p2 1.18371e+00 1.47620e-02 0.00000e+00 -3.24026e+04 - 4 sg_p3 1.15581e+00 5.85135e-04 0.00000e+00 -2.25593e+04 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.381e-02 -5.016e-04 -1.726e-03 -6.872e-05 - -5.016e-04 1.033e-04 4.890e-05 2.365e-06 - -1.726e-03 4.890e-05 2.179e-04 8.608e-06 - -6.872e-05 2.365e-06 8.608e-06 3.424e-07 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99999 1.000 -0.420 -0.995 -0.999 - 2 0.99909 -0.420 1.000 0.326 0.398 - 3 0.99999 -0.995 0.326 1.000 0.997 - 4 0.99958 -0.999 0.398 0.997 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=26110.6 FROM HESSE STATUS=OK 31 CALLS 500 TOTAL - EDM=4.07569e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.62214e+02 6.72563e-04 6.72704e-05 4.19323e-01 - 2 sg_p1 2.29537e+01 5.51296e-04 2.53393e-04 -6.51238e-01 - 3 sg_p2 1.18371e+00 8.97773e-05 1.15823e-04 -5.54498e-01 - 4 sg_p3 1.15581e+00 1.57378e-04 1.66079e-04 -7.33896e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.523e-07 -1.618e-13 9.783e-15 -6.573e-13 - -1.618e-13 3.039e-07 2.059e-14 7.746e-13 - 9.783e-15 2.059e-14 8.060e-09 1.090e-14 - -6.573e-13 7.746e-13 1.090e-14 2.477e-08 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.00001 1.000 -0.000 0.000 -0.000 - 2 0.00001 -0.000 1.000 0.000 0.000 - 3 0.00000 0.000 0.000 1.000 0.000 - 4 0.00001 -0.000 0.000 0.000 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -750 -762.214 +- 0.000672563 -22.9537 +- 0.000551296 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [520,930] --> [520,930] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [520,930] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=27208.5 FROM MIGRAD STATUS=INITIATE 50 CALLS 51 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.50000e+02 6.00000e+00 0.00000e+00 -1.71181e+03 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 1.11815e+02 - 3 sg_p2 9.86241e-01 5.00000e-01 0.00000e+00 8.13644e+01 - 4 sg_p3 2.10880e+00 7.00000e-01 -4.08775e-01 8.43786e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=26768.5 FROM MIGRAD STATUS=CONVERGED 251 CALLS 252 TOTAL - EDM=2.19426e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.62956e+02 4.19070e-01 1.45249e-03 -5.27598e-02 - 2 sg_p1 2.12954e+01 4.98544e-01 7.45088e-03 6.83394e-02 - 3 sg_p2 1.18806e+00 5.51337e-02 2.26922e-03 -3.48477e-02 - 4 sg_p3 1.02393e+00 4.08580e-02 1.04829e-03 -3.83312e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.756e-01 -5.320e-02 2.758e-03 -7.610e-03 - -5.320e-02 2.497e-01 1.564e-02 1.606e-02 - 2.758e-03 1.564e-02 3.040e-03 9.429e-04 - -7.610e-03 1.606e-02 9.429e-04 1.670e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.55737 1.000 -0.254 0.119 -0.444 - 2 0.82936 -0.254 1.000 0.568 0.787 - 3 0.63378 0.119 0.568 1.000 0.419 - 4 0.82799 -0.444 0.787 0.419 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=26768.5 FROM HESSE STATUS=OK 23 CALLS 275 TOTAL - EDM=2.19263e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.62956e+02 4.19119e-01 5.80997e-05 4.46547e-01 - 2 sg_p1 2.12954e+01 4.95694e-01 2.98035e-04 -9.74247e-01 - 3 sg_p2 1.18806e+00 5.50237e-02 9.07687e-05 -5.52454e-01 - 4 sg_p3 1.02393e+00 4.06459e-02 2.09657e-04 -7.85881e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.757e-01 -5.257e-02 2.838e-03 -7.560e-03 - -5.257e-02 2.469e-01 1.543e-02 1.584e-02 - 2.838e-03 1.543e-02 3.028e-03 9.269e-04 - -7.560e-03 1.584e-02 9.269e-04 1.652e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.55751 1.000 -0.252 0.123 -0.444 - 2 0.82718 -0.252 1.000 0.564 0.784 - 3 0.63189 0.123 0.564 1.000 0.414 - 4 0.82600 -0.444 0.784 0.414 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -750 -762.956 +- 0.419119 -21.2954 +- 0.495694 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [520,930] --> [520,930] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [520,930] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=24938.9 FROM MIGRAD STATUS=INITIATE 78 CALLS 79 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.50000e+02 6.00000e+00 0.00000e+00 -1.47220e+03 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 1.27544e+02 - 3 sg_p2 9.01698e-01 5.00000e-01 1.92174e-02 -8.96650e-02 - 4 sg_p3 1.90374e+00 7.00000e-01 0.00000e+00 2.84089e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24568.6 FROM MIGRAD STATUS=CONVERGED 280 CALLS 281 TOTAL - EDM=9.56937e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.62504e+02 4.01949e-01 1.47474e-03 -4.25141e-02 - 2 sg_p1 2.37637e+01 3.86910e-01 5.01010e-03 -4.75722e-02 - 3 sg_p2 1.45752e+00 7.51498e-02 3.25318e-03 8.87634e-02 - 4 sg_p3 1.20613e+00 3.95609e-02 1.25939e-03 3.14350e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.616e-01 -1.460e-02 5.296e-03 -4.757e-03 - -1.460e-02 1.499e-01 1.026e-02 8.842e-03 - 5.296e-03 1.026e-02 5.650e-03 5.555e-04 - -4.757e-03 8.842e-03 5.555e-04 1.565e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.38149 1.000 -0.094 0.175 -0.299 - 2 0.62911 -0.094 1.000 0.352 0.577 - 3 0.41238 0.175 0.352 1.000 0.187 - 4 0.62872 -0.299 0.577 0.187 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24568.6 FROM HESSE STATUS=OK 23 CALLS 304 TOTAL - EDM=9.61039e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.62504e+02 4.01306e-01 5.89896e-05 4.29922e-01 - 2 sg_p1 2.37637e+01 3.84472e-01 1.00202e-03 -5.21496e-01 - 3 sg_p2 1.45752e+00 7.37104e-02 1.30127e-04 -4.30134e-01 - 4 sg_p3 1.20613e+00 3.95531e-02 5.03756e-05 -7.14699e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.611e-01 -1.655e-02 4.777e-03 -4.865e-03 - -1.655e-02 1.480e-01 9.452e-03 8.781e-03 - 4.777e-03 9.452e-03 5.435e-03 5.216e-04 - -4.865e-03 8.781e-03 5.216e-04 1.565e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.37788 1.000 -0.107 0.161 -0.306 - 2 0.62297 -0.107 1.000 0.333 0.577 - 3 0.39044 0.161 0.333 1.000 0.179 - 4 0.62853 -0.306 0.577 0.179 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -750 -762.504 +- 0.401306 -23.7637 +- 0.384472 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [520,930] --> [520,930] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [520,930] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=28920.4 FROM MIGRAD STATUS=INITIATE 56 CALLS 57 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.50000e+02 6.00000e+00 0.00000e+00 -1.80937e+03 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 1.38006e+02 - 3 sg_p2 9.71765e-01 5.00000e-01 0.00000e+00 1.16073e+02 - 4 sg_p3 1.78443e+00 7.00000e-01 -5.12276e-01 -3.52605e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=28488.2 FROM MIGRAD STATUS=CONVERGED 163 CALLS 164 TOTAL - EDM=3.69493e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.62545e+02 3.73878e-01 1.47900e-03 5.87554e-02 - 2 sg_p1 2.37920e+01 3.60128e-01 5.01141e-03 -3.15083e-02 - 3 sg_p2 1.45371e+00 6.94889e-02 3.21558e-03 3.10664e-02 - 4 sg_p3 1.20626e+00 3.67580e-02 1.25830e-03 1.44527e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.398e-01 -1.256e-02 4.559e-03 -4.105e-03 - -1.256e-02 1.298e-01 8.802e-03 7.648e-03 - 4.559e-03 8.802e-03 4.830e-03 4.765e-04 - -4.105e-03 7.648e-03 4.765e-04 1.351e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.38118 1.000 -0.093 0.175 -0.299 - 2 0.62894 -0.093 1.000 0.352 0.577 - 3 0.41146 0.175 0.352 1.000 0.187 - 4 0.62883 -0.299 0.577 0.187 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=28488.2 FROM HESSE STATUS=OK 23 CALLS 187 TOTAL - EDM=3.68603e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.62545e+02 3.73300e-01 5.91598e-05 4.31441e-01 - 2 sg_p1 2.37920e+01 3.58022e-01 1.00228e-03 -5.17141e-01 - 3 sg_p2 1.45371e+00 6.82924e-02 1.28623e-04 -4.31812e-01 - 4 sg_p3 1.20626e+00 3.67501e-02 5.03319e-05 -7.14653e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.394e-01 -1.405e-02 4.150e-03 -4.188e-03 - -1.405e-02 1.283e-01 8.166e-03 7.599e-03 - 4.150e-03 8.166e-03 4.665e-03 4.498e-04 - -4.188e-03 7.599e-03 4.498e-04 1.351e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.37769 1.000 -0.105 0.163 -0.305 - 2 0.62325 -0.105 1.000 0.334 0.577 - 3 0.39121 0.163 0.334 1.000 0.179 - 4 0.62862 -0.305 0.577 0.179 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -750 -762.545 +- 0.3733 -23.792 +- 0.358022 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 762.526 +- 0.386914 (stat) - 1.89298 + 1.86678 (syst); -1.90284/+1.87677 (total) - Uncertainty on sg_p1 = 23.7778 +- 0.370943 (stat) - 2.48235 + 0.0142669 (syst); -2.48927/+0.18602 (total) - Uncertainty on sg_p2 = 1.45537 +- 0.0709082 (stat) - 0.32505 + 0.00214348 (syst); -0.326977/+0.0355188 (total) - Uncertainty on sg_p3 = 1.20603 +- 0.0381052 (stat) - 0.182102 + 0.000222545 (syst); -0.183096/+0.0190539 (total) - === Baseline plot ===
- norm = 206.504 -JEC lnN 1.01674 - -JER lnN 1.01351 - -btag lnN 1.07417 - -sg_p0 param 762.526 -1.90284/+1.87677 -sg_p1 param 23.7778 -2.48927/+0.18602 -sg_p2 param 1.45537 -0.326977/+0.0355188 -sg_p3 param 1.20603 -0.183096/+0.0190539 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_750_novo_550_1200/data_bkg.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_750_novo_550_1200/data_bkg.log deleted file mode 100644 index a966e12..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_750_novo_550_1200/data_bkg.log +++ /dev/null @@ -1,690 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10879.7 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 6.74624e-01 5.09000e-01 -8.31364e-01 -1.01971e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -3.20610e+01 - 3 par_crystal_2 5.00000e+02 2.00000e+01 0.00000e+00 -9.48837e+00 - 4 par_crystal_3 1.05000e+02 1.90000e+01 0.00000e+00 2.45317e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7116e+01 9.9978e-01 1.9597e+00 1.8156e+01 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 17.134017 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 27 CALLS 314 TOTAL - EDM=0.131054 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.06594e+00 6.09301e-02 1.43210e-03 -8.77809e-01 - 2 par_crystal_1 5.09576e+00 7.69298e-02 8.09031e-02 -5.13188e-02 - 3 par_crystal_2 4.95224e+02 7.91481e+01 2.17679e-03 -5.43249e-01 - 4 par_crystal_3 1.90900e+02 9.54958e+00 1.13079e-02 4.60762e-02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 477 CALLS 478 TOTAL - EDM=0.0370129 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.11079e+00 8.93309e-02 0.00000e+00 -4.75984e-01 - 2 par_crystal_1 5.08061e+00 3.60144e-01 0.00000e+00 -1.14416e-01 - 3 par_crystal_2 4.76040e+02 1.75614e+01 0.00000e+00 -2.32451e-01 - 4 par_crystal_3 1.99914e+02 2.77391e+01 0.00000e+00 -7.67572e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.985e-03 -2.091e-03 1.499e+00 2.820e-01 - -2.091e-03 2.873e-02 -7.387e-01 -2.900e-02 - 1.499e+00 -7.387e-01 3.118e+02 5.244e+01 - 2.820e-01 -2.900e-02 5.244e+01 1.008e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99775 1.000 -0.138 0.950 0.994 - 2 0.79882 -0.138 1.000 -0.247 -0.054 - 3 0.95717 0.950 -0.247 1.000 0.935 - 4 0.99764 0.994 -0.054 0.935 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.8 FROM HESSE STATUS=OK 27 CALLS 505 TOTAL - EDM=0.0183624 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.11079e+00 4.31984e-02 1.44775e-03 -6.03431e-01 - 2 par_crystal_1 5.08061e+00 3.28337e+00 6.64371e-02 1.44728e+00 - 3 par_crystal_2 4.76040e+02 8.02153e+00 1.45036e-02 3.38355e+00 - 4 par_crystal_3 1.99914e+02 2.26294e+01 4.50606e-02 1.52819e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.866e-03 -1.951e-03 -2.584e-03 1.946e-02 - -1.951e-03 1.028e-01 6.675e-04 3.793e-04 - -2.584e-03 6.675e-04 6.449e+01 1.116e+00 - 1.946e-02 3.793e-04 1.116e+00 8.140e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.21215 1.000 -0.141 -0.007 0.158 - 2 0.14274 -0.141 1.000 0.000 0.000 - 3 0.05109 -0.007 0.000 1.000 0.049 - 4 0.16712 0.158 0.000 0.049 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10978.6 FROM MIGRAD STATUS=INITIATE 68 CALLS 69 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 6.03110e+02 3.00000e+01 -8.97402e-01 -6.52175e+01 - 2 par_gaus_exp_1 5.45000e+01 9.10000e+00 0.00000e+00 -4.62060e+02 - 3 par_gaus_exp_2 4.12114e-01 3.05000e-01 0.00000e+00 1.25553e+03 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.9 FROM HESSE STATUS=OK 18 CALLS 182 TOTAL - EDM=0.000691453 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.46431e+02 6.06936e+00 3.17833e-03 -3.92855e-01 - 2 par_gaus_exp_1 6.65716e+01 1.75685e+01 2.62647e-03 1.43349e-01 - 3 par_gaus_exp_2 3.07505e-01 8.37981e-02 8.79822e-04 -3.06196e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM MIGRAD STATUS=CONVERGED 316 CALLS 317 TOTAL - EDM=9.19369e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.62504e+02 3.53152e+00 1.63243e-03 -1.66316e-01 - 2 par_gaus_exp_1 2.46552e+01 1.25211e+01 1.75085e-03 -3.48771e-01 - 3 par_gaus_exp_2 1.14604e-01 5.89219e-02 6.31447e-04 9.83138e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.247e+01 -1.544e+01 -6.961e-02 - -1.544e+01 1.643e+02 7.558e-01 - -6.961e-02 7.558e-01 3.493e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.35636 1.000 -0.341 -0.333 - 2 0.99789 -0.341 1.000 0.998 - 3 0.99788 -0.333 0.998 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM HESSE STATUS=OK 16 CALLS 333 TOTAL - EDM=9.89177e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 5.62504e+02 3.77274e+00 6.52972e-05 8.34552e-02 - 2 par_gaus_exp_1 2.46552e+01 1.46349e+01 3.50170e-04 -7.15413e-01 - 3 par_gaus_exp_2 1.14604e-01 6.93856e-02 1.26289e-04 -1.27868e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.424e+01 -2.545e+01 -1.157e-01 - -2.545e+01 2.286e+02 1.052e+00 - -1.157e-01 1.052e+00 4.855e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.45683 1.000 -0.446 -0.440 - 2 0.99849 -0.446 1.000 0.998 - 3 0.99848 -0.440 0.998 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (13168.6) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=575, par_novo_1=100, par_novo_2=1.58864 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 575,par_novo_1 = 100,par_novo_2 = 1.58864) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=645, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=655, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=665, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=675, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=685, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=695, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=705, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=715, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=725, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=735, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=745, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=755, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - ... (remaining 46 messages suppressed) - - FCN=13054.5 FROM MIGRAD STATUS=INITIATE 14 CALLS 15 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.75000e+02 1.50000e+01 2.01358e-01 -1.22938e+03 - 2 par_novo_1 1.00000e+02 2.00000e+01 2.01358e-01 -6.98326e+03 - 3 par_novo_2 0.00000e+00 2.00000e+01 2.01358e-01 1.51249e+06 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM MIGRAD STATUS=CONVERGED 220 CALLS 221 TOTAL - EDM=2.09668e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.00000e+02 1.21837e+02 1.25149e-01 -7.30463e-04 - 2 par_novo_1 1.30637e+02 1.58558e+01 3.16845e-03 -1.76078e-02 - 3 par_novo_2 -6.95187e-01 1.36663e-01 2.61078e-05 1.74080e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.121e-01 -9.460e-01 -6.449e-03 - -9.460e-01 2.538e+02 2.099e+00 - -6.449e-03 2.099e+00 1.868e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.21023 1.000 -0.177 -0.141 - 2 0.96488 -0.177 1.000 0.964 - 3 0.96445 -0.141 0.964 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM HESSE STATUS=OK 20 CALLS 241 TOTAL - EDM=1.01397e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 5.00000e+02 1.20312e+02 5.00000e-01 -1.57325e+00 - 2 par_novo_1 1.30637e+02 2.01762e+01 1.26738e-04 3.11381e-01 - 3 par_novo_2 -6.95187e-01 1.62575e-01 1.04431e-06 -6.95192e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.070e-01 -4.278e+00 -2.995e-02 - -4.278e+00 4.133e+02 3.212e+00 - -2.995e-02 3.212e+00 2.643e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.69436 1.000 -0.643 -0.563 - 2 0.97859 -0.643 1.000 0.972 - 3 0.97501 -0.563 0.972 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10877 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 6.33849e-01 5.09000e-01 -8.55460e-01 -1.25390e+02 - 2 par_crystal_1_1 2.55500e+00 5.09000e-01 0.00000e+00 -2.69495e+01 - 3 par_crystal_1_2 5.50000e+02 3.00000e+01 0.00000e+00 -1.44080e+01 - 4 par_crystal_1_3 1.04500e+02 1.91000e+01 0.00000e+00 3.07979e+01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.43469 added to diagonal of error matrix - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.5401e+00 8.4221e-02 1.8087e+00 3.6472e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 1.543714 TO DIAGONAL. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.9 FROM HESSE STATUS=OK 25 CALLS 485 TOTAL - EDM=0.0491336 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.05623e+00 1.52463e-01 1.42446e-03 -1.90900e+00 - 2 par_crystal_1_1 5.09988e+00 3.18944e+00 7.54811e-02 -8.93342e-03 - 3 par_crystal_1_2 4.96280e+02 4.98347e+01 9.02051e-03 3.58498e-02 - 4 par_crystal_1_3 1.89188e+02 2.78069e+01 1.02856e-02 -2.38185e-01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 538 CALLS 539 TOTAL - EDM=10.0867 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 14.1 per cent - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.09723e+00 3.02575e-02 -0.00000e+00 5.47416e+01 - 2 par_crystal_1_1 5.09997e+00 3.18368e+00 0.00000e+00 -3.90351e-03 - 3 par_crystal_1_2 4.83329e+02 2.76558e+01 0.00000e+00 7.05236e+00 - 4 par_crystal_1_3 1.96552e+02 5.80629e+00 -0.00000e+00 4.39990e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.156e-04 -1.804e-07 -6.742e-01 1.111e-01 - -1.804e-07 1.763e-04 7.888e-03 -2.154e-03 - -6.742e-01 7.888e-03 7.759e+02 -1.463e+02 - 1.111e-01 -2.154e-03 -1.463e+02 3.432e+01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.82553 1.000 -0.000 -0.800 0.627 - 2 0.03650 -0.000 1.000 0.021 -0.028 - 3 0.94703 -0.800 0.021 1.000 -0.896 - 4 0.90888 0.627 -0.028 -0.896 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -9.7852e-01 9.9996e-01 1.9836e+00 1.9949e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.980510 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 29 CALLS 568 TOTAL - EDM=238.514 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 1.09723e+00 4.25322e-02 2.54943e-04 -6.09913e-01 - 2 par_crystal_1_1 5.09997e+00 7.84798e-01 8.54763e-02 1.56580e+00 - 3 par_crystal_1_2 4.83329e+02 1.87856e+01 1.76414e-03 -4.60588e-01 - 4 par_crystal_1_3 1.96552e+02 5.33115e+00 2.63738e-03 1.30128e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.809e-03 -2.197e-07 8.001e-01 2.280e-01 - -2.197e-07 1.053e-04 -1.173e-04 -3.665e-05 - 8.001e-01 -1.173e-04 3.552e+02 1.010e+02 - 2.280e-01 -3.665e-05 1.010e+02 2.885e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99849 1.000 -0.001 0.998 0.998 - 2 0.00265 -0.001 1.000 -0.001 -0.001 - 3 0.99848 0.998 -0.001 1.000 0.998 - 4 0.99849 0.998 -0.001 0.998 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_550_1200 = 1266.17 - Background number of gaus_exp_550_1200 = 1266.17 - Background number of novo_550_1200 = 1266.17 - Background number of crystal_1_550_1200 = 1266.17 - Background number of gaus_bern_550_1200 = 1266.17 - Background number of landau_550_1200 = 1266.17 -par_crystal_0 param 1.11079 0.0431984 -par_crystal_1 param 5.08061 3.28337 -par_crystal_2 param 476.04 8.02153 -par_crystal_3 param 199.914 22.6294 -par_crystal_1_0 param 1.09723 0.0425322 -par_crystal_1_1 param 5.09997 0.784798 -par_crystal_1_2 param 483.329 18.7856 -par_crystal_1_3 param 196.552 5.33115 -par_gaus_exp_0 param 562.504 3.77274 -par_gaus_exp_1 param 24.6552 14.6349 -par_gaus_exp_2 param 0.114604 0.0693856 -par_novo_0 param 500 120.312 -par_novo_1 param 130.637 20.1762 -par_novo_2 param -0.695187 0.162575 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_750_novo_550_1200/datacard_750_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_750_novo_550_1200/datacard_750_novo_550_1200.txt deleted file mode 100644 index 53a4d10..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_750_novo_550_1200/datacard_750_novo_550_1200.txt +++ /dev/null @@ -1,28 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_750.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo -shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 4.13008 1266.17 -lumi_13TeV lnN 1.026 - -bTag lnN 1.07417 - -JER lnN 1.01351 - -JEC lnN 1.01674 - -trigger lnN 1.10 - -sg_p0 param 762.526 -1.90284/+1.87677 -sg_p1 param 23.7778 -2.48927/+0.18602 -sg_p2 param 1.45537 -0.326977/+0.0355188 -sg_p3 param 1.20603 -0.183096/+0.0190539 -par_novo_0 param 500 120.312 -par_novo_1 param 130.637 20.1762 -par_novo_2 param -0.695187 0.162575 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_750_novo_550_1200/signal750_sig.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_750_novo_550_1200/signal750_sig.log deleted file mode 100644 index e4e749b..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_750_novo_550_1200/signal750_sig.log +++ /dev/null @@ -1,1000 +0,0 @@ - -Processing test.c... -nSignal_init = 99200 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [480,930] --> [480,930] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [580,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [480,930] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [580,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=28581.6 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.45000e+02 7.00000e+00 0.00000e+00 -1.97285e+02 - 2 sg_p1 3.25000e+01 2.50000e+00 0.00000e+00 -5.26336e+01 - 3 sg_p2 2.50000e+00 5.00000e-01 0.00000e+00 -1.34034e+00 - 4 sg_p3 8.83623e-01 7.00000e-01 -8.44345e-01 -8.85145e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - MINUIT WARNING IN HESSE - ============== Second derivative enters zero, param 3 - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=28481.9 FROM HESSE STATUS=OK 29 CALLS 226 TOTAL - EDM=0.176135 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.41076e+02 5.65606e-01 1.82652e-03 1.78201e-02 - 2 sg_p1 3.85553e+01 5.02370e-01 4.68920e-03 -1.33549e-02 - 3 sg_p2 2.98442e+00 1.00281e+00 5.00000e-01 -1.40904e+00 - 4 sg_p3 1.76206e+00 9.56239e-02 3.11054e-03 1.18363e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=28481.9 FROM MIGRAD STATUS=CONVERGED 237 CALLS 238 TOTAL - EDM=7.28057e-09 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 0.0 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.41076e+02 5.65607e-01 1.02030e-05 -2.48246e-04 - 2 sg_p1 3.85547e+01 5.02385e-01 -5.28821e-05 -6.46421e-04 - 3 sg_p2 3.57615e+00 9.22634e-01 2.50000e-01 0.00000e+00 - 4 sg_p3 1.76174e+00 9.56180e-02 -1.05757e-04 -3.32008e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.199e-01 -1.433e-02 -2.179e-05 -1.376e-02 - -1.433e-02 2.526e-01 6.391e-05 2.295e-02 - -2.179e-05 6.391e-05 9.034e-01 1.802e-05 - -1.376e-02 2.295e-02 1.802e-05 9.146e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.26700 1.000 -0.050 -0.000 -0.254 - 2 0.48307 -0.050 1.000 0.000 0.477 - 3 0.00020 -0.000 0.000 1.000 0.000 - 4 0.53025 -0.254 0.477 0.000 1.000 - ********** - ** 18 **HESSE 2000 - ********** - MINUIT WARNING IN HESSE - ============== Second derivative enters zero, param 3 - MINUIT WARNING IN HESSE - ============== Second derivative zero for parameter3 - MNHESS FAILS AND WILL RETURN DIAGONAL MATRIX. - FCN=28481.9 FROM HESSE STATUS=FAILED 7 CALLS 245 TOTAL - EDM=7.28057e-09 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 100.0 per cent - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.41076e+02 5.45075e-01 1.82653e-03 -1.12350e-01 - 2 sg_p1 3.85547e+01 4.39914e-01 1.87568e-03 5.05653e-01 - 3 sg_p2 2.36258e+00 1.23330e+00 2.50000e-01 4.45003e-01 - 4 sg_p3 1.76174e+00 8.10352e-02 -1.05757e-04 -5.19731e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.971e-01 0.000e+00 0.000e+00 0.000e+00 - 0.000e+00 1.936e-01 0.000e+00 0.000e+00 - 0.000e+00 0.000e+00 1.703e+00 0.000e+00 - 0.000e+00 0.000e+00 0.000e+00 6.568e-03 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.00000 1.000 0.000 0.000 0.000 - 2 0.00000 0.000 1.000 0.000 0.000 - 3 0.00000 0.000 0.000 1.000 0.000 - 4 0.00000 0.000 0.000 0.000 1.000 - ERR MATRIX APPROXIMATE -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -750 -741.076 +- 0.545075 -38.5547 +- 0.439914 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [480,930] --> [480,930] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [580,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [480,930] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [580,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=28878.9 FROM MIGRAD STATUS=INITIATE 112 CALLS 113 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.45000e+02 7.00000e+00 0.00000e+00 -1.25454e+02 - 2 sg_p1 3.56130e+01 2.50000e+00 0.00000e+00 6.94117e+01 - 3 sg_p2 1.20743e+00 5.00000e-01 -5.43373e-01 -2.30464e+01 - 4 sg_p3 1.10042e+00 7.00000e-01 0.00000e+00 -5.72255e+02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=28834.9 FROM HESSE STATUS=OK 29 CALLS 423 TOTAL - EDM=0.262248 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.44466e+02 5.73304e-01 1.86583e-03 -3.18372e-03 - 2 sg_p1 3.93530e+01 5.09571e-01 5.09296e-03 1.74419e-02 - 3 sg_p2 2.25372e+00 5.17025e-01 3.03226e-01 -3.45943e+00 - 4 sg_p3 1.81743e+00 9.76205e-02 3.26395e-03 -1.13200e-02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=28834.9 FROM MIGRAD STATUS=CONVERGED 436 CALLS 437 TOTAL - EDM=1.01318e-08 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 0.0 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.44466e+02 5.73304e-01 -7.43401e-07 -1.39873e-04 - 2 sg_p1 3.93527e+01 5.09582e-01 -3.36925e-05 -1.24591e-03 - 3 sg_p2 2.63229e+00 5.18825e-01 1.51613e-01 0.00000e+00 - 4 sg_p3 1.81743e+00 9.76204e-02 -7.43797e-07 -3.30431e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.287e-01 8.912e-03 -6.933e-06 -1.113e-02 - 8.912e-03 2.599e-01 3.934e-05 2.184e-02 - -6.933e-06 3.934e-05 2.731e-01 9.253e-06 - -1.113e-02 2.184e-02 9.253e-06 9.533e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.23810 1.000 0.030 -0.000 -0.199 - 2 0.45486 0.030 1.000 0.000 0.439 - 3 0.00020 -0.000 0.000 1.000 0.000 - 4 0.48738 -0.199 0.439 0.000 1.000 - ********** - ** 18 **HESSE 2000 - ********** - MINUIT WARNING IN HESSE - ============== Second derivative enters zero, param 3 - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=28834.9 FROM HESSE STATUS=OK 31 CALLS 468 TOTAL - EDM=0.968431 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.44466e+02 5.73402e-01 7.46332e-04 -1.52619e-02 - 2 sg_p1 3.93527e+01 5.10469e-01 2.03719e-03 5.80225e-01 - 3 sg_p2 2.63229e+00 6.39685e-01 5.10000e-01 5.29399e-02 - 4 sg_p3 1.81743e+00 9.78361e-02 1.30558e-03 -5.01491e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.288e-01 8.226e-03 3.816e-12 -1.124e-02 - 8.226e-03 2.608e-01 8.047e-12 2.210e-02 - 3.816e-12 8.047e-12 4.185e-01 -1.617e-12 - -1.124e-02 2.210e-02 -1.617e-12 9.575e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.23882 1.000 0.028 0.000 -0.200 - 2 0.45797 0.028 1.000 0.000 0.442 - 3 0.00000 0.000 0.000 1.000 -0.000 - 4 0.49076 -0.200 0.442 -0.000 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -750 -744.466 +- 0.573402 -39.3527 +- 0.510469 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [480,930] --> [480,930] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [580,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [480,930] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [580,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=28016 FROM MIGRAD STATUS=INITIATE 72 CALLS 73 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.45000e+02 7.00000e+00 0.00000e+00 3.75442e+02 - 2 sg_p1 3.34297e+01 2.50000e+00 7.44428e-02 -3.45085e+00 - 3 sg_p2 2.50000e+00 5.00000e-01 0.00000e+00 -3.67110e-01 - 4 sg_p3 9.50531e-01 7.00000e-01 0.00000e+00 -4.25357e+02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.1257e+00 1.0000e+00 1.0212e+00 3.1045e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 1.128794 TO DIAGONAL. - FCN=27907.7 FROM HESSE STATUS=NOT POSDEF 25 CALLS 189 TOTAL - EDM=0.288891 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.37485e+02 6.72582e+00 1.83947e-03 6.18860e+00 - 2 sg_p1 3.83510e+01 1.04522e+00 4.63621e-03 1.08179e+00 - 3 sg_p2 3.44126e+00 3.98936e+00 5.00000e-01 -6.55275e-02 - 4 sg_p3 1.83188e+00 4.34020e-01 3.32682e-03 -4.03275e+00 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=27907.7 FROM MIGRAD STATUS=FAILED 299 CALLS 300 TOTAL - EDM=0.0114055 STRATEGY= 1 ERR MATRIX APPROXIMATE - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.37435e+02 5.50832e-01 1.82376e-03 7.13141e-01 - 2 sg_p1 3.83308e+01 4.54574e-01 4.46650e-03 -6.17184e-02 - 3 sg_p2 3.40751e+00 3.90281e+00 5.00000e-01 -3.55749e-02 - 4 sg_p3 1.83269e+00 3.76328e-02 3.32811e-03 -3.75326e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.034e-01 1.043e-03 0.000e+00 -3.749e-03 - 1.043e-03 2.068e-01 0.000e+00 5.570e-03 - 0.000e+00 0.000e+00 3.813e+01 0.000e+00 - -3.749e-03 5.570e-03 0.000e+00 1.416e-03 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.19272 1.000 0.004 0.000 -0.181 - 2 0.33174 0.004 1.000 0.000 0.325 - 3 0.00000 0.000 0.000 1.000 0.000 - 4 0.37301 -0.181 0.325 0.000 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=27907.7 FROM HESSE STATUS=OK 29 CALLS 329 TOTAL - EDM=0.0259975 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.37435e+02 5.53707e-01 3.64751e-04 -2.17856e-01 - 2 sg_p1 3.83308e+01 4.70224e-01 1.78660e-04 4.85291e-01 - 3 sg_p2 3.40751e+00 3.90281e+00 5.00000e-01 3.71491e-01 - 4 sg_p3 1.83269e+00 1.03955e-01 8.87511e-02 -4.96528e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.066e-01 -6.417e-03 3.317e-09 -1.192e-02 - -6.417e-03 2.212e-01 -1.340e-08 1.984e-02 - 3.317e-09 -1.340e-08 3.813e+01 -1.310e-09 - -1.192e-02 1.984e-02 -1.310e-09 1.081e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.21706 1.000 -0.025 0.000 -0.207 - 2 0.41028 -0.025 1.000 -0.000 0.406 - 3 0.00000 0.000 -0.000 1.000 -0.000 - 4 0.45113 -0.207 0.406 -0.000 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -750 -737.435 +- 0.553707 -38.3308 +- 0.470224 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [520,930] --> [520,930] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [520,930] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=26875.6 FROM MIGRAD STATUS=INITIATE 56 CALLS 57 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.50000e+02 6.00000e+00 0.00000e+00 -1.68092e+03 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 1.28555e+02 - 3 sg_p2 9.73975e-01 5.00000e-01 0.00000e+00 1.06582e+02 - 4 sg_p3 1.78677e+00 7.00000e-01 -5.11511e-01 -3.22236e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=26474.3 FROM MIGRAD STATUS=CONVERGED 164 CALLS 165 TOTAL - EDM=2.25921e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.62526e+02 3.87529e-01 1.47757e-03 1.66856e-01 - 2 sg_p1 2.37778e+01 3.73075e-01 5.01466e-03 1.71102e-02 - 3 sg_p2 1.45537e+00 7.21350e-02 3.19921e-03 -4.87398e-02 - 4 sg_p3 1.20603e+00 3.81131e-02 1.25918e-03 -2.52445e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.502e-01 -1.364e-02 4.886e-03 -4.422e-03 - -1.364e-02 1.393e-01 9.457e-03 8.215e-03 - 4.886e-03 9.457e-03 5.205e-03 5.123e-04 - -4.422e-03 8.215e-03 5.123e-04 1.453e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.38125 1.000 -0.094 0.175 -0.299 - 2 0.62877 -0.094 1.000 0.351 0.577 - 3 0.41098 0.175 0.351 1.000 0.186 - 4 0.62880 -0.299 0.577 0.186 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=26474.3 FROM HESSE STATUS=OK 23 CALLS 188 TOTAL - EDM=2.25799e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.62526e+02 3.86914e-01 2.95513e-04 4.30739e-01 - 2 sg_p1 2.37778e+01 3.70943e-01 2.00586e-04 -5.19330e-01 - 3 sg_p2 1.45537e+00 7.09082e-02 1.27968e-04 -4.31078e-01 - 4 sg_p3 1.20603e+00 3.81052e-02 2.51836e-04 -7.14737e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.497e-01 -1.520e-02 4.447e-03 -4.507e-03 - -1.520e-02 1.377e-01 8.786e-03 8.163e-03 - 4.447e-03 8.786e-03 5.030e-03 4.843e-04 - -4.507e-03 8.163e-03 4.843e-04 1.452e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.37767 1.000 -0.106 0.162 -0.306 - 2 0.62321 -0.106 1.000 0.334 0.577 - 3 0.39101 0.162 0.334 1.000 0.179 - 4 0.62860 -0.306 0.577 0.179 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -750 -762.526 +- 0.386914 -23.7778 +- 0.370943 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 - fit done -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [520,930] --> [520,930] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [520,930] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=27294.4 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.50000e+02 6.00000e+00 0.00000e+00 -1.46095e+03 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 1.72944e+02 - 3 sg_p2 7.03339e-01 5.00000e-01 0.00000e+00 4.74696e+01 - 4 sg_p3 1.99296e+00 7.00000e-01 -4.45137e-01 5.15362e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=26829.4 FROM MIGRAD STATUS=CONVERGED 184 CALLS 185 TOTAL - EDM=3.95104e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.64393e+02 4.66702e-01 1.57008e-03 -7.87347e-02 - 2 sg_p1 2.18741e+01 6.89309e-01 6.78283e-03 4.79306e-02 - 3 sg_p2 1.13032e+00 8.74630e-02 2.49913e-03 -1.65710e-02 - 4 sg_p3 1.03518e+00 4.60093e-02 1.05785e-03 -5.74757e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.178e-01 6.647e-02 1.847e-02 -1.062e-03 - 6.647e-02 4.782e-01 4.788e-02 2.645e-02 - 1.847e-02 4.788e-02 7.654e-03 2.499e-03 - -1.062e-03 2.645e-02 2.499e-03 2.117e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.62194 1.000 0.206 0.452 -0.049 - 2 0.90325 0.206 1.000 0.791 0.831 - 3 0.84679 0.452 0.791 1.000 0.621 - 4 0.86298 -0.049 0.831 0.621 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=26829.4 FROM HESSE STATUS=OK 23 CALLS 208 TOTAL - EDM=3.92733e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.64393e+02 4.66923e-01 3.14016e-04 5.00390e-01 - 2 sg_p1 2.18741e+01 6.85574e-01 2.71313e-04 -8.48247e-01 - 3 sg_p2 1.13032e+00 8.71717e-02 9.99652e-05 -5.79816e-01 - 4 sg_p3 1.03518e+00 4.58105e-02 2.11569e-04 -7.81343e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.180e-01 6.562e-02 1.843e-02 -1.114e-03 - 6.562e-02 4.730e-01 4.734e-02 2.614e-02 - 1.843e-02 4.734e-02 7.603e-03 2.467e-03 - -1.114e-03 2.614e-02 2.467e-03 2.099e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.62241 1.000 0.204 0.453 -0.052 - 2 0.90213 0.204 1.000 0.789 0.830 - 3 0.84567 0.453 0.789 1.000 0.617 - 4 0.86169 -0.052 0.830 0.617 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -750 -764.393 +- 0.466923 -21.8741 +- 0.685574 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [520,930] --> [520,930] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [520,930] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=26264.2 FROM MIGRAD STATUS=INITIATE 52 CALLS 53 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.50000e+02 6.00000e+00 0.00000e+00 -1.46794e+03 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 1.17400e+02 - 3 sg_p2 1.05302e+00 5.00000e-01 0.00000e+00 5.34210e+01 - 4 sg_p3 2.10879e+00 7.00000e-01 -4.08780e-01 9.24467e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=25933.1 FROM MIGRAD STATUS=CONVERGED 173 CALLS 174 TOTAL - EDM=5.02008e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.60633e+02 4.10250e-01 1.42251e-03 1.29588e-01 - 2 sg_p1 2.27934e+01 4.40097e-01 5.56534e-03 -9.52994e-03 - 3 sg_p2 1.26768e+00 7.07747e-02 2.70462e-03 -3.34938e-03 - 4 sg_p3 1.17410e+00 3.88711e-02 1.21241e-03 -3.97072e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.683e-01 2.199e-02 1.072e-02 -2.580e-03 - 2.199e-02 1.941e-01 1.837e-02 1.084e-02 - 1.072e-02 1.837e-02 5.011e-03 9.405e-04 - -2.580e-03 1.084e-02 9.405e-04 1.511e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.48460 1.000 0.122 0.369 -0.162 - 2 0.74869 0.122 1.000 0.589 0.633 - 3 0.66331 0.369 0.589 1.000 0.342 - 4 0.67935 -0.162 0.633 0.342 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=25933.1 FROM HESSE STATUS=OK 23 CALLS 197 TOTAL - EDM=5.03332e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.60633e+02 4.10594e-01 2.84502e-04 3.62318e-01 - 2 sg_p1 2.27934e+01 4.40772e-01 2.22614e-04 -6.78399e-01 - 3 sg_p2 1.26768e+00 7.09147e-02 1.08185e-04 -5.15453e-01 - 4 sg_p3 1.17410e+00 3.89135e-02 4.84963e-05 -7.26883e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.686e-01 2.210e-02 1.079e-02 -2.577e-03 - 2.210e-02 1.946e-01 1.847e-02 1.088e-02 - 1.079e-02 1.847e-02 5.031e-03 9.476e-04 - -2.577e-03 1.088e-02 9.476e-04 1.514e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.48592 1.000 0.122 0.371 -0.161 - 2 0.74959 0.122 1.000 0.590 0.634 - 3 0.66497 0.371 0.590 1.000 0.343 - 4 0.68021 -0.161 0.634 0.343 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -750 -760.633 +- 0.410594 -22.7934 +- 0.440772 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [520,930] --> [520,930] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [520,930] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=26499.7 FROM MIGRAD STATUS=INITIATE 54 CALLS 55 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.50000e+02 6.00000e+00 0.00000e+00 -1.41562e+03 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 1.39733e+02 - 3 sg_p2 8.25062e-01 5.00000e-01 0.00000e+00 1.45082e+01 - 4 sg_p3 2.10061e+00 7.00000e-01 -4.11326e-01 8.60481e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.2210e+00 1.2206e+00 2.0001e+00 2.0003e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 1.223025 TO DIAGONAL. - FCN=26111.1 FROM HESSE STATUS=NOT POSDEF 29 CALLS 181 TOTAL - EDM=41.1386 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.62134e+02 2.03776e-03 1.58217e-05 4.03447e+01 - 2 sg_p1 2.29588e+01 1.67018e-03 5.95918e-05 2.08825e+01 - 3 sg_p2 1.19457e+00 2.72680e-04 2.72376e-05 7.30730e+01 - 4 sg_p3 1.16508e+00 2.68104e-01 1.29100e-06 8.78813e+01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.00425 added to diagonal of error matrix - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -4.5660e-01 -1.6788e-04 2.0585e-14 4.4568e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 0.461061 TO DIAGONAL. - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=26110.6 FROM MIGRAD STATUS=FAILED 468 CALLS 469 TOTAL - EDM=1.25872e+08 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.62214e+02 1.17532e-01 -0.00000e+00 -5.57867e+04 - 2 sg_p1 2.29537e+01 1.01617e-02 0.00000e+00 -1.48052e+04 - 3 sg_p2 1.18371e+00 1.47620e-02 0.00000e+00 -3.24026e+04 - 4 sg_p3 1.15581e+00 5.85135e-04 0.00000e+00 -2.25593e+04 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.381e-02 -5.016e-04 -1.726e-03 -6.872e-05 - -5.016e-04 1.033e-04 4.890e-05 2.365e-06 - -1.726e-03 4.890e-05 2.179e-04 8.608e-06 - -6.872e-05 2.365e-06 8.608e-06 3.424e-07 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99999 1.000 -0.420 -0.995 -0.999 - 2 0.99909 -0.420 1.000 0.326 0.398 - 3 0.99999 -0.995 0.326 1.000 0.997 - 4 0.99958 -0.999 0.398 0.997 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=26110.6 FROM HESSE STATUS=OK 31 CALLS 500 TOTAL - EDM=4.07569e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.62214e+02 6.72563e-04 6.72704e-05 4.19323e-01 - 2 sg_p1 2.29537e+01 5.51296e-04 2.53393e-04 -6.51238e-01 - 3 sg_p2 1.18371e+00 8.97773e-05 1.15823e-04 -5.54498e-01 - 4 sg_p3 1.15581e+00 1.57378e-04 1.66079e-04 -7.33896e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.523e-07 -1.618e-13 9.783e-15 -6.573e-13 - -1.618e-13 3.039e-07 2.059e-14 7.746e-13 - 9.783e-15 2.059e-14 8.060e-09 1.090e-14 - -6.573e-13 7.746e-13 1.090e-14 2.477e-08 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.00001 1.000 -0.000 0.000 -0.000 - 2 0.00001 -0.000 1.000 0.000 0.000 - 3 0.00000 0.000 0.000 1.000 0.000 - 4 0.00001 -0.000 0.000 0.000 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -750 -762.214 +- 0.000672563 -22.9537 +- 0.000551296 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [520,930] --> [520,930] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [520,930] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=27208.5 FROM MIGRAD STATUS=INITIATE 50 CALLS 51 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.50000e+02 6.00000e+00 0.00000e+00 -1.71181e+03 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 1.11815e+02 - 3 sg_p2 9.86241e-01 5.00000e-01 0.00000e+00 8.13644e+01 - 4 sg_p3 2.10880e+00 7.00000e-01 -4.08775e-01 8.43786e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=26768.5 FROM MIGRAD STATUS=CONVERGED 251 CALLS 252 TOTAL - EDM=2.19426e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.62956e+02 4.19070e-01 1.45249e-03 -5.27598e-02 - 2 sg_p1 2.12954e+01 4.98544e-01 7.45088e-03 6.83394e-02 - 3 sg_p2 1.18806e+00 5.51337e-02 2.26922e-03 -3.48477e-02 - 4 sg_p3 1.02393e+00 4.08580e-02 1.04829e-03 -3.83312e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.756e-01 -5.320e-02 2.758e-03 -7.610e-03 - -5.320e-02 2.497e-01 1.564e-02 1.606e-02 - 2.758e-03 1.564e-02 3.040e-03 9.429e-04 - -7.610e-03 1.606e-02 9.429e-04 1.670e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.55737 1.000 -0.254 0.119 -0.444 - 2 0.82936 -0.254 1.000 0.568 0.787 - 3 0.63378 0.119 0.568 1.000 0.419 - 4 0.82799 -0.444 0.787 0.419 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=26768.5 FROM HESSE STATUS=OK 23 CALLS 275 TOTAL - EDM=2.19263e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.62956e+02 4.19119e-01 5.80997e-05 4.46547e-01 - 2 sg_p1 2.12954e+01 4.95694e-01 2.98035e-04 -9.74247e-01 - 3 sg_p2 1.18806e+00 5.50237e-02 9.07687e-05 -5.52454e-01 - 4 sg_p3 1.02393e+00 4.06459e-02 2.09657e-04 -7.85881e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.757e-01 -5.257e-02 2.838e-03 -7.560e-03 - -5.257e-02 2.469e-01 1.543e-02 1.584e-02 - 2.838e-03 1.543e-02 3.028e-03 9.269e-04 - -7.560e-03 1.584e-02 9.269e-04 1.652e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.55751 1.000 -0.252 0.123 -0.444 - 2 0.82718 -0.252 1.000 0.564 0.784 - 3 0.63189 0.123 0.564 1.000 0.414 - 4 0.82600 -0.444 0.784 0.414 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -750 -762.956 +- 0.419119 -21.2954 +- 0.495694 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [520,930] --> [520,930] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [520,930] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=24938.9 FROM MIGRAD STATUS=INITIATE 78 CALLS 79 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.50000e+02 6.00000e+00 0.00000e+00 -1.47220e+03 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 1.27544e+02 - 3 sg_p2 9.01698e-01 5.00000e-01 1.92174e-02 -8.96650e-02 - 4 sg_p3 1.90374e+00 7.00000e-01 0.00000e+00 2.84089e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24568.6 FROM MIGRAD STATUS=CONVERGED 280 CALLS 281 TOTAL - EDM=9.56937e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.62504e+02 4.01949e-01 1.47474e-03 -4.25141e-02 - 2 sg_p1 2.37637e+01 3.86910e-01 5.01010e-03 -4.75722e-02 - 3 sg_p2 1.45752e+00 7.51498e-02 3.25318e-03 8.87634e-02 - 4 sg_p3 1.20613e+00 3.95609e-02 1.25939e-03 3.14350e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.616e-01 -1.460e-02 5.296e-03 -4.757e-03 - -1.460e-02 1.499e-01 1.026e-02 8.842e-03 - 5.296e-03 1.026e-02 5.650e-03 5.555e-04 - -4.757e-03 8.842e-03 5.555e-04 1.565e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.38149 1.000 -0.094 0.175 -0.299 - 2 0.62911 -0.094 1.000 0.352 0.577 - 3 0.41238 0.175 0.352 1.000 0.187 - 4 0.62872 -0.299 0.577 0.187 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=24568.6 FROM HESSE STATUS=OK 23 CALLS 304 TOTAL - EDM=9.61039e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.62504e+02 4.01306e-01 5.89896e-05 4.29922e-01 - 2 sg_p1 2.37637e+01 3.84472e-01 1.00202e-03 -5.21496e-01 - 3 sg_p2 1.45752e+00 7.37104e-02 1.30127e-04 -4.30134e-01 - 4 sg_p3 1.20613e+00 3.95531e-02 5.03756e-05 -7.14699e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.611e-01 -1.655e-02 4.777e-03 -4.865e-03 - -1.655e-02 1.480e-01 9.452e-03 8.781e-03 - 4.777e-03 9.452e-03 5.435e-03 5.216e-04 - -4.865e-03 8.781e-03 5.216e-04 1.565e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.37788 1.000 -0.107 0.161 -0.306 - 2 0.62297 -0.107 1.000 0.333 0.577 - 3 0.39044 0.161 0.333 1.000 0.179 - 4 0.62853 -0.306 0.577 0.179 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -750 -762.504 +- 0.401306 -23.7637 +- 0.384472 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [520,930] --> [520,930] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [520,930] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [620,830] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=28920.4 FROM MIGRAD STATUS=INITIATE 56 CALLS 57 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.50000e+02 6.00000e+00 0.00000e+00 -1.80937e+03 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 1.38006e+02 - 3 sg_p2 9.71765e-01 5.00000e-01 0.00000e+00 1.16073e+02 - 4 sg_p3 1.78443e+00 7.00000e-01 -5.12276e-01 -3.52605e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=28488.2 FROM MIGRAD STATUS=CONVERGED 163 CALLS 164 TOTAL - EDM=3.69493e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.62545e+02 3.73878e-01 1.47900e-03 5.87554e-02 - 2 sg_p1 2.37920e+01 3.60128e-01 5.01141e-03 -3.15083e-02 - 3 sg_p2 1.45371e+00 6.94889e-02 3.21558e-03 3.10664e-02 - 4 sg_p3 1.20626e+00 3.67580e-02 1.25830e-03 1.44527e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.398e-01 -1.256e-02 4.559e-03 -4.105e-03 - -1.256e-02 1.298e-01 8.802e-03 7.648e-03 - 4.559e-03 8.802e-03 4.830e-03 4.765e-04 - -4.105e-03 7.648e-03 4.765e-04 1.351e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.38118 1.000 -0.093 0.175 -0.299 - 2 0.62894 -0.093 1.000 0.352 0.577 - 3 0.41146 0.175 0.352 1.000 0.187 - 4 0.62883 -0.299 0.577 0.187 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=28488.2 FROM HESSE STATUS=OK 23 CALLS 187 TOTAL - EDM=3.68603e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.62545e+02 3.73300e-01 5.91598e-05 4.31441e-01 - 2 sg_p1 2.37920e+01 3.58022e-01 1.00228e-03 -5.17141e-01 - 3 sg_p2 1.45371e+00 6.82924e-02 1.28623e-04 -4.31812e-01 - 4 sg_p3 1.20626e+00 3.67501e-02 5.03319e-05 -7.14653e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.394e-01 -1.405e-02 4.150e-03 -4.188e-03 - -1.405e-02 1.283e-01 8.166e-03 7.599e-03 - 4.150e-03 8.166e-03 4.665e-03 4.498e-04 - -4.188e-03 7.599e-03 4.498e-04 1.351e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.37769 1.000 -0.105 0.163 -0.305 - 2 0.62325 -0.105 1.000 0.334 0.577 - 3 0.39121 0.163 0.334 1.000 0.179 - 4 0.62862 -0.305 0.577 0.179 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -750 -762.545 +- 0.3733 -23.792 +- 0.358022 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 762.526 +- 0.386914 (stat) - 1.89298 + 1.86678 (syst); -1.90284/+1.87677 (total) - Uncertainty on sg_p1 = 23.7778 +- 0.370943 (stat) - 2.48235 + 0.0142669 (syst); -2.48927/+0.18602 (total) - Uncertainty on sg_p2 = 1.45537 +- 0.0709082 (stat) - 0.32505 + 0.00214348 (syst); -0.326977/+0.0355188 (total) - Uncertainty on sg_p3 = 1.20603 +- 0.0381052 (stat) - 0.182102 + 0.000222545 (syst); -0.183096/+0.0190539 (total) - === Baseline plot ===
- norm = 206.504 -JEC lnN 1.01674 - -JER lnN 1.01351 - -btag lnN 1.07417 - -sg_p0 param 762.526 -1.90284/+1.87677 -sg_p1 param 23.7778 -2.48927/+0.18602 -sg_p2 param 1.45537 -0.326977/+0.0355188 -sg_p3 param 1.20603 -0.183096/+0.0190539 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_800_crystal_1_550_1200/data_bkg.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_800_crystal_1_550_1200/data_bkg.log deleted file mode 100644 index a966e12..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_800_crystal_1_550_1200/data_bkg.log +++ /dev/null @@ -1,690 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10879.7 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 6.74624e-01 5.09000e-01 -8.31364e-01 -1.01971e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -3.20610e+01 - 3 par_crystal_2 5.00000e+02 2.00000e+01 0.00000e+00 -9.48837e+00 - 4 par_crystal_3 1.05000e+02 1.90000e+01 0.00000e+00 2.45317e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7116e+01 9.9978e-01 1.9597e+00 1.8156e+01 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 17.134017 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 27 CALLS 314 TOTAL - EDM=0.131054 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.06594e+00 6.09301e-02 1.43210e-03 -8.77809e-01 - 2 par_crystal_1 5.09576e+00 7.69298e-02 8.09031e-02 -5.13188e-02 - 3 par_crystal_2 4.95224e+02 7.91481e+01 2.17679e-03 -5.43249e-01 - 4 par_crystal_3 1.90900e+02 9.54958e+00 1.13079e-02 4.60762e-02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 477 CALLS 478 TOTAL - EDM=0.0370129 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.11079e+00 8.93309e-02 0.00000e+00 -4.75984e-01 - 2 par_crystal_1 5.08061e+00 3.60144e-01 0.00000e+00 -1.14416e-01 - 3 par_crystal_2 4.76040e+02 1.75614e+01 0.00000e+00 -2.32451e-01 - 4 par_crystal_3 1.99914e+02 2.77391e+01 0.00000e+00 -7.67572e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.985e-03 -2.091e-03 1.499e+00 2.820e-01 - -2.091e-03 2.873e-02 -7.387e-01 -2.900e-02 - 1.499e+00 -7.387e-01 3.118e+02 5.244e+01 - 2.820e-01 -2.900e-02 5.244e+01 1.008e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99775 1.000 -0.138 0.950 0.994 - 2 0.79882 -0.138 1.000 -0.247 -0.054 - 3 0.95717 0.950 -0.247 1.000 0.935 - 4 0.99764 0.994 -0.054 0.935 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.8 FROM HESSE STATUS=OK 27 CALLS 505 TOTAL - EDM=0.0183624 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.11079e+00 4.31984e-02 1.44775e-03 -6.03431e-01 - 2 par_crystal_1 5.08061e+00 3.28337e+00 6.64371e-02 1.44728e+00 - 3 par_crystal_2 4.76040e+02 8.02153e+00 1.45036e-02 3.38355e+00 - 4 par_crystal_3 1.99914e+02 2.26294e+01 4.50606e-02 1.52819e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.866e-03 -1.951e-03 -2.584e-03 1.946e-02 - -1.951e-03 1.028e-01 6.675e-04 3.793e-04 - -2.584e-03 6.675e-04 6.449e+01 1.116e+00 - 1.946e-02 3.793e-04 1.116e+00 8.140e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.21215 1.000 -0.141 -0.007 0.158 - 2 0.14274 -0.141 1.000 0.000 0.000 - 3 0.05109 -0.007 0.000 1.000 0.049 - 4 0.16712 0.158 0.000 0.049 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10978.6 FROM MIGRAD STATUS=INITIATE 68 CALLS 69 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 6.03110e+02 3.00000e+01 -8.97402e-01 -6.52175e+01 - 2 par_gaus_exp_1 5.45000e+01 9.10000e+00 0.00000e+00 -4.62060e+02 - 3 par_gaus_exp_2 4.12114e-01 3.05000e-01 0.00000e+00 1.25553e+03 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.9 FROM HESSE STATUS=OK 18 CALLS 182 TOTAL - EDM=0.000691453 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.46431e+02 6.06936e+00 3.17833e-03 -3.92855e-01 - 2 par_gaus_exp_1 6.65716e+01 1.75685e+01 2.62647e-03 1.43349e-01 - 3 par_gaus_exp_2 3.07505e-01 8.37981e-02 8.79822e-04 -3.06196e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM MIGRAD STATUS=CONVERGED 316 CALLS 317 TOTAL - EDM=9.19369e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.62504e+02 3.53152e+00 1.63243e-03 -1.66316e-01 - 2 par_gaus_exp_1 2.46552e+01 1.25211e+01 1.75085e-03 -3.48771e-01 - 3 par_gaus_exp_2 1.14604e-01 5.89219e-02 6.31447e-04 9.83138e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.247e+01 -1.544e+01 -6.961e-02 - -1.544e+01 1.643e+02 7.558e-01 - -6.961e-02 7.558e-01 3.493e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.35636 1.000 -0.341 -0.333 - 2 0.99789 -0.341 1.000 0.998 - 3 0.99788 -0.333 0.998 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM HESSE STATUS=OK 16 CALLS 333 TOTAL - EDM=9.89177e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 5.62504e+02 3.77274e+00 6.52972e-05 8.34552e-02 - 2 par_gaus_exp_1 2.46552e+01 1.46349e+01 3.50170e-04 -7.15413e-01 - 3 par_gaus_exp_2 1.14604e-01 6.93856e-02 1.26289e-04 -1.27868e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.424e+01 -2.545e+01 -1.157e-01 - -2.545e+01 2.286e+02 1.052e+00 - -1.157e-01 1.052e+00 4.855e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.45683 1.000 -0.446 -0.440 - 2 0.99849 -0.446 1.000 0.998 - 3 0.99848 -0.440 0.998 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (13168.6) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=575, par_novo_1=100, par_novo_2=1.58864 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 575,par_novo_1 = 100,par_novo_2 = 1.58864) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=645, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=655, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=665, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=675, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=685, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=695, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=705, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=715, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=725, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=735, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=745, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=755, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - ... (remaining 46 messages suppressed) - - FCN=13054.5 FROM MIGRAD STATUS=INITIATE 14 CALLS 15 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.75000e+02 1.50000e+01 2.01358e-01 -1.22938e+03 - 2 par_novo_1 1.00000e+02 2.00000e+01 2.01358e-01 -6.98326e+03 - 3 par_novo_2 0.00000e+00 2.00000e+01 2.01358e-01 1.51249e+06 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM MIGRAD STATUS=CONVERGED 220 CALLS 221 TOTAL - EDM=2.09668e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.00000e+02 1.21837e+02 1.25149e-01 -7.30463e-04 - 2 par_novo_1 1.30637e+02 1.58558e+01 3.16845e-03 -1.76078e-02 - 3 par_novo_2 -6.95187e-01 1.36663e-01 2.61078e-05 1.74080e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.121e-01 -9.460e-01 -6.449e-03 - -9.460e-01 2.538e+02 2.099e+00 - -6.449e-03 2.099e+00 1.868e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.21023 1.000 -0.177 -0.141 - 2 0.96488 -0.177 1.000 0.964 - 3 0.96445 -0.141 0.964 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM HESSE STATUS=OK 20 CALLS 241 TOTAL - EDM=1.01397e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 5.00000e+02 1.20312e+02 5.00000e-01 -1.57325e+00 - 2 par_novo_1 1.30637e+02 2.01762e+01 1.26738e-04 3.11381e-01 - 3 par_novo_2 -6.95187e-01 1.62575e-01 1.04431e-06 -6.95192e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.070e-01 -4.278e+00 -2.995e-02 - -4.278e+00 4.133e+02 3.212e+00 - -2.995e-02 3.212e+00 2.643e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.69436 1.000 -0.643 -0.563 - 2 0.97859 -0.643 1.000 0.972 - 3 0.97501 -0.563 0.972 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10877 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 6.33849e-01 5.09000e-01 -8.55460e-01 -1.25390e+02 - 2 par_crystal_1_1 2.55500e+00 5.09000e-01 0.00000e+00 -2.69495e+01 - 3 par_crystal_1_2 5.50000e+02 3.00000e+01 0.00000e+00 -1.44080e+01 - 4 par_crystal_1_3 1.04500e+02 1.91000e+01 0.00000e+00 3.07979e+01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.43469 added to diagonal of error matrix - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.5401e+00 8.4221e-02 1.8087e+00 3.6472e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 1.543714 TO DIAGONAL. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.9 FROM HESSE STATUS=OK 25 CALLS 485 TOTAL - EDM=0.0491336 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.05623e+00 1.52463e-01 1.42446e-03 -1.90900e+00 - 2 par_crystal_1_1 5.09988e+00 3.18944e+00 7.54811e-02 -8.93342e-03 - 3 par_crystal_1_2 4.96280e+02 4.98347e+01 9.02051e-03 3.58498e-02 - 4 par_crystal_1_3 1.89188e+02 2.78069e+01 1.02856e-02 -2.38185e-01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 538 CALLS 539 TOTAL - EDM=10.0867 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 14.1 per cent - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.09723e+00 3.02575e-02 -0.00000e+00 5.47416e+01 - 2 par_crystal_1_1 5.09997e+00 3.18368e+00 0.00000e+00 -3.90351e-03 - 3 par_crystal_1_2 4.83329e+02 2.76558e+01 0.00000e+00 7.05236e+00 - 4 par_crystal_1_3 1.96552e+02 5.80629e+00 -0.00000e+00 4.39990e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.156e-04 -1.804e-07 -6.742e-01 1.111e-01 - -1.804e-07 1.763e-04 7.888e-03 -2.154e-03 - -6.742e-01 7.888e-03 7.759e+02 -1.463e+02 - 1.111e-01 -2.154e-03 -1.463e+02 3.432e+01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.82553 1.000 -0.000 -0.800 0.627 - 2 0.03650 -0.000 1.000 0.021 -0.028 - 3 0.94703 -0.800 0.021 1.000 -0.896 - 4 0.90888 0.627 -0.028 -0.896 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -9.7852e-01 9.9996e-01 1.9836e+00 1.9949e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.980510 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 29 CALLS 568 TOTAL - EDM=238.514 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 1.09723e+00 4.25322e-02 2.54943e-04 -6.09913e-01 - 2 par_crystal_1_1 5.09997e+00 7.84798e-01 8.54763e-02 1.56580e+00 - 3 par_crystal_1_2 4.83329e+02 1.87856e+01 1.76414e-03 -4.60588e-01 - 4 par_crystal_1_3 1.96552e+02 5.33115e+00 2.63738e-03 1.30128e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.809e-03 -2.197e-07 8.001e-01 2.280e-01 - -2.197e-07 1.053e-04 -1.173e-04 -3.665e-05 - 8.001e-01 -1.173e-04 3.552e+02 1.010e+02 - 2.280e-01 -3.665e-05 1.010e+02 2.885e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99849 1.000 -0.001 0.998 0.998 - 2 0.00265 -0.001 1.000 -0.001 -0.001 - 3 0.99848 0.998 -0.001 1.000 0.998 - 4 0.99849 0.998 -0.001 0.998 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_550_1200 = 1266.17 - Background number of gaus_exp_550_1200 = 1266.17 - Background number of novo_550_1200 = 1266.17 - Background number of crystal_1_550_1200 = 1266.17 - Background number of gaus_bern_550_1200 = 1266.17 - Background number of landau_550_1200 = 1266.17 -par_crystal_0 param 1.11079 0.0431984 -par_crystal_1 param 5.08061 3.28337 -par_crystal_2 param 476.04 8.02153 -par_crystal_3 param 199.914 22.6294 -par_crystal_1_0 param 1.09723 0.0425322 -par_crystal_1_1 param 5.09997 0.784798 -par_crystal_1_2 param 483.329 18.7856 -par_crystal_1_3 param 196.552 5.33115 -par_gaus_exp_0 param 562.504 3.77274 -par_gaus_exp_1 param 24.6552 14.6349 -par_gaus_exp_2 param 0.114604 0.0693856 -par_novo_0 param 500 120.312 -par_novo_1 param 130.637 20.1762 -par_novo_2 param -0.695187 0.162575 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_800_crystal_1_550_1200/datacard_800_crystal_1_550_1200.txt b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_800_crystal_1_550_1200/datacard_800_crystal_1_550_1200.txt deleted file mode 100644 index 39fa283..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_800_crystal_1_550_1200/datacard_800_crystal_1_550_1200.txt +++ /dev/null @@ -1,29 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_800.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_crystal_1_550_1200.root HbbHbb:f_crystal_1 -shapes data_obs HbbHbb w_background_crystal_1_550_1200.root HbbHbb:data_obs_crystal_1_550_1200 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 4.34388 1266.17 -lumi_13TeV lnN 1.026 - -bTag lnN 1.07603 - -JER lnN 1.01239 - -JEC lnN 1.00978 - -trigger lnN 1.10 - -sg_p0 param 814.374 -1.84261/+1.57282 -sg_p1 param 25.8336 -0.55502/+0.437122 -sg_p2 param 1.67359 -0.0683089/+0.0448595 -sg_p3 param 1.19124 -0.0194827/+0.0318297 -par_crystal_1_0 param 1.09723 0.0425322 -par_crystal_1_1 param 5.09997 0.784798 -par_crystal_1_2 param 483.329 18.7856 -par_crystal_1_3 param 196.552 5.33115 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_800_crystal_1_550_1200/signal800_sig.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_800_crystal_1_550_1200/signal800_sig.log deleted file mode 100644 index 9bb688f..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_800_crystal_1_550_1200/signal800_sig.log +++ /dev/null @@ -1,986 +0,0 @@ - -Processing test.c... -nSignal_init = 100000 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [550,1000] --> [550,1000] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [650,900] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1000] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [650,900] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=30655.7 FROM MIGRAD STATUS=INITIATE 50 CALLS 51 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.90000e+02 6.00000e+00 0.00000e+00 -1.30426e+02 - 2 sg_p1 3.75000e+01 2.50000e+00 0.00000e+00 -1.66737e+02 - 3 sg_p2 2.94124e+00 5.00000e-01 0.00000e+00 -1.49475e-01 - 4 sg_p3 1.57852e+00 7.00000e-01 -5.81159e-01 2.58563e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - MINUIT WARNING IN HESSE - ============== Second derivative enters zero, param 3 - MINUIT WARNING IN HESSE - ============== Second derivative zero for parameter3 - MNHESS FAILS AND WILL RETURN DIAGONAL MATRIX. - FCN=30638 FROM MIGRAD STATUS=CONVERGED 151 CALLS 152 TOTAL - EDM=3.50906e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 100.0 per cent - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.90259e+02 5.37023e-01 2.16671e-03 1.11551e-01 - 2 sg_p1 4.03199e+01 4.16552e-01 4.14293e-03 1.05806e-01 - 3 sg_p2 4.91276e+00 3.42658e+00 -3.03050e-03 0.00000e+00 - 4 sg_p3 1.92775e+00 1.16850e-01 -5.45644e-04 -1.47920e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.884e-01 0.000e+00 0.000e+00 0.000e+00 - 0.000e+00 1.736e-01 0.000e+00 0.000e+00 - 0.000e+00 0.000e+00 5.000e-01 0.000e+00 - 0.000e+00 0.000e+00 0.000e+00 1.366e-02 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.00000 1.000 0.000 0.000 0.000 - 2 0.00000 0.000 1.000 0.000 0.000 - 3 0.00000 0.000 0.000 1.000 0.000 - 4 0.00000 0.000 0.000 0.000 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - MINUIT WARNING IN HESSE - ============== Second derivative zero for parameter3 - MNHESS FAILS AND WILL RETURN DIAGONAL MATRIX. - FCN=30638 FROM HESSE STATUS=FAILED 7 CALLS 159 TOTAL - EDM=3.50906e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 100.0 per cent - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.90259e+02 5.37023e-01 2.16671e-03 8.63427e-03 - 2 sg_p1 4.03199e+01 4.16552e-01 4.14293e-03 2.27549e-01 - 3 sg_p2 4.30353e+00 3.12197e+00 -3.03050e-03 1.30584e+00 - 4 sg_p3 1.92775e+00 1.16850e-01 -5.45644e-04 -4.65886e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.884e-01 0.000e+00 0.000e+00 0.000e+00 - 0.000e+00 1.736e-01 0.000e+00 0.000e+00 - 0.000e+00 0.000e+00 5.000e-01 0.000e+00 - 0.000e+00 0.000e+00 0.000e+00 1.366e-02 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.00000 1.000 0.000 0.000 0.000 - 2 0.00000 0.000 1.000 0.000 0.000 - 3 0.00000 0.000 0.000 1.000 0.000 - 4 0.00000 0.000 0.000 0.000 1.000 - ERR MATRIX APPROXIMATE -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -800 -790.259 +- 0.537023 -40.3199 +- 0.416552 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [550,1000] --> [550,1000] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [650,900] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1000] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [650,900] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=30957.8 FROM MIGRAD STATUS=INITIATE 78 CALLS 79 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.90000e+02 6.00000e+00 0.00000e+00 -4.59580e+02 - 2 sg_p1 3.75000e+01 2.50000e+00 0.00000e+00 -2.30328e+02 - 3 sg_p2 1.77977e+00 5.00000e-01 0.00000e+00 5.54337e-01 - 4 sg_p3 1.71207e+00 7.00000e-01 -5.36159e-01 1.57191e-01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.02296 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=30898 FROM HESSE STATUS=OK 31 CALLS 326 TOTAL - EDM=1.52673e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.93825e+02 5.57072e-01 2.22239e-03 2.71391e-03 - 2 sg_p1 4.08795e+01 4.57494e-01 4.30357e-03 8.95731e-02 - 3 sg_p2 2.60706e+00 9.43716e-01 4.61396e-02 -1.14830e-02 - 4 sg_p3 1.95465e+00 1.29415e-01 4.57004e-03 -4.88228e-02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.02637 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - MACHINE ACCURACY LIMITS FURTHER IMPROVEMENT. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=30898 FROM MIGRAD STATUS=CONVERGED 377 CALLS 378 TOTAL - EDM=5.46872e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.93825e+02 5.57319e-01 8.88956e-04 -1.24563e-04 - 2 sg_p1 4.08783e+01 4.58216e-01 1.72143e-03 -1.67615e-04 - 3 sg_p2 2.61137e+00 9.86696e-01 4.70300e-02 -5.75769e-03 - 4 sg_p3 1.95475e+00 1.29727e-01 1.82801e-03 4.70590e-04 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.106e-01 -1.282e-02 1.973e-11 -1.514e-02 - -1.282e-02 2.101e-01 -3.231e-10 2.168e-02 - 1.973e-11 -3.231e-10 1.029e+00 -3.334e-11 - -1.514e-02 2.168e-02 -3.334e-11 1.684e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.21127 1.000 -0.050 0.000 -0.209 - 2 0.36542 -0.050 1.000 -0.000 0.364 - 3 0.00000 0.000 -0.000 1.000 -0.000 - 4 0.41162 -0.209 0.364 -0.000 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=30898 FROM HESSE STATUS=OK 29 CALLS 407 TOTAL - EDM=1.45739e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.93825e+02 5.57488e-01 3.55582e-05 1.27840e-01 - 2 sg_p1 4.08783e+01 4.58705e-01 6.88571e-05 2.73664e-01 - 3 sg_p2 2.61137e+00 3.15165e-01 3.77936e-01 4.45612e-02 - 4 sg_p3 1.95475e+00 1.29897e-01 7.31206e-05 -4.57269e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.108e-01 -1.327e-02 9.363e-11 -1.527e-02 - -1.327e-02 2.105e-01 -6.593e-11 2.188e-02 - 9.363e-11 -6.593e-11 9.986e-02 1.258e-11 - -1.527e-02 2.188e-02 1.258e-11 1.688e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.21263 1.000 -0.052 0.000 -0.211 - 2 0.36794 -0.052 1.000 -0.000 0.367 - 3 0.00000 0.000 -0.000 1.000 0.000 - 4 0.41424 -0.211 0.367 0.000 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -800 -793.825 +- 0.557488 -40.8783 +- 0.458705 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [550,1000] --> [550,1000] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [650,900] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1000] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [650,900] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=30291.5 FROM MIGRAD STATUS=INITIATE 41 CALLS 42 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.90000e+02 6.00000e+00 0.00000e+00 1.95885e+02 - 2 sg_p1 3.75000e+01 2.50000e+00 0.00000e+00 -7.27088e+01 - 3 sg_p2 2.50000e+00 5.00000e-01 0.00000e+00 -9.73752e-02 - 4 sg_p3 1.38901e+00 7.00000e-01 -6.47432e-01 2.33654e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=30270.6 FROM MIGRAD STATUS=CONVERGED 162 CALLS 163 TOTAL - EDM=8.78757e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.86674e+02 5.58720e-01 2.15921e-03 -1.99988e-01 - 2 sg_p1 4.00594e+01 4.59169e-01 4.05661e-03 3.84165e-02 - 3 sg_p2 2.51479e+00 3.25925e-01 2.03755e-02 4.90232e-02 - 4 sg_p3 1.92655e+00 1.49829e-01 4.93143e-03 8.21834e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.122e-01 -3.425e-02 1.692e-03 -2.360e-02 - -3.425e-02 2.109e-01 3.630e-03 2.988e-02 - 1.692e-03 3.630e-03 1.068e-01 4.290e-04 - -2.360e-02 2.988e-02 4.290e-04 2.247e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.28235 1.000 -0.133 0.009 -0.282 - 2 0.43476 -0.133 1.000 0.024 0.434 - 3 0.02730 0.009 0.024 1.000 0.009 - 4 0.48938 -0.282 0.434 0.009 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=30270.6 FROM HESSE STATUS=OK 33 CALLS 196 TOTAL - EDM=6.62467e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.86674e+02 5.59678e-01 4.31843e-04 -1.11107e-01 - 2 sg_p1 4.00594e+01 4.61116e-01 1.62264e-04 2.06214e-01 - 3 sg_p2 2.51479e+00 2.22927e-01 4.53587e-01 5.91504e-03 - 4 sg_p3 1.92655e+00 1.50658e-01 1.97257e-04 -4.66270e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.133e-01 -3.601e-02 1.955e-04 -2.426e-02 - -3.601e-02 2.127e-01 4.139e-04 3.075e-02 - 1.955e-04 4.139e-04 4.983e-02 4.614e-05 - -2.426e-02 3.075e-02 4.614e-05 2.272e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.28788 1.000 -0.140 0.002 -0.288 - 2 0.44255 -0.140 1.000 0.004 0.442 - 3 0.00456 0.002 0.004 1.000 0.001 - 4 0.49768 -0.288 0.442 0.001 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -800 -786.674 +- 0.559678 -40.0594 +- 0.461116 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [550,1020] --> [550,1020] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1020] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=29080.5 FROM MIGRAD STATUS=INITIATE 63 CALLS 64 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.10000e+02 6.00000e+00 0.00000e+00 -8.86811e+02 - 2 sg_p1 2.25000e+01 1.50000e+00 0.00000e+00 -5.59388e+01 - 3 sg_p2 1.11453e+00 5.00000e-01 0.00000e+00 1.02248e+02 - 4 sg_p3 1.01032e+00 7.00000e-01 -7.91400e-01 -4.01707e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=28998.7 FROM MIGRAD STATUS=CONVERGED 208 CALLS 209 TOTAL - EDM=2.80961e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.14374e+02 3.98724e-01 1.45304e-03 -1.70387e-01 - 2 sg_p1 2.58336e+01 3.59782e-01 4.89449e-03 8.13003e-02 - 3 sg_p2 1.67359e+00 7.19571e-02 3.19487e-03 5.88230e-02 - 4 sg_p3 1.19124e+00 3.46142e-02 1.23219e-03 -4.28854e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.590e-01 -2.453e-02 3.541e-03 -4.624e-03 - -2.453e-02 1.296e-01 1.051e-02 6.871e-03 - 3.541e-03 1.051e-02 5.179e-03 5.110e-04 - -4.624e-03 6.871e-03 5.110e-04 1.198e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.39250 1.000 -0.171 0.123 -0.335 - 2 0.62921 -0.171 1.000 0.406 0.551 - 3 0.45197 0.123 0.406 1.000 0.205 - 4 0.60406 -0.335 0.551 0.205 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=28998.7 FROM HESSE STATUS=OK 23 CALLS 232 TOTAL - EDM=2.80811e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 8.14374e+02 3.98978e-01 2.90608e-04 1.46314e-01 - 2 sg_p1 2.58336e+01 3.61130e-01 1.95780e-04 4.60594e-01 - 3 sg_p2 1.67359e+00 7.21418e-02 1.27795e-04 -3.36900e-01 - 4 sg_p3 1.19124e+00 3.46971e-02 2.46437e-04 -7.20348e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.592e-01 -2.477e-02 3.557e-03 -4.644e-03 - -2.477e-02 1.305e-01 1.069e-02 6.950e-03 - 3.557e-03 1.069e-02 5.206e-03 5.225e-04 - -4.644e-03 6.950e-03 5.225e-04 1.204e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.39387 1.000 -0.172 0.124 -0.335 - 2 0.63278 -0.172 1.000 0.410 0.554 - 3 0.45643 0.124 0.410 1.000 0.209 - 4 0.60656 -0.335 0.554 0.209 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -800 -814.374 +- 0.398978 -25.8336 +- 0.36113 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 - fit done -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [550,1020] --> [550,1020] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1020] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=29394.8 FROM MIGRAD STATUS=INITIATE 76 CALLS 77 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.09344e+02 6.00000e+00 0.00000e+00 -9.04905e+02 - 2 sg_p1 2.25000e+01 1.50000e+00 0.00000e+00 -1.79169e+02 - 3 sg_p2 1.02066e+00 5.00000e-01 0.00000e+00 2.33092e+02 - 4 sg_p3 1.24736e+00 7.00000e-01 -6.99207e-01 3.18929e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=29246.6 FROM MIGRAD STATUS=CONVERGED 227 CALLS 228 TOTAL - EDM=6.02107e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.15934e+02 4.09344e-01 1.49430e-03 -1.08719e-01 - 2 sg_p1 2.62317e+01 4.03039e-01 5.19030e-03 1.33417e-01 - 3 sg_p2 1.65790e+00 9.28346e-02 3.66697e-03 4.58391e-02 - 4 sg_p3 1.21792e+00 3.62585e-02 1.27250e-03 -4.88031e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.676e-01 -5.450e-03 9.103e-03 -3.808e-03 - -5.450e-03 1.626e-01 2.111e-02 8.287e-03 - 9.103e-03 2.111e-02 8.623e-03 9.650e-04 - -3.808e-03 8.287e-03 9.650e-04 1.315e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.41684 1.000 -0.033 0.239 -0.257 - 2 0.70520 -0.033 1.000 0.564 0.567 - 3 0.62110 0.239 0.564 1.000 0.287 - 4 0.61571 -0.257 0.567 0.287 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=29246.6 FROM HESSE STATUS=OK 23 CALLS 251 TOTAL - EDM=6.06559e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 8.15934e+02 4.09665e-01 2.98861e-04 1.99109e-01 - 2 sg_p1 2.62317e+01 4.05359e-01 1.03806e-03 5.20781e-01 - 3 sg_p2 1.65790e+00 9.33088e-02 1.46679e-04 -3.43559e-01 - 4 sg_p3 1.21792e+00 3.63707e-02 2.54500e-04 -7.10248e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.678e-01 -5.327e-03 9.198e-03 -3.807e-03 - -5.327e-03 1.645e-01 2.154e-02 8.414e-03 - 9.198e-03 2.154e-02 8.711e-03 9.903e-04 - -3.807e-03 8.414e-03 9.903e-04 1.323e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.41838 1.000 -0.032 0.241 -0.256 - 2 0.70926 -0.032 1.000 0.569 0.570 - 3 0.62607 0.241 0.569 1.000 0.292 - 4 0.61881 -0.256 0.570 0.292 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -800 -815.934 +- 0.409665 -26.2317 +- 0.405359 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [550,1020] --> [550,1020] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1020] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=28612.4 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.10000e+02 6.00000e+00 0.00000e+00 -3.00114e+02 - 2 sg_p1 2.25000e+01 1.50000e+00 0.00000e+00 -1.67115e+02 - 3 sg_p2 1.20214e+00 5.00000e-01 0.00000e+00 4.55233e+01 - 4 sg_p3 1.18762e+00 7.00000e-01 -7.21725e-01 3.91659e+02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -8.9336e-01 9.8220e-01 1.9260e+00 1.9851e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.895346 TO DIAGONAL. - FCN=28570.4 FROM HESSE STATUS=NOT POSDEF 29 CALLS 216 TOTAL - EDM=0.158425 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.12468e+02 1.41859e+00 1.44554e-03 6.97099e+00 - 2 sg_p1 2.52532e+01 1.08302e+00 4.75756e-03 -1.78654e+00 - 3 sg_p2 1.59901e+00 3.19025e-01 4.11832e-03 -4.02743e+00 - 4 sg_p3 1.18510e+00 2.53698e-02 1.13700e-04 9.82264e+00 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.00001 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=28570.4 FROM MIGRAD STATUS=FAILED 279 CALLS 280 TOTAL - EDM=10.5145 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.12542e+02 1.94194e+01 -0.00000e+00 1.21944e+01 - 2 sg_p1 2.53088e+01 4.51787e+00 -0.00000e+00 3.98569e-01 - 3 sg_p2 1.61558e+00 1.51911e+00 0.00000e+00 -5.79777e+00 - 4 sg_p3 1.18237e+00 1.70381e+00 -0.00000e+00 1.97176e+02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.468e+02 5.233e-03 1.508e-03 6.862e-04 - 5.233e-03 2.418e+01 -1.914e-04 5.328e-04 - 1.508e-03 -1.914e-04 2.734e+00 1.653e-04 - 6.862e-04 5.328e-04 1.653e-04 3.439e+00 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.00007 1.000 0.000 0.000 0.000 - 2 0.00008 0.000 1.000 -0.000 0.000 - 3 0.00007 0.000 -0.000 1.000 0.000 - 4 0.00008 0.000 0.000 0.000 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.2546e+02 -1.0036e+01 1.2036e+01 1.2746e+02 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 125.585418 TO DIAGONAL. - FCN=28570.4 FROM HESSE STATUS=NOT POSDEF 25 CALLS 305 TOTAL - EDM=0.206098 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 8.12542e+02 3.32392e-02 4.24522e-04 8.48346e-02 - 2 sg_p1 2.53088e+01 5.64200e-01 1.39644e-03 3.83861e-01 - 3 sg_p2 1.61558e+00 1.70424e-01 1.23980e-03 -3.61595e-01 - 4 sg_p3 1.18237e+00 2.19991e-04 3.58849e-04 -7.23724e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.105e-03 -1.843e-03 5.571e-04 6.264e-07 - -1.843e-03 3.190e-01 -9.625e-02 1.380e-06 - 5.571e-04 -9.625e-02 2.910e-02 -4.175e-07 - 6.264e-07 1.380e-06 -4.175e-07 4.840e-08 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.13108 1.000 -0.098 0.098 0.086 - 2 0.99899 -0.098 1.000 -0.999 0.011 - 3 0.99899 0.098 -0.999 1.000 -0.011 - 4 0.08788 0.086 0.011 -0.011 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -800 -812.542 +- 0.0332392 -25.3088 +- 0.5642 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [550,1020] --> [550,1020] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1020] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=28766.4 FROM MIGRAD STATUS=INITIATE 59 CALLS 60 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.10000e+02 6.00000e+00 0.00000e+00 -7.66248e+02 - 2 sg_p1 2.25000e+01 1.50000e+00 0.00000e+00 -9.03266e+01 - 3 sg_p2 1.08494e+00 5.00000e-01 0.00000e+00 1.09698e+02 - 4 sg_p3 1.05971e+00 7.00000e-01 -7.71521e-01 -1.09172e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=28687.7 FROM MIGRAD STATUS=CONVERGED 199 CALLS 200 TOTAL - EDM=5.14966e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.14565e+02 4.05653e-01 1.46940e-03 3.96359e-01 - 2 sg_p1 2.60283e+01 3.68198e-01 5.02230e-03 5.50486e-02 - 3 sg_p2 1.66109e+00 7.22853e-02 3.19557e-03 8.70441e-02 - 4 sg_p3 1.18488e+00 3.46494e-02 1.22798e-03 -1.02684e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.646e-01 -2.497e-02 3.759e-03 -4.697e-03 - -2.497e-02 1.357e-01 1.103e-02 7.081e-03 - 3.759e-03 1.103e-02 5.227e-03 5.271e-04 - -4.697e-03 7.081e-03 5.271e-04 1.201e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.39503 1.000 -0.167 0.128 -0.334 - 2 0.63439 -0.167 1.000 0.414 0.555 - 3 0.46146 0.128 0.414 1.000 0.210 - 4 0.60729 -0.334 0.555 0.210 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=28687.7 FROM HESSE STATUS=OK 23 CALLS 223 TOTAL - EDM=5.16859e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 8.14565e+02 4.05931e-01 2.93880e-04 1.52758e-01 - 2 sg_p1 2.60283e+01 3.69660e-01 2.00892e-04 4.89788e-01 - 3 sg_p2 1.66109e+00 7.24828e-02 1.27823e-04 -3.42202e-01 - 4 sg_p3 1.18488e+00 3.47387e-02 4.91192e-05 -7.22769e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.648e-01 -2.523e-02 3.775e-03 -4.720e-03 - -2.523e-02 1.368e-01 1.122e-02 7.167e-03 - 3.775e-03 1.122e-02 5.255e-03 5.394e-04 - -4.720e-03 7.167e-03 5.394e-04 1.207e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.39649 1.000 -0.168 0.128 -0.335 - 2 0.63810 -0.168 1.000 0.419 0.558 - 3 0.46606 0.128 0.419 1.000 0.214 - 4 0.60995 -0.335 0.558 0.214 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -800 -814.565 +- 0.405931 -26.0283 +- 0.36966 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [550,1020] --> [550,1020] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1020] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=29348.4 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.10000e+02 6.00000e+00 0.00000e+00 -6.36592e+02 - 2 sg_p1 2.25000e+01 1.50000e+00 0.00000e+00 -1.83918e+02 - 3 sg_p2 1.15597e+00 5.00000e-01 0.00000e+00 8.24903e+01 - 4 sg_p3 1.21818e+00 7.00000e-01 -7.10151e-01 3.68287e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=29268.2 FROM MIGRAD STATUS=CONVERGED 199 CALLS 200 TOTAL - EDM=1.20841e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.14234e+02 3.90817e-01 1.43143e-03 -2.25892e-01 - 2 sg_p1 2.55644e+01 3.48997e-01 4.72433e-03 4.76414e-02 - 3 sg_p2 1.70026e+00 7.24860e-02 3.26136e-03 -2.01102e-02 - 4 sg_p3 1.19325e+00 3.43060e-02 1.23128e-03 -1.60765e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.527e-01 -2.472e-02 3.207e-03 -4.545e-03 - -2.472e-02 1.219e-01 9.868e-03 6.557e-03 - 3.207e-03 9.868e-03 5.256e-03 4.874e-04 - -4.545e-03 6.557e-03 4.874e-04 1.177e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.39017 1.000 -0.181 0.113 -0.339 - 2 0.62081 -0.181 1.000 0.390 0.547 - 3 0.43378 0.113 0.390 1.000 0.196 - 4 0.60004 -0.339 0.547 0.196 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=29268.2 FROM HESSE STATUS=OK 23 CALLS 223 TOTAL - EDM=1.20945e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 8.14234e+02 3.91082e-01 2.86287e-04 1.41589e-01 - 2 sg_p1 2.55644e+01 3.50246e-01 1.88973e-04 4.20910e-01 - 3 sg_p2 1.70026e+00 7.26609e-02 1.30454e-04 -3.25619e-01 - 4 sg_p3 1.19325e+00 3.43857e-02 4.92513e-05 -7.19583e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.530e-01 -2.496e-02 3.222e-03 -4.567e-03 - -2.496e-02 1.228e-01 1.004e-02 6.630e-03 - 3.222e-03 1.004e-02 5.281e-03 4.983e-04 - -4.567e-03 6.630e-03 4.983e-04 1.182e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.39164 1.000 -0.182 0.113 -0.340 - 2 0.62433 -0.182 1.000 0.394 0.550 - 3 0.43823 0.113 0.394 1.000 0.199 - 4 0.60250 -0.340 0.550 0.199 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -800 -814.234 +- 0.391082 -25.5644 +- 0.350246 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [550,1020] --> [550,1020] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1020] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=26933.9 FROM MIGRAD STATUS=INITIATE 65 CALLS 66 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.10000e+02 6.00000e+00 0.00000e+00 -8.02085e+02 - 2 sg_p1 2.25000e+01 1.50000e+00 0.00000e+00 -6.48182e+01 - 3 sg_p2 1.12090e+00 5.00000e-01 0.00000e+00 8.31490e+01 - 4 sg_p3 1.00741e+00 7.00000e-01 -7.92584e-01 -3.93256e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=26858 FROM MIGRAD STATUS=CONVERGED 255 CALLS 256 TOTAL - EDM=5.05705e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.14343e+02 4.13939e-01 1.45196e-03 -9.37591e-03 - 2 sg_p1 2.58276e+01 3.73340e-01 4.89042e-03 1.50340e-02 - 3 sg_p2 1.67484e+00 7.48885e-02 3.20560e-03 -1.09220e-03 - 4 sg_p3 1.19229e+00 3.59871e-02 1.23468e-03 -4.69920e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.714e-01 -2.629e-02 3.837e-03 -4.978e-03 - -2.629e-02 1.395e-01 1.135e-02 7.403e-03 - 3.837e-03 1.135e-02 5.610e-03 5.519e-04 - -4.978e-03 7.403e-03 5.519e-04 1.295e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.39181 1.000 -0.170 0.124 -0.334 - 2 0.62863 -0.170 1.000 0.406 0.551 - 3 0.45181 0.124 0.406 1.000 0.205 - 4 0.60326 -0.334 0.551 0.205 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=26858 FROM HESSE STATUS=OK 23 CALLS 279 TOTAL - EDM=5.06656e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 8.14343e+02 4.14229e-01 5.80783e-05 1.45269e-01 - 2 sg_p1 2.58276e+01 3.74765e-01 1.95617e-04 4.59703e-01 - 3 sg_p2 1.67484e+00 7.50817e-02 1.28224e-04 -3.36369e-01 - 4 sg_p3 1.19229e+00 3.60762e-02 4.93874e-05 -7.19948e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.716e-01 -2.658e-02 3.854e-03 -5.003e-03 - -2.658e-02 1.406e-01 1.154e-02 7.491e-03 - 3.854e-03 1.154e-02 5.639e-03 5.644e-04 - -5.003e-03 7.491e-03 5.644e-04 1.302e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.39332 1.000 -0.171 0.124 -0.335 - 2 0.63227 -0.171 1.000 0.410 0.554 - 3 0.45629 0.124 0.410 1.000 0.208 - 4 0.60585 -0.335 0.554 0.208 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -800 -814.343 +- 0.414229 -25.8276 +- 0.374765 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [550,1020] --> [550,1020] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1020] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=31351.8 FROM MIGRAD STATUS=INITIATE 59 CALLS 60 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.10000e+02 6.00000e+00 0.00000e+00 -9.46989e+02 - 2 sg_p1 2.25000e+01 1.50000e+00 0.00000e+00 -5.83441e+01 - 3 sg_p2 1.10816e+00 5.00000e-01 0.00000e+00 1.09432e+02 - 4 sg_p3 1.01312e+00 7.00000e-01 -7.90261e-01 -4.08568e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31263.7 FROM MIGRAD STATUS=CONVERGED 190 CALLS 191 TOTAL - EDM=0.000282451 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.14404e+02 3.84308e-01 1.45349e-03 -2.57491e-01 - 2 sg_p1 2.58356e+01 3.46779e-01 4.90055e-03 -2.87296e-01 - 3 sg_p2 1.67287e+00 6.92592e-02 3.19853e-03 5.88350e-01 - 4 sg_p3 1.19029e+00 3.33252e-02 1.23266e-03 1.10421e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.477e-01 -2.290e-02 3.276e-03 -4.302e-03 - -2.290e-02 1.204e-01 9.759e-03 6.385e-03 - 3.276e-03 9.759e-03 4.798e-03 4.745e-04 - -4.302e-03 6.385e-03 4.745e-04 1.111e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.39330 1.000 -0.172 0.123 -0.336 - 2 0.62986 -0.172 1.000 0.406 0.552 - 3 0.45226 0.123 0.406 1.000 0.206 - 4 0.60490 -0.336 0.552 0.206 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31263.7 FROM HESSE STATUS=OK 23 CALLS 214 TOTAL - EDM=0.000282194 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 8.14404e+02 3.84550e-01 2.90698e-04 1.47348e-01 - 2 sg_p1 2.58356e+01 3.47902e-01 9.80110e-04 4.60888e-01 - 3 sg_p2 1.67287e+00 6.94090e-02 6.39706e-04 -3.37208e-01 - 4 sg_p3 1.19029e+00 3.33968e-02 4.93065e-05 -7.20709e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.479e-01 -2.313e-02 3.287e-03 -4.322e-03 - -2.313e-02 1.211e-01 9.898e-03 6.450e-03 - 3.287e-03 9.898e-03 4.819e-03 4.836e-04 - -4.322e-03 6.450e-03 4.836e-04 1.115e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.39464 1.000 -0.173 0.123 -0.336 - 2 0.63294 -0.173 1.000 0.410 0.555 - 3 0.45602 0.123 0.410 1.000 0.209 - 4 0.60714 -0.336 0.555 0.209 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -800 -814.404 +- 0.38455 -25.8356 +- 0.347902 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 814.374 +- 0.398978 (stat) - 1.83178 + 1.56012 (syst); -1.84261/+1.57282 (total) - Uncertainty on sg_p1 = 25.8336 +- 0.36113 (stat) - 0.524827 + 0.398085 (syst); -0.55502/+0.437122 (total) - Uncertainty on sg_p2 = 1.67359 +- 0.0721418 (stat) - 0.0580086 + 0.0266696 (syst); -0.0683089/+0.0448595 (total) - Uncertainty on sg_p3 = 1.19124 +- 0.0346971 (stat) - 0.00886586 + 0.0266863 (syst); -0.0194827/+0.0318297 (total) - === Baseline plot ===
- norm = 217.194 -JEC lnN 1.00978 - -JER lnN 1.01239 - -btag lnN 1.07603 - -sg_p0 param 814.374 -1.84261/+1.57282 -sg_p1 param 25.8336 -0.55502/+0.437122 -sg_p2 param 1.67359 -0.0683089/+0.0448595 -sg_p3 param 1.19124 -0.0194827/+0.0318297 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_800_novo_550_1200/data_bkg.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_800_novo_550_1200/data_bkg.log deleted file mode 100644 index 9081393..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_800_novo_550_1200/data_bkg.log +++ /dev/null @@ -1,690 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10879.7 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 6.74624e-01 5.09000e-01 -8.31364e-01 -1.01971e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -3.20610e+01 - 3 par_crystal_2 5.00000e+02 2.00000e+01 0.00000e+00 -9.48837e+00 - 4 par_crystal_3 1.05000e+02 1.90000e+01 0.00000e+00 2.45317e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7116e+01 9.9978e-01 1.9597e+00 1.8156e+01 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 17.134017 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 27 CALLS 314 TOTAL - EDM=0.131054 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.06594e+00 6.09301e-02 1.43210e-03 -8.77809e-01 - 2 par_crystal_1 5.09576e+00 7.69298e-02 8.09031e-02 -5.13188e-02 - 3 par_crystal_2 4.95224e+02 7.91481e+01 2.17679e-03 -5.43249e-01 - 4 par_crystal_3 1.90900e+02 9.54958e+00 1.13079e-02 4.60762e-02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 477 CALLS 478 TOTAL - EDM=0.0370129 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.11079e+00 8.93309e-02 0.00000e+00 -4.75984e-01 - 2 par_crystal_1 5.08061e+00 3.60144e-01 0.00000e+00 -1.14416e-01 - 3 par_crystal_2 4.76040e+02 1.75614e+01 0.00000e+00 -2.32451e-01 - 4 par_crystal_3 1.99914e+02 2.77391e+01 0.00000e+00 -7.67572e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.985e-03 -2.091e-03 1.499e+00 2.820e-01 - -2.091e-03 2.873e-02 -7.387e-01 -2.900e-02 - 1.499e+00 -7.387e-01 3.118e+02 5.244e+01 - 2.820e-01 -2.900e-02 5.244e+01 1.008e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99775 1.000 -0.138 0.950 0.994 - 2 0.79882 -0.138 1.000 -0.247 -0.054 - 3 0.95717 0.950 -0.247 1.000 0.935 - 4 0.99764 0.994 -0.054 0.935 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.8 FROM HESSE STATUS=OK 27 CALLS 505 TOTAL - EDM=0.0183624 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.11079e+00 4.31984e-02 1.44775e-03 -6.03431e-01 - 2 par_crystal_1 5.08061e+00 3.28337e+00 6.64371e-02 1.44728e+00 - 3 par_crystal_2 4.76040e+02 8.02153e+00 1.45036e-02 3.38355e+00 - 4 par_crystal_3 1.99914e+02 2.26294e+01 4.50606e-02 1.52819e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.866e-03 -1.951e-03 -2.584e-03 1.946e-02 - -1.951e-03 1.028e-01 6.675e-04 3.793e-04 - -2.584e-03 6.675e-04 6.449e+01 1.116e+00 - 1.946e-02 3.793e-04 1.116e+00 8.140e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.21215 1.000 -0.141 -0.007 0.158 - 2 0.14274 -0.141 1.000 0.000 0.000 - 3 0.05109 -0.007 0.000 1.000 0.049 - 4 0.16712 0.158 0.000 0.049 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10978.6 FROM MIGRAD STATUS=INITIATE 68 CALLS 69 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 6.03110e+02 3.00000e+01 -8.97402e-01 -6.52175e+01 - 2 par_gaus_exp_1 5.45000e+01 9.10000e+00 0.00000e+00 -4.62060e+02 - 3 par_gaus_exp_2 4.12114e-01 3.05000e-01 0.00000e+00 1.25553e+03 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.9 FROM HESSE STATUS=OK 18 CALLS 182 TOTAL - EDM=0.000691453 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.46431e+02 6.06936e+00 3.17833e-03 -3.92855e-01 - 2 par_gaus_exp_1 6.65716e+01 1.75685e+01 2.62647e-03 1.43349e-01 - 3 par_gaus_exp_2 3.07505e-01 8.37981e-02 8.79822e-04 -3.06196e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM MIGRAD STATUS=CONVERGED 316 CALLS 317 TOTAL - EDM=9.19369e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.62504e+02 3.53152e+00 1.63243e-03 -1.66316e-01 - 2 par_gaus_exp_1 2.46552e+01 1.25211e+01 1.75085e-03 -3.48771e-01 - 3 par_gaus_exp_2 1.14604e-01 5.89219e-02 6.31447e-04 9.83138e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.247e+01 -1.544e+01 -6.961e-02 - -1.544e+01 1.643e+02 7.558e-01 - -6.961e-02 7.558e-01 3.493e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.35636 1.000 -0.341 -0.333 - 2 0.99789 -0.341 1.000 0.998 - 3 0.99788 -0.333 0.998 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM HESSE STATUS=OK 16 CALLS 333 TOTAL - EDM=9.89177e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 5.62504e+02 3.77274e+00 6.52972e-05 8.34552e-02 - 2 par_gaus_exp_1 2.46552e+01 1.46349e+01 3.50170e-04 -7.15413e-01 - 3 par_gaus_exp_2 1.14604e-01 6.93856e-02 1.26289e-04 -1.27868e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.424e+01 -2.545e+01 -1.157e-01 - -2.545e+01 2.286e+02 1.052e+00 - -1.157e-01 1.052e+00 4.855e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.45683 1.000 -0.446 -0.440 - 2 0.99849 -0.446 1.000 0.998 - 3 0.99848 -0.440 0.998 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (13168.6) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=575, par_novo_1=100, par_novo_2=1.58864 -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=645, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=655, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=665, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=675, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=685, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=695, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=705, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=715, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=725, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=735, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=745, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=755, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - ... (remaining 46 messages suppressed) -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 575,par_novo_1 = 100,par_novo_2 = 1.58864) - - FCN=13054.5 FROM MIGRAD STATUS=INITIATE 14 CALLS 15 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.75000e+02 1.50000e+01 2.01358e-01 -1.22938e+03 - 2 par_novo_1 1.00000e+02 2.00000e+01 2.01358e-01 -6.98326e+03 - 3 par_novo_2 0.00000e+00 2.00000e+01 2.01358e-01 1.51249e+06 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM MIGRAD STATUS=CONVERGED 220 CALLS 221 TOTAL - EDM=2.09668e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.00000e+02 1.21837e+02 1.25149e-01 -7.30463e-04 - 2 par_novo_1 1.30637e+02 1.58558e+01 3.16845e-03 -1.76078e-02 - 3 par_novo_2 -6.95187e-01 1.36663e-01 2.61078e-05 1.74080e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.121e-01 -9.460e-01 -6.449e-03 - -9.460e-01 2.538e+02 2.099e+00 - -6.449e-03 2.099e+00 1.868e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.21023 1.000 -0.177 -0.141 - 2 0.96488 -0.177 1.000 0.964 - 3 0.96445 -0.141 0.964 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM HESSE STATUS=OK 20 CALLS 241 TOTAL - EDM=1.01397e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 5.00000e+02 1.20312e+02 5.00000e-01 -1.57325e+00 - 2 par_novo_1 1.30637e+02 2.01762e+01 1.26738e-04 3.11381e-01 - 3 par_novo_2 -6.95187e-01 1.62575e-01 1.04431e-06 -6.95192e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.070e-01 -4.278e+00 -2.995e-02 - -4.278e+00 4.133e+02 3.212e+00 - -2.995e-02 3.212e+00 2.643e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.69436 1.000 -0.643 -0.563 - 2 0.97859 -0.643 1.000 0.972 - 3 0.97501 -0.563 0.972 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10877 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 6.33849e-01 5.09000e-01 -8.55460e-01 -1.25390e+02 - 2 par_crystal_1_1 2.55500e+00 5.09000e-01 0.00000e+00 -2.69495e+01 - 3 par_crystal_1_2 5.50000e+02 3.00000e+01 0.00000e+00 -1.44080e+01 - 4 par_crystal_1_3 1.04500e+02 1.91000e+01 0.00000e+00 3.07979e+01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.43469 added to diagonal of error matrix - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.5401e+00 8.4221e-02 1.8087e+00 3.6472e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 1.543714 TO DIAGONAL. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.9 FROM HESSE STATUS=OK 25 CALLS 485 TOTAL - EDM=0.0491336 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.05623e+00 1.52463e-01 1.42446e-03 -1.90900e+00 - 2 par_crystal_1_1 5.09988e+00 3.18944e+00 7.54811e-02 -8.93342e-03 - 3 par_crystal_1_2 4.96280e+02 4.98347e+01 9.02051e-03 3.58498e-02 - 4 par_crystal_1_3 1.89188e+02 2.78069e+01 1.02856e-02 -2.38185e-01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 538 CALLS 539 TOTAL - EDM=10.0867 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 14.1 per cent - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.09723e+00 3.02575e-02 -0.00000e+00 5.47416e+01 - 2 par_crystal_1_1 5.09997e+00 3.18368e+00 0.00000e+00 -3.90351e-03 - 3 par_crystal_1_2 4.83329e+02 2.76558e+01 0.00000e+00 7.05236e+00 - 4 par_crystal_1_3 1.96552e+02 5.80629e+00 -0.00000e+00 4.39990e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.156e-04 -1.804e-07 -6.742e-01 1.111e-01 - -1.804e-07 1.763e-04 7.888e-03 -2.154e-03 - -6.742e-01 7.888e-03 7.759e+02 -1.463e+02 - 1.111e-01 -2.154e-03 -1.463e+02 3.432e+01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.82553 1.000 -0.000 -0.800 0.627 - 2 0.03650 -0.000 1.000 0.021 -0.028 - 3 0.94703 -0.800 0.021 1.000 -0.896 - 4 0.90888 0.627 -0.028 -0.896 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -9.7852e-01 9.9996e-01 1.9836e+00 1.9949e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.980510 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 29 CALLS 568 TOTAL - EDM=238.514 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 1.09723e+00 4.25322e-02 2.54943e-04 -6.09913e-01 - 2 par_crystal_1_1 5.09997e+00 7.84798e-01 8.54763e-02 1.56580e+00 - 3 par_crystal_1_2 4.83329e+02 1.87856e+01 1.76414e-03 -4.60588e-01 - 4 par_crystal_1_3 1.96552e+02 5.33115e+00 2.63738e-03 1.30128e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.809e-03 -2.197e-07 8.001e-01 2.280e-01 - -2.197e-07 1.053e-04 -1.173e-04 -3.665e-05 - 8.001e-01 -1.173e-04 3.552e+02 1.010e+02 - 2.280e-01 -3.665e-05 1.010e+02 2.885e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99849 1.000 -0.001 0.998 0.998 - 2 0.00265 -0.001 1.000 -0.001 -0.001 - 3 0.99848 0.998 -0.001 1.000 0.998 - 4 0.99849 0.998 -0.001 0.998 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_550_1200 = 1266.17 - Background number of gaus_exp_550_1200 = 1266.17 - Background number of novo_550_1200 = 1266.17 - Background number of crystal_1_550_1200 = 1266.17 - Background number of gaus_bern_550_1200 = 1266.17 - Background number of landau_550_1200 = 1266.17 -par_crystal_0 param 1.11079 0.0431984 -par_crystal_1 param 5.08061 3.28337 -par_crystal_2 param 476.04 8.02153 -par_crystal_3 param 199.914 22.6294 -par_crystal_1_0 param 1.09723 0.0425322 -par_crystal_1_1 param 5.09997 0.784798 -par_crystal_1_2 param 483.329 18.7856 -par_crystal_1_3 param 196.552 5.33115 -par_gaus_exp_0 param 562.504 3.77274 -par_gaus_exp_1 param 24.6552 14.6349 -par_gaus_exp_2 param 0.114604 0.0693856 -par_novo_0 param 500 120.312 -par_novo_1 param 130.637 20.1762 -par_novo_2 param -0.695187 0.162575 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_800_novo_550_1200/datacard_800_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_800_novo_550_1200/datacard_800_novo_550_1200.txt deleted file mode 100644 index 60a26ed..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_800_novo_550_1200/datacard_800_novo_550_1200.txt +++ /dev/null @@ -1,28 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_800.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo -shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 4.34388 1266.17 -lumi_13TeV lnN 1.026 - -bTag lnN 1.07603 - -JER lnN 1.01239 - -JEC lnN 1.00978 - -trigger lnN 1.10 - -sg_p0 param 814.374 -1.84261/+1.57282 -sg_p1 param 25.8336 -0.55502/+0.437122 -sg_p2 param 1.67359 -0.0683089/+0.0448595 -sg_p3 param 1.19124 -0.0194827/+0.0318297 -par_novo_0 param 500 120.312 -par_novo_1 param 130.637 20.1762 -par_novo_2 param -0.695187 0.162575 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_800_novo_550_1200/signal800_sig.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_800_novo_550_1200/signal800_sig.log deleted file mode 100644 index 9bb688f..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_800_novo_550_1200/signal800_sig.log +++ /dev/null @@ -1,986 +0,0 @@ - -Processing test.c... -nSignal_init = 100000 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [550,1000] --> [550,1000] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [650,900] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1000] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [650,900] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=30655.7 FROM MIGRAD STATUS=INITIATE 50 CALLS 51 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.90000e+02 6.00000e+00 0.00000e+00 -1.30426e+02 - 2 sg_p1 3.75000e+01 2.50000e+00 0.00000e+00 -1.66737e+02 - 3 sg_p2 2.94124e+00 5.00000e-01 0.00000e+00 -1.49475e-01 - 4 sg_p3 1.57852e+00 7.00000e-01 -5.81159e-01 2.58563e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - MINUIT WARNING IN HESSE - ============== Second derivative enters zero, param 3 - MINUIT WARNING IN HESSE - ============== Second derivative zero for parameter3 - MNHESS FAILS AND WILL RETURN DIAGONAL MATRIX. - FCN=30638 FROM MIGRAD STATUS=CONVERGED 151 CALLS 152 TOTAL - EDM=3.50906e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 100.0 per cent - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.90259e+02 5.37023e-01 2.16671e-03 1.11551e-01 - 2 sg_p1 4.03199e+01 4.16552e-01 4.14293e-03 1.05806e-01 - 3 sg_p2 4.91276e+00 3.42658e+00 -3.03050e-03 0.00000e+00 - 4 sg_p3 1.92775e+00 1.16850e-01 -5.45644e-04 -1.47920e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.884e-01 0.000e+00 0.000e+00 0.000e+00 - 0.000e+00 1.736e-01 0.000e+00 0.000e+00 - 0.000e+00 0.000e+00 5.000e-01 0.000e+00 - 0.000e+00 0.000e+00 0.000e+00 1.366e-02 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.00000 1.000 0.000 0.000 0.000 - 2 0.00000 0.000 1.000 0.000 0.000 - 3 0.00000 0.000 0.000 1.000 0.000 - 4 0.00000 0.000 0.000 0.000 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - MINUIT WARNING IN HESSE - ============== Second derivative zero for parameter3 - MNHESS FAILS AND WILL RETURN DIAGONAL MATRIX. - FCN=30638 FROM HESSE STATUS=FAILED 7 CALLS 159 TOTAL - EDM=3.50906e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 100.0 per cent - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.90259e+02 5.37023e-01 2.16671e-03 8.63427e-03 - 2 sg_p1 4.03199e+01 4.16552e-01 4.14293e-03 2.27549e-01 - 3 sg_p2 4.30353e+00 3.12197e+00 -3.03050e-03 1.30584e+00 - 4 sg_p3 1.92775e+00 1.16850e-01 -5.45644e-04 -4.65886e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.884e-01 0.000e+00 0.000e+00 0.000e+00 - 0.000e+00 1.736e-01 0.000e+00 0.000e+00 - 0.000e+00 0.000e+00 5.000e-01 0.000e+00 - 0.000e+00 0.000e+00 0.000e+00 1.366e-02 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.00000 1.000 0.000 0.000 0.000 - 2 0.00000 0.000 1.000 0.000 0.000 - 3 0.00000 0.000 0.000 1.000 0.000 - 4 0.00000 0.000 0.000 0.000 1.000 - ERR MATRIX APPROXIMATE -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -800 -790.259 +- 0.537023 -40.3199 +- 0.416552 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [550,1000] --> [550,1000] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [650,900] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1000] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [650,900] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=30957.8 FROM MIGRAD STATUS=INITIATE 78 CALLS 79 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.90000e+02 6.00000e+00 0.00000e+00 -4.59580e+02 - 2 sg_p1 3.75000e+01 2.50000e+00 0.00000e+00 -2.30328e+02 - 3 sg_p2 1.77977e+00 5.00000e-01 0.00000e+00 5.54337e-01 - 4 sg_p3 1.71207e+00 7.00000e-01 -5.36159e-01 1.57191e-01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.02296 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=30898 FROM HESSE STATUS=OK 31 CALLS 326 TOTAL - EDM=1.52673e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.93825e+02 5.57072e-01 2.22239e-03 2.71391e-03 - 2 sg_p1 4.08795e+01 4.57494e-01 4.30357e-03 8.95731e-02 - 3 sg_p2 2.60706e+00 9.43716e-01 4.61396e-02 -1.14830e-02 - 4 sg_p3 1.95465e+00 1.29415e-01 4.57004e-03 -4.88228e-02 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.02637 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - MACHINE ACCURACY LIMITS FURTHER IMPROVEMENT. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=30898 FROM MIGRAD STATUS=CONVERGED 377 CALLS 378 TOTAL - EDM=5.46872e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.93825e+02 5.57319e-01 8.88956e-04 -1.24563e-04 - 2 sg_p1 4.08783e+01 4.58216e-01 1.72143e-03 -1.67615e-04 - 3 sg_p2 2.61137e+00 9.86696e-01 4.70300e-02 -5.75769e-03 - 4 sg_p3 1.95475e+00 1.29727e-01 1.82801e-03 4.70590e-04 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.106e-01 -1.282e-02 1.973e-11 -1.514e-02 - -1.282e-02 2.101e-01 -3.231e-10 2.168e-02 - 1.973e-11 -3.231e-10 1.029e+00 -3.334e-11 - -1.514e-02 2.168e-02 -3.334e-11 1.684e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.21127 1.000 -0.050 0.000 -0.209 - 2 0.36542 -0.050 1.000 -0.000 0.364 - 3 0.00000 0.000 -0.000 1.000 -0.000 - 4 0.41162 -0.209 0.364 -0.000 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=30898 FROM HESSE STATUS=OK 29 CALLS 407 TOTAL - EDM=1.45739e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.93825e+02 5.57488e-01 3.55582e-05 1.27840e-01 - 2 sg_p1 4.08783e+01 4.58705e-01 6.88571e-05 2.73664e-01 - 3 sg_p2 2.61137e+00 3.15165e-01 3.77936e-01 4.45612e-02 - 4 sg_p3 1.95475e+00 1.29897e-01 7.31206e-05 -4.57269e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.108e-01 -1.327e-02 9.363e-11 -1.527e-02 - -1.327e-02 2.105e-01 -6.593e-11 2.188e-02 - 9.363e-11 -6.593e-11 9.986e-02 1.258e-11 - -1.527e-02 2.188e-02 1.258e-11 1.688e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.21263 1.000 -0.052 0.000 -0.211 - 2 0.36794 -0.052 1.000 -0.000 0.367 - 3 0.00000 0.000 -0.000 1.000 0.000 - 4 0.41424 -0.211 0.367 0.000 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -800 -793.825 +- 0.557488 -40.8783 +- 0.458705 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [550,1000] --> [550,1000] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [650,900] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1000] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [650,900] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=30291.5 FROM MIGRAD STATUS=INITIATE 41 CALLS 42 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.90000e+02 6.00000e+00 0.00000e+00 1.95885e+02 - 2 sg_p1 3.75000e+01 2.50000e+00 0.00000e+00 -7.27088e+01 - 3 sg_p2 2.50000e+00 5.00000e-01 0.00000e+00 -9.73752e-02 - 4 sg_p3 1.38901e+00 7.00000e-01 -6.47432e-01 2.33654e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=30270.6 FROM MIGRAD STATUS=CONVERGED 162 CALLS 163 TOTAL - EDM=8.78757e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 7.86674e+02 5.58720e-01 2.15921e-03 -1.99988e-01 - 2 sg_p1 4.00594e+01 4.59169e-01 4.05661e-03 3.84165e-02 - 3 sg_p2 2.51479e+00 3.25925e-01 2.03755e-02 4.90232e-02 - 4 sg_p3 1.92655e+00 1.49829e-01 4.93143e-03 8.21834e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.122e-01 -3.425e-02 1.692e-03 -2.360e-02 - -3.425e-02 2.109e-01 3.630e-03 2.988e-02 - 1.692e-03 3.630e-03 1.068e-01 4.290e-04 - -2.360e-02 2.988e-02 4.290e-04 2.247e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.28235 1.000 -0.133 0.009 -0.282 - 2 0.43476 -0.133 1.000 0.024 0.434 - 3 0.02730 0.009 0.024 1.000 0.009 - 4 0.48938 -0.282 0.434 0.009 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=30270.6 FROM HESSE STATUS=OK 33 CALLS 196 TOTAL - EDM=6.62467e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 7.86674e+02 5.59678e-01 4.31843e-04 -1.11107e-01 - 2 sg_p1 4.00594e+01 4.61116e-01 1.62264e-04 2.06214e-01 - 3 sg_p2 2.51479e+00 2.22927e-01 4.53587e-01 5.91504e-03 - 4 sg_p3 1.92655e+00 1.50658e-01 1.97257e-04 -4.66270e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.133e-01 -3.601e-02 1.955e-04 -2.426e-02 - -3.601e-02 2.127e-01 4.139e-04 3.075e-02 - 1.955e-04 4.139e-04 4.983e-02 4.614e-05 - -2.426e-02 3.075e-02 4.614e-05 2.272e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.28788 1.000 -0.140 0.002 -0.288 - 2 0.44255 -0.140 1.000 0.004 0.442 - 3 0.00456 0.002 0.004 1.000 0.001 - 4 0.49768 -0.288 0.442 0.001 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -800 -786.674 +- 0.559678 -40.0594 +- 0.461116 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [550,1020] --> [550,1020] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1020] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=29080.5 FROM MIGRAD STATUS=INITIATE 63 CALLS 64 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.10000e+02 6.00000e+00 0.00000e+00 -8.86811e+02 - 2 sg_p1 2.25000e+01 1.50000e+00 0.00000e+00 -5.59388e+01 - 3 sg_p2 1.11453e+00 5.00000e-01 0.00000e+00 1.02248e+02 - 4 sg_p3 1.01032e+00 7.00000e-01 -7.91400e-01 -4.01707e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=28998.7 FROM MIGRAD STATUS=CONVERGED 208 CALLS 209 TOTAL - EDM=2.80961e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.14374e+02 3.98724e-01 1.45304e-03 -1.70387e-01 - 2 sg_p1 2.58336e+01 3.59782e-01 4.89449e-03 8.13003e-02 - 3 sg_p2 1.67359e+00 7.19571e-02 3.19487e-03 5.88230e-02 - 4 sg_p3 1.19124e+00 3.46142e-02 1.23219e-03 -4.28854e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.590e-01 -2.453e-02 3.541e-03 -4.624e-03 - -2.453e-02 1.296e-01 1.051e-02 6.871e-03 - 3.541e-03 1.051e-02 5.179e-03 5.110e-04 - -4.624e-03 6.871e-03 5.110e-04 1.198e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.39250 1.000 -0.171 0.123 -0.335 - 2 0.62921 -0.171 1.000 0.406 0.551 - 3 0.45197 0.123 0.406 1.000 0.205 - 4 0.60406 -0.335 0.551 0.205 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=28998.7 FROM HESSE STATUS=OK 23 CALLS 232 TOTAL - EDM=2.80811e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 8.14374e+02 3.98978e-01 2.90608e-04 1.46314e-01 - 2 sg_p1 2.58336e+01 3.61130e-01 1.95780e-04 4.60594e-01 - 3 sg_p2 1.67359e+00 7.21418e-02 1.27795e-04 -3.36900e-01 - 4 sg_p3 1.19124e+00 3.46971e-02 2.46437e-04 -7.20348e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.592e-01 -2.477e-02 3.557e-03 -4.644e-03 - -2.477e-02 1.305e-01 1.069e-02 6.950e-03 - 3.557e-03 1.069e-02 5.206e-03 5.225e-04 - -4.644e-03 6.950e-03 5.225e-04 1.204e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.39387 1.000 -0.172 0.124 -0.335 - 2 0.63278 -0.172 1.000 0.410 0.554 - 3 0.45643 0.124 0.410 1.000 0.209 - 4 0.60656 -0.335 0.554 0.209 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -800 -814.374 +- 0.398978 -25.8336 +- 0.36113 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 - fit done -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [550,1020] --> [550,1020] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1020] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=29394.8 FROM MIGRAD STATUS=INITIATE 76 CALLS 77 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.09344e+02 6.00000e+00 0.00000e+00 -9.04905e+02 - 2 sg_p1 2.25000e+01 1.50000e+00 0.00000e+00 -1.79169e+02 - 3 sg_p2 1.02066e+00 5.00000e-01 0.00000e+00 2.33092e+02 - 4 sg_p3 1.24736e+00 7.00000e-01 -6.99207e-01 3.18929e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=29246.6 FROM MIGRAD STATUS=CONVERGED 227 CALLS 228 TOTAL - EDM=6.02107e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.15934e+02 4.09344e-01 1.49430e-03 -1.08719e-01 - 2 sg_p1 2.62317e+01 4.03039e-01 5.19030e-03 1.33417e-01 - 3 sg_p2 1.65790e+00 9.28346e-02 3.66697e-03 4.58391e-02 - 4 sg_p3 1.21792e+00 3.62585e-02 1.27250e-03 -4.88031e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.676e-01 -5.450e-03 9.103e-03 -3.808e-03 - -5.450e-03 1.626e-01 2.111e-02 8.287e-03 - 9.103e-03 2.111e-02 8.623e-03 9.650e-04 - -3.808e-03 8.287e-03 9.650e-04 1.315e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.41684 1.000 -0.033 0.239 -0.257 - 2 0.70520 -0.033 1.000 0.564 0.567 - 3 0.62110 0.239 0.564 1.000 0.287 - 4 0.61571 -0.257 0.567 0.287 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=29246.6 FROM HESSE STATUS=OK 23 CALLS 251 TOTAL - EDM=6.06559e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 8.15934e+02 4.09665e-01 2.98861e-04 1.99109e-01 - 2 sg_p1 2.62317e+01 4.05359e-01 1.03806e-03 5.20781e-01 - 3 sg_p2 1.65790e+00 9.33088e-02 1.46679e-04 -3.43559e-01 - 4 sg_p3 1.21792e+00 3.63707e-02 2.54500e-04 -7.10248e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.678e-01 -5.327e-03 9.198e-03 -3.807e-03 - -5.327e-03 1.645e-01 2.154e-02 8.414e-03 - 9.198e-03 2.154e-02 8.711e-03 9.903e-04 - -3.807e-03 8.414e-03 9.903e-04 1.323e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.41838 1.000 -0.032 0.241 -0.256 - 2 0.70926 -0.032 1.000 0.569 0.570 - 3 0.62607 0.241 0.569 1.000 0.292 - 4 0.61881 -0.256 0.570 0.292 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -800 -815.934 +- 0.409665 -26.2317 +- 0.405359 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [550,1020] --> [550,1020] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1020] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=28612.4 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.10000e+02 6.00000e+00 0.00000e+00 -3.00114e+02 - 2 sg_p1 2.25000e+01 1.50000e+00 0.00000e+00 -1.67115e+02 - 3 sg_p2 1.20214e+00 5.00000e-01 0.00000e+00 4.55233e+01 - 4 sg_p3 1.18762e+00 7.00000e-01 -7.21725e-01 3.91659e+02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -8.9336e-01 9.8220e-01 1.9260e+00 1.9851e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.895346 TO DIAGONAL. - FCN=28570.4 FROM HESSE STATUS=NOT POSDEF 29 CALLS 216 TOTAL - EDM=0.158425 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.12468e+02 1.41859e+00 1.44554e-03 6.97099e+00 - 2 sg_p1 2.52532e+01 1.08302e+00 4.75756e-03 -1.78654e+00 - 3 sg_p2 1.59901e+00 3.19025e-01 4.11832e-03 -4.02743e+00 - 4 sg_p3 1.18510e+00 2.53698e-02 1.13700e-04 9.82264e+00 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.00001 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=28570.4 FROM MIGRAD STATUS=FAILED 279 CALLS 280 TOTAL - EDM=10.5145 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.12542e+02 1.94194e+01 -0.00000e+00 1.21944e+01 - 2 sg_p1 2.53088e+01 4.51787e+00 -0.00000e+00 3.98569e-01 - 3 sg_p2 1.61558e+00 1.51911e+00 0.00000e+00 -5.79777e+00 - 4 sg_p3 1.18237e+00 1.70381e+00 -0.00000e+00 1.97176e+02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.468e+02 5.233e-03 1.508e-03 6.862e-04 - 5.233e-03 2.418e+01 -1.914e-04 5.328e-04 - 1.508e-03 -1.914e-04 2.734e+00 1.653e-04 - 6.862e-04 5.328e-04 1.653e-04 3.439e+00 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.00007 1.000 0.000 0.000 0.000 - 2 0.00008 0.000 1.000 -0.000 0.000 - 3 0.00007 0.000 -0.000 1.000 0.000 - 4 0.00008 0.000 0.000 0.000 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.2546e+02 -1.0036e+01 1.2036e+01 1.2746e+02 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 125.585418 TO DIAGONAL. - FCN=28570.4 FROM HESSE STATUS=NOT POSDEF 25 CALLS 305 TOTAL - EDM=0.206098 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 8.12542e+02 3.32392e-02 4.24522e-04 8.48346e-02 - 2 sg_p1 2.53088e+01 5.64200e-01 1.39644e-03 3.83861e-01 - 3 sg_p2 1.61558e+00 1.70424e-01 1.23980e-03 -3.61595e-01 - 4 sg_p3 1.18237e+00 2.19991e-04 3.58849e-04 -7.23724e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.105e-03 -1.843e-03 5.571e-04 6.264e-07 - -1.843e-03 3.190e-01 -9.625e-02 1.380e-06 - 5.571e-04 -9.625e-02 2.910e-02 -4.175e-07 - 6.264e-07 1.380e-06 -4.175e-07 4.840e-08 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.13108 1.000 -0.098 0.098 0.086 - 2 0.99899 -0.098 1.000 -0.999 0.011 - 3 0.99899 0.098 -0.999 1.000 -0.011 - 4 0.08788 0.086 0.011 -0.011 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -800 -812.542 +- 0.0332392 -25.3088 +- 0.5642 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [550,1020] --> [550,1020] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1020] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=28766.4 FROM MIGRAD STATUS=INITIATE 59 CALLS 60 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.10000e+02 6.00000e+00 0.00000e+00 -7.66248e+02 - 2 sg_p1 2.25000e+01 1.50000e+00 0.00000e+00 -9.03266e+01 - 3 sg_p2 1.08494e+00 5.00000e-01 0.00000e+00 1.09698e+02 - 4 sg_p3 1.05971e+00 7.00000e-01 -7.71521e-01 -1.09172e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=28687.7 FROM MIGRAD STATUS=CONVERGED 199 CALLS 200 TOTAL - EDM=5.14966e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.14565e+02 4.05653e-01 1.46940e-03 3.96359e-01 - 2 sg_p1 2.60283e+01 3.68198e-01 5.02230e-03 5.50486e-02 - 3 sg_p2 1.66109e+00 7.22853e-02 3.19557e-03 8.70441e-02 - 4 sg_p3 1.18488e+00 3.46494e-02 1.22798e-03 -1.02684e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.646e-01 -2.497e-02 3.759e-03 -4.697e-03 - -2.497e-02 1.357e-01 1.103e-02 7.081e-03 - 3.759e-03 1.103e-02 5.227e-03 5.271e-04 - -4.697e-03 7.081e-03 5.271e-04 1.201e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.39503 1.000 -0.167 0.128 -0.334 - 2 0.63439 -0.167 1.000 0.414 0.555 - 3 0.46146 0.128 0.414 1.000 0.210 - 4 0.60729 -0.334 0.555 0.210 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=28687.7 FROM HESSE STATUS=OK 23 CALLS 223 TOTAL - EDM=5.16859e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 8.14565e+02 4.05931e-01 2.93880e-04 1.52758e-01 - 2 sg_p1 2.60283e+01 3.69660e-01 2.00892e-04 4.89788e-01 - 3 sg_p2 1.66109e+00 7.24828e-02 1.27823e-04 -3.42202e-01 - 4 sg_p3 1.18488e+00 3.47387e-02 4.91192e-05 -7.22769e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.648e-01 -2.523e-02 3.775e-03 -4.720e-03 - -2.523e-02 1.368e-01 1.122e-02 7.167e-03 - 3.775e-03 1.122e-02 5.255e-03 5.394e-04 - -4.720e-03 7.167e-03 5.394e-04 1.207e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.39649 1.000 -0.168 0.128 -0.335 - 2 0.63810 -0.168 1.000 0.419 0.558 - 3 0.46606 0.128 0.419 1.000 0.214 - 4 0.60995 -0.335 0.558 0.214 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -800 -814.565 +- 0.405931 -26.0283 +- 0.36966 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [550,1020] --> [550,1020] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1020] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=29348.4 FROM MIGRAD STATUS=INITIATE 57 CALLS 58 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.10000e+02 6.00000e+00 0.00000e+00 -6.36592e+02 - 2 sg_p1 2.25000e+01 1.50000e+00 0.00000e+00 -1.83918e+02 - 3 sg_p2 1.15597e+00 5.00000e-01 0.00000e+00 8.24903e+01 - 4 sg_p3 1.21818e+00 7.00000e-01 -7.10151e-01 3.68287e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=29268.2 FROM MIGRAD STATUS=CONVERGED 199 CALLS 200 TOTAL - EDM=1.20841e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.14234e+02 3.90817e-01 1.43143e-03 -2.25892e-01 - 2 sg_p1 2.55644e+01 3.48997e-01 4.72433e-03 4.76414e-02 - 3 sg_p2 1.70026e+00 7.24860e-02 3.26136e-03 -2.01102e-02 - 4 sg_p3 1.19325e+00 3.43060e-02 1.23128e-03 -1.60765e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.527e-01 -2.472e-02 3.207e-03 -4.545e-03 - -2.472e-02 1.219e-01 9.868e-03 6.557e-03 - 3.207e-03 9.868e-03 5.256e-03 4.874e-04 - -4.545e-03 6.557e-03 4.874e-04 1.177e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.39017 1.000 -0.181 0.113 -0.339 - 2 0.62081 -0.181 1.000 0.390 0.547 - 3 0.43378 0.113 0.390 1.000 0.196 - 4 0.60004 -0.339 0.547 0.196 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=29268.2 FROM HESSE STATUS=OK 23 CALLS 223 TOTAL - EDM=1.20945e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 8.14234e+02 3.91082e-01 2.86287e-04 1.41589e-01 - 2 sg_p1 2.55644e+01 3.50246e-01 1.88973e-04 4.20910e-01 - 3 sg_p2 1.70026e+00 7.26609e-02 1.30454e-04 -3.25619e-01 - 4 sg_p3 1.19325e+00 3.43857e-02 4.92513e-05 -7.19583e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.530e-01 -2.496e-02 3.222e-03 -4.567e-03 - -2.496e-02 1.228e-01 1.004e-02 6.630e-03 - 3.222e-03 1.004e-02 5.281e-03 4.983e-04 - -4.567e-03 6.630e-03 4.983e-04 1.182e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.39164 1.000 -0.182 0.113 -0.340 - 2 0.62433 -0.182 1.000 0.394 0.550 - 3 0.43823 0.113 0.394 1.000 0.199 - 4 0.60250 -0.340 0.550 0.199 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -800 -814.234 +- 0.391082 -25.5644 +- 0.350246 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [550,1020] --> [550,1020] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1020] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=26933.9 FROM MIGRAD STATUS=INITIATE 65 CALLS 66 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.10000e+02 6.00000e+00 0.00000e+00 -8.02085e+02 - 2 sg_p1 2.25000e+01 1.50000e+00 0.00000e+00 -6.48182e+01 - 3 sg_p2 1.12090e+00 5.00000e-01 0.00000e+00 8.31490e+01 - 4 sg_p3 1.00741e+00 7.00000e-01 -7.92584e-01 -3.93256e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=26858 FROM MIGRAD STATUS=CONVERGED 255 CALLS 256 TOTAL - EDM=5.05705e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.14343e+02 4.13939e-01 1.45196e-03 -9.37591e-03 - 2 sg_p1 2.58276e+01 3.73340e-01 4.89042e-03 1.50340e-02 - 3 sg_p2 1.67484e+00 7.48885e-02 3.20560e-03 -1.09220e-03 - 4 sg_p3 1.19229e+00 3.59871e-02 1.23468e-03 -4.69920e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.714e-01 -2.629e-02 3.837e-03 -4.978e-03 - -2.629e-02 1.395e-01 1.135e-02 7.403e-03 - 3.837e-03 1.135e-02 5.610e-03 5.519e-04 - -4.978e-03 7.403e-03 5.519e-04 1.295e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.39181 1.000 -0.170 0.124 -0.334 - 2 0.62863 -0.170 1.000 0.406 0.551 - 3 0.45181 0.124 0.406 1.000 0.205 - 4 0.60326 -0.334 0.551 0.205 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=26858 FROM HESSE STATUS=OK 23 CALLS 279 TOTAL - EDM=5.06656e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 8.14343e+02 4.14229e-01 5.80783e-05 1.45269e-01 - 2 sg_p1 2.58276e+01 3.74765e-01 1.95617e-04 4.59703e-01 - 3 sg_p2 1.67484e+00 7.50817e-02 1.28224e-04 -3.36369e-01 - 4 sg_p3 1.19229e+00 3.60762e-02 4.93874e-05 -7.19948e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.716e-01 -2.658e-02 3.854e-03 -5.003e-03 - -2.658e-02 1.406e-01 1.154e-02 7.491e-03 - 3.854e-03 1.154e-02 5.639e-03 5.644e-04 - -5.003e-03 7.491e-03 5.644e-04 1.302e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.39332 1.000 -0.171 0.124 -0.335 - 2 0.63227 -0.171 1.000 0.410 0.554 - 3 0.45629 0.124 0.410 1.000 0.208 - 4 0.60585 -0.335 0.554 0.208 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -800 -814.343 +- 0.414229 -25.8276 +- 0.374765 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [550,1020] --> [550,1020] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1020] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [650,920] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=31351.8 FROM MIGRAD STATUS=INITIATE 59 CALLS 60 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.10000e+02 6.00000e+00 0.00000e+00 -9.46989e+02 - 2 sg_p1 2.25000e+01 1.50000e+00 0.00000e+00 -5.83441e+01 - 3 sg_p2 1.10816e+00 5.00000e-01 0.00000e+00 1.09432e+02 - 4 sg_p3 1.01312e+00 7.00000e-01 -7.90261e-01 -4.08568e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31263.7 FROM MIGRAD STATUS=CONVERGED 190 CALLS 191 TOTAL - EDM=0.000282451 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.14404e+02 3.84308e-01 1.45349e-03 -2.57491e-01 - 2 sg_p1 2.58356e+01 3.46779e-01 4.90055e-03 -2.87296e-01 - 3 sg_p2 1.67287e+00 6.92592e-02 3.19853e-03 5.88350e-01 - 4 sg_p3 1.19029e+00 3.33252e-02 1.23266e-03 1.10421e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.477e-01 -2.290e-02 3.276e-03 -4.302e-03 - -2.290e-02 1.204e-01 9.759e-03 6.385e-03 - 3.276e-03 9.759e-03 4.798e-03 4.745e-04 - -4.302e-03 6.385e-03 4.745e-04 1.111e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.39330 1.000 -0.172 0.123 -0.336 - 2 0.62986 -0.172 1.000 0.406 0.552 - 3 0.45226 0.123 0.406 1.000 0.206 - 4 0.60490 -0.336 0.552 0.206 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31263.7 FROM HESSE STATUS=OK 23 CALLS 214 TOTAL - EDM=0.000282194 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 8.14404e+02 3.84550e-01 2.90698e-04 1.47348e-01 - 2 sg_p1 2.58356e+01 3.47902e-01 9.80110e-04 4.60888e-01 - 3 sg_p2 1.67287e+00 6.94090e-02 6.39706e-04 -3.37208e-01 - 4 sg_p3 1.19029e+00 3.33968e-02 4.93065e-05 -7.20709e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.479e-01 -2.313e-02 3.287e-03 -4.322e-03 - -2.313e-02 1.211e-01 9.898e-03 6.450e-03 - 3.287e-03 9.898e-03 4.819e-03 4.836e-04 - -4.322e-03 6.450e-03 4.836e-04 1.115e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.39464 1.000 -0.173 0.123 -0.336 - 2 0.63294 -0.173 1.000 0.410 0.555 - 3 0.45602 0.123 0.410 1.000 0.209 - 4 0.60714 -0.336 0.555 0.209 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -800 -814.404 +- 0.38455 -25.8356 +- 0.347902 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 814.374 +- 0.398978 (stat) - 1.83178 + 1.56012 (syst); -1.84261/+1.57282 (total) - Uncertainty on sg_p1 = 25.8336 +- 0.36113 (stat) - 0.524827 + 0.398085 (syst); -0.55502/+0.437122 (total) - Uncertainty on sg_p2 = 1.67359 +- 0.0721418 (stat) - 0.0580086 + 0.0266696 (syst); -0.0683089/+0.0448595 (total) - Uncertainty on sg_p3 = 1.19124 +- 0.0346971 (stat) - 0.00886586 + 0.0266863 (syst); -0.0194827/+0.0318297 (total) - === Baseline plot ===
- norm = 217.194 -JEC lnN 1.00978 - -JER lnN 1.01239 - -btag lnN 1.07603 - -sg_p0 param 814.374 -1.84261/+1.57282 -sg_p1 param 25.8336 -0.55502/+0.437122 -sg_p2 param 1.67359 -0.0683089/+0.0448595 -sg_p3 param 1.19124 -0.0194827/+0.0318297 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_900_crystal_1_550_1200/data_bkg.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_900_crystal_1_550_1200/data_bkg.log deleted file mode 100644 index a966e12..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_900_crystal_1_550_1200/data_bkg.log +++ /dev/null @@ -1,690 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10879.7 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 6.74624e-01 5.09000e-01 -8.31364e-01 -1.01971e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -3.20610e+01 - 3 par_crystal_2 5.00000e+02 2.00000e+01 0.00000e+00 -9.48837e+00 - 4 par_crystal_3 1.05000e+02 1.90000e+01 0.00000e+00 2.45317e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7116e+01 9.9978e-01 1.9597e+00 1.8156e+01 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 17.134017 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 27 CALLS 314 TOTAL - EDM=0.131054 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.06594e+00 6.09301e-02 1.43210e-03 -8.77809e-01 - 2 par_crystal_1 5.09576e+00 7.69298e-02 8.09031e-02 -5.13188e-02 - 3 par_crystal_2 4.95224e+02 7.91481e+01 2.17679e-03 -5.43249e-01 - 4 par_crystal_3 1.90900e+02 9.54958e+00 1.13079e-02 4.60762e-02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 477 CALLS 478 TOTAL - EDM=0.0370129 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.11079e+00 8.93309e-02 0.00000e+00 -4.75984e-01 - 2 par_crystal_1 5.08061e+00 3.60144e-01 0.00000e+00 -1.14416e-01 - 3 par_crystal_2 4.76040e+02 1.75614e+01 0.00000e+00 -2.32451e-01 - 4 par_crystal_3 1.99914e+02 2.77391e+01 0.00000e+00 -7.67572e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.985e-03 -2.091e-03 1.499e+00 2.820e-01 - -2.091e-03 2.873e-02 -7.387e-01 -2.900e-02 - 1.499e+00 -7.387e-01 3.118e+02 5.244e+01 - 2.820e-01 -2.900e-02 5.244e+01 1.008e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99775 1.000 -0.138 0.950 0.994 - 2 0.79882 -0.138 1.000 -0.247 -0.054 - 3 0.95717 0.950 -0.247 1.000 0.935 - 4 0.99764 0.994 -0.054 0.935 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.8 FROM HESSE STATUS=OK 27 CALLS 505 TOTAL - EDM=0.0183624 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.11079e+00 4.31984e-02 1.44775e-03 -6.03431e-01 - 2 par_crystal_1 5.08061e+00 3.28337e+00 6.64371e-02 1.44728e+00 - 3 par_crystal_2 4.76040e+02 8.02153e+00 1.45036e-02 3.38355e+00 - 4 par_crystal_3 1.99914e+02 2.26294e+01 4.50606e-02 1.52819e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.866e-03 -1.951e-03 -2.584e-03 1.946e-02 - -1.951e-03 1.028e-01 6.675e-04 3.793e-04 - -2.584e-03 6.675e-04 6.449e+01 1.116e+00 - 1.946e-02 3.793e-04 1.116e+00 8.140e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.21215 1.000 -0.141 -0.007 0.158 - 2 0.14274 -0.141 1.000 0.000 0.000 - 3 0.05109 -0.007 0.000 1.000 0.049 - 4 0.16712 0.158 0.000 0.049 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10978.6 FROM MIGRAD STATUS=INITIATE 68 CALLS 69 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 6.03110e+02 3.00000e+01 -8.97402e-01 -6.52175e+01 - 2 par_gaus_exp_1 5.45000e+01 9.10000e+00 0.00000e+00 -4.62060e+02 - 3 par_gaus_exp_2 4.12114e-01 3.05000e-01 0.00000e+00 1.25553e+03 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.9 FROM HESSE STATUS=OK 18 CALLS 182 TOTAL - EDM=0.000691453 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.46431e+02 6.06936e+00 3.17833e-03 -3.92855e-01 - 2 par_gaus_exp_1 6.65716e+01 1.75685e+01 2.62647e-03 1.43349e-01 - 3 par_gaus_exp_2 3.07505e-01 8.37981e-02 8.79822e-04 -3.06196e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM MIGRAD STATUS=CONVERGED 316 CALLS 317 TOTAL - EDM=9.19369e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.62504e+02 3.53152e+00 1.63243e-03 -1.66316e-01 - 2 par_gaus_exp_1 2.46552e+01 1.25211e+01 1.75085e-03 -3.48771e-01 - 3 par_gaus_exp_2 1.14604e-01 5.89219e-02 6.31447e-04 9.83138e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.247e+01 -1.544e+01 -6.961e-02 - -1.544e+01 1.643e+02 7.558e-01 - -6.961e-02 7.558e-01 3.493e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.35636 1.000 -0.341 -0.333 - 2 0.99789 -0.341 1.000 0.998 - 3 0.99788 -0.333 0.998 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM HESSE STATUS=OK 16 CALLS 333 TOTAL - EDM=9.89177e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 5.62504e+02 3.77274e+00 6.52972e-05 8.34552e-02 - 2 par_gaus_exp_1 2.46552e+01 1.46349e+01 3.50170e-04 -7.15413e-01 - 3 par_gaus_exp_2 1.14604e-01 6.93856e-02 1.26289e-04 -1.27868e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.424e+01 -2.545e+01 -1.157e-01 - -2.545e+01 2.286e+02 1.052e+00 - -1.157e-01 1.052e+00 4.855e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.45683 1.000 -0.446 -0.440 - 2 0.99849 -0.446 1.000 0.998 - 3 0.99848 -0.440 0.998 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (13168.6) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=575, par_novo_1=100, par_novo_2=1.58864 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 575,par_novo_1 = 100,par_novo_2 = 1.58864) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=645, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=655, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=665, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=675, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=685, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=695, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=705, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=715, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=725, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=735, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=745, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=755, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - ... (remaining 46 messages suppressed) - - FCN=13054.5 FROM MIGRAD STATUS=INITIATE 14 CALLS 15 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.75000e+02 1.50000e+01 2.01358e-01 -1.22938e+03 - 2 par_novo_1 1.00000e+02 2.00000e+01 2.01358e-01 -6.98326e+03 - 3 par_novo_2 0.00000e+00 2.00000e+01 2.01358e-01 1.51249e+06 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM MIGRAD STATUS=CONVERGED 220 CALLS 221 TOTAL - EDM=2.09668e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.00000e+02 1.21837e+02 1.25149e-01 -7.30463e-04 - 2 par_novo_1 1.30637e+02 1.58558e+01 3.16845e-03 -1.76078e-02 - 3 par_novo_2 -6.95187e-01 1.36663e-01 2.61078e-05 1.74080e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.121e-01 -9.460e-01 -6.449e-03 - -9.460e-01 2.538e+02 2.099e+00 - -6.449e-03 2.099e+00 1.868e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.21023 1.000 -0.177 -0.141 - 2 0.96488 -0.177 1.000 0.964 - 3 0.96445 -0.141 0.964 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM HESSE STATUS=OK 20 CALLS 241 TOTAL - EDM=1.01397e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 5.00000e+02 1.20312e+02 5.00000e-01 -1.57325e+00 - 2 par_novo_1 1.30637e+02 2.01762e+01 1.26738e-04 3.11381e-01 - 3 par_novo_2 -6.95187e-01 1.62575e-01 1.04431e-06 -6.95192e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.070e-01 -4.278e+00 -2.995e-02 - -4.278e+00 4.133e+02 3.212e+00 - -2.995e-02 3.212e+00 2.643e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.69436 1.000 -0.643 -0.563 - 2 0.97859 -0.643 1.000 0.972 - 3 0.97501 -0.563 0.972 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10877 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 6.33849e-01 5.09000e-01 -8.55460e-01 -1.25390e+02 - 2 par_crystal_1_1 2.55500e+00 5.09000e-01 0.00000e+00 -2.69495e+01 - 3 par_crystal_1_2 5.50000e+02 3.00000e+01 0.00000e+00 -1.44080e+01 - 4 par_crystal_1_3 1.04500e+02 1.91000e+01 0.00000e+00 3.07979e+01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.43469 added to diagonal of error matrix - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.5401e+00 8.4221e-02 1.8087e+00 3.6472e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 1.543714 TO DIAGONAL. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.9 FROM HESSE STATUS=OK 25 CALLS 485 TOTAL - EDM=0.0491336 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.05623e+00 1.52463e-01 1.42446e-03 -1.90900e+00 - 2 par_crystal_1_1 5.09988e+00 3.18944e+00 7.54811e-02 -8.93342e-03 - 3 par_crystal_1_2 4.96280e+02 4.98347e+01 9.02051e-03 3.58498e-02 - 4 par_crystal_1_3 1.89188e+02 2.78069e+01 1.02856e-02 -2.38185e-01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 538 CALLS 539 TOTAL - EDM=10.0867 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 14.1 per cent - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.09723e+00 3.02575e-02 -0.00000e+00 5.47416e+01 - 2 par_crystal_1_1 5.09997e+00 3.18368e+00 0.00000e+00 -3.90351e-03 - 3 par_crystal_1_2 4.83329e+02 2.76558e+01 0.00000e+00 7.05236e+00 - 4 par_crystal_1_3 1.96552e+02 5.80629e+00 -0.00000e+00 4.39990e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.156e-04 -1.804e-07 -6.742e-01 1.111e-01 - -1.804e-07 1.763e-04 7.888e-03 -2.154e-03 - -6.742e-01 7.888e-03 7.759e+02 -1.463e+02 - 1.111e-01 -2.154e-03 -1.463e+02 3.432e+01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.82553 1.000 -0.000 -0.800 0.627 - 2 0.03650 -0.000 1.000 0.021 -0.028 - 3 0.94703 -0.800 0.021 1.000 -0.896 - 4 0.90888 0.627 -0.028 -0.896 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -9.7852e-01 9.9996e-01 1.9836e+00 1.9949e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.980510 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 29 CALLS 568 TOTAL - EDM=238.514 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 1.09723e+00 4.25322e-02 2.54943e-04 -6.09913e-01 - 2 par_crystal_1_1 5.09997e+00 7.84798e-01 8.54763e-02 1.56580e+00 - 3 par_crystal_1_2 4.83329e+02 1.87856e+01 1.76414e-03 -4.60588e-01 - 4 par_crystal_1_3 1.96552e+02 5.33115e+00 2.63738e-03 1.30128e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.809e-03 -2.197e-07 8.001e-01 2.280e-01 - -2.197e-07 1.053e-04 -1.173e-04 -3.665e-05 - 8.001e-01 -1.173e-04 3.552e+02 1.010e+02 - 2.280e-01 -3.665e-05 1.010e+02 2.885e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99849 1.000 -0.001 0.998 0.998 - 2 0.00265 -0.001 1.000 -0.001 -0.001 - 3 0.99848 0.998 -0.001 1.000 0.998 - 4 0.99849 0.998 -0.001 0.998 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_550_1200 = 1266.17 - Background number of gaus_exp_550_1200 = 1266.17 - Background number of novo_550_1200 = 1266.17 - Background number of crystal_1_550_1200 = 1266.17 - Background number of gaus_bern_550_1200 = 1266.17 - Background number of landau_550_1200 = 1266.17 -par_crystal_0 param 1.11079 0.0431984 -par_crystal_1 param 5.08061 3.28337 -par_crystal_2 param 476.04 8.02153 -par_crystal_3 param 199.914 22.6294 -par_crystal_1_0 param 1.09723 0.0425322 -par_crystal_1_1 param 5.09997 0.784798 -par_crystal_1_2 param 483.329 18.7856 -par_crystal_1_3 param 196.552 5.33115 -par_gaus_exp_0 param 562.504 3.77274 -par_gaus_exp_1 param 24.6552 14.6349 -par_gaus_exp_2 param 0.114604 0.0693856 -par_novo_0 param 500 120.312 -par_novo_1 param 130.637 20.1762 -par_novo_2 param -0.695187 0.162575 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_900_crystal_1_550_1200/datacard_900_crystal_1_550_1200.txt b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_900_crystal_1_550_1200/datacard_900_crystal_1_550_1200.txt deleted file mode 100644 index 8db6818..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_900_crystal_1_550_1200/datacard_900_crystal_1_550_1200.txt +++ /dev/null @@ -1,29 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_900.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_crystal_1_550_1200.root HbbHbb:f_crystal_1 -shapes data_obs HbbHbb w_background_crystal_1_550_1200.root HbbHbb:data_obs_crystal_1_550_1200 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 4.64156 1266.17 -lumi_13TeV lnN 1.026 - -bTag lnN 1.0799 - -JER lnN 1.01164 - -JEC lnN 1.00857 - -trigger lnN 1.10 - -sg_p0 param 914.708 -2.06678/+2.54301 -sg_p1 param 30.2451 -0.964886/+0.328936 -sg_p2 param 2.07933 -0.225661/+0.2111 -sg_p3 param 1.21527 -0.055531/+0.0332555 -par_crystal_1_0 param 1.09723 0.0425322 -par_crystal_1_1 param 5.09997 0.784798 -par_crystal_1_2 param 483.329 18.7856 -par_crystal_1_3 param 196.552 5.33115 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_900_crystal_1_550_1200/signal900_sig.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_900_crystal_1_550_1200/signal900_sig.log deleted file mode 100644 index d4cc812..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_900_crystal_1_550_1200/signal900_sig.log +++ /dev/null @@ -1,985 +0,0 @@ - -Processing test.c... -nSignal_init = 100000 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [620,1100] --> [620,1100] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [720,1000] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [620,1100] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [720,1000] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=33664.2 FROM MIGRAD STATUS=INITIATE 54 CALLS 55 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.70000e+02 1.20000e+01 0.00000e+00 -1.87024e+03 - 2 sg_p1 4.00000e+01 3.00000e+00 0.00000e+00 1.70564e+01 - 3 sg_p2 8.67563e-01 5.00000e-01 0.00000e+00 3.77923e+02 - 4 sg_p3 1.75058e+00 7.00000e-01 -5.23409e-01 -9.51811e+01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.14138 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=33371.1 FROM HESSE STATUS=OK 27 CALLS 373 TOTAL - EDM=0.00332624 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.87145e+02 6.18636e-01 1.26596e-03 7.76547e-02 - 2 sg_p1 4.38895e+01 5.43360e-01 3.99187e-03 5.04266e-02 - 3 sg_p2 2.61266e+00 9.39365e-01 6.28602e-02 -2.11368e-01 - 4 sg_p3 1.68218e+00 9.36801e-02 3.16921e-03 5.53803e-02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=33371.1 FROM MIGRAD STATUS=CONVERGED 386 CALLS 387 TOTAL - EDM=8.86352e-09 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 0.0 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.87145e+02 6.18635e-01 1.67624e-06 -3.95438e-03 - 2 sg_p1 4.38881e+01 5.43356e-01 -9.98687e-05 -6.98133e-04 - 3 sg_p2 2.69108e+00 9.37644e-01 3.14301e-02 -2.30056e-05 - 4 sg_p3 1.68195e+00 9.36715e-02 -7.67431e-05 -4.02566e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.827e-01 -6.502e-02 -5.811e-05 -2.090e-02 - -6.502e-02 2.954e-01 5.476e-04 2.735e-02 - -5.811e-05 5.476e-04 9.241e-01 1.376e-04 - -2.090e-02 2.735e-02 1.376e-04 8.777e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.36054 1.000 -0.193 -0.000 -0.361 - 2 0.53708 -0.193 1.000 0.001 0.537 - 3 0.00163 -0.000 0.001 1.000 0.002 - 4 0.59741 -0.361 0.537 0.002 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=33371.1 FROM HESSE STATUS=OK 29 CALLS 416 TOTAL - EDM=5.60701e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 8.87145e+02 6.19206e-01 1.26598e-03 2.89787e-01 - 2 sg_p1 4.38881e+01 5.44560e-01 1.59675e-03 2.62200e-01 - 3 sg_p2 2.69108e+00 3.66223e+00 4.86437e-02 7.65081e-02 - 4 sg_p3 1.68195e+00 9.38964e-02 1.26768e-03 -5.46198e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.834e-01 -6.608e-02 9.504e-07 -2.110e-02 - -6.608e-02 2.967e-01 4.698e-06 2.763e-02 - 9.504e-07 4.698e-06 6.569e+03 3.565e-07 - -2.110e-02 2.763e-02 3.565e-07 8.819e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.36280 1.000 -0.196 0.000 -0.363 - 2 0.54009 -0.196 1.000 0.000 0.540 - 3 0.00000 0.000 0.000 1.000 0.000 - 4 0.60032 -0.363 0.540 0.000 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -900 -887.145 +- 0.619206 -43.8881 +- 0.54456 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [620,1100] --> [620,1100] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [720,1000] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [620,1100] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [720,1000] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=33829.5 FROM MIGRAD STATUS=INITIATE 40 CALLS 41 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.70000e+02 1.20000e+01 0.00000e+00 -1.37162e+03 - 2 sg_p1 4.00000e+01 3.00000e+00 0.00000e+00 7.33519e+01 - 3 sg_p2 5.87771e-01 5.00000e-01 -8.70873e-01 9.57906e+01 - 4 sg_p3 3.50000e+00 7.00000e-01 0.00000e+00 -3.46120e-01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.00007 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=33473.2 FROM HESSE STATUS=OK 25 CALLS 331 TOTAL - EDM=0.315109 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.91582e+02 6.17824e-01 1.32224e-03 -7.77130e-01 - 2 sg_p1 4.40907e+01 5.43395e-01 4.14838e-03 2.19978e+00 - 3 sg_p2 2.59937e+00 4.57998e-01 2.91245e-01 -4.28319e+00 - 4 sg_p3 1.56794e+00 6.89875e-02 2.49674e-03 -3.53414e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=33473.2 FROM MIGRAD STATUS=CONVERGED 344 CALLS 345 TOTAL - EDM=1.81644e-07 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 0.0 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.91593e+02 6.17785e-01 1.97446e-04 -3.22562e-02 - 2 sg_p1 4.40472e+01 5.43856e-01 -3.01296e-03 -7.86524e-03 - 3 sg_p2 2.96080e+00 4.50508e-01 1.45623e-01 0.00000e+00 - 4 sg_p3 1.56553e+00 6.89514e-02 -8.25067e-04 1.93280e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.817e-01 -4.853e-02 1.606e-04 -1.348e-02 - -4.853e-02 2.959e-01 6.495e-06 1.836e-02 - 1.606e-04 6.495e-06 2.053e-01 -1.663e-05 - -1.348e-02 1.836e-02 -1.663e-05 4.755e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.31670 1.000 -0.144 0.001 -0.316 - 2 0.48950 -0.144 1.000 0.000 0.489 - 3 0.00076 0.001 0.000 1.000 -0.001 - 4 0.54881 -0.316 0.489 -0.001 1.000 - ********** - ** 18 **HESSE 2000 - ********** - MINUIT WARNING IN HESSE - ============== Second derivative enters zero, param 3 - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=33473.2 FROM HESSE STATUS=OK 31 CALLS 376 TOTAL - EDM=1.33661 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 8.91593e+02 6.18180e-01 1.32251e-03 3.68142e-01 - 2 sg_p1 4.40472e+01 5.43127e-01 4.14931e-03 2.73201e-01 - 3 sg_p2 2.96080e+00 5.37583e-01 5.10000e-01 1.85380e-01 - 4 sg_p3 1.56553e+00 6.89873e-02 9.98698e-04 -5.85607e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.822e-01 -4.972e-02 -6.585e-12 -1.366e-02 - -4.972e-02 2.951e-01 2.406e-12 1.846e-02 - -6.585e-12 2.406e-12 2.937e-01 2.262e-12 - -1.366e-02 1.846e-02 2.262e-12 4.760e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.32056 1.000 -0.148 -0.000 -0.320 - 2 0.49249 -0.148 1.000 0.000 0.492 - 3 0.00000 -0.000 0.000 1.000 0.000 - 4 0.55232 -0.320 0.492 0.000 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -900 -891.593 +- 0.61818 -44.0472 +- 0.543127 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [620,1100] --> [620,1100] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [720,1000] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [620,1100] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [720,1000] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=33025.6 FROM MIGRAD STATUS=INITIATE 55 CALLS 56 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.70000e+02 1.20000e+01 0.00000e+00 -1.21902e+03 - 2 sg_p1 4.00000e+01 3.00000e+00 0.00000e+00 3.56266e+01 - 3 sg_p2 8.48797e-01 5.00000e-01 0.00000e+00 8.71721e+00 - 4 sg_p3 1.96916e+00 7.00000e-01 -4.52685e-01 1.33827e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=32836 FROM HESSE STATUS=OK 31 CALLS 284 TOTAL - EDM=0.000111741 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.83274e+02 5.75489e-01 1.22716e-03 3.79802e-02 - 2 sg_p1 4.40176e+01 4.49467e-01 3.85966e-03 -7.57641e-02 - 3 sg_p2 2.44289e+00 2.23488e-01 1.00126e-02 8.24918e-02 - 4 sg_p3 1.81465e+00 3.14767e-02 3.33332e-03 1.27746e+00 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=32836 FROM MIGRAD STATUS=FAILED 321 CALLS 322 TOTAL - EDM=0.034586 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 18.3 per cent - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.83276e+02 5.73266e-01 -0.00000e+00 5.01334e-02 - 2 sg_p1 4.40177e+01 4.48511e-01 0.00000e+00 1.03605e-01 - 3 sg_p2 2.44263e+00 1.46331e-01 -0.00000e+00 -1.44978e-01 - 4 sg_p3 1.81329e+00 9.50131e-03 0.00000e+00 -1.27604e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.286e-01 1.600e-03 -3.893e-03 -4.127e-05 - 1.600e-03 2.012e-01 2.014e-03 3.934e-04 - -3.893e-03 2.014e-03 2.144e-02 -5.698e-04 - -4.127e-05 3.934e-04 -5.698e-04 9.028e-05 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.05588 1.000 0.006 -0.046 -0.008 - 2 0.11947 0.006 1.000 0.031 0.092 - 3 0.41831 -0.046 0.031 1.000 -0.410 - 4 0.42369 -0.008 0.092 -0.410 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=32836 FROM HESSE STATUS=OK 29 CALLS 351 TOTAL - EDM=0.000104468 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 8.83276e+02 5.75584e-01 1.22738e-03 2.23108e-01 - 2 sg_p1 4.40177e+01 4.49699e-01 3.86131e-03 2.71159e-01 - 3 sg_p2 2.44263e+00 2.24450e-01 1.04348e-02 -2.29498e-02 - 4 sg_p3 1.81329e+00 3.18671e-02 3.32746e-03 -5.02843e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.313e-01 -1.034e-03 -3.993e-04 -1.393e-03 - -1.034e-03 2.023e-01 -9.138e-05 1.874e-03 - -3.993e-04 -9.138e-05 5.051e-02 1.806e-06 - -1.393e-03 1.874e-03 1.806e-06 1.016e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.07626 1.000 -0.004 -0.003 -0.076 - 2 0.13085 -0.004 1.000 -0.001 0.131 - 3 0.00322 -0.003 -0.001 1.000 0.000 - 4 0.15092 -0.076 0.131 0.000 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -900 -883.276 +- 0.575584 -44.0177 +- 0.449699 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [650,1130] --> [650,1130] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [650,1130] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=31847.2 FROM MIGRAD STATUS=INITIATE 55 CALLS 56 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.10000e+02 8.00000e+00 0.00000e+00 -9.15004e+02 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 -1.07919e+02 - 3 sg_p2 1.34843e+00 5.00000e-01 0.00000e+00 1.01663e+02 - 4 sg_p3 1.18098e+00 7.00000e-01 -7.24255e-01 -8.67138e+00 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31775.1 FROM MIGRAD STATUS=CONVERGED 191 CALLS 192 TOTAL - EDM=1.8133e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.14708e+02 6.08444e-01 1.29613e-03 1.05815e-01 - 2 sg_p1 3.02451e+01 5.68219e-01 5.56289e-03 1.74811e-02 - 3 sg_p2 2.07933e+00 1.35380e-01 6.08573e-03 1.51761e-02 - 4 sg_p3 1.21527e+00 6.15917e-02 1.48479e-03 1.57009e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.702e-01 -2.155e-01 -1.002e-02 -2.676e-02 - -2.155e-01 3.236e-01 3.008e-02 2.846e-02 - -1.002e-02 3.008e-02 1.835e-02 2.403e-03 - -2.676e-02 2.846e-02 2.403e-03 3.794e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.72659 1.000 -0.623 -0.122 -0.714 - 2 0.83258 -0.623 1.000 0.390 0.812 - 3 0.42083 -0.122 0.390 1.000 0.288 - 4 0.85489 -0.714 0.812 0.288 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31775.1 FROM HESSE STATUS=OK 23 CALLS 215 TOTAL - EDM=2.07761e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 9.14708e+02 6.37633e-01 5.18452e-05 1.17968e-01 - 2 sg_p1 3.02451e+01 6.04034e-01 2.22516e-04 3.74720e-01 - 3 sg_p2 2.07933e+00 1.39479e-01 2.43429e-04 -1.69071e-01 - 4 sg_p3 1.21527e+00 6.62844e-02 5.93916e-05 -7.11249e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.066e-01 -2.540e-01 -1.389e-02 -3.139e-02 - -2.540e-01 3.658e-01 3.536e-02 3.345e-02 - -1.389e-02 3.536e-02 1.948e-02 2.966e-03 - -3.139e-02 3.345e-02 2.966e-03 4.395e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.75434 1.000 -0.659 -0.156 -0.743 - 2 0.85324 -0.659 1.000 0.419 0.834 - 3 0.44886 -0.156 0.419 1.000 0.321 - 4 0.87300 -0.743 0.834 0.321 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -900 -914.708 +- 0.637633 -30.2451 +- 0.604034 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 - fit done -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [650,1130] --> [650,1130] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [650,1130] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=32076.3 FROM MIGRAD STATUS=INITIATE 56 CALLS 57 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.10000e+02 8.00000e+00 0.00000e+00 -9.42825e+02 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 -2.66341e+02 - 3 sg_p2 1.24756e+00 5.00000e-01 0.00000e+00 1.32032e+02 - 4 sg_p3 1.51475e+00 7.00000e-01 -6.03120e-01 6.41643e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.2508e+00 8.3406e-01 1.1303e+00 4.2864e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 2.255047 TO DIAGONAL. - FCN=31897 FROM HESSE STATUS=NOT POSDEF 27 CALLS 293 TOTAL - EDM=0.00241152 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.17231e+02 6.95098e-01 1.30051e-03 1.46076e-01 - 2 sg_p1 3.03755e+01 3.97597e-01 5.52810e-03 7.58612e-03 - 3 sg_p2 2.27801e+00 1.55888e+00 7.81545e-03 6.54139e-02 - 4 sg_p3 1.17081e+00 2.99817e-01 1.31225e-03 1.00535e+00 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31897 FROM MIGRAD STATUS=CONVERGED 328 CALLS 329 TOTAL - EDM=0.000214971 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.17231e+02 4.88559e-01 1.30052e-03 3.06873e-02 - 2 sg_p1 3.03754e+01 4.10963e-01 2.21124e-03 2.67746e-02 - 3 sg_p2 2.27858e+00 1.68057e-01 3.12618e-03 1.19850e-01 - 4 sg_p3 1.17071e+00 3.83284e-02 1.31215e-03 6.94100e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.387e-01 -8.067e-02 2.183e-04 -9.547e-03 - -8.067e-02 1.691e-01 1.601e-02 9.908e-03 - 2.183e-04 1.601e-02 2.829e-02 8.281e-04 - -9.547e-03 9.908e-03 8.281e-04 1.469e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.52820 1.000 -0.402 0.003 -0.510 - 2 0.65548 -0.402 1.000 0.231 0.629 - 3 0.25444 0.003 0.231 1.000 0.128 - 4 0.68871 -0.510 0.629 0.128 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31897 FROM HESSE STATUS=OK 23 CALLS 352 TOTAL - EDM=0.000216668 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 9.17231e+02 4.89066e-01 5.20206e-05 1.81768e-01 - 2 sg_p1 3.03754e+01 4.11848e-01 4.42248e-04 3.93462e-01 - 3 sg_p2 2.27858e+00 1.68511e-01 6.25236e-04 -8.86838e-02 - 4 sg_p3 1.17071e+00 3.83872e-02 2.62429e-04 -7.28178e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.392e-01 -8.128e-02 1.943e-04 -9.592e-03 - -8.128e-02 1.698e-01 1.629e-02 9.968e-03 - 1.943e-04 1.629e-02 2.844e-02 8.443e-04 - -9.592e-03 9.968e-03 8.443e-04 1.474e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.52961 1.000 -0.403 0.002 -0.511 - 2 0.65734 -0.403 1.000 0.234 0.630 - 3 0.25774 0.002 0.234 1.000 0.130 - 4 0.68988 -0.511 0.630 0.130 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -900 -917.231 +- 0.489066 -30.3754 +- 0.411848 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [650,1130] --> [650,1130] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [650,1130] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=31270.8 FROM MIGRAD STATUS=INITIATE 78 CALLS 79 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.11670e+02 8.00000e+00 4.17695e-02 1.48625e+01 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 -1.41145e+02 - 3 sg_p2 1.45615e+00 5.00000e-01 0.00000e+00 -1.80733e+01 - 4 sg_p3 1.27355e+00 7.00000e-01 0.00000e+00 5.00168e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31241.1 FROM MIGRAD STATUS=CONVERGED 201 CALLS 202 TOTAL - EDM=1.00647e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.12666e+02 5.93671e-01 1.27735e-03 2.63765e-02 - 2 sg_p1 2.96697e+01 6.13867e-01 5.39370e-03 1.70034e-02 - 3 sg_p2 1.86746e+00 1.16178e-01 4.79471e-03 1.24233e-02 - 4 sg_p3 1.20141e+00 6.21896e-02 1.45289e-03 7.47047e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.525e-01 -2.113e-01 -9.800e-03 -2.540e-02 - -2.113e-01 3.778e-01 3.879e-02 3.144e-02 - -9.800e-03 3.879e-02 1.351e-02 2.946e-03 - -2.540e-02 3.144e-02 2.946e-03 3.868e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.71041 1.000 -0.579 -0.142 -0.688 - 2 0.85591 -0.579 1.000 0.543 0.822 - 3 0.58356 -0.142 0.543 1.000 0.408 - 4 0.86266 -0.688 0.822 0.408 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31241.1 FROM HESSE STATUS=OK 23 CALLS 225 TOTAL - EDM=1.03715e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 9.12666e+02 5.96901e-01 2.55470e-04 6.66929e-02 - 2 sg_p1 2.96697e+01 6.22112e-01 2.15748e-04 2.93491e-01 - 3 sg_p2 1.86746e+00 1.17183e-01 1.91788e-04 -2.55796e-01 - 4 sg_p3 1.20141e+00 6.28752e-02 5.81156e-05 -7.16489e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.563e-01 -2.172e-01 -1.053e-02 -2.596e-02 - -2.172e-01 3.880e-01 4.037e-02 3.237e-02 - -1.053e-02 4.037e-02 1.374e-02 3.084e-03 - -2.596e-02 3.237e-02 3.084e-03 3.954e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.71417 1.000 -0.584 -0.151 -0.692 - 2 0.86002 -0.584 1.000 0.553 0.827 - 3 0.59309 -0.151 0.553 1.000 0.418 - 4 0.86587 -0.692 0.827 0.418 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -900 -912.666 +- 0.596901 -29.6697 +- 0.622112 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [650,1130] --> [650,1130] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [650,1130] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=31402.8 FROM MIGRAD STATUS=INITIATE 56 CALLS 57 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.10000e+02 8.00000e+00 0.00000e+00 -6.41887e+02 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 -1.32609e+02 - 3 sg_p2 1.21873e+00 5.00000e-01 0.00000e+00 2.82004e+01 - 4 sg_p3 1.29003e+00 7.00000e-01 -6.83382e-01 3.00498e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31327.2 FROM MIGRAD STATUS=CONVERGED 202 CALLS 203 TOTAL - EDM=9.20948e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.14895e+02 5.51583e-01 1.31460e-03 1.61689e-01 - 2 sg_p1 3.03350e+01 7.44882e-01 5.76073e-03 -3.27245e-02 - 3 sg_p2 1.86472e+00 2.01246e-01 6.02311e-03 -3.75996e-03 - 4 sg_p3 1.20817e+00 6.26611e-02 1.44547e-03 2.50672e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.043e-01 -1.559e-01 -6.728e-03 -1.871e-02 - -1.559e-01 5.570e-01 1.146e-01 3.885e-02 - -6.728e-03 1.146e-01 4.059e-02 7.410e-03 - -1.871e-02 3.885e-02 7.410e-03 3.927e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.63293 1.000 -0.379 -0.061 -0.541 - 2 0.89852 -0.379 1.000 0.762 0.831 - 3 0.80154 -0.061 0.762 1.000 0.587 - 4 0.86629 -0.541 0.831 0.587 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31327.2 FROM HESSE STATUS=OK 23 CALLS 226 TOTAL - EDM=9.24142e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 9.14895e+02 5.53867e-01 2.62920e-04 1.22682e-01 - 2 sg_p1 3.03350e+01 7.70523e-01 2.30429e-04 3.87633e-01 - 3 sg_p2 1.86472e+00 2.07594e-01 2.40925e-04 -2.56930e-01 - 4 sg_p3 1.20817e+00 6.42645e-02 5.78186e-05 -7.13930e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.068e-01 -1.637e-01 -8.469e-03 -1.930e-02 - -1.637e-01 5.962e-01 1.248e-01 4.167e-02 - -8.469e-03 1.248e-01 4.320e-02 8.128e-03 - -1.930e-02 4.167e-02 8.128e-03 4.131e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.63682 1.000 -0.383 -0.074 -0.542 - 2 0.90554 -0.383 1.000 0.777 0.840 - 3 0.81484 -0.074 0.777 1.000 0.608 - 4 0.87336 -0.542 0.840 0.608 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -900 -914.895 +- 0.553867 -30.335 +- 0.770523 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [650,1130] --> [650,1130] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [650,1130] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=31997 FROM MIGRAD STATUS=INITIATE 59 CALLS 60 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.10000e+02 8.00000e+00 0.00000e+00 -8.37823e+02 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 -7.64703e+01 - 3 sg_p2 1.30597e+00 5.00000e-01 0.00000e+00 -1.46520e+01 - 4 sg_p3 1.20892e+00 7.00000e-01 -7.13644e-01 4.56011e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31928.6 FROM MIGRAD STATUS=CONVERGED 187 CALLS 188 TOTAL - EDM=0.000455256 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.14847e+02 4.88994e-01 1.26432e-03 4.89756e-01 - 2 sg_p1 2.93287e+01 6.86296e-01 5.26048e-03 5.85295e-02 - 3 sg_p2 1.92235e+00 2.48995e-01 6.70981e-03 1.75003e-01 - 4 sg_p3 1.17091e+00 4.94270e-02 1.31942e-03 -2.75253e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.391e-01 -5.711e-02 1.273e-02 -9.083e-03 - -5.711e-02 4.724e-01 1.369e-01 2.673e-02 - 1.273e-02 1.369e-01 6.222e-02 7.189e-03 - -9.083e-03 2.673e-02 7.189e-03 2.443e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.55484 1.000 -0.170 0.104 -0.376 - 2 0.89241 -0.170 1.000 0.799 0.787 - 3 0.83537 0.104 0.799 1.000 0.583 - 4 0.82462 -0.376 0.787 0.583 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31928.6 FROM HESSE STATUS=OK 29 CALLS 217 TOTAL - EDM=0.000126642 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 9.14847e+02 4.87177e-01 2.52865e-04 1.21475e-01 - 2 sg_p1 2.93287e+01 4.44229e-01 2.10419e-04 2.46308e-01 - 3 sg_p2 1.92235e+00 1.10134e-01 2.00630e-01 -2.33169e-01 - 4 sg_p3 1.17091e+00 4.11749e-02 5.27768e-05 -7.28101e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.374e-01 -8.558e-02 4.043e-04 -1.061e-02 - -8.558e-02 1.976e-01 1.759e-02 1.238e-02 - 4.043e-04 1.759e-02 1.214e-02 9.448e-04 - -1.061e-02 1.238e-02 9.448e-04 1.696e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.55015 1.000 -0.395 0.008 -0.529 - 2 0.71638 -0.395 1.000 0.359 0.676 - 3 0.39465 0.008 0.359 1.000 0.208 - 4 0.73407 -0.529 0.676 0.208 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -900 -914.847 +- 0.487177 -29.3287 +- 0.444229 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [650,1130] --> [650,1130] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [650,1130] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=29376.3 FROM MIGRAD STATUS=INITIATE 53 CALLS 54 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.10000e+02 8.00000e+00 0.00000e+00 -8.21334e+02 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 -1.14912e+02 - 3 sg_p2 1.36391e+00 5.00000e-01 0.00000e+00 1.01339e+02 - 4 sg_p3 1.20442e+00 7.00000e-01 -7.15346e-01 5.08593e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=29309.7 FROM MIGRAD STATUS=CONVERGED 194 CALLS 195 TOTAL - EDM=0.000205755 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.14660e+02 4.99096e-01 1.29653e-03 -5.11216e-02 - 2 sg_p1 3.02540e+01 3.59225e-01 5.55826e-03 5.44144e-02 - 3 sg_p2 2.08275e+00 1.37518e-01 6.20642e-03 1.37624e-01 - 4 sg_p3 1.21801e+00 3.97286e-02 1.50718e-03 -6.59977e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.491e-01 5.789e-03 1.174e-02 -9.048e-03 - 5.789e-03 1.292e-01 1.502e-02 -3.879e-03 - 1.174e-02 1.502e-02 1.893e-02 -7.314e-04 - -9.048e-03 -3.879e-03 -7.314e-04 1.578e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.48768 1.000 0.032 0.171 -0.456 - 2 0.40688 0.032 1.000 0.304 -0.272 - 3 0.34471 0.171 0.304 1.000 -0.134 - 4 0.52420 -0.456 -0.272 -0.134 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=29309.7 FROM HESSE STATUS=OK 23 CALLS 218 TOTAL - EDM=0.000176487 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 9.14660e+02 6.63602e-01 2.59307e-04 1.16777e-01 - 2 sg_p1 3.02540e+01 6.28299e-01 2.22330e-04 3.75996e-01 - 3 sg_p2 2.08275e+00 1.45711e-01 2.48257e-04 -1.67686e-01 - 4 sg_p3 1.21801e+00 6.93582e-02 3.01436e-04 -7.10215e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.404e-01 -2.750e-01 -1.507e-02 -3.419e-02 - -2.750e-01 3.958e-01 3.829e-02 3.641e-02 - -1.507e-02 3.829e-02 2.126e-02 3.230e-03 - -3.419e-02 3.641e-02 3.230e-03 4.812e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.75425 1.000 -0.659 -0.156 -0.743 - 2 0.85307 -0.659 1.000 0.417 0.834 - 3 0.44715 -0.156 0.417 1.000 0.319 - 4 0.87298 -0.743 0.834 0.319 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -900 -914.66 +- 0.663602 -30.254 +- 0.628299 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [650,1130] --> [650,1130] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [650,1130] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=34491.6 FROM MIGRAD STATUS=INITIATE 56 CALLS 57 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.10000e+02 8.00000e+00 0.00000e+00 -1.23996e+03 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 -2.14064e+01 - 3 sg_p2 1.33344e+00 5.00000e-01 0.00000e+00 1.23543e+02 - 4 sg_p3 1.01604e+00 7.00000e-01 -7.89075e-01 -7.54461e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=34391.1 FROM MIGRAD STATUS=CONVERGED 188 CALLS 189 TOTAL - EDM=1.48214e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.14750e+02 5.25007e-01 1.29029e-03 2.37283e-01 - 2 sg_p1 3.02408e+01 4.81625e-01 5.53748e-03 -1.27642e-02 - 3 sg_p2 2.07745e+00 1.27929e-01 6.14558e-03 4.69647e-02 - 4 sg_p3 1.21295e+00 5.03011e-02 1.45362e-03 1.82273e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.756e-01 -1.325e-01 -3.877e-03 -1.666e-02 - -1.325e-01 2.323e-01 2.235e-02 1.825e-02 - -3.877e-03 2.235e-02 1.638e-02 1.568e-03 - -1.666e-02 1.825e-02 1.568e-03 2.531e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.64731 1.000 -0.523 -0.058 -0.631 - 2 0.77971 -0.523 1.000 0.362 0.753 - 3 0.39469 -0.058 0.362 1.000 0.244 - 4 0.80244 -0.631 0.753 0.244 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=34391.1 FROM HESSE STATUS=OK 23 CALLS 212 TOTAL - EDM=1.52019e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 9.14750e+02 5.22645e-01 2.58059e-04 1.19022e-01 - 2 sg_p1 3.02408e+01 4.78916e-01 2.21499e-04 3.74107e-01 - 3 sg_p2 2.07745e+00 1.30836e-01 2.45823e-04 -1.69835e-01 - 4 sg_p3 1.21295e+00 4.98205e-02 5.81447e-05 -7.12123e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.732e-01 -1.292e-01 -3.790e-03 -1.629e-02 - -1.292e-01 2.297e-01 2.340e-02 1.784e-02 - -3.790e-03 2.340e-02 1.713e-02 1.620e-03 - -1.629e-02 1.784e-02 1.620e-03 2.482e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.64323 1.000 -0.516 -0.055 -0.626 - 2 0.77685 -0.516 1.000 0.373 0.747 - 3 0.40646 -0.055 0.373 1.000 0.248 - 4 0.79826 -0.626 0.747 0.248 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -900 -914.75 +- 0.522645 -30.2408 +- 0.478916 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 914.708 +- 0.637633 (stat) - 2.04205 + 2.52294 (syst); -2.06678/+2.54301 (total) - Uncertainty on sg_p1 = 30.2451 +- 0.604034 (stat) - 0.916401 + 0.130325 (syst); -0.964886/+0.328936 (total) - Uncertainty on sg_p2 = 2.07933 +- 0.139479 (stat) - 0.214614 + 0.199247 (syst); -0.225661/+0.2111 (total) - Uncertainty on sg_p3 = 1.21527 +- 0.0662844 (stat) - 0.0445565 + 0.00274258 (syst); -0.055531/+0.0332555 (total) - === Baseline plot ===
- norm = 232.078 -JEC lnN 1.00857 - -JER lnN 1.01164 - -btag lnN 1.0799 - -sg_p0 param 914.708 -2.06678/+2.54301 -sg_p1 param 30.2451 -0.964886/+0.328936 -sg_p2 param 2.07933 -0.225661/+0.2111 -sg_p3 param 1.21527 -0.055531/+0.0332555 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_900_novo_550_1200/data_bkg.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_900_novo_550_1200/data_bkg.log deleted file mode 100644 index a966e12..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_900_novo_550_1200/data_bkg.log +++ /dev/null @@ -1,690 +0,0 @@ - -Processing PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit_split.c... -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_1): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(pred_2): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10879.7 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 6.74624e-01 5.09000e-01 -8.31364e-01 -1.01971e+02 - 2 par_crystal_1 2.55500e+00 5.09000e-01 0.00000e+00 -3.20610e+01 - 3 par_crystal_2 5.00000e+02 2.00000e+01 0.00000e+00 -9.48837e+00 - 4 par_crystal_3 1.05000e+02 1.90000e+01 0.00000e+00 2.45317e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.7116e+01 9.9978e-01 1.9597e+00 1.8156e+01 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 17.134017 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 27 CALLS 314 TOTAL - EDM=0.131054 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.06594e+00 6.09301e-02 1.43210e-03 -8.77809e-01 - 2 par_crystal_1 5.09576e+00 7.69298e-02 8.09031e-02 -5.13188e-02 - 3 par_crystal_2 4.95224e+02 7.91481e+01 2.17679e-03 -5.43249e-01 - 4 par_crystal_3 1.90900e+02 9.54958e+00 1.13079e-02 4.60762e-02 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 477 CALLS 478 TOTAL - EDM=0.0370129 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_0 1.11079e+00 8.93309e-02 0.00000e+00 -4.75984e-01 - 2 par_crystal_1 5.08061e+00 3.60144e-01 0.00000e+00 -1.14416e-01 - 3 par_crystal_2 4.76040e+02 1.75614e+01 0.00000e+00 -2.32451e-01 - 4 par_crystal_3 1.99914e+02 2.77391e+01 0.00000e+00 -7.67572e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 7.985e-03 -2.091e-03 1.499e+00 2.820e-01 - -2.091e-03 2.873e-02 -7.387e-01 -2.900e-02 - 1.499e+00 -7.387e-01 3.118e+02 5.244e+01 - 2.820e-01 -2.900e-02 5.244e+01 1.008e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99775 1.000 -0.138 0.950 0.994 - 2 0.79882 -0.138 1.000 -0.247 -0.054 - 3 0.95717 0.950 -0.247 1.000 0.935 - 4 0.99764 0.994 -0.054 0.935 1.000 - ERR MATRIX NOT POS-DEF - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.8 FROM HESSE STATUS=OK 27 CALLS 505 TOTAL - EDM=0.0183624 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_0 1.11079e+00 4.31984e-02 1.44775e-03 -6.03431e-01 - 2 par_crystal_1 5.08061e+00 3.28337e+00 6.64371e-02 1.44728e+00 - 3 par_crystal_2 4.76040e+02 8.02153e+00 1.45036e-02 3.38355e+00 - 4 par_crystal_3 1.99914e+02 2.26294e+01 4.50606e-02 1.52819e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.866e-03 -1.951e-03 -2.584e-03 1.946e-02 - -1.951e-03 1.028e-01 6.675e-04 3.793e-04 - -2.584e-03 6.675e-04 6.449e+01 1.116e+00 - 1.946e-02 3.793e-04 1.116e+00 8.140e+00 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.21215 1.000 -0.141 -0.007 0.158 - 2 0.14274 -0.141 1.000 0.000 0.000 - 3 0.05109 -0.007 0.000 1.000 0.049 - 4 0.16712 0.158 0.000 0.049 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_gaus_exp_pred_1' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_gaus_exp_pred_1) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10978.6 FROM MIGRAD STATUS=INITIATE 68 CALLS 69 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 6.03110e+02 3.00000e+01 -8.97402e-01 -6.52175e+01 - 2 par_gaus_exp_1 5.45000e+01 9.10000e+00 0.00000e+00 -4.62060e+02 - 3 par_gaus_exp_2 4.12114e-01 3.05000e-01 0.00000e+00 1.25553e+03 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.9 FROM HESSE STATUS=OK 18 CALLS 182 TOTAL - EDM=0.000691453 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.46431e+02 6.06936e+00 3.17833e-03 -3.92855e-01 - 2 par_gaus_exp_1 6.65716e+01 1.75685e+01 2.62647e-03 1.43349e-01 - 3 par_gaus_exp_2 3.07505e-01 8.37981e-02 8.79822e-04 -3.06196e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM MIGRAD STATUS=CONVERGED 316 CALLS 317 TOTAL - EDM=9.19369e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_gaus_exp_0 5.62504e+02 3.53152e+00 1.63243e-03 -1.66316e-01 - 2 par_gaus_exp_1 2.46552e+01 1.25211e+01 1.75085e-03 -3.48771e-01 - 3 par_gaus_exp_2 1.14604e-01 5.89219e-02 6.31447e-04 9.83138e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.247e+01 -1.544e+01 -6.961e-02 - -1.544e+01 1.643e+02 7.558e-01 - -6.961e-02 7.558e-01 3.493e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.35636 1.000 -0.341 -0.333 - 2 0.99789 -0.341 1.000 0.998 - 3 0.99788 -0.333 0.998 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.6 FROM HESSE STATUS=OK 16 CALLS 333 TOTAL - EDM=9.89177e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_gaus_exp_0 5.62504e+02 3.77274e+00 6.52972e-05 8.34552e-02 - 2 par_gaus_exp_1 2.46552e+01 1.46349e+01 3.50170e-04 -7.15413e-01 - 3 par_gaus_exp_2 1.14604e-01 6.93856e-02 1.26289e-04 -1.27868e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.424e+01 -2.545e+01 -1.157e-01 - -2.545e+01 2.286e+02 1.052e+00 - -1.157e-01 1.052e+00 4.855e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.45683 1.000 -0.446 -0.440 - 2 0.99849 -0.446 1.000 0.998 - 3 0.99848 -0.440 0.998 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [550,1200] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_novo_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_novo_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 1500 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 -[#0] WARNING:Minization -- RooFitGlue: Minimized function has error status. -Returning maximum FCN so far (13168.6) to force MIGRAD to back out of this region. Error log follows -Parameter values: par_novo_0=575, par_novo_1=100, par_novo_2=1.58864 -RooNLLVar::nll_f_novo_pred_2[ paramSet=(par_novo_0,par_novo_1,par_novo_2) ] - function value is NAN @ paramSet=(par_novo_0 = 575,par_novo_1 = 100,par_novo_2 = 1.58864) -RooNovosibirsk::f_novo[ x=x width=par_novo_1 peak=par_novo_0 tail=par_novo_2 ] - getLogVal() top-level p.d.f evaluates to zero @ x=x=645, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=655, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=665, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=675, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=685, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=695, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=705, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=715, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=725, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=735, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=745, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - getLogVal() top-level p.d.f evaluates to zero @ x=x=755, width=par_novo_1=100, peak=par_novo_0=575, tail=par_novo_2=1.58864 - ... (remaining 46 messages suppressed) - - FCN=13054.5 FROM MIGRAD STATUS=INITIATE 14 CALLS 15 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.75000e+02 1.50000e+01 2.01358e-01 -1.22938e+03 - 2 par_novo_1 1.00000e+02 2.00000e+01 2.01358e-01 -6.98326e+03 - 3 par_novo_2 0.00000e+00 2.00000e+01 2.01358e-01 1.51249e+06 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM MIGRAD STATUS=CONVERGED 220 CALLS 221 TOTAL - EDM=2.09668e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_novo_0 5.00000e+02 1.21837e+02 1.25149e-01 -7.30463e-04 - 2 par_novo_1 1.30637e+02 1.58558e+01 3.16845e-03 -1.76078e-02 - 3 par_novo_2 -6.95187e-01 1.36663e-01 2.61078e-05 1.74080e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.121e-01 -9.460e-01 -6.449e-03 - -9.460e-01 2.538e+02 2.099e+00 - -6.449e-03 2.099e+00 1.868e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.21023 1.000 -0.177 -0.141 - 2 0.96488 -0.177 1.000 0.964 - 3 0.96445 -0.141 0.964 1.000 - ********** - ** 18 **HESSE 1500 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10865.7 FROM HESSE STATUS=OK 20 CALLS 241 TOTAL - EDM=1.01397e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_novo_0 5.00000e+02 1.20312e+02 5.00000e-01 -1.57325e+00 - 2 par_novo_1 1.30637e+02 2.01762e+01 1.26738e-04 3.11381e-01 - 3 par_novo_2 -6.95187e-01 1.62575e-01 1.04431e-06 -6.95192e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 - 1.070e-01 -4.278e+00 -2.995e-02 - -4.278e+00 4.133e+02 3.212e+00 - -2.995e-02 3.212e+00 2.643e-02 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 - 1 0.69436 1.000 -0.643 -0.563 - 2 0.97859 -0.643 1.000 0.972 - 3 0.97501 -0.563 0.972 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_f_crystal_1_pred_2' created with bounds [550,1200] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_f_crystal_1_pred_2) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=10877 FROM MIGRAD STATUS=INITIATE 39 CALLS 40 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 6.33849e-01 5.09000e-01 -8.55460e-01 -1.25390e+02 - 2 par_crystal_1_1 2.55500e+00 5.09000e-01 0.00000e+00 -2.69495e+01 - 3 par_crystal_1_2 5.50000e+02 3.00000e+01 0.00000e+00 -1.44080e+01 - 4 par_crystal_1_3 1.04500e+02 1.91000e+01 0.00000e+00 3.07979e+01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 1 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 4 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.43469 added to diagonal of error matrix - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -1.5401e+00 8.4221e-02 1.8087e+00 3.6472e+00 - MINUIT WARNING IN MIGRAD - ============== MATRIX FORCED POS-DEF BY ADDING 1.543714 TO DIAGONAL. - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=10866.9 FROM HESSE STATUS=OK 25 CALLS 485 TOTAL - EDM=0.0491336 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.05623e+00 1.52463e-01 1.42446e-03 -1.90900e+00 - 2 par_crystal_1_1 5.09988e+00 3.18944e+00 7.54811e-02 -8.93342e-03 - 3 par_crystal_1_2 4.96280e+02 4.98347e+01 9.02051e-03 3.58498e-02 - 4 par_crystal_1_3 1.89188e+02 2.78069e+01 1.02856e-02 -2.38185e-01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=10866.8 FROM MIGRAD STATUS=FAILED 538 CALLS 539 TOTAL - EDM=10.0867 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 14.1 per cent - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 par_crystal_1_0 1.09723e+00 3.02575e-02 -0.00000e+00 5.47416e+01 - 2 par_crystal_1_1 5.09997e+00 3.18368e+00 0.00000e+00 -3.90351e-03 - 3 par_crystal_1_2 4.83329e+02 2.76558e+01 0.00000e+00 7.05236e+00 - 4 par_crystal_1_3 1.96552e+02 5.80629e+00 -0.00000e+00 4.39990e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 9.156e-04 -1.804e-07 -6.742e-01 1.111e-01 - -1.804e-07 1.763e-04 7.888e-03 -2.154e-03 - -6.742e-01 7.888e-03 7.759e+02 -1.463e+02 - 1.111e-01 -2.154e-03 -1.463e+02 3.432e+01 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.82553 1.000 -0.000 -0.800 0.627 - 2 0.03650 -0.000 1.000 0.021 -0.028 - 3 0.94703 -0.800 0.021 1.000 -0.896 - 4 0.90888 0.627 -0.028 -0.896 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -9.7852e-01 9.9996e-01 1.9836e+00 1.9949e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 0.980510 TO DIAGONAL. - FCN=10866.8 FROM HESSE STATUS=NOT POSDEF 29 CALLS 568 TOTAL - EDM=238.514 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 par_crystal_1_0 1.09723e+00 4.25322e-02 2.54943e-04 -6.09913e-01 - 2 par_crystal_1_1 5.09997e+00 7.84798e-01 8.54763e-02 1.56580e+00 - 3 par_crystal_1_2 4.83329e+02 1.87856e+01 1.76414e-03 -4.60588e-01 - 4 par_crystal_1_3 1.96552e+02 5.33115e+00 2.63738e-03 1.30128e+00 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 1.809e-03 -2.197e-07 8.001e-01 2.280e-01 - -2.197e-07 1.053e-04 -1.173e-04 -3.665e-05 - 8.001e-01 -1.173e-04 3.552e+02 1.010e+02 - 2.280e-01 -3.665e-05 1.010e+02 2.885e+01 -ERR MATRIX NOT POS-DEF - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.99849 1.000 -0.001 0.998 0.998 - 2 0.00265 -0.001 1.000 -0.001 -0.001 - 3 0.99848 0.998 -0.001 1.000 0.998 - 4 0.99849 0.998 -0.001 0.998 1.000 - ERR MATRIX NOT POS-DEF -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) only plotting range 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_gaus_exp) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_gaus_exp_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_gaus_exp_Int[x|fit_nll_f_gaus_exp_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) only plotting range 'fit_nll_f_crystal_pred_1' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_pred_1' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_Int[x|fit_nll_f_crystal_pred_1]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) only plotting range 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_crystal_1) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_crystal_1_pred_2' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(f_crystal_1_Int[x|fit_nll_f_crystal_1_pred_2]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) only plotting range 'fit_nll_f_novo_pred_2' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(f_novo) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_f_novo_pred_2' -35.9 fb^{-1} (13 TeV) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_gaus_exp_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_novo_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(data_obs_crystal_1_550_1200): fit range of variable x expanded to nearest bin boundaries: [550,1200] --> [550,1200] -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_3 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_gaus_exp_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing GaussExp::f_gaus_exp -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_gaus_exp_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_novo_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooNovosibirsk::f_novo -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_novo_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing dataset data_obs_crystal_1_550_1200 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RevCrystalBall::f_crystal_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::par_crystal_1_3 - === RooFit data fit result to be entered in datacard === - Background number of crystal_550_1200 = 1266.17 - Background number of gaus_exp_550_1200 = 1266.17 - Background number of novo_550_1200 = 1266.17 - Background number of crystal_1_550_1200 = 1266.17 - Background number of gaus_bern_550_1200 = 1266.17 - Background number of landau_550_1200 = 1266.17 -par_crystal_0 param 1.11079 0.0431984 -par_crystal_1 param 5.08061 3.28337 -par_crystal_2 param 476.04 8.02153 -par_crystal_3 param 199.914 22.6294 -par_crystal_1_0 param 1.09723 0.0425322 -par_crystal_1_1 param 5.09997 0.784798 -par_crystal_1_2 param 483.329 18.7856 -par_crystal_1_3 param 196.552 5.33115 -par_gaus_exp_0 param 562.504 3.77274 -par_gaus_exp_1 param 24.6552 14.6349 -par_gaus_exp_2 param 0.114604 0.0693856 -par_novo_0 param 500 120.312 -par_novo_1 param 130.637 20.1762 -par_novo_2 param -0.695187 0.162575 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_900_novo_550_1200/datacard_900_novo_550_1200.txt b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_900_novo_550_1200/datacard_900_novo_550_1200.txt deleted file mode 100644 index 9e2abbe..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_900_novo_550_1200/datacard_900_novo_550_1200.txt +++ /dev/null @@ -1,28 +0,0 @@ -imax 1 number of channels -jmax * number of backgrounds -kmax * number of systematic uncertainty sources ----------- -shapes signal HbbHbb w_signal_900.root HbbHbb:signal_fixed -shapes background HbbHbb w_background_novo_550_1200.root HbbHbb:f_novo -shapes data_obs HbbHbb w_background_novo_550_1200.root HbbHbb:data_obs_novo_550_1200 ----------- -## Observation -bin HbbHbb -observation -1 ----------- -bin HbbHbb HbbHbb -process signal background -process 0 1 -rate 4.64156 1266.17 -lumi_13TeV lnN 1.026 - -bTag lnN 1.0799 - -JER lnN 1.01164 - -JEC lnN 1.00857 - -trigger lnN 1.10 - -sg_p0 param 914.708 -2.06678/+2.54301 -sg_p1 param 30.2451 -0.964886/+0.328936 -sg_p2 param 2.07933 -0.225661/+0.2111 -sg_p3 param 1.21527 -0.055531/+0.0332555 -par_novo_0 param 500 120.312 -par_novo_1 param 130.637 20.1762 -par_novo_2 param -0.695187 0.162575 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_900_novo_550_1200/signal900_sig.log b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_900_novo_550_1200/signal900_sig.log deleted file mode 100644 index d4cc812..0000000 --- a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/fit/5GeV/MMR_900_novo_550_1200/signal900_sig.log +++ /dev/null @@ -1,985 +0,0 @@ - -Processing test.c... -nSignal_init = 100000 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [620,1100] --> [620,1100] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [720,1000] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [620,1100] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [720,1000] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=33664.2 FROM MIGRAD STATUS=INITIATE 54 CALLS 55 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.70000e+02 1.20000e+01 0.00000e+00 -1.87024e+03 - 2 sg_p1 4.00000e+01 3.00000e+00 0.00000e+00 1.70564e+01 - 3 sg_p2 8.67563e-01 5.00000e-01 0.00000e+00 3.77923e+02 - 4 sg_p3 1.75058e+00 7.00000e-01 -5.23409e-01 -9.51811e+01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 3 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.14138 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=33371.1 FROM HESSE STATUS=OK 27 CALLS 373 TOTAL - EDM=0.00332624 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.87145e+02 6.18636e-01 1.26596e-03 7.76547e-02 - 2 sg_p1 4.38895e+01 5.43360e-01 3.99187e-03 5.04266e-02 - 3 sg_p2 2.61266e+00 9.39365e-01 6.28602e-02 -2.11368e-01 - 4 sg_p3 1.68218e+00 9.36801e-02 3.16921e-03 5.53803e-02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=33371.1 FROM MIGRAD STATUS=CONVERGED 386 CALLS 387 TOTAL - EDM=8.86352e-09 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 0.0 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.87145e+02 6.18635e-01 1.67624e-06 -3.95438e-03 - 2 sg_p1 4.38881e+01 5.43356e-01 -9.98687e-05 -6.98133e-04 - 3 sg_p2 2.69108e+00 9.37644e-01 3.14301e-02 -2.30056e-05 - 4 sg_p3 1.68195e+00 9.36715e-02 -7.67431e-05 -4.02566e-03 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.827e-01 -6.502e-02 -5.811e-05 -2.090e-02 - -6.502e-02 2.954e-01 5.476e-04 2.735e-02 - -5.811e-05 5.476e-04 9.241e-01 1.376e-04 - -2.090e-02 2.735e-02 1.376e-04 8.777e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.36054 1.000 -0.193 -0.000 -0.361 - 2 0.53708 -0.193 1.000 0.001 0.537 - 3 0.00163 -0.000 0.001 1.000 0.002 - 4 0.59741 -0.361 0.537 0.002 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=33371.1 FROM HESSE STATUS=OK 29 CALLS 416 TOTAL - EDM=5.60701e-07 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 8.87145e+02 6.19206e-01 1.26598e-03 2.89787e-01 - 2 sg_p1 4.38881e+01 5.44560e-01 1.59675e-03 2.62200e-01 - 3 sg_p2 2.69108e+00 3.66223e+00 4.86437e-02 7.65081e-02 - 4 sg_p3 1.68195e+00 9.38964e-02 1.26768e-03 -5.46198e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.834e-01 -6.608e-02 9.504e-07 -2.110e-02 - -6.608e-02 2.967e-01 4.698e-06 2.763e-02 - 9.504e-07 4.698e-06 6.569e+03 3.565e-07 - -2.110e-02 2.763e-02 3.565e-07 8.819e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.36280 1.000 -0.196 0.000 -0.363 - 2 0.54009 -0.196 1.000 0.000 0.540 - 3 0.00000 0.000 0.000 1.000 0.000 - 4 0.60032 -0.363 0.540 0.000 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -900 -887.145 +- 0.619206 -43.8881 +- 0.54456 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [620,1100] --> [620,1100] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [720,1000] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [620,1100] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [720,1000] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=33829.5 FROM MIGRAD STATUS=INITIATE 40 CALLS 41 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.70000e+02 1.20000e+01 0.00000e+00 -1.37162e+03 - 2 sg_p1 4.00000e+01 3.00000e+00 0.00000e+00 7.33519e+01 - 3 sg_p2 5.87771e-01 5.00000e-01 -8.70873e-01 9.57906e+01 - 4 sg_p3 3.50000e+00 7.00000e-01 0.00000e+00 -3.46120e-01 - ERR DEF= 0.5 - MINUIT WARNING IN MIGRAD - ============== Negative diagonal element 2 in Error Matrix - MINUIT WARNING IN MIGRAD - ============== 1.00007 added to diagonal of error matrix - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=33473.2 FROM HESSE STATUS=OK 25 CALLS 331 TOTAL - EDM=0.315109 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.91582e+02 6.17824e-01 1.32224e-03 -7.77130e-01 - 2 sg_p1 4.40907e+01 5.43395e-01 4.14838e-03 2.19978e+00 - 3 sg_p2 2.59937e+00 4.57998e-01 2.91245e-01 -4.28319e+00 - 4 sg_p3 1.56794e+00 6.89875e-02 2.49674e-03 -3.53414e-01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - FCN=33473.2 FROM MIGRAD STATUS=CONVERGED 344 CALLS 345 TOTAL - EDM=1.81644e-07 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 0.0 per cent - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.91593e+02 6.17785e-01 1.97446e-04 -3.22562e-02 - 2 sg_p1 4.40472e+01 5.43856e-01 -3.01296e-03 -7.86524e-03 - 3 sg_p2 2.96080e+00 4.50508e-01 1.45623e-01 0.00000e+00 - 4 sg_p3 1.56553e+00 6.89514e-02 -8.25067e-04 1.93280e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.817e-01 -4.853e-02 1.606e-04 -1.348e-02 - -4.853e-02 2.959e-01 6.495e-06 1.836e-02 - 1.606e-04 6.495e-06 2.053e-01 -1.663e-05 - -1.348e-02 1.836e-02 -1.663e-05 4.755e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.31670 1.000 -0.144 0.001 -0.316 - 2 0.48950 -0.144 1.000 0.000 0.489 - 3 0.00076 0.001 0.000 1.000 -0.001 - 4 0.54881 -0.316 0.489 -0.001 1.000 - ********** - ** 18 **HESSE 2000 - ********** - MINUIT WARNING IN HESSE - ============== Second derivative enters zero, param 3 - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=33473.2 FROM HESSE STATUS=OK 31 CALLS 376 TOTAL - EDM=1.33661 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 8.91593e+02 6.18180e-01 1.32251e-03 3.68142e-01 - 2 sg_p1 4.40472e+01 5.43127e-01 4.14931e-03 2.73201e-01 - 3 sg_p2 2.96080e+00 5.37583e-01 5.10000e-01 1.85380e-01 - 4 sg_p3 1.56553e+00 6.89873e-02 9.98698e-04 -5.85607e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.822e-01 -4.972e-02 -6.585e-12 -1.366e-02 - -4.972e-02 2.951e-01 2.406e-12 1.846e-02 - -6.585e-12 2.406e-12 2.937e-01 2.262e-12 - -1.366e-02 1.846e-02 2.262e-12 4.760e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.32056 1.000 -0.148 -0.000 -0.320 - 2 0.49249 -0.148 1.000 0.000 0.492 - 3 0.00000 -0.000 0.000 1.000 0.000 - 4 0.55232 -0.320 0.492 0.000 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -900 -891.593 +- 0.61818 -44.0472 +- 0.543127 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [620,1100] --> [620,1100] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [720,1000] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [620,1100] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [720,1000] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=33025.6 FROM MIGRAD STATUS=INITIATE 55 CALLS 56 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.70000e+02 1.20000e+01 0.00000e+00 -1.21902e+03 - 2 sg_p1 4.00000e+01 3.00000e+00 0.00000e+00 3.56266e+01 - 3 sg_p2 8.48797e-01 5.00000e-01 0.00000e+00 8.71721e+00 - 4 sg_p3 1.96916e+00 7.00000e-01 -4.52685e-01 1.33827e+01 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=32836 FROM HESSE STATUS=OK 31 CALLS 284 TOTAL - EDM=0.000111741 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.83274e+02 5.75489e-01 1.22716e-03 3.79802e-02 - 2 sg_p1 4.40176e+01 4.49467e-01 3.85966e-03 -7.57641e-02 - 3 sg_p2 2.44289e+00 2.23488e-01 1.00126e-02 8.24918e-02 - 4 sg_p3 1.81465e+00 3.14767e-02 3.33332e-03 1.27746e+00 - ERR DEF= 0.5 - MIGRAD FAILS TO FIND IMPROVEMENT - MIGRAD TERMINATED WITHOUT CONVERGENCE. - FCN=32836 FROM MIGRAD STATUS=FAILED 321 CALLS 322 TOTAL - EDM=0.034586 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 18.3 per cent - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 8.83276e+02 5.73266e-01 -0.00000e+00 5.01334e-02 - 2 sg_p1 4.40177e+01 4.48511e-01 0.00000e+00 1.03605e-01 - 3 sg_p2 2.44263e+00 1.46331e-01 -0.00000e+00 -1.44978e-01 - 4 sg_p3 1.81329e+00 9.50131e-03 0.00000e+00 -1.27604e+01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.286e-01 1.600e-03 -3.893e-03 -4.127e-05 - 1.600e-03 2.012e-01 2.014e-03 3.934e-04 - -3.893e-03 2.014e-03 2.144e-02 -5.698e-04 - -4.127e-05 3.934e-04 -5.698e-04 9.028e-05 -ERR MATRIX APPROXIMATE - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.05588 1.000 0.006 -0.046 -0.008 - 2 0.11947 0.006 1.000 0.031 0.092 - 3 0.41831 -0.046 0.031 1.000 -0.410 - 4 0.42369 -0.008 0.092 -0.410 1.000 - ERR MATRIX APPROXIMATE - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=32836 FROM HESSE STATUS=OK 29 CALLS 351 TOTAL - EDM=0.000104468 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 8.83276e+02 5.75584e-01 1.22738e-03 2.23108e-01 - 2 sg_p1 4.40177e+01 4.49699e-01 3.86131e-03 2.71159e-01 - 3 sg_p2 2.44263e+00 2.24450e-01 1.04348e-02 -2.29498e-02 - 4 sg_p3 1.81329e+00 3.18671e-02 3.32746e-03 -5.02843e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.313e-01 -1.034e-03 -3.993e-04 -1.393e-03 - -1.034e-03 2.023e-01 -9.138e-05 1.874e-03 - -3.993e-04 -9.138e-05 5.051e-02 1.806e-06 - -1.393e-03 1.874e-03 1.806e-06 1.016e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.07626 1.000 -0.004 -0.003 -0.076 - 2 0.13085 -0.004 1.000 -0.001 0.131 - 3 0.00322 -0.003 -0.001 1.000 0.000 - 4 0.15092 -0.076 0.131 0.000 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -900 -883.276 +- 0.575584 -44.0177 +- 0.449699 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [650,1130] --> [650,1130] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [650,1130] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=31847.2 FROM MIGRAD STATUS=INITIATE 55 CALLS 56 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.10000e+02 8.00000e+00 0.00000e+00 -9.15004e+02 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 -1.07919e+02 - 3 sg_p2 1.34843e+00 5.00000e-01 0.00000e+00 1.01663e+02 - 4 sg_p3 1.18098e+00 7.00000e-01 -7.24255e-01 -8.67138e+00 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31775.1 FROM MIGRAD STATUS=CONVERGED 191 CALLS 192 TOTAL - EDM=1.8133e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.14708e+02 6.08444e-01 1.29613e-03 1.05815e-01 - 2 sg_p1 3.02451e+01 5.68219e-01 5.56289e-03 1.74811e-02 - 3 sg_p2 2.07933e+00 1.35380e-01 6.08573e-03 1.51761e-02 - 4 sg_p3 1.21527e+00 6.15917e-02 1.48479e-03 1.57009e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.702e-01 -2.155e-01 -1.002e-02 -2.676e-02 - -2.155e-01 3.236e-01 3.008e-02 2.846e-02 - -1.002e-02 3.008e-02 1.835e-02 2.403e-03 - -2.676e-02 2.846e-02 2.403e-03 3.794e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.72659 1.000 -0.623 -0.122 -0.714 - 2 0.83258 -0.623 1.000 0.390 0.812 - 3 0.42083 -0.122 0.390 1.000 0.288 - 4 0.85489 -0.714 0.812 0.288 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31775.1 FROM HESSE STATUS=OK 23 CALLS 215 TOTAL - EDM=2.07761e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 9.14708e+02 6.37633e-01 5.18452e-05 1.17968e-01 - 2 sg_p1 3.02451e+01 6.04034e-01 2.22516e-04 3.74720e-01 - 3 sg_p2 2.07933e+00 1.39479e-01 2.43429e-04 -1.69071e-01 - 4 sg_p3 1.21527e+00 6.62844e-02 5.93916e-05 -7.11249e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.066e-01 -2.540e-01 -1.389e-02 -3.139e-02 - -2.540e-01 3.658e-01 3.536e-02 3.345e-02 - -1.389e-02 3.536e-02 1.948e-02 2.966e-03 - -3.139e-02 3.345e-02 2.966e-03 4.395e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.75434 1.000 -0.659 -0.156 -0.743 - 2 0.85324 -0.659 1.000 0.419 0.834 - 3 0.44886 -0.156 0.419 1.000 0.321 - 4 0.87300 -0.743 0.834 0.321 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -900 -914.708 +- 0.637633 -30.2451 +- 0.604034 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing ExpGaussExp::signal_fixed -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::x -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p0 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p1 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p2 -[#1] INFO:ObjectHandling -- RooWorkspace::import(HbbHbb) importing RooRealVar::signal_p3 - fit done -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [650,1130] --> [650,1130] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [650,1130] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=32076.3 FROM MIGRAD STATUS=INITIATE 56 CALLS 57 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.10000e+02 8.00000e+00 0.00000e+00 -9.42825e+02 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 -2.66341e+02 - 3 sg_p2 1.24756e+00 5.00000e-01 0.00000e+00 1.32032e+02 - 4 sg_p3 1.51475e+00 7.00000e-01 -6.03120e-01 6.41643e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - EIGENVALUES OF SECOND-DERIVATIVE MATRIX: - -2.2508e+00 8.3406e-01 1.1303e+00 4.2864e+00 - MINUIT WARNING IN HESSE - ============== MATRIX FORCED POS-DEF BY ADDING 2.255047 TO DIAGONAL. - FCN=31897 FROM HESSE STATUS=NOT POSDEF 27 CALLS 293 TOTAL - EDM=0.00241152 STRATEGY= 1 ERR MATRIX NOT POS-DEF - EXT PARAMETER APPROXIMATE STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.17231e+02 6.95098e-01 1.30051e-03 1.46076e-01 - 2 sg_p1 3.03755e+01 3.97597e-01 5.52810e-03 7.58612e-03 - 3 sg_p2 2.27801e+00 1.55888e+00 7.81545e-03 6.54139e-02 - 4 sg_p3 1.17081e+00 2.99817e-01 1.31225e-03 1.00535e+00 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31897 FROM MIGRAD STATUS=CONVERGED 328 CALLS 329 TOTAL - EDM=0.000214971 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.17231e+02 4.88559e-01 1.30052e-03 3.06873e-02 - 2 sg_p1 3.03754e+01 4.10963e-01 2.21124e-03 2.67746e-02 - 3 sg_p2 2.27858e+00 1.68057e-01 3.12618e-03 1.19850e-01 - 4 sg_p3 1.17071e+00 3.83284e-02 1.31215e-03 6.94100e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.387e-01 -8.067e-02 2.183e-04 -9.547e-03 - -8.067e-02 1.691e-01 1.601e-02 9.908e-03 - 2.183e-04 1.601e-02 2.829e-02 8.281e-04 - -9.547e-03 9.908e-03 8.281e-04 1.469e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.52820 1.000 -0.402 0.003 -0.510 - 2 0.65548 -0.402 1.000 0.231 0.629 - 3 0.25444 0.003 0.231 1.000 0.128 - 4 0.68871 -0.510 0.629 0.128 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31897 FROM HESSE STATUS=OK 23 CALLS 352 TOTAL - EDM=0.000216668 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 9.17231e+02 4.89066e-01 5.20206e-05 1.81768e-01 - 2 sg_p1 3.03754e+01 4.11848e-01 4.42248e-04 3.93462e-01 - 3 sg_p2 2.27858e+00 1.68511e-01 6.25236e-04 -8.86838e-02 - 4 sg_p3 1.17071e+00 3.83872e-02 2.62429e-04 -7.28178e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.392e-01 -8.128e-02 1.943e-04 -9.592e-03 - -8.128e-02 1.698e-01 1.629e-02 9.968e-03 - 1.943e-04 1.629e-02 2.844e-02 8.443e-04 - -9.592e-03 9.968e-03 8.443e-04 1.474e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.52961 1.000 -0.403 0.002 -0.511 - 2 0.65734 -0.403 1.000 0.234 0.630 - 3 0.25774 0.002 0.234 1.000 0.130 - 4 0.68988 -0.511 0.630 0.130 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -900 -917.231 +- 0.489066 -30.3754 +- 0.411848 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [650,1130] --> [650,1130] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [650,1130] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=31270.8 FROM MIGRAD STATUS=INITIATE 78 CALLS 79 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.11670e+02 8.00000e+00 4.17695e-02 1.48625e+01 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 -1.41145e+02 - 3 sg_p2 1.45615e+00 5.00000e-01 0.00000e+00 -1.80733e+01 - 4 sg_p3 1.27355e+00 7.00000e-01 0.00000e+00 5.00168e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31241.1 FROM MIGRAD STATUS=CONVERGED 201 CALLS 202 TOTAL - EDM=1.00647e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.12666e+02 5.93671e-01 1.27735e-03 2.63765e-02 - 2 sg_p1 2.96697e+01 6.13867e-01 5.39370e-03 1.70034e-02 - 3 sg_p2 1.86746e+00 1.16178e-01 4.79471e-03 1.24233e-02 - 4 sg_p3 1.20141e+00 6.21896e-02 1.45289e-03 7.47047e-02 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.525e-01 -2.113e-01 -9.800e-03 -2.540e-02 - -2.113e-01 3.778e-01 3.879e-02 3.144e-02 - -9.800e-03 3.879e-02 1.351e-02 2.946e-03 - -2.540e-02 3.144e-02 2.946e-03 3.868e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.71041 1.000 -0.579 -0.142 -0.688 - 2 0.85591 -0.579 1.000 0.543 0.822 - 3 0.58356 -0.142 0.543 1.000 0.408 - 4 0.86266 -0.688 0.822 0.408 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31241.1 FROM HESSE STATUS=OK 23 CALLS 225 TOTAL - EDM=1.03715e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 9.12666e+02 5.96901e-01 2.55470e-04 6.66929e-02 - 2 sg_p1 2.96697e+01 6.22112e-01 2.15748e-04 2.93491e-01 - 3 sg_p2 1.86746e+00 1.17183e-01 1.91788e-04 -2.55796e-01 - 4 sg_p3 1.20141e+00 6.28752e-02 5.81156e-05 -7.16489e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.563e-01 -2.172e-01 -1.053e-02 -2.596e-02 - -2.172e-01 3.880e-01 4.037e-02 3.237e-02 - -1.053e-02 4.037e-02 1.374e-02 3.084e-03 - -2.596e-02 3.237e-02 3.084e-03 3.954e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.71417 1.000 -0.584 -0.151 -0.692 - 2 0.86002 -0.584 1.000 0.553 0.827 - 3 0.59309 -0.151 0.553 1.000 0.418 - 4 0.86587 -0.692 0.827 0.418 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -900 -912.666 +- 0.596901 -29.6697 +- 0.622112 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [650,1130] --> [650,1130] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [650,1130] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=31402.8 FROM MIGRAD STATUS=INITIATE 56 CALLS 57 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.10000e+02 8.00000e+00 0.00000e+00 -6.41887e+02 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 -1.32609e+02 - 3 sg_p2 1.21873e+00 5.00000e-01 0.00000e+00 2.82004e+01 - 4 sg_p3 1.29003e+00 7.00000e-01 -6.83382e-01 3.00498e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31327.2 FROM MIGRAD STATUS=CONVERGED 202 CALLS 203 TOTAL - EDM=9.20948e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.14895e+02 5.51583e-01 1.31460e-03 1.61689e-01 - 2 sg_p1 3.03350e+01 7.44882e-01 5.76073e-03 -3.27245e-02 - 3 sg_p2 1.86472e+00 2.01246e-01 6.02311e-03 -3.75996e-03 - 4 sg_p3 1.20817e+00 6.26611e-02 1.44547e-03 2.50672e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.043e-01 -1.559e-01 -6.728e-03 -1.871e-02 - -1.559e-01 5.570e-01 1.146e-01 3.885e-02 - -6.728e-03 1.146e-01 4.059e-02 7.410e-03 - -1.871e-02 3.885e-02 7.410e-03 3.927e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.63293 1.000 -0.379 -0.061 -0.541 - 2 0.89852 -0.379 1.000 0.762 0.831 - 3 0.80154 -0.061 0.762 1.000 0.587 - 4 0.86629 -0.541 0.831 0.587 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31327.2 FROM HESSE STATUS=OK 23 CALLS 226 TOTAL - EDM=9.24142e-06 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 9.14895e+02 5.53867e-01 2.62920e-04 1.22682e-01 - 2 sg_p1 3.03350e+01 7.70523e-01 2.30429e-04 3.87633e-01 - 3 sg_p2 1.86472e+00 2.07594e-01 2.40925e-04 -2.56930e-01 - 4 sg_p3 1.20817e+00 6.42645e-02 5.78186e-05 -7.13930e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 3.068e-01 -1.637e-01 -8.469e-03 -1.930e-02 - -1.637e-01 5.962e-01 1.248e-01 4.167e-02 - -8.469e-03 1.248e-01 4.320e-02 8.128e-03 - -1.930e-02 4.167e-02 8.128e-03 4.131e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.63682 1.000 -0.383 -0.074 -0.542 - 2 0.90554 -0.383 1.000 0.777 0.840 - 3 0.81484 -0.074 0.777 1.000 0.608 - 4 0.87336 -0.542 0.840 0.608 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -900 -914.895 +- 0.553867 -30.335 +- 0.770523 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [650,1130] --> [650,1130] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [650,1130] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=31997 FROM MIGRAD STATUS=INITIATE 59 CALLS 60 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.10000e+02 8.00000e+00 0.00000e+00 -8.37823e+02 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 -7.64703e+01 - 3 sg_p2 1.30597e+00 5.00000e-01 0.00000e+00 -1.46520e+01 - 4 sg_p3 1.20892e+00 7.00000e-01 -7.13644e-01 4.56011e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31928.6 FROM MIGRAD STATUS=CONVERGED 187 CALLS 188 TOTAL - EDM=0.000455256 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.14847e+02 4.88994e-01 1.26432e-03 4.89756e-01 - 2 sg_p1 2.93287e+01 6.86296e-01 5.26048e-03 5.85295e-02 - 3 sg_p2 1.92235e+00 2.48995e-01 6.70981e-03 1.75003e-01 - 4 sg_p3 1.17091e+00 4.94270e-02 1.31942e-03 -2.75253e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.391e-01 -5.711e-02 1.273e-02 -9.083e-03 - -5.711e-02 4.724e-01 1.369e-01 2.673e-02 - 1.273e-02 1.369e-01 6.222e-02 7.189e-03 - -9.083e-03 2.673e-02 7.189e-03 2.443e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.55484 1.000 -0.170 0.104 -0.376 - 2 0.89241 -0.170 1.000 0.799 0.787 - 3 0.83537 0.104 0.799 1.000 0.583 - 4 0.82462 -0.376 0.787 0.583 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=31928.6 FROM HESSE STATUS=OK 29 CALLS 217 TOTAL - EDM=0.000126642 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 9.14847e+02 4.87177e-01 2.52865e-04 1.21475e-01 - 2 sg_p1 2.93287e+01 4.44229e-01 2.10419e-04 2.46308e-01 - 3 sg_p2 1.92235e+00 1.10134e-01 2.00630e-01 -2.33169e-01 - 4 sg_p3 1.17091e+00 4.11749e-02 5.27768e-05 -7.28101e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.374e-01 -8.558e-02 4.043e-04 -1.061e-02 - -8.558e-02 1.976e-01 1.759e-02 1.238e-02 - 4.043e-04 1.759e-02 1.214e-02 9.448e-04 - -1.061e-02 1.238e-02 9.448e-04 1.696e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.55015 1.000 -0.395 0.008 -0.529 - 2 0.71638 -0.395 1.000 0.359 0.676 - 3 0.39465 0.008 0.359 1.000 0.208 - 4 0.73407 -0.529 0.676 0.208 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -900 -914.847 +- 0.487177 -29.3287 +- 0.444229 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [650,1130] --> [650,1130] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [650,1130] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=29376.3 FROM MIGRAD STATUS=INITIATE 53 CALLS 54 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.10000e+02 8.00000e+00 0.00000e+00 -8.21334e+02 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 -1.14912e+02 - 3 sg_p2 1.36391e+00 5.00000e-01 0.00000e+00 1.01339e+02 - 4 sg_p3 1.20442e+00 7.00000e-01 -7.15346e-01 5.08593e+01 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=29309.7 FROM MIGRAD STATUS=CONVERGED 194 CALLS 195 TOTAL - EDM=0.000205755 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.14660e+02 4.99096e-01 1.29653e-03 -5.11216e-02 - 2 sg_p1 3.02540e+01 3.59225e-01 5.55826e-03 5.44144e-02 - 3 sg_p2 2.08275e+00 1.37518e-01 6.20642e-03 1.37624e-01 - 4 sg_p3 1.21801e+00 3.97286e-02 1.50718e-03 -6.59977e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.491e-01 5.789e-03 1.174e-02 -9.048e-03 - 5.789e-03 1.292e-01 1.502e-02 -3.879e-03 - 1.174e-02 1.502e-02 1.893e-02 -7.314e-04 - -9.048e-03 -3.879e-03 -7.314e-04 1.578e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.48768 1.000 0.032 0.171 -0.456 - 2 0.40688 0.032 1.000 0.304 -0.272 - 3 0.34471 0.171 0.304 1.000 -0.134 - 4 0.52420 -0.456 -0.272 -0.134 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=29309.7 FROM HESSE STATUS=OK 23 CALLS 218 TOTAL - EDM=0.000176487 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 9.14660e+02 6.63602e-01 2.59307e-04 1.16777e-01 - 2 sg_p1 3.02540e+01 6.28299e-01 2.22330e-04 3.75996e-01 - 3 sg_p2 2.08275e+00 1.45711e-01 2.48257e-04 -1.67686e-01 - 4 sg_p3 1.21801e+00 6.93582e-02 3.01436e-04 -7.10215e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 4.404e-01 -2.750e-01 -1.507e-02 -3.419e-02 - -2.750e-01 3.958e-01 3.829e-02 3.641e-02 - -1.507e-02 3.829e-02 2.126e-02 3.230e-03 - -3.419e-02 3.641e-02 3.230e-03 4.812e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.75425 1.000 -0.659 -0.156 -0.743 - 2 0.85307 -0.659 1.000 0.417 0.834 - 3 0.44715 -0.156 0.417 1.000 0.319 - 4 0.87298 -0.743 0.834 0.319 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -900 -914.66 +- 0.663602 -30.254 +- 0.628299 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:DataHandling -- RooDataHist::adjustBinning(signalHistogram): fit range of variable x expanded to nearest bin boundaries: [650,1130] --> [650,1130] -[#0] WARNING:InputArguments -- RooAbsPdf::fitTo(signal) WARNING: a likelihood fit is request of what appears to be weighted data. - While the estimated values of the parameters will always be calculated taking the weights into account, - there are multiple ways to estimate the errors on these parameter values. You are advised to make an - explicit choice on the error calculation: - - Either provide SumW2Error(kTRUE), to calculate a sum-of-weights corrected HESSE error matrix - (error will be proportional to the number of events) - - Or provide SumW2Error(kFALSE), to return errors from original HESSE error matrix - (which will be proportional to the sum of the weights) - If you want the errors to reflect the information contained in the provided dataset, choose kTRUE. - If you want the errors to reflect the precision you would be able to obtain with an unweighted dataset - with 'sum-of-weights' events, choose kFALSE. -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) constructing test statistic for sub-range named fit -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'NormalizationRangeForfit' created with bounds [650,1130] -[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'fit_nll_signal_signalHistogram' created with bounds [750,1030] -[#1] INFO:Fitting -- RooAbsOptTestStatistic::ctor(nll_signal_signalHistogram) fixing interpretation of coefficients of any RooAddPdf to full domain of observables -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization - ********** - ** 13 **MIGRAD 2000 1 - ********** - FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. - START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 - FCN=34491.6 FROM MIGRAD STATUS=INITIATE 56 CALLS 57 TOTAL - EDM= unknown STRATEGY= 1 NO ERROR MATRIX - EXT PARAMETER CURRENT GUESS STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.10000e+02 8.00000e+00 0.00000e+00 -1.23996e+03 - 2 sg_p1 2.75000e+01 1.50000e+00 0.00000e+00 -2.14064e+01 - 3 sg_p2 1.33344e+00 5.00000e-01 0.00000e+00 1.23543e+02 - 4 sg_p3 1.01604e+00 7.00000e-01 -7.89075e-01 -7.54461e+02 - ERR DEF= 0.5 - MIGRAD MINIMIZATION HAS CONVERGED. - MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=34391.1 FROM MIGRAD STATUS=CONVERGED 188 CALLS 189 TOTAL - EDM=1.48214e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER STEP FIRST - NO. NAME VALUE ERROR SIZE DERIVATIVE - 1 sg_p0 9.14750e+02 5.25007e-01 1.29029e-03 2.37283e-01 - 2 sg_p1 3.02408e+01 4.81625e-01 5.53748e-03 -1.27642e-02 - 3 sg_p2 2.07745e+00 1.27929e-01 6.14558e-03 4.69647e-02 - 4 sg_p3 1.21295e+00 5.03011e-02 1.45362e-03 1.82273e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.756e-01 -1.325e-01 -3.877e-03 -1.666e-02 - -1.325e-01 2.323e-01 2.235e-02 1.825e-02 - -3.877e-03 2.235e-02 1.638e-02 1.568e-03 - -1.666e-02 1.825e-02 1.568e-03 2.531e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.64731 1.000 -0.523 -0.058 -0.631 - 2 0.77971 -0.523 1.000 0.362 0.753 - 3 0.39469 -0.058 0.362 1.000 0.244 - 4 0.80244 -0.631 0.753 0.244 1.000 - ********** - ** 18 **HESSE 2000 - ********** - COVARIANCE MATRIX CALCULATED SUCCESSFULLY - FCN=34391.1 FROM HESSE STATUS=OK 23 CALLS 212 TOTAL - EDM=1.52019e-05 STRATEGY= 1 ERROR MATRIX ACCURATE - EXT PARAMETER INTERNAL INTERNAL - NO. NAME VALUE ERROR STEP SIZE VALUE - 1 sg_p0 9.14750e+02 5.22645e-01 2.58059e-04 1.19022e-01 - 2 sg_p1 3.02408e+01 4.78916e-01 2.21499e-04 3.74107e-01 - 3 sg_p2 2.07745e+00 1.30836e-01 2.45823e-04 -1.69835e-01 - 4 sg_p3 1.21295e+00 4.98205e-02 5.81447e-05 -7.12123e-01 - ERR DEF= 0.5 - EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5 - 2.732e-01 -1.292e-01 -3.790e-03 -1.629e-02 - -1.292e-01 2.297e-01 2.340e-02 1.784e-02 - -3.790e-03 2.340e-02 1.713e-02 1.620e-03 - -1.629e-02 1.784e-02 1.620e-03 2.482e-03 - PARAMETER CORRELATION COEFFICIENTS - NO. GLOBAL 1 2 3 4 - 1 0.64323 1.000 -0.516 -0.055 -0.626 - 2 0.77685 -0.516 1.000 0.373 0.747 - 3 0.40646 -0.055 0.373 1.000 0.248 - 4 0.79826 -0.626 0.747 0.248 1.000 -[#1] INFO:Minization -- RooMinuit::optimizeConst: deactivating const optimization -900 -914.75 +- 0.522645 -30.2408 +- 0.478916 -[#1] INFO:InputArguments -- RooAbsData::plotOn(signalHistogram) INFO: dataset has non-integer weights, auto-selecting SumW2 errors instead of Poisson errors -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f was fitted in range and no explicit plot,norm range was specified, using fit range as default -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) only plotting range 'fit_nll_signal_signalHistogram' -[#1] INFO:Plotting -- RooAbsPdf::plotOn(signal) p.d.f. curve is normalized using explicit choice of ranges 'fit_nll_signal_signalHistogram' -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -[#1] INFO:NumericIntegration -- RooRealIntegral::init(signal_Int[x|fit_nll_signal_signalHistogram]_Norm[x]) using numeric integrator RooIntegrator1D to calculate Int(x) -35.9 fb^{-1} (13 TeV) - Uncertainty on sg_p0 = 914.708 +- 0.637633 (stat) - 2.04205 + 2.52294 (syst); -2.06678/+2.54301 (total) - Uncertainty on sg_p1 = 30.2451 +- 0.604034 (stat) - 0.916401 + 0.130325 (syst); -0.964886/+0.328936 (total) - Uncertainty on sg_p2 = 2.07933 +- 0.139479 (stat) - 0.214614 + 0.199247 (syst); -0.225661/+0.2111 (total) - Uncertainty on sg_p3 = 1.21527 +- 0.0662844 (stat) - 0.0445565 + 0.00274258 (syst); -0.055531/+0.0332555 (total) - === Baseline plot ===
- norm = 232.078 -JEC lnN 1.00857 - -JER lnN 1.01164 - -btag lnN 1.0799 - -sg_p0 param 914.708 -2.06678/+2.54301 -sg_p1 param 30.2451 -0.964886/+0.328936 -sg_p2 param 2.07933 -0.225661/+0.2111 -sg_p3 param 1.21527 -0.055531/+0.0332555 diff --git a/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/save/Histogram_BTagCSV.root b/PreselectedWithRegressionDeepCSV/MMRSelection_chi2/save/Histogram_BTagCSV.root deleted file mode 100644 index 84bb9a05364a3e589ad2f9a7f641e07ccf5f18cd..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 105743 zcmdqJ2UJtr+BKXI2rcy9L8M5N-m6IOMM0(a-b?6BkSbsSX#p&N0wU6pl28PxBE1L! z6cnVF(DMa6*L%*n@4erD?tQ;8-v4EcK!A}w_L|RJ&zgI#xwns}ryl^Y$`1el>;S+# z5&$r_AM^ei<^{yO^sz7A0MjG^0LWti@T;=@lQ%0|4X9|F0*xdwwohKX#}QmtK&J5f?QQ>R2(W3qJ_Kp zVz>JqKw{~?jy&j~XJD5zVv3DESV_B$BZFfL!a#&qA%DAi6x0MaL-Kp~xVM>B) zln|;<+ewsf4Yd-fdPKB@DP0~JX_33SCGToeiOv|ci$+b|pf#nXrA0>(4ZXDp&Fjrj zP#s=cEeuanVHMX`C3JdAMj8{P%#|FgAtNYA8Og*EyHKK;_H2U6tk-ZyGcn2~zJ}rl ze;WTji{j+~BpjZGUu#6$Ilz;aSMc%qD|@(p`22+A5GUXpb=UiK7b3eOwF4WKMeUGc zL)`bczSPa~fKUO3>{pQ^zO76c|pVpR@{g25(aIN;QSVqDqGF}KYJ4O?xz``9MIUL0drbiW5#I3UC<7Pzj-M(nI@$_DP=TTa}hg5}jp$WlbpK(iU7p@|-vn+Mbx zNbi-ez|^mG#85vOE~p)|&!*SmD6-IO0EuuOMV@JwBThHP!6kqhj`>MK|Eq3XlJew3)bJV7p#9dCRmSe zX61G22uB7h#31(UKryRJ43Kr|R}g@^A1{P3XO7Hjm91IwdvUN!!k9~b11Y;R`~G2SR3N^Ou~CiR18eT9gNSN?o2a&`cL zgiZG&nGM^J9&0_w*8*Kg0h8k*jVwHA ztMra`!2Za8KSfSVaffVoc&ZfVVOdP>N!V!3O|B%yC$ykP_EwQYR>Z>dn1#L@PT(g- z8hMEX^n^93{&Pe-@@(EThRbLJYp~`Mk;SJgJQiOKI4mBH%Wkibeg5)zTww9*w*$D= zTd}sCyne`F`5-YgV3}z%nbc!*q#lX<@OA*P_%tD=>r*E_b9ok_Y}*8_>~5wcbn}?W zE20a54A0F$gncIlqt@3T>ryR{b!H{V`fYj0dUQ0zV@_VM-rW2>vi4at!W~8&b7%T8 zxbBAn!~<<)!%j%*CXidk)=fxMPup*7=;k~{^*OuI^e z0aV%9`53-j`7>YekN!DdM9=xM{@3|p{crO{`@g5hwERashVSEjKx1d6(A7#%R?E8w zYhw{LGP<>sC$XF=zQo$ez#d^ixRW4m7N$j!+F9W=(&H(n-verYRFPeOE(E3b(Au1N zGv2QCwK>`3@;G%x;)cA19Fs`X)M;On%>dt~p>OlTVXS4l@9--^7=JF8tT{8|CS?m1 za!arlVY{{qVs`JPl)bh>40S4V-L$In@@jSNN47-OA)2o?Amo&@5T9WW5#|mIF*5D` z;JO@lh{v=k?TiChs9r2yu)cE_v*H8^)?c|TSnpkC?3^gbzfKhU zf1fD-J&ol*B1&0n4xwl!P(8;}vFPfp&t|Pt`!NrTW`mjogVz4VO7!iLg}XVQ1(V*> zCh5S_9T$;Ln>@jX?|aer<1?@QAR3&mp@va#3PPtw8K5VYCvaQPvlz82RWbKqdq5OR zInnx^aq;@P55n~!DI_PhXAhpZ$Qd8`8j!~Ea3ntBA&92ta&UAcl@&|jE*xsFO^AN&V8DPS za7n$e`pc&b*oXyBY&0%TNSeyG8XBeaOGG2eA(~EGoG(17@5VC+f2#}KnQb{;3iEW7 zykS2#-lL zeK^2hX6?$OhLag&&p3-&!yCLSsjREMX@z=%fx6bZbJ0={?jC-lU8<42{#~x)J3+@y ziH;pS10{%eJVLmG34Wk+(q`rM8h)Ve{rDhp+koahAf8dRErx8LbUJ`+8ffF%fpZD> zD1vN`oXVLb>44ChEHx2B3W`6Ig4F1rk>WzSPW_1#1sDA~x&#N;MA`CL@IuGYp_f`eNJZE_$(23-=a5{~^Q zG(X|ef?paz1nCZf*C$W>ZmeY5d*$u5OT307#GQ*_iyt248%Q|3H%%jIqO~3*;_ZC@ zV2m^;)Xg;P;k=a*;f|}SUgUiR1PJc?UEJ9TUA>rOybo?`&2+e%hO8b|%!|PuKcH;2 z2?VV@S=X<@QEsMGek^Q1LR)KS>}#oms=KSXoVAG-C%$anzk=0|UwFl1r!{eipGE7_ zegdt^1Mx5%Z{6GI#-Zfb*&736hn-I!u2W6d-(O!ST2!P;baoNmf(G*W$voTNP&%f2 z>+d=_j7m;9 zN5-&62znkz#JtUk-JT@js3QKlr^cNS#7)Mq&7x?bp=fcrii}rtx@j zcl|UTiw3x=TPH?3v6)^radEVMRdCR(!q)XdeV%VFv`S=WDJP8Az>qlqE?NkS+$l1Z zq#V1XM3?LBR*)-?klo}Y^eKf~N#vly>ulN`R)#@3oOzQ5AZ}0NF)nC$Dmv;uTT1JB$VV>KXjqzNNwYbfpPvKc$SYB35RuMc_Lkr@rVISh ze6n^~KS|g_$4H@~yD?E%n|4X!iRFs<&Ku(=Ar)r6G7lt-*v3Qk*;9t~?pK-<+scBT z2_;WdXmtc|k>zB>*LW(ScNmXQ#UB;S6!k_GBQ6!<0@egc)}9f%^W(esMUA!Bk0Fpk zg7tbQtm61d>ZJW0%B;bv#1H1kRy!a<+Qwuv@@>J@uuyo5s29jGCME*oI(`2$3n<bt&D*i+?4hSv@8oVt%W(YTEhY<8qbn8*1I>wSIbjl^#|YSd@XC6eEC_<(JkiK^3( zjob$Kl}u0Xtlp_n)vV0f*5oO-a333G822neiA5-j6`MyiH&k!_Xwankyv-Mpk02#& zB+TyPXAWZ-;2d|z^pMHFt{&>JG!Ybqr|r1{lTh!2BJ^#;l-+yvh3s2>=Z=WRPD&lT z_zXUne>e&pR^dxINp9J%Gkv8!ZsT`BDMd&QD;n$vJku1m?3Ob?hKE;DC02rA(dX=-Qav?#}HD z4jODEa#D7>7CNuolJos=<_^ID&Y^bTLrkIH{JGH7H~v|nFZ5#I-wJIgq;<`J@(kvX zope13yX^&|@lz!~jdoXg{A~K?Y}g^~TJGKV3$ zW0t1ATuO9ir;<1Naxcj@ifeiGvYUxxw-U??~w0h#&ZSx;b0+dBd z15~P)b*7z)7n3x|Ziz`et(Hs1R}3-Hv3c2xi}op?)oJ~l`J?h+Z9*7aj54{Lu9Fl#aZFr$39VA2jx5_{2m=`YTsZU?Jz> zdR1ZOu@tCVJjHY=)N5pe`o`yvrI{6~Si_qiN3dI(gf71q*1e{wm>KpZGq@Xfuwc$Z zN#TbwiRPErGTo1(7(Y+-L_)P?+2Wk5)fOJN`$yhZ+>d8{V7=W;qEW%aiQZqzpWBpg9nNh^ zeY?L|#iRrAfyBf+fAcAUZx@N^A`>NPX|tXx5}bR+K7a6xwa-0cL5ycCap4(X{>?M4 z#QG?SQxHTDN8o&@LU8LPM<>D8EDkyXv7VP431Z@^!9~&pI9sD^H3R_!@4*D?FRc|H z8vkZl_7DHjvdsHwStbmfktmYm{U{W@drwpP+_n776}!-)nRfg~*HSr+2>VCh-<>D; zx$_ix;XG{uzHvjO9r-Jkvxx{9wLTp>-aT#hwz7ffQ-MIqVBa)+TrgM(e6yf53P71k z3&*~^FpxHYEZo|PRLfb%N*#VkFAKY+u=yys3BH(dHKuFh0}*qD7z=c}Q5xz~%ncPj z6W**JZGkV|p9G~cI1@3~QAt znKPFKHYHzHAidptK&j8nACB+j^L zTDuh0r4ob7td~pz&HZM)c|cW;{ID4uQ+)jlS8vE13=>`e!wl(JWcgKSWlKSfvZ<$U zHv_Wv>A%nbl(gz(G5nGJGk@q+{uO^NR394nm-&-I`|tBd^?wk5e$4d&{V1iw1P%S> zUpn{YGZES}wY1!@m&SPAUjo3iL`$p`#1Kd{q)gES1mtEGio{p%c(@ZAy&RPSfzgCI zLc`H4$e=0RcHiQUM1w6<6ta%R_E6m;R-}~9*EmO`w0n*!&!UTyPOOPO|s>sIH%fP}-m0+QU$~uQ4y&EzSi?y~fUEvS0 zQ_I_MWyR$zk(Cw8kzGe+*r{K~>1C%ZnKr*2p2FElN?vD4AZ+Jbu~Yrg^s+^=TALFC zL>=-FW|}$~D5K08(mOgIVcWU@N(~Vqff5)?L*r`kp;CiWSlfhvDezl&40q)I%pJz4 zf5n{(c?kIHy(i^A=soZM2XRNc^5B9yZ+?71mr^|AVA5)s30$!V^2Ict?lp)YeV-C1 zrjugRnMS<^W9iG<04UPpO%U_!7Q7N#L8G#}o0<@*1rGSFg~R9C2;Umx*yU_m+(Bo1 zLRlG4Q>f~O^QNEWcjOh}D#Szfam3<|3T|rY2SQn0CV8ZH#`nmsw=3Y(W<6r49ib?6 z#6%1#8Ww^~mrO#i*OwvMIZ5KLibA=eB2YYY_f6y>6t3*05QDq;7POw9Dp9{N?Chn$ z4M)oBJwt@4$i^IhFd|ydyi7kc{z|w$KYRiiUQ&ZN-M$G%ftKlJ>UMnjqwFIBMp@{XWPPi*otHvrHX`ga6pW%0p`Xd& zp`8iop`RH|qMNCSz}lh%2fju_JRxX%dCQOgy>utxc!YY&lF;p_}3J=&^(xR>n~FXBYOUA3jGDq^Z%See^K;Y`rj#f z$cL+VG4%O)!S%Zi#1ZhX>2o1_fd3AC{(}zm7j)16bNc*6-E;kasqU$~TN#bvkJO*r z4_EEK=Ff%lIRgG{KbYMYCkiFnupCiwFq>03B^lj==xQo_{}(`4X|2gDo$Gv;0BX09eSkww}M*k>W@OBnp@yK zr2~+P&|PEq0w7KvXuLAL%=pHQr-kuQc9_v9UB9gh>+od4Ln?8XcQ*ohytT?;)t}RY zBQ{`R?`|~+2JMRWzG=R~xn@m2nn101hXfq3(Rz3(fEBi}f|iXiNPqQ2w=v-b3PEtI z4NiiVbFF3M#>J|Wz%RQJRo=%~*EPelcf#xFrP8@cqsxVKb6v>Q&t0)c^U^gRge>;S zImTZ ztc~3FJ!0cSNE2?v4;+(DVRh6>Uw6Z^=@stV%M_d|vXZa0lGkbvT~@ySP4*$N0E#FM zH+Kg^k>d;EJh_lQ9Ou&K%6W?OXZ#W5WTXmY#cbbVGN4a>Q#!CV_%}HGAR+2ACJ7fG zMTQp@nH3ckBgHm+q`j{SQrLSXr%Ht+RTyq!P<_K-{r70uB^%H!;y&GWQZ{9{ zGZ`o*r;7$mQfUJo1havz64MY5y6Q>FmKIrT+P%TwEOAjlhVM|syvr4hxl=|Gv-*?? zB2b4xA0;R#DFtY6iGpa|YoG?)NxF#%kOB)Y5T5w^#R`AnFN6s&TkL+8zFy9*_Jm%3 ztj->+7w<73+W-L*zk%FxF@^0qEe-hd^+w)HDhuUy*;| z4!{|IJJR&PrhwjN4LgL;F6k7PG=T{d=(CGnqg1V|BCz8E=|4En@*c*v4=sVyj6OPd zAq#dyWEp4~S&B+%#N^9lFju$FlYy!+Qr&k!pcqyV@5fO^K%y)pEsjn2E>12s278sL z14U3wk|60SXv>&Yz5N5%EN%h-UdAR|=d#pPWfZNG- z6_^4!pBIQ({h~m8=TqS7d4B$9OC@x&RI~RmwRE@k^*s;9hynrX%$WSc+EArtyFMit zsqoU>MmpaARg9hfn=qWmvxOWv&mI{OAg^!4yo z&p{wG&W!3C0Ys=K8Mqy^L!SWx5%cyi0ZR+d!o+1t}$=-jEbRWWOL+I7=1B&`` z$S*lf7pSXX$+D~YxmUyF^}Y^|ghm#ZZT^jy6&%rG zRH3Us9cxWi$csLie&ad?B8oxON`B>JSP#^=RlKv_&d;orN0N-&d}1)-b3BS<{W4SAm9VpMTnYI zw&%RbT<*Kb?tl2j|2(pMa>{&I_Hz284#1-?R#tYH{4@ZwlJz|KU4EL?DjbLMr8S25 zF02M`Xw!Z+ZR(r)0UG^RG>q{+sT=BQ^1af1RgUw@__wtB%?kVG1L;iuh~%RFaphB1 z5hb^RWa^JUXjq38;Y!%oY}uJ;X$j!_T7?sq_;2&g5jA{b70+o);?!l>UJC>=|o-(sT_vPeNjVrblkl^v*`<3R*!4}OD43}o?$&> z6QuvYd;?Kq0eI6DXfb&1pW}(OaDgZ1IdO%Kf8mMaWT~TKe2!!n5U}vuEdh;P7wx+3 z0?EI3l5Db#Rr)pnB_^$o!B7K;X&yL#XdX{6^OaHrqXuqWr~$m+x^yPi$IHKU2duw! z2m9M&Nfo}6+g(mmp>iW6!UP@Q9w*=)Jy3{NazsY)))PwoB7j>tWn#@^R@Xn87hZn| znNvtL(VCto{o9f--JyLec2RQ+#-LaS`0gfRccj-99WzbNkk?i#8h6jH`yYd!iSf*K zQi9Xi*MrsSU_0~MMB76X11s!>?-0l75e+E2aX!zmhn^N{%W~U^ua>q>M318#$Bn^y zRE3z$oh=A+e;o^y_JvSAde_=(&TI@hdwT}CZZLopSnEUX+tb8M7vexXe5+|^UfmR| zKm3A8g?C{xdR2n;@;X*ta$Zpg|8)ZJ_-i7_>jqp}vpf*38BwI^7hnvpGFD8lIT)Oo zM+^~grJ^#=pW(lv0I=~_wbj75;R;>U4X^wbI zd9eT&RbRTO`o+y4B3r+zj=32GQ*}!(C+G9ZV?r29zg0f?=R*DS{+EGYb13V)^5m9j z=^p@(7JgPAgsHyDKUCjX2vdEkKimvb5H0+%Ccvul@a<SZje%Jlw>cQ7&pt~=j6c%rKbt@ zaIet$dc&q=@JD{uBXVJLwwq51C_8>Yzs+_&Y~@mA!o+<8gnqYMcYXI(sb?Wb*PFuHdJNJ97%ON*3RqwiKb!% z&Tf&l;@RXwbF#^!`E8RY5H^29#6HR7*$@1RrA*$YsoBBpmC)nf(s7r}@w*3j6(5p} zn~FL=Z)I2R#f_J3Q&vnWJZ)NH%w808RLL9vA(GnUFloM-U0B=ax>6Hl@i4Z&iL-kI zx<_y&$Uj_RVYK#Tduc;sUn!dmqSR%aq2g06l?6_CMAO^ASI`&lHlZ9j+0f34nMKTf z7XUz4K@lJ3_7jow`h$D^UVpJa)L&ib*J1?#0eZlg9$NEAOP$J^Hm-G%pNj8=A&rWf zrlHXgLG<=^z7&Nf!7cUcrY@{@m({PCl0mN9`&ByGrWJ6Q7sQUJCfaawCzLp)Gq5FG z0?`O0-hQ+j>Km@ruR_{CpM^S|LmzuOE-|ue=v}tEETBY9o6d*7HJ?bMp*uNlYCbhF zHZ#QL$DzgTkr}Y~u$udfLg2=NXzA`ySof+md=whEak-tn7*nCy%4EU5MxQ;yr$&bX?Ru*Om4C zV;Y8P?IJO!z9zbKh(>arAxr-Zud%GeVP>t6+ayiG-9n~DWKp~ki2!ty(E=Wr{*8XZ zUFxgGE~8nYTqH5bf5>1L)U)GlWX*P0&fDbaq5hYo9M=x>)T^kD@&fbwSKCbxs-aZI zPfRV#uf7K5d|(tV=Y7G{nTf1v28u4;@EgCz94=69XfVsh3c`8X zdCLcMI#Hy2g>uA3f&>(sU<=@~4;aYcDNgHE z$h1<}QR`Yx{qzU_(~zMfJN0<7tjjEI!yA0$wi z>>)zmkGX)AT9H&9!%pi5mlS~ZVQegz`xGzSI^x`mDZ_ofP)c3?)iQCNEHP8Y>td-S z!2#qFVA}rw6tHqfv*b*=Pq1i}jc1tFH_r2g&hC#X?nGBx6=C!A+jqxy)g4?(@h2OA_7VI>9 z?wIM!pVm*@zB@Zt=ZW3JyveU)9SW}VL>9#apjty;QJ-Y$1;Gv^`KGt}C-^;A5E zwL(VZ^%AjT?U=wqV4N9Wd1V3!1t|-L-gcg!F^rhA)yn7g7pV7~%nfloYN4(wQV2tp zF<2h9tS!B47V$iCx62XdDH2ZN=NLQamCJeBS}Jnqt6rlwLRY>?3 zL!ebet8Y_^P&jxLMHk6s4ce^JHz(1HaW#qjlu-#iUP*4qOeXJyjFB6Hn6GU|2@tD7W?rVs($Zng< z1ZY)pcE>=Xkau498}4ivM^eMdUcn@;V#7$(e)mSyVS&hN+)>Q}i_UH7X9KEtl&X5I zg|u;lvWJ-a`5-~JHii}V1{4n|(f3B?We=&i36fsY00(E5Hm}Oan z+{hPAt@PQG{04L|lY74{qOWrsE6=_lPvE`O6wa&f;ZsU`hR<(H3>F?rS60XEWAAxi>8t14l~fbZ{6go#HWoBhNLLY*EV42aGv^H5UPapE z7K*L(9m@xYr55^or75jNA364XK;(NWF~}W!zLopZ;LCQ+?GfqhrciBdM1F$Hy*Z;U zc8?zg8SA}sTKur9a|_zkk3@67E@&0~qbGc~F_X(v?Hzmjfmdm-Xh_LUDp$NnKAOBpujn^%*M>g`7XLz;!t4S36f0le0JfMif1mF=L=?z&Opgp zg*}e)GQnd)wmm+?eoARU&Ox@+vs2;G#jVO~FOcStufAom*LvLo#cjwN~!pC-3q*|cfrgUFU*ed**)Y0YU?4d2@IsN1Vp0ans z*Ya`eg-iTBEUY}~vU@9Gg`Kaw0(xnW?l!InrBl|rySer!Yq`13&OMP%doumT*_}g- z$`CFx*VgmpLDHbs%6o|$W8o_vGM{H|qo({X6`=^hIm)637pI z!*u@`qYS_^91+R;g`gH_Y!p=G(yS!=>~%k$>}wC5#BMJp)dAXQE5u1FfG&!*AgvTA zuZryWd;c$D1%uFVQA>Vr9?}YObEl_IXg=q}N(|F@if=JK;aSj8b3915Ow`5iNLox$ zJHWbazWqH6ARbL@BD0A>?CFz(PMy?P;vPl+PFuek@oC)z_*p+D@2}IH#a_n-N zMOJ;p?<#1gsbi8O;)*9}C!5d?C+#nAwTc-98*f;Pl|_q|MXJ1^<*}0YN~M>v{OH5Y z8Sc3w8Dw!+3s=qhS5 zU|L;7W9+Y6K3sXXKlLduP^>{+j9BjEV<{)iN5_$!a&UUwssY8(E2&V>wcM1@(dvPR zZ(v7pO`X9}ds}^8WtuPnNDGdmmNcocj#=iXx2!EkO=(N( zN{V%SZK?2cT4d&cHS4UHtSpYuxk~@Nz&MDKDE2=_{BBxFOszklSQ_AZOg?-|(O_!D`I z0Qn0tdF@>rRyHLox$CWHdDqlAZT8(yT6e0sS@tJdT~heluTUR!quZ}DFNXYOSByLz>Lq`Rykv? zA@n=QmS@MoSbCbp`Od8@S=9QSqR(O+`$XcdN4x=g&HJOa>`TeFMeX-DaK&BJI*p6o zYQ?%Q5V#uc>Jd3;Eq=E>&OLjhJI=2CHp1UD$lHA`ShE#WA-HMHd-kv$3gT+}aG2{% ztvgUI;o`rQokYxku$8)^XW0}mnEg^=T;i(Xu8)eq)Y8KruZntv(4)sH5}g-VG42bsa<(4Qf@biJ(q4SdeqdE ztPHkMZ`Tc(d|Wexrb8JhH;E7Lu!iNG$oY{>rG&??E2DV8qnJyWHC0r|8QmehbYSp)L7|jaSTh#UWvL17eI(<8pNr z5rB7!m}SmAD9e*$Ok|yPyidS*@Jx71br;7^j)!0Z%lzh2a961{NH&k6UD)Q7XpBtZ zu6%4_zyfjo=LQyY0(URa47M-Qq8>ETO1evA2C723=w8(So%OfkYG>tw_>`6eQ;xz;;WuMm)zXgCK?au5(MB)cpLusA72r@R z?}@(J=`)aJR&8^lg;af)S!mw9vAQX+3n%ePWIp^%3a|_@Cj2-v;FB+@#)xj6`m)!E za>}2v-E+Fy9~d=Yc>1Pv1>dFcUeoXpbGFV-Hok?-Ld*V&Per>w#jE zUy%|$xosY1hN*d2@Rwer8OdibMxL2>iZvwOBgCSpnUB>Zdk4weBMP6{Nc?RMsZ3l} z*21`YlF0j2B1D@>w?%xLMP`R{a!?vIsny}&Jf@u)v4XUHJycSazl%!HAm*-(BmYcj zou(86sxx)a^($;k7YDW;Zz!<*+&?uWG@@yOtCicie~5YGVTBn_g;#Wl(+?95*8bl5 zRLe)63EL&yAMv|@u??jt*4rYwZ<0t@swi z_z`+@eIk>wmSVQc2cvuIFCV*Hxj#tCyIYVF_L6IjV)bZ?L!q3KYi-BEiD0&5 zr#c#0Y$7)nI>r9-P&3F@@0A$FF-qt^>}m#QDRa`0De zO9Z97f)+Hj=I?7X_ryFiUe=g~~LP%iBb_O%p`!KvCI$*VT>(uoMiQg4nC+<;7 zl4|;p8yorg?hdSIH;bCCAD*JcTn{j2ro?%}#BsT}M&m!fMpNzn)i5ELhN*68W9??` zVQYWxYyp7)7n}=s*h=T($u7dy7mwJm`CF6=`5_*)8Ly|=r_raSYY*u0xp>lvF#uz3 z`TxP(%EjD@ZrX==yhhl?<27#m_IQn(1oS=jFF%ap)NGA1$JG!_5#YTxD32D1W-wqd z$%AE^l+sx;8I~ep^k7l_-?l_2O!-$k#~a)ZZAIN%m{)Lb5!rz3t0M#Q05*bN-FGVm zoi98ukywM=TlhYl-4z|T!TW68(4Wspz-(ht>F|NT2ZTQc;FRYsF(2MDA>*HqKDe|% zri{1(NjHcZBBdn)CX)gH9g~_<06@TX3~V?LZ(qQ6^&B=e^lz{Us}eg|x}V!Yn8n80 zH^}`QI7k5C_Cp*f@JG{Nsry_Nljz)W3ytmd=1Wd$-t6MqZ@evo->a`gT6GL?q=;VY zmI2~`M&EtBef9BNI~w=c{7S@r z{$c9bf!^5)3j)2sf?jJqE{-tNM^}ACg`++7K_`wSC!f(cyURTr5080k9&Lx95v`!5 zjmHt>`CM<2lI17!bLi;^^v22Oh@)Muh?9KusKOC$am4A|DGB;0|K5@%Z$xAfdhl_? z{M^w7dRzhJiLQ#+8AN|Yqau#(<*Fw4SVk_)!SN)H^)eLaz|)q8dUcP{3)AH%fhSq$ z!z#zK!Fpkm_4i#rx;k->dC?LIsXqeI#ixrAbEY*BCu;m%#jX1!=uGsY=SeB%98%Aw z(Fb!UchG~a^(Q6~55GSBrg8Sh@T_6`UYPY6Y(QrkdgO}!j6SnGF={=IDUR4xK=+~- zTelt0J`JNc>&7BBB98TVBj%QwQh#`3rBXn1;fvVJT$_?nUHG!P$p63msp$vy33@K$ zs%w~^+|RQ<=!d}<*H8K}wI(@}j0%*Cs;hUMwOM+{++$mLF}8kPq~kl5@Y>Us$*b!^ z2j@fOK9ui1P?O8fw@y`9nUve#lZ;|H#J1S^+~S|%m$-A7Ry=Jc+5N&qYOvpQFJz(l z6t%K3*?Y%1;=Nq!=q=f$Gig1=Id9b@HOgWxnD4eoU1pNeh-@eO+1OFpJMpWlFPoo7 zIP18E+MQ&f&eE6nO^>@|fnoVn6>AR~%laiz11A=9W!9~JiP;UsH{9=6-E45+X|2&~ zoXMhKpVo3#!rGzRi-joEz z%SFQidnM~_2ZGo41qX_5eL;=&hpykq55DiGCYM17&z2ZsAC>-eCDUr4lh>kDD|2y1 zWck)HJeA@=EH`qVZ5t(PD{navOBb7R$#lT6EO&@IE@5@@aM?@*qnZaDq)`ri7GFc; zUI`IYEq6b!(hx*xW*#ON2k80A**bq%+bXjx)o4F>Ha#TLvfR=dNHRB#h7BG)tMK>B zSfKm5Q>AXpZAT;|CEdS~z4TG4;?5w`_)cIdN5c}2<7Ks-S>n2yOLK$`dj1rOmoqqR zeQs;{tLODLNWPzhbd zL^xw#vWppC7%)6hnfORA>h-m3s81pFkUK=bV!Ebb_nQ^YT-Z=1G4w|cZC?0%sO{TY8DEvX$&MbEE2i7Y_@?Bbc zL9c_a?x|PNSWeYRtXizIkGBL?kenXp!%t2>hU6Vqg%s?g2HxC2fdN$?CiRwOQw^MSdasG7T7Eu~0x7IN(|wJ&6`5X4H#1(s#4b0jJRqjkZ1Id)K$m{ZsfXY8@~0U2 z_MV2pTOgOR7uicy8xPjLkGeV;=ZOeA=)UX7;vEnRIZ88!{4lCm=#0xRfPR+}7!8kB z3mKwTILc~hv0iqpjEbaVVp(rXq>`OEj@Od-jyqR7IRXt^8xmtZ6?k=pyuF4?UD^U@ zWg8GnES1OTK9eA~r#JQm92c@l7e!VpE6I-k@U`QqQI${swN*y)*Gjg!Mwe^5QIca- z8qZ3yeLzZ%0>s}Xq#E3)HP%1ug&fWt8-`XFEt!{Uq2gO%6i*_S&XkEIya>sl(*d3ZX7;Wm0PS>yLxB~ZY)vQ7q20zGpA5c7X05;Oe zi|M&asWHnh;i%H?B;#v~yjXKXUsf~HaV=33`)}%3`;MR6kaju%N1ONITyL~>1bSE4;r(_?{N&!$ca^x-b!w3@O%%xv?>g%VM*Uu zQ_EdY`>|Tr$T?^xpO1hl7`)*Y{xsSCEjzhWNWg3Cw$=5GJ27?q(kzWpyel{@0l18= z(jMLAGUy_DSF)>lxQwU=l6ziEmW1@Fgw=2hwdeNbLL_QlA}W9dZ%_82(2vbvf$7Pq z22xX$tdWa7-NRvNDNR=(WfsA*RL26_WKG!|6=PcFk-(_rK!AhA>IZ(5(_~#X8^6#4Bg);vd@C)j**CVFFz?}}8)RVyxu2AiBR-wqy- zg0bI!=a^#Q5`XI%jikKKm$NR5D7nlc|5K>y(hFBrmhDQ9&%0(_Vr8J=M}d|xcfFJ!Uovad+RA|45zQPs=$@LL zMb)RyEQY*3Wge8TD9jz&e3LlW)Xu#lg6nBV?p38O4Z_tcnwOwJph$3%f4tH`c8!|N;GI;Q zC8?)EQ9&MZ#9=)(ua77jGLjkjQM`lc2h_u|F8uV>9?u=wRtE`W5~6bUd|QT>M#>v! z&<|iUXt=^G{$`-2gj>o6uFggR8E?gOpbjdlb(n}gei!xe0Ao<0u%G%Z4$QYwxgKDB zzH&7Ft+JazwD-L;aY)!;$zkrtuQEP;YB~|UQeDh3RmIm8771|YEhNHoiNwmP-cNiA zdgM{oFsqL%=3^t-j|?i3RNcx}y8k|xb5?e>!R3{jb02xW|HAVd;m<2cc~l!2UOR8o z(=A(P(Kt{JOl2Z7`+_tEwf6VFNy$eY1{TabwQtH{?WSAA@{~gz7h|=b>at>#Gn+vA z!#ndh_er`4Z6rgw7$CRTtQL8fb z7o7W&XF9h+))`&FxXZp#VNBav%S!H5X$R8D$mTi~U}T~eOr zdQAPt?u#Q@7VE2A<-xShpZ3ZIvt6a?ND~>txchQl5<~Xnbc0n~zJad=tLU@1%)Lw9 zSc~Ythfd$$&K~r4rp}jAsGHT=rwvP(Amz=igm2A5Rm!|Nyz{H;c{M8zn-L*+^!wkM z_unNj&Y+8eRqqaLuo0Rk)$h`ef0Et6-3YlmusAio*<83()jf*jmmD!uwy=o&u9YfF zBhS@eGZqwapTld7-ua%#+Q}0gre^q^ikE6bK_kusHOvWeG^yQT3675%27)sxR}w9h z+tlYorr9@;`%444KC1IF83+2`L)KAp<3}Hro8Lg?K{5Ar+4Ur>nrS))Zg}lx_>7#G z6V7gZ+MtT4GeJ5^Zt%H0$q!x+r12%Z+Pt1^2@hMB9@u>c*(;_HP2Q#Onhy4Jl(LMe zd%f4JSb97#&OKCtxAp|Ld?V9LqaN(wW^jjdAUgHv|8R6I{!H)xzfx3^=xRh!sZ)|O zi;YdCsE8w#+iXfKR&Gmdb4g0%mM(5>6UwESBr(iJa>;DDwB@$VZNo4O!(4v*{{DeI z9-sH)v)AW&dp+N#tbd9ADhG4W_dh2~tdgUeSc~CbjzO^_3C2G)@J8VQer!Ys3*yrv z1Xz(=$RqU(7Ui3D&A7js*hQi}`H|Z5aWMB$=q5;{RrCuxAOzMIwYqk=f{yOn7E5{^ zoz-tN%*HUqxtrvbRti?ZyqV9IV@*|ynd5YXTQw7P z&Sa|e=(nS~80@w3z3G&&jmMfUmrSST%u8{E!|0=x+c$V7dQXR~HIOREGu^)f4rYF9 zXiPq1c_T5U@py=?>44Tp#~aruTe9KvZhEq>?yY5yR6ipF*;+GYNlQ@IdD;hSs$rr| zslZ0Md@Fou$K1}q;u(@NGNX=nZ9_?MY}9I!3q%}Jx4&;2t65Wb>V04c@j4k7d9#yLQo{$7$dOvA$&-(0@aoH%km=*Df@7uSx%)8h$TP&vC07IfZn6(_mJV zO6kKLe?_eDHlt{Bwx;aA+Bsp6y8?M&*uZxQ3*dh4gG{WF`iDb{4mK7KhSf^0L) zZv?0DccdJc0&RdA7L?X5AMn{Xm3}4taMkx<6(41NHb7C`LeB8n8AkG5JqYHG-qu!Z z<0l|>*%okxV$!S^PX6sNE+com(TSX{P4463Y1KFvASPfMM;p)+HieJXMHZ zfkpARQFy3I{}nN*2ft#sY^WePU2i6aESzyVqG~d7RB$RbfCjw9R}AYhT{rU|qt>Q% zpljDb-}Y)vFXH1uqh41SzXM|fBF>&XLp>KweI?aM;1>kDZ%K6v@ai~Y4`?=L(e?*w z&!nJV$}$rMHN0^9l7l0EeY4XJ`g$h!DTK#B?9_=ouC@Rcz2oqS!-bUJN4j zm_XqQh+P@d_z?>K)L+e%j+gJZy8Yw#fK3=pZPg5^#-X!^Itww&6-3_d8vJO%m|q|~ zdPr8QxVFi54LzKYRj;f&ZqNGtZFD2s{X==!zGd^TN~;l^q7$3Yh6r?lmtiw{RKvxM ze^gK$o6koFs8F8mE}7m`(ofN51v7l9J9~l=We*qVi(^1FsC_$NG&}it5f(}3@5>0mZX;S69nfL{E2V$%U-pim3ReYn91|5|MAkJ zZWCFfYTyTrgA3jo@n<9~uI6vyF7f;ojE(uY#h}!in|pJ;7+NuIEF~?bmWjKYQWl`n zrt;C4w$ROo*s?Zh`_ex17eiE}*@A34Wc{6d99bY`)#htc7kHJOp%!CFpAO21)7vCD zJc(mhSA3tSPDaet_T4_dH$_X2{adRoc&F=Zgt#ahU6-Oyo>mV$e=%o?8*k1Eu!Uk9 z6-#y>bE@CwLH6G%0~@Z^%;Pm^yKSg0$+zBw?JPHD&cXQRP3V=!BUQ8Q;ukQJ_a%qJ zPWVnj69wWw|LPyi4InEEmq~ufKoIRtpPO)RQzUSl%8_|1=v*A7XpF>Ar_J)k#G#n5 zNgk3FmsYudN2L{FmuA=`fv1nWpp?i%=ac7U!y1ICJqlKB>%?a5JB^!4wnc7d?rIl- zE*6V$3pxIMhYhBCg30ImL7xu4kfJPCCo~*{8dz43a50n5x^o4i0vbl>lT&tAJWc5g z{XQi9uYyp+Jn$8B(6{?T=c%{gw7jKXX1x|FQKSdJqCn{X|m+Zrv8=wUm8oUnK?>RA%S-0U~%yKPI8nWS1lgg61`1@3nBWIBZLf4f1PN4a0H}%ER zeq-#yo~)~b21^2FJ2cM_m$t1P9n7aE4BPPDEi{eR=2*1}Pbf8^hA@fvX8L)tw53C4 zuH^k;30q|3h}}Y?7jwe3(E|~WiY`q7#~*PKNL&dTaOSaSyKWHCqNCJb*|wOI0_^Zo zd@uZvq6Mgf&93=rt2kAEsBUb)togjVcjp5Z~Q!Q3ymTN@4S&E-3C{Iok1Pg3{z-l`E0wkEqoF% z-j`xQT(opMsHQ+f_R@CKo zpN@rzmCl@q54VYpIQD^-ld1DgADmh%7*&@rKH2D1o*V7kg8#=n;EiF7vgQ}O<>mw8 zt6LC*#EWwww9O&oE4zmbr?;=G&uGj5R~#Ek)EuPPqPI8nV9&}FsXY6vsu)ocK`U%{ zU-gz4iL$WX$;BV2a};BKzRukr8ee(n zNdPk1GSNyUQuX1<7PkPt52A!hDzCTn%)Zo+tO+tE8!`x?OrQnFCD#ikmHL*vd-WR# z?Kn1eEx?~y-spz&ZX+PwhANyRS-?S8S9_jUW0ZrGP+GT_!`B!qZpwFTiqHug6I0iV zE#coo*2XjzW8-1WFvulj9ECA}P!M8BY6k4}J-CZJPRD!%66C>lQLykn-n1jrBK~m4 z{>2`O{5N3nVUsnYTOL6J=8jp8yHuEAap^%EBUL+^s?bKLWCc4jXDmh=rGW`n2e08q z_VvMsv@&z%m;*znOuoJ=%xm6WIt%tAYQAbbJAPl$$LCeUVeAsT70YIn3CyK!i`oyS zpySog^A|2>ahA8Pq{@Dksi>x5V4rD9$ETs5Dqm>+#hA6zr->4LtdzbD!AI7&7@@v# z^JRBd4&K5)7#?5Ru?F@X4Tn72-(VPErEHxT@@sd_x=I6L;7R6T6ue?osuV=Cbhb{m za7=7=jRv}AnM~=+Q8o16=T@je;ZFiWp9Q}Hy4^_6jDEPXvmudpWfJF`pmRGWG_TlU zD+vU7(6~&L`eupBF4%B40hxJ}!D}A+OxG(5p(LU7FP9F$f*pvbZ^N3Ur5N`A^V7 zieZbvpPOb;pMQr=EPrhEz~}N5RyEFlSSYPn-{$&{v0 ztDC&u*tNcp{r#zgrU|W6S<~uEqi3mgw{B%gU$BlohY7*Yt4gK~-z|*op(@{riW~=t z&riwnxc`~esfByT1LkeI;#xZEmWp~xO)cJmj98QCmILYLoZCplS493H{{`zpl$M-Fq@##J^IS|Cf2p&WO|Ea!g%7nVdgz zB{KEU*Rw-KktbKEqW+G^ctJ5qY)wFyo**gHdczD4MoUAI;Li-F)w#QzOmld^y`>E@ z>LJ%*{d@mRJDE=Hp!uioc9ek6P*A49S!bEz1jm4`&d6=~3z!MdMCv&a^dmaBY0;MX zEIH%%GOWR5c*4`KKV^Xw0}F`QS^q2T!L|R~9bc1z1zS!tn!}zcn37{{AhH;OU);$n zZYfWf!bFg@sjtyf5{;Bfg=Ai!$7YUPeuO)x)GR;EFhkv~@}gF1Vcb_KYu5?F+J}vO zQdb}imDKjG>QyAm)yZo8j2A5Twh2n@X(Y|Xt-ht4uVGU&RHOV)Sd@vpOPe)aa!@2D z2BwuRY(elx|G1ApW@&R+dwmZ|9c{W7$7A4)+IiY-dn^2bL_7U7YJq7*6Gv zCRv~^!DTy$Q9L}qh<-9`43IpW-s#o=SdASrj~j^Ko($NgWNp51LHns_*9cO%Js7b1G*&gwvMF(x6CO0_Za}Coe zMR@Lh?9}3PNZF;@L$5rOMnf)aBu8PJ&LDA9<`g7k{o#d`?fTLa1TBgDc}CsUBBRz# z0%nWKtjP5ib;?@i(g8}aU!T*kG9f%a{YnCYCj)4K0)(k_(BO;E?eHpYutC5j0|6HP zJtM-KVM9PEJRbAI!14V?=;o$weRI=jMLWq-xilGqjjmwo1$(;tdBkX65jX&jMeN$> z9l?MUyv{rJ?r;md(Issr#XDKQqKWsfA^K@a+pDS6#mq847cr;6$ovh{$a-dN=eeO$ z-3~YTzY#_mDCDP%cIbl1RH5+qwB3n-h4)iZ?cjVmQaAPYIdRCIpsBI3 z%}NWD1f%CQoH~kj&D8fm;eW_FL-)_ZIaxyAc9VOR-ih7FXlpWXKx28wJ!<~NyLNCr zZ(HU$dQHUwfgnmrru;VbzE*jR96SN&3Xj=H*8;N1fk`^IC))2@WrPX_e~vU)$z>{c z7SqC|?7eqCAuGfWgCfp?nXAA2|6GaO0}>X%Bx!SLz7hg2h>W?;KxKEtH3~UJSQd*|EO4t)pLTJZzuOH3=OaUhxN6o|-nyc8O|f z@7837V`@w6cLwuJLX)=`1=c2me3j?2I!_Hll)la3{GbV2ZA?=KYSg530u$e z^rsaKWM9576w2B#UF8;8Kf7)2IW+((=RwXA$zfW(fw9+*rIl}rxuH-CJd5d6_WmIL zIGu4)D|EE3{gj#dpKyb&Js%bRNOwGev&FtAFW&C>CreLc{F5}#f}ZBY8TvR^-=Lip zkq~YFZfw9Wi`(;#M%={u_4i?U=G4>(*$iBfV?7pZPft~bD?D+v2gm)sBda1KK%{KDVAc&6;A zcYgx|6kqeDB(bmIaK{JK2MsvkOhMi2)?>w{Z4P^A`^&7H+kYP_;)3;QP4X8j8JDz( zWfnsg`g4gKtk0S@y2r*O1f`R8)Qsab#X}uo90Z=8-iuH$xoFCBk6hp1;K(nxrulFG zQb)Tu43+euLXnr4X2;fg4QZHyjly*5mNk&>my%Y}?=fByOsVhhe%bXYN$q2^U@6Ka zsxTUlh_bj8zK#5G>&n9me$(par35W%eeWaE5WG&rD1Q2AY`HG?jPLJIL)~j4Q%;p# z@O*=|tEn+>y3ys}ft^@u8y|GWbz0@3Da-jNT0KEQ>XC!*dV!^J~ZOBuXmY zzb-R4{wx~NlZL7RMTnrjFwaM@v>Am)X*7sdqAR6^Oxxkj50f2`gYH&SVhc>PWOaSV zdQbTf>2{*|I4nAR@7fNFIvak0tmwuN@!ZtJ+J)q)?X#I?gB?Pg_{6+Ar{Me$>+`)h zB{q)ig3l`X>8gU<^>(*>46B100kw*#6g>e?HFyp0;l9(ZlCD*ONve^SA~J}qcEF(f zE}fXm`Bq5}8M{fjDO=ykW^oz@K)#~h~r#>)e$KZ z`nH#}{CrzrKt0P$1B2!i4F?!w477)U&Q-Scv;(g9O&wT8w5TeXio6U=$1qR~)6%{* z47EU^(2vRAh<(;6!X;Xd|w(NtiX_i&GNP5_qPA)iE*w9goE z6WL(jb5iLGEzGV6{fkqf+ja)i-fe$~mNODEcuTUhPZY+}JcEIVhS|*)3WohnG=;h` zuH54tkKi1U7t~_oGgwBVrOP)4leOO*LvPc3b$8-tvYC(g=;P8x!b01Moh<*T ztttBFwXaTB%4rqwp_^v`ma`E^%#=adl)DVEYJd+lNL=_XJvbi{Ea$Lf)Wfi8>TG2G zA9~gx8EaMhNJ@KtmA`vDhzsSfA{N!d2T3WB&m7$bH7o5~ zQH$X<%Gsd;>2;n1%V5O- zBA93dwgGb{>VzBHs9h+}e^izI42aF4|bj~?K_yHQu@C3 z;u?5dzkwb>D}r)}M_0R7HzxAjN83b8{blcI4;Xn|f=FE9$Qn z>-a?W#V-J@q5Ekk!PvuD>(9&D}+A0m_QAbN~tl>LYU^wa2=^&rmm$fzRIwMTCW($79Bw18C&>|fDJ+P zDB_S(0?#edK2|do3QU z3=8c=f38_4nxW}Kuz!a$sfsM;?+9Lqh=O+L0-|}Axq$hGEw#sLHgj}c13SAH#Ty9B zv`cM)a6Nx&7LM{ZNuz(J4w3PYp+Y94i`tu)aIv3&Q!au(`gRWC$9AR6PdIj?2WvCD zKFw*ku^rebb5Xhw*Vr)?_~`_q1OBOSon*>-C&7DDFXF{Gd3vb7(>x38&cin`+yW(9 ze`!M=D^ySTkF*otBP>RfLLm>pU|LD-9C*1mwmmTM?=Jg*@vH#`R(LAhfTqN0R#BT; z|GuIHS58_ziYwe`H5&P@m_D}!QAgb6Hf+;GMk-)d0SJf?cLxGnDT+mBrLmYZJ;5)N zNJeE_nl5ilXcy7BwEJS6tA4}On9F*3@*Kuo_O{c)j@)5ywY|>!o6_Ae=c-5g)b|HG z#kM(YsJzh%8K~$$X5w$?Mc(L)(3u(0e=oT?eB_SfX1=tar_s0x$v;_h=?FPRZ<%MC z5Jr2@x!8}{UQ3h^#-!IqS4oepBD0o=jxRd{^})3N>56qkT>ti*01-j_u`x5&KL2U3 z>RVW=u#|hDY)<2N2=hV{!5MpvQn>}bP3d>{GWL&z>yQik7Hv5tyKO&qpiW3pJfe4v zYNeILw@UQhF1(yl2W-N22So}{MH<7;G?Gtop6-?6{EFQ>4$4C~-9rn@yw@@{>0BzS zMCio`T}zrpc(}{I?tlMQRp&%oEn~NZ)h#~#ZA?B%Uq%5IKHob?MJ`kReJtUE>xm^_OMexxcN65E7 z>c1_@v*AO0zu3rJ_C1Z^h)@K22b;I_y?t%JoA}E*nnw z7|B+k=ulyu1#uAJj0^9(RxWZzCG)N!Eq_#hnyZ}&=>h;|1Nt>q#I=pk_9qpwC%+Mb zFK}^lSP*VsLr1B2z>#wWeSCavPWZ_Ped#VT+Ax5h60dNDn>#qy_=PnA_tlPo3p$;I z%lIVxKJc&X2}9?HRCEMWO@(YozY^D}D;% z`g2YAOMWsLQwvm!u8ObGp-gQqfj;+(b5@H}qbAQ_vc}5nsmBs|`dhRP>fn+}Ia}b- zB>{umD~5+hRS-X%E=C(pcYw2;qCIy+Fwk|`bQmeuyhJFhzMych4RbNqDU813G*{Bd z;(8`krTz^rmtGtT>;L`5du8j8q@z+5B5XddYMYdbW^@DH*xG+i&y43E8=?qPacuaz zauZ~q4Ngu_LW}3itnm4XqLl+>La{hBtyF*A4;aJ6ctl9MOU&xTpVdPcJ>r9bL#v4E z#2!a6>J8gyikgoy)kD`Pp^Ki4M$!zLH3P=TRXj{S|NRWN9K8fzF=L7CF0xlNex0?! ztenmj?4bs~Ga?bSsB)aV1)=N8@OR)~9yhT-367#g7v$%61YWdQs-h{f*~NXkQN?VkF{XCTEY+@bnB}uiQiXeCr8%!x>(1UIWJL6*O89nPR1J> za>I|rSr%JJ7*bzgnj}F|BY%*E={^%79xAR|Judr;zopQ!+8*bV^q_Ug?lV)|QmNp| zS*)&nC}(p=SX$&r3y2{6PF*SDu|=Id{c<0=V^=P-x=w6jHIkpinq~byyQp4z>^_~r znchi9J6`X{>E7wJLG&zwFV~VT;&UKZn2VTjyZU z01%Je*U)p=iQ_X;@_mv5m_Lm=g07`IgtE`1d8ts`W?ei13)=%pP+`UCKz|-}*-bj5 z2EjkSB*Cg-t|f27GdCqTPl?TgfQy@yA|Syb4B1aUx=(>_pHEWV38Jx{NFzJLpOH7S zG;HR|)61qVjz>%J_s1yGAVuG)2k{YE*PRBo0A~hR-xN8zsJn?_+iDJVIEAVh)*1bB z>pFMuVAf4XI|goBvUwJMDp=dq3V+Z^aig_9~kqpRuw!8Cd zEwDG=SF^KS%|i6%-MJT1=H+6OI=qngndY-wwcT_hQLJ_140wacYLlQ+*FWGQO)tGO zEjFeyMo!1Yhkcv+zif!y2^BRAzt@y*3~l1G*spf>xDkd=4;+j zNm8R&^s3{J^NS=frTLkJ;W3adnxPhM)jgYC$ZsxDi@QQU@JEOZSerQFQPdh{5KlVx zo#l0`_)^O}oiWzEV;eCK_LE79bp6nE_uvv^n@uhO-=fuHWk*Pav^MNy_rc}iz6=gC z+^{ZF`ihIkanVHl!d$y6ahqr3O42}+J4pCmA}tMug1J|^7NLq4zCs~PwT3N~oC`O%NpwAbztphH{W(F>AJ@9`nA49as_K$6N+sd) z5X{+;nBu(_xAk1wF%DIcSP503^rB+Ur)%K(rb@7X0yZKuvJhlUio@YPne zT~dCq)@l!i;&CcFrs9}1>W*4E2a)@zPnEx-akXoQnp|*T z1%&sKu25K8Sfi{cQ?~2lv0>ji^@>4(NFlKtUC(#PFU=BQilpdc*DJK*`e)9|Pve)% ze$~IymgXajT_10Mm~0cheeiu2>^sRo`w33p9+P^vg}Z!q75sZ^6`vz$112rH(}0$vcXMtcN+BMLSJT~8S~Ibealir$OW|zCphpBlE2pglwsgZF}ds^%-wQ~KbUeVr^+9Q*I%FX_t>#STjb$^n$J$LAbXX26#OPL{k(yUEM5h^iO$|AQq zhP2$^n2%ss2zRY=e0WCLf#Y^Yqh&AAxbML8nMaEUNq&NL(BJtZbu^SbP0pmD>8WN!ay>N6)_?st_qWd*tWF9T&M#x!ewhSC7s^ zm`)8(qntI%1$iF|s>Ku;8Y#?7z)m%*Xt%Snw=_BD#z5N2&rVv0^?w^Ocj&aG2MTwo zUYiUbzBfDqPtJq?RnG^1GV=B$rlO8ZFN9rg>Uz?8nA5_-3X*(*EI2cwr)X><&#Xgd zzHr?-sia)$ChYrU1_6c}CXbiY38CsN%5AlfurG}vZyTxDofB%{h_lFQ!9?x*n6Sjk z53=Xxvw^%Toy)8B;F{+v{-)!nzQump7||&f+5Esw;&|4Uc1eflD>cAVs8%)L0MXF*wxbc6f#=W(h6@?PzApSrw-o)MJVAkiS3Z{OsXu|G56?l#|h?vVl zo~1I~+kaczvb-;k4!Y}L*~%xsK9`rZ1by@dST(@p`3{-t(f&aUD_Nd4L9(5UD+XN8JAKaITa zXP-EsUSS}V$TS!LK|#Ab>dPs<>@n`Ju2pChK@a1_j+fH6GEaPkd5YeMW&wjP$C#kv zADN+dGPWK1T8qLU*@egKmbe6{T{ylRdRhd`yG0p9tXpFwT=Iwxm6t}guy7*f0(g3v z&tB`NN$N@!QB!?SYPOu^mvdHEH$^_OmzzWff^9|%Zr3)3-@;9f?FpWS`>!Pa2#Y%T zeN@jWN0A^syI6oPz7Stu`R*}MU*C{E2hhq5x`VX=*Z@4TTyRHHF)DX5L`5jIFdfTe zb?p4`D7B#7biV~E50^Ba&&EEML!3CzJqz{ERL4(^OXr4D@ZmrcA!U8v{fgKNWfg4g zG;73X)TA|^x;h!CQ(EE1X5f#0zjx=xl-N@AEKqokf54nyS+*#BBQ8K(5of7J0B=PQw9NZYETr@@&UEOd+lbV6J!2T(7P4 znlMVs!VjS|3kw9zTN_;Mh5Hmom#Pl;XxcOw7h6sQZ%QABn(@+1trj|WkhSk**8Mcf zZ^NQ0mMC@vjL*-E*x0fNrvB2@gv$@OX!1`(e@@DyB+dd@#5+kF$?$8Rn3TF^O@gS0 zo8|>PORk;>RjaEskd(<&Fc{oaTc3i5tJPf@f-Bh7}f50T{}+%ALVmQI^bYS97Y7{Bv7C&Da0q`l!Jh1)k6jHCGd2;Z9$+MP3Hl+~Z(?SQhgMJ}6*y=or`mpxU7HEXO4)?&;= z*?DuoU+vP3T>Q=Fbk0taaQi2`<%g3c^ve$y2$sM~=^x2f9AlyC0Uq+s(%m$;`@FQ< z!3oJ;yuUpp0VIFXw+nIqBtu{Jc7C#VpkhvwW(poP2)TW<{45GM3pIkpm%CNEu`9ip z=!p?_Fzh<2)RdLT^UNIDBfmWYATVxv5YN0hJe)c;Bqs4!{Qk)9D446diph3<-T&jYU5Sm9;_nV2IX_= z=~CwRKUcD#N|FM-gph|5hNf96Q7i?0J$pTS$2~0h>mP@4AO7_Ewbwxkq4$ma;P>A8 z@aQ|G5l(0u3}KW%$ESt)@Tj7i)U}VYa37w{0+FMeCn5$WWUnC(=o-NR!j?Y`hIEzM zm?Y2-DrOu|a#%`=xm*$u)DS!5uMuQ3U8EL`hXgZ&4gPS7Inrj=M3Q^e|JT$8?4;f8l2ES|2=hI--I+{SK1CeUmQx2Kkef zSq{{}w8{pU-V;6_Smg;fBPTvS870#lf{t@IOa^ksd@sci19s)am2a=x(P=q-mf+@g zWK>J5<}_d)a3DnhRSAqbsWe@)V7l-N7vL%?ih(?spl$Jn4=C4cw%(x0qWIOYzWruL zM06y&cD)r|J|)aFF41%K_>)p)l%Mecz>@ni`gs|Vj}Tz+Lb6NqvyJ`6)|71*Z-h^^ zezhqtGOI6XFA3K!KD>tKbP#l)Q&6F{RL{I=r5bqus+JxmA{oj?NVFOX(h$-bBKnX> z96X6xiB#3+JgH#HZ106NZcj=I>${>@vpN6o%d|L!fvTf-`i)`lz+n^A!})HZSAu74 z1`E$mQR&9K{9rqC&qr_YtXJM@)?^qj`kR`|I|J4NV(Y)Cb~<)k-z1>_%xJrftz(w= zD@Q}4HvaGdAB;QoyJIdXPg^pv3j0RBb%T6-jkMUoOv;j1+(OuE3Tp(XJk~JBFbZ>9o%1sy zNz%zfQn|TXsJ&$|V{=}*)c9?!%j@|X)iH_ozxqX{VuuxnKDX8jMLk-{-f>Q} zS!t4#R9C(_wp22Ps9sYO`CcO)&K;=R6X&CcRH$gkW=grBeIdU)z_rQ|I%kjrA0_ts z4O{%w-1wQgB0ebO-h)na;-=T=C=JnfR^a}tyXQ;g2XdSGbT{Y011N1FCye2(gU^F~ z@EZcZu^!fHGY)u|S=Z9~0b>w~Gj4*;jH34o+w-iPt^yq8;jy?ciWz=Ogy`9=q> zQE$x}e{1q}`yEUJDVi^R*BG0nt$Am1s*1kG-JbTlXu}y!Nvt9Y&Nm3Mf|$~>HYH=X zfR=lLJ+Hka`>18KDo?9pFFlpftXn!~>Mm=BIP{0=$rq@?atry}2_UOV@#l@5DV;6t z2dF#mv(b-}tX0AqFF#LB2W1L&VNyc{|0=%+5t_}}x3vO+At%|F$9=|utlCvR>|V#n-;=A3@|jiSwy*!O zVH@|e&j(+5j2(!`3@=>B#4oC$sKPR|!H@G>fgL}Mwwon4P_#5Fx7Z~m5nR`M3lAxs zwUTdmr0r?pG`o2O)!Q_!MRG24FF2~XIC3|og~s#**ZQ;5(|&I-ML<-09u)cT-AV%2 zOjwBAtg4Td8%Nb!qIt zvqJe+^$VxI&t86w`0z5p(IxW`CK!`k{f(Wn78}_DuofX*hYEy%NMlJX?W~v!;iU9- z*&;$z(JND(3=6zg$T`c}hly(k^FzG)E{%G&30*l!k!7V7&p4C*h8$gKcf!fO3l&ev zTb!b;-PiqJZ;AOPHFS{s2MtxwNSM;e?DPE`zt~|ucD=9F1=$}oa}Qi?@_P`<t6E4;5vAOE|wv4_Lvf7s1yp9Vfagz}RSB zPG{9b#l4Jz&lNE{{-qbg-qIjwh~IFNk`>G7Smf_-u8*Y<3a z8+v0Oi~@$jiyid$*EE$2S7gmH%^=(}!q4u%$8vI7Su0(9GkH`Gsj^kG-h z?hnP}&DWM9<`QdiYUvs(T%6YGuv6$5XqMaiL{C*da~D*Z0N4L6%T_W&U&%B6OeL-J zAS!(xKw*n^oJ= zO8#+XPUG?1m}3u^_>mRIDh3mp8czqOJ$jX3%mHdYQGUEkv8Loq&V4?c)-3+B;LV`^ zZ&w#29=g7I-GEi86xqPQUaQso8fN&PwNpPj#Vrn?E0WJ){6u7Yk(=SKq1wQH_43rY zy?=G(X)(@eD8w)OHWUsx>7Wq6sHyM$rn+aQ%!1};e#G6{&Q$lwy8&R9Y6~MU8Bucl zsZkc*S=ZXpy`3>;RDpVj0O#Vo8GU>V(LB-oTJQ+5fBYAQ;d;9b+~I|Arv5VgsrNtt ztTjfH`+GvJg%ra|WX&a6bOY4Y#IO}SbMWA;9c`5?z&QWE1w<_-*D6A#cB7%Y5HPK6 z6TrYwb2b2R≦^KCUcu0fvPtdxFt+#+@@kHqrGYwI9(hs}f<#D$e5#@+>~=2SgvC zHG2C~%9rV=^Ne72bN0i1DLa$qCyGv(ct9{3rH5MxDUS;cIStkPU(c75a(c>>X5DfH z-mArB3pj~<|Ma8FBi4J(Z)xnR?A1@hq$PO@;B?rffN!bU$sntYjnigDqw@eQ?4Z|Y zASa=0T|4KJY7VDZs@7@T6xjRC6+id>?3YVAdibj^$~`%s6gOf5v5{K@=JJhGmEs4W znS}SxW0rn%o<0zblnsMkRvAH55BZ9=+XJ6C#?I^G0L2w6@fPX;Kbg+T5#ahkH`fC<_B& zBJ*El%fEB%p>3n!3csh)hEtl?;Zmh2eFO-Fg1TGh_)u^B9u`2FdxdTt{*{l|~E4u!}_g8g$$ z);mmOkkqwtXVcc!XJsJNKOfex(WA?0(gd>QBf<(#?}qwP)}xGUyg*qbMM zVtaIiyKI^?a=k}g?s#7Tc)VH08QcljN~JASzb?Dy=?@J~lq{OM@v0slelLDk6m%zZ z2_;rF75wAW1^dR@4SB6jt=>KujH{BQ`KnX?gd ztc~yLlmb5+e{t3J)$u70KOZ9%0s{zLa4i>h7V9ExPdg|A)KZqF(P1%6xYM4A!omr-e!NX3ST4bmbjlkAWjwz_U45c zJT$(O$u{w*Vj&-oHTOF;>^op29i`o#uHBSahvq<@6XfIPq1`KF6&pVuQ}~Vu$n?%Y zty*GSFnxFS1+7$Kb<|fX3!kSnLfYzETF(<_7=Ns7J^ePfoVq>Ml34DmzTv9gElSR! z+mMY+up}=O_{@?-v@KZ^ep(l0L_Xgar`t(|rfBlQ?=9NB#=tz;JGf^Ph1ut^bFn6Y z8yc#fYYkb7jxXPzCcEv5lc(s~rALy&5;2HzLyC4ZAzT?_z*b@(Vc z(R8tyg57S5msBn(<)J!k%lw~xDt#r&SpSah&42h^|EgAS$FXJ2&}*1tW>lJSnlJDE zF>iT-&YxWpRV_Wm9m+7Aj4PkOTEraTJeA-r?I1Lpm!r`3)!+sH+5)s99;1T~&wKcw zSD~N`e;NH+2d`{vhuIjO{Gu-zhq+5^4F4bG8?H^SuHBTcHJ5Hp@@{zxObTbKyv}zC z8o@@6@3l^}75(G%AvN!B*`&)GvCoZGD&7<`Ub+Df^6^XLc*8&Qs+gpy9(lT&nxQ&1 zyA2NMgb#%vzhR|ru=A1-@?E@_nz$m3&`jV zXZr1}cH}2^x3Vp~^Q$o5$DsDX^fI&U9i=gx>1=JbqSavKLTtzA>lmYIjhpYTSX)&U zR|OV%0gq&~Iz!0iCXVx9-^M;Ym`GX)Uw4>x6U*x|BK_BGSW7)soN+^U>2)Nc^AH0p zOV`v5_c$U){mEN<+Av2VBEKPYAjfN_eyKRxkQzfSQ_yI}Ci~7)B`yqS6YZ|_k<5L7 zX=A3oz5LT$k(7dKyS}IC-ayhxi|P?*O6l+?Fzx+!^`8)SuJL6SNp;MGVyeI|`@Ms# zkx)e&k*~;?@u8oYuq-4hK&Y&Cau7aTGvy#jGH=O)749oj8 zdYg)FUV_ZGIY6v@fFZ^v=vYvQK-?w-V#~4J&brBR5B5zX z!J&em`e9>!m2N?uT4zu((8sDv#mMY>MITyGg#cgcRekeLa`}J{DI|2^3d}5iyrrIT zB}-JnHy_fbF7N4nH-m`qS(DB&F+vwixMAcK7MEbt#|7Z~K5Ee30$4}QvU*1sca;#t z0C42`<6wQ2gJ5OD{x?7gx9X1y!3=i5M=`|RWBxNo?_yVbMr($n7~o-**{)f$iGD+# zUF#^L%lo3IhRFECLeXGaH;Y?7x}sT z_lfJBPxSKS37Wan7?qxG0OP?s5PE*cgeLw?#1+E$Udb^AJWoSj!^Fw=^6R2&#@`;y z_^N8*xs$KqZ3nDeK9JG*Z~lt9@LFe+0nR7rB<26O`|iJ_-?#0|vZ-cfxvl(^^)W4T z4=~fTvNS6f?um+<3`KEdxrMBpsg&g2d*aAdE}XcZxM7y}wk&QGZPDZ1HG%bqA=Zf7yv=a}(?p6aXJ?~WAb5v7Y< zy7QzMa4!*~wsWIEX=!}#JbnaiwFAW15MK(3qD6+=@2+Sa*X2dafv8Tu$->DK-lR^vZ~99jLEz%4Kg8LSOWysH*>b zb~U3y`RN=)hn?*2c-7F(UXL{ky(SA$QYS~0=byW;IC32;xaArt%i=eqYxllrs7AwS z|2EopV2GXSEC&4UsS>x%HrBMRu+K*-0r;4@GG2!wT4)ibyHXqWZp3-Rud%kk%jWh;wR#k z%4E6CpW4T|4^#6Ma9bVc#A@$$w|y=*uVIIT%~?W<92&9#bJ8@6Jds|1$s-JX>oVEu z>u>nm=+<6@tfRCD=IF>fW{O-%-8Xv-5H+LFnZ2TLY_Vlt2Xynp05l42PZvs*FECRK9 z_(4T5)S`9{UwVz^-cwD^v66vAqIL`FSyf?KAc-(fSL&^QU9Tg)=HF?y!<_L~0Z}F_ z4XfpXg`p$-ANGn^lWTp@3v<6-Wdm(yI4vcyT)z{}g$^@1ReEPrp7f}G)J7^Su|uA3 zfpn8(a0&~9=VZ^K_GaJzt@uK2l|8U1yIfvx;*ZDHu^|p zdn~$QF6kUptn5&2jvuw3X@f2n(ZcJt=J-g({mje!)XJK3zMVMp;B@{@f&t`qV>`%0 z`9Nyt0Fvsg%H2*l=f?=VbYtW|0|*hp@URrdw*!y?`tsp%S$-+bk=-UfUvST;a^a8u zu*x3O#0$;d(|fGz2TM2es2cXzk|hDTHv)d+F`Or9Pg`p&b7;o0)GprK_Z~Yt>oNvc>#2!c&!nET-#>x6;>GNT;)PNzZf+r!b)s( z7=+d!$^>B&O?Ow`vu3qP#H%0mo&M<X)HT^0OnxaY zg849Z%v;K-_!UNUbFd7h;62N1LU?FEZ<_k7W|me2-3H%=IV*nAt9^Z`P25Uvl85kv z?b->AI<;v4IDrZ42x_WyTkKER*lVf|rqJBltyey`TDqKb8<+*~e`eVH#eW6hrHa}~Z|*5u89Zk(ZS26V_N;StGXESa$-W(VBC zK7A$v>Z$g`3wtgC{UD7=*&HrjzrKsLhuJItlF`={F{8GtDQ|fFqV2@R`m~Jb)Nb1h zpzGQh(4>RUw~j$8cutu}ijBDCM!vbJpxDg0q54Qy7{6d6%FlfdxKDT!AR45 zq~EE9jajuyCS!X$Y3rk1I{s`3cjB2Z#a9U2NeyZQCR7DK_^C4~p=RJVo)~av zIIo+P_2++pc)y>-D0cZ7GV>4ISE@4|-!K6IJvJXs=gZ3Ag{c+4O!s#AuAD!`&lKo> z8l!_MWFre;+;bfoO%^sTgrmyan4)ht*TP#HK>Mq|`74iZbw2&HKkLk;B&J!G`k@}w z5my=C3djBS-0*GwV?a2YSP&0YT)z&#-)Sia;VR5Dr_7^uEE9l3O@kHWXL zutDKt<%K`t=6jh7$*1(Wnb-|(!qew|o;l12Q5k<({d&*mOP0~UjJwkd49)&Ymt`kv z0FY8>6t~O8>!)NW$E^GocGY~9dca0xQ9hLZmZ2u17m~IwrT2x>UV);Eb9z@TnFJ}C z)$2p>fJ&*gdLnH-PQS-Y@(TN9#`G~Fbs>bj!R#vCx}$QstCVJXc<}`|a?^lI24vPx z5Q|=FBA7dTKm@uYDU6pO1iNO6YE2_2kyVG zbZf?x@}1)5@;>@ld|B9ARu@@}0eZDLYB52JrB_V04Roz)U;n#e;;8*EL zxC8eClK4{O#%Xb}1V2#kqd;!%R8dhHZZqCY#8C<5qidl_5AuBFFC9x1#qLI=U*dkyja%WBsAV2WcgRo3Z7XQB!snM{uQt}Oivlr+cSVPP zuc9*f*Gj3*$}rqw0E4%J`a6!l%9jl&qrmLf%VKO=49&i6m}unI4_`WlSD)Ry(;y#= zvun3;FFhG-h}{2h)Dss@xGCI0lC1h@B#Q8sS2!~^Y4$RL-ob-|1kaZmJ+lDeJpT0L z(*%LYnylGvA_tyxxKZ_6#a6=du~FeS{E5RE-9dd(@Ze|yH$L|U+T{DuptcCN(m7n< z`or_WE*~||Cv+}f%5NOynHV}LrUn4+C@+pn4UzD7kCd5A;TxcJFK7>WdD1QT%9v=*s`m?3_y64^9(%oj}AsuEN)`Q_t8UDwy zoh@9sZJ{5m=k^`o`0f=FZxWdsDa=Jh-8zcdt~8SWm3a|b(d_nouq^EDbEZt*_uuD@ zxez=2xdWj6k~j`p{3$}$=gm0vIjw!21oLjIC`=RENE&GHoA_`UXM~93ssmL5ui`z<(9jT z2xnZiA&KIsE<(;0LwAAy_Pk6R!UoJw{ zf}|z9^bG^7Sw7Q^@v|+7$}bk)k|S)z8FR@uxJw$vK7K`(FK+a1DBcH-@_OWgIoSM{wQtNC@zD^HJk60UzU*xg#oURleZ1$d?}u8n!;q zC9@lbT5#gLT_fZvyyPslOiUkVo63M{zpdF4Ol_G{WAD> zBEN!4&w;R~Rcn%b45F}O);Ap$&yDs2p>skD*~^PYx@Oyg@m%UF@S zP0q-Qg&Dklg`x;;t0kwXRVo#2BW2qD_i)0tG=J(sZYEdZ()tp;hu`b^syj?5jmQO4 zu?rKI``#ikk-xLi_=HXV*Y}ej8i~89e8*5*y1R$Z3mAdH**>d}%iiJ?YWL^pfM|C2SWK-YU`=1WY&a`ci4q~=hX#QBU3BPy4#jxarPIKr zf(qo(q5lI>6ceVn!6~+w!+`)TZTi1H!cl`DObILRwq|O$vI(N#0uPmrtUZ1=T;>jH zzs)JGT;5s=IpCi97+D?yiFTErXxYc7QYcbQO!CQ=jhEA(NkM-uZ>8pByYtbX|DaZJF~h;_-w|3tc5?#8LBHeyQSfLZ92U{hn~w>bP*q2g;0F_BU0LL3-eJkMrE- z_?FJnMJh4WuX0AG=M*hPXUhN1wLH;VF}(Z7B~JlGB?a1bcZn5Sx17An8VaYKMmH|C z3OH3hITyW^gYz5-G-iILWKk9j=~{#w*!xG+e{t_0SoDfN=aRZ7Yz7R%J>>k6qgg+A z#V%`ro36OuY^txzH7D31To8Y~quqkb7FC!FwzS*V&Tg%O`=03=${P|enXlw$K{<0o zEI=<-v_4y5P#tuaq_J9H310DD7bSx?yigrRdWBcKdxmzlH_b^Gz~`lGtM+5!S~Xlf zyKK^=2Dlr;nzrJ&Ds$$Q`%Aa(q4+x!aQmkq*PmNG;eyC{+~`;HPVZEMmQ-Q_79DE5 z?+5*O`~EAPF^wiE$ zFO>6Hv-a(+Q!(5%3;iwt#3FBWflEop^*J_vn%T<Vs)bkHCflN%PWzU!&ttNPK_w!ynwbXj)9m{IxLt#uhIfFEeNbvhMxxk65MVXBT%x z>!O7o+@4yDL+qRD`{cdDVG9!~Zz`CUJp|P}J2B7X?B09rf5;kA zfuWwWucF^RDG&XpaLKya%A2MuLRr(&sq_3)}J4P>1TpyQA?z|cm=6{E29irQds+>!4&Tl~7=NzV zANMq(w2zU%3FXz}MkwdmfTbGEu@rrv{V!^x_s7=1+y0;rgbK|{>e%oqP*ah(C+q^u zAfS74W93$1;};*P{gabvlZAZ~7@I`8i~>rS~qwU0 zJy}LR++(FYGpjORR?Z9nKB92I37Xv8O>P4kh4|L$;Kx(YC$TO`(XLtS?q9^U^HZ8P zOxVf;o@7eoT^lC`JhQadsWCvjcSsQsb)MpjUcX=iOJjD`0=@3m@QO`m7KY3u1NVTA z*tzBlLaE-YBQqceS?2%_y) z3-Q;$XID35MYdHhNYJnFUd&Q6Tp!&Ds4D^j5MCQt3_*%;fX< zhp+$SCjPjRBn%4PV3dFS%w2fn0}Z%i-cd0-L{9*98N>j|{Pc+e=~g;v2XFOz(tlJE zEV4$+g-t?>XFyxlD|Sqhtb$TJM&8I*P{+Xl_%mbT{1BY?q9@|x%c2+PB3${=lN_Z+ z{Hx^bN0x|1e_xC)8?qAcFmQb?soE(dhERyAJfYk>lzq~e5y$Vd|IG+B`bcljKvdYwZ^Q4`2z<#p z*|=ay=TNjDe266EJnYifgSAaC-d2N#6SAh^LBB?odIm^Gm*&+yoM#SZ%R9_GSqINO zujdjMduOaQPTa_g7C8P0C_1P8-dC4aM~gT%Zjbo#X>BSou?-0o6WY5oJf zsZ*2O(KabmqOf=)W|aX}3LkFRPodXzZ0wcXECbC`3yQs7gc6Lsc|KF5yp`IpP5+E? zvuN9q`wO=@)PIINswwUz{U(om)9av9?bUYHDs@)2cfK~zXM&lHyZqJVv?w5PK7L28 zP%UD18N(mIIsqodW}WqE2C)t5t81Gxz8--6U1ij|#Zd7goanS!CK{E`4G^n_Ywd~4 zUAM3Wlgn`x451CmiBg{gf6+?o5#!p^sC&c56qUTc=%SrtS6T;AzRdyYY7?NDckrEI zm5nOlkzXWPy)dv!TQ$Bku+5Scvsj!$gtr9DPSV(;_0+_}|yHZiPp7`s5 zr;ob�aB!ok%(0DqVlfaDD4}NB3;H^N1(uljb?o{felTQH=0h^Yw;!aI8RblN7aS z0G*Rf;jUjB*)FgE3P9P#%Gr+A2Ig#++_RN`@DHi%Q<;4_!1>*jbl>Q7KAS>F?>sfe zxm+0&@V=5{@Ok8s?|TP8Uz-)6GyecxJDFcWscRjmh3_sjlX%xawZB+`NJHORvmLc! zw|_^IKuM$G=*tr%9j`F9(Rm*@v`e+MxYtL!sUFgYXjtd8p^qQ2=+di@eMySfko?MM z39kHbHPFIxYaUL;+UR(%?5XaQ%L!hUNT9rPq?iM0kfs6zy3FLtR zAfwU;m!6M7d3&e67DR51+x>8V|CI~wJtyL*=6BNLE)MoM`dlvV9Q+vzb!-JYxV@f( z0^LWpH@**aNAJhl8t;(O){wHaKA<0+&@4bGem2ylB6mt1UgaJOGQd)Vyn;i(o+{iv z5Ugq@7se|KbHWTZIqBiSFrZIisAphfP-Z^FpN{v@yM{&EN+AuA`>0#ZPW;6knGp9sBy$qMwnn*a>cRN2 zro@u%QvQ9H6>+gNBVgW2%WFj{7P%Er#8;kB)sEU~G_s>1+@y%L;I`uRppLY@!Kt!* zDS2=&6ImyIAPZ|LsJepkZF92dCQ_X4a?Ru% z@`ro?2(@QQUTAD<2El1-TY(uGWfd0-aF1h&_p^H8V<}g0lLhXVve%ua#}DiKe0H$K zctRbq(8rkI@k5MaAAjBZ-!E3V5n?t?Q7Y`k^LD?Eb#H*a79iyd)%@aOmm+=JwD$_? zG1y6qGQazWNL5B#GJJ>7n!A>jEh>z&duB%d0|jXk%&f|9WGy9ttcLPOx~cm>1@70j zgrUw`u_aOVNn3(Iu4p|D%DvX##toGL70lB^x)ocq|AsdfUT1BqqFnb@m2#cmE_Gzo zP4Dy+ckXPXCJESUN(w6?fOkM^l5qS|axFthX)6usLfe1{FM#}}KN9y%YNgOvS+8jM@c)HGndBxXh!Sb#87j%1M?G73Zi#=3{diM zv83Ox(gZuq9kEDMd7Wh{yrRJFnQnulPK|sTwzj^flr9Pi>QtTfy2;`)m=W;z?J^+H zS0fFYj6)H~!S9y6>EqE8Gx#MNq-n&b+JIIGwzAo=$Rn5lGa|pz}$#EO;N0L%F z=JId;N#RnK5?ZNp$q2~${Ac*rmO!7%#O31nY`tOtsJNQ4fTeR3?apj(Uk$ISG~D== z={DjNs2huK^>D7(lH#om2|S*&M(g;8&>Jpxp%u$!Lt)FHPlw#h5k?KcilZswT}~ z*DWaHs?~;;!7MStr>p|?^~q2+gQ^PZ4I*elN=0by_{jTJrsb&#{{sYG9qKHrSK%jtns|;9b)E{LK zYY<2g{+#GBYX&=VqwmmZrOdF3E$m?mmp71NM*u?t64vp4JHsm$%R^OfAPt~C)(8m# z_jPlsnNR3fVlV*cZ7o%^l=C1syfSZ2sd=FgIsnp(Em0defORaiPhB})hWLqZ24_{hLcC3n#&hVKl!Sw&>Ft?mYCsPxomJ2?ltzFS5h+1<5uG>wwb%xIe;o|HwmW_O ze&_O0(HvC0VwG$+C$2DbEPe5HQ~RchRHF-F9JS7418Z!p#wid+i9zhzgw0z)Z$iOj zRNt$4F?q6qiV9gEB~P7k#Mv-eznoUx4q3!-y61jJ;`49~)dD(RGz24U4weih_W>D! zX7u}HQK6ds11}$S1a9@Y(BdV?UYuV3(#Rexb#FvfHJ=%91?*O31?yJL85#B-cr70& zb;a2t#Oo%AAlnKk<`c^tB0(P=eO~u&Z)_~o!O=0{vUSyuWq-QVb!F>EtI%ZAMEjB} z{rADp=V~*}Q$7uesu=W9U)2nSRHquGv*Ze8hm8mSzB*2D3M-fE1}l+^sw(|ll>5e8 zuO+_K<%AShQ0^1sRU_ddmD!j#83GbJE)cF1_xA4FilYHImY&ow>M@%} zV8oSM<@&rX2B@&Q0fFMO=E~bTH3iD8j!=7Fx3HX>KV1Z6=~&j@lx&75yFXJV$)d-3 z+_Oqg7SnpY+iX@Kl+!~2-D0dvvT8p)EhyX6|LtZMD`SP>+>vwUUN}j(wV0`xs*9-v z$$H22sL&0CpH%6zAgx!RRC~*4jDVja+LXXVRe}R@fPpy6JZ5pdb+5;3x-p;@CvO)a;F#8L{?3PTGWSNgV_Da z#n?4OT`v|e(>~RTX#5P;FQZ#f3P%q_a!*<;ixlQk^@7~3-Dev(wSwv^n^q#ko*NHE z?8+BZgP&vKAvC2eV4*1xK$xIq6M|+ab(~{9g<&eOhn%~rF~eM(hQIO(1Ah#4VY0$` zo%LN=-}J39WT2_gAP{?C^0tD0E66p4Jcjm0krfnF5hRYrMUOvel)b)k4@Ui7hpJ9} ziho2^8Rysfsj6yY!(KWqua`nTh@}+L`&b>%YD(;3QDYvCQsi~1H-kSQ)-Il~e9J1o zxL|rn7Yv+eBAe?Fpjs4O*r0!Q#1$LygKhKT&Lljw2_VWMFi!NJe%U(VOeqi96Gi!7 zDW1p_dGo=zm!NtyO(bJG4I65U^A)DoslO?6pVzBs(yX%E!B-g;T8FZW3nc|viBH1y z*GDM3EY;9GqZufPW$<|H`j!H+MpmwB*)_MeduB-(%C5r-;w(!$j=l14JA%v2*mSIl zQq=t4W=A%4avZ{NotSE;k?JiBW4)Q#rYcf9T8kF1R<6w8?4g)c!~TsS~BW4fGg6l@s-qhgyOw@`h`vL7@^$7Uy-Z$y2s?F zuH-4>QH$Eo;}G|6RUw50M#_>ZalHYhihH}G%3P{PV<%z#>IV#TVGvy;=zu{v3S0^x zl!h2HMO=bt#WP2e{-`OM#gcIC&_W-lme3g0g78YH_u=Xt3sTT0M0=6t0QK|CctiIt zhjt@Wd}{LvuzGG8D^f_W{fbsR$l^?;!MqZR8ox@yotp9wjc3U5SPa7wz^cS%s0N9@ zrDF+*Mvue39#tG?52tW7+hKR%{SmKy*VBh7e zn}g+KcN&&Abk`?C`&ge!tq(~j+(@(jQd~KMs<_@WIxWL8HKnGzzE6&@>E+?LzExwP zmsuN98?w*An%Tnz7EQI!So)KL+yU6X@9K{=8#bLWrV02-z*3#iv9}Fn=rP%-^pGX4ca;2ViPu z%w@mqnW^Tf<^#9cp&)S86br~5VE2?+$GMk~FR>{ZmX06`1th9Ab*GvUS_{4k`O-L+ z2xIw#=2dmp&uv7pEYWD}ir7hIZM1&Q?L#h_=WD7f)18`%Amsl2lmB}4SBLE3P9ywN z3jQvIGTnTbb~po5_h|HBr+R=1N7{MBBAqJv+P}W_KVN$syAz||H{Dt0;EfY;! z%?UcFtz5{?tc>wbBAerlL1DZ0vx|Oe$fTtGq_|F_Qwg}UJ_4k{vIqo^P|FBhddnBi zU74$yPwQgqGeNXh7%4|h3Tm-nqL}lwVqx0o<)*E+>p~;iYJYpa#P11@{`upd=!31< z8Z(ojfcMj@74bl$wj;6of=uGEW9<5WrFS`q|Iv_D`l}(^sQKU0yH{A!yDSM=8z|Ju z*4YNC>EZ3|VE4ws{;!xU7yB_H2TO&w@{8Hy*9MouMt!?=-wfnLaUtQv|I6L&yaA@*hA$5X4{}L%VHzOkjIdc!| zK6`XY{L=>4%dKvWon?(}_akpvrf3Btg$_>(Ncycfd0?e5ABRjDaNM~hgNeFXt;HL8$v!r|wTCZh&disrA{bc*QWE zKM%+zfFx4d9fIqzd{)Gf@JC3vl>F_Y6_-!RumdM({)OF!lX9Jw31xpX;Lz23q%C^$ zhEwU>tj*bH>;V0ch&0N+@)30PdZ$IT; zB$fduanQ>33`OhHL7YW%cUx~9UQKOAhYzty{7QSzwk!@ianbkGTMgm5Zv-BQ?8MpL z=8!_43!(6_W1Rh`p*HegetO>uet2u15vT$A#$OiEbaGj>hfZh;WG^-LJZWBY8a&I9 z$~i}MI@`y_QYJv{v}i293oQA55`J8z|1^KUhdw=(Z`b8Zxz12dpX?Qc*sk!KJmxeh z;EU`d$|)K7fmfcqVH#8&4f1e3n@Zwwi+rev^*1rl1EO$5@KQzg&VX{^kV&P4we~lg z*N``bC!8!e3Nh#>7+?KdS!pkOb1b5@Ei6FW$MULtqtU2etsE)1BWi!UW>n0_0&K5F z9C7gG^1IRNQJlBA+0Y>{)tvoeGZM?Y$Hw+eT8gD%{q(OpapnETofQ7MQwvMq`k4KR z*NGo3qmERT!jOl$ETPKFM`ooGh>4acraXRo_M@1~w~cerN1I|Yr^ ze#%v*K5RQw>v`43D}<%+_CrRz-?>8LqT=vvhrR5JzxzF}b-2Q0ACo&i8fW0)Z@}QioET5qUGas-&+qRkxl#)_mSN zo6>R=qMVG}dDeK4IdT_#S#65mmN8>wZ0zx@*U%Wd5rRP=>X}?JwWI z(aK-FinM0DDwJWk)3c(c6(OvgGP<^?_mj}*u0s2Og^^#|O|fveZyCjh6#?8M&Lc?!?4FDi#m<&G^#e*b{~koxiNK$-s)X*<#Mn$s`v?`~K6w7-Orgfz3=YQ0K;3}cZm)G7 z%HZP720$dT#f$%BBYOGX1`<==thl(iczw^GXKOskUe^JEw#q6x#i|2rz6Emo2LX=Bb-@DrNASs_F28%$Mu6j>uWumJ~*{hu5S3z$tS{>XIuRn+Uc`Ydnn*RA#Wy&9yqHkS8U!{)A zrXe#(d@@ey-YK^Yv9?{m@l)5KK2{{D2OKIIfGs}bG?F~*teiMSUfcfxt<2B^%N3vN zqN0K5>b_DoB3{q=w#D^DOrV+8O6e;n4%-*ch4?9wMWVSU*}GtHE3ZYqb8oq;o_Ll^ z`L_Y}({_Bk_AkK#zZcA0Xf=NRfU1e^zHQZT8A`YQ*G^hY;vm6gMDv;K8u*iWL z$#JYpP*JDW_9fBrceY*?wRACY{o2?`+YaKT&mz#x?hH1??2ilG;5uqdW#=u?e*I4YnY>#Vh)=XFedKOGSXhdeqpcV7d*3{aC*^6*iP7-H}vwn>~?%bbF)#Sy>^}8E z)3xQb%_3Lb$3;9)9m4RAK>1iV$b_*m;;K3S~Nq8QFW??JvRoJMt8o^5#9>yH)h2J01Ee zPGLr6SrG!D`%fW4?tEBtyl~-KZ@S;TZ47W=JjdaFM#};&oG1Bu-0*FhZmh`nywbQJ zc}2Oiv)@6gVs9U)|MMu7BjUIW@#54auiC5YZ*n-U_zp~;4F7(vXn$_z!NDxs5nn^7 z;&n^+hYhZBgex9`ZAtncOpiMWs7yvEc3$z|0iC^Z52Z|3+28`DUhw!HVH{}{Y%KLK z`bBU2-W=bz8=pw|rOq5lI-4h*($P_iv((7v3Uj@|=dBvv^kbKze3Q?3HQnbH+Pr>! z{Z!wU0E44-SAQAe%b{<5%yM@Qs4e!L{{7VYPZ2|&>MQFS+~#5A#+oYzj5WOnSKhRm z^3c_C)WbwS=pEixI_|Y}YW6~)RGpw)R=Nif->PlGl^+~r0h9jn@XUtWwD+y||0bQ; z`*?EY!qQjn@7K1)mylEo@o4ZuzS)fhASi5I&b9Gzs-%IQxRKh+v^;#y|ZvtL*x8Lu_BGZeP9JU zGIU9P)OBD?`LW5!l;ASEScRU?skYUI){cm;CuY7qc@0U?=xDR8LI%9Zh6py`+g;sb z4Q(feb`y9|BxZ4=N1aroq1{15;ehWJ%-#I%R$b?}jxiNm6B%);J2`oDH#aqp%Yxu{ zcZ-)fawnaIQl9;vD5Xp3zkTa3O1W?Ke?uvp|AkT#%pwd8`8%7E4ZgNDeB=x1*Er?< ztpCTU`ntYxZFYg!8}boyb}mj@B6qnzPb=`5I?G!a{5zSI9G~D2^>|`H+U2b{J0e0! z>wOqE@RF9+_CYZgUjpFb(eRMkTVukk{EM*wlIyNE#2c?R(dX$nUl6HYaJd{0z5EvT zY^A7=)aWxXmHFF3H{niFwQEZNreGu`1)P7$KSB_MwBxLFY|qNgmY3zvHyAU{LS7uQz)kbf3_kl%wqtUTLc!`{j7?r3$M}a$~lf zfkN_`XSZcK?$S*v^o+q(zbJt_x9bUo)3noWJ1B*25A*r#v|*pwMUENQy`VAy3D2Ii zngl@aR3x$>XK_+A1+ikfrrM>xW6>1gTUEcaEu1Np2aCD_R_Nj&>gSFQ)qpw_w2$ce z>LG`par4rPmDVcKMI1imTlUR&=_d*^7P@poD0vTy2G2GWcD-JH$N8}ZT5?%|9T1P3 z^)G)C}vjLx4ORhAY-FN7+9MkC!^*jx1S3fop3Vr_e z-ICa2sqs@DHXfR=79AE8DX#DR6Ar;a=GtJWV zQ~K4d#R87${1Mtcb1AykV(hC10Z7UEc~Bg1KF<(YUKntS`={R6Ss@#@eq)2apQAe& z8D~?$4gzXi0o9F5&%aO$e|+=HpXGXia*R;c7*SQ<{cIq^UT1y&&ClI$QO{3}JbSNu zJP&;~PwY(S1L|VEb>gl?&Z#ExLnGmHfs#*y{3IsA9GCA|>+Ky&JzurY$%HgZ=c5lc zsz}XrFYZQtc{2?f>Zgm6pi-n`$?fKuMg@lsC)Z&jU$Mq(+UxJU_Qf2%>+C!993z?D z7Z%*E9|V9DweNV_0eE;T{H2u{$ zpm6MNtR!Bm$>dc*^j=0sgE;@e7nE1-62wo)rv)ir6ZnX5((0m}L3HWEWW{Lt*xDxQ z$mp1mUAu1#ADEBYzS~qOuiwN7VxxBQ?j1YE_UdmeJ?ZU zfPAr$Y@^B#qZWYtd8cn@+0U`F&#RY|g7DGB(DAKKr-=Z-Fn5_?8%LKD+nNen8|&XY zV`nqSb^d&^HTWz>sr=%?vyWDhmFHJAKW^@bJ^1JCZ18m1zbPgh=Qpm5rG?yvTic#D zxu9*A<7sVu!QT2&n|Ro}SNzv8$1&IL2_EOacI?=6%!~YE#{#~vOnUOO(|=3~_-oSs z(f@7I``W@zR&IZbQmiw|2I}YbKaHvvaLnoRNnf^AEH2-p`}2)2h9jA7p}Tz9fZg+O z>nmrAg@pGo^Py3(dZL539&1hy{#(M4X_Y6q;^O?+bFSyIi0(TjKJeP(vXjhrmxb%X z&&qqgWS5u&#g%$@N>FCdEIyia|8)cfkzuuJQfm9ieq9YLLBx_WR;!s`33rD~hC`sz9XaGxa zBcQZtleyvN*hC8&M>AAA@)+YyHH*FsGo~A>0^X^904ruL2Qi1pV$9Z{DJHq8*V|zG zAN2y(klx{rNs@ZD*^oj}5IJZ!h{*^# zrn_~@`lmNjPozt1sD%*EsOiu89mnzd{(t@!(ewCGP$Eec9!GIgCkzazRd1<d#*B zIqt#OnVCrBrc23=Q4<;))_MA5W&0*%S(N;t1pgTbKClpPIk_>cu0JdB=J=l3C8Gwq z;BY~mJUD3SJ}?DQ+&2Nj`E}@&8?WDB=+b;U#myhKe)< zpW^MDbna`Egn>$YykwN|KWK;mIQHIr+|5zkh7LV#Z9XE1JcD!u)Dq7$5YKGDpbSQU zoR!bSXqT*&vI}QmTe-Gs{(En>-%iK#?^hy#qnDIXT& z1w(&V7Z<~L(>nMw>YMu=s$(?)FzCnqn8np%lA7THv7eq@SP=+)Yv%vMFwGz(CicuT z`Sunhn6;w8)RD|yT8yE36pDm|H-Xpv1B&SrL;k&c=|O>F*lK@pS4!%^ecd($lu0h`DM&H6ABo(&% ze}S>Sc04S>kxBTYW9gn8u2a77zBtU8f4g1DG zdVvXG0g9ITSzz`Qomo6krc9PSa`n7$*V!_UC@(gUzBd0mXzxq_is<26h(Q!iB_m;R z6)}f9Q0bn)6uG5w-wV1#+L!X1pB;N;(R90u*I&+;hrUKZ4RpqQo>^aB=a1Z1>(s2h z?q~DJi|*|r%KB-#@aE;?_}4fCC0uQ|F(ZXQX5``n&ro(>?T;6zb4T~GMse!GUuRqD z_0d|c2_LC`%dCTddLCTEnSlK)!|^iPayHs24wQrHv-?zr0c1mA|D)be!;@nlSr<~S zvQ(q8(o;X217l0B%jcKg#K}k77mD<%%*l~0pQi|C8mr|wNY7)^&4V}tai+zlbe=VO zL$%J1elLBO>u9>;oQW34`pAVn`Z@95!#%%PH494i)UjP{8QxjW?QXS<98kRP%OrZKQT@TMtXL;3BSNFDBv@ z4jw9-fIwD!yQ$yj7abw&3F`Q#GVDaHRq723Jot{(JWp}0PF6>>{L4j9|OM*7X zVRNRGv;=NR?C8u4q%R!1tM7R&-3tg_j5!Q|Y;;F*qqCbH9;P^IPon8vJ zHQM33L1B!rO#wTQ#oCI{=MY`5dG}tx{D7tL9CG|<{2UeRfK zv#a21=>sKdn0u5{DM~E*!#{#rO`4?Hk4P1$S5yv*F*F3~fw4N|Q+rO1adk@L{&}IY z(RZ!e?uP184OddYTV3HX&Q1b-u>&tE?f=3Yl9(85xsxi;QB$J?jI`?tx87HX!$ zX}3NlI`nB}C6Rx`OWs_0Pj`7$acrj{(?ftdok> z_&~ioD*H|oUtP3|*2_&`*z06Z);({GX^l69E!*7Zh5MX03TG^1E8^ub~$6xu4tmc z?p|PEYuj-3uBD6C)|&-Oust%oGt30mH+myHgEq@Yp0#)tER>q6R%2S7BU5H1ejEq8 zM&O_zhE2Q|`e2>~x2xqaA$JEtb7%q|OcMo;`6aVG)@AVxLc9^L=_>Sk(E9)4=-lI( zUi?3vgwqj1lzTX(z7m?bUn;UXN;xXIjfi3HBbPBsp>j!ea>*r8u1%5{wz=h!*<8lT zWgFHeW5X~rm*407{@)+lW1r9a{d!+s@8>O7kK%6yvBbVSK@enJo0EgPg?MFiPFTt9 zPsGY^-nNl{=Hf$EKT^hM!@(kV^>oMklu~^6U(h2b7^BQSi`n?KEhRPur%u@4Ydx48%$z+x z*it8JMsblgrQJ%*h#cqUm(CL*=LY{KOMQ9eS2%xk=BIK3p8vI>k+{i+?wN7t9FuLF z&0K!*A)t5_v!vcUXUL)~hS$gP97=AYyVlLn(fB`c+OH$B9))__*UhMC{V|;#uT%7x@)qA;B>}M^Q}PZzSa5z;;ID8jj`J;A zR;?_&+BW;DGFSFVU*U&<;%V!ft$vXEH??7!w>>dFue{WZxRr(!AR(coIPluIFeY|_ z5{u_1GUL@@W^tIA_W+?5DKT@*37oAUP;69pixh`&tU>|`B~jE1?&QkT;g(ZRblW^b)qF2fS=<|dIKWyoz@%Lke$n{%q5I%#4_g?2w@Fx0f>Stn^l}016 zOc=MYA>U`C;)ANmnEiOjQagye9QsxX+o_`Z#5aM zNnP-jG+ZzeFRj^F1AlFl@iXE269ezSJ7uR~ggkHxjLLfOO4^TNQ0zL6E04278qa;) zZo0$!h)mqTChXr<`$al3!;Crld;9*al9(giC>euPBDY+Tf8ZTWiXh;o<*>uFv&C^; zx<m~dWYADuy0#?5ct|iYVR;Lt2vjL8I4jgk~|tC@0!w%?@bL; zPtp*miCA)RaRw#TgF!edhw;L(2MS({JhM@b(8Ta=L?z8v>wX5 z15tVUqUa*`L7&y8wHt6CqAhC*PH=%?Wim;ZJh>p)NshmIeBg*IA~mwag+IkQYv%T$ zD!W^j*f3^S1l*3O{@OFuH2zAZJtyn`L#t)>8pMNR)&)z1ZT~FP*$cUzY@@$J*tEDR zUolU+bXw^@vn^O8m_<77#Jp1l|o-0^-j_L$AM?2 z;4xVrI|w>Vm7vEns!u;$Rmw10HM;cCAq)AgDtGwuqbi75nQ0)RIJ&c1*XCLF{O6N% z4fz`1lCC2Kl`*@}@tL167VeeMB)Ex2s4Wdcy_wISP>i`GA;H2jXhOw2%TKMEUm0R~ zs#u+!hl$ft1&c!fGCJgmvTus6TuiJ~*07J-tlrqf&{UiL7b@w_eLXM^wi?AeQHW8U zD(p2E{JC!cq)M63RtDR%ME%1T?(G)mu<{XBlj{r4jEs!@fiuYqPs>5l`4X!z@SmKq zg!A$DmK+eylQrJZx!M)kL07KBHl=W9WFo98sb&C^=1CdI^U8~Wc_PDk1Nh2`(;gElH#si}Ud^W3i;6lR}A z?G47J?c$s{p#MdMnDW7J#WtQCp3U4KC1%SAzdihd$OxiEE)2iL5Zr*y$H zr>=pHxA>oa>LMj)GVUjSzQPY0$4t*IbSwDsG)0Z1eU{>~-MG$<=l+YoPvbUnNO4*3 zb6W+W?F~$tU5|o?Bua%3aG>4E?d;um8}Uyp%F}Q?{PMO3z1Uw9pW)GzxDZ=4Fe^Of zH<1?|L`Z4prxr%{O68cvCnS;W&`9_~$i;V34fuu#?T+C)xf#rsF_kw~uhhSe#OQ~U;8ul-4bu`liV z$#)RY%@N!y8##&+%qn|#v8fJ%wlc4~l6dFZl2HywUmA#YlLZ9D&^4OV!H%Z``zYwREzS|U(40;N^Mt;Tj zunV&Z_%Um!8~^usWks2%SsExvKH z&5g2>(uJY`vbj&c%Z$a84jdY?NKn~~Klssf6&&P8X)bQWQQq@*KBo~|+PbGdOJ%`~ zY4}X+;7(P~olf_)mt_Do5hm?p9%QW{yOxz>P(dnj^^P=Jr9SJ6JJ;!I`);@Yu>o)4 z?v;c-f81*A8@tm_N8_uaL@9A_l(zi~_SYkbkkiv^AHhsat|`kEzX~sIq{$`K3F8Oy z=RJ=#sH7Ug%H@S7O0wk5$^Y#dueha%3)c7V87^1ku#1Oi&fB4|>rY%4wLkEIV^ld& zyO}Nw4|%QC(b6}32bJiBx{_q}{EC@Mk5tN&*>h5UdQw^^`Yn@D{3wE`NH2O80x zk~=#**)i;zGJ1?x0G({FP-YF2=WMhmlWs%1QrfP9@`YD>TI$}r){cHg83;#T12?T+ ztpoqzg?aIs{;?y<>sLY%d==&-=r^i|K!7m@bL(SjaTnV8u> zT@Divtl> zbD%_~R}BfBUNn+Qo9Y!@MEna!k%0%+>{q-g%maubMSiBElHw$Epfk2?=Xg z%bJgIe9~vJAisSssHMb%$ELrH#w}r6bk_JeG|yVE&LlgTNHbbL-wvIYG8&I=xG7p3 z^CGIvu9lLM~ut2uf|j2}XCJ#5R}o5S@&ol^)%<*3Afd|1;9rd=iiD>DqcV2cP& zm&%#~r;|thWj^I3PuGqW79M%*!la<0IFW{jVZdyq4y_-zC&{l%Fd@O!po2DVVgPic0 z{<9b*LX#bH*$;xsWw#_v>M@VU%NXrSTWy-hvfd6C@H}sjw)(^9lB&@*65VfvS(vs1 zq3LVV`m*^hrrOgzmc;VWgx#+!ablw^rUD~zWQEjs(A!#L7)%IhX0>N1rA(N4Gk@m9 z7diEye#(w3KOHI9_iii8w7>jr@ro0wCnrhYogZ$@FV1R2t~cbvfJ@Bg?sG_Hbg@8n zI|jGJstxO0)*=gN`suq;F#v61iXP2CnRvd{Yo!X$M1?F}rf&oc=RtO^TW-RR6Y~m(rI{9t69SgK8hNaAlR3B*-XO zW8Q_cpNLtkN`bsevm7;)FF7%|92GW9x|5>YWt6Q{&r0_QV^#{bGQxq}%R3V<3fep~ zd2nzl-%y`bkdM*cuFS%c(OX~}H(M;M5wfu0NpVN~j!dxQ6<9HT;*StOmgbPitwbZ$ z)K9#`ZKyeI|I3;OO8sG7EbQa$_y?1l<7&C(A~=jjc#NQEX!J~^;!ZQZ`NN*jM-qMf zg^M(n`(C0~`O~i2C_k8P9D7Yxc^ahdG}kIbx!Exg8{)w;YB^MZ=p^OgjY3J8eX>wj zXAi|<4-q5KVNWVPbUIZC+|oONkyhXfbT%Gbs}=BHP( z-NzH7cZ`CH%TNH!VGcTsrwC|wqy*XFQ~-AL6H;syMP}{z<-GJQF)HO*+X!W4KBQT?6=V~ADys6g? z{99%uJdUYqI5`?@@5bS)%8cc~)yB^06utAW>OGZuTH|M|%nUf_^=6|>^rhe9oBvp` zHO7j6pOI-zA#MGPth*0mkiK^F?vU(M%Vq|rReY{Vj|imd_44ADccnzV^k>9YdLR6R zP_^Tl_jW`%f6El@A-z;UJE+;|4)b?)0MP;cn=i@kbB(!ntx>XBBb8)P`&OFY`gwns z=S!y0+?^b3$F0C!@H*T??-2Za02r{B^%fYqg>eV<-jOQl@#N&hEKMD+f20XhEJ~%x zVS}bzK;4MqI-*YnSy7Rhz1ugLOIU(c?KM**9$pu;b-s&+5iX z1_k5Wq+eFl_$NXGi{%RX+4SgeoHRUwb#+HE z-flysMigeoY#ZBiuu#+ZC%HH=gRVSm{{W= zqRHCpyn}DCp8D;5Rx_FR53e-P9$%sh_vf;5 zoV_wI2dinLQ$}si+l*N6w#%!b}_3hX+Z_&@M{0X?F6k zV6IvaP^HkfRKyG6Li#pMD(R4?NLmX`L?v8GZ%(Eo#*Ud=88ZBAimT8guH%)~!!3|I zCR_&J>AFfg`bFJBD+hX$z2p$fZKcf<|0!$wPbYU_kxdz0l_`5$a+QDE;%j+wn>qn%8taO~#3D zaUdp@9T&5G40?D^WK&%rwnACfpyT(`4tEHqFBdoK;Fd5XZ)|7N3=b#D;@tt!&m}CJ zrK_}MxAZ>RvHqNQ0hcOoV*0LR_$$i;hKmvLCtj}0(S3Mt8ur|Q;~@gkAsr(shY+Ri=Pg+acK|bI5de;~WF5syZ^Wj|jj%s||0*GElpO3#Pr0Jk4s3>;cRo!%v)^ zB~ivd^{~%vs3B{_=TSj_=coEGi@0)tb&-+E3 zQ}`GZ_zTM9i1(mv38i0_zZ?>vZ7gOnbt z1pTNZ!qJjYVTtgQVMY7C>Gg(iDU38Ef(i?nKQC1bo|UH2!G(n#N?nP@;aP4nU)Xsy zj#)h(0B5^g9wJpAd1>`rgqfVK$wAp~IiFAH#N4}Y_fWfpRn&)iy+&HXu3JCdDplHt z7hT;#?^qnD;0_-$^`M<=q)2XttO@v&9V^B4bf-7R3ip<7YQJ`Bg}z;CUlc|VMq+-) zt2EqUsV5ZaMWv%L8K@HH{Y}HHhIAyOeOFom)1f4UBCbkvV4p>ra)et)>FSuxhg0`M zi%*!XL=$+*rV}1r00m6BjBTls?E$*MiQP;%`Dtp-(o~YK{L)}Nkn!ugk_+fCxj#W& zPQKnQP{EZLn}ZCxu<8LlH~5dodfl&|Nn}L#N4VPhXKpP&!=^xJ6|RAyl_9iQc#<*E zh&8)oVLy$(rCPvRWOp>SGrmShc<4U>(5f?PYc(Aa#C80mImdTI?gt#(jDkGmA!bj; z!&>g!660zk{IfCX#qNxBisUCBQS?l=8ZHx117Gc^?|S~==PUe3PEu>MUX3$8u~j9y z@v}Rmum;~NCQyvFtwl;zkxE!3OH+HA3a^E)xvriavUk#`OB=kV43~YG?7B&QaGWUp zgng{ximl^L#uwGc5I@U)Y`04J$d#JD)3r7}7?$i#wX2YlFa}DpLy-B5(Cf!b$_(b7 zhM}4aJL%-*NgnrT%;O{zf=TRkN1`|>jIblOBCiEkqjok`D%cS-r`U<%yC3De?6YaN z+Ihtd!@Zam(Zo!tgeS^|Q*u#p~euaclRv_gk(s{Rb4%->`cU`b)HH%ez(w zwc|f(j==5cY`Ywqt(^x?4TnxqDV(;!$$Cp($^-F z_SW^-7I^48oaRQe=)@*)5$R9r`qAYmDmWdzXBa3Mem?*m6-oX%KZ8Rb^=4SJCAuHB zNyn%~PD6J2(rmqjZU6$>mE)z~{yH`sJ?VqWF3f?_V+lNwjl}0+W$2P7(m^8fe+yA6 z=8w#>trF@4po@-(kKafiwJLJ&LVcz8?;VoJW2b0~|2kQF`9ATUOT81PH@Yt_>w;rK0eP;)185QCrORTsU&{la}Q_U)Ofe*BUj7HWH- zDs0*i3`mopc7;tjfpHL7nAi~@Dx7|Zgv1moUbny?G#_*p&g~$vknVS-qZX@|%)4m=m=HBgIQ}oDG z{mU$WqkRfs*QW_l=g*A<=KFHo>{GOvEpwH>P_wlu_a>@AH%*0ocEIT`a#>@yMj)ji z^3vc9eL=>1i#eAi2MqH{MZo{gIITb44f>6&<5PK5_BS5xk%B;Ysg?#RZ=&u0?>*7e z!u$y?BOk>&4I!{MTW^NH9^cQ5NBR2^E}pWlTb72*=9yu|AjOW3&HF|t)3;nr zA?nr?AL)zArwJ47+N2g6w&pARclExR!!);WZ&y?c^1b$}1mUyHKarS4_E6AP--RXq z$oyqq=HvA9guKoe{@Yh;q4Ah6oc2p`j{E0FmJ|$OHR^0zfd%Cr*mf;}Zn2tW7 zq1v^L`IFL7?>~c3kNhp72Kt^ArFd!V$Q79CIaYU_Qvvwzrd7CO(MN_0L1UWY;NEP) zf`$|cm6s-j&V2$@Y9=~|CS%6ZTy9>%(@-VJe6Cm<=NJn-3$V0!~eO_fDhlh8L zNagb!HOHqvi|idvY)9>RwqKILBc?AcM(C#xZ5DOi5p96px8z@xR<4t6DqZ1=ZLAB2 zHm?Tuxh^Zz18|uC!M-fZCCnyd_Bj>922tYy_Pt%cm-ah5W|9oT)x`21UoSSh{OfXs zeH*16Su31CgRRp9NZ0xEPS+~}Q$NM(+k3`lekE%xc}5ou#C>Vls^nb%eT4u0JY@U( zM}hg=8J7~DakU7{u3mlO@+{kxQJ5!O`LRK}lnB|j;?q0>wp$@ecoV)~9IAHqQ8uBjn4IEMI|v-GMm=dL?WT{{enseLm^&vuSGtf+=~7N0qx z=#`}PLC~g@h8bq@ZAF&po2Yz?uA0{Z$V3YYDui=?!AT_UDssab8vOH-*Nyn}hhJQ6ItKQ7Xd}-44x#tnaXSQ00YeZo~djhqaJ& zHR;ZxJgSy{dUyfze_Mquyv1DEEup5|C@`#@R9^@fkw@HS7XAOW0Q+i{)o2Y77-P>) zRTKjF^(mJ9maB{)IwX*CYWlmb$%AzL-$w=dXLl4?U0{I7{7nhV{VjEW#>g2eIoJUHPg+mjPi<4zp;5$WonQlg?&3MJC(54 znJ$k1eK3pnEhW;KSef{wEIGE3a7EWKV(Bib?lpVlvB;!8N6A$5$Cgt!IZe?>?Zm7=*b)*2XyZSC@YK#`c3mQDL4 z>4ZN`wzc*2G>H6dd9g-yXua4L0&0%xHi^sp*`dA27HPO1TH680d~U}deDEKgd820v z^ZdidUcDUn0Pc4^d*C+y-CyvtyQluHi7l7S1uNAMV|!qOxwF}K<{bF392~RBtIwxddot~R?Ya9l0-BGnWI1v}q*+H7i2~#3wpEe6S%X`rH zx>pK3hV%|<7Z!EinE`&-IL}Q*u>P<)6IyZwcPPs|X)jAP7VT#X;x;Q=Wz-rPZ>API zFxqc-vePf8jUS%j)#f){a!$P;^n5e}8pAg?E$Fb4@FswLl#!2b!Hz&OBO~nPfOmoN zWbH$)GWN{^#Hm3c+lVpVa-uZoDdzRPv>R4w-z56^c`NjP@R##vKJt_#UsecW+D}O= zb1O5gd+FPIB}c$2su;d3zgZ%AXL2_p09|s}VO|TWKR3C7j|(RmvQ&4PPW=}I$Wcc( z6Wd#BJDlbwrX+c6v4|8(xHq1!yb7?mE;MH~UvvpYlw8kR*L%16w5?0YJ(Br){3iC$ zoU6*)cU%zxV;}SCDnUUvT*XWX_VtM%4-bTP7V2o<)7Rq_R0LGYgZx2%MHL7TmgL^c z&It!$MHjA8&a{)x0LwsE|Cpr~YFlBDpj*zCZ*m0431p+?+@Ykvy`NLsyYA@sjR>RQ z7mfoo97|l*QGM9MU~bO>O}Pd(kHrwmSG_i8=W9Z zOc|vDQQ%;7o#8_vp`%q=%-%fH>Kqr+*&NiSXxW+f_%aVmNhiz{$e3n=0+=M<%&jlD z$gkGMsA@aTPb0 z-D58-&b6*V$K6aft0t4BS_XEDgh>{VV(!stIM4Ct+oqv4BbguE>d&P0)<r`A7H1feZRX4}Ip#e%GWt}u?t7<^vYM~VB$Abx?)oYpLM0!!-6 z4w5dfpYuPydDULIF_PvLjyM~cGEn(mpgcBH%Q7pAbcdZBRK5jzXwhS>TqgVIiOcSZ zmBt2W&E5;_FKQTID(bS@9u``-Wfy)ssiu7tLRFIi0_&PoQ+wqK5(~YUl0bFU+mu@A zrL%`TZI)WtC!*9mfOeiUgv0wud)q}brASWg2kkv_dmN@s6qac>Rf@c%SeVn^IcA1m zKh{R7E_Ht7U+m=We}qxVMx9^yvHq0@(t%u~@r_|G(~wZ@7s>fHqt@r2^P-X7jK%i= zhAuS?;{8$Qqt@S}MqTZnT$Gs&uVaTyjKL<0)@fgiy8nN!MfrU4Z*}NE!|z%hQlca( zkmIzIj=ZY5n1k&VCUu{W2yyn$d=*^IFAN%~?MiLWc+9Rk$|X zd@0ohPCLr$b*U&8uM%+$k*DHO|3S5o_+mXHUx*Y5s4K8lyT-EloO7KzV%~0)bksgR z^YYdGA23YU?-y=#wbUs!KY9YIRzkl#zVhzsaUYI$v@v4L30|smyXX%0(zerU3Z+2c z*FC)mW^j4!aDqlOA#%#+tf?~co;bbWc>3>i zGqwHTXLgArFK=fD%>wZ4ag{vnknze~)+vi>Sm-x6+RRIrxlaAule>ZU8`NJCC?c)h zMrSWEV&F`Ic5x3c+2Ijo1D{ak~Z!q@W%(OP8G&%8v z<-Hkyq8EQ~rRF{GnsV-IV?!@0VoXhopKUDFOF@-6y(}jQ{#0^R%4i0a4*vA+68g@I z)aE7rllVlN+J2G38e1+q-Ih`8>QZ6=(7TmD6<1)zQl9Nqx%N)cJp{ktD|VS9x0DzX-%gAfb$dVxW>@Mcz-gQgM z@ef~@9}OJIhiU8FLl>})ztVkCaoS|E{^*G42^0GTKUm&6Fgh$K&126Vxki87OuT{K zyeO<0@Pc#T#;aC~GkQX>(J&^-zQusPD^;4DqaT5sI3xrL=# zaB0tn0&7QiCXMal51xHT>2F##H+s803CZIp( ze=7X9-v9D^O%*qQS$!)M*o(}u7dDS>pif}mq@ppK4YB1mv&5|=P8(4R@+?=eHwx9; z{dMoGxj(e)Nf{a$u<_3*{RHQ)eH1{!%75DP9Fc|3e{FB$qEw@aOsik;D7&eUf?sel zmWdcL;dV)W2_fW+^GRl6s0$xEO`1C#*2d|_+`Y+6nv+%R_#x<=^j+x4p}#EMy;ADi zSDI(q+1pB3dry`4_Ih-)xxZ<4TD+ABd0}2Y2_&y|c`DMX^37Z87fQOhcN$e)8xB7w z^-Rf?TK_YGHteSzSbFOKuPiTg%4^K{w@y_6vKUd1fbDoaOBzsLgoiNyMKs3P-%WIx z-TWvgWGQcha23Y0ZMv~6kB6cgVOXsZi=eicWESlfW3qC3JMjeW(S1p&FFa}6 z!Ff6}fkAO#bm|$UF90VRa~hysQnDOwn+SgfLxR(RiG`hk>;B22!FtJGhC7|P}mIRvLt>qAgjW&IEK1FlK5L<1a?jW2la8Z#dXNm<t0z)!){o=#?nr@P#Nh#F+6k8(Gt;;LCaovnyQr)mM@76?)$Akom0`F z(iP3Lcd?lQ@@FVLk+R9BUTn}*F06+fBJQc&7NgKlED&;TBw>%=juqXF?iBl>#YL{g z)sEeSQRx}61Z7hj(MUfs(-VU3uxLw_j+lL65XV%LrsvfwnnW7CG}(8I^5Iv@Mp?OE?pI@pEKrlpw2Qf!o}7xR~jCE9ZGqEo_-dt1MhMf1eh3UioS=BC;rWv~6i?=p?N zdhJVsG9q6koa`L3zgN6e>r!BuUAR^~DN>GuH>NOh9YM3Tp;5Fyo_k6rXltm8&_P03Gxa@|88%P~bi$ZvXtBqOFC z>dv8>p|i!GtX3UY8voZUxz-o9Yhe}X^(H|nn%RP1_577rAO$VU{z2Dk)A5if=DIyk zd6P8Y1g}48nF;0n*``azX0lCi>q` zyH}N!f9XXT8@=sCQe+da*J?tVr*;3RdzmI#)9b4SeuX_Ng>XKK|Pm~)`JYDpA1ePd5ENJVQ(U~E9aK$G)DYdETicnwbCXrSA}cVjf9dVJk*%v{0} z4I%RNMxEbXbD#KzUU*SfMY5b^=cq4K-NHx3Nku}U0}&q4nER>O@#kOx1PoI(qS_D@ zXhqt>%;gdntY}G|Y$%6zWBZKMF!oYy`td^F;N?HLGhz{vVJV{EsJw4`#L{TOvKeEh8z_M$7>5eXBUcNx8}^Mb`$piA#1~MkncP5S znIAS%5+JsQj7i^Lu72i@SPz;;ny;$|B51NG2hwn1HhmTPSb?_%@j%nMyhe~=95-a3 z+PKuUj2dB+Vsy|{zG$qMgg;ffuu%$qO3Ji=A8nV?G&I(1o7c6@C%46z#|DJ@pKB_G z{MajocZ|_*bla4bgLBE8srCSsSK*Em6DmBg?IatZa!;Y9M+Pe$rwa z@mR67jW;7JU3K>Ya2u@kab=i#1b;JH1GZDcasRdPQPKJif4;WaW>+2gSLlNaH*D~? ze156r;WGP@AZx8}HTA>o_fgjRl;Gj%C>O)96kogrZUv}XJ4jZIrRzVt!I;O=IX&v= z3vYx}ajwU5mU}?Z$mh@*#uLfHV;q=hC&E5X30x}ZYhO~#Dz8Y+ ze~8Wtm-+rAkPv9!n}RXD0Xizvf7jE^-mTa$&z)0wwrI;GbK~t+wM*#!bauwgcrc;i zoVChYIxW;vF+!*hPSs2}Vnh?{1O6zA$MUZ#i*cIjYM_Eoab&xEod$6|G z&|n5*c{xtS=UHJ++%;^q(x%+HwGsM+moLdZf`>VevwxD}8 zX9~6P%_UAEVc~W~8uip(xYU7+XtOwAi;~I(X_bKYt)JeSIv0Duq-#_NF*kkAxD7fy z3;N(_Sq7|H3V0hi>$S%`RC(GB+HzA4i8>)NqwytE&nW~`I5B)2mhj=|UiyY?CUfUz z8P#cJ-fFY;tUQ^E4_br``lg5C{K%1sD7J#-pJ>0S{kkvM%jY;JDPQkYoJ2{g1&z#y z8K8e9k(7eK3s&Jz3Uk1#dTRtd(^Wt6VR25nA{26s%SGH6#q8toRe;%Rg?JuQ=)D*| z$#&McW~-J57#&!Og-mTVq!bk4ntP?@a&ewpK`e7h8&ME@S7+4sBdF=74x!=oh|85m z>To!g>$C(dS<4P6PlP9M!JNTX7mG=Jk%DzH1*P03PQQ>~2^aH{lwxxBNP6xI)An_w)9q1~mU1SW zin4!EhFv!S#q%kjvV#Q-R7tj9!Xy2f`M{iYx=<~0%vIj_q(O;GN|Papv>zPgnSHqk zNVXwN2-E7+J*(*Z?Ku?@xT^*v%2rLP+4>0c)YU-;`;V4zuY$X-huVm-RW=k5vG9JvbB+r8$s6keu({@VV9@LEG8L<8F0Kln8A(yAYa$3HzEXncbWcg zBGG-y{e1#Que~43bt=}w=cpbqmwWVEbcscG|X-{ znMid@11XxSXTbp(uqFkihj{OCml=70q(t17K6aNgV2w8} zNQWyM!UCZ^wZjcn#LLdAKSPS)N;TIDXTQV!vqt{MoIuVr{DfIjurA2DM65p%$z@?# zSf(d*MESs48)SBITRo5TLwtk#INGpgnOisXpz~f#CzX>|5EZME?db&f8Dz?y78;p+H-kQNj<8h2nOvGG3~`8 zy|+Q!M{n>j^G!u?&^)jd9h$D#46JQ3l!SMBDb;;|220--vOj!%{6Wi&{@TFIG;??l zHJO}G`BkLFO7PM)O1;bzC}K0#%%|4-0(aHZ5suoDs0ePAVG7vCZuOk#a`a&^NqDhc zz2F4Q(N{x{G@3zh5BQvg{qE|eN4gs_=;9bXc+(SL72dX}rp=v^G97up`Y3zBzsq7j zve%Vswg4~bci;i;x84i^?z_|-+F#m&I2+kf2fO4r{hWb>OVm!MWow3Yw%I4ziF8y< zbhlhyeFuAa3IzM?U+TN~Z4j9Zlexn+?3N<_pesNxLas`bg4ICWZ&E|+8HLw;$>!?+ zmib5St2317vC*z;cMm_lLbBGs+wR&x?~nL!m6tEC+w@A5s9e7yGJp_oK-~X_)Y53f z>U@gf{_)IxZlZ+!`ei$RO=8u=Da>_F&x*~Y`u3RfklzKU)w0Bu$@jli%Li!)W@Y1$ z&~xm$i|OTslM+;(T=Y0&a!8k-RACgZ7x<_H;fR}5b@1X0JZ%?*H=D<$2^0MXKs!n2MP19nb+%zzVY%XPU2 z-RY^9&*-O=2C|b zyk=Z>;G}!G(O#i`Pw6jFK4dd%3$JWv`cjYb%RTUWTPJmBJ*icGnf4!XzXdUpX5&HK zSqJR(U@JoWlSFdDZC8$@?MKeKfVTN9q>Pyq<23oAxIoSR4site@k zZNgWED?mf1X^&Ndb}S|J51`0U0&VVC7c^pg+IA z9~rdVxI6$|m|E#$Kg1cf_TSh0-6qq&sywR>OxLDsXf;-!H%Oj5t3uMSdY`MRb$w*y zsK_SLn5`D)0JSet#yfm%PJ1r2wA*f=>07NS$o@dyY#KUOS1O8w?tcjfYKAAmzKD#~UYB^_dBDvv_Yl=CRkzUUduCe#0D7)GJ6`w?DqPLT<|3K
c@+6SBk@mI{5E+D&J2!Mw3G3n`2gz zcZJu9o@TyMVd-nQaFx~lz1kF@p;5N+ljapY-&hfMT{)I)8P-m4Xw!(KXve6FWdl7K z2)5nQ<;%Qnw+&Jzf@W4Sywr93vC6A-XEzV<&lqgU+Cs)Epg($O0tF=acdkd2!AU`{DsJ?L89%IB|;`XnKaiTLz()Fcky5tYvp3!mEed z*n|XSQ|H{n+3Gy?I|I?S!^_8Y2&M?{0^Cx@PHXKI_`!yXZ&w4_N(73ISE*Vrbb8w! z$y4a*?xrgXwK5U(WX*x)5nB%&Ulcr4AW>mV{zlkbkGP~ku7dB>x%3q3)45;1IMk<0yuyD{Z5@Hw=o_W(xtL4 zP(8z;>77!|X-B)w6Ly>KGxhwn zwk+)@cbMF!KXF{}psoQoFkOLoCsl}ga>3L^cCrs^Uu+iVUG&VLa)r2$Oo*d{Aq`l? z0<$!8bM;lT6jgYX<*`6aZr*$S-C44noeC&IEHszREdfbR+0hnl35&r5DgG zkYyvP)fcnL`&fk4uOppjEadYzR@$j>z4N^p_I0t3@_lIF2^Dy^QG~V%$zve8H=6s) zqL0jb?SX~mfDqSAd7T)0&Ix4ZE_fn$e5Z0NcQGIPpO~oAovohc~#xup`U0h8yXCCMbgE0MkDX@#Y~XGiP&{+GdD!;r!Dt2F_9`SHVmp7IKX&+pnTwkkXpE?*lGpiLDD`?3Rm05j<2Y`wxPY zJ(OpIXZ!sKQ=7>jEqVVU?#3Tmb|^rud&v7Aaden&&s{K?m3UDWmp`!iAVTA0+#n8G zmdHIiH1QM$C^cu>;HUe#qXLh7BOwny8a9cQoD!wv4Y(;4){XKp)Mp;iB^UJmpxpM3 zSL&HJOZH`;;eA4?X#C=UcwHR&giBW`LVB2Tk~Y)VPjX{00vUlPCBpTzC?oNwT9t|+ zXt2i-nUDQsn5MsH581$L@cgFg!+S)%xW9GCSM4!Rs|`uumHe0fOM`A><+t>B{AJ2G ze2IcC!>NL84Jp)z8u`3*e@`JG)H3w@F}MxyV|KM+-|J27QbxDmgbGc3>EsHFZoE#w z$r5ltIIj25Jd^Mzq0KH+)_PB9B}d%YRW>I_>zHR-Lduagjo_sLdyY_yE1XaFGi41i zi*AL%dz95=_=<)R$vjol>(=}WB7|+TS@QF`nQr5S#vI;w51c%*hbgUn15NvI)^{Yg!{T8IQP6ty%IZ{))RYdI=U1e6WF{^KC#Df`4qfB|tC#cP@kZ{mT z`+4B%u6hli@#jvq55$3Bqei2Kyl+KyDKL_y=t3|}_aE+<$EC|t3Hs;7OAuO+=3fie zxi<3o{?%T9ObF~#(vYyvd|#7kW8sBP<-X?7Q z>&~k^fvUnSB%v`scl`xd(;J*WATOyg0!;YFcz=e4Pr`|Y`o3sNazDH%F6MkW_wW!h z)F)F(Ps^xq2Bg&Ce#L{>;S8}F6t>uU@lu;S*$tY!%g|#HXsH)J5O$mtV~kjX|JqZD zjD|pJcED9{xb=^fdzl}aeY8bm^i*q?}D9QI3TiM+aIZB;{;Q<M8izS@zkO1h{fuLbXp63nK7N9zg=dpd&6#b$Q8t&VFS8yMvUD zF7kQ`mks(|JBUSWzCZBrTSc02DCv_yJe)3$77)$ zbfD%Z=xNPO^cbYTsIi=Awt-l8*%2GY-BHUq{s>-WLo6 z9_XGx6T_1bC27fiJ?BAr;tuqSv>UKQlBA>s7lX}Y zwpu0zDN+^w^Qn5ow<$hc`+=5oEy@}#zi^lrIeavScn2ZP;+%>PqGFwFQj%Jr^x60_ zFD>BDr7sVSe)Yi4Efa9>BkuqU6rY$1yyJD7BX#_?$w@P8e`Ny%1^7PswI!ask?Se{ zQlDkycZ*`+VyyW$6LE_gMMytYZI9f2HLw$^yt+(ttE1%il}9F>(W=@!?IF+r9vu(@ z;nN+Y0yK)#WG|We4oW=nYl!~U*PVqlqeIv#yHEL zPNsaZc-YJ#NOFR0-oNe zsqWUx#-58WUvgN>>X|q##sazQ)PuOas+V($hKXu?5Axj&40= zd*JwL2YLLKorjrv7|8&zP_wc*`-r^#bbY%?XLLQsIUa@Dnz?E=#v+Syn|s91aWWvB zjkiKxV2Es1*-;(Hy2z5kJ51vl2|6#|>VDlrp@ohR_ldMudGMZ3!Z%T{UtPbrEe%NAq$fUUy&7oPfMs~{xV@|sj%mM=Ip-h3T|_V!sgz(s~&dtpIgEM z9ZUJ8C3=kkGhOq)LPE(eQij;49|+2Fs@}VY`JOx0WGC0F-fq&U*a-qUgGfw@7iecn`y3fAFG?2ktrPu zG>4ibg^UaZ7jx?3Z3AEDKCI2tDF`_i2u+m1Cei|wW8`fS`j6Mpg}#msNNO;u z!?bQe>-dKTBl|a@OHt{Ko)`ES5?Hv5S~zy-B_@i&D-ZGjzae+?eG4eJp3~?_E&El< zrCzn2%30VgDGv4e@b5IoS$Ii355~$R1f)j@o20N`!yL7V9mQYaX--&8g54xC9jVEz zw+<#$XfKg!krgaNR$?mMGAOYOI0udO_!uA(2|9KOvP0!$*_+**UpGFB3K$r0%lG>E zo%nWBs_leW5+^~=*(8&l(1N^pixcBkZ=rBB*f1uon&4pHcSBY7&MSZF4XK>5dx7mY zq!cKeU6*<%*3)jl{e-Qv3Cfr=Ph;<5hpcT8b1iQ?gVZ|jo}SWu#Sp42hjYrMA!ZhH zwF~iyIXa-RoN1XAPIn*Dl7TMG#Gkh7?es&G`NW*}dQg1P7EO~&b_t|%Yz7?ZPm}eY zZ1EYbWncWBG~yv#2AX3<$AecaAc)s*Ei`Y^EFNXzr7qQT!*os6{VQ*S0Q=nru4xB4 zLL6t}G?>EdxH}pQz|zDZC?0WulKvvAxUu>!u=A9I;cSnX%L z;HO`}+3`&Qu7OIJX!f35w_Vs39ru7?*y59L>eY4=Qw7E+YG?mdck_gS${k|Hu{4>ad`bmN&H?XiPr zGU?H|!tP(934IM+2OOInB>X^a+fO*9d8QJIoo#El#+{)yBryn1p(ZdqI z60}S1z2^u~uui0&EMH;gyTwZi9EM3Cz0!5u#yPv|_p7{=IXeQ6@&+bweZ{t zpY11X+vdy$bf<+lVb4Fi1Bh(FpfM%gyETS zWM&U*yEC|+DSa#>my+(+>y16XvtJ2S87^L`I6VC%i+2@4y``ek|@joC-@Z2!0K5WSu0d-$A5(wmI^o91#1Z#O5q&?gH`tL2GHm z1;x%+H#K#tSdCaSZ1P6O{X3?D2A)!)yjeL*ud;<&;m{kG50+xitess45XRj^SR^a- zuHOm}f?C>`No2Si5>gwBD)K`%!5z^S>3uJLnQPY@6A_J&-GHq+qYDFhGyw}S#XD!I zb3#_=g38)2L|n@|Hq@5MrD{>3A9TmI^h60tElbvr>D6ZrxYPL#eM%0yopN21pRDK< zr65@4UtnuJPOLOTEddE3*3TLovhM&FnWu7lr>iIt1t>RkEb)oU#OE(X=(#2m>mp5a zA0QeSw*uc#@?Zk9tfy%RffdEh+3)oz(Smi0sKT!^1r^zKp~yp`R&KZFFZA}1?*~w= z8}}SFD$FF{4}zm@bL^I4+ArTIov`~%f%JU{>ftx5S5uxl%#uH1?XjbH+tx)8@KIH} z0(q*cq#)X)?sZ{`HX=8F^n}|lll(4C=i*yo@oUAOvJSm63YzPEA>4SXIaUq?dU`9g z``vR>@;X;dB@}8%=Y0E$F1w*slWX0*yi!^rs&*Dv(CB*LRAb|V_lh^+2MU?Q2y3wK z;Kk1Bz2soW?+Ri#00ew%^K8wYNVQp==W9J{I~AaDL$He-Rp!)ITZ@-5y!V28Z7&ht zc|-Ma>-s0rud@Lk?2sqEqU7%KQ}6Ev2VlAp&>;)q!9QJPn5A068W@cmdcxAaUO879 zDLGCC&_El(opm8u#SS(fV*7JYc^`;UN+NerR!Zhfg^0!Uu#Y=rEt!a3OYFX*2sV3& zS*i2{zNUh`1AMqo*byyyO-pm)lpA4yYbzH0F^(Q0T+*WwrWAenXG|Aia9U0zFXFsX zpjj1WwaKp?nDQDpsn`u0l#KT$xyvOe#ep#wp!SNbb@&B0G(2`6Qe6AcP3|^@9;;@u9ZuUA}dN zh>e01x-;c$a$dv79KqUN(fEUp4->1`eY*;s5=D^r@%lTHm{DU{l$-#mR3T!zxE8On zYi9w_m_g;-3ur8SA=9W0{FS{flLw&bH9jCv&S2Ne#lfzMYaB9j=vN!UKp*AXaHBCm>X)%-6 zKA6>tq$0}mfr&h#ltjn}$|?R&^L70Cr&5ClxPnUE`6{Q&WbgdX|?Uq$V z8PWSKPS^Q%Do1Sb8VLMpiLALr%NVtO-M_d79<;MS7qG3@@81)xnv0pLXn8;Va19gt zv$sSj3qWbU<>o)SYx$~MeGLg zJTG}fQ&N`f9ol|A+33&UFg0>BT%pID8bwtbVmZgK>hMj>M!NA?oy@``d zqf31`JU36a?Hk@ustwzJ9gY;N(-b*S+Ogz^mU23rt>08}vhSXW{oWu?q}eC8hmyzY zdEQ%@)IXa6e6$4hB`Myg*gPTv6^JqGRVivtJ1d7pcL?+IB*Qfnn_$AFH1opf8zV6q-Cwo5z+ZMGdrf)W14$7khxO- zQjDB%3T|_y&_U?LniXeXtRun%-uFRFU+%Li$m`;ppGL}|{1;gPeV>FeDBU~7Ad?WE zQwpl{`O))HrN@AmB)&m44$;2a$*d@E*XG*FTfFMMEAHyfe^@EY%F5^@_)=&LcS{SrW6|sQZm~y&|)wYzq{9?p-*?UnC_d!m{ zu<3^C&($*$0V{!bu@Kq8Dccfm`XS6M0df8C2x4&&>IUegQybDV;MlBdt(BRw<+T%oS>zQaj{n;1=q2Ydn134Gf?lmh8pkh{sR8Emnf1nwsg@( zBZ04_>Dy7@tg$Xpq)Nr7wd$%C1_v-o%R8T)5f9mgj4h)ycgyCARt``zH=58V$zDzn zWH|qyGBqDR*Q9Z!NtY;!Pt%h7K0!)Mhz)xpn z_tZlrr%M>J`j|PzUmfs4gKWvZqNlUoi-U9zfls(Mnn8G-lfRgmZ*Q8fC`bEQeK1PT zKt~j9M~I%B#crzv91iF+Pi(LOaK_^`Q66G&G3U>^FN0^_Sr*ps6vjr?UsdBw5*GwH z&!0HW33EtCJMUzDcM-pA#F{n9PPs0kucqzunQXZu*7#Q?qBu<6NUR6VfyUfb4#CtW z4n1wxr_@ClUpQ%R{&}&W8e;-T@d*hK^wmGL&vFzkz~76LBL+UyE$*d11b0?97Ku;= z?Y2CPLvXbU?d`I5!C&6UTTAEmhMu$!4u@_`N%-0+A9aw@hhwY~MXF5#;JJKC#EBRS zbaG@>afE6gQ@l%a6d*v3K_X_RL(rA(-L4>Z51zJAxlz%|3U-Pv^Kd1_`h;a4dLV29 zpZy3L3%zpjYs%wGAl>BqteL=T=@76+e_vo(-u@AbWTYCX3eiinQ+@oo{z2^i%jQYp z*eJVP$`o_+rF@Lren~7(iVA(Iyk+gtvD$3aEXCkLe0mWLUWQ2vWg(2}ezHIWz}gG-RWoa*I~MTkrHif5uElOt5?&hCFv}}bxSS#Cyjs`aDrP^V zD&F}VX?T3+ngT+Bac}v8*#|wt4x;LRG>!$Wq zgdCC{ZryLtNf1yGxu4|lmclqhul*1ZZb1>_>3uJXJdOtD!#-SLytDdXXAYf|CDGA) z7F7f*Dl^9&zij|9C#0(*_soAo$8+eN-=Zx9icnEsBl{@TU~o|(rk450F?=y*Jw_FK zmOo)n;h-R@+~Vq!ant=@DJ zvgU?vi&g!mvT1vD6KkVu2E7GA>S43A)L_ICIr+t!WfN_b&$za4EkJ;e>a) zbf&+oAu>XUocuLn)->MJk6^WX$UJL=PMaj@WmM|h4;Rr28D+@CkMUEpNvJDKe%a*p zZQ#Me+L#|53(-8UEC>2&;Tm=`F*BPDqKgHhk%m}*4sD()kFqH2vRy37wYoYT>fB)` zRiELx`tAzHx`T_6U6+o$rI@@gb)XH#ZQRx>Ti^2oPFLiHd|?eOi_`}iBH4CGPnX0E zXiv8dM6gMURUO%7?Vxa>3+ehTqO5l+k9+_T)qjLouw7*|C|4||vsiExpvy$tBR-#DrK8oPcL56@%@kpxjP=F6&gR=) zeL{V+fI_n7c()8%B^JqatN+f<7lvfaD<=f|*+?9Yn50a(7>vyF{W zK7fyq&!0uReOKb`f-hh+wJmD>p7<@kb+&aLh$%g(?ESffG$4D)$_P^C35%z!W{HJ$ z=@`sXJ*bk!`zo6{lhSnk+FMwJy}sC5*yD=1L)`M&$K<*?rK((mEc}Sq5623~9|QK6 zi_~fp+=TRgUe#pyB;hOk+Q(q$+hqk( zFwos7=nyd18`rY@ifjcfIy43|-bfmN8vN0#KLaA^fnE4`El*M{emL;|rhQ3ff#1@| zr=NHQ-Mkc>%OZW3Fjc)%7#WdZ*H`M(eS4refwT)Jldz;bR644oNJP~vNa1!D(?a{nqk_h$sq3nb!;OnoRGnj* zaLF(2uow}QyXIBBeza@+D^fN_VFnVe8{DcQHOcIXjbu}h2G*k(OsC_D;pJ7DmmZ)r6<$O8N&@a14-&*=`SFMKfU2P8OJ)1678MFY>7^!?HGy8je z&uIA+%a?GMS;Ev4?UKxr9qbrL4C^IYpvP5S>bJ46)2sOMpcowc5+zI zx-s|$Ka4~dR}LvgTO1WkT+Gcnlm%JsOJ&32%>^T~;{Q?ra!yz)+UXK($$K6Bz(WaX zbiiR6m{4eL2eh+r5?x-Z5s~8L3;qdL+E`?Yj-aqL1>RuUxKF{ zNx5itu*nVwaw(&`Gg(x1s%DT&J@q0vg@_xgjC-Sihn0(47R$$QnQe7k&yvM8Wm*Cv z4k|A6`0XC+Q?LU#>+}Q8iS$V@WaD4QG0HWZjYbeuw}xn+0(D-N*_!aiJd5eYX5#8E zL&r1Ra429bXd15cj~a0Xti1|uQAE6a>7n`r@$GS6^Y=hyvC`JZN<@aY@wV%YD6`81 ztx@m!q&iN@AWU8DlsztqL9_B+342}-Vl(FqA!d+0^av6;kSG6CRvA-t32wS(F}XWo z@sO-qB6P>}qzK{yf1*hMdl5m@3H`GM?D8c}3&*~Y2q|fdzVeK)!h7+8W+q3BBb zd6or50RuRXicE7sdu9^3S2f>q2QTIV8%kg}RhLc+T_ zMtNdwZTGdI{(De|%lykW4#zYwPuL{fTqFBzo?yM2il&%gYCFw=^p8%}uAHD>ale)o?PLBw~fX_4={*)-={2omDHx(LU;ncZ5edMBSsxx*Ih@mVaU&ING%Hbk&IR zfuH7EB0UHNxdL<$WMH2)%}beqxb+`n2mq zGkf8);7UdUv)sOlJ_7(kdxQzUry?dNgH@e=$M8eO`qTZ@9qFS_Hoyd&c@+#@<9$VD zO}wugZ=8jD=y7yKTqclv3l9UTkC2dz=nrw&_fSf8wyf*YzT%KVnd0QN)Xj^=GZ$FF{w-lpJTzZ^2Kk1S0Xw)~_;+vfTASx5wF zF;f1{G`u`rq&q+bhC)TD5GRU<`;TyD!sK?L;h{L?&_{ynscUI{3Eg2I=PFUt7OcwW zhLEwL&;b*}B=qUqLYb_yz5;iJ^p!+QcmlsAgaw4n>gT+#B_o?+xz|ZjMU_GRkW0uJ zL@{fIMCUbF0LIN8u}4x}#Ph7qrKoDA-b@m%^k3||9`-GC2oj{h$&CTc43JhNc2Oh? zX|SZ86E=iO13vRI^d;DP=x(vSotM-PkYm#YM3ecU%H=*-Uh8g$k}|7WhV+NA>9vIzu2k67n(|xZI4ig;854+IR*f4a+faUZ6WZr=l2E z{vAY{w%F6{8iG@2NAwIzx!_l7J^d0bB)*Bpy1)IJ$1U%ARZv?9e5qCeZu0)zI7b8{ zPpGc#(tswqx&E^Eibt%>2(l|DB0eZHomCTF!SaiTWPZsFRJ#9On_`Sy(J98ZYt9%U zZce2`3k?aM&L=RI2YV~8@b>^M_7c&)guRW8y*Bj~Tx{S%4GXxyWUVH_$iHLjkwF5O z)HR=Vygt&6*gWZxvvXFn!adHpzuf;K)0T*QJHZ&BW(CaZLwZ({x&_g5Ux41wi$4fJUxQ* zUZ@Nrr$Dx7c@vr3mi}WfVvtHt6zA%%z6jaZL0~9Z`76tLtlBxbeG$VL>C*b-_UKG4 zpO$0g2JPx~tPO|=fWyN8DQlcHr}gzTARriHxU1t{-%S{xEo#Ev1P%b;7+O$W{r9{f zh+7eDToE%ohnL$`EA4ryhxp5B6bZbxa&*rK#nKS`$U*4{S! zGi_g=M+`x1MeRp@rO-B$&10c1)GdK6y_F=~aTbYiYd^}Jwo^v))#^o%rRZaUlT{R8 z{Im{@NgM2=)ZwI7a;AVV9Ls{O7ebKS9FVkOhZgyw0*zihKkrU&drs>RL8?Ko^! zGpD->qs2;4sx)`Or5G)8vmQ2Mq~W0to%pErokGtCplewGbU*>C`?<_^bPjqxntEFR zbWkR9a=REkbab1jt>F>8a%`uSxHpnHk69(Ah_?~eyUCptI~+%C>w6 ztm{A+G;lk#3J)WP2?oZmYdWS52cR=%Krsml;S@s&5oc4`l6E~R9E$JLR*&AKNCaO2 z%&O~&;s`9Mx>NSmB14PgO$qBG>9BPcxdBKUw4#X^ma#Qet31V;H1icTvavBHmkU|o z*+oIQ_e&&fv2Wt))1EEzn-O~k_rTmQJAR|ucoY|{q5f^9#Px~4(yKw?TObIK2J&1-cP28 z(Bx5l{UAZ19U))ZQRd1@NQ(}shhCczhy;-!hM4WWa)T6S9fQTT)c3o{prMLIB*H#a zTyjmO?-ALdJ{H8;I~>v??mm|}x+N(FPrRv-^B#n=s}}i+E!&(2gZ$IS)5%RYcY2?4 zxX@-?i!5%vHaU>vSC9ZqedKgSYmVMDoEtR8m8CT$gkBe8N)EGLm!d&H?_Zo;sVdz08YQrgG4SnR5<&-5^b2%DlTLw!Er0ddF#z{%j8)Yoq z_@BH?+QLHux^CM0N!D+9DtzV(C=-Gqkm{1k#tX3?P!_{`g`GsQFOzAc&}X*A)$P^M zrHMmhu=0l-IY+11l_(c!J-hjb?m5W`YdaFe^ooeb^$t)bVHHAx zNU7h{@B~sfKh#%$n4M^4b3c>&sr>wf1>0Dy3PKsVm9P$CX4(WJ;WYvLiS2{NTb;*`A&X1~R7i5Jh> zfYXRWj?lHb-{QqA=6cR90yebDxtr0wgsHtw9T0V?Ha5vVo#=znnL1c9O1CmiY#-z1 zGdpPg)CF&NkpTM^4S|6)AiIPK>d5q6THJ;>#lRz&dTfkso4%4Y2rENwZ!pxL=2B^q zZ{}fksdQO5Aty31$iRet7#Td|h=T349ouOm>_GK@lQ%WcdHRdI2|EJIOo;`_KB)kC zh=DA7-V3ogTB}SILfflPI_YEpgYW3m7DLG2%tN3zS-=7$Lyu7u!Z8|&jbQDr0Er{4 zDozCJeq1*_A!pinQrMf{w0}E}G1+l>~+@b+Z^hcg&VIc=2o;E|L5INXI#5 zRI~xN>ooNMz!`?&-vN?X6OIf^p|0##@n?+r)MYuCk7lmZdGV6NzTDfSo=}!MQ|~7; z&koPtv4paET*wQ!usqzD!~Kf}kF&h~7M-NLK%Ber%Kz%jOI?*^Y+kX!5T6UcEK&j z^yy`L-L{14V8izmLb{4OB)@4R^ea`Qvr;uvN5 zSa;}84`vzr8V&Z(Y8>SlO3R0Ib((jFm3_@nN*A%$7b;l)0>=3rXfQV@EDO94$XM12 z{ev&&&@NJgB%tlBxCK)}ef09pv8E(C5M1dtvB#qrZOjcTyrXZ0T)}u?_M<+BmTXS5>*M?!7QJ z`}ZOoMGoz-_E35a61`Fz{_j2hJ%!G@G1kyQ2FXge6Fe8TUT@kHn1=)RQ&^iNSv3_Q zjTg43X|fXSO|fz*DxJ+Sa*eDQ)z|-!N}Z{bA;rO77gXlTW^5DpHHS)mI4wDTlBjh8 z>NnZ*>w~-+JHACL*V|mp?nE0*FCMUD)ZPoIP!lStSNMa$g$}F^SeyXjJ~I1tzK$)S z1%rm>?5g8tB~;5@8q$XzX$Cw~B>)ThPH^6Pie^u>&g`FjTlR$`^Dg(V%)8~kn&cNb zn&byeA^(+mKkVrQdhBiE#?SVNU%<6z!4;7%#V>#U^Ahr)P~1uSe&GaKf_I>(siCQ%VN>ww>tyEC zlEcrPOX*jf1evdj4wQypwz~>5=ei`O?cZdRTF%XV0g{GEC?q5 zSR6+WD!u=d{p$EZez=19+40N4M~ugHBTu@%{3Ceb-FGwOiO)CeBj-7W^%eG926V2c`em^Fm&5A^y{;ecdH+VH$z&$0b46NW>sZd) zU*ZFpT5|44lQJ5+oZI9>bLRq(`!zKggO50n9#S% z^I~YAnP^;GU6kbWocY6jVo4jaoSx2!(C~_d0l#JTR(hT~NG{G-^~F)4``sZ&&ff68 zOf37w18u^nFF#(F3ku$e&Dy=es9*LwmojPiEV@P(8@*JX-ZPpPaPcCh@yo-y0@9Z+ z=9wkT(k-Q}>a5Pk`DO2l4hUX7RmFqm;#a7kpT$4pvX^6pi+w-%^q+b2@)vFoSPA7B`hsc{8Q{Vk-YVObfn)>`-Q{O}W*VH_oP8=iuwXyU8 zuFu>Y8^fHP(OnJm9LLNE9}f?|mKrW}DEviQc=#(#Spyx}_XiZZ8yh-K^1S=!$H>(q zsZRgcIvl-w`VyO$_xLT&xeAXa4!-L@ZSnSa?{VItn3kAsR{+tscQ3$vpiH%uTWSKA~#<+-_aS2`-Z)%CKf&^czbyYyF70lxEXFFssq@KobV z^Wlu=N6yAAM}A19X7ZkOydtkwWd>}VIA72-VKv!2F*M&gu?^#X)pe4Om!ihYn-_Lf zpC{_!3!8tg>#1<*3Vwl~>^*moONe1A!ogDdUo0{IVyW>LON;jZVk!JDmQJo-F0dO= zKflLr{*NF1MRtOV3-cdj!99PGZTZzeZD{z^(QxSX)rRhdhBGLkEL4(s)`v8kWt7u{ z59to?(wn#*wETt+!au0jAN)}zmU`87{%SRatQx#S@B`V~bB}eCWFWzL5XPbRqC4UFwbtQvuuM?F6s;pXS&o;Lhm`v3LQ9}@ri>5A@w7Uzk#huvKI1&$s~bM`orqg{4l z=I&dk=!&DuH{Pyo$Xq@5eB#CUkBjLxyhm3>hcm-3Ae>!~+8n>>mj6HgDEsE6rP$e= ze{#;KN&F+m0Z~HGw3>^H|MXuF6Wad;QQ@zLJ-F~+5cxcvp4m8AUjGXm?Fd(U0%yFg zWSYl*u|CyCz8xnne9f3g^kw|POSXqq9{P>O%UpeXI=nH$SwzVAb^amMDy>~FzC(*gCHIC*IO+DwL1mi}rGf-zPpJHHWmV|~YP4B>@PsUlK- z5xQu4^yvlJy=|=XEBfW%{Ip<7W@RX&udFg_XE{DAD`ZWQygO8=0)M>Ss{!0L7pmL% z=(M|)iwRlov98~yk#Ul(O&c8$FryOuS&GdRR156=x=`G|`QBP$|C~fSLoq{H9mFK= zi(}Y{E6|PKdR}viJ2k-FyJ;=x(8VL@ur28R_MR$#~2d~qo?HkVUd)4ziTsR zXIX_hai!t^dsH6?{moZ=Q-m8lpD82qAkScHHTj@{?^|sH-Q#-?@&nec*@sGfTbWQy zYAe;>O7}Q;@L?oI!K=`*_!Wjn>F~YjbPpNp)~OuJ2Ni9mJknYE$C?!Z{X$xCM$E&O zGBTO#EvNb}Waj`v1vRtugMvx&vulE9c2_P9JuC`&*G3zZ1Fw~toJDLO$LyTV2m<)) ztqrWK>g=11&nC*Q@fG=9%(ga4AscQQ+^7Elcb=asy2a_is$P$NA|1Rvp{@$MU>-7c zIv}bri*{oL1J80gq0A;?D+K77xqxoO%!MJ~Wj^@8E53y;lu1qW*7HRRzMboMko3ka zC#HHLHa>L5GDUyxH7JoV_N_2rAgWOea!tHiW?+cLTtZc zd{$vj^fkT;u6vNjzMd!`Bh4g;5>FR!38Sj5+x%>^#3YaHD5zbADoh zPw>7xrHJqiCf%Z}q~gDN+81puBptl?JM(VPPUcph+>o|@2ty~pfcYy2|9LxG zeIq}hB4JszS37U+$x~; zUy0!6bluaK#i z<+gq@P4HZaf&MKi)cSG0=rXNAA&_9n>_bq7?}=2FHhogD06e{zablrarXcVZsLnO-SuS!LV1Cwj=SCFZ zK}aG9G4z0Vu|?Sd$gm$zH|n=8{5 z6slo5o+GSx`23FPl1%6Cs_n~dPpp^n>wors)}NXftJ!^|c%>6%C z^VTA#{v^GULI8^M5W%e^v3YNadM`joBRCU4?pj*I=??K1&2YLa?sWcO(s5Ra33aD; z%3>f{IeGS7EPotMx{#=g+X0yGeb%l9kgn8Qvr2+8t#@k{O~xyBhZghoR?8);FuP=H z@^5b%wE*~GmoYcL7Fd~Nu~mI+jL7~RGDz#GwF2#xBGv&C0Jc>7qRc2g0Zw)2CX7<1 z>gI5mI;{|*Igs{kX`F$*Ng8grG2F0;2s%V-N_Bba{B+`^q!^iCR@!Re#`*MrkBL{+ z;cIjTA2XA@KQ>MO9;W&VxWd~;SuSTw4Yu+A-$US;^Uh9y=M9!5hL&jhTmGwPa(#ut z-q#S|G$xoBe>Cjrgn`!a{VHRJt~1GDI&Qw-Ps!d9D4kFO?;IqqN7T;oD8qj`wyaJv zm#?@_&RjD$4W5c&`_E-pNj(`p3fn4bIeT5X=EFlsmbZ-P;bdFqD$iHV0%&0=E$vuQ zotB=h@7&XA-=iz%-~Cbor??4>S@C&@+7hBC@})zv&6s~u>3fjqXDUmPb>PHyO3v7K zt-UGAow42fVb2X*!~e9z=V)$x2=%eApL`{{peH_t-PhFX!wftpFHB|WwZ&HpO(*M$ zivI~3Tk)%m9Xj70PhM5+f4;wC@~bC}A5p|WU#5n_f5vtnGtj0lIe4ZO&*%{A2m#5@ z=Bny^K9`jPpNGzEpipv#I&GQn$zP=%hC{pR+$-hlCF{LE45P%x{I}u)eiqY(=+4H= zBiLdx|2LVn3vMoiuCduI!dPHQEl4!h@k!13#S~yGQnF6&JdJw!72736;?F>?jKhF} z9_i838op>AeCQ2f?JZ^s;?u-R{tUKfheUUus)1{xYnbPAJ7_W@f{PQ$& zh?=YKVjOJo)t{LP6D9bc0V9;nu%%^SMk#-L&xx`NSREbt#iv5kyfPchs-a5MTIWo? zt*OXop_S3}Y`MIa>(i_l1MCl$4y^ZSvK>{WLb<5iquq40@mD;+cM4LwV!ZpkXH4aiiv4CLHJx~ zvASw{@5iM}S`evBOY5mtsQ;u>AHGqk{i;^#foF^ddNazAwEoNX&MniQnt#sx^UZO2 z^?l*|&C<+7H+YVF>8_lb+2r#5W~At)ye`~3(MJHtanpN^k%FRPeB`kN1F0bYMmN5n zzH}Sx-piE-z+%9U9zpzNt~Zj;v3n=BwLguxTGkxgZC&s?i$5d3Gx19fyt#EbB|Utu zv1*v@3Q+OYurL%b&`EaaYKG^dqFOK24^LL|8EiWXw?i*I-RX6y46bEuS`fn?8g8!Y zB=aKPYKJMhBvlHz{;fP*4nMcrL{NXg4Bv}3dzJ|=raw7wnq5y3}2J|JI{&tCAvEz zf21~(o6iqrZ+N*uo-NwHzv}2}>WRTxffAP(63u)pfw$)*e6p>CelO%q)3pev;YBt zkWfSfMJXbJl+cu3rMJ*QDG9yz7D5XUY9Md}|E~Y;zjycU-Y2BY@V@8FH*@Bj@0|JG zGwrXnzbXPMYT-t6Pyzxq{6_v&?7*p$f`Pb`9MaZ6n;`^#VK_P0I69jc0X zaskqlB>!a*UNNbOAE}D%x3wEhgU9ZHBfMDAu=k$BS90L2_`^Kg@p0?mJ32HRhgUj?HL)_C{Ob+a~F`)44%7s-OPmM)VXVl z_gQ`vi8`HQeag*to#H;!=TuNlEsykCjhXb7@NfmCpKs1`hjWW6>D3UnHhZhacdTD+ zZ@(%X8NlnoxB3i-Q0txTPsQIRjwHq+Tn~3P@2Fwhu!zI7rJ>K9uvHrj82ReZADnQs zyUqso!C=7ETMN83u+5%tKWMPyVnET1X0GD5Hb)s<5bWg{Q;tu$7~qq61MCcepltC` zx5xD;UUJ;?V4D{;E_bwIS0lUM>dr-6yAfFx4fxbuePlJ&HsOH-qpLSE20(;)pTkWW zvBIbP!dY0F#jvQVBl>#z&!0IlbqQma5A4|N(?C-8a)sqJ1h7}Usi^$2q=BeL-Wu1& zDh97MJEo1BY{;wL$T{*p0)gPWQ9vJDM8g0s?`RjA>o3hGjP`k2&$-FAAlV5{oVZux z=S?BGNl(TbO+6req-4Y$>BK8qt1XwWV0GQjEsnY-lBn=Yq zNg&P-;Zmod6_>uCg5Pf5VSN({T?|)cdJLXh+YMK3r1_@B>6|MxPKLs!`0$4U?tq3_ z-F8h_nm%G+oyDj+Or(rwqg2|0d?F)Ly?=LS11tN{<+(-6qkHZ2T%FkK3N;3prEa%g ztlj*$D#y3HN%|SJpIv@)0622DE(N(@gb7GXV3%W~-=)Kle?6ia=%UePOiuARuyHI0 zUv_vb?cTm#mmm|w1^J0pY=NBxZU}#@ug0hZYHy~Y4#aj|V$I|CHX~Ak_g*Ai@5j<$ zXJDJk2uO194t1z7VWEK(g>BBLa|NLw!1-;wpU^e5KhSNy3^zW&B!2ZTpjly=|Bq2sBkY zMX+|KYE3c|nj#coas}V%jQS)tLF?R@w-C+r_%xIj=Bb6rz$NWBm(MZ>3u9G1z&}8S41}ivpxjikx3Nm zRO>vUG6;W}OZ$@wi@Sb;z{Snd{O_b*8*k_(bRfVyOL*~TS41$)+MPfeZ1AOh^Xfh( zZ6KVql;OYDat$EZ7={0o!VA2xP7$@O3U48|dck`HZT#{6VYy-3Nog{wamc3F~x2fG_mLOo|Q66lN% z1xb@-mU|n%c*8Vk8=F;1Aaw($6g^ytkr=q0RAUbWaI~;Z0_w`WzV>wV zVGgwQYL=yiMtm|c3jhNziWVfgW&7Dmk4g3ZGx%y&%@CHBh)l!HJ+ZHu&>gefDGy;= zNSIhE+lmDi`ZzisdJQK0%>xpt31|LriIc12_l`UdSCKo!UpUm6%{+W1-gJj|h2$+K z#U(pyz=(OyO7&x}S$ahMMzwcR412h1ytE>@($eQM=T#Ms*kLPkkQ6zbkjw;G$Seb{ zx;4n$y(rD$=2+lyYSWcwAw$9~uW7lWU|t}1;0dR6Pw)quCogg{0FCL8e znXW9H8(VMz3@-KaqAxd_Tx%^Eu=UJSX^ilWoUd5_s++uP7*}$j7)&$9KfwZa4R#DZ z;{bNeb0sCGS423%`ChC~dOkK;8kc&H=T{zS2x8hA5N3`VFLs$excME1e9yo4P{K&E zrrqylET+Qlea)gv)vF6lv+F9(IbIU;LjzJH{*GPM8xC>JB`ywneYRSkCw9GT3s#=b ziW)KGMcce)%gedY^Rx|@G52s#2v^`TYO{T*2-%eb>%XZy(~khl>9@m^_a5#f8kc{V zZO(xkXUma>4Cgl3vzAb>?!l7zx!k*`%QgKDdzsTgk&;ZY5jHPP5bikz8=m8>7Bh=a zi;mj8;xX;A_$N`--9f1ZH%bBpqije!M|4q~eT%=T*irGaJ3{(JoGV){QGg+E-PId4Qp-01;Oojx7aZg^*PAP@sj8|*b={(Wp+wiRevPv%8VH1 zMM2KAV2Xay0-khpJCgKZ$6))dDY;k)-)A?~iN#`0*gzyfXc?_Vt7bv*lQ8S0su zrq(Z*1#Ny6W~4^8A-N##X@kpQj2Oa7E+HqTP-?((sRd%F ziJjI&eT5_ptlPZZYO*SZe(4h|y|L#8E4ait>{50`nm)+%G63h z!eK~Sy{aCPTaC`LJ#om$4c9Fwm2{+SC58t)7PJ&A6@l~q5|+xg?bZWr zJA-M|;hHVY4Pl2FSGIy}i<_sv2bZVj&14)tjiT-9y=(!p50<}^5OZGM+!UQXlOEg3 z)TJs|e$`n%r770>A!z5Ea9!c;L*Z)yjh`?e6e<0 zUekzzaHgPl7*D|6eHjcFgfuN&G}nyh2y{`lAbJdnG6H`8nx(yELNfqGc^pP_LHeab z%L#YH61EY+h`r=tJ>Y;F3fW#bRs@+S!kf-lmxqjd*Q^-h+?FiSorKuJ$04?D_U{mz z@$Vt_A9o0kN1|`hlcD~Itt<1ssWLa!6yFiJJAL)^X@Ro)jQJKy^$l*c+{*V!q4iTz zxP4#cfv*Vnw@@E4%FE%Z*Cs*tLR8);S)SE8eVLXoS<7c@X+&2HZZnVEcCK7O=wf;^ z770-6)zzDocZu8J9*S5_B7_j8*^|{nafBWS?%7;R0eWnrj6;!I#i~HqK}sI*5IegU z*yGQNL0WRC96j1fn zQX$%BW`DwaOfXNAD>{|th`(79xtZoubr2a^O(aAe?GH?3d^JZ`O=%uYbF}^d9z{FR zIK*&9`2)+{)`VU2Q-K@#R@QDlcp!AF#{TGeO;u#W0o{=m4ql;Qj)U9Mqigc_R#^uU z_7?Xhd=6uQRU$-Z;(n<*r@%L4)rR*ORS`$C(b_UUXNno><}-4Vl4e-7T}_4uR}kTH zaM4dR8G$o_{=4@!m(iZEg&}PK&tbOiM4Qb~0btR^XHjfAg|QvrDuNM1BRSDB@J_z@;jt?%|6JWQYH-B!->06nBp}ZRp7>M zm%AlZbU-Tw*jK=1+$R#icZYbjz}5M8wAE}-<%;=U#a z5{A=Zbx1Q(1)`FeWQftMAwV8aM6jIPP7}J^St~w51{N+d@7Kc`5Bb#t+-Zx0EJW>3 z@@kVx5~J}JLHj2FoDQ5e;^?RS18es2@1+$8nDS)silPs|-6;&fJpn?|W)s)K1O3}0 z_EY?OXWH1g_C}8c7*4q%*9^2kgmvP3?>aFr-GV?C1KA{7#`TYQjqsiGWY&eAYra5 z;L)A=hA3t(jGtlP!2V3REUBU-uBZEEr?cUEi0|bP_~}25R0=#(vmor;T2#csZzwI`OAXJb>HNg9%IXm?kY`Z;Bhq`IywEpbxk;7V`1#w7KJ{rHKxTlCTNs!)3WWK)Kx3&4i)TcTP z7!6;u*tZ6{aqn@GCY*@}NGC`mKkU}Vp+|q5Js2b?0yel?IHq@@599~&NjtE&SFd`9 zxy~D+_edK^Ld6}XnXgiyJ#0Y-ET@Q_V7ky1uS_POhc14b;1sgO;QmdlMK5%z!^d_) zm)P#rC$p$P@Lgz`PO7lL2g0g7v!guj6CBWx1%wL#l6zyRJ>Ko$^17ci6Yz7(K!Zub zp60+7L7uOAr)pu+4O5u|*rW=L$7deuE``KnDv;wQX^R8#Gsr$j&13=EC-Z0!iLL;T zwr$IL81IDd4{sN^qc-FuduYUs{*57_4YSgtnVVC+BVAfmXI}3Q#rC3Bjn;V(kdWa9xDp$AB-MS^WLv?}TSIqD{@an8XJ%z~N7= z9I8S~hXKMyOnNn7!ypy~W8sXs=Q)XSR1Lhjrqi?EBcJ*S8w>ULd;9xq&5->zc zsrn6}^yn48oY!d91+3NEV!L^-886fA*{nvpmPp)3a1%>`(}p|^Yi=smBxal4Yh`%o zQ;lW|@0{Q(V_>199P!mtbOt)%G#5r`ZDay#J zYU9l9yAy>tKG*e+xJaBdG@D0K8MQUde49oxwD>zMW*4SWXAm-+J2Fe!W)4o))-mbF z#;Ae)N~2eM%c#15;Rvu#M#1iF@kcSwJY0p1U_NxYa=78Wq3NuNh`r(_P`f^&WLw2eY#xX9CmP!}+dzi;*^hOfhMge8*&@W`++1`KG^wN)9UagL(W*c@78k*O0jyond_uyhQ8&jSGdd!lP~^D4e^knsB$zc3;i`QK8R6y?)8hBG%4Apu7FutIBQ9$S9N}akkS% zp1o0Z3@~=32MOzM>=M13^KcM4!tU0ctyXl{U#M*me;3gCeYIW@=#f_|=lrv$e-*zi zj@@^0sDT&Q+JmMkS31ibju543b|2bYKJcNfkZ~g|g(~2r;@K%WX z#W-3eb5`{RE29wJc|taF%aLF+n0GGBEk$Ikc30p#{pHPZ(ulUu=t$||SD&@@A^7}6 z{W{qUHDZX(!_?<+7IW?h$eSo1LPka>`PcaR6~kZS>&O3)B6CFh_xM^n%gTVcNt;(? zMCrhvk-cc}0rkyE-bZTH?@$-7KS*@uc1>Yc2uMG@b6&|cY@LcqRfh4hJo~L(D%ah& zzuMm^Hf6#WODB*^<71f7owWVxRrn`}L0_g`)^-M@a^I@E06XTR;cgFI%fp_(tGSaZ zdl(85*6JD42Ex|1W0{cq@iai_W&~KCus6F^*%Qx-v`A-IEqWXm1JJAYh(XwVH~nR4iZC2HqG|j7?RwTEn16cqQ z=#|G{UanPi-kPEpu4V4}_ILw_+}?0Q&CyPS@R;o02nayH@B17OvAFTuZu!@@W+Itv zrC$G;?{WMq;7oL{7m&Tqzq=$_XiJBt&*>eo#8Kv+%T^Ejo{=eLi?H^r{=0X4ns>Fg z$D@658%F3Ox0d-9LUv!4BOhio(_iv+BSOn^?C5k7*Eem*QoF7x1Xf$T#a`;}SSf3; zMxn#jF zT|xCQvUi3ixh;<9=Y=!gY&Jm!3h%+c(ua~pVr9I@*A-NOKg){{FgWMpuC+Y&*W@~t zUW@cPg)A%{Esd{!0>JdLb9l!2Kzf3 z;)zU+23>E=LOQ)BcnBBV5QxxK-YCV5FX7=0e%2r!mioCqiHNbrwoU8NeX5CJH8fk=9dtZi&vlpX`26XWq-&{cd zNGxCcb&)hUyZGfb!gOh2vap(54wDzaFu6XI)s|qqaIY_7XYnn!GoNY*;~UU@)T!iw zDomCPq0VAyK>>C_koM8i?4qI;NH~p4DeXZ#j#gSm{dJto;7kU;5H`bq(~c2L$zOm; zS&@(5Xh97~$7I#aXWAea#RmY3+-@C_X^h*8tr5o5+*Qd0yZD1lx82*KEk$9{ZcQPu z@a8n$BGapT-wy+}37EA{qzAcTrYJJGq=Rw;GkdBAX!4+KuQwJHTxaD?Hn3ZK6L{?U zaLrxZ9^XV;WNAQMZ|KU>P^PxF`8kmgaRUnwE7QM>1=%QvrSwf(r?C@dGeu)P-H9VfT-^cA0l#F#7YeUX}TsZRApc)`1U;?V>);4G3Ls* z6hODC?Q00~*edr!&OD6R4gGmLVu7r__C!HCM%neWhE95{vpA7&17u(U6|j78Nt`SFX$(nT!o;UmrEiWtRer}tB|tOZShAVEp7N|W9$-~LTz{{^PG zasBFcsuxo{OaLM4;wvK_W4L69<}Zg;1yETIEAdAeF=cc_TDY1m6nzCCo(36fh({*x z7{y=S>VPGTCKP|S=1j0!=?#~2iYUiBuXGH{uu2ve_NpR(NjZ6OCMb0rFv@LtiOsw_ za#L3>)kNJv8K5r36hg*th7u_zrpq15(py%zzT@m;-rp>97-v&;30*><;&$Y6yDQ}f zSW!QO7d1`Lo-w8)^UFyi-^M+)F`k#Bs3j*qYj=BuMMwQ*etU)e&x~r!)30fk!$#vJ^13z(4IzG z>qQ9^vzYqw!lu?TcCWkyBERXZw<$#^&nWh6bf)?Op@N#4x0F3}5QE%!m5b;=73-x9 zcWPt=$4oe1ByP)veswOsWVHF6#jPeKs<3yEzENl>kC#=#`a)<&`Q2SnNNgM?>0Mi^ zP0AV6ugR~*2QhImx^r}JlN`h)1g1&$tfrX>EUL{=5KRf?s1Drv@nJ1g+;x6%-0f|| zZZFg&Tvu^oK2BOh2rs*6_D+84z*H#e#;V5+*5Sz+IuN3v!No89!jYy@MtlSG?Su7e zC9}2L3{ApIjSF!?rVG*rYtE?2nfK9I9v-Vl{kTWHoht0C2*@jhasTA6VBv2TYb&Ec zBbVd!FdiehLZ@r8VF(^}*cbjHWV=JLllbOFKaIm~w3&i9--LQgg&EB{ne|Ri{mh^;8fS(i@iLjTy$qG0#4~wH z{HQj}QC$dGY4OU?c8g=>Y@{J2adps|+ty*fU&&D&w;kRMW6AAfE`4AxeqCietN5|F zpu4@jrs8ff!XekWXL~Sz%PV{B=k(PH&H==;mPcZO+3idnAM{~fZp&R=6cfqCzwTFA zo1&+ks~vJadYQJC$~$DsbVL>DfVw9=AEd?2Z*tb_t21zR)3~RPyEtSM(qGDpvsUMJ zFD2WQ*>j=S%El709Y&cug#L{jAGRJaCCyqGz*7FuSNZ#bPWEeh%906;f+elqAI5_=cGjQAqWYq_XyKly4caRVy1Xb;B9qn9USxTqn!0%cRk^96Cs9)JTRBYjz z{G-}r2ypFT{Oux#LeX{Q{$B4d>BbK84qA=2BX0|hpUDN!$F!&{4&plz@s&b?02v*= zFZ@kN!Sg#?J&<_)2LUxbD7V=0!;<}ww&s2C5q#BZq{IC7(%_bN$%81_CvC|`?;~EN z^5z-3ZbZEL@$5*B$LT4Csc%?VUs}z#H2~xLCxy|D z_P9$!AXzC#D`m}yg9f#ztd#ZJD=9BcVU2Aj&mEPfW-{yTL+g3*3*YK#;^}Zl8BX>Z z&#B>HVQDy6IsjWyAG@iSQEjB}K_xGewN@`3U`e;&Y5sU>N-3!~MZ{FUj7BAx4lz`h zS)cl;{_UxNQ$@l$Wp#X`w*rbS=$c~cZ3zZb?wa?XB@sX0PZBsXRy)j&I5OP;_RiJ3 z24`+0Nbg15*bALh()2dkQ0*LuKVZ|_%TPMJr*?S56{LBn>~W=43;F3MUU|)UDmMle zcEB?D00z0{bABDlTl1xgbw$~$Q?FC-%+aZ%TJ#!!oSOK71oR4$8=(jccsYG}^A?nn zk(ukQeOc3O_Ha`IFeYe~Jo6YnT_Y27Uoilr&&LZE3GOYYk~r;FKsjFa?o zqc_eFseturQW1ATy&2s+Sj%=gop;Y>Ix&=4yziU%m7X~2vmi0ZBx}YM4JM-RF|&V8 zqMUK!Kb`B_VnzXq(tW|)EINl&eCydi67dqm;-1{j#2Em6yP|-bbYE!Ae#JgUUuXuG zcu-rVc1z)6yCj&QT`c~!%NM4^CV|qJEu#)-Ht-b9>p?qjZ60^G-o-DWRz{y6Pq+#U4Yf!pn%KCWHDe5xvGC@^3u-4K z{OWuxn&pBuBiai`*Z1u`DTS-)7a2JD_T-vV)fn42qHh}7+j_pKMFk6N+8{fIT%^sx zPh#Kk+b%ZVANyCULF1eejlTn48HPfKrlqU3ysOK-q@1rd3cm3-2co` z3My@9_}m+3<}pB#@DjpFZ{o6y1N`sClFJ+aplF04ch; zLQa!DxUKEM?j*O+d5Wz2Z$cD6%drr}q~TbI!rkz9AxhmBW}J!9xo)2^81VoAHo^pNcxBR6RnT<-?To|iTQsQPkj4l zRT~4@iK>l*{2l`}Bee+2?UmZvwJG4)Hy+nnY<4YKqI@-KT58|tU-*VNb1R)ue?H;! zMU%&$zeX`W<|Qvl@bjacm3oD)YX8*U$R74agMuRE`X_Rh{MTX0?VFpu*TTs8(#fx; z)7qQi0wSNVe0%+EE~$I^(M!fKaRUV8lYy;TL3|GFUD>kQR~{a>q9o$|Ao}3rU&!T8j?)kcAKWQM_u)d|`fBu zycUFO*oROjUMXvsM+N0Q7}JE-*``SZB`r@>2dx=E<`fxD>Ge4>GTM>jc0ikQ(hj7K zZ`i$kcH9oAo~XREw_N&=9Hk=~ofT=H`#Tz(Rl zjBJhcwxoRW;EoEFBG}E*^^Z@Iz6W*!b^3h)B0Dwv8%h#ZIx3ozEcAx(%{;cl5 z!=G49{a5@s>wkwow)qtHulNi0{|Ip~exL^U`zi>3@{>IS&yOStMCzQcI_pxBoZwejh9B~CfoL<^l(L1?v zzjWk2`AuTIJZ5n|IAIAKS0sG@H;evnvTldx5D01IsYl0H=3jqeMY8@8Yxx*tW99h3 z-2523eT*faKEWQ#W6AF9|HhK!v6{+HNQ>m8_?z@Oe}Xy=zRASaf1^mgkAwm_k%Y7) zPbYSaq;CBaDe+Ip2X{b!+e)gFi@SA0hYgUq`Du7 z{x0#(aozt|qC(VfbR3 z{MUN_%P9>=t@*##^^?H=g)*Fk`kyt=B+maV1^#c9um67vfd4V6>3_UOL-Gy(W#63S zLjISSos5hj^0>v_;y-CN_ejm=RM<&7rFx=4is~42U0tl6J6O4>Ia-6yDS_S0?LE2e zUpm@ZS(3gWuB4b>gMp0y7HKG;&u9$HZg3GOyFL8Q!9Gsv<)pQ)mYA%)#*~OWOG|mlf7`saKEu85sfFuXyJax?u zyIY2&hxcb8M}}luYU^eOL2rV9TN3?Nj$6wFT8NMF8Jo@yhFm<` zCBC?lE~qXnc8-j?tMAI3Rw9V|%*y%KDQV8o<=5xS`+dpZ@4l6(C1Wn{kw{iwIKw=E zw1fs_p%fmsKldE-o0?DrG8C8vePV=u1T!RqEu(K#3EOACPdDinsb!G~xp7aaXvDi4 zlB<^^R#?jaIMXG;YAj9U2V1e#<#cEgX^s@DvGr^I>5q9FE>|mG8MdKv7x)-kY7=*B z)WG!`$Fy@B^wL)yiQa*OL=7dy^c4!xbxGTL4MKqkzJ!uKZups$!`n8Sc#-4@A7Z=k zonj|?Vc+=8$2_tDrMq>_zOf5=k64FacRFc{3Nz2q%V7|PHAb$It^@1(_iEZiG~eT6 zK}2z4S?-*tY1>G#$2u^o38#54|MR6cy-S`9-W>j(Q+dTkyE4?HjlOz@9s--fHzDV` z%$|=|yy|v;Hkdx+v^M1pyG?^L&Q>#81Eed#T;<;U1<-~(znybM~{Nl_Hx2D zzEZM$6R&*?=bTAN%&5s%>$H&+b}PK3;%E4N^IFvxQ4#7&UTjtVhmUqFseEVDZO^5vJ6_JqFEDku@R$|tcvkRvt>$Ke?|C=d0x>Z)ipd)~ zvx>CLlpN>N$|w9Wy>R2uFFi)S6KOglTXD!A2RFJIuIbit{(Rjbi#Dz>$hnZ?J0&oX zS*sc7#KAX5alO!1owt+9reQ<+Y4Dub?TvDIg$7D^)x`|>%ttVy`NLZyG0G_XZj`T2EeOdiVqqft?EH}5lB^^%3?_eyd(KBRZA5&PL+CikY&jiCKwOncD z`xufdZSRC`OKb#v^Tp+vQ-aNeC1>_sFT{)aU$n0dT!n6Nc_=shRIaMCUhiv`Hterz z#(XARP-_?yO9rT(^E=n&%YmjlzvC~zE|Eo2`TMl?%e>8JC@&G%a~fjuh`r5UB))`m zczc)2!K~2W#nlP3jcw=mbeL-|Rp9);-Ut%k-@g0tP=+Db@003SH{C|bQmj1<5!a{0 zNyNREdwc$V?PzX2Rt>t``jP8-i75k7;_dyjM4;UTN_8$sm-;2A^TaE4@jA+s>n}uk zZZOYzoEj%b_R+eriHf*wU$eTninV~bD@Cm>oHdns7sGd(QxnlgbVR+dpcvQl{S@ye zXBWga_Ten@Vpe!xZ-Y3n=ro;;heBr+*f{hQw2zxfulfEYxed z5BudZwzih4EhJ+qbywPJAxNlZ!9uq%aI-<1v(jmdF457h{kgZBdXwdj{n>!8`4?6% z>Co5>-stXZZVA*d>9Y`yUec1PN`$0E<>X(G$_hs-9Pp(3C^;Bz1iY-WJR4~%?nF;y z5eX(Q+;wg+xey)9MK@1%qcKdp^Fr(l&&#XZLt@rWbtQ`Y6*l%R=H}+3QL&2VUzEi< z)!VFnpRuSc8mR-+^WiilNt1cB2k#d;--#bMzV#XAQ*Co^S+Ii)Zr($qE+S6IN!&nsLAouEMOqh2@p2T_?(%ZE&%&fWCnX- znSf-l*O=bDZzEnomn|S}%6ug>_2uZro-%-&v2KypdQ21IykQk2zv*GIXeN|cfz=nh z6RtN9dQD5%^?LIwZVutMANHBflnWZ{ui(8OeQii;VN%)cc8$kq0S2*Yl;{zA9P+0Zyo2=Y&zo(kszUM0(%k9NOlN})yVQSW= zNCHAHZ@+P#Gb=yHfS;*X3!ZVi@-lHw1?;l+O`g{~Gvb#?(iP;2r_tx~Y-t$xE z(~ZxKu;EV6TpEZ?eVg)v;@#aQzo-WdV{e_f3okQWtDNiLNpZVex=OuTx2g`hS0LoWZIa%*; zY8XEWg(E1Y>N?V2gEP(;W^}r%T`l^+yRm)0X?^=@a(~XoCrgk$uWvc|X{qdQ#`^&t)6V3CA_to{nIN*5wg<^eUD9@idqr zZffdm^7$HLeb?`y3um4}+6%(pfHOL%pN_;tp3~Er`WCuynUwy6er@Qr#6EJlRU%+I z%z85D+T+$YAo)+M3Bz1QgS>5z{L`Q zI+_kCOW&r1!ip^!Q;0vlNQW3D?^}2LtT5;dH?H;PsVMd~N$}Vmob4?LRV@Q%w`GN$a&80kM}Pgl-&t( zA5ZYT$A9B{E$4^Np|8~!55<}r6x>P5PlX+d=&m~89lZFFb;Qd%)ODbt^3^v%q%8W_ z5Pr{_X@&2cai@s+Ar{kRk^%JKPZqwfG^r|svafRVPb8QsCUm%}y>;}7i=kkW&iVkp z{-8&sZr-=}yd5SG;QCeEf8k{ps$H#6SS3c0 zLDn)QTo6ukucOMXnTetC-n!pm&$PbL4j7WprxLw39QwIPEfgxC)brBK2*Id9EnKc@HQTbSm%J2FRKx^KRny=K9nrd*;;139`UIDhCMScV3jdhmVM zP-mjSL%-LZtsG>~d-oL!LbnWP$vbgLhE*Z<-nG{k9tFCXaXL8s)P-!$$4+qFcyn>G zP1XFTZi+6)<&7*=H1W)?TE>V$={oI|AM<@mk>bWrGS*W@FJ$PM>kO+g1hBm1y;26Dy|H^+4x_htVd Q;@0sz)n0RVt80BHmpfHd5J zcrA{2AR!(~C^s*VIt2g#tSA5y58)UUnl1iPB8h+9OhEk>;h+awt_HxEKwL-( z@wmAn0I31|fBcyH*PjOY_Rag5Z$8cL_4`p&q&Ou}#ciE!oPK-Ol0}CC0Jo6=u1Jph z`m;v*PWt-i4bV*}l%@fS9w-X!f2j>1q9BCe9lQYm|fHPcFvjn5R7{e zfCVV^>0qlO>a)-h7Epr*_yXfoVndzfEq0u+hhr_!)6&=eTx~2t zyIpUwg2)#J-+m{*b5BT_GRXgUHChW*0M!VHdNjyEiE1{@@r;J#=?QX#l7YSfBJ5}n z6*}E_oY}N5NngA#2{{!@@E;K+W6faI5yb-GJm4Uv-+)3D0IxC#!+^|UIL7LBtTNrq zOrV0hKjc1>h0fFN5BXS0W0)?Wl{GTKgBp`{O2h9zlJ;(L6X~U^^9g2V)ZlFe3DJ zDqzm*=mU`fxWL~Cw`h73edFusNB@dGURNkP`VPDFbJnmU1O(`>9~lE4%;@VIhaoco zzl@58C4rGOb+BYfy(${AM)W~2q>&DZ#lrmQ)d{~Sp1P`78Uh!I~vhy{KC+VlW$Q{*pqQM$M6fmAFfn~#e#Zg(#qQ8w7We)(94dhB7*z@?0>_JWb zbM|muv*!xwUuKWtf5e_Qg#RV%aYtjk6^qJBg-Gu4paYBS~by zsi3+Vaz$R)jVObY$yn}0xDSg}J~=Cph2Gt{;=L5EvHH*V_2t2?`k8R|a!L9rR$ zOk@i`k!5Sx6K%kON$3)%rJmgrEPF#LD5OT@x;nwWO?c7`Z@1eBXazE(MKzsZQWc65 z2!0ec+BV-b*_MiO*xs&Mf*T||K*hbe1JJe&7Qk?h!*=TE@Tk{Lo&z8&DCwD_i2SNUZ04ih^P zds92JXahSB#uoT1W8{GG$CRLo6%dxq1{0P|)h*JACr?QytfWaNc&te$D$)%BfcSS= ztq9t%|B*JBxBi?qJlC|@|JP|_@E_4e_P?g!c>YHP$GM3iqY5ihd6?{l=tmK{4c!u5 z)g?m0-SWCB{x#@#(hL?L@D0c@8Uqak5(BAa6#4-OeMq4wy5Aiyt$;8eUiMl{9G~rK z!&!JY)j@~0gY)}}!$D!&4{x+=e^i_3F}T$4CVzR<&0MYCD6?YzdWq!TEf{5@fS`xj zi|se=OYrKEfa9&PUFF4 z8{pBb0y=`4gIt;(fLu6PK`xR;po$t8=>$$2MBPY_2cnU0NChJ3!th7BU_JhGy6|4pW&K~Li^+dR zm;ah7^PkbhZKDn=L)&+s9?AGrbL#TFmJp}hVb=SL`m~;ZR$@qYez+~J6g!%fSNzD* zoO-ZvRTqT)$o*oXx@Rq8hqr`y7+ddD-rKdl%Wga6>@Jks;t(j`{u+tOg`C*6OCSaw zvlHAP9(CZ0=J+_^%pMzbM3zW4v8O>g!Fq>m0@agjBF&hy(t5N3{*Wo8ffW|e(ESQE z;C&Z0XjlXT>l1?+M|kQ{ zw=M7*5&-+U1uj;Umm)MEyxRD*xS3_GsCbMf+#6sMSGX)Tv9FzKYr0R*LTPBPVd$Wq zl`xsFrfalJn^v?v9|g2x+~P)6Ce+w^s|qAKgXnbX@-XWeI1 zkm>ife4a?Ie6<^SGol27`*@zdB5_CBOGxXKe zrfG4qTSWw+mIA74q)w{c)_5vBRUwP@v__Dj?tX48$7>g*N_bi8y61vu%VgnYmmYyb z2|0aQa#RsT_jzINnMwZ#AMhe10QhovuY(Nse1(a9AClZBvDG5k1m-a9>d{%rcO!~X0YZ677Ld(oX!=jI>vMdHjQPdutnt(_>e<{7?@9Vz&H6=f|E zWev_0p72c$6|Y0h(+C_n1MD!ND%K+HR3q=q-hOIzhgQqKvhA+_nL_=Tg0Naf*JA}N z9FySVIP3*24Czp#ZEg-yB+w$$C#A1S^GKX!fg&B|Z+#FPq5307@Pht~BR7ri!cUGM z*5!-F*UO}Svzuj-$*)B!46#gNl712ObCHB-bK$=&l8_OLB zDTX;)fRX;&eI#S|rH!M-fj6WngFZcVXNPSAKmsG*FIZR{e^{}e8vqEL@LjT{K~bOX z-4YxPVsq^{qjTLYL~*SReYwroR{$@~vh;hVED;d06bYot0#i-6oWzjwi>$lBqX zkcbA|Ifej%z2~5cHES%J!gRzsh0?%IrcB>%k67PsV6q9`vK!cN;EoUpIUs2G1RLwq zBnhd`fFIvBAfT`h1XAbE;2TC13T-SbHV-k;XI8>KSet~gP^^=bi#nl$U1@rzZX2)0y;<$pPUY^mK{UObIuVXDd@`75m1PH zE$|&fG>Nw0J5A|3MxZXqcjs9cnzIytYAXLRF1}Ql6k=j^^hX*H7W^3vZkp5jUo;Ss zqA?DPC6tV7B1NV)$A6&^Q-*g{-@Sp0(jXd1Xjn;LbI|id-FAoJft5ijHF~}h zdNSMnoac3czNz~0apX$oX7_S1-O5tn_Dn2Xo$ntBa0}QTp7Gr74t@FktS`r}CUhs0 z&evFmX=_1k;^h3^@R7p_)=2bI7Gc&GZ)~M3XWuAd+PA+z!Rs`KV<)e)(lIkdiqD;{ zyH`1Y?UQ$R-&a}3D>}+BTQnRnTNJM+4yq-t!E7RM4zcq+BG0~t5LEX8zF$6dbboeO zpWC8k>MqG%Ur)&TT61M#Ta1>gE~ijYsB~7s!}-U0`CSiQCd(n+edhJ5Pp123SzPvP zm(w5p9CAk0vQKn)7DTTKNpVjHrF>SSRp0El;_}v>3!9C^a^Qr>kBLy{G!1hrwa`6d zS5F0L^|ckhbntOb$nWI1dt~^^f)CpTUh7WGC$IxeI>pFc0~|K9kDSqsG}Eq+Q+|#_ z)?oK;B4>t53kSP7VeMHXnKA{Q_&O@x{lXx6sO!5!FdZ` zG41`W+o+<{v1p;%LmDwa+WW5xtEi!1W^ykCz)1Cfgq=9^&tSi4GK2mCyON9yvLfN7 zBsX<9%a}yN2c0~zpk>-GwXyfam`VC+1H}xb?>Y5mvM|`G4?gkt7VV|RPb?lQw;nQD z`lyPR>Y>{2)R)D*m)hzA6I$x3Yns`AGGoWm)a}R5xF5}j6eUvfKIw~nhV7k%q&}kz z6kNjAPg1l#IysN0+xHsoRz9VCl0{J&l(-+Pk1DYMFIX%H>Y&ZG=o++4awIl7`@ki@ zQ-mqNq~T`DPO8=u`7FVZrP5?QFz*S#$aj}+EpT`<-E-~Iit)0~B2=$2H=cti3NL5- z_Lh57u$nCYa2Hf3*O2Xz4CNh(!YBMb8%z*cr{`aTs8}f&+tLPrLa?Xu_8C`WZ*Wc{ zMAqA%duuySX|VP<RT z()Y^ygAYB?iu(eIEoe_Pp6&YM<aJk?7j?($33b82+55{B6zR(xHkof2A1P^4mMG@+EZX6BvuN4t zSu_V?7X9dE7JdKcEV>lAmk%|=4KoKHY2Hhm!6eA7i5K z4Baiqe1+Kp!raU^5RFwK)gUD$z4GfG_@d{T+L<6CIk32v=^dR)^H4$Zmig+VeIa%!r%(@I zuVSRKZ3qg@fETR~gb&@zZvCApLq%WP)t@Xaqe!9Oy{1gC#I(>WFCY!@9ZyUDr7>oP zTD~|E*L;>AJ6x5#O`T88!xQ_CfO@CeGPPfA=UrcZ|KOUx>a(r%_@Gs0CNMnF^T%y= zw^2Oy6AYJH!dQ9Ne5VJlFR8xna8-MK?{w=XEE(MA)pG==?9{vM)Wo6zfdB^e5E}%< zGk=7b{K-Fq_@;r&`PU(iApQ3tmi%7?vAc{5>NUhACt$IU@6QRh)T>GySV*b}d3P!X z|72Q8#p(On!;LAJh80Ed6xZAL|(T)ydctw?V6oxFgW%Xj)v-fM$ zp7jS`63Y<+_U>>dJ@tiV(M=FQBQ^BvKLVKI-aiBQrU(0X0R9hhxaEHlz||e{sLPD4 z`LX9H(JPHqw!QVUR$?; zQsPm@#kM=9d(~WcZ!0;mL^U9>cI*xeG9w}gLp5>zlx*MN=r0&xwjzKEgBxL|C2*pq zbzotnA@k#;y^$dl)N7%4)k*Du+so267;Sljq5>e)u3TO00RB6Gm(u=-a{TuhOoiCD z`ne0G~TGfHJZv7?!+{lcO@`_LD^tNr1=M7U(Fa0&DX}2-(C!4(Y^bIoX6>5ND;X znvtDAV>A34H`clZ;JDRa4gv7uO^K$sQQ?QzDonlb3t%FI3cpYj`>PBie)vs?bCCcP zKXo`k|3-(6Zgkl6mkxJ_x*TFV?*9^E`&on#cl;*A($_)^`g!vW{Up9r2dj(OW z{r(jp&i;!KV-Nmbh(G)$#NmG@#FUIdvry@1;OOtRmL&cl#BJ9?9Qtnxam@de5bG0$ zvLH~N|0BwGJO4S#H&XoJ-#{6m#s4;Xff^oj26dezjpXX7~d=T=NR9p z@xO)fe~`)lf*k+1WBhN(vBdrV89C0v2%!8&7}Lf6bBu2U`QO19p~(Ms9{&r9{NIl8 zzop36<@*1=B6B7nEM5S>`Aw~UccaL3*NV*G@(W|2xw0e@4Pw8n2LO2YQ-ISNq03O{ z@oT?H#7=amA3nODZ<3#10RO#_2t_2ujs|EOA?jNs#B6)Fi`|cf4MZRP&I<@c&*A6b zFuqn?gPWx<=r_gX1S)6*`33p;?NDnd{oYpv^1bm@MG_)hJ!p&(5y&_GGnG#0CW@y1 z71DcNJWjOr-%Mzq>+A@%OMqXJ@x1g6u||UaX84R>>c@g+nrje>Wq=e_9FHMBa>6Kw z22kJRk3;ZV?dINd|2h+3bo_Pi=;rDsFU`!Iq;CE8H;okHCqyX7kN~+qL!sAo9g6R5 z*G{~QwqH)X82q&4q%_6Z2JB2CL0`cPS{#t%N5<$U*N(iDzjfsK@%)V=4+AN}Sie}R zsEx%GfLZv{>Lg>K$zI=M(n+2Da_>Mvqz!;~hcO#MSo50W)NSl>u+jy?r!wB(p^ZFp%g&DoWBcHVFP!j4AY;yct}{w`qV zD-ak!17xOs2*1rCN&d!9PTYuy&>kz2W&-Iu1{Rjw15pa(?*qQaWWa#3$9QId9W4+j zksYyZ|6q}$@;SAEo#r>+29w(gI(PEi2%{;G0ZSArM2M&+-bD4|O;owB8O7B8cTtta z{25hQTNgx7wUGcH{}R;iH$jEo1Qq&sL2W|KB=X$t^t1S_w_Ei^^mZ0EyRh)JBsoKf!MjgKO#%_>qnS|8JPqrS%^3YaCKQ&!vwFL~X~{$Y#m!xiYoz z^@3_$@^9Qdp(CORz_J03r&4%!2=k!bOHU|#@yNg7Le4rM*Ki%kUe$eDPiT$JZIogZ z?xx>>B=0DO7S+sxO=a~2YqPZiQ8(7Bw z+IlnV|AGY*vHj@;cC>qGX>!ZXiRPsZ&CP2BGL}ey@t?@l_go`m+;M|U*Dqw^@xcnW z!8*}NsU5lsSi=B!CnZVv~BKuT;88fe-{2$+tFq z9O_&UV65=j3pIW!lkR&9ccXazXqD^uk{}hXk#U?nTd^*q2YC)?;ru%@ox;Vc!C|* ziEzK`#(~}bD-lxh({B@|rzJ1N#C-?E&HuK`3qUAg$Gg9=!qVt_qY~y{XMhEb;%Cz6 z-)cUwn!>B+-AvC_(EFv7VDQ$sX_=P*fMAV_h&2ze9(ldnK4m;!Gk zH2_ZtQMkJN`q0T3JAd<*&C2M<837j6NuOjRXW!)@|35qdiID-!F(Rahc%EIy6M6O~ zp7htmWpDaLTvT)L3kj9$NOmCsW`7#Ht6Oi1edA3e|5{R#@we8<8v%riH!*yUgs38@ zzpEne_z)v)ZbUbsdDBgx|E%$e$i4S})(B)G5HSeU;-hb(^&`B*adfxUe9Tj55SI({ zJE+4P>3|%Glay~zKveS`p~6RiRWV^$c|48f@7LsZzq5N1@Yj-RT>G^f!x5&vrk$X< zZ%-yo5q_Gll>!K_@IvCqy!Pm9Tr&9wZS4;}h(<&q!4F9?fWIy9r_Q=ZFF>sb@K)-) z`k2yL`nH4##wR_;rqYjg*x}nV!aE%v2XfrD6d(yu(4a@}j zwk~}KMFnMHQSEGCQ(?-GO-z4Bm@?0s;8QzE4MLu10X08ff?RrTgDO0{ux!QyNhdxc zwi1S(DN&ilCI&u4UUd!2gJ?( zMgbs#0up~m0ToUJ1&Ds<>(B7#>dia0$Ve*3Bu8wNBCKUzcMI_**FAGt9Ur*fg zsEuhuvE%xX$qk%*m3Lf1!#`yJ<3M2sfa`|r^F|}%H+6q2G&ivzKfX>V4qB4UZyAJW zwz6KEKf`U(V>uun!2D)$hUVBkrJN7%cIH2YnXh{fh!86vE zc#8Xl;vIIFB&ejxN~9KtNz09L0zTus9T7I1$qUj8iR#&VJocq^?ReBjFZa_Aw^VNV zo$7f=^V(RPiC)DA%i2xbcZ&y4`#aYpPH&Ywsz|C8J}=!pO+M;b%S}xg1}jqAf`$cc z=}nz&7e}@0H0f+S%Bo~{Oi4yox`my~9-Vd3*uLt-wEgA^vQ_(mJ=OJga|%mDw(inl z+tur;s%33pkFlg8O4zk-`R%T|pjYs4UFTY@&E@`1wR>Xw+ALCr_NupAs@~|VGgnvF zTBTmla32wdUI{b$YxTzjWpT}|c)s<&0HMbdk z-hsBNf3g-2uarxEV^kl@3rlSwzRz}clVMsf;y&j0@24d06i*F$QVoBihaG${R9TF5 z)3nyP2Xl`M;xX9^>$bF@?5l222NBnkcY9e4Deo;OWfL#zus*JFKfIWzcRJm5tMl{Y|3H;N@zROh}0=^@fP*c)9uEal5B+RU&V`gxwsS6gSTY`^3xP3Bd<@ zwms*Gd?=AA&o4Y?JecSs)f=_#w4}!}Nq#&@c;JRB=p*(;t&*W_v)d$mM<{>Y&55WQ zX_DC3_UV_pDl2u}hY9U1Gk{A4--31X2WJ#GKTOga7-H6Mwb$?SB~mg7E5>_K7^i>y zV#KfYjC=H149h*?cO8dl?x9B}>x%Jpx3Z5*eI>t4zTLPx73)AedzZA`#5SwPQtZ(E z!MNXa*!0`Zg73VpNaty37+*}5v#ZuIoO~-uY(GE!au#~QFPPFn)n+ouK`>2ZT-H1O zT40B=7nCa4iqRg|k?crE^7=|DK1Jdxkoy?i=eW&#d4~_9bw-?t-}m&2Gm<(0pOk(I z+lT{Y+#om3%0B`sL|@pKYak?eOK2NUP|tlBZ3e%R+9p7t0VZ(Al{FUUU5CJ~_Pt0L zyrj|O7=zEz6Vp4SX&Xopa5N*phr9)4q(Gj6xT4vCckny`o=iK3O5mr;%fZ%AvN;9= z925=>fJ+nCc1qLeoL;CahrK4 zac1q!b-v-G+~gbMwb(vFIAVY18`@32Aa8{^AO#1JZ9@s#p{lB+t&k*pwy73Q zBAz(80hOM(6^%t_hg8Q`e8vr;0V?R(ni=|B@8*qB?_l(YrDTOW#RQ0H$ZO#yOKo5_ zHcB^kg#-pDnCp*VcRxA37@o51Noo(#b2nevI=`AW@v=Pi+>zps9E14Q!rCCJpKAPEv+XpTCkF4vgQB@xF2mq3=*$(U*?o z^sd@yxKK_Vee83ZV~{ISFmOOLwhpFD5Uy-t7s`covb&r#eLH6eu?OZ(Hj@Ro6S~-I z=@g$tFxQW%pS3NX%cnllH_pH+8r)B1t zk8wUWqEtTkX6|69$Xrk9gPklcaNFXz(10xsTxu@)rV+a*3zcJ-Wi`<4wM0e6BLUH> zGIM)FMUqv+a2p8{eD-HGp*7oky+O+xpP?*Tx9wg+3{z`ZzAe+gTX<(eJPGQ@nXTfW z77@wBDVxzs{4ppp(C>Mto^m>}Co(C-_Qmn1-X}$;Jm*9SQ^WUXKaOO99J(`V?nFGy zGD;!3dXt~+V>fJ;i8cM6h&^M;&n3rI4esO1eH_)RY=BCIdQbquo^-nwR1+%m`PLOrEfRZE_-BESXs@6$8K>NNQ;&A|tb+Nz%@RA^D+&?N z=bcD@Nj-M!jz0E2RH+he6UAGyIp{ORvB}QXE2IT8B^|5@pBR@MKFZ3yS?6BNRH!aV zZsS2ddx~VMIJc}Xu{nxE5TqBhkD_(UnIqxYk`HU0l_E%aoAMmF6;6|<7tB6`ezvN( zP=3TJ1*h!26yHX&0&bRXBiCZWkdIc+s;(MiX;f`+^Mv2+P!v?p7Jnwz3yGc%T-wB3 zh4cmDEggexxj;dJP*X5Q*)MPGVfpa_5gj?6EljKkNt6sPWk+y&d}9(hgm z!t7Xh2*>vn#J%xsD7V&ONz{2^u!I7ZxkS-l=bBl6JCC7DBWTOdIzxy}xm!Uvap6=E z-+@z)d$6RgkV{M9psU^RfGkg5C?LbpA>-nLtbm`R&F}EY_-jT16Atex+w=CqPv;MM z%ktEoP-;nvr`8^=c8bXtct>_RWG23YtT;yRIfm+{oN}ly9qY8A@gDj+uDr>-AV zb`_>(W}huG&4V{7FJ6@y)=GUDoj>=|Bt~QXAav=`H@8$%ghrX11ULFD%X#@m>4$QU z#e7J8_Dnpx7_u6_ww{|v0JOEgi<#O&FM^yu%3WHsWRQzm{qR^PG(Tj4qiHc_n_DKH zEUalX?t=U7N)qP-TrKyhOt<6ArEq4ioREVMA@B54bA_mcPSWJ(EMROVY8l;lTo3=? zs-c49gf07c{to<8qC*+>kZc+Apz2Ofg~olXua6l@7DPP?6AN*+!wNn8aSPm+F~}|A zf;T8N)xpb@D@}SE_?ftC>dp|y_>`2!n2U~(1ukWwdxQRJ!~VGB?u}J<6AGR&o0F>= zUK}0R?#HnsjG;i|KlVO?wZCfdb??LVtM}pjOYid*Y#why(F!q>o0R-g)J7J^PMC9B zrZ!Z+P-v+Zva0hmR5B3z)tk2%&kKWOS>0vWu{v2l>}JhoH2rX(k1J={W@V(y3Jk4{ z=6e+LB#;E7l;-q&Y7f1$7O!Dx+YK_kbatNRv*i}B=#{OcAXB)A_A*BL+}tte+hK#> zYKLFMT5w3S!h2~}OD|FpSomT}vvXc^S-tF6rAO`b<$JP%2XBIST#P5%f@e_MTl|WL z;@R)ZP`mENm<&#QR9ie(R$<#3y>e_7O1Tqr_CV$oZ zWIXeA`^lrj`I4iv&ur#>Nf+q-Pr9wA`md71we!zr=cP~mo}&srVT)(bmnv{VVkn{j zu)WVQj4YRGdFnlT6Cho~lZS5iKY4x#>#3`{R*s#3uC z41MLT1gIgL>ZQO}QRe9utaD^Y>zm{b{$m_Dap3W%2hSSHyf`pwW}Xh(f5kzY(H+65 zfva+$b0DV)Ve-0Cr2#jUJ#)nwkMizw?(rY*f|oHhFkM=^V6D30rIx+1oFYN5cpYJ3 zwb*p*>At0T1Is9%<*KO4>Xw7fv8F8ROc_^koQNu^K#M`3WHEq6xUiezTvDtb?WR|R zWy5g3Sm>St^&amND(;wK=&+Hs|Jxvz*{Tv$3GBHbcWk4wVWuD0#$=3#0ie;enZ+O4w;Jwg`p+ngg=A~__bn9_)2ZY(^QW`P=p5w~Nc-lB7J zx?y58a1gPsSvcX7;y0`J7?*gY>omXT>2n2h>nVF-MsTPRQ8w21uqBCC z3;RmL*%aF-ZC$gbGPk5tibvzcMw7H*l-l!2q9S{>LXBq@Mb-3X-$q+@t<>V8TSoFC zqO5eT*5@0?nuF@oNUHT%zJ7A^oNRnH?x|a++5G}6WZQf;9ih!zT4TMi1>PKdI%>Sg z`2k7_nTRyMZg<=vXM+Ycw*8y#K?o1@`vtV&WtNHd>D|dbHDH(J+%3zYFWaRa$u7mV zaZHd6&Npq>IDgF{RGx$H6IN!7^9u1FFsy^gIBr3PG`YrEUN+cDkeDTW&D`rlWiz*E zcQ{{IrY$qR+ord{qKSND$SxtEPj)C>`OLcoYyFGWJvd4QN$~`6~FwW0}>`l3nainLe4P^tm%6y+_r)-cf1KU>UQ7DFL@Kwpg$3 zyW?Gu3gM(1Q9l*&ZyE{d1%4*+5TO8$p23Aiux%S2mhILo6FZ>^g2rdc2RqoC)Yg~a zZX+o24Io!?_Y9Iv+_9it0fmH50h@3ECv27=+Ai#BEM1&iz5;BI{2V6Sl5CaJKr;H6 zdEcmxM_DSMl+g5)U8i?|Z0K=a|D?kb-DcUo<7Zp_^k%B4OB6FWA%&lj9daeCUtJUu z<#XFmBx}O$boeKK5i`%xG5wfxnf3jIgoW*VY_NgiP~=K1K}&Q z^l3M0Ww~#sQ-RjonEU>VPGT+!qsjLmWDorfW%Px=1^^cV9Uiyx^VTl3LVFmJT3#KtOVdU;iQ6y-JLyRTIeF{y&&2Ka&w7H>IlUNtcP2c&#O)b(^ z!+~}WN5T}91xe308q^~kI6nywJy*TAftD(icSdZbb;saSy7tH#;dKyEU%t zld}vwQzp4C6GrDT?fU7c6p@hK0Jom};Abf-Fmc&4^WYL(-YIoiJ_{c9<9dj%2&w5y zT#Iwzem{k%S2=FjGlEeiUco&)zNum=4y!wEOvf&c<*lIFySUR zczctt>ZILyEZ{a>SZM_u4G_yNc_-zFezss{bdn-&($t&Qrf*Xad&0tEc3RGn+V<@5w9OGSXW|5N<}1 zfLksnmM{%-;}&uJO!S(+#I3zo*g=fQmJQemX% z`T-|Vpy~#5k%kV=y+gIJj#k$NtRZv$yp-&B2>~M{Ud>+(YqgAeNK}O$9OZpAf=QJY z;9uFzT@GPfK+YcBcVp#74E}BoccWU|EI?VW7oZZQzX~!Iq999w4GpXeY>Z51#b^M+76YM?t0!OBWD8WaJczG4;27n@aO!y!C#7l zzP?5m;;SUQ#IC&0fLTit@l6)ugB;t=-Heqh|x4U*Js*UeDMY* ztQbYVK0H!vq&Ii~!1qzFDB{&kOjY#?Xqk1uyB!nrU>Q(BK_SrGw#OsIH}RU1My5{NH!w(R ztnv1j(&z{0Wx}C31UYY0JZG4**jYsVNuGgGd^GS++qG!!cOn@II(931q`DsoR~+r? zy0b%!V4STKj-Lv~Y7$^a0Ths<>5IA<7sKNX2=DnP;j4`qaHPR;VUz93mH9;v$N44X zGW}{N{W2AD_qdHys;wWVLbmNLN>KGEZ=W@wj3gJ3`I5wRYY;atBwJ#F4 z3&y?*6Mm-hQudDb7WGBD$SK;@Hu%ofe$-X_^vRv8?&Gb?XIG=sXO_F?4cj#qr&s+a zAy-o(7b2G(kSp8s3&>%`<@D7G>>Wsb0e9hejXZ|=vh%}8?p?O6^C+0WRd-3no=BU= zWkuS=o=-G{cqr{>MgU0(m2(o%b3@}7}M0=UELd<3@h?P>$#JT4t-IlU)S@4DE+ zc9LE?EnVV@Tw!(^7UERqSUJy_L_w;Igo(btj<>GYi8+F>VL*L<7w zImb)Oa?5J7ONv?c87gla*h!*mMEc(N=+WD)@(b=7m5M{9TAso!&embaqXY7Z3@XpT zRWF0ma4#@}&y$U{B`?Fb`qLlC$7C*sPp1l7naLpsymhm0y`4H`VDleNqr8FOW90h% zi+Y!|v%^xzWFCtAmbi;vf_zU{ee0E%6m@4^JL?ij>SjzTPu5v z_ezIlrg(;5UpPeFD^EL`0wept>gsZr61R(Nj_fWlY8M_E*gDPi`tr7BYMc8uSIwt& z39#(Suw z;F`w<;w&b&$L2|-*9N~0WX^GlI{Q`4C+fL;pEIEgAp)^MIzIUqv@t|aV14V@M301d z*R1*_b!?ONQzdaU*xlZ*)!I4<)n85-UGkSgJ_>C)9)>dC+3-@gN~eQ-ZIw9~wz>SU zSo;d{erqqy7s8%Z#h`U>_i`EhNmyPN)ng-eu;+aN(_|0X-kVsbyJl<=N8B?-fK#dI z`}GOIpC-=CgbL_Wi73B$zg~P=B8V0rc=xUF0?QWa)>&I!(GjN#N|Bze^x4xb%f&jh zsk4-`(e=8XrkwEMMVEx|L9fWV_Tg9grqhnR9`%yvrH2>fN4tq$^wTEmRLEO^vEckV z=J}%YGlsWmLgD-Q8A`i+M<=!)Cvej(^1BzrfE`{B_c;$Ti}znwN0PUArp1h@RNX!_ z_L+9K#9LgkHf@!@sPQbI|w%qky1j~@Mk%;?O^Hv(GLg|F+caxvpt;5_9qz(Q|4DTVa z=ZKf2cy+>sg`3UOy#BsGm>Fkj@2;6bY{F8nj_=6=ZKOiY7t^CQ64V!ihc27pMjX>RFcW1s18Vn@M+&?~FCV#*TOosy9!|m#cLl9jQ8Mok{MtTs-710 zAs(q@4}>R}D&$hMg?KCX^7-7*=k-?{oOY`Q`aV`mRzj!hNep*C41KHWkHrmh6hDn4 zsC#n1M3r+b*5UQ(uqe*(vmZq5b-hKlI?aQNxl>-aRBF@1ak=T4aTl70jYf&tLKUYM zY$rM{#nYW*+OytM+V0@p(=olVIW4b}t-ZvJ#mQbz8*ZfuV`PmBXWhx|p*@r; zbvmX4uRD1bO^wIxnK?PDd{Vsn=3G2{YC3^GOzE<)k$m|0q&!V#3S98b2XuCx=staR zw(CW(S5ftK8g0wYqGPX!29qV74%cYTt)=U+_Ak4 zd&<4xlrh11|1v>tw+H2BLlXq5ot_qDZ|4fhJ@z|2_>>%ROG7L@uqTEcj~+6CgQ}cp-vxdM*xitg+a#jJ@H%!oCd(>AUIu>Nc3a^6e!_1H ztKo4-$o6P|RI-Y6-0RRS^rG&3g-m7c%L2hc|AfpKLj*~nrB_}3l9#u^JVU?sMLL$N zXlOL zqYKv=^SkN zH1#13Hh4-)IOAx*lJ?x+P&f?la!B%g2Z3j%P=E-VfY-z?tFF%lD?Kcb{uK2*GtGmf9mrFl!%~ zTH1gd@M+^TK37n7=X(ZU4iJ^2xOMn;`c{giYtj3{1T(zHy;z?(m#7F=Ak2ZYUP#uA zZB2EKLT(QWzfCf`rj{<^6$=uEG){Djzwg|tUJbxfs{Zqr2i z7$(g%j8->V61o`F;!td|1mhc!*En3q%8xHwlA71s7OvPlR+Rc0Y7rt zPn+i2EZNfDypS2~g!N7vEw}9ICLQ!d%*xbxh)X!wPjUAIy?M4%O2Z0coTX8b1v84M zQhKXXOpCn>EafZTUDO=%h$;x;ARKHu-_PU+OJ|dK6{J*KjCDxtW$Mh^I?$ zt@W*n<;X?wspy0gz=dXg17FHrP=;VFMsC{6 z8S~qY=B6uBJvd8~sXMM~oR9C@v)*!aeC9#Xr#tTGp%=F4)Bfy&b!xcljLB8cL%!so zZYhned$A%aZ3{^e?j>!lR?i5r)vCWTdYOXOzcPNgD0Z*ahmeZ7Q68Ch_I}1il|FlU zro(Ki9b*LgrlqZWGl2`GdOB=u-K>W(Q1mKW!OKmOWg#)-Y~(UQYe8K3=~DGB%lq)e z`c!V2y_h9lxp-V6b%`N|CUKqk=30oRA;Zvdsu^O)LM^px*boC)vgj(Hj?Uhe9hQMRAVX8@bJGUP zS*I@1mR+Y>r$y)_yH*$yJ>l6L3Bs>Kpgv0t@2S! zti@^dniRO?p5}t-wlCXd#o=`Pq=dX(frbs|%kzK3W9>t(n<9n|N53&CS^bQ`&k3n82AZV?v~GAVU$Ji&2$ z0t1l4wBoSFS8U6aKBPgJJUwrfkuDX{XJ`a5mF;;vT_tA(kfM5G_Tl2s93uo#7V$(> zQdX0{ivPfa@}w|NvVQIRjKIqnTVg-x^$@7E8_2~CY1Iqvv$o`r8_LiaB4 zXULCr7X|7Bz0~)-C{@89)~wnbXBBtu_i|&T2tn9jiYbqI`Gh@+vb_i;4TvKf#Y7)P z_2(%MxW)TWD^lOtO@2ZFM`|7jx6KnC+FsHO@Mf2Lp|$BY?CwUt+3?=^q(A$e79(5p z8Dm;q!4fy+JpObKN99+~9>+O(i`X!&lR8;eu2x7)$_IB5?U$Qk#-m$l!qvg-kJ

zbe@REH@mml#e>28c_rr&!^Yy(??76R)BW|Ri<^<5S|=9S=M2rG=L9!ev}0$2E@7UH}>hQg-=&F9GNkUFHaeVh&j#I<)*z}0f#kV z4KeP|_63wpLKbqE{&&sN+bBV%qW;d)!BL|djwp+}+^x&S!rhg|WtlM;uB4B;^>VYN zJ-5P`Ri2c%gw}HP!mcwj98Md*dEVc7A&jm^Shs@8Zgub@#y_UHbUf#E_npGWhkk9KxLyaasae80u^7>1WsLWki51!0TE$cTNhOI{@Bsc}6Dw1Ab-K6~9= zogTGIS)N-@1qMBzo|#|1`P{~}S4lj(`r}>3$}uZ?CHrNqB%EN}*@N^FXVWozNc5ig z_g3sT+|e6i^>AKgmrL5`&Nrn9E#%fB9~DM)hC7C&^u!_Vkn0|qX(q@MPqhg=-^??T z@TVD4R!YoL2kf*WE}!JS&W>)|A3g+T5nu_Prg+aO z63#i32nMvsGX88fq9gC#>`w~xw6&+0;qPxZC$Am%TCQ1xzPwIyNChIOEJsiK#gRzO zZk%1n&(WL3^Zq~w=I2&6&00=!3;tD;G?gO|2ZZZtNw}~~R>R5SzDK#cX@B~n4)XTN zV2mHcfC-KuZE568Jio?77fuu^?m5h|98Pdgn<&g(oPWi)rn!2^ruZwMTK*xbIOj&L z#35@`{yJyMPbc%_slLutPV8 z7d%vHOI|yB1r+JjJ7u!g-oH$LT%qQ#qCb3+d!OBQvvuw;K!)@Sqm+TP<*(}{nX?yJ z)nWO$kXOk03r;R~RObF+pfK)BD9qXobHPFUqh?F-HcfG+#5LT7`{d6|{I!jfR6d0Q z&K%(>kk5CsG)W!q2N}@^o3fu!@!NC^W^d`gaH2=HvE5BEN^kBc@WOL z%Z`Jw=A$S2!S!5>3VO97o)Ne;qzQgWJ`r{F4PTwlef9A5X$5s-zv}vStN%I2y?wDPsO`*~KGgGtbk83m;T837W}dz9PgggyCcjzJ78J}bFOayKOi;t~!Hpma@`vl-58j_Q9eh69l!3(z+aqhoL;GlXpj?VVEL$jS+IxqiQg zI%WTNk|T(QjD|yHC|7QU#0iBs+SK+izgOH^;5^dJ-he#qJL+&jDy!Wxzp{Yi47whh z`ra0G{+E+ULR4@C?bqP}Uv_Ik#qLHjl=Q(FEupxNKEe}_s?S$R)ioP7*e<*$`ty_0 zMtup&_ai05(v)GL6V{A*<<2P*BU==YJAMPBCtqhnWy!;F!b66iLYdqh~vs42lVEC7LW{X0R_f? zs*D_f{zPoWqmtkuRq08wBu{)s`l`BbuTAGpT_pu6vWUyfzKgw{<{aSyvR}~+`k%I2O0k%{ zj|rbL{%n4sg(ZhU+ZqvXH0q3i>eXpv@{s!dy-`^ zj*8e<*GPN$S1>P!KbUTrm^S}3J2sWj+DP;A9i^g;bcbA6487>~&P%x8cV~yskn)gW z+8EJ^`a(9QGb+u7dcTwtHB4*fca&62!T4ck_U9Aed%lsB5fZgwNZf}!FJv~;C+vwf zl`uv`>*2d#$I!%c;*FeF80_p1B4f$+E3F<_Y3C6=ot3B^`(1u1-^F*+*XVw(0~1rq zI{U_{ZuK7vNd?GSh|*21`mpmYzd)vxBFY*E2DnrgbVt4)LwJw0B2u<)h$}^RXL&gg zIPuJW>&YOB zuU)u8U#oKueBU>a@kZXgno+Z1ezURIa|xIH*d+#+a#pvI-R6-~_&}4kxjd-4wAO=E zw`)%F_0!Rg4=!O}F-);I+;nn?zDVBJ3O=ETVMIl1iOfA92>y$616$fx;wEN-wP66- zU9lQLwT>D8B<$L4ZH}QXZ-(n=a5W}(3?@0E4(XhN_8*M$vFXddy(hsJHR=x(1uQ~a zruibXR2pB_-zTBF4l9m!fRL=}+tJmr>vzl!EPqvH!2oRX$r~&_Ba>VP`~l3?Y|NtN zjUD=DhaxlB2e@;#tGfYCGB}P@=Knlo6D0q7Hk8j2-2W?08f1R8l0lw`$)eXyqUN4%*E&eyZu6XHua_0>-^gKh~PH((OZa%zh%0qT+=59L%&*v zzd~EMY5JwBSE}uu3ce0h*6Qs^t#e>kWWq`Hve1OC9~qP}pb=&3iNMy?<~oavw;iNS z^=R<%iuynt;z<@&xDDNUbzT2>VDx%k^-%Be@lo@znxiJ@akBGSeXYCoE%gYSBmAm$ zS@L=Ji9SIA1_trpxBF4r{yjm<{I3bxhBs>eKO{ct8zm{BXP|GTZ)0fuFR>UOM3^>| zw=vpAH8h?CFyTv(gqr2JEtWrOxl&$f0O+CXX(BF8%B9(VBbB2{LBp8sK;ogMVpFm-4#?Ob&|#d-d`F%9g#gLW%-bh2!Jr~DkiZJ|?p4vS&(=XeztpbM? zt_#`tF*QO7<4}$-`qa^2%wt-N47muZ4?{IymrQ17xnxbxIJ5aWTQjOwv=qm2i5_&F zuc{q>@#s90#*+6X4lfWmPw)(~;Z8q_b1MtwQj&V$TtgANeCqFC$4#zK@D1deu0Fec ziCjPG{M}QL3Y%W4Z{;Od@eAeLIqrz@J9gRQTo&tzlSkT~+x9+aY85boN+9&< z3nvV7{e}(XIhaw4zkTg9H)8IhzUQ%N9x^hhKjkTB z(N(t3=Y?C?Rmk6(-J&3cAGq2emB&)*>f-o!w_4RCTP-VdVvdg1Ol^w=)@yB`bG7RNhdvZ@pjSvjM3lH;NJ=zJOX%#rR=Z~J56ZlSZS|Rcb`qAZxfo+CL``Qq& z8bxDPI_6d8%f}g~*@-fzpvTow#I{5fv{0~>I-NFCgWK(xoG~0N>YPom4$XnouF0|> zHrVYhhS}QOoA&hZo(1LLka3tXfe+A(@_naUU%CoX?O&an6<5-s{k+XuUjO#fK(w)e+{n?UdVVTYrg z9~S0bsTiUxpk($ftS>E7_bM*xLLX?sx8Atp0af3w4(C(7?wtc~y97~T7kAv#zvh61xp#Y!%*;4Z7myThu~j&skbsvUZ#kJyUK2}A8FTOk ziN1YX%U)}D6!7Ls=}axS=42r!GSYeUhaY^d7bo zWnWF)4n+K9$-1-vxh~$KqKotvJUqVj)`Ao{JLM0OvJ*8{yH9Bn|UZFa50h2Y2 z!mWPR!fwDrg8QzJ6uas-*>+_af*J-oLvwoLvlJPE?W!Cnbc{G45hdOHF_(qG6uEmh z^xSCFj+XxDg1lafaFjyo`_h6@oL>*&9G4q=swrpe)3Fgw>%cLtxsg*CN4i_wMvh~2 z11z=@@R`{m=)$oBxQzE>o>YIELRmo3hbTS#>Q6R)W$nX&N(4$%e;q+Tokk)W);hmi zZV`5MHU(Sl`NzLSmGCybR1s-re)Aq>ZJgmVeUrT8M9*7uia184Re+4V!4TPj#c?F@o5>i_&3FnreU}$HC@$F{k`<@EEu2;~a4ibQQZ6V$Rzdv`+wnWm8|9BB zm90u^$*HL6?@%Ra-EKW|rTe`3+iweSgVMPUzkAY(>3+@Us)e+qpwDp^>-#@n`jqFJ zt^jYl=Eh~gO1r*eYqL?asJE{-wR6p~o+oAp&!|{U#r=l`RNbn+&;h*rOMZ&sC)yCY z6#=RBs>@2hey&79YKZytbEVvJ&4C3bJji3lizz^&ySc|XQz%L9Zgi2Y!si`!ImVlw zL~!z3AMsCOC>cZ&K|8zX>qe7#S!T4lC#?^9(e8$dvs1OR3NM^u=)K10Ax= zZvqkcpo_(<_Qk!-)z%|OmSeZ$^tk(!n);&lqG0#4;Yn#(6-|=qp`BQP)ALRS+q0=< z70ynJR>r$$vS;>P9!bq?#dw`l@GFT}WEQW_SMd|-4BwrZZG)pmux+fE`QNb&_NPiz z_^3V9j<%UN-VB0g+E;CQW@sh%l+o6aJGM#E4sEp7kwJGzGel@ApDnU-F-X@_PuKMIfk-JQDa)aC`#TUW|lhy>`AnY2fiQ;o@Fp_W~SYY z$)7b$Kp?ozgNCz2L9bL%g|C(3kE|!%2WT`St+{O2RoUN|h(qHv%JF47!tD6hWd|QybCiOGzub zRu{CaB9K_M#wsE`B}cneT2&A257dLtn>XaD+{{^V&#c|&+t2(p!Z;%D{0p!~ zqFyI1Pun-^A|87K{=?IO*=HCD?|lV3n2-vb9q+clSM`&FZf?(COqFdBDe<00Q5062 zy4~Ej^dKPltrvN2|L+H5`Ejydk|e)3pu08Ng3=L;rDPT2|Nh0l{&Ec)lj!YnjY~T& zyxmXM48OW)Xd`~|Vt?RTm}8;1-}U-Q|3^;5>u&c!5e=(gEqh?XA;mVWN7tr-I$m*R zU;NIn#ny_nh|so`{JN3vqW|s-IIG`}S0Or`wfm5GU`$#HFiTbP!%k9>7!mnyi`xW= z`n{h;s|ESFs1)i`I@~W|^_rD(COxI*k6jSm{;nkIp~MA@rTqVEW*FqBa}*Jeu_JWc zGk2gote%bbKJg9C-$l#h{!x3Kbgo3Kk%|tgUTBdEC!#!wcD81!loNw@4NQS^x|bvR zQ}2;a_LmU`NS*J??I2`U^D_>oD9TRvXtc{Moy|0#=1`)|r`lT*Pe{_OqJ?j-lOfDxi5;%firU z#N%)x+on=7TD&LkcVQ43(95rT__;OPbiBi>waeEs0SR>h456;;;B$;Cz%VeJInZbE zdIzWggYbXX%MEOf)dTp*&-^=dDn{*R@nPU+-S&(Fz@uGh`t>tW&M{AoX&;7dy}{(G z1M*z6v@sbX3c0ISH?KebU*`{Cg4J-nLGXhA!s_ctjfieLiIL#RQd<$@EX%OKe~${?!xcIKXru;pZO+R(fDq7pM#&2_%y5#zs@7Z$GP)Wtv1#@yb!j7Lvo44-=x^!ru9j^%yF*KmVX~y41c3E(_0bW4SxCyrKF{`K= z_d8idz30pTzDD34avR2nD?G9IWw8%AD&PO!fB~Q#O5LoG(HV1AAsF5NoZdIL@?nLU z11nn>qz7aJ6-HVT$zHz1zOK3m6JbbghfYO}QgitekeeH5`X+q3_kh8q}CJ z4{a3uGH#dd!UpWFUCHh5g_X`ku7p)c^_b8kl5Pm&HH+=A0Q;XWaTbbtWLbcz&4z0Q zjBr+6*7YXp1*9pSXQ@lAnZ^ym{u>=HXyHXToy-Q6cYN{=UTv@?=oM0ISs$Jd&x!*g zD(AIZh4v|!%XL-?bp+T}6)L>>TM5JcX{o${9#kPw(dfq9DkoWFViB2s%eUc#OheMx z>cptw#nO}A^K17rha|)w;||W$Hwb(->)bRl?4>LXeCjtC z*cu%!$YEFRkd04#)s5c6Fi;r2ECve;-KKZ)GQen!`?I{go}TyHw_bbB>j%u4=^g6r z8Wa8;bnT~`-CedMM#h$R-2!5#_^khPY+mtyud~hLO<=v4V<2B~Zt{72x)An+Q%LpH z<7B9ACNLUMS<|JG`1MYKXNHa5#FttkS;gTZtuOpwaC$Ml5E5`8Ed_QjpOWX(`PeVw zZuxpR=L&w@xeuybFxNL2JjahYVtKG|@?U0IP7anQnRFoeyLikR{MYXe&a~~~k?Q3q z+Q>w!O^|hf@G_xx?ms~?1ZE^7t+At^-Bz-ld1T9`auNI)kswtNv}$>1FB0o5rB&3N zLsFd?%rRXfug)-E79lzD( zo$`>>Zx%upDfBNMReM-@tv|4}WvJikn)kti1)}H!1P;iB$~K^tjz_H(*IWC8kCz6( z7x#0WS}4b*JCX3jc3W~(xluN$8~lfyTVa!qeX30m?u*&9=H!dl2(dBS%pues^X|}J zGok0vn7*@nI;vM#sLSw71NoSb9?T-i2Pa8))JDGUwvG|Kr{TjCh+1eI4Ayo_8piog ztX23kjq=;+PV9b7<^EdmNkdv9JXP;aPMy@iS`S0AZKPg}{LG=CEw!75mEW-QHwzT7 zhVFWImJD|PSiB^c5M2N*kGnFuY#-!V(&Z0a;S)458Mywnu{7Z*^_~QA@nwOYMa~K_ z(0edhz+qQJ=NLT8`yPH%zplPLmw|RoqFLO zeQW+GYa4e%$)sk5$V=dvls@(L@bJxL=ULFN+TA;pn67wRn+(xx*8SPhdbF++T3f)B zspZ;h$3yh|ksAw1Q+4e*-IC>9|CJpj?-C$#(q??;i{_?b_kV!h1sO9; zopHN`Oywv$yhJ;H$vPY#>u0oZ7d13IjfdzW@^qe#>|hh2kVgLoj@LD99St=ZfW@{& z;g1S(JTsl&$G==zoI=&;#k0@nY^DM7VAqP^MxC|iN*)aOFjF9+&e}x%dj+eO7OQlm zX+YK`WKf9=z=WZveoc`2SLf#{TE8?kX3W`$aP1{C27+UkE}y`lPQ5-56w4=x=>rKEDke-QY5UL>`E6 z$yT=U`3F8*)0cQ8vY6$1PN_+9!CbLp2$Wo}JysIK`X|twHbR#2h|xTZOV0+4*{t@ zRmL$qsJP>ou>W;l5%u3y>6+7m)daycA0)JocT|;K1qO~ak+XqBR;q{>Ot1O$I5f0q zWb0J}b_(yaAKfS-y|a1UOvC@W`EtS(E@!TLk2;ZBEHBwYz4`V28aE1N{e7D2V{`si zx3Q-|EDd0mE%!1iq83QC_N>u#Zu)RB>S%Ba@9VXDU$ddxLF28noFcZ_ zpA*s$Ws$qOjZmgau&i}d6+UYpGao+e^iqO=P?`rZ;iAV-Cb?#z4Q_1(r*igLC@TJW>8uL1 z7g)*$zf4r^{e@@oKaA;HR&gUQYgbp3B>m$FPc1Mbq$Xe;?&=+6FKCz`)kS{==9Hw*o$%V<8QXUkVW=ms2=5cMyCQL; zV-vl2zni;^hgRGC0ENntHn#jlyfz^yN8#hWg0)2aaq}Ps2a9C1@9c4cMV^FhxH!)s z*VzANJc|Bf(aPgAdnTL(t8IO6s>yr0LMC+~n>S4wb!+G?S^;!Qsa^Jx9dF?F2a0?k zZ3m@+?ou02u$;4l#^>_+vM_FYDDv)>P!4xov$G4w$dM)W{`0e4N0+x01ERT8JTUg) z1$;*j=B*+9Z{^4hPi}ZMIApKe7rjMt>+0bMnE>%x+`jcS|>U6$m$_H&UfsT#mM( zKMY?#vu-l16+vyg)4R;`>lxET2G23{qX{^V8#8hVwYS9J?}fplq;E4EjJ=tgKbqSo zMPyhptU_yf>_Dlzpg`|@$#~HT*f0pyRKJ^lJ`ca>RDrnKo~&qif)ZmwF#lB9 z6Mi`;7ylUGJOlJD1eXUUHhshk{x6`&>3Qvfq4Uqs!)yKc22{qPm%q7+V~yzTr_^Y= z>S2#S2bxnfCi+MBS;uLeX~?<#R#G;d1m=#xPqEc*z~?##1!~nvKIKefXC;Y@P8S%{ zK2fdNL)mvS@jVAx_9IZ5c^ZbAxKc4m0u9>n5 z2h1AOFUGoRnK0_wFI|?8pfO|R?D7G4AMd}KZe%t&ZAspG^k?d4!Lm(p5q>>W=hJg} zGz!PG5y0Wzp1Y~?7h#x4+F)?ZNm`LV{2ivwWEl*|LZXKh)8u%xf-E*U)MP>Bcr2SF zEcizqO8Knib?yd=Ag?o_cmV*|+jC=ArVkcy+*}&z{y~0TZN1(6FjYfPngaL@Y}14w z@P;@5n|DP4 z#8Fybi}QaX!1U)ks|m=H%3^aw+aqU<>Ru`G<%u#B{MH*&fBZu&DQE3h;pexT%q00P z;^=wX=d13Lylo_c)wx!QsT7t!L&2fmz_v^(1%=1^cF-Zf^%`75?#6lM_D6OMb?6pL_rw%107eEU_^|l6?#TZ-J-M%Req*>@c}( zD5K*JClA1q8fQPB!qqA9N~XHH;SDRruoB$u&b#r+n|%7}%AE^Rsn8PSg(R!QBuf(N z%CY~3*DQm#nLUT0_uhQIcc|!Dvn(cm&WLMT^!2YEb?#>B#vD4P*c@))(PAh2F&*x6 zbD?Sr+qwkB-^`w{+$BwSL4Bq?)Z{Jthqiv@dl&Q429@iA2%wH+ORu@>?cN9?6}T{! z9B@ncbS^vu$~d&vZ{1!g#s|61R22J8{QarBKJ^G4=OTzTz?atWiD|Nns+7-z89aan zv9g{Z>%GYk%-jWOunrkNu1#-r24`je@tQJmYA07%|Ex|5jGPKT%b24OPOqYZG!j8> z*S$2CQspt$=G+@&n{{P=PGj%2&!35jYhdqjXO*fm>i}>K?rXh5R)medbMe$yE5Kgq z+1S<{i{GWHS__JhjN3>LYvNWldn@=-6+($WbQu#!M_eU|S8pGQOPOW~CMQ}>!U8;? zI>U^$usi5XmMx~yCK`^EcTFxZogPmYDLT^Gh)<%610ozkLOINIp=t!ELH*i1_c#4y27p)&f054+@%E! zIteVcJLb(rR>?1EayadO;Kzd*b2wzwv8k&_@q4^hmrtgKj}tHO?BeMQ$L-ep{gf!H z35x#9ThyE%4H!=L$K&?QkC+ctUetBc@8@rOwVK7v1_UFOBR+(M=f-Bij@KtZq{}@( zXqosEZqNs(nrJz}@c#b+6?(KVWlGBid(PX!3*N9ino~O(ceqa8=C^C9QSyTpFJmwMV;UMN$4X5ted!fN`V}EI?nF=h(>?=7B|bHFt_{ zkEKtLfFlp8SSyI5rPd4ti{-TFWj777GXaV$9A@q~1Z@rCPc+VxFmqhoad2I>u#iI> z)+WAI<-Bl|4kfNt<+uqQxKxUue`WQ`XlBe1>`L+LIPc`vahZG8ubf_6R%!WtI&&co zqC#N%gUBkP@8SLJRac+@z3Vn{z5%h-U$l|HTX=IDV+*hUKUn>buoBGvkC)WU;iKoX znc;`=EJRGdE*J&bR=Z6V_AI}B`usZ;uc4E0(}Rn)g}#6->ks3}3Ezqg`!~?8!Cp%( zpO!@%2VBU@SL?-O1g6*g^KNQr&V}ljGPen4JRCSSL4{wpY(IWqMk>6dwUN!=#)u2t z*i4lg)~i{GW>V-&UqhrKhkxasl7@dw6UxjJ>qWbx!rr^gcX!Bvu=rZ?q7yxO}h29 zCf3?+2};)+SNvUA4|uuAM4y z+yPc6+wp0pzUz<}f$qa|M}Z~@`kX<;=m?wBGi#38pl#*AZ2_$Cgstv^mI4>yt9w1I zjt^7(rtk?HFq_ThCfO^RN8#2ST5!t6r#HCD>c$Z*;?~gDV)Busm^jszYfSzW5oaAO z8F+&mqA5MxSnPm5<0xOeHIGWgd;eGH*PU3@R6h{>S~;#zOR{sUy7i?aEd}KL>few+ zE4Jj6L2qko$ugmY! zhItaiD#%4Ef-G8#jXhI7w0L7@rao2+8|-$79iIQ-E=y*xBYKjdOd|5pX?9kxV;m8K zl6b~3);QeT*|aO~4KYdI^$OQv`8f{Uh$vXe3eG9r0RBKm_V4=+tY77Op*hrVGS4m@yRGm84{CYd*yAC&B_;lXuEiRF9w_{Nf2p5d) zn$PaSS?Y+qBx~Z17rvi$1bMc2@lIQ+hHH+v(ebZn{}Ji!^qyN2vCUX{qf>FB@zc7y zsGIz&Ip42$&R1O5*?B;Y;h-G4zuaXM|4U$d>;CS#bG6!ddGvFUR)CB?bz-wH+Ec&hM_2rjNN>DU$qTj@;^zNyv{L;BElUi#P)B-Q^gE7Z%_G_^7 zJ$S3%>!xR+S(}Hi7Q!q4xFIWwNG!;&ilW!UhmtO{$~Dsn&;Um+$b03LYy@cksYj}^ zn1<#;WxzQC>aJK5j)XMFIk7reG0fPj-(wXACo#bwcfdldwXtXp3voSvPASc`T;)P; z6%B~XUuP2%TuFQ`jXFQz$xrLktr6<|fg6kz6-yPLJ!fBwtQ6!+o^mxtAJ5Vxui^2? z3hM7*bk_- zZB<3PR_%#|+_L?2s-9i|hqQzT@{>BN5pH!gC)xJa>?)NWFZOyo%>7?AppM-cM>Xzv zQi`9I)R{HV8PqIg74q(%l8q1cqV~2u7NHGVO2G`SZRmZ^2N@+h&k{(1gcJT@TE4FCW+qUjBxzg|@-1U5d3*Lk} z$n{T7_GtS;3c6(@RDTJuWnKRoxMF|E8H+un-k$+#HWN?(EtR{o<#b%1FN>z$x9!}n z+4?f+Ch6gBbv0J|m$;H5e9XrhM{K$p<3-7p<8?bb?PV$=qoWhSkjG%A2u0GYS5yid zosMz#aZd!2;e9Jc#7B1c{Oj=Lg_vpFcEM*5Ap5L7D&s?m{VMnoF1-nu0SPkS7U##9 zqX|Sqb35B5o9d^lI_2x85GIcH{m1ZausKJ{r5i79fab$!X%P$8KbI$x9WKoKLsQ4u zit@x5M+?&F_{}=TfMvvkX=^EjqHnrVe>-fVe>(5Z!5vOvHGywg*FDTMUj+qrv^?&a zt|bvx8>w!_RIwV?vHcOFhM6sYi1Z49O!{SXa%&_(<8sT)n#3iQ24bXU`bepcQSPi| zBEzW!@d60KzMmEyQUnh_O){Fudd-I-KAd9-vGP^*_Z_-AcH937c($~)7A4pk+)&+o*12_d&df6ufv-%n({*}LuoH6 zcyuCiw*H+yJ)30HPv^zYQ3n9r$1ykGjE_~}=OL?l zNSWdt?9;k^^^e)I0M28BSVio?xwlPm~&^;n6f^<&$I*xN=&f|!ImcK;r&mEwPDXu0pnrC?50xlo?pT6xmg2>kFome^G z>CSjt&;M$*Mt9l?q^*HkGEU0RQ|b9p!haKOixUg#TQTM@&wch0aga^j0P+`CgpdxU zrWW%=)AJ0cz%`pyWgj_*(8+P+P>?uwe zaD;)gn*MG&>;M;w&DM^kL^8bENr>UsY;E6g(!lOq8^ZO(kqU zg)2L&`(X1eU$p^Zj$F9bXhWxhI}dF#S3ZkujQ|BPxbi?her~#%S>rE7L}d>ljA5l= zsln6*T6%Jo_xe9>&LO22n~fEEKE4m016r`hsjH+ph2(GBRxHIrs^K2W;^RaZNpU)) zm;KweMg1c5G1@(3uybbgHS8J(cioVbSfVm+B2Aldl_dn@zyfKvb>ejVzW}kkZu6x$!)gK+1r9ef!Ca9#`OpLEO(2k zeIji2n~HwGt!yjeZGJaLoT$fgEEgm4n1ubFc|aeFq+7;@! z_$xS=e3I>yK{^C^qw#^)jJL_vrbuApsKqX)Ak&+iFXvw&r*Q9#S2%|pwcUE z#QhmE%HiDXm#0FNA~BqQjv>U?7*oW0b0&KzO~^A&@G@Qk@W4}IHe%iB5-{ID-yS537pIc$zO_@`ch-lYKK z2dR%2w)j<2d^;Qt5EAnI{aNuBvxxD$&1pUj^AV3)(wCX28i%(q5Q)OinFlwt{VGEG za^&yGoOQtV9~vDrj5?S{vSMq+5O-$i)eVV6a+u5Mlgoe!!&;2x_N+&H!Ip6=~7Vj$UdqO1Za- zAAX;1?WikTIK4NXN~q(;vybWe1^%h}ReqawqxGqmlrP%2-f$lmDKk2K)p@~*uR8J7 zV#i`z(1~>HBy!mUK|W$J7PRdOfq6)u*5;hcXa~qx;jIS3_!{_^u#shQPFEkdF1&t6 z_no*2Ll|eV7%N0dmy(4(oS)Zh4=X9iczH~LK2KkzQ_Ae~STK#UdUE~wg2Wy(rbX9Kcn-QM&OUiR@Ssbp_hYP z`RhVeawpNzgv+5-+J|Ubo%YbHFC*uvGi+YvJaSaVTdeYDb?iwh1npHXAy4iFUU}(x zK5!m39d>;B?3u4pt&4+}07Ty``Nd=D?o^N@_)p_(a)DE4?cwnfNd$t6Fr~e)-s#3* z@TU#88}nFo_<~mJ%gyTD9jPwtBQ;S zLVov}>b0l?@WUt1zOnfSwu9QO_42ll5}t%zV+Jr7bpWs1pdkZ(yz0zv)1~&}t?7RM z8UXoMky2O(D5qE@@>9rzKY3;D4aUKw!sC>!{d~LcPWKaCx8DB+Tu! z5J9d!@$2my2KIa+n`J*^8`iumk*x0D z$iM+zLwVKf!%%&X)Eqy5#T==Y^cUZ%csy5`CU?MHBC1Vc9&?~4aU?6_P#T1=ssD4mtT_O58N#l z+tV5f?M_}4-O1rPi$lCJ&=qq1CMA0u(<+p=SX;JZ&}yX_eQIp*>E`Jt-R4Dt>WM5s z%d(OXHtMum8B#0kXTDpW`_w6UV7=wD%d=pcUYGeG3IFe?XqpItpRd0QZ-F6~ zby}4tE;xvO110xT&6>9XgT72#+kq{!cehvkEdPhS@9b)F>!MWZ_N0BZd z(wm3~C?G9#6a=J3S|}kwML`Hl6ogx0uc@>*VI)Q9Z}3n9A=CQFr`54L&!sCI2A zCF4?R`@0XH-sVFSvfq}&($;Mi3-2(XftFTx!GQ8&$In8ULn`%N;aW_TSVQ&$3?I9I zZ_Z}qC}Cq(x*^N}BT_cODYnkvaWHInolaIrxUT;;Iedz?n|a$`16jU1{i$Sa1sop* z1AED_GY9|4D>DqE*w8~3j-Li4_9^au<6+aVQ?46?klp#J$9>(F8nt0F_Vw_$o%DIH+g0u|EKOp5?W501 z9N)s&jeqers_%WT5qFwkM>S?W6fOcQ8(v6nHLnPckQfNm=&@)@Y>@{%)LIV zM;LrO#Q~XT`={s^QbRebpoXZ!nH;sJD~(Govr*_i={NJGquUwM!9m}*OKN4aQw@N_ zfa`gO6|#uUtt2Vgvvs8Dm9qf5XrKJ{Jy*J8^mb+ETGDqrV^7DLTbt(vfwVpYV8%t= zzjWEe1Pcl8N+Lnc^GlDy!b;eY@jcy|Ke?7z`kMA;MzP5cqzN4lw#y8jo|XUW`4n|1 z@lP1kwTJq<>Vd`s2~X|V158(RX|LHeS|N zep@BDVcCWi#S&w+BHv{%1IGi36Uopi@0!z^q`>aAgF{js&?TQwS5`OW9i#a?wtK@W zC0rykGTRr#lM`;Pxk?rkplmo#qO#t3QX}4%(TRZ^^G{aU6x^t-)Y>AaBnwCLK0?Rm&$ugnT4&G30}$_Pop`^X}<{!G)( zbY1e>t1Z!DD?)PD_;!T1I1Lo)|C*UFl_l7oFSdmeNtozFw$?RzMKkTy6yEB%WbF0> zec_G6mssq>YSm-gh)X~Hg#pb?V44GXh?Z9{_?1$(a`;vpgcgRrX$7POi2d-sBi&W@ zj`M!g>(6giF_eZ!BBP{@7H?A0MKo8qjOo+VY|{rES!v48K+inpa_zI?C3+-5%Wj;Wt?-}Cx zjnH9g>CVr%^#~2>1LgchCn~Y)fhVundN-J#Fatje$8{_IE0o+fx|mBaIe0H7f0%o` z3XJr}3vu+dotfag(_kBS8~f11P#>qraYKJ9KHAT$LYE_dDLp?ziFFGr2y9) z&yUPlX%~4+)IGKe#=OR}RD9k4Z9>J&RT^(?>BRnu_lNa)rN%lq@SpgU`CU@e5T{#D zpYmu9Lp~26j@-n(A13Xa?JwHCz3E)!4JD+4gxH>x;eeWGfaG0|E39P;9fY3sl;cWs zqX#Gqm!HJ=r%Ic_{paIzd6q_K*E?u@Ss;s9CS1XgsMi7Nq(X^=p&x?Z46^DH2AFLKSe-_n2#0=7&FTf^^@6_WI>T!dLvx;vxJmbRJt-4NtYQ zR3}n)p0jFboR+<9=q~Fgg-s2ZDJd>a(|ki+9Jdn(TmqIu& zpqkMHE~n_Zwy4x3-LkiBO0@|5C77Bpw{<0znzt~x;!_s<`PV03x^lpbg4>1A0f+rp zIR;l{prgJxj5)}7=67+KyYt2Tiu&}#6Ri5dUh4vU-PQ=NqI%Rg75iG*DEaP4@#Dld zo?1=eb6R_WlZ_l|_Lz^ai#XNTHLiAT_L+RZx;QwiLmbTJvXu5e#kej>u#Eo*_$gqy znUngiMLh6m4}6>x$hyw=Zw3wI%*w&UQ0K7pF9(RDu>@|h-p&tt<}tEcP+op)TC(R0 zeyn~C-M&XPbS7yGM>D%&#GW16u$43ABM!56)(tS2M=XP~2_m^T1kp@K{bQ1QV!A?O z$(gond(_8^D}j*3()*g}z7Ejw9&R4T{f1;zLn^kEO@g^;&y%(0e*czjHdaP8qsW|&N}R~Xq_;Sfxi&J7Y72#&drS# zor;z84@;l_t~%M5TuBNz8GGEx-jUxa-Bx`j{xy03&F}jq?+=$Z>qHz*=?pVvI>R*{ z9Gs2{_Wy10gx5h>F{D=Taa4Sm@JUv^@bK>5mB40c+=@j;PS{nor~s$m@~i2SfzP%2 zGCyAUZ+a~3=IOSlB`-340j@vK$)5GcHsT^S*QT6EW`sW+MvRyO649;eoiC<*a(zDt z;mrbPbkXLCW9~0{wCDDu&2dn_h_+kt8=w|8rT}Y96U31iYSdX#Bh68?Yr^B={D-9> zRf8<$N2Z*E#W%bokpv%WPOO>!NPMjfO-~2DwykkstO~bMb)ybT8;vLAX>;izqVFS(KOb~G(VqQkN|QDleT#iu@QP(Tn0&2WN{ZDW*I>VOop?9@=GY%ACgj`M8hsQmoTz?Q&dn^~l9XX)@EzEA zew8RT6=>QRyJorj{|_5vGL(Sb4UZnpd;8=IMb`u?{!w|@wG2yu$R0Krz-+q(OeP>?bgMkc-Ow&3!a=K z>J3-E18Eo!jcsgxn7NzyRF*h9cf&&4Bovl|IRAnr_kNwIO@UfAd?&gIHY)KUd31MH z7!^5f$l+sXRV8))9Ze$o>y3%dau-ej(d=8 z;K@!N!5>RAF7&8>pY}V!NAbRDN)qm_${`kl++)(TJ_T z5Z|f9Bb>k&qc5KkN!(Hs?a15dJgZS#d-Nz5c@iReDd_Eg*!v4i*T4!MT3PJau+6>e zLv3GNCAFTFZDf7RaD*k-B&F@Gnd(~_qV@K(j$}OfUo1&PTrJYNfWTg4Bx|z@jPEJz z?=SH(xSaZEbjaLr(dQpK59gO|LRNMR$WdRzh}diHeR}={erY@$q?L-h8`1KeZ}Y z4qVe2P7_(yOlY&)wP@$?=nBhiMXkIZlLt7eyB_8j$A*6$lFI$PeJ1<)f%Dj^ z{SvcY$(SFHe)jq6XX(}vEQUgV?0hc~Y;TT6v!qXxSkk<%&+qck1j~Y2?yFG^kd$X* zN(PBSs$XAC?j!aEAr=7#nwoRh9A^B}EeEG+xXp?L_CkF}b)jpcEfHSI&xb1S51&y7}}cR2U*e+sD>I-7H+ds<~~Gg3mu zt5gkRsK8|SrV;DpZy%Ir`R%G5;ipx@{!2f ze50ht-Dv2Ml_47N3gI;ucZ$Poa4CBrn29gN&Pz_>Of_=mM1Lh#&p+(5){HtQ`{|g^ zrmQWDY6F2$G${!gf*2xsH&o5SDZ3jzl%$mRbxxu^ygCEG-Q-OV>+B5MoK_Uz?j4fJ zHj@m;NQ3oni@JitA$BKRT&6D7j#gVrfW)zmzf)?J)V;;E`zYpVvNd-t^NVBytS1)z z#cja_9|4mK`EJ+HXgyb+HkcXkhozO%*TEoeZYlJRMoZD*&PJEQN55Gu;xsCFLX~Mp z|Co+lQ7YtnG5*wiG&nJGhJ9UxLyibN)&XJ$71*2Am(1{Z-zzf0b}&HS|u&W_YdwlrkAzv)#t?2t)L7=kj=|F;wfB zZLZ2`>s7cbDA!lvS)GGcM~mY~YRF^}G01g$L%&k4?b=c;;iCA!{+mv^C!6SkL<(%C zw+8f@;P>e9@gK^^pIW0^27NmESJoAOb|wF*L@LpcpUy~{PHxSMvJsQ%Cw@)aRp*b9 z6nRuHS^rlg84+UTtdq#Lq%0yu-F-p7^y`hsa5k7FT&zt5N$}@jWWnixB?+{S_J65n$H&+<^bTd z1>{yn2%|*<{r13ROH~7{;lW&pezBoanX72AiCyFoMXjS;*RX4Wm-W)9IlPym!N(F! zcBX3+_bY?S29|yi{jt?YX)JYJ(Yt1Qs{6MR8U#6*$svK+BN}Qi+2Z zD*1+z%}~VQz-Zg@o|=BqQ@x6*k`FHyZ|m7ZZrzzjo7F-euPHzco4;E;-#8f;?NRaO zOH_J9sNbXaTTW!;Ltz%~eJZRGio%6JHY}CYG{!)Ws$E){ zWk17$LwbT4%;3j|6MO3wI*v+e_}KuhvJ|EsYmSYWKfNIGC0g5bg^gGr}Aq(_jD|IhtHH)ozGP4ZFwK}=fiG2p~WE@ zKhw)dMBJ3S{ym>ZP2s9HSY&d7zs~qd$A^D>br@g7I_x)vCitW6^wA0DrjPt7dfUg2 zE$jO~)IL9DdTfUn|83X-?KrrKY643G{aHG9-oL0vA<=yICtti1M>85=?vK!S>$5FX z_dJ#FxEczamM!IIUB74Wv1lzNfNGXc$Z}a!uKQ$5xZde8cPI1Q>dP?kO=Y#P8_sPD zBCbT*i_&k?Uab6F6B->EMnTVppRGqFpS;q?1mnZl7g!+MiRuU1EjUJR%BrjXj%OdZ z`m%9(pN)WAJZo~`vC6rNnc==&%e>^?*kI6U9RUxJ_lqmt45qgPNk8E*faWzL+mhGt zK79Rl{F2xReNK#&-6uRm(%`jy)p+MtcKiZPkjj~Hy9zWVDpTUIRX52UB6O7fZF_-m z$%6B{+*z>u;%@B;%;pc*Dn}WXCFg+D+(1XwxpkzJxZz3k``?-Q{7XP4A!OYkl@UsCBSpK0f6*Q-y&=@r2`tGRLIElR6vx7&6OOzwzmTToUZWKWL` zO2==z+u2QS{5|XMq-SEe4`2A?o-^!+^Y?4Tk4QMWwB8cO7-~)AY2#>$A>O}x0!yPS z{h{SwsUO|JL04Eyv*CZ$}79c2KTCJSqN? zYS%2*IL#tS8PJ`1O_|W&>8%+gJ@<$gSN=^9o;5nB8Ddt{N6R=lei!OwSGjWGM5OsZ zm+P^@ZcoVV;pwc`YdF`|T~e`vrV&feM5{tD|Fs{>FVGG%Dw>vma--;X8<(E|QWzem zUDh6SH#U3>Vb81}-5&=2ht!q*iqbg+y%-7Lp>+95i)y5+HB zQyHw_6!Fk^LvW=f`y2Ysbd8*1P)PIlxte2RC-)7EQc zdkGDT;3#9#~ss6Y^oIh$*1{FxgpmCHOLcG-)HTparP}bQ0a>TdqEK1@4gw_*{v5A`OjI zii;&6ndSeG&5q;FXo6l$3tnJ;GwdDwL)R>oGC3VDew)rGOmSws49O@CP+j!1*r z%7D_r@4xmCA2QjctPHP}hZ%2X-(^&%PuDd(?crrLNUW>c7;3tWUbWJv`o!@Ua}+L= zzfCEr_-G}gM*6BBhh%XjDs4`OE?gNQBWueiIDOg9$mG6fPaFW3>_5UQNT^@Aj}6Sa zC6k>#eDg1(Um0&(JmB=(8Gdrt$gjaxCRdFb-HPA`tV0kJxm!(nz#*UM#R zbMfxxEG$|f_yZaaImT!Noyb54{@ta76fc`TKR?Z<*%h+lWK z=MRC-sW%&`FGg%8qx-IzYq=c1)PC1uKS5vp-}GSvGMgR?8d#;Z+DR zO!ah~Zgn6A2EA14)!6yA3;zBA^S)AQgjSc~j2rSJI0pmmkzWbMi{s}KrdrhE12h}0 z$%oK$G0%e&3)epc?Y@O#USUNMy`%G*2TKF_;n$fM*5bZ^V00+VRJ_J))sx3wbC!Lt z6>}(P+07OEo;`q*in_we&ZUd~-t>~Hu z%H=iU={u0pf44l;_SAfLfxQ3uYZ|zDQr!EGgU4|7ty>^AqJc`B#;WKLiNmD~zZ}b; z3sd%6^z0qMiH3GEy~|fPe_<%rN%2J_J`STg;b%{|;LuJ5JLr38jx}W_BIRA_*4#p{ zkzyk>#33_L#xd(RBWakpxwAKV{CzKU*eV+|cDcj-aa|b6)KyXt9w!GM(Ufa_SBv?w zQBh7*EFFydqJ59V^G3`KAT9^4Mp9UM&W<1Q_j>TArbW44N%dX1o8Bs&(JC`-`TW8P z^~1xaHchZhc@)!8O+F+bN9i;63Y1~9E`^p~p?RI;8 z;H5sTVWrpbkd$jzj%Haxf7#S64Lr72xw<$W3aTyr>s6`;LCe~m@TNV*@hV+C5#wLh zq#DcYrXsHAj15+-wm+WVQ~tBuO}%485ZY}QG&pgiyN9f zo)??@lNf1wm#GMZ4tt{QPe*Iu;3r`( z){*>*N+hvE`1n5p@D-j@QhvH;fGuuXN>oN@aRWetKYh;&@!2wA(+uWnRKYv}wD z@(q+X^ckm7v+$GZlBfC3iKl2kc+NtrK2S{E$yJI~X<)CHGlhNAFg0jETP4%b3sKij9A9 zvk|UlIl<@@B!!Bjq(8_xO9pRhl-J?bkef)#Lh}p;0tatEc1DDhj+gYJn!*CreXs{* zP(Vdh-cikhWQCR)O~50wdHseB3g79oJ4;a z-tw`bg`+pxONgG=V72(Vm(TCGhnF*-o4Aj911h2HKGO+HHCF;irys8MT<%ut_6w8F z-EK}3OgTJc5kLv~D`S4H4Jyrt?GQ=^53|b622H)<%PAU+G$!ck!6nU8e~)37#5+_8 zNXc@VRSmPBERkwxx0Ij_d3|fq0lTR_Xl`b+ztU4mYFoy59a5 zgQZB88Jp6BlTb5fl>K1|0x0c!bty2mrNN@syir?4D*H>IH$xw{&<*b2Nszn>I)T7` zu^vJK9EB}Ey+2`pb(qLf!GtjjJV-_?L?`od)3Iz`;x@#TlJ=~7z!EzvQz{mmzI5S8 zhsSGrcS22y>NjY|DX${yKP8IFsjuLxX#ke2h7H#$N-ze>7_DpVn+cRT&=CI2b?@p) z?=R6qU$;@b#7y5s% z{69<&jA{N4GE4=U* z!s<<)1h}@;vyg2~Lt+~?;t1*^&NGb*xJGDpUCX$Lm0?4}SUj6_AYJ`89l@aom^sNi zr2bsiP%MC8zOC5}o+7ungO?^ovzGA|t3%p34YV6T8lDo_a_OIQI~T-K3t3&@N#TVU z5}qpR=_uuyR$5}${;~=SYXHfYrOy$Lv1NjC7_TOew}&K29R0vRoFpoH$vI&~!EPLj z#%}(8OUSfgOEePV$FJ9RJ)*A)~JAShFiu0lrI}GEUjd8vA74}4z z19?IAL*j=AG##ALBv+TZuPZARkHQTtEe%);xbhVaUN>>q7Z&T-ic(&pqMl~cQ;x9K?G8LfN$=ofrea-P z4KZV`wDgj7q_DZn27bU!&0N}Rtyv2sSZGYD8rC`3B!p2qK1qd5Z5xsyzqJ3cDNeoB zaL}C04BKH>OWYv{)8INI?39H5 zwFer*2x^3)84FQ}iQ#w~U1duqL9KQ_pLXCyPD+X`w9pt|IEDvj$c6e)f$9NaFdL6C z>!Wo&JV1%0N?w^jBZGUfty0J3v4*vN_O>%yX${0~_J57?;y&U`5_Ph0SGey4f!oyB zRqqW3O&t}=pUCAzalZT8&HU3I|NHbmL;PIM&ma8H6aGK;gjwI;ED-|VIw+w` zC~stS9*Ls4+-WH$I zrbWgN)1`BNpapVzC3r$;&bO9C3qmiD4FzpXP=bJgZp^Vg>X#mv_Up^i(J)jVfwZ5i zj%gyUx5-Q~5E$w55W(S5&gw^=$vlra+ozlR?*vWV2^UQxCBh!s2n!Q4i+r=0xJScM zh(=->CQY%z)jQV5bvZ`r5DV?=)C(g~%+6WKQ3pnX+&h${(kU)$p=+41yOKT7N z_Pf@b4+^+LbKaK>#~eF@=2ZWl-AU9N6SPW@SdJOQ`Z!2G_yw|C?7J5i-nIalzB*mM z*1JDcp6a2i0!*F9mA)2znmi2A0VNos456#?pAU4>_FmY%D)Q*Su_WOtHyq^U0>BVQz3z$G%1dnhA*1eT zuD)iKeU=d|hXr4N*pcaV72_3yYJO{KhhJyzlsJ#VfvE^uO1}7=l5l#+(5xa}ohwr& zsO}wlSH0WpHNic?&#<6kPYGgpE8!~RZ)(mkSqpO9@qWZ+Kd0t!r;d&>jQ=LI2a{e; zV=9xXGdK~!Ni|-j9g+eMAO;1H#@@Xm7`Vt6ps}!5GCbvFh;10l4ksMeL)Q2c z7wk~fI9>q2viqR3Gy3ntD4x4@MVuXN_(>zmqbGHlUsn$ujLFPWC9A(`)h_hYsTX|<;29oMd8a%geU*)!#)TlC|YehFW%f|+QR ziT z@Sv_TARR_7$vwJH3DUVAW8r}E?Cb(Dx(MHjNFZ8cDqVMPwF{Y!&0V=2Mw%VzZ92T* z+>b;nV47*;x&i(VKF)^=nY{es|0Pp(HN>DGzZgV@3sLFXNRaN)|tdpJF=s_-6h}fbyhD8R^@0b6%G{ zURBLEs>$Wqk&~pYN7&5Lo~V0eU!}(nx>bx2tzO}HyGhu+r)D>+{?~b%O)D<;u%i$i zGuZqz6&z3i5d9vxyePg`!-cV)!>pUEKkvSm7lv=jY6YWSn0fGV8Z)%OLFc3qB}^vvnIzSiExfJNmLT%-A4dac|B( zmEOwcCD?JF5C_;w$9vsQ>`SWf{mRY2_-|68UJYa$j0IarP1E;o`~2V3Y3?4H;!j%< zVh^vI#iW?XCid({1!{mx=&}d+N$^%&W_ER@JYL#jWYLWcQc*^Xh0ZcZM1eO?-)x;J zVHWMHXqApsp~dJ?pj7K=z)|svfcm|K8wwI8@S^z4gHKkvEi}>8%-!tK!iT5chQZ%N z(!i)S*D$sMj^hV5HO$#Y`704#wh86}`NeyYY;fD>keNl-dOTq<1GGQ@n$C(WhdL)i z4h73XX{=9FH{#O^TTJb;LRlVVkW|D9j6Sp-+L!OMpfj?D@?ah{+Hnd&eo-*w=$_6d z|MT9C>lj6dh&T_po_ZAU-IkFTp6$OfG-#uSxdU+zhC8kEiI;{+yDs;x5rWS)Qr}tO zERUvHd3N)u2=$3L$;b?!Pe%3QRYz-MZa*A#pbbBoH%jkDl+(3zFL&8+>4v)ax+F!9 zbx~}Rg0by|f?pW2RCx?@qK{bz{`e>)B`oXg_7)jK+{|WkMI!j zVFy||*X=`K4pI=1^C@SaVyeq9Ptlv(Mq)l{ty>}^Fdoxddbl|o__yx?x1zER>$?oM z-vM@e9UqyelxqqosQbpK<;4)c9hX6iu5swpm7UTD2l5kx)IytqM>8ea;gV&)k~CT3 zGE1Xw;H#N--c`h`2^+UXFlSd=l&o-LwxUNj>M8d3dP^5+PtD0R@8swL=q6->`0?2R zb6(bguqaQ8OC|ld$Fhr&+)TfoD`f;VpLsHNN5SYPYrk3!7Tyuuou#^#lBFDDx1G<# z47(4}_CpWPO*UE7q`=693%XA$d9Xy)2&@z3M`lafw!+HRmt=Vt6M)Xs%vX-jk_mUJ z*Aau&PbK_ADqBmoKb26y{pF*ggaK0B=1lAp&mWTMt+X-5lHo;i6A#=5%Xz?!aMK2Z zfRp>>nkv5Iu`E+Egpfh`7lGXShBdI3$(q42k%@wvQ1oiLKnr^FUW-BC5^mC53B@s1 zRV>XT>)XnKr+#hIzt72n*F=B_HA zf@gV7v1R!q9UskDo4_3P1x*j~wL`#<hE;NvyjgZszMVG9Y1$;LH*b-0UE=Mx*epv?NV&4#G6GnypN>g~&MUb*asL?kP)9j9>F+R@ z$9O9ECL0=;9K2Zdju$+Uc7Q_SN}qu~jZ`W*5=4)fYf|#VouvG_N&?3LW2Ih^-%LbS z%RZQqAu3p6O@`Soi%|FC`U4u+2@vKoaa;#Jc_v8n&-%s>ub0ZPecFVK6a~IVfjnD` z^a3;{K0pn!Wnzx!p?xQvb1@Q5FcC!`yopbr10bP(8Ic;}O)Uos|Ls8iSh%T`)PoLK z!3hjlwm)b=l>TeVs}Az5$6m@D^%q_NQzE{WUaC(DEaBs&m>8LMC2TnLZi(zBSt#p# zWwyTK2m)Z5hvAl$TfK$At<}t=pmnCsI1Ps=45QWNpg{>@dUYjMt`439MtVTB1Fi;q z#TIQ`sJAT8pk&D{U_8x2K9|^VVm}w}H9F>SifwmZ(rnY~42-45`KXoXx#LdFZK`SH0QQESr3FWWcV# zy+NPkMr8W8kaEBl*eK(OwNOfK>F0aPji;oF`^NDuR8r; zy-oRj3~rv%o1r(^orv-FWKJ#(s8d_AjyRrZi&0Fi-(<)b>qaft>&^`QQ2??;qUYpmI;UTZ%FHyBzu%XK;Dk(ZF zX4jWB&8_O1a{0Exwx9=wrxsOjf~9&A3BVCb_HM=PhFcyx{8ap(DxXV_pKgv)X5>@w z84%^hP?+3=`__tVS#PX1&*8cxsNa37%`*bIg_L!b#8l->Ps%vgUM-WJ3WA;fBU5E0 zo{ls41jry{u}w9tP#({7$6}KGg0DKFM*{oRGk)7gg3$mQ}x{ z{RD`WlcP3wjYSYfH2EtTvc;>9mL9@EJF(&w!w%{4{$;~BE9KC}x^Fi0`C~f4SWbO0 zCA!tAT&RxKEu>6Gd8WJkh1FB3SW{H`S`x2wYheD?D%!&#^OfBF5xk#$#_q>pi`lEX zR#?aEW?;#O?_QAUzx`)FccOfCxSSlzea_c#9kSW$GCRY5cM#<{qH^ZmZoeVx^6~PX zs564r`cZtXIYPg&|9$fCtFM*N>%V^a=mVAupV-NfT?I?)A9A8w4RzP>b9|yUHz_WeYCIpHnD+qps91y6t&=j>>InOu3vX# zZ&TKTTgdXUpfyW-U@oxN7E#-8ix3JX4;E)lA}ZPIR-vZmU&X^rW+H&r4TN;AZ#+EM z{tQ~RtA@KJM!grYb;}uapZZQYbp1*}f91EEY8EQpfPJG_o`cuAY7`x95f^#JOE!by zAMeXaqSguAa>YOB@GpcUeG+jJFYj-nEAoheTuxfv#8D>Qw&}f<0XYu& z+NdVXrb^EyV4uEFTbD@<&W?6YIMISwWYP&S*(&BLT&je;Dp|MA|vur>Ah3D@WL zKN9TADozwfVqO|nKFF*KJi)yR?8}(7f@dT$`TH>guKCFT4T`sOP?e5Ptc-X1F4>TgaR`I0#m9P=8RCs@``P2&Ds zCo@}ZAZ2P<_9=$8$DrO&p`3c*ZTH=c+^hIT<(Jh-VAbZJ{LAuMp8_70V1dg=Ya6j_ zjWZ>Gg9r`r+^<~TfiAhH3vi&-2!jG@M)8LX9Hf;0cVqasgyyg)p#8V(vYw9KgL?Pk z8`c>li8AVji`uU}GBDe-cTWbG?hAHlT}!>Ky{B3C{8ngkZa9~K2gV4nItl0x?s0F1 z$ILtQRjpDiD^EwM*Z1B#vHcaOPQuv;SLQ8bSgpP;8sCq;WUZoP5QRWn9POWGL;ANC z+V8xDgc1rMr^}K;^|G)QGY6O0fRk-wqwk~vV?z~%Lh>cyhkVQIAgsJ&o>CMIi10)e z*4+(D=!xHbzyPQKP0^b%PqC z9E0b!#mtCU`^4cJ_#;E}+Y5X0y4LwP~?Clu%bR zt`!k*FtfucT9)RVS^hTXmd$yiC-qDgf~Ngde*OC)&*F~OAT5uM<2ct^OXbQ79SYrd zv+jC%33|x8%lsVNhKL>;za>PsLKyrh@<2wmEHuQN=rmv-26PxYwJ>{Z6Gu>y`DYS_ z`~Ku1Q2aZv>T17PwU!I8t{jcM{{d;JfYwkE9bBN{Wj&` zd*BnAX3=fsgXIQy)$tnP7l6(w<(AUs2b}ccDi{tdEeKN@Kob0t?(0;HPxvmw2K1Y~ zYUOLTIo6tb9adlEY_A?z*MF8asJqdn3g2Jro9=F~&I;=(9S^AuL1!#v$U46pe}&gx zhO|q^J=Tg`Ob@3ENCwRDoORQi=v6g` z!+)R-IaAG__=Gyw!WT9|{#a~dtz6$5_=A4sbB1!MecF8i5X9Q|&Gdj0fkGx?YfUT2oyTwsNU!>_oJ> z_{K|ax~EbMz|x^zNisefuSP0)3WbIj)J!7>UwNdqO0!^-3Dbq~3@=;$=3T1&tO_&v z!a=j9%Il3)rVW-jDUjE}Ypb`vbG1gtdgu*oVJ&h~bSh-(6@iIl{W-wnyEDNW6SiRm zPdF-!|J+)f*CEh5(A3^zXMUS^}1ib(4ls2+GV!_MSyhUGtK0e@)lK^qT*6Yn0iceANoi+^oe8x|$2yGDY^B*m>Te(vtwF()Vga~; z-l-+EK;mSD5iblOdzdOiD=FxQWPrSm9=$*?SM(Ly7UdT85tFrpEkdNIMqzeZsok{r^yiT2fkZmnH$(5*f(_sL)eb!m9A8M4n`(13ku9;{}As4uc= zXlQ-bZG#*NUCL_eRa5SYv0hNZ)ZIx2(gHaF1%}Hw3$%!|d0D$(?FspH87+Y4UgNat zg~m3pko<1eUL;NGO)q|^ohGpw9B%c+Z;HVzv)njV|2cs$SQTL`QdouNu6e4VAMWS) za)!!!v*RjkUyVAeCy50=bdcS?StmU4BU!`!q;HKIy7?#hxVJnov-Od4Kkk{S#_!Vd z`O6u_EUl(C)9)!r~`QOSP+cZ9ehnrq7f~6>8T{d`FBkK|3oYakS!(ALgcF;6`;ot;Fx4+$uRz`JOt4VazAsZEFLGouix$*Hb`gnFFtt4;te7lHkYP+z7cP^ zgn~V98tnUC2?W*6r_w#+s}C{HF}l_-ErpHfDIf|b<%n$b}{Z7Bxup)vKQ zIS#U;0$<*e*eSox;+jMrFrC>reL6jbN_u?fRf8+u;&E@mCg~QwbOYbJgIcfxWCki& z2AZvvYb#icW&GY`Temc&@hG2FwLs)?lq-75<3fi@9S(}kiQmM_q14p6DT!ZZBj!NM z@CKaY1zV&UEj7-<_+2n?BaGsK;gZ9d&ZkOppY++5X=S^mI1oh2W!a_1N8x6sCvyVj zg*AgFucJcrU)dW?+PI4@Pe=4l)lUX){vE=jZaq)t_n!E=Zd9N}JtOYez7V1DwVs+z z>`1zg1#g=6Qw(aUpH%9o^oJWQibmjG#*2H|fu?&Rq?OqgFSZ2l!uN!M=Ctwc&1V)R z&QZv2;ut|qhehK#mhvLWyt1ETtrX@WsLvPpaP2p?uOejwYHD_bQEo*c)`~9i@!wVI z6Y@yrS2582a=E-_0zUGC*{K%PcUPryUxr%jim|;vSZO24KM~+qxRJV3FPeux&^mA0FJy+On1OIrbS*g5 z(h2eIkj-;z<*d@fn+mLA>%YV+X1xOu_q#H8b3h-VeQc{iIRW;ahA9qhvW&32Ty2T|>MXKeZc&o-~Jk*JPYjUxhS z@^^0ig|RqB3XYS1;_0{qHA7Ayzf)>u-2fKj=_62H31+Tv5ooPH%WCUt7dVVi9(nyf zV1Piha0#nX7+c-zba(y>l804m-q(;h@hrm~6!G}BDn){T$Op`4)fbxgH^l4I$d5cU zXRZGadvDoPSJXvo;_mJQhv30IxVt+9cXx*X!QI{6-66Oh+}+*b00-&3Z+G49y0`m7 zf4@IqSFKvL*B)z*XUsj9%0ad6$fx<$fh5NtxA{1Q!X{nH zdPQ^LIY8;2#U!N}IMi#6z+2*AM3VoQ%Rg_7l7k zP2aJ@u(qA5B0nJLINftUUMBZbvQGK);VOlYW4YNxGyTRQ%lkcR`-!&8u8;kp+u-dz zTdeA=8^OB$9-R2YDAxUk&*<$L&?Px)?_hZjoY|_|4Sn@CmLshCEALiwLC>L*81Vb8 zs&MN|(lC<5HWLgv-5u0B`}-m8oG9=*-Ac$rmuC~dDy-t)a=vR zq5kJ7zQ965G{R(DWbBvb*UxOb*;Q#rfpN@$^du$SRVJo6lC>IgKsU#}=5Y(N%=Ydh z7rTUvJx>W#jeBX=?{w~4{#IHF z@%lRcbJV3t-G6xB6yX_I+4qTw}bTpy}M@hye8qpBoo2n#w^@>Qk-$6NM~{ ze~uv^#Cg|1^(gMASY+SkrLvOulf8SMM2>}wDk|!j>eNpc6xGufTuayT4rVoTF2K`b zYnuh_-CfEIE4K6Kr2Ce&fm`ae0LY|jobOKK zB%$aA@DHnbs|y=fxXa-KQQ9V6vMxkvM%&ahmVpRaHqQpM&7#<4iWT9K^aTw-o?y(f ze}v{=G4N65H6zZt;Sc<(Nu10$ahWNrpRi|J5mMM_QxjVzTM5k)Y%t+%<(oZQcwSms z0)n)v9xioc4DKTYeFpWoD!%xeP^S)WZh90xR0TEPgXk((%aYuu^h+q>_|HFyYfB>E zT!VhqMYDLp=M-Wmtc>uqMo{&3tys~!9an98-4>-OzKc!GG`L%0IbKy>``(OVabT|HV#R9Rx~xj(SEK9@yJudST+M)jXqv?FEj9 zu)YRt2s%MO%IwlKYGAn5OTq-qmh+N*k7TI)t^JD@V>g)ngv>+!O7<4zF!rfh4m+dCU-|;Do@QMC%M)L2;A!^*J7$!MRId9<9tIsxFm?Qsj(ML{8B>}+MTm*c zyfnBOo`jF=Y3pvC)A$ZjxbI<+uhPxiINELmL!q|I`l~H+{C8B)pGMEMl9n_Ul-1?^ zA7AuT1$hH<)xTe|QAMwn{=Sx`PIaG_>@|t1ssf2`U;KQ!77{(H%XDklcm5CI50L#i zjtOWKN+2gaFN{xV!D=`R{+p*1q}v1PbEO6HJrTKh_0Jn9o}FKrUu{R(H?wYE zQnkE$GqZaYG<8|()|dhf8XhiNKjsHA&0SK+%||;&4XlUtUmD6rAL`V-ry?Fq_kqW} zvu7(5`sdtFe@p&ec;?YyT^Ggt9!H+5B3n%UXjiAkLFlQ9~9o^T#;LBqZ7QL3*lktstr38;HL6d0hfw&Gn?rTt1FB9QF%Va#yR++bq2H{QnzjLZ4l8 zoBHzb8JS45K=pgaXks$hEK@qUWKz&mz8K|kD^uI0b}=lw&Bfhdg=V}p7|d|jvjVuO zt)`^N@!h2YFB{v_RAAFBBHZ&Dd7ITNpN(2_UG(O*Q0Tr7`jC9LuO@aeV`RNiZZ|Bb z%RH$FJ^0VPC=XNVO>_I>D!>(|mcvCO$F@2cXi(*keuZ#CcQxH;9e<;3bHlZJ{`bRO zSGg{gj!4rrxFdXFz~TDt3emIsA)=*Dfi#@%xYWiE^q-JQfap)wA{ZQ?G*(ajn1MWp zH?Vcz+0SHR%KmiYxrW|TIdY-(+^kyptM?$MH5QMks2$&u+uX?YSUhUi|M9N+o%!Aqk*p`~&$O^5^c8J8~tPJyWo<1W4kc@Ax9C(9W3pye#jhB(zSq#2gUv!yvQvFou@yxBY<$b>t>-@ zHEW7CTUSrl54dA|4^rzIIMaMYXVV}CGCYqY$_mw_uhQs|+TR&?toeaYGd3Acjq~NG z=&JAH51d6);r?5I7dVyRQBN7YJ!fRP-sKH5R+>*^dgDl&+Sk%2LB_R!18woL&x8(3 z->sIJhK>ri#6Qx8M$3>N;*q{%ON*iCzdfYBx8lFct|~*=_5|X8o5W;2*ne15PjGECoE; zCKOJpJLhv05ag_d6)l zU5U-dxbax}s(3B);lKY+p@FOP#>R1}U3s+sFw?yD-8&1YS5}N*n8q%&B95t(vM5RP z-&MN7vjMI@Bem&T2ZMz!+SeQI?Lk_Rt9qBYONrZ(b4P%77b|HOs{goQ-GStqSg$Dg z0`$Yver>mxiybZ^d#e@A`ZuP`N~;N_p)S~74IQm2dX55Jis*)M-?K&kv%%cz;3XRG zvdeu6Pagryis+>81vd!q+pK5*SNG2U4(tB!nDYOQZ~yj_gMo`7fPsOTLa9lyO5j==O0gQ+8N0X`{<1Q55p{5OHZyTGGX>L; zgZl{sriljT34WzvrIxIY_i1iwiHC-5ij9Iv#(gPk%k6;St$ z-}UQEhY>Zvg4>8)HY2T{WdT3-UUdR0Y>#kA;*DFpHd00=QV$0=h26*PS0OvEc4xLS z&OJT~mzsKY^OCwQ^?QCZ6p|*kNfUmF<7G+$zl3N9Z+T&5I!5YViFnB{RR&xIhUyD! zxud#iSe$C9V_2JOf>g(Fu(GO1bgW(T^XeQ^ItQKJ;j5}k1cII!J=^jGf-cp5`nQHV zkBd44Bup;OKi7yM-9-dqZkYkAmu+n2yK7`iZ@}O_ht$tJc2$+ipH~+qN%`gn#vfZq zA=Y_C16zR2h+h6vCogx*aa6%{x}27(26o@->kfY>-`J0+&vvev{;w?Xazl`r?uB=l zAMHd6d>ZRz&#aQZ7ssGr%BY!iOH%<``JMdEm80dGzeVP~H{44wQBN(7AZSRe>e?^5Da|Hzwn;*x#P0TrO9^@gMbftU8eeP;!Gd|HEkV4In#?N` ze6X#a5NO%LL1W`%-!VWjw!6pQPIEziD9{X5B5JQ(m|KutofacTtQ#cpb#HDu`l|p? zZk~d>4j#ibRd;}OP|HL4K&`!(Lp=51jf5qH(~gXN2)zcu@g;Iau^9Cynr zzW`&qbX|u0H48+RcKN6DyozV`)PokyIM|vW^TP?4ou|G(?`DHItSuA6^Wg*QiJw=u z#5tUK+XiLoW?W!epR?whm%~O$&8<`9b*HBYvVX3Pedve`3&`ao z@OM;Ey2Y|S=1#%S+fP+@4lD9M!!tbqb0_qES;2NdocL_`vgC4aMTD1iAppW`68+TZ zVCLZZr;=ao?cNd=R1HYNeQg+gAmjep=t>Q0e(Ja1i0{jrq>#LHOdw@ngSy9#*woyr zw$Iar#_R%gj&=iRZzE4%t@)l6BAVhkAlV=O6Soad*L&@6Tkph~Fgosb7A}GOjRDHd z_n9W?<$`bS?z(n>8rXzetk9A?FzuC)lgP4Qo!cD+d&GX5U$T6c=`a9j>}e*lE5{42 z_zC9U{nOV`*gmm&p-t~n!8%?zL>9?v{!V46OcbG;bGtW2Le}22-&JvIeX#V)G}Hzf zI{HC6Gw9qiT|^weh`?w@TQD6ost!_WyK)BNz8Cx(xmxpuLz=Fb=<=LfF*sT4m$%JA z99EuR(P^L@RMGPz7uew_$5zRk{lkwh+B>!9@oCN0vSXWTTJd18-Qe9+dYKumcogW+ z{=|qRSk*&^`GiV0lNImy~XW|{s3{nluiwc*C`>Wu>krbtsKcN6}m%K?(q z;det`56J(hefj&)hr{c@9kc8}ZxXI58>Ogg`@6rVN9$r^^~9@nXY$`d=58Y=8n*90N|HD81qoDTCQ6DNl}&1FpFcAnw8mW(5BQ7Y}Su&e*fB=es)dfzaej z(j_4JU00A_Y{@nX%yzpQ%zgG6UGU%dS5FGbdQqD-ds*Uk5o%u;)b6in=W zh4-Any@?{pS^I_v&%c=L^)XtdLwi&wmb!{OtPF8GW`!F-?tB?j^y&&9LM`ia}mWNjj>wWZo4>`5iN3c0b)z$FVoY-%~f-9?!Wb5kj_e z>1W9LALzx)2?GLmYs{E7#Zm`m1JOaIc4g8XDpz}T_8i}P_N5DKrRgKa#Z`NBp7mOB zm|u2MCowqlINsTdLx09$^G@OkLcTQ`_(%9++lwF|9~Re7WZ3>lLa&-6j2G+&r4of*sG~ZPPK_39hF)5#u}-{> zeseZg_lQLJl+ke7GZ`YPQ+u_Y3UM52v5H%p>^3lVv8J+BfmDAzxc{=))l3rd<^u!6 z?EQ}b(RBV-fH?mnKr&JPLx8aVD?pBF|Ev52V1jkh{6~JYz4WHffM3m*%LzeT`Myy2rM8ROaYe7?HIYZUExUm z_K~C#4trv9A#@GO{VlGUmL-cXQ3!6pq|y%$?ZWHospC5ptQEAZnqQvx34smuA&qkv z!95iClCG(ep(&vQGJ_;|<8%J>35EQtO^Po|mpjo@g3j>wi@5U74}T@+2PYGNJESk5 zB)d0VY7_N*=!M5s`Tzl+EkFI!m7Vqnj$c*$)_f(=hw9RRp_PAzBvwfCc%NUsGD4!L-Tg~i+ z)HQ$PKM`n(bD1n6%OA(wNt#K3d-m)d ze+UG*a(rk-#5*(HhKJ*1vmmT@I^;OanN6RxcE)yPfHRN8>1vX^vDPllFWqT_L%wBb zmrkgV&$12A+A1SKZ)H;9Udx32ojn+bcttefhEE8fySi^fN1x>hYG{8Hr*+Oc6NC@A zKoNaF0&ZTL+I8QrB+e&r5(z%qHjS^?i=H|(+IfFNhrHT^Ec1R7QSRq1me3XYl?=4j z*&_*+LGYRx?kR*E-mfwt0It#hb<7b!$xh<9s{^_sDU9o#H`) z6!LYZ%UvSXe0Q~W_GfwI&$$RmZ!;Om8^}jnTHZ}S6K2*z@@6;a%mmL zkGc(j*!N}oIg}{M>|K9jzlT{^BHa3JvbyLXlN{8-<%+>wDR}X4hLU(qcTfbWo+0^F znJO{--Jid>$?u)nKa`YCY}WNuJv^WO`mB}y!AtI5X$tQuMWvC+@$_Q-pOW3DV~eZ(8Z6SS%D>#m=~$Ig#f9_ zS2LO&>y2pxLU|EzCZ%48KJT^uq}W*|93Ed}_GJL`Z+8~kt8x(?P>Bga>PVp?abYlC zviRJ+pNBqO>sW^ZFS-7cN*D%A*bmj6R$=?mRE8;DSO@KVT$2DrWf3PD&7Iu=_Cwhf z-$W8j@SBiE&eyAY@dVL}HpBU5N#m4@4d`J!DNP{hpoLzviL8@FT)sf}re*hwI~KW6 z&Ahd)Cro5b0ks{6y|_*%pTJQAw2bC?#60QAzUR`(BK5jevZu`~V>bubsNMa&iWqg| z)@?^2X;z$yF(Dl_cF9h->8{vHr`Txr zuk31}SK}iTzGP)q9}-SOD4Iwuxm#(LVAPz!CvSv1?ybq~mB(Ic88iJIYiJo-pnL29 zx&zJ*dkgEW495f&XO!cPQTD{NE#7kC9Q=v@MKAmT$gZYVIVf zq6_=t9bF~BQhMM1vkv?wP4}gOddH&?Fhzhk}0=C`KMg-yc6v`s3Jeqv+vverXRN828}JA6!iKfYjo1kv z!?fXWEl@%oXLqIXf&MidD38>5nV0KQ=sj14#1bG1tYlb`ihVT2E)+5dDB;o@yk?(C zhE%AkC1D&mrdm6M&P6aSG8cMIs1wh<{ONJ^@SrEam#1~r#|zfUpijIHCsclFvCde? zK(?gB^9}H<$06exzp%<E{zSaL5i!e>u3&TW;+4P@)^Q?;|IOQ5T{?Y``Wti&gl zIdCpfx>*Iip_awwNA&VQosQFF7t7|xp|#f5BI2ebw52&ob~lo#4f0m&=gYg6u*3W{=_30IU| z;8NFyU|PaXnVD;N8zFrKH3PtU`1cl9z%Z&ozFbIj-NGK2nyq(} z`I{Dc_AjA=0FO<4HU8cs;iq)gF*yc;qY$Z6jv)}Pi11(Q|0UXBYah$1za z{?Q!z7*#0EsAVK331!%uThv!!TCoHt>?ji>uu_bLv-02rAmxVv61A3gRPgQ#D}*Xp39t?XBD(5p3c4l#|Y4 zf3Xo(Z`E2AjLD0Nqi;Oi3bXogADZz*QeJm;dU<_|BtBjn?fVAz+FH^x<&z8UfU;OS z_&`p(zxP)v=MDU|r`D3G#>#jY^$tbbUR?PgQa@-HWsrGPNG>Wa2vt)y6FPS-|8#N* zrdHk+Yo~{m%zO|i1+3@%ZhQsVnM+J%YZpV#1Dnhw4Rq>_QyPjgWrR^sXKNO6W!$Ui^d#qEi{8yV)Ql!hg#!7<%a&+9szGcN#(tiOKb152f z_iDjYV*rV}TagM$z7iYLf#j+vUMBmwb@wN8IBX50%S!ld7C6WxsGCyI#Cvd zazCi&f$s#zvS&DoK1a)KEz7bBedPQ^!!rt>8b_45#0FC68&dY^*tENp2vZmCmQ54) z9u|^2!_|cv-c=Ph3Z5%HI!UehRnotT&FZu-B=((kl0w_hGQ7tVWyc&wr4U(T)Gtxu zwQeX_l}HY)GtEkOAc!4hCSi<_!QR1?3jQkB*euCc8kj$+w{huG9W**N`DgUo@xs0eWlw@FBTl*Mv>W zj#E2Qr(V3j>54XjTl%V;yKJ@kD0ru>cmxaj_P)>qu||AI?aKmU!}X?bo@E4w0k1sV zkF(QFd5a&cb#twHE}Gv>*lR_FdSAk%XdiLjoS2V}`in4lNmA+Ml}L`_czczCg4Q$* z9_;D9MBegBg;zL`)~Ncu{gG0CkFK!h%OCN(cALMiiOr(-IE4%4xCz1DY@t@ZH0>4n zp4u}d{y{+u4Jr&fz-1TQ7XZXs#myNB+z{SdUIXxoV!zb$H(Y8Wzebda-nw6hkxvfF zy1!bH1;P`P#HK$t7Cw(2gikIFK#e3LhPf|a(jup;O+sfQe}%dQExUCDX_)uFY?p5L zt))MrXZ!5@E%WFZa10*9-Cj0uZnxH-Waj(@pYVBV-(2566X4q=4PTRaeuZc^py}4`7@{yH zuJs)Tf<)XLc}xeNH;7xzCQmFL)|_je?GEK{U=2qFY`dr)I>x&(q+73Fn~9gDDua(& zj9agK^RY95*S}fP2GLYj5g}8%Bplgsa*@HiHI*eg@V1}i2I!KsV8yFBt}O4vTQ5WE z-8H^Z8C$`k;aGy&|5k3TE`+nR4UQC(vxuW5f|j+qj+ZR)>;rK zRh9ql@~7<=8}}&xmnSdgbr{qesG9?TppV0LghQUV^6BJoO!%=_#CX8d?vwYtql~#N zbpJfGq}@t!kG4H(2Rwg;G@ZR2JA?v+65Za1UQzyTRa0Gyg%nZS1fQWSpUW*Dc6 zkUYDS409zyF=MOci;3Z}vbV>e%5y|yy78hQeu}xpP{w0MK}gAGAdU+d%h_)eQKD|7C3GcKjlUj;94;gCM#w~PmWaD2 zg-f0t&aC-Sx|e;cu*0GdpO`4_r4PGAVm-1DNkWStraZFI#`C|&%xzd$KI=d^!R1+!w@Uu?Zwj25`>7E8%)?3PR z0IBgr(qP}wnM1phJ*_=?2z>-Y8e?giGCDPavYj`EdrS7)=7K}KxU%|hKFZYeiae?= zHWH&JXcF?3e_st9cl3~$yY&3(7&m#;KO^pbM2i^`(ciBR2CIpD9h!q@kH~Mc)@0JP z3&Ni?bWC*)Onj}4WKIcHSX|6WsZDu}FGMM#Guff(-5iW_i|Kj=PJVCf==Br34CaeY z12C~4h(zif6H{L87nY#0!_ zi)o2GsG&^D%1sFQVizfi!i|DDCj`^|R$Fk*`Mk#c zvS}1hT9`4ZR%EgHRIgb>_};vlH(JC>Jux@N!3g)>xUkBz(&LFrI9=NK#K^`jf6NMR zD_>`^F{3dz%h~QF_T}1tmQ+&D*hKhRXd>x5@%?uWIp=D=D)3Jf3hOcS{%Jb6ddkb40|=v^rQ3m4Qn8~{e}M- zFcCUd*!aahda^&jMj3Pv;z&L{_m%Lawri-q8vwT9i!1XFA65L%_{c!|f4F!5!AC#- zKk$*|{{tVXN@Dq6LVb^*r-f7giGwa8w!GNE_7ek&wN_ktOqeNJ!*-AON_ii4IjEj;}jsXQe4j$8Il!jVDoFOi<`1GfrjHpWx zZ~92*Ih~Fj`;UC~C89)?W-IP_InLpHT^f$6c%%~LyAEbIlt zv0E+#X?5Jf?dd+f%OjG-Gv%_*4~vih1BR;r?da4;*5r1eCWKEPx4`)~ap8vB%PEjw zuID0C@3~YY`b>je?VLQYi$Qmllxuf~!Eo?y`qRikDab<={4r{C2-t;e`}n>|4$AUp zSmd}`yv8m3u~?z6q|T~=$w9>bqUu8SE#-;3qFyZ0d!c=&OA_q-mA^&7EgpJgxLbSU zUu=stDeYDeu@k)LM5f4>0MTfSdyqmpQK8Or$5WE{T- zGdm2{D92gHLvL7m*V^oDy)^pwU8#;``W{O?PmRER`~`+%50(*Up*Z-A4_95TO9LE3 zCO_oz20v^Z98I=EB`OKh_&X00*-wkzt7~(VcKrtx|DH2iIYIRHi^_X~_82?I2|;^U ze)DqsBR^^|75{u99_)Ha7p<9w(4T_LF&f@~0-J$rgo^~=#|q5)UIq~U{Kt1fL>L1W zo5lb})+q2sU*rospMJh7mhXd|2v9=oLaKj6h3k9T^fIzx-yMGC=^6$Kr4-l%gdy&f$n?tGVd{%H12#wKKUjg2q)H<&F%=c zr)VP>tEBVAYtkOGE(mM;Sp#057BNI>B7a>~j5qn1H-pbaHOkcSCR>AQ{ zpwBl)*K1{LDhN&{n@wG1I6>SW(}QLvU7SBf^lEoLrz?yTT^UKY=o8}rQVA6YF zhaSG%nE@s-Q8#Kk*JJt}hfHAEi362YSFp`pPL>D*6o^8dBgXrPh3ZEQXX*kR69reO z#S}keHot(nk z45+7-VBoa6@^A;irl0kt!$5rn*NErL*n8C{lZEs1ZyAl4FAK>qZ#^9Vntk2uzoLn2!*NTFC^!@#YbAN*RLwau(-8tqbvhZpihhgMs)Hh*h z80?oQh@Z-$bUA5lGEdVlH=LeSpf2(+aZ;*)rI1`W@$zp2ux7`}WDiWySRx2+H7w#e z&SYcs*7+^Gge2xZgU)e|Y)OsMc4GI4snu6aEvb%SK?kyXzq()T zIXIo82X}y5gKY}qa4wN}0mRqQs8H$$6HNX3U3L+@!Lnha<9|AY@f+5hV(=b#$2QeD zhJ>4f@uYpnp+-#h4Ow$vxI8gV<;d_~i4x70MgE#wp+|u55-HoIf-`}M#SUz6h8@9w zuqr4)KRL8XlY}u2Qz%zHz{V~66EaAIKx-P2A~e!&6W zR`RIKO-;-R!xv(zDkzrj6*8JV-QS%ZOD<1cSi7iI+}?{Kz0p>&bF(;jg>8-6;e+